
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

THESIS 

A MODAL APPROXIMATION FOR THE MUTUAL 
RADIATION IMPEDANCE FOR SHPERICAL SOURCES 

AND ACOUSTIC WAVE SCATTERING USING AN 
IMPROVED ATILA FINITE ELEMENT CODE 

by 

Joseph L. Day 

September 1999 

Thesis Advisor: 
Co-Advisor: 

Clyde L. Scandrett 
Steven R. Baker 

Approved for public release; distribution is unlimited. 

DTIC QUALITY OfSPBojED. 

19991209 043 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
September 1999 

3. REPORT TYPE AND DATES COVERED 
Master's Thesis 

4. TITLE AND SUBTITLE 

A MODAL APPROXIMATION FOR THE MUTUAL RADIATION IMPEDANCE FOR 
SPHERICAL SOURCES AND ACOUSTIC WAVE SCATTERING USING AN 
IMPROVED ATILA FINITE ELEMENT CODE 

6.  AUTHOR(S) 
Day, Joseph L. 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ 
MONITORING 

AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of 
Defense or the U.S. Government. 
12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 
12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words) 
A modal approximation for the self and mutual radiation impedances has been derived for arrays of spherical transducers with 

small ha values, where ha is the acoustic wave number multiplied by the radius of the sphere. I term this the "Modal Pritchard" 
approximation, as it is related to the so-called Pritchard approximation, often employed to calculate mutual radiation impedances. I 
investigated the utility of the approximate mutual radiation impedance expression for three two-body problems (monopoles, aligned 
dipoles, and aligned-linear quadrupoles). For these cases, approximate values were found to be in good agreement with those 
obtained using a full Spherical Addition Theorem calculation, and are an improvement over the simple Pritchard approximation. 
Additionally, I investigated the mutual radiation impedance expression in one particular three-body problem. Because of the Modal 
Pritchard approximation's inability to correctly handle scattering, we recommend using the full Spherical Addition Theorem 
calculation when scattering is important. 

Finally, I investigated the use of a new finite element mesh to calculate the T-matrix for a given transducer. The T-matrix relates 
the incident and scattered waves for a single transducer, in an orthogonal (spherical harmonic) basis set. The monopole element 
showed an increase in error, while we saw some improvements in the higher-order diagonal elements. Off-diagonal elements, which 
should be zero for a spherical scatter, were satisfactorily small in most cases. Although the results were less than favorable, I was 
able to streamline the T-matrix calculation while providing a new method of examining the off-diagonal elements. . 
14. SUBJECT TERMS 
ATILA-finite element code, mutual and self radiation impedance, and normal mode spherical harmonics 

15. NUMBER OF 
PAGES 

97 

16. PRICE CODE 

17. SECURITY CLASSIFICATION OF 
REPORT 
Unclassified 

18. SECURITY CLASSIFICATION OF 
THIS PAGE 
Unclassified 

19. SECURITY CLASSIFI- CATION 
OF ABSTRACT 
Unclassified 

20. LIMITATION 
OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 



11 



Approved for public release; distribution is unlimited 

A MODAL APPROXIMATION FOR THE MUTUAL RADIATION IMPEDANCE 
FOR SPHERICAL SOURCES AND ACOUSTIC WAVE SCATTERING USING 

AN IMPROVED ATILA FINITE ELEMENT CODE 

Joseph L. Day 
B.S., University of Texas - El Paso, 1990 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN ENGINEERING ACOUSTICS 

from the 

NAVAL POSTGRADUATE SCHOOL 
September 1999 

Author: 

Approved by: 

Clyde L. Scandrett, Thesis Advisor 

Steven R. Baker, Co-Advisor 

Kevin B. Smith, Chairman 
Engineering Acoustics Academic Committe 

in 



IV 



ABSTRACT 

A modal approximation for the self and mutual radiation 

impedances has been derived for arrays of spherical 

transducers with small ka values, where ka is the acoustic 

wave.number multiplied by the radius of the sphere. I term 

this the "Modal Pritchard" approximation, as it is related 

to the so-called Pritchard approximation, often employed to 

calculate mutual radiation impedances. I investigated the 

utility of the approximate mutual radiation impedance 

expression for three two-body problems (monopoles, aligned 

dipoles, and aligned-linear quadrupoles). For these cases, 

approximate values were found to be in good agreement with 

those obtained using a full Spherical Addition Theorem 

calculation, and are an improvement over the simple 

Pritchard approximation. Additionally, I investigated the 

mutual radiation impedance expression in one particular 

three-body problem. Because of the Modal Pritchard 

approximation's inability to correctly handle scattering, we 

recommend using the full Spherical Addition Theorem 

calculation when scattering is important. 

Finally, I investigated the use of a new finite element 

mesh to calculate the T-matrix for a given transducer.  The 

T-matrix relates the incident and scattered waves for a 

single transducer,  in an orthogonal  (spherical harmonic) 

basis set.   The monopole element showed an increase in 

v 



error, while we saw some improvements in the higher-order 

diagonal elements. Off-diagonal elements, which should be 

zero for a spherical scatter, were satisfactorily small in 

most cases. Although the results were less than favorable, 

I was able to streamline the T-matrix calculation while 

providing a new method of examining the off-diagonal 

elements. 
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I.   INTRODUCTION 

The work described in this thesis is part of an ongoing 

effort to improve our ability to accurately model densely 

packed underwater acoustic arrays. When an acoustic array's 

operating characteristics are closely predicted we say the 

array behaves well. This behavior is influenced by element 

interaction, characterized by a parameter called mutual 

radiation impedance (Ref. 1). A worst case example of "bad" 

behavior is that a transducer element may actually absorb 

acoustic power, which is then absorbed back into the driving 

amplifier, thus possibly causing an overload and electrical 

failure (Ref. 2) . Other examples of bad behavior include 

changes in the radiated source level and deviations of the 

beampattern, steering direction, and side lobe amplitudes. 

Element-to-element interactions are more significant in 

arrays that are packed into a volume of small size, which is 

the trend in low frequency active arrays. We will analyze 

the mutual radiation impedance for spherical sources of 

small ka values, where k is the wave number and a is the 

radius of the sphere. The mutual radiation impedance is an 

important parameter used to calculate the pressure on one 

array transducer due to the radiation and scattering from 

other transducers in the array. 

Additionally, I will use a finite element code to solve 

for the radiating and scattering properties of a single 



transducer.    Therefore,  this  thesis  consists  of  two 

portions. 

The first part is devoted to deriving a general 

expression for the mutual radiation impedance between two 

identical radiating hard spheres in an otherwise free field 

environment using a normal mode approach. Additionally, an 

expression for the self-radiation impedance, which is the 

radiation loading on a single element in a free field, is 

found.. 

I have compared our modal approximation for the mutual 

radiation impedance with the commonly-used so-called 

"Pritchard" approximation for the particular case ka = 1, 

and will show the improvement possible using our modal 

approximation. This improvement is particularly noticeable 

as the center-to-center distance between sources is reduced. 

In this "Simple Pritchard" approximation, as I refer to it, 

the real part of the self-radiation impedance is multiplied 

by a spherical Hankel function of zeroth order to find the 

mutual radiation impedance. I will show how this "simple" 

approximation starts to break down as the transducers are 

spatially brought closer together. 

The Addition Theorem (Ref. 3) provides one the ability 

to mathematically express the pressure radiated from one 

body referenced to the coordinate system of another body. 

Using  the  Addition  Theorem,  it  is  possible  to  very 



accurately compute the mutual radiation impedance of a 

sphere in an arbitrarily densely packed array of any number 

of elements. I have used the Addition Theorem as a 

computational standard. 

I also applied our modal approximation to a specified 

three-body problem to further investigate our modal 

approximation, which I will hereafter refer to as the "Modal 

Pritchard" approximation. In this problem we note the 

inability of our Modal Pritchard approximation to handle the 

effects of scattering. Because of this breakdown we 

recommend using the full Spherical Addition Theorem for this 

problem and other cases when scattering becomes important. 

Methods and computer codes for this portion of the thesis 

are provided in Appendixes A and B. 

The second part of this thesis makes extensive use of a 

finite element code, named ATILA, which was written by 

engineers at the Institut Superieur d'Electronique du Nord 

(ISEN). ATILA has been specifically developed to aid in the 

design of sonar transducers, but is also used to model a 

variety of acoustic problems. 

The final portion of this thesis addresses the T-matrix 

method (Ref. 3). In order to model certain aspects of array 

operation such as near-field pressure, it is necessary to 

solve for the radiating and scattering properties of a 

single transducer.  We accomplish this calculation by using 



the ATILA finite element code. The T-Matrix (or Transition 

Matrix) characterizes the scattering properties of a 

specific body by translating incoming pressure waves to 

outgoing ones. 

I will provide a brief description of ATILA's method of 

calculation that distinguishes it from other finite element 

codes. Readers less familiar with finite element codes may 

want to seek further information from reference books such 

as Kwon's "The Finite Element Method using MATLAB" (Ref. 4). 

Previous work with ATILA to calculate the T-matrix for 

a thin-spherical shell has been shown to be in error when 

compared with a verified analytical solution (Ref. 5). 

Various limitations of the ATILA code may explain the errors 

present. I investigated whether improvements are obtained 

by making some corrections to ATILA's code and by the 

implementation of a new, refined, finite element mesh. This 

new mesh increased the errors to the monopole element but 

did provide some improvement to other T-matrix elements. 

Further improvements may be realized with the advent of more 

sophisticated radiation boundary operators. An early 

delivery of an addition to the ATILA code, EQI, which uses 

using a boundary element method to handle the fluid, did not 

occur in time for use with this thesis. Investigation of 

the improvement obtained using ATILA coupled with EQI will 

have to be the subject of future research. 



In addition to providing some improvement in the 

calculation of the T-matrix, I have been able to streamline 

the procedure. Output scattered pressures from ATILA were 

post-processed using easy to read MATLAB program scripts. 

The resulting T-matrix calculations were quickly compared 

with the analytical results (also done in MATLAB). Listed 

in Appendix C are the MATLAB codes used to calculate the 

theoretical values of the T-matrix elements and the T-matrix 

elements calculated from ATILA's scattered pressure results. 

