
AFIT/DS/ENG/99-07

Approximation and Optimization of an Auditory Model

for Realization in VLSI Hardware

DISSERTATION
Samuel L. SanGregory

AFIT/DS/ENG/99-07

19991210 042
Approved for public release; distribution unlimited

DTIC QUALITY INSPECTED ft

The views expressed in this dissertation are those of the author and do not reflect the official policy

or position of the United States Air Force, Department of Defense or the U.S. Government.

AFIT/DS/ENG/99-07

Approximation and Optimization of an Auditory Model

for Realization in VLSI Hardware

DISSERTATION

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Samuel L. SanGregory, M.S.

August 1999

Approved for public release; distribution unlimited

AFIT/DS/ENG/99-07

Approved:

Approximation and Optimization of an Auditory Model

for Realization in VLSI Hardware

Samuel L. SanGregory, M.S.

Maj Charles P. Brothers, PhD (Chairman) Date

Dr. Timothy R. Anderson Date

Dr. Richard F. Deckro (Dean's Representative) Date

Lt Col David M. Gallagher, PhD Date

Dr. Raymond E. Siferd Date

Dr. Tom S. Wailes Date

Accepted

Robert A. Calico
Dean, Graduate School of Engineering

Table of Contents

Page

List of Figures vii

List of Tables ix

Abstract • • x

I. Introduction 1

1.1 Problem Statement 2

1.2 Assumptions 2

1.3 Objectives 3

1.4 Summary 4

II. Background *

2.1 Introduction 5

2.2 Overview 5

2.3 Middle Ear Filtering 7

2.4 Spectral Analysis 7

2.4.1 Gammatone Filtering 7

2.4.2 Transmission Line Filtering 7

2.4.3 Basilar Membrane Motion 8

2.5 Neural Encoding , • 9

2.5.1 AIM Functional Model 10

2.5.2 AIM Physiological Model 10

2.5.3 Neural Activity Pattern H

2.6 Time Interval Stabilization 12

2.6.1 Strobed Temporal Integration 12

2.6.2 Autocorrelation 13

2.7 Summary • • • • I4

Hi

Page

III. Theory ".' 15

3.1 Introduction • 15

3.2 Middle Ear Filtering 15

3.2.1 Implementation in AIM 16

3.2.2 Approximation 17

3.3 Spectral Analysis 24

3.3.1 Implementation in AIM 24

3.3.2 Approximation 27

3.4 Neural Encoding-Rectification and Compression 34

3.4.1 Implementation in AIM 34

3.4.2 Approximation 35

3.5 Neural Encoding-Adaptive Thresholding 43

3.5.1 Implementation in AIM 43

3.5.2 Approximation 47

3.6 Integration Filtering 54

3.6.1 Implementation in AIM 54

3.6.2 Approximation . 55

3.7 Integrated AIM Approximation 57

3.8 Summary 57

IV. Hardware Implementation 61

4.1 Introduction • • 61

4.2 Filtering 62

4.2.1 Algorithm 62

4.2.2 Multipliers 65

4.2.3 Memory 66

4.2.4 Control 69

4.3 Amplitude Compression 74

iv

Page

4.3.1 BitShifter 75

4.3.2 Logarithm Adjuster 80

4.3.3 Conversion to Millibels . 80

4.4 Neural Encoding 84

4.4.1 Adaptive Thresholding 85

4.4.2 Integration Filter 88

4.4.3 Control 89

4.5 Summary 91

V. Testing and Evaluation • 93

5.1 Introduction 93

5.2 Functional Comparison 93

5.3 Speed 95

5.4 Size 97

5.5 Power 98

5.5.1 Multipliers 100

5.5.2 Adders 101

5.5.3 Latches 101

5.5.4 State Machines 102

5.5.5 Filterbank Power 102

5.5.6 Logarithmic Compression 103

5.5.7 Neural Encoding Processor 103

5.5.8 Output Buffers and Clocking 103

5.6 Summary 104

VI. Conclusions and Recommendations 106

6.1 Introduction 106

6.2 Conclusions 106

Page

6.3 Recommendations for Further Research 108

6.3.1 Layout Completion 108

6.3.2 Integrated Circuit Interface 108

6.3.3 Writable Coefficients Store 109

6.3.4 Neural Encoding Approximations 109

6.4 Summary HO

Appendix A. Computation of All-Pole Gammatone Filter Constants Ill

Appendix B. State Output Equations for the Filterbank 113

AppendixC. State Output Equations for NEP State Machine 114

Appendix D. Rom Layout Generation Code 115

Appendix E. VHDLCode H8

Bibliography 139

VI

List of Figures

Figure Page

1. AIM Block Diagram[l] 6

2. Simulated Basilar Membrane Motion for an Impulse 8

3. Simulated Neural Activity Pattern for an Impulse 11

4. Effect of Frequency Domain Thresholding (magnified 5X) 12

5. Stabilized Auditory Image for an Impulse 13

6. Anatomy of Middle Ear (after Lutman[2]) 15

7. Zwislocki's Functional Model and Circuit Equivalent (after [3]) 16

8. Giguere and Woodland's Outer/Middle Ear Model (after Giguere[4]) ... 17

9. AIM's Outer/Middle Ear Impulse Response 18

10. AIM's Outer/Middle Ear Frequency Response 19

11. Spice Simulation of Outer/Middle Ear Including the Canal 20

12. Spice Simulation of Outer/Middle Ear Without the Canal 21

13. Comparison Between AIM and the Approximate Middle Ear Filter 21

14. Impulse Response of Ath Order 1 kHz Gammatone Filter 25

15. Comparison of Gammatone and APGF Impulse Response 28

16. Frequency Response of Gammatone and APGF 29

17. Gammatone and APGF Frequency Response with Middle Ear Filtering . . 30

18. Mitchell's Linear Approximation to log2 35

19. Percent Error in Mitchell's Approximation 36

20. Comparison of Adjusted log2 Approximation and Actual log2 40

21. Magnitude and Percent Errors of Optimized Approximation 41

22. Time Domain Adaptive Thresholding (after [5]) 44

23. Adaptive Thresholding Code from corti.c 48

24. Approximated Adaptive Thresholding 53

25. Difference Between AIM NAP and Approximated NAP 53

Vll

Figure Page

26. Frequency Response of AIM's Integration Filter 55

27. Difference Between Exact and Approximated Integration Filters 56

28. NAP of "HAT" Generated by AIM 58

29. NAP of "HAT" Generated by Approximated Code 58

30. NAP of "1kHz Sinusoid" Generated by AIM 59

31. NAP of "1kHz Sinusoid" Generated by Approximated Code 59

32. Filtering Stage Block Diagram 64

33. Filtering Finite State Machine 70

34. Frequency Response of 12 Channel VHDL Filterbank 74

35. Frequency Response of 12 Channel AIM Filterbank 75

36. Bit Position Decode Logic 76

37. Complementary Bit Position Decode Logic 77

38. Barrel Shifter Array . . 78

39. Logarithm Adjusting Circuit 81

40. Optimized Adder Tree for Millibel Multiplication 82

41. Handshaking for Compression Stage 83

42. Block Diagram of Neural Encoding Processor (NEP) 86

43. State Machine for the Neural Encoding Processor 89

44. Neural Encoding Processor State Counter 91

45. Phoneme Recognition Rates for AIM and Approximation 95

46. Propagation Delay for Full-Adder Cells 96

Vlll

List of Tables

Table PaSe

1. Comparison of Filter Run Times (seconds) 22

2. Comparison of Filter Bank Run Times (seconds) 30

3. Effect of Word Size on Filter Frequency 33

4. First Correction to Mitchell's Approximation 38

5. Second Correction to Mitchell's Approximation 39

6. VHDL Results for Approximation Adjustment Strategies 40

7. Lateral Leakage Parameters 46

8. Filter Section State Table 71

9. Filter State Jump Addresses 72

10. Neural Encoding Processor State Table 90

11. Neural Encoding Processor Jump States • • 91

12. Area Estimates For Architecture (A) 99

13. Spice Simulation Results for 6-bit Multiplier 100

14. Power Analysis for Neural Encoding Processor 103

IX

AFIT/DS/ENG/99-07

Abstract

The Auditory Image Model (AIM) is a software tool set developed to functionally model the

role of the ear in the human hearing process. AIM includes detailed filter equations for the major

functional portions of the ear. Currently, AIM is run on a workstation and requires 10 to 100 times

real-time to process audio information and produce an auditory image.

An all-digital approximation of the AIM which is suitable for implementation in very large

scale integrated circuits is presented. This document details the mathematical models of AIM

and the approximations and optimizations used to simplify the filtering and signal processing ac-

complished by AIM. Included are the details of an efficient multi-rate architecture designed for

sub-micron VLSI technology to carry out the approximated equations. Finally, simulation results

which indicate that the architecture, when implemented in 0.8/j.m CMOS VLSI, will sustain real-

time operation on a 32 channel system are included. The same tests also indicate that the chip will

be approximately 3.3 mm2, and consume approximately 18 mW.

The details of a new and efficient method for computing an approximate logarithm (base

two) on binary integers is also presented. The approximate logarithm algorithm is used to convert

sound energy into millibels quickly and with low power. Additionally, the algorithm, is easily

extended to compute an approximate logarithm in base ten which broadens the class of problems

to which it may be applied.

Approximation and Optimization of an Auditory Model

for Realization in VLSI Hardware

/. Introduction

The hearing ear, and the seeing eye, the Lord hath made even both of them.

Proverbs 20:12

There exists today a myriad of electronic devices which can gather, store, modify, and replay

visual and auditory data. As of yet, however, man-made technology has been unable to replicate the

Creator's unique design of the human auditory system. The task of reproducing auditory images

through electronic means is hampered by our inability to fully grasp the intricate processing taking

place within the sensory organs and the brain. The brain is a massively parallel data processing

system; even if we could comprehend the algorithms necessary to program it, the hardware required

to replicate the brain would be enormous. Still, we continue in our attempts to understand the

complex processes by which sound waves are transformed into auditory images.

This research focuses on one very specific aspect of the auditory process: modeling the

way in which the ear pre-processes auditory information for the brain. Previous research has

established that we perceive sounds as auditory images. A computer program called the Auditory

Image Model (AIM) produced by researchers in England generates computer approximations of

the auditory image for sampled audio[l]. The objective of this research is to show that the existing

computer model can be mapped efficiently into an application-specific integrated circuit.

The underlying thesis, which will enable the mapping of the algorithm into hardware, is that

the complex algorithms currently used in auditory research may be simplified without significantly

impairing the usefulness of the model. The existing algorithms were designed to closely match

the physical characteristics of the ear. While they succeed in terms of matching the ear, these

algorithms are also very mathematically intensive.

The approach chosen to speed up the modeling of the ear was to first develop new algo-

rithms which approximate both the time and frequency domain response of the existing algorithms.

Throughout the design of these new algorithms, emphasis was placed on the efficiency with which

they could be implemented into application specific VLSI hardware. The new algorithms were also

tested in a set of phoneme recognition experiments and the results compared to results obtained

using the original algorithms.

After a satisfactory set of algorithms was developed, a computer architecture was designed

to execute them. The architecture was then modeled to verify it as a correct implementation of

the approximated algorithms. The design of the architecture included characterizing the major

components in order to obtain estimates on the actual power required and operating speed.

1.1 Problem Statement

AIM has proven to be a very useful tool for auditory research, spanning topics from speech

recognition to physiological studies of hearing. However, AIM is very complex and time consum-

ing, requiring as much as 10 times real time to process sound on a typical workstation computer[16].

A specialized hardware accelerator is needed that can relieve the host GPU from the heavy com-

putational load imposed by AIM. Such hardware will have significant impact on the utility of the

model by allowing more and larger data sets to be processed. Additionally, a hardware accelerator

would allow the real-time processing of data streams.

A direct implementation of AIM into hardware would be expensive in terms of VLSI area

and power. Additionally, unless heavily pipelined, it would not achieve real-time operation. There-

fore, before AIM can be implemented into hardware, a new set of algorithms must be developed

which closely approximate the algorithms of AIM but require less processing power.

1.2 Assumptions

Several assumptions were made early in the research to simplify and direct the effort. First, it

was assumed that the functional algorithms of AIM sufficiently model the human auditory system.

This assumption did not preclude the implementation of one of the physiological portions of AIM

if it proved to have a more efficient mapping into hardware. Further, it was assumed that any imple-

mentation of the algorithms would be realized in an application specific integrated circuit (ASIC).

In addition, it was assumed that the system (which may be more than one ASIC) would need to

communicate with standard workstation computers, requiring the consideration of an appropriate

interface.

Initially, no assumptions were made as to how many filter channels are necessary to provide

accurate auditory modeling, nor at what frequencies these filters should operate.1 These parameters

are left generic so that the end system may be configured according to user needs. It will be

initially assumed that the system must operate at a data rate of 20 k-samples per second; however,

the system will maintain enough flexibility to either support multiple sampling rates, or be re-

programmable. In order to maintain as much flexibility as possible, it is assumed that the user of

the system may want to bypass any combination of the model's stages, therefore bypass capability

will also be considered.

1.3 Objectives

The specific objectives this dissertation are:

1. To optimize or replace modules in the functional model of AIM so that the resulting code

will map more efficiently into CMOS VLSI hardware.

2. To design and test using the VHSIC Hardware Description Language (VHDL) an architec-

ture that will be able to perform the functional version of AIM faster than the C code while

reducing the electrical power consumed. The goal is to approach real time in the data stream.

3. To layout and fabricate, as a minimum, one channel that will perform the functions of AIM

from the ear opening to the neural activity pattern (NAP).2

4. To collect data from the prototype chip and project the full system power and speed from the

data.

5. To complete the design of the full-scale system.

1Some researchers have used AIM as a front end for phoneme recognition with as few as 18 channels[6], while
others claim much greater numbers of channels are required for accurate modeling of the hearing processes[7].

2This objective was later eliminated when it became apparent that the only difference between a single channel
system and a fully functional multi-channel system would be the amount of on-chip memory.

1.4 Summary

This chapter established the motive and presented the overall objectives for the research,

specifically to design a hardware accelerator for AIM. The path to the hardware solution includes

characterizing, optimizing, and replacing most of the processing modules of AIM with new and

simpler algorithms. Following the algorithm development a processing architecture is designed

and tested.

This document is a record of the research effort beginning with Chapter 2 which reviews

the present state of the art of auditory research. After the background review, the theory behind

both current models of the human ear and the newly designed approximate model is discussed in

Chapter 3 followed by the design of an application-specific processor in Chapter 4. Next, Chapter 5

summarizes the test results and provides an evaluation of operational parameters for the processor.

Finally, Chapter 6 concludes with summary remarks and recommendations for further work.

//. Background

2.1 Introduction

In order to establish a foundation, this chapter provides a look at the current state of auditory

research. Because of its importance to the auditory modeling community, most of the chapter is

devoted to a detailed discussion of one auditory model, the Auditory Image Model (AIM). The

discussion of AIM in this chapter is broken down into sections which follows the progression of

information through the model.

2.2 Overview

Researchers investigating topics ranging from music perception to speech recognition have

for many years been studying the processes of the human ear. Out of the previous research, several

hardware implementations of auditory models have been developed. For example, Lazzaro and

Wawrzynek developed a system to transform audio data into what they referred to as a specialized

representation of sound[8]. Similarly, Lyon developed an analog correlation chip using charge

coupled device (CCD) technology which takes an analog input and produces an analog output

corfelogram in real time[9].

While the existing hardware implementations have been shown to be useful under specific

conditions, many research applications require a more generalized system. The Auditory Image

Model (AIM), is a physiologically-based computer program that has such flexibility[10, 1]. AIM

was developed by researchers at the Medical Research Council, Applied Psychology Unit in Cam-

bridge England. AIM, a software suite written in the C programming language in the late 1980's,

was first released to researchers worldwide in the early 1990's. AIM version 8.1, released in

September 1996, was used throughout this research.

While other methods exist for processing audio information (for example: windowed Fourier

transform techniques), none have the physiological basis that AIM has. AIM was selected because

of how it preserves time-domain information. Recent research indicates that the brain uses phase

information to localize auditory sources as well as to distinguish desired sounds from background

noise[7]. Because AIM preserves the time-domain properties of the sound it may have a greater

potential for further auditory research.

AIM is a modular program which processes the data in sequential stages. These stages corre-

spond to physical processes in the human auditory system. The organization of the program makes

it easy to single out particular portions of the auditory system for detailed study. Additionally, the

organization allows for easy replacement of functional blocks with different models. For example,

the user may, through a command-line option, choose one of three models for the cochlear filtering.

AIM also supports two different methods of analysis: a functional method, and a physiolog-

ical method. Figure 1 illustrates how the AIM software is constructed. Included in Figure 1 are the

section numbers within this chapter where each stage is discussed.

AUDITORY IMAGE MODEL (AIM)

f—

functional physiological

2.3 middle ear filtering middle ear filtering

spectral analysis spectral analysis

2.4 gammatone filtering
transmission line filtering

spectral sharpening
comprssion

basilar membrane motion basilar membrane motion

neural encoding neural encoding

2.5
compression

two-dimensional
adaptive thresholding

inner haircell simulation

neural activity pattern neural activity pattern

time-interval stabilisation time-interval stabilisation

2.6 strobed-temporal
integration

autocorrelation

auditory image correlogram

^ J

Figure 1: AIM Block Diagram[1]

The primary differences between the two sides of the AIM model rest in how the modeling is

accomplished. On the physiological side, much effort went into developing models that accurately

reflect the acousto-mechanical properties of the ear. On the functional side, however, the models

are a systems approach where the transfer function is modeled rather than the mechanics. As the

arrows between the sides indicate, a researcher may choose to use a combination of models from

both sides of AIM by simply using command-line options.

2.3 Middle Ear Filtering

In breaking down the model further, the physiological and functional sides are divided into

four major areas: middle ear filtering, spectral analysis, neural encoding, and time-interval sta-

bilization. Both sides of AIM use the same middle-ear filtering mechanism, a bandpass filter

centered near 1 kHz. The response of the filter rolls off at approximately 20 dB/decade on each

side of 1 kHz.

Currently the middle ear filter is implemented in a more physiological approach through the

use of a wave digital filter (WDF) developed by Christian Giguere[ll]. The WDF model includes

the external ear effects of the head and upper torso, but does not include the effects of the external

ear flange[4]. Additionally, the model assumes the sound to be arriving at the head perpendicular

to the ear.

2.4 Spectral Analysis

The second stage of AIM models the basilar membrane located in the inner ear within the

cochlea (See Figure 1). As sound travels through the ear it is transformed into a pressure wave that,

in the fluid filled cochlea, causes the basilar membrane to vibrate. Higher frequency waves cause

the front section of the basilar membrane (closest to the eardrum) to move, while the low frequen-

cies penetrate deeper causing motion toward the back of the basilar membrane. In the actual ear,

the distribution of energy is continuous from the high frequencies to the low[12]. The discussion

of the spectral analysis is divided here into first, the functional and second, the physiological model

of the process. Finally, the format of the output from these models is presented.

2.4.1 Gammatone Filtering. In the functional version of AIM, the single stream of

audio data which enters the model is separated into N different frequency bands through the use

of passband filters with varying center frequencies. The number N is specified by the user through

command-line options. The discussion of the derivation of the filter function can be found in

[12,13,14,15,16,17], while the filter bandwidth and spacing is discussed in[17,18,19, 20, 21].

2.4.2 Transmission Line Filtering. Beginning in the spectral analysis stage, the func-

tional and physiological sides of AIM (See Figure 1) begin to differ. As with the functional model

just discussed, in the physiological mode, AIM again generates N different frequency bands. How-

ever, in the case of the physiological model, the filtering mechanism is not the the gammatone

filter bank of the functional model. For the physiological case, the filtering is accomplished using

a wave-digital filter (WDF) representation of a transmission-line model of the inner ear. Like the

middle ear filter previously discussed, the WDF model attempts to capture the acousto-mechanical

properties of the inner ear[l 1].

2.4.3 Basilar Membrane Motion. Regardless of the model used, the output from the

second stage is referred to as the basilar membrane motion (BMM)[1]. The BMM essentially

represents the position of discrete locations on the basilar membrane relative to its at-rest (quiet)

position. An example of BMM for an impulse is seen in Figure 2.

30.6

Figure 2: Simulated Basilar Membrane Motion for an Impulse

In Figure 2 the horizontal axis represents time in milliseconds starting with the onset of

the sound data. The vertical axis is the equivalent rectangular bandwidth scale (ERB). As Slaney

states, "The ERB is a psychoacoustic measure of the width of the auditory filter at each point

along the cochlea... an ERB filter models the signal that is present within a single auditory nerve

cell or channel."[17:p.2]. Patterson[l] credits the ERB filter to Glasberg and Moore[20] which he

further references to physiological research of Greenwood[21] as well psychoacoustic research of

Patterson and Moore[22].

While several definitions for the ERB exist, AIM uses the more recent definition for the ERB

which is presently accepted as more accurate[5]. AIM defines the ERB as:

ERB = 24.7(4.37/o/1000 4- 1) (1)

where f0 represents the center frequency of the auditory filter. The ERB scale, which appears on

the Y-axis of the figures generated by AIM is computed by integrating the inverse of the ERB

function. The ERB scale was proposed by Moore[18] as an "instructive and convenient" method

to plot psychoacoustical data. Equation 2 may be used to convert the ERB scale (S) back to filter

center frequency (in Hertz).

f0 = (e0-i0794S _ i)/(4.37 x io-3) (2)

Unless otherwise specified, in the examples shown in this document, this scale is equivalent to

a frequency span from 100 Hz to 6 kHz where 100 Hz is at the bottom of the figure. The filter

spacing is not linear, but rather is selected so that there is equal overlap in the skirts of the filter

spectra of adjacent filters.

2.5 Neural Encoding

The third stage in the AIM model is the transformation of the mechanical movement of the

basilar membrane into electrical impulses which are sent to the brain via the auditory nerve. The

transformation is accomplished by the inner hair cells which are located along the edge of the

basilar membrane[10]. As these cells are bent under the pressure of the moving basilar membrane,

they transmit electrical signals to the auditory nerve. These nerves only fire when compressed

by the basilar membrane, not when they are returning to their resting position. Therefore, they

essentially perform a half-wave rectification on the BMM.

In addition, these inner hair cells respond very quickly, and in a nonlinear manner, by adapt-

ing to the intensity level of the sound. Therefore, sounds with high intensity lessen the ability of

the ear to detect softer sounds. Finally, although the motion of the basilar membrane is frequency-

dependent along its length, the inner hair cells tend to interact with neighbors, causing some smear-

ing of the frequency separation.

2.5.1 AIM Functional Model. To model the behavior of the inner hair cells, the func-

tional model of AIM performs several operations. First, the BMM is half-wave rectified to account

for the fact that the inner hair cells only fire when compressed. Second, either a logarithm base

10, or an exponent of xv (0 < y < 1) of the rectified BMM is calculated on a point-by-point basis

to model the compression in amplitude that takes place as the hair cells adapt to louder sounds.

The choice regarding which form of compression is used remains a user option. Traditionally, the

logarithmic form has been used; however, recent data has been published indicating that a X0-5 is

also an effective model[23], particularly when using the physiological hair cell model.

After the rectification and compression is accomplished, the data is run through a pro-

cess referred to as two-dimensional adaptive thresholding. The adaptive thresholding attempts

to "reintroduce, and perhaps enhance, the contrast of features that appear in the basilar membrane

motion[10:p.4:4]." As the name two-dimensional adaptive thresholding implies, the thresholding

process is accomplished in both time and frequency.

In the time domain, adaptive thresholding is accomplished by comparing the current BMM

value to the expected impulse response of the filter used to produce the BMM. If the current value

of the BMM exceeds the expected value, then the simulated nerve fires, and the expected value is

updated. The thresholding process prevents the natural ringing of the filters from causing multiple

false firings of the inner hair cells.

In the frequency domain, the BMM is examined across filter neighbors to model the inter-

action between adjacent inner hair cells. The inter-filter effect depends on the filter frequency and

spacing; the higher the center frequency and the further apart the filters, the less effect the filters

have on one another. In any case, the effect of the frequency adaption is very small. The effect of

frequency adaption is illustrated in Section 2.5.3.

2.5.2 AIM Physiological Model. The physiological hair cell model, as with all of the

physiological algorithms, attempts to model as closely as possible the behavior of the inner hair

10

cells from the physiological perspective. To do so, AIM simulates a single hair cell for each filter

frequency in the BMM. Like the physiological cochlear model, the hair cell is modeled using a

wave digital filter. The present model was developed by Giguere with the theory behind the hair

cell model being credited to Meddis[24].

2.5.3 Neural Activity Pattern. As Figure 1 illustrates, the output of the third stage of

the model is referred to as a Neural Activity Pattern (NAP). The NAP represents the neural firings

associated with each of the frequency channels generated in the BMM. Figure 3 illustrates the NAP

for the same impulse that generated the BMM of Figure 2. Again, the horizontal axis is time, while

the vertical axis represents the ERB spacings described in Section 2.4.3.

30.6

Figure 3: Simulated Neural Activity Pattern for an Impulse

Most of the features of the NAP are generated by the time-domain thresholding. To illustrate,

observe Figure 4 which was generated by subtracting a NAP with the frequency adaption disabled

from the NAP of the same stimulus with the frequency adaption enabled. In order to make the

differences more pronounced, the features of Figure 4 have been magnified five times.

11

30.6

Figure 4: Effect of Frequency Domain Thresholding (magnified 5X)

2.6 Tune Interval Stabilization

In the body, after the inner ear nerves fire, the electrical activity is transmitted to the brain via

the auditory nerve. When the brain receives the neural activity, an auditory image is constructed

and analyzed, resulting in the perception of the sounds. In AIM, the generation of the auditory

image is simulated by AIM's fourth and final stage.

As seen in Figure 1, the final stage is titled time interval stabilization. For both the physio-

logical and functional models, the auditory image is constructed in the final stage. The output of

the time interval stabilization stage is referred to as the stabilized auditory image (SAI). As noted

by Patterson, the intent of the SAI is to "preserve what we hear in the sound and remove what we

donothear"[10:p.5:l].

2.6.I Strobed Temporal Integration. The generation of the SAI in the functional model

is accomplished by a process termed strobed temporal integration, while in the physiological model

it is done by autocorrelation. Thus in the physiological model the output is more correctly referred

to as a correlogram rather than a stabilized auditory image.

In the functional case, each channel of the NAP is buffered and stored with a linear decay

in magnitude of 2.5% per ms. Each buffer channel is continuously scanned for local maxima as it

12

is filled. When a local maxima occurs, an integrator for that channel is strobed (or fires), which

adds the buffer contents to the corresponding channel in the auditory image on a point-by-point

basis, with the local maxima stored in time at the 0 ms location in the image. The time axis on the

image is thus a record of the integrated channels up to the current integration-initiating eventfl].

An example of an auditory image is shown in Figure 5. Figure 5 differs from the BMM and NAP

figures shown previously (Figures 2 and 3) in that it was generated from a repeated impulse stream

rather than a single impulse.

30.6

Figure 5: Stabilized Auditory Image for an Impulse

The auditory image shown in Figure 5 is actually the last frame of several. An image similar

to Figure 5 is produced for each local maximum that occurs in the NAP. For periodic signals (such

as a the pulse train shown in Figure 5) the SAI becomes static; that is, all image frames are nearly

the same. For aperiodic sounds (such as speech) each frame is different. By viewing the image

frames in succession, we can visualize the changing nature of the auditory image.

2.6.2 Autocorrelation. An alternative to the strobed temporal integration is the autocor-

relation, provided by the physiological side of AIM, where a recursive or running autocorrelation

algorithm is implemented. The output is very similar to the SAI produced by the strobed temporal

integration, however, it is more symmetric and has larger level contrasts. Interestingly, Patterson

13

points out that there is currently no physiological evidence that the ear performs autocorrelation,

yet the algorithm is applied to the physiological side of the model[l]. Additionally, AIM also

provides a fast Fourier transform (FFT) based algorithm which is functionally equivalent to the

autocorrelation algorithm.

2.7 Summary

Of the different methods of simulating the processing of the human ear, the Auditory Image

Model (AIM) has stood out as one of the most versatile. AIM provides both a functional model,

which is faster, and a physiological model which more closely models the physical operation of

the ear. Each of these models can be broken down into four primary processing stages (Figure 1).

This chapter presented an overview of each of these stages for both models. A more in-depth look

at the algorithms of the functional model, which were the focus of this research, are presented in

Chapter 3 of this document.

14

///. Theory

3.1 Introduction

This chapter sequentially presents each stage of AIM in the order that data flowing through

the model would encounter them. (Refer to Figure 1.) These stages are namely: outer/middle ear,

filter bank, compression, adaptive thresholding and integration filtering. Each stage of AIM has

two sections devoted to it in this chapter. The first section discusses the AIM implementation of the

stage, while the second presents the work performed to simplify the processing needed to perform

the required operations. In each case, tradeoffs were made which sacrificed some aspect of the

model in a slight way. All of these differences are presented in the discussions that follow.

3.2 Middle Ear Filtering

The first stage of processing accomplished by AIM models the outer and middle ear's trans-

formation on the sound. Physically, the first stage includes the external ear, ear canal, ear drum,

malleus, incus, and stapes (hammer, anvil, and stirrup) as shown in Figure 6. The function of the

outer and middle ear is fundamentally that of a transducer that matches the impedance of the inner

ear to that of the free air through which the sound arrives.

Ligaments

Incus

-«•••• Stapes

Malleus

Figure 6: Anatomy of Middle Ear (after Lutman[2])

As the sound arrives, it travels through the middle ear canal where it causes the eardrum to

vibrate. The motion of the eardrum is then transferred through the malleus, incus and stapes into

the inner-ear fluids. Thus, the sound energy is transferred from a medium of air to a medium of

liquid.

15

3.2.1 Implementation in AIM. The current model of the middle ear process originated in

the 1962 work of J. Zwislocki[3]. Zwislocki modeled each organ of the middle ear as a combination

of inductors, resistors, and capacitors. Through a process of experimentation and mathematical

modeling, he derived an analog electric circuit model for the impedance matching of the middle

ear. His circuit, (See Figure 7.) included 5 functional units, each with an electrical equivalent. The

use of circuits allowed Zwislocki to reproduce the behavior of the differential equations of these

organs, without numerically solving them.

