
DYNAMIC LATERAL EARTH PRESSURES ON UNDERGROUND 
STRUCTURES: PREDICTING STRESSES DUE TO IMPACT 

LOADINGS 

Presented to the Following Faculty from The University of 

Texas at San Antonio Civil Engineering Department: 

Dr. Alberto Arroyo 

Dr. Jose Weissman 

Dr. Chia S. Shih 

Dr. Asadul Chowdhury 

In Coordination with Dr. Sam Helwany, Assistant Professor at the 
University of Wisconsin at Milwaukee Civil Engineering Department 

By: 

Major Curt A. Van De Walle, USAF 

Prepared for: 
CE5973 

Special Project 
Master of Science in Civil Engineering Degree Program 

The University of Texas at San Antonio 
Summer 1999 

WTC QUALITY INSPECTED 3 

DISTRIBUTION STATEMENT A JAAAAIA?     HH7 
Approved for Public Release IQUWT/J    U U J 

Distribution Unlimited 17 7 7 I t I •*    ww* 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public report™ burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources 
Mtnerirfci and maintainingthe data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any othe aspect of this 
co leeion S? infSÄc'udlng suggestions for reducing this burden, to Washington Headquarters Services, Directorate for f <^^™ "'*» "* IgM**"0" 

-      , 1204, Arlington" VA  22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DL 2U&UJ.  

REPORT TYPE AND DATES COVERED 
Davis Highway, Suite ' 

1.  AGENCY USE ONLY (Leave blank) 2.  REPORT DATE 

8.NOV.99 

3. 

MAJOR REPORT 
4.  TITLE AND SUBTITLE 
DYNAMIC LATERAL EARTH PRESSURES ON UNDERGROUND 
STRUCTURES: PREDICTING STRESSES DUE TO IMPACT LOADINGS 

6.  AUTHOR(S) 
CAPT VAN DEW ALLE CURT A 

7.   PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

UNIVERSITY OF TEXAS   SAN ANTONIO 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

THE DEPARTMENT OF THE AIR FORCE 
AFIT/CIA, BLDG 125 
2950 P STREET 
WPAFB OH 45433 

11. SUPPLEMENTARY NOTES 

5.   FUNDING NUMBERS 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

FY99-432 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

Unlimited distribution 
In Accordance With AFI 35-205/AFIT Sup 1 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

14. SUBJECT TERMS 

17. SECURITY CLASSIFICATION 
OF REPORT 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

15. NUMBER OF PAGES 

16. PRICE CODE 

20. LIMITATION OF 
ABSTRACT 

Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 239.18         
Designed using Perform Pro, WHS/DIOR, Oct 94 



TABLE OF CONTENTS 

ABSTRACT       4 

INTRODUCTION 5 

TEST CONDITIONS_     6 

MATERIAL PROPERTIES      7 

ASSUMPTIONS_     9 

LOADING AND DISPLACEMENT HISTORY      10 

CALCULATION OF FREE FIELD STRESS      11 

MAXIMUM STRAIN ON THE TARGET PLATE    14 

CONVERSION OF STRESS RESULTS TO STRAIN     16 

COMPARISON OF RESULTS TO MEASURED DATA_    19 

CONCLUSION ;   22 

REFERENCES    23 

APPENDIX - CALCULATIONS/NOTATION 



TABLE OF FIGURES 

Figure 1 - Conceptual Representation of Underground 
Dynamic Lateral Forces  

Figure 2 - Model of Large Scale Impulse Test  7 

Figure 3 - Sieve Analysis for the Soil Sample  8 

Figure 4 - Actual Loading and Displacement History . 11 

Figure 5 - Model Used in Dr. Chen's Research  12 

Figure 6 - Comparison of Assumed and Actual Loading History  14 

Figure 7 - Mohr's Circle for Case of Biaxial Tension  15 

Figure S - Determining Maximum Stress and Deflection 
on a Rectangular Plate  17 

INDEX OF TABLES 

Table 1 - Calculated Stress, Deflection and Strain 
for the UTSA Test    18 

Table 2 - Measured Strain from the UTSA Test     19 

Table 3 - Comparison of the UTSA Test Results 
with Calculated Values ___ 20 

—^ 



ABSTRACT 

The underground detonation of an explosive device produces shock waves such as 

Primary waves (P-waves) and Secondary (or Shear) waves (S-waves). These waves 

cause buildup of pressures within a soil medium. These pressures have the capability of 