In summary, by deriving an improved analytical 

formulation for the mutual radiation impedance, one can 

quickly investigate the effects of parameter variations, 

such as the distance between elements in the array. 

Additionally since this formulation involves angular 

dependence, I have devised a means of investigating the 

effects of altering the orientation between elements in an 

array. We recommend using the Modal Pritchard approximation 

for approximate solutions when scattering is unimportant, 

and the full spherical Addition Theorem otherwise. 

Streamlining the T-matrix calculation for a given transducer 

will allow follow-on work to be accomplished with less 

startup time. 
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II.  THEORETICAL BACKGROUND SECTION 

This chapter addresses the development of a modal 

approximation for the self and mutual radiation impedances 

for two spheres in an otherwise free field environment. 

A.   BOUNDARY CONDITIONS 

Consider a space and time dependent velocity potential, 

defined as W{r, t) = W(r)ei<ot, where the vector r = (r,0,<t>) 

represents the spatial dependence. A relationship between 

the pressure (p) and the velocity potential (!P) states p = 

-pßW/dt   (Ref. 6), so that p = -j(opoW. 

Taking the gradient and then the dot product with the 

radial unit vector, we obtain dW/dx - -1/ (jcopo) dp/dr. By 

noting that the velocity vector is defined to equal the 

gradient of the velocity potential (u = VF) , we can derive 

a boundary condition for a surface normal velocity. For a 

sphere of radius a, for example, evaluation of dF/dr   =   - 

1/ \j(opo) dp/dr   at r=a   provides an expression for the radial 

velocity on the sphere's surface. This will be a boundary 

condition for our analysis. 

_   j   ^P V 
radial 

OJp0 Br 
(1) 



B.   PROBLEM SETUP AND ADDITION THEOREM 

Consider two identical spheres (radii = a) spaced with 

a center-to-center distance = d.  Letting \r1,61,(l>1)     and 

(r2,02,02)  be the spherical coordinates relative to the 

centers of spheres one and two, respectively.  With the two 

spheres radiating in distinct normal modes,  the radial 

velocities are expressed below. 

v,=v:io:'M,<f>) 
v,-ySa£M (2) 

Where £2m = pm(cos9)eJm<|,is a modal eigenfunction,  p™ is the 

Legendre function, and\y"*andy"2   are modal amplitudes. 

The pressure from each sphere can be mathematically 

expressed as shown in Equation (3) (Ref. 3) . Since we are 

assuming a eicot time dependence, we use a spherical Hankel 

function of the second kind. If we were to assume a time 

dependence of e~i03c, then we would instead use a spherical 

Hankel function of the first kind. After Equation (3), we 

drop the Hankel function's (2) superscript. 

p,=± 1KsX:(kr^;ie^2) ■'. (3) 



Given the Addition Theorem, we can express the pressure 

from sphere two relative to sphere one (see Equation (4), 

Ref. 7). The appendix within Ref. 7 provides the definition 

for the function a{v,p, t,(J,,s) . The angles 012 and 0l2 are 

formed by describing the location of sphere one's center 

relative to sphere two's center (see Figure 1) . The prime 

in the last summation means the index is incremented by two. 

ti=° s?-n 

Vi tSVi 

2    2)     L    a(vi,PsU,^Si)jv{kr)* 
v,=o Pc-vipAuM 

hPl{kd )Q^fe,Ä)Q^te«,^) 

(4) 

A reapplication of the Addition Theorem provides us a 

mathematical expression for the pressure from sphere one 

relative to sphere 2 coordinates. 

#=s i A; 
f,=°   Sr-U 

■ti-S: •Si 

X 2 X <*{v2,P2>tl>M2>Sl)jv(tT2)* 
v2=0 pt--vipAtrvli 

hP2{kd^i02^Qs;Ho^(ß2y 

(5) 



""     A 

Origin 
sphere 1 

4^ 
•*■ 

:i \1> 
'Qrigih: 
Sphere 1 J -k 

/ 
■***S 

* T12 
~l 

Figure 1. Orientation of sphere's origins 

C.   APPLICATION OF BOUNDARY CONDITIONS 

Recalling the boundary condition for the  sphere's 

surface velocity as stated in Equation (1) we obtain 

v,= copc dr Ip.+ri '■and  v*=TtTT* fe+E?] (6). 

After the application of the boundary conditions, we 

use normal mode analysis (orthogonality) to eliminate some 

terms. In Equation (3)"we note that the non-zero terms are 

those for which '.tx - nlf sx = n^, t2 = h2, and s2 = n^. 

Similarly, in Equations (4) and (5) the non-zero terms are 

10 



those where v1   = n1# fix   = JI\, v2   =   n2,   and JU2   =   ui,.  Then by- 

using the relationship with sound speed, angular frequency, 

and wave number (c = co/k)   and dividing by a common term we 

obtain 

-ipocVm 
0    n'    =   A1

   S S 
h' (ka) 

lni-7Wi   ""i   """I 
+ 

n, 
/ 00      h.       «7 

y y 42 — K (ka) t£$x 
\ 

?2=0   s2=-t2 K (*°) A=C-n 
ain^p^m^sj* 

Pf[S2-m\ 

hp(kd)Qs;;m{ön,</>n) 'Pi 

{!)■ 

-ip0cV m2 

n2 

h'Aka) 
=   A2    S S      + 

n2 

f 

\ 

00       t, j n (^0    t^n2 1 ^ 

hp(kd)Qsrm(p;-en,K+</)12) 

\ 

J 

(8> 

Note that the first summation in each of these last two 

equations involves infinity. For computational purposes we 

must truncate to some finite number {K). Note that when K=0 

the sphere is vibrating in the monopole mode.   For K=l 

11 



dipole modes are kept, and when K=2,    quadrupole modes are 

present, and so on to higher modes. 

D.   SOLVING FOR THE AMPLITUDE COEFFICIENTS 

We can write these last two equations in a matrix form 

by first constructing a large column vector whose components 

are the stacked amplitude coefficients for spheres one and 

two. The ordering of the coefficients for the spheres are 

provided below, where A*= [A00 A^ A,0 A^ .... ]T is the vector of 

coefficients for sphere one. 

B' 

B'~ 

A 
~c1' 

I _ Lc2J 
where   A= 

A' 
(9) 

The C vectors above each consist of one non-zero term 

as represented by the left-hand side of Equations (7) and 

(8). It can be shown that the terms of the B1 and B2 

matrices are of order (ka)3 for small ka values. This means 

that we can solve for the A-coefficients because we can 

approximate the inverse of the first large matrix of 

Equation (9). By the following development for small ka we 

can evaluate the coefficients. We drop terms on the order 

of ka  to the sixth power. 

12 



I   B' 
.B2 IJ 

I   -B1 

-B I 
0(ka6) 

which   leads   to 

A1=C1-B'C2;A2=C2-B2C1 (10) 

Rewriting this approximation, shown below in Equation 

(11) , we then have an explicit representation for the A- 

coefficients for any mode of sphere one. We can write a 

similar equation for sphere two. Note that the first term 

is due to its own mode of vibration; the next term is due to 

sphere two's monopole mode; the next three terms are due to 

sphere two's dipole modes; and the final five terms are due 

to sphere two's quadrupole modes. The Kronecker delta 

symbol (S) equals one when the n and m values equal the 

value of the second subscript (i.e. first term exists when n 

= nt and m = mj . In Equation (11) , I have dropped the terms 

on the order of (ka)   to the sixth power. 

13 



rm2 iP.cVZsx      .-'P.cV'n,, 
■"-     A", (to) ■■■■* -*     Ä'„.(to) n, «2 

hoi™) 

Ä'(*a) 

dl) 

+ /2(^) 

Ä'2(*ö) 

2 » +2  / 

2   .£.  a(2,pi:n2,q,mJhp(kd)a^\eu,(pJSn2Sm! 
9=-2o,in2-

2| 
P,2 m2 

14 



E.   SELF AND MUTUAL RADIATION IMPEDANCE 

The approximation for the amplitude coefficients, 

Equation (11), plays an important part of my derivation of 

the radiation impedance. We will also make use of a 

relationship developed by New and Eisler (Ref. 8) . 

Radiation impedance is defined as the ratio of force exerted 

by the radiator on the median to the velocity of the 

radiator. If the velocity of the radiator is spatially 

independent, the calculation is straightforward. However, 

when the velocity does have some spatial dependence then we 

must use the equation (* means complex conjugate) 

l 
Zi = ——;-llp(rj)v,(.ri)dSl   where   Vl = V,ß(.r,) 

V.V.i 
(12). 

rface 
the 

sphere 

In applying Equation (12), note that the two identical 

spheres may be radiating in two distinct modes. Using 

Equation (12) to determine the radiation impedance for 

sphere one in the presence of sphere two and omitting terms 

on the order of (ka)6  we obtain 

fe,Lod<. s Ji  
ra/n,m. v: 

'2=0  S2=-t- 

KwarWn.*,) 
(13). 

15 



Reference 9 provides an expression for the surface 

integral of the associated Legendre polynomials given in 

Equation (13). Using this expression and recalling the 

correct representation for dS in spherical coordinates', we 

obtain a general form for this surface integral 

JJ ||o:(ö>0)|r^ = 2^„+ij'|^ (14). 

We can evaluate Equation (13) for several different 

combinations of modes (e.g. monopole-monopole, dipole- 

monopole, etc..) and determine the total radiation impedance 

for one sphere due to both spheres. New and Eisler 

represent the total radiation impedance of the first sphere 

into the form Zrl = ZX1 +Z12*V2/V1, where Zxl is the self- 

radiation impedance and Z12 is the mutual radiation 

impedance.. For the monopole to monopole case we obtain the 

following expression for the mutual radiation impedance. 

z^--p'cAmlm^+oM (15) 

Upon evaluating several combinations of modes and 

examining the calculated mutual radiation impedance I was 

able to determine an approximate form for the mutual 

radiation  impedance.    For"" two  identical  spheres  each 

16 



radiating in a single mode of vibration the mutual radiation 

impedance is written as (I omit terms on the order of (ka) ) 

r 

Zn Ä -2?za2 

IV1 

n.+- 1    2 
(nx+mx)\p0c 

fa-mjih^mh'+mHtoY 
n2+/ii 

s fl^.p^^^j^MQr^,^)   (i6). 
p=[n2-n,| 

Similarly the general form for the self-radiation 

impedance for our sphere radiating in a general mode can be 

derived. Equation (17) below provides the general mode 

self-radiation impedance (I omit terms on the order of 

ika)5) . 