Middle-
Ear
Cavities

Eardrum
Malleus
lncas

Eardrum
Losses

Incudo-
Stapcdia!
Joint

Stapes
Cochlea
Round
Window

. Middic_Ear_Cayities_

La Ra

Figure 7: Zwislocki's Functional Model and Circuit Equivalent (after [3])

Zwislocki's work was revisited and expanded by M. Lutman and A. Martin in 1979[2]. In

their research, Lutman and Martin adjusted some of the component values, but more significantly,

they added components to model the stapedius muscle (not visible in the view of Figure 6). By

including the stapedius muscle, they were able to simulate the effects of acoustic reflex. Through

feedback from the brain, the acoustic reflex adjusts the middle ear transfer function to adapt to

varying sound intensities.

Additionally, Lutman and Martin added a network of resistors and capacitors to the model

which account for the transmission line effect of the ear canal. The addition of the ear canal to

the model properly accounts for a sharp resonance region in the transfer function of the middle ear

which reaches its peak near 3700 Hz. The peak, which can be seen in Figure 11, will be discussed

in more detail in the next section.

16

C. Giguere and P.C. Woodlandfll, 4], in their 1993 and 1994 work, took the model as

proposed by Lutman and Martin, and transformed it into a digital network by means of the wave-

digital filter (WDF). Additionally, they proposed replacing the inductor, which accounted for the

cochlea in the model, with a transformer, as well as the addition of the external ear and the concha

to the model. (See Figure 8.) Their model for the external ear does not account for the shape of the

pinna, head, or upper torso; rather they begin their model at the ear opening.

Lr
A*m Lch/2 Lch/2 Lcl/2 Lcl/2

Rr

Cch

:_ »f< »-,■« —.
: External Ear ■ L-segment Concha : M-segment Auditory Canal

Figure 8: Giguere and Woodland's Outer/Middle Ear Model (after Giguere[4])

The replacement of the cochlea inductor with a transformer allowed them to expand the

model into the cochlea where the cochlea also was represented with WDF transmission-line com-

ponents. The resulting wave digital filters were then included into the AIM code as two separate

modules: one for the outer/middle ear, and a second for the cochlea.

Giguere and Woodland's outer/middle ear WDF representation is the only model included

in AIM for the first stage processing. It is interesting to note, however, that their wave digital filter

representation of the cochlea is one of two models and is not used by default. Rather, AIM uses a

filter-bank model of the cochlea by default. The filter bank approach to the cochlear model is the

topic of a later section in this document.

3.2.2 Approximation. While the WDF approach to the outer/middle ear is physiolog-

ically very accurate, it is also very computationally expensive - requiring 39 multiplication and

approximately 125 addition operations per data sample that enters the system.1 At a sample

rate of 20,000 samples per second, the WDF performs 780,000 multiplies and 2,500,000 addi-

tion/subtraction operations per second in order to be executed in real time.

'The code for the WDF is found in the AIM file wdf.ear. c found in the wdf subdirectory. The actual code is in
the function DoEarWdf ().

17

Due to the complexity of the WDF, an approximation which would require fewer operations

was desired. To replace the WDF, its impulse response was characterized and a digital filter with a

similar impulse response was designed. The technique of impulse response approximation is suf-

ficient because the impulse response of any system completely characterizes that system's transfer

function.

The first step in the analysis of the Giguere-Woodland middle ear filter was to characterize

the WDF. To characterize the WDF, an impulse was provided as input to AIM with all processing

following the middle ear disabled via command line options. The output data from AIM was

then captured and post-processed. The raw data of the impulse response is plotted in Figure 9.

Post-processing was accomplished using Matlab2 to convert the raw impulse response into its

30
Sample Number

Figure 9: AIM's Outer/Middle Ear Impulse Response

corresponding frequency response as shown in Figure 10.

There is an obvious resonance near 2700 Hz shown in Figure 10. In order to positively

identify which part of the middle ear model was causing the resonance, the electric circuit rep-

resentation of the model was simulated. For the test, the complete outer/middle ear model given

by Giguere (combined circuit using output from Figure 8 as input to Figure 7) was implemented

2Matlab is a registered trademark of Math Works Inc. Version 5.2 was used during for this research.

18

10

5

0

-5

-10
I >
-15

-20

-25

-30

-35
10 10* 10'

Frequency (Hz)
10"

Figure 10: AIM's Outer/Middle Ear Frequency Response

using the Spice3 simulation program. Figure 11 shows the results of these circuit simulation tests.

Similarly, Figure 12 shows the Spice simulation results for the middle ear without the ear canal. A

comparison of these two plots clearly shows that the resonance in the transfer function is due to the

ear canal, not the middle ear structures. Interestingly, however, the exact location of the peak does

not agree between the WDF of AIM and the circuit. The difference can be attributed to the fact

that the Giguere WDF implementation includes the ear canal, ear opening, and the head modeled

as a sphere. The original circuit did not include these outer elements.

If the resonance in Figure 10 is ignored4, it is easy to see that the resulting filter is a low-

order band-pass filter centered near 1000 Hz. In fact, under closer observation, the rising edge of

the filter is close to 40 dB/decade, while the falling end is closer to -20 dB/decade. The frequency

response suggests a filter with 2 low frequency zeros and 3 poles near 1 kHz. Therefore a Matlab

script was written which used a process of smart iteration to locate these poles and zeros so that

the resulting frequency response was optimized using the method of least-squares fit. The resulting

3Spice (Simulation Program with Integrated Circuit Emphasis) is a circuit simulation program originally developed
at UC Berkeley. There are now many versions sold by a variety of companies. Both HSpice by MetaSoft as well as
Berkeley Spice version 3f4 were used.

4The resonance is an artifact of the ear canal, not the middle ear. More discussion on the resonance follows later in
this section.

19

i II MM!] I Mi Nil I j »I | ilii
! I i i i i ; ! j 1 I i ! ! :! i i I *. '■ I > i i
! ! i 1 ii I! ! I i i i ! ii I \i i I i ! i i
i ! ! I i ! !j ! i I i i ; M i ii I ! ! j j;
' ! i 1 i ; i! ; I i ; j ill i U I i i i ! I
i i I 1 I ! 11 ! I ! i i'tP. •-. I i illill
I I ! j i i i: j I i'i i i il \ \ J\ ii i i i j!
i I i Mil! ! |,f i ill! «I' i hi Mil
j ! i I ! ! Ii I V I ! ' i '■'■ W. !!>!!!!!
I I ! i i ! ! I ! /: I i ! I !! »i ! ! ii i I ! I

\ ■■■'■"■ /■■■"". ■ \'\ ■"

! I!!:::; / : i ! i : : : : : I • h I i • :
i i ! ' I i i! ' i I i I I I I! ! I I i\!!M
I I I I liii / i Ml! ill i ! i 1II Ii-
' ! ' I ! ! ii i s [■ I ill I 1 Li! b-W
I I ' I ' *. \ \ \ i ! ! : I I i ! !:•!!!!
I i i K ? i H > s I I I 1 11 I I I i I i i i
: • j /; • • • • : :•■ i :•;••::
! I > I i i i I I i I • I 1 M \ I \ ■ i I i i
« !/■::::: i : : i ; ! :: i ! • i i ! !r
i /:::::: i ! • M ! I I i i i ; : i i :
: / i : : : : i : \ i i i i i j j i j i....i...i..;..i-i-- '"" !?■•■■* J—t • !'!-r; J t !* * • ' T ' : : ::•:::
f i : ! i : i : | • j I I I : I i i : : i i i :

' •: ! I i i! i! ! i ! ! • i ii ! ! ! i i ! i I
• : i : : : : i : : ::::::: j ; j i : : : :

t | ; | ; j | |j | j | | j ; | j ! !!!!'!!

Figure 11: Spice Simulation of Outer/Middle Ear Including the Canal

S-domain filter equation was:

26861(3 + 270)2

{S'~ (s + 2884)(s +6640)2'
(3)

The resulting continuous S-domain expression of Equation 3 was then converted to a discrete

Z-domain equation using the Matlab command c2dm with the zero-order-hold option selected and

the sampling rate set at 20 kHz. The resulting difference equation for the Infinite Impulse Response

(IIR) filter was:

Y{n) = AiX(n_!) + A2X{n_2) + A3X(n_3) + £iY"(„-i) + 52y(n-2) + ß3Y(7l-3) W

where Xu) are previous inputs, Y^) are previous outputs, and the constants were defined by

Al = 0.903479 Al = -1.783521 A3 = 0.880206

Bl = -2.300689 J52 = 1.757066 S3 = -0.445659.

Equation 4 was then coded in C as an AIM-compatible module and added to AIM as an

option which could be selected using command-line options. To verify the accuracy of the IIR filter,

20

0.0

\ j ! : : i I
1 | is i*-rn ■

1 1 L11I11A

-10.0

: i { : i i : : : :/:::;;;
• • * : • 5 : : : • */:!::!:

\
1
\

",V,M

j 'ill:!

:/ 1 ! : : : 1 :
* \ \ * \\\\

/ i 1 I j ! 111
* i I ::::::

V
V

1 \

-20.0

■25.0

: j j : j : :

i ; i !i;r

' • ! ill!!! / : :::::::
' \ I \ \ \\\\

\ \ \ ! j : ! !

'
'.1...

\ I M r 11
I I \ ill! j | j || | ||

K

| /[| 111 j
t \ Mil!

t : • : : : i :

1 | Mill!

-35.0
J

—/■•••♦ [•■•■♦«•j"j«*-i-
t \ : : : i : :

: ! III!; 1 ; ! 1 ! : ! :

f : I i i j • | t : { i j j i 1

Figure 12: Spice Simulation of Outer/Middle Ear Without the Canal

the same impulse test used to characterize the original AIM outer/middle ear filter was duplicated

using the approximate (IIR) model. Figure 13 illustrates a comparison between the AIM middle

ear and IIR filter.

10

5

0

 : ■—' - ■ : ' 'i 1— •' !!!!!'!

 ;....:...;.|.U ii; ; !...;J.ijjiL--4^^T^ ^L

■ \ l\\\U\ • ; \/'\\\\ ;...„!v\L^-i|F'--:-

-10

-15

-20

-25

-30

-35

/
i i I!Mill A \ \ Urn I i ! HMl

// \ M Mi!!! ! ! ! M n i
I : '>'■/':':'■. i ...j...:..j..:: !.U I ■....\..'..-..i.:.M

Figure 13: Comparison Between AIM and the Approximate Middle Ear Filter

Figure 13 clearly shows that the IIR equation has eliminated the resonance of the ear canal,

which was intentional for the purpose of reducing the mathematical complexity. Although the

removal of the effects of the ear canal may seem at first as unwarranted, for many applications the

21

sampled audio data is already filtered using a more accurate head-related transfer function (HRTF).

These HRTFs include the effects of the shape of the head, upper torso, and pinna as well as the ear

opening and ear canal. Additionally HRTFs can account for the angle at which sound arrives at the

ear.

The inclusion of the effects of the ear opening and ear canal in experiments where an HRTF

was already applied to the data set would subject the data to these effects twice. Therefore, in order

to prevent subjecting the data to two different models of the ear canal, and to reduce the complexity

of the computation, the resonance of the ear canal was removed from the model. The removal of

the resonance was supported by phoneme recognition experiments discussed in Chapter 5.

Further testing compared the operational speed of the approximate IIR filter to that of the

default WDF in AIM. In these tests, the sampled data for the spoken word "HAT" was replicated

10 times in a single file. The data file was then processed by AIM 6 times, 3 times using the

WDF, and 3 times using the IIR filter. Testing was conducted on an unloaded Sun Microsystems

SPARCstation-20 workstation running Sun OS 4.1.4 and timed using the Unix time command.

Table 1 compares the user processing time for the IIR filter to that of the WDF with all other

processing by AIM disabled by command-line options. As shown, the IIR filter algorithm is on

Table 1: Comparison of Filter Run Times (seconds)
Run# WDF IIR

1
2
3

26.28
26.02
26.31

6.87
6.96
6.93

AVERAGE 26.20 6.92

average 3.79 times faster than the WDF algorithm. The speedup is a reflection of the mathematical

simplification of the approximation. It is appropriate to note that the data stream only passes

through the IIR filter once.

Following the middle/outer ear filter (either WDF or IIR), the data is duplicated and passed

through many channels in the filter-bank stage. Therefore, the speed-up noted here will not be

observed when using more than one filter bank channel because the time required by the filter bank

will dominate. The speedup of the middle ear filtering demonstrated here in software approxi-

22

mates the six-to-one ratio of multiplications between the two algorithms. When the IIR filter is

constructed in application-specific hardware, the speedup will be even greater.

Having shown the spectral response of the IIR filter to be a close fit to the spectral response of

the WDF (neglecting the WDFs resonence), the next step was to design a hardware implementation

for the IIR filter. The goal was to reduce, if possible, the number of bits needed in the A and

B constants and to determine the minimum number of bits of precision that would be needed

internally for the filter to function correctly. The issue here is that the data stream entering the

system will be 16-bit twos-complement integers. However, as the filters operate on the data, some

amount of precision, or extra fractional bits, must be maintained in order for the digital filter to

function.

To solve the storage size issue, the IIR filter was coded as a binary level simulation using the

VHSIC Hardware Description Language (VHDL).5 While VHDL allows simulation at any level of

abstraction, in these tests the IIR filter was modeled at the gate level. Additionally, the word sizes

were coded in generic terms thus allowing the model to be easily re-configured during the testing.

As a result, direct comparisons could be made noting how the system functioned using different

word sizes.

The VHDL testing revealed that 8 bits for the multiplier constants (3 bits for the signed

integer portion, and 5 for the fractional part) were sufficient for the filter to function based upon its

frequency response curve. Additional testing showed that 6 bits to store the fractional part of the

intermediate results were near optimal. Increasing the number of bits beyond 6 had virtually no

effect on improving the response of the filter, but fewer than 6 degraded the filter's performance.

The response of the filter was determined using Matlab to post-process the filters response to an

impulse input.

Although an 8-bit word was shown to be near optimal for the constants, the word size rec-

ommended later is 16 bits for the multiplier constants (3 bits of two's complement integer and 13

bits of fraction). The added precision was a byproduct of optimizations in the filterbank stage. Be-

cause the IIR filter and the filterbank were combined in the hardware implementation, the IIR filter

benefited from the higher requirement of the filterbank. In the same manner, the filterbank requires

SVHDL is an industry standard language (IEEE Standard 1079-1987, revised in 1993) for the modeling of digital
systems. VHDL is currently required for all new DOD contracts which involve digital systems.

23

8 bits of fraction for internal precision. Therefore, again the IIR filter precision was extended to

allow the re-use of the hardware components. The filterbank mentioned here is discussed in the

following section.

3.3 Spectral Analysis

The processing stage following the outer/middle ear filtering, both physiologically and in

the model, takes place in the organ of the cochlea. In this organ the sound energy travels through a

spiral shaped fluid-filled chamber where it stimulates hair cells which in-turn stimulate the nerves.

These cells produce the electrical signals that are transmitted to the brain for processing via the

auditory nerve. As the sound energy travels through the cochlea, a natural separation of the energy

into the frequency domain occurs. The higher frequency energy is absorbed early in the cochlea,

while the lower frequency energy propagates deeper into the spiral-shaped organ.

Because of the physical separation of the frequencies in the cochlea, the hair cells located

closer to the oval window (where the energy enters the cochlea) respond to high frequency energy,

while those cells located further from the oval window respond only to lower frequency energy.

Therefore, the messages sent to the brain are in fact frequency-coded showing the spectral content

of the sound energy. The separation of the sound energy into frequencies by the cochlea is nearly

a continuous function due to the many thousands of hair cells.

3.3.1 Implementation in AIM. Because we must limit the size and complexity of simu-

lation models, any feasible representation of the cochlea must use a finite number of discrete fre-

quency bands to represent what we perceive as the otherwise continuous response of the cochlea.

Much research has been applied to choosing the optimal shape for such a discrete filter[18,16].

At first glance, one solution to the frequency separation problem appears to be the Discrete

Fourier Transform (DFT). The DFT solution, however, is not acceptable because of the loss of

all phase information; the DFT only provides energy content information. The hearing process

depends heavily upon the phase angle of the incoming sound for localization of the sound source.

Removing phase information prohibits a model from being able to do localization processing [25].

Therefore the DFT is unacceptable as a solution to accurately model the hearing process.

24

The current model is based on the revcor function. The revcor (REVerse CORrelation)

function is a continuous representation of a set of data points obtained from an experiment in

which the firings of a primary auditory fiber are correlated with the waveform entering the ear[16].

The result of the reverse correlation process is an approximation to the impulse response of the ear.

At the time, researchers looking for an analytic expression to model the revcor function

identified the gammatone function as a good approximation[14]. The gammatone gets its name

from the fact that the impulse response is a cosine wave (tone) with the amplitude envelope shape

of the gamma function found in statistics. The impulse response of the gammatone function is

shown in Figure 14. Expressly, Patterson[16] gives the gammatone equation for (t > 0) as:

gt(t) oc t(n-Ve(-2*bt)cos{2irf0t + 9) (5)

100 150 200
Sample Number

Figure 14: Impulse Response of 4t/l Order 1 kHz Gammatone Filter

In Equation 5, f0 represents the center band of the filter, n the order of the filter (most

commonly fourth-order for auditory modeling), 6 is a parameter descriptive of the bandwidth of

the filter, and 9 an initial phase angle. A thorough discussion on the choice of the gammatone filter

as well as the filter spacing and bandwidth can be found in [18, 20,21].

Equation 5 may be transformed into the frequency domain by noting that the multiplication

of the gamma function by the cosine will result in the convolution of the frequency spectrum of the

25

gamma function with the impulse frequency response of the cosine. Thus the frequency domain

expression becomes (ignoring the phase term because it does not affect the shape of the function

and considering only positive frequencies):

GT(f)*[l+j(f-fo)/b]-n (6)

From Equation 6 it is easy to see that the filter can be implemented by cascading n identical

filter stages. (As in Equation 5, n represents the filter order.) To optimize the filter for implementa-

tion in a C program (namely AIM), the input data is first down-shifted by /„ through multiplication

with a complex exponential. The complex multiplication relocates the filter's center frequency to

DC. The data is then processed using n passes through a first order gammatone low-pass filter.

Finally, the data stream is up-shifted back to f0 again by multiplying with a complex exponential.

One should recognize this process as the classic low-pass prototype filter method.

A computational cost analysis was done in considering the frequency shift approach just

discussed as an alternative to to the filtering requirements. The initial down-shift of frequency

requires a complex number multiplication, the cost of which is actually two multiplies. To further

increase speed, the values for the complex representation of the shift frequency need to be stored

in read-only memory (ROM), or require several additional multiplies to produce them as needed.

One possible solution to the storage versus multiplication trade-off considered was to change

the filter spacing. The frequency shift method of AIM is based upon the multiplication by complex

coefficients which lie equally spaced on a unit circle. The location of the complex values on the

unit circle is determined by the ratio of the sampling frequency to the center frequency of the filter.

Therefore, by spacing the filters at octave multiples above a base set, the coefficients from the first

set may be used for the higher frequency filters.

The reuse of one set of ROM coefficients was tested and proven effective through modifica-

tions to AIM, however, it was not pursued beyond proof of concept since the resulting filter spacing

is not consistent with the ERB developed by previous researchers.

Continuing with the cost analysis, the actual filter algorithm must be performed on a complex

value as a result of the frequency down-shift. Again, if we assume a ROM storage for the needed

coefficient, the filter algorithm requires one complex multiplication and two complex additions.

26

Therefore the actual number of operations for a fourth-order gammatone filter will be 8 ordinary

multiplications and 16 additions per data point.

Finally, the filtered data must be up-shifted back to f0 at the cost of another complex mul-

tiplication costing two real multiplications and one addition. Thus, the total cost of the recursive

gamma-tone filter as implemented in AIM (assuming all constants are stored in ROM) is 12 mul-

tiplications and 17 additions. The amount of ROM storage needed is related to the sampling fre-

quency (fs) and the center frequency (/0) of the filter. Approximately fs/f0 locations are required

for each filter in the filter bank.

3.3.2 Approximation. Because of the number of filter elements required in the filter bank

to obtain satisfactory frequency resolution for speech processing research, the filter bank quickly

becomes the bottle neck in the auditory model. Therefore, alternatives were sought to reduce the

amount of work required. The solution chosen was based on the all-pole gammatone filter (APGF)

approximation described by Malcolm Slaney[17]. In his paper, Slaney was the first to show that the

Laplace transform of the fourth-order gammatone function produces an S domain equation with

four real zeros and four complex conjugate pair poles. He further shows that the only significant

effect the four zeros have on the filter is to control the filter attenuation near DC. Therefore, he

proposes the elimination of the zeros resulting in an S domain equation for a first order all-pole

gammatone filter of:

(s + By + Lü
Z

where B is a bandwidth term and w is the center frequency in radians/second.

Equation 7 can be easily transformed into the discrete domain and put into the form of a

filter difference equation. The transformed first order APGF equation thus becomes:

Y[n] = oX[„_l] + bY[n-l] + cY[n-2] (8)

where Y[„] is the current filter output, Y[n_!] and Y[n_2] are the previous two outputs, and X[n_X]

is the previous input. The constants a, b, and c are easily computed based on the center frequency,

bandwidth, and sampling rate for the filter. (See Appendix A for computation of these constants.)

27

As was the case for the original gammatone filter, a fourth-order all-pole filter can be obtained by

cascading four identical filters together.

From Equation 8 it is easy to see that only three ROM constants per filter are required and

that a fourth-order filter requires 12 multiplies and 8 additions. While the number of multiplies

is the same as that of the recursive gammatone of AIM, the number of ROM values required for

the APGF is significantly smaller than that of AIM. In AIM a look-up table is used to hold the

complex phaser for the frequency down-shift. The size of the AIM phaser table is 5/4 times the

sampling frequency divided by the filters center frequency and is used to hold both the sine and

cosine values. One of these tables is required for each filter. In addition to a large savings in ROM

storage, the number of additions has been reduced from 17 to eight.

To test the viability of the APGF, the filter was coded into the C programming language as

an AIM module and added to AIM as an option for the filter bank processing. Testing was then

completed to compare the impulse response of AIM using the original filter to that of the APGF.

Results of these tests are shown in Figures 15 and 16.

Figure 15: Comparison of Gammatone and APGF Impulse Response

The response of Figure 15 was generated by processing an impulse of magnitude 1000

through AIM (using the "genbmm" command) with only one active filter in the filter bank. While

many different frequencies were tested, in the case shown the filter center frequency was 1 kHz

because it falls near the center of the filter bank. To ensure the correctness of the experiment, the

28

Figure 16: Frequency Response of Gammatone and APGF

middle ear filter was turned off. The output data was written to a file, then processed in Matlab

where both the time and frequency domain representations were compared.

In Figure 16, the data used to generate Figure 15 was further processed and plotted using

Matlab to convert the raw data into the frequency spectrum. Figures 15 and 16 demonstrate that

the APGF differs slightly from the gammatone filter in both the time and frequency domain. In the

time domain (where AIM does its processing), the difference is a phase shift. Within any given

filter from the filterbank, the phase difference manifests itself as a time shift, and is constant. For

the filter shown in Figure 15 the delay is under 0.5 ms. Because current speech recognition research

averages the data in 16 ms windows[25], it is reasonable to discount these small time shifts.

The differences in the frequency domain, as seen in Figure 16, agree with those predicted

by Slaney, namely the loss of attenuation near DC. As claimed previously, the difference can be

discounted because of the middle ear filter (which was disabled in the generation of Figure 16).

When the effect of the middle ear filter is included prior to the spectral filtering, the difference be-

tween the low-frequency responses of the APGF and the gammatone filter is decreased. Figure 17

illustrates the response of the APGF and the gammatone filters with the corresponding middle ear

filters enabled.

A final comparison between the AIM gammatone filter bank, and the APGF filter bank ad-

dressed the speed of the code. Although the actual execution time of the two different algorithms

in AIM is not expected to map directly to the execution time of an optimized hardware implemen-

29

-50

-60

-70

-80

Frequency (Hz)

Figure 17: Gammatone and APGF Frequency Response with Middle Ear Filtering

tation, such a comparison is valuable as an indication of the number of operations that must be

computed. Table 2 compares the run times of AIM using the default gammatone filter (GTF) and

the new all-pole gammatone filter (APGF).

Table 2: Comparison of Filter Bank Run Times (seconds)
Run# GTF APGF APGF4

1 9.58 9.25 6.10

2 9.58 9.22 6.13

3 9.53 9.27 6.13

4 9.56 9.21 6.12

AVERAGE 9.56 9.24 6.12

As can be seen in Table 2, a variant of the APGF (named APGF4) was developed and tested.

The APGF4 filter was a fixed fourth-order filter mathematically equivalent to the APGF. The dif-

ference between the APGF and the APGF4 is in their implementation. The APGF is a recursive

filter. In APGF4, four recursions of the APGF were algebraicly combined into a single fourth-order

expression. The single expression was then implemented without the need for recursion or looping.

While the APGF4 executes faster on a general purpose processor, it requires much higher preci-

sion than is possible using fixed-point integer arithmetic. Therefore, the APGF4 was not further

pursued as an alternative in the hardware solution.

30

For the tests run in Table 2, a seven-second audio stream was processed through AIM with

the outer/middle ear filter turned off as well as all processing following the filter bank. Disabling

the mentioned functional blocks isolated the filter bank from the rest of AIM. In each case there

were 64 filters in the filter bank. The processing was accomplished on an unloaded 266 MHz

Intel Pentium-Pro processor running Linux 2.0.34. The AIM code was compiled for Linux using

the GNU gcc compiler tools. Times recorded are the user CPU times reported by the operating

system's time command.

As expected, because of the reduction in arithmetic operations, the APGF bank operates with

a slight advantage in speed over the gammatone filter bank. The increase in speed was found to be

dependent upon the processor and operating system. When run under Sun-OS 4.3.14, an increase

in speed of 1.3 times was realized for the APGF over the GTF. Further improvements in speed are

expected when the APGF is implemented in an application-specific architecture.

Having selected the filter equation, the next step was to optimize the filter for hardware

implementation. Assuming a fourth-order filter, an initial analysis would indicate the need for

3 read-only memory (ROM) constants and 12 read-write memory (RWM) cells per frequency

channel. However, upon closer inspection, a data dependency appears within each channel where

the output of any given stage of the filter bank becomes the input to the following stage. Taking

advantage of spatial locality of the data in the algorithm, the number of RWM cells can be reduced

from three cells to two per recursion of the filter thus reducing the total storage requirement per

filter to 3 ROM and 8 RWM cells.

The RWM reduction is possible because the input value for second through fourth recursions

of any filter in the bank is the output of the recursion that preceded it. Since the previous recursion

will have just completed, there is never a need to store its output to memory; the output can be

re-circulated directly into the following filter. The input to the first stage of any filter in the bank

will always be the output of the IIR middle ear filter, which is stored separately.

Next to be considered was the precision, or word sizes, for these memory locations. Again,

VHDL was employed to model the filter at the binary level so that realistic comparisons could be

made between systems operating with different word sizes.

31

For the VHDL tests, a behavioral description of the APGF was written. Although the model

was behavioral, i.e. the algorithm appeared in much the same form as in the C program code,

the data objects were generic-sized vectors of bits. Abstract data typing and overloading of the

math operators allowed these vectors to be manipulated using standard algebraic notation while

preserving the binary behavior of an integer-based system.

The actual testing proceeded much as the testing for the middle ear word sizing experiments.

The bit size of the stored data was varied, as well as the number of additional bits which were

stored as fixed-point fraction bits. For each case, an impulse was run through the filter and the

output was collected and analyzed using Matlab to post-process the data and generate frequency

response plots. The output data was also viewed directly in the time domain and compared to the

time domain impulse response of the AIM filters.

When considering the ROM word size, the first step was to generate a table of possible

constant values that would be needed for a typical system. A table of constants was generated

using the info=all option of AIM with the APGF selected. The table revealed that the absolute

value of the largest constant was less than 2.0. Therefore, the constant needed only 2 bits to

represent the integer: a sign bit and a single data bit, leaving the number of fractional bits in the

ROM value as a single degree of freedom for the experiment.

Because the final system was constrained to accept 16-bit integers and provide 16-bit integer

results (the constrain imposed by the requirement to remain compatible with AIM), it was natural

to internally store the integer portion of the values in 16 bits. Therefore, as with the ROM constants,

for the RWM storage there was again a single degree of freedom left for consideration: the length

of the fractional part.

A series of experiments were run where the ROM fraction size was varied from 6 to 16 bits

and the RWM fraction size was varied from 0 to 12 bits. As previously mentioned, at each step an

impulse was applied to the digital filter and the spectral shape of output data was compared to that

of the AIM filters using Matlab. For these experiments, a filter element with a center frequency

of 100 Hz was used because: 1) it is the minimum frequency used by default in AIM, and 2) its

constants are the smallest, making it the first filter element to deteriorate due to round-off errors.

32

Table 3: Effect of Word Size on Filter Frequency
Bits of Precision Percent Shift

10 15
12 15
14 8
16 8

The testing revealed that if fewer than 10 bits are used, the first ROM constant for the 100 Hz

filter is rounded to zero and the filter does not function. With 10 bits, the same constant realizes a

single ' 1' in its least significant bit position. While the filter will function with 10 bits, its operation

is marginal. In fact, the center frequency of the filter is shifted by 15% toward DC. Increasing

the number of ROM fraction bits reduces the undesired frequency shift. Table 3 illustrates the

relationship observed between the number of bits and the shift of the filter's center frequency for

the 100 Hz filter.