rendering destructive forces on underground structures, and consequently represent life- 

threatening danger. Understanding these forces can aid in the design of underground 

structures to withstand such pressures, or alternatively, to design munitions which will 

render the maximum destructive power on underground structures when dropped at a 

predefined depth and distance from the structure. A conceptual representation of 

dynamic lateral earth pressures generated from an earth-penetrating munition is shown in 

Figure 1. 
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Figure 1 - Conceptual Representation of Underground Dynamic Lateral Forces 



Many tests have analyzed the effects of an impulse loading on a soil sample.   The 

present paper analyzes one such test conducted at the University of Texas at San Antonio 

(UTS A) in August 1998 under the supervision of Dr. Sam Helwany, and comments on 

the ability to predict free field stresses within a soil sample given the loading, loading 

duration, and distance from the loading within the soil sample. In order to do this, it is 

also necessary to discuss the small deflection theory of bending of plates with regards to 

the targeted wall within the soil sample. 

INTRODUCTION 

The objective of this special project is to analyze the ability to predict the stresses and 

strains generated on an underground structure at a given distance from a known impact 

loading, similar to that which might be generated by a bomb blast. This project is part of 

Phase I of a larger study funded by the United States Air Force (USAF) entitled 

"Dynamic Lateral Earth Pressure on Underground Structures."   This study was initiated 

by Dr. Sam Helwany, formerly of the UTSA Engineering Division and presently at the 

University of Wisconsin at Milwaukee; Dr. Ronald Bagley of the UTSA Engineering 

Division; and Dr. Asadul Chowdhury, Southwest Research Institute and adjunct faculty 

with the UTSA Division of Engineering. 

This special project also utilized research conducted by Dr. Hung-Liang (Roger) Chen et. 

al. at the University of West Virginia regarding "Dynamic Responses of Shallow-Buried 

Flexible Plates Subjected to Impact Loading" published in The Journal of Structural 

Engineering, January 1996. Dr. Chen's research analyzed a modified version of 

Boussinesq's Equation (1883) developed to predict the free field stresses in a soil mass 

generated by an impact loading. These predictions, together with predictions developed 



from a decoupled Single Degree of Freedom (SDOF) model, were compared with results 

measured in laboratory experiments. The present paper further analyzes the ability to 

predict stresses by comparing measurements gained experimentally in the UTSA test to 

those predicted by the formula. 

TEST CONDITIONS 

In order to test the effect of impact loading on an underground structure, a large-scale 

impulse test was performed at UTSA in August 1998. The model used for this test can be 

found at Figure 2. The load was provided by a MTS Impulse Generator capable of 

applying an impulse load of 3500 pounds within 5 milliseconds at an estimated velocity 

of 100 inches/second. The box itself was constructed of steel. The front plate was made 

of 1/2 inch steel plate with an 11.5 inch diameter suspended cutout, upon which the load 

was applied. The target plate and top were made of 1/2 inch aluminum plate, and the 

sides and bottom were made of 1/8 inch steel plate. All corners of the box were 

reinforced with 1/2 inch steel straps.   The box was rigidly connected to a strong wall. 

An air bladder was placed immediately above the soil sample, and a pressure of 10 psi 

was applied to simulate a buried depth of 13.33 feet in the same soil medium. High- 

density foam was then placed between the air bladder and the top of the box to act as a 

rigid spacer. 

