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Preface 
This volume contains the papers selected for presentation at the Seventh In- 
ternational Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular- 
Soft Computing (RSFDGrC'99) held in the Yamaguchi Resort Center, Ube, 
Yamaguchi, Japan, November 9-11, 1999. The workshop was organized by the 
International Rough Set Society, the BISC Special Interest Group on Granular 
Computing (GrC), the Polish- Japanese Institute of Information Technology, and 
Yamaguchi University. 

RSFDGrC'99 provided an international forum for sharing original research 
results and practical development experiences among experts in these emerging 
fields. An important feature of the workshop was to stress the role of the inte- 
gration of intelligent information techniques. That is, to promote a deep fusion 
of these approaches to AI, soft computing, and database communities in order to 
solve real-world, large, complex problems concerned with uncertainty and fuzzi- 
ness. In particular, rough and fuzzy set methods in data mining and granular 
computing were on display. 

The total of 89 papers coming from 21 countries and touching a wide 
spectrum of topics related to both theory and applications were submitted to 
RSFDGrC'99. Out of them 45 papers were selected for regular presentations 
and 15 for short presentations. Seven technical sessions were organized, namely: 
Rough Set Theory and Its Applications; Fuzzy Set Theory and Its Applications; 
Non-classical Logic and Approximate Reasoning; Information Granulation and 
Granular Computing; Data Mining and Knowledge Discovery; Machine Learn- 
ing; Intelligent Agents and Systems. 

The RSFDGrC'99 program was enriched by four invited speakers: Zdzislaw 
Pawlak, Lotfi A. Zadeh, Philip Yu, and Setsuo Arikawa, from soft computing, 
database, and AI communities. A special session on Rough Computing: Foun- 
dations and Applications was organized by James F. Peters. 

An event like this can only succeed as a team effort. We would like to 
acknowledge the contribution of the program committee members and thank 
the reviewers for their efforts. Many thanks to the honorary chairs Zdzislaw 
Pawlak and Lotfi A. Zadeh as well as the general chairs Setsuo Ohsuga and T.Y. 
Lin. Their involvement and support have added greatly to the quality of the 
workshop. Our sincere gratitude goes to all of the authors who submitted papers. 
We are grateful to our sponsors: Kayamori Foundation of Informational Science 
Advancement, United States Air Force Asian Office of Aerospace Research and 
Development, and Yamaguchi Industrial Technology Development Organizer, 
for their generous support. We wish to express our thanks to Alfred Hofmann 
of Springer-Verlag for his help and cooperation. 

November 1999 Ning Zhong 
Andrzej Skowron 

Setsuo Ohsuga 
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Decision Rules, Bayes' Rule and Rough Sets 

Zdzislaw Pawlak 

Institute of Theoretical and Applied Informatics 
Polish Academy of Sciences 

ul. Baltycka 5, 44 000 Gliwice, Poland 
e-mail:zpw@ii.pw.edu.pl 

Abstract. This paper concerns a relationship between Bayes' inference 
rule and decision rules from the rough set perspective. 
In statistical inference based on the Bayes' rule it is assumed that some 
prior knowledge (prior probability) about some parameters without knowl- 
edge about the data is given first. Next the posterior probability is com- 
puted by employing the available data. The posterior probability is then 
used to verify the prior probability. 
In the rough set philosophy with every decision rule two conditional prob- 
abilities, called certainty and coverage factors, are associated. These two 
factors are closely related with the lower and the upper approximation 
of a set, basic notions of rough set theory. Besides, it is revealed that 
these two factors satisfy the Bayes' rule. That means that we can use to 
data analysis the Bayes' rule of inference without referring to Bayesian 
philosophy of prior and posterior probabilities. 

Key words: Bayes' rule, rough sets, decision rules, information system 

1    Introduction 

This paper is an extended version of the author's ideas presented in [5,6,7,8]. 
It concerns some relationships between probability, logic and rough sets and it 
refers to some concepts of Lukasiewicz presented in [3]. 

We will dwell in this paper upon the Bayesian philosophy of data analysis 
and that proposed by rough set theory. 

Statistical inference grounded on the Bayes' rule supposes that some prior 
knowledge (prior probability) about some parameters without knowledge about 
the data is given first. Next the posterior probability is computed when the 
data are available. The posterior probability is then used to verify the prior 
probability. 

In the rough set philosophy with every decision rule two conditional proba- 
bilities, called certainty and coverage factors, are associated. These two factors 
are closely related with the lower and the upper approximation of a set, basic 
concepts of rough set theory. Besides, it turned out that these two factors satisfy 
the Bayes' rule. That means that we can use to data analysis the Bayes' rule 
of inference without referring to Bayesian philosophy, i.e., to the prior and pos- 
terior probabilities. In other words, every data set with distinguished condition 



and decision attributes satisfies the Bayes' rule. This property gives a new look 
on reasoning methods about data. 

2    Information System and Decision Table 

Starting point of rough set based data analysis is a data set, called an information 
system. 

An information system is a data table, whose columns are labelled by at- 
tributes, rows are labelled by objects of interest and entries of the table are 
attribute values. 

Formally by an information system we will understand a pair S = (U, A), 
where U and A, are finite, nonempty sets called the universe, and the set of 
attributes, respectively. With every attribute oeiwe associate a set Va, of its 
values, called the domain of a. Any subset B of A determines a binary relation 
1(B) on U, which will be called an indiscernibility relation, and is defined as 
follows: (x,y) € 1(B) if and only if a(x) = a(y) for every a € A, where a(x) 
denotes the value of attribute a for element x. Obviously 1(B) is an equivalence 
relation. The family of all equivalence classes of 1(B), i.e., partition determined 
by B, will be denoted by U11(B), or simple U/B; an equivalence class of 1(B), 
i.e., block of the partition U/B, containing x will be denoted by B(x). 

If (x,y) belongs to 1(B) we will say that x and y are B-indiscernible or 
indiscernible with respect to B. Equivalence classes of the relation 1(B) (or 
blocks of the partition U/B) are referred to as B-elementary sets or B-granules. 

If we distinguish in an information system two classes of attributes, called 
condition and decision attributes, respectively, then the system will be called a 
decision table. 

A simple, tutorial example of an information system (a decision table) is 
shown in Table 1. 

Table 1. An example of a decision table 

Car F P S M 
1 med. med. med. poor 
2 high med. large poor 
3 med. low large poor 
4 low med. med. good 
5 high low small poor 
6 med. low large good 

The table contains data about six cars, where F, P, S and M denote fuel 
consumption, selling price, size and marketability, respectively. 



Attributes F,P and S are condition attributes, whereas M is the decision 
attribute. Each row of the decision table determines a decision obeyed when 
specified conditions are satisfied. 

3 Approximations 

Suppose we are given an information system (a datat set) S = (U, A), a subset 
X of the universe U, and subset of attributes B. Our task is to describe the set 
X in terms of attribute values from B. To this end we define two operations 
assigning to every X C U two sets B* (X) and B* (X) called the B-lower and 
the B-upper approximation of X, respectively, and defined as follows: 

B.(X) = (J {B(x) : B{x) C X}, 

B*{X)= \J{B{x):B{x)nX?9). 
x€U 

Hence, the .B-lower approximation of a set is the union of all B-granules that are 
included in the set, whereas the B-upper approximation of a set is the union of 
all ß-granules that have a nonempty intersection with the set. The set 

BNB(X) = B*(X)-B.(X) 

will be referred to as the B-boundary region of X. 
If the boundary region of X is the empty set, i.e., BNB(X) = 0, then X is 

crisp (exact) with respect to B; in the opposite case, i.e., if BNB(X) ^ 0, X is 
referred to as rough (inexact) with respect to B. 

For example, let C = {F, P, S} be the set of all condition attributes. Then for 
the set X = {1,2,3,5} of cars with poor marketability we have C*(X) = {1,2,5}, 
C*(X) = {1,2,3,5,6} and BNC(X) = {3,6}. 

4 Decision Rules 

With every information system S = (U, A) we associate a formal language L(S), 
written L when S is understood. Expressions of the language L are logical for- 
mulas denoted by #, $ etc. built up from attributes and attribute-value pairs by 
means of logical connectives A (and), V (or), ~ (not) in the standard way. We 
will denote by ||#||s the set of all objects x € U satisfying # in S and refer to 
as the meaning of # in S. 

The meaning of # in S is defined inductively as follows: 

1) ll(a>v)lls = {v£U : a(v) = U} for all a £ A and v € Va, 
2) ||*Vtf||s = ||*||5U||!P||s, 
3) ||*A#||s = ||*||sn||!P||s, 
4) ||~#||s = tf-||#||s. 



A formula # is true in S if ||^||s = U. 
A decision rule in L is an expression # -* <P, read i/ # i/ien <P; # and !? are 

referred to as conditions and decisions of the rule, respectively. 
An example of a decision rule is given below 

(F,med.) A (P,low) A (S, large) -» (M,poor). 

Obviously a decision rule § -> <P is irue in 5 if ||#||s C ||!P||s. 
With every decision rule # -4 !? we associate a conditional probability 

7Ts(!f |#) that <? is true in 5 given # is true in 5 with the probability 

ns($)cacardfu)^' called the certainty factor and defined as follows: 

7rs(<P|<2>) 
cardfl |# A ff||s) 

card(||#||s)    ' 

where ||«P||5^0. 
This coefficient is widly used in data mining and is called "confidence coeffi- 

cient" . 
Obviously, 7rs(<P|#) = 1 if and only if # -» <P is true in 5. 
If 7Ts(!?|#) = 1, then # -» <P will be called a certain decision rule; if 

0 < TTS^I^) < 1 the decision rule will be referred to as a possible decision rule. 
Besides, we will also need a coverage factor 

7Ts(#|<P) 
card(\\$A<P\\s) 

cord(||!P||s)    ' 

which is the conditional probability that § is true in S, given # is true in 5 with 
the probability irsi^)- 

Certainty and coverage factors for decision rules associated with Table 1 are 
given in Table 2. 

Table 2. Certainty and coverage factors 

Car F P S M Cert. Cov. 
1 med. med. med. poor 1 1/4 
2 high med. large poor 1 1/4 
3 med. low large poor 1/2 1/4 
4 low med. med. good 1 1/2 
5 high low small poor 1 1/4 
6 med. low large good 1/2 1/2 

More about managing uncertainty in decision rules can be found in [2]. 



