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ABSTRACT 

In this report, an evaluation of the Watson-Watt and Butler matrix approaches 

for tactical wideband radio direction finding applications is described. This evaluation 

was carried out using theoretical derivations and computer simulations, concentrating on 

the effects of various error mechanisms including internal noise, terrestrial and isotropic 

noise, cochannel interference, and multipath. A maximum likelihood (ML) approach was 

also derived and evaluated for comparative purposes to determine the accuracy trade-off 

between using an iV-channel approach versus the three channel Watson-Watt approach 

and the two channel Butler matrix approach. The results indicate that the Watson- 

Watt approach is superior to the Butler matrix approach for current applications. In the 

future, this choice may need to be reassessed as lower cost receivers and faster processing 

equipment make more sophisticated approaches such as ML attractive alternatives. 

RESUME 

Le present resume decrit revaluation des approches fondees sur Watson-Watt et 

la matrice de Butler pour les applications radiogoniometriques tactiques ä large bände. 

L'evaluation a fait appel ä des calculs theoriques et ä des simulations par ordinateur por- 

tant sur les effets des divers mecanismes d'erreur, dont le bruit interne, le bruit terrestre et 

isotopique, 1'interference entre voies et la propagation par trajets multiples. L'evaluation 

a egalement permis de deriver et d'evaluer une approche basee sur la probabilite maximale 

(PM) pour comparer les precisions angulaires obtenues en utilisant N canaux, les trois 

canaux de Watson-Watt et une matrice Butler ä deux canaux. Les resultats montrent 

que l'approche de Watson-Watt est superieure ä la matrice de Butler pour les applica- 

tions courantes. Dans l'avenir, on devra peut-etre reevaluer ce choix, car les recepteurs 

peu coüteux et le materiel de traitement accelere rendent plus interessantes les approches 

poussees comme celles de la PM. 
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EXECUTIVE SUMMARY 

Advances in technology have seen the development of improved communica- 
tions receivers with larger and larger bandwidths. Coupled with advances in digital and 
computing technology, these new wideband receivers allow surveillance of spectral bands 
containing many communications signals with 100% detection of all transmissions in that 
band. The development of tactical wideband surveillance systems has also led to an in- 
terest in wideband radio direction finding (DF) with the ultimate goal of locating the 
source of transmission. To keep equipment size and cost to a minimum, DF approaches 
have been proposed which minimize the number of receiver channels by performing analog 
processing at the front end. 

Two promising implementations for wideband DF are the Watson-Watt and the 
Butler matrix approaches. Although philosophically different, they have similar hardware 
and processing requirements. To evaluate and compare these two approaches theoretical 
derivations and computer simulations were carried out where the effects of noise, cochannel 
interference and multipath were present. Additionally, the performances of these two 
approaches were also compared with a more optimum maximum likelihood (ML) approach 
to determine the accuracy penalty incurred by reducing the number of receiver channels 
(the ML approach requires one receiver for every antenna). 

For the theoretical evaluations of the Watson-Watt and Butler matrix approaches, 
four and eight-element circular antenna arrays were considered. It was found that when 
adjusting the size of these arrays, two critical antenna array radii exist where the gains 
of one or more of the receiver channels becomes zero leading to large bearing errors 
when noise or other types of interference are present. The smallest radius (approximately 
one-third the signal wavelength) at which this happens corresponds to zero gain in the 
reference channel (a channel common to both approaches and used for phase reference 
purposes). The problem can be overcome by using a central antenna for the reference 
instead of deriving it from the antennas in the circular array, although this could be dif- 
ficult to do if a supporting mast occupies the central position. The second critical radius 
(approximately one-half the signal wavelength or slightly more) corresponds to the gain 
in the other channels going to zero, and there is no simple solution. Hence the maximum 
size is limited by this second critical radius. For a fixed array size, the upper frequency 
is limited accordingly. The ML approach is also limited by the same critical radii for 
the four-element array but not for the eight-element array which is capable of working 
up to an array radius of slightly less than three-quarters of the signal wavelength for an 



eight-element antenna array with a correspondingly higher upper frequency limit. 

In practical applications, external effects such as terrestrial and cosmic noise, 

cochannel interference, and multipath will be the dominant source of error. Under these 

conditions, the accuracies of both the Watson-Watt and Butler matrix approaches were 

determined to be relatively constant as the array size was increased (or equivalently as 

the frequency was increased) except close to the critical values (discussed in the previous 

paragraph) where accuracy rapidly degraded. There was relatively little improvement in 

either of the two approaches when an eight-element antenna array was used compared to 

a four-element array. Quantitatively, the Watson-Watt approach was found to be twice as 

accurate (i.e. one half the RMS bearing errors) as the Butler matrix approach. In com- 

parison, the ML approach was significantly better with the best accuracy achieved using 

the eight-element array (upwards of five times better than the Watson-Watt approach). 

Generally the results show that neither the Watson-Watt nor Butler matrix ap- 

proaches achieve optimum accuracy under practical conditions and that utilizing more 

channels provides better accuracy. However, for a system where other constraints be- 

sides accuracy are important, such as low cost and realtime capability, and given the 

current economic climate and technological advances, the Watson-Watt approach is the 

best choice. The ML approach, although generally having better accuracy and a greater 

frequency range of operation, is considerably more expensive due to the greater number of 

receivers and the processing requirements. In the future, however, this choice may need 

to be reassessed as lower cost receivers and faster processing equipment make the ML 

approach a more attractive alternative. 

VI 
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1.0    INTRODUCTION 

Advances in technology have seen the development of improved communications re- 
ceivers with larger and larger bandwidths. Coupled with advances in digital and comput- 
ing technology, these new wideband receivers allow surveillance of spectral bands contain- 
ing many communications signals with 100% detection of all transmissions in that band 
- something that was not possible previously. Once detected, these signals may then be 
demodulated and analyzed as necessary. 

The development of tactical wideband surveillance systems has also led to-an interest 
in wideband radio direction finding (DF) with the ultimate goal of locating the source 
of transmission. To keep equipment size and cost to a minimum, DF approaches have 
been proposed which minimize the number of receiver channels by performing analog 
processing at the front end. The front end processing, however, leads to compromises in 
performance since there is less flexibility in terms of how the received antenna signals are 
processed. 

Two approaches to wideband DF, which appear to have the desired qualities, are the 
Watson-Watt approach and the Butler matrix approach. Although philosophically dif- 
ferent approaches, their hardware implementation is similar and one might expect that 
the performance of both approaches would also be similar. However, subtle differences 
in approaches can often lead to unexpected and undesired consequences in terms of per- 
formance which is not something one wishes to discover after the equipment has been 
built. To address these concerns, and identify the more promising approach, an evalua- 
tion of these two approaches was carried out through theoretical derivations and computer 
simulations. This evaluation included the effects of noise, cochannel interference and mul- 
tipath. Additionally, the performance of the Watson-Watt and Butler matrix approaches 
was compared with a more optimum maximum likelihood approach to highlight the per- 
formance trade-off being made. 

This introduction is followed by a theoretical derivation of the Watson-Watt approach, 
the Butler matrix approach, and the maximum likelihood (ML) approach in Section 2. 
This is, in turn, followed by an evaluation of the theoretical and simulated susceptibility of 
the proposed wideband approaches to internal noise and external interference (including 
noise, cochannel interference, and multipath) in Section 3. The simulated susceptibil- 
ity of the ML approach is also included for comparison. Finally, the conclusions and 
recommendations are presented in Section 5. 



2.0    DF THEORY 

For the purposes of this report only four and eight-element equally spaced circular 

antenna arrays are considered. This does not mean that the Watson-Watt or Butler 

matrix approaches are restricted to only these two antenna arrays, rather it provides 

a convenient basis for comparison and these are commonly used arrays for tactical DF 

applications. 

Since none of the DF approaches discussed are capable of dealing with more than 

one signal at a time, it is assumed that the receiver outputs are digitized then processed 

using narrowband digital filters or FFT processing to separated the various signals before 

DF processing. Regardless of how a target signal has been isolated, the input to the 

DF processor is assumed to be a single complex sample from each channel at a sampling 

rate considerably lower than the sampling rate of the receivers (which is related to the 

difference in the receiver bandwidth and the signal bandwidth). 

Averaging of the estimated signal bearing may also be done to produce a more stable 

estimate, however, this is not discussed in this report. Rather it is assumed that if the 
bearing errors have a random temporal component the error distribution will be Gaussian 

and averaging will then reduce the temporal RMS error by a factor of l/y/K where K is 

the number of bearings averaged. Note that in some instances, such as with multipath at 

the receiver site, the resultant error does not change over time so that averaging provides 

no improvement. 

To maintain consistency in the derivations, the positions (xn, y„) for n = 0,1,..., N — 1 

of the N antennas used in the circular arrays are defined according to 

'27rn 
xn   =   r cos 

'2irn 
y„   =   rsin- (7 + o) & 

where the array has radius r, the origin is the center of the array, and fi gives the angle 

of the radial running through antenna 0 measured counter-clockwise from the X-axis (the 

array orientation). Figures 1 and 2 show the antenna positions graphically. The response 

of antenna n for a signal arriving from the direction (f> (measured in the clockwise direction 



from the y-axis) is then given by 

xn   =   se*2*(Xn sin *+y«cos ^ 

(3) 

where s is the time dependent complex amplitude of the signal measured at the center of 
the antenna array, and A is the signal wavelength. 

