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ABSTRACT

FA modalvapproximation for the self and mutual=radiation
impedahdes has been derived for arrayé of  spherical
transducers With small ka values, where ka is the'acqustic
wave number multiplied by the radius of the spheré. I term
this the “Modal Pritchard” approximation, as-it is related_
to the so-called Pritchard approximétion, often employed to
calculate mutual radiation impedances. I investigated theb
utility of the approximate mutual radiation impedaﬁce
‘expression for three two-body problems (monopoles; aligned'
dipoles, and aligned-linear quadrupoles). = For these cases,
approximate values were found to be in good agreemeﬁt with
those obtained wusing a full Spherical Addition ‘Theorem
calculation, ‘and are an improvement' ovef_ the simple
Pritchard appfoximation. Additionally, I investigated the
mutual radiaﬁion impedance expression in one particular
three-body . problem. Because of the Modal Pritchard
approximation’s inability to correctly handle scattering, we
recommend using the full Spherical Addition ‘Théorém
calculation when scattering is important.

Finally, I investigated the use of a new finite elemént
mesh to calculaté the T-matrix for a given transducer. The
T-matrix relates the incideﬁt and scattered waves foi a
single transducer, in an orthogonal (spherical harmonic)

basis set. The monopole element showed an increase in




error,,while wé saw soﬁe in@rovéments>in‘the higherforder

diagonal elements;’ Off—diagonai eléments, which shou1d bé»i
zexro for a épherical scattef, wefe satisfactorily small in
most cases. ﬂAlthoﬁgh the resulté wereriess than.favorable,
I was able fo streamline the,‘T—matrix ‘calculation. while
providihg a new method of examining‘ the voff—diagonal

elements.
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'~ I.  INTRODUCTION

The work described in this thesis is part of an ongoing
effort to improve our ebility to-eccurately model densely
paéked underwater acoustic arrays. When an acoustic arraY'sl
operating'characteristics are closely‘predicted we say the
array behaves well. This behavior is influenced by element
interaetion, characterized by a paremeter called hutualA
radiation impedance (Ref. 1). A worst case example of,“bad”:
behavior is that a transducer element may actually absorb
acoustic power, which is then absorbed back into the driving
amplifier, thus possibly causing an overload ehd‘eleetrical'
. failure (Ref. 2). Other examples of bad behavier ineludet
- changes in the radiated source level and deviations of thei
beampattern,‘steering direction, and side lobe amplitudes.

eElementeto—element interactions are more signiflcant in
arrays that are packed iﬁto a volume of small size, which is
the trend in low frequency active arrays. We will enalyze
the mutual radiation impedance for» spherical sourees of
small ka wvalues, where k is the wave number and‘a is the:
radius of the sphere. The mutual.radiatien impedance'is an
important parameter used to calcﬁlate the pressure on one
- array transducer due to the radiation and scattering from
other trensdﬁcers in the array.

Additionally, I will use a finite elementbcode to solve

for the radiating and scattering properties of a single

i




transduCer.  Therefore, ‘this ~ thesis 'consiSts of two
portions. o o | | |
The. first part‘-is devoted"to ﬂderiving a general:
expression for the mutual radlatlon 1mpedance between two
Ildentlcal radlatlng hard spheres in an otherW1se free fleld
environment using a normal mode approach. Addltlonallyé ani
expression for the se1f~radiation”impedance/ which is the‘
'radiation 1oading on a'single_element in.a free fieldmxis
found. | ‘7 |
I have compared our modallapproximatiOn for the mutua1~

radiation ’impedance { with" the '.commoniy-used soécalled
h“?ritchard” approximation for the"partiCular case'ka = 1,
and will Ashow the improvement possible usingh'our modal‘
approximation. = This imprOVement is particnlarly noticeable
as the center-to-center distance between sources is rednced.
.In this “Simple Pritchard" approximation,‘as I refer to it,
the real part‘of the self—radiation impedance is multiplied
by a spherical'Hankel function of’zeroth order to find the
mutual radiation impedance.’ I wiil show how this'“simple4
approximation starts to break down as the transducers are
spatlally brought closer together. | |

| The Addltlon Theorem (Ref -3) prov1des one the ablllty
to nathematically express the'pressure radiated from one

body ‘referenced to ‘the coordlnate system of another body

Using the Addition Theorem,"it is poss1b1e to veryf




aceurately cempute the mutual radiation 'impedaﬁce. of‘ e
. sphere in an arbitrarily densely packed érray of any number .
of .elements. I have used the -Addition Theorem” as’ a
computational standard. |

I also'applied’our'modal approximation to a specified
three-body problem to further investigate our 'modal‘
approximation, which I will hereafter refer to as the QModal
Pritchérd” approximation. In this problem We‘ note the
inability of our Modél Pritchard approximation to handle‘the:
~effects of scattering. Because of this breakdown we
recommend using the fu11'Spherica1 Addition'Theorem for this'
problem and other cases wheh scatteriﬁg becomes impoftant.
Methods and computer codes!for this portion Qf the thesis
are provided in Appendixes A and B.

| The‘second paft of this thesis makes extensive use’of a
finite element code, named ATILA, which was Wﬁitten by
' engineefs at the Institut Superieur d’Electronique du Nord
b'(ISEN). ATILA has been specifically developed tolaid in the
design of sohar transducers, but is also used te medel a
'variety ofracoustic problems. |

‘The final portion of this thesis addresses the T-matrix
method (Ref. 3). In order to model certain aspeets of‘arfay
operation such as near-field pressure, it isbnecessary.to
solve for the radiating and scattering properties of a

single transducer. We accomplish this calculation by using




the ATILA finite.element code. The‘T—MatriX’(or Transition
Matrix) characterisesb the :scattering »properties‘:of ta“vj
specific body' by translating“incominob pressure waves bto,
outgoing ones. | |

I will provide a brief description of ATILA’s method ofv
calculation that>distinguishes'1t from other finite‘element
codes. Readers less familiar with finite element codes may
want to seek further information from reference books such f
‘as Kwon s “The Finite Element Method us1ng MATLAB” (Ref 4)

PreVious work with ATILA to. calculate the T matrix for
a thin—spherical shell has been shown to beﬂin error'whenb

compared with a verified analytical solution (Ref. 5).

Varlous limitations of the ATILA code may explain the errors_"'

present. I 1nvest1gated whether'improvements are obtained"
by making some correctionsklto ATILA’s code and by the
implementation of a new,'refined, finite element mesh. 'This'
‘new'mesh‘increased the errors:to the nbnopole element but
did provide some improvement to other T matrix elements.

Further 1mprovements may be realized w1th the ‘advent of more
sophisticated radiation boundary "operators. E An early
delivery of anraddition to the ATILA:code[ EQI, which uses.
us1ng a boundary element method to handle the fluid did noti
occur in time for use Wlth this thesis. ‘Investigation of‘

the improvement obtained uSing ATILA coupled w1th EQI will

have to be the subject of future research




In addition to providing s'ome improvement in the
calculation of the T-matrix, I havé been able to streaml_ineA»
thé’proceduré. - Output scattered pressures from‘ATILA were
pbst—prbcessed using easy to read MATLAB pro‘grarﬁ scfipts.
The resulting T—matrix calculations were‘ quickly compared
with the analytical results (also done in MATLAB). Listed
in Appendix C are the MATLAB codes used to calculaté. the

theoretical values of the T-matrix elements and the T-matrix

elements calculated from ATILA’s scattered pressure results.

In summary, by deriving an improved 'ahalyt'ical
formulation for the mutual radiation impedance, one. can
quickly investigate the effec_ts of parameter variations,
such as the distaﬁce betweén elemehts in < the ' array.
Additionally since this formulation involves angular
dependence, I have devised a means of investigating the

effects of altering the orientation between eiements in an

~array. We recommend using the Modal Pritchard approximation

for approximate solutions when scattering is unimportant,

and the full spherical Addition Theorem otherwise.

Streamlining the T-matrix calculation for a given transducer

will allow follow-on work to be accomblished with less

startup time.
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II. THEORETICAL BACKGROUND SECTION
' This chapter addresses the development of -a modal
approximation for the self and mutual radiation impedances

for two spheres in an otherwise free field environment.

A. BOUNDARY CONDITIONS

Consider a space and time dependent velocity potential,_
defined as S"(;‘, t) = ¥(r)e’™, where the vector r =.’(r, 6, ¢)
repreSents the spatial dependence.. A relat‘ionshipr between
thé .pressure (p) and the velocity potential (¥) Stateé p =
-pd¥/dt (Ref. 6), so that p = -Jjap,¥.

Taking the gradient and then the dot proc»luct‘ ’with i:he
radial ﬁnit vector, we obtair/l o¥/or = -1/(jap,) dp/dr. By
noting that the velocity vector is defined to equal the
gradient of the velocity pQ'tential (u = V¥P), we éan derive
a boundary condition for a ‘surface normal vélocity. "For a -
sphere of radius a, for example, evaluétion of Jd¥/dr = -
1/'(jw,b°)9p/8r at r=a providés an exp:ession for the ‘radial
velocity on the sphe‘re"s surface. This will b:e'a'boundary

condition for our analysis.

-
= wp, or

o |

radial

r=a




B. PROBLEM SETUP AND ADDITION 'I‘HEOREM

Cons:Lder two 1dent1cal spheres (radll -—-'j”‘a) s'pe.c”ed 'with"v
a ce‘nter—to—center‘_distanc;e = d. ‘Letting '<r'1,al;¢1) ‘and
0, 9,) Be 'the ' spherical" ceordinates ’relative to  the
centers of spheres one and two, ‘respectix}evly.v With the two |
spheres ra..diating’ in distihst normal medes, the radial

velocities are expressed below.
v.=vaQie.e)
v.oviete.s) 0

Where Q =P (cose)em is a modal eigenfunction, P; is the

Legendre function, and V™ and /" are modal amplitudes.

The pressure from each sphere can be mathematlcally‘

expressed as shown in Equatlon (3) (Ref. 3). S:ane we are
assumlng.a e’ tlme dependence, we use a spherlcal Hankel
f.uncvt‘ion of the seeond hind. If we were .to ass‘ume‘ a _time
" dependence of ‘e"'”’v“,v”then we Weuld instead ‘use ‘a spherical
Hankel" .fhnctioh of the first hind. - After Equation (3’)., we '

drop the Hankel function’s (2) superscript.'

oo

=3 S A kr,)Qs‘( .9)

t 1"0 S

Zi%WMM%m)hf" ,W$

=0 S a_-t 2




- for the function a(v,p,t,u,s).

Given the Addition Theorem, we can express the pressure
from sphere two relative to sphere one (see Equation (‘4),
Ref. 7). The append:.x w1th1n Ref. 7 provides the def:.nltlon

The angles 6, and ¢1z' are

formed by describing the location of sphere one’s center
relative to sphere two’s center (see Figure 1). The prlme ’
in the last summatlon means the index is 1ncremented by two.
T ‘ 7 . )
o0 1% v, ' v . %
2 2 2 a(Vl’ pl’t27ﬂ1’S2)Jvl(krl)

vie0 H=—w D7 tz-Vll
2 2 1412-5"'4 prsf:uJ

| - (4)
170§, ‘ '
thi(kd )Qfll(el’(bl)gs;ﬂ,( 12’¢12) )

A reapplication of the Additidn Theorem provides us a

- mathematical expression for the pressure from sphere one

relative to sphere 2 coordinates.