5    Decision Rules and Approximations 

Let {#j -» \P}n be a set of decision rules such that: 

all conditions #* are pairwise mutally exclusive, i.e., ||#j A $j\\s = 0,for any 

1 <i,j <n, i^j, and (1) 
n 

5>S(*4|!P) = 1. 
i=l 

Let C and D be condition and decision attributes, respectively, and let 
{#{ -» !?}„ be a set of decision rules satisfying (1). 

Then the following relationships are valid: 

a) C.(||*||s) = II     V     ^Hs> 
JT(*|#0=1 

b)C*(||ff||S) = |l V *'Hs. 
0<ff(!?|*i)<l 

c) BNc(\m\s) = II    V    **n* = Ü ii**iis- 
0<7r(*|*i)<l i=l 

The above properties enable us to introduce the following definitions: 

i) If 1|#||s = C*(||#i|s), then formula § will be called the C-lower approxima- 
tion of the formula <? and will be denoted by C»(<P); 

ii) If ||#||s = C*(||!?||s), then the formula # will be called the C-upper approx- 
imation of the formula $ and will be denoted by C*(<P); 

iii) If ||$||s = JBNc(H^lls), then # will be called the C-boundary of the formula 
$ and will be denoted by BNC{$). 

Let us consider the following example. 
The C-lower approximation of (M, poor) is the formula 

C,(M,poor) = {(F,med.) A (P,med.) A (S,med.)) V 

((F,high) A (P,med.) A (5,large)) V 

((F, high) A (P, low) A (5, small)). 

The C-upper approximation of (Af, poor) is the formula 

C*(M,poor) = ((F,med.) A (P,med.) A (5,med)) V 

((F, Wp/i) A (P, med.) A (5, Zor^e)) V 

((F,med.) A (P,iow) A (S,large)) V 

((P, /wp/i) A (P, /ow) A (5, small)). 

The C-boundary of (M, poor) is the formula 

BNc{M,poor) = ((F,med.) A (P,low) V (S,large)). 



After simplification we get the following approximations 

C*(M,poor) = ((F,med.) A (P,med.)) V {F,high), 

C*(M,poor) = (F,med.) V (F,high). 

The concepts of the lower and upper approximation of a decision allow us to 
define the following decision rules: 

BNC{&) -»■ V- 

For example, from the approximations given in the example above we get the 
following decision rules: 

((F,med.) A (P,med.)) V {F,high) -> (M, poor), 
{F,med.) V (F,high) -» (M, poor), 
\{F,med.) A (P,low) A (S,large)) -> {M,poor). 

From these definitions it follows that any decision VP can be uniquely discribed 
by the following two decision rules: 

BNC{V) -> •?• 

From the above calculations we can get two decision rules 

((F,med.) A (P,med.)) V (F, high) -¥ (M,poor), 
((F,med.) A (P,low.) A (SJartö) -> (M,poor), 

which are associated with the lower approximation and the boudary region 
of the decision (M, poor), respectively and describe decision (M, poor). 

Obviously we can get similar decision rules for the decision (M, good) which 
are as follows: 

(F,low) -> (M,good), 
\{F,med.) A {P,low.) A (S,lar9e)) -»• (M,good). 

This coincides with the idea given by Ziarko [15] to represent decision tables 
by means of three decision rules corresponding to positive region the boundary 
region, and the negative region of a decision. 



6    Decision Rules and Bayes' Rules 

If {#i -¥ \P}n is a set of decision rules satisfying condition (1), then the well 
known formula for total probability holds: 

TS(#) = ]F]*,s(*l*i) ■ *s($i). 
t=i 

Moreover for any decision rule # -¥ \P the following Bayes' rule is valid: 

ws(*j\¥) = E?=i*s(*l*<Ws(*i)' 

(2) 

(3) 

That is, any decision table or any set of implications satisfying condition (1) 
satisfies the Bayes' rule, without referring to prior and posterior probablities - 
fundamental in Baysian data analysis philosophy. Bayes' rule in our case says 
that: if an implication § -» !? is true to the degree ns{}&\$) then the implication 
<P -»• $ is true to the degree TTS(#|!P). 

This idea can be seen as a generalization of a modus tollens inference rule, 
which says that if the implication # -¥ <P is true so is the implication ~ \P -+~ $. 

For example, for the set of decision rules 

((F,med.) A (P,med.)) V {F, high) -» (M,poor), 
((F,med.) A (P,low) A (S,lar9^)) -* (M,poor), 
(F,low) -)• (M,good), 
((F,med.) A (P,low) A (S,lar9e)) -> {M,good), 

we get the values of ceratinty and coverage factors shown in Table 3. 

Table 3. Initial decision rules 

Rule Decision Certainty Coverage 
certain 

boundary 
certain 

boundary 

poor 
poor 
good 
good 

1 
1/2 

1 
1/2 

3/4 
1/4 
1/2 
1/2 

The above set of decison rules can be "reversed" as 

(M,poor) -> ((F,med.) A (P,med.)) V (F, high), 
(M,poor) -> ((F,med.) A (P,low) A (5,/arge)), 
(M,good) -» (F,low), 



{M,good) -» {(F,med.) A (P,low) A (S^e)). 

Due to Bayes' rule the certainty and coverage factors for inverted decision 
rules are mutually exchanged as shown in Table 4 below. 

Table 4. Reversed decision rules 

Rule Decision Certainty Coverage 

certain poor 3/4 1 
boundary poor 1/4 1/2 
certain good 1/2 1 

boundary good 1/2 1/2 

This property can be used to reason about data in the way similar to that 
allowed by modus tollens inference rule in classical logic. 

7    Conclusions 

It is shown in this paper that any decision table satisfies Bayes' rule. This en- 
ables to apply Bayes' rule of inference without referring to prior and posterior 
probabilities, inherently associated with "classical" Bayesian inference philoso- 
phy. Prom data tables one can extract decision rules - implications labelled by 
certainty factors expressing their degree of truth. The factors can be computed 
from data. Moreover, one can compute from data the coverage degrees expressing 
the truth degrees of "reverse" implications. This can be treated as generalization 
of modus tollens inference rule. 
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In one form or another, decision processes play a pivotal role in systems 
analysis. Decisions are based on information. More often than not, decision- 
relevant information is a mixture of measurements and perceptions. 

It is a long-standing tradition in science to deal with perceptions by convert- 
ing them into measurements. As is true of every tradition, a time comes when 
the underlying assumptions cease to be beyond question. 

A thesis advanced in our work is that closer analysis leads to the conclusion 
that in most fields of science - and especially in systems analysis - conversion of 
perceptions into measurements is, in many cases, infeasible, unrealistic or coun- 
terproductive. The alternative is to develop a machinery for computation with 
perceptions which exploits the vast computational power of modern computers. 
In essence, this is the aim of the computational theory of perceptions (CTP). 
Somewhat paradoxically, the source of inspiration for this theory is the remark- 
able human capability to perform a wide variety of physical and mental tasks 
without any measurements and any computations. Underlying this capability 
is the brain's crucial ability to manipulate perceptions - perceptions of time, 
distance, direction, speed, force, shape, color, similarity, likelihood, intent and 

truth, among others. 
The point of departure in the computational theory of perceptions - the first 

stage in the reasoning process - is conversion of perceptions into propositions 
expressed in a natural language, with a proposition viewed as a carrier of in- 
formation which provides an answer to a question. A key idea in CTP is that 
the meaning of a proposition may be represented as a generalized constraint 
on a variable. This idea forms the basis for what is called constraint-centered 
semantics of natural languages (CSNL). 

The second stage in CTP involves translation of propositions in the ini- 
tial data set into the constraint language GCL, resulting in a collection of an- 
tecedent constraints which constitute the initial constraint set ICS. The third 
stage involves goal-directed propagation of initial constraints augmented with 

* Research supported in part by NASA Grant NAC2-1177, ONR Grant N00014-96-1- 
0556, ARO Grant DAAH 04-961-0341 and the BISC Program of UC Berkeley. 
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decision-relevant constraints induced by an external knowledgebase. The goal is 
a terminal constraint set in GCL which upon retranslation - the fourth and last 
stage - yields the end result of the reasoning process. 

Existing theories, especially probability theory, decision analysis and systems 
analysis, lack the capability to operate on information which is perception-based 
rather than measurement- based. The primary objective of the computational 
theory of perceptions is to add such capability to existing theories and thereby 
enhance their ability to deal with real world problems in an environment of 
imprecision, uncertainty and partial truth. 



On Text Mining Techniques for Personalization 

Cham C. Aggarwal and Philip S. Yu 

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 

Abstract. The popularity of the Web has made text mining techniques 
for personalization an increasingly important research topic. We first ex- 
amine the problem on text mining for building categorization systems. 
Three different approaches which can be used for building categorization 
systems are discussed: classification, clustering and partial supervision. 
We examine the advantages and disadvantages of each approach. Some 
Web specific enhancements are discussed. Applications of text mining 
techniques to collaborative filtering have then been examined. Specifi- 
cally, a content-based collaborative filtering approach is considered. 

1 Introduction 

The increased amount of online text data on the Web has led to the need for 
improved text mining techniques for personalization. In this paper we will discuss 
two important applications: 

- Categorization Systems: In categorization systems, we wish to provide 
the ability of classifying documents into categories in an automated way. 
These categories may either be pre-decided from a training data set or may 
be generated using a clustering algorithm. Various tradeoffs will be discussed 
in this paper. Some web specific extensions for categorization are examined. 

- Collaborative Filtering Systems: Collaborative filtering systems [18, 12, 
2] are very applicable to electronic commerce sites in which purchases made 
by customers can be tracked. The record of purchases or Web pages browsed 
may be used in order to determine like-minded peer groups and make rec- 
ommendations for individual customers based on the behavior of their peer 
groups. In content based collaborative filtering methods [6], a content char- 
acterization of the product or Web page is being used on the peer group 
formation to make these recommendations. Text mining techniques are very 
effective in using these content characterizations in order to provide recom- 
mendations. 

2 Categorization Systems 

Categorization systems have become increasingly important because of the need 
to classify large online repositories in a structured way. This can be very use- 
ful for personalization applications in which the analysis of textual material 
browsed on an E-commerce site by an online customer is used in order to make 
recommendations. 
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Categorization systems can be built with or without supervision from a pre- 
existing set of classes in another taxonomy. Several tradeoffs are possible and 
have been discussed in [1]. These tradeoffs are as follows: 

- Unsupervised systems: In unsupervised systems, clustering methods are 
used in order to create sets of classes. These classes are then used in order 
to perform the recommendations. Examples of such systems include those 
discussed in [9, 10]. Improved methods for text clustering have also been 
discussed in [4, 9, 10, 17, 19, 21]. The advantage of this system is that the 
same measures which are used for clustering may be used for categorization. 
Thus, this system has 100% accuracy, though the actual quality of catego- 
rization is dependent on the nature of the initial clustering. Such systems 
may not be too useful for personalization because it is not possible to con- 
trol the range of categories that the system can address. Furthermore, it is 
difficult to create effective fine grained subject isolation using unsupervised 
techniques. 

