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Direct and Large Eddy Simulation of Environmental Flows: 
Some Recent Advances 

Joel H. Ferziger 
Department of Mechanical Engineering 

Stanford University 
Stanford CA 

August 1998 

1    Introduction 

Environmental and geophysical flows occur on much larger scales than flows in industrial devices; 
one consequence is that the Earth's rotation often plays a significant role in them. Furthermore, 
the horizontal scales are generally much larger than the vertical ones so that the motions on 
the largest scales are essentially two dimensional. Finally, stratification is often important in 
these flows, sometimes so much so that, despite the large scales and high Reynolds numbers, 
the flow state is essentially laminar. All of these effects make simulation of environmental flows 
very challenging and different from industrial flows. 

One of the most difficult issues in simulation of these flows is the need to deal with the 
real world in real time. In weather or ocean prediction the goal is to predict the actual state of 
the system at some time not too far in the future rather than the statistical quantities that are 
typically needed in engineering. This requires simulation of a single realization rather than an 
ensemble average flow, providing a severe constraint on the approaches that can be used. There 
is a limit on how far into the future the state can be predicted—the well-known 'butterfly' 
problem. (Exceptions are climate studies and some types of pollution studies.) 

The field is vast and no one paper or even a book could cover all of it. In this paper, we 
shall concentrate on some issues in small scale meteorology and oceanography. Although they 
deal with the smallest scales of interest in these fields, the dimensions are very large compared 
to those found in industrial applications. We may be dealing with the atmospheric boundary 
layer (typically 1-2 km deep), the oceanic mixed layer (typically 100-300 m .deep), an estuary, or 
the atmosphere in an urban area and its surroundings; these have horizontal dimensions of tens 
of kilometers. On these scales, three dimensionality is important but Coriolis and stratification 
effects may also play major roles. 

The difficulties of simulating these flows are considerable but the value of accurate predic- 
tions is enormous; the effects of weather and the state of the ocean are constantly in the news. 
We shall show, that even in some of the simpler flows, there remain issues to be resolved that 
differ from those encountered in industrial flows. Then we shall give some examples of some 
recent simulations in this area. 



2    Environmental vs. Industrial Flows 

With the exception of some very simple but important building block flows, direct numerical 
simulation (DNS) of turbulent flows is beyond the capability of present computers and will 
remain so for the indefinite future. For industrial flows, this leaves one with the choice of 
doing large eddy simulations (LES) or computations based on the Reynolds averaged Navier- 
Stokes (RANS) equations which employ well-known one point turbulence models. The trade-off 
is a simple one—the low cost of RANS vs. the improved accuracy and detail of LES. In the 
environmental area, the RANS concept might be applicable in some applications such as climate 
the prediction of the average state of an estuary but weather or oceanic state predictions must 
produce an accurate estimate of the actual future state. For that purpose, there is no choice 
but to use LES. Indeed, LES originated in meteorology as a response to this need. 

As already noted, a typical LES of the atmospheric boundary layer or the oceanic mixed 
layer simulates a domain whose horizontal dimensions are hundreds of meters to tens of kilome- 
ters. The surfaces might be idealized as smooth but they are almost always rough on the scale of 
a typical near-surface turbulent eddy. As these flows do not normally separate (separation does 
occur in the presence of topography) and because it is impossible to represent the surface (let 
alone such features as trees) exactly, it is usually represented by means of an artificial boundary 
condition. Using such a condition also eliminates the need for a fine grid near the surface which 
increases the cost of engineering simulations. Due to the size of the domain and the fact that 
only about a hundred grid points can be used in each coordinate direction, the grid size or filter 
width must be tens of meters, which is much larger than the Kolmogoroff scale (typically a 
few centimeters). This would be no problem for homogeneous turbulence with a filter scale in 
the inertial subrange but significant dynamics occur at scales smaller than the grid size. For 
example, entrainment takes place in small zones at the edge of a plume or in the inversion at the 
top of the atmospheric boundary layer, a phenomenon that is difficult to simulate and remains 
a subject of research. 

Consequently, there may be a dynamic length scale smaller than the subgrid scale cutoff. 
This makes .it necessary to use a turbulence model in which the length scale is not pre-selected 
(as in the Smagorinsky model) and subgrid scale modeling may then resemble RANS modeling 
more than it does the kind of subgrid scale modeling used for laboratory scale flows. It also 
follows that the similarity required for the dynamic procedure to work may not be available in 
these flows. 

At the larger scales of meteorology and oceanography, the flows become almost two di- 
mensional and the Coriolis force, which plays a role at the small scales, becomes dominant. 
It goes without saying that DNS is totally impossible at these scales and the meaning of LES 
needs to be reconsidered. Solution of the Navier-Stokes equations is impossible and simplifica- 
tions of them are often used; it is not unusual to solve different sets of equations at each scale. 
The averaging scales are now hundreds of kilometers and almost all of what an engineer would 
consider turbulence lies in the subgrid scale. Despite the dominance of two dimensionality, the 
weak motions in the vertical direction play an essential role and cannot be ignored entirely. At 
these scales the parameterization of the subgrid scales is required to represent a very wide range 
of phenomena and the difficulty of constructing them is extreme. A goal of smaller scale simu- 
lations is to provide these parameterizations; this task is made very difficult by the large range 
of parameters and conditions needed to specify the state of the smaller scale flow. Furthermore, 
the similarity on which the dynamic subgrid scale model is based does not exist at these scales 
because two dimensional turbulence is qualitatively different in character from three dimensional 
turbulence. 



We shall describe some simulations relevant to environmental fluid mechanics, both DNS 
and LES, which have been done recently. Specifically, we look at turbulence subject to stratifi- 
cation and shear and the problem of upwelling in the coastal ocean. 

3    Simulations 

3.1 Stratified Sheared Homogeneous Turbulence 

Homogeneous sheared turbulence has been studied from the earliest days of turbulence simu- 
lation; shear, of course, tends to amplify the intensity of turbulence. The addition of stable 
stratification introduces a force that tends to reduce the intensity of the turbulence by al- 
lowing conversion of its kinetic energy into potential energy. The interplay of the two forces 
is what makes the study of this type of flow interesting. The parameter traditionally used 
to characterize the relative importance of the two forces is the gradient Richardson number 
Ri = (g/p)(dp/dz)/(dU/dz)2. Recent studies of inhomogeneous flows show that this parameter 
does not correlate the data well; for example, it varies by more than an order of magnitude with 
distance from the wall in stratified turbulent channel flow. A better parameter is the turbulent 
Froude number Fr = q/NL where N is the Brunt-Väisälä frequency iV2 = (g/p)(dp/dz). It can 
be regarded as the inverse square root of a Richardson number but it is based on turbulence 
rather than mean flow properties. The data can be correlated quite nicely with this variable. 
Especially important for correlation purposes is the mixing efficiency which is the roughly the 
fraction of the energy extracted from the mean flow that goes into the production of potential 
energy. It correlates very well as a function of Froude number. 

There is also an important effect of the means of creation of the turbulence on the prop- 
erties of the resulting turbulence. When shear is the primary forcing, the component of the 
turbulent fluctuations in the mean flow direction (which is usually horizontal in stratified flows) 
is larger than the other components. On the other hand, when turbulence is created by a grid 
oscillating in the vertical direction, the largest fluctuations are in the vertical direction; this 
is not a direct effect of the grid motion but is due to a selection process which allows vertical 
motions to penetrate further into the stratified fluid. The mixing efficiency correlation derived 
for shear turbulence does not work in this case and it is necessary to create a Froude number 
based on the vertical component of the turbulence to collapse all of the data. Turbulent diffu- 
sion (transport of turbulent energy through the agency of the third order correlations) exhibits 
similar differences in shear- and grid-generated turbulence and for similar reasons. 

3.2 Oceanic Upwelling 

An interesting phenomenon occurs on the eastern boundaries of oceans i.e. off the west coasts of 
continents. Here, one often finds stable high pressure areas (especially in local summer) which 
drive long-shore currents which, in the northern hemisphere, are from north to south. The 
Coriolis force drives these currents offshore and the surface water is replaced by deep ocean 
water that is colder and more nutrient-laden than the water it replaces. The deep water also has 
a different velocity than the surface water and the combination of velocity and density gradients 
can lead to an instability that makes the boundary between the two fluid masses very irregular. 
This upwelling process is responsible for a surprisingly large part of the mixing that occurs in 
the ocean; some estimates say that half of all mixing between surface and deep water is due to 
upwelling. 

Despite the fact that the flow is turbulent, many of the properties of upwelling can be 



predicted with the aid of linear stability theory. It is also possible to create a laboratory 
experiment that mimics the process and to perform simulations of it. Both of the latter have 
relatively smooth surfaces not representative of the actual ocean but it is possible to introduce 
idealizations of coastal geography and bathymetry. These show that capes and ridges cause 
significant increases in the mixing that occurs in the ocean. 



Numerical Considerations in Large Eddy 
Simulation of Complex Turbulent Flows 

Parviz Moin 
Stanford University 

We report on numerical issues in laxge eddy simulations that have been 
identified in recent computations and theoretical studies. These issues range 
from spatial discretizations to the impact of boundary conditions and grid 
resolution. We also describe the results from several large eddy simulations 
of complex turbulent flows including those performed with a novel numerical 
technique based on B-splines. 

Computations of flow over a circular cylinder at the sub-critical Reynolds 
number of 3900 were carried out with a fifth order upwind biased scheme, 
second order central difference scheme and the B-spline method with a zonal 
grid. One-dimensional power spectra of the velocity fluctuations in the wake 
of the cylinder show that the inherent dissipation in the upwind scheme 
leads to very pronounced damping of the velocity fluctuations at medium 
to high frequencies. The agreement of the power spectra obtained with the 
B-spline method with the data is excellent. The non-dissipative second order 
scheme agrees with the data better than the fifth order upwind scheme. 
Near the cylinder, turbulence statistics from the three computations are in 
good agreement with each other, however, further downstream, the B-spline 
method is in significantly better agreement with the data. An interesting 
result from these computations was the demonstration that inadequate grid 
resolution can lead to early transition in shear layers emanating from the 
cylinder. A cautionary note is that such computations may show fortuitous 
agreement with experiments that also suffer from early transition due to 
external disturbances. 

Additional examples of large eddy simulation of complex flows that will be 
presented are: combustion in a co-axial jet combustor, flow near the trailing 
edge of a hydrofoil and flow in an asymmetric diffuser. In the diffuser flow, it 



will be demonstrated that the flow is very sensitive to inflow velocity profile. 
In the case of the combustor, the exit boundary has a profound effect on 
the vortex breakdown which is essential for flame stability and mixing in the 
combustor. 

Finally, a summary of some of the current efforts aimed at making LES 
an engineering tool will be presented. Specifically, the development of suit- 
able wall boundary conditions for LES and parallelization of LES codes will 
be discussed. Chapman's(1979) estimates for the required computational re- 
sources and the demonstrated capabilities of DOE's ASCI computers will be 
used to project the near term utility of LES. 



Insights for LES from Structure-Based Turbulence Modeling 

S. C. Kassinos and W. C. Reynolds 
Department of Mechanical Engineering 

Stanford University 
Stanford, CA 94305-3030, USA 

We have spent the past several years constructing improved one-point Reynolds- 
Averaged Navier-Stokes (RANS) turbulence models based on new structure concepts 
and new one-point tensors that carry important structural information. From this 
work we have learned a great deal about how (and why) homogeneous turbulence 
responds to different types of mean deformation. Insights from this work are impor- 
tant in Large Eddy Simulation (LES) because, except in the wall region, LES models 
assume local homogeneity. 

The Smagorinski model and others like it assume equilibrium between the locally 
homogeneous sub-grid turbulent stress field and the instantaneous local strain rate of 
the resolved field. For some types of deformation, such an equilibrium might not even 
exist. If it does, the model should take into account the alteration of this equilibrium 
due to the type of mean deformation, and due to strong mean or frame rotation, but 
these effects are not properly included in any model that we have seen. 

One key example is the case of turbulence subjected to an imposed axisymmetric 
expansion, say with mean (or large-eddy) strain-rates Su — —V and S22 = S33 = F/2. 
Analysis, DNS, and experiments all indicate that the Reynolds stress anisotropy in 
this flow is larger if the deformation is slow than if it is rapid. The anisotropy 
appears to grow continuously and shows no sign of leveling off at an equilibrium state. 
Moreover, upon removal of the imposed strain-rate, the stress anisotropy continues 
to increase, rather than returning to isotropy as the lore of turbulence says should 
happen. Since regions of local momentary axisymmetric expansion occur all over 
LES flows, it would seem that sub-grid models that could capture this effect would 
be preferable. 

Another case where current LES sub-grid models are weak is in flows with strong 
frame or mean rotation. Under combinations of strain and rotation that lead to 
elliptical streamlines of the mean flow, the turbulence behaves very strangely. The 
turbulence state oscillates and does not equilibrate; DNS simulations (Blaisdell) shows 
that the kinetic energy of the turbulence grows, whereas quasi-equilibrium turbulence 
models of the sort used in LES for sub-grid turbulence predict decay. 

The reasons for these seemingly strange effects become clear when one understands 
our new one-point structure tensors, the way that they are related, and the way that 
they are altered by mean deformation. All this should be useful in considering the 
way that sub-grid scale turbulence should be related to the imposed resolved-scale 
deformation. The purpose of this paper is to review what has been learned from our 
structure-based analyses, and to suggest how it might be applied in the development 
of better sub-grid turbulence models for LES. 



Large-Eddy Simulation of Separation and 
Transition for Tnrbomachinery Flows 

Peter R Voke1 and Zhiyin Yang2 

1 University of Surrey, Guildford, U.K. 
* University of Loughborough, U.K. 

Abstract. Methods for the direct and large-eddy simulation of flows about turbo- 
machinery Wading are presented. For incompressible flows, both direct and large- 
eddy simulation require the solution of a Poisson equation for pressure, which is of- 
ten the main source of computational expense in simulations within complex bound- 
aries. Marked computational advantages are described for a flow which is periodic 
in one dimension through the use of Fourier techniques. With simple conditions 
fulfilled, it is possible to discrete Fourier transform the Poisson equation for the 
pressure field, decomposing the problem into a set of two-dimensional problems of 
similar type. We demonstrate that even when a complex geometry and body-fitted 
curvilinear coordinates are used in the other two dimensions, for instance to solve 
flow around a 2D turbine blade or blade row, the resulting Fourier-transformed 2D 
problems are much more efficiently solved than the 3D problem by iterative means. 

We show results for the case of LES of flow over an idealised turbine leading 
edge shape. The simulation shows laminar separation from the point where the 
surface curvature changes, 2D instabilities in the separated shear layer, and break- 
down to large-scale 3D structures prior to «attachment. Of particular interest is 
the interaction with the wake-like outer flow with the re-established shear at the 
wall, leading to a secondary boundary-layer transition similar to bypass transition. 
The simulation is carried out using general curvilinear coordinates with the con- 
travariant velocity components and finite volume discretisation, together with a 
generalised dynamic subgrid scale model 

1    Introduction 

Simulations of transition and turbulence over turbomachinery blades are nec- 
essarily three-dimensional. However they frequently need to be performed in 
computational domains in which one dimension can be assumed uniform, 
with a statistically homogeneous flow solution in that dimension which may 
be assumed to be periodic. Derivatives in the periodic direction can then be 
computed efficiently through the use of discrete Fourier transforms.     •, 

The periodic dimension is the spanwise dimension z. The requirements for 
the use of the Fourier method are: (i) That the unknown field whose solution 
is sought may be assumed periodic in r, an assumption which can be made if 
the turbulent pressure field is statistically homogeneous in z and the periodic 
length is greater than twice the correlation length of the field in z; (ii) that the 
mesh used in the z direction is even; and (iii) that any differencing formulae 
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applied to the field to generate the discretised equations are also homogeneous 
(this rules out certain types of upwind differencing in z). 

