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AFIT/DS/ENG/99-07 

Abstract 

The Auditory Image Model (AIM) is a software tool set developed to functionally model the 

role of the ear in the human hearing process. AIM includes detailed filter equations for the major 

functional portions of the ear. Currently, AIM is run on a workstation and requires 10 to 100 times 

real-time to process audio information and produce an auditory image. 

An all-digital approximation of the AIM which is suitable for implementation in very large 

scale integrated circuits is presented. This document details the mathematical models of AIM 

and the approximations and optimizations used to simplify the filtering and signal processing ac- 

complished by AIM. Included are the details of an efficient multi-rate architecture designed for 

sub-micron VLSI technology to carry out the approximated equations. Finally, simulation results 

which indicate that the architecture, when implemented in 0.8/j.m CMOS VLSI, will sustain real- 

time operation on a 32 channel system are included. The same tests also indicate that the chip will 

be approximately 3.3 mm2, and consume approximately 18 mW. 

The details of a new and efficient method for computing an approximate logarithm (base 

two) on binary integers is also presented. The approximate logarithm algorithm is used to convert 

sound energy into millibels quickly and with low power. Additionally, the algorithm, is easily 

extended to compute an approximate logarithm in base ten which broadens the class of problems 

to which it may be applied. 



Approximation and Optimization of an Auditory Model 

for Realization in VLSI Hardware 

/. Introduction 

The hearing ear, and the seeing eye, the Lord hath made even both of them. 

Proverbs 20:12 

There exists today a myriad of electronic devices which can gather, store, modify, and replay 

visual and auditory data. As of yet, however, man-made technology has been unable to replicate the 

Creator's unique design of the human auditory system. The task of reproducing auditory images 

through electronic means is hampered by our inability to fully grasp the intricate processing taking 

place within the sensory organs and the brain. The brain is a massively parallel data processing 

system; even if we could comprehend the algorithms necessary to program it, the hardware required 

to replicate the brain would be enormous. Still, we continue in our attempts to understand the 

complex processes by which sound waves are transformed into auditory images. 

This research focuses on one very specific aspect of the auditory process: modeling the 

way in which the ear pre-processes auditory information for the brain. Previous research has 

established that we perceive sounds as auditory images. A computer program called the Auditory 

Image Model (AIM) produced by researchers in England generates computer approximations of 

the auditory image for sampled audio[l]. The objective of this research is to show that the existing 

computer model can be mapped efficiently into an application-specific integrated circuit. 

The underlying thesis, which will enable the mapping of the algorithm into hardware, is that 

the complex algorithms currently used in auditory research may be simplified without significantly 

impairing the usefulness of the model. The existing algorithms were designed to closely match 

the physical characteristics of the ear. While they succeed in terms of matching the ear, these 

algorithms are also very mathematically intensive. 

The approach chosen to speed up the modeling of the ear was to first develop new algo- 

rithms which approximate both the time and frequency domain response of the existing algorithms. 



Throughout the design of these new algorithms, emphasis was placed on the efficiency with which 

they could be implemented into application specific VLSI hardware. The new algorithms were also 

tested in a set of phoneme recognition experiments and the results compared to results obtained 

using the original algorithms. 

After a satisfactory set of algorithms was developed, a computer architecture was designed 

to execute them. The architecture was then modeled to verify it as a correct implementation of 

the approximated algorithms. The design of the architecture included characterizing the major 

components in order to obtain estimates on the actual power required and operating speed. 

1.1 Problem Statement 

AIM has proven to be a very useful tool for auditory research, spanning topics from speech 

recognition to physiological studies of hearing. However, AIM is very complex and time consum- 

ing, requiring as much as 10 times real time to process sound on a typical workstation computer[16]. 

A specialized hardware accelerator is needed that can relieve the host GPU from the heavy com- 

putational load imposed by AIM. Such hardware will have significant impact on the utility of the 

model by allowing more and larger data sets to be processed. Additionally, a hardware accelerator 

would allow the real-time processing of data streams. 

A direct implementation of AIM into hardware would be expensive in terms of VLSI area 

and power. Additionally, unless heavily pipelined, it would not achieve real-time operation. There- 

fore, before AIM can be implemented into hardware, a new set of algorithms must be developed 

which closely approximate the algorithms of AIM but require less processing power. 

1.2 Assumptions 

Several assumptions were made early in the research to simplify and direct the effort. First, it 

was assumed that the functional algorithms of AIM sufficiently model the human auditory system. 

This assumption did not preclude the implementation of one of the physiological portions of AIM 

if it proved to have a more efficient mapping into hardware. Further, it was assumed that any imple- 

mentation of the algorithms would be realized in an application specific integrated circuit (ASIC). 

In addition, it was assumed that the system (which may be more than one ASIC) would need to 



communicate with standard workstation computers, requiring the consideration of an appropriate 

interface. 

Initially, no assumptions were made as to how many filter channels are necessary to provide 

accurate auditory modeling, nor at what frequencies these filters should operate.1 These parameters 

are left generic so that the end system may be configured according to user needs. It will be 

initially assumed that the system must operate at a data rate of 20 k-samples per second; however, 

the system will maintain enough flexibility to either support multiple sampling rates, or be re- 

programmable. In order to maintain as much flexibility as possible, it is assumed that the user of 

the system may want to bypass any combination of the model's stages, therefore bypass capability 

will also be considered. 

1.3   Objectives 

The specific objectives this dissertation are: 

1. To optimize or replace modules in the functional model of AIM so that the resulting code 

will map more efficiently into CMOS VLSI hardware. 

2. To design and test using the VHSIC Hardware Description Language (VHDL) an architec- 

ture that will be able to perform the functional version of AIM faster than the C code while 

reducing the electrical power consumed. The goal is to approach real time in the data stream. 

3. To layout and fabricate, as a minimum, one channel that will perform the functions of AIM 

from the ear opening to the neural activity pattern (NAP).2 

4. To collect data from the prototype chip and project the full system power and speed from the 

data. 

5. To complete the design of the full-scale system. 

1Some researchers have used AIM as a front end for phoneme recognition with as few as 18 channels[6], while 
others claim much greater numbers of channels are required for accurate modeling of the hearing processes[7]. 

2This objective was later eliminated when it became apparent that the only difference between a single channel 
system and a fully functional multi-channel system would be the amount of on-chip memory. 



1.4   Summary 

This chapter established the motive and presented the overall objectives for the research, 

specifically to design a hardware accelerator for AIM. The path to the hardware solution includes 

characterizing, optimizing, and replacing most of the processing modules of AIM with new and 

simpler algorithms. Following the algorithm development a processing architecture is designed 

and tested. 

This document is a record of the research effort beginning with Chapter 2 which reviews 

the present state of the art of auditory research. After the background review, the theory behind 

both current models of the human ear and the newly designed approximate model is discussed in 

Chapter 3 followed by the design of an application-specific processor in Chapter 4. Next, Chapter 5 

summarizes the test results and provides an evaluation of operational parameters for the processor. 

Finally, Chapter 6 concludes with summary remarks and recommendations for further work. 



//. Background 

2.1 Introduction 

In order to establish a foundation, this chapter provides a look at the current state of auditory 

research. Because of its importance to the auditory modeling community, most of the chapter is 

devoted to a detailed discussion of one auditory model, the Auditory Image Model (AIM). The 

discussion of AIM in this chapter is broken down into sections which follows the progression of 

information through the model. 

2.2 Overview 

Researchers investigating topics ranging from music perception to speech recognition have 

for many years been studying the processes of the human ear. Out of the previous research, several 

hardware implementations of auditory models have been developed. For example, Lazzaro and 

Wawrzynek developed a system to transform audio data into what they referred to as a specialized 

representation of sound[8]. Similarly, Lyon developed an analog correlation chip using charge 

coupled device (CCD) technology which takes an analog input and produces an analog output 

corfelogram in real time[9]. 

While the existing hardware implementations have been shown to be useful under specific 

conditions, many research applications require a more generalized system. The Auditory Image 

Model (AIM), is a physiologically-based computer program that has such flexibility[10, 1]. AIM 

was developed by researchers at the Medical Research Council, Applied Psychology Unit in Cam- 

bridge England. AIM, a software suite written in the C programming language in the late 1980's, 

was first released to researchers worldwide in the early 1990's. AIM version 8.1, released in 

September 1996, was used throughout this research. 

While other methods exist for processing audio information (for example: windowed Fourier 

transform techniques), none have the physiological basis that AIM has. AIM was selected because 

of how it preserves time-domain information. Recent research indicates that the brain uses phase 

information to localize auditory sources as well as to distinguish desired sounds from background 

noise[7]. Because AIM preserves the time-domain properties of the sound it may have a greater 

potential for further auditory research. 



AIM is a modular program which processes the data in sequential stages. These stages corre- 

spond to physical processes in the human auditory system. The organization of the program makes 

it easy to single out particular portions of the auditory system for detailed study. Additionally, the 

organization allows for easy replacement of functional blocks with different models. For example, 

the user may, through a command-line option, choose one of three models for the cochlear filtering. 

AIM also supports two different methods of analysis: a functional method, and a physiolog- 

ical method. Figure 1 illustrates how the AIM software is constructed. Included in Figure 1 are the 

section numbers within this chapter where each stage is discussed. 

AUDITORY IMAGE MODEL (AIM) 

f— 

functional physiological 

2.3 middle ear filtering middle ear filtering 

spectral analysis spectral analysis 

2.4 gammatone filtering 
transmission line filtering 

spectral sharpening 
comprssion 

basilar membrane motion basilar membrane motion 

neural encoding neural encoding 

2.5 
compression 

two-dimensional 
adaptive thresholding 

inner haircell simulation 

neural activity pattern neural activity pattern 

time-interval stabilisation time-interval stabilisation 

2.6 strobed-temporal 
integration 

autocorrelation 

auditory image correlogram 

^ J 

Figure 1:     AIM Block Diagram[ 1 ] 

The primary differences between the two sides of the AIM model rest in how the modeling is 

accomplished. On the physiological side, much effort went into developing models that accurately 

reflect the acousto-mechanical properties of the ear. On the functional side, however, the models 

are a systems approach where the transfer function is modeled rather than the mechanics. As the 

arrows between the sides indicate, a researcher may choose to use a combination of models from 

both sides of AIM by simply using command-line options. 



2.3 Middle Ear Filtering 

In breaking down the model further, the physiological and functional sides are divided into 

four major areas: middle ear filtering, spectral analysis, neural encoding, and time-interval sta- 

bilization. Both sides of AIM use the same middle-ear filtering mechanism, a bandpass filter 

centered near 1 kHz. The response of the filter rolls off at approximately 20 dB/decade on each 

side of 1 kHz. 

Currently the middle ear filter is implemented in a more physiological approach through the 

use of a wave digital filter (WDF) developed by Christian Giguere[ll]. The WDF model includes 

the external ear effects of the head and upper torso, but does not include the effects of the external 

ear flange[4]. Additionally, the model assumes the sound to be arriving at the head perpendicular 

to the ear. 

2.4 Spectral Analysis 

The second stage of AIM models the basilar membrane located in the inner ear within the 

cochlea (See Figure 1). As sound travels through the ear it is transformed into a pressure wave that, 

in the fluid filled cochlea, causes the basilar membrane to vibrate. Higher frequency waves cause 

the front section of the basilar membrane (closest to the eardrum) to move, while the low frequen- 

cies penetrate deeper causing motion toward the back of the basilar membrane. In the actual ear, 

the distribution of energy is continuous from the high frequencies to the low[12]. The discussion 

of the spectral analysis is divided here into first, the functional and second, the physiological model 

of the process. Finally, the format of the output from these models is presented. 

2.4.1 Gammatone Filtering. In the functional version of AIM, the single stream of 

audio data which enters the model is separated into N different frequency bands through the use 

of passband filters with varying center frequencies. The number N is specified by the user through 

command-line options. The discussion of the derivation of the filter function can be found in 

[12,13,14,15,16,17], while the filter bandwidth and spacing is discussed in[17,18,19, 20, 21]. 

2.4.2 Transmission Line Filtering. Beginning in the spectral analysis stage, the func- 

tional and physiological sides of AIM (See Figure 1) begin to differ. As with the functional model 



just discussed, in the physiological mode, AIM again generates N different frequency bands. How- 

ever, in the case of the physiological model, the filtering mechanism is not the the gammatone 

filter bank of the functional model. For the physiological case, the filtering is accomplished using 

a wave-digital filter (WDF) representation of a transmission-line model of the inner ear. Like the 

middle ear filter previously discussed, the WDF model attempts to capture the acousto-mechanical 

properties of the inner ear[l 1]. 

2.4.3 Basilar Membrane Motion. Regardless of the model used, the output from the 

second stage is referred to as the basilar membrane motion (BMM)[1]. The BMM essentially 

represents the position of discrete locations on the basilar membrane relative to its at-rest (quiet) 

position. An example of BMM for an impulse is seen in Figure 2. 

30.6 

Figure 2:     Simulated Basilar Membrane Motion for an Impulse 

In Figure 2 the horizontal axis represents time in milliseconds starting with the onset of 

the sound data. The vertical axis is the equivalent rectangular bandwidth scale (ERB). As Slaney 

states, "The ERB is a psychoacoustic measure of the width of the auditory filter at each point 

along the cochlea... an ERB filter models the signal that is present within a single auditory nerve 

cell or channel."[17:p.2]. Patterson[l] credits the ERB filter to Glasberg and Moore[20] which he 



further references to physiological research of Greenwood[21] as well psychoacoustic research of 

Patterson and Moore[22]. 

While several definitions for the ERB exist, AIM uses the more recent definition for the ERB 

which is presently accepted as more accurate[5]. AIM defines the ERB as: 

ERB = 24.7(4.37/o/1000 4- 1) (1) 

where f0 represents the center frequency of the auditory filter. The ERB scale, which appears on 

the Y-axis of the figures generated by AIM is computed by integrating the inverse of the ERB 

function. The ERB scale was proposed by Moore[18] as an "instructive and convenient" method 

to plot psychoacoustical data. Equation 2 may be used to convert the ERB scale (S) back to filter 

center frequency (in Hertz). 

f0 = (e0-i0794S _ i)/(4.37 x io-3) (2) 

Unless otherwise specified, in the examples shown in this document, this scale is equivalent to 

a frequency span from 100 Hz to 6 kHz where 100 Hz is at the bottom of the figure. The filter 

spacing is not linear, but rather is selected so that there is equal overlap in the skirts of the filter 

spectra of adjacent filters. 

2.5   Neural Encoding 

The third stage in the AIM model is the transformation of the mechanical movement of the 

basilar membrane into electrical impulses which are sent to the brain via the auditory nerve. The 

transformation is accomplished by the inner hair cells which are located along the edge of the 

basilar membrane[10]. As these cells are bent under the pressure of the moving basilar membrane, 

they transmit electrical signals to the auditory nerve. These nerves only fire when compressed 

by the basilar membrane, not when they are returning to their resting position. Therefore, they 

essentially perform a half-wave rectification on the BMM. 

In addition, these inner hair cells respond very quickly, and in a nonlinear manner, by adapt- 

ing to the intensity level of the sound. Therefore, sounds with high intensity lessen the ability of 



the ear to detect softer sounds. Finally, although the motion of the basilar membrane is frequency- 

dependent along its length, the inner hair cells tend to interact with neighbors, causing some smear- 

ing of the frequency separation. 

2.5.1 AIM Functional Model. To model the behavior of the inner hair cells, the func- 

tional model of AIM performs several operations. First, the BMM is half-wave rectified to account 

for the fact that the inner hair cells only fire when compressed. Second, either a logarithm base 

10, or an exponent of xv (0 < y < 1) of the rectified BMM is calculated on a point-by-point basis 

to model the compression in amplitude that takes place as the hair cells adapt to louder sounds. 

The choice regarding which form of compression is used remains a user option. Traditionally, the 

logarithmic form has been used; however, recent data has been published indicating that a X0-5 is 

also an effective model[23], particularly when using the physiological hair cell model. 

After the rectification and compression is accomplished, the data is run through a pro- 

cess referred to as two-dimensional adaptive thresholding. The adaptive thresholding attempts 

to "reintroduce, and perhaps enhance, the contrast of features that appear in the basilar membrane 

motion[10:p.4:4]." As the name two-dimensional adaptive thresholding implies, the thresholding 

process is accomplished in both time and frequency. 

In the time domain, adaptive thresholding is accomplished by comparing the current BMM 

value to the expected impulse response of the filter used to produce the BMM. If the current value 

of the BMM exceeds the expected value, then the simulated nerve fires, and the expected value is 

updated. The thresholding process prevents the natural ringing of the filters from causing multiple 

false firings of the inner hair cells. 

In the frequency domain, the BMM is examined across filter neighbors to model the inter- 

action between adjacent inner hair cells. The inter-filter effect depends on the filter frequency and 

spacing; the higher the center frequency and the further apart the filters, the less effect the filters 

have on one another. In any case, the effect of the frequency adaption is very small. The effect of 

frequency adaption is illustrated in Section 2.5.3. 

2.5.2 AIM Physiological Model. The physiological hair cell model, as with all of the 

physiological algorithms, attempts to model as closely as possible the behavior of the inner hair 

10 



cells from the physiological perspective. To do so, AIM simulates a single hair cell for each filter 

frequency in the BMM. Like the physiological cochlear model, the hair cell is modeled using a 

wave digital filter. The present model was developed by Giguere with the theory behind the hair 

cell model being credited to Meddis[24]. 

2.5.3 Neural Activity Pattern. As Figure 1 illustrates, the output of the third stage of 

the model is referred to as a Neural Activity Pattern (NAP). The NAP represents the neural firings 

associated with each of the frequency channels generated in the BMM. Figure 3 illustrates the NAP 

for the same impulse that generated the BMM of Figure 2. Again, the horizontal axis is time, while 

the vertical axis represents the ERB spacings described in Section 2.4.3. 

30.6 

Figure 3:     Simulated Neural Activity Pattern for an Impulse 

Most of the features of the NAP are generated by the time-domain thresholding. To illustrate, 

observe Figure 4 which was generated by subtracting a NAP with the frequency adaption disabled 

from the NAP of the same stimulus with the frequency adaption enabled. In order to make the 

differences more pronounced, the features of Figure 4 have been magnified five times. 

11 



30.6 

Figure 4:     Effect of Frequency Domain Thresholding (magnified 5X) 

2.6   Tune Interval Stabilization 

In the body, after the inner ear nerves fire, the electrical activity is transmitted to the brain via 

the auditory nerve. When the brain receives the neural activity, an auditory image is constructed 

and analyzed, resulting in the perception of the sounds. In AIM, the generation of the auditory 

image is simulated by AIM's fourth and final stage. 

As seen in Figure 1, the final stage is titled time interval stabilization. For both the physio- 

logical and functional models, the auditory image is constructed in the final stage. The output of 

the time interval stabilization stage is referred to as the stabilized auditory image (SAI). As noted 

by Patterson, the intent of the SAI is to "preserve what we hear in the sound and remove what we 

donothear"[10:p.5:l]. 

2.6.I Strobed Temporal Integration. The generation of the SAI in the functional model 

is accomplished by a process termed strobed temporal integration, while in the physiological model 

it is done by autocorrelation. Thus in the physiological model the output is more correctly referred 

to as a correlogram rather than a stabilized auditory image. 

In the functional case, each channel of the NAP is buffered and stored with a linear decay 

in magnitude of 2.5% per ms. Each buffer channel is continuously scanned for local maxima as it 

12 



is filled. When a local maxima occurs, an integrator for that channel is strobed (or fires), which 

adds the buffer contents to the corresponding channel in the auditory image on a point-by-point 

basis, with the local maxima stored in time at the 0 ms location in the image. The time axis on the 

image is thus a record of the integrated channels up to the current integration-initiating eventfl]. 

An example of an auditory image is shown in Figure 5. Figure 5 differs from the BMM and NAP 

figures shown previously (Figures 2 and 3) in that it was generated from a repeated impulse stream 

rather than a single impulse. 

30.6 

Figure 5:     Stabilized Auditory Image for an Impulse 

The auditory image shown in Figure 5 is actually the last frame of several. An image similar 

to Figure 5 is produced for each local maximum that occurs in the NAP. For periodic signals (such 

as a the pulse train shown in Figure 5) the SAI becomes static; that is, all image frames are nearly 

the same. For aperiodic sounds (such as speech) each frame is different. By viewing the image 

frames in succession, we can visualize the changing nature of the auditory image. 

2.6.2 Autocorrelation. An alternative to the strobed temporal integration is the autocor- 

relation, provided by the physiological side of AIM, where a recursive or running autocorrelation 

algorithm is implemented. The output is very similar to the SAI produced by the strobed temporal 

integration, however, it is more symmetric and has larger level contrasts. Interestingly, Patterson 
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points out that there is currently no physiological evidence that the ear performs autocorrelation, 

yet the algorithm is applied to the physiological side of the model[l]. Additionally, AIM also 

provides a fast Fourier transform (FFT) based algorithm which is functionally equivalent to the 

autocorrelation algorithm. 

2.7   Summary 

Of the different methods of simulating the processing of the human ear, the Auditory Image 

Model (AIM) has stood out as one of the most versatile. AIM provides both a functional model, 

which is faster, and a physiological model which more closely models the physical operation of 

the ear. Each of these models can be broken down into four primary processing stages (Figure 1). 

This chapter presented an overview of each of these stages for both models. A more in-depth look 

at the algorithms of the functional model, which were the focus of this research, are presented in 

Chapter 3 of this document. 
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///. Theory 

3.1   Introduction 

This chapter sequentially presents each stage of AIM in the order that data flowing through 

the model would encounter them. (Refer to Figure 1.) These stages are namely: outer/middle ear, 

filter bank, compression, adaptive thresholding and integration filtering. Each stage of AIM has 

two sections devoted to it in this chapter. The first section discusses the AIM implementation of the 

stage, while the second presents the work performed to simplify the processing needed to perform 

the required operations. In each case, tradeoffs were made which sacrificed some aspect of the 

model in a slight way. All of these differences are presented in the discussions that follow. 

3.2   Middle Ear Filtering 

The first stage of processing accomplished by AIM models the outer and middle ear's trans- 

formation on the sound. Physically, the first stage includes the external ear, ear canal, ear drum, 

malleus, incus, and stapes (hammer, anvil, and stirrup) as shown in Figure 6. The function of the 

outer and middle ear is fundamentally that of a transducer that matches the impedance of the inner 

ear to that of the free air through which the sound arrives. 

Ligaments 

Incus 

-«•••• Stapes 

Malleus 

Figure 6:     Anatomy of Middle Ear (after Lutman[2]) 

As the sound arrives, it travels through the middle ear canal where it causes the eardrum to 

vibrate. The motion of the eardrum is then transferred through the malleus, incus and stapes into 

the inner-ear fluids. Thus, the sound energy is transferred from a medium of air to a medium of 

liquid. 
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3.2.1 Implementation in AIM. The current model of the middle ear process originated in 

the 1962 work of J. Zwislocki[3]. Zwislocki modeled each organ of the middle ear as a combination 

of inductors, resistors, and capacitors. Through a process of experimentation and mathematical 

modeling, he derived an analog electric circuit model for the impedance matching of the middle 

ear. His circuit, (See Figure 7.) included 5 functional units, each with an electrical equivalent. The 

use of circuits allowed Zwislocki to reproduce the behavior of the differential equations of these 

organs, without numerically solving them. 

Middle- 
Ear 
Cavities 

Eardrum 
Malleus 
lncas 

Eardrum 
Losses 

Incudo- 
Stapcdia! 
Joint 

Stapes 
Cochlea 
Round 
Window 

. Middic_Ear_Cayities_ 

La Ra 

Figure 7:     Zwislocki's Functional Model and Circuit Equivalent (after [3]) 

Zwislocki's work was revisited and expanded by M. Lutman and A. Martin in 1979[2]. In 

their research, Lutman and Martin adjusted some of the component values, but more significantly, 

they added components to model the stapedius muscle (not visible in the view of Figure 6). By 

including the stapedius muscle, they were able to simulate the effects of acoustic reflex. Through 

feedback from the brain, the acoustic reflex adjusts the middle ear transfer function to adapt to 

varying sound intensities. 

Additionally, Lutman and Martin added a network of resistors and capacitors to the model 

which account for the transmission line effect of the ear canal. The addition of the ear canal to 

the model properly accounts for a sharp resonance region in the transfer function of the middle ear 

which reaches its peak near 3700 Hz. The peak, which can be seen in Figure 11, will be discussed 

in more detail in the next section. 
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C. Giguere and P.C. Woodlandfll, 4], in their 1993 and 1994 work, took the model as 

proposed by Lutman and Martin, and transformed it into a digital network by means of the wave- 

digital filter (WDF). Additionally, they proposed replacing the inductor, which accounted for the 

cochlea in the model, with a transformer, as well as the addition of the external ear and the concha 

to the model. (See Figure 8.) Their model for the external ear does not account for the shape of the 

pinna, head, or upper torso; rather they begin their model at the ear opening. 

Lr 
_A*m_ Lch/2 Lch/2 Lcl/2 Lcl/2 

Rr 

Cch 

:_ »f< »-,■« —. 
: External Ear ■ L-segment Concha :       M-segment Auditory Canal 

Figure 8:     Giguere and Woodland's Outer/Middle Ear Model (after Giguere[4]) 

The replacement of the cochlea inductor with a transformer allowed them to expand the 

model into the cochlea where the cochlea also was represented with WDF transmission-line com- 

ponents. The resulting wave digital filters were then included into the AIM code as two separate 

modules: one for the outer/middle ear, and a second for the cochlea. 

Giguere and Woodland's outer/middle ear WDF representation is the only model included 

in AIM for the first stage processing. It is interesting to note, however, that their wave digital filter 

representation of the cochlea is one of two models and is not used by default. Rather, AIM uses a 

filter-bank model of the cochlea by default. The filter bank approach to the cochlear model is the 

topic of a later section in this document. 

3.2.2 Approximation. While the WDF approach to the outer/middle ear is physiolog- 

ically very accurate, it is also very computationally expensive - requiring 39 multiplication and 

approximately 125 addition operations per data sample that enters the system.1 At a sample 

rate of 20,000 samples per second, the WDF performs 780,000 multiplies and 2,500,000 addi- 

tion/subtraction operations per second in order to be executed in real time. 

'The code for the WDF is found in the AIM file wdf.ear. c found in the wdf subdirectory. The actual code is in 
the function DoEarWdf (). 
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Due to the complexity of the WDF, an approximation which would require fewer operations 

was desired. To replace the WDF, its impulse response was characterized and a digital filter with a 

similar impulse response was designed. The technique of impulse response approximation is suf- 

ficient because the impulse response of any system completely characterizes that system's transfer 

function. 

The first step in the analysis of the Giguere-Woodland middle ear filter was to characterize 

the WDF. To characterize the WDF, an impulse was provided as input to AIM with all processing 

following the middle ear disabled via command line options. The output data from AIM was 

then captured and post-processed. The raw data of the impulse response is plotted in Figure 9. 

Post-processing was accomplished using Matlab2 to convert the raw impulse response into its 

30 
Sample Number 

Figure 9:     AIM's Outer/Middle Ear Impulse Response 

corresponding frequency response as shown in Figure 10. 

There is an obvious resonance near 2700 Hz shown in Figure 10. In order to positively 

identify which part of the middle ear model was causing the resonance, the electric circuit rep- 

resentation of the model was simulated. For the test, the complete outer/middle ear model given 

by Giguere (combined circuit using output from Figure 8 as input to Figure 7) was implemented 

2Matlab is a registered trademark of Math Works Inc. Version 5.2 was used during for this research. 
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Figure 10:     AIM's Outer/Middle Ear Frequency Response 

using the Spice3 simulation program. Figure 11 shows the results of these circuit simulation tests. 

Similarly, Figure 12 shows the Spice simulation results for the middle ear without the ear canal. A 

comparison of these two plots clearly shows that the resonance in the transfer function is due to the 

ear canal, not the middle ear structures. Interestingly, however, the exact location of the peak does 

not agree between the WDF of AIM and the circuit. The difference can be attributed to the fact 

that the Giguere WDF implementation includes the ear canal, ear opening, and the head modeled 

as a sphere. The original circuit did not include these outer elements. 