- Supervised Systems: In supervised systems, a pre-existing sample of doc- 
uments with the associated classes is available in order to provide the super- 
vision to the categorization system. A training procedure is applied to this 
sample which models the relationship between the training data and the set 
of classes. Several text classifiers have recently been proposed [5, 7, 14, 15]. 
Although these methods seem to work well on structured collections such as 
the US patent database or the Reuters data set, the systems do not work 
well for heterogeneous collections of documents such as those on the Web. 
This is primarily because of the varying style, authorship and vocabulary in 
different documents. For example, it has been shown in [7] that a training 
procedure on the Yahool taxonomy achieves only 32% accuracy, whereas 
the same algorithm achieves much greater success (more that 66%) with 
the US patent database and Reuters data sets. Clearly, text data on the 
Web provides special problems in terms of fitting the training data into any 
particular model. 

- Partially Supervised Clustering: We have developed a new approach 
on categorization systems, referred to as the partially supervised approach, 
where an initial training data set is used in order to partially supervise the 
creation of a new set of classes. This results in a categorization system in 
which it is possible to have some control over the range of subjects that one 
would like the categorization system to address, but with a precise automated 
definition of how each cluster is defined. The definition of the clusters may 
then be used for the categorization process. The details of such a categoriza- 
tion system can be found in [1] which uses a projected clustering technique 
[3] to handle high dimensional clustering, and has shown to be more effective 
than either purely supervised or unsupervised clustering. This is because the 
supervision ensures that one is able to create reasonably fine grained subject 
isolation which is related to the original taxonomy. At the same time, the 
system is very suited to automated categorization. We have used this system 
to categorize Web pages for personalized news feed. 
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It is possible to improve the accuracy of these systems on the Web further by 
adding certain Web-specific extensions. One interesting method for performing 
enhanced categorization is by using the information which is latent in hyperlinks 
[8]. Web pages tends to link with one another based on a proximity in the general 
subject areas which are discussed in each page. This information can be used 
in order to improve classifier performance by examining the content of the Web 
pages which are linked to by the current page. Such a method has been discussed 

in [8]. 

3    Content Based Collaborative Filtering Systems 

In this section, we will discuss our work on an application of clustering to pro- 
vide a generalization of the collaborative filtering concept to combine it with 
content based filtering [16], where recommendations are made on products with 
similar characteristic to the products likened by a customer. This is referred to 
as the content based collaborative filtering approach [6]. Content based collab- 
orative filtering systems are useful in providing personalized recommendations 
at an E-commerce site. In such systems, a past history of customer behavior is 
available, which may be used for making future recommendations for individ- 
ual customers. We also assume that a "content characterization" of products 
is available in order to perform recommendations. These characterizations may 
be (but are not restricted to) the text description of the products which are 
available at the Web site. The key here is that the characterizations should be 
such that they contain attributes (or textual words) which are highly correlated 
with buying behavior. In this sense, using carefully defined content attributes 
which are specific to the domain knowledge in question can be very useful for 
making recommendations. For example, in an engine which recommends CDs, 
the nature of the characterizations could be the singer name, music category, 
composer etc., since all of these attributes are likely to be highly correlated with 
buying behavior. On the other hand, if the only information available is the raw 
textual description of the products, then it may be desirable to use some kind 
of feature selection process in order to decide which words are most relevant to 
the process of making recommendations. 

We will now proceed to describe the overall process and method of our ap- 
proach for performing content-based collaborative filtering. This collaborative 
filtering process consists of the following sequence of steps, all of which are 
shown in Figure 1. 

(1) Feature Selection: It is possible that the initial characterization of the 
products is quite noisy, and not all of the textual descriptions are directly 
related to buying behavior. For example, stop words (commonly occurring 
words in the language) in the description are unlikely to have much con- 
nection with the buying pattern in the products. In order to perform the 
feature selection, we perform the following process: we first create a prelim- 
inary customer characterization by concatenating the text descriptions for 
each product bought by the customer. Let the set of words in the lexicon 
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Stepl 

Step 2 

Step 3 

START 

Feature Selection: 

Remove all words 

which have less 

relevance to customer 
buying behavior. 

Create pruned product 

characterizations 

using the reduced 
feature set. 

Create pruned customer 
characterizations from 
pruned product 
characterizations. 

END 

Use peer groups 

in order to make 

recommendations for 

a given pattern of buying 
behavior. 

Step 5 

Use clustering in 

order to create 
peer groups 

from customer 

characterizations. 

Step 4 

Fig. 1. Content Based Collaborative Filtering 

describing the products be indexed by i € {1,..., jfe}, and let the set of cus- 
tomers j for which buying behavior is available be indexed by j G {1,..., n}. 
The frequency of presence of word i in customer characterization j is denoted 
by F(i,j). The fractional presence of a word i for customer j is denoted by 
P(i, j) and is defined as follows: 

P(hJ) 
F(i,j) 

(1) 
2-«jeAll customers *A*>■?) 

Note that when the word i = io is noisy in its distribution across the different 
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products, then the values of P(i0, j) are likely to be similar for different 
values of j. The gini index for the word i is denoted by G(i), and is denned 
as follows:   

G(io) = l-   fcPiioJ)2 (2) 

When the word io is noisy in its distribution across the different customers, 
then the value of G{i0) is high. Thus, in order to pick the content which 
is most discriminating in behavioral patterns, we pick the words with the 
lowest gini index. The process of finding the words with the lowest gini index 
is indicated in Step 1 of Figure 1. 

(2) Refining Product Characterizations: In the second stage of the proce- 
dure, we refine the product characterizations from the original text descrip- 
tion. To do so, we prune the content characterizations of each product by 
removing those features or words which have high gini index. 

(3) Refining Customer Characterizations: In the third stage of the proce- 
dure, we improve the customer characterizations from the text descriptions 
by concatenating the refined content characterizations (derived in the pre- 
vious step) of the products bought by the individual consumers. We create 
customer characterizations by concatenating together these pruned product 
characterizations for a given customer. 

(4) Clustering: In the fourth stage, we use the selected features in order to 
perform the clustering of the customers into peer groups. This clustering 
can either be done using unsupervised methods, or by supervision from a 
pre-existing set of classes of products such that the classification is directly 
related to buying behavior. 

(5) Making Recommendations: In the final stage, we make recommendations 
for the different sets of customers. In order to make the recommendations for 
a given customer, we find the closest sets of clusters for the content charac- 
terization of that customer. Finding the content characterization for a given 
customer may sometimes be a little tricky in that a weighted concatenation 
of the content characterizations of the individual products bought by that 
customer may be needed. The weighting may be done in different ways by 
giving greater weightage to the more recent set of products bought by the 
customer. The set of entities in this closest set of clusters forms the peer 
group. The buying behavior of this peer group is used in order to make 
recommendations. Specifically, the most frequently bought products in this 
peer group may be used as the recommendations. Several variations of the 
nature of queries are possible, and are discussed subsequently. 

We have implemented these approaches in a content-based mining engine for 
making recommendations, and it seems to provide significantly more effective 
results than a simple clustering engine which uses only the identity attributes of 
the products in order to do the clustering. 

Several kinds of queries may be resolved using such a system by using minor 
variations of the method discussed for making recommendations: 
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(1) For a given set of products browsed/bought, find the best recommendation 
list. 

(2) For a given customer and a set of products browsed/bought by him in the 
current session, find the best set of products for that customer. 

(3) For a given customer, find the best set of products for that customer. 
(4) For the queries (1), (2), and (3) above, find the recommendation list out of 

a pre-specified promotion list. 
(5) Find the closest peers for a given customer. 
(6) Find the profile of the customers who will like a product the most. 

Most of the above queries (with the exception of (6)) can be solved by using 
a different content characterization for the customer, and using this content 
characterization in order to find the peer group for the customer. For the case 
of query (6), we first find the peer group for the content characterization of the 
current product, and then find the dominant profile characteristics of this group 
of customers. In order to do so, the quantitative association rule method [20] 
may be used. 

Another related application which we are working on is to provide user pro- 
filing on Web browsing patterns by categorizing the Web pages browsed by each 
person so as to identify the categories of interests to a person. Once the user 
characterization or profile is built, content-based collaborative filtering can then 
be applied. Here we have used the categorization system based on the partially 
supervised clustering approach to categorize the Web pages. Now the product 
characterization is replaced by the Web page categorization. The user catego- 
rization is the concatenation of the categories of Web pages browsed by a user. 

4    Conclusions and Summary 

In this paper, we discussed some categorization and clustering methods based 
on text mining, and their applications to content based collaborative filtering 
systems. With the recent increase in the popularity of the World Wide Web for 
electronic commerce, such systems are very useful for improving the efficiency 
of target marketing techniques. Specifically, such methods may be very useful in 
performing one-to-one sales promotions. 
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ery Science" is a three-year project from 1998 to 2000 that targets to develop 
new methods for knowledge discovery, install network environments for knowl- 
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lecture will describe the outline of the project, especially how it has been pre- 
pared and organized, and will touch on some of the results so far obtained. 
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Abstract. Rough mereology is a paradigm allowing for a synthesis of 
main ideas of two potent paradigms for reasoning under uncertainty : 
fuzzy set theory and rough set theory. In this work, we demonstrate 
applications of rough mereology to the important theoretical ideas put 
forth by Lotii Zadeh [9], [10]: Granularity of Knowledge and Computing 
with Words. 
Keywords reasoning under uncertainty, rough mereology, granule cal- 
culi, distributed systems, approximate synthesis, computing with words, 
synthesis grammars 

1    Introduction 

We refer the reader to [2], [4], [5], [6], [7] for the basic notions of rough set 
theory and rough mereology. Here, we begin with the notion of a pre-granule 
of knowledge. Given either an information system or a decision system A = 
(U, A) (resp. A = (U, A, d)), we define information sets of objects via InfB(u) = 
{(a, a(u)) : a G B} and we express the indiscernibility of objects as the identity 
of their information sets : INDB{u,w) is TRUE iff InfB(u) = InfB(w) for 
any pair u, w of objects in U. The (boolean) algebra generated over the set of 
atoms U/INDB by means of set - theoretical operations of union, intersection 
and complement is said to be the B-algebra CG(B) of pre - granules. 