When the ROM word is set to 16 bits, 2 for the integer part and 14 for the fixed-point fraction,

the worst case frequency shift is reduced to 8%. That is, the 100 Hz filter behaves as though it were

centered at 92 Hz. Extending the ROM word size an additional 2 bits (16 bits of fraction) did not

significantly change the frequency shift of the response from that of 14 bits. Because 16 bits is

a standard word size and the next logical increase in size did not significantly improve the filter

response, a 16-bit word size (2 integer and 14 fraction) was chosen for the ROM coefficients. It is

significant to note here that regardless of word size, the frequency shift error is inversely related

to the filter center frequency. The higher the filter's designed center frequency, the smaller the

frequency shift error.

Even with as much as 8% error in the location of the lower frequency filters, it is still pos-

sible to precisely specify a filter. For example, to locate a filter at 100 Hz, an impulse can be

processed through AIM with a 100 Hz filter specified. The output is then processed (using Matlab)

to determine the resulting filter center frequency. The difference between the actual frequency and

the desired frequency is then added to the desired frequency and used to specify a second run of

AIM. Through iteration coefficients can be chosen which give the desired frequency response.

For the RWM word size, the key figure of merit was the time domain response of the filter.

If too few fraction bits were maintained, the time domain response possessed a negative DC bias.

33

As would be expected, the bias effect also showed up in the frequency domain as a positive DC

gain.

The DC shift of the frequency response was directly influenced by the number of fractional

bits in the RWM word. Testing revealed 8 bits of fraction to be the optimal size for this applica-

tion. Therefore the RWM word size of 24 bits (16 for the twos-complement integer and 8 bits for

fraction) was selected.

At this point, all that remained for the APGF was to design an architecture that would take

advantage of the spatial locality of the data and use the optimized word sizes. The details concern-

ing this architecture are discussed in Chapter 4.

3.4 Neural Encoding-Rectification and Compression

In the Auditory Image Model, after the sound has been filtered by the gammatone filter bank,

which models the motion of the basilar membrane, it enters the neural encoding stage. The first

step of neural encoding is half-wave rectification and logarithmic compression of the data. The

half-wave rectification models the way in which the hair cells respond to a compressive stimu-

lus. The compression models the way in which the large movements of the basilar membrane are

transformed into the smaller nerve firings [26].

Following the rectification and compression of the data, AIM models the firing of the hair-

cell nerves through a process coined adaptive thresholding. While the rectification and compres-

sion, and the adaptive thresholding are actually both part of the neural encoding process, these

topics have been split into two sections for clarity. The remainder of Section 3.4 presents the

discussion on rectification and compression, while Section 3.5 presents the adaptive thresholding.

3.4.1 Implementation in AIM. In AIM, the half-wave rectification is accomplished by

simply setting any negative value in the data stream to zero before the compression. The com-

pression is then performed by converting the output of the filter stage to millibels (one millibel =

100 decibels). The algorithm used for the compression to millibels first computes the logarithm

(base 10) on the data, then multiplies the result by 2000. The logarithm employed by AIM is the

1 o g 10 (X) function from the standard C libraries.

34

3.4.2 Approximation. As noted in Chapter 2 , researchers have proposed and utilized

a variety of compression algorithms. Currently, the logarithmic method employed by AIM as its

default is the most widely used; thus it was chosen for implementation. The focus of this research

was to develop a method for efficiently converting the data stream to millibels[27].

In 1962, John Mitchell reported a linear approximation technique for quickly computing

the logarithm in base two[28]. In his technique, to compute the approximate log2 of a number,

Mitchell linearly interpolated between the log2 of the two nearest powers of two. For example, to

compute log2(6), one would linearly interpolate between log2(4) and log2(8). Figure 18 illustrates

Mitchell's technique graphically over one log cycle from 32 to 64.

Figure 18: Mitchell's Linear Approximation to log2

Perhaps Mitchell's greatest contribution was his technique for performing the linear interpo-

lation. His technique began with finding the characteristic, or whole number part, of the logarithm.

To determine the characteristic, Mitchell counted bit positions to identify the bit number corre-

sponding to the most significant non-zero value in the input binary number. For example, consider

the 8-bit computation of log2(55). The binary representation of the integer 55 is OOIIOIH2. The

most significant one is located in bit position 5 (bit 0 being the right-most bit), therefore the char-

acteristic of /o(?2(55) is 5.

After the most significant one had been located, Mitchell extracted all of the bits of lower

significance and made them into a fixed point fraction appended behind the characteristic. Contin-

35

uing with the example of log2(55), the approximate logarithm (base 2) is 101.101112 or 5.718750.

The actual log2(55) = 5.78136 (rounded) indicating an error, in this case, of-1.08%.

Mitchell's algorithm always has a maximum magnitude error of -0.08496 on the values that

fall exactly between two powers of two[28]. Therefore, the worst case percent error occurs when

the input value is 3 (exactly between 21 and 22). In this case the error is approximately 5.36%. The

percent error is cyclic and decays exponentially as shown in Figure 19.

Figure 19: Percent Error in Mitchell's Approximation

While others have reported improvements to the accuracy of Mitchell's algorithm, they have

done so at the cost of added complexity[29, 30]. Specifically, the algorithms of [29] and [30]

require the calculation of fractions of the input value which are not powers of two. For this re-

search, a method was desired that had better performance in the small input range than Mitchell's

algorithm, with less complexity than what others have reported.

A technique to reduce the error came through careful study of the approximation and the

percent errors as shown in Figures 18 and 19. Note particularly that the magnitude of the error

repeats cyclically between powers of two, and that the maximum error is always -0.08496. A

method to reduce the error is to break each log cycle into two sub-regions and change the slope of

Mitchell's approximation so that the mid-point of the approximation is pulled closer to the actual

log value.

36

The proposed technique is in fact similar to the techniques of Combet[29] and Hall[30]. In

their approaches, they generalize to more than two sub-regions and develop precise mathematical

equations which minimize the error. The disadvantage of the algorithms developed by Combet and

Hall is the need for the computation of fractional multiples of the input value, as well as several

conditional additions and subtractions.

The method developed in this research focuses on the binary representation of the num-

bers. Considering Mitchell's approach as described above, he found that the input number itself

contained a linear approximation between two known points. The question posed was whether

a similar simple approach to adjust the approximate log existed. The answer is yes, and as in

Mitchell's algorithm, the solution is contained within the input value.

To understand the new approximation, recall the magnitude of the error in any cycle as seen

in Figure 18. The absolute value of the error is 0.08496 which has a binary representation of

0.0001010110112. In order to zero-out the midpoint error, we need to add this error value to our

approximate log. However, adding 0.8496 only applies when the input value is exactly between

any two powers of two. For other inputs some fraction of this value would need to be added.

Now, consider the binary representation of the input values near the mid-point of a log cycle.

For example, 12 which appears between 8 and 16 and has the binary form (in 8 bits) 000011002.

Using Mitchell's approximation algorithm above, log2(12) « 11.1002. We know also that the ex-

act value of log2(12) = 11.1001010110112 (the sum of our approximate value and our maximum

error). Taking into account the weight of each bit in the fraction, it is easy to show that the single

"1" bit in the 4th position to the right of the decimal point (0.00012 which represents 0.0625) ac-

tually accounts for 73.6% of the error in Mitchell's approximation. Therefore the fourth fractional

bit is the target of the new method.

When considering how the fractional part of Mitchell's approximation was generated, we

see that it is a linearly increasing value. Thus, by copying the fractional part of Mitchell's ap-

proximation, shifting it to the right by 3 bit positions, and adding it back to the approximation,

an adjustment factor is computed that linearly increases and at the mid-point will have corrected

73.6% of the original error. Effectively, the copy-shift-add correction changes the slope of the ap-

37

proximation so that it approaches the actual log at the mid-point between powers of two. Table 4

tabulates the correction for the input values 8 to 12.

Table 4:] First Correction to Mitchell' s Approximation

Input Binary Form Mitchell % Error Adjusted % Error

8 00001000 011.00000000 0.00 11.00000000 0.00

9 00001001 011.00100000 -1.42 011.00100100 -0.92

10 00001010 011.01000000 -2.16 011.01001000 -1.22

11 00001011 011.01100000 -2.44 011.01101100 -1.09

12 00001100 011.10000000 -2.37 011.10010000 -0.63

The shift-add does not entirely solve the problem, however, because now the adjusted ap-

proximation and the actual log are converging at the cycle midpoint. Therefore the slope of the

approximation must be adjusted downward after the midpoint in order to keep the approximation

inside the log curve. Without the second correction, the approximation curve would penetrate the

actual log curve resulting in a positive, and even greater error between the midpoint and the upper

endpoint.

Again, a simple adjustment was found within the approximation. To identify the solution,

note first that the change in slope must occur when the most significant bit of the fraction is set to

a 1 indicating that the input is greater than half of the distance between two consecutive powers

of two. Second, the complement of an increasing sequence of binary numbers is a decreasing

sequence. For example, observe the two-bit count: 00 01 10 11, which represents the sequence 0

1 2 3. The complement of the binary sequence is 11 10 01 00, or 3 2 1 0 which is clearly a down

count.

Now observe the first four bits of fraction from Mitchell's linear approximation near the

midpoint of any log cycle. The sequence (disregarding for the moment the lower-order bits) would

be:

.01102 .01112 .IOOO2 .IOOI2 .IOIO2

where the .10002 is exactly between two powers of two. For the first correction just discussed,

these bits were simply copied, shifted to the right, then added back to the sequence. However, if

the complement of the bits is computed when the left most bit is set, then the correction factors

38

become:

01102 OIII2 OIII2 OIIO2 OIOI2 (9)

From the sequence of Equation 9 it is easy to see that the correction factor will begin to

decrease linearly until the fraction is one step from the end of the log cycle. At that point the

fraction bits would be .11112, and consequently the correction would become OOOO2. Hence the

approximation converges linearly to an exact value at the end of the log cycle.

Table 5 tabulates the remaining values in the log cycle that was started in Table 4 using the

second correction. Note that the value for 12 has been changed between the two tables because it

is the first value where the most significant bit of the fraction is set.

Table 5: Second Correction to Mitchell's Approximation
Input Binary Form Mitchell % Error Adjusted % Error

12 00001100 011.10000000 -2.37 011.10001111 -0.74

13 00001101 011.10100000 -2.04 011.10101011 -0.88

14 00001110 011.11000000 -1.51 011.11000111 -0.79

15 00001111 011.11100000 -0.82 011.11100011 -0.52

16 00001000 100.10000000 0.00 100.00000000 0.00

Several observations can be made from Tables 4 and 5. First, the percent error is always

negative, suggesting a positive offset could be added to further improve the approximation. Second,

as can be seen in Table 5, the number of bits included in the adjustment will affect the final result.

Finally, Table 5 changes the approximation of the mid-point value, and in fact increases its error. In

order to better understand all of these effects, the algorithm was modeled using a VHDL simulation.

In the simulation, the number of bits to be included in the shift/add, as well as the number of

bit positions these bits were to be shifted was left as generic (changeable) parameters. Simulations

were then run for integer inputs ranging from 1 to 8000, while the number of bits and shift positions

were varied. Two parameters were measured during the testing: the RMS error over the entire

range, and the worst case percent error. Table 6 summarizes the results of the VHDL testing.

As can be seen in Table 6, the minimum percent error and the minimum RMS error do

not occur simultaneously. Fortunately, both of these minimums occurred when the number of

39

Table 6 VHDL Results for Approximation Adjustment Strategies
Positions of Right Shift

#Bits 2 3 4
RMS MAX% RMS MAX% RMS MAX%

6 0.1389 +2.25 0.2665 -1.75 0.4188 -3.25
5 0.1361 +2.0 0.2751 -1.75 0.4231 -3.5
4 0.1385 +1.5 0.2928 -2.0 0.4318 -3.5
3 0.1717 -1.0 0.3301 -2.5 0.4501 -4.0
2 0.2913 -2.0 0.4094 -3.5 0.4895 -4.25

shift positions was two.6 Therefore, a two position shift is the optimal selection for the shifting

distance. For the number of bits to include, the best choice is four bits because it falls between

the optimal choice for the minimum RMS error (3 bits) and the minimum maximum error (5 bits).

The resulting approximation exceeds the actual log for some values which works to both reduce the

worst case error as well as the overall RMS error. Figure 20 compares the resulting approximation

to the actual logarithm base 2 over the input range of 32 to 64.

45 SO
Input Value (X)

Figure 20: Comparison of Adjusted log2 Approximation and Actual log2

Because the logarithm approximation is cyclic, the curve shown in Figure 20 is replicated

between every pair of consecutive powers of two. It is interesting to note that the approximation

is no longer linear as suggested earlier in the development of the theory. The non-linearities in the

approximation are an artifact of the addition of the adjustment value to the original approximation.

6 Although not shown in the table, the test included a shift of only one bit position. Because of the magnitude of the
error with only a single shift, these results were not included.

40

In the case considered as an example in Tables 4 and 5, there were no logical one bits in the original

fraction where the adjustment factor was added. However, as the input value increases, logical one

bits begin to appear in these positions of lower significance. As a result, an interference occurs

which causes the slope to increase or decrease faster than desired.

The bit interference occurs in much the same way as two waves of water that collide on an

angle. That is, there are times where they add constructively resulting in a larger signal, times

where they add destructively resulting in a smaller signal, and times when they cancel completely.

The net result is the oscillating effect that is observed in Figure 20.

Figure 21 illustrates the magnitude error and percent error of the adjusted and optimized

approximation algorithm. In these figures, the oscillations just mentioned appear more pronounced

because the magnitude of the actual logarithm has been subtracted. These oscillations have very

little effect on the performance of the auditory model because: 1) their magnitude is small relative

to the input signal strength, and 2) it would take a very low frequency (below the frequency cutoff

of the middle/outer ear filters) in order to produce samples closely enough spaced in magnitude to

see the effect.

Figure 21: Magnitude and Percent Errors of Optimized Approximation

An attempt was made to further improve the accuracy of the approximation. In the trial, the

adjustment process just discussed for the 4th bit of the binary fraction was repeated for the 6th bit

of the fraction. That is, the most significant bits of the fraction in Mitchell's approximation were

41

again copied, shifted, then added into the approximation. The shifting of the bits in the second

adjustment was further to the right than in the first case. Optimizing was accomplished using

VHDL in much the same way as was described in the preceding paragraphs.

The second adjustment reduced the peak error of the approximation to 1.09%. However,

because the neural encoding which follows requires a minimum of 1024 millibells for a nerve to

fire, the peak error seen by the neural algorithm is always under 0.5% independent of whether or

not the second approximation is applied to the logarithm. Since the smaller inputs (which produce

the largest logarithm error) are rejected in the neural stage, and because the second adjustment

increased the hardware complexity, the second adjustment was not implemented.

While perhaps necessary, the computation of the logarithm in base two does not yield the re-

sult required, that is millibels. Fortunately, the remaining conversion can be accomplished through

carefully selected addition operations. To illustrate the conversion to millibels, consider the math-

ematical identity. .

From Equation 10 it is easy to see that:

log10(X)=log2(X)xloglo(2). (ID

Now recall the definition of decibels (dB):

dB = 20 x log10(X) = 20 x log2p0 x log10(2). (12)

To convert dB into millibels, we simply multiply by 1000 yielding the expression:

millibels = 2000 x log10(2) x log2(X) « 602.06 x log2(X). (13)

A quick approximation for the log2(X) has just been derived leaving only the multiplication by

602.06 (which is rounded to 602) to complete the conversion of the input value X into its equivalent

millibel form. Fortunately, because the multiplier value is a constant, the multiplication can be

reduced to a few addition operations. The implementation of Equation 13 is discussed in detail in

Chapter 4.

42

3.5 Neural Encoding-Adaptive Thresholding

The second part of the neural encoding process is the simulation of the activity of the nerve

cells in the cochlea. The nerves in the cochlea, commonly referred to as the hair cells, convert the

motion of the basilar membrane into the electrical signals which are transmitted to the brain via

the auditory nerve. This section presents how AIM models the adaptive thresholding as well as the

approximations developed in this research to simplify the algorithms.

3.5.1 Implementation in AIM. After the logarithmic compression, the incident sound

energy has passed through four transformations in the model. First, the middle ear (ear drum,

malleus, incus and stapes) performed a band-pass filtering. Second, the energy caused the basilar

membrane to resonate with an impulse response that is similar to that of the gammatone filter

equation. Third, the energy was half-wave rectified and fourth logarithmicly compressed.

The rectification and compression are actually only part of the mechanical-to-electrical trans-

form accomplished by the hair cells in the organ of the corti. In addition to these two transforma-

tions, the hair cells also adapt to the motion of the basilar membrane to eliminate most of the

ringing oscillations induced by the gammatone response of the basilar membrane. In AIM these

transformations are known as two-dimensional adaptive thresholding[10] because it takes place in

both the time and frequency domains. The following two sections discuss the adaptive thresholding

in these two dimensions.

3.5.1.1 Time Domain Adaptive Thresholding. To understand the adaptive thresh-

olding in the time domain, refer to the impulse response signal shown in Figure 22. The solid

line segments represents the half-wave rectified, logarithmically-compressed motion at some point

along the basilar membrane, or functionally, the energy that is stimulating the hair cells.

The hair cells which detect the motion of the basilar membrane are known to have a recovery

time associated with their response. After they fire (transmit an electrical signal to the auditory

nerve), they will not respond to further stimulation unless the new stimulation exceeds their current

threshold level. In Figure 22, the threshold is shown as dashed lines. The threshold is a function of

the hair cell's last firing level and time.

43

Threshold

TIME

Figure 22: Time Domain Adaptive Thresholding (after [5])

In further study of Figure 22, assume that prior to the first rise in the input stimulus (the

solid line) the hair cells have fully recovered from their previous stimulation. Therefore at the

onset of the new stimulation, the hair cells will begin to fire in direct proportion to the intensity of

the stimulation.

As the stimulus reaches its first peak and begins to fall, the hair cells cease to fire and enter

their recovery period. The actual firing time of the cell is represented by the shaded portions of

Figure 22. Initially, the stimulus required to cause them to fire again must exceed the previous

peak, thus the firing level is the starting threshold level for the recovery period. Over time, the

threshold decays as the hair cells recover from the previous firing. In the ear, the threshold is an

exponential function with respect to the actual sound intensity. However, because the auditory

system behaves logarithmically, the exponential decay becomes linear in the inner ear.

Once a non-zero threshold has been established, only signals which exceed the threshold

will cause the hair cell nerves to fire. Even then, the firing of the hair cell is only proportional to

the energy which is greater than the current threshold, not to the total energy of the stimulus. The

result is a rapid damping of the ringing of the basilar membrane. In Figure 22, the shaded area

under the input stimulation represents the resulting electrical signal sent to the auditory nerve after

shifting each pulse down in order to align its base with zero potential.

While conceptually the process of adaptive thresholding may appear trivial, years of research

and testing have resulted in the complex algorithm that is implemented by AIM.7 The current

7The AIM code for the adaptive thresholding algorithm is found in the file corti. c which is located in the model
subdirectory of the AIM 8.1 release. Corti.c models both the time and frequency domain thresholding.

44

algorithm parameterizes two separate rates for the decay of the threshold, as well as an onset rate.

The onset rate allows for experimenters to adjust how rapidly the hair cell fires. Alternatively, the

rise time can be thought of as how closely the hair cell's output follows an input pulse on the rising

edge. The two decay rates work together through a feedback mechanism which makes the decay

of the threshold slightly non-linear.

The algorithm receives as its input the half-wave rectified, logarithmically-compressed out-

put of the gammatone filter bank. For each frequency channel, a threshold level is computed and

stored. When a new pulse arrives on a channel, its magnitude is compared to the magnitude of the

current decaying threshold. If the magnitude of the pulse is greater than the threshold, the differ-

ence is adjusted by the onset parameter and sent as output. In addition, the threshold is adjusted

upward to the level of the new pulse. When the input pulse begins to fall off, the output of the

thresholding algorithm immediately drops to zero because the input magnitude becomes less than

the threshold.

In the ear, as with most real systems, there are no instantaneous changes in signal level.

Therefore, the rapid return-to-zero of the output when the input signal falls below the threshold is

unrealistic. The sharp fall-off is corrected by a low-pass filter which follows in the model.

After computing the output value, the current threshold is decayed. The new threshold value

is computed based upon the current threshold, and the two decay parameters. The algorithm for the

decay is discussed in Section 3.5.2 along with a discussion of the approximation to the algorithm.

3.5.1.2 Frequency Domain Adaptive Thresholding. In addition to adapting to sig-

nals in the time domain, each hair cell also interacts with its neighboring hair cells. Recall that the

location of the hair cells along the cochlea determines the frequencies to which they will respond.

Therefore, the interaction between hair cells causes a smearing effect across the frequency spec-

trum. The interaction between adjacent hair cells is the second dimension of the two-dimensional

adaptive thresholding of AIM.

In AIM, the interaction between hair cells is modeled by allowing a change in threshold of

one channel to propagate to and affect the threshold of its neighboring channels. The channel inter-

action is accomplished by multiplying the difference between the new input and the old threshold

45

by a leakage parameter. The result of the multiplication (if positive) is then added to the threshold

of the neighboring channels.

It is important to note that the leakage parameter is a computed value based on the frequency

separation between the adjacent channels. Because the separation between channels is inversely

proportional to the number of channels, reducing the number of active channels increases their

separation while reducing their interaction. Table 7 shows the magnitude of the lateral leakage

parameter as a function of the number of channels in use. Table 7 was extracted directly from AIM

by invoking AIM and varying the number of active channels.

Table 7: Lateral Leakage Parameters
Number of
Channels

Lateral Leakage
Multiplier

10 0.000183
20 0.000367
30 0.000550
40 0.000734
50 0.000917
60 0.001101
70 0.001284
80 0.001468
90 0.001651
100 0.001835
110 0.002018
120 0.002202
130 0.002385

Table 7 shows that a linear relationship exists between the number of channels and the lateral

leakage constant, where the leakage coefficient can be computed by 1.834 x 10~5 times the number

of channels. Perhaps more significant, the leakage parameter is a very small number, particularly

when the number of channels is less than 60. As was illustrated in Figure 4 of Chapter 2, even with

64 channels, the effect of frequency thresholding was negligible.

For this research, 32 channels were chosen to be implemented. Currently, research on

phoneme recognition uses only 18 channels[7, 25, 6]. Additionally, preliminary design calcula-

tions indicated that the conceptualized hardware architecture with an input data rate of 20,000

samples per second, could maintain real-time filtering on 32 channels when operated at approxi-

46

mately 28.5 MHz. The same hardware could process 44,000 samples per second (CD sample rate)

when clocked at a modest 62.6 MHz.

Due to the minimal of effect frequency-domain adaptive thresholding, as compared to the

overall magnitude of the NAP, frequency thresholding was not included in the architecture. If

added, frequency adaptive thresholding would require three addition operations and one multipli-

cation for each value passed through each channel. The increase in memory storage would be

minimal since the thresholds are already being stored for the time-domain processing. However,

the memory addressing scheme would become more complicated because of the need to access the

data from more than one channel per operation.

3.5.2 Approximation. To better understand the approximation made to AIM's adaptive

thresholding, first consider the original AIM C program code. The code fragment shown in Fig-

ure 23 was extracted from the file corti . c which is found in the model directory of the AIM

release. For readability, the code in the figure has been modified to a pseudo-code format with line

numbers added for reference. In addition, the code for frequency thresholding has been removed.

Careful observation reveals two separate algorithms for computing the output value. The output

is first computed in the block from line 4 through line 10. It is then computed a second time in

lines 19 through 25. The second algorithm is the default for AIM. From comments that exist in

the code, it is apparent that the first method was retained from an earlier release and remains as an

option for backwards compatibility. Therefore, the first computation of the output was removed in

the approximation. The lines eliminated were 4, 5, and 10.

The remaining code falls into three functional blocks: raising the current thresholds, decay-

ing the thresholds, and generating the output. The following sub-sections explore the approxima-

tions that were derived for each of these functional blocks.

3.5.2.1 Threshold Rise. Beginning with the raising of the threshold in lines 1

through 12, note the outer loop which cycles from 0 to "times". When using the defaults in AIM,

"times" is always set to 1, thus the loop cycles twice. Inside the loop the threshold is raised, and

the parameter "rapidJimit" is adjusted, affecting the decay rate. Both of these actions occur twice,

making the decay rate slightly non-linear.

47

1 for(time=0 ; time < times ; time++) {
2 /* raise thresholds */
3 for(each channel) {
4 if(time == 0)
5 output = 0 ;
6 delta = input - microphonic;
7 if(delta > 0) {
8 microphonic = microphonic + (delta * rapid_rise) ;
9 rapid_limit = rapid_limit + (delta * fast_rise)
10 output = output + delta ;
11 }
12 }
13 }
14 /* decay potentials */
15 for(each channel) {
16 microphonic =

microphonic - (microphonic-rapid_limit) * rapid_decay;
17 rapid_limit =

rapid_limit - (rapid_limit-absolute_limit) * fast_decay;
18 }
19 /* generate output */
20 for(each channel) {
21 delta = input - microphonic ;
22 if(delta > 0)
23 output = scale * delta / compensate ;
24 else
25 output = 0 ;
26 }

Figure 23: Adaptive Thresholding Code from corti.c

To simplify the process of raising the threshold, the loop was unrolled and the equations

combined. For now, consider only the adjustment to the variable microphonic which is the current

firing threshold. After the first pass through the loop, microphonic takes the form:

microphonic' = microphonic + rapid-rise(input — microphonic) (14)

On the second iteration, we replace all occurrences of microphonic with the newly computed

microphonic' and simplify, yielding the expression:

microphonic" = microphonic(l-rapid-rise)2+input((2xrapid-rise)-rapid-rise) (15)

48

The parameter rapid-rise is a channel-dependent parameter, i.e. each frequency channel

has a unique value. Running a modified version of the AIM algorithm which displayed the values

of these internal constants revealed that rapid-rise took values from 0.21 to 0.25 for 100 Hz and

7 kHz channels respectively. Additionally, more of the channels had values of 0.25 or close to 0.25

as opposed to the lower values.

Since the variance of rapid-rise was minimal, it was hypothesized (and later shown) that

using the value 0.25 for all channels would have little effect on the algorithm. When the value 0.25

is put into the equation for microphonic" as defined previously, the equation simplifies to:

microphonic" = (0.56 x microphonic) + (0.43 x input) (16)

It was then noted that the average of these multiplier constants is approximately 0.5. Therefore,

the approximation was extended so that the definition of microphonic" became:

microphonic" = 0.5 x (microphonic + input) (17)

Equation 17 is equivalent to the Equation 15 if rapid-rise is given the value 0.293 yet it can be im-

plemented through a single addition with a shift right by one bit position of the result. Additionally,

no ROM value needs to be stored for rapid-rise.

The result of the approximation to rapid-rise is that the rising edge of the thresholds for the

neural firing will be slightly sharper than in AIM as seen in Figure 25. Additionally, because the

same value for rapid-rise (namely 0.293) is implemented for all channels, the firing thresholds of

each channel will rise at the same rate. While giving each channel the same rapid-rise parameter

does remove some of the channel-to-channel differences that actually occur in the ear, the tests in

Chapter 5 show that using the same rapid-rise did not make a statistically significant change in

the model when used for phoneme recognition.

Careful observation of the code fragment of Figure 23 shows one other parameter being

computed in the threshold raising section: rapid-limit. While computed in part when the thresh-

old is raised, rapid-limit is not used until the threshold decay section. Therefore, rapid-limit is

discussed in the following sub-section.

49

3.5.2.2 Threshold Decay. Immediately following the raising of the firing threshold

due to a stimulation event, the threshold begins to decay. Thus as time passes, the inner hair cells

recover their sensitivity. To model the hair cell's time-dependent recovery, AIM implements a

time-dependent reduction to the thresholds of each channel. There are actually two different decay

rates modeled in AIM simultaneously. The first is controlled by the parameter rapid limit, while

the second is controlled by the parameter rapid-decay.

The parameter rapidJimit causes the rate of decay to be dependent upon the onset of the

stimulation. Line 9 of the code segment in Figure 23 shows that rapid Jimit is set based on the

difference between the threshold and the new stimulation. Numerically, rapid Jimit is initialized

to the same value as the absoluteJimit parameter, which models the minimum input necessary to

initiate a nerve firing event.

From its initial value, rapid Jimit is adjusted upward by multiplying the input, which ex-

ceeds the current threshold, by the parameter fast-rise which is the key to the approximation.

The parameter fast-rise ranges from 0.00229, for a 6 kHz channel up to 0.0375 for a 100 Hz

channel which equates to varying rapid Jimit by 0.2% to 3% of the amount that the input exceeds

the current threshold.

The relatively small scale adjustment of rapid Jimit lead to the hypothesis that the com-

bined effect of these two parameters could be eliminated and the value of the absolute limit could

be used to model rapid-limit as a constant. Allowing rapid Jimit to equal the absolute limit is

consistent with AIM in that the absolute limit is the initial condition for rapid Jimit.

By choosing the absolute limit to model rapid Jimit, lines 9 and 17 are removed from the

code of Figure 23. After removing fast-rise, substituting absoluteJimit for rapid-limit, and

performing minor algebraic manipulations, line 16 can be expressed as:

microphonic = microphonic(l — rapid-decay) + (absoluteJimit x rapid-decay) (18)

AIM was employed to generate the needed values for rapid-decay which are required by

Equation 18. As expected, these tests revealed rapid-decay to be channel-dependent. Specifically,

it ranges from a low value of 0.001428 for the 100 Hz channel to a high value of 0.027047 in

the 6 kHz channel. Experimenting with AIM revealed that the generation of the neural activity

50

pattern (NAP) is much more influenced by rapid-decay than all of those previously discussed.

The dependency of the NAP on rapid-decay can be understood by realizing that these values

are computed to closely follow the natural decay rate of the gammatone impulse response. It is

the slope, as shown in Figure 22, that determines which events will cause a nerve firing event.

Therefore, care had to be taken in how the values for rapid-decay were handled.

Because the architecture being considered was a fixed-point integer architecture, fractional

values had to be converted into a fixed-point form. When converting rapid-decay into a binary

fixed-point notation, it was noted that if the decimal point is shifted by 16 bit positions (equivalent

to multiplying the value by 216, the largest possible value in the proposed system), the resulting

integers occupied, at most, 12 bits. To reduce hardware costs and processing time, the size of the

constants were rounded to 12 bits. A 12-bit fixed-point integer approximation was then coded into

AIM and validated.