Zu 
-ImHpc fc+m,)! /^(fa) 

W.+- 
V 

(17) 

•J 

These two expressions provide a quick approximation for 

the mutual and self radiation impedances between two spheres 

each radiating in some general mode. I will hereafter refer 

to the mutual and self impedances calculated using Equation 

(16) and (17) as the "Modal Pritchard" approximation. Note 

that the mutual radiation impedance expression considers 

orientation between the two spheres.  The following chapter 

17 



will  investigate  the utility  of  the  mutual  radiation 

impedance approximation, Equation (16). 

18 



III. UTILITY OF THE MODAL PRITCHAKD APPROXIMATION 

This chapter will investigate the utility of the Modal 

Pritchard Approximation for two types of problems. The 

first problem involves looking at the interaction between 

two identical spheres. Three cases of two-body problems are 

studied: monopoles, dipoles, and quadrupoles. The second 

type of problem involves one specific three-body where we 

find a limitation of our Modal Pritchard approximation due 

to its inability to handle scattering. Throughout this 

chapter I will use a ka  value equal to one. 

A.   MUTUAL RADIATION IMPEDANCE 

1.  Monopole to Monopole Case 

There are an infinite number of combinations of mode- 

mode interactions to consider, even for the case of two 

identical spheres. For example, considering only up to the 

quadrupole radiating modes we have 9x9=81 combinations of 

modes between two radiating spheres to examine. I will 

limit the following analysis to just three specific cases. 

The first case will be an examination of the mutual 

radiation impedance between two spheres radiating as 

monopoles, also known as the "breathing mode". The result 

obtained using the "Modal Pritchard" approximation will be 

compared to what I will call the "Simple Pritchard" 

approximation.   Named after R.L.  Pritchard,  the Simple 

19 



Pritchard approximation was developed to provide an 

expression for the mutual radiation impedance for two 

cylindrical sources placed on an infinite baffle, and Was 

further simplified by assuming a small Jca value (Ref. 10). 

-ikd e 
Zi2 = -Real(Zii)i    (Simple Pritchard approximation) (18) 

Here Z12 is the mutual radiation impedance between elements 1 

and 2, and Z1X is the self radiation impedance of element 1. 

Despite the 'fact that this approximation was made for 

cylindrical piston sources on a theoretical infinite baffle, 

other researchers have used Pritchard's approximation for 

study of other shaped sources (Ref. 8). In doing so, the 

self radiation impedance is taken to be the free-field 

value. For the three-dimensional case, Equation (18) can be 

written using the spherical Hankel function as 

Zx   = ReafeJ^oM ; (19)- 

I will compare our Modal Pritchard approximation with 

the Simple Pritchard approximation and note the differences. 

In applying Equation (19) or Equation (18), I calculated the 

self-radiation impedance by considering a sphere in free 

field environment. 

To gauge the quality of the Modal and Simple Pritchard 

approximations, I have chosen to compare the results of 

these methods against a strict application of the Addition 

■' ,20 .-.' 



Theorem. Please see Appendix A for the description of my 

application of the Addition Theorem along with the computer 

codes used to generate my results. I choose to use MATLAB 

for my calculations because of the user-friendly nature of 

this engineering tool. I validated my Addition Theorem 

results with Fortran codes written by Professor Scandrett of 

the Naval Postgraduate School. Professor Scandrett has 

continually improved his code over the last eight years, 

using it for several research efforts (Ref. 11). 

Noting the appearance of infinity in Equations (4) and 

(5), we are required to truncate to some finite value for 

practical calculations. Mutual radiation impedance 

calculations using the "Addition Theorem" method have 

truncated this value to six. Even with this value, the 

computer code must solve a large (98 by 98) matrix of 

equations. 

Figure (2) shows the calculated real part of the mutual 

radiation impedance (resistance) between two monopole 

radiating spheres. Similarly, Figure (3) shows the imaginary 

part (reactance). Note first of all that the x-axis of each 

plot is the ratio of the center-to-center distance between 

the spheres to the radius of the two (identical) spheres. 

Additionally,  the impedance values have been scaled by 

4na2pc. 
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For both • the resistance and reactance parts of the 

impedance /we observe that the results of the Modal Pritchard 

approximation are in excellent agreement with results of the 

Addition Theorem method throughout the plot ranges. The 

results for the Simple Pritchard approximation do not agree 

with the Addition Theorem results, especially at smaller 

values of (d/a), which corresponds to closely-spaced 

transducers. An analysis of the errors between the Modal 

Pritchard results and the Addition Theorem results, and 

between the Simple Pritchard results and the Addition 

Theorem results, was conducted. Figure (4) shows the 

results of this analysis. For ka = 1, the Simple Pritchard 

approximation breaks down when the ratio between the center 

to Center distance and the radius is below 7.5. 
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2.   Dipole to Dipole Case 

I conducted an analysis of the dipole-to-dipole mutual 

radiation impedance, similar to the above analysis I took 

the axes of the dipoles to be oriented along the axis 

joining  the  sphere  centers.    In  terms  of  multipolar 
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components, this corresponds to the n=l,   m=0  mode for each 

sphere.   For the Simple Pritchard calculation I first 

multiplied the real part of the free-field self-radiation 

impedance for the hard sphere (oscillating in a dipole mode) 

with the appropriate Hankel function, as represented in 

Equation (19) .  This result was then multiplied by three. 

The  reason  for  this  correction  factor  is  that  the 

conventional Simple Pritchard approximation (Equation (19)) 

does not account for any angular orientation of the two 

spheres.   The factor of three correction was derived by 

comparing the Simple Pritchard Equation (19) with the full 

Addition Theorem,  in a small ka    limit,  for the dipole 

configuration examined  (Ref.  12).   For this particular 

analysis, I am only considering one combination (n^l, 1^=0, 

n2=l, and m=0) .  There are a total of nine (3x3) different 

combinations of dipole to dipole radiation cases. 

Figures (5)* and (6) show the real and imaginary parts 

of the mutual radiation impedance for this dipole-to-dipole 

case. Again, note the good agreement of the Modal Pritchard 

results with the Addition Theorem results. Notice how the 

errors for the Simple Pritchard approximation increase as 

the ratio of sphere's spacing to the radius decreases. 

Figure (7) shows the errors between the results for both the 

Modal and Simple Pritchard approximations as compared to the 

results for the Spherical Addition Theorem.   While the 
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errors for the Simple Pritchard approximation are not too 

bad for large values of d/a, they become significant when 

d/a  is less than 8.0, for ka  =1. 
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Dipoles: Errors from Addition Theorem 
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3.   Quadrupole to Quadrupole Case 

As a final example, I conducted an analysis of the 

quadrupole-to-quadrupole mutual radiation impedance. Two 

linear quadrupoles (n=2, m=0) were considered, with their 

axes aligned with the axis joining the sphere centers. For 

the simple Pritchard calculation I first multiplied the real 

part of the free-field self-radiation impedance for the hard 

sphere with the appropriate Hankel function, again using 

Equation (19). In this case, however, it can be shown that 

Equation (19) needs to be multiplied by a correction factor 

of five. Again, the reason for this correction factor, as 

in the dipble case, is that the Simple Pritchard formula 

does not account for any angular orientation of the two 

spheres. For this particular analysis, I am only 

considering one combination (nx=2, rn^O, n2=2,  and J7i=0) . 
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There are a total of twenty-five different combinations of 

quadrupole to quadrupole radiation. 

Figures (8) and (9) show the real and imaginary parts 

of the mutual radiation impedance for this quadrupole-to- 

quadrupole case. We continue to note the good agreement of 

the Modal Pritchard results with . the Addition Theorem 

results. Notice again how the error in the Simple Pritchard 

results increases as the ratio between the .sphere spacing 

and sphere radius decreases. Figure (10) shows the errors 

between both the Modal and Simple Pritchard results as 

compared to the results using the Spherical Addition 

Theorem. While the errors for the Simple Pritchard 

approximation are not too bad at large values of d/a, they 

become significant when d/a is less than 8.0, for ka - 1. 

This continues to show how the Simple Pritchard 

approximation breaks down as the transducers' spacing 

decreases. 
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B.   EXAMINATION WITH THREE A BODY PROBLEM 

To further examine our Modal Pritchard approximation 

for the mutual radiation impedance, we considered the 

following three-body problem (see Figure 11). 

it 
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ß 
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T1      I 
Figure (11). Drawing of a Three-Transducer Problem. 
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In this problem we will set spheres one and two to 

radiate as monopoles. These two transducers will maintain 

the same physical dimensions and operating characteristics 

as before (i.e. frequency = 474 Hz, sound speed of 1490 

m/sec, radius = 0.5 m, ka = 1, therefore the wavelength 

equals 7t) . Sphere three will be considered acoustically 

hard. We examine the mutual radiation impedance for sphere 

one due to the presence of all three spheres. Additionally, 

we will examine the effect of moving the third sphere 

horizontally away from the axis of the other radiating 

spheres. We will investigate the performance of our Modal 

Pritchard approximation for this three-body problem and 

compare these results with the results using the full 

Addition Theorem. As shown in Figure (11), sphere three's 

starting distance  from the axis  is one quarter of a 

wavelength (D = %/4) . 

Figure (12) shows a plot of the mutual radiation 

resistance, comparing the results of our modal Pritchard 

approximation with those of the Addition Theorem. The x- 

axis for this plot, as well as Figures (13) and (14), is the 

ratio of the distance (D)    to the radius of the spheres. 

Additionally, the results have been scaled by Ana2pc. 

Figure (13) shows the reactance (or imaginary) portion of 

the mutual radiation impedance.   Figure (14)  shows the 
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relative error in the magnitudes of the results for the 

Modal Pritchard approximation against those for the full 

Addition Theorem. Discussions explaining my results follow 

Figure (14). 
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The modal impedance approximation as I am using it here 

neglects scattering. This is why we see the straight lines 

for the Modal Pritchard results in Figures (12) and (13). 