(A 
I r 

025 ■ * 
0.2 ■ 

>■ 

♦ V 
0.15 " 1 

• f 

■E-    0.1 . r 

% 
■£   0.05 0 

g 
! o :*1»  

2 X-axls 
c 
|-0.05 

• 
■ 

>   -0.1 
3 

- 

-0.15 • 
■ 

-0.2 ■ 

-0.25 

 1 

-0.25 -0.2 -0.15 -0.1  -0.05     0     0.05    0.1    0.15    0.2    0.25 
X-coordlnate (wavelengths) 

Figure 1: Geometry of a four-element circular array showing antenna positions (large 
dots) and orientation fl = 15°, as well as signal direction <f> = 45° (where the signal is 
represented by the large arrow). 

Before continuing on to the detailed derivation of either the Watson-Watt approach or 
the Butler matrix approach, it is useful to consider some of the common features. Both 
approaches involve estimation of the signal direction using the equation 

0   =   arctan (I) (4) 

where A and B are real-valued and the four quadrant version of the arctangent function 
is used (i.e., the signs of A and B are utilized to resolve the 180° ambiguity between the 
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Figure 2: Geometry of a eight-element circular array showing antenna positions (large 
dots) and orientation ■d = 22.5°, as well as signal direction <f> = 45° (where the signal is 
represented by the large arrow). 

quantities 4 and ^4}). The four quadrant arctangent function also has the property 

i fcA\ <p   =   arctan I — 1 (5) 

where c is a positive real value. 

In determining the signs of the quantities A and B, a reference channel is required. 

This channel is usually generated by summing the outputs from all the antennas in the 

array. The result is given by 

N-l 
Vref    —     53 Xn 

n=0 

JV/2-1 

=       E   J" + xn+N/2 
n=0 

N/2-1 

n=0 

=   2s  £  cos^—sin(0+ —+ 0)J 



2sß (6) 

where ß is a real scaling factor. The value of ß changes significantly with r, the radius of 

the antenna array, as shown in Figures 3 and 4, and is relatively independent of the signal 

direction (f> except for values of r > 0.3A in the four element case. From these figures, the 

minimum value of ß occurs for <f> + ti = (2k + l)ir/N for k = 0,..., TV - 1 and is given by 

Ä, 

for TV = 4 2C0S(—] 
(2irr      37r\     n      (2-nr      n\ „     , 
{— cosTJ+2cos(— C0S8J       foriv = 8 

(7) 

Similarly, the maximum value of ß occurs for (f> + ti = 2kir/N for A; = 0,..., N - 1 and is 
given by 

Pmax    —     i 

1 + COS 
&) 

,  , _      firrV2\ /27rr> 

1 + 2 COS     ;—     + COS (x) 

for iV = 4 

for TV = 8 

(8) 

Alternatively, for the Watson-Watt approach, the reference can be obtained from the 

output of a single antenna placed at the center of the array. The reference output in this 
case is simply 

«n/  =   * (9) 

The advantage of using a single antenna is that it does not suffer from the zero problem 

associated with the summed output. The disadvantages are that an extra antenna and 

associated hardware are required and the central position of the array will typically be 

occupied by the mast used to support the antenna array. Hence, when discussing the 
reference voltage, the form given by (6) is assumed unless otherwise stated. 

In Figures 3 and 4, ß goes to zero then becomes negative for larger values of r. 

Since this is an undesirable condition (particularly ß = 0), a suitable limit on r can be 
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Figure 3: Value of ß as a function of both the signal bearing and the radius of a four- 
element circular antenna array (# = 0°). 
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determined by requiring that ßmin > 0 which leads to 

A 

Tmaxo     —     i 

2\/2 

A 
. 2\/2cosf 

for N = 4 

(10) 

for N = 8 

These limitations on r only apply when the reference voltage is generated using the 
summed antenna outputs. For the central reference antenna approach there is no such 
limitation. 

It is also useful to evaluate the term xn—xn+N/2 which figures prominently in generating 
the channel outputs for both approaches. Hence 

Xn - Xn+N/2 

=   j2ssm{—an(<f>+ — + 0)) (11) 

Finally, some comments on mutual coupling effects are in order. Given the small 
spacings between antennas used in the antenna arrays discussed in this study (less than 
a wavelength), mutual coupling effects would be expected to figure prominently in the 
results. However it was found through simulation that, although mutual coupling does 
significantly affect channel gains and phases, the effects could be minimized through 
channel calibration with the result that performance was not appreciably different than 
when mutual coupling was absent. For example, assuming half-wave dipole elements 
and using the approach discussed in [1] to model mutual coupling, the summed reference 
voltage amplitude was reduced by a factor ranging from N (for r ->■ 0) to 1 (for r -> rmaxo). 
The value of rmaxo was not significantly changed, however, and the phase offset was easily 
corrected, minimizing the degradation of the reference voltage (the reduction in amplitude 
was minimal for values of r where bearing estimation could have been compromised). 
Hence to avoid unnecessarily complicating the derivation and evaluation of the direction 



finding approaches discussed in this report, mutual coupling effects were ignored. 

2.1    The Watson-Watt Approach 

The Watson-Watt approach uses two orthogonal directional antennas with the gain 
pattern of one antenna given by 

gEw(<J>) = sm<f) (12) 

and the gain of the second antenna given by 

9NS(<I>)= COS (j> (13) 

where in this discussion the gains are real valued but may be positive or negative. If these 
two gain values are measured for a given signal, as shown in Figure 5, then the signal 
bearing can be estimated using 

^=arctan(^) (14) 

Figure 5: Antenna patterns for an eight-element circular array implementing the Watson- 
Watt approach. 

The next two sections discuss the implementation of the Watson-Watt approach using 
four and eight-element circular arrays. 

2.1.1    Four Element Array 

Directional antennas with the sine and cosine patterns for an N = 4 element circular 



to receiver 

Figure 6: Adcock antenna setup for a four-element array Watson-Watt system. 

array can be approximated by taking the difference in outputs from opposite pairs of an- 
tennas as shown in Figure 6 and positioning antenna 0 on the X-axis (the East-West line). 
Using (11) and the fact that i9 = 0°, the sine response gain pattern can be approximated 
by taking the difference between antennas 0 and 2 giving 

VEW 
.n     .     (1-KT   .      A 

=   x§ — X2   =   j2ssm I —-sin0 I (15) 

where VEW is the resultant complex voltage.  The cosine response gain pattern can be 
generated in a similar fashion by taking the difference between antennas 1 and 3 giving 

VNS 
.n     .     (2-KT \ 

=   X\ — Xz   =   j2s sin I —— cos <p I (16) 

where v^s is the resultant complex voltage. 

Inspection of the above expressions reveals that for particular combinations of the 
bearing <f> and array radius r, both voltages will be zero (e.g. (0,r) = (0°,A/2) or 
(45°, A/ \/2))- This condition can be avoided if the array radius is kept small enough 
that r < rmax, where mail 

'moxi 
A 
2 

(17) 

The condition r < rmaxi then ensures that the directional signal voltages will be nonzero 
regardless of the signal bearing, although for some signal bearings it will be possible to 
exceed this value. However, unless the reference voltage is derived from the output of a 
central antenna instead of using summed antenna outputs as described in Section 2.0, the 
actual upper limit on the array size will be r < rmaXQ (where rmaxo is given in (10)) since 

Tmaxo ^ fmax\ • 



Although (15) and (16) are not exactly the desired response, if the antenna array size 

is small enough, then the above expressions reduce to the more desirable forms 

27T7* 
VEW ~ j2s——sm<f>       for r < X/2-K (18) 

A 

and 
VNS ~ j2s——cos<t>       for r <IC A/27T (19) 

A 

respectively. 

To convert the complex voltages to more usable forms appropriate for a four quadrant 

arctangent function, since in most practical applications only relative phases can be mea- 

sured, then the two voltages are phase shifted -90° and divided by the reference voltage 

Vref yielding 

and 

'»<*> - ->v£ = rB(x™') (21) 

Provided that r < A/2\/2 then the term ß will always be positive and real, and g'EW{4>) 

and g'NS{4>) can be used to replace gEw(4>) and gNS((f)) respectively, in (14). Hence 

4>   =   arctan |   m)?~        ( I (22) 
\sin(2f cos«/.)/ 

The approximations (15) and (16) used for the cosine patterns lead to bias errors which 

are a function of both signal direction and antenna array size as shown in Figure 7. As 

noted already, as the antenna array size shrinks, the approximations improve and the bias 

error is reduced. Since the bias errors are constant and repeatable, a look-up table can 

be used to correct the results with relatively little processing overhead. 

10 



Figure 7: Bias errors of a Watson-Watt system using a four-element array showing errors 
as a function of the radius of the antenna array and the signal bearing. 

2.1.2    Eight Element Array 

to receiver 

Figure 8: Adcock antenna setup for an eight-element array Watson-Watt system. 

Directional antennas with the sine and cosine patterns for an N = 8 element circular 

array can be approximated by adding adjacent pairs of antennas and taking the difference 

in outputs between these antennas and their opposite counterparts. To properly align 

these patterns with the X and Y axes, the array is oriented so fi = -TT/8 (this aligns the 

long axis of rectangle formed using antennas 0,1, 4, and 5 with the X-axis). The resultant 

11 



voltage outputs in this case are given by 

VEW    =     (Xo+Xx) - (xA + X5) 

=   j2s sin f-^ sin(0 - |)J + j2s sin f -^ sin(<£ + ^) j (23) 

«   js—— cos(-)sin0       for r < A/27T (24) 
A 8 

and 

«AS     =     0&2 + X3) - (^6 + X7) 

=   j2s sin f-^ cos(<£ - |)J + j2s sin (^- cos(<£ + |)J (25) 

«   js—r—cos(—)cos^>       for r «C A/27T (26) 
A 8 

where tf = 7r/8 was used to adjust the array so that the long side of the rectangle formed 
using antennas 0, 1, 4, and 5 was aligned with the X-axis (which also aligns the resultant 
sine and cosine voltage patterns in the proper directions). 