The target plate was heavily instrumented with accelerometers and strain gauges in 

addition to load cells located at each corner. Due to symmetry, only one side of the plate 

was instrumented. This analysis will only deal with the strain gauges located at the 

center of the target plate. These gauges were selected because they represent the location 

of maximum stress and strain. 
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Figure 2 - Model of Large Scale Impulse Test (Not To Scale) 

MATERIAL PROPERTIES 

The soil used for this test was a Number 0 Monterrey Sand. Relative density of the sand 

was measured at 108 pounds per cubic foot. Two sieve analyses were performed on the 

sand, the results of which can be seen in Figure 3. The results of the two tests were 

practically identical. It can be seen that the sand is a uniformly graded medium, meaning 

that most of the particles are of the same size. The moisture content of the sample was 

negligible (e.g. - less than 2%). 

Perhaps one of the most important aspects of the experiment, or at least the one which 

required the most attention to detail, was the alluvial deposition of the soil sample. In 

order to ensure a uniform sample, a device was constructed to "rain" the sand into the 

box. This required a uniform rate of flow deposited from a constant height. This was 

difficult to obtain, because the height of drop varied as the sample depth increased. In the 

end, a rectangular box, approximately three feet in length with a square cross-sectional 

. 43.375" 
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area was used. Each side of the cross-section was approximately one foot long. Sand 

was fed into the top of the box via a tube connected to a large funnel suspended over the 

box. As sand passed approximately two-thirds of the way through the length of the box, 

it passed through a grid of circular holes which spread the sand out evenly across the 

cross section of the box. A screen was placed at the bottom of the box to slow the fall of 

the sand as it left the box. The sand was rained from a constant height of four inches 

above the top of the soil sample. The box was moved from one end of the sample to the 

other and simultaneously lifted by means of a mechanical device mounted on tracks 

above the box. This provided a compact sample of uniform density for use in the test. 

10.000 
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Figure 3 - Sieve Analyses of Soil Sample 
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The aluminum target plate was assumed to be isotropic and homogenous. In addition, the 

Young's Modulus of Elasticity, E, of the aluminum was taken as 10 x 106 psi. This is an 

approximate value of E for aluminum, which ranges from 9.9 - 10.3 x 106 psi. Likewise, 

Poisson's Ration, u, for the aluminum was taken as an average value of .332 from a range 

of.330-.334. 

ASSUMPTIONS 

Several assumptions were made for the purpose of this analysis. They are as follows: 

1. Since P-waves travel faster than S-waves, the effect of S-waves can be neglected in 

the initial maximum strain reading. In other words, the stresses caused by waves 

reflecting from the boundaries do not affect the initial maximum strain reading, thereby 

providing a free field stress reading. 

2. The side depth of the soil sample is intentionally smaller than the height and width of 

the sample. This reduces the effect of reflected stress waves from the boundary of the 

sample, more closely representing free field stress conditions. 

3. The box is rigidly connected to the wall, with no lateral movement. Additionally, the 

rigid steel frame and the concentricity of the loading reduce the possibility of lateral 

movement. 

4. The soil is uniformly deposited and is therefore homogenous and isotropic. This is 

accomplished by the use of a "raining" device previously discussed. 
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5. The target plate is simply supported on all edges. In actuality, the plate is pinned by 

the use of bolts at each of its four corners. The simply supported case, which allows for 

rotation but not deflection at the corners, is a close approximation to the actual conditions 

and represents an allowable margin of error. 

6. The target plate was assumed square (42" x 42"). In actuality, the target plate was 

slightly rectangular (42" x 43.375"). 

7. Air pressure introduced into the air bag at the top of the sample represents the 

increased pressure on the sample with burial depth. A confining pressure of 10 psi was 

applied to the sample, representing a burial depth of 13.33 feet in the same sand material. 

8. The friction forces between the cutout loading plate, suspended in-place by silicone 

sealant, are negligible when compared to the force of the impact. 