Because the Modal Pritchard approximation does not account 

for the scattering, this provides an argument for using the 

full Addition Theorem to calculate impedance when scattering 

is important. Appendix B provides the method and computer 

code I used to calculate the Addition Theorem results for 

this three-body problem. 

I defined the relative error, as plotted in Figure 

(14), as (Modal Pritchard-Addition Theorem)/Addition 

Theorem. Therefore, dips in Figure (14) represent 

occurrences when the Addition Theorem results have a larger 

magnitude than the magnitude of the Modal Pritchard 

approximation results. Conversely, peaks represent 

occurrences for which the Addition Theorem results are 

smaller in magnitude. Through the use of the Addition 

Theorem, one can show that these peaks and valleys result 

from the effect of scattering. 

The data used to generate Figure (14) provides the D/a 

values where these valleys and peaks occur. The first two 

valleys occur at the following D/a values: 2.57 and 6.07. 

The first two peaks occur at the following D/a values: 4.57 

and 7.82. 
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I propose and will sketch out how these valleys and 

peaks occur, due to scattering effects, by evaluating the 

sum of the pressure waves arriving at sphere one. I will 

limit this evaluation by only looking at the monopole case. 

Since the Addition Theorem correctly handles scattering, the 

Addition Theorem results provide local maximum values when 

the scattering waves from sphere three are in phase with the 

direct path waves from sphere two. Similarly, the Addition 

Theorem results have local minimum values when the 

scattering waves are 180° out of phase with the direct 

path's phase. Our Modal Pritchard approximation does not 

handle the scattering effects, note the flat plots in 

Figures (12) and (13) for the Modal Pritchard results. 

Using the Addition Theorem and considering only the 

monopole case, the pressure waves are of the form of 

outgoing spherical Hankel function as shown below. 

iS\kr) = ja{kr)}£ikd,) (20) 

An examination of the direct path wave from sphere two 

to sphere one and of the reflected wave from sphere two, 

reflected off sphere three towards sphere one, was completed 

by Professor Scandrett (Ref. 12) . The expression for the 

sum of these waves at sphere one is provided below. The 

first term in the bracket is due to. the direct path and the 
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second term is due to the reflected (scattered) wave.  The A 

is some arbitrary amplitude coefficient. 

Aj0{
k,a\ cH2y ti(ka) 

\ti*(kdj (21) 

A plot of Equation (21) is provided in Figure (15) in 

terms of D/a versus magnitude. The peaks of Figure (15) 

match the valleys of Figure (14).. Similarly, local minimums 

of Figure (15) match the peaks of Figure (14). The first 

two peaks of Figure (15) are at D/a values of 2.57 and 6.07 

and the first two local minimums are at D/a values of 4.57 

and 7.82. The maximum values occur when the scattering 

waves are in phase with the direct path waves. The minimum 

values of Equation (21) occur when the scattering wave is 

180 degrees out of phase with the direct path. 

Equation (21) 
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Figure (15): Plot of Equation (21) 

36 



Figure (16) provides an additional drawing of this 

three-body problem and shows the distance parameters (d12 and 

d13) used in Equation (21). 
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Figure (16). Three-body problem drawing two. 

Again, the full Spherical Addition Theorem is 

recommended over our Modal Pritchard approximation when 

scattering is an important consideration as in this three- 

body problem. 
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IV.  NUMERICAL MODELING WITH ATILA 

This chapter describes the ATILA finite-element model 

used to calculate the scattering of acoustic waves from an 

elastic sphere in water. The goal is to compute the so- 

called T-matrix, which relates the scattered waves to. the 

incident waves, in an orthogonal (spherical harmonic) basis 

set (Ref. 11). 

A.   MODEL INTRODUCTION 

A few comments about ATILA are appropriate at this 

time. As mentioned in the introduction, ATILA is a French 

designed finite element code specifically developed to model 

sonar transducers. ATILA, written mostly in standard 

FORTRAN 77, is the result of many years of research done at 

the Insitut Superieur d'Electronique du Nord. It is quite 

large, consisting of over 200,000 lines of code (Ref. 13). 

This tool has been used by NPS faculty and masters 

thesis students for several years and has been updated at 

least three times. Recent studies have helped to identify 

needed modifications to the code, such as increasing the 

maximum allowable number of degrees of freedom, and 

modification of the numerical techniques used to handle the 

radiation boundaries. For example, during the calculation 

of the entries for the transition matrix (T-matrix) there 

were noted errors when compared to answers derived from a 
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known analytical solution to the problem (Ref. 11). The 

ATILA version I used (5.1.1) did increase the maximum 

allowable degrees of freedom, but has yet to address the 

radiation boundary problem. 

B.   ATILA AND MESH DESCRIPTION 

1.  About the Model 

A distinguishing characteristic of ATILA is the use of 

isoparametric elements for both the shell elements and the 

fluid elements. Isoparametric elements are elements that 

use the same shape function for geometric mapping as well as 

field, calculations (Ref. 4). The major advantage of 

isoparametric elements is that they lend themselves well to 

numerical integration. This is because of the nature of 

isoparametric elements. These elements are defined in the 

natural domain to be normalized, thus making numerical 

integration much easier to apply (Ref. 4) . Also, when 

isoparametric elements are used, fewer nodes are needed to 

define the mesh than without such elements. 

Other numerical techniques for solving the acoustic 

equations have been used by U.S. Navy labs. One method used 

for many years at the Naval Ocean Systems Center is called 

CHIEF (Combined Helmholtz Integral Equation Formulation) 

(Ref. 2). CHIEF, which models acoustic radiation from 

bodies with arbitrary shapes does not use isoparametric 

elements.  Thus we should expect a higher degree of accuracy 
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with ATILA over CHIEF. One advantage to CHIEF is that the 

radiation boundary condition is "built-in" to the boundary- 

element by its use of the Helmholtz Integral Equation. 

Currently, this provides an advantage over ATILA, which 

employs so-called "monopolar" and "dipolar" "dampers". 

These dampers can not represent a perfectly absorbing 

radiation boundary for a higher order multipolar field. 

The basic set of equations that allow for a large 

number of analysis to be performed include elasticity in the 

structure, the Helmholtz equation in the fluid, and 

Poisson's equation in the elastic or piezoelectric material. 

Primary variables found using ATILA include the displacement 

field U  in the whole structure, the electric potential &  in 

the piezoelectric material, and the pressure P in the fluid. 

In matrix form the equations are as follows (Ref. 13). 

{[KJ-O)
2
\M])  LSTJ     -LL] 

\KJ      IKJ      fo] 

P
2
CW\LY       [of [\H]-CO

2
\M]) 

u F 

® = -<L 
[p _pc2y¥ 

(22) 

Vectors in the above equations are: 

U= nodal values of the components of the displacement field, 

j£= nodal values of the electric potential, 
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P= nodal values of the pressure field, 

F= nodal values of the applied forces, 

g= nodal values of the electric charges, and 

Jf£: nodal values of the integrated normal derivative of the pressure on the 
surface boundary S. 

Matrices in Equation (22) include ^ 

Kuu = stiffness matrix, 

JKU^ = piezoelectric matrix, 

KM - dielectric matrix, 

M = consistent mass matrix, 

H= fluid (pseudo-) stiffness matrix, 

M\ = consistent (pseudo-) fluid mass matrix, 

L = coupling matrix at the fluid structure interface, and 

O = zero matrix. 

Li addition, 

0)= Angular frequency, 

p = Fluid density, 

c - fluid sound speed, and 

T = means transposition of a matrix. 

2.   Three-dimensional Fluid Mesh 

To run this and other finite element models you need to 

split the region under study into elements; the ATTLA code 

has an extensive library of elements available. These 

elements are distinguished by a set ordering of nodes and 
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the node coordinates. Figures 16 provides a Mercator 

projection of the eight "super-elements" used for one of the 

several layers under study. These super elements are the 

start of the mesh generation. The solid lines and nodes 

(dots with numbers) define the super-elements. The dotted 

lines show how the super-elements are sub-divided. Laid out 

3-dimensnionally, Figure 17 represents the super-elements 

that make up the spherical transducer under study, a 

spherical shell with a radius of 0.5 m. Using a finite 

element mesh generator called MOSAIQUE, I built a complex 

mesh of the entire field using the super-elements, using 

special instructions for subdividing the elements into a 

large number of elements and nodes that will define each 

layer of the field. Figure 18 provides a detailed look of 

the field under study (the fluid outer boundary is at 5 

meters). 

There are several layers that make up the entire mesh 

some of which are full-layers and some are mid-layers. Each 

full-layer consists of 194 nodes of which 18 are nodes of 

the super-elements. Mid-layers have a total of 62 nodes. 

Starting from the innermost radius and working outward, the 

complete three-dimensional mesh consists of the following 

layers. First is the shell layer that consists of 194 

nodes. This is the actual spherical shell transducer that 

is being analyzed.   Next, another 194 nodes are used to 
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describe the interface elements used to model the shell-to- 

water interface. This layer shares the same coordinate 

locations as the shell's nodes. Following this are ten 

fluid layers, the first two of which are 0.25 meter thick 

and the remaining are 1.0 meter thick. Each fluid layer 

consists of a full-layer and a mid-layer. Finally 

completing this three-dimensional mesh we have the radiation 

boundary elements. These last elements are used to 

prescribe monopolar-only or monopolar and dipolar radiation 

boundary conditions and are used to terminate the mesh. 

Figure 17.  The Super-Element (Macerator projection) 
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Figure 19.  The complete Mesh 
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V.   NUMBERICAL MODELING WITH ATILA: RESULTS AND DISCUSSION 

A.   OBJECTIVES AND THE T-MATRIX 

My objectives for the numerical modeling portion of 

this thesis were to investigate the finite element mesh 

mentioned earlier, simplify the process of calculating the 

Transition Matrix (or T-Matrix), and provide a new method of 

evaluating the off-diagonal elements of the T-matrix. The 

finite element code is used to numerically calculate the 

scattered pressures from an object under study. We then use 

these results to calculate the object's specific T-Matrix. 