1.1    Granules of Knowledge: Rough set approach 

In the language of granules, we may express partial dependencies between sets 
B,C of attributes by relating classes of INDB to classes of INDC- We will 
call, accordingly, a (B, C) - granule any pair (G, G') where G € CG(B) and 
G' G CG(C). Clearly, given a pre - granule G G CG(B), there exists a formula 
(unique in DNF) aG of the form V* Aj (aitj - vitj) such that the meaning 
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[üG] = G; Then, the granule (G,G') may be represented logically as a pair 
[aG],[aG'] corresponding to the dependency rule ctG =>• ac [2]. There are 
two characteristics of the granule (G, G') important in applications to decision 
algorithms viz. the characteristic whose values measure what part of [G1] is in 
[G] (the 'strength' of the rule OG =» ac) and the characteristic whose values 
measure what part of [G] is in [G1] (the ' strength of the support! for the rule 
OLQ =*• OiG1)- 

A standard choice of an appropriate measure may be based on frequency 
count; the formal rendering is the standard rough inclusion function [3] defined 
for two sets X, Y C U by the formula p,(X, Y) = "^ffxp when X is non ' 
empty and fi(X, Y) = 1, otherwise. 

To select sufficiently strong rules, we would set a threshold pcr. We define 
then, in analogy with machine learning techniques, two characteristics: 

(p) p(G,G')=K[G], [G']); fa) n(G,G')=rt[G'}, [G]) 
and we call an fa, p) granule of knowledge any granule (G, G') such that 
(i)p(G,G')>pcr;(ii)v(G,G')>Pcr 

This logical model of granulation may not be adequate to practical demands: 
the relation IND may be too rigid and ways of its relaxation are among most 
intensively studied topics [7]. Here, we propose to introduce rough mereological 
approach to the granulation problem in which IND-dasses are replaced with 
mereological classes i.e. similarity classes. 

2    Rough mereology 

Rough mereology [4], [5], [8] has been proposed and studied as means of clus- 
tering in a relational way. Formally, it defines a functor p,(r) of being a part 
in degree at least r for each r G [0,1]. Rough mereology may be introduced 
conveniently in the logical framework of ontology and mereology proposed by 
Stanislaw Lesniewski [1]. 

2.1    Mereology 

We begin with the notion of a part functor. This sets the meaning of VX is a part 
of y". We will use the notation of Ontology of Lesniewski XeY (reads "X is 
y") which replaces the standard notation of naive set theory as more convenient. 
The meaning of XeY is specified as: 

XeY «=* BZ.ZeX A VZ.(ZeX => ZeY) A MU, W.(UeX A WeX => UeW) 

which means that X is an individual, anything which is X is Y and X is non- 
empty. The symbol V denotes the universe and is defined via 

XeV 4=> 3y.xey. 

We rephrase basic axioms for pt. 

(ME1) Xept{Y) => 3Z.ZeX A XeV A YeV; 
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(ME2) Xept{Y) A Yept(Z) => Xept{Z); 
(ME3) nan(Xept(X)). 

Then Xept(Y) means that the individual denoted X is a proper part (in 
virtue of (ME3)) of the individual denoted Y. The concept of an improper part 
is reflected in the notion of an element el; this is a name - forming functor 
defined as follows: Xeel{Y) <=>■ Xept(Y) WX = Y. 

We will require that the following inference rule be valid. 

(ME4) \/T.{Teel(X) =*• 3W.Weel(T) A Weel{Y)) =» Xeel(Y). 

The notion of a collective class i.e. of an object composed of other objects which 
are its elements may be introduced at this point; this is effected by means of a 
functor Kl defined as follows. 

XeKl{Y) <^=> 3Z.ZeY A VZ.(ZeY => Zeel(X)) A 

VZ.{Zeel(X) =► 3U, W.UeY A Weel{U) A Weel{Z)). 

Thus, the class consists of all objects which have an element in common with 
an object with the class defining property. 

The notion of a class is subjected to the following restrictions 

(ME5)   XeKliX) A ZeKl{Y) =» ZeX (Kl(Y) is an individual); 
(ME6) 3Z.ZeY <=^> 3Z.ZeKl(Y) (the class exists for each non-empty name). 

Thus, Kl(Y) is defined for any non-empty name Y and Kl(Y) is an individual 
object. 

2.2    Rough Mereology: first notions 

Rough Mereology has been proposed and studied in [4], [5], [8] as a vehicle for 
reasoning under uncertainty. 

The following is a list of basic axiomatic postulates for Rough Mereology. 
We introduce a graded family /ir, where r € [0,1] is a real number from the unit 
interval, of functors which would satisfy {fir(X) is a new name derived from X 
via fiT). 

(RM1) Xein<y) <r=* Xeeliy); 
(RM2) Xem (Y) =» VZ. {Zeur {X) => Zefir (Y)); 
(RM3) X = Y A Xefj,r(Z) => Yenr{Z); 
(RM4) Xeßr{Y) A s < r ==> Xefj,s(Y); 

One may have as an archetypical rough mereological predicate the rough 
membership function of Pawlak and Skowron [3] defined in an extended form as: 

XeHr{Y) <=> ca;o
rf

r
(Jgp > r in case X non-empty, 1 else 

where X, Y are (either exact or rough) subsets in the universe U of an informa- 
tion/decision system (U, A). 
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2.3    Rough mereological component of granulation 

The functors p,r may enter our discussion of a granule and of the relation Gr in 
each of the following ways: 

1. Concerning the definitions {r]),{p) of functions n,p , we may replace in 
them the rough membership function ß with a function p,r possibly better suited 
to a given context: 

fa) Ge»p„G'; fa) G'eßt>crG. 
2. The process of clustering may be described in terms of the class functor 

of mereology: 
fa) Geel(KlPcr(G')); fa) G'sel(KlPcr(G)) 
where Klr(X) is the class of objects Z satisfying Ze\irX. We will adhere to 

this means of clustering and we denote in the sequel Klr(X) with the symbol 
gr(X,r) read as the granule of radius r centered at X. 

3    Adaptive Calculus of Granules for Synthesis in 
Distributed Systems 

We construct a mechanism for transferring granules of knowledge among agents 
by means of transfer functions induced by rough mereological connectives ex- 
tracted from their respective information systems [5]. 

We now recall basic ingredients of our scheme of agents [5], [8]. 

3.1    Distributed Systems of Agents 

We assume that a pair (Inv, Ag) is given where Inv is an inventory of elementary 
objects and Ag is a set of inteligent computing units called shortly agents. We 
consider an agent ag 6 Ag. The agent ag is endowed with tools for reasoning and 
communicating about objects in its scope; these tools are defined by components 
of the agent label. 

The label of the agent ag is the tuple 

lab(ag) = (A(ag),p,(r)(ag),L(ag),Link(ag),0(ag),St(ag)),Unc-rel(ag), 

Unc - rule(ag),Dec - rule(ag)) 

where 

1. A(ag) is an information system of the agent ag. 
2. ßriag) is a functor of part in a degree at ag. 
3. L{ag) is a set of unary predicates (properties of objects) in a predicate 

calculus interpreted in the set U(ag). 
4. St(ag) = {st(ag)i,...,st(ag)n} C U(ag) is the set of standard objects at ag. 
5. Link(ag) is a collection of strings of the form agiag2--.agkag which are el- 

ementary teams of agents; we denote by the symbol Link the union of the 
family {Link(ag) : ag € Ag}. 
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6. 0{ag) is the set of operations at ag; any o €. 0(ag) is a mapping of the 
Cartesian product U(agi) x U(ag2) x ... x U(agk) into the universe U(ag) 
where ag\ag2...agkag € Link{ag). 

7. Unc—rel(ag) is the set of parameterized uncertainty relations pi = Pi(oi(ag), 
st(agi)i,st(ag2)i,-,st(agk)i,st(ag)) where agx,ag2, ...agk,ag € Link(ag), 
Oi{ag) € O(ag) are such that 

Pi((xi,ei), (x2,e2),., {xk,ek), {x,s)) 

holds for xi € U{agi),x2 £ U(ag2), -,xk € U(agk) and e,Si,e2, ..,sk € [0,1] 
iff Xj£n(agj)ej(st(agj)) for j = 1,2, ..,A; and xep,(ag)e(st(ag)) where 

Oi{st(agi),st{ag2),..,st{agk)) = st(ag) and Oj(a;i,a;2, -,xk) = x. 

Uncertainty relations express the agents knowledge about relationships am- 
ong uncertainty coefficients of the agent ag and uncertainty coefficients of 
its children. 

8. Unc - rule(ag) is the set of uncertainty rules fj where fj : [0,1]* —> [0,1] 
is a function which has the property that 
if xi £ U(agi),x2 € U(ag2),..,xk € U(agk) satisfy the conditions 

XiEp(agi)e{agi){st{agi))fori = 1,2,.., A; 

then Ho(oj(xi,x2,...,xk),st(ag)) > fj(e(ag1),e{ag2),..,e(agk)) 
where all parameters are as in 7. 

9. Dec — rule(ag) is a set of decomposition rules dec - rulei and 

(${agi),$(ag2),..,${agk),$(ag)) € dec-rulei 

where $(agi) € L(ag1),$(ag2) € L{ag2),..,${agk) € L(agk),$(ag) £ L(ag) 
and agiag2..agkag G Link{ag)) iff there exists a collection of standards 
st(agi), st(ag2),...,st(agk), st(ag) with the properties that Oj(st(agi), st(ag2) 
,..., st(agk)) = st(ag), st(agi) satisfies ${agi) for i = 1,2,.., A; and st(ag) sat- 
isfies #(a<7). Decomposition rules are decomposition schemes in the sense 
that they describe the standard st(ag) and the standards st(agi),..., st(agk) 
from which the standard st(ag) is assembled under o; in terms of predicates 
which these standards satisfy. 