If the resonance in Figure 10 is ignored4, it is easy to see that the resulting filter is a low- 

order band-pass filter centered near 1000 Hz. In fact, under closer observation, the rising edge of 

the filter is close to 40 dB/decade, while the falling end is closer to -20 dB/decade. The frequency 

response suggests a filter with 2 low frequency zeros and 3 poles near 1 kHz. Therefore a Matlab 

script was written which used a process of smart iteration to locate these poles and zeros so that 

the resulting frequency response was optimized using the method of least-squares fit. The resulting 

3Spice (Simulation Program with Integrated Circuit Emphasis) is a circuit simulation program originally developed 
at UC Berkeley. There are now many versions sold by a variety of companies. Both HSpice by MetaSoft as well as 
Berkeley Spice version 3f4 were used. 

4The resonance is an artifact of the ear canal, not the middle ear. More discussion on the resonance follows later in 
this section. 
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Figure 11:     Spice Simulation of Outer/Middle Ear Including the Canal 

S-domain filter equation was: 

26861(3 + 270)2 

{S'~ (s + 2884)(s +6640)2' 
(3) 

The resulting continuous S-domain expression of Equation 3 was then converted to a discrete 

Z-domain equation using the Matlab command c2dm with the zero-order-hold option selected and 

the sampling rate set at 20 kHz. The resulting difference equation for the Infinite Impulse Response 

(IIR) filter was: 

Y{n) = AiX(n_!) + A2X{n_2) + A3X(n_3) + £iY"(„-i) + 52y(n-2) + ß3Y(7l-3)       W 

where Xu) are previous inputs, Y^) are previous outputs, and the constants were defined by 

Al = 0.903479       Al = -1.783521       A3 = 0.880206 

Bl = -2.300689        J52 = 1.757066        S3 = -0.445659. 

Equation 4 was then coded in C as an AIM-compatible module and added to AIM as an 

option which could be selected using command-line options. To verify the accuracy of the IIR filter, 
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Figure 12:     Spice Simulation of Outer/Middle Ear Without the Canal 

the same impulse test used to characterize the original AIM outer/middle ear filter was duplicated 

using the approximate (IIR) model. Figure 13 illustrates a comparison between the AIM middle 

ear and IIR filter. 
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Figure 13:     Comparison Between AIM and the Approximate Middle Ear Filter 

Figure 13 clearly shows that the IIR equation has eliminated the resonance of the ear canal, 

which was intentional for the purpose of reducing the mathematical complexity. Although the 

removal of the effects of the ear canal may seem at first as unwarranted, for many applications the 
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sampled audio data is already filtered using a more accurate head-related transfer function (HRTF). 

These HRTFs include the effects of the shape of the head, upper torso, and pinna as well as the ear 

opening and ear canal. Additionally HRTFs can account for the angle at which sound arrives at the 

ear. 

The inclusion of the effects of the ear opening and ear canal in experiments where an HRTF 

was already applied to the data set would subject the data to these effects twice. Therefore, in order 

to prevent subjecting the data to two different models of the ear canal, and to reduce the complexity 

of the computation, the resonance of the ear canal was removed from the model. The removal of 

the resonance was supported by phoneme recognition experiments discussed in Chapter 5. 

Further testing compared the operational speed of the approximate IIR filter to that of the 

default WDF in AIM. In these tests, the sampled data for the spoken word "HAT" was replicated 

10 times in a single file. The data file was then processed by AIM 6 times, 3 times using the 

WDF, and 3 times using the IIR filter. Testing was conducted on an unloaded Sun Microsystems 

SPARCstation-20 workstation running Sun OS 4.1.4 and timed using the Unix time command. 

Table 1 compares the user processing time for the IIR filter to that of the WDF with all other 

processing by AIM disabled by command-line options. As shown, the IIR filter algorithm is on 

Table 1:     Comparison of Filter Run Times (seconds) 
Run# WDF IIR 

1 
2 
3 

26.28 
26.02 
26.31 

6.87 
6.96 
6.93 

AVERAGE 26.20 6.92 

average 3.79 times faster than the WDF algorithm. The speedup is a reflection of the mathematical 

simplification of the approximation. It is appropriate to note that the data stream only passes 

through the IIR filter once. 

Following the middle/outer ear filter (either WDF or IIR), the data is duplicated and passed 

through many channels in the filter-bank stage. Therefore, the speed-up noted here will not be 

observed when using more than one filter bank channel because the time required by the filter bank 

will dominate. The speedup of the middle ear filtering demonstrated here in software approxi- 
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mates the six-to-one ratio of multiplications between the two algorithms. When the IIR filter is 

constructed in application-specific hardware, the speedup will be even greater. 

Having shown the spectral response of the IIR filter to be a close fit to the spectral response of 

the WDF (neglecting the WDFs resonence), the next step was to design a hardware implementation 

for the IIR filter. The goal was to reduce, if possible, the number of bits needed in the A and 

B constants and to determine the minimum number of bits of precision that would be needed 

internally for the filter to function correctly. The issue here is that the data stream entering the 

system will be 16-bit twos-complement integers. However, as the filters operate on the data, some 

amount of precision, or extra fractional bits, must be maintained in order for the digital filter to 

function. 

To solve the storage size issue, the IIR filter was coded as a binary level simulation using the 

VHSIC Hardware Description Language (VHDL).5 While VHDL allows simulation at any level of 

abstraction, in these tests the IIR filter was modeled at the gate level. Additionally, the word sizes 

were coded in generic terms thus allowing the model to be easily re-configured during the testing. 

As a result, direct comparisons could be made noting how the system functioned using different 

word sizes. 

The VHDL testing revealed that 8 bits for the multiplier constants (3 bits for the signed 

integer portion, and 5 for the fractional part) were sufficient for the filter to function based upon its 

frequency response curve. Additional testing showed that 6 bits to store the fractional part of the 

intermediate results were near optimal. Increasing the number of bits beyond 6 had virtually no 

effect on improving the response of the filter, but fewer than 6 degraded the filter's performance. 

The response of the filter was determined using Matlab to post-process the filters response to an 

impulse input. 

Although an 8-bit word was shown to be near optimal for the constants, the word size rec- 

ommended later is 16 bits for the multiplier constants (3 bits of two's complement integer and 13 

bits of fraction). The added precision was a byproduct of optimizations in the filterbank stage. Be- 

cause the IIR filter and the filterbank were combined in the hardware implementation, the IIR filter 

benefited from the higher requirement of the filterbank. In the same manner, the filterbank requires 

SVHDL is an industry standard language (IEEE Standard 1079-1987, revised in 1993) for the modeling of digital 
systems. VHDL is currently required for all new DOD contracts which involve digital systems. 
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8 bits of fraction for internal precision. Therefore, again the IIR filter precision was extended to 

allow the re-use of the hardware components. The filterbank mentioned here is discussed in the 

following section. 

3.3   Spectral Analysis 

The processing stage following the outer/middle ear filtering, both physiologically and in 

the model, takes place in the organ of the cochlea. In this organ the sound energy travels through a 

spiral shaped fluid-filled chamber where it stimulates hair cells which in-turn stimulate the nerves. 

These cells produce the electrical signals that are transmitted to the brain for processing via the 

auditory nerve. As the sound energy travels through the cochlea, a natural separation of the energy 

into the frequency domain occurs. The higher frequency energy is absorbed early in the cochlea, 

while the lower frequency energy propagates deeper into the spiral-shaped organ. 

Because of the physical separation of the frequencies in the cochlea, the hair cells located 

closer to the oval window (where the energy enters the cochlea) respond to high frequency energy, 

while those cells located further from the oval window respond only to lower frequency energy. 

Therefore, the messages sent to the brain are in fact frequency-coded showing the spectral content 

of the sound energy. The separation of the sound energy into frequencies by the cochlea is nearly 

a continuous function due to the many thousands of hair cells. 

3.3.1 Implementation in AIM. Because we must limit the size and complexity of simu- 

lation models, any feasible representation of the cochlea must use a finite number of discrete fre- 

quency bands to represent what we perceive as the otherwise continuous response of the cochlea. 

Much research has been applied to choosing the optimal shape for such a discrete filter[18,16]. 

At first glance, one solution to the frequency separation problem appears to be the Discrete 

Fourier Transform (DFT). The DFT solution, however, is not acceptable because of the loss of 

all phase information; the DFT only provides energy content information. The hearing process 

depends heavily upon the phase angle of the incoming sound for localization of the sound source. 

Removing phase information prohibits a model from being able to do localization processing [25]. 

Therefore the DFT is unacceptable as a solution to accurately model the hearing process. 
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The current model is based on the revcor function. The revcor (REVerse CORrelation) 

function is a continuous representation of a set of data points obtained from an experiment in 

which the firings of a primary auditory fiber are correlated with the waveform entering the ear[16]. 

The result of the reverse correlation process is an approximation to the impulse response of the ear. 

At the time, researchers looking for an analytic expression to model the revcor function 

identified the gammatone function as a good approximation[14]. The gammatone gets its name 

from the fact that the impulse response is a cosine wave (tone) with the amplitude envelope shape 

of the gamma function found in statistics. The impulse response of the gammatone function is 

shown in Figure 14. Expressly, Patterson[16] gives the gammatone equation for (t > 0) as: 

gt(t) oc t(n-Ve(-2*bt)cos{2irf0t + 9) (5) 

100 150 200 
Sample Number 

Figure 14:     Impulse Response of 4t/l Order 1 kHz Gammatone Filter 

In Equation 5, f0 represents the center band of the filter, n the order of the filter (most 

commonly fourth-order for auditory modeling), 6 is a parameter descriptive of the bandwidth of 

the filter, and 9 an initial phase angle. A thorough discussion on the choice of the gammatone filter 

as well as the filter spacing and bandwidth can be found in [18, 20,21]. 

Equation 5 may be transformed into the frequency domain by noting that the multiplication 

of the gamma function by the cosine will result in the convolution of the frequency spectrum of the 
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gamma function with the impulse frequency response of the cosine. Thus the frequency domain 

expression becomes (ignoring the phase term because it does not affect the shape of the function 

and considering only positive frequencies): 

GT(f)*[l+j(f-fo)/b]-n (6) 

From Equation 6 it is easy to see that the filter can be implemented by cascading n identical 

filter stages. (As in Equation 5, n represents the filter order.) To optimize the filter for implementa- 

tion in a C program (namely AIM), the input data is first down-shifted by /„ through multiplication 

with a complex exponential. The complex multiplication relocates the filter's center frequency to 

DC. The data is then processed using n passes through a first order gammatone low-pass filter. 

Finally, the data stream is up-shifted back to f0 again by multiplying with a complex exponential. 

One should recognize this process as the classic low-pass prototype filter method. 

A computational cost analysis was done in considering the frequency shift approach just 

discussed as an alternative to to the filtering requirements. The initial down-shift of frequency 

requires a complex number multiplication, the cost of which is actually two multiplies. To further 

increase speed, the values for the complex representation of the shift frequency need to be stored 

in read-only memory (ROM), or require several additional multiplies to produce them as needed. 

One possible solution to the storage versus multiplication trade-off considered was to change 

the filter spacing. The frequency shift method of AIM is based upon the multiplication by complex 

coefficients which lie equally spaced on a unit circle. The location of the complex values on the 

unit circle is determined by the ratio of the sampling frequency to the center frequency of the filter. 

Therefore, by spacing the filters at octave multiples above a base set, the coefficients from the first 

set may be used for the higher frequency filters. 

The reuse of one set of ROM coefficients was tested and proven effective through modifica- 

tions to AIM, however, it was not pursued beyond proof of concept since the resulting filter spacing 

is not consistent with the ERB developed by previous researchers. 

Continuing with the cost analysis, the actual filter algorithm must be performed on a complex 

value as a result of the frequency down-shift. Again, if we assume a ROM storage for the needed 

coefficient, the filter algorithm requires one complex multiplication and two complex additions. 
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Therefore the actual number of operations for a fourth-order gammatone filter will be 8 ordinary 

multiplications and 16 additions per data point. 

Finally, the filtered data must be up-shifted back to f0 at the cost of another complex mul- 

tiplication costing two real multiplications and one addition. Thus, the total cost of the recursive 

gamma-tone filter as implemented in AIM (assuming all constants are stored in ROM) is 12 mul- 

tiplications and 17 additions. The amount of ROM storage needed is related to the sampling fre- 

quency (fs) and the center frequency (/0) of the filter. Approximately fs/f0 locations are required 

for each filter in the filter bank. 

3.3.2 Approximation. Because of the number of filter elements required in the filter bank 

to obtain satisfactory frequency resolution for speech processing research, the filter bank quickly 

becomes the bottle neck in the auditory model. Therefore, alternatives were sought to reduce the 

amount of work required. The solution chosen was based on the all-pole gammatone filter (APGF) 

approximation described by Malcolm Slaney[17]. In his paper, Slaney was the first to show that the 

Laplace transform of the fourth-order gammatone function produces an S domain equation with 

four real zeros and four complex conjugate pair poles. He further shows that the only significant 

effect the four zeros have on the filter is to control the filter attenuation near DC. Therefore, he 

proposes the elimination of the zeros resulting in an S domain equation for a first order all-pole 

gammatone filter of: 

(s + By + Lü
Z 

where B is a bandwidth term and w is the center frequency in radians/second. 

Equation 7 can be easily transformed into the discrete domain and put into the form of a 

filter difference equation. The transformed first order APGF equation thus becomes: 

Y[n] = oX[„_l] + bY[n-l] + cY[n-2] (8) 

where Y[„] is the current filter output, Y[n_!] and Y[n_2] are the previous two outputs, and X[n_X] 

is the previous input. The constants a, b, and c are easily computed based on the center frequency, 

bandwidth, and sampling rate for the filter. (See Appendix A for computation of these constants.) 
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As was the case for the original gammatone filter, a fourth-order all-pole filter can be obtained by 

cascading four identical filters together. 

From Equation 8 it is easy to see that only three ROM constants per filter are required and 

that a fourth-order filter requires 12 multiplies and 8 additions. While the number of multiplies 

is the same as that of the recursive gammatone of AIM, the number of ROM values required for 

the APGF is significantly smaller than that of AIM. In AIM a look-up table is used to hold the 

complex phaser for the frequency down-shift. The size of the AIM phaser table is 5/4 times the 

sampling frequency divided by the filters center frequency and is used to hold both the sine and 

cosine values. One of these tables is required for each filter. In addition to a large savings in ROM 

storage, the number of additions has been reduced from 17 to eight. 

To test the viability of the APGF, the filter was coded into the C programming language as 

an AIM module and added to AIM as an option for the filter bank processing. Testing was then 

completed to compare the impulse response of AIM using the original filter to that of the APGF. 

Results of these tests are shown in Figures 15 and 16. 

Figure 15:     Comparison of Gammatone and APGF Impulse Response 

The response of Figure 15 was generated by processing an impulse of magnitude 1000 

through AIM (using the "genbmm" command) with only one active filter in the filter bank. While 

many different frequencies were tested, in the case shown the filter center frequency was 1 kHz 

because it falls near the center of the filter bank. To ensure the correctness of the experiment, the 
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Figure 16:     Frequency Response of Gammatone and APGF 

middle ear filter was turned off. The output data was written to a file, then processed in Matlab 

where both the time and frequency domain representations were compared. 

In Figure 16, the data used to generate Figure 15 was further processed and plotted using 

Matlab to convert the raw data into the frequency spectrum. Figures 15 and 16 demonstrate that 

the APGF differs slightly from the gammatone filter in both the time and frequency domain. In the 

time domain (where AIM does its processing), the difference is a phase shift. Within any given 

filter from the filterbank, the phase difference manifests itself as a time shift, and is constant. For 

the filter shown in Figure 15 the delay is under 0.5 ms. Because current speech recognition research 

averages the data in 16 ms windows[25], it is reasonable to discount these small time shifts. 

The differences in the frequency domain, as seen in Figure 16, agree with those predicted 

by Slaney, namely the loss of attenuation near DC. As claimed previously, the difference can be 

discounted because of the middle ear filter (which was disabled in the generation of Figure 16). 

When the effect of the middle ear filter is included prior to the spectral filtering, the difference be- 

tween the low-frequency responses of the APGF and the gammatone filter is decreased. Figure 17 

illustrates the response of the APGF and the gammatone filters with the corresponding middle ear 

filters enabled. 

A final comparison between the AIM gammatone filter bank, and the APGF filter bank ad- 

dressed the speed of the code. Although the actual execution time of the two different algorithms 

in AIM is not expected to map directly to the execution time of an optimized hardware implemen- 
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Figure 17:     Gammatone and APGF Frequency Response with Middle Ear Filtering 

tation, such a comparison is valuable as an indication of the number of operations that must be 

computed. Table 2 compares the run times of AIM using the default gammatone filter (GTF) and 

the new all-pole gammatone filter (APGF). 

Table 2:     Comparison of Filter Bank Run Times (seconds) 
Run# GTF APGF APGF4 

1 9.58 9.25 6.10 

2 9.58 9.22 6.13 

3 9.53 9.27 6.13 

4 9.56 9.21 6.12 

AVERAGE 9.56 9.24 6.12 

As can be seen in Table 2, a variant of the APGF (named APGF4) was developed and tested. 

The APGF4 filter was a fixed fourth-order filter mathematically equivalent to the APGF. The dif- 

ference between the APGF and the APGF4 is in their implementation. The APGF is a recursive 

filter. In APGF4, four recursions of the APGF were algebraicly combined into a single fourth-order 

expression. The single expression was then implemented without the need for recursion or looping. 

While the APGF4 executes faster on a general purpose processor, it requires much higher preci- 

sion than is possible using fixed-point integer arithmetic. Therefore, the APGF4 was not further 

pursued as an alternative in the hardware solution. 
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For the tests run in Table 2, a seven-second audio stream was processed through AIM with 

the outer/middle ear filter turned off as well as all processing following the filter bank. Disabling 

the mentioned functional blocks isolated the filter bank from the rest of AIM. In each case there 

were 64 filters in the filter bank. The processing was accomplished on an unloaded 266 MHz 

Intel Pentium-Pro processor running Linux 2.0.34. The AIM code was compiled for Linux using 

the GNU gcc compiler tools. Times recorded are the user CPU times reported by the operating 

system's time command. 

As expected, because of the reduction in arithmetic operations, the APGF bank operates with 

a slight advantage in speed over the gammatone filter bank. The increase in speed was found to be 

dependent upon the processor and operating system. When run under Sun-OS 4.3.14, an increase 

in speed of 1.3 times was realized for the APGF over the GTF. Further improvements in speed are 

expected when the APGF is implemented in an application-specific architecture. 

Having selected the filter equation, the next step was to optimize the filter for hardware 

implementation. Assuming a fourth-order filter, an initial analysis would indicate the need for 

3 read-only memory (ROM) constants and 12 read-write memory (RWM) cells per frequency 

channel. However, upon closer inspection, a data dependency appears within each channel where 

the output of any given stage of the filter bank becomes the input to the following stage. Taking 

advantage of spatial locality of the data in the algorithm, the number of RWM cells can be reduced 

from three cells to two per recursion of the filter thus reducing the total storage requirement per 

filter to 3 ROM and 8 RWM cells. 

The RWM reduction is possible because the input value for second through fourth recursions 

of any filter in the bank is the output of the recursion that preceded it. Since the previous recursion 

will have just completed, there is never a need to store its output to memory; the output can be 

re-circulated directly into the following filter. The input to the first stage of any filter in the bank 

will always be the output of the IIR middle ear filter, which is stored separately. 

Next to be considered was the precision, or word sizes, for these memory locations. Again, 

VHDL was employed to model the filter at the binary level so that realistic comparisons could be 

made between systems operating with different word sizes. 
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For the VHDL tests, a behavioral description of the APGF was written. Although the model 

was behavioral, i.e. the algorithm appeared in much the same form as in the C program code, 

the data objects were generic-sized vectors of bits. Abstract data typing and overloading of the 

math operators allowed these vectors to be manipulated using standard algebraic notation while 

preserving the binary behavior of an integer-based system. 

The actual testing proceeded much as the testing for the middle ear word sizing experiments. 

The bit size of the stored data was varied, as well as the number of additional bits which were 

stored as fixed-point fraction bits. For each case, an impulse was run through the filter and the 

output was collected and analyzed using Matlab to post-process the data and generate frequency 

response plots. The output data was also viewed directly in the time domain and compared to the 

time domain impulse response of the AIM filters. 

When considering the ROM word size, the first step was to generate a table of possible 

constant values that would be needed for a typical system. A table of constants was generated 

using the info=all option of AIM with the APGF selected. The table revealed that the absolute 

value of the largest constant was less than 2.0. Therefore, the constant needed only 2 bits to 

represent the integer: a sign bit and a single data bit, leaving the number of fractional bits in the 

ROM value as a single degree of freedom for the experiment. 

Because the final system was constrained to accept 16-bit integers and provide 16-bit integer 

results (the constrain imposed by the requirement to remain compatible with AIM), it was natural 

to internally store the integer portion of the values in 16 bits. Therefore, as with the ROM constants, 

for the RWM storage there was again a single degree of freedom left for consideration: the length 

of the fractional part. 

A series of experiments were run where the ROM fraction size was varied from 6 to 16 bits 

and the RWM fraction size was varied from 0 to 12 bits. As previously mentioned, at each step an 

impulse was applied to the digital filter and the spectral shape of output data was compared to that 

of the AIM filters using Matlab. For these experiments, a filter element with a center frequency 

of 100 Hz was used because: 1) it is the minimum frequency used by default in AIM, and 2) its 

constants are the smallest, making it the first filter element to deteriorate due to round-off errors. 
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Table 3:     Effect of Word Size on Filter Frequency 
Bits of Precision Percent Shift 

10 15 
12 15 
14 8 
16 8 

The testing revealed that if fewer than 10 bits are used, the first ROM constant for the 100 Hz 

filter is rounded to zero and the filter does not function. With 10 bits, the same constant realizes a 

single ' 1' in its least significant bit position. While the filter will function with 10 bits, its operation 

is marginal. In fact, the center frequency of the filter is shifted by 15% toward DC. Increasing 

the number of ROM fraction bits reduces the undesired frequency shift. Table 3 illustrates the 

relationship observed between the number of bits and the shift of the filter's center frequency for 

the 100 Hz filter. 

When the ROM word is set to 16 bits, 2 for the integer part and 14 for the fixed-point fraction, 

the worst case frequency shift is reduced to 8%. That is, the 100 Hz filter behaves as though it were 

centered at 92 Hz. Extending the ROM word size an additional 2 bits (16 bits of fraction) did not 

significantly change the frequency shift of the response from that of 14 bits. Because 16 bits is 

a standard word size and the next logical increase in size did not significantly improve the filter 

response, a 16-bit word size (2 integer and 14 fraction) was chosen for the ROM coefficients. It is 

significant to note here that regardless of word size, the frequency shift error is inversely related 

to the filter center frequency. The higher the filter's designed center frequency, the smaller the 

frequency shift error. 

Even with as much as 8% error in the location of the lower frequency filters, it is still pos- 

sible to precisely specify a filter. For example, to locate a filter at 100 Hz, an impulse can be 

processed through AIM with a 100 Hz filter specified. The output is then processed (using Matlab) 

to determine the resulting filter center frequency. The difference between the actual frequency and 

the desired frequency is then added to the desired frequency and used to specify a second run of 

AIM. Through iteration coefficients can be chosen which give the desired frequency response. 

For the RWM word size, the key figure of merit was the time domain response of the filter. 

If too few fraction bits were maintained, the time domain response possessed a negative DC bias. 
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As would be expected, the bias effect also showed up in the frequency domain as a positive DC 

gain. 

The DC shift of the frequency response was directly influenced by the number of fractional 

bits in the RWM word. Testing revealed 8 bits of fraction to be the optimal size for this applica- 

tion. Therefore the RWM word size of 24 bits (16 for the twos-complement integer and 8 bits for 

fraction) was selected. 

At this point, all that remained for the APGF was to design an architecture that would take 

advantage of the spatial locality of the data and use the optimized word sizes. The details concern- 

ing this architecture are discussed in Chapter 4. 

3.4   Neural Encoding-Rectification and Compression 

In the Auditory Image Model, after the sound has been filtered by the gammatone filter bank, 

which models the motion of the basilar membrane, it enters the neural encoding stage. The first 

step of neural encoding is half-wave rectification and logarithmic compression of the data. The 

half-wave rectification models the way in which the hair cells respond to a compressive stimu- 

lus. The compression models the way in which the large movements of the basilar membrane are 

transformed into the smaller nerve firings [26]. 

Following the rectification and compression of the data, AIM models the firing of the hair- 

cell nerves through a process coined adaptive thresholding. While the rectification and compres- 

sion, and the adaptive thresholding are actually both part of the neural encoding process, these 

topics have been split into two sections for clarity. The remainder of Section 3.4 presents the 

discussion on rectification and compression, while Section 3.5 presents the adaptive thresholding. 

3.4.1 Implementation in AIM. In AIM, the half-wave rectification is accomplished by 

simply setting any negative value in the data stream to zero before the compression. The com- 

pression is then performed by converting the output of the filter stage to millibels (one millibel = 

100 decibels). The algorithm used for the compression to millibels first computes the logarithm 

(base 10) on the data, then multiplies the result by 2000. The logarithm employed by AIM is the 

1 o g 10 (X) function from the standard C libraries. 
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3.4.2 Approximation. As noted in Chapter 2 , researchers have proposed and utilized 

a variety of compression algorithms. Currently, the logarithmic method employed by AIM as its 

default is the most widely used; thus it was chosen for implementation. The focus of this research 

was to develop a method for efficiently converting the data stream to millibels[27]. 

In 1962, John Mitchell reported a linear approximation technique for quickly computing 

the logarithm in base two[28]. In his technique, to compute the approximate log2 of a number, 

Mitchell linearly interpolated between the log2 of the two nearest powers of two. For example, to 

compute log2(6), one would linearly interpolate between log2(4) and log2(8). Figure 18 illustrates 

Mitchell's technique graphically over one log cycle from 32 to 64. 

Figure 18:     Mitchell's Linear Approximation to log2 

Perhaps Mitchell's greatest contribution was his technique for performing the linear interpo- 

lation. His technique began with finding the characteristic, or whole number part, of the logarithm. 

To determine the characteristic, Mitchell counted bit positions to identify the bit number corre- 

sponding to the most significant non-zero value in the input binary number. For example, consider 

the 8-bit computation of log2(55). The binary representation of the integer 55 is OOIIOIH2. The 

most significant one is located in bit position 5 (bit 0 being the right-most bit), therefore the char- 

acteristic of /o(?2(55) is 5. 

After the most significant one had been located, Mitchell extracted all of the bits of lower 

significance and made them into a fixed point fraction appended behind the characteristic. Contin- 
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uing with the example of log2(55), the approximate logarithm (base 2) is 101.101112 or 5.718750. 

The actual log2(55) = 5.78136 (rounded) indicating an error, in this case, of-1.08%. 

Mitchell's algorithm always has a maximum magnitude error of -0.08496 on the values that 

fall exactly between two powers of two[28]. Therefore, the worst case percent error occurs when 

the input value is 3 (exactly between 21 and 22). In this case the error is approximately 5.36%. The 

percent error is cyclic and decays exponentially as shown in Figure 19. 

Figure 19:     Percent Error in Mitchell's Approximation 

While others have reported improvements to the accuracy of Mitchell's algorithm, they have 

done so at the cost of added complexity[29, 30]. Specifically, the algorithms of [29] and [30] 

require the calculation of fractions of the input value which are not powers of two. For this re- 

search, a method was desired that had better performance in the small input range than Mitchell's 

algorithm, with less complexity than what others have reported. 

A technique to reduce the error came through careful study of the approximation and the 

percent errors as shown in Figures 18 and 19. Note particularly that the magnitude of the error 

repeats cyclically between powers of two, and that the maximum error is always -0.08496. A 

method to reduce the error is to break each log cycle into two sub-regions and change the slope of 

Mitchell's approximation so that the mid-point of the approximation is pulled closer to the actual 

log value. 
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The proposed technique is in fact similar to the techniques of Combet[29] and Hall[30]. In 

their approaches, they generalize to more than two sub-regions and develop precise mathematical 

equations which minimize the error. The disadvantage of the algorithms developed by Combet and 

Hall is the need for the computation of fractional multiples of the input value, as well as several 

conditional additions and subtractions. 

The method developed in this research focuses on the binary representation of the num- 

bers. Considering Mitchell's approach as described above, he found that the input number itself 

contained a linear approximation between two known points. The question posed was whether 

a similar simple approach to adjust the approximate log existed. The answer is yes, and as in 

Mitchell's algorithm, the solution is contained within the input value. 