The gains in computational efficiency through the use of Fourier methods 
are generally very significant. They arise partly because of the reduction of 
the dimension of the problem and the lack of any connection between the so- 
lution for different discrete wave numbers, and also partly because the higher 
wave-number problems have increased diagonal dominance in the solution 
of Poisson-like equations. This results in greatly accelerated convergence of 
the higher wave-number problems and a corresponding saving of computer 
resource. 

A large-eddy simulation of flow over a NACA 4412 aerofoil has been 
performed by Kaltenbach and Choi [1] at an angle of attack of 12° and a 
chord Reynolds number of 1.64 x 106. They used body-fitted coordinates 
with second-order finite differences and the contravariant velocities discre- 
tised on a staggered mesh - a method which is very similar to that used 
by us for somewhat less ambitious flows. Their mesh of 638 x 79 x 48 cells 
was barely adequate for an LES of the 4412 foil, with both streamwise and 
spanwise cell sizes being rather large in terms of wall units, and a number 
of less satisfactory results were noted. A smoothing filter was required to 
suppress grid-scale oscillations in the laminar flow upstream, and transition 
to turbulence was found to occur immediately following the region in which 
the filter was applied. Values of the shape factor H dropped more rapidly 
in the simulated boundary layer in the mid-chord region of the aerofoil than 
is found experimentally [2] and near the trailing edge there were substantial 
differences in the turbulence intensities between simulation and experiment. 

2    Covariant Navier-Stokes equations 

We are primarily interested in geometries that are quite complex in two 
dimensions such as a 2D aerofoil or turbine blade row. These situations natu- 
rally involve curved surfaces over which the development of boundary layers, 
including transition, separation, reattachment and sometimes relaminarisa- 
tion is to be followed. Here the natural approach is to use general curvilinear 
coordinates, and this section describes one approach to this aspect of the 
simulation. Note, however, that the Fourier techniques described below for 
pressure solution also work very well for 2D geometries with sharp corners 
such as the flow over a square cylinder [3]. 

There are two main approaches to Navier-Stokes simulation in general 
curvilinear coordinates: one using scalar generalised equations for the conser- 
vation of Cartesian components of mementum; and a second method, used 
here, based on the fully general covariant Navier-Stokes equations represent- 
ing the conservation of contravariant vector velocity components. 

The familiar NS equations become 

dt{ Ju*) = -JgijdjP - J(u'ui) j + 2J{usij) tj (1) 
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where J is the Jacobian of the coordinate transformation and g1' is the metric 
tensor. These geometric quantities are computed in advance of the simula- 
tion to high accuracy. The equations are multiplied by the Jacobian of the 
transformation J in order to cast the equations and the discretisation in 
conservative form, p is the pressure over density. The strain rate is given by 

«" = giku>k + gJ"uik = gik{dk^ + /£«') + i»j , [       (2) 

an expression that involves the connection coefficients rkl which are com- 
puted in advance. The symbol +if+j indicates the addition of symmetrising 
terms identical to those preceeding but with the indices i and j interchanged. 
dj is the partial derivative with respect to x> and the j notation indicates the 
covariant derivative, also involving the connection coefficients. The covariant 
divergences in equation (1), for instance, are 

J(uiuj),j = dj(Juiut) + jrjku
kut, (3) 

and similarly for the viscous term. The mass conservation law in general 
coordinates reads 

0,(J«') = 0, (4) 

and hence one can derive a generalised Poisson equation for the pressure 
simply by taking the divergence of equation (1). 

The momentum advancement is explicit except for the pressure term 
which is solved by a standard projection method. The spatial discretisation is 
performed by one of the standard approaches used in LES, with the geomet- 
ric quantities computed to higher order in space in advance of the simulation 
for several distinct points of the staggered mesh arrangement. Note that all 
the geometric quantities are 2D fields, with values independent of z, greatly 
reducing the storage requirements. 

3    Fourier pressure solution 

We simulate turbomachinery blades and related flows using an approach sim- 
ilar broadly to that of Kaltenbach and Choi [1] which allows a partial use of 
the direct Fourier technique for pressure solution. Taking the divergence of 
equation (1), one obtains the general version of the familiar pressure Poisson 
equation: 

di(JgijdjP) = R, (5) 

where R is the divergence of the provisional mass flux field J«'. 
The equation can now be discrete Fourier transformed in z (a very rapid 

computational task) to obtain a set of decoupled equations, 

& T li 0P ,   ä T 12 dp     d T 21 dp     d r „ dp , 
fc"   TX + T*J9   Ty + 8-yJ9   £ + TyJg   £-Jk>* = R-      <6> 

10 
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(This process can be performed even when the z. derivatives are replaced by 
finite-difference formulae, provided z in the simulation is periodic and has an 
even mesh, though kz then has a slightly different meaning.) 

The 2D equations (6), one for each value of fc2, can be solved very fast even 
when the geometry is complex. Non-zero values of kz increase the diagonal 
dominance of the system of equations, resulting in very rapid convergence of 
any iterative scheme employed regardless of the type of discretisation used for 
the x and y derivatives. The small number of low-fcz equations which converge 
too slowly are speeded up using acceleration techniques such as multigrid [4]. 
By this means, it is possible to obtain pressure solution times for LES in 
2D complex geometries that are almost as fast in some cases (though not as 
accurate) as the direct solvers available in very simple geometries. 

Equation (6) contains cross-derivative terms which generally affect the 
diagonal dominance of the matrices and slow the convergence of iterative 
solutions. These terms increase in magnitude with the skewness of the mesh 
(they are absent altogether for.orthogonal coordinates). Thus highly skewed 
meshes should be avoided for the sake of efficiency. Nevertheless we expect 
the use of a Fourier technique to yield performance enhancements in the 
pressure solution compared to a fully 3D solver of a least a factor of 5 and 
sometimes up to 60. 

4    Dynamic subgrid-scale procedure 

A dynamic subgrid-scale procedure is employed in our simulations since the 
flow is Imainra, transitional and finally fully turbulent. A dynamic model 
is a method of accounting for the unresolved motions and their effect on a 
large-eddy simulation that uses the information available in the simulation 
itself maximally. We can think of a large-eddy simulation as accurately repre- 
senting filtered velocity fields after a large-scale filter has been applied to the 
true velocity fields. When applied to the Navier-Stokes equations, the filter, 
represented by an overbar, results in equations that look superficially very 
like the time-averaged (Cartesian) Navier-Stokes equations: 

düj _    1 dp     djüiüj)      d     /dff,-     duj\ ,7> 
dt ~    pdxi        dxj        dxj   \dxj     dxi) 

The term U,UJ cannot be computed, and the difference between it and the 
part that can be computed, 5,-tij, is the subgrid Reynolds stress Tij, analogous 
to the familiar Reynolds stress occuring in the time-average Navier-Stokes 
equations. 

The subgrid Reynolds stress represents the effects of the subgrid motions 
on the resolved fields of the LES. In contrast to the standard Reynolds stress 
whose length and velocity scales are those of the entire turbulent flow field, 
the length scale and velocity scale associated with the subgrid Reynolds stress 
can be deduced simply and on a local basis from the mesh and the resolved 

11 
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velocity field of the simulation. The length scale is derived from the local 
mesh (A) and the velocity scale is dictated by the small-scale motions on the 
mesh, roughly equivalent to the largest sub-grid velocities. 

The earliest estimate for the velocity scale, based on the local strain rate 
scalar s, due to Smagorinsky [5], was sA. He went on to combine these scales 
into the simple gradient diffusion model: 

Tij - SijTkkß = V.Sij (8) 

u, = CA2s (9) 

S = yßs^sTj (10) 

C is predicted theoretically from the Kolmogorov spectrum in homogeneous 
isotropic turbulence [6] to be 0.172. 

This very simple model proved surprisingly successful for several decades. 
The model in fact has clear shortcomings. Tests of its predictions against 
directly simulated flow fields show that the correlation between the tensors 
in equation (8) is low. In shear flows, particularly wall-bounded flows, the 
model is far too strong and the value of C has to be decreased in a pragmatic 
way; the reasons for this are now quite well understood. 

The dynamic procedure is a new approach in which the value of C, instead 
of being adjusted artificially based on the experience of the simulator, is 
deduced from the LES itself [7]. This allows the value of C to respond to 
local flow conditions, varying in time and space. A base subgrid-scale model 
such as Smagorinsky is needed first. We then consider what would happen if 
the same LES flow field were simulated on a coarser mesh, effectively filtering 
the velocity field on a sacle larger than that actually used for the LES. This 
coarser filter, called the test filter, is usually chosen to be twice the size of 
the mesh. The result of applying the test filter (indicated by a caret) to the 
simulated flow fields is the twice-filtered Navier-Stokes equations: 

Once more the filtered non-linear term is modelled, but in this case the dif- 
ference 

T' = WJ- ti UJ (12) 

is called the subtest-scale stress. 
The dynamic procedure is based on the assumption that the subgrid stress 

and subtest stress can be modelled in a formally similar manner, by applying 
the basis model at both filter scales, A and 2A: 

Tii-6ijTkk/Z = CA2ssii (13) 

Tij - SiiTkk/Z = C{2A)2 ttij . (14) 

Germano pointed out an exact identity relating the traceless part of the test- 
to-grid transfer stress, which is computable in the simulation, to the difference 
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between the two modelled stresses, the subtest-scale and the subgrid-scale 
stress: 

Lij = ^Uj-UiUj (15) 
L'ij = Lij - SijLkkß = Ttj - SijTkkß - (Tij - SijTkk/Z) = CM{j ,    (16) 

The models for Tij and r,-j from equations (13) and (14) are substituted into 
(16) to define the tensor Mij. Thus we deduce that C must be 

C = L'ij/Mij , (17) 

yielding five separate equations for C since five components of each tensor 
on the right hand side are independent (the tensors being symmetric and 
traceless). 

The least-squares estimate of the optimal solution for C is [8] 

<JAjMii>_ (18) 
< MkiMki >' 

where the angle brackets represent an average over the homogeneous direction 
z in the flow in which we do not wish the dynamic procedure to generate local 
variation of C. The resulting C is a function of time and the inhomogeneous 
coordinates x and y. 

The dynamic procedure has been presented above in Cartesian coordi- 
nates for the sake of simplicity, but its derivation can be carried out in general 
curvilinear coordinates by exact analogy and without difficulty. The result is 
that we can deduce a dynamic subgrid coefficient C as 

r - <L'ij9ik9jiMkt> (1Q) 

°~ <M*"gik9j,M">' V    ' 

where L"J is the traceless part of 

OR? - i?tP (20) 

and Mkl is similarly the contravariant counterpart of MM arising from the 
difference between test- and subgrid-scale modelled stresses in general coor- 
dinates. A question does arise regarding the variation of the filter scale on a 
curvilinear mesh, since We treat the uniform mesh in the transformed plane 
as defining the filter at both grid and test levels. Clearly this does not take 
account in any way of the change of scale of the mesh in physical space, which 
will affect the turbulence evolution. 

The practical computation of C from equation (19) is considerably more 
complex than in the Cartesian case (18) owing to the presence of the met- 
ric tensor coupling the various components. A simple alternative that we 
have utilised for the simulation whose results are given below is to return to 
equation (17), or rather its covariant equivalent 

C = L'f'/Mij, (21) 
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and select one of the five equations to define C. This is justified in the case 
of transition over a leading edge where there is a clear principal strain rate 
and component of the subgrid Reynolds stress, namely the 12 component, 

C = L' n/Mu. (22) 

The least squares form involving the sum of all six components of the stresses 
is dominated by the 12 component in this case, so the simplification (22) leads 
to almost the same distribution of values of C. Of course there is also consid- 
erable saving in cost by using the dynamic procedure in this form, without 
detectable change in the quality of the results. The dynamic computation of 
C involving filtering on the test scale is still quite expensive and is carried 
out not at every time step but every ten steps, generating a distribution of 
C that is used for the following ten steps. 

In the simulation of the transitional flow described below, the value of C 
increases from zero as the flow becomes unstable and reaches normal LES 
levels when the flow becomes fully turbulent. In fact both Af'J' and U' tend 
to zero in laminar regions, making equations (21) or (22) poorly conditioned 
or singular. The algorithm for computing C behaves unpredictably in laminar 
or nearly laminar regions and must be modified to ensure that C approaches 
zero in a sensible and controlled manner. We do this by changing equation 
(22) to 

C = L'12/(Ml2 + €). (23) 

e is a selected small quantity related, for instance, to the global average of 
Mn. Typically e is of the order of 10"6 of the values of M12 occurring in 
turbulent regions. 

5 . Transition following a curved leading edge 

We present results from a simulation of the flow over a flat plate with a semi- 
circular leading edge, Figure 1. The fully general coordinate system around 
this geometry is needed since an orthogonal coordinate system will have an 
inconvenient junction between a cylindrical and a Cartesian mesh region just 
at the critical point where the curved leading edge joins the flat surface. This 
is the point at which the laminar flow separates. Any disturbances in this 
region, including those with a numerical origin, will affect the flow radically 
and lead to erroneous conclusions. A previous simulation by us [9] used an 
orthogonal coordinate system and suffered from the problems indicated, in- 
cluding rapid and excessive growth of instabilities in the separated shear layer 
whose origin could be traced to numerical effects. This does not occur in the 
simulation with fully general curvilinear coordinates. 

The overall geometry is indicated by an instantaneous flow field in Figure 
1. The Reynolds number based on the plate thickness d is 3450. The simu- 
lation uses 408 (streamwise, wrapped round the leading edge) by 72 (wall- 
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normal) by 64 (spanwise) meshes and is performed using the techniques out- 
lined in previous sections, including the generalised dynamic subgrid-scale 
model. The circular inflow boundary and the lateral boundaries are eight 
leading-edge diameters (8d) distant from the surface, corresponding to a 
blockage ratio of 16. The inflow velocity is constant, U0, and aligned with 
the plate. The lateral boundaries are free-slip but impermeable. On the out- 
flow boundaries, 9.5d downstream of the leading edge, we apply a convective 
boundary condition based on the mean streamwise velocity. 

The spanwise dimension of the domain is 2d. Some simulations have been 
performed using a spanwise dimension of 4d without any appreciable change 
in the behaviour of the flow. In terms of wall units based on the turbulent 
boundary layer downstream of reattachment, the streawise mesh sizes vary 
from Ax = 10 to 30.5, while Az = 9 and at the wall Ay = 1 (the distance 
from the wall to the first specified value of u and w. The time step used in 
the simulation is 0.005ü7o/d. 

Statistics are gathered by'averaging in time once the simulation is in 
its fully developed state and also over the span direction and on both sides 
of the plate. The simulation is run for 4000 time steps (200t/o/<f) to allow 
the transition and turbulent boundary layer to become established, and the 
statistics discussed below are then gathered over a further 30000 time steps 
(l5QUo/d), with a sample taken every 20 steps (1500 samples). 

Insignificant small-scale instability is found around the leading edge, but 
the stagnation point does move from side to side if the division of the mass 
flux on either sides of the plate is not constrained. The simulation can become 
permanently asymmetric with this outflow condition, so we have constrained 
the mass flux through the outflows to be precisely equal on either side of the 
plate at every time step, the total flux balancing the inflow. 

, Figures 2 and 3 show the mean and rms fluctuating parts of the streamwise 
velocity compared with experiment [10] at three streamwise stations, one in 
the centre of the bubble (x/l = 0.44), one just beyond the mean reattachment 
position (x/l = 1.09 and one a little further downstream [x/l = 1.64). Both 
experiment and data have the same low level of free-stream turbulence (< 
0.1%) though in the simulation this weak disturbance is imposed artificially 
through pseudorandom forcing just upstream of the separation point. The 
experimental blockage ratio is lower than that in the simulation, leading to 
a slightly longer bubble length (2.75d) than in the simulation (about 2.2d). 
The experimental data are therefore compared at corresponding values of x/l, 
where / is the mean reattachment length. For the same reason all profiles are 
plotted as functions of y/l. 