3.2    Approximate Synthesis of Complex Objects 

The process of synthesis of a complex object (e.g. signal, action) by the above 
defined scheme of agents consists in our approach of the two communication 
stages viz. the top - down communication/negotiation process and the bottom 
- up communication/assembling process. We outline the two stages here in the 
language of approximate formulae. 
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Approximate logic of synthesis We assume for simplicity that the relation 
ag' < ag, which holds for agents ag',ag € Ag iff there exists a string agiag2- 
..agkag € Link{ag) with ag' = agt for some i < k, orders the set Ag into a tree. 
We also assume that 0(ag) = {o{ag)} for ag £ Ag i.e. each agent has a unique 
assembling operation. 
We recall a logic L(Ag) [5], [8] in which we can express global properties of the 
synthesis process. 
Elementary formulae of L{Ag) are of the form < st(ag),$(ag),e(ag) > where 
st(ag) e St(ag),$(ag) € L(ag),e{ag) G [0,1] for any ag € Ag. Formulae of 
L{ag) form the smallest extension of the set of elementary formulae closed under 
propositional connectives V, A, -■ and under the modal operators □, O. 

The meaning of a formula $(ag) is defined classically as the set [0(ag)] = 
{u E U(ag) : u has the property $(ag)}\ we express satisfaction by u h $(ag). 
For x G U{ag), we say that x satifies < st(ag),$(ag),e(ag) >, in symbols: 

x h< st(ag),$(ag),e(ag) >, 

iff (i)   st{ag) r- $(ag);  and (ii) \xeß(ag)e{ag)(st(ag)). 
We extend satisfaction over formulae by recursion as usual. 
By a selection over Ag we mean a function sei which assigns to each agent 

ag an object sel{ag) 6 U(ag). For two selections sei, sei' we say that sei induces 
sei', in symbols sei -+Ag sei' when sel(ag) = sel'(ag) for any ag e Leaf{Ag) and 
sel'(ag) = o(ag)(sel'(ag1), sel'(ag2), ■■■, sel'(agk)) for any ag1ag2-agkag G Link. 

We extend the satisfiability predicate I- to selections: for an elementary 
formula < st(ag), ${ag), e{ag) >, we let sei h< st(ag),$(ag),e(ag) > iff 
sel(ag) h< st{ag),${ag),e{ag) > . 

We now let sei r- O < st{ag),$(ag),e(ag) > when there exists a selection 
sei' satisfying the conditions: sei ->AS sel';sel' h< st{ag),${ag),e(ag) > . 

In terms of L(Ag) it is possible to express the problem of synthesis of an 
approximate solution to the problem posed to Ag. We denote by head(Ag) the 
root of the tree (Ag, <) and by Leaf(Ag) the set of leaf-agents in Ag. In the 
process of top - down communication, a requirement # received by the scheme 
from an external source (which may be called a customer) is decomposed into 
approximate specifications of the form < st(ag), $(ag),e(ag) > for any agent ag 
of the scheme. The decomposition process is initiated at the agent head(Ag) and 
propagated down the tree. We are able now to formulate the synthesis problem. 

Synthesis problem. Given a formula 

a :< st(head(Ag)),$(head(Ag)),e(head(Ag)) > 

find a selection sei over the tree (Ag, <) with the property sei h a. 

A solution to the synthesis problem with a given formula a is found by 
negotiations among the agents based on uncertainty rules and their succesful 
result can be expressed by a top-down recursion in the tree (Ag, <) as follows: 
given a local team agiag2.-agkag with the formula < st(ag),$(ag),s(ag) > 
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already chosen, it is sufficient that each agent agt choose a standard st(agi) € 
U(agi), a formula #(ap*) € L(agi) and a coefficient e(agi) € [0,1] such that 

(Hi)   ($(ag{), ${ag2),... $(agk),$(ag)) e Dec - rule(ag) 

with standards st(ag), st(agi),..., st(agk); 

(iv)   f(e(agl), ..,e(agk)) > e(ag) 

where / satisfies unc — rule(ag) with st(ag), st(agi), ..., st(agk) and e{agi), 
...,e(agk), e(ag). 

For a formula a, we call an a - scheme an assignment of a formula a{ag) : 
< st(ag),$(ag),e(ag) > to each ag € Ag in such manner that (iii), (iv) above 
are satisfied and a(head(Ag)) is < st(head(Ag)),$(head(Ag)), e(head(Ag)) > . 
We denote this scheme with the symbol 

sch(< st(head(Ag)),$(head(Ag)),e(head(Ag)) >). 

We say that a selection sei is compatible with a scheme sch(< st(head(Ag)), 
$(head(Ag)), e(head(Ag)) >) in case sel(ag)efj,(ag)£(ag)(st(ag)) for each leaf 
agent ag € Ag. 

The goal of negotiations can be summarized now as follows. 

Proposition 1. Given a formula < st(head(Ag)),<!>(head(Ag)), e{head(Ag)) >: 
if a selection sei is compatible with a scheme sch(< st(head(Ag)),$(head(Ag)), 
e(head(Ag)) >) then sei h O < st(head(Ag)),$(head(Ag)), e(head(Ag)) > . 

4    Calculi of Granules in (Inv, Ag) 

We construct for a given system (Ag, <) of agents a granulation relation Gr(ag) 
for any agent ag £ Ag depending on parameters e(ag),p(ag). We may have 
various levels of granulation and a fortiori various levels of knowledge compresion 
about synthesis; we address here a simple specimen. 

4.1    Calculi of pre—granules 

For a standard st(ag) and a value e(ag), we denote by gr(st(ag),e(ag)) the pre- 
granule Kl£^ag)(st(ag))\ then, a granule selector selg is a map which for each 
ag £ Ag chooses a granule selg(ag)=gr(st(ag),s(ag)). 

We say that gr(st(ag),e(ag)) satisfies a formula a :< st(ag),<l>(ag),e(ag) > 
(gr(st(ag),e(ag)) I- a) in case st(ag) h $(ag). Given agiag2-..agkag € Link and 
a formula < st(ag),$(ag),e(ag) > along with / satisfying unc — rule(ag) with 
st(ag), st(agi), ..., st(agk) and e(agi), ...,e(agk), e(ag), o(ag) maps the product 
Xigr(st(agi),e(agi)) into gr(st(ag), e(ag)). Composing these mappings along the 
tree (Ag, <), we define a mapping prodAg which maps any set {gr(st(ag), e(ag)) : 
ag € Leaf(Ag)} into a granule gr(st(head(Ag),e(head(Ag)). We say that a 
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selection selg is compatible with a scheme sch(< st(head(Ag)), §(head(Ag)), 
e(head(Ag)) >) if 

selg(agi) = gr{st{agi),e'(agi))eel(gr{st(agi),e(agi)) 

for each leaf agent agt. As 

prodAg(selg) h< st(head(Ag)),$(head{Ag)),e(head{Ag)) > 

we have the pre-granule counterpart of Proposition 1. 

Proposition 2. Given a formula < st(head(Ag)),$(head(Ag)), e(head(Ag)) >: 
if a selection selg is compatible with a scheme sch(< st(head(Ag)),$(head(Ag)), 
e(head{Ag)) >) then selg h O < st(head(Ag)),$(head(Ag)), e{head{Ag)) > . 

5    Associated grammar systems: a granular semantics for 
Computing with Words 

We are now in position to present our discussion in the form of a grammar 
system related to the multi - agent tree {Ag, <) [6]. With each agent ag G Ag, 
we associate a grammar r(ag) = (N(ag),T(ag), P(ag)). To this end, we assume 
that a finite set S(ag) C [0,1] is selected for each agent ag. We let N(ag) = 
{(s<P(ag),te(ag)) : $(a9) £ L{ag),e(ag) € E(ag)} where s^{ag)is a non-terminal 
symbol corresponding in a one - to - one way to the formula ${ag) and similarly 
ie(ofl) corresponds to e(ag). The set of terminal symbols T(ag) is defined for each 
non-leaf agent ag by letting 

T(ag) = U{{(s«f(aSi)'^(afli)) 
: *(°0*) e L(agi),e{agi) € S{agi)} : i = 1,2,.,*} 

where agiag^—agkag 6 Link . 
The set of productions P(ag) contains productions of the form 

(v)     (s#(off).*e(os))  ► (s$(ag1)>te(agi))(s$(ag2),te(ag2))...(S4,(agk),te(agk)) 

where {o(ag),§(agi),$(ag2),.., $(agk),${ag),st(agi),st(ag2),...,st(agk), 
st(ag),e{ag),e(agi),e{ag2),...,e{agk)) satisfy (iii), (iv). 
We define a grammar system T = (T, (r(ag) : ag G Ag, ag non-leaf or 
ag = Input), S) by choosing the set T of terminals as follows:  

(vi)   T = {{(fl#(ap),*e(ofl)) = *N) e L(ag),e{ag) G H(ofl)} : a5 G Lea/(,4ff)}; 
and introducing an additional agent Input with non - terminal symbol S, 
terminal symbols of Input being non-terminal symbols of head(Ag) and 
productions of Input of the form: 

(VÜ)     S  > (s<p(head(Ag)),t£(head(Ag))) 

where $(head(Ag)) G L{head(Ag)),e{head{Ag)) G 5{head(Ag)). 
The meaning of S is that it codes an approximate specification (requirement) 
for an object; productions of Input code specifications for approximate solu- 
tions in the language of the agent head(Ag). Subsequent rewritings produce 
terminal strings of the form 
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(viÜ)     (S<ü (agl),te(ag1))(s^ag2),te^ag2'))...(st(agk),te(agk)) 

where 031,052, ^oft are au leaf agents in Ag. 

We have 

PropOsition3.   Suppose (s$(ag1),te(agl))(S4>(ag2)>te(ag2))-(
s$(agk),te(agk))  " °/ 

the form (viii) and it is obtained from S —> (s$(head(Ag)),te(head(Ag))) by subse- 
quent rewriting by means of productions in J\ Then given any selection sei with 
sel{agi)efi(agi)(e(agi)st(agi) for i = 1,2, ...,k we have 

sei \= O < st(head(Ag),$(head(Ag)),e(head(Ag) > . 

Let us observe that each of grammars T is a linear context-free grammar. We 
have thus linear languages L{T) which provide a semantics for Computing with 
Words. 
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Abstract. One of the most difficult problems in modeling medical rea- 
soning is to model a procedure for diagnosis about complications. In 
medical contexts, a patient sometimes suffers from several diseases and 
has complicated symptoms, which makes a differential diagnosis very dif- 
ficult. For example, in the domain of headache, a patient suffering from 
migraine, (a vascular disease), may also suffer from muscle contraction 
headache(a muscular disease). In this case, symptoms specific to vascu- 
lar diseases will be observed with those specific to muscular ones. Since 
one of the essential processes in diagnosis of headache is discrimination 
between vascular and muscular diseases1, simple rules will not work to 
rule out one of the two groups. However, medical experts do not have 
this problem and conclude both diseases. In this paper, three models 
for reasoning about complications are introduced and modeled by using 
characterization and rough set model. This clear representation suggests 
that this model should be used by medical experts implicitly. 