As in the four-element case, certain combinations of the signal bearing <j) and the an- 
tenna array radius result both channel voltages becoming zero (e.g. (0, r) = (0°, A/2 cos f) 
or (45°, A/V^))- This condition can be avoided if the array radius is kept small enough 
that r < rmaXl where 

(27) r, 
2cosf 

This upper limit on the array radius is slightly larger than the upper limit given for the 
four-element array in (17) and applies for the case when a reference antenna is used at 
the center of the array. For the reference voltage generated using the summed antenna 
output the upper limit given by (10) is smaller and therefore applies. 

Shifting the directional antenna voltages -90° and dividing by the reference voltage 
to get the relevant gain values then 

'"<*> = -^ ■ W^-iO+Wx-»^)   (28) 

12 



and 

9NS(<I>)   = 
.VNS 1   .   /27rr      lt     7r.\      1   .   /27rr      .,     7r.\ /nn. 

-^ = Jan(T^-8)J + JmlTa)B(*+8))      (29) 

Finally, the bearing estimate is determined using 

} = arctan f *™}&) 

In terms of (28) and (29) the above expression is given by 

' sin (2f sin(0 - f)) + sin (2f sin(0 + f)) 

(30) 

<f>   =   arctan 
^sin i^f cos(<f> - §)) + sin (^f cos{<j) + §)) 

(31) 

4 
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Figure 9: Bias error of a Watson-Watt system using an eight-element array as a function 
of the radius of the antenna array and signal bearing. 

As in the four element case, the approximations (23) and (25) used for the cosine 
patterns lead to significant bias errors in the bearing estimates except when the array 
size is very small as shown in Figure 9. However the magnitude of the errors in this case 
are about one-third those for the four-element system. Since the bias errors are constant 
and repeatable, a look-up table can be used to correct the results with relatively little 
processing overhead. 

13 



2.2    The Butler Matrix Approach 

The Butler matrix approach takes advantage of the relationship between the spatial 

response measured around a circular array and the signal direction. For example, the spa- 

tial phases measured around a one wavelength diameter circle for various signal bearings 

are shown in Figure 10 (the corresponding amplitude values are not shown since they are 

constant regardless of signal direction or angular position). As can be seen, the shape of 

the spatial response is unaffected by the signal direction, so that the signal direction can 

be related directly to the phase of this response waveform. 

4 —I 1   1   1   —i r '               i 

♦ = o° ♦ = 60° 4 = 120° ♦ =180° 

3 - 

2 \                  \ 

1 \                    \    " 
"at 
g 
to 
to 
10 

-1 \                    \     /    " 

-2 \          /     \   " 

-3 

1         1  1 ■ i                   i                   i 

100 150 200 
Angular Position (degrees) 

250 300 350 

Figure 10: Spatial phase response measured around a one wavelength diameter circle 
for signal directions <f> = 0°, 60°, 120°, and 180°. Phase measurements were made relative 
to the center of the circle. 

Using a circular array to make discrete measurements, one method of determining the 

spatial phase of the response waveform is to use a Butler matrix which performs a discrete 

spatial Fourier transform on the data. Treating the antenna outputs as TV points in a 

linear spatial sequence, the transform produces the sequence 

F(xo, Xi, ...xN-i) = {/o, /i,..., /JV-I} (32) 

where /o, /i,..., /JV-I are the Fourier frequency coefficients. These outputs are also called 

the mode voltages where the mode 0 voltage is f0, the mode 1 voltage is'/i> and so on. 
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The coefficients are calculated using 

AT-l 
_ ■• 2wik 

xte 
J 

t=0 
fk = £ Xie-'-r (33) 

Given that one complete waveform requires all N antennas, and ignoring the arbitrary 

phase term introduced by s, the signal modulation, then the Fourier coefficient /i contains 

the relevant spatial phase information. Since the modulation term s affects each Fourier 

term in the same way, its effect can be removed by dividing through by /0. The spatial 

phase will then be the phase of /i//o- Since the phase will change exactly as the signal 

direction changes, then for a suitable choice of the array orientation (i9 = 0), the phase 

angle and the estimated signal bearing will be the same. Hence the estimated signal 

bearing will be given by 

^arctanf^f//1//0^ (34) 
V real{/i//o} J V   ' 

2.2.1    Four Element Array 

From (33), the mode 0 voltage f0 is the sum of the outputs, or ure/, and is calculated 

according to (6) where ■d = 0. The Fourier coefficient for f\ is given by 

/i     =     x0 + xie~j'% + X2e~i* + x3e~j~? 

=     x0 — jxi — x2+ jx3 

=     (x0 - x2) - j(x1 - x3) (35) 

Expanding the two bracketed terms using (11) for n — 0 and n = 1 then 

, ..      .     /27IT    .      A       -      .     /27IT   .   ,,       7T,\ 
/I     =     j2ssm I —— sin 01 +2ssm ( —-sin(<^ + -)J 

=     j2ssinl ~Y~sin0l +2ssm( —-cos^l (36) 

Dividing this result by /0 = v„,f, where vnf is given by (6), then 

, ., 1  .   /27rr       A      .1   .   /2?rr .A 
/i//o   =   -Qsm y— cos<f>)+J-gsm ( — sin<f>\ (37) 
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27IT ,        .27IT   .      , . X /nnS — cos^ + j —sin<£       forr<— (38) 

Taking (37) and plugging it into (34) results in 

, sin (^ sin A, 
tf> = arctan   —^ ±\ (39) 

sin (2f cos</>) 

which is identical to (22), the expression developed for the Watson-Watt approach using 

four antennas. Hence the bias error due to approximating a continuous circle by four 

discrete points (i.e. using an array of four elements) is given by Figure 7. 

Much like the problem of channel voltages going to zero in the Watson-Watt approach, 

the mode voltage /b and /i also go to zero for particular combinations of <j> and r. The 

zero condition for /o = ure/ was previously discussed in Section 2.0 while the zero condition 

for /i is identical to the four-element Watson-Watt approach discussed in Section 2.0 and 

the same limitations on array size also apply. Additionally, although a central reference 

antenna is not normally associated with the Butler matrix approach, this does not preclude 

it's use to increase the usable size of the antenna array to r < rmaX2 where rmaX2 = rmaXl. 

2.2.2    Eight Element Array 

The Fourier coefficient for /i for an eight element array is given by 

 • 7T  • IT  * 3TT  A—  -■ 57T   ■ 3TT  .• 7TT 

fx     —     XQ + x\e J* + a^e J* + x3e 
J* + x*e 3  + x$e 3 * + x^e J2 + xye J * 

=       X0 H ~/K~X^ ~ 3X2 ln~Xz ~X4 7o~X5      JX6 WXl 

1 — j                                                          1 + j 
=       (X0 - X4) + —7z-(Xl - X$) ~ j(x2 ~ X6) ~Äf(X3 ~ X^ 

=      (x0 - X4) + -T=(XI - x5)—j=(xz-x7) 

-j-ßfa ~~ x^ - i(X2 - x*) - JT/Q^3 ~ X7^ (40) 

Expanding the bracketed terms using (ll)forn = 0,l,2,3 and then dividing through by 
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real 

/o = Vref where vnf is given by (6), then 

,,,,,-, 1     .   /27rr      ,.     7T.N      1   .   /27rr        \ 
*K/i//o}   =   -r-^sin(^— cos(<£--)J+-sin(^— cos^J 

Wnbr«"W+iO (41) 

G"* 
irr\/2      ,.     7i\     27rr       ,     7ir\/2      .,     7i\ 
-ATcos(<*-1>+A?cos ^+-ATcos(<*+ 4} 

cos <p       for r <C — (42) 
Xß       T 2ir 

and 

imag{/i//0}   =   ^sin(^sin(0-^)j + -sin(-^sin<£j 

+^™(—,m(*+4)) (43) 

7rr\/2  ...     7T.     27rr  .    ,     irr\/2  .  , .     7i\ 
■ sm(0 - -) + -T-T- sm 0 H—r-r- sin(0 + -) r^f 

Xß        ^     4'      Xß       ^       Xß 

Airr X 
«   -r-r- sin <j>       for r -C —- (44) 

Ap 27T 

Substituting (41) and (43) into (34) leads to the result 

/sin (2E sin(<£ - f)) + v^sin (2SE sin<f>) + sin (?f COs(<£ + f)) \ 
6 = arctan    7- r — 7- 4 \- {- (45) 

\sin \*f cos(<j> - f)) + \/2sin (if cos <j>) + sin (^f sin(0 + f)) / 

which is obviously quite different than the corresponding result (31) for the Watson-Watt 

system. The bias error (due to discrete spatial sampling) is almost insignificant in this 

case as shown in Figure 11. Only the result for r = 0.3A was shown since for smaller 

values of r the biasing is even smaller. 
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Figure 11: Bias error of a Butler matrix system using an eight-element array as a function 
of the signal bearing. 

The problem of /0 and /i going to zero for certain combinations of bearings and array 

sizes also affects the eight-element Butler matrix approach. The limitation on the array 

size based on |/0| = |vre/| > 0 is given by (10), while the limitation on the array size based 
on |/i | > 0 is given by 

'max2 =    0.60564751A (46) 

Since the above result is larger than given by (10), the above limit is superseded by 

(10). Although it would require a modification to the basic Butler matrix approach, the 

above limit could be reached by replacing the mode 0 output (/o) by the output from 

an antenna placed at the center of the array as sometimes done for the Watson-Watt 

approach. If this were done, the maximum usable array size for the eight-element Butler 

matrix approach would then exceed that of the four-element approach as well as both the 

four and eight-element Watson-Watt approaches. 