The agreement of the mean profiles is excellent, apart from the velocity at 
the edge of the bubble which is higher in the simulation owing to the different 
blockage ratio. However, in the bubble the simulation shows higher peaks of 
v! occurring closer to the wall. The experimental data was taken with a single 
hot-wire probe in the shear layer and the bubble, and has been discarded in 
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the region where measured rms «' exceeds 30% .of the local mean U. The 
disagreement seen in this region appears to arise from lack of resolution of 
the transition process in the thin bubble by the LES rather than experimental 
errors, since the position of the peak fluctuation relative to the mean profile is 
known to agree for a wide variety of separation bubbles and is in the position 
found in this experiment also. Otherwise the agreement is excellent. 

Note that at the x/l = 1.64 station the simulation shows a double peak 
of u', a new near-wall peak having appeared below the peak that persists 
downstream of the free shear layer. This effect is not apparent in the ex- 
perimental data at this station. It would indicate that two regions exist: a 
wake-like disturbance downstream of the bubble which is partially separated 
from the near wall production region; further evidence of this double layer 
structure and its origin will be presented below. 

Figure 4 shows the vertical (v1) fluctuation, for which experimental data 
are not available. In figure 5 we have the mean principal shear dU/dy, to 
illustrate the position of the bubble and the rapid re-establishment of high 
near-wall shear immediately after reattachment, underneath the separated 
shear layer. It is important however to bear in mind that these quantities 
are time means of highly fluctuating instantaneous flows, though the origin 
of the double layer structure is clear in the two distinct mean shear regions. 

We are particularly interested in the product i/^dU/dy which is the main 
contribution to the production of the u'v' stress. This is shown in figure 6, 
normalised by the product of the maximum v*2 (occurring here in the sep- 
arated shear layer) and the maximum dU/dy, which, beyond reattachment, 
occurs at the wall. Note the slight evidence for the double layer structure at 
x/l = 1.64 in this figure. 

Figure 7 shows the principal off-diagonal stress u'v'. There is no evidence 
here for a secondary peak of the stress close to the wall even at x/l = 1.64, 
and in fact the main contribution continues to be from the separation bub- 
ble and its wake-like aftermath to the end of the computational domain. 
However, looking at the main contribution to the u production u'v'dU/dy 
in Figure 8, we find a powerful near-wall peak has .developed since the level 
of u'v' stress from the outer layer overlaps in a narrow region with the high 
dU/dy peaking at the wall. This explains the origin, in statistical terms, of 
the rapid development of a near wall peak in u' beyond reattachment. 

In order to increase our understanding of the processes involved in this 
transition process, we separate two-dimensional and three-dimensional parts 
of the velocity field at a specific instant in the simulation. Figure 9 shows 
the mesh in the sub-region we focus on, and Figure 10 colour contours of the 
streamwise velocity component at an arbitrary z plane. The picture clearly 
suggests a 3D breakdown of the separated shear layer about two thirds of 
the way down the bubble, with the asymmetry between the two sides being 
quite clear, suggesting a symmetry-breaking transition process is under way. 
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Figures 11 to 14 clarify this. Figure 11 shows span-average streamwise 
velocity contours at the same instant, revealing that the bubble is indeed 
two-dimensional for the first two-thirds of its length but that only minor 
aspects of the breakdown process involve coherent 2D processes, masked here 
by the strong overall profile of <u>. The 2D component of the breakdown 
process is more clearly apparent in Figure 12 which shows the span-average 
vertical velocity <u>. This picture indicates that weak rolls of fluid are 
present, predominant wallward motions being interspersed with regions of 
motion away from the wall. The structures do occur in a region away from 
the wall, as if forming an assymmetric wake of the separtion region, and form 
a semi-coherent pattern with irregular streamwise spacing. 

The three-dimensional parts of the velocity fields are given as contours 
in Figure 13 (u— <u>) and Figure 14 (v— <u>)). The three-dimensional 
disturbances in u are seen first about half way along the bubble, become 
established by about x/l = 0.7 and are highly significant at and beyond the 
mean reattachment point. This confirms the general view that 3D breakdown 
promotes the reattachment and also suggests that the highly variable position 
of reattchment in time and z is related to the chapotic nature of the 3D 
breakdown locally. Figure 14 reveals that vertical 3D motions occur later, 
being first seen just upstream of mean reattachment, and are less pronounced, 
with an irregular streamwise structure. This is also true for span-wise motions 
(not shown). The 3D motions however approach the wall more closely than 
the 2D rolls, and the u and v pictures are related, there being a strong 
suggestion of the correlation between negative u (yellow-red in Figure 13) and 
motion away from the wall (blue above the plate and red below in Figue 14). 
The ingress of of these 3D vertical fluctuations into the very near wall region 
where the instantaneous shear du/dy is also high supports our view of the 
mechanism of transition. 

We have presented strong evidence for a simple conceptual model of the 
process of transition in this type of flow from these data. The separation 
is two-dimensional and laminar. Three-dimensional breakdown occurs in the 
second half of the bubble, with the growth of 3D vertical motions resulting in 
turbulent transport leading to reattachment which is highly variable in time 
and streamwise and spanwise position. The turbulent second half of the bub- 
ble gives rise to a qusi-regular asymmetric wake-like disturbance propogating 
downstream, clearly separate from the wall layer. Three-dimensaional distur- 
bances within this 'wake', however, approach closer to the wall and impinge 
on the growing shear of the near wall layer, promoting a second transition 
process that is similar in most respects to bypass transition stimulated by 
similar levels of free-stream turbulence [11]. 

It is the relatively small scale of these 3D incursions that allows them to 
reach in close to the wall and interect with the high shear layer, lifting low 
speed fluid away from the wall and pushing higher speed fluid towards it. The 
creation of irregularly spaced streaks (not shown here) in the near wall region 
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is thought to lead to redistribution of fluctuations through pressure-strain 
interaction, producing vertical (v) fluctuations and leading to self-sustained 
turbulence in the boundary layer. 

6 Discussion 

Wew have presented a numerical simulation of the transition to turbulence 
occurring through separation bubbles on a plate with a semi-circular leading 
edge. The boundary layers develop in the densely meshed regions on either 
side of the plate, and are fully turbulent well before they reach the two 
outflow boundaries. The layers on either side of the plate are statistically 
independent, just as they would be in the more complex case of a turbine 
blade. The flow separates and transition takes place as the separated flow 
becomes unstable, first in a two-dimensional mode but passing into a three- 
dimensional breakdown which results in rapid reattachment. 

The large-scale instabilities" originating in the bubble subsequently dis- 
turb the reattached boundary layer. As the mean shear at the wall is re- 
established, large-scale disturbances in the outer region of the boundary layer 
coming downstream rather like a wake from the separation bubble stimulate 
a secondary transition near the wall. The mechanisms at work here appear 
to be similar to those that operate during bypass transition in the presence 
of free-stream turbulence [11], [9]. 

7 Conclusions 

Methods for performing large-eddy and direct numerical simulations using 
general curvilinear coordinates have been described, together with the use 
of Fourier techniques for efficient pressure solution in this context. We have 
shown how it is possible to combine iterative methods with discrete Fourier 
transforms to obtain very acceptable pressure solution times, comparable 
with those obtained by direct methods in simpler geometries. Results for a 
transitional flow using general coordinates in two dimensions demonstrate 
the efficacy of the approach. These methods are' currently in use for the 
simulation of turbine blade flows and will also be used in the LES of aerofoils 
in future. 
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Figure Captions 

Figure 1. Instantaneous flow field about the plate with curved leading edge: 
whole domain. Note the fine mesh in the region of primary interest close to 
the surface. 

Figure 2. Mean flow velocity U at three positions measured from the blend 
point. Left to right, x/l = 0.44,1.09,1.64. 

Figure 3. RMS streamwise velocity fluctuation «' at x/l = 0.44,1.09,1.64. 

Figure 4. RMS wall-normal velocity fluctuation r/ at x/l = 0.44,1.09,1.64. 

Figure 5. Mean principal shear dU/dy at x/l = 0.44,1.09,1.64. 

Figure 6. Stress production term v*dU/dy, normalised by peak ü^and peak 
dU/dy, at x/l = 0.44,1.09,1.64. 

Figure 7. Principal Reynolds stress «V at x/l = 0.44,1.09,1.64. 

Figure 8. Fluctuation production term u'v'dU/dy, normalised by peak u'v' 
and peak dU/dy, at x/l = 0.44,1.09,1.64. 

Figure 9. Mesh in the subdomain depicted in figures 10 to 14. 

Figure 10. Contours of streamwise velocity u at a single instant for a se- 
lected spanwise plane. Blue, positive; red, negative. 

Figure 11. Contours of span-averaged streamwise velocity <u> at a single 
instant. Blue, positive; red, negative. 

Figure 12. Contours of instantaneous span-averaged vertical velocity <v>. 
Blue, positive; red, negative. 

Figure 13. Contours of 3-dimensional part of the streamwise velocity field 
«— <u> at one instant for a selected spanwise plane. Blue, positive; red, 
negative. 

Figure 14. Contours of the 3-dimensional part of the vertical velocity field 
"— <v> a* °ne instant for a selected spanwise plane. Blue, positive; red, 
negative. 
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Istanbul 1998: Voke & Yang, Figure 2 
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Istanbul 1998: Voke & Yang, Figure 10 

25 



Istanbul 1998: Voke & Yang, Figure 11 
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Istanbul 1998: Voke & Yang, Figure 12 
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Pushing DNS to the limit 
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Direct Numerical Simulation (DNS) is the most ac- 
curate, but also the most expensive, way of comput- 
ing complex turbulent flows.   In view of the com- 
putational complexity of DNS, our first concern is 
to reduce the computational costs as far as we can 
get. This implies - among others - that the number 
of grid points has to be kept as small as possible. 
To use the lowest possible number of grid points, 
spatial discretization methods for the Navier-Stokes 
equations need to be strained to their limit. 
On nonuniform grids various ways exist to discretize 
connective and diffusive operators.  In [1], we have 
proposed to apply a high-order finite-volume dis- 
cretization method that preserves the spectral prop- 
erties of the convective and diffusive operators, i.e. 
convection «4 skew-symmetric; diffusion <-)• symmet- 
ric positive definite. It is our experience that in this 
way the error of the convective discretization does 
not interfere with the diffusion on the smallest length 
scales.   The energy of the discrete system is con- 
served, if the physical dissipation is turned off. The 
time-advancement is carried out by an explicit one- 
leg method. For more details about the numerics, we 
refer to [1]. 
We have applied this numerical method to simulate 
a number of complex flows. The problem considered 
in this paper is the fully developed flow in a channel, 
where a matrix of cubes is placed regularly at one 
wall of the channel. The matrix consists of 25 x 10 
cubes in the streamwise and the spanwise direction, 
respectively. The width of the channel is 3 Ah, where 
h denotes the width of a cube. The pitch of the 
cubes is Ah, in both the streamwise and the spanwise 
direction. The Reynolds number (based on the width 
of the channel and the bulk velocity) is equal to Re = 
13,000. 
Flow measurements by Meinders & Hanjalic [2] have 
showed that the influence of the in- and outlet can 
be neglected around the 18th row of cubes (counted 
from the inlet). Hence, to simulate the flow there, 
we may confine the computational domain to a sub- 
channel unit of dimension 4/ix3.4/ix4/i with periodic 
boundary conditions in the stream- and spanwise di- 
rection. Figure 1 displays a sub-channel unit. 
The flow through the sub-channel was one of the 
test cases at the 6th ERCOFTAC/IAHR/COST 
Workshop on Refined Flow Modeling [3]. Four 
groups have presented the results of their Reynolds- 
average Navier-Stokes (RAXS) computations. Both 

period be .;,'.,. 
.i-'kyi- It; im 

no slip 

no slip 

Figure 1: Top- and side-view of a sub-channel unit. Shown 
is an instantaneous flow field (of the 1003 simulation) at two 
planes through the centre of the cubes. 

high- and low-Re-number RANS-models were ap- 
plied. The RANS computation that agreed the best 
with the available experimental data used a 67 by 72 
by 57 grid. We have computed solutions of the in- 
compressible Navier-Stokes equations (without using 
any turbulence model) on a number of grids. Fig- 
ure 2 shows a comparison of the mean streamwise 
velocity of our 603 and the 1003 Navier-Stokes com- 
putations, that of the best RANS computation and 
the experimental data of Meinders & Hanjalic. On 
a corresponding grid, the mean velocities computed 
from the Reynolds averaged Navier-Stokes equations 
agree less with the experimental data than the re- 
sults of the 603 Navier-Stokes computation. The ve- 
locity profiles of the RANS computation are much 
too smooth. In addition, the maxima of the veloci- 
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Figure 2: Comparison of the mean streamwise velocity at 
half cube height. The horizontal corresponds to the span- 
wise direction. The dashed vertical lines are lines of sym- 
metry. The geometry is drawn to scale. The velocity scale 
is shown for the uppermost profiles only; the other profiles 
have the same vertical scale. 

ties are located in the symmetry-plane between two 
cubes, which is in distinct disagreement with the ex- 
perimental data. 
First- and second-order statistics obtained from the 
1003 simulation at the cross section of the channel 
that bisects a cube are compared to the available 
experimental data in Figure 3. Here, the averages 
are computed over 200 (non-dimensional) time units. 
The profiles of the mean streamwise velocity and the 
mean-square of the fluctuating streamwise velocity 
are in good agreement with the experiments, except 
in the front of a cube, where some discrepancies be- 
tween the mean-squares of the fluctuating stream- 
wise velocities exist. 
So, in conclusion, the 1003 simulation reproduces 
the turbulent fluctuations reasonably well, whereas 
the 603 simulation displays some shortcomings. This 
naturally poses the question: how many grid points 
are required for a numerical simulation of the flow 
under consideration, without any turbulence model? 
To answer this question, we have also performed a 
1443 simulation. With the help of the solutions on 
three different grids, 603, 1003 and 1443, the con- 
vergence of the numerical approximation upon grid 
refinement is addressed. Here, the experimental re- 
sults of Meinders & Hanjalic [2] form the frame of 
reference. The spectra of the 603, 1003 and 1443 

simulations are compared, to identify the scales of 
motion that are significant for the first- and second- 
order statistics. In addition, near the fiat wall of the 

Figure 3: A comparison of first-order statistics (upper pic- 
ture) and second-order statistics (lower picture) of the DNS 
with experimental data. Shown are the mean streamwise 
velocity ü (upper picture) and u'u' (lower picture) in the 
plane parallel to the streamwise direction that bisects the 
cubes. The continuous lines correspond to the DNS; the 
experimental data is depicted by the dots. 

channel, the numerical solutions are also compared 
to those of the DNS of Kim et al. [4] and those of 
Gilbert k Kleiser [5]. Up to y+ as 250, the 1003 and 
1443 solutions obey the log law accurately, where we 
have taken 5.5 for the additive constant and 2.5 for 
the coefficient. 
Finally, the budgets for the Reynolds stresses are 
computed from flow fields of the 1443 simulation. 
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We consider a backward facing step channel and we investigate the flow for a Reynolds number of 
3000 built with the velocity u0 of the block inflow profil and the step height H (see fig. 1). The top 
of the channel is considered as a slip wall and in the lateral direction a periodic behavior is assumed. 
With the aim of the drag reduction or a decreasing reattachment lenght in the wake of the step 
acoustic manipulations of the boundary layer in front of the step were performed by experiments and 
numerical simulations ([1], [2] and [5]). It was found a good agreement of the experimental and nu- 
merical results, especially in the case of the reattachment length but also related to the mean velocity 
field and the rms-profiles. The numerical investigations are done as direct numerical simulations and 
large eddy simulations. For the direct numerical simulations about 10 million grid points are needed 
for the spatial discretization. In the case of the large eddy simulations it is possible to work with 
about 500 thousands of spatial grid points. We use a subgrid scale model of Germano type following 
Akselvoll/Moin [3]. During the numerical simulations the sufficiency of LES to describe the flow over 
the backward facing step physical correctly could be shown. 
Beside the accoustic boundary layer manipulation over slits with certain frequencies experiments are 
done with oblique backward facing steps or with moving boundaries to simulate oblique geometries. 
Based on the experiences of the above discussed numerical simulation of a straight backward facing 
flow large eddy simulations with moving boundaries are under consideration. 
We investigate both a moving upstream boundary in front of the step (lateral velocity vu) and a 
moving boundary behind the step in the downstream region of the bottom of the channel (lateral 
velocity vd, see fig. 2). The simulations are done for a wide range of lateral boundary velocities, i.e. 
from viaterai = 0.5 «o to viaterai = 2.0 u0 with u0 as the inflow profile velocity. 