One final approximation was made in the adaptive thresholding section of AIM. The value

for absolute limit, the lower limit of the threshold, is coded in AIM as 1397.94. Because of the

simplicity of the binary form of 1024, and the ease with which it can be multiplied, experiments

were run in which absolute limit was approximated as 1024. While the magnitude of the NAP

was slightly larger when using 1024, phoneme recognition experiments produced nearly identical

results as those when absolute-limit was its original 1397.94. 8 Therefore, 1024 was adopted as

a valid approximation.

3.5.2.3 Output Generation. The final step in the adaptive thresholding process is

generating the actual output by determining the difference between the current threshold (which

has been decayed) and the input. If the input is less than the threshold (microphonic in the code),

the output is set to zero. Otherwise the output is a positive value based on the difference between

the signal input and the threshold.

Rather than simply transmitting the difference between the input and the threshold, AIM

multiplies the difference by a compensation factor. These compensation coefficients (one per chan-

8Accuracy for these approximations was measured by using AIM as a front end processor for phoneme recognition
software explained in more detail in Section 5.2. During the testing, candidate approximations were coded into AIM
and run through a battery of recognition experiments. The results from these experiments were used to compare the
effectiveness of the approximations to the results produced by the original AIM code.

51

nel) are related to the rapid-decay parameters. Two techniques were attempted to approximate the

compensation factors of AIM.

The first approximation tested used the values of rapid-decay indexed in reverse order and

multiplied by 2048. The multiplication by 2048 approximates the actual relationship between

rapid-decay and the compensation factor which actually varies from channel to channel. The

value 2048 was chosen not as an average, but rather for speed. The attractiveness of this technique

is the fact that the data is already stored and the multiplication is simply a shift of 11 bits to the

left.

While the first approximation for rapid-decay could have saved ROM space in the architec-

ture, it did not survive the phoneme recognition test and subsequently was not used. Additionally,

the hardware realization of the first approximation would have complicated the ROM addressing

technique by requiring a more random access to the rapid-decay memory.

The second approximation attempt came from a study of the compensation constants gener-

ated by AIM. Testing revealed that the values for the compensation factor ranged from a high of

66.85 for the 100 Hz channel, to a low of 3.44 for the 6 kHz channel. Therefore, a logical approx-

imation was an 8-bit constant with 6 bits of integer and 2 bits of fixed-point fraction. The fraction

was rounded to the nearest multiple of 0.25 to allow the most accurate storage of the compensation

factor with two bits of fraction.

By limiting the compensation factor to between 0.0 and 63.75, the approximation closely

replicates (within rounding to 0.25) the AIM constants to filters as low as 121 Hz. Restricting

accurate compensation to channels above 121 Hz is not seen as a hindrance to the model since

current phoneme recognition experiments do not use channels below 350 Hz[25].

Figure 24 illustrates the new approximated algorithm inserted into AIM for testing. As was

the case with Figure 23, the code of Figure 24 was simplified by abstraction for readability.

To test the adaptive thresholding approximation, an impulse was used as stimulus for AIM

running both the original, and the new code. The output from these two runs was subtracted

and plotted in the form of a NAR Figure 25 shows the resulting difference between the given

approximation and the original AIM thresholding algorithm.

52

1
2
3

4
5
6
7
8
9
10
11
12
13

for (each channel){
/* Decay the threshold */
microphonic =

microphonic * (l-rapid_decay) + (absolute_limit * rapid_decay)
delta = input - microphonic;
if (delta > 0) {

/* Generate Output */
output = delta * compensate;
/* Raise Threshold */
microphonic = (microphonic + input)12;

>
else

output 0;

Figure 24: Approximated Adaptive Thresholding

Figure 25: Difference Between AIM NAP and Approximated NAP

In generating Figure 25, the output for the case of the approximation method was scaled

by 0.7 to remove the magnitude difference when approximating absolute-limit as 1024. After

removing the scaling effect, it is easy to see that the rising edges of the nerve firings differ the

most. For comparison, the baseline NAP for Figure 25 is the NAP of Figure 3. What is perhaps

most important to observe from Figure 25 is that the number of nerve firings and their locations in

time are consistent with those produced by AIM.

53

3.6 Integration Filtering

The final stage of processing in the production of a neural activity pattern is a low-pass in-

tegration filter which smoothes the output of the adaptive thresholding to remove the finite discon-

tinuity that results from the abrupt turn-off. Recall that in the thresholding stage (Section 3.5.1.1),

an output was generated whenever the input exceeded the current threshold. However, as soon as

the input dropped below the current firing threshold, the output was immediately forced to zero

producing an undesirable discontinuity in the output which does not exist physiologically.

The integration filter is actually a part of the neural encoding stage since it is required to

properly shape the output to more closely match the output of the hair cells. For clarity, the dis-

cussion of the integration filtering has been removed from the neural encoding and is presented in

this section.

3.6.I Implementation in AIM. To eliminate the rapid fall time of the signal, AIM intro-

duces a low-pass (integrating) filter.9 One integration filter is common to all channels; there are

no channel specific constants. However, state information must be maintained on a channel ba-

sis. Mathematically, the filter is a first-order IIR type filter implemented in AIM by the difference

equation:

Y[n] = Y[„-i] + K(X[n_1} - y^u) (19)

where K is the constant 0.313356, X is the input, and Y is the output. Operationally, the data is

recursed through Equation 19 twice to produce a second-order filter. The frequency response of

the second order filter is shown in Figure 26.

Through algebraic manipulations, the characteristic difference equation for the first-order

filter can be converted to a more standard form represented by:

y[B] = #*[„_!]+ CT|n_1] (20)

In Equation 20, K is 0.313356 as before, and C is (l-K) or 0.686644. The same expression may

also be converted into its second order form, representing the implementation of the two stages of

9The C code for the integration filter module can be found in the model directory of the AIM distribution under the
filename integrate. c.

54

10°
Frequency (Hz)

Figure 26: Frequency Response of AIM's Integration Filter

filters. However, it is worth pointing out that implementing the combined second-order equation

directly increases the number of required constants, and results in smaller constants which are more

susceptible to rounding errors.

3.6.2 Approximation. Because of the relative simplicity of the integration filter im-

plemented in AIM, it was not replaced. A size optimization on the filter constants was performed.

Before the optimization could begin, it was necessary to decide whether to implement the recursive

first-order filter as in AIM, or to combine the stages to form a second-order filter. The first-order

filter was selected because of the number and the size of the constants required by the second-order

filter.

The word size optimization was performed by manipulating the binary form of the two con-

stants K and C that were discussed in the previous section. Specifically, these constants (rounded

to sixteen bits of fraction) are:

C = O.OIOIOOOOOOIHOOO2 K = 0.10101111110001112 (21)

55

Note that the bit patterns of these two values in the 5th through 8th positions to the right of the

decimal point warrant rounding the values to 4 bits of fraction. As a matter of fact, 99.72% of C is

captured in these first four bits of fraction. Similarly, if K is rounded to 0.10112, it is only 0.12%

above the AIM value. Figure 27, which is a plot of the difference between the frequency response

of the exact filter and the approximate filter, illustrates that the minor changes in the coefficient

values have a negligible effect on the performance of the filter.

-70

-75

-80

10' 10"
Frequency (Hz)

10"

Figure 27: Difference Between Exact and Approximated Integration Filters

Figure 27 was generated by computing the complex frequency response of the AIM inte-

gration filter and the bit-truncated integration filter just discussed. The frequency responses (in

complex form) were then subtracted and the resulting magnitude was plotted in dB form as shown.

To fully appreciate the insignificance of the difference between the AIM filter and the ap-

proximated filter, refer to Figures 26 and 27. Note that the peak difference shown in Figure 27

corresponds to the -3dB point in Figure 26. The maximum difference between the AIM filter and

the approximate filter is -52dB which corresponds to a 0.251 % difference in magnitude.

Thus, the resulting filter is shown to be nearly identical in performance to the original AIM

filter, but with the advantage of requiring a much smaller binary representation. The advantage

of the smaller representation is manifested when constructing the actual hardware in two primary

56

modes. First, the size of the constants require smaller storage. Second, the actual multiplication is

one-fourth of that required for a 16-bit multiplication.

3.7 Integrated AIM Approximation

The complete approximation model consists of five separate components: middle-ear IIR

filter, gammatone filter bank, logarithmic compression unit, neural encoding, and a low-pass (in-

tegration) filter. These five components were all coded using the C programming language as

modules which functioned as callable replacements for AIM's modules.

To illustrate the functioning of the completed approximation model, Figures 28, 29, 30, and

31 are included. Figure 28 shows the default AIM NAP generated for the spoken word "hat". For

comparison, Figure 29 is the same spoken word as processed by the approximation code. Similarly,

Figures 30 and 31 illustrate the NAPs generated for a 1 kHz sine wave as generated by AIM and

the approximated code respectively.

In comparing Figure 28 to Figure 29 and Figure 30 to Figure 31, some observations can

be noted. First, the overall structure of the NAP is preserved in the approximation. Secondly,

however, some differences exist in the finer details. For example, the approximation appears to be

lacking some pulses in the rage of 0 to 120 ms, particularly in the low frequencies. Conversely,

in the range of 580 to 600 ms, the approximation appears to have additional details not present in

the AIM NAP. Additionally, the approximate NAP has been magnitude scaled to account for the

difference in the absolute threshold. By removing the magnitude difference (a constant multiplier),

the structural differences between the NAPs is more easily observed.

3.8 Summary

In this chapter each stage of AIM's default functional model was examined. For each

AIM stage the underlying algorithms were presented and approximations were developed which

simplify the hardware implementation of these algorithms. Additionally, spectral analysis and

phoneme recognition tests were conducted to verify that the approximations did not adversely af-

fect the overall functioning of the system.

57

31.9

m
DC
W

a
3
cr
03

Ü

5.8

IHHIM-

ilnl.

4-H-l
11II1111

U4414

iNiniitiiiMniuinniimiiii
_im»»?twiiiMiiiii!iiHWntiflmiiiii«riiii
mnrjwiwW^T'iinrrrfinnniiiiijMriii'iii'j
IWtfwiWNmllT^M'tlM'lM'llllUllll
ffii^rW<mmfclitmviHUvW
■wmwmfinnnHWiwi'miiimHiii
nrmw'!n""",Tf»"i(rrfifMtniin
wrimimimuninnmvvvm
mi n ^ f 1 T n 11 nm HI 111111111111111
jnmiiivrm 111111111111111111111
lüTiiMiin'" MiinriinniniMiii
i^iir >| M -• Miuiiniiii
in 11 ri* " "Mi
riT,ini '
mi «in ir ' " ' 'Hiiniii 111
■ *win '"iniHiiimiimir

'in rmmni'mTHvmi

•■nirtnriirmumi
1 'Ti'fii"iTiiriiTii|,rn,"riiriTiWTi

Time [ms] 600

Figure 28: NAP of "HAT" Generated by AIM

31.9

m cr
UJ

1 » I I ■ ' H 1 I 1) I ' I It I 1 » '
,1,1,HI.I I I.I.LI.M i l,|

,li,tililiUiliUli)i(i|iiiilWn44Ai
444

JJ

J4U411 i(.>,),iii,i, i>,| >.i

m
illli]

■u

-via

©
c
Ü

MlH««W1HHI!ll»11l««1lffl|rt
minif<i«i«mmwfi|ri<i««tiiiiititiiii

™,.™»nHiiiiifiiflriifliinMiin>imnmiifiinflii
..wniwvH»iiiiiiwi'rrm"!i5fi(i'yri!<»yj

imi«nr«nnBüMT*wtwiwmn,'ri!'iii'nM

iw^iifvt'mvii'mmvmYVvmvmi
HiiiiiiqfiwmMim'iW»ii»i»i'iwiHiii
mmiinirmiiiiiiiiiiiiiii'iii'riiiirniiifi

-^nim'TT11' 11'" *" "' M i n 1 T r rm
I "F11 "11"" 'HI i|iliumni|l
iminiM.
imw mii ni' 11 in 1111111 M

■•■ ii,*,*rrifprifrrrTrrrrrr"~
i' f 1 t ><\ <t n "i «1 'ii 11111 'n T I1 "i 'it 11 ITI VI
IH'1i|llllIIDl»Htl|III'll11!|llllli|l|,i!«i'l"1 ±M

1H iniimiiiiiiiiiiiiiiiiMuiiiiiiiimiiiiiii
iliiiinin,vn'vn"ri'ii«i IMMIW

5.8

Time [ms] 600

Figure 29: NAP of "HAT" Generated by Approximated Code

58

31.9

ORIGINAL AIM

wwwwwww^^
ttHttitfttHfHfftt*H*fttftHM1*tt*HfttH1*W1*ft*tfHtif11t^

Time [ms] 51.2

Figure 30: NAP of "1kHz Sinusoid" Generated by AIM

APPROXIMATE MODEL

31.9 j I i i i i—L

wfl*ttww*ww*rt,wwwYW*WYrYWYWYWWAW*flWflY^ *

Time [ms] 51.2

Figure 31: NAP of "1kHz Sinusoid" Generated by Approximated Code

59

The verification of each approximation included the coding of the approximation into AIM

compatible modules. In several cases VHDL and Matlab modeling were used to complete the

verification. VHDL modeling was used to accurately model bit-level implementations of the algo-

rithms, allowing for accurate assessment of word sizing and truncation errors. Matlab modeling

assisted in the development of filter equations, and was relied upon for the post-processing of data

extracted from both the AIM and the VHDL tests for spectral analysis. The result of this portion

of the research was a set of algorithms and equations which will accurately and efficiently imitate

the functioning of AIM but will simplify a hardware implementation.

With the development of the algorithms complete, the next step was to design a hardware

architecture on which the algorithms could be efficiently executed. Chapter 4 is devoted to a

discussion on the design of such an architecture.

60

IV. Hardware Implementation

4.1 Introduction

Following the development of the approximation algorithms for AIM, the next step was to

design a system in which the algorithms could be efficiently executed. The goal of the design

phase of the research was to demonstrate the feasibility of designing a single-chip system capable

of processing as many as 32 frequency channels in real time. The present chapter documents the

resultant architectural design.

The architecture under discussion has been modeled to the gate level using the VHSIC1

Hardware Description Language (VHDL). The purpose of the VHDL model was two-fold: to

show that the proposed architecture could be constructed using current VLSI technologies, and to

demonstrate that the algorithms of the modified AIM were correctly implemented.

Architecturally it is shown that the proposed system is, in part, a single instruction, multiple

data (SIMD) architecture. Additionally, the architecture is pipelined to allow for overlapping exe-

cution where possible. A third characteristic of the design is that it performs multi-rate operation.

Data enters the system at a rate that is lower than the data is processed internally.

As in the preceding chapters, this chapter follows the general organizational flow of AIM

with minor exceptions. Rather than discussing each of the modules of AIM individually, some of

the modules have been combined. Specifically, the processing of the outer/middle-ear filter (OMF)

and the all-pole gammatone filterbank (APGF) were combined into the first stage. The second pro-

cessing stage accomplishes the half-wave rectification and the logarithmic compression. Finally, in

the third processing stage the neural encoding was combined with the integration filter. As will be

shown, regrouping some modules simplified the hardware design and allowed for maximum re-use

of functional units. The three stages are discussed in the following sections. The first stage to be

considered will be the filtering stage.

1 Very High-Speed Integrated Circuit

61

4.2 Filtering

4.2.1 Algorithm. The first stage of the proposed hardware model combines the first two

stages of AIM, namely the outer/middle-ear filter (OMF) and the gammatone filterbank. The cor-

responding approximation filters are the IIR filter, and the all-pole gammatone filterbank (APGF).

There were three reasons for combining these two units: hardware utilization, similarity in pro-

cessing requirements, and data precision.

First, as data enters the model, it is processed one time through the OMF. In comparison,

the filterbank must process each data value four times for each filter in the bank to achieve the

required filter order. As a result, any functional hardware dedicated solely to the OMF would

be under-utilized while waiting for the filterbank to complete its processing. Because of the data

dependency between the OMF and APGF, the execution of these algorithms remains mutually

exclusive; only one of the two can be in execution at any given time. Therefore re-using functional

units is logical.

Secondly, the IIR filter requires six multiplications and five additions while the gammatone

filter requires three multiplications and two additions. Since the number of multiplication opera-

tions in each is a multiple of three , the two filters map easily onto the same underlying parallel

hardware core. Since the multiplications require several clock cycles to complete, the difference

in the number of additions can easily by hidden by the use of multiplier output latches and a single

adder operating as an accumulator.

Finally, by combining the two filter stages into" one functional unit, the internal precision of

the data is improved. Specifically, the number of fractional bits in the internal processing, as well

as the storage, can be increased without the additional cost of a wider data path between the stages.

Thus the input and the output of the combined unit may remain integer, while all filtering can be

accomplished with the added precision of fixed-point arithmetic.

The mapping of both filtering algorithms onto the same hardware core was not the only im-

plementation considered. An option where the filtering of the OMF and the APGF were combined

into a single equation was also considered. In order to combine the OMF and APGF, each filter

in the APGF filterbank is scaled according to the magnitude of the OMF response at the center

frequency of the particular APGF filter. The scaling, accomplished by weighting the input coeffi-

62

cient of the all-pole gammatone filters, results in a complete removal of the OMF without adding

computation to the APGF.

While initially attractive, the combined algorithm concept was not implemented because the

technique would scale the entire frequency response envelope of the gammatone filter by the same

factor. In particular, a constant scaling factor would artificially raise the response of APGF in the

low frequencies where the OMF actually imposes a loss. Therefore, simply scaling the envelope of

the gammatone filter would result in a distorted frequency response of the combined OMF/APGF

filters, particularly at the low frequencies.

Having eliminated the proposition of combining the filter equations, an architecture was

designed which supported the direct computation of both filter equations using shared functional

and memory units. A block diagram of the filter stage architecture is presented in Figure 32. Recall

the equations for the IIR filter and the gammatone filter discussed in Chapter 3:

Y[n] = 4iX[n-i] + A2X[n_2] + A3X[n_3] + SiY-[n_i] + B2Y[n_2] + B3Y[n_3] (22)

Y[n] = AX^ + BY^ + CY^q (23)

The discussion of Figure 32 is broken down into the following three subsections: multipliers,

memory, and control components.

Functionally, when data enters the system it is stored in the X - IN register. The previous

two inputs are then recalled from RAM1 and RAM2. All three input values then enter the multi-

pliers where they are multiplied by the first three coefficients of the OMF equation. The results of

the multiplications are latched and summed via the accumulator structure consisting of MUX1,

MUX2, ADDER, and OUTPUTDATALATCH.

While the accumulating is taking place, the previous output of the OMF is recalled from the

Y(-1) latch while the two outputs prior to the previous are recalled from RAM1 and RAM2. The

three previous outputs then enter the multipliers where they are multiplied by the corresponding

coefficients of the OMF equation. When completed, the system waits while these scaled outputs

are accumulated with the inputs to complete the OMF processing. Finally, the accumulated value

is written into the Y(-l) latch which becomes the input to the APGF.

63

Q W 3 u

90 H 0

papsMO^

••<■•

papsMOH

£UU"

xn^MOH

MOJ1UICJ' '

2"

U \ I
es

juu-i

S "2

LD\

^1
s

II I v

s o -
et

Iiai"

H <

SS
D

<
, n ,, n i, ,, ii i ,i ii ii ii a i. ii i

gg||55S|9sg«gs«Ba§öS

a x eti
U(ÜOl

S
00 SS

Q D

,, ,i II i.

A A A A

P^

l<f
o —
« CO

si 3 o.

et

- u

X^

Ö

•S

Sä
Q ö

SS 3=

o

ö

Figure 32: Filtering Stage Block Diagram
64

The processing of the APGF is similar to the OMF except that only one pass through the

multipliers is required. During the multiply phase, the value stored in Y(-l) is used as the X input.

The two previous outputs of the APGF filter are recalled from memory allowing the complete

APGF equation to be computed.

Following is a discussion of the details of selected portions of the design. The hardware

discussion begins with the multipliers.

4.2.2 Multipliers. The multiplication operations were the starting point for the design

due to their high relative cost in area and computational time compared to the other required op-

erations. By choosing to implement three multipliers in parallel, one-half of the IIR filter mul-

tiplications, or all of the multiplications required by the all-pole gammatone may be computed

simultaneously.

The multipliers chosen for the architecture were recursive octal-encoded Booth multipliers.

While the fully combinational form of the Booth multiplier can be configured to execute in a single

machine cycle, the recursive technique was chosen for two primary reasons. First, the recursive

form of the Booth multiplier is smaller than the combinational form because of the re-use of a

single adder. To perform the same multiplication using a combinational multiplier would require

eight 25-bit adders compared to the one 26-bit adder of the sequential multiplier. Analysis proved

that real time operation for a bank of 32 channels could be achieved using the slower recursive

method. (See Section 5.3 for a summary of the speed analysis.)

The internal design of the multipliers was accomplished using a bit-slice technique. Each

slice contains an adder/subtracter, an input latch for the multiplicand, multiplexers, and a pair of

data latches for holding the result. Initially, the multiplier is loaded into one-half of the output

register. As the multiplier is shifted for the octal Booth's algorithm, the result is shifted into the

same register. Upon completion, the multiplier value is fully shifted out, and the result remains in

the latch pair.

The multiplier slice does not contain any decode logic for the Booth algorithm. The decoding

is done by a small finite state machine attached to the array of slice cells. Operating from a single

clock, the state machine controls the adders, multiplexers and latches. The multiplier performs one

Booth's cycle for each clock period it receives. In the design, the multiplier state machine does not

65

keep track of the number of cycles to perform. "Rather, the cycle counting is performed external to

the multiplier slices so that the same cells can be configured to operate on different word sizes if

needed.

The critical component limiting the operational speed of the multiplier is the adder. Here

ripple-carry adders were chosen for their small size in comparison to other adder designs such as

the carry select or carry look-ahead adders. The required multiplications of the filter bank are 24

by 16 bits. Therefore, in order to ensure that the recursive Booth algorithm computes negative

numbers correctly, the minimum adder size is 26-bits. The additional bits are required to allow the

Booth algorithm to perform a conditional multiply by two before the add/subtract and to preserve

the sign in all cases.

If we allow a conservative 1 ns delay2 per carry stage, the 26-bit ripple carry adder design

would have a maximum delay of 26 ns, thus limiting the design to speeds under 38.4 MHz. As will

be shown in Chapter 5, a clocking speed of only 27.5 MHz is required to sustain real-time operation

in a 32 channel system. Therefore the ripple-carry adders will provide sufficient execution speed.

Because the multiplier coefficients for both the IIR and the APGF are 16 bit, only 8 clock

cycles are needed to complete a multiplication using the octal Booth algorithm. However, recall

from Chapter 4 that the coefficients for the IIR differ in precision from those of the APGF. Specif-

ically, the IIR has 3 bits of integer and 13 bits of fraction while the APGF has 2 bits of integer

and 14 bits of fraction. The difference in precision requires that an adjustment be made to re-align

the data after the multipliers. As indicated by the bit-field labels on dobus of Figure 32, the data

re-alignment is accomplished in the routing of the data during write-back to storage.

4.2.3 Memory. Following the design of the multipliers, the next issue to be addressed is

the memory requirements of the filtering stage. Looking again at Equations 22 and 23, we see that

storage for six internal states (24-bit words) are required for the IIR filter. Additionally, three 24-bit

storage cells are required in each stage of recursion for each filter in the filterbank. Therefore, a

system with 32 filter channels would require 390 memory storage cells of 24 bits. However, by

2Spice simulations for different adder cells considered for the design were consistently less than 1 ns when using
0.8 /im technology data. The delays will be even shorter if the design is migrated to a smaller technology.

66

translating the first recursion of the APGF in time we may take advantage of the spatial locality of

the data and reduce the storage requirement to 262 words of 24-bits.

The reduction in required memory is accomplished by eliminating the need to store a history

of inputs for the APGF bank. The need for a history of input values is eliminated by translating the

first recursion of the APGF one sample forward in time. The forward translation is performed by

allowing X[n_i] to become X[n] in Equation 23. Therefore, the present output from the IIR filter

becomes the input to the filterbank during the same sample period that it is computed.

One side effect of time translation is seen as the first output from the filterbank arrives one

sample earlier than it would otherwise. The resulting shift in time does not change the shape or

spectra of the filter's response to an input. The only actual change in the data stream is that the

output from each channel will have one less leading zero before the filter begins to respond to an

input. Since all of the channels experience the same time slippage, there is no phase shift between

channels.

Continuing with the memory reduction effort, note that in computing the APGF the previous

output (Y[n_ii) is recalled from memory to be multiplied by the B coefficient. Since the fourth-

order APGF is computed by four passes through the same filter equation, the previous output of

each recursion becomes the input to the next. Therefore, Y[n_!] is needed as the input X[n_i] on

the next pass of the filter. By exploiting the fact that Y[n_i] is currently held in a multiplier, we

can eliminate the need for separate storage and/or retrieval of the value from memory. To take

advantage of the location of the data, a data path (mlout in Figure 32) was added to allow the data

to propagate directly from one multiplier to the other.

Since the optimized architecture has only two banks of read-write memory (RWM), two

latches were added to the design to accommodate the six storage locations required by the IIR

filter. These latches are used to hold the present input to the IIR filter and the newly computed

IIR filter output. The added latches work to the advantage of the overall system by simplifying the

fetching of the IIR filter's output for the start of each filter in the APGF bank.

The memory in the proposed architecture has been designed to simplify its access. Specif-

ically, the filter states are stored in two banks of read-write memory (RWM) with their addresses

aligned. Therefore, a single memory address register ("Rowselect" in Figure 32) can be used to

67

access both banks simultaneously. Similarly, the three ROM coefficients for any given filter are

likewise stored in three banks of address-aligned ROM. The ROM does require an address register

separate from the RWM because the same coefficients are used for each recursion of any given

filter. Therefore, the ROM banks only need to have one-fourth of the number of memory locations

as the RWM banks.

There is an exception to the RWM alignment. In order to reduce the overall time required

to execute the filterbank, an overlap of operations was incorporated. After the first recursion of

a given filter completes its multiplication phase, the multipliers are immediately loaded for the

second recursion. While the second multiplication is being initiated, the products from the first

are being summed. Therefore, before the sum of the first products is completed and ready to be

written back to memory, the RWM address has been advanced. To allow the memory write-back

to occur to the previous address, the "Rowmux" shown in Figure 32 was added. The "Rowmux"

multiplexer allows the memory write-back to occur either at the current or previous address. The

actual destination is selected by the controlling state machine discussed in Section 4.2.4.

In order to automate the generation of the ROM, AIM was modified so that it would auto-

matically generate files which contained the data for the ROMs. All of the values are represented

as integers in these files. That is, all fractions have been left-shifted by the appropriate number of

bits to align the decimal point after the number. The ROM data file is in a form that allows it to be

used as input to the VHDL model directly, or to be used to generate a VLSI ROM layout.

Additionally, a C program was written to generate a ROM layout. (See Appendix D.) The

ROM generation program requires a file of integers as input and generates a file which is the VLSI

layout of a programmed ROM. The resulting layout file may be used as a sub-cell in an actual

system layout.

In order to access the memory (both RWM and ROM), circuitry must be included which

enables one row of cells for reading or writing. A chain of data latches was chosen for the row

selection. Each latch is initialized to '0' upon reset except for the first latch which is initially set

to '1'. Upon each advance command from the controller, the '1' is transferred to the next cell in

the chain and the cell giving up the '1' returns to a '0' state. There is one latch for each row in the

memory array; the row corresponding to the latch which holds the '1' is the selected row.

68

A bucket brigade method was chosen to eliminate address decoders that would be required

if a binary counter were used. In addition, the bucket brigade method consumes considerably less

power than a full decoder because of the reduction in the number of bit transitions per clock cycle.

The bucket brigade addressing technique could fail if an external force (such as a power surge)

caused more than one latch to be loaded with a '1'. The effects of such a condition would be

minimal because the system automatically resets these registers upon the receipt of each new data

value.

4.2.4 Control. The control of the filter-bank subsystem resides within a finite state ma-

chine pictured in Figure 33. The finite state machine provides all of the signals to the multiplexers,

adders, multipliers, and memory in order to implement the algorithms. The design of the finite

state machine began with the drafting of a conceptual architecture. The modified AIM algorithms

were then mapped onto the draft architecture and logic was added as necessary until all of the

algorithms could be implemented. The resulting filter architecture is shown in Figure 32.

Next, a state table was generated in which all of the needed control signals were clearly

identified as well as an initial assignment of states. Table 8 identifies the value of each control

signal of Figure 32 in each machine state. In the first state table, every step of every iteration was

delineated for clarity. Once completed, the table was examined for redundancies and loops were

inserted which reduced the number of required states.

Notationally, the dots in the state table represent "don't-care" values. In the "Next" column,

signal names that appear with the next state are entry conditions to that state. For example, to exit

from state 21 the signal named MP8 (which counts the 8 cycles of the multiplier) must be asserted

and the signal STA (which counts the 4 recursions of the filter) is checked. When STA is asserted,

the next state will be 22 signifying the completion of the filter channel; otherwise the next state

will be 17 where another recursion is started. The equations derived for each of the output signals

are tabulated in Appendix B.

The signals DRQ (data request) and DAK (data acknowledge) are not included in Table 8.