2.3    The Single Signal Maximum Likelihood Approach 

A successful, albeit often computationally intensive and hardware expensive, approach 

to estimation is based on the maximum likelihood method. Essentially the idea is to find 

the most likely state of a signal process given a set of measurement observations made 
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of this process plus additive noise. Assuming the noise has a Gaussian distribution, and 

a measurement of N sensor outputs is available, then the associated probability density 
function is given by [2] 

/(*) = fl-^detC 
^-trace^x-m^cr^x-m)) (47) 

where the superscript H denotes the conjugate-transpose operation, x is the noise cor- 
rupted data vector defined by 

x2 xjt = 

XN-I 

(48) 

m is the signal (or noise-free) data vector and has the same form as x, and C is the 

NxN noise covariance matrix which describes the correlations among sensors. The sensor 

covariance matrix is assumed to be known either through measurement or modeling. 

Under normal circumstances, the only unknown in (47) is the signal data vector m. 

Since the Watson-Watt and Butler matrix approaches make the assumption that only 

a single signal is received at a particular frequency, the same assumption is made here. 
Hence, the elements of the signal vector m will be of the form 

m ,n   =   «*¥-»(*■*-")       for n = 0,1...,N - 1 (49) 

The signal vector m in the single signal case is a function of the signal amplitude s and 

the bearing <f>. Estimating these two values can be accomplished by finding the choice 

of s and <j> which lead to a maximum value of /(x). By inspection, this is equivalent to 
minimizing the expression 

e2   =   trace((x-m)HC-1(x-m))   =   (x-m)ffC-1(x-m) (50) 

Defining the steering vector (or array response vector) as e = ra/(s\/N) and rewriting 
the above expression in terms of e then 

ez   =   (x-se^C-^x-se) 

xff C^x - sxHC-'e - s*eHC-1x + s*seItC-\ (51) 
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Setting up the differential equation 

ds 
=   0 (52) 

yields 
s - PN (53) 

which is the value of s which minimizes e2 for a given value of (j>. Plugging this value back 

into (51) 

e2   =   x^C^x =—  54 
eHC~le 

There is no obvious way to directly compute the value of <j>, hence <j) is estimated by 

finding the value which minimizes e2 using the expression shown here, or equivalently by 

maximizing 
effC-1xxHC-1e 

S®   = e«C->e (55) 

since the first term in (54) is constant with respect to <j>. 

The main advantages of the maximum likelihood (ML) approach proposed here is that 

it is optimum for the case of estimating the bearing of a single signal in Gaussian noise from 

a single measurement sample, it is also unbiased (no need for a look-up table for correction 

purposes), and it does not suffer from the problem of the channel voltages going to zero 

for certain combinations of signal bearing and antenna array size. The disadvantages are 

that N receiver channels are required for N antennas and it is a narrowband technique 

(the steering vector e is a function of the signal wavelength or frequency) which adds 

further complexity to the processing. 
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3.0    ERRORS DUE TO NOISE AND INTERFERENCE 

In this section, the effects of internal noise, external noise, co-channel signals and mul- 

tipath propagation are considered. These sources of error are grouped into two categories, 

namely, internal noise and external interference. To simplify the discussion, the antenna 

patterns are assumed to be ideal. The results derived based on these assumptions are 
tested later through simulation. 

The approximations of interest are taken from the derivations performed previously 

which make the assumption that there is only one signal present and that there is no 

noise. The reference voltage for both the Watson-Watt and Butler approaches in this 
case is then given by 

Vref  =   as (56) 

where 
Nl2~1       /2irr I'Kn        \ 

a   =   2 Yl cos(^—sin(<£+ —+ tf)J   =   2/3 (57) 

Although a examination of Figure 3 reveals a dependence on </>, for approximation purposes 

it is simpler to approximate ß by (ßmin + ßmax)/2 for the four-element array and ßmax 

(where ßmax « ßmin) for the eight-element array. This leads to the approximation 

a   «   T^ + 2cos^-)+cos(—JJ (58) 

where r < rmaxo. 

For the Watson-Watt approach the relevant channel voltage approximations are 

vEW   =  jbs sin </> (59) 

and 

vNS   =   jbs cos <f> (60) 

where the best choice for b is given by 

, J\VEW\
2
 + \vNs\2 ,   v b = * H  (61) 

using the exact values of vEW and vNS described by equations (15)and (23), and equations 
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(16) and (25), respectively. However, this leads to a value for b which is dependent on the 

bearing <f>. To remove this dependency, the median value is used instead leading to 

sin (x)+* 
nr 

sin 
V2" 

for N = 4 

(62) 

(2 + y/2) sin (-^ cos ^ J + V^sin f-^ sin ^ J for N = 8 

where r < rmail. 

For the Butler matrix approach the relevant approximations are 

/o    =    Vref   =    as 

and 

/i   =   cs cos <^> + jcs sin <f> 

where the ideal choice for c is given by 

l/il        IWil c   = 
l/ol 

(63) 

(64) 

(65) 

using the exact values of fi/fo given by (37), (41), and (43) are used. Since this again 
results in a value which is dependent on <f>, an approximation for c is made by taking the 

median value evaluated for all values of <j> yielding 

sin 

V2 

sin 
7rr v^ 

sin 
•   flirr ,     n + sm   ——   + 2 cos 1 + 2 cos — sin ( 

_ .   7T  .   /2irr  .   7r\ 
+ 2 sin — sin   —— sin — 1 

8      V A        8/ 

for iV = 4 

27rr      7r\ 
IT C0S8J 

for TV = 8 

(66) 

where r < rmaX2. The expression for c for an eight-element antenna array is overly compli- 

cated and, given the range of antenna array sizes of interest, can be accurately replaced 

by 
N ( .   (2Trr\  .    ^ .   fnr^ 

c   «   —   sin.    , 
4 V      V A 

-] +\/2sin (67) 

The main advantage of using the approximations expressed by (56), (58), (59), (60), 
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(62), (63), (64), and (67) is that the effects of noise and/or interference can be introduced 

using superposition. For example, in the case of internally generated noise plus a single 

interfering signal the reference voltage would be represented as 

Vref  = as 4- asm + n (68) 

where sm is the complex amplitude of the interferer and n is the complex noise value. 

Similar modifications would also be made to (59), (60), (63), and (64). 

Regardless of the conditions, the bearing for the Watson-Watt approach is estimated 

using 

i  =  arctan (~£±E&d) =  „^ M^^<f}) (69) 
V re&li-jVNs/Vref} J \ vea\{-jvNS v*^} J 

and the bearing for the Butler matrix approach is estimated using 

i   =   arctan (^äälM)   =   arctan (^/ffl) (70) 
V real{/i//o} J \ real{/i/0*} / V   ; 

For the Watson-Watt approach, in the presence of noise and/or interference the quantities 

Vßw/vref and vjjs/vref are no longer guaranteed to be real-valued, hence the reason for the 

real{-} operator. 

3.1    The Effect of Internal Noise 

The effect of internal noise is introduced into (56), (59), (60) (63), and (64) according 

to 

v^  =   as + n (71) 

VEW   =   jbs sin <f> + nEw (72) 

VNS   =   jbs cos <f> + nNs (73) 

/o   =   as + n (74) 

/i   =   cs cos 4> + jcs sin <f> + ni (75) 
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where n is the complex noise amplitude in the reference channel, nEw and n^s are the 

complex noise amplitudes in the directional channels of the Watson-Watt system, and 

nx is the complex noise amplitude of noise in the mode 1 channel of the Butler matrix 

system. Since each receiver channel is assumed to have the same characteristics, the RMS 

noise values for all channels are assumed to be the same, that is 

E{\n\2}   =   E{\nEW\2}   =   E{\nNS\2}   =   £{K|2} (76) 

3.1.1    Internal Noise and the Watson-Watt Approach 

Given noise corrupted measurements of the channel voltages, the estimated signal 

bearing using the Watson-Watt approach is given by 

- /real{(6ssin0 - jnEw)(as* + n*)}\ 
w   =   arctan   —777; ; : 7-,— -rr- I 

\ realj(bscos<p - jriNs){as* + n*)\ j 

_ (ab\s\2 sin<j> + breal{sn*} sin<j> - ima,g{as*nEw + nEwn*}\      ,    . 
~~ \ ab\s\2 cos <f> + &real{sn*} cos (f> — imag{as*riNs + n>Nsn*} J 

Assuming that the signal-to-noise ratio is greater than a few dB, and a, b > 0, then the 

pure noise terms in the above expression will be insignificant and the expression simplifies 

to 

1   - /(H2 + real{sn*/a}) sin<ft - imag{s*nEW/b}\ .   . 
\ (\s\2 + real{sn*/a}) cos <j> - im&g{s*nNS/b} J 

The bearing error is given by 0 — <j). Taking advantage of the relationship 

tan(<^)   =    t^-t^ {7g) 

1 + tan</> tan^ 

then 

*-*   =   arctan (*Etl*E*-) (80) 
\1 + tan^tan0/ 
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and incorporating (78) the result (after removing any pure noise terms as was done pre- 
viously) is given by 

. ima,g{ s*nm/b] sin 6 —ima,g\s*nEw/b} cos 6 
<f> — <p   =   arctan ' G \s\2 + real{sn*/a} — imag{ s*njvs/&} cos <f> — imag{s*nE\v/b} sin §) 

(81) 
One last simplification can be performed by limiting the results to bearing errors of less 
than 10° so the approximation tan(0 — <j>) « 0 — <j> can be used, and also by recognizing 
that for positive signal-to-noise ratios (particularly for levels where 4> — <S> < 10°) then 
\s\2 ^> imag{s*n/a} cos <f>, \s\2 3> imag{s*n,Ns/b} cos <j> and \s\2 3> ima,g{s* riEw/b} sin (f>. 
The appropriate simplified error expression is then given by 

7 imag{s*nNS/b} sin <f> - imag{s*nEw/b} cos <j) 
<P-<P   =    £p  (82) 