Figure 1: channel situation Figure 2: Tu and Yd as a moving boundaries 

In fig. 3 the mean wall shear stress velocity uT of the case vu = 2 u0 and vd = 0 is shown compared 
to those of the neutral case vu = 0 UQ and vd = 0 in fig. 4. 

Figure 3: uT of the emulated oblique step flow Figure 4: uT of the neutral step flow 
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The numerical simulations are done with a finite volume method on staggered grids which is paral- 
lelized on a Cray T3D/T3E using fast Cray-specific shared memory transfer utilities or the platform 
independend MPI library ([4]). The method is of second order in space and time. The mass conser- 
vation per time step was realized by a pressure-velocity iteration method. 
The parallelized numerical model (DNS/LES) was validated by comparisons of the numerical DNS/LES 
results of [5] and the experimental data of [1] and [6]. The following figures 5-8 show the result of com- 
parison for the mean velocities and the rms-values. For these comparisons a neutral, non-manipulated 
backward facing step flow for the transitional Reynolds number 3000 was considered. The experimen- 
tal results were produced by LDA-measurements. 

JUI 414 -O.li   -0.1 .0.06 -QM -QM     0     0J02 

Figure 5: umean &t x = 5H Figure 6: vmean at i = 5H 

Figure 7: urm, at i = 5H Figure 8: urm, at x = 5H 

The performance of the parallelized code (1.3 * 107 gridpoints, 100 timesteps, 25 pressure-velocity 
iterations) on different mpp systems is shown in the table 1. 

system #procs time t [sec] mflops <C90/' Sp = tj90(l)/t 

J90 1 16428 92 0.27 1.00 
J90 4 4173 357 1.03 3.94 
J90 8 2244 673 1.95 7.32 
J90 16 1390 1087 3.15 11.81 

C90 1 4380 338 1.00 

system #procs procx * procy time t [sec] mflops *C90/' Sp = tT3D(32)/t 

T3D 32 8*4 3329 443 1.31 1.00 

T3D 64 8*8 1671 886 2.62 1.99 

T3D 128 16* 8 871 1700 5.03 3.82 

T3D 256 16*16 437 3387 10.02 7.61 

Table 1: Performance of the FV code on different mpp systems 

The results of the reattachment lenght reduction in the case of the moving upstream boundary in 
front of the step show a,good agreement with the known experimental measurements. The large eddy 
simulations with the moving boundary behind the step are in the beginning and the first analysis 
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shows no remarkable influences of the lateral boundary velocity vd to the position of the reattachment 
point Xr. A significant reduction of the reattachment lenght was not found. The comparison of the 
numerical results and the experiments of such a channel flow with a moving channel bottom behind 
the step, which are done now, will be discussed. 
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People became concerned about a possible impact of aircraft emissions upon the atmosphere 
and the climate. The concern is based on the facts that the world-wide commercial air traffic 
grows strongly (and is predicted to grow strongly in the next decade) and it is the only direct 

anthropogenic emission source at cruising altitudes where the background concentration of the 
trace gases is low and, hence, an efficacy is possibly large. To assess the impact of aircraft 
emissions upon the atmospheric state at a global scale it is prerequisite to know how the 

emissions get mixed and dispersed in the immediate waJce of the aircraft, smce chemical species 
transformations and physical phase changes of the exhaust often evolve nonlinearly and, thus, 
may depend heavily on the mixing properties in the wake. Mixing, in turn,"is controlled by 

the dynamics of the wake flow. The objective of the work, therefore, is to provide a detailed, 
quantitative, and validated description of the wake dynamics and its effect OTI mixing and 
diffusion of the exhaust from the scale of the airplane to the range of; atoospheric'mesoscale 

flow. Large-«ddy simulations are performed to calculate the wake flow embedded in'a'stably 
stratified and turbulent atmosphere. The numerical simulation data will be compared to data 
collected in-situ and remotely during various measurement campaigns. 

The prime result is that the atmospheric eddies disturb the parallel vortex tubes by advection. 
Once distorted at that scale, the vortex induced velocities amplify the disturbance according to 
Crow's instability. The vortex tubes link after about 1.5 minutes and fond rings; the continuous 

trail of exhaust is reorganized in a row of single puffs. Without any atmospheric turbulence, the 
wake does not experience a sinusoidal instability but the parallel vortex tubes approach and 
start to dissolve after 2 minutes when they touch. The dissolution is triggered by the small- 
scale turbulent friction owing to the boundary-layer turbulence of the aircraft. The exhaust trail 
remains aligned along the flight track. For both calm and turbulent situations the entrainment 
rate drops in the interval between 20 s and 100 s by 2 to 2.5 orders of magnitude and increases 
again when the vortices collapse. 
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Another problem rises in view of the expected growth of air traffic: Increasing demands on 

the capacity and safety of large airports have to be faced, since aircraft wake vortices (WV) 

may exert a serious danger on following aircraft if the separation between leading and following 

aircraft is not sufficient. Among others these demands require new ways to develop dynamic 

spacing criteria for approach and landing. Since at many airports aircraft have to join the glide 

slope already several miles before landing, the area which has to be controlled is quite large. 

That is, we need to know where and how long WV can exist along the glide path. Preferably, 

we would like to identify the atmospheric conditions for which WV do not exert any danger 

to following aircraft. Therefore the questions whether and under which atmospheric conditions 

WV can stop their descent or even rise again are of primary interest. 

A wake vortex warning system (WVWS) was developed for the airport in Frankfurt in order to 

run the closely spaced parallel runways separately at appropriate meteorological conditions. The 

WVWS predicts the propagation and lifespan of wake vortices in a safety area of 80m height 

based on statistical methods. This particular height of 80m was chosen since measurement 

campaigns had shown that WS do not reach this height due to the rebound caused by the 

interaction of wake vortices with the ground. Pilot associations recently argued that also the 

updrafts of thermals in a convective atmospheric boundary layer (CBL) could cause WS to stall 

or even to rise again to the glide slope during the final approach. We have performed LES of 

the evolving CBL where the wake vortices of an aircraft were superimposed on the windfield. 

The results indicate that WV actually may rise in the CBL when the velocity of the updraft 

exceeds the induced descent speed of the WV. But at the same time they are strongly deformed 

by the large-scale velocity field of the CBL. Moreover, the decay of the WV is considerably 

accelerated due to the increased turbulence levels in the thermals. To quantify these qualitative 

results a comparison of the rolling moment being exerted on an aircraft crossing the domain 

on various paths will be presented for the CBL, a weakly turbulent, and a stable atmosphere. 

Usually, the pair of aircraft wake vortices sinks by mutual velocity induction. However, close to 

the ground they may rise again due to the interaction of one vortex with the friction layer of 

the bottom. It has recently be found that layers of wind shear may have a, similar effect. Again, 

these rising vortices may be hazardous to following aircraft. We will furthermore present LES 

results on the impact of shear layers (e.g. low-level jets) upon the bouncing properties of wake 

vortices when they pass through such a layer. 

W ltff\ Z/^' ^^'cm.Qhr/^/ 
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In the simulation-based design process the engineer must make numerous 
appeals to the underlying numerical simulation in order to calculate the 
outputs - the system performance metrics of interest, such as lift, drag, 
or contaminant dispersion - for different values of the design vanables 
The requirements on the numerical approximation are thus twofold: the 
approximation must be sufficiently coarse - and hence inexpensive - so as 
to permit repeated evaluation; the approximation must be sufficiently fine 
so that the numerical prediction of the desired outputs is representative of 
the true performance of the system. 

A posteriori error control offers great promise in reconciling these orten 
conflicting requirements. A posteriori analysis is composed of two critical 
ingredients: an estimation procedure which inexpensively assesses the error 
in a particular numerical solution; and an adaptive refinement procedure 
which exploits this error information to optimally improve the numerical 
solution. The objectives of a posteriori error control are twofold: to elim- 
inate numerical uncertainty - arguably the single largest impediment to 
widespread adoption of simulation-based design; and to improve numerical 
efficiency - thus permitting much more extensive design exploration, in 
fact, greater certainty is a prerequisite for greater efficiency: we may con- 
sider a less expensive (or even the least expensive) discretization only it the 
associated error can be quantified, and hence constrained and controlled; we 
are no longer compelled to choose either certainty or efficiency - both can 
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be achieved. 
Unfortunately, in all earlier a posteriori error analysis techniques, either 

— in implicit approaches [5,2,1] — the measure of the error is not related 
to the actual engineering outputs of interest, or — in explicit approaches 
[3,4,16] — the error estimates for the engineering outputs of interest in- 
volve numerous undetermined or uncertain constants or functions; in both 
cases, quantitative confirmation — and hence both certainty and efficiency 
— is seriously compromised, and the relevance to engineering design greatly 
reduced. 

The a posteriori error control method that we are developing [10,12,13,8] 
is certainly indebted to these earlier techniques — in particular, implicit 
Neumann-subproblem approaches [5,2,1] — for several important concep- 
tual and mathematical ingredients, especially duality and hybridization. 
However, our method considerably generalizes these techniques, thereby 
providing a new and critical "enabling technology": the ability to obtain 
inexpensive, sharp, rigorous, and quantitative ("constant-free") bounds for 
the numerical error in the engineering outputs of interest. Our method is 
thus directly relevant to the design process, and should lay the foundation 
for systemic application of a posteriori error control within the engineering 
context. 

Our initial formulation focused on symmetric coercive problems (e.g., 
Poisson and Linear Elasticity [10,12,13]), and nonsymmetric coercive prob- 
lems (e.g., Convection-DifFusion [10,12,8]), as well as certain constrained 
problems (the Stokes equations [11], central to hydrodynamics). However, 
we have recently proposed a more general formulation that greatly expands 
the types of equations and outputs amenable to our approach. In partic- 
ular, both noncoercive and nonlinear elliptic [9] (and stabilized hyperbolic 
[7]) problems can now be addressed, with only a minor loss in certainty rela- 
tive to the coercive case. More precisely, for noncoercive equations we must 
require an additional, rather weak, hypothesis related to the relative con- 
vergence rates and magnitudes of the L2 and Hl errors; strictly speaking, 
we therefore provide only asymptotic bounds, although in practice uniform 
bounds are almost always obtained. 

We have now demonstrated, both theoretically and empirically, that our 
bound (and associated adaptive refinement) procedure — rigorous, quan- 
titative, and directly relevant to engineering design — can very effectively 
treat this larger class of noncoercive and nonlinear equations. Problems ad- 
dressed to date include noncoercive systems arising from frequency-domain 
treatment of propagation phenomena (the Helmholtz equation [14,15]); gen- 
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eralized eigenvalue problems [9]; and the Burgers equation [14,7]. In addi- 
tion, we can now compute bounds not only for the engineering outputs, but 
also for the sensitivity derivatives of these outputs with respect to selected 
design variables [6]. 

Most recently we have extended the formulation to the full steady in- 
compressible Navier-Stokes equations. The theoretical development follows 
from the Stokes and Burgers treatment, however the difficulties of incom- 
pressibility and nonlinearity are compounded, and care must be exercised 
in order to obtain the desired (asymptotic) bounding property. We present 
simple but illustrative results for natural convection in an enclosure at low to 
moderate Grashof number. We conclude with several remarks related to fur- 
ther extension of the technique, for example to the unsteady Navier-Stokes 
equations. 
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1    Spectral Eddy-Viscosity and Diffusivity 

For a recent review on LES, the reader is referred to [1]. Most of large- 
eddy simulation studies have been developed in physical space. They are 
associated to a low-pass filter of width Ax, which is applied to the flow 
so as to eliminate fluctuations in the motions of smaller wavelength. Then, a 
subgridscale-tensor appears, which is generally evaluated in terms of an eddy- 
viscosity function, such as Smagorinsky's model. To me, the major drawback 
of the eddy-viscosity assumption is that it assumes a 3pectral gap between 
the resolved and subgrid scales, assumption which is never fulfilled. In this 
respect, the spectral eddy-viscosity idea is preferable, provided one can work 
in Fourier space, which applies however only to simple geometries, as will be 
seen. 

We assume that Navier-Stokes is written in Fourier space1. Let u,(fc,t) 
be the spatial Fourier transforms of the velocity field. We consider the cutoff 
wave number kc = vAx'1, and define a sharp low-pass filter by setting equal 
to zero the amplitudes at wave vectors k such that |Jfc| > kc- The formalism 
of spectral eddy viscosity is due to Kraichnan ([3], see also [4]). One writes 
the evolution equation for the subgrid modes *, and associate a spectral eddy 
viscosity to nonlinear triadic interactions (k, p, q) such that at least p or q is 
larger than kc. In fact, this eddy viscosity i3 determined at the level of the 
kinetic-energy spectrum evolution equation given by a two-point closure of 
isotropic turbulence, the EDQNM theory (see [5]). It is found for 3D isotropic 
turbulence in the case of a Kolmogorov subgridscale spectrum: 

1/2 

(1) 
E(kc) vt{k\kc) = 0.441 CK-V*X(k/kc)       , 

L  *<?  . 

where CK is the Kolmogorov constant, E{kc) the kinetic-energy spectrum 
at kc, aad X(k/kc) a non-dimensional function equal to 1 up to about 
k/kc = 1/3, and sharply rising above ("plateau-peak" behaviour). In the 
same way, an eddy-diffusivity may be introduced for a passive scalar, with 
the corresponding turbulent Prandtl number. Within the EDQNM theory, 
both eddy coefficients have a plateau-peak behaviour: it is clear that 

At this level, this requires periodicity in the three spatial directions. We will see 
below how to get rid of this assumption. 
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the plateau part corresponds to the usual eddy-coefficieiit3 assumption 
when one goes back to physical space, so that the "peak" (Kraichnan called 
it "cusp") part goes beyond the scale-separation assumption inherent to the 
classical eddy-viscosity and diffusivity concepts. We have carried out spectral 
LES of decaying isotropic turbulence[6][7], where a double filtering in Fourier 
space across kc and Wc = kc/2, 

is performed. We find that the subgrid energy transfers2 across k'c are 
equal to the subgrid transfers across kc plus "resolved" subgrid transfers 
across k?c corresponding to the low-pass field with respect to kc- This is, at 
an energetic level, a sort of Germano's identity[2] in spectral space. These 
calculations 3how that the resolved eddy viscosity does possess the EDQNM 
plateau-peak shape, but not the eddy diffusivity. 