DRQ is the asynchronous data request from the sending unit, while DAK is a signal returned to

the sender to acknowledge receipt of the data. When the sending process has data, it first checks to

69

Figure 33: Filtering Finite State Machine

70

Table 8: Filter Section State Table

State My rst adv avr wl w2 wbk Id mpy Idr SO slO sll s2 S3 84 Ido cpl Next

0 0 0 0 0 0 0 0 0 0 0 0 1:DRQ

1 0 1 0 0 0 0 0 0 0 0 0 2

2 0 0 0 0 0 0 1 0 0 0 u 0 0 3

3 0 0 0 0 1 1 0 0 1 0 0 0 0 0 4

4 0 0 0 0 0 0 0 1 0 0 0 5:MP8

5 0 0 1 1 0 0 0 0 1 0 0 6

6 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 7

7 0 0 0 0 0 0 0 1 0 1 0 1 1 0 8

8 0 0 0 0 0 0 0 1 0 0 0 9:MP8

9 0 0 0 0 0 0 0 0 1 0 0 10

10 0 0 0 0 0 0 0 0 0 0 0 1 1 0 11

11 0 0 0 0 0 0 0 0 0 1 0 1 1 0 12

12 0 0 0 0 0 0 0 0 0 0 1 1 1 0 13

13 1 0 1 1 1 1 0 0 0 0 1 0 0 14

14 0 0 0 0 0 0 1 0 0 0 1 0 0 15

15 0 0 0 0 0 1 0 1 0 0 0 16

16 0 0 0 0 0 0 0 1 0 0 0 17:MP8

17 0 0 1 0 0 0 0 0 1 0 0 18

18 0 0 0 0 0 0 1 0 0 0 0 0 1 0 19

19 0 0 0 0 0 1 0 0 0 1 0 1 1 0 20

20 0 0 0 0 1 0 1 0 1 0 0 0 21

21 0 0 0 0 0 0 0 1 0 0 0 n-.mvS.ST4

22 0 0 1 1 0 0 0 0 1 0 0 23

23 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 24

24 0 0 0 0 0 1 0 1 0 1 0 1 1 0 25

25 0 0 0 0 1 0 1 0 1 0 1 0 1 n.W

see that DAK is low. If DAK is low, the sender places data on the input of the filterbank and sets

DRQ.

Upon receiving the asserted DRQ, the filterbank leaves its idle state (state zero) and asserts

DAK. DAK will remain asserted until all filters in the bank have completed the processing of the

newly arrived data. When the processing is complete (signaled internally by advancing the RWM

address beyond the last actual memory address), DAK is un-asserted and the filterbank returns to

idle, pending the arrival of the next data sample.

Four processing loops are evident in Table 8. All of these depend upon the signal MPY8.

The signal MPY8 is generated by a counter which keeps track of how many clock cycles are

issued to the multiplier. Although the multiplier, as previously discussed, is physically 26 x 26

bits, the ROM constants are only 16 bits. Therefore, only 8 clock cycles are needed for each of the

multiplications. As indicated in Table 8, the state machine will remain in states 4, 8, 16, and 21

pending the completion of an 8-cycle multiplication.

The first two multiplication states (states 4 and 8) compute the outer/middle IIR filter. The

third multiplication state (state 16), computes the first recursion of the APGF, while state 21 com-

putes the second through fourth recursions of the APGF. A unique multiply state was necessary for

71

the first recursion of the APGF since its input is the output from the IIR filter. The input to each of

the remaining gammatone recursions is the output from the previous recursion.

State 21 has a second loop built into it which checks the value of a second counter, STA.

STA keeps track of the number of APGF recursions that have been computed. After the first three

recursions, control returns to state 17 where another recursion of the same filter is computed. Upon

completion of the fourth recursion, the multipliers are initialized for a new filter and a jump made

to state 16 to begin the execution of the new filter.

Finally, when all of the filters have processed the new data point, the signal RX is asserted

indicating that the RWM address has advanced beyond the physical memory. The assertion of

RX is detected by the state machine which then returns to state zero. Careful observation of the

state table reveals that the multipliers were loaded and multiply operations initiated prior to the

completion check. The load-before-branch allowed for the elimination of at least one state from

inside the filter loop. Since the memory address pointer has been advanced beyond the bounds of

memory, no valid data is loaded into the multipliers. Therefore upon returning to state zero the

data is simply discarded with no impact on system performance.

The state machine diagram is shown in Figure 33. Inside the state machine is a five-bit latch

which serves as the state counter. The state counter latch is conditionally loaded with either the

next sequential state or a jump state. The next sequential state is computed by incrementing the

present state. The jump address is calculated based on the present state and the RX signal. To aid

in understanding the jump calculation, Table 9 lists the three cases where jumps occur.

Table 9: Filter State Jump Addresses

Present
State Representation

Next
State Representation Condition

21 10101 17 10001 MP8 ■ STA

25 11001 16 10000 RX

25 11001 0 00000 RX

It can be observed from Table 9 that the center three bits are always '0' after a jump. Likewise

note that the least significant jump bit can be determined by simply using the center bit before the

72

jump. Finally, because RX remains '0' until all filters have finished processing the current input

value, its inverse (RX) may be used as the most significant bit of the jump address.

In order to fully reset the filterbank, all RWM cells must be cleared. To accomplish the reset

function, a reset state counter has been incorporated into the design of the finite state machine.

Upon receiving an asserted reset signal, the reset counter asserts an internal reset to the rowselect

circuits which will last for two clock periods. If the externally applied reset signal is held asserted,

and the clock is cycled, the internal reset signal will be removed and the rowselect circuitry will

begin to cycle through the RWM rows at a rate of one per clock cycle. At the same time, the write

amplifiers of the RWM will drive '0's into the selected RWM cell. To accomplish a full system

reset, the externally applied reset signal must remain asserted while the clock is cycled at least one

time for each row in the memory array.

The final design issue of the filterbank design is its output handshaking signals. Like the

input to the filterbank, the output is also asynchronous. Of the three functional divisions of the

overall architecture, the filterbank stage requires the most time to execute. Consequently, the stages

that follow will enter a low-power idle state while waiting for data by inhibiting the clocking of all

internal signals.

When the filterbank completes any given filter's computation, it latches the data into its

output register denoted as "compress latch" in Figure 32. After the data has been latched, the

filterbank's controlling state machine asserts DXRQ (data transmit request) to request to send

data to the compression stage which follows. Upon receiving the asserted DXRQ signal, the

compression unit responds by asserting DXAK (data transmit acknowledge) which causes the

release of DXRQ. A discussion of the compression unit follows in Section 4.3.

Figure 34 illustrates the output of the VHDL implementation of the filterbank for 12 channels

with center frequencies ranging from 200 Hz to 7 kHz. The envelope of both the middle-ear IIR

filter (as seen in the peaks of the responses) as well as each of the APGF filters are clearly evident in

Figure 34. The companion plot generated by AIM using the default options is shown in Figure 35.

The difference in magnitude in the filters near 2000 and 3000 Hz is attributed to the removal of the

middle-ear resonance from the approximation model.

73

20

10

-10

-20

£ -30 ■ a a

-40

-50

-60

-70

-80
10 10 10 10

Frequency (Hz)

Figure 34: Frequency Response of 12 Channel VHDL Filterbank

4.3 Amplitude Compression

Following the filtering of the data in the interbank, the data is passed on to the amplitude

compression stage which accomplishes two tasks: a half-wave rectification, and conversion of all

input values to millibels. Unlike the filterbank, the compression stage logic is fully combinational

and does not require state machine control. By definition, the millibels of any value X is:

XmilUbels = 2000 X log10(X) (24)

As discussed in the previous chapter, the log10(X) can be re-written as (rounding log10(2):

logioW = 0.30103 x log2(X) (25)

and an approximation for log2(X) has already been established. Therefore, combining these two

expressions, the circuit must be able to compute:

XmilUbels = 602.06 x log2(X). (26)

74

20

10

-10

-20

-30

-40

-50

-60

-70

-80
10 10* 10"

Frequency (Hz)
10

Figure 35: Frequency Response of 12 Channel AIM Filterbank

The approach implemented was to first compute the logarithm in base two using the approx-

imated technique discussed in Chapter 3 using a bit shifter. The approximate logarithm is then

adjusted for error reduction through an arrangement of adders. Finally, the result of the logarith-

mic approximation is multiplied by 602 through three additions. The following three subsections

provide the details of implementation for each of these operations.

4.3.1 Bit Shifter. The first stage of the compression unit is the bit shifter which very

quickly computes Mitchell's approximation of the log2 using decoders, a barrel shifter, and a small

amount of ROM. The decoders determine the location of the most significant '1' bit and passes this

information on to the characteristic ROM and the barrel shifter. The barrel shifter and the ROM

work in parallel to produce Mitchell's approximation to the log2(X). The discussion of these three

components of the first stage in the conversion to millibels follows.

4.3.1.1 Decoders. Central to the log2 approximation is the determination of the bit

position of most significant logical' 1'. Traditional methods for the location of the most significant

'1' involved shifting and counting[28, 29]. Here, special purpose decoder cells were designed

75

to determine the position combinationally. The decoders are similar in function to the generate-

propagate circuitry of look-ahead adders which speed-up the carry path. In this design, however,

the circuit is used to determine the location of the most significant non-zero value.

Figure 36 shows the basic logic of the new decoder cell. The GENERATEn signal is prop-

agated downward from the most significant to the least significant bit position. The GENERATE

input of the most significant bit is fixed at a logical '1'. At any general stage, a GENERATEn

input of'l' indicates that there is not a cell of higher significance with a logical '1' on its data

input. The presence of a '1' on GENERATEn enables the present cell to check its data input

(Dn).

GENERATE n > GENERATE n.i

SHIFTn

Figure 36: Bit Position Decode Logic

If Dn is a' 1', and GENERATEn is a ' 1', then the SHIFTn output becomes a' 1' and the

GENERATEn-i output is driven low. The SHIFTn output indicates that the generating cell is

the most significant bit that contains a '1' input. The driving of GENERATEn-i to '0' inhibits

all lower cells from asserting their SHIFT output.

The signal EVAL is incorporated to ensure that there are no simultaneous firings of the

SHIFT signals. To understand the need for the EVAL signal, consider a case where the input

contained all 'O's. In this case, a GENERATE signal of' 1' will propagate through all of the cells

and none of the cells will fire. If the next value sent to the decoder contains multiple 'l's, every

cell which received a Dn of '1' will momentarily assert its SHIFT output. Shortly thereafter, the

higher cells will inhibit all lower cells and only the most significant SHIFT signal will remain

asserted.

76

The initial instability of the SHIFT signals in the case just discussed is unacceptable due

to the domino effect it has on the circuits which follow. The addition of the EVAL adds needed

stability to the generation of the SHIFT signals. While EVAL is high, no SHIFT outputs

are produced but the cells are able to decode the input. When enough time has elapsed to ensure

the stability of the decoders, EVAL is dropped to zero and the appropriate SHIFT signal is

generated.

A second look at the cell in Figure 36 reveals two gate delays in the GENERATE signal

path. One gate delay can be removed by removing the inverter from the cell and creating a com-

plementary cell as diagramed in Figure 37. The inverter that was removed from the first cell is

incorporated into the second cell but is no longer in the GENERATE path. To correctly handle

the now inverted GENERATE, the NAND gate is replaced with a NOR gate in the modified

cell. The multi-bit decoder is implemented by alternating the two cells beginning with the cell of

Figure 36 in the most significant bit position.

GENERATE n.j

SHIFTn

Figure 37: Complementary Bit Position Decode Logic

There are two special cases to address in the calculation of the logarithm. The first case is

that of a zero input value. In this case none of the decoder cells will fire leaving a logical Ton

the GENERATEo signal. When GENERATEQ is asserted an error signal is produced which

in turn forces all output bits to '0'.

The second special case occurs when a negative input value arrives. As in the case of a zero,

the logarithm of negative numbers is not defined. Since the input is a two's complement binary

77

number, the identification of negative numbers is accomplished by checking the most significant

bit on the input. If the most significant bit is set, all bits fed into the decoder are forced to zero. The

all-zero input prevents any of the SHIFT signals from firing. One of the two subsystems which

use the SHIFT signals is the barrel shifter, which is discussed next. The second consumer of the

decoder output is the ROM, which is discussed in Section 4.3.1.3

4.3.1.2 Barrel Shifter. The products of the decode stage are the SHIFT signals.

If the input number has a logarithmic representation, only one of these SHIFT signals will be

active. The active signal will cause the input value to be rotated to the left until the most significant

T is positioned in the left-most bit position. A barrel shifter is used to perform the bit rotation.

As seen in Figure 38, the barrel shifter is comprised of only N-channel transistors arranged

in a two-dimensional array. For the purpose of illustration, an array of only 3 bits is shown. The

input data enters the array on vertical data lines and is passed to the horizontal output data lines by

the N-channel transistors. The SHIFT signals from the decoder determine the routing through

the N-channel transistors. In all cases, the data passes through only one transistor in order to be to

be transferred from an input to an output line. Since all of the transistors in the array are purely

passive, the only power consumed by the shift operation is due to the capacitive load the array

places on its input.

Figure 38: Barrel Shifter Array

78

After the data passes through the barrel shifter, it is aligned so that the position of the most

significant' 1' is always on the same output line. The realignment is necessary so that the remaining

bits may be appended to the integer portion of the logarithm (the characteristic) which is read from

a small ROM bank. The next section provides a discussion of the generation of the characteristic

using a ROM bank.

4.3.1.3 Characteristic ROM. In Mitchell's approximation the characteristic of

the logarithm is determined by counting bits to find the most significant '1'. In contrast, using

the decoders discussed Section 4.3.1.1, a unique SHIFT signal is generated for each possible

location of the most significant '1'. The SHIFT signals could be processed through an encoder

to determine the characteristic, but a circuit that consumes much less power and space is a read-

only memory (ROM). Since only one of the decoder cells will generate a SHIFT output at any

time, the active SHIFT output may be used to access rows within a ROM that is loaded with

the logarithm characteristics. Optionally, the characteristic could be generated from combinational

logic based on the SHIFT signals. A ROM was chosen in this case to eliminate the need for

P-channel transistors, thus allowing for a physically smaller structure.

The amount of ROM required for the logarithmic approximation is minimal. For two's

complement input data of width N bits, the required ROM bank is log2(iV) x N bits. There

must be one row of ROM for each input bit, and each row must contain log2{N) bits to store the

characteristic for that bit position.

The last row in the ROM (corresponding to bit TV —1) is actually associated with the sign bit.

By loading the last row in the ROM with 'O's and forcing the input bits to '0' when a negative num-

ber is being processed (as previously discussed), the logarithm generated for any negative number

will be zero. Through defining the mathematically undefined logarithm of negative numbers as

zero, the circuit performs the half-wave rectification required by the neural encoding algorithm. A

logarithm error signal is generated by the hardware for zero and negative inputs, but is ignored in

this application to allow the half-wave rectification to proceed.

After the input value has been shifted, and a characteristic is chosen from the ROM, the

two are combined to form Mitchell's approximation. The result is 4 bits of unsigned integer, and

79

12 bits of fixed-point binary fraction which is sent to the adjustment circuit where the second

approximation to the logarithm is applied.

4.3.2 Logarithm Adjuster. Following the half-wave rectification and the implementation

of Mitchell's approximate logarithm, the data is adjusted to improve the accuracy of the logarithmic

approximation. The adjustment to Mitchell's approximation is accomplished by adding a shifted

copy of a portion of the fraction to the original approximation. The optimal number of bits to shift

is four, and the optimal distance to shift them before the addition is 2 bit positions to the right. (See

Section 3.4.2 for derivation.) If the most significant bit of the fraction is '0', the shifted bits are

added as they are. However, if the most significant bit of the fraction is a '1', the shifted bits are

inverted prior to the addition.

In the VLSI implementation, the shift is performed through wire routing. The conditional

inversion is carried out by three XOR gates that combine the most significant fraction bit with

the next three bits respectively. If the most significant bit is set, the others become inverted. It is

unnecessary to conditionally invert the most significant bit, because the XOR of any bit with itself

is always '0'.

After the conditional inversion of the bits, they are added back to the original approximation.

The addition requires three full adders (FA), and three half adders (HA) as shown in Figure 39.

The right-most half adder accounts for the most significant adjusted bit, which is always zero. The

second and third half adders, feeding Q10 and Qll, account for the two most significant bits in the

original fraction which only need to be adjusted by the carry from the lower bits. The carry must

not propagate beyond the most significant bit of the fraction. If permitted, the characteristic would

be altered, introducing large errors.

4.3.3 Conversion to Millibels. The output from the adders is the approximate base-two

logarithm of the input value. Additionally, the data stream is half-wave rectified through the way

in which the circuits deal with negative values as previously discussed. The next step is to convert

the base-two logarithm into millibels.

As indicated in Equation 26, the conversion to millibels requires multiplying the base-two

logarithm by 602.06, which is rounded to 602 so that it may be handled as an integer. In binary

80

D15 D14 D13 D12 DU D10 D9 D8 D7 D6 D5 D4 D3 D2 Dl DO

■5t 5t 3=

HA HA HA FA FA FA

t t * ! » T

Q15 Q14 Q13 Q12 Qll Q10 Q9 Q7 Q6 Q5 Q4 Q3 Q2 Ql QO

Figure 39: Logarithm Adjusting Circuit

form, 602 is represented by the bit sequence 10010110102. Two approaches to implementing the

multiplication were considered. The first approach utilizes a multiplier and a small state machine

to control its operation. An implementation using only combinational logic (adders) was also

investigated. After comparing the size, speed, and power requirements, it was obvious that the

adder-only solution was the more favorable option.

The adder-only solution for the conversion to millibels has an advantage over a multiplier

because there is a repeated pattern in the binary representation of 602 which can be used to simplify

the computation. Note the pattern 1012 which appears twice in the binary representation of 602.

Since any multiplication can be accomplished by adding and shifting, we can accomplish the partial

product for the pattern 1012, then shift the sum to form the second partial product without an

additional adder.

To illustrate, let the base-two logarithm of an arbitrary number be represented by the se-

quence ccccffffffffffff where the c's represent the characteristic integer, and the f's rep-

resent the fractional part of the approximate log. Expanding the multiplication of the arbitrary

value by 602 we get (neglecting the '0' bits in 602):

ccccffffffffffff
X 0000001001011010

ccccffffffffffffO

ccccffffffffffffOOO (27)

ccccffffffffffffOOOO

ccccffffffffffff000000

+ ccccffffffffffffOOOOOOOOO

iiiiiiiiiiiiiiffffffffffff

81

In Equation 27 note that the first two partial products are the same as the second pair, with

the exception that the second pair is shifted to the left by three bits. Therefore, the sum of the

first two terms can be added to a shifted version of itself, achieving in two addition operations the

equivalent of three. The second sum is then added to the final term to yield the final answer. The

adder arrangement for these operations is illustrated in Figure 40.

Din(15-2)

J
Din(15-0)

A

Sum

B
carry_in

(16-1) (16-4)

A

Sum

B
carryjn

(16-2)

A

Sum

B
carry_in

-'0'

- Din(15-0)

-'0'

T Result (16-3)

Figure 40: Optimized Adder Tree for Millibel Multiplication

A second optimization can be made to reduce the size of the adders required. The final result

that will be passed to the next stage of the architecture will be an integer value, represented by the

i's in Equation 27. Therefore we only need to maintain enough fractional bits to provide adequate

rounding precision for the addition operations being performed.

Note that the three least significant bits of the first two terms may be omitted from the

addition because these bits in the second term '0's, and will therefore not cause a carry to the

fourth bit. For the same reason, when adding the sum to a shifted form of itself, the three least

significant bits may again be dropped. Finally, in the last addition there are three zero terms which

likewise can be used to reduce the bits in that addition.

The first addition requires a sixteen bit adder in order to preserve the numeric integrity.

Following the first adder, each successive stage requires one additional bit since the carry output of

each preceding stage becomes an input bit of the next stage. However, because the end result is to

be an integer, we can make the system symmetric using only 16-bit adders by truncating the least

82

significant fraction bit from each sum after the first adder. In Figure 40 the numbers in parentheses

represent the bit positions being propagated.

The output of the final adder in Figure 40 is fourteen bits. Because of the multiplication

being performed, the upper two bits will always be '0', and are not computed. To re-establish

the result as a sixteen-bit value consistent with the rest of the hardware, two '0' bits need to be

concatenated onto the most significant end of the final sum.

The last phase of the compression stage is the generation of the asynchronous hand-shaking

signals for the adaptive thresholding stage which follows. Data arrives to the compression stage at

a rate of one value every 48 clock cycles when the filterbank is processing.

Since the compression stage is fully combinational, its computation could be completed in a

single machine cycle. However, if implemented in this manner the overall system clock would need

to be slowed to allow for the completion of the compression computation. Therefore, a counter

arrangement was designed that guarantees enough time between the arrival of the data from the

filterbank and the generation of the send request for the adaptive thresholding stage. Figure 41

illustrates the design.

DXRQ
v

Clock >-

D Q

t> Q

D Q

DXAK
n

^ D Q

-»►>

EVAL
•I'-i D Q

RESET

RESET >-

DMAK>-

DMRQ

Figure 41: Handshaking for Compression Stage

In Figure 41, Clock represents the shared system clock. DXRQ and DXAK are the re-

quired handshaking signals for the filterbank interface, while DMRQ and DMAK are the hand-

shaking signals to and from the adaptive thresholding stage. Essentially, the circuit of Figure 41

divides the master clock by four. When data arrives from the filterbank, the next falling edge of

the divided clock asserts the acknowledge (DXAK) signal for the filterbank. DXAK remains

asserted for four master clock cycles, then resets.

83

The falling edge transition of DXAK loads the final latch which sends DMRQ to the

adaptive thresholding stage. The thresholding stage responds by asserting DMAK, placing the

compression stage back into its idle state. Finally, to ensure data isolation between input and

output, a 16-bit data latch is included at the output. The output latch is clocked by the falling edge

of DXAK, and is loaded at the same time that DMRQ is generated.

An alternative solution to the clocking problem just discussed would be to absorb the com-

pression stage into the filterbank. This is possible because the time required by the compression

is small compared to the filtering. The time to compress the data stream from one filter could be

overlapped with the beginning of the processing of the following filter. Therefore, no additional

states would be required to complete any filter. The one drawback to this approach is that in order

to compress the data from the last filter in the filter bank, additional states would need to be added

into the overall state machine, thus increasing its complexity slightly.

The three sections of the compression stage, working under the control of asynchronous

handshaking signals for data input and output, convert the output of the filterbank into a compressed

form. Specifically, on exiting the compression stage the data has been half-wave rectified and

logarithmically compressed into millibels. The compression is actually the first phase of the neural

encoding process which accounts for the mechanics of the inner hair cell stimulation. The actions

of the inner hair cell, how they convert the stimulation into electrical nerve events, is discussed in

Section 4.4.

4.4 Neural Encoding

The filterbank models the conversion of the sound energy from the acoustical realm into the

motion of the basilar membrane. The compression stage which follows further models the stimu-

lating of the inner hair (nerve) cells. The final stage of the auditory system models the behavior of

the inner hair cells which convert the mechanical energy into electrical pulses, a process known as

neural encoding.

The third stage of the hardware design combines the adaptive thresholding algorithm and

an integration filter to form the neural encoding processor (NEP). The combination of functions

allows for maximum utilization of the computational units. The combination of algorithms is

84

possible because the two operations can be performed in less time than is required for each stage

of the filterbank.

The approach used to design the NEP was similar to the approach used in designing the

filterbank. The algorithms outlined in Chapter 3 were sequentially analyzed, then the required

components were selected. The components were interconnected using multiplexers and latches

as necessary. Finally, a state table was derived indicating how each of the multiplexers, latches,

and functional units were to be controlled. The state table was processed by Espresso3 to generate

optimized state equations. Verification of the design was performed using a structural VHDL

description.

All of the individual components of the NEP were laid out in a custom VLSI implementa-

tion. Figure 42 presents the final design of the NEP showing how the adaptive thresholding and

integration filtering are combined in the proposed implementation. As discussed in Section 3.5,

the adaptive thresholding process models the way in which the inner hair cells require a recovery

period after firing. Since the model used for generating nerve firing events has an undesirable

rapid return-to-zero, the integration filter is included to shape the output pulses. While both the

adaptive thresholding and integration filtering are functions of the NEP, the discussion which fol-

lows separates the two for clarity. The first to be discussed is the implementation of the adaptive

thresholding.

4.4.1 Adaptive Thresholding. The approximate adaptive thresholding algorithm, devel-

oped in Section 3.5, is detailed by the code shown in Figure 24. Recall the purpose of the adaptive

thresholding is to only allow input events which exceed the current firing threshold to cause an

output event. Thresholding, therefore, models the recovery period which the inner hair cells enter

after firing.

To begin the discussion of the hardware implementation of the approximated adaptive thresh-

olding algorithm, consider the the current threshold variable. One read-write memory storage is

required for each channel of the filterbank in order to hold that channel's current threshold. When

new data arrives, the current threshold is unconditionally decayed.

3Espresso is one of the tools in the Berkeley VLSI tools distribution. It accepts a state table as input and generates
optimized and reduced state equations and PLA programming tables as output.

85

•A MUX7 / \ MUX8 M
\(!7bil) / \ (17 biO/

 1 m7 at r

4
pass A PAS

NEGdit 15)

MIC
Transp Latch

(16bii)

TMP
Dffad (17-bit)

VH7
\ MUX9 A-

t

»**-—[—LTMP

TrOS -RESET
ZRO

Dout (16 bit)

Figure 42: Block Diagram of Neural Encoding Processor (NEP)

86

In the approximate algorithm the threshold (microphonic in Figure 24) is adjusted by the

expression:

microphonic = microphonic x (1 - rapid-decay) + (absolute-limit x rapid-decay). (28)

As previously discussed, two simplifying approximations were applied to equation 28. First,

absolute limit is approximated by the constant 1024. Second, rapid-decay requires 12 bits of

storage and is always a positive fraction less than one. Therefore, the quantity (1 - rapid-decay)

is simply the two's complement of rapid-decay.

Considering these facts, a simplification to the hardware may be made by storing the two's

complement of rapid-decay. The first way to simplify the hardware is to reduce the ROM for the

storage of rapid-decay to 11 bits since in the two's complement representation the leading bits

will always be ' 1', indicating it is a negative value.

Secondly, the multiplication by absoluteJimit is the same as a shift to the left of 10 bit

positions of the two's complement of the stored value for rapid-decay. However, after multiplying

by absoluteJimit, the only significant bits are those which are to the left of the fixed decimal

point. Therefore, the two's complement can be approximated by inverting rapid-decay. The

inversion is shown between the rapid-decay ROM and MUX8 in Figure 42.

In the design, there is one memory address counter which is shared by three banks of RWM

and two banks of ROM. All data required for the processing of one channel is stored at the same

memory address in each of these banks. Therefore, the threshold decay can be computed by fetch-

ing, then multiplying the current threshold (fetched from RWM bank 2) by the two's complement

of rapid-decay (fetched from the second ROM bank). The multiplication is performed using an

array of 18 of the multiplier slice cells used in the filtering stage.

The result of the multiplication is then added to the complement of the stored rapid-decay

that has been shifted by 10 bits in order to approximate the multiplication by absoluteJimit. The

resulting sum is the new decayed value for the threshold. Since the computed value is needed again

and may be changed in the algorithm, it is placed into a temporary latch (MIC in Figure 42) instead

of being written back to RWM. Notice that all logic cells pictured below the multiplier in Figure 42

include one additional fraction bit for the purpose of rounding.

87

After the threshold is processed for decay, it is compared to the new input value to see if the

input is strong enough to cause an output event. The comparison is accomplished by cycling the

decayed threshold from MIC into the arithmetic logic unit (ALU) where it is subtracted from the

input value. The difference is held in the register labeled TMP for later use. If the result of the

subtraction is negative, no output event occurs because the input did not exceed the threshold. The

negative result is detected by observing the most significant bit of the result. When the result is

negative, the the decayed threshold is written back to RWM, and a zero is passed to the integration

filter step.

Conversely, when the input exceeds the threshold, the result of the subtraction just men-

tioned is positive and an output event occurs. Upon detecting a positive subtraction result, then the

approximate algorithm first averages the current threshold and the input. The average becomes the

new threshold which is written back to RWM. Secondly, the difference held in the TMP latch is

multiplied by the compensation factor for the channel. The compensation constants are stored as

8-bit values which represent 6-bits of unsigned integer and 2-bits of fraction. The product of the

compensation is then stored in TMP and only the integer portion is passed to the integration filter.

The additional fraction bits are only used by the ALU for rounding.

4.4.2 Integration Filter. An integration filter completes the design of the neural encoding

processor. The integration filter is a second-order IIR filter implemented as a recursive first-order

IIR filter. Each channel is filtered by an identical filter, thus only one set of ROM constants are

needed. However, state information from the previous two outputs must be maintained for each

filter channel. The storage of state information is indicated in Figure 42 by the RWM banks labeled

RAMO and RAM1. The addresses of these memory locations are aligned with those of the cor-

responding thresholding values so that an address change is not required to filter the thresholding

outputs.

The two constants for the integration filter, common to all filter channels, were hard-coded

on the inputs to a 4-to-l multiplexer. These values are labeled L and K in Figure 42. As derived

in Chapter 3, both L and K can be approximated by 4-bit fractions. While 4-bit integers can be

multiplied using Booth's algorithm in two cycles, fractions such as these require three cycles so

that the a leading ' 1' in the fraction is not incorrectly interpreted as a negative sign bit.

The IIR filter operates by multiplying the previous output (fetched from RAMO) by the

constant L. The result is then temporarily stored in the MIC register while the input to the filter is

multiplied by the constant K. The input to the filter is the value left in TMP by the thresholding

algorithm. When the second multiply is completed, the result is added to the first product and the

sum is stored in TMP and written back to RAMO. The algorithm then repeats using RAM1 rather

than RAMO. The TMP register holds the final output after the completion of the second cycle of

the algorithm.

In order to sequence both the adaptive thresholding and integration filter algorithms through

the NEP, a control circuit is required. The discussion of the circuit which controls these two

algorithms follows in the next subsection.

4.4.3 Control. As with the filterbank, the control for the NEP is accomplished by a finite

state machine. Twenty-one states were necessary to complete the processing required by the NEP.

The state machine, using five state bits, incorporates one conditional jump, four multiply loops,

and one control loop. The state assignments are sequential with the exception of the last state (22)

which has been chosen to reduce the jump logic.