To understand the new approximation, recall the magnitude of the error in any cycle as seen 

in Figure 18. The absolute value of the error is 0.08496 which has a binary representation of 

0.0001010110112. In order to zero-out the midpoint error, we need to add this error value to our 

approximate log. However, adding 0.8496 only applies when the input value is exactly between 

any two powers of two. For other inputs some fraction of this value would need to be added. 

Now, consider the binary representation of the input values near the mid-point of a log cycle. 

For example, 12 which appears between 8 and 16 and has the binary form (in 8 bits) 000011002. 

Using Mitchell's approximation algorithm above, log2(12) « 11.1002. We know also that the ex- 

act value of log2(12) = 11.1001010110112 (the sum of our approximate value and our maximum 

error). Taking into account the weight of each bit in the fraction, it is easy to show that the single 

"1" bit in the 4th position to the right of the decimal point (0.00012 which represents 0.0625) ac- 

tually accounts for 73.6% of the error in Mitchell's approximation. Therefore the fourth fractional 

bit is the target of the new method. 

When considering how the fractional part of Mitchell's approximation was generated, we 

see that it is a linearly increasing value. Thus, by copying the fractional part of Mitchell's ap- 

proximation, shifting it to the right by 3 bit positions, and adding it back to the approximation, 

an adjustment factor is computed that linearly increases and at the mid-point will have corrected 

73.6% of the original error. Effectively, the copy-shift-add correction changes the slope of the ap- 
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proximation so that it approaches the actual log at the mid-point between powers of two. Table 4 

tabulates the correction for the input values 8 to 12. 

Table 4:     ] First Correction to Mitchell' s Approximation 

Input Binary Form Mitchell % Error Adjusted % Error 

8 00001000 011.00000000 0.00 11.00000000 0.00 

9 00001001 011.00100000 -1.42 011.00100100 -0.92 

10 00001010 011.01000000 -2.16 011.01001000 -1.22 

11 00001011 011.01100000 -2.44 011.01101100 -1.09 

12 00001100 011.10000000 -2.37 011.10010000 -0.63 

The shift-add does not entirely solve the problem, however, because now the adjusted ap- 

proximation and the actual log are converging at the cycle midpoint. Therefore the slope of the 

approximation must be adjusted downward after the midpoint in order to keep the approximation 

inside the log curve. Without the second correction, the approximation curve would penetrate the 

actual log curve resulting in a positive, and even greater error between the midpoint and the upper 

endpoint. 

Again, a simple adjustment was found within the approximation. To identify the solution, 

note first that the change in slope must occur when the most significant bit of the fraction is set to 

a 1 indicating that the input is greater than half of the distance between two consecutive powers 

of two. Second, the complement of an increasing sequence of binary numbers is a decreasing 

sequence. For example, observe the two-bit count: 00 01 10 11, which represents the sequence 0 

1 2 3. The complement of the binary sequence is 11 10 01 00, or 3 2 1 0 which is clearly a down 

count. 

Now observe the first four bits of fraction from Mitchell's linear approximation near the 

midpoint of any log cycle. The sequence (disregarding for the moment the lower-order bits) would 

be: 

.01102    .01112   .IOOO2   .IOOI2   .IOIO2 

where the .10002 is exactly between two powers of two. For the first correction just discussed, 

these bits were simply copied, shifted to the right, then added back to the sequence. However, if 

the complement of the bits is computed when the left most bit is set, then the correction factors 
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become: 

01102   OIII2   OIII2   OIIO2   OIOI2                                       (9) 

From the sequence of Equation 9 it is easy to see that the correction factor will begin to 

decrease linearly until the fraction is one step from the end of the log cycle. At that point the 

fraction bits would be .11112, and consequently the correction would become OOOO2. Hence the 

approximation converges linearly to an exact value at the end of the log cycle. 

Table 5 tabulates the remaining values in the log cycle that was started in Table 4 using the 

second correction. Note that the value for 12 has been changed between the two tables because it 

is the first value where the most significant bit of the fraction is set. 

Table 5:     Second Correction to Mitchell's Approximation 
Input Binary Form Mitchell % Error Adjusted % Error 

12 00001100 011.10000000 -2.37 011.10001111 -0.74 

13 00001101 011.10100000 -2.04 011.10101011 -0.88 

14 00001110 011.11000000 -1.51 011.11000111 -0.79 

15 00001111 011.11100000 -0.82 011.11100011 -0.52 

16 00001000 100.10000000 0.00 100.00000000 0.00 

Several observations can be made from Tables 4 and 5. First, the percent error is always 

negative, suggesting a positive offset could be added to further improve the approximation. Second, 

as can be seen in Table 5, the number of bits included in the adjustment will affect the final result. 

Finally, Table 5 changes the approximation of the mid-point value, and in fact increases its error. In 

order to better understand all of these effects, the algorithm was modeled using a VHDL simulation. 

In the simulation, the number of bits to be included in the shift/add, as well as the number of 

bit positions these bits were to be shifted was left as generic (changeable) parameters. Simulations 

were then run for integer inputs ranging from 1 to 8000, while the number of bits and shift positions 

were varied. Two parameters were measured during the testing: the RMS error over the entire 

range, and the worst case percent error. Table 6 summarizes the results of the VHDL testing. 

As can be seen in Table 6, the minimum percent error and the minimum RMS error do 

not occur simultaneously.  Fortunately, both of these minimums occurred when the number of 
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Table 6 VHDL Results for Approximation Adjustment Strategies 
Positions of Right Shift 

#Bits 2 3 4 
RMS MAX% RMS MAX% RMS MAX% 

6 0.1389 +2.25 0.2665 -1.75 0.4188 -3.25 
5 0.1361 +2.0 0.2751 -1.75 0.4231 -3.5 
4 0.1385 +1.5 0.2928 -2.0 0.4318 -3.5 
3 0.1717 -1.0 0.3301 -2.5 0.4501 -4.0 
2 0.2913 -2.0 0.4094 -3.5 0.4895 -4.25 

shift positions was two.6 Therefore, a two position shift is the optimal selection for the shifting 

distance. For the number of bits to include, the best choice is four bits because it falls between 

the optimal choice for the minimum RMS error (3 bits) and the minimum maximum error (5 bits). 

The resulting approximation exceeds the actual log for some values which works to both reduce the 

worst case error as well as the overall RMS error. Figure 20 compares the resulting approximation 

to the actual logarithm base 2 over the input range of 32 to 64. 

45 SO 
Input Value (X) 

Figure 20:     Comparison of Adjusted log2 Approximation and Actual log2 

Because the logarithm approximation is cyclic, the curve shown in Figure 20 is replicated 

between every pair of consecutive powers of two. It is interesting to note that the approximation 

is no longer linear as suggested earlier in the development of the theory. The non-linearities in the 

approximation are an artifact of the addition of the adjustment value to the original approximation. 

6 Although not shown in the table, the test included a shift of only one bit position. Because of the magnitude of the 
error with only a single shift, these results were not included. 
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In the case considered as an example in Tables 4 and 5, there were no logical one bits in the original 

fraction where the adjustment factor was added. However, as the input value increases, logical one 

bits begin to appear in these positions of lower significance. As a result, an interference occurs 

which causes the slope to increase or decrease faster than desired. 

The bit interference occurs in much the same way as two waves of water that collide on an 

angle. That is, there are times where they add constructively resulting in a larger signal, times 

where they add destructively resulting in a smaller signal, and times when they cancel completely. 

The net result is the oscillating effect that is observed in Figure 20. 

Figure 21 illustrates the magnitude error and percent error of the adjusted and optimized 

approximation algorithm. In these figures, the oscillations just mentioned appear more pronounced 

because the magnitude of the actual logarithm has been subtracted. These oscillations have very 

little effect on the performance of the auditory model because: 1) their magnitude is small relative 

to the input signal strength, and 2) it would take a very low frequency (below the frequency cutoff 

of the middle/outer ear filters) in order to produce samples closely enough spaced in magnitude to 

see the effect. 

Figure 21:     Magnitude and Percent Errors of Optimized Approximation 

An attempt was made to further improve the accuracy of the approximation. In the trial, the 

adjustment process just discussed for the 4th bit of the binary fraction was repeated for the 6th bit 

of the fraction. That is, the most significant bits of the fraction in Mitchell's approximation were 
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again copied, shifted, then added into the approximation. The shifting of the bits in the second 

adjustment was further to the right than in the first case. Optimizing was accomplished using 

VHDL in much the same way as was described in the preceding paragraphs. 

The second adjustment reduced the peak error of the approximation to 1.09%. However, 

because the neural encoding which follows requires a minimum of 1024 millibells for a nerve to 

fire, the peak error seen by the neural algorithm is always under 0.5% independent of whether or 

not the second approximation is applied to the logarithm. Since the smaller inputs (which produce 

the largest logarithm error) are rejected in the neural stage, and because the second adjustment 

increased the hardware complexity, the second adjustment was not implemented. 

While perhaps necessary, the computation of the logarithm in base two does not yield the re- 

sult required, that is millibels. Fortunately, the remaining conversion can be accomplished through 

carefully selected addition operations. To illustrate the conversion to millibels, consider the math- 

ematical identity. . 

From Equation 10 it is easy to see that: 

log10(X)=log2(X)xloglo(2). (ID 

Now recall the definition of decibels (dB): 

dB = 20 x log10(X) = 20 x log2p0 x log10(2). (12) 

To convert dB into millibels, we simply multiply by 1000 yielding the expression: 

millibels = 2000 x log10(2) x log2(X) « 602.06 x log2(X). (13) 

A quick approximation for the log2(X) has just been derived leaving only the multiplication by 

602.06 (which is rounded to 602) to complete the conversion of the input value X into its equivalent 

millibel form. Fortunately, because the multiplier value is a constant, the multiplication can be 

reduced to a few addition operations. The implementation of Equation 13 is discussed in detail in 

Chapter 4. 
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3.5   Neural Encoding-Adaptive Thresholding 

The second part of the neural encoding process is the simulation of the activity of the nerve 

cells in the cochlea. The nerves in the cochlea, commonly referred to as the hair cells, convert the 

motion of the basilar membrane into the electrical signals which are transmitted to the brain via 

the auditory nerve. This section presents how AIM models the adaptive thresholding as well as the 

approximations developed in this research to simplify the algorithms. 

3.5.1 Implementation in AIM. After the logarithmic compression, the incident sound 

energy has passed through four transformations in the model. First, the middle ear (ear drum, 

malleus, incus and stapes) performed a band-pass filtering. Second, the energy caused the basilar 

membrane to resonate with an impulse response that is similar to that of the gammatone filter 

equation. Third, the energy was half-wave rectified and fourth logarithmicly compressed. 

The rectification and compression are actually only part of the mechanical-to-electrical trans- 

form accomplished by the hair cells in the organ of the corti. In addition to these two transforma- 

tions, the hair cells also adapt to the motion of the basilar membrane to eliminate most of the 

ringing oscillations induced by the gammatone response of the basilar membrane. In AIM these 

transformations are known as two-dimensional adaptive thresholding[10] because it takes place in 

both the time and frequency domains. The following two sections discuss the adaptive thresholding 

in these two dimensions. 

3.5.1.1 Time Domain Adaptive Thresholding. To understand the adaptive thresh- 

olding in the time domain, refer to the impulse response signal shown in Figure 22. The solid 

line segments represents the half-wave rectified, logarithmically-compressed motion at some point 

along the basilar membrane, or functionally, the energy that is stimulating the hair cells. 

The hair cells which detect the motion of the basilar membrane are known to have a recovery 

time associated with their response. After they fire (transmit an electrical signal to the auditory 

nerve), they will not respond to further stimulation unless the new stimulation exceeds their current 

threshold level. In Figure 22, the threshold is shown as dashed lines. The threshold is a function of 

the hair cell's last firing level and time. 
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Figure 22:     Time Domain Adaptive Thresholding (after [5]) 

In further study of Figure 22, assume that prior to the first rise in the input stimulus (the 

solid line) the hair cells have fully recovered from their previous stimulation. Therefore at the 

onset of the new stimulation, the hair cells will begin to fire in direct proportion to the intensity of 

the stimulation. 

As the stimulus reaches its first peak and begins to fall, the hair cells cease to fire and enter 

their recovery period. The actual firing time of the cell is represented by the shaded portions of 

Figure 22. Initially, the stimulus required to cause them to fire again must exceed the previous 

peak, thus the firing level is the starting threshold level for the recovery period. Over time, the 

threshold decays as the hair cells recover from the previous firing. In the ear, the threshold is an 

exponential function with respect to the actual sound intensity. However, because the auditory 

system behaves logarithmically, the exponential decay becomes linear in the inner ear. 

Once a non-zero threshold has been established, only signals which exceed the threshold 

will cause the hair cell nerves to fire. Even then, the firing of the hair cell is only proportional to 

the energy which is greater than the current threshold, not to the total energy of the stimulus. The 

result is a rapid damping of the ringing of the basilar membrane. In Figure 22, the shaded area 

under the input stimulation represents the resulting electrical signal sent to the auditory nerve after 

shifting each pulse down in order to align its base with zero potential. 

While conceptually the process of adaptive thresholding may appear trivial, years of research 

and testing have resulted in the complex algorithm that is implemented by AIM.7 The current 

7The AIM code for the adaptive thresholding algorithm is found in the file corti. c which is located in the model 
subdirectory of the AIM 8.1 release. Corti.c models both the time and frequency domain thresholding. 
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algorithm parameterizes two separate rates for the decay of the threshold, as well as an onset rate. 

The onset rate allows for experimenters to adjust how rapidly the hair cell fires. Alternatively, the 

rise time can be thought of as how closely the hair cell's output follows an input pulse on the rising 

edge. The two decay rates work together through a feedback mechanism which makes the decay 

of the threshold slightly non-linear. 

The algorithm receives as its input the half-wave rectified, logarithmically-compressed out- 

put of the gammatone filter bank. For each frequency channel, a threshold level is computed and 

stored. When a new pulse arrives on a channel, its magnitude is compared to the magnitude of the 

current decaying threshold. If the magnitude of the pulse is greater than the threshold, the differ- 

ence is adjusted by the onset parameter and sent as output. In addition, the threshold is adjusted 

upward to the level of the new pulse. When the input pulse begins to fall off, the output of the 

thresholding algorithm immediately drops to zero because the input magnitude becomes less than 

the threshold. 

In the ear, as with most real systems, there are no instantaneous changes in signal level. 

Therefore, the rapid return-to-zero of the output when the input signal falls below the threshold is 

unrealistic. The sharp fall-off is corrected by a low-pass filter which follows in the model. 

After computing the output value, the current threshold is decayed. The new threshold value 

is computed based upon the current threshold, and the two decay parameters. The algorithm for the 

decay is discussed in Section 3.5.2 along with a discussion of the approximation to the algorithm. 

3.5.1.2 Frequency Domain Adaptive Thresholding. In addition to adapting to sig- 

nals in the time domain, each hair cell also interacts with its neighboring hair cells. Recall that the 

location of the hair cells along the cochlea determines the frequencies to which they will respond. 

Therefore, the interaction between hair cells causes a smearing effect across the frequency spec- 

trum. The interaction between adjacent hair cells is the second dimension of the two-dimensional 

adaptive thresholding of AIM. 

In AIM, the interaction between hair cells is modeled by allowing a change in threshold of 

one channel to propagate to and affect the threshold of its neighboring channels. The channel inter- 

action is accomplished by multiplying the difference between the new input and the old threshold 
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by a leakage parameter. The result of the multiplication (if positive) is then added to the threshold 

of the neighboring channels. 

It is important to note that the leakage parameter is a computed value based on the frequency 

separation between the adjacent channels. Because the separation between channels is inversely 

proportional to the number of channels, reducing the number of active channels increases their 

separation while reducing their interaction. Table 7 shows the magnitude of the lateral leakage 

parameter as a function of the number of channels in use. Table 7 was extracted directly from AIM 

by invoking AIM and varying the number of active channels. 

Table 7:     Lateral Leakage Parameters 
Number of 
Channels 

Lateral Leakage 
Multiplier 

10 0.000183 
20 0.000367 
30 0.000550 
40 0.000734 
50 0.000917 
60 0.001101 
70 0.001284 
80 0.001468 
90 0.001651 
100 0.001835 
110 0.002018 
120 0.002202 
130 0.002385 

Table 7 shows that a linear relationship exists between the number of channels and the lateral 

leakage constant, where the leakage coefficient can be computed by 1.834 x 10~5 times the number 

of channels. Perhaps more significant, the leakage parameter is a very small number, particularly 

when the number of channels is less than 60. As was illustrated in Figure 4 of Chapter 2, even with 

64 channels, the effect of frequency thresholding was negligible. 

For this research, 32 channels were chosen to be implemented. Currently, research on 

phoneme recognition uses only 18 channels[7, 25, 6]. Additionally, preliminary design calcula- 

tions indicated that the conceptualized hardware architecture with an input data rate of 20,000 

samples per second, could maintain real-time filtering on 32 channels when operated at approxi- 
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mately 28.5 MHz. The same hardware could process 44,000 samples per second (CD sample rate) 

when clocked at a modest 62.6 MHz. 

Due to the minimal of effect frequency-domain adaptive thresholding, as compared to the 

overall magnitude of the NAP, frequency thresholding was not included in the architecture. If 

added, frequency adaptive thresholding would require three addition operations and one multipli- 

cation for each value passed through each channel. The increase in memory storage would be 

minimal since the thresholds are already being stored for the time-domain processing. However, 

the memory addressing scheme would become more complicated because of the need to access the 

data from more than one channel per operation. 

3.5.2 Approximation. To better understand the approximation made to AIM's adaptive 

thresholding, first consider the original AIM C program code. The code fragment shown in Fig- 

ure 23 was extracted from the file corti . c which is found in the model directory of the AIM 

release. For readability, the code in the figure has been modified to a pseudo-code format with line 

numbers added for reference. In addition, the code for frequency thresholding has been removed. 

Careful observation reveals two separate algorithms for computing the output value. The output 

is first computed in the block from line 4 through line 10. It is then computed a second time in 

lines 19 through 25. The second algorithm is the default for AIM. From comments that exist in 

the code, it is apparent that the first method was retained from an earlier release and remains as an 

option for backwards compatibility. Therefore, the first computation of the output was removed in 

the approximation. The lines eliminated were 4, 5, and 10. 

The remaining code falls into three functional blocks: raising the current thresholds, decay- 

ing the thresholds, and generating the output. The following sub-sections explore the approxima- 

tions that were derived for each of these functional blocks. 

3.5.2.1 Threshold Rise. Beginning with the raising of the threshold in lines 1 

through 12, note the outer loop which cycles from 0 to "times". When using the defaults in AIM, 

"times" is always set to 1, thus the loop cycles twice. Inside the loop the threshold is raised, and 

the parameter "rapidJimit" is adjusted, affecting the decay rate. Both of these actions occur twice, 

making the decay rate slightly non-linear. 
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1 for( time=0 ; time < times ; time++ ) { 
2 /* raise thresholds */ 
3 for( each channel ) { 
4 if( time == 0 ) 
5 output = 0 ; 
6 delta = input - microphonic; 
7 if( delta > 0 ) { 
8 microphonic = microphonic + (delta * rapid_rise) ; 
9 rapid_limit = rapid_limit + (delta * fast_rise) 
10 output = output + delta ; 
11 } 
12 } 
13 } 
14 /* decay potentials */ 
15 for( each channel ) { 
16 microphonic = 

microphonic - (microphonic-rapid_limit) * rapid_decay; 
17 rapid_limit = 

rapid_limit - (rapid_limit-absolute_limit) * fast_decay; 
18 } 
19 /* generate output */ 
20 for( each channel ) { 
21 delta = input - microphonic ; 
22 if( delta > 0 ) 
23 output = scale * delta / compensate ; 
24 else 
25 output = 0 ; 
26 } 

Figure 23:     Adaptive Thresholding Code from corti.c 

To simplify the process of raising the threshold, the loop was unrolled and the equations 

combined. For now, consider only the adjustment to the variable microphonic which is the current 

firing threshold. After the first pass through the loop, microphonic takes the form: 

microphonic' = microphonic + rapid-rise(input — microphonic) (14) 

On the second iteration, we replace all occurrences of microphonic with the newly computed 

microphonic' and simplify, yielding the expression: 

microphonic" = microphonic(l-rapid-rise)2+input((2xrapid-rise)-rapid-rise ) (15) 
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The parameter rapid-rise is a channel-dependent parameter, i.e. each frequency channel 

has a unique value. Running a modified version of the AIM algorithm which displayed the values 

of these internal constants revealed that rapid-rise took values from 0.21 to 0.25 for 100 Hz and 

7 kHz channels respectively. Additionally, more of the channels had values of 0.25 or close to 0.25 

as opposed to the lower values. 

Since the variance of rapid-rise was minimal, it was hypothesized (and later shown) that 

using the value 0.25 for all channels would have little effect on the algorithm. When the value 0.25 

is put into the equation for microphonic" as defined previously, the equation simplifies to: 

microphonic" = (0.56 x microphonic) + (0.43 x input) (16) 

It was then noted that the average of these multiplier constants is approximately 0.5. Therefore, 

the approximation was extended so that the definition of microphonic" became: 

microphonic" = 0.5 x (microphonic + input) (17) 

Equation 17 is equivalent to the Equation 15 if rapid-rise is given the value 0.293 yet it can be im- 

plemented through a single addition with a shift right by one bit position of the result. Additionally, 

no ROM value needs to be stored for rapid-rise. 

The result of the approximation to rapid-rise is that the rising edge of the thresholds for the 

neural firing will be slightly sharper than in AIM as seen in Figure 25. Additionally, because the 

same value for rapid-rise (namely 0.293) is implemented for all channels, the firing thresholds of 

each channel will rise at the same rate. While giving each channel the same rapid-rise parameter 

does remove some of the channel-to-channel differences that actually occur in the ear, the tests in 

Chapter 5 show that using the same rapid-rise did not make a statistically significant change in 

the model when used for phoneme recognition. 

Careful observation of the code fragment of Figure 23 shows one other parameter being 

computed in the threshold raising section: rapid-limit. While computed in part when the thresh- 

old is raised, rapid-limit is not used until the threshold decay section. Therefore, rapid-limit is 

discussed in the following sub-section. 
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3.5.2.2 Threshold Decay. Immediately following the raising of the firing threshold 

due to a stimulation event, the threshold begins to decay. Thus as time passes, the inner hair cells 

recover their sensitivity. To model the hair cell's time-dependent recovery, AIM implements a 

time-dependent reduction to the thresholds of each channel. There are actually two different decay 

rates modeled in AIM simultaneously. The first is controlled by the parameter rapid limit, while 

the second is controlled by the parameter rapid-decay. 

The parameter rapidJimit causes the rate of decay to be dependent upon the onset of the 

stimulation. Line 9 of the code segment in Figure 23 shows that rapid Jimit is set based on the 

difference between the threshold and the new stimulation. Numerically, rapid Jimit is initialized 

to the same value as the absoluteJimit parameter, which models the minimum input necessary to 

initiate a nerve firing event. 

From its initial value, rapid Jimit is adjusted upward by multiplying the input, which ex- 

ceeds the current threshold, by the parameter fast-rise which is the key to the approximation. 

The parameter fast-rise ranges from 0.00229, for a 6 kHz channel up to 0.0375 for a 100 Hz 

channel which equates to varying rapid Jimit by 0.2% to 3% of the amount that the input exceeds 

the current threshold. 

The relatively small scale adjustment of rapid Jimit lead to the hypothesis that the com- 

bined effect of these two parameters could be eliminated and the value of the absolute limit could 

be used to model rapid-limit as a constant. Allowing rapid Jimit to equal the absolute limit is 

consistent with AIM in that the absolute limit is the initial condition for rapid Jimit. 

By choosing the absolute limit to model rapid Jimit, lines 9 and 17 are removed from the 

code of Figure 23. After removing fast-rise, substituting absoluteJimit for rapid-limit, and 

performing minor algebraic manipulations, line 16 can be expressed as: 

microphonic = microphonic(l — rapid-decay) + (absoluteJimit x rapid-decay)     (18) 

AIM was employed to generate the needed values for rapid-decay which are required by 

Equation 18. As expected, these tests revealed rapid-decay to be channel-dependent. Specifically, 

it ranges from a low value of 0.001428 for the 100 Hz channel to a high value of 0.027047 in 

the 6 kHz channel. Experimenting with AIM revealed that the generation of the neural activity 
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pattern (NAP) is much more influenced by rapid-decay than all of those previously discussed. 

The dependency of the NAP on rapid-decay can be understood by realizing that these values 

are computed to closely follow the natural decay rate of the gammatone impulse response. It is 

the slope, as shown in Figure 22, that determines which events will cause a nerve firing event. 

Therefore, care had to be taken in how the values for rapid-decay were handled. 

Because the architecture being considered was a fixed-point integer architecture, fractional 

values had to be converted into a fixed-point form. When converting rapid-decay into a binary 

fixed-point notation, it was noted that if the decimal point is shifted by 16 bit positions (equivalent 

to multiplying the value by 216, the largest possible value in the proposed system), the resulting 

integers occupied, at most, 12 bits. To reduce hardware costs and processing time, the size of the 

constants were rounded to 12 bits. A 12-bit fixed-point integer approximation was then coded into 

AIM and validated. 

One final approximation was made in the adaptive thresholding section of AIM. The value 

for absolute limit, the lower limit of the threshold, is coded in AIM as 1397.94. Because of the 

simplicity of the binary form of 1024, and the ease with which it can be multiplied, experiments 

were run in which absolute limit was approximated as 1024. While the magnitude of the NAP 

was slightly larger when using 1024, phoneme recognition experiments produced nearly identical 

results as those when absolute-limit was its original 1397.94. 8 Therefore, 1024 was adopted as 

a valid approximation. 

3.5.2.3 Output Generation. The final step in the adaptive thresholding process is 

generating the actual output by determining the difference between the current threshold (which 

has been decayed) and the input. If the input is less than the threshold (microphonic in the code), 

the output is set to zero. Otherwise the output is a positive value based on the difference between 

the signal input and the threshold. 

Rather than simply transmitting the difference between the input and the threshold, AIM 

multiplies the difference by a compensation factor. These compensation coefficients (one per chan- 

8Accuracy for these approximations was measured by using AIM as a front end processor for phoneme recognition 
software explained in more detail in Section 5.2. During the testing, candidate approximations were coded into AIM 
and run through a battery of recognition experiments. The results from these experiments were used to compare the 
effectiveness of the approximations to the results produced by the original AIM code. 
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nel) are related to the rapid-decay parameters. Two techniques were attempted to approximate the 

compensation factors of AIM. 

The first approximation tested used the values of rapid-decay indexed in reverse order and 

multiplied by 2048. The multiplication by 2048 approximates the actual relationship between 

rapid-decay and the compensation factor which actually varies from channel to channel. The 

value 2048 was chosen not as an average, but rather for speed. The attractiveness of this technique 

is the fact that the data is already stored and the multiplication is simply a shift of 11 bits to the 

left. 

While the first approximation for rapid-decay could have saved ROM space in the architec- 

ture, it did not survive the phoneme recognition test and subsequently was not used. Additionally, 

the hardware realization of the first approximation would have complicated the ROM addressing 

technique by requiring a more random access to the rapid-decay memory. 

The second approximation attempt came from a study of the compensation constants gener- 

ated by AIM. Testing revealed that the values for the compensation factor ranged from a high of 

66.85 for the 100 Hz channel, to a low of 3.44 for the 6 kHz channel. Therefore, a logical approx- 

imation was an 8-bit constant with 6 bits of integer and 2 bits of fixed-point fraction. The fraction 

was rounded to the nearest multiple of 0.25 to allow the most accurate storage of the compensation 

factor with two bits of fraction. 

By limiting the compensation factor to between 0.0 and 63.75, the approximation closely 

replicates (within rounding to 0.25) the AIM constants to filters as low as 121 Hz. Restricting 

accurate compensation to channels above 121 Hz is not seen as a hindrance to the model since 

current phoneme recognition experiments do not use channels below 350 Hz[25]. 

Figure 24 illustrates the new approximated algorithm inserted into AIM for testing. As was 

the case with Figure 23, the code of Figure 24 was simplified by abstraction for readability. 