In this chapter, I will document the results of the T- 

matrix calculation and compare with previous numerical 

modeling efforts. Several references mention and thoroughly 

discuss the definition, usage, and calculation of the T- 

Matrix (Ref. 3 and 5) . I will simply mention here in the 

text that the T-Matrix describes the scattering properties 

of a specific body. It does this by using a discrete basis 

set spherical harmonics in our case, and is used to show how 

the incident pressure waves translate to scattered waves 

from the body. Please see Appendix C for more information 

about the T-Matrix and how I calculated the elements of the 

T-Matrix for our radiating body. 
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B.   RESULTS 

In order to gauge the accuracy of our T-Matrix 

calculation we compare our answers with an. analytically 

derived equation. An expanded discussion of the derivation 

of the analytical solution can be found in a Master's Thesis 

by Ruiz (Ref. 5 and references therein). For a thin 

spherical shell the T-Matrix is diagonal, and are given by 

J\nm 

where 

iZnJn(ka) + Pfcfjn(ka) 

iZnhn(ka) + pfCfhÄka) 
(23) 

hc,P. 
aQ 

[a2 -2(1 + v)](Q2 +l-v-An)-An{l+vY 

Q = 
coa 

a2+i+v-A n 

m/s,   (o-2nf,   Ä=n(n + l) 
cP HPfi-v2) 

v   =   Poisson's ratio (0.33); h   =   shell thickness (1 cm) 

cp   =   shell's plate velocity 

E   =   Young's modulus (0.125xl012) 

a   =   spherical shell radius (0.5 meter) 

ps    =   shell's density (7500 kg/m3);f    =    frequency {AlA Hz) 

p and cf = fluid density (1000 kg / m3) and speed (1490 m I s). 

The calculation for this analytical solution was 

performed using MATLAB and the computer program can be found 

at the end of Appendix C.  In the following discussion, when 
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referring to errors, I am comparing the calculated values 

with the analytical solutions from Equation (23). 

Using the thin spherical shell parameters listed above 

and the MATLAB computer script provided in Appendix C, I 

calculated the analytical T-Matrix diagonal elements (the 

off-diagonal elements are zero for a spherically symmetric 

scatter). These diagonal elements are provided in Table I 

below.  A value of ka  = 1 was used (frequency = 474 Hz). 

ANALYTICAL DIAGONAL T-MATRIX ENTRIES 

ELEMENT REAL IMAGINARY MAGNITUDE PHASE 
PART PART (DEGREES) 

Tu = Roo -1.3465E-02 1.1525E-01 1.1604E-01 96.6635 
T22 = R1-1 -6.0255E-03 7.7390E-02 7.7624E-02 94.4520 
T33 = Rio -6.0255E-03 7.7390E-02 7.7624E-02 94.4520 
T44 = R11 -6.0255E-03 7.7390E-02 7.7624E-02 94.4520 
T55 = R2.2 -6.1773E-04 -2.4847E-02 2.4854E-02 -91.4242 
T«6 = R2.i -6.1773E-04 -2.4847E-02 2.4854E-02 -91.4242 
T77 = R20 -6.1773E-04 -2.4847E-02 2.4854E-02 -91.4242 
T88 = R2I -6.1773E-04 -2.4847E-02 2.4854E-02 -91.4242 
T99 = R22 -6.1773E-04 -2.4847E-02 2.4854E-02 -91.4242 

Table I. Analytical Diagonal T-Matrix Entries. 

I then used the finite element code (ATILA) to model 

the scattering pressure field generated by the thin 

spherical shell. With the scattered pressure results, I 

calculated the T-Matrix entries column by column. These 

results    are    provided    below    in    Table    II. 
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Numerical Diagonal T-Matrix Elements 

Element Real Imaginary Magnitude Phase 
Part Part (Degrees) 

T„ -1.6107E-02 1.2894E-01 1.2994E-01 97.1202 
T22 -8.0999E-03 7.9943E-02 8.0353E-02 95.7855 
T33 -7.7968E-03 7.9777E-02 8.0157E-02 95.5819 
T44 -8.0801E-03 7.9946E-02 8.0353E-02 95.7713 
T55 -2.1393E-03 -1.5865E-02 1.6009E-02 -97.6794 
Tö6 -2.2524E-03 -1.5923E-02 1.6082E-02 -98.0513 

T77 -2.1536E-03 -1.5930E-02 1.6075E-02 -97.6994 
T88 -2.2501E-03 -1.5925E-02 1.6084E-02 -98.0420 
T99 -2.1498E-03 -1.5860E-02 1.6005E-02 -97.7193 

Table II. Numerical Diagonal T-Matrix Elements. 

Table III, next page, provides an error analysis for 

the current results. Unfortunately, the monopole result 

(i.e. the first diagonal element) is much worse than 

previous results. All. other diagonal elements show some 

improvement over previous work, between 6 and 56 percent 

improvement in their magnitudes. But the most important 

indicator is the monopole element; therefore, our new mesh 

does not provide a significant improvement to the T-Matrix 

calculation. As the ATILA code is further improved we hope 

that these errors will be corrected. 
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Error Comparison Current vs. Previous 

Element Magnitude Phase Previous Previous Magnitude Phase 
Error Error Mag. Error Phase Error Improve Improve 

(percent) (Degrees) (percent) (Degrees) (percent) (Degrees) 

T,i 11.984 0.457 -0.910 -0.360 -1216.94 -0.10 
T22 3.515 1.333 6.490 0.329 45.84 -1.00 
T33 3.263 1.130 7.330 -0.500 55.48 -0.63 
T44 3.516 1.319 6.470 0.314 45.66 -1.01 
T55 -35.588 -6.255 -37.800 -9.186 5.85 2.93 
Tö6 -35.296 -6.627 -38.000 -9.006 7.12 2.38 
T77 -35.324 -6.275 -37.700 -7.823 6.30 1.55 
Tg8 -35.288 -6.618 -38.000 -8.986 7.14 2.37 
T99 -35.605 -6.295 -37.900 -9.106 6.05 2.81 

Table III. Error Comparison Current vs. Previous. 

The T-Matrix must be diagonal due to the symmetry of 

the object. That means that the off-diagonal elements must 

be zero. Previous work documented eight significant off- 

diagonal elements. Current results reveal these same eight 

elements are the most significant off-diagonals. However, 

the new results show improvement, meaning the new off- 

diagonal values are much closer to zero than previous 

calculations. Along with matching the analytical diagonal 

elements, making all off-diagonal elements closer to zero is 

another indication of how well our finite element method is 

working. Table IV offers a comparison of this improvement. 

The last column of this table shows the percentage closer to 

zero the new off-diagonal magnitudes are compared to the 

previous work. 
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SIGNMCANT OFF-DIAGONALS 
Element Real Imaginary Improvement 

Part Part (percent closer to zero) 
T71 3.21650E-04 6.87400E-04 18.96 
T62 -9.89950E-08 -1.78470E-07 99.12 
T84 -3.02040E-18 8.25020E-19 100.00 
T95 1.18910E-07 -9.80070E-07 95.46 
T26 3.69920E-06 1.98190E-06 62.58 
T„ -5.87890E-04 1.30000E-03 79.74 
T48 9.56520E-07 2.56450E-07 98.07 
T59 2.68580E-04 1.18460E-04 97.69 

Table IV. Significant Off-Diagonals. 

C.   FURTHER ANALYSIS AND DISCUSSION 

Some Matrix algebra is employed to further characterize 

how well the T-Matrix off-diagonals were calculated. The 

following equation provides a normalization method used to 

characterize the off-diagonal elements relation to one. 
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(24) 

By multiplying both sides of the T-Matrix with the 

diagonal matrix as described in Equation (24) I will obtain 
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a matrix with one's along the diagonal and relative errors 

in the off-diagonal elements. By examining the magnitudes 

of the most significant off-diagonal elements, I can quickly 

gauge how "well" I calculated the T-Matrix. Again we see 

the same eight off-diagonals show the most significant 

levels with respect to the normalization. Although they are 

the most significant they are small. This method of 

analyzing the T-Matrix's off-diagonals provides a "quick- 

check" as to how well our numerical analysis is working. 

Table V provides our results for this analysis. Notice how 

small the magnitudes of these elements. All other elements 

have magnitudes on the order of element TM and smaller. 

T-MATRIX NORMALIZATION ANALYSIS 
(MOST SIGNMCA NT OFF-DIAGONALS) 

Element Real 
Part 

Imaginary 
Part 

Magnitude 

T„ 6.96163E-03 1.50759E-02 1.6606E-02 
T62 -2.65519E-06 -5.01816E-06 5.6773E-06 
T84 -8.44548E-17 2.12802E-17 8.7095E-17 
T9S 5.96808E-05 1.55646E-05 6.1677E-05 
T26 1.01798E-04 5.71578E-05 1.1675E-04 
T,7 -1.30097E-02 2.89475E-02 3.1737E-02 
T48 2.64606E-05 7.65933E-06 2.7547E-05 
T59 -9.58209E-03 1.56365E-02 1.8339E-02 

Table V. T-Matrix Normalization Analysis. 

53 



(THIS PAGE INTENTIONALLY LEFT BLANK) 

54 



VI.  CONCLUSION AND FOLLOW-ON PROPOSALS 

A.   CONCLUSION 

I have derived an approximation for the self and mutual 

radiation impedances for spherical transducers of small ka 

values by considering two spheres in isolation. In this 

thesis, I have decided to call this approximation "Modal 

Pritchard". This approximation was tested for a general 

sphere of radius a=0.5 meters, frequency of 474 Hz, in water 

with sound speed of 1490 m/sec. Two general problems were 

tested: (1) two bodies radiating in three modes (monopoles, 

aligned dipoles, and aligned-linear quadrupoles) and (2) a 

three-body problem in which two bodies radiated in an array 

and the third acts as a moving scatterer. In all the two- 

body problems, the Modal Pritchard approximation provides 

mutual radiation impedance results close, if not exactly, 

matching the full Addition Theorem results. The same cannot 

be said for the three-body problem where scattering is 

important. Therefore, when scattering is important we 

recommend using the full Addition Theorem. In some cases, 

our Modal Pritchard approximation may be a useful tool in 

the design phase of low-frequency active sonars. 

The numerical modeling portions of this thesis have 

updated and streamlined the process of calculating the 

scattering characteristics and T-matrix for an object under 
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study. Using a more refined mesh, only a partial 

improvement has been realized for the T-matrix calculation 

for a thin spherical-shell radiator. Unfortunately, current 

work showed worse errors for the monopole element of the T- 

Matrix. 