1    Introduction 

One of the most difficult problems in modeling medical reasoning is to model a 
procedure for diagnosis about complications. In medical contexts, a patient some- 
times suffers from several diseases and has complicated symptoms, which makes 
a differential diagnosis very difficult. For example, in the domain of headache, a 
patient suffering from migraine, (a vascular disease), may also suffer from mus- 
cle contraction headache(a muscular disease). In this case, symptoms specific to 
vascular diseases will be observed with those specific to muscular ones. Since 
one of the essential processes in diagnosis of headache is discrimination between 
vascular and muscular diseases2, simple rules will not work to rule out one of the 
two groups. However, medical experts do not have this problem and conclude 
both diseases. 

In this paper, three models for reasoning about complications are introduced 
and modeled by using characterization and rough set model. This clear repre- 
sentation suggests that this model should be used by medical experts implicitly. 

1 The second step of differential diagnosis will be to discriminate diseases within each 
group. 

2 The second step of differential diagnosis will be to discriminate diseases within each 
group [2]. 
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The paper is organized as follows: Section 2 discusses reasoning about compli- 
cations. Section 3 shows the definitions of statistical measures used for modeling 
rules based on rough set model. Section 4 presents a rough set model of com- 
plications and an algorithm for induction of plausible diagnostic rules. Section 
5 gives an algorithm for induction of reasoning about complications. Section 6 
discusses related work. Finally, Section 7 concludes this paper. 

2    Reasoning about Complications 

Medical experts look for the possibilities of complications when they meet the 
following cases. (1) A patient has several symptoms which cannot be explained 
by the final diagnostic candidates. In this case, each diagnostic candidate belongs 
to the different disease category and will not intersect each other (independent 
type). (2) A patient has several symptoms which will be shared by several dis- 
eases, each of which belongs to different disease categories, and which are impor- 
tant to confirm some diseases above. In this case, each diagnostic candidate will 
have some intersection with respect to characterization of diseases (boundary 
type). (3) A patient has several symptoms which suggest that his disease will 
progress into the more specific ones in the near future. In this case, the specific 
disease will belong to the subcategory of a disease (subcategory type). 

3    Probabilistic Rules 

3.1     Accuracy and Coverage 

In the subsequent sections, we adopt the following notations, which is introduced 
in [7]. 

Let U denote a nonempty, finite set called the universe and A denote a 
nonempty, finite set of attributes, i.e., a : U -> Va for a € A, where Va is called 
the domain of a, respectively.Then, a decision table is defined as an information 
system, A = (U,AU{d}). 

The atomic formulas over B C Al) {d} and V are expressions of the form 
[a = v], called descriptors over B, where a e B and v eVa- The set F(B, V) of 
formulas over B is the least set containing all atomic formulas over B and closed 
with respect to disjunction, conjunction and negation. 

For each / e F(B, V), JA denote the meaning of / in A, i.e., the set of all 
objects in U with property /, defined inductively as follows. 

1. If / is of the form [a = v] then, /^ = {s£ U\a(s) = v} 

2- (fAg)A = fAr\gA; (fvg)A = fAVgAi hfU = U-fa 

By the use of this framework, classification accuracy and coverage, or true pos- 
itive rate is defined as follows. 
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Definition 1. 
Let R and D denote a formula in F(B, V) and a set of objects which belong to 
a decision d. Classification accuracy and coverage(true positive rate) for R -> d 
is defined as: 

aR(D) = &fiP^(=P(D\R)),md 
\RA\ 

{D)=\RAnDl{=pmm 

where \A\ denotes the cardinality of a set A, aR(D) denotes a classification 
accuracy of R as to classification of D, and KR{D) denotes a coverage, or a true 
positive rate of R to D, respectively. 

It is notable that these two measures are equal to conditional probabilities: 
accuracy is a probability of D under the condition of R, coverage is one of R 
under the condition of D. It is also notable that aR{D) measures the degree of 
the sufficiency of a proposition, R -> D, and that nR{D) measures the degree of 
its necessity.3 

For example, if aR(D) is equal to 1.0, then R ->■ D is true. On the other 
hand, if KR(D) is equal to 1.0, then D ->• R is true. Thus, if both measures are 
1.0, then R&D. 

Also, Pawlak recently reports a Bayesian relation between accuracy and 
coverage [5]: 

aR(D)P(D) = P(R\D)P(D) = P(R,D) 

= P{R)P(D\R) = KR{D)P(R) 

This relation also suggests that a priori and a posteriori probabilities should be 
easily and automatically calculated from database. 

3.2    Definition of Rules 

By the use of accuracy and coverage, a probabilistic rule is defined as: 

Ra4 d   s.t.    R = AjVk[aj=Vk],aR(D)>6a, 
KR(D) > 6K. 

This rule is a kind of probabilistic proposition with two statistical measures, 
which is an extension of Ziarko's variable precision model(VPRS) [12].4 

It is also notable that both a positive rule and a negative rule are defined as 
special cases of this rule, as shown in the next subsections. 

3 These characteristics are from formal definition of accuracy and coverage. In this 
paper, these measures are important not only from the viewpoint of propositional 
logic, but also from that of modelling medical experts' reasoning, as shown later. 

4 This probabilistic rule is also a kind of Rough Modus Ponens[4]. 
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4    Rough Set Model of Complications 

4.1 Definition of Characterization Set 

In order to model these three reasoning types, a statistical measure, coverage 
KR(D) plays an important role in modeling, which is a conditional probability 
of a condition (R) under the decision D (P(R\D)). 

Let us define a characterization set of D, denoted by' L{D) as a set, each 
element of which is an elementary attribute-value pair R with coverage being 
larger than a given threshold, SK. That is, 

LsAD) = {[en = Vj]\K[at=Vj]{D) > <y. 

Then, according to the descriptions in Section 2, three models of reasoning about 
complications will be defined as below: 

1. Independent type: LsK(Dt) n L$K(Dj) = </>, 
2. Boundary type: LsK(Di) DLSK(DJ) ^ <f>, and 
3. Subcatgory type: LsK(Di) C LSK(DJ). 

All three definitions correspond to the negative region, boundary region, 
and positive region[2], respectively, if a set of the whole elementary attribute- 
value pairs will be taken as the universe of discourse. Thus, reasoning about 
complications are closely related with the fundamental concept of rough set 
theory. 

4.2 Characterization as Exclusive Rules 

Characteristics of characterization set depends on the value of SK. If the threshold 
is set to 1.0, then a characterization set is equivalent to a set of attributes in 
exclusive rules[8]. That is, the meaning of each attribute-value pair in Za.o(-D) 
covers all the examples of D. Thus, in other words, some examples which do not 
satisfy any pairs in Li.o(D) will not belong to a class D. 

Construction of rules based on Li.0 are discussed in Subsection 4.4, which 
can also be found in [9, 10]. The differences between these two papers are the 
following: in the former paper, independent type and subcategory type for Li,0 

are focused on to represent diagnostic rules and applied to discovery of decision 
rules in medical databases. On the other hand, in the latter paper, a boundary 
type for Li.o is focused on and applied to discovery of plausible rules. 

4.3 Rough Inclusion 

Concerning the boundary type, it is important to consider the similarities be- 
tween classes. In order to measure the similarity between classes with respect to 
characterization, we introduce a rough inclusion measure //, which is defined as 

follows. i o PIT i 
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It is notable that if S C T, then fj,(S,T) = 1.0, which shows that this relation 
extends subset and superset relations. This measure is introduced by Polkowski 
and Skowron in their study on rough mereology[6]. Whereas rough mereology 
firstly applies to distributed information systems, its essential idea is rough in- 
clusion: Rough inclusion focuses on set-inclusion to characterize a hierarchical 
structure based on a relation between a subset and superset. Thus, application 
of rough inclusion to capturing the relations between classes is equivalent to 
constructing rough hierarchical structure between classes, which is also closely 
related with information granulation proposed by Zadeh[ll]. 

4.4    Rule Induction Algorithm 

Algorithms for induction of plausible diagnostic rules (boundary type) are given 
in Fig 1 to 3, which are fully discussed in [10]. Since subcategory type and 
independent type can be viewed as special types of boundary type with respect to 
rough inclusion, rule induction algorithms for subcategory type and independent 
type are given if the thresholds for fj, are set up to 1.0 and 0.0, respectively. 

Rule induction (Fig 1.) consists of the following three procedures. First, the 
characterization of each given class, a list of attribute-value pairs the supporting 
set of which covers all the samples of the class, is extracted from databases and 
the classes are classified into several groups with respect to the characterization. 
Then, two kinds of sub-rules, rules discriminating between each group and rules 
classifying each class in the group are induced (Fig 2). Finally, those two parts 
are integrated into one rule for each decision attribute (Fig 3). 

5    Induction of Complication Rules 

Simple version of complication rules are formerly called disease image, which 
had a very simple form in earlier versions[8]. Disease image is constructed from 
L0.o(D), as disjunctive formula of all the members of this characterization set. 
In this paper, complication rules are defined more effectively to detect compli- 
cations. This rule is used to detect complications of multiple diseases, acquired 
by all the possible manifestations of the disease. By the use of this rule, the 
manifestations which cannot be explained by the conclusions will be checked, 
which suggest complications of other diseases. These rules consists of two parts: 
one is a collection of symptoms, and the other one is a rule for each symptoms, 
which are important for detection of complications. 

l.Ra4 ->d   s.t.    R = VRjk=VjVk[aj=vk], 
aRjkiDJ = °' 

2. Rjk °^ di    s.t.    Rjk = [aj = vk), 
(XRjk{Di) > T]a, KRjk(Di) > T)K, 

where rj denotes a threshold for a and K. 