To test the adaptive thresholding approximation, an impulse was used as stimulus for AIM 

running both the original, and the new code. The output from these two runs was subtracted 

and plotted in the form of a NAR Figure 25 shows the resulting difference between the given 

approximation and the original AIM thresholding algorithm. 
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for ( each channel ){ 
/* Decay the threshold */ 
microphonic = 

microphonic * (l-rapid_decay) + (absolute_limit * rapid_decay) 
delta = input - microphonic; 
if (delta > 0) { 

/* Generate Output */ 
output = delta * compensate; 
/* Raise Threshold */ 
microphonic = (microphonic + input)12; 

> 
else 

output 0; 

Figure 24:     Approximated Adaptive Thresholding 

Figure 25:     Difference Between AIM NAP and Approximated NAP 

In generating Figure 25, the output for the case of the approximation method was scaled 

by 0.7 to remove the magnitude difference when approximating absolute-limit as 1024. After 

removing the scaling effect, it is easy to see that the rising edges of the nerve firings differ the 

most. For comparison, the baseline NAP for Figure 25 is the NAP of Figure 3. What is perhaps 

most important to observe from Figure 25 is that the number of nerve firings and their locations in 

time are consistent with those produced by AIM. 
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3.6   Integration Filtering 

The final stage of processing in the production of a neural activity pattern is a low-pass in- 

tegration filter which smoothes the output of the adaptive thresholding to remove the finite discon- 

tinuity that results from the abrupt turn-off. Recall that in the thresholding stage (Section 3.5.1.1), 

an output was generated whenever the input exceeded the current threshold. However, as soon as 

the input dropped below the current firing threshold, the output was immediately forced to zero 

producing an undesirable discontinuity in the output which does not exist physiologically. 

The integration filter is actually a part of the neural encoding stage since it is required to 

properly shape the output to more closely match the output of the hair cells. For clarity, the dis- 

cussion of the integration filtering has been removed from the neural encoding and is presented in 

this section. 

3.6.I Implementation in AIM. To eliminate the rapid fall time of the signal, AIM intro- 

duces a low-pass (integrating) filter.9 One integration filter is common to all channels; there are 

no channel specific constants. However, state information must be maintained on a channel ba- 

sis. Mathematically, the filter is a first-order IIR type filter implemented in AIM by the difference 

equation: 

Y[n] = Y[„-i] + K(X[n_1} - y^u) (19) 

where K is the constant 0.313356, X is the input, and Y is the output. Operationally, the data is 

recursed through Equation 19 twice to produce a second-order filter. The frequency response of 

the second order filter is shown in Figure 26. 

Through algebraic manipulations, the characteristic difference equation for the first-order 

filter can be converted to a more standard form represented by: 

y[B] = #*[„_!]+ CT|n_1] (20) 

In Equation 20, K is 0.313356 as before, and C is (l-K) or 0.686644. The same expression may 

also be converted into its second order form, representing the implementation of the two stages of 

9The C code for the integration filter module can be found in the model directory of the AIM distribution under the 
filename integrate. c. 
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Figure 26:     Frequency Response of AIM's Integration Filter 

filters. However, it is worth pointing out that implementing the combined second-order equation 

directly increases the number of required constants, and results in smaller constants which are more 

susceptible to rounding errors. 

3.6.2 Approximation. Because of the relative simplicity of the integration filter im- 

plemented in AIM, it was not replaced. A size optimization on the filter constants was performed. 

Before the optimization could begin, it was necessary to decide whether to implement the recursive 

first-order filter as in AIM, or to combine the stages to form a second-order filter. The first-order 

filter was selected because of the number and the size of the constants required by the second-order 

filter. 

The word size optimization was performed by manipulating the binary form of the two con- 

stants K and C that were discussed in the previous section. Specifically, these constants (rounded 

to sixteen bits of fraction) are: 

C = O.OIOIOOOOOOIHOOO2      K = 0.10101111110001112 (21) 
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Note that the bit patterns of these two values in the 5th through 8th positions to the right of the 

decimal point warrant rounding the values to 4 bits of fraction. As a matter of fact, 99.72% of C is 

captured in these first four bits of fraction. Similarly, if K is rounded to 0.10112, it is only 0.12% 

above the AIM value. Figure 27, which is a plot of the difference between the frequency response 

of the exact filter and the approximate filter, illustrates that the minor changes in the coefficient 

values have a negligible effect on the performance of the filter. 

-70 
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-80 

10' 10" 
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10" 

Figure 27:     Difference Between Exact and Approximated Integration Filters 

Figure 27 was generated by computing the complex frequency response of the AIM inte- 

gration filter and the bit-truncated integration filter just discussed. The frequency responses (in 

complex form) were then subtracted and the resulting magnitude was plotted in dB form as shown. 

To fully appreciate the insignificance of the difference between the AIM filter and the ap- 

proximated filter, refer to Figures 26 and 27. Note that the peak difference shown in Figure 27 

corresponds to the -3dB point in Figure 26. The maximum difference between the AIM filter and 

the approximate filter is -52dB which corresponds to a 0.251 % difference in magnitude. 

Thus, the resulting filter is shown to be nearly identical in performance to the original AIM 

filter, but with the advantage of requiring a much smaller binary representation. The advantage 

of the smaller representation is manifested when constructing the actual hardware in two primary 
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modes. First, the size of the constants require smaller storage. Second, the actual multiplication is 

one-fourth of that required for a 16-bit multiplication. 

3.7 Integrated AIM Approximation 

The complete approximation model consists of five separate components: middle-ear IIR 

filter, gammatone filter bank, logarithmic compression unit, neural encoding, and a low-pass (in- 

tegration) filter. These five components were all coded using the C programming language as 

modules which functioned as callable replacements for AIM's modules. 

To illustrate the functioning of the completed approximation model, Figures 28, 29, 30, and 

31 are included. Figure 28 shows the default AIM NAP generated for the spoken word "hat". For 

comparison, Figure 29 is the same spoken word as processed by the approximation code. Similarly, 

Figures 30 and 31 illustrate the NAPs generated for a 1 kHz sine wave as generated by AIM and 

the approximated code respectively. 

In comparing Figure 28 to Figure 29 and Figure 30 to Figure 31, some observations can 

be noted. First, the overall structure of the NAP is preserved in the approximation. Secondly, 

however, some differences exist in the finer details. For example, the approximation appears to be 

lacking some pulses in the rage of 0 to 120 ms, particularly in the low frequencies. Conversely, 

in the range of 580 to 600 ms, the approximation appears to have additional details not present in 

the AIM NAP. Additionally, the approximate NAP has been magnitude scaled to account for the 

difference in the absolute threshold. By removing the magnitude difference (a constant multiplier), 

the structural differences between the NAPs is more easily observed. 

3.8 Summary 

In this chapter each stage of AIM's default functional model was examined. For each 

AIM stage the underlying algorithms were presented and approximations were developed which 

simplify the hardware implementation of these algorithms. Additionally, spectral analysis and 

phoneme recognition tests were conducted to verify that the approximations did not adversely af- 

fect the overall functioning of the system. 

57 



31.9 

m 
DC 
W 

a 
3 
cr 
03 

Ü 

5.8 

IHHIM- 

ilnl. 

4-H-l 
11II1111 

U4414 

iNiniitiiiMniuinniimiiii 
_im»»?twiiiMiiiii!iiHWntiflmiiiii«riiii 
mnrjwiwW^T'iinrrrfinnniiiiijMriii'iii'j 
IWtfwiWNmllT^M'tlM'lM'llllUllll 
ffii^rW<mmfclitmviHUvW 
■wmwmfinnnHWiwi'miiimHiii 
nrmw'!n""",Tf»"i(rrfifMtniin 
wrimimimuninnmvvvm 
mi n ^ f 1 T n 11 nm HI 111111111111111 
jnmiiivrm 111111111111111111111 
lüTiiMiin'" MiinriinniniMiii 
i^iir >| M   -• Miuiiniiii 
in 11  ri*    "  "Mi 
riT,ini ' 
mi «in    ir '    "  ' 'Hiiniii 111 
■ *win '"iniHiiimiimir 

'in rmmni'mTHvmi 

•■nirtnriirmumi 
1 'Ti'fii"iTiiriiTii|,rn,"riiriTiWTi 

Time [ms] 600 

Figure 28:     NAP of "HAT" Generated by AIM 
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Figure 29:     NAP of "HAT" Generated by Approximated Code 
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Figure 30:     NAP of "1kHz Sinusoid" Generated by AIM 
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Figure 31:     NAP of "1kHz Sinusoid" Generated by Approximated Code 
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The verification of each approximation included the coding of the approximation into AIM 

compatible modules. In several cases VHDL and Matlab modeling were used to complete the 

verification. VHDL modeling was used to accurately model bit-level implementations of the algo- 

rithms, allowing for accurate assessment of word sizing and truncation errors. Matlab modeling 

assisted in the development of filter equations, and was relied upon for the post-processing of data 

extracted from both the AIM and the VHDL tests for spectral analysis. The result of this portion 

of the research was a set of algorithms and equations which will accurately and efficiently imitate 

the functioning of AIM but will simplify a hardware implementation. 

With the development of the algorithms complete, the next step was to design a hardware 

architecture on which the algorithms could be efficiently executed. Chapter 4 is devoted to a 

discussion on the design of such an architecture. 
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IV. Hardware Implementation 

4.1   Introduction 

Following the development of the approximation algorithms for AIM, the next step was to 

design a system in which the algorithms could be efficiently executed. The goal of the design 

phase of the research was to demonstrate the feasibility of designing a single-chip system capable 

of processing as many as 32 frequency channels in real time. The present chapter documents the 

resultant architectural design. 

The architecture under discussion has been modeled to the gate level using the VHSIC1 

Hardware Description Language (VHDL). The purpose of the VHDL model was two-fold: to 

show that the proposed architecture could be constructed using current VLSI technologies, and to 

demonstrate that the algorithms of the modified AIM were correctly implemented. 

Architecturally it is shown that the proposed system is, in part, a single instruction, multiple 

data (SIMD) architecture. Additionally, the architecture is pipelined to allow for overlapping exe- 

cution where possible. A third characteristic of the design is that it performs multi-rate operation. 

Data enters the system at a rate that is lower than the data is processed internally. 

As in the preceding chapters, this chapter follows the general organizational flow of AIM 

with minor exceptions. Rather than discussing each of the modules of AIM individually, some of 

the modules have been combined. Specifically, the processing of the outer/middle-ear filter (OMF) 

and the all-pole gammatone filterbank (APGF) were combined into the first stage. The second pro- 

cessing stage accomplishes the half-wave rectification and the logarithmic compression. Finally, in 

the third processing stage the neural encoding was combined with the integration filter. As will be 

shown, regrouping some modules simplified the hardware design and allowed for maximum re-use 

of functional units. The three stages are discussed in the following sections. The first stage to be 

considered will be the filtering stage. 

1 Very High-Speed Integrated Circuit 
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4.2   Filtering 

4.2.1 Algorithm. The first stage of the proposed hardware model combines the first two 

stages of AIM, namely the outer/middle-ear filter (OMF) and the gammatone filterbank. The cor- 

responding approximation filters are the IIR filter, and the all-pole gammatone filterbank (APGF). 

There were three reasons for combining these two units: hardware utilization, similarity in pro- 

cessing requirements, and data precision. 

First, as data enters the model, it is processed one time through the OMF. In comparison, 

the filterbank must process each data value four times for each filter in the bank to achieve the 

required filter order. As a result, any functional hardware dedicated solely to the OMF would 

be under-utilized while waiting for the filterbank to complete its processing. Because of the data 

dependency between the OMF and APGF, the execution of these algorithms remains mutually 

exclusive; only one of the two can be in execution at any given time. Therefore re-using functional 

units is logical. 

Secondly, the IIR filter requires six multiplications and five additions while the gammatone 

filter requires three multiplications and two additions. Since the number of multiplication opera- 

tions in each is a multiple of three , the two filters map easily onto the same underlying parallel 

hardware core. Since the multiplications require several clock cycles to complete, the difference 

in the number of additions can easily by hidden by the use of multiplier output latches and a single 

adder operating as an accumulator. 

Finally, by combining the two filter stages into" one functional unit, the internal precision of 

the data is improved. Specifically, the number of fractional bits in the internal processing, as well 

as the storage, can be increased without the additional cost of a wider data path between the stages. 

Thus the input and the output of the combined unit may remain integer, while all filtering can be 

accomplished with the added precision of fixed-point arithmetic. 

The mapping of both filtering algorithms onto the same hardware core was not the only im- 

plementation considered. An option where the filtering of the OMF and the APGF were combined 

into a single equation was also considered. In order to combine the OMF and APGF, each filter 

in the APGF filterbank is scaled according to the magnitude of the OMF response at the center 

frequency of the particular APGF filter. The scaling, accomplished by weighting the input coeffi- 
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cient of the all-pole gammatone filters, results in a complete removal of the OMF without adding 

computation to the APGF. 

While initially attractive, the combined algorithm concept was not implemented because the 

technique would scale the entire frequency response envelope of the gammatone filter by the same 

factor. In particular, a constant scaling factor would artificially raise the response of APGF in the 

low frequencies where the OMF actually imposes a loss. Therefore, simply scaling the envelope of 

the gammatone filter would result in a distorted frequency response of the combined OMF/APGF 

filters, particularly at the low frequencies. 

Having eliminated the proposition of combining the filter equations, an architecture was 

designed which supported the direct computation of both filter equations using shared functional 

and memory units. A block diagram of the filter stage architecture is presented in Figure 32. Recall 

the equations for the IIR filter and the gammatone filter discussed in Chapter 3: 

Y[n]   =   4iX[n-i] + A2X[n_2] + A3X[n_3] + SiY-[n_i] + B2Y[n_2] + B3Y[n_3]     (22) 

Y[n]   =   AX^ + BY^ + CY^q (23) 

The discussion of Figure 32 is broken down into the following three subsections:  multipliers, 

memory, and control components. 

Functionally, when data enters the system it is stored in the X - IN register. The previous 

two inputs are then recalled from RAM1 and RAM2. All three input values then enter the multi- 

pliers where they are multiplied by the first three coefficients of the OMF equation. The results of 

the multiplications are latched and summed via the accumulator structure consisting of MUX1, 

MUX2, ADDER, and OUTPUTDATALATCH. 

While the accumulating is taking place, the previous output of the OMF is recalled from the 

Y(-1) latch while the two outputs prior to the previous are recalled from RAM1 and RAM2. The 

three previous outputs then enter the multipliers where they are multiplied by the corresponding 

coefficients of the OMF equation. When completed, the system waits while these scaled outputs 

are accumulated with the inputs to complete the OMF processing. Finally, the accumulated value 

is written into the Y(-l) latch which becomes the input to the APGF. 
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Figure 32:     Filtering Stage Block Diagram 
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The processing of the APGF is similar to the OMF except that only one pass through the 

multipliers is required. During the multiply phase, the value stored in Y(-l) is used as the X input. 

The two previous outputs of the APGF filter are recalled from memory allowing the complete 

APGF equation to be computed. 

Following is a discussion of the details of selected portions of the design. The hardware 

discussion begins with the multipliers. 

4.2.2 Multipliers. The multiplication operations were the starting point for the design 

due to their high relative cost in area and computational time compared to the other required op- 

erations. By choosing to implement three multipliers in parallel, one-half of the IIR filter mul- 

tiplications, or all of the multiplications required by the all-pole gammatone may be computed 

simultaneously. 

The multipliers chosen for the architecture were recursive octal-encoded Booth multipliers. 

While the fully combinational form of the Booth multiplier can be configured to execute in a single 

machine cycle, the recursive technique was chosen for two primary reasons. First, the recursive 

form of the Booth multiplier is smaller than the combinational form because of the re-use of a 

single adder. To perform the same multiplication using a combinational multiplier would require 

eight 25-bit adders compared to the one 26-bit adder of the sequential multiplier. Analysis proved 

that real time operation for a bank of 32 channels could be achieved using the slower recursive 

method. (See Section 5.3 for a summary of the speed analysis.) 

The internal design of the multipliers was accomplished using a bit-slice technique. Each 

slice contains an adder/subtracter, an input latch for the multiplicand, multiplexers, and a pair of 

data latches for holding the result. Initially, the multiplier is loaded into one-half of the output 

register. As the multiplier is shifted for the octal Booth's algorithm, the result is shifted into the 

same register. Upon completion, the multiplier value is fully shifted out, and the result remains in 

the latch pair. 

The multiplier slice does not contain any decode logic for the Booth algorithm. The decoding 

is done by a small finite state machine attached to the array of slice cells. Operating from a single 

clock, the state machine controls the adders, multiplexers and latches. The multiplier performs one 

Booth's cycle for each clock period it receives. In the design, the multiplier state machine does not 
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keep track of the number of cycles to perform. "Rather, the cycle counting is performed external to 

the multiplier slices so that the same cells can be configured to operate on different word sizes if 

needed. 

The critical component limiting the operational speed of the multiplier is the adder. Here 

ripple-carry adders were chosen for their small size in comparison to other adder designs such as 

the carry select or carry look-ahead adders. The required multiplications of the filter bank are 24 

by 16 bits. Therefore, in order to ensure that the recursive Booth algorithm computes negative 

numbers correctly, the minimum adder size is 26-bits. The additional bits are required to allow the 

Booth algorithm to perform a conditional multiply by two before the add/subtract and to preserve 

the sign in all cases. 

If we allow a conservative 1 ns delay2 per carry stage, the 26-bit ripple carry adder design 

would have a maximum delay of 26 ns, thus limiting the design to speeds under 38.4 MHz. As will 

be shown in Chapter 5, a clocking speed of only 27.5 MHz is required to sustain real-time operation 

in a 32 channel system. Therefore the ripple-carry adders will provide sufficient execution speed. 

Because the multiplier coefficients for both the IIR and the APGF are 16 bit, only 8 clock 

cycles are needed to complete a multiplication using the octal Booth algorithm. However, recall 

from Chapter 4 that the coefficients for the IIR differ in precision from those of the APGF. Specif- 

ically, the IIR has 3 bits of integer and 13 bits of fraction while the APGF has 2 bits of integer 

and 14 bits of fraction. The difference in precision requires that an adjustment be made to re-align 

the data after the multipliers. As indicated by the bit-field labels on dobus of Figure 32, the data 

re-alignment is accomplished in the routing of the data during write-back to storage. 

4.2.3 Memory. Following the design of the multipliers, the next issue to be addressed is 

the memory requirements of the filtering stage. Looking again at Equations 22 and 23, we see that 

storage for six internal states (24-bit words) are required for the IIR filter. Additionally, three 24-bit 

storage cells are required in each stage of recursion for each filter in the filterbank. Therefore, a 

system with 32 filter channels would require 390 memory storage cells of 24 bits. However, by 

2Spice simulations for different adder cells considered for the design were consistently less than 1 ns when using 
0.8 /im technology data. The delays will be even shorter if the design is migrated to a smaller technology. 
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translating the first recursion of the APGF in time we may take advantage of the spatial locality of 

the data and reduce the storage requirement to 262 words of 24-bits. 

The reduction in required memory is accomplished by eliminating the need to store a history 

of inputs for the APGF bank. The need for a history of input values is eliminated by translating the 

first recursion of the APGF one sample forward in time. The forward translation is performed by 

allowing X[n_i] to become X[n] in Equation 23. Therefore, the present output from the IIR filter 

becomes the input to the filterbank during the same sample period that it is computed. 

One side effect of time translation is seen as the first output from the filterbank arrives one 

sample earlier than it would otherwise. The resulting shift in time does not change the shape or 

spectra of the filter's response to an input. The only actual change in the data stream is that the 

output from each channel will have one less leading zero before the filter begins to respond to an 

input. Since all of the channels experience the same time slippage, there is no phase shift between 

channels. 

Continuing with the memory reduction effort, note that in computing the APGF the previous 

output (Y[n_ii) is recalled from memory to be multiplied by the B coefficient. Since the fourth- 

order APGF is computed by four passes through the same filter equation, the previous output of 

each recursion becomes the input to the next. Therefore, Y[n_!] is needed as the input X[n_i] on 

the next pass of the filter. By exploiting the fact that Y[n_i] is currently held in a multiplier, we 

can eliminate the need for separate storage and/or retrieval of the value from memory. To take 

advantage of the location of the data, a data path (mlout in Figure 32) was added to allow the data 

to propagate directly from one multiplier to the other. 

Since the optimized architecture has only two banks of read-write memory (RWM), two 

latches were added to the design to accommodate the six storage locations required by the IIR 

filter. These latches are used to hold the present input to the IIR filter and the newly computed 

IIR filter output. The added latches work to the advantage of the overall system by simplifying the 

fetching of the IIR filter's output for the start of each filter in the APGF bank. 

The memory in the proposed architecture has been designed to simplify its access. Specif- 

ically, the filter states are stored in two banks of read-write memory (RWM) with their addresses 

aligned. Therefore, a single memory address register ("Rowselect" in Figure 32) can be used to 
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access both banks simultaneously. Similarly, the three ROM coefficients for any given filter are 

likewise stored in three banks of address-aligned ROM. The ROM does require an address register 

separate from the RWM because the same coefficients are used for each recursion of any given 

filter. Therefore, the ROM banks only need to have one-fourth of the number of memory locations 

as the RWM banks. 

There is an exception to the RWM alignment. In order to reduce the overall time required 

to execute the filterbank, an overlap of operations was incorporated. After the first recursion of 

a given filter completes its multiplication phase, the multipliers are immediately loaded for the 

second recursion. While the second multiplication is being initiated, the products from the first 

are being summed. Therefore, before the sum of the first products is completed and ready to be 

written back to memory, the RWM address has been advanced. To allow the memory write-back 

to occur to the previous address, the "Rowmux" shown in Figure 32 was added. The "Rowmux" 

multiplexer allows the memory write-back to occur either at the current or previous address. The 

actual destination is selected by the controlling state machine discussed in Section 4.2.4. 

In order to automate the generation of the ROM, AIM was modified so that it would auto- 

matically generate files which contained the data for the ROMs. All of the values are represented 

as integers in these files. That is, all fractions have been left-shifted by the appropriate number of 

bits to align the decimal point after the number. The ROM data file is in a form that allows it to be 

used as input to the VHDL model directly, or to be used to generate a VLSI ROM layout. 

Additionally, a C program was written to generate a ROM layout. (See Appendix D.) The 

ROM generation program requires a file of integers as input and generates a file which is the VLSI 

layout of a programmed ROM. The resulting layout file may be used as a sub-cell in an actual 

system layout. 

In order to access the memory (both RWM and ROM), circuitry must be included which 

enables one row of cells for reading or writing. A chain of data latches was chosen for the row 

selection. Each latch is initialized to '0' upon reset except for the first latch which is initially set 

to '1'. Upon each advance command from the controller, the '1' is transferred to the next cell in 

the chain and the cell giving up the '1' returns to a '0' state. There is one latch for each row in the 

memory array; the row corresponding to the latch which holds the '1' is the selected row. 
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A bucket brigade method was chosen to eliminate address decoders that would be required 

if a binary counter were used. In addition, the bucket brigade method consumes considerably less 

power than a full decoder because of the reduction in the number of bit transitions per clock cycle. 

The bucket brigade addressing technique could fail if an external force (such as a power surge) 

caused more than one latch to be loaded with a '1'. The effects of such a condition would be 

minimal because the system automatically resets these registers upon the receipt of each new data 

value. 

4.2.4 Control. The control of the filter-bank subsystem resides within a finite state ma- 

chine pictured in Figure 33. The finite state machine provides all of the signals to the multiplexers, 

adders, multipliers, and memory in order to implement the algorithms. The design of the finite 

state machine began with the drafting of a conceptual architecture. The modified AIM algorithms 

were then mapped onto the draft architecture and logic was added as necessary until all of the 

algorithms could be implemented. The resulting filter architecture is shown in Figure 32. 

Next, a state table was generated in which all of the needed control signals were clearly 

identified as well as an initial assignment of states. Table 8 identifies the value of each control 

signal of Figure 32 in each machine state. In the first state table, every step of every iteration was 

delineated for clarity. Once completed, the table was examined for redundancies and loops were 

inserted which reduced the number of required states. 

Notationally, the dots in the state table represent "don't-care" values. In the "Next" column, 

signal names that appear with the next state are entry conditions to that state. For example, to exit 

from state 21 the signal named MP8 (which counts the 8 cycles of the multiplier) must be asserted 

and the signal STA (which counts the 4 recursions of the filter) is checked. When STA is asserted, 

the next state will be 22 signifying the completion of the filter channel; otherwise the next state 

will be 17 where another recursion is started. The equations derived for each of the output signals 

are tabulated in Appendix B. 

The signals DRQ (data request) and DAK (data acknowledge) are not included in Table 8. 

DRQ is the asynchronous data request from the sending unit, while DAK is a signal returned to 

the sender to acknowledge receipt of the data. When the sending process has data, it first checks to 
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Figure 33:     Filtering Finite State Machine 
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Table 8:     Filter Section State Table 

State My rst adv avr wl w2 wbk Id mpy Idr SO slO sll s2 S3 84 Ido cpl Next 

0 0 0 0 0 0 0 0 0 0 0 0 1:DRQ 

1 0 1 0 0 0 0 0 0 0 0 0 2 

2 0 0 0 0 0 0 1 0 0 0 u 0 0 3 

3 0 0 0 0 1 1 0 0 1 0 0 0 0 0 4 

4 0 0 0 0 0 0 0 1 0 0 0 5:MP8 

5 0 0 1 1 0 0 0 0 1 0 0 6 

6 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 7 

7 0 0 0 0 0 0 0 1 0 1 0 1 1 0 8 

8 0 0 0 0 0 0 0 1 0 0 0 9:MP8 

9 0 0 0 0 0 0 0 0 1 0 0 10 

10 0 0 0 0 0 0 0 0 0 0 0 1 1 0 11 

11 0 0 0 0 0 0 0 0 0 1 0 1 1 0 12 

12 0 0 0 0 0 0 0 0 0 0 1 1 1 0 13 

13 1 0 1 1 1 1 0 0 0 0 1 0 0 14 

14 0 0 0 0 0 0 1 0 0 0 1 0 0 15 

15 0 0 0 0 0 1 0 1 0 0 0 16 

16 0 0 0 0 0 0 0 1 0 0 0 17:MP8 

17 0 0 1 0 0 0 0 0 1 0 0 18 

18 0 0 0 0 0 0 1 0 0 0 0 0 1 0 19 

19 0 0 0 0 0 1 0 0 0 1 0 1 1 0 20 

20 0 0 0 0 1 0 1 0 1 0 0 0 21 

21 0 0 0 0 0 0 0 1 0 0 0 n-.mvS.ST4 

22 0 0 1 1 0 0 0 0 1 0 0 23 

23 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 24 

24 0 0 0 0 0 1 0 1 0 1 0 1 1 0 25 

25 0 0 0 0 1 0 1 0 1 0 1 0 1 n.W 

see that DAK is low. If DAK is low, the sender places data on the input of the filterbank and sets 

DRQ. 

Upon receiving the asserted DRQ, the filterbank leaves its idle state (state zero) and asserts 

DAK. DAK will remain asserted until all filters in the bank have completed the processing of the 

newly arrived data. When the processing is complete (signaled internally by advancing the RWM 

address beyond the last actual memory address), DAK is un-asserted and the filterbank returns to 

idle, pending the arrival of the next data sample. 

Four processing loops are evident in Table 8. All of these depend upon the signal MPY8. 

The signal MPY8 is generated by a counter which keeps track of how many clock cycles are 

issued to the multiplier. Although the multiplier, as previously discussed, is physically 26 x 26 

bits, the ROM constants are only 16 bits. Therefore, only 8 clock cycles are needed for each of the 

multiplications. As indicated in Table 8, the state machine will remain in states 4, 8, 16, and 21 

pending the completion of an 8-cycle multiplication. 

The first two multiplication states (states 4 and 8) compute the outer/middle IIR filter. The 

third multiplication state (state 16), computes the first recursion of the APGF, while state 21 com- 

putes the second through fourth recursions of the APGF. A unique multiply state was necessary for 
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the first recursion of the APGF since its input is the output from the IIR filter. The input to each of 

the remaining gammatone recursions is the output from the previous recursion. 

State 21 has a second loop built into it which checks the value of a second counter, STA. 

STA keeps track of the number of APGF recursions that have been computed. After the first three 

recursions, control returns to state 17 where another recursion of the same filter is computed. Upon 

completion of the fourth recursion, the multipliers are initialized for a new filter and a jump made 

to state 16 to begin the execution of the new filter. 