Using the last approximation to represent the bearing error, the variance of the error 
can be found by taken the expectation of the squared error giving 

_   p \ (imag{s*nNS/b}2 sin <j))2 \     n p \imag{(s*)2nNSnEw/b2} sin <f>cos <f>' E{ß-J>)2}   =   g|(^g{SW6Psin^|_2£,|j 

(ima,g{s*riEw/b}2 cos <j>)2 

M4 

+E {■ Isl4 

=   \s\ 4E {ima,g{s*nNS/b}2} sin2 (ß+\s\ *E {ima,g{s*nEW/b}2}cos2 </> 

(83) 
o2 

2ft2|s|2 

where it has been assumed that the signal amplitude is relatively constant, the noise is 
complex white Gaussian noise so that 

^{imag{s*n^}2}     =     \s\2E {ima,g{nNS}
2}   =   i|s|V (84) 

E {imag{s*nEW}2}     =     \s\2E {imag{nEw}2}   =   \\s\2a2 (85) 

and where a2 is the noise power. 
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Defining the signal-to-noise ratio as 

snr  — \'\ (86) 

then the RMS bearing error, which is the square-root of the variance, can be written as 

E{(4>-m* = \b\\/2snr 

Using the values for b defined earlier, then the RMS bearing error is given by 

1 

(87) 

E{(4>-cf>)2}>   =   { 

sin (2f) + y/2 sin (^) |V2w 

1 

|(2 + y/2) sin (2f cos f) + V2~sin (2f sin |) \y/2snr 

for N = 4 

for N = 8 

(88) 

The RMS bearing error expressions are somewhat complex, but for r -C \/2n they simplify 

for JV = 4 

Em - m* = 
Airry/2snr 

A 

87rrcos|\/2snr 

(89) 

for N = 8 

Examining the above expressions, noise related bearing errors can be reduced by in- 

creasing the signal-to-noise ratio. Figure 12 illustrates this effect for four and eight-element 

arrays showing the theoretical results using (88) and the results based on computer simu- 

lations as a function of the signal-to-noise ratio defined by (86). For the simulated results, 

1000 measurements for each SNR value (0 to 40 dB in 1 dB increments) were used to 

generate the corresponding RMS error value. Bias errors were removed before performing 

the RMS calculation. As can be seen, there is very good agreement between the theoret- 

ical and simulated results even for RMS errors greater than 10°. The eight-element array 

also has approximately half the RMS error for a given SNR than the four-element array, 

as predicted by (89). 

The bearing errors can also be reduced by increasing the size of the array up to 

approximately r = 0.3A, beyond which the error increases. This is illustrated in Figure 

13 which shows the theoretical and simulated results as a function of r and three different 
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Figure 12: Effect of the internal noise level on the Watson-Watt approach using (a) a 
four-element and (b) an eight-element circular antenna array with a radius r = 0.2A and a 
signal bearing of <f> = 0°. The simulated results are shown by the solid and the theoretical 
results are shown by the dashed line. 
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Figure 13: Effect of the antenna array radius on the Watson-Watt approach in the 
presence of internal noise (snr = 10 dB) using (a) a four-element and (b) an eight-element 
circular antenna array. The theoretical results are shown by the dashed line and the 
simulated results are shown by the solid lines for signal bearings of (i) <f> — i9 = 0°, (ii) 
<t>-'d = 22.5°, and (iii) </>-# = 45°. 

28 



signal angles for four and eight-element antenna arrays. For the simulated results, 1000 

measurements for each value of r ranging from 0.04A to 0.65A in steps of 0.01A were 

used to generate the corresponding RMS error values. The sign reversal in the reference 

channel for r > rmaxo was corrected to yield the bearing in the correct quadrant. The 

simulated results illustrate that accuracy is also a function of the signal bearing. The 

theoretical results provide a good estimate of the median value of the RMS errors except 

for r « rmaxo where the signal part of the reference voltage v^j becomes sufficiently small 

that it is overpowered by noise resulting in 180° ambiguity errors (i.e. a -> 0 which 

violates the assumption made in deriving (78) and the following expressions). If a central 

antenna were used to measure wre/ then the simulated results would more closely follow 

the theoretical results in the region r « rmoXo. 

3.1.2    Internal Noise and the Butler Matrix Approach 

Given noise corrupted measurements of the channel voltages, the estimated signal 

bearing using the Butler matrix approach is given by 

4>   —   arctan 
'imag{(cscos (j> + jcs sin (j> + ni)(as* + n*)}, 

k real{(cs cos <j> + jcs sin (f> + ni)(as* + n*)} j 

_ I     (ac|s|2 + real{csn*}) sin <f> + imag{as*ni 4- csn* cos <j> + niri*}     \. 
\ (ac\s\2 + real{csn*}) cos <j> + real{as*ni + nin*} — imag{ csn* sin <j)}f 

Assuming that the signal-to-noise ratio is greater than a few dB, then the pure noise 

terms in the above expression will be insignificant and the expression simplifies to 

i (     (ac\s\2 + realfcsn*}) sin 6 + imag{as*ni + csn* cos 6}     \    ,   . 
<p   =   arctan   -—r-rj-2 —r—   -.x       ,    —,f ,— ? ZJ—rr      (91) 

\(ac|s|^+ real{csn*}) cos <p + real{as*ni}— imag{ csn* sm^}y 

Taking advantage of the relationship expressed in (80), the bearing error can be ex- 
pressed as 

]>-4>   =   arctan (    imag{5n*/Q} ~ real{s*nx/c} sin <j> + ima.g{s*nx/c} cos <(,    \ 
\ \s\2 + real{sn*/a} + real{s*ni/c} cos <\> + imag{s*ni/c} sin <f>) 

where pure noise terms have again been removed. 

As was done for the Watson-Watt approach, one last simplification can be performed 
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by limiting the results to bearing errors of less than 10° so the approximation tan(0 - 

<f>) RJ 4> - <f> can be used, and also by recognizing that for positive signal-to-noise ratios 

(particularly for levels where 4>- (f> < 10°) then \s\2 > \s*n/a\2 and |s|2 > Is^/c]2. The 

appropriate simplified error expression is then given by 

;     ,         imag{sn*/a} - real{s*ni/c} sin(/> + imag{s*ni/c} cos </> .   . 
4>-4> =   ^ W) 

Using the above approximation to represent the bearing error, the variance of the error 

can be found by taken the expectation of the squared error giving 

♦ /„m r—i^*m/c}2sin2</.l 

f imag{g*ni/c}2 cos2 (j> \ 

I       w       1 +E 

a2  ,\       1 
2|s|2(a2 + c2) (94) 

where it has been assumed that the signal amplitude is deterministic and the noise is 

complex white Gaussian in nature so that 

£{imag{Sn*}2}     =     |s|2^{imagK}2}   =   \\S\
2

<J
2 (95) 

E {realism}2}     =     \s\2E {imag{nx}2}   =   \\s\2a2 (96) 

£{imag{S*nx}2}     =     \s\2E {im^{ni}
2}   =   ±\s\2a2 (97) 

and where a2 is the noise power. 

Using the signal-to-noise ratio defined previously in (86), the RMS bearing error, which 

is the square root of the variance, can be written as 

—(—     - 
2snr a2     c2 E{(4>-<1>)2}*   =   \IT±-J± + ±) (98) 
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Figure 14: Effect of the internal noise level on the Butler matrix approach using (a) a 
four-element and (b) an eight-element circular antenna array with a radius r = 0.2A and a 
signal bearing of <f> = 0°. The simulated results are shown by the solid and the theoretical 
results are shown by the dashed line. 
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Applying the definition for a given by (58) and the definition for c given by (67) the RMS 

bearing error expression can be expanded to become 

E{{<t>-<t>)2}>   = 
8      //      n      fnry/2\ 1 'l + 2cos   ^—   +cos 

N2snr \\ V    A 

+{*ffl+**m)~) (99) 

For small array sizes where r < X/2-K then aw N and c « Nirr/X and the RMS bearing 

error expression can also be written in a simpler form, namely, 

E{(i-4>ft* = T7i=(i + rb) (10°) 

Examining the RMS bearing error expression, noise related bearing errors can be 

reduced by increasing the signal-to-noise ratio. Figure 14 illustrates this effect for an 

eight-element array with r = 0.2A using the same data used to generate Figure 12 for the 

Watson-Watt approach. Bias errors were removed before performing the RMS calculation. 
As can be seem, there is very good agreement between the theoretical and simulated results 

even for RMS errors greater than 10°. 

Although less obvious, the bearing errors can also be reduced by increasing the size 

of the array up to r < 0.19A, beyond which the error increases substantially as noise 

begins to dominate the phase of the mode 0 output /o. Since the bearing is derived from 

the phase of fi/fo, these phase errors translate directly into bearing errors. Figure 15 

illustrates this effect for an eight-element array for r « rmaxo using the same data that 

was used to generate Figure 13 for the Watson-Watt approach. The RMS errors were 

found to be relatively independent of direction so only one signal bearing was simulated. 