Figure 43 is a block diagram of the finite state machine for the NEP. The states which are

sequenced by the machine of Figure 43 are tabulated in Table 10. State 0 is the idle state and is

NAP
STATE
COUNTER

DRQ
CLK
MP2
MP4
MP8
PI
RESET
RESET

DRQ

sbO
sbl
sb2
sb3
stvt

MPY
LMP
S50
S51
S6
S7
S8
S9
S10
LPF
ADJ
LR
AS
LMIC
PAS
LTMP
WLP
WMC
ZRO
DORQ

io
4-bit

COUNTER

** RESET

zr_J

> v
reset reset

3f£ WLPl

WLPO

CL1,
RESET)

RESET >-T~No_
DXALW -^

DORQ

Figure 43: State Machine for the Neural Encoding Processor

89

maintained until the signal DRQ is asserted by the compression stage. When DRQ is asserted, the

NEP begins by computing the threshold decay in states 1 through 5. The input is subtracted from

the current threshold in state 6 and the sign of the result is checked. If the result is negative, a jump

to state 22 is taken which clears the output register and writes the decayed threshold back to RWM.

State 22 then jumps to state 13 where the integration filtering begins. The equations which define

the output bits of the state table are listed in Appendix C.

Table 10: Neural Encoding Processor State Table

State lin Imp S50 sei s6 s7 s8 s9 slO mp2 Ipf adj lr as Imic pas Itmp wlp wmc zro dorq Next

0 0 0 0 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 0 0 2

2 0 1 0 0 0 0 0 0 0 0 0 0 3

3 0 0 1 0 0 0 0 0 0 0 4:mp6

4 0 0 0 0 1 0 0 0 0 0 0 5

5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 6

6 0 0 1 0 0 1 0 0 1 0 0 0 0 jffii
7 0 1 0 0 0 0 0 0 0 0 0 0 8

8 0 0 1 0 0 0 0 0 0 0 9:mp4

9 0 0 0 1 0 0 0 0 0 0 10

10 0 0 0 0 u 0 0 1 1 0 0 0 0 11

11 0 0 0 0 0 1 0 0 0 0 0 0 12

12 0 1 0 0 0 0 0 0 0 0 1 0 0 13

13 0 0 1 0 0 0 0 0 0 0 14:mp2

14 0 0 0 0 1 0 0 0 0 0 0 15

15 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 16

16 0 0 1 0 0 0 0 0 0 0 17

17 0 0 0 0 1 0 0 0 0 0 0 18

18 0 0 0 0 0 0 0 0 1 0 0 0 0 19

19 0 1 1 0 1 1 0 0 0 0 1 0 0 0 13:pl
2fl:pi

20 0 0 0 0 0 0 0 0 1 0

21
22 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 13

If the result of the subtraction in state 6 is positive, then the difference is multiplied by the

compensation factor in states 7 through 9. Note that because the fraction of the compensation

factor is not aligned with that of the other constants, an adjustment (shift) is required on the output

of the multiplier to re-align the bits. The result is passed through the ALU and stored in TMP as

the next input to the integration filter (state 10).

The processing continues by raising the current threshold in states 11 and 12. Finally, states

13 through 20 compute one pass of the recursive integration filter. The state machine output PI is

set after the first pass through the integration filter when a jump back to state 13 is made. On the

second pass, the asserted PI indicates that the filter is in its second pass and thus, upon reaching

state 20, the output request DORQ is asserted and the machine returns to the idle state.

All of the program jumps are accomplished using a jump loader. In order to determine the

most efficient state numbering, a study of the current state and jump states was performed. As a

90

start, since the binary representations of 6 and 22 differ by only one bit, the jump logic is simplified

by choosing 22 as the destination of the jump in state 6. Table 11 tabulates the current and next

states for all of the jumps required in the NEP.

Table 11: Neural Encoding Processor Jump States

Current State Next State Jump Vector

6 00110 22 10110 sbA sbA 1 sbA sbA

19 10011 13 01101 sbA sbA 1 sbA sbA

22 10110 13 01101 sbA sbA 1 sbA sbA

In each case shown in Table 11, the target of the jump can be computed as a function of only

the most significant state bit, sbA. The jump vector is hard-wired into the multiplexer of the state

counter pictured in Figure 44. The state counter consists of a 5-bit data latch which is conditionally

loaded with one of the following: the next sequential value, the jump-load vector (LV), or left at

its current value. The signal STEP determines whether or not the latch is reloaded, and the signal

LD determines whether either the next sequential state or the jump vector is loaded.

LD> RESET > I ! ^_ Present State

LV> 5-Bit
Latch

SB4
SB3
SB2
SB1

A SBC

STEP

Half
Adders

Figure 44: Neural Encoding Processor State Counter

The logic to generate the LD and STEP signals, as well as all of the control signals in the

state machine pictured in Figure 42 are generated by a programmable logic array (PLA). Optimized

equations for the PLA were generated by processing the state information of Table 10 through

Espresso. In the VHDL model, these equations were implemented in behavioral form assuming a

NAND-NAND PLA structure.

4.5 Summary

Chapter IV provided an overview of the hardware implementation. The issues addressed

were those of particular interest due to their unique nature or implementation. Because of the size

91

of the overall architecture, and because the implementation is fully detailed in the VHDL struc-

tural description, the discussion was intentionally incomplete. Appendix E provides the top-level

structural description of the proposed architecture corresponding to the system block diagrams

given.

As documented, the modifications to the algorithms developed in Chapter 3 have been

mapped to a VLSI implementation. Additionally, using current technology, the proposed design

will fit onto a single VLSI chip simplifying its integration into a variety of systems. For example,

as discussed in Chapter 5, if implemented in 0.8 /xm CMOS VLSI, the entire circuit would fit onto

a 3 mm-square chip.

The proposed architecture can be characterized as a multi-rate design. The data enters the

processor at a sample rate determined by the system to which it is attached. Internally, the data is

then processed at a much higher clock frequency where it is split into multiple frequency channels.

As a result, the output is time-division multiplexed and exits the system at a rate higher than

the input data rate. The output data is time-division multiplexed on a processing channel basis.

Therefore, the time between any two consecutive samples belonging to the same channel will be

equal to the period of the input data.

The designed system is also asynchronous in its interface to other devices. All data enter-

ing or leaving the architecture is controlled by hand-shaking signals versus a clock. Internally,

however, all processing is sequenced by a clock operating much faster than the data rate.

92

V. Testing and Evaluation

5.1 Introduction

Having completed the design of a processor to execute the approximate AIM algorithms,

the concluding task was to validate the proposed architecture. This chapter presents the results of

the testing and evaluation accomplished during the validation phase. The analysis of the proposed

system is divided into four sections: a functional comparison of the proposed architecture to AIM,

and estimations of the architecture's speed, size, and the electrical power required for operation.

5.2 Functional Comparison

Perhaps the most important measure of the proposed architecture (and its underlying algo-

rithms), was a comparison of its performance to that of AIM in phoneme recognition experiments.

The VHDL simulation of the hardware architecture required nearly two hours to generate an im-

pulse response of only tens of milliseconds in length. Since 700 NAPs were required for the

phoneme recognition experiments, and the length of each was one to several seconds, the use

of the VHDL to generate the NAPs was not practical as it would require over 200,000 hours of

simulation time. Therefore, modified AIM code was used to conduct the phoneme recognition

experiments.

Before the phoneme recognition experiments could be run with confidence, it was necessary

to validate the VHDL architecture against the modified AIM code. Validation was accomplished

by processing identical data through both the modified AIM code and its VHDL equivalent. After

each processing stage, the difference between the outputs was computed and evaluated.

Initially, several discrepancies were identified. One difference, due to an error in the pro-

posed architecture, involved a mis-handled carry flag in the filterbank. The carry error was cor-

rected in the VHDL model. The other inconsistencies were attributed to the use of non-integer

arithmetic in the modified algorithms of AIM. In these cases, the modified AIM code was ad-

justed to execute its algorithms using the same precision as the hardware implementation. Once

the adjustments were made, the two models produced identical outputs.

When the outputs of the VHDL and AIM models coincided, the phoneme recognition testing

could proceed. These experiments, designed after the works of Patterson et al. and Francis, used

93

ten spoken sentences from each often speakers (100 utterances total)[7,25]. Seven of the speakers

were male and three female.1

Testing began by using AIM to generate the neural activity pattern (NAP) for each of the

utterances. The minimum frequency channel was set at 350 Hz and the maximum frequency chan-

nel at 7000 Hz[25]. The remaining channels, set by AIM's spacing algorithm were: 463.3, 592.3,

739.3, 906.8, 1097.6, 1315.0, 1562.7, 1844.9, 2166.4, 2532.6, 2949.9, 3425.2, 3966.8, 4583.8,

5286.8, and 6087.6 Hz. Using a windowed averaging method, each NAP was divided into over-

lapping 16 ms windows. Each window was then averaged and labeled to indicate the phoneme

which was being spoken during that window. The labeling was accomplished using tag-files which

originated from the same database containing the utterances.

The tagged averages from nine of the ten speakers were used to train a Kohonen self-

organizing feature map[7]. Once trained, the tenth (untrained) speaker was processed by the feature

map to determine how many phonemes could be recognized. Statistics on the map's ability to cor-

rectly identify the phonemes were recorded and the training/testing process was repeated using

each of the speakers as the unknown voice. In each case the process began by generating a new

feature map.

The training/testing procedure was repeated with seven different levels of background noise

ranging from an absence of noise to a -21 dB signal-to-noise ratio (SNR). The specified amount of

white noise was added to the utterances prior to the generation of the NAPs. The remainder of the

technique remained the same. Finally, the experiment was repeated using the approximate form of

AIM to generate the NAPs.

Figure 45 illustrates the phoneme recognition rates for both AIM and the modified (approx-

imate) AIM model. Figure 45 clearly shows that while the approximations made to AIM have

an impact on the recognition rate, the effect is statistically insignificant2. In the worst case the

difference between AIM and the approximate model is only 1.2%. The SNRs used in the testing

were -21dB, -9dB, -3dB, +3dB, +9dB, +21dB and one case without background noise. Since the

1 All utterances used were from the TIMIT data base. The speakers were mrtkO, mprkO, mwmhO, mjlsO, jhpgO,
mefgO, mcmjO, fedwO, fcrhO, and fcmmO.

Statistical significance was based on the work of K. Francis using the two-sided Student T distribution with 9
degrees of freedom for a 95% confidence level. [25]

94

SNR in the case without noise is infinite, the corresponding data point was plotted in Figure 45 as

+30dB for convenience.

45

40--

|35

DC
o>
E

a.
£30-

25

20

■■ 1 1

AIM/1

/ f

//

/ /
/'
'Approximation \

// //
■ //

/■ / / /. / / :
/ /

/ /

■ y /

y' y- s

y>

i i i

-30 -20 -10 0
SNR (dB)

10 20 30

Figure 45: Phoneme Recognition Rates for AIM and Approximation

Although all of the recognition testing was accomplished using the C implementation of the

approximation algorithms, the recognition results may be applied equally to the hardware model.

The transfer of results is justified because the hardware model was shown previously to be an exact

representation of the C code implementation. As stated previously, generating the NAPs directly

from the VHDL model was not practical because of the processing time required to model the

architecture at the gate level.

5.3 Speed

The second criterion used to evaluate the architecture was its processing speed. Because the

proposed architecture is primarily a pipelined, sequential machine, data is moved between latches

and combinational logic is evaluated between transfers. All logic evaluations must be completed

prior to the next clock cycle for the system to function correctly.

95

As previously discussed, adders are the slowest part of the architecture. Ripple carry adders,

used throughout the design for their small size, are inherently slow. The adders found in the filter-

bank multipliers require more computational time than any other functional unit in the architecture

because of their 26-bit length. Even though there are several stages of adders in the logarithmic

compression unit, these adders are only 16 bits in length. In addition, the clock in the logarithmic

compression unit is one-fourth of the clock in the filterbank to allow the additions to complete.

Since the time required by the ripple carry adders determines the overall system clock speed,

Spice analysis was performed on the adders. The testing was performed using 0.8 \im CMOS

technology data. A 24-bit adder was tested for maximum propagation delay through the carry

path.3 The total computed delay was then divided by 24, yielding the average delay per bit. The

test was repeated at varying operating voltages and the results are illustrated in Figure 46.

„0.85

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.B 5
Operating Voltage (Volts)

Figure 46: Propagation Delay for Full-Adder Cells

To evaluate speed, consider the data presented in Figure 46. If the operational voltage for

the system is 3.3 V, each full adder cell inserts a 0.925 ns delay into the carry path. Therefore, the

26-bit adder required by the filter multiplier would need 24.05 ns to complete its computation. In

order for multiplier to operate, the total clock period must be at least 24.05 ns, limiting the system

3 A 24-bit adder was tested before the length of the longest adder needed was known to establish the delay/bit.

96

clock to rates under 41.5 MHz. Similarly, if the system is operated at 5.0 V, the minimum delay is

16.9 ns which limits the clock rate to 59.1 MHz.

The filter stage, which requires the most computational cycles, requires 25 clock cycles for

the IIR filter. Further, the first instance of the APGF requires 46 clock cycles, while each additional

APGF filter requires 42 cycles. Therefore, the proposed 32 channel system requires 1373 clock

cycles to process each input value through all channels of the filtering stage.

If the data arrives to the system with a sampling period of 50 /is (20 k-samples/sec), the

minimum processing clock period must be no greater than 36.4 ns (50 (j,s/1373cycles). Therefore,

the architecture must be clocked at a minimum of 27.5 MHz for sustained real-time operation

on 32 channels. Since the required minimum clocking frequency for real-time operation is lower

than the predicted maximum clock frequency of the hardware, the proposed system is capable of

functioning in real time with 32 channels functioning.

5.4 Size

Having shown that the designed architecture meets functional and speed requirements, the

next parameter to evaluate is the physical size of the architecture. This section presents the area

requirements of the sub-components and produces an estimate for the overall area required for the

system. The unit of measure used to compute the area is A, which represents the smallest drawn line

width in an integrated circuit layout. Typically A is one-half of the smallest actual circuit feature

width. For example, for a 0.8 \im fabrication, A is 0.4 /im. The cells for the VLSI layout were

designed according to the MOSIS sub-micron fabrication rules, and remain scalable as technology

permits.

Table 12 summarizes the area estimates for the cells of the proposed architecture. In Ta-

ble 12, the dimensions for most cells were acquired from CMOS VLSI layouts of the cells. In

some cases, such as the basic logic gates and the logic for the PLAs, the sizes are an average of

typical logic gates. The table is broken into the same three subdivisions that were presented in the

discussion of the architecture in Chapter 4: filtering, amplitude compression, and neural encoding.

97

While Table 12 does include all wiring (power, ground, and clocking) internal to the cells;

inter-cell wiring is not included. Inter-cell wiring, which depends heavily upon the technology

implemented and layout style, is more uncertain than the size estimations for the functional units.

Estimates vary as to what fraction of a VLSI circuit is devoted to wiring. Additionally,

the cost of wiring depends upon the number of layers of interconnect available in the fabrication

process being used. Therefore, the following evaluation is based on the assumption that the wiring

will "dominate"[31] the total chip area.

Analysis of the fully-custom logarithmic circuit layout revealed the inter-cell wiring con-

sumed nearly 40% of the total circuit area (three levels of interconnect were employed). Using the

wiring of the logarithmic circuit as a guide, assume conservatively the wiring for the total system

will require an area equal to the functional area, the total area for the circuit would be 37968776 A2.

The estimated area would fit inside a square that measured less than 6200A on a side. If a more

conservative estimate is used where the wiring is allowed to occupy two-thirds of the chip area, the

total chip would require 56953164 A2. Under the second and more conservative assumption, the

required area would be a square of under 7600 A per side.

In either case, a bonding pad frame is also required. Based upon the sizes for available stan-

dard bonding pads, an additional 150 pm is required per side of the wire for bonding. Combining

these figures, the resulting integrated circuit would easily fit onto existing fabrication dies available

through the Metal Oxide Semiconductor Implementation Service (MOSIS). For example, using the

MOSIS 0.8 fim CMOS fabrication process, the more conservative (two-thirds) estimate would re-

quire a chip of 3.3 mm on a side. If the MOSIS 0.25 \im process were used, the area required by

the same chip would be a mere 1.25 mm per side.4

5.5 Power

The last evaluation performed on the proposed architecture was an estimation of the power

required for its operation. Power analysis of an integrated circuit depends on many parameters,

several of which will remain unknown until the circuit is actually implemented. Some of the un-

known parameters included inter-cell bus capacitances, clocking frequency, fabrication technology,

4MOSIS estimates that the 0.25 \im process be available in the fourth quarter of 1999.

98

Table 12: Area Estimates For Architecture (A)
Filtering

Cell # Required Size Each (A) Area (A^)

Multiplier slice 78 640x42 2,096,640

Mult. Cont 1 72x137 9,864

ROM (34x16) 3 276x168 139,104

RWM (130x24) 2 6565x648 8,508,240

RWM write amp 48 100x27 129,600

RWM read amp 48 100x27 129,600

Adder 26 133x42 145,236

D-Latch 109 103x42 471,534

Transp. Latch 16 54x42 36,288

D-Latch w/ clr 24 103x42 103,824

Clock Gen 5 100x120 60,000

Mux 150 50x75 562,500

Rowselect 164 103x42 709,464

Rowmux 130 50x75 487,500

Logic gates 6 50x50 75,000

PLA 50 50x50 125,000
Amplitude Cc)mpression

Log unit 1 425x640 272,000

Adder 48 133x42 268,128

Latch 20 133x42 111,720

Logic gates 2 50x50 5,000
Neural Encoding

RWM (32x16) 3 1616x432 2,094,336

RWM write amp 48 100x27 129,600

RWM read amp 48 100x27 129,600

ROM (32x8) 1 260x84 21,840

ROM (32x11) 1 260x116 30,160

Rowselect 32 103x42 138,432

Mux 192 50x75 720,000

Clock gen 3 100x120 36,000

ALU 17 300x42 214,200

D-Latch 43 103x42 186,018

Tranp. Latch 34 54x42 74,256

Multiplier slice 18 640x42 483,840

Mult. Cont 1 72x137 9,864

Logic gates 9 50x50 70,000

PLA 80 50x50 200,000
TOTAL 18,984,388

99

and operating voltage. These unknown parameters cannot be quantified until the entire architecture

has been laid out for a fabrication targeted to a specific technology (or scale). Therefore, the power

analysis in presented here assumed fabrication in 0.8 //m CMOS operating at 33 MHz from a 5 V

power source.

The analysis was accomplished by running Spice simulations on the major functional units

to determine their operating power requirements. These estimates were then combined with the

utilization rates for the functional units to derive an estimate of the total system's power consump-

tion. The functional units characterized were: multipliers, adders, latches, and state machines.

Data from the independent tests were then combined to gain insight into the overall power require-

ment. The first functional unit to be characterized was the multiplier.

5.5.1 Multipliers. To evaluate the multiplier, a test circuit was constructed using the

layout of the multiplier slice cells. In order to reduce the computational time of Spice, only six

cells were used along with the multiplier controller. The circuit was extracted for Spice using

0.8 um technology data and five different tests were run. For each test the average current was

computed by integrating the instantaneous current and dividing by the length of the simulation.

Separate power supplies were simulated for the controller and the array of multiplier cells to isolate

the power consumed by each. Table 13 summarizes the results of these tests.

Table 13: Spice Simulation Results for 6-bit Multiplier
Data Average Current (/zA)
Input Values Control 6 Slice Cells
23 x (-9) 110 320
(-9) x 23 74 215

(-1) x (-1) 75 120
31x31 90 200
21 x (-22) 30 240

Examining the data from Table 13, it is easy to see that the power required for the multiplier

is highly dependent upon the data stream. The values used in the Spice testing of the 6-bit multiplier

were chosen to be representative of various bit patterns that would be encountered to provide a

more accurate estimate of the average current required. Using Table 13 the average current for the

100

multiplier controller is approximately 76 fiA. Similarly, the average current for the six multiplier

slice cells is 219 fiA, or approximately 37 pA/cell.

Combining the average current of the controller with that of the multiplier slice cells, it can

be estimated that the 26-bit multipliers used in the filterbank will consume an average of 1038 jiA.

From the simulated current draw, the average power can be calculated to be 5.19 mW when op-

erated continuously. However, the multipliers in the filterbank are only operational in 75.9% of

the states. Therefore, a more accurate estimate of the power consumed by each multiplier in the

filterbank is 3.94 mW. The three multipliers of the filterbank will therefore consume a combined

power of approximately 11.82 mW.

5.5.2 Adders. The second computational cell in the filterbank is the 26-bit adder, which

accumulates the multiplier results. From the filterbank state table it can be shown that the 26-bit

adder will potentially see new input values in 46.4% of the filterbank's operational states. To esti-

mate the power required by the 26-bit adder, a test similar to that of the multiplier was performed.

The simulations revealed that the current consumed per adder cell ranged from zero to a maximum

of 14.8 pA/cdl depending on the data. The average value (7.4 /xA/cell) was chosen for analy-

sis. Accounting for the utilization rate of the filterbank adder, the 26-cell device will consume an

estimated average of 446 /xW.

Since the adders depend upon a ripple carry, there will be some additional switching activity

where cells may transition more than one time for a computation to complete. Since the switching

will only involve the carry path, at most one half of the logic inside each adder will be affected.

Also, the added activity will affect on average only half of the cells of the adder. Therefore, a more

accurate estimate for the average power consumed by the 26 cell adder is

446 iiW + (446 (iW) x (0.5 gates /cell x 0.5 activity / gate) = 558 piW (29)

5.5.3 Latches. The data latches on the output of the adder and multiplier were the next

cells to be considered. To analyze the latches, a string of 26 cells was assembled for simulation. To

simulate the fact that not every bit in a data path changes state on every machine cycle, only half

101

of the cells were forced to change states with every clock state. The remaining cells were clocked,

but not transitioned.

The Spice testing showed that the average current drawn by the 26 latches was 120 fiA, or

4.62 \iA per cell. Converting the current to power, each cell consumed an average of 23.1 pW. In

the filterbank there are 160 latch cells outside of the multipliers which are grouped into 7 registers

averaging 22.8 bits in length. Therefore, the average register will consume 0.527 mW during

continuous cycling with half of its bits changing state on each cycle.

During the operation of the filterbank, 15 latch cycles are issued for the IIR filter, and 27

latch cycles are issued on behalf of each of the APGF. Although these latch cycles are distributed

among the 7 registers, for analysis all of these cycles were assigned to the average 22.8-bit register.

The average latch then has a utilization rate of 64.0%, and its estimated power consumption is

approximately 0.34 mW.

5.5.4 State Machines. The finite-state machine (FSM) has not been designed for VLSI

implementation, and therefore cannot be simulated for evaluation. To approximate the power con-

sumed by the FSM, note from Table 12 that the estimated area of the programmable logic array

(PLA) is approximately the same size as the 26-bit adder in the filterbank. Although the PLA is

smaller than the adder, the difference is offset by the additional gates and counters (latches) that

are nested inside the FSM. Therefore, it is reasonable to use the power consumed by the 26-bit

adder as an approximation of the power consumed by the FSM.

When cycled on a continuous basis, the adders were simulated to consume a maximum

14.8 \iA per cell, or 384.8 pA for the 26-bit adder. Since there is a high level of activity in the

FSM due to the constantly changing state, the maximum current drawn by the adder was used

to approximate the average current drawn by the FSM. Therefore, the estimated average power

consumed by the FSM is 1.92 mW.

5.5.5 Filterbank Power. Combined, the multipliers, data latches, adder, and FSM con-

sume an average of 14.6 mW of electrical power. The remaining cells in the filterbank architecture

will not significantly contribute to the power consumption of the system due to the in-frequency of

their operation and the use of low-power transmission-gate (pass) logic.

102

5.5.6 Logarithmic Compression. The power consumed by the logarithmic compression

stage is a negligible portion of the total power consumed by the system. Simulations indicated that

the logarithmic conversion process consumes 450 pW when cycled continuously at 50 MHz. As

implemented in the proposed system, the data rate is less than 1/32 of the system clock rate. Using

the same 33 MHz clock rate that was used for the other Spice simulations, the logarithmic data rate

is approximately 1 MHz, or 1/50 of the rate used to characterize the logarithmic unit. Therefore,

the estimated power consumed by the logarithm approximator is only 9 pW.

5.5.7 Neural Encoding Processor. The final stage of the architecture is the neural en-

coding processor (NEP). The NEP is comprised of the same cells used in the filterbank, therefore,

the NEP power requirement is estimated using the same technique described for the filterbank.

The power analysis of the NEP are summarized in Table 14. The estimated size of the FSM in the

NEP is 1.6 times larger than the FSM used in the filterbank. Since the switching activity of the

NEP's FSM is very similar to that of the filterbank fSM, the power consumed by the NEP's FSM

is estimated to be 1.6 times greater than the estimated power consumption of the filterbank's FSM.

Table 14: Power Ana ysis for Neural Encoc ing Processor
Cell Power/bit #Bits Utilization Total Power

Multiplier 37 \xW 18 63% 419 JJLW

ALU lApW 17 19.5% 24.5 fiW

Latches 4.62 pW 16 39% 23.8 pW
FSM 1.92 p,W 1.6 100% 3.1 mW

The estimated total power required for the NEP is 3.57 mW. Combining the power required

by the NEP with that of the filterbank the estimated total power required for the proposed system

is 18.2 mW. The total power consumption is small enough to allow the system to be operated from

batteries for an extended period.

5.5.8 Output Buffers and Clocking. A final consideration for the power analysis is the

power consumed by the input/output buffers and the clocking circuits. The power consumed by

the output buffers is highly dependent upon the system into which the chip is installed, the length

of wires, and the operating voltages. Fortunately, the data rate at the output is not the same as

103

the internal clocking rate. Rather, data departsthe circuit at an average of 32 times the input data

rate. Even if the CD sampling rate of 44 kHz is assumed, the output data rate is only 1.4 MHz.

Therefore, the power consumed by the output drivers is expected to remain low.

Another power consideration is the internal clocking circuitry. The clocking for the circuit

is highly de-centralized. While there is a global clock reference, this clock signal does not directly

drive most of the circuitry. Rather, the reference clock is qualified (via simple gate logic) by control

signals from the state machines. These qualified clock signals are used to generate local two-phase

clock signals where needed.

Because the local clocks are only driven upon demand from the state machine, most of the

clocks are idle at any given time. Since the localized clock drivers spend the majority of the time

in the disabled state, their average power consumption will be low. Therefore, a detailed analysis

of these clock circuits was not performed.

5.6 Summary

The analysis presented in this chapter confirm the viability of the proposed algorithms and

architecture. Specifically, the algorithms were shown to produce neural activity patterns (NAPs)

which did not significantly change the results of phoneme recognition experiments. Further, when

the algorithms are implemented using the proposed VLSI architecture, they may be realized in a

system that can perform the computation of a 32-channel NAP in real time.

The proposed VLSI architecture is small, estimated to fit inside a square of 7600 A on a side.

With these dimensions the processor could be fabricated in any of the technologies currently avail-

able through MOSIS. For example, if the MOSIS 0.8 fim CMOS technology were used, the result-

ing chip would be approximately a square 3.3 mm on a side and consume an estimated 18.2 mW,

making battery operation practical.

If a technology with smaller minimum feature sizes than 0.8 /an were used to implement the

system, the area of the die would decrease approximately proportional to the square of the change

in feature size. Further, additional layers of metal interconnect which are available on the newer

technology processes would also lead to a reduction in size. In terms of power, the smaller feature

size fabrication processes are designed for lower operating voltages. By being smaller and thus

104

having lower drive requirements, these processes are inherently faster and consume less power

than the technology used as an example in this chapter. Therefore, the conclusion can be made

that the operating characteristics estimated in this chapter for speed, size, and power are bounding

cases or worst case values.

105

VI. Conclusions and Recommendations

6.1 Introduction

The primary objective of this research was to develop an approximation of the Auditory Im-

age Model (AIM) for implementation into VLSI. The modifications to the model needed to be made

without significantly distorting its output, the neural activity pattern (NAP). Section 6.2 draws con-

clusions concerning the modifications implemented, while Section 6.3 proposes recommendations

for future research. The final section provides an overall summary of the work.

6.2 Conclusions

Until now, researchers were restricted to the use of workstation computers for the execution

of physiologically based auditory models. While these models which mathematically describe the

transformations of ear are accurate, they are time consuming to operate. In addition, the processing

requirements of such models have prevented them from advancing from the research laboratory

into the realm of application. The Auditory Image Model (AIM), which includes several different

algorithms for each of the stages of auditory processing is one such model that is restricted by its

computational needs.

As demonstrated in Chapter 3, the detailed algorithms in AIM can be approximated us-

ing algorithms which require significantly less computation. The approximated algorithms were

designed to preserve as much of the original behavior as possible, while providing the maximum

reduction in computational cost. As discussed in Chapter 5, the proposed changes to the algorithms

in AIM did not alter the overall performance of the model, when used for phoneme recognition,

with statistical significance. The result is a new auditory model similar to AIM, but demanding

less computation.

The primary advantage of the new auditory model is that its algorithms may be mapped

directly onto a relatively simple, single-chip VLSI processor. One possible implementation of the

new model was outlined in Chapter 4. The proposed architecture was shown to easily fit onto a

square die of 3 mm on each side. Further, it was shown that the processor is capable of sustained

real-time operation for 32 channels and requires less than 20 mW of power.

106

The transformation of AIM from desktop workstations to a low-power integrated circuit

opens new doors of opportunity for researchers and will free the auditory model from the confines

of the laboratory. The real-time operation of the hardware implementation will allow researchers

to more efficiently utilize the model to process audio data for further experimentation. With less

time spent on generating data, more time can be spent on analysis and developing new areas of

research and application.

Further, because of its small physical size and low power requirement, the integrated circuit

implementation of the auditory model may be embedded into other systems. For example, the

auditory model could be used as a pre-processor for a speaker identification security system or a

real-time voice-to-text system.