Finally, when all of the filters have processed the new data point, the signal RX is asserted 

indicating that the RWM address has advanced beyond the physical memory. The assertion of 

RX is detected by the state machine which then returns to state zero. Careful observation of the 

state table reveals that the multipliers were loaded and multiply operations initiated prior to the 

completion check. The load-before-branch allowed for the elimination of at least one state from 

inside the filter loop. Since the memory address pointer has been advanced beyond the bounds of 

memory, no valid data is loaded into the multipliers. Therefore upon returning to state zero the 

data is simply discarded with no impact on system performance. 

The state machine diagram is shown in Figure 33. Inside the state machine is a five-bit latch 

which serves as the state counter. The state counter latch is conditionally loaded with either the 

next sequential state or a jump state. The next sequential state is computed by incrementing the 

present state. The jump address is calculated based on the present state and the RX signal. To aid 

in understanding the jump calculation, Table 9 lists the three cases where jumps occur. 

Table 9:     Filter State Jump Addresses 

Present 
State Representation 

Next 
State Representation Condition 

21 10101 17 10001 MP8 ■ STA 

25 11001 16 10000 RX 

25 11001 0 00000 RX 

It can be observed from Table 9 that the center three bits are always '0' after a jump. Likewise 

note that the least significant jump bit can be determined by simply using the center bit before the 
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jump. Finally, because RX remains '0' until all filters have finished processing the current input 

value, its inverse (RX) may be used as the most significant bit of the jump address. 

In order to fully reset the filterbank, all RWM cells must be cleared. To accomplish the reset 

function, a reset state counter has been incorporated into the design of the finite state machine. 

Upon receiving an asserted reset signal, the reset counter asserts an internal reset to the rowselect 

circuits which will last for two clock periods. If the externally applied reset signal is held asserted, 

and the clock is cycled, the internal reset signal will be removed and the rowselect circuitry will 

begin to cycle through the RWM rows at a rate of one per clock cycle. At the same time, the write 

amplifiers of the RWM will drive '0's into the selected RWM cell. To accomplish a full system 

reset, the externally applied reset signal must remain asserted while the clock is cycled at least one 

time for each row in the memory array. 

The final design issue of the filterbank design is its output handshaking signals. Like the 

input to the filterbank, the output is also asynchronous. Of the three functional divisions of the 

overall architecture, the filterbank stage requires the most time to execute. Consequently, the stages 

that follow will enter a low-power idle state while waiting for data by inhibiting the clocking of all 

internal signals. 

When the filterbank completes any given filter's computation, it latches the data into its 

output register denoted as "compress latch" in Figure 32. After the data has been latched, the 

filterbank's controlling state machine asserts DXRQ (data transmit request) to request to send 

data to the compression stage which follows. Upon receiving the asserted DXRQ signal, the 

compression unit responds by asserting DXAK (data transmit acknowledge) which causes the 

release of DXRQ. A discussion of the compression unit follows in Section 4.3. 

Figure 34 illustrates the output of the VHDL implementation of the filterbank for 12 channels 

with center frequencies ranging from 200 Hz to 7 kHz. The envelope of both the middle-ear IIR 

filter (as seen in the peaks of the responses) as well as each of the APGF filters are clearly evident in 

Figure 34. The companion plot generated by AIM using the default options is shown in Figure 35. 

The difference in magnitude in the filters near 2000 and 3000 Hz is attributed to the removal of the 

middle-ear resonance from the approximation model. 
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Figure 34:     Frequency Response of 12 Channel VHDL Filterbank 

4.3   Amplitude Compression 

Following the filtering of the data in the interbank, the data is passed on to the amplitude 

compression stage which accomplishes two tasks: a half-wave rectification, and conversion of all 

input values to millibels. Unlike the filterbank, the compression stage logic is fully combinational 

and does not require state machine control. By definition, the millibels of any value X is: 

XmilUbels = 2000 X log10(X) (24) 

As discussed in the previous chapter, the log10(X) can be re-written as (rounding log10(2): 

logioW = 0.30103 x log2(X) (25) 

and an approximation for log2(X) has already been established. Therefore, combining these two 

expressions, the circuit must be able to compute: 

XmilUbels = 602.06 x log2(X). (26) 
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Figure 35:     Frequency Response of 12 Channel AIM Filterbank 

The approach implemented was to first compute the logarithm in base two using the approx- 

imated technique discussed in Chapter 3 using a bit shifter. The approximate logarithm is then 

adjusted for error reduction through an arrangement of adders. Finally, the result of the logarith- 

mic approximation is multiplied by 602 through three additions. The following three subsections 

provide the details of implementation for each of these operations. 

4.3.1 Bit Shifter. The first stage of the compression unit is the bit shifter which very 

quickly computes Mitchell's approximation of the log2 using decoders, a barrel shifter, and a small 

amount of ROM. The decoders determine the location of the most significant '1' bit and passes this 

information on to the characteristic ROM and the barrel shifter. The barrel shifter and the ROM 

work in parallel to produce Mitchell's approximation to the log2(X). The discussion of these three 

components of the first stage in the conversion to millibels follows. 

4.3.1.1 Decoders. Central to the log2 approximation is the determination of the bit 

position of most significant logical' 1'. Traditional methods for the location of the most significant 

'1' involved shifting and counting[28, 29]. Here, special purpose decoder cells were designed 
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to determine the position combinationally. The decoders are similar in function to the generate- 

propagate circuitry of look-ahead adders which speed-up the carry path. In this design, however, 

the circuit is used to determine the location of the most significant non-zero value. 

Figure 36 shows the basic logic of the new decoder cell. The GENERATEn signal is prop- 

agated downward from the most significant to the least significant bit position. The GENERATE 

input of the most significant bit is fixed at a logical '1'. At any general stage, a GENERATEn 

input of'l' indicates that there is not a cell of higher significance with a logical '1' on its data 

input. The presence of a '1' on GENERATEn enables the present cell to check its data input 

(Dn). 

GENERATE n > GENERATE n.i 

SHIFTn 

Figure 36:     Bit Position Decode Logic 

If Dn is a' 1', and GENERATEn is a ' 1', then the SHIFTn output becomes a' 1' and the 

GENERATEn-i output is driven low. The SHIFTn output indicates that the generating cell is 

the most significant bit that contains a '1' input. The driving of GENERATEn-i to '0' inhibits 

all lower cells from asserting their SHIFT output. 

The signal EVAL is incorporated to ensure that there are no simultaneous firings of the 

SHIFT signals. To understand the need for the EVAL signal, consider a case where the input 

contained all 'O's. In this case, a GENERATE signal of' 1' will propagate through all of the cells 

and none of the cells will fire. If the next value sent to the decoder contains multiple 'l's, every 

cell which received a Dn of '1' will momentarily assert its SHIFT output. Shortly thereafter, the 

higher cells will inhibit all lower cells and only the most significant SHIFT signal will remain 

asserted. 
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The initial instability of the SHIFT signals in the case just discussed is unacceptable due 

to the domino effect it has on the circuits which follow. The addition of the EVAL adds needed 

stability to the generation of the SHIFT signals. While EVAL is high, no SHIFT outputs 

are produced but the cells are able to decode the input. When enough time has elapsed to ensure 

the stability of the decoders, EVAL is dropped to zero and the appropriate SHIFT signal is 

generated. 

A second look at the cell in Figure 36 reveals two gate delays in the GENERATE signal 

path. One gate delay can be removed by removing the inverter from the cell and creating a com- 

plementary cell as diagramed in Figure 37. The inverter that was removed from the first cell is 

incorporated into the second cell but is no longer in the GENERATE path. To correctly handle 

the now inverted GENERATE, the NAND gate is replaced with a NOR gate in the modified 

cell. The multi-bit decoder is implemented by alternating the two cells beginning with the cell of 

Figure 36 in the most significant bit position. 

GENERATE n.j 

SHIFTn 

Figure 37:     Complementary Bit Position Decode Logic 

There are two special cases to address in the calculation of the logarithm. The first case is 

that of a zero input value. In this case none of the decoder cells will fire leaving a logical Ton 

the GENERATEo signal. When GENERATEQ is asserted an error signal is produced which 

in turn forces all output bits to '0'. 

The second special case occurs when a negative input value arrives. As in the case of a zero, 

the logarithm of negative numbers is not defined. Since the input is a two's complement binary 
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number, the identification of negative numbers is accomplished by checking the most significant 

bit on the input. If the most significant bit is set, all bits fed into the decoder are forced to zero. The 

all-zero input prevents any of the SHIFT signals from firing. One of the two subsystems which 

use the SHIFT signals is the barrel shifter, which is discussed next. The second consumer of the 

decoder output is the ROM, which is discussed in Section 4.3.1.3 

4.3.1.2 Barrel Shifter. The products of the decode stage are the SHIFT signals. 

If the input number has a logarithmic representation, only one of these SHIFT signals will be 

active. The active signal will cause the input value to be rotated to the left until the most significant 

T is positioned in the left-most bit position. A barrel shifter is used to perform the bit rotation. 

As seen in Figure 38, the barrel shifter is comprised of only N-channel transistors arranged 

in a two-dimensional array. For the purpose of illustration, an array of only 3 bits is shown. The 

input data enters the array on vertical data lines and is passed to the horizontal output data lines by 

the N-channel transistors. The SHIFT signals from the decoder determine the routing through 

the N-channel transistors. In all cases, the data passes through only one transistor in order to be to 

be transferred from an input to an output line. Since all of the transistors in the array are purely 

passive, the only power consumed by the shift operation is due to the capacitive load the array 

places on its input. 

Figure 38:     Barrel Shifter Array 
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After the data passes through the barrel shifter, it is aligned so that the position of the most 

significant' 1' is always on the same output line. The realignment is necessary so that the remaining 

bits may be appended to the integer portion of the logarithm (the characteristic) which is read from 

a small ROM bank. The next section provides a discussion of the generation of the characteristic 

using a ROM bank. 

4.3.1.3 Characteristic ROM. In Mitchell's approximation the characteristic of 

the logarithm is determined by counting bits to find the most significant '1'. In contrast, using 

the decoders discussed Section 4.3.1.1, a unique SHIFT signal is generated for each possible 

location of the most significant '1'. The SHIFT signals could be processed through an encoder 

to determine the characteristic, but a circuit that consumes much less power and space is a read- 

only memory (ROM). Since only one of the decoder cells will generate a SHIFT output at any 

time, the active SHIFT output may be used to access rows within a ROM that is loaded with 

the logarithm characteristics. Optionally, the characteristic could be generated from combinational 

logic based on the SHIFT signals. A ROM was chosen in this case to eliminate the need for 

P-channel transistors, thus allowing for a physically smaller structure. 

The amount of ROM required for the logarithmic approximation is minimal. For two's 

complement input data of width N bits, the required ROM bank is log2(iV) x N bits. There 

must be one row of ROM for each input bit, and each row must contain log2{N) bits to store the 

characteristic for that bit position. 

The last row in the ROM (corresponding to bit TV —1) is actually associated with the sign bit. 

By loading the last row in the ROM with 'O's and forcing the input bits to '0' when a negative num- 

ber is being processed (as previously discussed), the logarithm generated for any negative number 

will be zero. Through defining the mathematically undefined logarithm of negative numbers as 

zero, the circuit performs the half-wave rectification required by the neural encoding algorithm. A 

logarithm error signal is generated by the hardware for zero and negative inputs, but is ignored in 

this application to allow the half-wave rectification to proceed. 

After the input value has been shifted, and a characteristic is chosen from the ROM, the 

two are combined to form Mitchell's approximation. The result is 4 bits of unsigned integer, and 
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12 bits of fixed-point binary fraction which is sent to the adjustment circuit where the second 

approximation to the logarithm is applied. 

4.3.2 Logarithm Adjuster. Following the half-wave rectification and the implementation 

of Mitchell's approximate logarithm, the data is adjusted to improve the accuracy of the logarithmic 

approximation. The adjustment to Mitchell's approximation is accomplished by adding a shifted 

copy of a portion of the fraction to the original approximation. The optimal number of bits to shift 

is four, and the optimal distance to shift them before the addition is 2 bit positions to the right. (See 

Section 3.4.2 for derivation.) If the most significant bit of the fraction is '0', the shifted bits are 

added as they are. However, if the most significant bit of the fraction is a '1', the shifted bits are 

inverted prior to the addition. 

In the VLSI implementation, the shift is performed through wire routing. The conditional 

inversion is carried out by three XOR gates that combine the most significant fraction bit with 

the next three bits respectively. If the most significant bit is set, the others become inverted. It is 

unnecessary to conditionally invert the most significant bit, because the XOR of any bit with itself 

is always '0'. 

After the conditional inversion of the bits, they are added back to the original approximation. 

The addition requires three full adders (FA), and three half adders (HA) as shown in Figure 39. 

The right-most half adder accounts for the most significant adjusted bit, which is always zero. The 

second and third half adders, feeding Q10 and Qll, account for the two most significant bits in the 

original fraction which only need to be adjusted by the carry from the lower bits. The carry must 

not propagate beyond the most significant bit of the fraction. If permitted, the characteristic would 

be altered, introducing large errors. 

4.3.3 Conversion to Millibels. The output from the adders is the approximate base-two 

logarithm of the input value. Additionally, the data stream is half-wave rectified through the way 

in which the circuits deal with negative values as previously discussed. The next step is to convert 

the base-two logarithm into millibels. 

As indicated in Equation 26, the conversion to millibels requires multiplying the base-two 

logarithm by 602.06, which is rounded to 602 so that it may be handled as an integer. In binary 
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Figure 39:     Logarithm Adjusting Circuit 

form, 602 is represented by the bit sequence 10010110102. Two approaches to implementing the 

multiplication were considered. The first approach utilizes a multiplier and a small state machine 

to control its operation. An implementation using only combinational logic (adders) was also 

investigated. After comparing the size, speed, and power requirements, it was obvious that the 

adder-only solution was the more favorable option. 

The adder-only solution for the conversion to millibels has an advantage over a multiplier 

because there is a repeated pattern in the binary representation of 602 which can be used to simplify 

the computation. Note the pattern 1012 which appears twice in the binary representation of 602. 

Since any multiplication can be accomplished by adding and shifting, we can accomplish the partial 

product for the pattern 1012, then shift the sum to form the second partial product without an 

additional adder. 

To illustrate, let the base-two logarithm of an arbitrary number be represented by the se- 

quence ccccffffffffffff where the c's represent the characteristic integer, and the f's rep- 

resent the fractional part of the approximate log. Expanding the multiplication of the arbitrary 

value by 602 we get (neglecting the '0' bits in 602): 

ccccffffffffffff 
X 0000001001011010 

ccccffffffffffffO 

ccccffffffffffffOOO (27) 

ccccffffffffffffOOOO 

ccccffffffffffff000000 

+ ccccffffffffffffOOOOOOOOO 

iiiiiiiiiiiiiiffffffffffff 
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In Equation 27 note that the first two partial products are the same as the second pair, with 

the exception that the second pair is shifted to the left by three bits. Therefore, the sum of the 

first two terms can be added to a shifted version of itself, achieving in two addition operations the 

equivalent of three. The second sum is then added to the final term to yield the final answer. The 

adder arrangement for these operations is illustrated in Figure 40. 

Din(15-2) 

_J_ 
Din(15-0) 

A 

Sum 

B 
carry_in 

(16-1) (16-4) 

A 

Sum 

B 
carryjn 

(16-2) 

A 

Sum 

B 
carry_in 

-'0' 
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-'0' 

T Result (16-3) 

Figure 40:     Optimized Adder Tree for Millibel Multiplication 

A second optimization can be made to reduce the size of the adders required. The final result 

that will be passed to the next stage of the architecture will be an integer value, represented by the 

i's in Equation 27. Therefore we only need to maintain enough fractional bits to provide adequate 

rounding precision for the addition operations being performed. 

Note that the three least significant bits of the first two terms may be omitted from the 

addition because these bits in the second term '0's, and will therefore not cause a carry to the 

fourth bit. For the same reason, when adding the sum to a shifted form of itself, the three least 

significant bits may again be dropped. Finally, in the last addition there are three zero terms which 

likewise can be used to reduce the bits in that addition. 

The first addition requires a sixteen bit adder in order to preserve the numeric integrity. 

Following the first adder, each successive stage requires one additional bit since the carry output of 

each preceding stage becomes an input bit of the next stage. However, because the end result is to 

be an integer, we can make the system symmetric using only 16-bit adders by truncating the least 
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significant fraction bit from each sum after the first adder. In Figure 40 the numbers in parentheses 

represent the bit positions being propagated. 

The output of the final adder in Figure 40 is fourteen bits. Because of the multiplication 

being performed, the upper two bits will always be '0', and are not computed. To re-establish 

the result as a sixteen-bit value consistent with the rest of the hardware, two '0' bits need to be 

concatenated onto the most significant end of the final sum. 

The last phase of the compression stage is the generation of the asynchronous hand-shaking 

signals for the adaptive thresholding stage which follows. Data arrives to the compression stage at 

a rate of one value every 48 clock cycles when the filterbank is processing. 

Since the compression stage is fully combinational, its computation could be completed in a 

single machine cycle. However, if implemented in this manner the overall system clock would need 

to be slowed to allow for the completion of the compression computation. Therefore, a counter 

arrangement was designed that guarantees enough time between the arrival of the data from the 

filterbank and the generation of the send request for the adaptive thresholding stage. Figure 41 

illustrates the design. 
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Figure 41:     Handshaking for Compression Stage 

In Figure 41, Clock represents the shared system clock. DXRQ and DXAK are the re- 

quired handshaking signals for the filterbank interface, while DMRQ and DMAK are the hand- 

shaking signals to and from the adaptive thresholding stage. Essentially, the circuit of Figure 41 

divides the master clock by four. When data arrives from the filterbank, the next falling edge of 

the divided clock asserts the acknowledge (DXAK) signal for the filterbank. DXAK remains 

asserted for four master clock cycles, then resets. 
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The falling edge transition of DXAK loads the final latch which sends DMRQ to the 

adaptive thresholding stage. The thresholding stage responds by asserting DMAK, placing the 

compression stage back into its idle state. Finally, to ensure data isolation between input and 

output, a 16-bit data latch is included at the output. The output latch is clocked by the falling edge 

of DXAK, and is loaded at the same time that DMRQ is generated. 

An alternative solution to the clocking problem just discussed would be to absorb the com- 

pression stage into the filterbank. This is possible because the time required by the compression 

is small compared to the filtering. The time to compress the data stream from one filter could be 

overlapped with the beginning of the processing of the following filter. Therefore, no additional 

states would be required to complete any filter. The one drawback to this approach is that in order 

to compress the data from the last filter in the filter bank, additional states would need to be added 

into the overall state machine, thus increasing its complexity slightly. 

The three sections of the compression stage, working under the control of asynchronous 

handshaking signals for data input and output, convert the output of the filterbank into a compressed 

form. Specifically, on exiting the compression stage the data has been half-wave rectified and 

logarithmically compressed into millibels. The compression is actually the first phase of the neural 

encoding process which accounts for the mechanics of the inner hair cell stimulation. The actions 

of the inner hair cell, how they convert the stimulation into electrical nerve events, is discussed in 

Section 4.4. 

4.4   Neural Encoding 

The filterbank models the conversion of the sound energy from the acoustical realm into the 

motion of the basilar membrane. The compression stage which follows further models the stimu- 

lating of the inner hair (nerve) cells. The final stage of the auditory system models the behavior of 

the inner hair cells which convert the mechanical energy into electrical pulses, a process known as 

neural encoding. 

The third stage of the hardware design combines the adaptive thresholding algorithm and 

an integration filter to form the neural encoding processor (NEP). The combination of functions 

allows for maximum utilization of the computational units.  The combination of algorithms is 
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possible because the two operations can be performed in less time than is required for each stage 

of the filterbank. 

The approach used to design the NEP was similar to the approach used in designing the 

filterbank. The algorithms outlined in Chapter 3 were sequentially analyzed, then the required 

components were selected. The components were interconnected using multiplexers and latches 

as necessary. Finally, a state table was derived indicating how each of the multiplexers, latches, 

and functional units were to be controlled. The state table was processed by Espresso3 to generate 

optimized state equations. Verification of the design was performed using a structural VHDL 

description. 

All of the individual components of the NEP were laid out in a custom VLSI implementa- 

tion. Figure 42 presents the final design of the NEP showing how the adaptive thresholding and 

integration filtering are combined in the proposed implementation. As discussed in Section 3.5, 

the adaptive thresholding process models the way in which the inner hair cells require a recovery 

period after firing. Since the model used for generating nerve firing events has an undesirable 

rapid return-to-zero, the integration filter is included to shape the output pulses. While both the 

adaptive thresholding and integration filtering are functions of the NEP, the discussion which fol- 

lows separates the two for clarity. The first to be discussed is the implementation of the adaptive 

thresholding. 

4.4.1 Adaptive Thresholding. The approximate adaptive thresholding algorithm, devel- 

oped in Section 3.5, is detailed by the code shown in Figure 24. Recall the purpose of the adaptive 

thresholding is to only allow input events which exceed the current firing threshold to cause an 

output event. Thresholding, therefore, models the recovery period which the inner hair cells enter 

after firing. 

To begin the discussion of the hardware implementation of the approximated adaptive thresh- 

olding algorithm, consider the the current threshold variable. One read-write memory storage is 

required for each channel of the filterbank in order to hold that channel's current threshold. When 

new data arrives, the current threshold is unconditionally decayed. 

3Espresso is one of the tools in the Berkeley VLSI tools distribution. It accepts a state table as input and generates 
optimized and reduced state equations and PLA programming tables as output. 
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Figure 42:     Block Diagram of Neural Encoding Processor (NEP) 
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In the approximate algorithm the threshold (microphonic in Figure 24) is adjusted by the 

expression: 

microphonic = microphonic x (1 - rapid-decay) + (absolute-limit x rapid-decay). (28) 

As previously discussed, two simplifying approximations were applied to equation 28. First, 

absolute limit is approximated by the constant 1024. Second, rapid-decay requires 12 bits of 

storage and is always a positive fraction less than one. Therefore, the quantity (1 - rapid-decay) 

is simply the two's complement of rapid-decay. 

Considering these facts, a simplification to the hardware may be made by storing the two's 

complement of rapid-decay. The first way to simplify the hardware is to reduce the ROM for the 

storage of rapid-decay to 11 bits since in the two's complement representation the leading bits 

will always be ' 1', indicating it is a negative value. 

Secondly, the multiplication by absoluteJimit is the same as a shift to the left of 10 bit 

positions of the two's complement of the stored value for rapid-decay. However, after multiplying 

by absoluteJimit, the only significant bits are those which are to the left of the fixed decimal 

point. Therefore, the two's complement can be approximated by inverting rapid-decay. The 

inversion is shown between the rapid-decay ROM and MUX8 in Figure 42. 

In the design, there is one memory address counter which is shared by three banks of RWM 

and two banks of ROM. All data required for the processing of one channel is stored at the same 

memory address in each of these banks. Therefore, the threshold decay can be computed by fetch- 

ing, then multiplying the current threshold (fetched from RWM bank 2) by the two's complement 

of rapid-decay (fetched from the second ROM bank). The multiplication is performed using an 

array of 18 of the multiplier slice cells used in the filtering stage. 

The result of the multiplication is then added to the complement of the stored rapid-decay 

that has been shifted by 10 bits in order to approximate the multiplication by absoluteJimit. The 

resulting sum is the new decayed value for the threshold. Since the computed value is needed again 

and may be changed in the algorithm, it is placed into a temporary latch (MIC in Figure 42) instead 

of being written back to RWM. Notice that all logic cells pictured below the multiplier in Figure 42 

include one additional fraction bit for the purpose of rounding. 
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After the threshold is processed for decay, it is compared to the new input value to see if the 

input is strong enough to cause an output event. The comparison is accomplished by cycling the 

decayed threshold from MIC into the arithmetic logic unit (ALU) where it is subtracted from the 

input value. The difference is held in the register labeled TMP for later use. If the result of the 

subtraction is negative, no output event occurs because the input did not exceed the threshold. The 

negative result is detected by observing the most significant bit of the result. When the result is 

negative, the the decayed threshold is written back to RWM, and a zero is passed to the integration 

filter step. 

Conversely, when the input exceeds the threshold, the result of the subtraction just men- 

tioned is positive and an output event occurs. Upon detecting a positive subtraction result, then the 

approximate algorithm first averages the current threshold and the input. The average becomes the 

new threshold which is written back to RWM. Secondly, the difference held in the TMP latch is 

multiplied by the compensation factor for the channel. The compensation constants are stored as 

8-bit values which represent 6-bits of unsigned integer and 2-bits of fraction. The product of the 

compensation is then stored in TMP and only the integer portion is passed to the integration filter. 

The additional fraction bits are only used by the ALU for rounding. 

4.4.2 Integration Filter. An integration filter completes the design of the neural encoding 

processor. The integration filter is a second-order IIR filter implemented as a recursive first-order 

IIR filter. Each channel is filtered by an identical filter, thus only one set of ROM constants are 

needed. However, state information from the previous two outputs must be maintained for each 

filter channel. The storage of state information is indicated in Figure 42 by the RWM banks labeled 

RAMO and RAM1. The addresses of these memory locations are aligned with those of the cor- 

responding thresholding values so that an address change is not required to filter the thresholding 

outputs. 

The two constants for the integration filter, common to all filter channels, were hard-coded 

on the inputs to a 4-to-l multiplexer. These values are labeled L and K in Figure 42. As derived 

in Chapter 3, both L and K can be approximated by 4-bit fractions. While 4-bit integers can be 

multiplied using Booth's algorithm in two cycles, fractions such as these require three cycles so 

that the a leading ' 1' in the fraction is not incorrectly interpreted as a negative sign bit. 



The IIR filter operates by multiplying the previous output (fetched from RAMO) by the 

constant L. The result is then temporarily stored in the MIC register while the input to the filter is 

multiplied by the constant K. The input to the filter is the value left in TMP by the thresholding 

algorithm. When the second multiply is completed, the result is added to the first product and the 

sum is stored in TMP and written back to RAMO. The algorithm then repeats using RAM1 rather 

than RAMO. The TMP register holds the final output after the completion of the second cycle of 

the algorithm. 

In order to sequence both the adaptive thresholding and integration filter algorithms through 

the NEP, a control circuit is required. The discussion of the circuit which controls these two 

algorithms follows in the next subsection. 

4.4.3 Control. As with the filterbank, the control for the NEP is accomplished by a finite 

state machine. Twenty-one states were necessary to complete the processing required by the NEP. 

The state machine, using five state bits, incorporates one conditional jump, four multiply loops, 

and one control loop. The state assignments are sequential with the exception of the last state (22) 

which has been chosen to reduce the jump logic. 

Figure 43 is a block diagram of the finite state machine for the NEP. The states which are 

sequenced by the machine of Figure 43 are tabulated in Table 10. State 0 is the idle state and is 
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Figure 43:     State Machine for the Neural Encoding Processor 
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maintained until the signal DRQ is asserted by the compression stage. When DRQ is asserted, the 

NEP begins by computing the threshold decay in states 1 through 5. The input is subtracted from 

the current threshold in state 6 and the sign of the result is checked. If the result is negative, a jump 

to state 22 is taken which clears the output register and writes the decayed threshold back to RWM. 

State 22 then jumps to state 13 where the integration filtering begins. The equations which define 

the output bits of the state table are listed in Appendix C. 

Table 10:     Neural Encoding Processor State Table 

State lin Imp S50 sei s6 s7 s8 s9 slO mp2 Ipf adj lr as Imic pas Itmp wlp wmc zro dorq Next 

0 0 0 0 0 0 0 0 0 0 0 1 

1 1 0 0 0 0 0 0 0 0 0 2 

2 0 1 0 0 0 0 0 0 0 0 0 0 3 

3 0 0 1 0 0 0 0 0 0 0 4:mp6 

4 0 0 0 0 1 0 0 0 0 0 0 5 

5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 6 

6 0 0 1 0 0 1 0 0 1 0 0 0 0 jffii 
7 0 1 0 0 0 0 0 0 0 0 0 0 8 

8 0 0 1 0 0 0 0 0 0 0 9:mp4 

9 0 0 0 1 0 0 0 0 0 0 10 

10 0 0 0 0 u 0 0 1 1 0 0 0 0 11 

11 0 0 0 0 0 1 0 0 0 0 0 0 12 

12 0 1 0 0 0 0 0 0 0 0 1 0 0 13 

13 0 0 1 0 0 0 0 0 0 0 14:mp2 

14 0 0 0 0 1 0 0 0 0 0 0 15 

15 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 16 

16 0 0 1 0 0 0 0 0 0 0 17 

17 0 0 0 0 1 0 0 0 0 0 0 18 

18 0 0 0 0 0 0 0 0 1 0 0 0 0 19 

19 0 1 1 0 1 1 0 0 0 0 1 0 0 0 13:pl 
2fl:pi 

20 0 0 0 0 0 0 0 0 1 0 

21 
22 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 13 

If the result of the subtraction in state 6 is positive, then the difference is multiplied by the 

compensation factor in states 7 through 9. Note that because the fraction of the compensation 

factor is not aligned with that of the other constants, an adjustment (shift) is required on the output 

of the multiplier to re-align the bits. The result is passed through the ALU and stored in TMP as 

the next input to the integration filter (state 10). 