In theory the large errors for r « rmaxo could have been eliminated by replacing the mode 

0 output /o by the output from a central antenna. The large errors as r —>• rmaX2 would be 

unaffected by this modification and would limit the maximum usable size of the antenna 

array. The agreement between the theoretical and simulated results is very good in this 

case. 
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Figure 15: Effect of the antenna array radius on the Butler matrix approach in the 
presence of internal noise (snr = 10 dB) using (a) a four-element circular antenna array 
with signal bearings of (i) <f> - d = 0°, (ii) <f>-<d = 22.5°, and (iii) <j>-d = 45°, and (b) an 
eight-element circular antenna array with a signal bearing $ - -d = 0° (results for other 
signal bearings are the same). The theoretical results are shown by the dashed line and 
the simulated results are shown by the solid lines. 
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3.1.3    Internal Noise and Comparisons with Maximum Likelihood Perfor- 

mance 

The performance of the Watson-Watt (worst case), Butler matrix, and ML approaches 

is compared in Figures 16 and 17 using the same data used to generate Figures 12 and 13 

respectively. Figure 16 shows the Watson-Watt and Butler matrix results are similar and 

significantly better than the Maximum Likelihood approach when using an array size of 

r = 0.2A. This somewhat surprising result is due to the fact that the Maximum Likelihood 

approach uses an eight-channel receiver with noise introduced into all eight channels. The 

Watson-Watt and Butler matrix approaches use a lesser number of receivers (three and 

two-channel receivers, respectively) resulting in a correspondingly lesser amount of noise 

being introduced. This, in turn, results in improved performance. 

Figure 17 highlights the differences between all three approaches particularly as the 

radius of the array approaches rmaxo = 0.35A for the four-element array and rmaXo = 0.38A 

for the eight-element array. At this radius the gain of the reference channel goes to 

zero and the bearing estimates become extremely susceptible to noise errors. In the case 

of the Watson-Watt approach, the resultant phase errors only become large enough at 

0.03A to cause 180° ambiguity errors which, in turn, dramatically increases r = r, maxo 

the RMS bearing error level (note that for lower SNR ambiguity errors occur at a smaller 

value of r while for higher SNR ambiguity errors occur at a larger radius but not exceeding 

rmaxo)- For the Butler matrix approach, the effect of phase errors in the reference channel 

is more gradual and begins at a smaller value of r so that performance is always worse 

than that of the Watson-Watt approach. The ML approach does not suffer zero gain 

problems, but for the four-element array, ambiguities in the bearing estimates occur for 

r = rmaxo resulting in large bearing errors. For the eight-element array, there are no such 

problems so that its performance continuously improves as a function of the array radius 

up to r = 0.7A (not shown), and it also attains the lowest RMS error for r > 0.3A despite 

the extra noise. 

The problem due to the reference channel could be overcome by using a dedicated 

antenna positioned at the center of the antenna array as mentioned previously. In the case 

of the Watson-Watt approach, performance would then be limited by the gain becoming 

too low in the two directional channels (i.e., VEW, VNS —► 0) which occurs when r -» rmaxi 

(0.5A for the four-element array and 0.54A for the eight-element array). In the case of the 

Butler matrix approach, performance would be limited by the gain becoming too low in 

the mode 1 channel (i.e., /i —> 0) which occurs when r —> rmaX2 (0.5A for the four-element 
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Figure 16: Effect of internal noise on the Watson-Watt, Butler matrix, and ML ap- 
proaches using (a) a four-element and (b) an eight-element circular array with a radius 
r = 0.2A and a signal bearing of <j> — i9 = 0°. 
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Figure 17: Effect of the antenna array radius on the performance of the Watson-Watt, 
Butler matrix, and ML approaches in the presence of internal noise (snr= 10 dB) using (a) 
a four-element circular array with a signal bearing of (j>—i? = 45° and (b) an eight-element 
circular array with a signal bearing of (f> — ß = 0°. 
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array and 0.6A for the eight-element array). 

3.2    The Effect of External Interference 

As mentioned previously, the term "external interference" is used to include external 

noise, multipath, and co-channel interference. Although these are different phenomena, 

they can be handled in a very similar way since they can all be modeled as a number 

of interfering signals. The differences in these phenomena are taken care of by adjusting 

the numbers of interfering signals, the statistical distribution of these signals, and their 

temporal and spatial correlations. 

For this study, external noise was modeled as a very large number of interfering signals 

arriving from a wide range of directions. The advantage of this approach is that it 

automatically takes into account the correlations between the noise measured at different 

sensors - correlations which can be significant when the spacings are less than A/2. The 

complex amplitudes of these signals were assumed to have a random Gaussian distribution 

and to be uncorrelated from measurement to measurement (temporal decorrelation), and 

also to be uncorrelated if the DF system was moved from site to site (spatial decorrelated). 

The bearings of the interfering signals were assumed to be uniformly distributed 360° in 

azimuth and also temporally and spatially uncorrelated. Note that this best models man- 

made noise which has terrestrial origins, but not isotropic or cosmic noise which has an 

elevation bearing component as well. The modification for isotropic noise is discussed 
later on. 

Co-channel interference was also modeled in the same way as noise except the numbers 

of interfering signals were assumed to be small (i.e. one to several signals). 

For modeling multipath signals, there were several key differences. The numbers of 

interfering signals were assumed to range from a small value for specular multipath to a 

large value for diffuse multipath. The complex amplitudes of these signals were assumed 

to have a random Gaussian distribution when measured from site to site (spatially un- 

correlated), but to be invariant with time when measured for at a given site (temporally 

correlated). The bearings were assumed to have distributions which ranged from uniform, 

for sources of multipath close to the receiver, to concentrated in the direction of <f>, for 

sources of multipath far from the receiver (and close to the transmitter). Other distribu- 

tions are possible but were not investigated in this study. The signal bearings were also 
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assumed to be spatially uncorrelated but temporally correlated. The assumption of tem- 

poral correlation will not necessarily be true for all cases of multipath (e.g. HF skywave 

signals where path length differences can be large enough that decorrelation does occur), 

however the following results are not changed as long as there is either spatial or temporal 

decorrelation. 

For any of these three types of interference, the effects of the interfering signals can 

be introduced into (56), (59), (60), (63), and (64) by adding the new signals according to 

(101) 

(102) 

(103) 

(104) 

(105) 

where the summation limit for i is not shown but assumed to be chosen appropriate to 

the interference mechanism, SQ = s is the complex amplitude of the signal of interest and 

<£o = <f> is corresponding bearing (the subscript 0 was added for convenience), and s\, S2,... 

are the complex amplitudes of the interfering signals and <j>i,(f>2,— are the corresponding 

bearings. 

3.2.1    Interference and the Watson-Watt Approach 

Given measurements of the channel voltages corrupted by external interfering signals, 

the estimated signal bearing using the Watson-Watt approach is given by 

«itf — 
i=0 

VEW = jbY, Si sin (ßi 
t=0 

VNS = jb Y^ Si cos fa 
t=0 

/o = 
i=0 

h = c^Si cos fa + jsi sin fc 
i=0 

^   =   arctan 
'real{(b Ei=o a» sin fa) (a J2i=0 s?)}' 

real{(fe Ei=o s» cos 0j)(o Ei=o «*)}> 

'Ei=oEfc=oreal{si 

Xi=oT,k=0^^{Si 
=   arctan l'g^g^rea^^>Sin^ (106) 

IV-       V-        USiS*k} cos fa) 
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where the assumption that a, b > 0 has been made. Using the relationship expressed in 
(80), and after some rearranging the bearing error can be expressed as 

i-* - ^(^--^fMt'-M) (107) 
V£i=o £fc=o realist) cos(& -<f>0)J 

Limiting the results to bearing errors of less than 10°, then the approximation tan(0—0) w 
0 — 0 will be sufficiently accurate for the purposes here. Additionally, in order for the 10° 
limit to be true then |s0| "> \si\ for i = 1,2,... which leads to the simplified expression 

0-0   - ^ (108) 

For a specific measurement, given that the signal parameters are all known, then (108) 
can be used to determine the expected bearing error. This can be useful when exploring 
specific effects of co-channel interference or multipath through computer simulation. In 
most real-life applications, however, the signal parameters will not be known so it is of 
more interest to statistically quantify the errors. The most useful quantity in this regards 
is the RMS value. In the following derivation of the RMS value, the statistical results are 
based on measurements taken at different time instances and different measurement sites 
(while keeping the parameters of the signal of interest fixed), hence the temporal and/or 
spatial decorrelation properties of the interfering signal parameters can be utilized. 

The RMS value can be determined by first finding the variance of the error which is 
given by 

E{{$-<f>)2}   =   E [ ^i=1 real{s'so} sin(^ ~ ^°))2 ] 

E {Ei=i real^sg}2 sin2(& - 0O)} 

M4 

E{Ei=i real{siSg}2} E {sin2(0t- - 0O)} 

M4 

//2a2 

(109) 4|s|2 

where s = so, (J? is the total interference signal power given by //2 = |si|2 + |s2|
2 +..., a2 
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is the interference distribution factor which will be discussed shortly, and the relationships 

J> {reali^}2}   =   i|ajy (110) 
t=i z 

and 

£{sin2(&-<&,)}   =   ^^sin2^-^» + (1 - a2)E {sin2(cf>0 - <f>0)} (111) 

a2 

(112) 

were used. The factor a2 depends on the angular distribution of the interference source 

and for a uniform distribution over 360° (represented by the first term in (111)) then 

a2 = 1, and for a tight distribution centered around <f> (represented by the second term in 

(111)) then a2 « 0. For external noise and co-channel interference a2 = 1 can normally 

be assumed. For multipath, a2 is interpreted as the power ratio between the part of 

the multipath generated as a uniform distribution and the total multipath power. The 

value is dependent on the signal environment. For example, given a large number of 

small (relative to the wavelength) scattering sources of multipath and a terrestrial signal 

path, most of the multipath is generated near the receiver (uniform distribution), near 

the transmitter and along the signal path (tight distribution) leading to a value a2 ft* 0.5 

[3]. In another example, given a large number of large reflecting sources, the multipath 

region is much larger and more circular than the scattering case leading to a value a2 fa 1 

[3]. One final example is a calibrated airborne surveillance system, where most of the 

multipath will be produced near the transmitter resulting in a value of a2 « 0. 