LOADING AND DISPLACEMENT HISTORY 

The loading and displacement history can be seen in Figure 4. The graph on the top 

represents the loading, while the graph at the bottom represents the displacement of the 

loading plate. Due to the speed of loading, a trigger mechanism had to be devised to 

capture the entire history. Therefore, the portion of the graph before and after the steep 

loading and unloading curve can be ignored, as this is due to the effect of the triggering 

mechanism and vibrations following impact. The actual time of loading is .021 seconds, 

or 21 milliseconds. The peak load over this time is 3725 pounds. The actual 

displacement of the loading plate, measured only during the time of loading, is .2 inches. 

10- 



c 

o u 
0) 

t/3 

o 

o;s 

Time (msec) 

Figure 4 - Actual Loading and Displacement History 

CALCULATION OF FREE FIELD STRESS 

As mentioned above, this project utilized research conducted by Dr. Hung-Liang (Roger) 

Chen et. al. at the University of West Virginia in 1996. This work was published under 

the title "Dynamic Responses of Shallow-Buried Flexible Plates Subjected to Impact 

Loading" in the January 1996 edition of the Journal of Structural Engineering. Dr. Chen 

used the model depicted in Figure 5 in his research. A portion of this research uses an 

equation for predicting the free-field stresses generated by an impulse load on a soil 

sample by using the relationship in Equation (1). 

-11 - 
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Figure 5 - Model Used in Dr. Chen's Research 

<7fu,z) = ?(0 1- 
(«2-f 

(1) 

where: af(t:) = free field stress at a distance z from the loading plate at time, t 

a = radius of the loading plate 

z = distance to calculated free field stress 

In this case, q(t) is the approximate uniform load resulting from a point load on a rigid 

plate resting on an elastic half-space. It is calculated by using the equation for maximum 

deflection developed by previous researchers, and takes the form of Equation (2). 

qit) = 
Pit) 
4a2 

(2) 

where:   P(t) = time varying point load 
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Unlike our test, in which the impact load was measured, the impact load in Dr. Chen's 

study, which was applied by dropping a steel ball from a given height, was estimated. As 

such, the impact load was defined as a product of the loading magnitude and a time- 

varying function. The peak amplitude of the loading, P0, is found by applying 

Equation (3) below (numbers in parentheses are those used in Dr. Chen's research). The 

value of P0 used in Dr. Chen's research was 1,727 lbf. 

i 

p _Mb(2gH)2 (3) 

)f{t)dt 
o 

where: Mb = mass of the steel ball 

H = dropping height (= 24 in) 

g = gravitational acceleration (=32.2 ft/sec/sec) 

f(t) = time varying function (= 1.0 for q(t)max) 

T0 = total duration of impact (= .204ms) 

The time varying function, f(t), was approximated using a Hanning's function for a 

monopeak, smooth-shaped curve for a given duration in the form of: 

/(0 = 0.5-0.5 cos 
f2rt^ 

yToj 

(4) 

An example of this type of loading history can be seen in Figure 6. For comparison, the 

loading magnitude, P0, and the duration of the impact, T0, are assumed to be identical to 

those used in the UTS A experiment and the actual loading history from the UTSA test is 

provided for comparison. 

- 13- 



Loading History - Assumed vs. Actual 
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Figure 6 - Comparison of Assumed and Actual Loading History 

MAXIMUM STRAIN ON THE TARGET PLATE 

Once the free field stress was calculated, the maximum bending stress on the target plate 

could also be calculated. To do this requires application of the theory of bending of 

plates. In our case, assuming the z-direction is normal to the plate, the stress in the 

z-direction is assumed to be zero. Assuming the aluminum plate is isotropic and 

homogenous and the load is uniform in all directions, the stresses in the x- and y- 

directions are equal and represent the principal stresses in Mohr's circle. This example of 

biaxial tension is represented in Figure 7. 
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W = (o,)/2 

(F) Equal Biaxial Tension 

Figure 7 - Mohr's Circle for Case of Biaxial Tension 

Thebending response of plates can be solved in a variety of ways. Analytical solutions 

of differential equations with given boundary conditions were the earliest solutions. 