_ , . . .

oo

)

V2

%

©0

10

L,
Pi=Y X A

S|=—I1

Vz=0 ﬂz

=—v. DAt 1-V2|

1y,

p 22 § l_'uzl

a(VZ, pzstwﬂz’SI)jv

hpolkd J2(0..0) 05 (6..0.)

] (kr.) *




orgin
sphere 1

"Origm ‘
sphere 2 e

'Figure 1. Orientation of sphere’s Origins

C. APPLICATION OF BOUNDARY CONDITIONS
Recallling the boundary condition for the sphere’s -

surface velocity as stated in Equation (1) w'evobtain

Vb apa! PJ_ ) andv,Vz-vaog;[PﬁPl]rfva» NO

After the application .of the -boundar'y conditions, we
use normal mode analysis ('orth'ogonality)' to. e'liminate"so‘me

terms. In Equation (3) we note that the ndn—zero‘terms are
those for which t, = n, s = m, t, = n,, and s, = m,.
Simiiarly, in Equations (4) and (5). the ,no'_n—zero terms are -

10




those where v, = n, 4 =m, v, = n, and 4, = m. Then by
using the relationship with sound speed, angular frequency,
and wave number (¢ = @/k) and dividing by a common term we

.obtain

n —
( ka) - :A:}ll,m, nn " mmy + |
- 3\
2 2 A a(nl’pl"vtz"mx’sz)*
10 st ‘ | (7 ) ’

\hp;(kd )Q;zl_ml( 12"¢12) ' - ) ’,

| —ip cV’™
= Andb
G T
i ka) wm )
’ sl1s M2 81 * . )
;0 Sl'z—tl thxh (k )pz py n, a (nz pz t m S) . (8)
, pAsimy | _ '
1y, (ke )2 (76, 7+0,,) ]

Note that the first summation in each of these last two
equations involves infinity. For computational purposes we
must truncate to some finite number (K). Note that when K=0

the sphere is vibrating in the monopole mode. For K=1

11




dipole modes are kept, and when K=2, quadrupole modes are

present, and so on to higher modes .

D. SOLVING FOR THE AMPLITUDE COEFFICIENTS
- We can write these laét two equéticns in a matrix form
by first constructing a large column vector whose‘compoﬁentsb
are the stacked amplitude coefficients for’spheres one and
two. The ordering‘of the coefficients fofythe spheres are
provided below, where A= [4, A, Aw>2¥¢"”]T~isjthe’vector of

coefficients for sphere one.

I B | > NS
il =€ where A2 ©)
B I cl LA

The C'vectors‘above each consist of one non4zefo term‘
as represented by the 1eft-hénd side of’Equatidns:(7) and
(8). It can be shown vtha‘t the terms of the B and F
matrices are of order (ka)’ for small ka'§alges. This means

Athat we can solve'fcr the A-coefficients becagse we can
approximateb the inverSe of the vfirst large matrix . of
Equation (9);' BY‘the follcwing developmént for small ka we
can evaluate the coéfficicnts. VWe drop terms on the order

of ka to the sixth power.

12




1 BT [1 -B
B 1] [-B Il

which leads to

Al=C'-BChAZ=C2-BC (10

+0(ka’)

Rewriting this approkimation, shown below ‘Ain Equation
(11), we then have an explicit representation for the A‘l B
coefficients for any mode of sphere one. We éan write a
similar equation for sphere two. Note that the" first t'erm_
_is due to its own mode of vibration; the next term is due to
sphere two’s monopole mode; the next three terms are due to
sphere two’s dipole modes; and the final five terms are due

to sphere two’s quadrupole modes. The Kronecker delta
symbol (6) equals one when the n and m values equal the

-value of the second subscript (i.e. first term exists wh‘en n
=n and m = m). In Equation (11), I have dropped the terms

on the order of (ka) to the sixth power.

i3




A

'-ip,,cV;'f“J 5. +— ,OCV,,Z . |

Aimz-————— o
| Wotka) ™R, (ka)

k | |
111 Ekjg a(o nz,nz,o mh, (kd>5 5.0 <9m¢n>
] ’ (ka) |
" 1 (k)

, .
n+l

qi.l,, s atp.n z,q,m)h (kd)gm*%emq)u)a 3.
- paAmal |

AL
H, (ka)

5 % a.p, z,q,m)h,,(kdmm”(en,m)a 6.

+=2pn.|
PpAm.)
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E. SELF AND MUTUAL RADIATION IMPEDANCE

The approximation for the amplitﬁde’ qoef’fic»ients,‘..
"Equation (11), plays an importaﬁt part of my aerivation of
the radiation impedance. We will also make‘ ﬁse'of a.
relationship developed by New and Eisler (Ref. 8).>
Radiation impedance is defined as the ratio of force exerted
by the radiator on the median to the velodiﬁy of  the
radiator. If the velocity of the radiator is spaﬁially
indepéndent, the calculation is straightforward. H,oweven‘:,. '
when the velocity /does have some spatial. dependence t_hén we

" must use the equation ( means complex conjugate)

VV {ffp(rz)v,(rf)ds where v, = Vjﬂ(r, .

i of the
sphere

Zs=

In applying Equatioh (12), note that the two' identical
~spheres may be radiating in two aistinct modes. ’Us»ing
Equation (12) to determine the radiation impedance  for
sphere one in the presénée of sphere two and komittiAng termsA

on the order of (ka)® we obtain

ez ©.8)ds.
*

Z mode == —
s/ nymy m

V.

| A.lzs-, J,, (ka) 2 a(nl’px’tz’ml’s) o
1AL R <ka>+2 § A e refin) - (13).

=0 sy=-1,

h,, (kd ) Q" (6,,9,)

15




Reference 9 previdee aﬁ',exp;essieniqur_ thee sufface
integral of the _associaied.'Legendre ;poiYnemiais givene‘in
Equation (13). Ueing ;Ehis 'expressioﬁ andf recalling the
*correct"representeﬁion for dS in sphericel coofdinatéé; we‘
obtain a general form for this Sﬁfface integral |

’ . . . -1 /- ' } . )
[ | ®.9)| ds = 2ma* pel) fiemko 14).
' 2) (n—m) | 0

We eap evaluatef'Equatien .(13) for severai different .
'combinatiOns of modes (e.g; vmonopoleeﬁondpole, ‘dipele—
mohopole; etc..) and determine the total radiation'impedeﬁce
fer one sphere '‘due to beth spheres. New and Eisler
represent the total radiation impedance‘of the first'sbhere
into the form Zﬂ: = 2z, +2,*V,/V,, where Z, is the :eelf—
radiation impedance 'and Z# is  the> nmﬁual rediétien
impedance.e For the menopole to monopole case we‘thaiﬁ the‘

following expression for the mutual radiationfimpedance..v

U X N TR
Zu" p0047m [(ka)hlo(ka)]z +0(ka ) E : (15)

Upon evaluating several combinations of modes and
N . . . - g - T

-examining the calculated mutual radiation impedance ‘I was
able to determine an approximate form"for the mutual

radiation  impedance. For  two identical spheres each

16




radiating in a single modé of vibration the mutual radiation
impedance is written as (I omit térms‘on the order of (ka)®)
. i N
| n +— (n1+ml)!poc
252:=_2ﬂu2 ' 2 *
(n,~m,) W, (ka) I, (ka) * (ka)’
/’ .
5 a(n, pomm,m) b, () 6,00,)  (16).

P=’ ny=ny |
p2{my—mj|

© Similarly the general forﬁ for the’ self—radiatibn
impedance for our sphere radiating in a general mode can bé
derived. Eéhation (17) below provideé the general mode
self-radiation impedance (I omit terms on the order of

(ka)®) .

_—2md'ipc (n,+m)! b, (ka) L
Z“ (nl - ml )! h’n, (ka) (17)

1
n +=

. These two expressionsbprovideva quick approximation for
the mutual and self radiation impedances betweeh two spheresv
each radiating in some general mode. I will hereaftef refer
to the mutual and self impedances caléulated using Equatibn '
(16) and (17) as the “Modal Pritchard” approximation;' Néte‘
that the mutual radiatidn impedance expression 'cdnsiders

" orientation between the two spheres. The ﬁolloWing chapter

17




will investigate the utility‘vof ~ the mutual radiation

impedance apprdximation, Equation‘(16)ﬁ'
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III. UTILITY OF THE MODAL PRITCHARD APPROXIMATION

This chaptef will investigate the utility'of the Médal
Pritchard Approximation for two types of problems. ‘ ‘The
first pfoblem involves 1looking at ﬁhe'interaction between
two identical spheres. Three cases of twb-body problems are
studied: monopoles, dipoles, and qﬁadrupoles;. The second
typs‘bf problem involves one specific thfee—body‘where’we
find a 1imitation'of-our‘Modal Pritchard approximétion'due
to its inability to handle scattering. - ‘Throughout this

“chapter I will use a ka value equal to one.

A.. MUTUAL RADIATION IMPEDANCE

1. Monopole to Monopole Case

There are an infinite number of combinations of mode-
mode interactions to consider, even for the case of two
identical spheres. For example, considering only up to the
quadrupole radiating modes we have 9x9=81 cbmbinations of
modes between two radiating spheres to examine. I will
limit the following analysis to just three specific cases.

The first case will 5e an examination of ths mutual
radiation impedance between two spheres radiating as’
: moﬁopoles, also known as the “breathing mode”. The result
obtained using the “Modal Pritchard” approximation will be
compared to what I will call the §Simple Pritchard”

approximation. Named after R.L. Pritchard, the Simple

19




Pritchard approx1mation"was‘ developed' to provide an
expreSsion for the mutual radiation’ 1mpedance for two
cyllndrical sources placed on an 1nf1nite baffle, and was
further simplified by assuming a small ka'value (Ref. lO);

—~ikd

Z.,=-RealZ,)i ekd

(Simple Pr bitchardkapproximation) - | (1 8)

Here Z, is the mutual radiatioh'impedance between elements 1
ahd 2, and 2, is the self radiation impedance of elemeht 1.
 Despite the 'fact that this approximatioh waS‘ made for
cylindrical pistoh sources on a theoretical infinite baffle,
other researchers have used ?ritchard’s approximation for
study of other shaped sources (Ref. 8). ‘Ihhdoing so, the
:self radiation ‘impedance is taken to be the free—field”
value. For the three-dimensional case, Equation (18) can be

written using the spherical Hankel function as

7. = Realz *h,(kd) ,‘ o ,v ?»1(19)-

I w1ll compare our Modal Pritchard approx1mation w1th,,'

the Simple Pritchard approx1mation and note the differences
In applying Equation (19) or Equation (18), T calculated the
self- radiation, 1mpedance 'by con51dering a sphere in free'
field env1ronment. | o .
"To gauge the quality of the Mcdal'and Simple Pritchard
approximatiohs; I have chosehvhto compare,'the results of

these methods against a strict application of the Addition
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Theorem. Please see Appendix A for thebdéscription of.my
application of the Addition’Theorem along with the computer
codes used to generate my results. I choose to use MATLAE
for my calculations because of the user—friendly néture of.
this engineering tool. I 'validated my Additibh. Theorem'
results with Fortran codes written by Professor Scéhdrett.df
the Naval Postgraduate School. | Proféssor Scandrett has
continually improved his code over the last éight~years,
using it for several research efforts (Ref. 11).