Let us show now an adaptation of the plateau-peak model to kinetic- 
energy spectra oc k~m for k > kc, when the exponent m is not necessarily 
equal to 5/3. The spectral eddy viscosity is now 

Mk\kc)=0.3lCK-
3^Vf^l 

^X(k/kc){E(kc)/kc}^ , (2) 

for m < 3. This expression is exact for k « kc within the EDQNM theory, 
as 3hown in [7]. We retain the peak shape through X(k/kc) in order to be 
consistant with the Kolmogorov spectrum expression of the eddy viscosity. 
For m > 3, the scaling is no more valid, and the eddy viscosity will be set 
equal to zero. In the spectral-dynamic model, the exponent m is determined 
through the LES with the aid of least-squares fits of the kinetic-energy spec- 
trum close to the cutoff, and the turbulent Prandtl number is 

Pr* = 0.18(5 -m) (3) 

(see [5]). 
We have applied the spectral-dynamic model to the temporal mixing layer 

in the case of an initial 3D white-noise perturbation, with statistical data 
concerning velocity, rms velocity fluctuations and Reynolds stresses in very- 
good agreement with the experiments of unforced mixing layers carried out 
in Stanford. 

1.1    Plane Poiseuille Flow 

We present now spectral-dynamic model results for a periodic channel. We 
use a mixed spectral-compact code, the compact scheme being employed in 
the transverse direction, while pseudo-spectral methods are used in the longi- 
tudinal and spanwise directions which are periodic. The channel has a width 
2/t, and we define the macroscopic Reynolds number by Re = 2hUm/u, where 
Um is the bulk velocity. The kinetic-energy spectrum allowing to determine 

of momentum, or scalar 
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the eddy-viscosity is calculated at each time step by averaging in planes par- 
allels to the walls, and is thus a function of (y,t). We show now a LES at 
Re = 14000 (/i+ = 389). There is a grid refinement close to the wall, in order 
to simulate accurately the viscous sublayer (first point at y+ = 1). We have 
compared the calculation with a DNS at /i+ = 395 carried out by [8]. Figure 
1 shows the mean velocity and the rms velocity components. The agreement 
is very good, which is a severe challenge for the model. Notice that the LES 
allows to reduce the computational cost by a factor of the order of 100, which 
is huge. We stress also that we have applied the spectral-dynamic model to 

(a) 

a 

400 
(b) 
Fig. 1. turbulent Channel flow, comparisons of the spectral-dynamic model (straight 
lines, h = 389) with the DNS of Kim ([8], symbols, h = 395); a) mean velocity, 
b) rms velocity component3(courtesy E. Lamballais). 

the rotating channel, with good results concerning in particular the linear 
velocity profile on the anticyclonic side. 

2    Return to Physical Space 

Now, let us consider the EDQNM eddy viscosity (still scaling on y/E(kc)/kc) 
with no cusp, and adjust the constant by subgrid-energy conservation argu- 
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ment3. We assume that E(kc, x) is a local kinetic-energy spectrum, calcu- 
lated in terms of the local second-order velocity structure function of the 
filtered field 

F2(x, Ax) = (||ü(s, t) - «(* + r, t)||2)|Ir||=4s (4) 

as if the turbulence is three-dimensionally isotropic. This yields for a Kol- 
mogorov spectrum 

v?F{x,Ax) = 0.105 C^3/2 Ax[F2(x,Ax)]^  . (5) 

Fi is calculated with a local statistical average of square-velocity differences 
between x and the six closest point3 surrounding x on the computational 
grid. In some cases, the average may be taken over four points parallel to a 
given plane. Notice also that if the computational grid is not regular (but still 
orthogonal), interpolations of (5) have been proposed by [1]. Such a structure- 
function model (SF) works very well for decaying isotropic turbulence, where 
it yields a fairly good Kolmogorov spectrum ([7]), better than Smagorinsky's 
model (with Cs — 0.2) and the plateau-peak models (simple or dynamic). 
However, it does not work for transition in a boundary layer at low Mach (or 
incompressible) where, like Smagorinsky, it is too dissipative and prevents 
secondary instabilities of TS waves to develop. To overcome this difficulty, 
two improved versions of the SF model have been developed. In the selec- 
tive structure-function model (SSF), the eddy viscosity is set equal to zero if 
the angle between the local vorticity vector and the average next-neighbour's 
vorticity is smaller than the value of 20°, found as the most probable one 
in equivalent LES of isotropic turbulence. Results concerning the coherent 
vortices in an incompressible back3tep at Reynolds 5100 will be given at the 
conference. We show that the Kelvin-Helmholtz like vortices shed behind 
the step undergo helical pairing, and transform into big staggered A vor- 
tices which impinge the bottom wall and are carried away downstream. We 
determine the pressure spectra in terms of the Strouhal numbers3 at vari- 
ous locations downstream of the step. It turns out that three characteristic 
Strouhal numbers are important: the harmonic 0.23, the subharmonic, and 
the napping frequency of the recirculating bubble 0.07. 

In the filtered structure-function model (FSF)[10], the filtered field ü< is 
submitted to a high-pass filter in order to get rid of low-frequency oscillations 
which affect E*{kc) in the SF model. The high-pass filter is a Laplacian dis- 
cretized by second-order centered finite differences and iterated three times. 
It is found 

u(SF{x,Ax) =0.0014 C]^3/2 Ax{F2(x,Ax)}^2  . (6) 

aon-dimeasionalized by the incoming velocity and the step height 
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3    Compressible Boundary Layer 

We present here some recent results obtained in Grenoble concerning LES 
of transition to turbulence in a boundary layer above an adiabatic flat plate 
in an ideal gas at M^ = 0.3. We have developed a formalism using density- 
weighted Favre averages[9]. One introduces a "macro-temperature'' and a 
"macro-pressure" which are related by the equation of state 

G7 ~ ~pRd    ... (J\ 

provided the condition 
37-5 

7M3
2gg < 

is satisfied. For the air, it improves the condition 7-Mfgg < 1 proposed usu- 
ally. With the classical eddy assumptions done for the momentum and heat 
subgrid stresses, it permits to reduce the problem to the resolution of com- 
pressible Navier-Stokes equations, where the molecular-diSusion coefficients 
for momentum and heat are supplemented by incompressible eddy counter- 
parts. Here, the resolution at the wall is y+ = 1 or 2, and the Mach number 
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0.003 
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Fig. 2. LES of a spatial boundary layer at Mach 0.3: friction coefficients against 
downstream distance, compared with theoretical predictions of Cousteix and Baren- 
blatt (courtesy E. Briand). 

0.3. Upstream conditions (harmonic K-mode or subharmonic H-mode) are 
obtained with the aid of nonlinear PSE calculationsfll] using the ONERA 
code[12]. To this upstream state (with still Rf = 1000), one superposes a 
3D white-noise of amplitude 0.2 the amplitude of the PSE perturbation. The 
simulations involve up to five millions of grid point3. Figure 2 shows for the 
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K-case the downstream evolution of the friction coefficient at the wall, with 
comparison against the theoretical predictions of Van Driest and Barenblatt. 
One sees a good agreement of the LES with these predictions, with an im- 
provement with a resolution of y+ = 1. It is even better in the H-case. 

3.1    Boundary Layer upon a Groove 

We give here results concerning a turbulent boundary layer on a flat plate at 
Ri « 1000 passing over a square 2D groove. The Mach number is 0.5, and 
the flow upstream is calculated through an iterative procedure developed by 
[13]. The cavity has a depth equal to the upstream boundary-layer thickness 
8. We have looked at the vorticity modulus map conditioned by 

the uQ-criterion"[14], which selects regions where the second invariant of 
the velocity-gradient tensor is positive. The calculation shows how boundary- 
layer hairpins shed downstream of the backward step are lifted above the 
recirculation zone within the cavity, and impinge the upward step to form 
both smaller-3cale turbulence (-in a sort of ultraviolet kinetic-energy cascade) 
and big inclined arch-like vortices which travel downstream of the cavity. One 
can check also that the characteristic spanwise wavelengths of the velocity 
streaks decrease after the cavity. 
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Summary 

Spectral methods have been used with great success in direct numerical simulations of turbulent flows 
m simple computational domains. In this talk we will present the next generation of spectral methods 
on unstructured and polymorphic domains suitable for addressing the geometric complexity of industrial 
applications. These new methods are hierarchical and are well suited for computational steering and dy- 
namic direct numerical simulation (dDNS). We will present several dDNS examples of both internal and 
open transitional and turbulent flows to demonstrate this new methodology and compare it with low-order 
methods. 

In particular, we will present a detailed study of flow past a flexible cylinder subject to vortex induced 
vibrations (VIV). The question of what flow pattern prevails in the wake of a long flexible structure sub- 
ject to uniform or shear flow is of fundamental importance as it dictates the magnitude of the forces on 
the structure. What conditions produce a stable standing wave response or a travelling wave response? 
We have obtained simulation results and models from this ongoing investigation using three-dimensional 
simulations of flow past a flexible cable. Different initial conditions and different spans of the cable were 
used to classify the responses. Travelling waves appear in long cables and produce oblique shedding with 
a wake similar to the two-dimensional von Karman street across the'entire span. In contrast, standing 
waves appear in shorter cables and produce parallel shedding with a wake structure varying continuously 
across the span, from a von Karman street at the anti-nodes to anti-symmetric shedding at the nodes. 
Chevron-like shedding is produced in the presence of shear along the cable. 

Another important question for VIV is the wake transition process. Transition to turbulence in the 
wake of a fixed cylinder occurs at Reynolds number between 250 and 400, as has been established by 
experimental results and our previous simulation studies. However, the transition process changes funda- 
mentally if the cylinder is flexible and vibrates freely. In this numerical study, we considered flow past 
flexible beams and cables undergoing free oscillations subject to near lockin excitation. We investigated 
different vibrating conditions, corresponding to varying the bending stiffness (beams), tension (cables) and 
the mass ratio parameter, in order to determine the new transition mechanisms. In general, cables tend 
to promote wake transition whereas beams tend to delay transition compared to the fixed cylinder behavior. 
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Abstract. A Large Eddy Simulation of the flow over a matrix of surface mounted 
cubes is presented. Computations employing different sub-grid scales models and 
different domain sizes are performed. Mean velocity and Reynolds stresses profiles 
are evaluated and compared with experiment and with previous single-cube LES 
computations. The influence of the periodic boundary conditions is discussed by 
doubling the size of the sub-channel domain considered for the simulation. 

1    Introduction 

The turbulent flow around bluff bodies is characterized by complex inter- 
actions between different phenomena such as boundary layers, shear layers, 
separation and reattachment. Such flows are relevant for many environmen- 
tal and industrial applications. Although statistical turbulence models have 
been applied successfully in many practical computations, the Large Eddy 
Simulation technique shown proved its better potential in calculating flows 
characterized by large unsteady vortical structures. In particular when the 
muring of a scalar such as temperature is of concern, the unsteady flow has 
to be determined with high accuracy. It then allows to detect for example 
local overheating of the surface and may furnish relevant information for the 
design of cooling devices, burners, etc. In the present study, a Large Eddy 
Simulation of a flow over an array of surface-mounted cubical obstacles is 
considered. This flow is an example of a bluff body flow where large scale 
structures dominate the turbulent transport, and for which detailed experi- 
mental results [1] are available. 

2    Numerical Method 

The Large Eddy Simulation code LESOCC developed at the Institute for 
Hydromechanics [2,3] is based on a Finite-Volume method for solving the 
incompressible Navier-Stokes equations on general body-fitted, curvilinear 
grids (LESOCC = Large Eddy Simulation On Curvilinear Coordinates). A 
non-staggered, cell-centered grid arrangement is used. Both convective and 
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viscous fluxes are approximated by central differences of second order accu- 
racy. The temporal discretization consists of an explicit low-storage Runge- 
Kutta method (second order in time). The conservation of mass is achieved 
by a standard pressure correction algorithm (SIMPLE). The Poisson equa- 
tion for the pressure correction variable is solved by the strongly implicit 
procedure of Stone [4], and in order to avoid decoupling of pressure and ve- 
locity on the non-staggered grid the momentum interpolation proposed by 
Rhie and Chow [5] is applied. The code is highly vectorized and has been 
validated extensively, also for the case of a single surface mounted cube at 
two Reynolds numbers [3,6]. Different subgrid-scale models are implemented: 
the Smagorinsky model with van Driest damping near solid walls, and the dy- 
namic model with the least-squares approach of Lilly. Different wall function 
models are also implemented but are not employed in the present compu- 
tations because the Reynolds number is fairly low. Recently the code has 
been extended to block-structured grids for parallel execution on distributed 
memory machines. 

3    Details of the test-case calculations 

An experimental situation is simulated in which a matrix of cubes of height 
H is placed on one of the walls of a two-dimensional channel of height 3 AH as 
sketched in Figure 1. The Reynolds number based on the height of the channel 
and the bulk velocity is Re = 13000. Due to the large number of equispaced 
cubes with distance 5 = 4ff, the mean flow is periodic with a period equal to 
AH in the x- and z-direction [1]. A sub-channel of size AH x 3.4Ä" x AH (in x-, 
y- and z-direction respectively) is considered in the simulation, using periodic 
boundary conditions in the streamwise and in the spanwise direction. 

y Half  at   th» 

Fig. 1. Sketch of the matrix configuration of cubes on the channel wall (from[l]) 
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To assess the influence of the periodic boundary conditions in the stream- 
wise direction, a computation was performed by doubling the size of this 
sub-channel domain. All the computations were performed on a stretched 
grid with 100 x 100 x 100 and 200 x 100 x 100 grid points for the x-, y- and 
z- direction, for the standard and doubled domain respectively. For the par- 
allel execution, the standard domain was divided into 4 blocks, with 2 blocks 
in both x- and z-direction, and the second one was divided into 8 blocks. 
In this paper four different computations are presented. Three computations 
were performed with the standard domain, employing the Smagorinsky model 
(SRÜN4), the dynamic model (DRUN4), and no sub-grid model (NRUN4). 
One computation (DRUN8) was performed employing the doubled domain 
size and the dynamic model. 

Table 1. Simulations 

RUN        Comp. Domain       Grid size 
Model 

NRUN4 4H x 3.4.ff x 4J3" No SGS Model 

SRÜN4 4iT x 3.4ZT x iff Smagorinsky 

DRUN4 4ff x 3.4iT x 4tf Dynamic 

DRUN8 8JTx3.4if x 4-ff Dynamic 

4    Results of the simulation 

4.1    Description of the general flow structure 

From visualization studies and detailed measurements, Meinders et al. [1] de- 
vised a sketch of the three-dimensional flow pattern around the cube for one 
spatial period in the matrix. In this part we will discuss the comparison be- 
tween these experimental results, the numerical simulation and the previous 
experiment [3,6] and simulations of the flow around a single cube. 

The flow is characterized by the presence of distinct vortex structures in 
the vicinaty of the obstacles. As shown in Figure 2, the mean flow separates in 
front of the cube, generating a primary and a secondary vortex. The primary 
vortex is bent as a horseshoe vortex around the cube into the wake. The flow 
separates also at the front corners of the cube on the roof and side walls. A 
large separation region develops behind the cube, with the development of 
an arch vortex interacting with the horseshoe vortex. This global structure 
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is close to the one observed for a single cube, however due to the confine- 
ment of the flow in the spanwise direction, and due to the interaction in the 
streamwise periodic direction between neighboring horseshoe type vortices, 
the reattachment on the roof and on the side walls occurs at a different posi- 
tion. In the matrix case, the reattachment length on the roof and on the side 
walls is approximately 0.3#, whereas the single-cube calculations showed no 
reattachment on the roof. Nevertheless the reattachment length behind the 
cube is very similar in both the single and matrix cube case (approximately 
1.5 cube heights from the leeward face). 