The processing continues by raising the current threshold in states 11 and 12. Finally, states 

13 through 20 compute one pass of the recursive integration filter. The state machine output PI is 

set after the first pass through the integration filter when a jump back to state 13 is made. On the 

second pass, the asserted PI indicates that the filter is in its second pass and thus, upon reaching 

state 20, the output request DORQ is asserted and the machine returns to the idle state. 

All of the program jumps are accomplished using a jump loader. In order to determine the 

most efficient state numbering, a study of the current state and jump states was performed. As a 
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start, since the binary representations of 6 and 22 differ by only one bit, the jump logic is simplified 

by choosing 22 as the destination of the jump in state 6. Table 11 tabulates the current and next 

states for all of the jumps required in the NEP. 

Table 11:     Neural Encoding Processor Jump States 

Current State Next State Jump Vector 

6  00110 22 10110 sbA sbA 1 sbA sbA 

19  10011 13 01101 sbA sbA 1 sbA sbA 

22  10110 13 01101 sbA sbA 1 sbA sbA 

In each case shown in Table 11, the target of the jump can be computed as a function of only 

the most significant state bit, sbA. The jump vector is hard-wired into the multiplexer of the state 

counter pictured in Figure 44. The state counter consists of a 5-bit data latch which is conditionally 

loaded with one of the following: the next sequential value, the jump-load vector (LV), or left at 

its current value. The signal STEP determines whether or not the latch is reloaded, and the signal 

LD determines whether either the next sequential state or the jump vector is loaded. 
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Half 
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Figure 44:     Neural Encoding Processor State Counter 

The logic to generate the LD and STEP signals, as well as all of the control signals in the 

state machine pictured in Figure 42 are generated by a programmable logic array (PLA). Optimized 

equations for the PLA were generated by processing the state information of Table 10 through 

Espresso. In the VHDL model, these equations were implemented in behavioral form assuming a 

NAND-NAND PLA structure. 

4.5   Summary 

Chapter IV provided an overview of the hardware implementation. The issues addressed 

were those of particular interest due to their unique nature or implementation. Because of the size 
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of the overall architecture, and because the implementation is fully detailed in the VHDL struc- 

tural description, the discussion was intentionally incomplete. Appendix E provides the top-level 

structural description of the proposed architecture corresponding to the system block diagrams 

given. 

As documented, the modifications to the algorithms developed in Chapter 3 have been 

mapped to a VLSI implementation. Additionally, using current technology, the proposed design 

will fit onto a single VLSI chip simplifying its integration into a variety of systems. For example, 

as discussed in Chapter 5, if implemented in 0.8 /xm CMOS VLSI, the entire circuit would fit onto 

a 3 mm-square chip. 

The proposed architecture can be characterized as a multi-rate design. The data enters the 

processor at a sample rate determined by the system to which it is attached. Internally, the data is 

then processed at a much higher clock frequency where it is split into multiple frequency channels. 

As a result, the output is time-division multiplexed and exits the system at a rate higher than 

the input data rate. The output data is time-division multiplexed on a processing channel basis. 

Therefore, the time between any two consecutive samples belonging to the same channel will be 

equal to the period of the input data. 

The designed system is also asynchronous in its interface to other devices. All data enter- 

ing or leaving the architecture is controlled by hand-shaking signals versus a clock. Internally, 

however, all processing is sequenced by a clock operating much faster than the data rate. 
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V. Testing and Evaluation 

5.1 Introduction 

Having completed the design of a processor to execute the approximate AIM algorithms, 

the concluding task was to validate the proposed architecture. This chapter presents the results of 

the testing and evaluation accomplished during the validation phase. The analysis of the proposed 

system is divided into four sections: a functional comparison of the proposed architecture to AIM, 

and estimations of the architecture's speed, size, and the electrical power required for operation. 

5.2 Functional Comparison 

Perhaps the most important measure of the proposed architecture (and its underlying algo- 

rithms), was a comparison of its performance to that of AIM in phoneme recognition experiments. 

The VHDL simulation of the hardware architecture required nearly two hours to generate an im- 

pulse response of only tens of milliseconds in length. Since 700 NAPs were required for the 

phoneme recognition experiments, and the length of each was one to several seconds, the use 

of the VHDL to generate the NAPs was not practical as it would require over 200,000 hours of 

simulation time. Therefore, modified AIM code was used to conduct the phoneme recognition 

experiments. 

Before the phoneme recognition experiments could be run with confidence, it was necessary 

to validate the VHDL architecture against the modified AIM code. Validation was accomplished 

by processing identical data through both the modified AIM code and its VHDL equivalent. After 

each processing stage, the difference between the outputs was computed and evaluated. 

Initially, several discrepancies were identified. One difference, due to an error in the pro- 

posed architecture, involved a mis-handled carry flag in the filterbank. The carry error was cor- 

rected in the VHDL model. The other inconsistencies were attributed to the use of non-integer 

arithmetic in the modified algorithms of AIM. In these cases, the modified AIM code was ad- 

justed to execute its algorithms using the same precision as the hardware implementation. Once 

the adjustments were made, the two models produced identical outputs. 

When the outputs of the VHDL and AIM models coincided, the phoneme recognition testing 

could proceed. These experiments, designed after the works of Patterson et al. and Francis, used 
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ten spoken sentences from each often speakers (100 utterances total)[7,25]. Seven of the speakers 

were male and three female.1 

Testing began by using AIM to generate the neural activity pattern (NAP) for each of the 

utterances. The minimum frequency channel was set at 350 Hz and the maximum frequency chan- 

nel at 7000 Hz[25]. The remaining channels, set by AIM's spacing algorithm were: 463.3, 592.3, 

739.3, 906.8, 1097.6, 1315.0, 1562.7, 1844.9, 2166.4, 2532.6, 2949.9, 3425.2, 3966.8, 4583.8, 

5286.8, and 6087.6 Hz. Using a windowed averaging method, each NAP was divided into over- 

lapping 16 ms windows. Each window was then averaged and labeled to indicate the phoneme 

which was being spoken during that window. The labeling was accomplished using tag-files which 

originated from the same database containing the utterances. 

The tagged averages from nine of the ten speakers were used to train a Kohonen self- 

organizing feature map[7]. Once trained, the tenth (untrained) speaker was processed by the feature 

map to determine how many phonemes could be recognized. Statistics on the map's ability to cor- 

rectly identify the phonemes were recorded and the training/testing process was repeated using 

each of the speakers as the unknown voice. In each case the process began by generating a new 

feature map. 

The training/testing procedure was repeated with seven different levels of background noise 

ranging from an absence of noise to a -21 dB signal-to-noise ratio (SNR). The specified amount of 

white noise was added to the utterances prior to the generation of the NAPs. The remainder of the 

technique remained the same. Finally, the experiment was repeated using the approximate form of 

AIM to generate the NAPs. 

Figure 45 illustrates the phoneme recognition rates for both AIM and the modified (approx- 

imate) AIM model. Figure 45 clearly shows that while the approximations made to AIM have 

an impact on the recognition rate, the effect is statistically insignificant2. In the worst case the 

difference between AIM and the approximate model is only 1.2%. The SNRs used in the testing 

were -21dB, -9dB, -3dB, +3dB, +9dB, +21dB and one case without background noise. Since the 

1 All utterances used were from the TIMIT data base. The speakers were mrtkO, mprkO, mwmhO, mjlsO, jhpgO, 
mefgO, mcmjO, fedwO, fcrhO, and fcmmO. 

Statistical significance was based on the work of K. Francis using the two-sided Student T distribution with 9 
degrees of freedom for a 95% confidence level. [25] 
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SNR in the case without noise is infinite, the corresponding data point was plotted in Figure 45 as 

+30dB for convenience. 
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Figure 45:     Phoneme Recognition Rates for AIM and Approximation 

Although all of the recognition testing was accomplished using the C implementation of the 

approximation algorithms, the recognition results may be applied equally to the hardware model. 

The transfer of results is justified because the hardware model was shown previously to be an exact 

representation of the C code implementation. As stated previously, generating the NAPs directly 

from the VHDL model was not practical because of the processing time required to model the 

architecture at the gate level. 

5.3   Speed 

The second criterion used to evaluate the architecture was its processing speed. Because the 

proposed architecture is primarily a pipelined, sequential machine, data is moved between latches 

and combinational logic is evaluated between transfers. All logic evaluations must be completed 

prior to the next clock cycle for the system to function correctly. 
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As previously discussed, adders are the slowest part of the architecture. Ripple carry adders, 

used throughout the design for their small size, are inherently slow. The adders found in the filter- 

bank multipliers require more computational time than any other functional unit in the architecture 

because of their 26-bit length. Even though there are several stages of adders in the logarithmic 

compression unit, these adders are only 16 bits in length. In addition, the clock in the logarithmic 

compression unit is one-fourth of the clock in the filterbank to allow the additions to complete. 

Since the time required by the ripple carry adders determines the overall system clock speed, 

Spice analysis was performed on the adders. The testing was performed using 0.8 \im CMOS 

technology data. A 24-bit adder was tested for maximum propagation delay through the carry 

path.3 The total computed delay was then divided by 24, yielding the average delay per bit. The 

test was repeated at varying operating voltages and the results are illustrated in Figure 46. 

„0.85 

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.B 5 
Operating Voltage (Volts) 

Figure 46:     Propagation Delay for Full-Adder Cells 

To evaluate speed, consider the data presented in Figure 46. If the operational voltage for 

the system is 3.3 V, each full adder cell inserts a 0.925 ns delay into the carry path. Therefore, the 

26-bit adder required by the filter multiplier would need 24.05 ns to complete its computation. In 

order for multiplier to operate, the total clock period must be at least 24.05 ns, limiting the system 

3 A 24-bit adder was tested before the length of the longest adder needed was known to establish the delay/bit. 
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clock to rates under 41.5 MHz. Similarly, if the system is operated at 5.0 V, the minimum delay is 

16.9 ns which limits the clock rate to 59.1 MHz. 

The filter stage, which requires the most computational cycles, requires 25 clock cycles for 

the IIR filter. Further, the first instance of the APGF requires 46 clock cycles, while each additional 

APGF filter requires 42 cycles. Therefore, the proposed 32 channel system requires 1373 clock 

cycles to process each input value through all channels of the filtering stage. 

If the data arrives to the system with a sampling period of 50 /is (20 k-samples/sec), the 

minimum processing clock period must be no greater than 36.4 ns (50 (j,s/1373cycles). Therefore, 

the architecture must be clocked at a minimum of 27.5 MHz for sustained real-time operation 

on 32 channels. Since the required minimum clocking frequency for real-time operation is lower 

than the predicted maximum clock frequency of the hardware, the proposed system is capable of 

functioning in real time with 32 channels functioning. 

5.4   Size 

Having shown that the designed architecture meets functional and speed requirements, the 

next parameter to evaluate is the physical size of the architecture. This section presents the area 

requirements of the sub-components and produces an estimate for the overall area required for the 

system. The unit of measure used to compute the area is A, which represents the smallest drawn line 

width in an integrated circuit layout. Typically A is one-half of the smallest actual circuit feature 

width. For example, for a 0.8 \im fabrication, A is 0.4 /im. The cells for the VLSI layout were 

designed according to the MOSIS sub-micron fabrication rules, and remain scalable as technology 

permits. 

Table 12 summarizes the area estimates for the cells of the proposed architecture. In Ta- 

ble 12, the dimensions for most cells were acquired from CMOS VLSI layouts of the cells. In 

some cases, such as the basic logic gates and the logic for the PLAs, the sizes are an average of 

typical logic gates. The table is broken into the same three subdivisions that were presented in the 

discussion of the architecture in Chapter 4: filtering, amplitude compression, and neural encoding. 
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While Table 12 does include all wiring (power, ground, and clocking) internal to the cells; 

inter-cell wiring is not included. Inter-cell wiring, which depends heavily upon the technology 

implemented and layout style, is more uncertain than the size estimations for the functional units. 

Estimates vary as to what fraction of a VLSI circuit is devoted to wiring. Additionally, 

the cost of wiring depends upon the number of layers of interconnect available in the fabrication 

process being used. Therefore, the following evaluation is based on the assumption that the wiring 

will "dominate"[31 ] the total chip area. 

Analysis of the fully-custom logarithmic circuit layout revealed the inter-cell wiring con- 

sumed nearly 40% of the total circuit area (three levels of interconnect were employed). Using the 

wiring of the logarithmic circuit as a guide, assume conservatively the wiring for the total system 

will require an area equal to the functional area, the total area for the circuit would be 37968776 A2. 

The estimated area would fit inside a square that measured less than 6200A on a side. If a more 

conservative estimate is used where the wiring is allowed to occupy two-thirds of the chip area, the 

total chip would require 56953164 A2. Under the second and more conservative assumption, the 

required area would be a square of under 7600 A per side. 

In either case, a bonding pad frame is also required. Based upon the sizes for available stan- 

dard bonding pads, an additional 150 pm is required per side of the wire for bonding. Combining 

these figures, the resulting integrated circuit would easily fit onto existing fabrication dies available 

through the Metal Oxide Semiconductor Implementation Service (MOSIS). For example, using the 

MOSIS 0.8 fim CMOS fabrication process, the more conservative (two-thirds) estimate would re- 

quire a chip of 3.3 mm on a side. If the MOSIS 0.25 \im process were used, the area required by 

the same chip would be a mere 1.25 mm per side.4 

5.5   Power 

The last evaluation performed on the proposed architecture was an estimation of the power 

required for its operation. Power analysis of an integrated circuit depends on many parameters, 

several of which will remain unknown until the circuit is actually implemented. Some of the un- 

known parameters included inter-cell bus capacitances, clocking frequency, fabrication technology, 

4MOSIS estimates that the 0.25 \im process be available in the fourth quarter of 1999. 
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Table 12:     Area Estimates For Architecture (A) 
Filtering 

Cell # Required Size Each (A) Area (A^) 

Multiplier slice 78 640x42 2,096,640 

Mult. Cont 1 72x137 9,864 

ROM (34x16) 3 276x168 139,104 

RWM (130x24) 2 6565x648 8,508,240 

RWM write amp 48 100x27 129,600 

RWM read amp 48 100x27 129,600 

Adder 26 133x42 145,236 

D-Latch 109 103x42 471,534 

Transp. Latch 16 54x42 36,288 

D-Latch w/ clr 24 103x42 103,824 

Clock Gen 5 100x120 60,000 

Mux 150 50x75 562,500 

Rowselect 164 103x42 709,464 

Rowmux 130 50x75 487,500 

Logic gates 6 50x50 75,000 

PLA 50 50x50 125,000 
Amplitude Cc )mpression 

Log unit 1 425x640 272,000 

Adder 48 133x42 268,128 

Latch 20 133x42 111,720 

Logic gates 2 50x50 5,000 
Neural Encoding 

RWM (32x16) 3 1616x432 2,094,336 

RWM write amp 48 100x27 129,600 

RWM read amp 48 100x27 129,600 

ROM (32x8) 1 260x84 21,840 

ROM (32x11) 1 260x116 30,160 

Rowselect 32 103x42 138,432 

Mux 192 50x75 720,000 

Clock gen 3 100x120 36,000 

ALU 17 300x42 214,200 

D-Latch 43 103x42 186,018 

Tranp. Latch 34 54x42 74,256 

Multiplier slice 18 640x42 483,840 

Mult. Cont 1 72x137 9,864 

Logic gates 9 50x50 70,000 

PLA 80 50x50 200,000 
TOTAL 18,984,388 
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and operating voltage. These unknown parameters cannot be quantified until the entire architecture 

has been laid out for a fabrication targeted to a specific technology (or scale). Therefore, the power 

analysis in presented here assumed fabrication in 0.8 //m CMOS operating at 33 MHz from a 5 V 

power source. 

The analysis was accomplished by running Spice simulations on the major functional units 

to determine their operating power requirements. These estimates were then combined with the 

utilization rates for the functional units to derive an estimate of the total system's power consump- 

tion. The functional units characterized were: multipliers, adders, latches, and state machines. 

Data from the independent tests were then combined to gain insight into the overall power require- 

ment. The first functional unit to be characterized was the multiplier. 

5.5.1 Multipliers. To evaluate the multiplier, a test circuit was constructed using the 

layout of the multiplier slice cells. In order to reduce the computational time of Spice, only six 

cells were used along with the multiplier controller. The circuit was extracted for Spice using 

0.8 um technology data and five different tests were run. For each test the average current was 

computed by integrating the instantaneous current and dividing by the length of the simulation. 

Separate power supplies were simulated for the controller and the array of multiplier cells to isolate 

the power consumed by each. Table 13 summarizes the results of these tests. 

Table 13:     Spice Simulation Results for 6-bit Multiplier 
Data Average Current (/zA) 
Input Values Control 6 Slice Cells 
23 x (-9) 110 320 
(-9) x 23 74 215 

(-1) x (-1) 75 120 
31x31 90 200 
21 x (-22) 30 240 

Examining the data from Table 13, it is easy to see that the power required for the multiplier 

is highly dependent upon the data stream. The values used in the Spice testing of the 6-bit multiplier 

were chosen to be representative of various bit patterns that would be encountered to provide a 

more accurate estimate of the average current required. Using Table 13 the average current for the 
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multiplier controller is approximately 76 fiA. Similarly, the average current for the six multiplier 

slice cells is 219 fiA, or approximately 37 pA/cell. 

Combining the average current of the controller with that of the multiplier slice cells, it can 

be estimated that the 26-bit multipliers used in the filterbank will consume an average of 1038 jiA. 

From the simulated current draw, the average power can be calculated to be 5.19 mW when op- 

erated continuously. However, the multipliers in the filterbank are only operational in 75.9% of 

the states. Therefore, a more accurate estimate of the power consumed by each multiplier in the 

filterbank is 3.94 mW. The three multipliers of the filterbank will therefore consume a combined 

power of approximately 11.82 mW. 

5.5.2 Adders. The second computational cell in the filterbank is the 26-bit adder, which 

accumulates the multiplier results. From the filterbank state table it can be shown that the 26-bit 

adder will potentially see new input values in 46.4% of the filterbank's operational states. To esti- 

mate the power required by the 26-bit adder, a test similar to that of the multiplier was performed. 

The simulations revealed that the current consumed per adder cell ranged from zero to a maximum 

of 14.8 pA/cdl depending on the data. The average value (7.4 /xA/cell) was chosen for analy- 

sis. Accounting for the utilization rate of the filterbank adder, the 26-cell device will consume an 

estimated average of 446 /xW. 

Since the adders depend upon a ripple carry, there will be some additional switching activity 

where cells may transition more than one time for a computation to complete. Since the switching 

will only involve the carry path, at most one half of the logic inside each adder will be affected. 

Also, the added activity will affect on average only half of the cells of the adder. Therefore, a more 

accurate estimate for the average power consumed by the 26 cell adder is 

446 iiW + (446 (iW) x (0.5 gates /cell x 0.5 activity / gate) = 558 piW (29) 

5.5.3 Latches. The data latches on the output of the adder and multiplier were the next 

cells to be considered. To analyze the latches, a string of 26 cells was assembled for simulation. To 

simulate the fact that not every bit in a data path changes state on every machine cycle, only half 
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of the cells were forced to change states with every clock state. The remaining cells were clocked, 

but not transitioned. 

The Spice testing showed that the average current drawn by the 26 latches was 120 fiA, or 

4.62 \iA per cell. Converting the current to power, each cell consumed an average of 23.1 pW. In 

the filterbank there are 160 latch cells outside of the multipliers which are grouped into 7 registers 

averaging 22.8 bits in length. Therefore, the average register will consume 0.527 mW during 

continuous cycling with half of its bits changing state on each cycle. 

During the operation of the filterbank, 15 latch cycles are issued for the IIR filter, and 27 

latch cycles are issued on behalf of each of the APGF. Although these latch cycles are distributed 

among the 7 registers, for analysis all of these cycles were assigned to the average 22.8-bit register. 

The average latch then has a utilization rate of 64.0%, and its estimated power consumption is 

approximately 0.34 mW. 

5.5.4 State Machines. The finite-state machine (FSM) has not been designed for VLSI 

implementation, and therefore cannot be simulated for evaluation. To approximate the power con- 

sumed by the FSM, note from Table 12 that the estimated area of the programmable logic array 

(PLA) is approximately the same size as the 26-bit adder in the filterbank. Although the PLA is 

smaller than the adder, the difference is offset by the additional gates and counters (latches) that 

are nested inside the FSM. Therefore, it is reasonable to use the power consumed by the 26-bit 

adder as an approximation of the power consumed by the FSM. 

When cycled on a continuous basis, the adders were simulated to consume a maximum 

14.8 \iA per cell, or 384.8 pA for the 26-bit adder. Since there is a high level of activity in the 

FSM due to the constantly changing state, the maximum current drawn by the adder was used 

to approximate the average current drawn by the FSM. Therefore, the estimated average power 

consumed by the FSM is 1.92 mW. 

5.5.5 Filterbank Power. Combined, the multipliers, data latches, adder, and FSM con- 

sume an average of 14.6 mW of electrical power. The remaining cells in the filterbank architecture 

will not significantly contribute to the power consumption of the system due to the in-frequency of 

their operation and the use of low-power transmission-gate (pass) logic. 
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5.5.6 Logarithmic Compression. The power consumed by the logarithmic compression 

stage is a negligible portion of the total power consumed by the system. Simulations indicated that 

the logarithmic conversion process consumes 450 pW when cycled continuously at 50 MHz. As 

implemented in the proposed system, the data rate is less than 1/32 of the system clock rate. Using 

the same 33 MHz clock rate that was used for the other Spice simulations, the logarithmic data rate 

is approximately 1 MHz, or 1/50 of the rate used to characterize the logarithmic unit. Therefore, 

the estimated power consumed by the logarithm approximator is only 9 pW. 

5.5.7 Neural Encoding Processor. The final stage of the architecture is the neural en- 

coding processor (NEP). The NEP is comprised of the same cells used in the filterbank, therefore, 

the NEP power requirement is estimated using the same technique described for the filterbank. 

The power analysis of the NEP are summarized in Table 14. The estimated size of the FSM in the 

NEP is 1.6 times larger than the FSM used in the filterbank. Since the switching activity of the 

NEP's FSM is very similar to that of the filterbank fSM, the power consumed by the NEP's FSM 

is estimated to be 1.6 times greater than the estimated power consumption of the filterbank's FSM. 

Table 14: Power Ana ysis for Neural Encoc ing Processor 
Cell Power/bit #Bits Utilization Total Power 

Multiplier 37 \xW 18 63% 419 JJLW 

ALU lApW 17 19.5% 24.5 fiW 

Latches 4.62 pW 16 39% 23.8 pW 
FSM 1.92 p,W 1.6 100% 3.1 mW 

The estimated total power required for the NEP is 3.57 mW. Combining the power required 

by the NEP with that of the filterbank the estimated total power required for the proposed system 

is 18.2 mW. The total power consumption is small enough to allow the system to be operated from 

batteries for an extended period. 

5.5.8 Output Buffers and Clocking. A final consideration for the power analysis is the 

power consumed by the input/output buffers and the clocking circuits. The power consumed by 

the output buffers is highly dependent upon the system into which the chip is installed, the length 

of wires, and the operating voltages. Fortunately, the data rate at the output is not the same as 
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the internal clocking rate. Rather, data departsthe circuit at an average of 32 times the input data 

rate. Even if the CD sampling rate of 44 kHz is assumed, the output data rate is only 1.4 MHz. 

Therefore, the power consumed by the output drivers is expected to remain low. 

Another power consideration is the internal clocking circuitry. The clocking for the circuit 

is highly de-centralized. While there is a global clock reference, this clock signal does not directly 

drive most of the circuitry. Rather, the reference clock is qualified (via simple gate logic) by control 

signals from the state machines. These qualified clock signals are used to generate local two-phase 

clock signals where needed. 

Because the local clocks are only driven upon demand from the state machine, most of the 

clocks are idle at any given time. Since the localized clock drivers spend the majority of the time 

in the disabled state, their average power consumption will be low. Therefore, a detailed analysis 

of these clock circuits was not performed. 

5.6   Summary 

The analysis presented in this chapter confirm the viability of the proposed algorithms and 

architecture. Specifically, the algorithms were shown to produce neural activity patterns (NAPs) 

which did not significantly change the results of phoneme recognition experiments. Further, when 

the algorithms are implemented using the proposed VLSI architecture, they may be realized in a 

system that can perform the computation of a 32-channel NAP in real time. 

The proposed VLSI architecture is small, estimated to fit inside a square of 7600 A on a side. 

With these dimensions the processor could be fabricated in any of the technologies currently avail- 

able through MOSIS. For example, if the MOSIS 0.8 fim CMOS technology were used, the result- 

ing chip would be approximately a square 3.3 mm on a side and consume an estimated 18.2 mW, 

making battery operation practical. 

If a technology with smaller minimum feature sizes than 0.8 /an were used to implement the 

system, the area of the die would decrease approximately proportional to the square of the change 

in feature size. Further, additional layers of metal interconnect which are available on the newer 

technology processes would also lead to a reduction in size. In terms of power, the smaller feature 

size fabrication processes are designed for lower operating voltages. By being smaller and thus 
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having lower drive requirements, these processes are inherently faster and consume less power 

than the technology used as an example in this chapter. Therefore, the conclusion can be made 

that the operating characteristics estimated in this chapter for speed, size, and power are bounding 

cases or worst case values. 
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VI. Conclusions and Recommendations 

6.1 Introduction 

The primary objective of this research was to develop an approximation of the Auditory Im- 

age Model (AIM) for implementation into VLSI. The modifications to the model needed to be made 

without significantly distorting its output, the neural activity pattern (NAP). Section 6.2 draws con- 

clusions concerning the modifications implemented, while Section 6.3 proposes recommendations 

for future research. The final section provides an overall summary of the work. 

6.2 Conclusions 

Until now, researchers were restricted to the use of workstation computers for the execution 

of physiologically based auditory models. While these models which mathematically describe the 

transformations of ear are accurate, they are time consuming to operate. In addition, the processing 

requirements of such models have prevented them from advancing from the research laboratory 

into the realm of application. The Auditory Image Model (AIM), which includes several different 

algorithms for each of the stages of auditory processing is one such model that is restricted by its 

computational needs. 

As demonstrated in Chapter 3, the detailed algorithms in AIM can be approximated us- 

ing algorithms which require significantly less computation. The approximated algorithms were 

designed to preserve as much of the original behavior as possible, while providing the maximum 

reduction in computational cost. As discussed in Chapter 5, the proposed changes to the algorithms 

in AIM did not alter the overall performance of the model, when used for phoneme recognition, 

with statistical significance. The result is a new auditory model similar to AIM, but demanding 

less computation. 

The primary advantage of the new auditory model is that its algorithms may be mapped 

directly onto a relatively simple, single-chip VLSI processor. One possible implementation of the 

new model was outlined in Chapter 4. The proposed architecture was shown to easily fit onto a 

square die of 3 mm on each side. Further, it was shown that the processor is capable of sustained 

real-time operation for 32 channels and requires less than 20 mW of power. 
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The transformation of AIM from desktop workstations to a low-power integrated circuit 

opens new doors of opportunity for researchers and will free the auditory model from the confines 

of the laboratory. The real-time operation of the hardware implementation will allow researchers 

to more efficiently utilize the model to process audio data for further experimentation. With less 

time spent on generating data, more time can be spent on analysis and developing new areas of 

research and application. 

Further, because of its small physical size and low power requirement, the integrated circuit 

implementation of the auditory model may be embedded into other systems. For example, the 

auditory model could be used as a pre-processor for a speaker identification security system or a 

real-time voice-to-text system. 