We also noted some improvements in the calculation of 

the off-diagonal elements. Most off-diagonal elements 

showed an improvement of between 63 to 100 percent closer to 

zero as compared to previous work. I also provided a quick 

and easy means for determining how well we calculated the T- 

matrix off-diagonal elements by "normalizing" the matrix. 

With this process, we can quickly gauge the off-diagonal 

elements. As a result, seven off-diagonal elements were 

between 0.02 and 0.000006 as compared to the number one. 

All remaining off-diagonal elements (65) were smaller than 

9.0*10"17 (most significantly smaller). Current work shows 

our T-matrix calculation was worse than previous work for 

the monopole element, but showed some improvements for other 

elements of the T-matrix. There is still room for further 

improvement which may be realized when ATILA radiation 

boundary problems are addressed. 
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B.   FOLLOW-ON PROPOSALS 

Further work with the "Modal Approximation" to the 

mutual radiation impedance include studying other problems 

such as arrays of multiple transducers and calculating the 

pressure field generated from their radiation. This 

investigation does not need to be limited to comparisons 

with computer generated results from the Addition Theorem. 

Follow-on work could use this Modal Pritchard approximation 

to compare with laboratory results of real transducers. 

With meticulous data gathering, one could study how well 

this approximation does in the "real" world. 

As mentioned earlier, there continues to reside 

problems with the radiation boundary treatment in ATILA. 

This problem was to have been addressed with an even newer 

version of ATILA to include a tool called EQI. In reference 

to the second portion of this thesis, it is hoped that this 

modification will further improve the T-matrix calculation. 

Currently, about half of our T-matrix diagonal elements show 

magnitude errors below 7.3 percent and the rest are about 38 

percent in error. Current phase errors are below 9 percent. 

Further analysis using the modified ATILA with EQI may reach 

our goal of relative errors below one percent. Future work 

could also use other refined meshes that may also provide 

further improvements. 
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APPENDIX A: ADDITION THEOREH CALCULATION OF MUTUAL RADIATION 
IMPEDANCE 

Here I will explain how I used the addition theorem to 

calculate the mutual radiation impedance for two identically- 

hard spherical shells. I will refer to some equations in 

the text of this thesis throughout this explanation and will 

provide my MATLAB program along with some user defined 

functions. 

Recall the application of the Addition Theorem to write 

the pressure from one sphere relative to the coordinate 

system of the other sphere, Equations (4) and (5) of the 

text. The application of the boundary conditions as written 

in Equation (6) brings us to Equations (8) and (9). I will 

rewrite the last two equations here. 
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These two equations are put into matrix form as given 

by Equation (10). Notice the infinity sign in the 

expression above. For practical purposes we have to 

truncate this infinity to some finite number K. Using K = 

6, the left hand side of Equation (10) becomes a large 98 by 

98 matrix multiplying a 98 element column vector for the 

left hand side and the right hand side is 98-element column 

vector with only two non-zero entries. We solve for the 

amplitudes in MATLAB by using a forward divide as follows. 

B2 

tf] i 
-» C1 

A — 
-» 

/. [c2\ 

—» 

where   A— 
,1 

With K = 6 the matrices have the following sizes, 

98*98 

'A's 

98x1 
C1 

C 
solving 

A's 

98x98 C1 

c 

Now we have solved the unknown A-coefficients and are 

ready to use these results to find the mutual radiation 

impedance. 

Using Equation (13) with our solved A-coefficient 

values, we can easily solve for the radiation impedance, 
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given that the total radiation impedance can be written as 

Zrl = ZX1 +Z12*V2/V1. I first solve for the total radiation 

impedance by setting both V's equal to one. Then by setting 

V2 = 0 I obtain the self-radiation impedance (Zu) result. I 

then subtract ZX1 from Zrl to obtain the mutual-radiation 

impedance (Z12)   result. 

Here are the MATLAB computer scripts used to generate 

these results along with all supporting user defined 

functions written for this analysis. 

MAIN MATLAB PROGRAM 

% Joseph L. Day 
% Mutual impedance using the Addition Theorem 
% 2 spheres along z-axis, with top sphere moving away 
% Last updated July 27, 1999 
format long 
K=6;     % Truncated integer vice infinity 
K2=(K+1)A2; % Useful number, it is the size of many vectors 
k=2;       % Acoustic wave number. 
radius=0.5;ka=k*radius;   % Both spheres with same radius. 
theta=0;phi=pi; % Angle from 2's origin to l's 
nl=0; ml=0; n2=0; m2=0;   % Defines the mode for each of the 
two spheres 
positionl=l; % Positionl and Position2 are integers change 
position2=l; % as follows: nl=0,ml=0 then positionl=l; 

% nl=l,ml=-l then positionl=2; and 
% nl=l,ml=0 then positionl=3,..and so on. 

V1=1;V2"=0;   % Spheres velocity amplitudes 
% Both equal to one gives Z(total) 
% With Vl=l and V2=0 gives Zll 

speed=1490;  % speed of sound in the water. 
rho=1000;    % density of the water. 
templ=eye(K2);temp2=zeros(K2,K2); 
Big=[tempi temp2;temp2 tempi];  % Matrix allocation 
count=l; % Initialize a counting process 

for d=2.5:.25:24  % Distance with 0.25 meter increment 
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count1=1,-count2=l; % Counting process. 
Btempld=zeros(1,K2); 
Btemp2d=zeros(1,K2); 

for t=0:6 : . 

for s=-t:t 
ptempla=abs(t-nl);ptemplb=abs(s-ml); 
ptemplc=max(ptempla,ptemplb); 
ptemp2a=abs(t-n2);ptemp2b=abs(s-m2); 
ptemp2c=max(ptemp2a,ptemp2b); 
count3=l;count4=l; 
for pl=ptemplc: 2 : t'+nl 

M=s-ml; 
if pl<0 

P=(-1)Aabs(M)*fact(pl-abs(M))7 
fact(pl+abs(M))*legendre(pl,cos(theta)); 

else 
P=legendre(pi,cos(theta)); 

end' 
Btempla=a(nl,pi,t,ml,s)*shank2(pi,d); 
Btemplb=P(l+abs(M))*exp(i*M*phi); 
Btemplc(1,count3)=Btempla*Btemplb; 
count3=count3+l; 

end - 

Btempld(l,countl)=sum(Btemplc)*jprime(nl,ka)/hprime(nl,ka); 
countl=countl+l; 
for p2=ptemp2c:2:t+n2 

M=s-m2; 
if p2<0 

P=(-1)Aabs(M)*fact(p2-abs(M))/ 
fact(p2+abs(M))*legendre(p2,cos(theta-pi)); 

else * 
P=legendre(p2,cos(theta-pi)); 

end 
Btemp2a=a(n2,p2,t,m2,s)*shank2 (p2,d) ; 
Btemp2b=P(l+abs(M))*exp(i*M*(phi+pi)); 
Btemp2c(1,count4)=Btemp2a*Btemp2b; 
count4=count4+l; 

end 

Btemp2d(l,count2)=sum(Btemp2c) *jprime (n2,ka) /hprime (n2,ka) ; 
count2=count2+l; 

end 
end '..-.- 
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Big (position!., K2+1:2*K2)=Btempld; %Placing values 
Big(K2+position2,l:K2)=Btemp2d;  %in the proper row. 
C(2*K2,l)=zeros; 
C(positionl,1)=-i*rho*speed*Vl/hprime(nl,ka); 
C(position2+K2,l)=-i*rho*speed*V2/hprime(n2/ka); 
A=Big\C; 

Temporary=sum(conj (A(K2+1:2*K2,1)) '.*Btempld*sbessj (nl,ka) )* 
hprime(nl,ka)/jprime(nl,ka); 

Zrl=4*pi*radiusA2/Vl*(A(l,1)*shank2(nl,ka)+Temporary); 
Zrvector(count)=Zrl; 
count=count+l; 

end 

Zrlscaled=Zrvector/(4*pi*radiusA2*rho*speed); 

% This last value is the final answer and has been 
% scaled for plotting purposes. 
% Also for plotting purposes the final answer is calculated 
% for ranges (d/a) from 2.5 to 24 in increments of 0.25. 
% All plots were done using Microsoft Excel, since that 
% program works better with Microsoft Word for cutting and 
% pasting graphs. 
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Supporting user defined functions: 

function A=a(s,t,r,u,m) 

% computes the function a(s,t,r,u,m) of the Addition Theorem 
%        as written in King and Van Buren 

% Written by Joseph L. Day 
numl=(2*s+l)*(2*t+l)*fact(s-u)*fact(t- 
m+u)*fact(r+m)*fact((s+t+r)/2); 
deml=fact((r+t-s)/2)*fact((r+s-t)/2)* 

fact((s+t-r)/2)*fact(s+t+r+l); 
terml=numl/deml; 
wmin=0.5*max([r-s-t,s-r-t-2*m+2*u,t-s-r+2*u]); 
wmax=0.5*min([s+t-r,r+t-s-2*m+2*u,r+s-t+2*u]); 
sum=0; 
for w=wmin:wmax 

sum=sum+(-l)Aw*bc(s+t-r,(s+t-r)/2+w)* 
be(t+r-s,(t+r-s)/2+m-u+w)*bc(s+r-t,(s+r-t)/2-u+w); 

end 
A=real(iA(s+t-r))*terml*sum;  % Output from this function 

function y=bc(n,m) 

% Computes the binomial coefficient 

% Written by Joseph L. Day 
if m<0 

y=0; 
elseif n-m<0 

y=0; 
else 

y=prod(l:n)/(prod(l:m)*prod(l:n-m)); 
end 

function y=fact(n) 

% Computes the factorial of n 
% Written by Joseph L. Day 
y=prod(l:n); 
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function hn=shank2(n,x) 

% Computes the Spherical Hankel function of the second kind 
% Written by Joseph L. Day 
hn=sqrt(pi/(2*x))*besselh(n+.5,2,x); 

function jp=jprime(n,x) 

% Computes the first derivative of the Spherical Bessel 
%    function. 
% Written by Joseph L. Day 
jp=sqrt(pi/(2*x))*(besselj(n-.5,x)- 

(n+1)*besselj(n+.5,x)/(x)); 

function hp=hprime(n,x) 

% Computes the first derivative of the Spherical Bessel 
% function. 
% Written by Joseph L. Day 
hp=sqrt(pi/(2*x))*(besselh(n-.5,2,x)- 

(n+1)*besselh(n+.5,2,x)/(x)); 

function jn=sbessj(n,x) 

% Computes the Spherical Bessel function 

% Written by Joseph L. Day 
jn=sqrt(pi/(2*x))*besselj(n+.5,x); 
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APPENDIX B: THREE-BODY ADDITION THEOREM CALCULATION 

The solution for the mutual radiation impedance of the 

three-body problem as described in the Chapter III part B 

using the Addition Theorem is provided in this appendix. We 

start by writing the three radial velocities as expressed in 

Equation (2). The pressure from each of the three spheres 

(before we set sphere three as acoustically hard) can be 

expressed in the form of Equation (3). 