Another form of solution can be obtained via numerical methods, i.e. - finite-difference 

and finite-element methods. In fact, Dr. Helwany will use a computer model to further 

analyze the stresses and strains on the target plate as a separate part of this study. For this 

portion of the study, however, solutions were obtained using graphical methods with 

constants that vary for different boundary and loading conditions. The maximum stress 

and maximum deflection were calculated using Equations (5) and (6), respectively. 

CnPL2 

(5) 

0)n 

KnPL4 

Eh3 (6) 

where:  a^ = maximum stress 

o)^ —maximum deflection 

p = pressure on plate 

Cn = variable from Figure 8 (c) 

K„ = variable from Figure 8 (d) 
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Other important considerations for determining the maximum stress and deflection are 

the actual boundary conditions and loading conditions for our test.   In actuality, the 

target plate was suspended by bolts on each of its four corners, and was allowed to 

deflect freely at all other points. For analysis sake, the plate was assumed to be simply 

supported along all four edges, which would not allow deflection at any of the edges, but 

would allow rotation at all edges. This is a good approximation of actual conditions. 

Additionally, the loading condition on the plate was assumed to be uniform for the first 

analysis (Case 7 in Figure) and in the shape of a triangular prism, with the maximum load 

at the center for the second analysis (Case 11 in Figure). Variables for these equations 

were based on the dimensions of the plate, as well as the boundary and loading 

conditions, and were taken from the graphs shown in Figure 8. 

CONVERSION OF STRESS RESULTS TO STRAIN 

In order to have the results in a format that could be compared to the laboratory results, it 

is necessary to convert the maximum stress on the plate, which occurs at the extreme 

fiber at the center of the plate, to maximum strain. If all previous assumptions are 

correct, the stresses and strains in both the x- and y- directions are equal, and only the 

equation for ex will be given. Equation (7), based on Hooke's Law, is applied to 

determine the strain. 

£. =■ 
^x-^y+^z) (7) 
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In the case of equal biaxial tension, with stresses in the x- and y- directions equal and 

normal stresses and strains zero, Hooke's Lay reduces to Equation (8). 

e T = ^(l-«) (8) 

RESULTS 

The stress, deflections and strain were calculated using the above equations for the UTSA 

test for each of the cases listed above and are shown in Table 1 below. From this point 

on, discussion will be limited to Case 2, the case of the triangular load shape, as it more 

closely represents the actual UTSA test conditions. 

Case 1 - Case 2 - Non- 
Uniform Uniform 
Pressure Pressure 

Max. Stress 3192 psi 2309 psi 

Max. Deflection .165 in. .116 in. 

Max. Strain (%) .02132 .01542 

Table 1 - Calculated Stress, Deflection and Strain for the UTSA Test 

One interesting point to note is that the maximum deflection for the target plate is on the 

right order of magnitude for each case. The measured deflection of the loading plate was 

.2 inches. This implies that some of the loading was absorbed by the damping 

characteristic of the sand, which is reflected in smaller deflections of the target plate. 
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COMPARISON OF RESULTS TO MEASURED DATA 

Orienting the axes such that the x-direction is horizontal and the y-direction is vertical, 

the strain measured in the UTS A test at the center of the target plate is recorded in 

Table 2. 

Strain 
Orientation (Microns) Strain (%) 

x-axis 

y-axis 

17.8 0.00178 

29.5 0.00295 

Table 2 - Measured Strain from the UTSA Test 

It is interesting to note that the strains in the horizontal and vertical directions are not 

identical as previously assumed. This can be due to various factors, including the 

approximations made about the plate dimensions. However, this does not account for the 

large variation in strain between the horizontal and vertical direction. This difference is 

partially due to the presence of the air pressure above the soil sample. This overburden 

pressure causes a variation in pressure on the face of the plate along a vertical line, which 

invalidates the assumption that pressure is uniform along the face of the plate. Since 

stress and strain were calculated in the horizontal plane, the discussion from this point 

will be limited to strain along this plane. 