Finally, defining the signal-to-interference power ratio as 

sir  =   te£ (113) 

(where sir is replaced by snr for external noise calculations) then the RMS bearing error 

is given by 

E{($-<f>)2}>   =   ^ (114) 2vsir 

An interesting feature of this expression is that unlike the expressions (88) and (99), 

developed to quantify the effects of internal noise, the size of the array and number of 

antennas are not factors, only the signal-to-interference power ratio. Additionally, these 
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Figure 18: Effect of external terrestrial interference on a Watson-Watt system using (a) 
a four-element and (b) an eight-element circular antenna array with a radius r = 0.2A and 
a signal bearing </> = 0°. The simulated results are shown by the solid and the theoretical 
results are shown by the dashed line. 
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Figure 19: Effect of the antenna array radius on the Watson-Watt approach in the 
presence of external terrestrial interference (sir = 10 dB) using (a) a four-element circular 
antenna array with signal bearings of (i) fy—ti = 0°, (ii) <£-# = 22.5°, and (iii) <f>—19 = 45°, 
and (b) an eight-element circular antenna array with a signal bearing <f> — ti = 0° (results 
for other signal bearings are the same). The theoretical results are shown by the dashed 
line and the simulated results are shown by the solid lines. 
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expressions suggest that the low gain problem encountered in the presence of internal 
noise when r « rmaxo or r « rmaxi will not be a factor since the gain of the signal and 
interference will both be effected in the same way leaving the sir unchanged (assuming of 
course that internal noise is absent - an unrealistic assumption in practical applications 
but useful for identifying the causes of error as done here). To test these conclusions, 
simulations were carried out in the same way as was done for the results displayed in 
Figures 12 and 13) except the internal noise was replace by external terrestrial noise. The 
results are shown in Figures 18 and 19. 

The simulated results indicate that, as predicted, the RMS errors are relatively inde- 
pendent of the size of the antenna array except for radii approaching the critical values 
f — fmaxo and r = rmaxi. The explanation for the failure of the theoretical expressions to 
explain these critical array radii is due to the incorrect assumption that the appropriate 
channel gains go to zero at r = rmaxo and r = rmaXl for all signal directions. This is readily 
apparent, for example, when one considers that vnf oc ß and observes the variations in 
ß shown as a function of signal direction in Figure 3 for a four-element antenna array. 
The result is that the gain for the interference arriving from bearings different from the 
signal will not necessarily go to zero when the signal gain does so that the sir decreases 
significantly and large errors result. The same problem occurs for r = rmaxi for both the 
four and eight-element antenna arrays. An exception is for r = rmaxo for the eight-element 
array since at this radius the gain of the reference channel is virtually independent of 
signal direction (see Figure 4) so that the simulated results are much closer to the theo- 
retical expectations. However, even in this special case, under more realistic conditions, 
the effects of internal noise would certainly dominate. 

The effect of isotropic noise can be easily introduced in the previous derivation by 
replacing every term sin fa by sin fa cos fa, and every term cos fa by cos fa cos fy where ^ is 
the elevation angle and where the receive antennas are assumed to have an omnidirectional 
gain pattern. The signal of interest is still assumed to have no elevation so ipo = 0°. For 
isotropic noise the interfering signals will be uniformly distributed over the half sphere 
formed by 0° < <j) < 360° and 0° < ip < tp/2, hence (112) becomes 

E{sm2(fa-<j>0)cos2(ipi)}   =   2^/   f* sin2(& - <j>0) cos3 (ipi)dipidfa 

- i <n5> 
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where a2 = 1 was used, and (114) becomes 

E{(t-<ß)2}i   = V6 snr 
(116) 

where snr was used instead of sir since noise is being discussed. Interestingly for the same 

SNR, isotropic noise causes less error than terrestrial noise implying that interference from 

high elevation angles has less effect than interference at low elevation angles. Figures 20 

and 21 show the same noise effects as Figures 18 and 19 except isotropic noise was used 

instead and only the results for the eight-element antenna array have been shown. In 

comparing the results of isotropic noise to terrestrial noise, the same comments about 

the terrestrial noise apply here except that the zero gain problem has been exacerbated. 

In this case, for high elevation angle noise interference the gain does not go to zero at 

r = rmax0 
and T = rmaxi and consequently a greater amount of interference is available to 

overpower the signal causing large errors for these critical antenna array sizes. 

Figure 20: Effect of external isotropic noise on a Watson-Watt system using an eight- 
element circular antenna array with a radius r = 0.2A. The simulated results are shown 
by the solid and the theoretical results are shown by the dashed line. 
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Figure 21: Effect of the antenna array radius on a Watson-Watt system using an eight- 
element circular antenna array in the presence of external isotropic noise (snr = 10 dB). 
The simulated results are shown by the solid and the theoretical results are shown by the 
dashed line. 

3.2.2    Interference and the Butler Matrix Approach 

Given channel voltage measurements corrupted by external interference, the estimated 
signal bearing using the Butler matrix approach is given by 

4>   =   arctan ("imag^c^=os'cos^ +^sin^)(a^fe=osfc)}>\ 
V real{(c £i=0 s{ cos fa + js{ sin fa) (a £fc=0 s*k)} J 

=   arctan (^i=0 ^*=0 real^SiS^ sin & + imag{s»4> cos fa \ 
\ £i=o £fc=o real{siS^} cos fa - imag{SiS*k} sin fa J *     ' 

where the assumption that o,c> 0 has been made. 

Using the relationship expressed in (80) and then rearranging, the bearing error can 
be expressed as 

<j>-4>   =   arctan (^i=0^k=0reaH*8*}sin(& ~ 6>) + imagfasj}cos(& - fa)\ 
\Ei=o Ejfc=o real{s,-4} coa(fa ~ <t>o) ~ imag{sjs£} sin(^ -fa)) ' 

As has been done previously, by limiting the results to bearing errors of less than 10° then 
the approximation tan(<£ - fa) » <£ - </> can be used. Additionally, in order for the 10° 
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limit to be true then \s0\ > |SJ| for i = 1,2,..., which leads to the simplified expression 

1     , Si=i realfosg} sin(<fc - <j>0) + ima,g{sjS*0}{cos((f)i - (f>0) - 1) .     . 
+ -* =  Rp (119) 

Using the same line-of-reasoning to develop an RMS bearing error expression in the 

previous section for the Watson-Watt approach, the RMS error can be found by first 

determining the variance according to 

„f{1     ,.2l T, f (£i=i real{sjsg} sin(& - (j>0) + imag{si5g}(cos(^i - <ft0) - l))21 

E {Ei=i real{5jsg}2 sin2(<fc - </>0) + imag{sjSg}2(cos(^ - <j)0) - l)2} 

M4 

Isl2 
(120) 

where the relationships in (110) and (112) were used, as well as 

5>{imag{siSa
2}   =   \\s?<? (121) 

and 

2' 

, .. /-y2      »27T 

E{(cos(^-^o)-l)2}   =   2^/0   (cos(^ - 0o) - l)2#i 

.+ (1 - a2)£{(cos(<£o - <h) ~ I)2)}      (122) 

=   ^ (123) 

and where a2 is the angular distribution factor for multipath interference discussed in the 

previous section. For noise and co-channel interference a2 = 1. 

Finally, using the definition for the signal-to-interference power ratio given earlier in 

(113), the RMS bearing error is given by 

E{($-m>   =   -£= (124) 
ysir 

As in the case of (114), the expression for Watson-Watt approach, external interference 
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(noise, co-channel interference, or multipath) induced bearing errors are reduced by in- 
creasing the signal-to-interference power ratio, but are unaffected by the size of the array. 
The RMS bearing error for the Butler matrix approach, however, is twice that for the 
Watson-Watt approach. This is a consequence of the fact that accurate quadrature sepa- 
ration of the cos <f> and sin (f> spatial signal components in the f\ channel is dependent on 
the phase accuracy of the reference (/o) channel. Any phase errors in /o translate directly 
into bearing errors. In the Watson-Watt approach the reference channel is only used to 
resolve 180° bearing ambiguities and bearing errors are only introduced when gross phase 
errors in the reference channel occur. 

A comparison between the theoretical and simulated results is shown in Figures 22 
and 23. The data was produced in the same manner as the data used for Figures 18 and 
19. Since the qualitative similarities and differences between the simulated and predicted 
results are nearly identical to those for the Watson-Watt approach in Figures 18 and 19, 
see the discussion in the previous section. 

The effect of isotropic noise can be introduced into the previous derivation by replacing 
every term sin fa by sin fa cos ipi, and every term cos<fo by cos fa cos ^ where ^ is the 
elevation angle and where the receive antennas are assumed to be omnidirectional. The 
signal of interest is still assumed to have no elevation so i/>0 = 0°. For isotropic noise the 
interfering signals will be uniformly distributed over the half sphere formed by 0° < <j> < 
360° and 0° < if> < tß/2, hence (112) becomes 

f 91 1        f2*   fl 
E {(cos(& - fa) cos(ipi) - l)2 j   =   — J   J   (cos(& - fa) cos(^,) - l)2 cos^dipidfa 

- \ <125> 

where a2 = 1 was used. Using the relationship in (115) as well, then (124) becomes 

E{(i-m->   =   ^ (126) 

where the term sir was replaced by snr since noise is being discussed. Inspecting (124) 
and (126), the change in noise distribution from zero-elevation to isotropic results in lower 
error, although the ratio of improvement is slightly less than for the Watson-Watt system. 
A comparison of the theoretical and simulated results, for the eight-element antenna array 
only, is provided in Figures 24 and 25 which are a repeat of Figures 22 and 23 except 
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Figure 22: Effect of external terrestrial interference on a Butler matrix system using (a) 
a four-element and (b) an eight-element circular antenna array with a radius r = 0.2A and 
a signal bearing <ß = 0°. The simulated results are shown by the solid and the theoretical 
results are shown by the dashed line. 
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Figure 23: Effect of the antenna array radius on the Butler matrix approach in the 
presence of external terrestrial interference (sir = 10 dB) using (a) a four-element circular 
antenna array with signal bearings of (i) <j>—-d = 0°, (ii) <f>—-d = 22.5°, and (iii) <£-# = 45°, 
and (b) an eight-element circular antenna array with a signal bearing <j> —19 = 0° (results 
for other signal bearings are the same). The theoretical results are shown by the dashed 
line and the simulated results are shown by the solid lines. 
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isotropic noise was used instead. 