The first part can be viewed as rules, whose attribute-value pairs belong to 
U-L0.o(Di).for each class Dj. On the other hand, the second part can be viewed 
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procedure Rule Induction (Total Process); 
var 

i : integer;     M, L, R : List; 
LD : List; /* A list of all classes */ 

begin 
Calculate OR (A) and Kn(Di) 

for each elementary relation R and each class £>,; 
Make a list L(D{) = {R\KR(D) = 1.0}) 

for each class Dt; 
while (LD ^ <£) do 

begin 
Di := first(Lo); M :—LD - A; 
while (M / <j>) do 

begin 
Dj := first(M); 

if  (f^(L(Dj),L(Di))<öß) 
then L2(Di) := L2(Di) + {Dj}; 

M — M-DJ; 

end 
Make a new decision attribute D^ for L2(Di); 
LD '■— LD — Di; 

end 
Construct a new table (T2(-Dj))for Li(Di). 
Construct a new table(T(Z?i)) 

for each decision attribute D\; 
Induce classification rules R2 for each L2(D); 
I* Fig.2 */ 
Store Rules into a List R(D); 
Induce classification rules Rd 

for each £>' in T(D'); /* Fig.2 */ 
Store Rules into a List R(D')(= R(L2(Di))) 

Integrate R2 and Rd into a rule RD ; 
I* Fig.3 */ 

end {Rule Induction }; 

Fig. 1. An Algorithm for Rule Induction 

as rules, whose attribute-value pairs comes from LnK(Dj) such that i ^ j. Thus, 
complication rules can be constructed from overlapping region of U - L0.o(Di) 
and LT)^(Dj). 

6    Discussion 

6.1    Conflict Analysis 

It is easy to see the relations of independent type and subcategory type. While 
independent type suggests different mechanisms of diseases, subcategory type 
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procedure Induction of Classification Rules; 
var 

i : integer;     M, Li : List; 
begin 

L\ := Ler; 
I* Ler: List of Elementary Relations */ 
t:=l;     M:={}; 
for i := 1 to n do 

/* n: Total number of attributes */ 
begin 

while ( Li ^ {} ) do 
begin 

Select one pair R = A[at = Vj] from Li; 
Li := Li - {R}; 
if    (aR(D) > 6a)     and     (KR(D) > SK) 

then   do Sir := Sir + {R}; 
I* Include R as Inclusive Rule */ 
else M := M + {R}; 

end 
Li+i := (A list of the whole combination of 
the conjunction formulae in M); 

end 
end {Induction of Classification Rules }; 

Fig. 2. An Algorithm for Classification Rules 

does the same etiology. The difficult one is boundary type, where several symp- 
toms are overlapped in each LsK(D). In this case, relations between LgK(Di). 
and LsK{Dj) should be examined. 

One approach to these complicated relations is conflict analysis [3]. In this 
analysis, several concepts which shares several attribute-value pairs, are analyzed 
with respect to qualitative similarity measure that can be viewed as an extension 
of rough inclusion. It will be our future work to introduce this methodology to 
analyze relations of boundary type and to develop an induction algorithms for 
these relations. 

6.2     Granular Fuzzy Partition 

Coverage is also closely related with granular fuzzy partition, which is introduced 
by Lin[l] in the context of granular computing. 

Since coverage KR(D) is equivalent to a conditional probability, P(i?|£>),this 
measure will satisfy the condition on partition of unity, called Bi?-partition 
(If we select a suitable partition of universe, then this partition will satisfy 
J2K KR(D) = 1.0. ) Also, from the definition of coverage,it is also equivalent 
to the counting measure for \[X]R f]D\, since \D\ is constant in a given universe 
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procedure Rule Integration; 
var 

i : integer;     M, L-z : List; R{D{) : List; 
/* A list of rules for A */ 
LD ■ List; /* A list of all classes */ 

begin 
while(Lo ^ <fi) do 

begin 
Di := first{LD); M := L2(A); 
Select one rule R' -»■ D\ from fl(L2(A)). 
while (M 7^ (/>) do 

begin 
Dj := first(M); 

Select one rule fi -> dj for DJ; 
Integrate two rules: RAR' -^ dj. 

M := M - {Dj}; 
end 

LD := LD — Di; 
end 

end {Rule Combination} 

Fig. 3. An Algorithm for Rule Integration 

U. Thus, this measure satisfies a "nice context", which holds: 

Hence, all these features show that a partition generated by coverage is a kind 
of granular fuzzy partition [1]. This result also shows that the characterization 
by coverage is closely related with information granulation. 

From this point of view, the usage of coverage for characterization and 
grouping of classes means that we focus on some specific partition generated 
by attribute-value pairs, the coverage of which are equal to 1.0 and that we 
consider the second-order relations between these pairs. It is also notable that if 
the second-order relation makes partition, as shown in the example above, then 
this structure can also be viewed as granular fuzzy partition. 

However, rough inclusion and accuracy do not always hold the nice context. 
It would be our future work to examine the formal characteristics of coverage 
(and also accuracy) and rough inclusion from the viewpoint of granular fuzzy 
sets. 
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Abstract. This paper proposes rough genetic algorithms based on the 
notion of rough values. A rough value is defined using an upper and a 
lower bound. Rough values can be used to effectively represent a range or 
set of values. A gene in a rough genetic algorithm can be represented us- 
ing a rough value. The paper describes how this generalization facilitates 
development of new genetic operators and evaluation measures. The use 
of rough genetic algorithms is demonstrated using a simple document 
retrieval application. 

1    Introduction 

Rough set theory [9] provides an important complement to fuzzy set theory [14] 
in the field of soft computing. Rough computing has proved itself useful in the 
development of a variety of intelligent information systems [10,11]. Recently, 
Lingras [4-7] proposed the concept of rough patterns, which are based on the 
notion of rough values. A rough value consists of an upper and a lower bound. 
A rough value can be used to effectively represent a range or set of values for 
variables such as daily temperature, rain fall, hourly traffic volume, and daily 
financial indicators. Many of the mathematical operations on rough values are 
borrowed from the interval algebra [1]. The interval algebra provides an ability 
to deal with an interval of numbers. Allen [1] described how the interval algebra 
can be used for temporal reasoning. There are several computational issues asso- 
ciated with temporal reasoning based on the interval algebra, van Beek [12] used 
a subset of the interval algebra that leads to computationally feasible temporal 
reasoning. A rough value is a special case of an interval, where only the upper 
and lower bounds of the interval are used in the computations. A rough pattern 
consisting of rough values has several semantic and computational advantages in 
many analytical applications. Rough patterns are primarily used with numerical 
tools such as neural networks and genetic algorithms, while the interval algebra 
is used for logical reasoning. 

Lingras [7] used an analogy with the heap sorting algorithm and object ori- 
ented programming to stress the importance of rough computing. Any compu- 
tation done using rough values can also be rewritten in the form of conventional 
numbers. However, rough values provide a better semantic interpretation of re- 
sults, in terms of upper and lower bounds. Moreover, some of the numeric com- 
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putations can not be conceptualized without explicitly discussing the upper and 
lower bound framework [7]. 

This paper proposes a generalization of genetic algorithms based on rough 
values. The proposed rough genetic algorithms (RGAs) can complement the 
existing tools developed in rough computing. 

The paper provides the definitions of basic building blocks of rough genetic 
algorithms, such as rough genes and rough chromosomes. The conventional genes 
and chromosomes are shown to be special cases of their rough equivalents. Rough 
extension of GAs facilitates development of new genetic operators and evaluators 
in addition to the conventional ones. Two new rough genetic operators, called 
union and intersection, are defined in this paper. In addition, the paper also 
introduces a measure called precision to describe the information contained in a 
rough chromosome. A distance measure is defined that can be useful for quan- 
tifying the dissimilarity between two rough chromosomes. Both precision and 
distance measures can play an important role in evaluating a rough genetic pop- 
ulation. A simple example is also provided to demonstrate practical applications 
of the proposed RGAs. 

Section 2 provides a brief review of genetic algorithms. Section 3 proposes 
the notion of rough genetic algorithms and the associated definitions. New rough 
genetic operators and evaluation measures are also defined in section 3. Section 
4 contains a simple document retrieval example to illustrate the use of rough 
genetic algorithms. Summary and conclusions appear in section 5. 

2    Brief Review of Genetic Algorithms 

The origin of Genetic Algorithms (GAs) is attributed to Holland's [3] work 
on cellular automata. There has been significant interest in GAs over the last 
two decades. The range of applications of GAs includes such diverse areas as 
job shop scheduling, training neural nets, image feature extraction, and image 
feature identification [2]. This section contains some of the basic concepts of 
genetic algorithms as described in [2]. 

A genetic algorithm is a search process that follows the principles of evolution 
through natural selection. The domain knowledge is represented using a candi- 
date solution called an organism. Typically, an organism is a single chromosome 
represented as a vector of length n: 

c=(Ci\l < i < n), (1) 

where d is called a gene. 
A group of organisms is called a population. Successive populations are called 

generations. A generational GA starts from initial generation G(0), and for each 
generation G(t) generates a new generation G(t+1) using genetic operators such 
as mutation and crossover. The mutation operator creates new chromosomes by 
changing values of one or more genes at random. The crossover joins segments 
of two or more chromosomes to generate a new chromosome. An abstract view 
of a generational GA is given in Fig. 1. 
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Genetic Algorithm: 
generate initial population, G(0)\ 
evaluate G(0); 
for(t = 1; solution is not found, t++) 

generate G(t) using G(t — 1); 
evaluate G(t); 

Fig. 1. Abstract view of a generational genetic algorithm 

3    Definition of Rough Genetic Algorithms 

In a rough pattern, the value of each variable is specified using lower and upper 
bounds: 

x = (x,x), (2) 

where x is the lower bound and x is the upper bound of x. A conventional pattern 
can be easily represented as a rough pattern by specifying both the lower and 
upper bounds to be equal to the value of the variable. The rough values can be 
added as: 

x + y = (x,x) + (y,y) = (x + y,x + y), (3) 

where x and y are rough values given by pairs (x,x) and (y,y), respectively. A 
rough value x can be multiplied by a number c as: 

c x x = c x (x,x) = (c x x,c x x),if c > 0, ,.. 
cxx = cx (x,x) = (cxl,cxi),ifc<0. * ' 

Note that these operations are borrowed from the conventional interval calculus. 
As mentioned before, a rough value is used to represent an interval or a set of 
values, where only the lower and upper bounds are considered relevant in the 
computation. 

A rough chromosome r is a string of rough genes rj: 

r = {n | 1 < i < n) (5) 

A rough gene r< can be viewed as a pair of conventional genes, one for the lower 
bound called lower gene (rj) and the other for the upper bound called upper 
gene (ft): 

U = {r±,ri), (6) 

Fig. 2 shows an example of a rough chromosome. The value of each rough 
gene is the range for that variable. The use of a range means that the information 
conveyed by a rough chromosome is not precise. Hence, an information measure 
called precision given by eq. (7) may be useful while evaluating the fitness of a 
rough chromosome. 
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Fig. 2. Rough chromosomes along with associated operators and functions 

In eq. (7), Rangema,x{?i) is the length of maximum allowable range for the value 
of rough gene r*. 