The integrated circuit could also allow auditory modeling to move from computational re-

search into the field of medicine. The architecture proposed in Chapter 4 is small enough, and

requires so little power that the circuit could be fabricated as a cochlear implant. As an implant,

the circuit could be used in individuals with middle and inner ear damage to directly convert sound

energy into the electrical neural activity patterns (NAP). The electrical NAP would then be used

to stimulate the hair cells of the cochlea and thereby restore hearing. Since the effects of the ear

canal were not included as a part of the modified model, the processor and microphone could be

implanted allowing the natural resonance of the ear canal to occur.

The search for more efficient algorithms to simplify AIM led to the development of a new

technique for the generation of approximate logarithms. While the new technique is an approxima-

tion, it produces logarithms with peak errors of less than 1.5% for all numbers, and less than 0.5%

for values greater than 25. Since the dynamic range of the input data to the logarithmic unit in the

present application is 0 to 32767, the error introduced by the approximate logarithm is expected to

be minimal. Additionally, the approximation technique requires only combinational logic, making

it very fast and low in power consumption.

The new technique for computing logarithms has application in signal processing (such as

AIM) where it may be used in algorithms requiring signal compression. Additionally the technique

may be used to reduce computational workloads of other algorithms by mapping multiplication

operations into addition operations.

107

6.3 Recommendations for Further Research

While the primary objective of transforming AIM was met, areas for future work and re-

search exist. The subsections that follow bring to light some topics to which future research could

be directed.

6.3.1 Layout Completion. The architecture described in Chapter 4 was supported by

the VLSI layout of its major cells. Development of these cells was essential to the estimation

of power and size, however, the layout of the architecture as a whole has not been completed.

Before such a layout could be realized, the finite-state machine logic for the filterbank and neural

encoding processor must be constructed. The required equations, which need to be programmed,

are tabulated in Appendices B and C. The area and power estimations of Chapter 5 were based

upon these equations being implemented by, but not restricted to, a programmable logic array

(PLA).

With the generation of the control logic, the connection of the existing cells could be com-

pleted. Upon completion of a layout for the architecture, an appropriate interface must be designed.

Following fabrication, testing would be required to validate the power and speed estimations.

6.3.2 Integrated Circuit Interface. Although the architecture discussed in the preceding

chapters is complete computationally, one issue not addressed was the incorporation of the circuit

into a larger system. Interface issues cannot be addressed until a host system is known. For

example, the interface to a computer will be different from an interface to the human ear.

In order to best serve the auditory research community, an interface to a common bus archi-

tecture would be desirable. A suggested bus is the Peripheral Component Interconnect (PCI) bus

common to most workstations. By including the interface logic for such a bus on-chip, the result-

ing circuit could easily connect to a workstation and serve as a co-processor for the production of

neural activity patterns under the control of the host processor.

The addition of an analog input channel to the architecture would also be advantageous.

By incorporating an analog-to-digital converter, as well as the digital bus interface, additional

flexibility would be added allowing researchers to process audio signals, such as speech, in real

108

time. The inclusion of the analog input circuitry would be required in order for the integrated

circuit to be utilized as a cochlear implant.

An additional requirement for the circuit to be implantable would be an analog output stage.

The analog output stage would require one output channel for each filter in the filterbank. For

the architecture described in Chapter 4, thirty-two output channels would be required. However,

since the output data is time-division multiplexed, a single digital-to-analog converter could be

implemented with one analog hold amplifier dedicated to each output channel.

6.3.3 Writable Coefficients Store. Another area of future work is the addition of writable

memories for the storing of the coefficients. For the proposed architecture, read-only memories

(ROMs) were used for their ease of implementation. The use of ROM's as proposed requires that

the coefficients be programmed before the masks for the fabrication are generated. Therefore, the

coefficients cannot be altered after fabrication. If new filter frequencies are desired, new fabrication

masks are required thus increasing the cost per chip. Additionally, the generation of new custom

chips is typically a several month process.

If erasable, programmable ROMs (EPROMs) were used to replace the ROMs in the design,

the end user could program the filterbank and NEP coefficients after fabrication. Additionally,

the coefficients could be erased and re-programmed if necessary. While there are benefits to pro-

grammable coefficient stores, the inclusion of additional logic to allow for the writing and possible

erasing of the stores would be necessary.

6.3.4 Neural Encoding Approximations. Finally, it was shown through experimentation

that the changes made to the algorithms of the neural encoding had the largest impact on the

NAP's generated by the model. Further research should be directed toward improving upon these

approximations.

One approximation, in particular, that should be studied is the rounding of the neural firing

threshold. The approximation used rounded this limit from 1397 to 1024 because of the binary

simplicity of 1024. The absolute limit could be raised to 1280 by including only one more bit

into the the value, resulting in one more addition. Including one more bit (and thus addition) the

threshold could be raised to 1408. By increasing the lower threshold of the nerves sensitivity, the

109

resulting NAP will have less magnitude error and will not contain some of the smaller features not

found in the NAP generated by AIM. The tradeoff between added computation and the resulting

accuracy of the NAP requires further study.

6.4 Summary

As a result of this research, we are now one step closer to transforming the Auditory Image

model into application-specific devices. Algorithms were presented which may be used to signifi-

cantly simplify the computational workload of the Auditory Image Model. Further, an architecture

was designed for an application-specific integrated circuit to execute the new algorithms. The next

step will be to complete the layout of the architecture for fabrication and testing.

110

Appendix A. Computation of All-Pole Gammatone Filter Constants

This appendix describes the derivation and computation of the constants used for the all-pole gam-

matone filter replacement. The derivation begins with the S domain expression for the second order

stage of the recursive all-pole filter:

GT(s)= . * 2 (30)

Where B is a bandwidth term defined by:

B = (27T)1.019EÄB(/O) (31)

and ERB(f) is a function to compute the "equivalent rectangular bandwidth" of the gammatone

filter at the frequency f. There exists more than one function to compute ERB(f), however, the

equation seen most often in recent literature and recommended by Glasberg and Moore [20] is:

^B(/) = 24.7(^ + l) (32)

The first step in obtaining the filter coefficients is to express GT(s) in terms of a discrete

equation. Slaney performs this transformation with the aid of computer aided symbolic manipula-

tion to get an expression of the form[17:p. 27]:

HI A - -2TZsm("oT) m
{) ~ eBT{$fr- 2u>0Z> + *«°zffi°V

where T represents the sampling period for the discrete data, and B and w0 are as defined above.

Equation 33 can be simplified to the form:

■fe-BTrsin(o;0T)Z-1 Y{z)
K ' " 1 - 2Z~le-BT cos(w0T) + e-

2BTZ-2 X(z)

At this point it is critical to point out that the above equations were based on the derivations done by

Slaney who normalized the equations so that the peak of all of his filter plots would reach a unity

gain (0 dB). To proceed it is important to re-introduce the actual midband gain which has been

111

removed. To re-introduce the actual midband gain, we must return to the original GT(s) expression

and solve for the magnitude of the gain letting u = u0:

GT(s) = , * ^ 2 (35)

Letting s = ju0

GT^ = UU. + W + * = WTwi^ (36)

Hence the magnitude of the midband gain is:

Pw| = ^^ = ^»'Vr' <37)

We now return to the expression for the Z transformed all-pole gammatone filter and simply divide

H{z) by K to provide the needed gain at the midband. Finally, solving the resulting expression

for Y(z) and replacng the X{z)Z~1 with X[n-i] and Y(z)Z-\Y(z)Z-2 with Y[n-i] and Y[n_2]

respectively, we get:

YM = -£-e-BT sinKT)X[B_i] + 2e~BT cos^Y^ - e-2BTY[n_2] (38)

which is of the form:

Y[n] = aXfr-y + &y[n_i] + cY[n_2] (39)

as given in the text of Chapter 4. The constants are then defined by:

a = -£-e-BTsm("oT) (40)

6 = 2e-BTcos(u;0T) (41)

c = -e-2BT (42)

These coefficients can be computed one time and stored as ROM constants for each filter. In the

modified AIM code, a compile-time option was added to the file f ilter/apgf. c which when

enabled causes AIM to write the these constants to disk files when the program is run.

112

Appendix B. State Output Equations for the Filterbank

Idy = (s63 • sb2 • ~sbl • sbO)

adv = (s64 • s63 • s62 • äW • sbO) + (s64 ■ sbl ■ sb2 • sW • sbO) + (s&4 ■ sb2 ■ sbl • sW) +

(s63 • s62 • sW • sbO)

avr = (sbi • s&3 • sb2 ■ sbl ■ sbO) + (s&4 • sb2 • s61 • sW) + (s63 • sb2 • sW • s60)

lül = (s64 ■ s63 ■ sb~2 ■ sbl ■ sbO) + (s64 • s62 • sW • sW) + (s&3 • sb2 • sW ■ sbO) +

(sbi ■ 563 • sbO)

wl = (sM ■ sbH ■ s62 • sbl • sbO) + (sbi ■ sb~2 ■ sbl ■ sbO) + (s63 • sb2 ■ sbO) + (s64 • s63 • sW)

wbk = (s64 • sb2 ■ sW) + (s64 • s63 • sbO)

Id = (s63 • «62 • sbl ■ äW) + (s64 • s62 • s61 • sW) + (s64 • s62 • sbl ■ sbO)

mpy = (sbi • 563 • s&2 • sbl ■ sbO) + (s63 • s62 • sW • 56Ö) + (s63 • s62 • sW • 56Ö) +

(sM • s62 • sbl • 56O) + (s64 • sW • sW) + (s64 ■ sb2 ■ s6l) + (s64 • s63 • s60)

Idr = (s64 • s63 • s62 • sW ■ 56O) + (s64 • s63 • s62 • sW • s60) + (s64 • s63 • s62 ■ sW • sbO) +

(s64 • s62 • s61 • söÖ)

sO = (s64 • s62 • sbl)

slO = (s64 • s62 • sbl ■ sbO) + (s62 • s60) + (s64 • s63 • s~W)

sll = (563 ■ s62 • sW • äöÖ)

s2 = (s64 • s62 • sbl ■ sbO) + (s63 • s62 ■ sW • sW) + (s64 • s62 • sbl ■ sbO) +

(s63 • s62 • sbl) + (s64 • s63 • sW)

s3 = (s64 • 562 • sbl • ~sbÖ) + (sbi • s62 • sbl ■ sbO) + («63 • s62 ■ sW • s60)

54 = (s64 • s62 • äbl) + (s64 • s63 • sbO)

adc = (s64 • s62 • sbl ■ sbO) + (s63 • s62 • sW • ~s~bÖ) + (sbi • s62 • «61 • s60) +

(s63 • s62 • sbl) + (s64 • s63 • ~s~bÖ)

Ido = (s64 • s63 • s62 • sbl) + (s64 • s62 • sbl ■ sbO) + (s63 ■ s62 • sW • sW) +

(s64 • s62 • s61) + (s63 • s62 • sbl) + (s64 • s63 • ~s~bÖ)

cpl (s64 • s63 • sbO)

113

Appendix C. State Output Equations for NEP State Machine

Imp = (s64 • s&3 ■

(s64 ■ sbl ■

550 = (s&3 • sb2 •"

s51 = (s64-s63-

«6 = (s64-s63-

(s64 • sb2 •

s7 = (s64-s63-

s8 = (sM-s63-

s9 = (s62 • sbl ■

slO = (sbl ■ sbl ■

mpl = (sTÄ-slß-

(sb3 ■ sb2 •

Ipf = (sb3 • sb2 •

adj = (s63 • s62 •

lr = (i64-s&3 •

(sfe4 • s&I •

as = (sbl-sTS-

Imic = (sft3 • s62 •

pas = (s63 • s62 ■

Itmp = (sM-s63-

wmc = (sb3 ■ sb2 ■

wlp = (sb4 ■ sbl ■

zro = {sbA • sb2 ■

dorq = (s64 • sb2 ■

■ s62 ■ sbl ■ ä6Ö) + (s&3 • sb2 • ~sbl • ä5Ö) + (s&2 • «61 • s60) +

■ s60) + (s64 • «62 • s61)

• s61 • sbÖ) + (s64 • sbl • sbO) + (sb4 ■ sb2 ■ sbl)

■ 562 • 561 • iW)

• 162 • sbl • s6Ö) + (s63 • sb2 ■ s61 • s6Ö) + (s64 • s61 • s60) +

•561)

• s62 • 561 • s6Ö) + (s63 • s62 • s61 • 56O)

• s62 • sbl ■ s6Ü) + (s64 • sb2 ■ sbl ■ söÖ) + (s63 • s62 • s61 • s60)

• 56O) + (s64 • sbl • s60)

• s60)

• ^62 • sbl ■ sbO) + (564 • s62 • iW • iW) + (s63 • s62 • äW • s6Ö) +

•s61-s60)

• 56I • s60) + (s63 • s62 • 56T ■ s6Ö) + («64 • sbl • s60) + (s64 • s62 ■ sbl)

■ s61 • s60) + (s63 • s62 • s6T • 56Ö)

• s62 • s6T • s6Ö) + (s63 • «62 • s61 • s60) + (s63 • s62 • sbl ■ s6Ö) +

• s60)

• s62 • sbl ■ sbÖ)

■ s61 • s60) + (s63 • s62 • sbl • sbO) + (s63 • s62 • sbl ■ sbO)

■ sbl ■ s6Ö) + (s63 • s62 ■ sbl ■ sbO)

■ sb2 ■ sbl ■ s6Ö) + (s64 • s62 • s61 • s6Ö) + (s63 • s62 • s61 • s6Ö)

• sbl • äöÖ) + (s64 • s62 • sbl)

■ sbO)

■sbl)

•s61)

114

Appendix D. Rom Layout Generation Code

#include <stdio.h>
#inelüde <time.h>

#define X 8
#define Y 16
#define SPACING 4

/* width of generated cells */
/* height of generated cells */

int main(int arge, char *argv[])
{
int ex, cy;
int vail, val2, i, j, bitl, bit2;
FILE *fin, *fout;
time_t t;
int row, bits, dolabels=l;
char ofname[64];

if (arge == 1) {
fprintf(stderr,"\n\aUSAGE
fprintf(stderr,

fprintf(stderr.

mkrom [wordsize] datafile \n");
\tlf wordsize is not specified, 16 bits is \
defaulted\n");
\tThe datafile must contain one data value per \
line in integer form.\n");

fprintf(stderr,"\tlf there are an odd number of values, a row \
of all O's will be appended.\n");

fprintf(stderr,"\n\tThe output file will be datafile.mag\n");
exit(-1);

}

if (arge == 2)
bits=16;

else {
bits = atoi(argvfl]);
if (bits == 0) {

fprintf(stderr,"ERROR: word size of zero was specified\n");
fprintf(stderr,"\n\aUSAGE: mkrom [wordsize] datafile\n");
fprintf(stderr,"\tlf wordsize is not specified, 16 bits is \

defaulted\n");
fprintf(stderr,"\tdatafile must contain one data value per line \

in integer form.Nn");
exit(-2);

}
}

fin = fopen(argv[argc-l],"r");
if (fin == NULL) {
printf("ERROR OPENING INPUT FILE %s\n",argv[argc-l]);
exit (-1);

}

115

sprintf(ofname,"%s.mag",argv[argc-l]);
fout = fopen(ofname, "w");
if (fout == NULL) {
printf("ERROR OPENING OUTPUT FILE %s\n",ofname);
exit (-1);

}

t = time(NULL);
/* Write out header */
fprintf(fout,"magic\ntech scmos\ntimestamp %ld\n",t);

/* Write out bottom row ground plane */
cy = 0;
ex = 0;
for (i=0; i<=bits ; i++){ /* extra insures right side ground */

if (!(i%SPACING) || (i == bits)){
fprintf (fout,"« metall >>\n");
fprintf(fout,"rect %d %d %d %d\n",cx+l,cy,cx+7,cy+4);
fprintf (fout, "« ndcontact >>\n");
fprintf(fout,"rect %d %d %d %d\n",cx+l,cy,cx+7,cy+4);
fprintf (fout, "« ndiffusion >>\n");
fprintf(fout,"rect %d %d %d %d\n",cx,cy,cx+8,cy+4);
cx+=X;

}
if (i < bits) {

fprintf (fout, "« ndiffusion » \n");
fprintf(fout,"rect %d %d %d %d\n",cx,cy,cx+X,cy+4);
fprintf (fout, "« metall » \n");
fprintf(fout,"rect %d %d %d %d\n",cx+2,cy,cx+5,cy+4);
fprintf (fout,"« labels >>\n");
fprintf(fout,"rlabel metall %d %d %d %d 1 B%d\n", \

cx+3,cy+l,cx+3,cy+l,i);
cx+=X;

}
}
cy = 4;
row = 0;
/* Write out actual rom data cells */
while (fscanf(fin,"%d",&vall)==1) {

if (fscanf(fin,"%d",&val2)!=1)
val2 = 0;

ex = 0;
for (i=0; i<=bits ; i++){ /* Write vertical ground lines */

if (!(i%SPACING) || (i == bits)){
fprintf (fout, "« metall >>\n");
fprintf(fout,"rect %d %d %d %d\n",cx+l,cy,cx+7,cy+16);
fprintf(fout,"« ndcontact >>\n");
fprintf(fout,"rect %d %d %d %d\n",cx+l,cy+12,cx+7,cy+16);
fprintf(fout,"« ndiffusion >>\n");
fprintf(fout,"rect %d %d %d %d\n",cx,cy+12,cx+8,cy+16);
fprintf(fout,"« polysilicon >>\n");

116

fprintf(fout,"rect %d %d %d %d\n",cx,cy+9,cx+8,cy+ll);
fprintf(fout,"rect %d %d %d %d\n",cx,cy+l,cx+8,cy+3);
fprintf(fout,"« psubstratepcontact >>\n");
fprintf(fout,"rect %d %d %d %d\n",cx+2,cy+4,cx+6,cy+8);
if (i == 0) { /* label the row lines */

fprintf (fout, "« labels >>\n");
fprintf(fout,"rlabel polysilicon %d %d %d %d 1 R%d\n",

cx+1,cy+2,cx+1,cy+2,row);
fprintf(fout,"rlabel polysilicon %d %d %d %d 1 R%d\n",

cx+1,cy+10,cx+1,cy+10,row+l);
row += 2;

}
cx+=X;

}
if (i < bits) {

bitl = vail % 2;
bit2 = val2 % 2;
vail »= 1;
val2 »= 1;
fprintf (fout, "« metall >>\n");
fprintf(fout,"rect %d %d %d %d\n",cx+2,cy,cx+5,cy+16);
fprintf (fout, "« ndcontact >>\n");
fprintf(fout,"rect %d %d %d %d\n",cx+2,cy+4,cx+6,cy+8);
fprintf(fout,"« polysilicon >>\n");
fprintf(fout,"rect %d %d %d %d\n",cx,cy+9,cx+8,cy+11);
fprintf(fout,"rect %d %d %d %d\n",cx,cy+l,cx+8,cy+3);
fprintf (fout,"« ndiffusion >>\n");
fprintf(fout,"rect %d %d %d %d\n",cx,cy+12,cx+8,cy+16);
if (Ibitl)

fprintf(fout,"rect %d %d %d %d\n",cx+2,cy,cx+6,cy+4);
if (!bit2)

fprintf(fout,"rect %d %d %d %d\n",cx+2,cy+8,cx+6,cy+12);
ex += X;

}
}

cy += Y;
}
fprintf (fout, "« end >>\n");
return 0;

}

117

Appendix E. VHDL Code

FILENAME:
AUTHOR:
DATE:
REVISIONS:

filter.vhd
Sam L. SanGregory
1/6/99
none

STATUS: FROZEN DO NOT MODIFY (witout comment)
6/10/99 Removed a carry feedback path in the adder

FUNCTION:
This code models the structure of the main filter bank
for the AIM inner ear. It includes all of the multipliers,
adders, memory, and multiplexors needed to perform the
outer/middle-ear filter as well as the cochlear filtering.

DEPENDS UPON:
add_n.vhd, fsm multiplier.vhd, mux2.vhd, mux4.vhd, row_sel.vhd,
rowmux.vhd, ram.vhd, rom.vhd, tnreg.vhd, n_dffacl.vhd,
n_dff.vhd, andgate.vhd, phi2.vhd

This source code was written in partial fullfilment of PhD
requirements at The Air Force Institute of Technology.

library ieee;
use ieee.std_logic_1164.all;

ENTITY

entity AIMfilter is
generic (roml

rom2
rom3
rom_w
rom_n
ram_w
ram_n

string
string
string
natural
natural
natural
natural

"roml.data"
"rom2.data"
"rom3.data"
16;
12
24
42

width of rom data
number of rom rows
width of ram data
number of ram rows

(channels+2)

(4*chan)+2

);
port (x

elk
drq
dxak
reset

y
dak
dxrg

in std_ulogic_vector(15 downto 0);
in std_ulogic;
in std_ulogic;
in std_ulogic;
in std_ulogic;

out std_ulogic_vector(15 downto 0);
out std_ulogic;
out std_ulogic

-- input data
— system clock
-- input data ready
-- acknowledge from next
-- system reset

-- output data
-- filter busy
-- data ready for next

);
end AIMfilter;

ARCHITECTURE

118

architecture str of AIMfilter is

component add_n
generic (n :

td :
port(ai, bi :

ci
sum
co

end component;

natural := 8;
time := 1 ns) ;
in std_ulogic_vector(n-1 downto 0) ;
in std_ulogic;
out std_ulogic_vector(n-l downto 0) ;

out std_ulogic);

component fsrti
generic (td : time := 1 ns) ;
port (ck : in std_ulogic;

drq : in std_ulogic;

rx : in std_ulogic;

reset : in std_ulogic;

dxak : in std_ulogic;

dak : out std_ulogic;

ldy • out std_ulogic;
adv out std_ulogic;

avr out std_ulogic;

wl out std_ulogic;
w2 out std_ulogic;
wbk out std_ulogic;

Id out std_ulogic;

mpy out std_ulogic;
ldr out std_ulogic;

sO out std_ulogic;
slO out std_ulogic;
sll out std_ulogic;

s2 out std_ulogic;

s3 out std_ulogic;
s4 out std_ulogic;
ldo : out std_ulogic;

cpl : out std_ulogic;
dxrq : out std_ulogic;
rst : out std_ulogic

-- clock input
-- data request
— RWM row X
— reset

);
end component;

component multiplier
generic (w natural = ram_w+2;

cont_td time = 1 ns;

tdff_td time = 1 ns;
addsub_td time = 1 ns;
mux2_td time = 1 ns;
dffcl_td time = 1 ns;
dff2_td time = 1 ns);

port (ml,m2 in E td_i alogic_vector(w-l downto 0) ;

ml out out £ td_\ ilogic_vector(w-1 downto 0);
c, cb in £ td_i ilogic;

Id, ldb in £ td_\ ilogic;

119

result
end component;

: out std_ulogic_vector(2*w-l downto 0));

component mux2
generic (td :

w :
port (iO, il

s
ol

end component;

time := 1 ns;
natural := 8);

: in std_ulogic_vector(w-l downto 0);
: in std_ulogic;
: out std_ulogic_vector(w-l downto 0));

component mux4
generic (td : time

w : natural
port (i3, i2, il, iO :

si, sO :
ol :

end component;

:= 1 ns;
:= 8);
in std_ulogic_vector(w-1 downto 0);
in std_ulogic;
out std_ulogic_vector(w-l downto 0));

component row_sel
generic (n
port(reset

adv
rows
rx

);
end component;

natural := 32; td : time := 1 ns) ;
in std_ulogic;
in std_ulogic;
out std_ulogic_vector(0 to n-1);
out std_ulogic

component rowmux
generic (n
port (irow

back
orow

);
end component;

natural := ram_n; td : time := 1 ns);
in std_ulogic_vector(n downto 0);
in std_ulogic;
out std_ulogic_vector(n-1 downto 0)

component ram
generic(tdr, tdw

w :
nw :
init

port (addr :
din :
wr :
dout :

end component;

time := 1 ns; — delay read, write
natural := ram_w; — width of each word
natural := ram_n; — number of words (rows)
: natural := 0); — initial values for ram
in std_ulogic_vector(nw-l downto 0) ;
in std_ulogic_vector(w-1 downto 0);
in std_ulogic;
out std_ulogic_vector(w-1 downto 0));

component rom
generic(tdr:

w :
nw :
fn :

port (addr :
dout :

end component;

time := 1 ns; — delay read
natural := rom_w; — width of each word
natural := rom_n; — number of words (rows)
string := "romx.data");
in std_ulogic_vector(nw-1 downto 0);
out std_ulogic_vector(w-l downto 0));

120

component tnreg
generic (td

n
port (din :

dout :
load :
loadb:

end component;

— Transparent Data Latch
: time := 1 ns; — propagation delay
: natural := 8); — number of bits
in std_ulogic_vector(n-l downto 0);
out std_ulogic_vector(n-l downto 0);
in std_ulogic;
in std_ulogic);

component n_dffacl — asynch clear edge triggered
generic(n : natural := 8;

time := 1 ns) ;
in std_ulogic_vector(n-l downto 0);
in std_ulogic;
in std_ulogic;
out std_ulogic_vector(n-l downto 0));

td :
port (d :

c :
reset:
q,qb :

end component;

component n_dff
generic(n :

td :
port (d :

C :

q,qb :
end component;

— Falling Edge Latch

natural := 8;
time := 1 ns) ;
in std_ulogic_vector(n-l downto 0);
in std_ulogic;
out std_ulogic_vector(n-1 downto 0));

component andgate
generic (n : natural := 2;

td : time := 1 ns) ;
port (i : in std_ulogic_vector(n-1 downto 0)

o : out std_ulogic);
end component;

component phi2
generic (td
port (ck :

ckl :
ck2 :

end component;

: time := 1 ns);
in std_ulogic;
out std_ulogic;
out std_ulogic);

— in phase with ck
— out of phase with ck

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

mObus
mlbus
m2bus
m3bus
m4bus
mpl
mp2
mp3
mprl
mpr2
mpr3
abus
dobus
xbus
ybus
mlout

std_ulogic.
std_ulogic_
std_ulogic.
std_ulogic.
std_ulogic_
std_ulogic.
std_ulogic.
std_ulogic.
std_ulogic.
std_ulogic.
std_ulogic.
std_ulogic.
std_ulogic_
std_ulogic.
std_ulogic.
std_ulogic.

vector(25
.vector (25
.vector (25
.vector (23
.vector (23
vector(51
.vector (51
.vector (51
.vector (25
.vector (25
.vector (25
.vector (25
.vector (25
.vector (23
.vector (23
.vector (25

downto 0)
downto 0)
downto 0)
downto 0)
downto 0)
downto 0)
downto 0)
downto 0)
downto 0)
downto 0)
downto 0)
downto 0)
downto 0)
downto 0)
downto 0)
downto 0)

MUX outputs

— mult outputs

mult latch outs

adder output w/cy
adder output latch
x latch output
y latch output
multiplier ml recycle

121

signal rlbus
signal r2bus
signal rail
signal rm2
signal rm3

std_ulogic_vector(25 downto 0)
std_ulogic_vector(25 downto 0)
std_ulogic_vector(25 downto 0)
std_ulogic_vector(25 downto 0)
std_ulogic_vector(25 downto 0);

signal ramrow : std_ulogic_vector(ram_n-l downto 0)

signal ramlrow: std_ulogic_vector(ram_n-l downto 0)

signal rxrows: std_ulogic_vector(ram_n downto 0)

signal romrow : std_ulogic_vector(rom_n-l downto 0)
signal mxl_gnd: std_ulogic_vector(25 downto 0);

ram 1 out
ram 2 out
rom 1 bus
rom 2 bus
rom 3 bus
ram row selects
:= (others=>'0');
raml row selects
:= (others=>'0');
ram rows with rx
:= (others=>'0');
rom row selects
:= (others=>'0');
zero input for muxl

signal al,a2,a3,a4,a5
signal a6,a7
signal mpyi, mpyl, mpy2
signal Idi, ldl, ld2
signal ldri, ldrl, ldr2
signal xldl, xld2
signal cpl, cp2
signal ldock
signal wick, w2ck

std_ulogic_vector(1 downto 0);
std_ulogic_vector(l downto 0);

-- andgate input vect
-- andgate input vect

std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;

clock for multipliers
load for multipliers
load for multiply result
load for X register
load for compress latch
ldo anded with clock
quallified ram writes

signal ldy, adv, avr, wl, w2, wbk
signal Id, mpy, ldr, sO, slO, sll
signal s2, s3, s4, ldo, cpl
signal rst, rx

std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;

FSM signals

signal gnd
begin

std_ulogic '0'

 RAM Memory
ramsel : row_sel

generic map(ram_n, 1 ns)
port map(rst, adv, ramrow, rx);

rxrows(ram_n-l downto 0) <= ramrow;
rxrows(ram_n) <= rx;
ramlmux : rowmux

generic map(ram_n, 1 ns)
port map(rxrows, wbk, ramlrow);

a6 <= wl & elk;
and6 : andgate

generic map (2, 1 ns)
port map (a6,wlck);

raml : ram — using component defaults on generics
port map(ramlrow, m4bus, wick, rlbus(23 downto 0));

rlbus(24) <= rlbus(23); — sign extension
rlbus(25) <= rlbus(23); — sign extension

a7 <= w2 & elk;
and7 : andgate

122

generic map (2, 1 ns)
port map (a7,w2ck);

ram2 : ram — using component defaults on generics
port map(ramrow, mlout(23 downto 0), w2ck, r2bus(23 downto 0))

r2bus(24) <= r2bus(23); -- sign extension
r2bus(25) <= r2bus(23); -- sign extension

 ROM Memory
romaddr : row_sel

generic map(rom_n, 1 ns)
port map(rst, avr, romrow, open);

rom_l : rom
generic map(1 ns, rom_w, rom_n, roml)
port map(romrow, rml(15 downto 0));

rmKrml'left downto 16) <= (others=>rml (15)) sign extension

rom_2 : rom
generic map(1 ns, rom_w, rom_n, rom2)
port map(romrow, rm2(15 downto 0));

rm2(rm2'left downto 16) <= (others=>rm2(15)) sign extension

rom_3 : rom
generic map(1 ns, rom_w, rom_n, rom3)
port map(romrow, rm3(15 downto 0));

rm3(rm3'left downto 16) <= (others=>rm3(15)) sign extension

 Multipliers
al <= mpy & elk;
andl : andgate

generic map(2, 1 ns)
port map(al,mpyi);

a2 <= Id & elk;
and2 : andgate

generic map(2, 1 ns)
port map(a2,ldi);

a3 <= ldr & elk;
and3 : andgate

generic map(2, 1 ns)
port map(a3, ldri);

clockl : phi2
port map(mpyi, mpyl, mpy2); -- clock for multipliers

clock2 : phi2
port map(ldi, ldl, ld2); load for multipliers

clock3 : phi2
port map(ldri, ldrl, ldr2); load for mult result

mltl : multiplier -- component default generics
port map(mObus, rml, open, mpyl, mpy2, ldl, ld2, mpl);

mlt2 : multiplier component default generics

123

port map(rlbus, rm2, mlout, mpyl, mpy2, ldl, ld2, mp2);

mlt3 : multiplier — component default generics
port map(r2bus, rm3, open, mpyl, mpy2, ldl, ld2, mp3);

— The 8 bit offset in the mapping below accounts for the fact that
-- the rom word is 8 bits smaller than that of the ram so multiply
— is not fully shifted in booth algorithm. Also the range (39-14)
— accounts for a missing 2 bits of shift. An additional shift
— operation is required to complete the Booth's but to save a
— clock cycle this final shift is hardwired on the output.