Noting the appearance of infinity in Equations (4) and
(5), we are required to truncate to some finite wvalue fof
practical calculations. Mutual radiation ‘impedahce‘
calculations using, the “Addition Theorem” method have
truncated this valueAto six. Even with this Value, the

computer code must solve a large (98 by 98) matrix of

- equations.

Figure (2) shows the calculated real part of the mutual ;
radiation impedénde (resistance) between two monopole
radiating spheres. Similarly, Figure (3) shows the imaginary
part (reactance). N&te first of all that the x-axis of each
plot is the‘ratio of the center-to-center distance bétweeh'
the spheres to the radius of the two (identical)kspheres.

Additionally, the impedance values have been scaled by

ana’pc.
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For both the (res1stance and. reactance parts of the
1mpedance we observe that the results of the Modal Prltchard.
approx1mat10n are 1n excellent agreement w1th results of the
Addltlon Theorem n@thod throughout the plot ranges | The':
results for the Slmple Prltchard approx1matlon do not agree
with the Addition Theorenlvresults, espe01ally' at smaller
values of ‘(d/a), which correspondsb to -closely—spaced
ftransducers An analy51s of the errors between the Modal
Pritchard results and the Addltlon Theorem results, and’
between the Slmple‘ Prltchard ' results and the Addltlon
Theorem results, was conducted.’v"Flgure (4) shows.'the
results of this analysis; iFor ka = 1, the Simple Pritchard
approx1matlon breaks down when the‘ratlo between the center

to center distance and the radlus 1s below 7.5.

Monopole to Monopole Resistance

Resistance (scaled)

10 15 03

Center to center spacipg (d/a)

[—— Addition Theorem —a-— Modal Pritchard —— Simple Pritchard J

Figure 2. Monopole to Monopole ReSistance
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Monopole to Monopole Reactance

o
=

o
fast

Reactance (scaled)
S

0 s 0 15 ' 20 25
Center to Center spacing (d/a) '

F— Addition Theorem —a~— Modal Pritchard —¢— Simple Pritchard

Figure 3. Monopole to monopole reactance

Monopoles: Erfor from Addition Theorem

“Actual error

0 5 10 15 20 2

Distance to radius ratio (d/a)

F' =+ - ~Modal: Resistance Modal: Reactance > Simple: Resistance " Simple: Reactance l

Figure (4). Monopoles, Error from the Addition Theorem
2. Dipole to Dipole Case |
.I cohducted an analysis of the dipole-to-dipole mutqal
radiation impedance, similar to the above analysis I took

the axeé of the dipoles to be oriented alo'ng the‘ axis

‘join'ing the sphere . centers. In terms of multipolarﬂ
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components)’this corresponds‘tobthe n=1,.m=0 mode for'each,r
sphere.  For the Simple, Pritchard ‘calcuiation‘ I FfirSt
multiplied the real part’of‘the‘free—field selffradiation'
_impedance forrthe'hard sphere (osciilating in'a dipole mode)
w1th the approprlate Hankel functlon;, as? represented in
Equatlon (19). ThlS result was then multlplled by three
The reason for this correction factor is - that ’the‘
conventional Simple Pritchard approximation (Equation (19))
does noth account for ‘any' anguiar orientation of the two
spheres. The factor kof 'threet correction;‘was derived by
comparing the Simple‘Pritchard Equationy(lQ)hwith the'fnll
Addition Theorem, vinv a smali‘lka .1imit, for the dipole
-configuration examined (Ref. '12).;,* For Kthis particulari
analysis) I am only con31der1ng one comblnatlon (n-J. m=0,
T1=1 and n5=0)., There are a total of nine (3x3) dlfferent‘
comblnatlons of dlpole to dlpole radlatlon cases

_Flgures (5) and (6) show the real and 1maglnary parts
of the mutual radiation 1mpedance for thlS dlpole to-dipole
case. Agaln, note the good agreement of the Modal Prltchard

results Wlth the Addltlon Theorem results. Notlce how the

errors for the Slmple Prltchard approx1matlon increase as

the ratio of sphere s spac1ng to the radius decreases.
Figure (7) shows the errors between thebresults for both the
Modal and Slmple Prltchard approx1mat10ns as compared to the

results for the Spherlcal Addltlon Theorem : Whlle_ the
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errors for the " Simple Pritchard approximation afe not too
bad for large values of d/a, they become significant'when

d/a is less than 8.0, for ka = 1.

Dipole to Dipole Resistance
0.06
. 0.04 X
g 3
g 002 )(
@
g 0.00 - :
s
B -0.02
g
M .0.04 -
-0.06 ;
0 5 10 15 20 25
Center-center spécing to Radius ratio (d/a) ‘
' [—Addition Theorem ~—A— Modal Pritchard —¢— Simple Pritchard
Figure 5. Dipole to dipole resistance.
Dipole to Dipole Reactance
0.06
0.04
g 0021
§ oo
g -0.02
£
8 -004
§
& -0.06
-0.08
-0.10 :
0 5 10 15 T2 25
Center-center spacing to Radius ratio (d/a)
| mmeme Addition Theorem ——&-—M odal Pritchard —¢— Simple Pritchard

Figure 6. Dipole to dipole reactance
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Dipoles: Ei'rors_from Addition Theorem - _‘
St
g
3
=
8
7]
<
0 5 - 100 15 20 - 25
Sphere distances to radius ratio (d/a)
- -+ - ~Modal: Resistance Modal: Reactance ——>€— Simple: Resistance 2 Simple: Reactance |
Figure (7). Dipoles, Error from the Addition Theorem
3. Quadrupole to Quadrupole Case
~As a final example, I conducted. an analys1s of the
quadrupole- to- quadrupole Imutual radlatlon 1mpedance Two
llnear quadrupoles (n=2 ,.m=0) were cons1dered with their

axes aligned'with‘thevaxis'joinlng the sphere centeré For’
the simple Prltchard calculatlon I flrst multlplled the real
part of the free fleld self radlatlon 1mpedance for the hard
sphere with the approprlate Hankel functlon, again ‘u51ng
Equation (19). 'In this case,‘howeuer, it can be shown that
Equation (19) needs to be multiplied by a correcticntfactor‘
of flVe. .Again, the reason for this correctlon factor,‘as
iln the dlpole case, is that the Slmple Pritchard formula -
does not account for' any angular orlentatlon. of the two
spheres. A,iFOr this ,partlcular!'ana1y51s,' I am only

considering one combinaticn (n=2, m=0, n=2, land‘1¢=0).'u
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:There are a total of twenty-five different combinations of
quadrupole to quadrupole radiation.

Figures (8) and (9) show»the real‘and imaginary pafts
of the mutual radiation impedance for thislquadrupcie—ﬁo—
quadrupole case. We continue to noté thé good agreemént»bfvi
the Modal Pritchard resuits with the Addition Theorém
reéults. Notice ‘again how the error in the Simble Pritchard
results increases as the ratio between the,spheré‘spacing
and sphere radius decreases. Figure (10) shows the errors
between bothkvthe Modal and Simple Pritchard resulﬁs as
compared to the results wusing the SpheriCél Addition
Theorem. While the errors for the Simple Pritchard
approximation are not too bad at 1a;ge valués of d/a, they
become significant when d/a is less than 8.0, for kav# 1.
Thié continues to show ‘hbw the Simple Pritchard
approximation breaks down as the transducers’ spacing

~decreases.
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Resistance (scaled)

v ‘Qua'drupole to Quadrﬁpolé Resistance '

500 - 1000 - - 15.00
Center to Center spacing (d/a)

20.00 25.00°

| = Addition Theorem - - -a--- Modal Pritchard —s¢— Simple Pritchard

Figure‘ (8) . Quadrupole to Quadrupol_e Resiétance

Reactance (scaled)

" Quadrupole to Quadrupole Reactance -

0.01 ’ \

5 0 15
Center to Center spacing d/a)

20 25

| == Addition Theorem -- - & -- Modal Pritchard —— Simple Pritchard

Figure (9). Quadrupole to ‘Qua_drupc';le‘ Reactance
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Quadrupoles: Errors from Addition Theorem |

Actual error |

0., 5 10 15 20 25

Sphere spacing to radius ratio (d/a)

I' - + - “Modal: Resistance Modal: Reactance —> Simple: Resistance "—A'—Simple: Reactance ,

Figure (10). Quadrupoles, Errors from Addition Theorem
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B. EXAMINATION WITH THREE A BODY PROBLEM
To further examine our Modal Pritchard approximation
for the mutual radiation impedance, we considered the

following three—body problem (see Figurenll){

|8
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. Figure (11). Drawing of a Three—Transdu¢er Problem.
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In this problem we will set spheres one and two to
radiate as monopoles. These two transducers will maintain
the same physical dimensions and operating characteristics
as before (i.e. frequency = 474 Hz, sound speed. of 1490

m/sec, radius = 0.5 m, ka = 1, therefore the wavelength
K .
equals 7). Sphere three will be considered acoustically

hard. We éxamine the mutual radiation impedance for Sphere'
dné due to the presence of all three spheres. Additioﬁally,
we will examine the effect of moving the third sphere
horizontally away from the axis of the other radiatiﬁg
spheres. We will investigate the performance of our Modal
Pritchard approximation for this three-body préblem and
compare these results with the results using the‘ full
Addition Theorem. As shown in Figure (11), sphbere three’s
starting distance from the axis is one quérter of a
wavelength (D = m/4).

~Figure (12) shows a plot of the mutual radiation
resiStancé, comparing the results ofv our modal Pritchard
approximation with those of the Addition 'I'heorerﬁ. The x-
axis for this plot, as well as Figures (13) and (14), is the
ratio of the distance (D) to the radius of the spheres.
Additionally, the .results have been’r scaled by 47ta2pc.‘
Figure (13) shows the reactance (or imaginary) porf.ion of

the mutual radiation impedance.‘ ‘Figure (14) shows the
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relative error in the magnitudes of the results for the
Modal Pritchard approximation‘b against those' for the full \
Addition Theorem. Dis‘cussions explaining my results follow

Figure (14).