Fig. 2. Streamlines of the time-averaged flow: in the symmetry plane and on the 
floor of the channel (data from SRUN4 duplicated in the streamwise direction) 
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4.2 Vortex shedding 

As for the single-cube configuration, the experiment showed a predominant 
fluctuation frequency sideways behind the cube, corresponding to vortex 
shedding as the flow passes the side walls. These coherent structures were de- 
tected from power density spectra of the time series of the spanwise velocity 
component. The dominant characteristic frequency derived from the location 
in the spectrum which corresponded to the maximum energy around 27Hz 
leading to a Strouhal number St = SL - 0.109. The same procedure applied 
to the Large Eddy Simulation gives a Strouhal number St = 0.12 which is 
close to this value. 

4.3 First and second order moments 

Detailed comparison between "experimental and numerical mean velocities 
and Reynolds Stresses at different locations were the subject of a recent 
Workshop [7^ set of these profiles is given in Figure 3. While streamwise 
fluctuations u'2 become largest in the shear layer and in front of the cube 
(z/A = 3.7), the spanwise fluctuations become maximum close to the reat- 
tachment point {x/h = 2.3). The overall agreement between the experiment 
and the simulation is fairly good, despite a slight discrepancy in the wake 
for the normal Reynolds Stress w2 which has been also observed in similar 
computations [8]. The different sub-grid scale models give almost the same 
results, with slightly better results for SRUN4. They do not significantly 
improve the results obtained with NRUN4 (without sub-grid model). The 
simulation conducted with two cubes included in the computational domain 
does not show significant difference with the other simulations. Hence inter- 
actions between consecutive horseshoe vortices have only very little influence 
on first and second order moments. 

5    Computing times 

All computations were performed on the Vector Parallel mainframe Fujitsu 
VPP 300 installed at the Computer Center of the university of Karlsruhe. 
It has 16 processors each having a peak performance of 2.2 Gflops and a 
core memory of 2 Gbytes. Typical CPU times per time step and grid point, 
and speed-up during parallel computations are given Table 1. The result of 
a computation using only one block (DRUM) is also included in the table. 
The presented results were obtained with a time step At = 2.2 x 10-3. 15000 
steps were computed for the startup phase and statistics were acumulated 
during 90000 time steps. The whole runs took about 50 hours of CPU time 
per processors. 
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Fig. 3. Mean velocities and Reynolds stress profiles at different positions in the 
streainwise direction: s/H = 0.3; s/H = 1.3; x/H = 1.7; s/H = 2.3; r/# = 2.7; 
z/5" = 3.7 
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Table 2. Computation times 

RUN        Nb of points    Nb of PE    CPU/U«. ...»/.rid ».;...    Speed-up 

DRUNl    1.108 l 9. io~« _ 

DRÜN4    1.10* 4 2.39 10_* 3.7 

DRUN8    2.10* 8 1.21 lO-4 7.4 
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Traditional Large-Eddy Simulation (LES) provides good, results on standard benchmark turbulent flows 
but engineering applications of more complex geometries are restricted. This is mainly due to the phys- 
ical hypothesis of homogeneity, isotropy, or local equilibrium of the subgrid scale models, which are 
hazardous in more realistic configurations. In an attempt to overcome these problems, the recent notion 
of Very Large-Eddy Simulation (VLES) has been developed. LES relies on an equation filtering theory, 
actually governed by the modeling terms whose influence on the flow dynamics is not well described. It 
appears essential to qualify thesebuilt-in filters-of LES models before performing computations on coarse 
mesh/high Reynolds number. This work is an assessment of previous theoretical studies on LES filters 
and kinetic energy spectrums. 

In the present study, computations have been carried out on homogeneous isotropic turbulent , and freely 
decaying flow. The initial random field has a gaussian kinetic energy spectrum centered on a wavenumber 
k0 = 2. The discretization is (66)3 points in a periodic cube of side 2x. 
The PEGASE code, developed at ONERA, solves the full unsteady compressible Navier-Stokes equations 
usmg conservative variables (p, puit pET) with a finite difference scheme on structured uniform grids. 
Convection terms are written in skew-symmetric form and along with diffusion terms, are discretized 
using a fourth-order centered scheme. Time integration is performed with a third-order low-storage 
Runge-Kutta scheme. The well-known Smagorinsky model [6], and the Schumann model [5] (a subfilter 
viscosity depending on the subfilter kinetic energy plus a transport equation based on Prandtl-Kolmogorov 
equation) have been used. Mach number is chosen 0.1, so compressiblity has no significant effect, and 
molecular viscosity is null (Re = oo). 

A similarity theory of Smagorinsky-type LES, has been proposed by Muschinsky [4]. With £ being the 
filter length and A the mesh width we define the dimensionless ratio r = £/A and the filter cut-off wave 
number kc = ff/A. Then the turbulent kinetic energy (TKE) spectrum generated by a 'Smagorinsky 
fluid' may be written: 

E(k) = KoLBSWk-WfLBS(k/kc,r) 

where e is the dissipation, k the wave number and flBS is a damping function. The filter is mathemat- 
ically defined in the physical space as a convolution integral similar to a multiplication in the spectral 
space. Thus, in a filtering viewpoint, we can identify fLSS as the square transfer function G2. 

The subfilter viscosity of the Smagorinsky model is vLBS = (C5Ä)2|S| where |S| is the modulus of the 
deformation tensor, the Smagorinsky constant being Cs = 0.18. Whatever the form of E(k) it is shown 
thac the dissipation length for a 'Smagorinsky fluid' is r,LBS = (^£*A)l/4 = C5£. A series of simulations 
have been carried out using values of r ranged from 1, the usual value in LES, to 4. For a given mesh 
size this corresponds to a change of the subfilter scale (fig. 1). It is shown that (fig. 2 left): 

• We find that for large ratio r the damping function best match the Heisenberg [1] function: 

fff(x) = {l + x*)-4/3,    x = k/kc   ' 

and that the length £ controls the filter cut-off wavenumber. But for r = 1, the filter is a sharp 
cut-off filter and fLBS{x) = H(l - x) (H is the Heaviside function). 
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Simulations on a (126)3 grid, with different initial conditions, or with a statistically steady forced turbu- 
lence provide similar results. 

Simulations have also been performed for the Schumann model, an other eddy-viscosity model: 

VLBS=CKy/qfF,     C = 0.09 

,2 2   3/2   
-^ = rLSS:S-Cl^- + C2V.(KVqfFVq2

SF) + uAqlF    Cx = 1, C2 = 0.1 

where q2
F is the subfilter kinetic energy, and TLES is the Reynolds stress tensor. In this case the damping 

function has an exponential form (fig.l right), and the slope of ln(E(k)) depends linearly on the ratio r. 
In terms of dimensionless parameters the damping function is 

LBS = eB«+^)*f    x = k/ke,    ß{r) = — - 4.5 
r 

A similar exponential form of the energy spectrum in the near-dissipation range has been found by pre- 
vious direct numerical simulations [2]. 

For the Smagorinsky model the Kolmogorov 'constant' Ko(r) is determined by ploting E(k)e~2^k5/3f^s 
(fig.2 left). From these simulations we conclude that: 

• KQLBS depends on r as predicted [4], considering the given resolution, and the related turbulent 
Reynolds number ReLBS = (iV/Ä)4/3 (fig.2 right). 

References 

[1] W. HEISENBERG, Zur statistischen theorie der turbulenz, Z. Phys., 124 (1948), pp. 628-657. 

[2] D. O. MARTINEZ ET AL., Energy spectrum in the dissipation range of fluid turbulence, ICASE Report, 
(May 1996). 

[3] P. MASON AND N. CALLEN, On the magnitude of the subgrid-scale eddy coefficient in large-eddy 
simulations of turbulent channel flow, J. Fluid Mech., 162 (1986), pp. 439-462. 

[4] A. MuscHlNSKY, A similarity theory of locally homogeneous and isotropic turbulence generated by a 
Smagorinsky-type LES, J. Fluid Mech., 325 (1996), pp. 239-260. 

[5] U. SCHUMANN, Subgrid-scale model for finite difference simulations of turbulent flows in plane chan- 
nels and annuli, J. Comp. Phys., 18 (1975), pp. 376-404. 

[6] J. SMAGORINSKY, General circulation experiments with the primitive equations, Month. Weath. Rev., 
93 (1963), pp. 99-165. 

56   • 



Figure 1: Left: TKE spectrum of Smagorinsky-LES for ratio r = 1 (bold line), 1.5, 2, 2.5, 3, 3.5, 
and 4. Right: Compensated energy spectrum E{k)e~2/3k5/:i for the Smagorinsky (dashed line) and the 
Schumann (bold line) models for r = 1,2,2.5,3,3.5,4. 

Figure 2: Left: Spectrum of £(fc)g-2/3*s/3^-i for r = 2 (solid line), r = 3 (dashes), r = 4 (dots), and 
compensated energy for r = 1 (symbols). Right: Kolmogorov constant vs. ratio r computed from freely 
decaying homogeneous and isotropic turbulence of a 'Smagorinsky fluid'. 
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ABSTBACT 

What are the key issues for successful applications of the large eddy simulation (LES) 
technique to practically relevant flow problems ? 

• First, technical applications are in general concerned with complex geometries which 
can either be tackled by unstructured grids or by block-structured curvilinear body- 
fitted grids. All numerical methods based on Cartesian co-ordinates or with specific 
restrictions such as periodicity in a certain direction (e.g. FFT) fail in this context. 

• Second, industrial applications are in most cases high Reynolds number flows. As 
known from the considerations of Kolmogorov, the ratio of the largest to the small- 
est length scales (L/lk) strongly increases with the Reynolds number leading to a 
broader spectrum of turbulent eddies. Consequently, LES of high Reynolds number 
flows make special demands with respect to the applied numerical methods and the 
subgrid scale (SGS) models. Assuming that the size of the computational grid can- 
not be enlarged according to A;9/4, the SGS model has to take a wider spectrum 
of turbulent vortices into account. Another topic of rising complexity for higher 
Reynolds numbers is the formulation of appropriate boundary conditions especially 
at solid walls. 

• Third, because it is well-known that LES is not a cheap tool for computing turbulent 
flows, its application should be restricted to flow problems for which an appropri- 
ate description by Reynolds-averaged Navier-Stokes equations (RANS) combined 
with statistical turbulence models is difficult to achieve. An illustrative example 
represents the flow past bluff bodies which is in general very complicated, including 
complex phenomena such as separation, «attachment or vortex shedding. 

The long-term objective of the work reported here is to develop a LES technique which is 
able to simulate high Reynolds number flows of practical relevance, especially bluff body 
flows. With respect to the considerations above, the developed code (LESÖCC = £arge 
£ddy Simulation On Curvilinear Coordinates) is based on a 3-D finite-volume method for 
arbitrary non-orthogonal and non-staggered grids. Details about the temporal/spatial 
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discretization and the implemented SGS models (Smagorinsky and dynamic model) can 
be found in [1,3,4,6]. Recently CESOCC has been extended by a multi-block structure 
strongly improving the possibility to resolve complex geometries. Furthermore the multi- 
block implementation was also the basis for parallelization by domain decomposition and 
message passing (MPI). CSSÖCC is highly vectorized (vectorization rate > 99.8%) allow- 
ing to perform efficient computations on vector-parallel machines such as NEC SX-4 or 
Fujitsu VPP 300/700. The simulations presented in this abstract have been performed 
mainly on a VPP 300 using 4 processors. 

Before CSSOCC was applied to the flow problem of the present investigation, it was ex- 
tensively tested and verified by LES computations of a variety ol different test cases. This 
included plane channel flow, flows through a straight square duct and a 180° bend [1], 
flow around a surface-mounted cubic obstacle placed in a plane channel [2,4,8] and flow 
past a long square cylinder [3,8]. In the course of this validation process detailed inves- 
tigations on different numerical and modeling aspects influencing the quality of the LES 
solution have been performed for the flow past a long circular cylinder at a low, subcritical 
Reynolds number of Re — 3900 [5,6]. In contrast to its square counterpart, this flow con- 
figuration requires curvilinear body-fitted grids. Vortex shedding past a circular cylinder 
is also physically more challenging than the square cylinder test case because the separa- 
tion point on the surface of the cylinder is not fixed by the geometry. These characteristics 
of the circular cylinder flow combined with the enormous number of experimental studies 
on the vortex dynamics of cylinder wakes (see, e.g., review by Williamson [9]) reveals 
this flow to be an excellent test case for the intended investigations on LES of bluff body 
aerodynamics. Figure 1 shows the instantaneous von Kärman vortex street past the cylin- 
der visualized by streaklines and the time-averaged streamlines. For this low Reynolds 
number case {Re = 3900) good agreement was found with experimental measurements 
available. For details see [6]. 

Concerning the considerations mentioned above, these investigation were now extended 
to the more challenging test case of circular cylinder flow at Re = 1.4* 10s which has been 
studied experimentally by Cantwell and Coles [7]. At this higher Reynolds number the 
flow is still subcritical so that transition takes place in the free shear layers. Two different 
curvilinear, O-type grids have been generated. The first consists of 165 x 165 control 
volumes (CV) in the cross-sectional plane and 64 computational cells in the spanwise 
direction. The second is refined in the cross-sectional plane using 325 x 325 CV while 
the spanwise resolution is kept constant (total of 6.76 Mill. CV). The points are clustered 
in the vicinity of the cylinder in order to resolve the extremely thin boundary layer at 
the cylinder and to apply no-slip wall boundary conditions. Additionally, clustering of 
grid points is performed for the wake region. The entire integration domain has a radial 
extension of 15D in the cross-section (D = cylinder diameter). Three different spanwise 
extensions (nD, 2D, D) have been investigated. In this direction of the cylinder periodic- 
ity of the flow is assumed. At the inflow plane constant velocity is imposed. A convective 
boundary condition is used at the outflow boundary. Statistics are compiled over several 
vortex shedding cycles and in the spanwise direction. 

Figure 2 shows first qualitative results of the predicted flow past a circular cylinder at 
Re — 1.4 *103. In comparison with the low Reynolds number case the recirculation region 
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behind the cylinder (see Fig. 2 (a): time-averaged streamlines) is much smaller which is 
in good agreement with experiments [7]. Figs. 2 (b) and (c) show contours of the total 
resolved Reynolds stresses u'u' and ÜV. In the paper these quantities will be compared 
with the experimental values [7]. Finally, the time histories of the drag and lift coefficient 
{Cd and Ci) are plotted in Fig. 2 (d). Apart from cyclic oscillations due to the vortex 
shedding phenomenon and high-frequency turbulent fluctuations, the signals clearly have 
a low-frequency component which modulates the time histories of Cd and Q. However, 
in comparison with the low Reynolds number case (not shown here) the modulation of 
the signals is much weaker for Re = 1.4 * 10s. 

A more detailed description of all aspects which have been investigated and which play a 
dominant role for the quality of LES predictions will be presented and discussed in the full 
paper. This will include a quantitative comparison of mean values as well as turbulence 
quantities. Experimental data available [7] will be used for verifying the computed results 
and supporting the investigations. 
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(a) Streakliiies. (b) Time-averaged streamlines. 

Figure 1: Large eddy simulation of the flow past a circular cylinder at Re = 3900. 

(a) Time-averaged streamlines. (b) Contours of u'u' 

Lift and Drag Coefficients 

(c) Contours of u'v1 (d) Time history of C* and C;. 

Figure 2: Large eddy simulation of the flow past a circular cylinder at Re = 1.4 * 10°. 
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Numerical Simulation of Atmospheric Turbulence 
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2628 AL Delft, the Netherlands. 