— Multiplier output latches
latchl : tnreg

generic map(1 ns, 26)
port map(mpl(39+8 downto 14+8), mprl, ldrl, ldr2);

latch2 : tnreg
generic map(1 ns, 26)
port map(mp2(39+8 downto 14+8), mpr2, ldrl, ldr2);

latch3 : tnreg
generic map(1 ns, 26)
port map(mp3(39+8 downto 14+8), mpr3, ldrl, ldr2);

 Muxes (all)
mxO : mux2

generic map(1 ns, 24)
port map(m3bus, mlout(23 downto 0), sO, m0bus(23 downto 0));

m0bus(24) <= m0bus(23); — sign extension
m0bus(25) <= mObus(23);

mxl_gnd <= (others=>'0'); — zero unused input

mxl : mux4
generic map(1 ns, 26)
port map(mxl_gnd, mpr3, mpr2, mprl, sll, slO, mlbus);

mx2 : mux2
generic map(1 ns, 26)
port map(mpr3, dobus, s2, m2bus);

mx3 : mux2
generic map(1 ns, 24)
port map(xbus, ybus, s3, m3bus);

mx4 : mux2
generic map(1 ns, 24)
port map(m3bus, dobus(25 downto 2), s4, m4bus);

 X input
clock4 : phi2

port map(drq, xldl, xld2);

latch4 : tnreg
generic map(1 ns, 16)
port map(x, xbus(23 downto 8), xldl, xld2);

124

xbus(7 downto 0) <= (others=>'0'); — zero pad fraction

 Y latch

latch5 : n_dffacl
generic map(24, 1 ns)
port map(dobus(24 downto 1) , ldy, reset, ybus);

 Finite State Machine

fsml : fsm
generic map(l ns)
port map(elk, drq, rx, reset, dxak, dak, ldy, adv, avr,

wl, w2, wbk, Id, mpy, ldr, sO, slO, sll,
s2, s3, s4, ldo, cpl, dxrq, rst);

 Adder and final output
adder : add_n

generic map(26, 1 ns)
port map(mlbus, m2bus, gnd, abus, open);

a5 <= ldo & elk;
and5 : andgate

generic map(2, 1 ns)
port map(a5, ldock);

ndffl : n_dff
generic map(26, 1 ns)
port map(abus, ldock, dobus, open);

clock6 : phi2
port map(cpl, cpl, cp2); -- load for mult result

latch6 : tnreg
generic map(1 ns, 16)

— CHANGED 5/26/99 from (25 downto 10)
port map(dobus(23 downto 8), y, cpl, cp2);

end str;

CONFIGURATION

configuration AIMfilter_cfg of AIMfilter is
for str

for all : add_n
use configuration work.add_n_cfg;

end for;
for all : fsm

use configuration work.fsm_cfg;
end for;
for all : multiplier

use configuration work.multiplier_cfg;
end for;
for all : mux2

use entity work.mux2(beh);
end for;
for all : mux4

125

use entity work.mux4(beh);

end for;
for all : row_sel

use configuration work.row_sel_cfg;

end for;
for all : rowmux

use configuration work.rowmux_cfg;

end for;
for all : ram

use entity work.ram(beh);

end for;
for all : rom

use entity work.rom{beh);
end for;
for all : tnreg

use configuration work.tnreg_cfg;

end for;
for all : n_dff

use configuration work.n_dff_cfg;

end for;
for all : andgate

use entity work.andgate(beh);

end for;
for all : phi2

use configuration work.phi2_cfg;

end for;
for all : n_dffacl

use configuration work.n_dffacl_cfg;

end for;
end for;
end AIMfilter_cfg;

126

FILENAME
AUTHOR:
DATE:
REVISIONS:

12/23/98
1/28/99

logapr.vhd
Sam L. SanGregory
8/15/98

Added configuration to test second order approximation
Added shft2 and bits2 to make 2nd approx generic

STATUS: FROZEN DO NOT MODIFY (witout comment)

FUNCTION:
This is the top-level of the structural description of the
log-base-2 approximator. Two configurations are given,
the first is the complete algorithm developed in this research
while the second (DUMMY) does not include the adjustment and
is thus closer to the original algorithm from WSU.

DEPENDS UPON:
barell.vhd, adjust.vhd, exprom.vhd

This source code was written in partial fullfilment of PhD
requirements at The Air Force Institute of Technology.

library ieee;
use ieee.std_logic_1164.all;

ENTITY

ns;
entity logapr is

generic (td
shft
shft2
bits
bits2

port (din
eval_not : in std_ulogic;
logerr : out std_ulogic;
dout : out std_ulogic_vector(15 downto 0));
end logapr;

time : = 1 n
natural : = 2;
natural : = 3;
natural : = 4;
natural : = 4);

how many positions to shift
how many 2nd approx
how many bits to shift
how many bits 2nd approx

in std_ulogic_vector(15 downto 0);

ARCHITECTURE

architecture str of logapr is

component barell
generic(td : time := 1 ns) ;
port (din : in std_ulogic_vector(15 downto 0)

eval_not : in std_ulogic;
logerr : out std_ulogic;
dout : out std_ulogic_vector(14 downto 0);
shout : out std_ulogic_vector(14 downto 0));

end component;

component adjust

127

generic (td : time := 1 ns;
wid : natural := 12;

shft : natural := shft;
shft2 : natural := shft2;
bits : natural := bits;
bits2 : natural := bits2);

port(x : in std_ulogic_vector(wid-1 downto 0) ;
y : out std_ulogic_vector(wid-1 downto 0));

end component;

component exprom
generic(td : time := 1 ns) ;
port(shift : in std_ulogic_vector(14 downto 0);

log_err : in std_ulogic;
eval : in std_ulogic;

exp : out std_ulogic_vector(3 downto 0));

end component;

signal d_tmpl : std_ulogic_vector(14 downto 0) ;
signal d_tmp2 : std_ulogic_vector(11 downto 0);
signal shift : std_ulogic_vector(14 downto 0);
signal expv : std_ulogic_vector(3 downto 0);
signal logr : std_ulogic;
signal evl : std_ulogic;

begin

shifter : barell
port map(din, eval_not, logr, d_tmpl, shift);

adjuster : adjust
port map(d_tmpl(13 downto 2), d_tmp2);

evl <= not eval_not after 1 ns;
exponent : exprom

port map(shift, logr, evl, expv);

dout(15 downto 12) <= expv;
dout(ll downto 0) <= d_tmp2;
logerr <= logr;
end str;

CONFIGURATION

configuration logapr_cfg of logapr is

for str
for all : barell

use configuration work.barell_cfg;

end for;
for all : adjust

use configuration work.adjust_cfg;
use entity work.adjust(beh);

end for;
for all : exprom

use entity work.exprom(beh);

128

end for;
end for;
end logapr_cfg;

129

-- FILENAME: adaptive.vhd
■- AUTHOR: Sam L. SanGregory
- DATE: 5/06/99
-- REVISIONS: none
-- STATUS: FROZEN DO NOT MODIFY (witout comment)

-- FUNCTION:
This is the final stage of the ear model. In this stage
the adaptive thresholding is accomplished, as well as the
final integration filter. This is a structural model.

-- DEPENDS UPON: ram.vhd, rom.vhd, rowselect.vhd, mux.vhd, alucell.vhd,
2phase_clock.vhd, invert.vhd, andgate.vhd, orgate.vhd,
latches.vhd, multiplier.vhd, napfsm.vhd

— This source code was written in partial fullfilment of PhD
-- requirements at The Air Force Institute of Technology.

library ieee;
use ieee.std_logic_1164.all;
use work.aim_math.all;

ENTITY

entity adapt is
generic (td : time := 1 ns;

chan : natural := 10;
rapid_decay : string := "rapid_decay.rom";
compensate : string := "compensate.rom";

K
L

natural := 5; — integration filter constant *16
natural := 11); — integration filter constant *16

port (din : in std_ulogic_vector(15 downto 0);
elk : in std_ulogic;
reset : in std_ulogic;
drq : in std_ulogic;
dxak : in std_ulogic;
dout : out std_ulogic_vector(15 downto 0);
dak : out std_ulogic;
dxrq : out std_ulogic);

end adapt;

ARCHITECTURE

architecture str of adapt is

component napfsm
generic (td : time := 1 ns),
port (ck in std_ulogic; — clock input

drq in std_ulogic; — data request

reset in std_ulogic; — reset

dxak in std_ulogic;

neg in std_ulogic;

dak : out std_ulogic;

130

Imp : out std_ulogic;
s50 : out std_ulogic;
s51 : out std_ulogic;
s6 : out std_ulogic;
s7 out std_ulogic;
s8 out std_ulogic;
s9 out std_ulogic;
slO out std_ulogic;
mpy out std_ulogic;

lpf out std_ulogic;
adj out std_ulogic;
lr out std_ulogic;
as out std_ulogic;
lmic out std_ulogic;
pas out std_ulogic;
ltmp out std_ulogic;
wmc : out std_ulogic;

tflpO : out std_ulogic;

*lpl : out std_ulogic;

zro : out std_ulogic;

adv : out std_ulogic;

dorq : out std_ulogic

);
end component;

component multiplier
generic (w

cont_td
tdff_td
addsub_td
mux2_td
dffcl_td
dff2_td

port (ml,m2
mlout
c, cb
Id, ldb
result

end component;

natural := 16;
time := 1 ns;
time := 1 ns;
time := 1 ns;
time := 1 ns;
time := 1 ns;
time := 1 ns);
in std_ulogic_vector(w-1 downto 0);
out std_ulogic_vector(w-1 downto 0);
in std_ulogic;
in std_ulogic;
out std_ulogic_vector(2*w-l downto 0));

component rom
generic(tdr:

w :
nw :
fn :

port (addr :
dout :

end component;

time := 1 ns; — delay read
natural := 8; — width of each word
natural := chan; — number of words (rows)
string := "rom.data");
in std_ulogic_vector(nw-l downto 0);
out std_ulogic_vector(w-1 downto 0));

component ram
generic(tdr, tdw : time := 1 ns

w : natural := 16;
nw : natural := chan;
init : natural := 1024)

port (addr : in
din : in

— delay read, write
— width of each word
— number of words (rows)
-- Initial values

std_ulogic_vector(nw-l downto 0);
std_ulogic_vector(w-1 downto 0);

131

wr
dout

end component;

in std_ulogic;
out std_ulogic_vector(w-1 dovmto 0));

component row_sel
generic (n : natural
port(reset :

adv
rows
rx

);
end component;

chan; td : time := 1 ns) ;
in std_ulogic;
in std_ulogic;
out std_ulogic_vector(n-1 downto 0);
out std_ulogic

component phi2
generic (td
port (ck :

ckl :
ck2 :

end component;

: time := 1 ns);
in std_ulogic;
out std_ulogic;
out std_ulogic);

-- in phase with ck
-- out of phase with ck

component mux2
generic (td :

w :
port (iO, il

s
ol

end component;

time := 1 ns;
natural := 8);

: in std_ulogic_vector(w-1 downto 0);
: in std_ulogic;
: out std_ulogic_vector(w-1 downto 0));

component mux4
generic (td :

w :
port (i3, i2,

si, sO
ol

end component;

time := 1 ns;
natural := 8);
il, iO : in std_ulogic_vector(w-1 downto 0);

: in std_ulogic;
: out std_ulogic_vector(w-1 downto 0));

component alucell
generic (td : time
port (a, b, ci, as,

sum, co
end component;

= 1 ns);
pass : in std_ulogic;

out std_ulogic);

component tnreg
generic (td

n
port (din :

dout :
load :
loadb:

end component;

— Transparent Data Latch
time := 1 ns; — propagation delay
natural := 8); — number of bits
in std_ulogic_vector(n-1 downto 0);
out std_ulogic_vector(n-l downto 0);
in std_ulogic;
in std_ulogic);

component n_dffacl
generic(n

td
port (d

c

natural := 8;
time := 1 ns);
in std_ulogic_vector(n-1 downto 0);
in std_ulogic;

132

reset:
q,qb :

end component;

in std_ulogic;
out std_ulogic_vector(n-l downto 0));

component nandgate
generic (n : natural := 2;

td : time := 1 ns) ;
port (i : in std_ulogic_vector(n-1 downto 0) ;

o : out std_ulogic);

end component;

component andgate
generic (n : natural := 2;

td : time := 1 ns) ;
port (i : in std_ulogic_vector(n-1 downto 0);

o : out std_ulogic);

end component;

component orgate
generic (n : natural := 2;

td : time := 1 ns);
port (i : in std_ulogic_vector(n-1 downto 0);

o : out std_ulogic);
end component;

component invert
generic (td : time := 1 ns) ;
port (i : in std_ulogic;

o : out std_ulogic);
end component;

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

mpout
rows
m5, m6
riple
rwO, rwl, rwi
rw2
m7,m8,ibus
m9,m9_div2
m5a, tmp
adjout,lrout
aluout, mic
rw2in, ro2
ro2b
i61, i62, i63
rol
al, a2, a3, a4
a5, a6, ol, o2
lml, lm2, mcl,
neg, rx, rxck.
Imp, s50, s51,
mpy, lpf, adj,
pas, ltmp, wmc,

std_ulogic_vector(35 downto 0);
std_ulogic_vector(chan-l downto
std_ulogic_vector(17 downto 0
std_ulogic_vector(17 downto 0
std_ulogic_vector(15 downto 0
std_ulogic_vector(15 downto 0
std_ulogic_vector(16 downto 0
std_ulogic_vector(15 downto 0
std_ulogic_vector(15 downto 0
std_ulogic_vector(16 downto 0
std_ulogic_vector(16 downto 0
std_ulogic_vector(15 downto 0
std_ulogic_vector(16 downto 0
std_ulogic_vector(15 downto 0
std_ulogic_vector(7 downto 0
std_ulogic_vector(1 downto 0
std_ulogic_vector(1 downto 0

0) (others=>'0');

mc2, lmpck, mp2ck :
rxckr, lrck, lrckb:
s6, s7, s8,s9,sl0 :
lr, as, lmic, adv :
zro, wlpO, wlpl :

lmic_ck, lmic_ckb, ltmpck
xldl, xld2, zro_r, resetb
gnd : std_ulogic := '0';

std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;

133

signal vdd : std_ulogic := '1';

begin

— Finite State Machine
fsm : napfsm

generic map(td=>td)
port map(elk, drq, reset, dxak, neg, dak, Imp,

s50, s51, s6, s7, s8, s9, slO, mpy,
lpf, adj, lr, as, lmic, pas, ltmp, wmc,
wlpO, wlpl, zro, adv, dxrg);

 Memory address counter
rowsell : row_sel

generic map(n=>chan, td=>l ns)
port map(rxckr, adv, rows, rx) ;

al <= rx & elk;
nand_l : nandgate

generic map(n=>2, td=>td)
port map(al, rxck);

inv_3 : invert
generic map(td => td)
port map(reset, resetb);

ol <= rxck & resetb;
nand_2 : nandgate

generic map(n=>2, td=>td)
port map(ol, rxckr);

 Read/Write Memories
ramO : ram

generic map(tdr=>td, tdw=>td, w=>16, nw=>chan, init=>0)
port map(rows, m9, wlpO, rwO);

raml : ram
generic map(tdr=>td, tdw=>td, w=>16, nw=>chan, init=>0)
port map(rows, m9, wlpl, rwl);

m9_div2(14 downto 0) <= m9(15 downto 1);
m9_div2(15) <= '0';
rammux : mux2

generic map(td=>td, w=>16)
port map(m9, m9_div2, adj, rw2in);

ram2 : ram
generic map(tdr=>td, tdw=>td, w=>16, nw=>chan, init=>1024)
port map(rows, rw2in, wmc, rw2);

 Read Only Memories
roml : rom

generic map(tdr=>td, w=>8, nw=>chan, fn=>"compensate.rom")
port map(rows, rol);

rom2 : rom
generic map(tdr=>td, w=>ll, nw=>chan, fn=>"rapid_decay.rom")

134

port map(rows, ro2(10 downto 0));
ro2(15 downto 11) <= (others=>vdd); — msbs are always '1'

 Inversion for Rapid-Decay ROM
gl : for i in 15 downto 5 generate

inv_cell : invert
generic map(td=>td)
port map(ro2(i),ro2b(i-5));

end generate;
ro2b(16 downto ll)<=(others=>'0');

 Multiplier Circuitry

muxlO : mux2
generic map(td=>td, w=>16)
port map(rw0, rwl, slO, rwi);

mux50 : mux2
generic map(td=>td, w=>16)
port map(m9, rwi, s50, m5a) ;

mux51 : mux2
generic map(td=>td, w=>16)
port map(m5a, rw2, s51, m5(15 downto 0));

m5(17 downto 16) <= (others=>gnd); — two extra bits for sign extension
— but values are always positive

i61(7 downto 0) <= rol;
i61{15 downto 8) <= (others=>gnd);
i62 <= i2uv(K,16);
i63 <= i2uv(L,16);
mux6 : mux4

generic map(td=>td, w=>16)
port map(i63,i62,ro2,i61, lpf,s6, m6(15 downto 0));

m6(17 downto 16) <= (others=>gnd);

multl : multiplier
generic map(w=>18, cont_td=>td, tdff_td=>td, addsub_td=>td,

mux2_td=>td, dffcl_td=>td, dff2_td=>td)
port map(m5, m6, open, mcl, mc2, 1ml, lm2, mpout);

phi2_l : phi2
generic map(td => td)
port map(lmpck, 1ml, lm2);

phi2_2 : phi2
generic map(td => td)
port map(mp2ck, mcl, mc2);

a2<= Imp & elk;
and_2 : andgate

generic map(td=>td)
port map(a2, lmpck);

a3<= mpy & elk;
and_3 : andgate

generic map(td=>td)

135

port map(a3, mp2ck);

 Multiplier Output Mux (shift adjuster) and Latch

adj_mux : mux2
generic map(td=>td, w=>17)
port map(mpout(31 downto 15), mpout(25 downto 9), adj, adjout);

a4 <= elk & lr;
and_4 : andgate

generic map(n=>2, td=>td)
port map(a4, lrck);

inv_l : invert
generic map(td=>td)
port map(lrck, lrckb);

mpylatch : tnreg
generic map(td=>td, n=>17)
port map(adjout, lrout, lrck, lrckb);

 Data Input
phi2_3 : phi2

generic map(td=>td)
port map(drq, xldl, xld2);

tlatchl : tnreg
generic map(td=>td, n=>16)
port map(din, ibus(16 downto 1), xldl, xld2);

ibus(0)<= '0'; — no fraction

 ALU and its Input Muxes

mux7 : mux2
generic map(td=>td, w=>17)
port map(lrout, ibus, s7, m7);

mux8 : mux2
generic map(td=>td, w=>17)

port map(ro2b, mic, s8, m8);

riple(O) <= as;
g2 : for i in 0 to 16 generate

alul : alucell
generic map(td =>td)
port map (m7(i), m8(i), riple(i), as, pas, aluout(i), riple(i+l));

end generate;

 ALU output latches
a5 <= lmic & elk;
and_5 : andgate

generic map(n=>2, td=>td)
port map(a5, lmic_ck);

mic_latch : n_dffacl
generic map(n=>17, td=>td)
port map(aluout, lmic_ck, reset, mic, open);

136

a6 <= ltmp & elk;
and_6 : andgate

generic map(n=>2, td=>td)
port map(a6, ltmpck);

o2 <= zro & reset;
or_2 : orgate

generic map(n=>2, td=>td)
port map(o2, zro_r);

tmp_dff : n_dffacl
generic map{ n => 16, td=>td)
port map(aluout(16 downto 1), ltmpck, zro_r, tmp, open)

neg <= aluout(15); — don't latch, must know in state 6
dout <= tmp; — Final output

mux9 : mux2
generic map(td=>td, w=>16)
port map(mic(16 downto 1), tmp, s9, m9) ;

end str;

CONFIGURATION

configuration adapt_cfg of adapt is
for str

for fsm : napfsm
use configuration work.napfsm_cfg;

end for;
for rowsell : row_sel

use configuration work.row_sel_cfg;
end for;
for all : andgate

use entity work.andgate(beh);
end for;
for all : nandgate

use entity work.nandgate(beh);
end for;
for all : orgate

use entity work.orgate(beh);
end for;
for raml, ram2 : ram

use entity work.ram(beh);
end for;
for roml, rom2 : rom

use entity work.rom(beh);
end for;
for gl

for all : invert
use entity work.invert(beh);

end for;
end for;
for all : mux2

use entity work.mux2(beh);

137

end for;
for all : mux4

use entity work.mux4(beh);

end for;
for all : phi2

use configuration work.phi2_cfg;

end for;
for all : tnreg

use configuration work.tnreg_cfg;

end for;
for g2

for all : alucell
use configuration work.alucell_cfg;

end for;
end for;
for all : n_dffacl

use configuration work.n_dffacl_cfg;

end for;
end for;
end adapt_cfg;

138

Bibliography

1. R. D. Patterson, M. H. Allerhand, and C. Giguere, "Time-Domain Modelling of Peripheral
Auditory Processing: A Modular Architecture and Software Platform," Journal of the
Acoustical Society of America, vol. 98, pp. 1890-1894, 1995.

2. M. Lutnam and A. Martin, "Development of an Electroacoustic Analogue Model of the
Middle Ear and Acoustic Reflex," Journal of Sound and Vibration, vol. 64, no. 1,

pp. 133-157, 1979.

3. J. Zwislocki, "Analysis of the Middle-Ear Function. Part I: Input Impedance," Journal of the
Acoustical Society of America, vol. 34, no. 8, pp. 1514-1523, 1962.

4. C. Giguere and P. C. Woodland, "A Computational Model of the Auditory Periphery for
Speech and Hearing Research. I. Ascending Path," Journal of the Acoustical Society of
America, vol. 95, no. 1, pp. 330-342, 1994.

5. R. Patterson and J. Holdsworth, "A Functional Model of Neural Activity Patterns and
Auditory Images," in Advances in Speech, Hearing and Language Processing (W. Ainsworth,
ed.), pp. Vol 3, Part B, JAI Press, London, 1996.

6. K. I. Francis and T. R. Anderson, "Binaural Phoneme Recognition Using the Auditory Image
Model and Cross-Correlation," International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 1998.

7. R. Patterson, T. R. Anderson, and M. Allerhand, "The Auditory Image Model as a
Preprocessor for Spoken Language," in Proc. Third 7CSLP, pp. 1395-1398, 1994.

8. J. Lazzaro and J. Wawrzynek, "Silicon Models for Auditory Scene Analysis," in Advances in
Neural Information Processing Systems 8 (M. Mozer, D. Touretsky, and M. Hasselmo, eds.),
(Cambridge, MA), MIT Press, 1995.

9. R. F. Lyon, "CCD Correlators for Auditory Models," in 1991 Asilomar Conference on
Signals, Systems and Computers, 1991.

10. R. Patterson and J. Holdsworth, An Introduction to Auditory Sensation Processing.
Cambridge CB2 2EF, England: MRC Applied Psychology Unit, 1990.

11. C. Giguere, Speech Processing using a Wave Digital Filter Model of the Auditory Periphery.
PhD thesis, Department of Engineering and Darwin College, University of Cambridge,

England, 1993.

12. M. Cooke, Modelling Auditory Processing and Organisation. Cambridge University Press,

1993.

13. E. de Boer and P. Kuyper, 'Triggered Correlation," IEEE Trans Bio Med Eng, vol. BME15,

no. 3, pp. 169-179, 1968.

14. P.I.M. Johannesma, "The Pre-response Stimulus Ensemble of Neurons in the Cochlear
Nucleus," in Symposium on Hearing Theory, IPO, Eindhoven, 1972.

139

15. E. de Boer and H. de Jongh, "On Cochlear" Encoding: Potentialities and Limitations of the
Reverse-Correlation Technique," Journal of the Acoustical Society of America, vol. 63,
pp. 115-135, 1978.

16. R. Patterson, I. Nimmo-Smith, J. Holdsworth, and P. Rice, "An Efficient Auditory Filterbank
Based on the Gammatone Function," Paper presented at a meeting of the IOC Speech Group
on Auditory Modelling at RSRE, 1987.

17. M. Slaney, "An Efficient Implementation of the Patterson-Holdsworth Auditory Filter Bank,"
Tech. Rep. 35, Apple Computer, Inc., Cupertino, CA 95014, 1993.

18. B. C. Moore and B. R. Glasberg, "Suggested Formulae for Calculating Auditory-filter
Bandwidths and Excitation Patterns," Journal of the Acoustical Society of America, vol. 74,
pp. 750-753, September 1983.

19. M. Slaney, "Lyons Cochlear Model," Tech. Rep. 13, Apple Computer, Inc., Cupertino, CA
95014, 1988.

20. B. Glasberg and B. Moore, "Derivation of Auditory Filter Shapes from Notched-noise Data,"
Hearing Research, vol. 47, pp. 103-108, 1990.

21. D. D. Greenwood, "A Cochlear Frequency-Position Function for Several Species 29 Years
Later," Journal of the Acoustical Society of America, vol. 87, no. 6, pp. 2592-2605, 1990.

22. R. Patterson and B. Moore, "Auditory Filters and Excitation Patterns as Representations of
Frequency Resolution," in Frequency Selectivity in Hearing (B. Moore, ed.), pp. 123-177,
Academic, London, 1986.

23. "AIM Documentation." On-line documentation file shipped with AIM release 8. April 1997.

24. R. Meddis, "Simulation of Auditory-Neural Transduction: Further Studies," Journal of the
Acoustical Society of America, vol. 83, pp. 1056-1063, 1988.

25. K. I. Francis, Speaker Independent Phoneme Recognition with a Binaural Auditory Image
Model. PhD thesis, Department of Electrical Engineering, University of Dayton, Dayton,
Ohio, 1997.

26. R. Patterson, J. Holdsworth, and M. Allerhand, "Auditory Models as Preprocessors for
Speech Recognition," in The Auditory Processing of Speech: From the Auditory Periphery to
Words (M. Schouten, ed.), pp. 67-83, Mouton de Gruyter, 1992.

27. S. SanGregory, C. Brothers, D. Gallager, and R. Siferd, "A Fast Low-Power Logarithm
Approximation Technique and Circuit," in Proceedings of the 42nd Midwest Symposium on
Circuits and Systems, EEE Press, New York, August 1999.

28. J. N. Mitchell, "Computer Multiplication and Division Using Binary Logarithms," IRE
Transactions on Electronic Computers, pp. 512-517, August 1962.

29. M. Combet, H. Zonneveld, and L. Verbeek, "Computation of the Base Two Logarithm of
Binary Numbers," IEEE Trans Electronic Computers, pp. 863-867, December 1965.

30. E. L. Hall, D. D. Lynch, and S. J. Dwyer III, "Generation of Products and Quotients Using
Approximate Binary Logarithms for Digital Filtering Applications," IEEE Transactions on
Computers, vol. C-19, pp. 97-105, February 1970.

140

31. A. Brown, ed., VLSI-Circuits and Systems in Silicon. McGraw-Hill, 1991.

141

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information It estimated to average 1 hour per response, including the time for reviewing Instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of Information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1216 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1999
3. REPORT TYPE AND DATES COVERED

Ph.D. Dissertation
4. TITLE AND SUBTITLE

Approximation and Optimization of an Auditory Model for Realization in VLSI
Hardware

6. AUTHOR(S)
Samuel L SanGregory

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583
8. PERFORMING ORGANIZATION

REPORT NUMBER

AFIT/DS/ENG/99-07

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Dr. Timothy Anderson
Air Force Research Laboratories (AFRL/HECA)
Wright-Patterson Air Force Base, OH 45433
(937) 255-8914

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Auditory Image Model (AIM) is a software suite developed to functionally model the role of the ear in the human
hearing process. AIM includes detailed filter equations for the major functional portions of the ear. Currently, AIM is run
on a computer workstation and requires 10 to 100 times real-time to process audio information and produce an auditory
image.

An all digital approximation of AIM which is suitable for implementation in very large scale integrated circuits (VLSI) is
presented. This document details the mathematical models of AIM, the approximations and optimizations used to simplify the
model, and an efficient multi-rate archtitecture designed to execute the new model. Simulations indicate that the VLSI
architecuture can sustain real-time operation for a 32 filter channel system. Simulations also indicate that the resulting chip
will consume an estimated 18 mW of power and fit inside a die which is 3 mm square.

Additionally, the details of a new, and efficient method to compute an approximate logarithm (base two) on binary
integers is included. The approximate logarithm algorithm is used to convert sound energy into millibells quickly and with
little power. Additionally, the algorithm is easily extended to compute an approximate logarithm in base ten which broadens
the class of problems to which it may be applied.

14. SUBJECT TERMS

auditory model, phoneme recognition, speech, hearing, digital filter, logarithm, VLSI, VHDL,
digital signal processing, spectral analysis, neural activity pattern

15. NUMBER OF PAGES

153
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