As before we utilize the Addition Theorem to write the 

pressures from spheres 2 and 3 relative to sphere one (see 

Equation (4)). This gives us the expression for P/ and P3\ 

The boundary conditions on the surface of each of the 

spheres leads to the following three equations. 

O)podr re 

V2=^-|-LP2+P2+P2] 

y2=—^-[p3+pl+pl\ 
O)podr 

Then we obtain three big equations that are similar to 

Equations (7) and (8) each with an additional term. For 

example looking at Equation (7), the additional term will be 

much like the term in the parenthesis but will involve the 

coefficients for the third sphere (A3). 
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Following a similar approach as used in Appendix A, we 

put our Equation (7)-type expressions in matrix form. We 

can write the following matrix relation. 

/ Bi     B3 

B\    I   Bl 
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As before we will truncate the infinity value to K 

gives expression of the following sizes. 
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- c\ 
We have solved for the three sphere coefficients and 

are now ready to complete our evaluation of the mutual 

radiation impedance. Using Equation (13) with these A- 

coefficients I can solve for the radiation impedance. Now I. 

can write sphere one's total radiation impedance as Zrl = Zlt 

+ Zi2*V2/V1+Z13*V3/Vl.: Now I make sphere three acoustically 

hard by setting the radial velocity amplitude in my computer 

code to zero. Next I solve for the total radiation 

impedance by setting sphere one and two's radial velocity 

amplitudes equal to one. I store this result and then 

calculate sphere one's self-radiation impedance by setting 
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sphere two's radial velocity amplitude to zero. I subtract 

this last result from the total radiation impedance, and 

that provides my mutual radiation impedance for sphere one 

due to all three spheres. The plotted data is calculated by 

incrementing the range of sphere three as it moves away from 

the two-sphere axis. 

Here is the MATLAB computer code used to generate these 

results. All supporting functions have already been 

provided. 

MATLAB Program for 3-body mutual radiation impedance 

% Written by Joseph L. Day 
% Mutual impedance using the Addition Theorem 
% Two spheres radiating, third (hard) sphere moving away 
% Last updated August 16, 1999 
format long 

K=6;     % Truncated integer vice infinity 
K2=(K+1)A2; % A useful number 
k=2; % waveNumber. 
radius=0.5;ka=k*radius;   % for all three spheres 
theta=0;phi=pi; % Angle from 2's origin to l's 
nl=0; ml=0; n2=0; m2=0; % Defines the mode for each sphere 
n3=0; m3=0; 
positionl=l; % Monopole position for matrices 
position2=l; % another monopole; 
position3=l; % like a monopole 
V1=1;V2=1;V3=0; % spheres velocity amplitudes 
speed=1490; % speed of sound in the water 
rho=1000; % density of the water 

templ=eye(K2);temp2=zeros(K2,K2); 
Big=[tempi temp2 temp2;temp2 tempi temp2;temp2 temp2 tempi]; 
% setup some space for future calculation 
count=l; % initialize a counting 
process 
phicheck=0; 
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for d=pi/2:.25:24        % Distance with 0.25 meter 
increment 

dl2=pi; . 
countla=l;count2a=l;count3a=l;% initialize counts. 
countlb=l;count2b=l;count3b=l; 
Btemplda=zeros(l,K2);Btempldb=zeros(l,K2); 
Btemp2da=zeros(l,K2);Btemp2db=zeros(l,K2); 
Btemp3da=zeros(l,K2);Btemp3db=zeros(l,K2); 
for t=0:6 

for s=-t:t 
ptempla=abs(t-nl);ptemplb=        , 

abs(s-ml);ptemplc=max(ptempla,ptemplb); 
ptemp2a=abs(t-n2);ptemp2b= 

abs(s-m2);ptemp2c=max(ptemp2a,ptemp2b); 
ptemp3a=abs(t-n3);ptemp3b= 

abs(s-m3);ptemp3c=max(ptemp3a,ptemp3b); 

count3=l;count4=l;count5=l;count6=l;count7=l;count8=l; 
for pl=ptemplc:2:t+nl  %for B(lto2) 

M=s-ml; 
if pl<0 

P=(-l)Aabs(M)*fact(pl-abs(M))/ 
fact(pl+abs(M))*legendre(pl,cos(theta)); 

else ".;■■■■' 
P=legendre(pi,cos(theta)); 

end 
Btempla=a (nl,pi, t,ml, s) *shank2 (pl,dl2) ; 
Btemplb=P(l+abs(M))*exp(i*M^phi); 
Btemplc(1,count3)=Btempla*Btemplb; 
count3=count3+l; 

end 

Btemplda(l,countla)=sum(Btemplc)*jprime(nl,ka)/ 
hprime(nl,ka); 

countla=countla+l; 
phil3=pi/2+atan(pi/2/(d)); 
thetal3=3*pi/2; 
for pl=ptemplc:2:t+nl  %for B(lto3) 

M=s-ml; 
if pl<0 

P=(-l)Aabs(M)*fact(pl-abs(M))/ 
fact(pl+abs(M))*legendre(pi,cos(thetal3)); 

else 
P=legendre(pi,cos(thetal3)); 

■ end 
dl3=sqrt((pi/2)A2+(d)A2); 
Btempla=a(nl,pl,t,ml,s)*shank2(pl,dl3); 

70 



Btemplb=P(l+abs(M))*exp(i*M*phil3) ; 
Btemplc(1,count4)=Btempla*Btemplb; 
count4=count4+l; 

end 

Btempldb(l,countlb)=sum(Btemplc) *jprime(nl,ka) / 
hprime(nl,ka); 

countlb=countlb+l; 
for p2=ptemp2c:2:t+n2 %for B(2tol) 

M=s-m2; 
if p2<0 

P= (-1) Aabs (M) *fact (p2-bs (M)) /fact (p2+abs (M)) * 
legendre(p2,cos(theta-pi)); 

else 
P=legendre(p2,cos(theta-pi)); 

end 
Btemp2a=a(n2,p2,t,m2,s) *shank2 (p2,dl2) ; 
Btemp2b=P(l+abs(M) ) *exp(i*M* (phi+pi) ) ; 
Btemp2c(1,count5)=Btemp2a*Btemp2b; 
count5=count5+l; 

end 

Btemp2da(l,count2a)=sum(Btemp2c) *jprime(n2,ka) / 
hprime (n2, ka) ; 

count2a=count2a+l; 
phi23=pi/2-atan(pi/2/(d)); 
theta23=3*pi/2; 
for p3=ptemp3c:2:t+n3  %for B(2,3) 

M=s-m3; 
if p3<0 

P=(-l)Aabs(M)*fact(p3-abs(M))/ 
fact(p3+abs(M))*legendre(p3,cos(theta23)); 

else 
P=legendre(p3,cos(theta23)); 

end 
d23=sqrt((pi/2)A2+(d)A2); 
Btemp3a=a(n3,p3,t,m3,s)*shank2(p3,d23); 
Btemp3b=P(l+abs(M))*exp(i*M*(phi23)); 
Btemp3c(1,count6)=Btemp3a*Btemp3b; 
count6=count6+l; 

end 

Btemp2db(1, count2b) =s\om(Btemp3c) * jprime (n3, ka) / 
hprime(n3,ka); 

count2b=count2b+l; 
for p3=ptemp3c:2:t+n3  %for B(3,l) 

M=s-m3; 
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if p3<0 
P=(-l)Aabs(M)*fact(p3-abs(M))/ 
fact(p3+abs(M))*legendre(p3,cos(thetal3-pi)); 

else 
P=legendre(p3,cos(thetal3-pi)); 

end 
d23=sqrt((pi/2)A2+(d)A2); 
Btemp3a=a(n3,p3,t,m3,s)*shank2(p3,dl3) ; 
Btemp3b=P(l+abs(M))*exp(i*M*(phi!3+pi)); 
Btemp3c(1,count7)=Btemp3a*Btemp3b; 
count7=count7+l; 

end 

Btemp3da(l,count3a)=sum(Btemp3c)*jprime(n3,ka)/ 
hprime(n3,ka); 

count3a=count3a+l; 
for p3=ptemp3c:2:t+n3  %for B(3,2) 

M=s-m3; 
if p3<0 

P=(-1)Aabs(M)*fact(p3-abs(M))/ 
fact(p3+abs(M))*legendre(p3,cos(theta23-pi)); 

else 
P=legendre(p3/cos(theta23-pi)); 

end 
Btemp3a=a(n3,p3,t,m3,s)*shank2(p3,d23); 
Btemp3b=P(l+abs(M))*exp(i*M*(phi23+pi)); 
Btemp3c(1,count8)=Btemp3a*Btemp3b; 
count8=count8+l; 

end        u 

Btemp3db(l,count3b)=sxim(Btemp3c) *jprime(n3,ka) / 
hprime(n3,ka) ;. 

count3b=count3b+l; 
end 
phicheck=phicheck+.25; 

end 
Big(positionl,2*K2+l:3*K2)=Btempldb;    % Placement    • 
Big(positionl,K2+1:2*K2)=Btemplda; 
Big(K2+position2,l:K2)=Btemp2da;       % of vectors. 
Big(K2+position2,2*K2+l:3*K2)=Btemp2db; 
Big(2*K2+position3,1:K2)=Btemp3da; 
Big(2*K2+position3,K2+1:2*K2)=Btemp3db; 
C(3*K2,l)=zeros; 
C(positionl,1)=-i*rho*speed*Vl/hprime(nl,ka); 
C (position2+K2,1)=-l*rho*speed*V2/hprime(n2,ka); 
C(position3+2*K2,1)=-i*rho*speed*V3/hprime(n3,ka); 
A=Big\C; 
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Temporary=sum(conj(A(K2+1:2*K2,1))'.*Btemplda*sbessj(nl,ka)) 
*hprime(nl,ka)/jprime(nl,ka); 

Temporary2=sum(conj(A(2*K2+1:3*K2,1))'.*Btempldb*sbessj(nl,k 
a))*hprime(nl,ka)/jprime(nl,ka); 

Zrl=4*pi*radiusA2/Vl*(A(l,1)*shank2(nl,ka)+Temporary+Tempora 
ry2); 

Zrvector(count)=Zrl; 
count=count+l; 

end 
Zrlscaled=Zrvector/(4*pi*radiusA2*rho*speed); 
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APPENDIX C: T-MATRIX CALCULATION 

Upon obtaining the scattered pressures from the ATILA 

code for the user defined mesh, I then calculated the 

Transition Matrix (T-Matrix) for the user-defined 

transducer. For this analysis we used a thin spherical 

shell for our transducer. 