Numerical simulation of turbulence has its roots in the atmospheric sci- 
ences and in particular in Numerical Weather Forecasting (NWP). Although 
the first ideas on NWP were formulated by Richardson in 1922, serious 
progress in NWP was only possible after the advent of electronic computers 
just after the second world war. As a spin off from NWP the first numerical 
simulations of turbulent convection were performed first in two dimensions 
by Lilly and somewhat later in three dimension by Deardorff. Especially, 
the work of Deardorff has become widely known and it has inspired the 
use of numerical simulation in other areas of turbulence research. Many of 
the techniques that Deardorff introduced and the results that he obtained, 
are still relevant today. As example we may mention here the Smagorinsky 
model which was originally developed as a model to parameterize the small 
scale motions in large-scale meteorological models. With respect to the at- 
mospheric boundary layer Deardorff performed in the early 1970's the first 
LES of the so-called convective boundary layer. This is the turbulent layer 
which develops over a land surface and in which turbulence is generated as 
a result of natural convection due to solar heating. Since then LES com- 
putations of the convective boundary layer have been repeated many times 
and one could say that our general knowledge of this type of boundary layer 
is mainly due to LES. 

As mentioned above, the use of LES has been in particular successful 
for the convective boundary layer. The results of LES have led here to 
the formulation of so-called mixed-layer scaling. In this scaling approach 
the variables in the convective boundary when scaled in terms of a limited 
number of characteristic parameters, collapse to universally valid scaling 
relationships. After mixed-layer scaling was derived based.on LES data, it 
was also confirmed by laboratory and atmospheric experiments. A second 
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useful application of LES in the atmosphere is the neutral boundary layer. 
In this type of boundary layer temperature effects are absent. This is an 
exception in the real atmosphere and therefore it is difficult to observe a 
neutral boundary layer. In this case LES is the only alternative. 

Experiments in the atmospheric boundary layer are very expensive and 
also very time consuming. Moreover, a completely reproducible and con- 
trolled experiment in the atmosphere is impossible by definition because 
of the natural variability of the atmosphere. Therefore LES seems an at- 
tractive alternative. Considering the successes of LES in the atmosphere 
as mentioned above, it seems tempting the use LES as an alternative for 
experiments. However, despite its successes LES also knows some failures. 
Examples are the behaviour of the horizontal velocity fluctuations and the 
near-surface skewness, both in the convective boundary layer. In these two 
cases LES results are in conflict with available experimental data. There- 
fore, an experimental verification of the numerical LES results is mandatory 
before LES can be fully trusted as substitute for experiments. 

63 



Mixing by Nonvertical Shear in 
the Stably Stratified Ocean 
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1    Introduction 

Mixing of water masses of different densities, natural or man-made discharges 
into the ocean, life-supporting nutrients, as well as temperature and density 
contrasts is an important determinant of local and global features of the 
ocean climate and ecosystem. The additional effect of stratification induced 
by temperature and salinity gradients, as well as that of earth's rotation 
must be considered when mixing is studied in the context of geophysical and 
environmental flows. At scales of hundred meters or less, the effects of earth's 
rotation may often be neglected. The microstructure at these scales is thought 
to be related to a variety of mechanisms that include nonlinearly breaking 
internal waves, shear layer instabilities, convective instabilities and boundary 
layer turbulence. Although diverse in their origin, mixing processes in the 
ocean often involve a competition between shear and stable stratification. 
Therefore, the role of stably-stratified shear flow in maintaining the ocean 
microstructure requires study. Flows with vertical shear, dU/dz, have been 
the subject of numerous studies; however, the horizontal shear component 
dTJ/dy has received little to no systematic investigation. The influence of 
horizontal shear, dTJ/dy, with emphasis on its comparison with the oft-studied 
case of vertical shear is the subject of this work. 

Fig. 1. Sketch of (a) vertically sheared flow and (b) horizontally sheared flow. There 
is a stable vertical density stratification in both cases 

It should be noted that, despite the preponderance of vertical shear in the 
open ocean, there are field measurements, for example, in coastal fronts [1] 
and straits [2] that indicate a significant dTJ/dy component. Flows over seamounts 
where greatly increased dissipation rates have been measured [3] as well as 
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side- and bottom-boundary flows, most likely, have substantial horizontal 
shear components. To the best of our knowledge, there have been no theoreti- 
cal or laboratory studies focussed on horizontally sheared, vertically stratified 
flow. However, laboratory experiments relevant by virtue of the presence of 
horizontal shear include the study of a front in a rotating, stratified fluid [4], 
the stratified wake of a sphere [5], and the stratified jet [6]. 

Figures l(a)-(b) show schematics of the case with uniform vertical mean 
shear, dUi/dxz and uniform horizontal mean shear, dUi/dxz, respectively. 
In both cases, the uniform mean stratification is vertical and stable. 

2    Approach 

Since little is known from existing studies about the influence of horizontal 
shear on mixing in a vertically stratified fluid, direct numerical simulation 
(DNS) is an attractive approach that avoids the uncertain influence of tur- 
bulence models on the conclusions. In DNS, all dynamically important scales 
of motion are resolved which, given current computer hardware capabilities, 
limits the simulations to moderate Reynolds number. In the case of uniformly 
distorted flow, the appropriate Reynolds number Rex — ?A/f is based on the 
rms velocity, q = y/2K, and the Taylor microscale, A = ^/5vq2/e, and is 
limited to Re\ < 150 in parametric investigations. Here K and e denote the 
turbulent kinetic energy and dissipation rate, respectively. 

The unsteady, three-dimensional, Navier-Stokes equations with the Boussi- 
nesq approximation are numerically solved. A spectral collocation method 
is used for the spatial discretization and a third-order, low-storage, Runge- 
Kutta scheme for the temporal advancement in order to obtain high accuracy. 
The equations are solved in a reference frame that moves with the mean ve- 
locity[7] that, while introducing additional time-dependent terms in the gov- 
erning equations, allows the use of periodic boundary conditions and thereby 
Fourier basis functions. Up to 288 x 144 x 144 grid points are used. 

A series of simulations with vertical shear and a second series with hor- 
izontal shear were performed with the same magnitude of shear S but with 
different values of the Brunt-Väisälä frequency N = (-gSp/po)1^ obtained 
by varying the mean stratification S„. Thus, the generalized Richardson num- 
ber Ri = N^/S2 was varied in the range 0 < Ri < 3. 

Although, the focus is on contrasting the limiting cases of either horizontal 
or vertical shear, the effect of varying the relative magnitude of horizontal 
mean shear 52 = Scos9 to the vertical mean shear 53 = 5sind is also 
ascertained. The relative magnitude was varied by conducting a third series 
of simulations where the shear inclination angle 9 is varied between 9 = 0 
(vertical shear) and 9 = ir/2 (horizontal shear) while keeping the magnitude 

of the shear S = \J(dÜi/dx3)
2 + (<87i/dx2)

2 constant. 
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3   Results 

The two shear components, dU/dy and dU/dz, result in two additional nondi- 
mensional parameters. If two-dimensional linear instabilities in the (x, z) 
plane are considered, the vertical Richardson number fit, = ^/(dU/dy)2 is 
the only relevant nondimensional parameter which would imply that strat- 
ification has no effect on the dynamics when the shear is horizontal. DNS 
shows that stratification has a substantial stabilizing influence even when 
the shear is horizontal; it is! clear that three-dimensional fluctuations must 
be considered. 

The energetics of the fluctuations can be studied through the transport 
equation for turbulent kinetic energy, K, wherein the ratio of the buoyancy 
flux B to the production term P in the turbulence can be written as 

*-(?)( sinz0 + i/h/.i/vcos20 )(« 
(1) 

after introducing the vertical and horizontal momentum transport coefticients 
i/, and i/fc, respectively, as well as the mass transport coefficient, at. Equa- 
tion (1) is exact and implies that, two nondimensional parameters: first, the 
generalized Richardson number fit = N2/^ based on the magnitude of the 

shear S = yj(dUi/dx3)
2 + (jdUi/dx2)2, and, second, the shear inclination 

angle 9 are required. 
In the limiting case of purely horizontal shear, dU/dy, the relevant stratification- 

related parameter becomes fit = ^/(dV/dy)2. 

Fig. 2. Evolution of turbulent kinetic energy K for various values of Richardson 
number fi» in the (a) vertically sheared case, and (b) horizontally sheared case. St is 
time normalized with mean shear S. Dashed lines are the exponential approximation 
to the solution. 

The dependence of the turbulence evolution on the generalized Richardson 
number, fit = iV^/S2, is now discussed. Figure 2 shows that, for the same 
value of fit, the the turbulence is much more energetic in the case of horizontal 
shear. The critical Richardson number, fiter, is the value of fit below which 

66 



4 S. Sarkar and F. G. Jacobitz 

turbulence shows asymptotic growth and above which turbulence decays. The 
value of Rier = 1.0 in the horizontally sheared case is an order of magnitude 
larger than A*«. = 0.15 in the vertically sheared case. The vertical mass 
transport is also an order of magnitude larger when the shear is horizontal. 
An explanation for these observations will be given in the full paper. In 
addition, results on the turbulence mixing coefficients, large- and small-scale 
anisotropy and visualizations of mixing will be given in the full paper. 
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Applications of the Non-linear Galerkin Methods to 
some flow problems 

Kunt Atalik and Akin Tezel 
Bogazici University, Bebek, Istanbul, 80815, Turkey 

Abstract 

Non-linear Galerkin Methods which have been developed in the context of the long- 
time integration of dissipative eyolution equations have been applied to transition 
regimes of the plane channel flow and the temporally growing free shear layer 
problems. Those methods have been proposed in the literature to approximate the 
'inertial manifolds' which are finite-dimensional smooth manifolds containing the 
global attractor, a finite-dimensional manifold of complex structure and attracting all 
the solutions at an exponential rate in the phase space. These. manifolds yield an 
interaction law between the small and large scale components of the flow and reduce 
the number of modes needed to describe the flow dynamics. This approach is thought 
to be promising in the context of direct numerical simulations of Navier-Stokes 
equations. That work aims to test the convergence and efficiency of different 
Nonlinear Galerkin schemes with respect to each other and with respect to the 
classical Galerkin spectral method in the above flow cases. 
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Direct Numerical Simulation of Intrusion Fronts 
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Intrusion fronts of heavy fluid which propagate in an environment of lighter fluid are 
commonly encountered in numerous geophysical applications (see Simpson, 1997), well- 
known examples being moving atmospheric cold fronts, thunderstorm outflows, powder- 
snow avalanches or muddy underflows in lakes or oceans. Their study is also of interest 
in the engineering sciences because of the important role they play in many problems 
related to industrial safety and environmental protection (see Fannel0p, 1994). A typical 
scenario where intrusion fronts may be expected to form is the accidental release of dense 
(and possibly hazardous) industrial gases which gravity may spread over relatively large 
distances at an appreciable speed. Extensive theoretical and experimental studies were 
devoted to intrusion fronts in the past, but very few accurate numerical simulation 
studies have been presented so far. Most of the numerical studies conducted in this 
field have employed approximate methods, based e.g. on the shallow-water equations, 
and often utilize empirical models to account for turbulent transport. Today, direct 
numerical simulations (DNS) allow to study the physics of intrusion fronts with much 
greater accuracy. DNS provides the full information on the three-dimensional and time- 
dependent flow evolution, and it proves to be a very powerful tool to address some of 
the intricate problems related to the topology and stability characteristics of intrusion 
fronts. 

The talk will present results from a research project in which the DNS technique is 
applied for the first time to study fundamental physical properties of intrusion fronts. 
Several prototype flows have been considered, one of these being the mutual intrusion 
of two fluids of different density in a plane channel. Initially the two fluids are separated 
by a vertical membrane. After the membrane has been removed a heavy-fluid front and 
a light-fluid front develop and propagate along the lower and the upper channel wall, 
respectively. This type of flow has often been studied in experiments (see Gröbelbauer 
et al., 1993) and is usually referred to as the "lock-exchange problem". Distinct features 
of lock-exchange flows are the steep velocity and density gradients across the heads of 
the fronts, the thin boundary layers that form at the walls and the stably stratified 
interface between the two fluids in the interior of the channel. In Figure 1 the evolution 
of a lock-exchange flow at a Grashof number of about 106 (based on buoyancy velocity 
and channel half width) is illustrated by means of isocontours of density. 

The numerical simulations are based on the Boussinesq equations, where density 
variations are assumed to be small. For the spatial discretization Fourier expansions 
are used in the wall-parallel directions together with a spectral-element technique in 
the normal direction. A third-order Runge-Kutta method is employed for the temporal 
discretization of the nonlinear terms together with a second-order accurate Crank- 
Nicolson scheme for the viscous terms and the pressure. To validate the code simulations 
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of Rayleigh-Benard convection were conducted and the results were compared with 
linear stability theory and reference data from the literature. In all cases an excellent 
agreement could be obtained. A detailed description of the numerical scheme is given 
in Härtel et al. (1997). 

Among other things, we will discuss results of an analysis of the pronounced two- 
dimensional Kelvin-Helmholtz type instability at the interface between light and heavy 
fluid, and also of the three-dimensional lobe-and-cleft instability commonly observed 
at the head of propagating intrusion fronts. The three-dimensional simulations had to 
be restricted to moderate Grashof numbers of the order of 106 due to the excessive 
resolution requirements. However, much higher Grashof numbers can be reached, if 
strictly two-dimensional (2D) intrusion fronts are considered. We have conducted 2D 
simulations for Grashof numbers of up to 2 • 1Q9 in order to examine issues like the 
dependence of the Froude number FT of the propagating fronts (i.e. the front speed 
normalized by the respective buoyancy velocity) on viscous forces. In Figure 2 the 
relation between FT and Gr is depicted for lock-exchange simulations with no-slip and 
free-slip conditions, respectively, at the" top and bottom boundary. It is readily seen that 
for no-slip walls the front speed remains sensitive to viscous effects over the whole range 
examined. Moreover it can be seen that our direct simulations are in good agreement 
with recent experimental data. 
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Figure 1: Numerical simulation of two-dimensional lock-exchange flow at a Grashof 
number of 106. Shown are isocontours of density for four successive time instants after 
the initial release. 
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Figure 2: Froude number FT of the front as a function of Grashof number for lock- 
exchange flows. Results for no-slip walls (solid line) and slip boundaries. Symbols 
identify the individual simulations. The vertical bar gives the span of results obtained 
in recent lock-exchange experiments with AT and C02 (Müller k Fannebp, 1996). 
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boundary layer 
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The.research presented in this paper is concerned with the stability properties of the 
compressible attachment-line boundary layer. The instability of flow near the leading 
edge of e.g. a swept wing is of great practical importance. This kind of instability may 
lead to growing disturbances which can be convected downstream and thus influence 
the transition from laminar to turbulent flow around the wing. Thereby this process 
may influence aerodynamic properties to a large extent. 
The attachment-line region consists of the front part of a wing. In figure 1 this region 
is shown schematically in order to define the coordinate directions. To emphasize the 
far-field velocity U is at an angle with respect to the leading edge which is shown as 
the dotted line. As shown a; denotes the chordwise direction, y the direction normal to 

Figure 1: Attachment-line geometry 

the wall and z the spanwise direction. 

To address the stability problem the flow is decomposed into a perturbation and a 
basic flow part. The Navier-Stokes equations govern the evolution of the perturbation 
around the basic flow. The basic flow is the compressible counterpart of the swept 
Hiemenz flow. The Navier-Stokes equations in disturbance form have been used for 
the study the nonlinear stability of the attachment-line boundary layer. 

As in the incompressible case the linear eigenmodes follow a sequence symmetric 
(SI), antisymmetric (Al), symmetric (S2) etc. That is, the most unstable mode is 
symmetric, the next most unstable mode is antisymmetric, then the next unstable mode 
is symmetric and so on. In order to study the nonlinear evolution of the disturbances, 
the linear perturbations are used as initial fields in a number of three-dimensional 
temporal direct numerical simulations (DNS). These simulations employ high-order 
finite-difference discretization in space and implicit time integration using the Crank 
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Figure 2: Growth rate as function of time at R = 800, M = 0.2, symmetric and general 
simulation. 