3-Body Mutual Resistance '

0.09
0.08 /\\
0.07

0.06 \ / =

0.05

Mutual resistance (scaled)

0 5 10 1S 20 25
Scaled distance of third spheré from array axis (D/a) |

| ——— Addition Theorem = = = = Modal Pritchard

Figure (12). Mutual Resistance, Three-Body Problem
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3-Body Mutual Reactance
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Figure (13). Mutual Reactance, Three—Bbdy Problem
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Figure (14). Relative Error, Modal Pritchard vs Addition .

Theorem.
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. The modal‘impédance approxima£ion éé'I am uSing i; here’
- neglects scattering. This is Why wé see the‘straight lines
for the Modal éritchard resuité in'Figurés (12) and (13)€"
Because the Modal Prifchardvépproximatioﬁ does not»acéouﬁﬁ7k
for the scattering;ithis provides an arguﬁent for usiné‘thé
full Addition Theorem to calculate impedance Wheﬁ scattering
is important. Appendix B provides the method and cémpﬁtér
code I used to caléuiate the Additioh Theorem resulté for’ :
this three—body problém. |

Iv defined.‘the relative error, as .plbtted in Figﬁre
(14), as (Modal Pritchard-Addition Theorem)/Addition
Theorem. .Théréfore, diﬁs -in Figure ‘(14f représent'
occurrences when the Addition Theorem résﬁltsvhave a larger .
magnitude than thé magnitude "of the Modal Pritchard
approximation lresults.‘ _ ‘Conversely,t.'peaks, represent
occurrences kfor'\which the Additibn‘ Théorém,.iesults' afev
smaller in magnithde,v‘ Through the use of the Addition
Theorém, one:can show that thesevpeaks and'vaileyé résult
from the effect: of scattering. | | . _

The data uéed to Qenerate Figure (14)‘prQVides the D/é
values where~théSe.valleys and peaks 6ccUrf _The first,two‘
valleys océur at ;hé foliowing,D/a vélues; 2.57°and 6;07.
The first two peak510ccurvat”the fdlidwing D/a'ﬁalués;.4.57

and 7.82.
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I propose and will sketch out how these valleys and

peaks occur, due to scattering effects, by evaluatingrthé :
sum of the pressure waves arriving at sphéfe one. I will
limit this evaluation by oniy looking at the monopole‘case.
Since the Addition Theorem correctly handles scattering, the

Addition Theorem results provide local maximum values when

the scattering waves from sphere three are in phase with the

direct path waves from sphere two. Similarly, the Addition

Theoran results have local minimum values when the

'scattering waves are 180° out of phase with the direct
‘path’s phase. Our Modal Pritchard approximation does not

~handle the scattering effects, note the flat plots in

Figures (12) and (13) for the Modal Pritchard results.

Using the Addition Theorem and considering only the
monopole case, the pressure waves are of the form  of
outgoing spherical Hankel fﬁnction as shown below.

W E)=i)K k) (20)

An examination,of the direct path wave from sphere two
to sphere oné and of the reflected wave from spheré two,
reflected off sphere threo towards sphere one, was completed‘
by Professor Scandrett‘(Ref. 12). The expfeséion for the
sum of these waves at spheré‘one is provided below. The

first term in the bracket is due to. the direct path and the
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second term is due to the reflected‘(scattered) wave. The A"

is some arbitrary amplitude coefficient.

. . , R | o
Aj k)] a)- 28wty @)
Y Kka)™ )

A plot éf Equation (Zi) ié.provided in FigufebkiS)vin'
terms of D/a versus magnitude. The peaks'of Figufe.(iS)
match‘the‘valleys'of Figﬁre (14),‘ Similarly,:local minimums
of.Figure (15) matchlﬁhe peaks of Figure (14). The first
two peaks of ?igure_(15)~aré ét D/a values of 2.57 ahdl6.07
and the firét two 1oca1 minimuﬁs'are at D/a values of 4.57
and 7.82. . Tﬁe nakimum values occur When‘thé scattering
waves are ih phasé’with the direct péth waves. The minimum
~values of Equatioﬁ (215 occur When ﬁhé scattering wave is

180 degrees oﬁt of phase‘with the‘direct paﬁh.

Equation (21)

0.345

0.340
0335 I\

£ 0330 /
2 l
Z 0325

\
A
£ 030 \ o~
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0315
0310 J
0.305

0 .5 10 15 20 25
_Ratio of distance sphere three to array axis to radius (D/2)

Figure (15): Plot of Equation (21)
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Figure (16) provides an additional draWing of this
three—body problem and shows the distance parameters (d,, and

d,,) used in Equation (21).
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Figure (16). Three-body problem drawing two.

Again, the full Spherical Addition Theorem is
recommended over our Modal Pritchard approximation when
scattering is an‘important consideration as in this three-

body problem.
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IV. NUMERICAL MODELING WITH ATILA | |
Thisvchapter describes the ATILA finite-element model
used‘to calculate the séattering of acoustic waves from an
elastic sphére in water. The goal is to compute the so-
called T-matrix, which relates the scattered waves to.the’
incident waves, in an orthogonal (spherical harmonic) basis

set (Ref. 11).

A. MODEL INTRODUCTION

A few comments about ATILA are appropriate ‘at this
time. As ﬁentioned in the introduction, ATILA ig a French
designed finite element code specifically developed to model
sonar transducers. ATILA, written mostly in standard
FORTRAN 77, is the result of many years of research dbne at
the Insitut Superieur d’Electronique du Nord. It is quite
large, consisting of over 200,000 lines of code (Ref. 13).

This tool has been used by NPS faculty and masters

thesis students for several years ahd has been‘updated at

least three times. Recent studies have helped to identify

needed modifications to the code} such as increasing the

maximum allowable number of degrees of freedom, and‘

modification of the numeriéal techniques used to handle the

radiation boundaries. For example, during the calculation
of the entries for the transition matrix (T-matrix) there

were noted errors when compared to answers derived from a
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known analytical solution to the problem (Ref. 11). The
ATILA - version I "used (5.1.1)‘,did ’increaée' the maximum
allowable degrees'of freedom,~but has yet'to address»the:

radiation boundary problemn. |

B. ATILA AND MESH DESCRIPTION

1. About the Model

‘A distinguishiﬁg characteristic of ATiLA:is_the use of
isoparametric elements for both the shell e1ements and the
fluid elements. Isoparametric elements are’elements that
use the same shape'funétion for geometric'mappihg as well as
field. calculations (Ref. 4).  The major advantage of
isoparametric elements is that they lend themselves wellth’
numerical integration. This is because of’the‘nature of
iSOparametric elements. These elements are defined in the.
natural domain to be mnormalized, thus making"numerical
integration much easier to apply  (Ref. 43 . Also;‘ when
isoparametric elements are used, fewer nodes ere needed to
define the meeh than withdut such elements.

Other ‘numerical techniques for ‘selving the‘ aCoustie
equations have been used by U.S. Navy 1abs.‘f0ne method used
for many years at the Naval Ocean Systems Center is called
'CHIEF (Combined Helmholtz‘_Ihﬁegrai ‘Equation 'Formulation)
(Ref. 2). CHIEF, which ﬁodele aeoustic ‘radiation from
bodies with arbitrary shapes does not use isOparametfic

elements. Thus we should-expect‘a higher degree of accuracy
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with ATILA over CHIEF. One advantage to CHIEF is that the

radiation boundary condition is “‘built—in” to the boundary
element by iﬁs use Qf the Hélmholtz Integravl Equation.
Currently, 'this provides an advantage over ATILA, which
empl(')ysv so-called “monopolar” and “dipolar” “dampers”.
These dampers ‘can not represent a perfectly‘ absorbihg
radiation boundéry fdr a higher order multipolar field.

The basic set of eqgquations that alléw for a ,large‘
number of analysbis to be performed vinclude elasticity in the:
structure, the Helmholtz equation in the fluid, and
Poisson’s equation in the elastic or piezoelectri‘c material."

Primary x/"ariables found using ATILA include the displacement
field U in the whole structure, the electric potential & in

the piezoelectric material, and the pressure P in the fluid.

In matrix form the equations are as follows (Ref. 13).

(kJ-o'lmM) [k -]

k) k] Dol

e IS
Il
I
Q-
../\
©)
>

-pewll]” ) (al-olu)

Vectors in the above equations are:
U=nodal values of the components of the displacement field,

@=nodal values of the electric potential,
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P= nudal values of the pressure field,
F=nodal values of the applied forces,
g=nodal values of the electrlc charges, and

¥= nodal values of the integrated normal denvatlve of the pressure on the '
surface boundary S. :

Matrices in Equation (22) include
~ Kuu = stiffness matrix,

Ku¢ = piezoelectric matrix,

K g = dielectric matnx

M= con'sistent mass matrix,

H= ﬂuid (pseudo-) stiffness matrix,

'Ml = consistent (pseudo-) fluid mass matrix,

L = coupling matrix at the fluid structure intefface, and
- O = zero matrix. | |

In addition,

w = Angular flfequeney,

p = Fluid density,

¢ = fluid sound speed, and

T = means transposition of a matrix.

2. 'i'hree—dimensional Fluid'Mesh

To run this and other finite element’ fnodéls 'youlb need to
split the region under study into elements, the ATILA code
has an extensive llbrary of elements ava:.lable "i‘hes‘e

elements are distinguished by a set ordering of nodes and
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the node coordinates. Figures. 16 provides a Mercator‘;
projection of the eight “super-elements” used for one of the
‘several.l lay-ers under study. These super elements are the
start of the mesh generation. The solid li_r‘ies and nodes
(dots with numbers) define the super-elements. The dotted
lines show how the super-elements are sub-divided. Laid out
3-dimensnionally, Figure 17 represents the_ s’uper—elements”
thatv make up the spherical transduéer undér "study, a
spherical shell with a radius of 0.5 m. . Usihg‘a finiter
element mesh generator called MOSAIQUE, I builtv a compl'ex‘
mesh of the entire field u_sing the super—elements, using
special instructions for subdividing the elements into‘r a
- large number of elements and nodes that will ‘define each
layer of the field. Figure 18 provides a detailed look of
the field under ‘-study (the fluid outer boundary is at 5
meters) . | |

There are several layers that méke up the entire mesh
some of which are full-layers and some are mid-layers. Eaéh
fuil-layer consists of 194 nodes of which 18 are nodes’ of
thé super-elements. Mid-layers have a total of 62 nodes.
Starfing from the innermost radiué and working outward, the

complete three-dimensional mesh consists of the followingk

layers. First is the shell layer that ‘consists of 194
nodes. This is the actual spherical shell transducer that
is being analyzed. Next, another 194 nodes are used to
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describe the inierfaceveiements used to‘model;the éheli—to-
water interfaée. This 1ayer  §hares.‘thé same coordinate
locations as the shell’s hqdés; Fbllowing this are ten
fluid layers, thevfirst'tWo of which aré O.25 meter thick
and the remaining.are'l;b meter thick. Each»fluidvlayer
consists» of a full—laYér and a ﬁid~layér.  Finaliy'
completing this‘three-dimensibnal mesh we have the radiation
boundary elements; These,_last  elements are used'fto
prescribé.monopolaréonly or monopolar ahdvdip6laf radiation

boundary conditions and are used to terminate the mesh.