Before I spell out my method for calculating the T- 

matrix, I should provide the reader with some background 

concerning this T-matrix (Ref. 3). First suppose the 

incident pressure to an object are standing spherical waves 

as represented by 

p'(r,0,t)=.jn{kr)££(e,l>). 

We use this T-matrix to transform from our incident 

pressure to the scattered pressure from the object subjected 

to this incident pressure. Basically, the T-Matrix 

describes the scattering property of each unique scatter (or 

in this case transducer) by using a discrete basis set of 

spherical harmonics. I determine the T-Matrix for my 

spherical shell by analyzing the scattering characteristics 

of this shell subject to a "standing" wave. . Mathematically 

speaking, the T-matrix transforms our incident standing 

waves to scattered outgoing waves in the form of Hankel 

functions shown below. 
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p(r,e,<p)=hn(kr)Q:(e,<p). 

The following equation indicates the utility of the T- 

Matrix. The Rn values represent the reflection coefficients 

from the spherical shell and constitute elements of the T- 

Matrix. 

T-Matrix ■"■■'■,'.' 

21, j,(»)&,(*>*)   =>   ZRXM&fr 
S tending Wave Radiating Wave 

Here is how I used these ideas to develop my T-matrix 

calculation. Starting with the output data from ATILA which 

is basically I\7-number of data points in the following form: 

for i = 1 to N we have x., y., zs, and' P±. Then for all Ap- 

points I need to calculate the following product 

hnir)a:(^i)=hniriXk )xp:(cosö,.)x^. 

I will do this product up to the quadrupole, that is 

nine times for each n and m combination (n=0 and m=0, n=l 

and m=-l, ... n=2 and m=2) . So for example if we have 100 

data points, the number of calculated complex numbers is 900 

(100 data points up to the quadrupole) . The resulting 

matrix is of the form: 
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calculated complex numbers 

100 fry 9 

'      T 
-» 

A 

{unknowns) 

(9*l) 

i 

'       t 
Pressure 

(fromATILA) 

(IOOJCI) 

I 

We solve for the unknown A-coefficients in MATLAB by 

the following equation [A] = [calculated numbers]\[P] . The 

forward divide sign in MATLAB is a solution for the A vector 

in a least squares sense to this over-determined system of 

equations [calculated numbers]*[A] = [P] . The effective 

rank of the calculated numbers matrix is determined from the 

QR decomposition with rank pivoting. The relationship of 

the T-matrix with the incident pressure amplitude vector [23] 

and the A-coefficients is as follows 

Boo iT.00 

Bo-i -T10-1 

T - matrix Bio = Ao 

Bn A.22 _ 
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Since we obtain bur results from ATILA for each n and m 

combination we solve for each column of the T-matrix in the 

following way. For example, we obtain ATILA's first 

scattering pressure results when we model the incident 

pressure with the standing waves using n=0 and m=0. We then 

use the scattering pressures to solve for the A- 

coefficients. Then we solve for the first column of the T- 

matrix by solving for the following equation. 

"1  " Am 
" 0 AQ-\ 

T 0 = Aid 

0 An _ 
Proceeding this way we can solve for all 9-columns of 

the T-matrix by changing the n and m values of the incident 

pressure accordingly. One final comment about this 

procedure to calculate the T-Matrix concerns the form of the 

incident wave. Because of certain limitations with the 

ATILA code we used a "traveling" wave vice the "standing" 

wave. The form of the incident pressure wave possible is a 

Hankel function instead of the spherical Bessel function. 

Because of this, a correction factor to the diagonal 

elements of 0.5*(diagonal element - 1) is necessary. 

The following text provides the MATLAB program codes 

that I used to calculate the T-matrix.  Also provided are 
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the user defined functions used in support of the main 

program and the analytical calculation for the T-matrix for 

thin spherical shells. 

Main MATLAB Program: 

% Joseph L. Day 
% Calculation of the T-matrix 
% last updated July 21, 1999 

% Part 1: Import ATILA data and calculate the A coefficients 
format long 
data=getdata('temp5.dat'); 
% temp5.dat is a text file, tab deliminated with the first 
% line as: number of rows, one-space, and number of columns. 
% The data as follows: column 1: x; col. 2: y; col. 3: z; 
% col. 4: real(pressure); and 
% column 5: Imaginary(pressure). 
x=data(:,1);y=data(:,2);z=data(:, 3) ; 
p=data(:,4)+i.*data(: ,5) ; 
k=2*pi*474/1492.94;      % since ka=l and a=.5meters 
count=l;   % initializes my count. 
for N=0:2 

for M=-N:N 
Ptemp2=zeros(1,length(x)); 
for n=l:length(x) 

, r=sqrt((x(n))A2+(y(n))A2+(z(n))A2); 
theta=acos(z(n)/r); 
phi=atan2(y(n),x(n)); 
if M<0 

P=(-l)/sabs(M)*fact(N-abs(M))/ 
fact(N+abs(M))*legendre(N,cos(theta)); 

else 
P=legendre(N,cos(theta)); 

end 
Ptempl=shank2 (N,k*r) *P(l+abs(M)) *exp(i*M*phi) ; 
Ptemp2(n)=Ptempl; 

end 
Ptemp2=(conj(Ptemp2))'; % make column vector 
eval(['Ptemp3' num2str(count) '=Ptemp2;']); 
count=count+l; 

end 
end 
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cal=[Ptemp31 Ptemp32 Ptemp33 Ptemp34 Ptemp35 Ptemp36 Ptemp37 
Ptemp38 Ptemp39]; 
% cal is a 100by9 matrix that will be used to determine 
%    the A coefficients 
A=cal\p; 

% This final "A" value provides one column of the T-matrix. 
% At this point I would apply the correction factor since 
% we used a traveling wave instead of the standing wave. 
% The n and m value determines which column of the T-matrix. 

Supporting user defined functions; 

function A=getdata(name) 
%Function to read free-formated data A (matrix or vector) 
% Written by Charles W. Therrien 
if all(name -='.') 

name=[name,'.dat'] ; 
end 
[ft,message]=fopen(name,'r'); 
if ft<0 

error(message) 
end 
[bf,N]=fscanf(ft, '%g•) ; 
fclose(ft); 
if bf(1)==N-1 

A=zeros(l,bf(1)); 
A(:)=bf(2:N); 

elseif bf(l)*bf(2)==N-2 
A=zeros(bf(2),bf(1)); 
A(:)=bf(3:N); 
A=A. 

else 
A=bf.'; 
fprintf(t' Data length does not match count. \n' ,. •.'." 
' File contents is being returned as a vector.An1]) 

end 

function hn=shank2(n,x) 

% Computes the Spherical Hankel function of the second kind. 
% Written by Joseph L. Day 
hn=sqrt(pi/(2*x))*besselh(n+.5,2,x); 
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function y=fact(n) 

% Computes the factorial of n 
% Written by Joseph L. Day 
y=prod(l:n); 

Program to calculate the Analytical T-matrix for a thin 
spherical shell: 

% Written by: Joseph L. Day 
% Reference: ONR Report - AY98 Thesis (Ref 5) 
% last updated April 6, 1999 
% Computation of the T-matrix diagonal elements using 
% the analytically derived formulas found (Ref 5, page 5) 
format long 
a=0.5;      % is the radius of the sphere in meters 
h=0.01;     % is the shell thickness 
E=215*10A9;  % is the bulk modulus in Pascals 
•v=0.33;     % is the Poisson's ratio shell's material 
w=2*pi*474;  % is the angular frequency (474 Hz) 
rhos=7500;   % is the density of the solid [kg/mA3] 
rhof=1000;   % is the density of the fluid [kg/mA3] 
cf=1492.94;  % is the sound speed of the fluid [m/s] 
k=w/cf;     % is the wave number, in this case ka=l 
cp=sqrt(E/(rhos*(l-vA2))); % plate wave speed 
omega=w*a/cp; 
M=l; 
for N=0:2 

n=N; 
for m=-n:n 

b=omegaA2-v-n*(n+l)+l; 
c=omegaA2-2*(1+v); 
d=n*(n+l)*(l+v)A2; 
Z(M)=i*h*cp*rhos/(a*omega)*((b*c-d)/b); 
jn=sqrt(pi/(2*k*a))*besselj(n+.5,k*a); 
hn=sqrt(pi/(2*k*a))*besselh(n+.5,2,k*a); 
jhat=sqrt(pi/(2*k*a))*(besselj(n-.5,k*a) 

-(n+l)*besselj(n+.5,k*a)/(k*a)); 
hhat=sqrt(pi/(2*k*a))*(besselh(n-.5,2,k*a) 

-(n+l)*besselh(n+.5,2,k*a)/(k*a)); : 
numerator=i*Z(M)*jhat+rhof*cf*jn; 
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denom=i*Z(M)*hhat+rhof*cf*hn; 
T(M)=-numerator/denom; 
M=M+1; 

end 
end 
result=[(1:9)' real(T)' imag(T)' -abs(T)' (angle(T)*180/pi)'] 
% result is the output: column 1: index number (n); 
% column 2: real(T-matrix); 
% column 3: image(T-matrix); column 4: amplitude; 
% and column 5: phase (degrees). 
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