19- 



A comparison of the strains in the x-direction from the UTS A test to those calculated for 

Case 2 above (non-uniform pressure in the shape of a triangle) using the available 

equations yields the results found in Table 3. 

Source Strain (%) 

UTSA Test 

Calculations 

0.00178 

0.01542 

Table 3 - Comparison of the UTSA Test Results with Calculated Values 

There is a large degree of difference between the calculated results and those actually 

measured, approximately on an order often magnitude. More specifically, the calculated 

strain is nine times greater than the measured strain. Dr. Chen's research provided 

similar results. As mentioned earlier, his research developed a SDOF model to more 

accurately predict the developed free field stresses; as such, his SDOF model predicted 

stresses that were five times less than those predicted by Equation (1). Additionally, Dr. 

Chen's SDOF model was more accurate for predicting lower stresses on thin Plexiglas 

plates. The thicker the plate, the more variance between stresses predicted in the model 

and those actually measured, with the stresses predicted by the model always higher than 

the measured stresses.   As a result, the measured free field stresses, which were not 

reported in Dr. Chen's study, were most likely less than those predicted by the SDOF 

model. Therefore, it can be deduced that the factor of five difference between the 

-20- 



predictions of the SDOF model and the measured data could easily be nearer the order of 

nine magnitude difference for the free field stresses that we discovered in our study. 

Knowing that the measured strains were much smaller than those predicted by Equation 

(1), we can hazard a few guesses as to the reason behind these differences. One very 

simple suggestion is that the equation is far too simplified to be useful in predicting the 

free field pressure acting on the plate. The equation does not take into account the 

material properties of the medium through which the pressure is being transmitted. The 

Modulus of Elasticity, E, of the medium, which is the property which reflects how P- 

waves travel through a medium, does not enter into the equation. To illustrate, if you 

were to replace the sand medium with steel, the free field stresses and corresponding 

strain remain the same using Equation (1) at the same distance from the loading plate. 

This is intuitively incorrect. 

Another possible reason for the variation in predicted versus actual strains rests in the fact 

that the overburden pressure introduced via the air bladder actually produces a lateral 

loading on the sou, which causes the plate to deflect before loading occurs. Additionally, 

the assumptions for the UTS A test may not be completely valid. For instance, the end 

conditions assumed in determining the bending of the target plate were not identical to 

those used in the experiment, and the load profile on the plate was assumed to be 

triangular in shape, which at best is a close approximation to the actual case. 

-21- 



Perhaps the most dominant factor contributing to the difference between predicted and 

measured strains is the neglect of the soil-plate interaction phenomenon. This is a 

complicated process which, in actuality, results in a reduction of the load on the plate. 

This is due in part to soil-arching within the medium, separation between the plate and 

the soil caused by reflected stress waves and different velocities of the waves in the soil 

and the target plate, and load relief due to the rigid body displacement of the target plate. 

All in all, soil-plate interaction phenomenon plays a large role in the variance between 

the UTSA test measured and calculated strain data. 

CONCLUSION 

This special project analyzed the ability to predict free field stresses within a soil sample 

subjected to impulse loading, by applying a simplified equation (see Equation (1)). While 

it would be convenient to use such an equation, it has been shown that the actual stresses 

and ensuing strains on an underground structure are the result of a very complicated 

process that must be studied in much greater depth to understand and predict these 

stresses. For this reason, further analysis of this problem using finite-element analysis is 

currently underway by Dr. Sam Helwany at the University of Wisconsin at Milwaukee. 