The integrated circuit could also allow auditory modeling to move from computational re- 

search into the field of medicine. The architecture proposed in Chapter 4 is small enough, and 

requires so little power that the circuit could be fabricated as a cochlear implant. As an implant, 

the circuit could be used in individuals with middle and inner ear damage to directly convert sound 

energy into the electrical neural activity patterns (NAP). The electrical NAP would then be used 

to stimulate the hair cells of the cochlea and thereby restore hearing. Since the effects of the ear 

canal were not included as a part of the modified model, the processor and microphone could be 

implanted allowing the natural resonance of the ear canal to occur. 

The search for more efficient algorithms to simplify AIM led to the development of a new 

technique for the generation of approximate logarithms. While the new technique is an approxima- 

tion, it produces logarithms with peak errors of less than 1.5% for all numbers, and less than 0.5% 

for values greater than 25. Since the dynamic range of the input data to the logarithmic unit in the 

present application is 0 to 32767, the error introduced by the approximate logarithm is expected to 

be minimal. Additionally, the approximation technique requires only combinational logic, making 

it very fast and low in power consumption. 

The new technique for computing logarithms has application in signal processing (such as 

AIM) where it may be used in algorithms requiring signal compression. Additionally the technique 

may be used to reduce computational workloads of other algorithms by mapping multiplication 

operations into addition operations. 
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6.3   Recommendations for Further Research 

While the primary objective of transforming AIM was met, areas for future work and re- 

search exist. The subsections that follow bring to light some topics to which future research could 

be directed. 

6.3.1 Layout Completion. The architecture described in Chapter 4 was supported by 

the VLSI layout of its major cells. Development of these cells was essential to the estimation 

of power and size, however, the layout of the architecture as a whole has not been completed. 

Before such a layout could be realized, the finite-state machine logic for the filterbank and neural 

encoding processor must be constructed. The required equations, which need to be programmed, 

are tabulated in Appendices B and C. The area and power estimations of Chapter 5 were based 

upon these equations being implemented by, but not restricted to, a programmable logic array 

(PLA). 

With the generation of the control logic, the connection of the existing cells could be com- 

pleted. Upon completion of a layout for the architecture, an appropriate interface must be designed. 

Following fabrication, testing would be required to validate the power and speed estimations. 

6.3.2 Integrated Circuit Interface. Although the architecture discussed in the preceding 

chapters is complete computationally, one issue not addressed was the incorporation of the circuit 

into a larger system. Interface issues cannot be addressed until a host system is known. For 

example, the interface to a computer will be different from an interface to the human ear. 

In order to best serve the auditory research community, an interface to a common bus archi- 

tecture would be desirable. A suggested bus is the Peripheral Component Interconnect (PCI) bus 

common to most workstations. By including the interface logic for such a bus on-chip, the result- 

ing circuit could easily connect to a workstation and serve as a co-processor for the production of 

neural activity patterns under the control of the host processor. 

The addition of an analog input channel to the architecture would also be advantageous. 

By incorporating an analog-to-digital converter, as well as the digital bus interface, additional 

flexibility would be added allowing researchers to process audio signals, such as speech, in real 
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time. The inclusion of the analog input circuitry would be required in order for the integrated 

circuit to be utilized as a cochlear implant. 

An additional requirement for the circuit to be implantable would be an analog output stage. 

The analog output stage would require one output channel for each filter in the filterbank. For 

the architecture described in Chapter 4, thirty-two output channels would be required. However, 

since the output data is time-division multiplexed, a single digital-to-analog converter could be 

implemented with one analog hold amplifier dedicated to each output channel. 

6.3.3 Writable Coefficients Store. Another area of future work is the addition of writable 

memories for the storing of the coefficients. For the proposed architecture, read-only memories 

(ROMs) were used for their ease of implementation. The use of ROM's as proposed requires that 

the coefficients be programmed before the masks for the fabrication are generated. Therefore, the 

coefficients cannot be altered after fabrication. If new filter frequencies are desired, new fabrication 

masks are required thus increasing the cost per chip. Additionally, the generation of new custom 

chips is typically a several month process. 

If erasable, programmable ROMs (EPROMs) were used to replace the ROMs in the design, 

the end user could program the filterbank and NEP coefficients after fabrication. Additionally, 

the coefficients could be erased and re-programmed if necessary. While there are benefits to pro- 

grammable coefficient stores, the inclusion of additional logic to allow for the writing and possible 

erasing of the stores would be necessary. 

6.3.4 Neural Encoding Approximations. Finally, it was shown through experimentation 

that the changes made to the algorithms of the neural encoding had the largest impact on the 

NAP's generated by the model. Further research should be directed toward improving upon these 

approximations. 

One approximation, in particular, that should be studied is the rounding of the neural firing 

threshold. The approximation used rounded this limit from 1397 to 1024 because of the binary 

simplicity of 1024. The absolute limit could be raised to 1280 by including only one more bit 

into the the value, resulting in one more addition. Including one more bit (and thus addition) the 

threshold could be raised to 1408. By increasing the lower threshold of the nerves sensitivity, the 
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resulting NAP will have less magnitude error and will not contain some of the smaller features not 

found in the NAP generated by AIM. The tradeoff between added computation and the resulting 

accuracy of the NAP requires further study. 

6.4   Summary 

As a result of this research, we are now one step closer to transforming the Auditory Image 

model into application-specific devices. Algorithms were presented which may be used to signifi- 

cantly simplify the computational workload of the Auditory Image Model. Further, an architecture 

was designed for an application-specific integrated circuit to execute the new algorithms. The next 

step will be to complete the layout of the architecture for fabrication and testing. 
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Appendix A. Computation of All-Pole Gammatone Filter Constants 

This appendix describes the derivation and computation of the constants used for the all-pole gam- 

matone filter replacement. The derivation begins with the S domain expression for the second order 

stage of the recursive all-pole filter: 

GT(s)= .        *        2 (30) 

Where B is a bandwidth term defined by: 

B = (27T)1.019EÄB(/O) (31) 

and ERB(f) is a function to compute the "equivalent rectangular bandwidth" of the gammatone 

filter at the frequency f. There exists more than one function to compute ERB(f), however, the 

equation seen most often in recent literature and recommended by Glasberg and Moore [20] is: 

^B(/) = 24.7(^ + l) (32) 

The first step in obtaining the filter coefficients is to express GT(s) in terms of a discrete 

equation. Slaney performs this transformation with the aid of computer aided symbolic manipula- 

tion to get an expression of the form[17:p. 27]: 

HI A - -2TZsm("oT) m 
{) ~ eBT{$fr- 2u>0Z> + *«°zffi°V 

where T represents the sampling period for the discrete data, and B and w0 are as defined above. 

Equation 33 can be simplified to the form: 

■fe-BTrsin(o;0T)Z-1 Y{z) 
K ' " 1 - 2Z~le-BT cos(w0T) + e-

2BTZ-2      X(z) 

At this point it is critical to point out that the above equations were based on the derivations done by 

Slaney who normalized the equations so that the peak of all of his filter plots would reach a unity 

gain (0 dB). To proceed it is important to re-introduce the actual midband gain which has been 
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removed. To re-introduce the actual midband gain, we must return to the original GT(s) expression 

and solve for the magnitude of the gain letting u = u0: 

GT(s) = ,        *  ^   2 (35) 

Letting s = ju0 

GT^ = UU. + W + * = WTwi^ (36) 

Hence the magnitude of the midband gain is: 

Pw| = ^^ = ^»'Vr' <37) 

We now return to the expression for the Z transformed all-pole gammatone filter and simply divide 

H{z) by K to provide the needed gain at the midband. Finally, solving the resulting expression 

for Y(z) and replacng the X{z)Z~1 with X[n-i] and Y(z)Z-\Y(z)Z-2 with Y[n-i] and Y[n_2] 

respectively, we get: 

YM = -£-e-BT sinKT)X[B_i] + 2e~BT cos^Y^ - e-2BTY[n_2] (38) 

which is of the form: 

Y[n] = aXfr-y + &y[n_i] + cY[n_2] (39) 

as given in the text of Chapter 4. The constants are then defined by: 

a   =   -£-e-BTsm("oT) (40) 

6   =   2e-BTcos(u;0T) (41) 

c   =   -e-2BT (42) 

These coefficients can be computed one time and stored as ROM constants for each filter. In the 

modified AIM code, a compile-time option was added to the file f ilter/apgf. c which when 

enabled causes AIM to write the these constants to disk files when the program is run. 
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Appendix B. State Output Equations for the Filterbank 

Idy = (s63 • sb2 • ~sbl • sbO) 

adv = (s64 • s63 • s62 • äW • sbO) + (s64 ■ sbl ■ sb2 • sW • sbO) + (s&4 ■ sb2 ■ sbl • sW) + 

(s63 • s62 • sW • sbO) 

avr = (sbi • s&3 • sb2 ■ sbl ■ sbO) + (s&4 • sb2 • s61 • sW) + (s63 • sb2 • sW • s60) 

lül = (s64 ■ s63 ■ sb~2 ■ sbl ■ sbO) + (s64 • s62 • sW • sW) + (s&3 • sb2 • sW ■ sbO) + 

(sbi ■ 563 • sbO) 

wl = (sM ■ sbH ■ s62 • sbl • sbO) + (sbi ■ sb~2 ■ sbl ■ sbO) + (s63 • sb2 ■ sbO) + (s64 • s63 • sW) 

wbk = (s64 • sb2 ■ sW) + (s64 • s63 • sbO) 

Id = (s63 • «62 • sbl ■ äW) + (s64 • s62 • s61 • sW) + (s64 • s62 • sbl ■ sbO) 

mpy = (sbi • 563 • s&2 • sbl ■ sbO) + (s63 • s62 • sW • 56Ö) + (s63 • s62 • sW • 56Ö) + 

(sM • s62 • sbl • 56O) + (s64 • sW • sW) + (s64 ■ sb2 ■ s6l) + (s64 • s63 • s60) 

Idr = (s64 • s63 • s62 • sW ■ 56O) + (s64 • s63 • s62 • sW • s60) + (s64 • s63 • s62 ■ sW • sbO) + 

(s64 • s62 • s61 • söÖ) 

sO = (s64 • s62 • sbl) 

slO = (s64 • s62 • sbl ■ sbO) + (s62 • s60) + (s64 • s63 • s~W) 

sll = (563 ■ s62 • sW • äöÖ) 

s2 = (s64 • s62 • sbl ■ sbO) + (s63 • s62 ■ sW • sW) + (s64 • s62 • sbl ■ sbO) + 

(s63 • s62 • sbl) + (s64 • s63 • sW) 

s3 = (s64 • 562 • sbl • ~sbÖ) + (sbi • s62 • sbl ■ sbO) + («63 • s62 ■ sW • s60) 

54 = (s64 • s62 • äbl) + (s64 • s63 • sbO) 

adc = (s64 • s62 • sbl ■ sbO) + (s63 • s62 • sW • ~s~bÖ) + (sbi • s62 • «61 • s60) + 

(s63 • s62 • sbl) + (s64 • s63 • ~s~bÖ) 

Ido = (s64 • s63 • s62 • sbl) + (s64 • s62 • sbl ■ sbO) + (s63 ■ s62 • sW • sW) + 

(s64 • s62 • s61) + (s63 • s62 • sbl) + (s64 • s63 • ~s~bÖ) 

cpl (s64 • s63 • sbO) 
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Appendix C. State Output Equations for NEP State Machine 

Imp   = (s64 • s&3 ■ 

(s64 ■ sbl ■ 

550   = (s&3 • sb2 •" 

s51   = (s64-s63- 

«6    = (s64-s63- 

(s64 • sb2 • 

s7   = (s64-s63- 

s8   = (sM-s63- 

s9   = (s62 • sbl ■ 

slO   = (sbl ■ sbl ■ 

mpl   = (sTÄ-slß- 

(sb3 ■ sb2 • 

Ipf   = (sb3 • sb2 • 

adj   = (s63 • s62 • 

lr   = (i64-s&3 • 

(sfe4 • s&I • 

as   = (sbl-sTS- 

Imic   = (sft3 • s62 • 

pas   = (s63 • s62 ■ 

Itmp   = (sM-s63- 

wmc   = (sb3 ■ sb2 ■ 

wlp   = (sb4 ■ sbl ■ 

zro   = {sbA • sb2 ■ 

dorq   = (s64 • sb2 ■ 

■ s62 ■ sbl ■ ä6Ö) + (s&3 • sb2 • ~sbl • ä5Ö) + (s&2 • «61 • s60) + 

■ s60) + (s64 • «62 • s61) 

• s61 • sbÖ) + (s64 • sbl • sbO) + (sb4 ■ sb2 ■ sbl) 

■ 562 • 561 • iW) 

• 162 • sbl • s6Ö) + (s63 • sb2 ■ s61 • s6Ö) + (s64 • s61 • s60) + 

•561) 

• s62 • 561 • s6Ö) + (s63 • s62 • s61 • 56O) 

• s62 • sbl ■ s6Ü) + (s64 • sb2 ■ sbl ■ söÖ) + (s63 • s62 • s61 • s60) 

• 56O) + (s64 • sbl • s60) 

• s60) 

• ^62 • sbl ■ sbO) + (564 • s62 • iW • iW) + (s63 • s62 • äW • s6Ö) + 

•s61-s60) 

• 56I • s60) + (s63 • s62 • 56T ■ s6Ö) + («64 • sbl • s60) + (s64 • s62 ■ sbl) 

■ s61 • s60) + (s63 • s62 • s6T • 56Ö) 

• s62 • s6T • s6Ö) + (s63 • «62 • s61 • s60) + (s63 • s62 • sbl ■ s6Ö) + 

• s60) 

• s62 • sbl ■ sbÖ) 

■ s61 • s60) + (s63 • s62 • sbl • sbO) + (s63 • s62 • sbl ■ sbO) 

■ sbl ■ s6Ö) + (s63 • s62 ■ sbl ■ sbO) 

■ sb2 ■ sbl ■ s6Ö) + (s64 • s62 • s61 • s6Ö) + (s63 • s62 • s61 • s6Ö) 

• sbl • äöÖ) + (s64 • s62 • sbl) 

■ sbO) 

■sbl) 

•s61) 
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Appendix D. Rom Layout Generation Code 

#include <stdio.h> 
#inelüde <time.h> 

#define X 8 
#define Y 16 
#define SPACING 4 

/* width of generated cells */ 
/* height of generated cells */ 

int main(int arge, char *argv[]) 
{ 
int ex, cy; 
int vail, val2, i, j, bitl, bit2; 
FILE *fin, *fout; 
time_t t; 
int row, bits, dolabels=l; 
char ofname[64]; 

if (arge == 1) { 
fprintf(stderr,"\n\aUSAGE 
fprintf(stderr, 

fprintf(stderr. 

mkrom [wordsize] datafile \n"); 
\tlf wordsize is not specified, 16 bits is \ 
defaulted\n"); 
\tThe datafile must contain one data value per \ 
line in integer form.\n"); 

fprintf(stderr,"\tlf there are an odd number of values, a row \ 
of all O's will be appended.\n"); 

fprintf(stderr,"\n\tThe output file will be datafile.mag\n"); 
exit(-1); 

} 

if (arge == 2) 
bits=16; 

else { 
bits = atoi(argvfl]); 
if (bits == 0) { 

fprintf(stderr,"ERROR:  word size of zero was specified\n"); 
fprintf(stderr,"\n\aUSAGE:  mkrom [wordsize] datafile\n"); 
fprintf(stderr,"\tlf wordsize is not specified, 16 bits is \ 

defaulted\n"); 
fprintf(stderr,"\tdatafile must contain one data value per line \ 

in integer form.Nn"); 
exit(-2); 

} 
} 

fin = fopen(argv[argc-l],"r"); 
if (fin == NULL) { 
printf("ERROR OPENING INPUT FILE %s\n",argv[argc-l]); 
exit (-1); 

} 
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sprintf(ofname,"%s.mag",argv[argc-l]); 
fout = fopen(ofname, "w"); 
if (fout == NULL) { 
printf("ERROR OPENING OUTPUT FILE %s\n",ofname); 
exit (-1); 

} 

t = time(NULL); 
/* Write out header */ 
fprintf(fout,"magic\ntech scmos\ntimestamp %ld\n",t); 

/* Write out bottom row ground plane */ 
cy = 0; 
ex = 0; 
for (i=0; i<=bits ; i++){   /* extra insures right side ground */ 

if (!(i%SPACING) || (i == bits)){ 
fprintf (fout,"« metall >>\n"); 
fprintf(fout,"rect %d %d %d %d\n",cx+l,cy,cx+7,cy+4); 
fprintf (fout, "« ndcontact >>\n"); 
fprintf(fout,"rect %d %d %d %d\n",cx+l,cy,cx+7,cy+4); 
fprintf (fout, "« ndiffusion >>\n"); 
fprintf(fout,"rect %d %d %d %d\n",cx,cy,cx+8,cy+4); 
cx+=X; 

} 
if (i < bits ) { 

fprintf (fout, "« ndiffusion » \n"); 
fprintf(fout,"rect %d %d %d %d\n",cx,cy,cx+X,cy+4); 
fprintf (fout, "« metall » \n"); 
fprintf(fout,"rect %d %d %d %d\n",cx+2,cy,cx+5,cy+4); 
fprintf (fout,"« labels >>\n"); 
fprintf(fout,"rlabel metall %d %d %d %d 1 B%d\n", \ 

cx+3,cy+l,cx+3,cy+l,i); 
cx+=X; 

} 
} 
cy = 4; 
row = 0; 
/* Write out actual rom data cells */ 
while (fscanf(fin,"%d",&vall)==1) { 

if (fscanf(fin,"%d",&val2)!=1) 
val2 = 0; 

ex = 0; 
for (i=0; i<=bits ; i++){   /* Write vertical ground lines */ 

if (!(i%SPACING) || ( i == bits)){ 
fprintf (fout, "« metall >>\n"); 
fprintf(fout,"rect %d %d %d %d\n",cx+l,cy,cx+7,cy+16); 
fprintf(fout,"« ndcontact >>\n"); 
fprintf(fout,"rect %d %d %d %d\n",cx+l,cy+12,cx+7,cy+16); 
fprintf(fout,"« ndiffusion >>\n"); 
fprintf(fout,"rect %d %d %d %d\n",cx,cy+12,cx+8,cy+16); 
fprintf(fout,"« polysilicon >>\n"); 
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fprintf(fout,"rect %d %d %d %d\n",cx,cy+9,cx+8,cy+ll); 
fprintf(fout,"rect %d %d %d %d\n",cx,cy+l,cx+8,cy+3); 
fprintf(fout,"« psubstratepcontact >>\n"); 
fprintf(fout,"rect %d %d %d %d\n",cx+2,cy+4,cx+6,cy+8); 
if (i == 0) {  /* label the row lines */ 

fprintf (fout, "« labels >>\n"); 
fprintf(fout,"rlabel polysilicon %d %d %d %d 1 R%d\n", 

cx+1,cy+2,cx+1,cy+2,row); 
fprintf(fout,"rlabel polysilicon %d %d %d %d 1 R%d\n", 

cx+1,cy+10,cx+1,cy+10,row+l); 
row += 2; 

} 
cx+=X; 

} 
if (i < bits) { 

bitl = vail % 2; 
bit2 = val2 % 2; 
vail »= 1; 
val2 »= 1; 
fprintf (fout, "« metall >>\n"); 
fprintf(fout,"rect %d %d %d %d\n",cx+2,cy,cx+5,cy+16); 
fprintf (fout, "« ndcontact >>\n"); 
fprintf(fout,"rect %d %d %d %d\n",cx+2,cy+4,cx+6,cy+8); 
fprintf(fout,"« polysilicon >>\n"); 
fprintf(fout,"rect %d %d %d %d\n",cx,cy+9,cx+8,cy+11); 
fprintf(fout,"rect %d %d %d %d\n",cx,cy+l,cx+8,cy+3); 
fprintf (fout,"« ndiffusion >>\n"); 
fprintf(fout,"rect %d %d %d %d\n",cx,cy+12,cx+8,cy+16); 
if (Ibitl) 

fprintf(fout,"rect %d %d %d %d\n",cx+2,cy,cx+6,cy+4); 
if (!bit2) 

fprintf(fout,"rect %d %d %d %d\n",cx+2,cy+8,cx+6,cy+12); 
ex += X; 

} 
} 

cy += Y; 
} 
fprintf (fout, "« end >>\n"); 
return 0; 

} 
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Appendix E. VHDL Code 

FILENAME: 
AUTHOR: 
DATE: 
REVISIONS: 

filter.vhd 
Sam L. SanGregory 
1/6/99 
none 

STATUS:    FROZEN DO NOT MODIFY (witout comment) 
6/10/99 Removed a carry feedback path in the adder 

FUNCTION: 
This code models the structure of the main filter bank 
for the AIM inner ear.  It includes all of the multipliers, 
adders, memory, and multiplexors needed to perform the 
outer/middle-ear filter as well as the cochlear filtering. 

DEPENDS UPON: 
add_n.vhd, fsm multiplier.vhd, mux2.vhd, mux4.vhd, row_sel.vhd, 
rowmux.vhd, ram.vhd, rom.vhd, tnreg.vhd, n_dffacl.vhd, 
n_dff.vhd, andgate.vhd, phi2.vhd 

This source code was written in partial fullfilment of PhD 
requirements at The Air Force Institute of Technology. 

library ieee; 
use ieee.std_logic_1164.all; 

ENTITY 

entity AIMfilter is 
generic (roml 

rom2 
rom3 
rom_w 
rom_n 
ram_w 
ram_n 

string 
string 
string 
natural 
natural 
natural 
natural 

"roml.data" 
"rom2.data" 
"rom3.data" 
16; 
12 
24 
42 

width of rom data 
number of rom rows 
width of ram data 
number of ram rows 

(channels+2) 

(4*chan)+2 

); 
port (x 

elk 
drq 
dxak 
reset 

y 
dak 
dxrg 

in std_ulogic_vector(15 downto 0); 
in std_ulogic; 
in std_ulogic; 
in std_ulogic; 
in std_ulogic; 

out std_ulogic_vector(15 downto 0); 
out std_ulogic; 
out std_ulogic 

-- input data 
— system clock 
-- input data ready 
-- acknowledge from next 
-- system reset 

-- output data 
-- filter busy 
-- data ready for next 

); 
end AIMfilter; 

ARCHITECTURE 
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architecture str of AIMfilter is 

component add_n 
generic (n : 

td : 
port(ai, bi : 

ci 
sum 
co 

end component; 

natural := 8; 
time := 1 ns) ; 
in std_ulogic_vector(n-1 downto 0) ; 
in std_ulogic; 
out std_ulogic_vector(n-l downto 0) ; 

out std_ulogic); 

component fsrti 
generic (td : time := 1 ns) ; 
port (ck  : in std_ulogic; 

drq : in std_ulogic; 

rx  : in std_ulogic; 

reset : in std_ulogic; 

dxak : in std_ulogic; 

dak : out std_ulogic; 

ldy • out std_ulogic; 
adv out std_ulogic; 

avr out std_ulogic; 

wl out std_ulogic; 
w2 out std_ulogic; 
wbk out std_ulogic; 

Id out std_ulogic; 

mpy out std_ulogic; 
ldr out std_ulogic; 

sO out std_ulogic; 
slO out std_ulogic; 
sll out std_ulogic; 

s2 out std_ulogic; 

s3 out std_ulogic; 
s4 out std_ulogic; 
ldo : out std_ulogic; 

cpl : out std_ulogic; 
dxrq : out std_ulogic; 
rst : out std_ulogic 

-- clock input 
-- data request 
— RWM row X 
— reset 

); 
end component; 

component multiplier 
generic (w natural = ram_w+2; 

cont_td time = 1 ns; 

tdff_td time = 1 ns; 
addsub_td time = 1 ns; 
mux2_td time = 1 ns; 
dffcl_td time = 1 ns; 
dff2_td time = 1 ns); 

port (ml,m2 in E td_i alogic_vector(w-l downto 0) ; 

ml out out £ td_\ ilogic_vector(w-1 downto 0); 
c, cb in £ td_i ilogic; 

Id, ldb in £ td_\ ilogic; 
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result 
end component; 

: out std_ulogic_vector(2*w-l downto 0)); 

component mux2 
generic (td : 

w  : 
port (iO, il 

s 
ol 

end component; 

time   := 1 ns; 
natural := 8   ); 

: in std_ulogic_vector(w-l downto 0); 
: in std_ulogic; 
: out std_ulogic_vector(w-l downto 0)); 

component mux4 
generic (td : time 

w : natural 
port (i3, i2, il, iO : 

si, sO        : 
ol : 

end component; 

:= 1 ns; 
:= 8   ); 
in std_ulogic_vector(w-1 downto 0); 
in std_ulogic; 
out std_ulogic_vector(w-l downto 0)); 

component row_sel 
generic (n 
port(reset 

adv 
rows 
rx 

); 
end component; 

natural := 32; td : time := 1 ns) ; 
in std_ulogic; 
in std_ulogic; 
out std_ulogic_vector(0 to n-1); 
out std_ulogic 

component rowmux 
generic (n 
port (irow 

back 
orow 

); 
end component; 

natural := ram_n; td : time := 1 ns); 
in std_ulogic_vector(n downto 0); 
in std_ulogic; 
out std_ulogic_vector(n-1 downto 0) 

component ram 
generic(tdr, tdw 

w  : 
nw : 
init 

port (addr : 
din  : 
wr   : 
dout : 

end component; 

time := 1 ns;  — delay read, write 
natural := ram_w;    — width of each word 
natural := ram_n;    — number of words (rows) 
: natural := 0);    — initial values for ram 
in std_ulogic_vector(nw-l downto 0) ; 
in std_ulogic_vector(w-1 downto 0); 
in std_ulogic; 
out std_ulogic_vector(w-1 downto 0)); 

component rom 
generic(tdr: 

w  : 
nw : 
fn : 

port (addr : 
dout : 

end component; 

time := 1 ns;      — delay read 
natural := rom_w;   — width of each word 
natural := rom_n;   — number of words (rows) 
string := "romx.data"); 
in std_ulogic_vector(nw-1 downto 0); 
out std_ulogic_vector(w-l downto 0)); 
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component tnreg 
generic (td 

n 
port (din  : 

dout : 
load : 
loadb: 

end component; 

— Transparent Data Latch 
: time   := 1 ns;   — propagation delay 
: natural := 8  );    — number of bits 
in std_ulogic_vector(n-l downto 0); 
out std_ulogic_vector(n-l downto 0); 
in std_ulogic; 
in std_ulogic); 

component n_dffacl  — asynch clear edge triggered 
generic( n  : natural := 8; 

time := 1 ns) ; 
in std_ulogic_vector(n-l downto 0); 
in std_ulogic; 
in std_ulogic; 
out std_ulogic_vector(n-l downto 0)); 

td : 
port ( d   : 

c    : 
reset: 
q,qb : 

end component; 

component n_dff 
generic( n  : 

td : 
port ( d   : 

C    : 

q,qb : 
end component; 

— Falling Edge Latch 

natural := 8; 
time := 1 ns) ; 
in std_ulogic_vector(n-l downto 0); 
in std_ulogic; 
out std_ulogic_vector(n-1 downto 0)); 

component andgate 
generic (n  : natural := 2; 

td : time := 1 ns) ; 
port (i : in std_ulogic_vector(n-1 downto 0) 

o : out std_ulogic); 
end component; 

component phi2 
generic (td 
port (ck  : 

ckl : 
ck2 : 

end component; 

: time := 1 ns); 
in std_ulogic; 
out std_ulogic; 
out std_ulogic); 

— in phase with ck 
— out of phase with ck 

signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 

mObus 
mlbus 
m2bus 
m3bus 
m4bus 
mpl 
mp2 
mp3 
mprl 
mpr2 
mpr3 
abus 
dobus 
xbus 
ybus 
mlout 

std_ulogic. 
std_ulogic_ 
std_ulogic. 
std_ulogic. 
std_ulogic_ 
std_ulogic. 
std_ulogic. 
std_ulogic. 
std_ulogic. 
std_ulogic. 
std_ulogic. 
std_ulogic. 
std_ulogic_ 
std_ulogic. 
std_ulogic. 
std_ulogic. 

vector(25 
.vector (25 
.vector (25 
.vector (23 
.vector (23 
vector(51 
.vector (51 
.vector (51 
.vector (25 
.vector (25 
.vector (25 
.vector (25 
.vector (25 
.vector (23 
.vector (23 
.vector (25 

downto 0) 
downto 0) 
downto 0) 
downto 0) 
downto 0) 
downto 0) 
downto 0) 
downto 0) 
downto 0) 
downto 0) 
downto 0) 
downto 0) 
downto 0) 
downto 0) 
downto 0) 
downto 0) 