Figure 17. 'Thé Super-Element (MaCerator'projection)f
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Figure 18. Super-Element (3-Dimensional view)
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Figure 19. The complete Mesh
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V.  NUMBERICAL MODELING WITH’ATILhz RESULTS AND DISCUSSION

A.  OBJECTIVES AND THE T-MATRIX

My objectives for the numerical modeling portion of
this thesis were to investigate the fiﬁite element mesh
mentioned earlier, siﬁplify the procesé of calgulating the
Transition Matrix (of_T—Matrix), and provide a new method of
evaluating the off—diagonal elements of the T—matrixfﬂ The
finite element code is used to numérically‘c;lculaté the
scattered ﬁressures from an object under study. We_then'use
these results to calculate the object’s specific T-Matrix.

'In this'chapter, I will doéument the results of the T-
matrix calculation and compare With previous numerical
modeling efforts. Several references mention and thorbughly
discuss the definiﬁion, usage,‘and célculation of‘the T-
Matrix (Ref. 3 and 5). I will simply mention here in the

text that the T-Matrix describes the scattering properties

of a specific body. It does this by using a discrete basis

set spherical harmonics in our case, and is used to show how
the incident pressure waves translate to scattered waves

from the body. Please see Appendix C for more information

’about the T-Matrix and how I calculated the elements of the

T-Matrix for our radiating body.
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B. RESULTS

" In order to gauge the‘réccuracy‘ of '6pr tT—Métrix
calculation we compare our answers with ~an analytically
derived equation;; An expandéd_discuésion of thé derivatidn ‘
of the anélytical solution cén be found in a Master’s Thesis
by Ruiz (Ref. 5 and reférencés therein).  For a thin.

spherical sheli thé T-Matrix is diagohal, and are given by
R_=— .Z ]:,( ) pf.CfJn( ) ~ | (23)

where

__‘.hc,,,Os [sz‘—2(1‘+v)](£‘22+l1¥vﬂ—/‘1n)-’/1n(1+.v)2. o
Q +1+v-4_~ -

- | .
Q=—", ¢,= |———mls, o=2xf, A=nln+l)
Co ps(].—V) o S o
v = Poisson’s ratio (0.33); h = shell thickness (1 cm)

¢, = shell’s plate velocity

E = Young’s modulus (0.125x10%)
a = spherical shell radius (0.5 meter) |
p. = shell’s density (1500 kg /m’); f -~ =  frequency (474 Hz)

P, and ¢, = fluid density (1000 kg / m*) and speed (1490 m/ s).

The calculation for this analytical solution was

performed using MATLAB and the computer program can be found

at the end of Appendix C. In the following discussion, when




referring to errors, I am comparing the calculated wvalues

with the analytical solutions from Equation'(23).~

Using the thin spherical shell parameters listed above
and the MATLAB computer script provided in A@pendix c, T
celculated the analytical'T—Matrix diagonal elements (the
off—diagonal elements are zero for a spherically symmetric
These diagonal elements are previded in Table‘I

scatter) .

below. A value of ka = 1 was used (frequency #v474 Hz) .

ANALYTICAL DIAGONAL T-MATRIX ENTRIES
ELEMENT REAL IMAGINARY | MAGNITUDE PHASE
PART PART , (DEGREES)

Tu=Rep -1.3465E-02 1.1525E-01 - 1.1604E-01 . 96.6635
Tn=Ria -6.0255E-03 7.7390E-02 7.7624E-02 94.4520
Ts3=Ryo -6.0255E-03 7.7390E-02 7.7624E-02 94.4520
Tu=Ry -6.0255E-03 7.7390E-02 7.7624E-02 94.4520
Tss =Ry, -6.1773E-04 -2.4847E-02 2.4854E-02 -91.4242
Tes =Rzt -6.1773E-04 -2.4847E-02 2.4854E-02 -91.4242
Tr=Ryp -6.1773E-04 -2.4847E-02 2.4854E-02 -91.4242
Tss =Ry -6.1773E-04 -2.4847E-02 - 2.4854E-02 -91.4242
Too =Ry -6.1773E-04 -2.4847E-02 2.4854E-02 -91.4242

. Table I. Analytical Diagonal T-Matrix Entries.

I then used the finite element code (ATILA) to mode1 
the"scattering 'pressure field ‘generated by the“thin
spherical shell. With the scattered pressure results, I‘
calculated the T-Matrix entries coiumn by column. These

results are provided below in = Table II.
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- Numerical Diagonal T-Matrix Elements
Element Real Imaginary Magnitude Phase

Part ‘Part _ (Degrees)
Tn -1.6107E-02 1.2894E-01 - 1.2994E-01 - 97.1202
Tz -8.0999E-03 7.9943E-02 8.0353E-02 95.7855 -
T3 -7.7968E-03 7.9777E-02 8.0157E-02 95.5819
Ty -8.0801E-03 7.9946E-02 8.0353E-02 | - 957713
Tss -2.1393E-03 -1.5865E-02 1.6009E-02 -97.6794
Tes -2.2524E-03 <1.5923E-02 1.6082E-02 -98.0513
Tr . -2.1536E-03 -1.5930E-02 1.6075E-02 -97.6994
Tss ~ -2.2501E-03 -1.5925E-02 1.6084E-02 -98.0420
Too -2.1498E-03 -1.5860E-02 1.6005E-02 -97.7193

Table II. Numerical Diagonal T-Matrix Elements.

Table III; next page, 'prdvides an errxor analysis for'
the cufren’; results. »Unf»oft‘unat‘eiy, the monopble r;esu‘Z_I.t
(i.e. the first. diagonal element) ."is much worse ‘thaﬁ
previous results. AZ‘Ll; o_thér diagonal .eleinenﬁs show some
improvement over pi‘eviéUs »wcljrk, between 6 arid"5'6 percent
imp.r‘ovement- in the‘ir- magnitudes. A_Bﬁt-',the most ’important"
indicétdr is the monopole element; therefore, our new mesh
does not provide a'significarit in.lp‘rovement .to '@:he ‘f—Matrix

calculation. As the ATILA code is further improved we hope

that these errors will be corrected.
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Error Comparison Current vs. Previous

Magnitude

Element Magnitude Phase Previous Previous Phase
Error Error Mag. Error Phase Error Improve Improve
(percent) (Degrees) (percent) (Degrees) (percent) (Degrees)
i 11.984 0.457 -0.910 -0.360 -1216.94 -0.10
Txn - 3.515 1.333 6.490 0.329 45.84 -1.00
T3 3.263 - 1.130 7.330 -0.500 55.48 -0.63
Tu 3.516 1.319 6.470 0.314 45.66 -1.01
Tss -35.588 -6.255 -37.800 -9.186 5.85 293
Tss -35.296 -6.627 -38.000 -9.006 7.12 2.38
Ty -35.324 -6.275 -37.700 -7.823 6.30 155
Tss -35.288 -6.618 -38.000 -8.986 7.14 1237
Too . -35.605 -6.295 -37.900 -9.106 6.05 2.81
Table III. Error Comparison Current vs.

Previous.

The T-Matrix must be diagonal due to the symmetry of

the object.

be ~zero.
diagonal
elements
the new

diagonal

That means that the off-diagonal elements must

Previous v(rork documented eight significant off-

elements.

are the most significant off-diagonals.

Current results reveal these same eight

However,

results show improvement, meaning the new off-

values are much closer to zero than previous

calculations. Along with matching the analytical diagonal

elements, making all off-diagonal elements closer to zero is

another indication of how well our finite element method is

working. Table IV offers a comparisoh of this improvemént. -'

The last column of this table shows the percentage closer to

zero the new off-diagonal magnitudes are compared to the

previous

work.
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SIGNIFICANT OFF-DIAGONALS

- Improvement

Element ~ Real Imaglnary
~ Part - Part (percent closer to zero)
Tn 3.21650E-04 6.87400E-04 18.96
Te2 -9.89950E-08 -1.78470E-07 199.12
T4 -3.02040E-18 8.25020E-19 100.00
Tos 1.18910E-07 -9.80070E-07 195.46
T2 3.69920E-06 1.98190E-06 62.58
Ty -5.87890E-04 -1.30000E-03 79.74
Tas 9.56520E-07 - 2.56450E-07 98.07
Tso 2.68580E-04 1.18460E-04 97.69
Table IV. Significant Off-Diagonals.
C. FURTHER ANALYSIS AND DISCUSSION

Some Matrix algebra is employed to further characterize

how well the T-Matrix off-diagonals were 'calculated.

The

following‘ equation brovides*a hormalization ‘method used to

characterize the off-diagonal elements relation to one.

....LOO.
I,
0 10
T,
0
0

O” 11\».

0| '

0s &

0 || errors
1

1Ws&“

.. errors

88

99

00-- 0
L0 -0
o L

(24)

By multlplylng both s:Ldes of the T- Matrlx w1th the ‘

diagonal matrix as described in Equation (24) I w:.ll obtaln
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a matrix with bne’s along the diagonal and relative errors
in the off_—diaéonal elements. By examining the magnitudé_s
of the most signif:icant off-diagonal elements, I can quickly
gauge how “well” I calculated the T-Matrix. Again we see
the same eight off-diagonals show the most significant -
levels with respect td the normélization. Although they ‘Aare
the most significant they are small. This method of
analyzing ‘the T-Matrix’s off-diagonals provides a “kquick—
check” as to how' well our numerical ‘analysis is workinvg.,
Table V provides our results for this analysis. Notice how
small the magnitudes of these elements. All other elements

have magnitudes on the order of element T, and smaller.