Unfortunately, the larger Air Force study, of which the UTSA test was the first phase, has 

been canceled.   Even so, it can be stated that the soil-structure interaction problem on an 

underground structure caused by an impulse loading is extremely complicated and 

deserves far greater consideration than can be rendered here. 
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APPENDIX - CALCULATIONS/NOTATIONS 



CALCULATIONS FROM THE UTSA LARGE-SCALE IMPULSE TEST 

Free Field Stresses: 

Equivalent Uniformly Distributed Loading Due to a Point Load Acting on an 

Elastic Half-Space: 

4a 

, N      3725lbs 
q{t) = r- 

4(5.75m)2 

q(t) = 2S.l7psi 

Free-field Stress at a Depth z from the Loading Plate: 

0>(*.z) = 0(0 1- 
w+*r\ 

<rf(ta)=2S.npsi 1- 
(29.75m)3 

((5.75m)2 + (29.75m)2 y5 

0-«,.,= 1.508/»« 



Equivalent Burial Depth Due to Presence of 10 psi Overburden Air Pressure 

on Soil Sample: 

a = yh 

Rearranging the equation yields: 

r 

h = 
\0psi 

ft2    (12m)3 

h = 160/« = 13.33// 



Application of Theory of Bending of Plates - Calculating Maximum Stress and 

Deflection for the Target Plate: 

Case 7 - Simply Supported with Uniform Load 

Maximum Stress: 

CyPL2 

max ^2 

(.30Xl.508/wO(42m)2 

(.50m)2 

ama=3\92.\3psi 

Maximum Deflection: 

_ KlPÜ 
C0™~   Eh' 

&m = 
(.044X1.508/?5/X42m)4 

(l0xl06/7-"'X-5M3 

0)^ =.165m 



Strain in the x-direction: 

sr = 

(3192.13pj/Xl-.332) 

lOxlO6 psi 

E =.00021323—= .021323% 
in 

Case 11 - Simply Supported with Load in the Shape of a Triangular Prism 

Maximum Stress: 

CupL2 

^max , 2 

^max   = 

(.217X1 .508p«X42m)2 

(.50m)2 

amax= 2308.98p« 

Maximum Deflection: 

0)„^ = 
KupZ4 

max ,-,, 3 
Eh' 

«max 

_(.03lXl.508p«X42m)4_ ^.^ 

(lOxlOViXsOi/i)5 



Strain in the x-direction: 

<rx(l-u) 

(2308.98^«Xl--332) 
lOxlO6 psi 

sx=.0001542—= .01542% 
in 



CALCULATIONS FROM DR. CHEN'S RESEARCH 

Free Field Stresses: 

Equivalent Uniformly Distributed Loading Due to a Point Load Acting on an 

Elastic Half-Space: 

Aa 

,,     1727'lbs 
9(0 = A„n. ,2 4(3. Om) 

q{t) = 47.97 psi 

Free-field Stress at a Depth z from the Loading Plate: 

0>,z) = l(0 1- 
W+'f 

<>7(r,z) = ^7.97 psi 1 
(3.0/n)3 

((3.0in)2 +(3.0in)2} 

af(t2) = 31.01/«/ 



NOTATIONS USED IN PAPER/CALCULATIONS: 

The following symbols are used in this paper: 

a = radius of the loading plate (in) 

C„ = variable for calculating maximum stress on the target plate 

E = Young's Modulus of Elasticity (psi) 

f(t) = loading function 

g = gravitational acceleration (ft/sec ) 

h = equivalent height of overburden soil sample (in) 

h = thickness of aluminum target plate (in) 

H = dropping height of impactor (in) 

K„ = variable for calculating maximum deflection on the target plate 

L = span of the target plate (in) 

Mo = mass of steel ball (lb) 

P0= peak amplitude of loading (lbs) 

P(t) = amplitude of impact loading (lbs) 

q(t) = uniform equivalent load (psi) 

t = time (msec) 

To = loading duration (msec) 

z = distance from loading plate (in) 

ex = strain in the horizontal direction (in/in) 

Y = unit weight of the soil (lb/ft ) 

Gf(t z) = free ^e^ stress at a given time and distance (psi) 

trm = maximum stress on the target plate (psi) 

p = density of soil sample (lb/ft ) 

v = Poisson's Ratio 

^max= maximum deflection of the target plate (in) 