MUX outputs 

— mult outputs 

mult latch outs 

adder output w/cy 
adder output latch 
x latch output 
y latch output 
multiplier ml recycle 
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signal rlbus 
signal r2bus 
signal rail 
signal rm2 
signal rm3 

std_ulogic_vector(25 downto 0) 
std_ulogic_vector(25 downto 0) 
std_ulogic_vector(25 downto 0) 
std_ulogic_vector(25 downto 0) 
std_ulogic_vector(25 downto 0); 

signal ramrow : std_ulogic_vector(ram_n-l downto 0) 

signal ramlrow: std_ulogic_vector(ram_n-l downto 0) 

signal rxrows: std_ulogic_vector(ram_n downto 0) 

signal romrow : std_ulogic_vector(rom_n-l downto 0) 
signal mxl_gnd: std_ulogic_vector(25 downto 0); 

ram 1 out 
ram 2 out 
rom 1 bus 
rom 2 bus 
rom 3 bus 
ram row selects 
:= (others=>'0'); 
raml row selects 
:= (others=>'0'); 
ram rows with rx 
:= (others=>'0'); 
rom row selects 
:= (others=>'0'); 
zero input for muxl 

signal al,a2,a3,a4,a5 
signal a6,a7 
signal mpyi, mpyl, mpy2 
signal Idi, ldl, ld2 
signal ldri, ldrl, ldr2 
signal xldl, xld2 
signal cpl, cp2 
signal ldock 
signal wick, w2ck 

std_ulogic_vector(1 downto 0); 
std_ulogic_vector(l downto 0); 

-- andgate input vect 
-- andgate input vect 

std_ulogic; 
std_ulogic; 
std_ulogic; 
std_ulogic; 
std_ulogic; 
std_ulogic; 
std_ulogic; 

clock for multipliers 
load for multipliers 
load for multiply result 
load for X register 
load for compress latch 
ldo anded with clock 
quallified ram writes 

signal ldy, adv, avr, wl, w2,  wbk 
signal Id, mpy, ldr, sO, slO, sll 
signal s2, s3, s4, ldo, cpl 
signal rst, rx 

std_ulogic; 
std_ulogic; 
std_ulogic; 
std_ulogic; 

FSM signals 

signal gnd 
begin 

std_ulogic '0' 

  RAM Memory 
ramsel : row_sel 

generic map( ram_n, 1 ns) 
port map( rst, adv, ramrow, rx); 

rxrows(ram_n-l downto 0) <= ramrow; 
rxrows(ram_n) <= rx; 
ramlmux : rowmux 

generic map( ram_n, 1 ns) 
port map( rxrows, wbk, ramlrow); 

a6 <= wl & elk; 
and6 : andgate 

generic map (2, 1 ns) 
port map (a6,wlck); 

raml : ram — using component defaults on generics 
port map( ramlrow, m4bus, wick, rlbus(23 downto 0)); 

rlbus(24) <= rlbus(23);   — sign extension 
rlbus(25) <= rlbus(23);   — sign extension 

a7 <= w2 & elk; 
and7 : andgate 
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generic map (2, 1 ns) 
port map (a7,w2ck); 

ram2 : ram — using component defaults on generics 
port map( ramrow, mlout(23 downto 0), w2ck, r2bus(23 downto 0)) 

r2bus(24) <= r2bus(23);   -- sign extension 
r2bus(25) <= r2bus(23);   -- sign extension 

  ROM Memory 
romaddr : row_sel 

generic map( rom_n, 1 ns) 
port map( rst, avr, romrow, open); 

rom_l : rom 
generic map( 1 ns, rom_w, rom_n, roml) 
port map( romrow, rml(15 downto 0)); 

rmKrml'left downto 16) <= (others=>rml (15) ) sign extension 

rom_2 : rom 
generic map( 1 ns, rom_w, rom_n, rom2) 
port map( romrow, rm2(15 downto 0)); 

rm2(rm2'left downto 16) <= (others=>rm2(15)) sign extension 

rom_3 : rom 
generic map( 1 ns, rom_w, rom_n, rom3) 
port map( romrow, rm3(15 downto 0)); 

rm3(rm3'left downto 16) <= (others=>rm3(15)) sign extension 

  Multipliers 
al <= mpy & elk; 
andl : andgate 

generic map(2, 1 ns) 
port map( al,mpyi); 

a2 <= Id & elk; 
and2 : andgate 

generic map(2, 1 ns) 
port map( a2,ldi); 

a3 <= ldr & elk; 
and3 : andgate 

generic map(2, 1 ns) 
port map( a3, ldri); 

clockl : phi2 
port map( mpyi, mpyl, mpy2);  -- clock for multipliers 

clock2 : phi2 
port map( ldi, ldl, ld2); load for multipliers 

clock3 : phi2 
port map( ldri, ldrl, ldr2); load for mult result 

mltl : multiplier        -- component default generics 
port map( mObus, rml, open, mpyl, mpy2, ldl, ld2, mpl); 

mlt2 : multiplier component default generics 
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port map( rlbus, rm2, mlout, mpyl, mpy2, ldl, ld2, mp2); 

mlt3 : multiplier        — component default generics 
port map( r2bus, rm3, open, mpyl, mpy2, ldl, ld2, mp3); 

— The 8 bit offset in the mapping below accounts for the fact that 
-- the rom word is 8 bits smaller than that of the ram so multiply 
— is not fully shifted in booth algorithm. Also the range (39-14) 
— accounts for a missing 2 bits of shift. An additional shift 
— operation is required to complete the Booth's but to save a 
— clock cycle this final shift is hardwired on the output. 

— Multiplier output latches 
latchl : tnreg 

generic map( 1 ns, 26) 
port map( mpl(39+8 downto 14+8), mprl, ldrl, ldr2); 

latch2 : tnreg 
generic map( 1 ns, 26) 
port map( mp2(39+8 downto 14+8), mpr2, ldrl, ldr2); 

latch3 : tnreg 
generic map( 1 ns, 26) 
port map( mp3(39+8 downto 14+8), mpr3, ldrl, ldr2); 

  Muxes (all) 
mxO : mux2 

generic map( 1 ns, 24) 
port map( m3bus, mlout(23 downto 0), sO, m0bus(23 downto 0)); 

m0bus(24) <= m0bus(23);  — sign extension 
m0bus(25) <= mObus(23); 

mxl_gnd <= (others=>'0'); — zero unused input 

mxl : mux4 
generic map( 1 ns, 26) 
port map( mxl_gnd, mpr3, mpr2, mprl, sll, slO, mlbus); 

mx2 : mux2 
generic map( 1 ns, 26) 
port map( mpr3, dobus, s2, m2bus); 

mx3 : mux2 
generic map( 1 ns, 24) 
port map( xbus, ybus, s3, m3bus); 

mx4 : mux2 
generic map( 1 ns, 24) 
port map( m3bus, dobus(25 downto 2), s4, m4bus); 

  X input 
clock4 : phi2 

port map( drq, xldl, xld2); 

latch4 : tnreg 
generic map( 1 ns, 16) 
port map( x, xbus(23 downto 8), xldl, xld2); 
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xbus(7 downto 0) <= (others=>'0'); — zero pad fraction 

  Y latch 

latch5 : n_dffacl 
generic map( 24, 1 ns) 
port map( dobus(24 downto 1) , ldy, reset, ybus); 

  Finite State Machine 

fsml : fsm 
generic map(l ns) 
port map( elk, drq, rx, reset, dxak, dak, ldy, adv, avr, 

wl, w2, wbk, Id, mpy, ldr, sO, slO, sll, 
s2,  s3,  s4,  ldo,   cpl,  dxrq, rst); 

  Adder and final output 
adder : add_n 

generic map( 26, 1 ns) 
port map( mlbus, m2bus, gnd, abus, open); 

a5 <= ldo & elk; 
and5 : andgate 

generic map(2, 1 ns) 
port map( a5, ldock); 

ndffl : n_dff 
generic map( 26, 1 ns) 
port map( abus, ldock, dobus, open); 

clock6 : phi2 
port map( cpl, cpl, cp2);  -- load for mult result 

latch6 : tnreg 
generic map( 1 ns, 16) 

— CHANGED 5/26/99 from (25 downto 10) 
port map( dobus(23 downto 8), y, cpl, cp2); 

end str; 

CONFIGURATION 

configuration AIMfilter_cfg of AIMfilter is 
for str 

for all : add_n 
use configuration work.add_n_cfg; 

end for; 
for all : fsm 

use configuration work.fsm_cfg; 
end for; 
for all : multiplier 

use configuration work.multiplier_cfg; 
end for; 
for all : mux2 

use entity work.mux2(beh); 
end for; 
for all : mux4 
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use entity work.mux4(beh); 

end for; 
for all : row_sel 

use configuration work.row_sel_cfg; 

end for; 
for all : rowmux 

use configuration work.rowmux_cfg; 

end for; 
for all : ram 

use entity work.ram(beh); 

end for; 
for all : rom 

use entity work.rom{beh); 
end for; 
for all : tnreg 

use configuration work.tnreg_cfg; 

end for; 
for all : n_dff 

use configuration work.n_dff_cfg; 

end for; 
for all : andgate 

use entity work.andgate(beh); 

end for; 
for all : phi2 

use configuration work.phi2_cfg; 

end for; 
for all : n_dffacl 

use configuration work.n_dffacl_cfg; 

end for; 
end for; 
end AIMfilter_cfg; 
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FILENAME 
AUTHOR: 
DATE: 
REVISIONS: 

12/23/98 
1/28/99 

logapr.vhd 
Sam L. SanGregory 
8/15/98 

Added configuration to test second order approximation 
Added shft2 and bits2 to make 2nd approx generic 

STATUS:    FROZEN DO NOT MODIFY (witout comment) 

FUNCTION: 
This is the top-level of the structural description of the 
log-base-2 approximator.  Two configurations are given, 
the first is the complete algorithm developed in this research 
while the second (DUMMY) does not include the adjustment and 
is thus closer to the original algorithm from WSU. 

DEPENDS UPON: 
barell.vhd, adjust.vhd, exprom.vhd 

This source code was written in partial fullfilment of PhD 
requirements at The Air Force Institute of Technology. 

library ieee; 
use ieee.std_logic_1164.all; 

ENTITY 

ns; 
entity logapr is 

generic (td 
shft 
shft2 
bits 
bits2 

port (din 
eval_not : in std_ulogic; 
logerr   : out std_ulogic; 
dout    : out std_ulogic_vector(15 downto 0)); 
end logapr; 

time : = 1 n 
natural : = 2; 
natural : = 3; 
natural : = 4; 
natural : = 4); 

how many positions to shift 
how many 2nd approx 
how many bits to shift 
how many bits 2nd approx 

in std_ulogic_vector(15 downto 0); 

ARCHITECTURE 

architecture str of logapr is 

component barell 
generic(td : time := 1 ns) ; 
port (din     : in std_ulogic_vector(15 downto 0) 

eval_not : in std_ulogic; 
logerr   : out std_ulogic; 
dout    : out std_ulogic_vector(14 downto 0); 
shout    : out std_ulogic_vector(14 downto 0)); 

end component; 

component adjust 
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generic (td : time := 1 ns; 
wid  : natural := 12; 

shft  : natural := shft; 
shft2 : natural := shft2; 
bits  : natural := bits; 
bits2 : natural := bits2); 

port(x : in std_ulogic_vector(wid-1 downto 0) ; 
y : out std_ulogic_vector(wid-1 downto 0)); 

end component; 

component exprom 
generic(td : time := 1 ns) ; 
port(shift    : in std_ulogic_vector(14 downto 0); 

log_err  : in std_ulogic; 
eval    : in std_ulogic; 

exp     : out std_ulogic_vector(3 downto 0)); 

end component; 

signal d_tmpl : std_ulogic_vector(14 downto 0) ; 
signal d_tmp2 : std_ulogic_vector(11 downto 0); 
signal shift : std_ulogic_vector(14 downto 0); 
signal expv : std_ulogic_vector(3 downto 0); 
signal logr : std_ulogic; 
signal evl : std_ulogic; 

begin 

shifter : barell 
port map(din, eval_not, logr, d_tmpl, shift); 

adjuster : adjust 
port map(d_tmpl(13 downto 2), d_tmp2); 

evl <= not eval_not after 1 ns; 
exponent : exprom 

port map(shift, logr, evl, expv); 

dout(15 downto 12) <= expv; 
dout(ll downto 0) <= d_tmp2; 
logerr <= logr; 
end str; 

CONFIGURATION 

configuration logapr_cfg of logapr is 

for str 
for all : barell 

use configuration work.barell_cfg; 

end for; 
for all : adjust 

use configuration work.adjust_cfg; 
use entity work.adjust(beh); 

end for; 
for all : exprom 

use entity work.exprom(beh); 
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end for; 
end for; 
end logapr_cfg; 
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-- FILENAME:  adaptive.vhd 
■- AUTHOR:   Sam L. SanGregory 
- DATE:      5/06/99 
-- REVISIONS: none 
--  STATUS:    FROZEN DO NOT MODIFY (witout comment) 

--  FUNCTION: 
This is the final stage of the ear model.  In this stage 
the adaptive thresholding is accomplished, as well as the 
final integration filter. This is a structural model. 

-- DEPENDS UPON: ram.vhd, rom.vhd, rowselect.vhd, mux.vhd, alucell.vhd, 
2phase_clock.vhd, invert.vhd, andgate.vhd, orgate.vhd, 
latches.vhd, multiplier.vhd, napfsm.vhd 

— This source code was written in partial fullfilment of PhD 
-- requirements at The Air Force Institute of Technology. 

library ieee; 
use ieee.std_logic_1164.all; 
use work.aim_math.all; 

ENTITY 

entity adapt is 
generic (td   : time := 1 ns; 

chan : natural := 10; 
rapid_decay : string := "rapid_decay.rom"; 
compensate  : string := "compensate.rom"; 

K 
L 

natural := 5;    — integration filter constant *16 
natural := 11);   — integration filter constant *16 

port (din : in std_ulogic_vector(15 downto 0); 
elk : in  std_ulogic; 
reset : in std_ulogic; 
drq : in std_ulogic; 
dxak : in std_ulogic; 
dout : out std_ulogic_vector(15 downto 0); 
dak : out std_ulogic; 
dxrq : out std_ulogic); 

end adapt; 

ARCHITECTURE 

architecture str of adapt is 

component napfsm 
generic (td : time := 1 ns), 
port (ck in std_ulogic; — clock input 

drq in std_ulogic; — data request 

reset in std_ulogic; — reset 

dxak in std_ulogic; 

neg in std_ulogic; 

dak : out std_ulogic; 
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Imp : out std_ulogic; 
s50 : out std_ulogic; 
s51 : out std_ulogic; 
s6  : out std_ulogic; 
s7 out std_ulogic; 
s8 out std_ulogic; 
s9 out std_ulogic; 
slO out std_ulogic; 
mpy out std_ulogic; 

lpf out std_ulogic; 
adj out std_ulogic; 
lr out std_ulogic; 
as out std_ulogic; 
lmic out std_ulogic; 
pas out std_ulogic; 
ltmp out std_ulogic; 
wmc : out std_ulogic; 

tflpO : out std_ulogic; 

*lpl : out std_ulogic; 

zro : out std_ulogic; 

adv : out std_ulogic; 

dorq : out std_ulogic 

); 
end component; 

component multiplier 
generic (w 

cont_td 
tdff_td 
addsub_td 
mux2_td 
dffcl_td 
dff2_td 

port (ml,m2 
mlout 
c, cb 
Id, ldb 
result 

end component; 

natural := 16; 
time    := 1 ns; 
time   := 1 ns; 
time    := 1 ns; 
time   := 1 ns; 
time   := 1 ns; 
time    := 1 ns); 
in std_ulogic_vector(w-1 downto 0); 
out std_ulogic_vector(w-1 downto 0); 
in std_ulogic; 
in std_ulogic; 
out std_ulogic_vector(2*w-l downto 0)); 

component rom 
generic(tdr: 

w  : 
nw : 
fn : 

port (addr : 
dout : 

end component; 

time := 1 ns;      — delay read 
natural := 8;      — width of each word 
natural := chan;   — number of words (rows) 
string := "rom.data"); 
in std_ulogic_vector(nw-l downto 0); 
out std_ulogic_vector(w-1 downto 0)); 

component ram 
generic(tdr, tdw : time := 1 ns 

w  : natural := 16; 
nw : natural := chan; 
init : natural := 1024) 

port (addr : in 
din  : in 

— delay read, write 
— width of each word 
— number of words (rows) 
-- Initial values 

std_ulogic_vector(nw-l downto 0); 
std_ulogic_vector(w-1 downto 0); 
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wr 
dout 

end component; 

in std_ulogic; 
out std_ulogic_vector(w-1 dovmto 0)); 

component row_sel 
generic (n : natural 
port(reset : 

adv 
rows 
rx 

); 
end component; 

chan; td : time := 1 ns) ; 
in std_ulogic; 
in std_ulogic; 
out std_ulogic_vector(n-1 downto 0); 
out std_ulogic 

component phi2 
generic (td 
port (ck  : 

ckl : 
ck2 : 

end component; 

: time := 1 ns); 
in std_ulogic; 
out std_ulogic; 
out std_ulogic); 

-- in phase with ck 
-- out of phase with ck 

component mux2 
generic (td : 

w  : 
port (iO, il 

s 
ol 

end component; 

time   := 1 ns; 
natural := 8   ); 

: in std_ulogic_vector(w-1 downto 0); 
: in std_ulogic; 
: out std_ulogic_vector(w-1 downto 0)); 

component mux4 
generic (td : 

w  : 
port (i3, i2, 

si, sO 
ol 

end component; 

time    := 1 ns; 
natural := 8   ); 
il, iO : in std_ulogic_vector(w-1 downto 0); 

: in std_ulogic; 
: out std_ulogic_vector(w-1 downto 0)); 

component alucell 
generic (td : time 
port (a, b, ci, as, 

sum, co 
end component; 

= 1 ns); 
pass : in std_ulogic; 

out std_ulogic); 

component tnreg 
generic (td 

n 
port (din  : 

dout : 
load : 
loadb: 

end component; 

— Transparent Data Latch 
time    := 1 ns;    — propagation delay 
natural := 8  );    — number of bits 
in std_ulogic_vector(n-1 downto 0); 
out std_ulogic_vector(n-l downto 0); 
in std_ulogic; 
in std_ulogic); 

component n_dffacl 
generic( n 

td 
port ( d 

c 

natural := 8; 
time := 1 ns); 
in std_ulogic_vector(n-1 downto 0); 
in std_ulogic; 
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reset: 
q,qb : 

end component; 

in std_ulogic; 
out std_ulogic_vector(n-l downto 0)); 

component nandgate 
generic (n  : natural := 2; 

td : time := 1 ns) ; 
port (i : in std_ulogic_vector(n-1 downto 0) ; 

o : out std_ulogic); 

end component; 

component andgate 
generic (n  : natural := 2; 

td : time := 1 ns) ; 
port (i : in std_ulogic_vector(n-1 downto 0); 

o : out std_ulogic); 

end component; 

component orgate 
generic (n  : natural := 2; 

td : time := 1 ns); 
port (i : in std_ulogic_vector(n-1 downto 0); 

o : out std_ulogic); 
end component; 

component invert 
generic (td : time := 1 ns) ; 
port (i : in std_ulogic; 

o : out std_ulogic); 
end component; 

signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 

mpout 
rows 
m5, m6 
riple 
rwO, rwl, rwi 
rw2 
m7,m8,ibus 
m9,m9_div2 
m5a, tmp 
adjout,lrout 
aluout, mic 
rw2in, ro2 
ro2b 
i61, i62, i63 
rol 
al, a2, a3, a4 
a5, a6, ol, o2 
lml, lm2, mcl, 
neg, rx, rxck. 
Imp, s50, s51, 
mpy, lpf, adj, 
pas, ltmp, wmc, 

std_ulogic_vector(35 downto 0); 
std_ulogic_vector(chan-l downto 
std_ulogic_vector(17 downto 0 
std_ulogic_vector(17 downto 0 
std_ulogic_vector(15 downto 0 
std_ulogic_vector(15 downto 0 
std_ulogic_vector(16 downto 0 
std_ulogic_vector(15 downto 0 
std_ulogic_vector(15 downto 0 
std_ulogic_vector(16 downto 0 
std_ulogic_vector(16 downto 0 
std_ulogic_vector(15 downto 0 
std_ulogic_vector(16 downto 0 
std_ulogic_vector(15 downto 0 
std_ulogic_vector( 7 downto 0 
std_ulogic_vector( 1 downto 0 
std_ulogic_vector( 1 downto 0 

0) (others=>'0'); 

mc2, lmpck, mp2ck : 
rxckr, lrck, lrckb: 
s6, s7, s8,s9,sl0 : 
lr, as, lmic, adv : 
zro, wlpO, wlpl  : 

lmic_ck, lmic_ckb, ltmpck 
xldl, xld2, zro_r, resetb 
gnd : std_ulogic := '0'; 

std_ulogic; 
std_ulogic; 
std_ulogic; 
std_ulogic; 
std_ulogic; 
std_ulogic; 
std_ulogic; 
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signal vdd : std_ulogic := '1'; 

begin 

— Finite State Machine 
fsm : napfsm 

generic map(td=>td) 
port map(elk, drq, reset, dxak, neg, dak, Imp, 

s50, s51, s6, s7, s8, s9, slO, mpy, 
lpf, adj, lr, as, lmic, pas, ltmp, wmc, 
wlpO, wlpl, zro, adv, dxrg); 

  Memory address counter 
rowsell : row_sel 

generic map(n=>chan, td=>l ns) 
port map(rxckr, adv, rows, rx) ; 

al <= rx & elk; 
nand_l : nandgate 

generic map(n=>2, td=>td) 
port map(al, rxck); 

inv_3 : invert 
generic map(td => td) 
port map(reset, resetb); 

ol <= rxck & resetb; 
nand_2 : nandgate 

generic map(n=>2, td=>td) 
port map(ol, rxckr); 

  Read/Write Memories 
ramO : ram 

generic map( tdr=>td, tdw=>td, w=>16, nw=>chan, init=>0) 
port map(rows, m9, wlpO, rwO); 

raml : ram 
generic map( tdr=>td, tdw=>td, w=>16, nw=>chan, init=>0) 
port map(rows, m9, wlpl, rwl); 

m9_div2(14 downto 0) <= m9(15 downto 1); 
m9_div2(15) <= '0'; 
rammux : mux2 

generic map(td=>td, w=>16) 
port map(m9, m9_div2, adj, rw2in); 

ram2 : ram 
generic map( tdr=>td, tdw=>td, w=>16, nw=>chan, init=>1024) 
port map(rows, rw2in, wmc, rw2); 

  Read Only Memories 
roml : rom 

generic map(tdr=>td, w=>8, nw=>chan, fn=>"compensate.rom") 
port map(rows, rol); 

rom2 : rom 
generic map(tdr=>td, w=>ll, nw=>chan, fn=>"rapid_decay.rom") 
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port map(rows, ro2(10 downto 0)); 
ro2(15 downto 11) <= (others=>vdd);   — msbs are always '1' 

  Inversion for Rapid-Decay ROM 
gl : for i in 15 downto 5 generate 

inv_cell : invert 
generic map(td=>td) 
port map(ro2(i),ro2b(i-5)); 

end generate; 
ro2b(16 downto ll)<=(others=>'0'); 

  Multiplier Circuitry 

muxlO : mux2 
generic map(td=>td, w=>16) 
port map(rw0, rwl, slO, rwi); 

mux50 : mux2 
generic map(td=>td, w=>16) 
port map(m9, rwi, s50, m5a) ; 

mux51 : mux2 
generic map(td=>td, w=>16) 
port map(m5a, rw2, s51, m5(15 downto 0)); 

m5(17 downto 16) <= (others=>gnd);  — two extra bits for sign extension 
— but values are always positive 

i61( 7 downto 0) <= rol; 
i61{15 downto 8) <= (others=>gnd); 
i62 <= i2uv(K,16); 
i63 <= i2uv(L,16); 
mux6  : mux4 

generic map(td=>td, w=>16) 
port map(i63,i62,ro2,i61, lpf,s6, m6(15 downto 0)); 

m6(17 downto 16) <= (others=>gnd); 

multl : multiplier 
generic map(w=>18, cont_td=>td, tdff_td=>td, addsub_td=>td, 

mux2_td=>td, dffcl_td=>td, dff2_td=>td) 
port map(m5, m6, open, mcl, mc2, 1ml, lm2, mpout); 

phi2_l : phi2 
generic map(td => td) 
port map(lmpck, 1ml, lm2); 

phi2_2 : phi2 
generic map(td => td) 
port map(mp2ck, mcl, mc2); 

a2<= Imp & elk; 
and_2 : andgate 

generic map(td=>td) 
port map(a2, lmpck); 

a3<= mpy & elk; 
and_3 : andgate 

generic map(td=>td) 
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port map(a3, mp2ck); 

  Multiplier Output Mux (shift adjuster) and Latch 

adj_mux : mux2 
generic map(td=>td, w=>17) 
port map(mpout(31 downto 15), mpout(25 downto 9), adj, adjout); 

a4 <= elk & lr; 
and_4 : andgate 

generic map(n=>2, td=>td) 
port map(a4, lrck); 

inv_l : invert 
generic map(td=>td) 
port map(lrck, lrckb); 

mpylatch : tnreg 
generic map( td=>td, n=>17) 
port map(adjout, lrout, lrck, lrckb); 

 Data Input 
phi2_3 : phi2 

generic map(td=>td) 
port map( drq, xldl, xld2); 

tlatchl : tnreg 
generic map( td=>td, n=>16) 
port map( din, ibus(16 downto 1), xldl, xld2); 

ibus(0)<= '0';  — no fraction 

  ALU and its Input Muxes 

mux7 : mux2 
generic map(td=>td, w=>17) 
port map(lrout, ibus, s7, m7); 

mux8 : mux2 
generic map(td=>td, w=>17) 

port map(ro2b, mic, s8, m8); 

riple(O) <= as; 
g2 : for i in 0 to 16 generate 

alul : alucell 
generic map(td =>td ) 
port map (m7(i), m8(i), riple(i), as, pas, aluout(i), riple(i+l)); 

end generate; 

  ALU output latches 
a5 <= lmic & elk; 
and_5 : andgate 

generic map(n=>2, td=>td) 
port map(a5, lmic_ck); 

mic_latch : n_dffacl 
generic map(n=>17, td=>td) 
port map( aluout, lmic_ck, reset, mic, open); 
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a6 <= ltmp & elk; 
and_6 : andgate 

generic map(n=>2, td=>td) 
port map(a6, ltmpck); 

o2 <= zro & reset; 
or_2 : orgate 

generic map(n=>2, td=>td) 
port map(o2, zro_r); 

tmp_dff : n_dffacl 
generic map{ n => 16, td=>td) 
port map(aluout(16 downto 1), ltmpck, zro_r, tmp, open) 

neg <= aluout(15);    — don't latch, must know in state 6 
dout <= tmp; — Final output 

mux9 : mux2 
generic map(td=>td, w=>16) 
port map(mic(16 downto 1), tmp, s9, m9) ; 

end str; 

CONFIGURATION 

configuration adapt_cfg of adapt is 
for str 

for fsm : napfsm 
use configuration work.napfsm_cfg; 

end for; 
for rowsell : row_sel 

use configuration work.row_sel_cfg; 
end for; 
for all : andgate 

use entity work.andgate(beh); 
end for; 
for all : nandgate 

use entity work.nandgate(beh); 
end for; 
for all : orgate 

use entity work.orgate(beh); 
end for; 
for raml, ram2 : ram 

use entity work.ram(beh); 
end for; 
for roml, rom2 : rom 

use entity work.rom(beh); 
end for; 
for gl 

for all : invert 
use entity work.invert(beh); 

end for; 
end for; 
for all : mux2 

use entity work.mux2(beh); 
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end for; 
for all : mux4 

use entity work.mux4(beh); 

end for; 
for all : phi2 

use configuration work.phi2_cfg; 

end for; 
for all : tnreg 

use configuration work.tnreg_cfg; 

end for; 
for g2 

for all : alucell 
use configuration work.alucell_cfg; 

end for; 
end for; 
for all : n_dffacl 

use configuration work.n_dffacl_cfg; 

end for; 
end for; 
end adapt_cfg; 
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