T-MATRD( NORMALIZATION ANALYSIS
(MOST SIGNIFICANT OFF-DIAGONALS)

Element Real Imaginary Magnitude
Part - Part
Tn 6.96163E-03 1.50759E-02 1.6606E-02
Te2 -2.65519E-06 -5.01816E-06 5.6773E-06
Tss -8.44548E-17 2.12802E-17 8.7095E-17
Tos 5.96808E-05 1.55646E-05 6.1677E-05
Tas 1.01798E-04 5.71578E-05 1.1675E-04
Ths -1.30097E-02 2.89475E-02 3.1737E-02
Tag 2.64606E-05 7.65933E-06 2.7547E-05
Tso -9.58209E-03 1.56365E-02 1.8339E-02

Table V. T-Matrix Normalization Analysis. -
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VI. CONCLUSION AND FOLLOW-ON PROPOSALS

A. CONCLUSION ;

I have derived an approximation for the self and mutual
radiation impedances for spherical transducers of small ka
values by considering two sphereg in isolation. ‘In this
thesis, I have decided to call this approximation "Modal
Pritchard”. This approximation was tested for a general
sphereiof radius a=0.5 meters, frequency of 474 Hz, in water
with sound speed of 1490 m/sec. Two general‘problems were
tested: (1) two bodies radiating in three modes (monopoles,
aligned dipoles, and aligned-linear quadrupoles)vand (2) a
three-body problem in which two bodies radiated in an array
and the third»acts as a moving scatterer. In all the two-
body problems, the Modal Pritchard approximation provides
mutual radiation impedance results close, if not exactly;
matching the full Addition Theorem results. The same cannot
be said for the threé—body problem where scattering is
important. Therefore, when scattering is_ important 'wé
recommend using the’full Addition Theorem. In some cases,
our Modal Pritchard approximation may be a useful tool in
the design phasc of low-frequency active sonars.‘

The numerical nmdeling portions of this thesis have
updated and streamlined the process -of calculating the

scattering characteristics and T-matrix for an object under
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study. " Using. a morek réfinedA mesh,» only a .partial
improvemént has'béen‘fealized‘fér‘thé T-matfix calculation"
for a thin Spherical—shéll radiétor.  Unfortunateiy, cﬁrrent.
work showed worse errors for the monopole eiement of the T-
Matrix. | o

We also noted some improvements in the:caléulatién of
the offfdiagonél  eleménts. _’ Most .off—diagonal elements
- showed an'impfovemént of between 63 to loo_percent ciosér'to
zero as compared to previous work.’vI also‘prdvidéd a quiék
and easy means for determining héw well we calcuiated the.T—
matrix off-diagonal elements by “norﬁaliﬁing” the matrix.
With this prodess, we can quickly gauge the off—diagonélv
elements. As a result, seven’off—diagona1 e1ement;.wefe
between 0.02 and 0.000006 as compared txbrthe number one.
All remaining off4diagonal elementé (65)iwere smaller;thén
9.0*10"" (most significantly smaller). Current work shows
our T-matrix caicﬁiation was worse/thén previous‘WOrk'for
 the monopole element, but showed some improvements for other
ieleménts of the T—matrix. Theré‘is still room for.further>
improvément which may be realized when ATILA radiation

boundary probléms are addressed.

sy
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B.  FOLLOW-ON PROPOSALS |

| Further work with the “Modal Apptoximation”‘ to the
mutual radiation impedance include Stuinng other probleﬁs
such'és arrays of multiple transducers and éalculating the

pressure field generated from their radiation. This

' investigation does not need to be limited to comparisons‘

~with computer generated results from the Addition Theorem.

Follow-on work could use this Modal Pritchard approximation
to éompare' with laboratory results of :eal transducers.
WithvneticuIOus data gathering, one could stﬁdy how weil
this approximation'does in the “real” World.

| As mentioned earlief, there contihues vto reside'
problems with the radiation boundary treatment in ATILA."
This problem was to have been addressed With an even newer
vérsion of ATILA to ihclude a tool called EQI. 'In'feference
to the second portion of this thesis, it is hoped that this
modification will further improve the T-matrix caiculation.‘
Currently, about half of our T-matrix diagonal elements show
magnitude errors below 7.3 percent and the rest are about 38

percent in error. Current phase errors are below 9 percent.

. Further analysis using the modified ATILA with EQI may reach

our goal of relative errors below one percent. Future work
could also use other refined meshes that may also provide

further improvements.
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APPENDIX A: ADDITION THEOREM CALCULATION OF MUTUAL RADIATION
IMPEDANCE ' : '

Here I will explain how I used the addition theorem to
célculate the mutual radiation impedance for two‘ identically
hard spherical shells. I will refer to some equations in
the téxt of this thesis throughout this explahation and willv
prévide my MATLAB program alorig with some wuser defined
functions. }

Recall the épplication of the Addition Theofemjto write
the pressure from one sphere relative to the goordinate
system of the other sphere, Equations (4) and (5) of thé‘
text. The application of the boundary conditions as written
in Equation (6) brings us to Equations (8) and (9). I will

rewrite the last two equations here.

\
. m;
zpocV,nl

b, ka)

\h p}(kll )Q?:ml(elz 9¢,2)
—ipcV” BB

tsi g’
- = Ag m + t=0 s~ s hﬂ.g(ka) D, tl'nzl
h (kd) 2'77e2
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/

, v _ \
Jn (ka) tn, ° | |
* a (nz’pz’tx’mz’&)*

p 2 S 1_mz|

1 lkd JO T -0, 7+9,)
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These two équations are put into matrix form as'given_
by Equation (10) . Notide the infinityb sign in the

expression above. . For practical purposes we have to

truﬁcate this dinfinity ﬁo SOme finite numbér K. UsingvK
6, the left hand side of Equétidn (10) becomes a 1arge‘98kby
98 matrix multiplying a 98 element column vector for the
left hand side and the 'right;"hand side is 98-element column
vector with only two noﬁ—zeib éntries. We solve for the
amplitudes in MATLAB by using a forWard divide as follows.

, Al S } _ -
1 B . "C_:l S ’__>YA1
Al = where A=

-

2l A2

With K = 6 the matrices have the following sizes,

s 1 0 o4 [As]T
98x98 O8x1 |= ¢ solving |  |=| 98x98 |/ ¢ .
Sl o I I i

Now we have ‘solved the.ﬁnknown A-coefficients and'are
ready fo use these results to find.'the ‘mutual radiation
impedance. | |

Using ﬁquation (13)  with’(our' solVed: A—coefficieﬁt

values, we can easily solve for the radiation impedance, *

60




. given that the total radiation impedancé can be written as"

Z, = Z

. . +Z,*V,/V,. I first solve for the total radiation

impedance by setting both V’s equal to one. Then by setting

V, = 0 I obtain the self-radiation impedance (Z,) result. I

then subtract 2z, from Z, to obtain the mutual—radiatioh
impedance (Z,) result.

Here are the MATLAB computer‘scripts used to generate
these results along"with all supporting uéer defined

functions written for this analysis.

MATN MATLAB PROGRAM

% Joseph L. Day

% Mutual impedance using the Addition Theorem

% 2 spheres along z-axis, with top sphere moving away

% Last updated July 27, 1999

format long

K=6; % Truncated integer vice infinity

- K2=(K+1)72; % Useful number, it is the size of many vectors
k=2; % Acoustic wave number.

radius=0.5;ka=k*radius; % Both spheres with same radius.
theta=0;phi=pi; % Angle from 2’'s origin to 1l's
nl=0; ml=0; n2=0; m2=0; % Defines the mode for each of the
two spheres '

positionl=1l; % Positionl and Position2 are integers change
position2=1; % as follows: nl=0,ml=0 then positionl=1l; '

% nl=1,ml=-1 then positionl=2; and
‘ % nl=1,ml=0 then positionl=3,..and so on.

Vv1i=1;Vv2=0; % Spheres wvelocity amplitudes

% Both equal to one gives Z(total)
: : % With vl=1l and V2=0 gives Z11
speed=1490; % speed of sound in the water.
rho=1000; % density of the water.
templ=eye (K2) ; temp2=zeros (K2,K2) ; :
Big=[templ temp2;temp2 templ]; % Matrix allocatlon

count=1; % Initialize a counting process

for d=2.5:.25:24 % Distance with 0.25 meter incfement
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countl=1;count2=1; % Counting process.
Btempld=zeros(1l,K2); ’ o
Btemp2d=zeros(1,K2);

for t=0:6 ' : o - o ;;

for s=-t:t -
ptempla=abs (t-nl) ; ptemplb-abs(s—ml),
ptemplc=max (ptempla,ptemplb) ;
ptemp2a=abs (t-n2) ; ptempr-abs(s-mZ),
ptemp2c=max (ptemp2a, ptemp2b), '
count3=1l;countd=1;
s for pl=ptemplc:2: t+nl
M=s-ml; v
if pi1<0
P=(-1) abs(M)*fact(pl abs(M))
fact(p1+abs(M))*legendre(pl cos(theta)),v
“else _
P= legendre(pl cos(theta)),
end
Btempla:a(nl,pl,t,ml,s)*shankz(pl,d);
Btemplb=P (l+abs (M) ) *exp (i*M*phi) ;
Btemplc(l, count3) Btempla*Btemplb
count3 count3+1; .
end :

Btempld(l countl)= sum(Btemplc)*jprlme(nl ka)/hpr1me(nl ka),
countl=countl+1;
for p2=ptemp2c:2: t+n2
M=s-m2;
if p2<0
P=(-1) abs(M)*fact(p2 abs(M))/
fact (p2+abs (M) ) *legendre (p2, cos (theta-pi));
else ,
P=legendre (p2, cos (theta-pi));
end
Btemp2a=a (n2,p2, t,m2,s) *shank2 (p2,d) ;
Btemp2b=P (1l+abs (M) ) *exp (1*M* (phi+pi));
Btemp2c (1, count4) Btemp2a*Btemp2b
count4 countd+1l;
end

Btemp2d (1, count2) sum(Btemch) jprlme(nz ka)/hpr1me(n2 ka) ;
count2 count2+1
end
end
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Big(positionl,K2+1:2*K2)=Btempld; $%$Placing values
Big(K2+position2,1:K2)=Btemp2d; %in the proper row.
C(2*K2,1)=zeros;

C(positionl, 1)——1*rho*speed*Vl/hpr1me(nl ka);
C(position2+K2, l)=-1*rho*speed*V2/hpr1me(n2 ka);
A=Big\C;

Temporary—sum(conj(A(K2+1 2*K2,1))". *Btempld*sbessg(nl ka))*
hprime (nl,ka) /jprime(nl, ka) ;
Zrl=4*pi*radius”2/V1*(A(1,1) *shank2 (nl, ka)+Temporary),
Zrvector (count) =2rl;
count=count+1;
end :

Zrlscaled=erector/(4*pi*radiusA2*rho*speed);

This last value is the final answer and has been

scaled for plotting purposes.

Also for plotting purposes the final answer is calculated
for ranges (d/a) from 2.5 to 24 in increments of 0.25.

All plots were done using Microsoft Excel, since that
program works better with Microsoft Word for cuttlng and
pasting graphs.