In comparing the results for isotropic noise to terrestrial noise, the same comments 

about the terrestrial noise apply here except that the zero gain problem, like the Watson- 

Watt approach, has been exacerbated. The gain for high elevation angle noise interference 

does not go to zero at r = rmaxo and r = rmaxi and consequently a greater amount of 

interference is available to overpower the signal causing large errors for these critical 

antenna array sizes. 

Figure 24: Effect of external isotropic noise on a Butler matrix system using an eight- 
element circular antenna array with a radius r = 0.2A. The simulated results are shown 
by the solid and the theoretical results are shown by the dashed line. 
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Figure 25: Effect of the antenna array radius on a Butler matrix system using an eight- 
element circular antenna array in the presence of external isotropic noise (snr = 10 dB). 
The simulated results are shown by the solid and the theoretical results are shown by the 
dashed line. 

3.2.3    Interference and Comparisons with Maximum Likelihood Performance 

The performance of the Watson-Watt, Butler matrix, and Maximum Likelihood ap- 
proaches is compared in Figures 26-29 using the same data used to generate Figures 18-21 
respectively. 

Figure 26 shows performance (i.e. RMS bearing errors) as a function of the signal- 
to-interference ratio, and unlike the internal noise case, the ML approach significantly 
outperforms both the Watson-Watt and Butler matrix approaches. Increasing the number 
of antenna elements from four to eight also improves ML performance but has no effect 
on either the Watson-Watt or Butler matrix approaches. The performance of the Butler 
matrix suffers the most due to its increased sensitivity to phase errors in the reference 
channel. 

Figure 27 illustrates that the performance of the Watson-Watt and Butler matrix ap- 
proaches are independent of the number of antenna elements and array size for smaller 
arrays. Performance, however, dramatically worsens (i.e. the RMS bearing errors in- 
crease) as the array radius approaches the critical values of rmaxo, rmaxi (Watson-Watt) 
or rmaX2 (Butler matrix).   Outside these critical values, the Butler matrix approach is 
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approximately a factor of two times worse than the Watson-Watt approach. By way of 

comparison, the performance of the ML approach is considerably better, but it too suffers 

the same problems as the Watson-Watt and Butler matrix approaches when the radius 

approaches the critical values of rmaxo, rmaxi and rmaX2 for the four-element array. There 

is no such critical radius problem for the eight-element array, however, and the ML ap- 

proach works well even for array radii exceeding rmaX2. Overall the performance of the 

ML approach was a factor of two to five times better than the Watson-Watt approach, a 

performance improvement which can be largely attributed to the ML approach's ability 

to take advantage of the second order statistical nature of the noise (which is assumed to 

be known or measureable) as well as the advantage of using N receiver channels instead 

of two or three. 

Figures 28 and 29 illustrate the same effects as Figures 26 and 27 except that isotropic 

noise was used instead and only the results for an eight element antenna array are shown. 

Relative performances remained unchanged and absolute performance was improved for 

small array sizes, but worse for an array radius approaching rmaxo. The poor performance 

for array radius values approaching rmaxi and rmaX2 is unchanged from the terrestrial 

interference case. The performance of the ML approach was significantly better than the 

other two approaches and remained relatively constant for all array sizes. 
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Figure 26: Effect of external noise on the Watson-Watt, Butler matrix, and ML ap- 
proaches using (a) a four-element and (b) an eight-element circular array with a radius 
r = 0.2A and a signal bearing of <f> — d = 0°. 
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Figure 27: Effect of the antenna array radius on the performance of the Watson-Watt, 
Butler matrix, and ML approaches using an eight-element circular antenna array in the 
presence of external noise (snr = 10 dB) using (a) a four-element circular array with a 
signal bearing of (ß-fl = 45° and (b) an eight-element circular array with a signal bearing 
of (ß - ti = 0°. 
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Figure 28: Effect of external isotropic noise on the Watson-Watt, Butler matrix, and 
ML approaches using an eight-element circular antenna array with a radius r = 0.2A. 
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Figure 29: Effect of the antenna array radius on the performance of the Watson-Watt, 
Butler matrix, and ML approaches using an eight-element circular antenna array in the 
presence of external isotropic noise (snr = 10 dB). 
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4.0    CONCLUSIONS AND RECOMMENDATIONS 

In this report, the Watson-Watt approach and Butler matrix approach - two direction 

finding methods developed for four and eight-element circular antenna arrays and pro- 

posed for wideband applications - were evaluated theoretically and through simulations 

for error causing conditions found in the real world. These conditions include internal re- 

ceiver noise, external terrestrial and isotropic noise, cochannel interference and multipath. 

Additionally comparisons through simulation were also carried out using a maximum like- 

lihood (ML) approach optimized for a single signal in order to determine the performance 

trade-off incurred using either of the two proposed wideband DF techniques. The ML ap- 

proach is most closely related to correlative interferometer or vector matching approaches 

used in narrowband DF systems (e.g. the Watkins-Johnson 8996-1 DF processor or the 

Rohde & Schwarz DDF 190), the main difference being that these approaches do not 

compensate for the statistical distribution of noise whereas ML does. 

From the implementation standpoint, the Butler matrix approach is preferable since 

it requires only two receiver channels compared to three receiver channels for the Watson- 

Watt approach. This reduces the expense in terms of wideband receivers, digitizers, 

etc. although some additional circuitry in the front-end is required including a quadra- 

ture mixer. By way of comparison, the ML approach would require a receiver for every 

antenna in the array plus a more sophisticated bearing processor owing to the greater 

computational complexity of this approach. 

In terms of the effects of internal receiver noise, both the Watson-Watt and Butler 

matrix approaches had similar performance and actually outperformed the ML approach 

for smaller antenna arrays (i.e. less than one fifth of a wavelength) in simulations. This 

surprising result was due to the fact that the ML approach uses more receivers and is 

therefore exposed to a greater amount of noise as a result. The simulations also highlighted 

problems with certain antenna array sizes where channel gains of some of the channels 

go to zero resulting in gross bearing errors. This limits the maximum antenna array size 

that can be used, or equivalently, the upper frequency of the array. There is no such gain 

problem for the ML approach, although the four-element array suffers ambiguity problems 

for the same radii; the eight-element array was unaffected however. 

In terms of the effect of external influences, including terrestrial or isotropic noise, 

cochannel interference, and multipath, the Watson-Watt approach was twice as accurate 

as the Butler matrix method.  The main reason for the poorer accuracy of the Butler 
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matrix method is that errors in the reference channel, which is required for quadra- 
ture demodulation of the directional channel into its sin <p and cos <f> bearing components, 
translate directly into bearing errors. In the Watson-Watt method, the sin <f> and cos <fi 
bearing components are contained in separate channels so that the reference channel is 
only required to resolve 180° bearing ambiguities. 

Generally, the effect of external influences on accuracy was constant with increas- 
ing antenna array size or accuracy got worse. For the Watson-Watt and Butler matrix 
approaches there also appeared to be very little performance advantage in using an eight- 
element antenna array compared to a four-element antenna array. The problem of critical 
array sizes resulting in zero channel gain and causing gross bearing errors was also found 
to limit the usable size of the antenna array/frequency range. The ML approach was 
found to provide significantly better performance, particularly when using the eight ele- 
ment array, indicating that performance is related to the number of receiver channels used 
(i.e. the Butler matrix approach which used the fewest also performed the most poorly, 
whereas the ML approach which used the most performed the best). 

For most practical applications, external influences are more likely to play a greater 
role in degrading DF performance than internal noise. Hence performance under these 
conditions is more critical in assessing the overall performance than internal noise effects 
(although internal noise effects cannot be ignored). 

The issue of critical antenna array sizes can be broken into two problems: zero gain 
in the reference channel for an circular array radius of approximately 0.3 — 0.4A, and zero 
gain in the directional channels for a circular array radius of approximately 0.5 — 0.6A 
(where A is the signal wavelength at the desired maximum frequency). The solution to the 
reference channel zero gain is to use an extra antenna at the center of the antenna array 
rather than from the summation of the circular array antenna outputs. This could be 
problematic, however, if the central position is occupied by the supporting mast. There 
is no obvious way to deal with the zero gain problem in the directional channels so that 
the upper limit on circular array size is approximately 0.5 — 0.6A. The ML approach, by 
comparison, performs well for circular array radii up to 0.7A without requiring an extra 
central antenna. 

Based on these findings, the main trade-off is accuracy versus cost and speed. The 
ML approach achieves the highest accuracy under most conditions and has the greatest 
frequency range of operation. It also requires the most number of receiver channels (as 
many as the number of antennas) and has the greatest processing requirements making 
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realtime operation a much more expensive proposition. The Watson-Watt approach is 

less accurate, but requires only three receiver channels and has very simple processing 

requirements making it a much more cost effective approach. The Butler matrix approach 

reduces the number of receiver channels even further to two and also has simple processing 

requirements, but sacrifices more accuracy, having RMS bearing errors twice those of the 

Watson-Watt approach under practical conditions. 

The conclusion is that for a system where not only accuracy, but also low cost, and 

realtime operation are the major requirements, the Watson-Watt approach is the best 

choice for current applications. In the future, however, this choice may need to be re- 

assessed as lower cost receivers and faster processing equipment make the ML approach 

a more attractive alternative. 
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