Nicolson scheme. In the z-direction periodic boundary conditions are prescribed. These 
nonlinear simulations have been validated using both resolution studies and linear 
stability theory. The results computed with the implicit time integration scheme have 
also been compared with results computed with a conventional explicit Runge-Kutta 
scheme in order to assess the time step used. It was found that the use of the implicit 
scheme resulted in much lower CPU-times than the use of the explicit scheme without 
affecting the accuracy of the results. 

The perturbations could be restricted to be symmetric with respect to the attach- 
ment-line.. This is in fact an extension of two-dimensional nonlinear calculations of 
previous researchers based upon the Görtler-Hämmerlin assumption. A comparison has 
been made between the evolution of these three-dimensional symmetric disturbances 
and the case were no restriction on the shape of the perturbations has been made. It 
has been found that, for general disturbances, the results start to deviate significantly 
from linear stability theory for disturbance levels of about 1%. At these disturbance 
levels the growth rate starts to increase to a much higher value, see figure 2. The 
behaviour of the u- and the T-disturbances seems to be entirely responsible for the 
deviation from linear theory. However, when only symmetric modes are allowed in the 
simulations, the sudden increase of the growth rate is absent. Therefore, the interaction 
between symmetric and antisymmetric modes is likely to be responsible for the sudden 
increase of the growth rate. 

In the past no such nonlinear interactions between symmetric and antisymmetric 
modes were found for two reasons. A number of researchers used only symmetric 
modes in their nonlinear simulations, e.g. Hall et al. (1986) and Theofilis (1998). Other 
researchers did use a general model for the perturbations, but used extremely small 
disturbance amplitudes, e.g. Spalart (1988) and Joslin (1995). Spalart also studied 
turbulent incompressible attachment-line flow, but the transition to turbulence was 
not considered by him. 
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The direct simulation code for incompressible flow in a straight square duct developed by Huser 
and Biringen [1] has been employed to generate a high-resolution (101 x 101 x 128) database at 
Rtr = 600 consisting of 80 total flow realizations which are decorrelated in time. The data were 
then post-processed to perform a priori testing of two dynamic SGS turbulence models, namely the 
dynamic Smagorinsky SGS model (DSM) and the dynamic two-parameter mixed model (DTM). 

For the duct flow there are two inhomogeneous directions which lead to "non-canonical" over- 
lapping turbulent boundary layers presenting a challenge to more conventional approaches to large- 
eddy simulation. The duct can be thought of as a testing ground for developing subgrid models 
capable of capturing turbulent corner flow dynamics. The two point correlation tensor also furnishes 
us with estimates of the size of large-scale flow features, in particular quasi-streamwise vortices in 
the corner region of the duct. This information serves as a guideline in the minimum grid-spacing 
required for large-eddy simulations of corner flows in which the "large eddies" are indeed captured 
"by the computer simulation. The mean diameter of streamwise vortices appears to scale on inner 
variables in the near-wall region although this fact has not been established rigorously for corner 
flows of this type. If inner scaling is indeed appropriate then there will be a stringent grid resolution 
requirement in high Reynolds number duct flows in order to adequately capture the "smallest large 
scales" which are dynamically significant in the corners. 

The individual flow fields were also used to perform a priori tests of both the DSM and the DTM. 
The success of these models for large eddy simulations in corner flows (with secondary flows of the 
second kind) is as yet unexplored. The mixed models studied recently by Zang, Street and Koseff [2], 
Liu, Meneveau and Katz [3] and Salvetti and Banerjee [4] have shown better correlation with the 
true subgrid stresses. The mixed model reduces the magnitude of the Smagorinsky parameter and 
also generally makes it positive (enhanced effective viscosity) and hence alleviates the drawbacks 
{viz. mathematical inconsistency, negative total viscosity and numerical instability) of the DSM. 
The main reason for this is the applicability of Bardina's scale similarity model to the cross terms 
in the subgrid scale stresses. The scale-similar part of the model also permits non-alignment of the 
principal axes of the SGS stresses with those of the resolved strain rate tensor which is not the case 
in any of the Smagorinsky-type models. 

Our evaluations currently consist of filtering individual DNS realizations in the ensemble in 
just the streamwise direction of the flow which is treated via periodic boundary conditions in the 
simulation code. Filtering in the inhomogeneous directions is not well defined since filtering and 
spatial differentiation do not commute, but rather introduce second order differencing errors whose 
role is difficult to assess. Hence, we retain the high spatial resolution in the wall-normal directions. 
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(The extension to non-uniform grid filters and application to wall bounded spatial filtering is under 
investigation currently.) We base our model tests on individual realizations, the SGS dissipation 
term, ensemble-average behavior and also on the correlation coefficient of modelled to exact SGS 
dissipation, p(e). For the DSM we find that p{e) « 0.1 — 0.2 at best in agreement with Clark, 
Ferziger and Reynolds [5]. The correlation in the corner region is largely similar to that in the wall 
bisector region. For the DTM we find that p(e) « 0.8 — 0.9 indicating the (expected) improvement 
gained in using a mixed model. The correlation is not diminished in the corner regions of the flow. 
The accompanying figure illustrates this result. 
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Figure 1: Correlation coefficient for SGS dissipation along the corner bisector for the DTM. 

A favorable outcome of o priori model testing/evaluation does not necessarily provide a suffi- 
cient condition for a successful LES using a given model but it does provide a necessary condition. 
A model which performs poorly in a priori tests stands little chance of providing good temporal 
fidelity in LES even though it may provide some measure of success in the mean (the success of 
early LES using the Smagorinsky model are a case in point). The ultimate test of a given model is 
in its success when utilized in a LES of high Reynolds number turbulence. 

We will present results of this work and discuss prospects for successful large eddy simulations 
in similar complex flows of this kind. 
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INTRODUCTION 

Bosphorus strait is a quite narrow channel with a mean width of about a kilometer and length 
of about 30 km connecting the Black Sea to the internal sea of Marmara which is considered 
part of the Mediterranean. The maximum depth is about 110 meter. Since tidal effects are 
almost non-existent on the Bosphorus, measurements show that tidal elevation is under 4 cm, 
the flow is driven mainly by the pressure gradient in the Black Sea- Marmara Sea direction. 
This gives rise to a current with a speed of about 4 km/hour in the upper levels. The gradient 
of the density due to the salinity differences between the Mediterranean water of the Marmara 
Sea and the less saline Black Sea water gives rise to a countercurrent in the lower levels of 
the Bosphorus. The complex geometry gives also rise to local currents of different directions 
and the true representation of the flow-field would certainly necessitate a three dimensional 
model with a very fine mesh. However, surface currents are dominant and a 2-D shallow 
water model necessitating no more than a desktop computer can be expected to represent the 
flow field with reasonable accuracy. 

Application of the Galerkin finite element method to the solution of the shallow water equations 
could be dated back to the works of Taylor and Davis 0» Norton, King and Iceman () and 
Connor and WangO- These early researchers applied standard Galerkin method to discretize 
the shallow water equations in space and used Runge-Kutta or predictor-corrector methods to 
integrate in time the resulting system of ordinary differential equations. Considering then 
available computer storage capacities they used highly coarse meshes with element sizes of the 
order of kilometers. The well known stability problems for standard Galerkin methods were 
circumvented by taking extremely large eddy viscosity coefficients or tuning the bottom friction 
coefficient for damping. For example in the work of Norton etal the diffiisivity coefficient was 
assumed to take the value of 10000 m2/s, whereas the accepted value is around 10 m2/s. One 
had to wait for the development of upwinding techniques in the context of finite elements for 
the solution of the convection-difiEiision equation without excessive dissipation. 

Shortcomings of the shallow water modelling are that the velocities computed represent simply 
the height averaged values and gradients in the vertical direction are lost. In cases where these 
gradients are large shallow water solutions are very difficult to compare with measured values. 
Also it is commonly known that surface waves in coastal seas generate a considerable high 
velocity current in a direction toward or outward the coast. This difficulty is usually 
circumvented by considering that the depth is always larger than a minimum value, which in 
our case is assumed to be 5 meters. This assumption is quite correct in the case of Bosphorus 
since both coasts can be considered to form a vertically walled channel. In case there is 
beach special precautions need to be taken as is shown in (Kawahara, 1984) 

Shallow water equations are a good approximation to Navier-Stokes equations in cases the 
vertical acceleration of the fluid can be neglected. This helps in circumventing the difficulty 
associated with the computation of the pressure term in the Navier-Stokes equation since the 
pressure is now hydrostatic and easily computed. Furthermore the problem is no more three 
dimensional and the number of operations and storage requirements are at least an order of 
magnitude smaller. Since the bathymetry is also taken into account, shallow water modeling is.. 
actually more than a 2-dimensional model of the flow field and can be classified as a quasi 
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three dimensional model. Finite element method is the natural choice in the derivation of the 
discrete system of equations modeling phenomena in complex geometries allowing us to use an 
unstructured mesh. Inclusion of the viscous effects by the use of lateral eddy viscosity- makes 
the system of equations we use different from the classical shallow water equations where no 
viscosity term exists and the type of the equation is quasi-hyperbolic. The type of the equation 
system we will be dealing with is incompletely parabolic (Gustafsson and Sundström). 

It is well-known that the structure of the linear system of equations has long been a dominant 
issue in the choice of solver routine and usually effort is made that the bandwidth of the final 
matrix is as small as possible to minimize the storage requirement. However the development 
of the matrix-free solver routines based on the Generalized Minimal Residual (GMRES) 
method in recent years (Saad) eliminated this difficulty. The essence of the solver routine 
consists in writing simply element level matrices and collecting them in a three indices array 
without assembly. Application of the essential boundary conditions at the element level further 
reduces the number of the equations to be solved. This information together with the 
connectivity table is sent to the iterative solver. The advantage of this method is to reduce the 
memory requirements considerably and therefore give the possibility of attacking large scale 
problems on a desktop computer . The code is written with consideration of a parallel 
implementation but the results presented herein were obtained on a single processor 
workstation. 

As to the time-integration, trapezoidal rule of time integration is employed. Trapezoidal rule 
includes both implicit and explicit time integration schemes but for the flexibility of the choice 
of the timestep without violating the CFL condition implicit scheme is preferred. The use of the 
explicit scheme is certainly more efficient computationally but the drawback is that CFL 
condition restricts the size of the timestep unless a specially designed mesh is used where it is 
made sure that, based on the surface gravity wave speed -Jgh for a preassigned time step, 
CFL condition is not violated. (Kashiyama) 

GOVERNING EQUATIONS 

Averaging the velocity field in the vertical direction along which fluid acceleration is 
neglected and therefore pressure is assumed to be simply hydrostatic, Navier-Stokes equations 
are transformed into the following set of equations, 

&■ + {{h + £)«, },f = 0, (1) 

dC 
— ^C.-KC^S (3) 

where £ represents the free surface elevation from the mean water level, h local mean water 
depth, Ui vertically averaged    horizontal velocity components,  C the contaminant 
concentration, s eddy viscosity coefficient, g acceleration due to gravity, r„ wind stress 
component at the free surface, rw bottom friction stress component, f, Coriolis force 
component and s the contaminant source term. With this formulation the four dependent 
variables of the initial problem, i.e ut for '=1,2,3, p are replaced by the three dependent 
variables a,- for /=l,2, and £\ The difficulty concerning the time dependent nature of the free 
surface is taken care of by computing its elevation at every timestep and using it in computing 
the local pressure gradient in conjunction with the local mean water level h. The surface stress 
term due to the wind is computed as, 
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%-yp^i^^l (4) 

where w. is the wind velocity component, p^ air density and y a friction coefficient with a 
value of 0.0026 in SI system of units. The bottom friction term is assumed to be given by the 
formula, 

**-~prunl«tuk (5) 

where n is the Manning coefficient with a value of 0.030 in the SI system. The contaminant 
diffusion coefficient K is assumed to take the value of 5 m2/s. 

As to the mathematical classification of these equations, the continuity equation is a first order 
hyperbolic equation, whereas the momentum and transport equations are second order., 
incompletely parabolic.(Gustaffson). Boundary conditions appropriate for the well-posedness 
of these equations have been subject to a vast literature and according to Abraham et. al.O 
they are as follows: 
For subcritical flow, which corresponds to our case, hyperbolic equation requires 2 inflow and 
1 outflow boundary condition, whereas the incompletely parabolic equations require 2 
boundary conditions on land boundaries, 3 inflow and 2 outflow boundary conditions at open 
(sea) boundaries. 
We will see below how these conditions translate into the weak formulation. 

The simply connected open domain OczBr over which the governing equations are valid is 
closed by the boundary r = /*, uf2 where /", denotes the land type boundary and T, ocean 
type boundary, with /*, n.T2 = 0. On land type boundary there is no effluent flux and the 
boundary condition is reduced to the adherence condition for viscous fluid. However since we 
are not interested in resolving the boundary layer and our mesh size is extremely large 
compared to the boundary layer thickness we will relax this condition by cancelling the normal 
component of the velocity.(Gray) 

uinj = 0 on r2 (6) 

On ocean type boundary, weak formulation gives rise to a boundary condition of the form 

'. = -g£j + s(uu + ujj)ni = t, on /*, (7) 

Since usually we have no way of measuring the shear stress term along the open boundary we 
will enforce this condition after neglecting the viscosity term and setting the tangential 
component of the velocity at the inlet equal to zero. Therefore on the ocean boundary , the 
pressure being simply hydrostatic the following condition will be enforced, 

C = £on-/",. (8) 
uinj = -a on rx for the inlet part only. 

In the following we prefer to work with the total height H = h+£. 

FINTTE ELEMENT DISCRETIZATION 

Flow field being divided into triangular elements, the dependent variables are represented over 
each element by the linear interpolating functions <P,. This is equivalent into discretizing the 
dependent variables in terms of their nodal values as, 
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H=Ha0a,   u^uia0a, and C=Ca0a (9) 

where repeated indices mean summation unless otherwise stated. 

Considering the size of the elements used, side length between about 100 m and 300 m, and 
the thickness of the boundary layer on the coast it might have been more accurate to use no 
flux boundary condition along the coast but with the primitive variables formulation of the 
governing equations this type of boundary condition is difficult to be implemented on a 
boundary not necessarily aligned with the main axis. Stream function-vorticity formulation is 
certainly more suitable in this sense but -then linear triangular elements are unable to take 
account of the higher order derivatives originating from the viscous terms. Higher order 
elements would be needed and for the same mesh size that would at least double the number 
equations to be solved in each time step. The approach mentioned by Gray Qfor the 
implementation of slip boundary conditions by rotation of the element matrices corresponding 
to boundary elements is a method operational within the context of linear elements but has not 
been attempted in this work. 

Initially it is assumed that the deviation from the mean water level is zero everywhere except on 
the boundary at the Black Sea where a constant deviation of 0.30 m, based on measurements 
between Black Sea and Marmara Sea levels, is assumed and maintained during the 
computation. This difference in water level creates a gravity travelling along the strait and 
eventually sets up the velocity field. The time the gravity wave takes to traverse the strait is 
about 3000 s which corresponds to a wave speed of 10 m/s. This is the wave speed 
corresponding to a constant depth of approximately 10 m.. The velocity field of interest 
corresponding to a quasi steady state is obtained after t=3000 s. This velocity distribution 
could afterwards be used as initial velocity distribution computations with wind loadings and 
the contaminant transport equation solution. Most common winds in the Bosphorus are 
northerly with eventual southerly winds in winters. In the computations presented herein the 
wind speed is taken to be about 20 km/h and the direction is northerly. 
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Computed flow field in the Bosphorus at t = 3000 s. 
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