P d@ P o o° o o
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Supportihg user defined functions:
function A=a(s t,r,u,m)

% computes the function a(s,t,r,u,m) of the Addltlon Theorem '
% : as written in King and Van Buren : o

% ertten by Joseph L. Day
numl=(2*s+1)* (2*t+1) *fact (s- u)*fact(t—
m+u) *fact (r+m) *fact ( (s+t+r) /2);
deml=Ffact ((r+t=s)/2)*fact((r+s-t)/2)*
fact((s+t- r)/2)*fact(s+t+r+l),
© terml=numl/deml; :
wmin=0.5*max([r-s-t,s-r-t- 2*m+2*u t-s- r+2*u]),
wmax=0.5*min([s+t-r, r+t s-2*m+2*u, r+s-t+2*ul);
sum=0; .
for w=wmin:wmax
sum=sum+ (-1) *w*bc (s+t-r, (s+t- r)/2+w)* :
bc(t+r s, (t+r- s)/2+m—u+w)*bc(s+r t, (s+r t)/2- u+w),

end :
A=real (i" (s+t—r))*terml*sum; % Output from thls functlon

function y=bc(n,m)
- % Computes the binomial coefficient

% Written by Joseph L. Day
if m<0 :
- y=0;
elseif n-m<0
y=0; ‘
else , , ' '
y=prod(1l:n)/ (prod(l:m)*prod(l:n-m)) ;
end . ‘

function y=fact(n)

% Computes the factorial of n
% Written by Joseph L. Day
y=prod(1l:n);
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function hn=shank2(n,x)

% Computes the Spherical Hankel function of the second kind
% Written by Joseph L. Day
hn=sqrt (pi/ (2*x)) *besselh(n+.5,2,x);

function jp=jprime(n,x)

% Computes the first derlvatlve of the Spherical Bessel
% function.
% Written by Joseph L. Day
jp=sqgrt(pi/ (2*x)) * (besselj (n-.5,x) -

(n+1) *besselj (n+.5,x)/(x));

function hp=hprime (n, x)

% Computes the first derivative of the Spherlcal Bessel
% function.
% Written by Joseph L. Day
hp sgrt(pi/ (2*x)) * (besselh(n-.5,2,x) -
(n+1) *besselh (n+. 5,2,x)/(x));

" function jn=sbessj(n,x)
% Computes the Spherical Bessel function

"% Written by Joseph L. Day
jn=sqgrt(pi/ (2*x) ) *besselj (n+.5,x);
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APPENDIX B: THREE-BODY ADDITION THEOREM CALCULATION

The solution for the mutual radiation impedance of the
three—body problem as described in the Chapter IIXI parﬁ B
using the Addition Theorem is provided in this aﬁpendix. Wé
start by writing the three’radial velocitiesvas.expressed in
Equation (2). The pressure from each of the three spheres
(before we set sphere three‘as acoustically hard) can be
expresséd in the form of Equation (3). | |

As before we utilize the Addition Theorem to write the
pressures from spheres 2 and 3 relative to spheré oné (sée
EQuatiOn (4)). This gives us the expressioh for P, and P, .
The boundary conditions on the surface of each of the

spheres leads to the following three equations.'

—_-Z___a__r ! ! ,
—wpoar .P1+P2+P3] pima

= 2pipi+pl|
a)poar 2 1] 3 .

a i 3 3
V2= / —_P3+P1+P2]
,wpqar r=e

Then we obtain three big equations that are similar to

Vi

V.

Equations (7) and (8) each with an additional term. For
~example looking at Eqﬁation (7), the additional term will be
much like the term in the parenthesis but will involve the

coefficients for the third sphere (&’).
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Eolléwing a similar approach as used in Appendix A, we
put our Equatiqn (7)—type 'ex‘pr‘essio'ns in matrix form. We
can write the following matrix relation.

_IB12 ‘B;—Fv - i Cl , —)Al
|B: 1 BA| =|c2| where A= A°
B B Il | | |0
) Ll e 1A

As before we will truncate ‘the infi"nity value to K = 6

gives expression of the follow‘ing‘éizes.

— —

. - _A,S o Cl | . B —A,S" T . ‘ Cl 1
1472147 || 147x1 | = | o2 |sobving | |=[147x147 |/| 2
) JL 1| ] L 1]

We have solved for the three sphere coefficients and
are now ready to complété our eva;uation of the mutual
radiation impedancé. Using~ Equation (13) with these A-
coefficients I can solve for the radiation impe’dance. Now I.
‘can write sphere-- Qne’stotal J':édiation.impedance as Z, - Z,
+ Zu'*Vz/V1+Zﬁ*T/’3/V1.; ' Now I make sphere three acoustically
hard by setting the radiél Veloci'ty‘amp‘]-.‘i.tude‘v in my co'mputerv .
code to \z.ero. Next I solive for the total radiation
impedance by settihg sphere onek and‘ two:’s‘ radial velocii:y
ainplitudes equal to one. I store th‘is’ .r'esult' and then

- calculate sphere on"e”s' self-radiation impedance by setting

68




sphere two'’s radial velocity amplitude to zero. I subtfaét
this last result from the total'radiationAimpedance, and‘v
that proﬁides my mutual radiation impedance for sphere ohe
dué ﬁo all three'épheres. The piotted data is calculated by
incrementing the range of sphere three as it moves away from
the twd—sphefe axis;

Here is the MATLAB computer code used to generate these
results. All supporting functions have already been -

provided.

MATLAB Program for 3-body mutual radiation impedance

% Written by Joseph L. Day

% Mutual impedance using the Addition Theorem

% Two spheres radiating, third (hard) sphere moving away
% Last updated August 16 1999

format 1ong

K=6; % Truncated integer vice infinity

K2=(K+1)"2; , % A useful number

k=2; % waveNumber. '
radius=0.5;ka=k*radius; % for all three spheres
theta=0;phi=pi; % Angle from 2’s origin to 1’s
nl=0; ml=0; n2=0; m2=0; %

Defines the mode for each sphere
n3=0; m3=0; : : :

positionl=l; % Monopole position for matrices
position2=1; % another monopole;

position3=1; % like a monopole
V1=1;Vv2=1;V3=0; % spheres velocity amplltudes
speed=1490; % speed of sound in the water
rho=1000; % density of the water

templ=eye (K2) ; temp2=zeros (K2, K2),
mg—namltaWZtamzta@Zta@ltamztm@Zta@Zt@mﬂ,
% setup some space for future calculation

count=1; © % initialize a counting
process

phicheck=0;
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for d=pi/2:.25:24 ' % Distance with 0.25 meter
increment - T e ~ ’ :
-d12=pi; v o
‘countla=1; count2a 1; count3a 1 % 1n1t1allze ‘counts.
countlb=1;count2b=1;count3b=1;
Btemplda=zeros(1, K2); Btempldb zeros (1, K2),
Btemp2da=zeros (1,K2) ;Btemp2db=zeros(1,K2) ;
Btemp3da=zeros(1,K2); Btemp3db zeros (1, K2),
for t=0:6 L
for s=-t:t - ‘
ptempla abs (t-nl) ; ptemplb-
‘abs (s-ml) ; ptemplc—max(ptempla ptemplb),
ptempZa abs (t-n2) ;ptemp2b=
abs (s-m2) ; ptempzc—max(ptempza ptemp2b),
ptemp3a=abs (t-n3) ;ptemp3b=
abs(s-m3) ; ptemch-max(ptemp3a ptemp3b),

count3=1;counté4=1;count5=1; count6 1; count7 1; count8—1,
for pl-ptemplc 2: t+n1 %for B(1t02)
M=s-ml;
if p1<0 -
=(-1) abs(M)*fact(pl abs(M))/
fact(p1+abs(M))*legendre(pl cos(theta)), '
else : : :
P= legendre(pl cos(theta))
end -
Btempla= a(nl pl t,ml, s)*shankZ(pl di2);
Btemplb=P (1+abs (M) ) *exp (1 *M*phi) ;
Btemplc(l, count3)=Btempla*Btemplb;
count3=count3+1;
~end ' ’

‘Btemplda (1, countla) sum(Btemplc) jprlme(nl ka)/
: hprlme(nl ka); :
countla= countla+l
ph113—p1/2+atan(p1/2/(d)),
thetal3=3*pi/2; y ‘
for pl=ptemplc: 2:t+nl %for B(lto3)
M=s-ml; .
if pl<0.
P=(-1) abs(M)*fact(pl abs(M))/
fact(p1+abs(M))*1egendre(pl cos(theta13)),
else
P= legendre(pl cos(thetalB)),
-end -
dl3= sqrt((pl/2)“2+(d)A2),v .
Btempla a(nl pl t,ml, s)*shankZ(pl d13),
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Btemplb=P(l+abs (M) ) *exp (i*M*phil3) ;
Btemplc (1, count4)—Btemp1a*Btemp1b
countéd=countd+l;

“end

Btempldb (1, countlb)=sum(Btemplc) *jprime(nl, ka)/
hprime(nl, ka);
countlb=countlb+1;
for p2=ptemp2c:2:t+n2 %for B(2tol)
_m2 ‘ )
1f p2<0
P=(-1)"abs (M) *fact (p2- bs(M))/fact(p2+abs(M))*
_ legendre(p2, cos(theta-pi));
else '
P=legendre(p2, cos(theta-pi));
~end ‘ : .
Btemp2a=a(n2,p2,t,m2,s) *shank2 (p2,d12) ;
Btemp2b= P(1+abs(M))*exp(1*M*(ph1+p1));
Btemp2c (1, count5)—Btemp2a*Btemp2b
,count5 count5+1;
end

vBtempZda(l count2a) sum(Btemch)*jprlme(n2 ka)/

hpr1me(n2 ka),
countZ2a=count2a+l;
phi23=pi/2-atan(pi/2/(d));
theta23=3*pi/2;
for p3=ptemp3c:2:t+n3 %for B(2,3)
M=s-m3; . ,
if p3<0
P=(-1) ~abs (M) *fact (p3-abs (M) )/
fact (p3+abs (M) ) *legendre(p3, cos(theta23));
else : '
P=legendre(p3,cos{theta23));
end
d23=sqgrt((pi/2)*2+(d)"2);
Btemp3a=a(n3,p3,t,m3, s) *shank2 (p3, d23),
Btemp3b=P (1l+abs (M) ) *exp (i*M* (phi23)) ;
Btemp3c (1, count6)—Btemp3a*Btemp3b
counté=count6+1; _
end

Btemp2db(1 count2b) =sum(Btemp3c) *jprime (n3, ka) /
hprime (n3, ka),
count2b=count2b+l
for p3=ptemp3c:2:t+n3 %for B(3,1)
M=s-m3; ‘
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S if p3<0
- P=(-1) abs(M)*fact(p3 abs(M))/ ,
; fact(p3+abs(M))*legendre(p3 cos(thetalB-pl)),'
‘else
P= 1egendre(p3 cos(theta13—p1)),
end _
d23= sqrt((p1/2)“2+(d)“2),
Btemp3a=a(n3,p3,t,m3,s)*shank2 (p3,d13);
Btemp3b=P (1l+abs (M) ) *exp (1*M* (phil3+pi));
Btemp3c (1, count7)—Btemp3a*Btemp3b
count? count7+1
end :

Btemp3da(l count3a) sum(Btemp3c) 3pr1me(n3 ka)/
: hpr1me(n3 ka);
count3a= count3a+l;
- for p3-ptemp3c 2: t+n3 ‘$for B(3 2)
M=s-m3; .
if p3<0
P=(-1) abs(M)*fact(p3 abs(M))/
fact(p3+abs(M))*1egendre(p3 cos(theta23—p1)), '
else ‘
- P= legendre(p3 cos(theta23—p1)),
end
Btemp3a= a (n3, p3,t,m3, s)*shank2(p3 d23),
Btemp3b=P (l+abs (M) ) *exp (1*M* (phi23+pi)) ;
Btemp3c (1, count8)-Btemp3a*Btemp3b -
_count8=count8+1;
end o

Btemp3db(1 count3b) = sum(Btemp3c)*jpr1me(n3 ka) /
hpr1me(n3 ka), :

count3b=count3b+i

end

phicheck=phicheck+. 25
end
Big(positionl, 2*K2+1:3*K2) Btempldb % Placement
Big(positionl, K2+1:2*K2)=Btemplda; ’ '
Big(K2+position2,1:K2)=Btemp2da; % of vectors.

Big (K2+position2,2*K2+1:3*K2)=Btemp2db;
Big(2*K2+position3,1:K2)=Btemp3da;
Big(2*K2+position3, K2+1 2*K2) Btemp3db
C(3*K2,1)=zeros;

C(positionl, 1)=—1*rho*speed*V1/hpr1me(nl ka),
C(position2+K2,1)=-i*rho*speed*V2/hprime(n2,ka);
C(p051tlon3+2*K2 1)—~1*rho*speed*v3/hpr1me(n3 ka);

A=Big\C;
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Temporary=sum(conj(A(K2+1:2*K2,1))’.*Btemplda*sbessj(nl,ka))
*hprime(nl,ka) /jprime(nl, ka);

Temporary2=sum(conj(A(2*K2+1:3*K2,1))'.*Btempldb*sbessj(nl,k
a)) *hprime(nl, ka)/jprime(nl,ka); ‘

Zrl=4*pi*radius”2/V1*(A(1,1) *shank2 (nl, ka)+Temporary+Tempora
ry2); ' : :
Zrvector (count)=2rl;
count=count+1;
end
Zrliscaled=Zrvector/ (4*pi*radius”2*rho*speed) ;
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APPENDIX C: T-MATRIX CALCULATION

Upon obtaining the scattered pressures from the ATILA |

code for the user defined mesh, I then calculated the |

Transition Matrix (TQMatrix) - for the user—definea

transducer. For this analysis we used a thin spherical

shell for our transducer. '

Before I spell out my method for éalculating the‘T-'

matrix, I shquld provide the reader with some bédkgrbund

conéerning bthis T-matrix (Ref. 3)._ First - suppose' thek'L
incident pressure to an object are étanding'spherical wavééj

as’represented by
p(n6.0)= j ()Q:(6.0)

We use this T-matrix to transform from our incident
pressure to the scattered pressure from the object subjected

to this ' incident pressure. Basically, the T-Matrix

~describes the scattering property of each unique,SCatter (6r

in this case transducer) by using a discréteybasis set of
spherical harmonics. I determine the T-Matrix for my
spherical shell by anal?zing the scattering characteristics
of this shell subject to a “standing” wave. . Mathemétically
speaking, the T—matrix’ transforms our incident stahding
waves to scattered outgoing waves in the form of Hankel

functions shown below.
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p 6.9)=h, (er) Q. 6.  ¢)-

The'following equationyindicates the utilitykofithe T-
Matrix. The R values represent the reflection coeff1c1ents,

from the spherlcal shell and constltute elements of the T-

Matrlx.
. . m ' . TMat. |
21,j,0Q 6.9 = ZR . () Q" 6.9)
T - Standing Wave ’ . : RadzatmgWave ’

‘Here is how I used these ideas to deVelop my T—matrix
calculation. Starting with the output data from ATILA which
is basically NLnumber ofddata‘points in the following form:
for i = 1 to N we have x,, 3@['2;,'and P,. Then‘for all N-

pointstI'need to calculate the following prodﬁét
h(r)Q6.0)=h, (roxk Jx P cosByx ™.

i will do,this product‘up‘to the quadrupole, that is
nine times,for'each n and ﬁ combination:(néo and‘m=0,‘n=l
and m=-1, .. n—z and m=2). So for example 1f we have 100‘
data pointsd the number of calculated complex numbers 1s 900‘

(100 data’,p01nts up to -the quadrupole). ' The resultlng

matrix is of the form: .




. (R P
A Pressure
(unknowns) |=| (from ATILA)
(9x1) (100x1)
l L

cdlculated complex numbers
100 by 9

We solve for the unknown A-coefficients in. MATLAB by
the following equation [A] = [calculated numbers]\fP]. The
forward divide sign iﬁ MATLAB is a solution for the A vector
in a least squafes sense to this over-determined system of
eQuations [calculatea numbers]*[A] "= [P]. The effecti§é
rank of the calculated numbers matrix is determined from the
QR decomposition with rank pivoting. The’rélationship of
the T-matrix with the incident pressure amplifude vector [B]

and the A-coefficients is as follows

Bw | | Aw
BO-I Ao—l
T — matrix B 0 |~ AlO

lgn_ L/&n
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since we obtain our results from ATILA:for each n’and m o
combination we solvevforheach”coiumn of the Tématrix in the
following way. - For eXample,"We obtain ATILA' first
scatterlng pressure results when we model the 1ncident
pressure with the standlng waves us1ng n=0 and m—O.’.We then‘
use the scatterlng} pressures to solve_ for the A-
coefficients. jTheh we solve for the first column of the T;I

matrix by sclving.for the following equation.
| o ! ‘14w

- Ao
T 0 =_f¥o

O

f)_ J4n_

Proceedlng this way we can solve for all 9-columns of
the T- matrlx by changlng the n and m values of the 1nc1dent_
pressure accordlngly One final comment about “this
procedure to calculate the T Matrix concerns the form of the
incident wave. Because of certaln llmltatlons w1th the'
ATILA code we used a “travellng”'wave vice the “standlng”
- wave. The form of the incident pressure wave pos51ble is a
Hankel functlon 1nstead of. the spherlcal Bessel function.
Because of ‘this, »a correctlon factor to the dlagonal'
elements_of 0.5*(diagona1 element - 1) is necessary.

The fcilcwing ‘text prOVides ‘the VM.ATLAB program _cOc_ies"

that I used'to calculate the T-matrix. Also provided are
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the user defined functions used in support of ' the main
program and the analytical calculation for the T-matrix for

thin spherical shells.

Main MATLAB Program:

% Joseph L. Day
% Calculation of the T-matrix
% last updated July 21, 1999

% Part 1: Import ATILA data and calculate the A coefficients
format long '

data=getdata(’'temp5.dat’); ‘ : , ‘
temp5.dat is a text file, tab deliminated with the first:
line as: number of rows, one-space, and number of columns.
The data as follows: column 1l: x; col. 2: y; col. 3: z;
col. 4: real(pressure); and .

o0 dP oP df o°

column 5: Imaginary(pressure).
x=data(:,1);y=data(:,2);z=data(:,3);
p=data(:,4)+i.*data(:,5);

k=2*pi*474/1492.94; % since ka=1 and a=.5meters
count=1; % initializes my count. ,
for N=0:2

for M=-N:N

Ptemp2=zeros(1l, length(x));
for n=1:length (x)

c r=sqrt((x(n))"2+(y(n))*2+(z(n))"2);
theta=acos(z(n)/r); _
phi=atan2(y(n),x(n));
if M<O0 :

P=(-1)~abs (M) *fact (N-abs (M)) /
fact (N+abs (M) ) *1legendre (N, cos (theta)) ;
else
P=legendre (N, cos(theta));
end
Ptempl=shank2 (N, k*r) *P (l+abs (M) ) *exp (1 *M*phi) ;
Ptemp2 (n) =Ptempl; ' ' '
end
Ptemp2=(conj (Ptemp2))’; % make column vector
eval (['Ptemp3’ num2str(count) ’'=Ptemp2;°’]):;
count=count+l;
end
. end
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cal=[Ptemp31l Ptemp32 Ptemp33 Ptemp34 Ptemp35 Ptemp36 Ptemp37 o

Ptemp38 Ptemp39];
% cal is a 100by9 matrix that will be used to: determlne

% the A coefficients
A=cal\p;

% This final “A” value provides one column of the T-matrix.
% At this point I would apply the correction factor since
" % we used a traveling wave instead of the standing wave.

$ The n and m value determines which column of the T-matrix.

Supporting user defined functions:

function A-getdata(name) : :
$Function to read free-formated data A (matrlx or vector)
% Written by Charles W. Therrien
if all(name ~= '."') :
name=[name, '. dat'];
end .
[ft, message] fopen(name ‘'r');
if £t<0
error(message)
end '
[bf,N] fscanf(ft %g );
fclose(£ft); .
if bf(1l)==N-
A=zeros(1l,bf(1));
A(:)=bf(2:N);
elseif bf(l)*bf(2)==N-2
A=zeros (bf(2),bf(1));
A(:)=bf(3:N);
A=A."';
else
A=bf. ‘ ‘ :
fprlntf([' Data length does not match count \n', ...
' File contents is being returned as a vector.\n'l])

end

function hn=shank2 (n, x)

% Computes the Spherical Hankel function of the second kind.
% Written by Joseph L. Day . : : oo
hn=sqgrt (pi/ (2*x)) *besselh(n+.5,2,x);
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function y=fact (n)

% Computes the factorial of n
$ Written by Joseph L. Day
y=prod(1l:n);

Program to calculate the Analytical T-matrix for a thin
spherical shell:

% Written by: Joseph L. Day
% Reference: ONR Report - AY98 Thesis (Ref 5)

% last updated April 6, 1999

% Computation of the T-matrix diagonal elements using
% the analytically derived formulas found (Ref 5, page 5).
format long

a=0.5; % is the radius of the sphere in meters
h=0.01; % is the shell thickness

E=215*1079; % is the bulk modulus in Pascals

wv=0.33; % is the Poisson's ratio shell’s material
w=2*pi*474; % is the angular frequency (474 Hz)
rhos=7500; % is the density of the solid [kg/m"3]
rhof=1000; % is the density of the fluid [kg/m"3]
cf=1492.94; % is the sound speed of the fluid [m/s]
k=w/cft; % is the wave number, in this case ka=1l

cp=sqrt (E/ (rhos*(1-v*2))); % plate wave speed
omega=w*a/cp; ‘

b=omega”2-v-n* (n+l)+1;

c=omega~2-2* (1+v) ;

d=n* (n+l) * (1+v)"*2;

Z(M)=i*h*cp*rhos/ (a*omega) * ( (b*c-d) /b) ;

jn=sqrt(pi/ (2*k*a)) *besselj (n+.5,k*a);

hn=sqgrt(pi/(2*k*a)) *besselh(n+.5,2,k*a) ;

jhat=sqgrt(pi/ (2*k*a)) *{besselj(n-.5,k*a)
-(n+l1l)*besselj(n+.5,k*a)/(k*a)); 7

hhat=sqgrt(pi/(2*k*a)) * (besselh(n-.5,2,k*a)
-(n+1) *besselh(n+.5,2,k*a)/ (k*a)) ;.

numerator=i*Z (M) *jhat+rhof*cf*jn;
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’ denom— *Z(M)*hhat+rhof*cf*hn
T (M) =-numerator/denom;
M=M+1;
~end

“end ' : ‘ , '
result=[(1:9)’ real(T)’ imag(T)’ -abs(T)’ (angle(T)*lSO/pl) ]
result is the output: column 1: index number (n), ‘
column 2: real(T-matrix);
column 3: image(T-matrix); column 4: amplltude;
and column 5: phase (degrees). ' ' :

o0 d@ 0P oP
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