In Fig. 2, 

precision(r) = — 
(0.4-0.2)     (0.6-0.1) 

1.0 1.0 
(0.3 - 0.2)     (0.9 - 0.7) 

1.0 1.0 
= -1.0, 

assuming that the maximum range of each rough gene is [0,1]. 
Any conventional chromosome can be represented as a rough chromosome 

as shown in Fig. 3. Therefore, rough chromosomes are a generalization of con- 
ventional chromosomes. For a conventional chromosome c, precision(c) has the 
maximum possible value of zero. 

New generations of rough chromosomes can be created using the conventional 
mutation and crossover operators. However, the mutation operator should make 
sure that r? > £».• Similarly, during the crossover a rough chromosome should be 
split only at the boundary of a rough gene, i.e. a rough gene should be treated 
as atomic. 

In addition to the conventional genetic operators, the structure of rough genes 
enables us to define two new genetic operators called union and intersection. Let 
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Fig. 3. Conventional chromosome and its rough equivalent 

r = (fj | 1 < i < n) and s = (SJ | 1 < i < n) be two rough chromosomes 
defined as strings of rough genes r< and 8u respectively. The union operator, 
denoted by the familiar symbol U, is given as follows: 

r U a — (n U Si \ 1 < i < n),-where 
n U Si =   (min(n,Si),max(ri,8j)) (8) 

The intersection operator, denoted by the the symbol n, is given as follows: 

r n s = (rt n Si | 1 < i < n), where 
_   (min(min(rjtTii)tmax(ri,8i)) ,\ 

r*      S% ~   \max(min{fi,Si),max(r£,Si)) )' 
(9) 

Fig. 2 illustrates the union and intersection operators. 

A measure of similarity or dissimilarity between two chromosomes can be 
important during the evolution process. The distance between two rough chro- 
mosomes is given as follows: 

distance{r, s) =    ^2 v(li~~5i)    +  (r«-8»)2 (10) 
Ki<n 
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The distance between rough chromosomes r and s from Fig. 2 can be calculated 
as: 

distance^ s) = 00.2 - 0.3)2 + (0.4 - 0.5)2 

+00.1 - 0.3)2 + (0.6 - 0.4) 

+00.2 - 0.5)2 + (0.3 - 0.8) 

+00.7 - 0.6)2 + (0.9 - 0.7): 

= 1.23. 

4    An application of rough genetic algorithms 

Information retrieval is an important issue in the modern information age. A 
huge amount of information is now available to the general public through the 
advent of the Internet and other related technologies. Previously, the information 
was made available through experts such as librarians, who helped the general 
public analyze their information needs. Because of enhanced communication 
facilities, the general public can access various documents directly from their 
desktop computers without having to consult a human expert. The modern in- 
formation retrieval systems must assist the general public in locating documents 
relevant to their needs. 

In the traditional approach, user queries are usually represented in a linear 
form obtained from the user. However, the user may not be able to specify his 
information needs in the mathematical form, either because he is not comfortable 
with the mathematical form, or the mathematical form does not provide a good 
representation of his information needs [8]. Wong and Yao [13] proposed the use 
of perceptrons to learn the user query based on document preference specified 
by the user for a sample set. Lingras [8] extended the approach using non-linear 
neural networks. This section illustrates how rough genetic algorithms can learn 
the user query from a sample of documents. 

Let us consider a small sample of documents a, b, c, and d. Let us assume that 
each document is represented using four keywords: Web search, Information Re- 
trieval, Intelligent Agents and Genetic Algorithms. Fig. 4 shows the documents 
represented as conventional chromosomes. The value ai = 0.6 corresponds to the 
relative importance attached to the keyword Web Search in document a. Simi- 
larly, 02 = 0.9 corresponds to the relative importance attached to the keyword 
Information Retrieval in document a, etc. 

As mentioned before, the user may not be able to specify the precise query 
that could be matched with the document set. However, given a sample set, she 
may be able to identify relevant and non-relevant documents. Let us assume that 
the user deemed a and b as relevant. The documents c and d were considered 
non-relevant to the user. This information can be used to learn a linear query 
by associating weights for each of the four keywords [13]. However, it may not 
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0.6 0.9 0.4 0.1 

0.1 0.4 0.5 0.9 

0.9 0.8 0.1 0.3 

0.9 0.2 0.9 0.2 

Fig. 4. Document set represented as conventional chromosomes 

be appropriate to associate precise weights for each keyword. Instead, a range 
of weights such as 0.3-0.5, may be a more realistic representation of the user's 
opinion. A rough query can then be represented using rough chromosomes. 

The user may supply an initial query and a genetic algorithm may generate 
additional random queries. The evolution process given by Fig. 1 can be used 
until the user's preference is adequately represented by a rough chromosome. 
Fig. 5 shows an objective function which may be used to evaluate the population 
in such an evolution process. 

Objective function: 
repeat for all the relevant documents d 

repeat for all the non-relevant documents d! 
if distance^, d) < distance^, d') then 

match++; 
return match; 

Fig. 5. An example of objective function for document retrieval 

Let us assume that r and s in Fig. 2 are our candidate queries. 
In that case, 

distance(r, a) = 2.53, 
distance(r, b) = 1.24, 
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distance(r,c) = 2.53, and 
distance(r, d) = 3.05. 

Similarly, 
distance(s,a) = 2.29, 
distance(s,b) = 1.21, 
distance^,c) = 2.67, and 
distance^, d) = 2.00. 

Using the objective function given in Fig. 5, rough chromosome r evaluates 
to 4 and s evaluates to 3. Hence, in the natural selection process, r will be chosen 
ahead of s. If both of these rough chromosomes were selected for creating the 
next generation, we may apply genetic operators such as mutation, crossover, 
union and intersection. The results of union and intersection of r and s are shown 
in Fig. 2. 

The example used here demonstrates a few aspects of a rough genetic algo- 
rithm. Typically, we will select twenty candidate queries for every generation. 
Depending upon a probability distribution, the four different genetic operators 
will be applied to create the next generation. The evolution process will go on 
for several generations. 

In practice, a document retrieval process will involve hundreds of keywords. 
Instead of classifying sample documents as relevant or non-relevant, it may be 
possible to rank the documents. Rough genetic algorithms may provide a suitable 
mechanism to optimize the search for the user query. Results of applications of 
RGAs for web searching will appear in a future publication. An implementation 
of rough extensions to a genetic algorithm library is also currently underway and 
may be available for distribution in the future. 

5    Summary and Conclusions 

This paper proposes Rough Genetic Algorithms (RGAs) based on the notion of 
rough values. 

A rough value consists of an upper and a lower bound. Variables such as daily 
temperature are associated with a set of values instead of a single value. The 
upper and lower bounds of the set can represent variables using rough values. 

Rough equivalents of basic notions such as gene and chromosomes are denned 
here as part of the proposal. The paper also presents new genetic operators, 
namely, union and intersection, made possible with the introduction of rough 
computing. These rough genetic operators provide additional flexibility for cre- 
ating new generations during the evolution. Two new evaluation measures, called 
precision and distance, are also defined. The precision function quantifies infor- 
mation contained in a rough chromosome, while the distance function is used 
to calculate the dissimilarity between two rough chromosomes. A simple docu- 
ment retrieval example was used to demonstrate the usefulness of RGAs. Rough 
genetic algorithms seem to provide useful extensions for practical applications. 
Future publications will present results of such experimentation. 
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Abstract: This paper introduces an approach to classifying faults in high voltage 
power system with a combination of rough sets and fuzzy sets in a neural computing 
framework. Typical error signals important for fault detection in power systems are 
considered. Features of these error signals derived earlier using Fast Fourier Transform 
analysis, amplitude estimation and waveform type identification, provide inputs to a 
neural network used in classifying faults. A form of rough neuron with memory is 
introduced in this paper. A brief overview of a rough-fuzzy neural computational 
method is given. The learning performance of a rough-fuzzy and pure fuzzy neural 
network are compared. 

Keywords: Approximation, calibration, classification, faults, fuzzy sets, rough 
neuron, rough sets, neural network, high voltage power system 

1        Introduction 

A file of high voltage power system faults recorded by the Transcan Recording System 
(TRS) a Manitoba Hydro in the past three years provides a collection of unclassified 
signals. The TRS records power system data whenever a fault occurs. However, the 
TRS does not classify faults relative to waveform types. To date, a number of power 
system fault signal readings have been visually associated with seven waveform types. 
In this paper, a combination of rough set and fuzzy set are used in a neural computing 
framework to classify faults. Rough neural networks (rNNs) were introduced in 1996 
[1], and elaborated in [2]-[4]. This paper reports research-in-progress on classifying 
power system faults and also introduces the design of neurons in rNNs in the context of 
rough sets. 

This paper is organized as follows. Waveform types of power system faults are 
discussed in Section 2. The basic concepts of rough sets and design of a rough neural 
network are presented in Section 3. An overview of a form of rough-fuzzy neural 
computation is given in Section 4. In this section, the performance comparison 
between rough-fuzzy neural network and pure-fuzzy neural network is also provided. 
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2    Power  System  Faults 

Using methods described in [5], a group of 26 pulse signals relative to seven types of 
waveforms have been selected for this study (see Table 1). Each value in Table 1 
specifies the degree-of-membership of a pulse signal in the waveform of a particular 
fault type. Values greater than 0.5 indicate "definite" membership of a signal in a fault 
class. Values below 0.5 indicate uncertainty that a signal is of a particular fault type. 
From line 7 of Table 1, a value of 0.6734 indicates a high degree of certainty that a 
pole line flasher signal has a type 2 waveform. 

Table 1   Sample Power Syst em Faults Relative to Waveform Type 
Fault Degree-of-membership / Waveform Type 

typel type2 type3 type4 type5 typeö type7 
Value Cab 0.0724 0.0231 0.0381 0.8990 0.0222 0.1109 0.0201 

AC filter test 0.0752 0.0270 0.0447 0.1102 0.0259 0.6779 0.0158 
Ring counter error 0.1383 0.0446 0.1300 0.0506 0.0410 0.0567 0.0109 

500 Kv close 0.0862 0.1234 0.0626 0.2790 0.1224 0.2083 0.8334 

pole line flash 0.0369 0.3389 0.0600 0.0251 0.2122 0.0289 0.0214 

pole line flash 0.0340 0.6734 0.0573 0.0237 0.1539 0.0271 0.0201 

pole line flash 0.0327 0.5836 0.0533 0.0231 0.1537 0.0263 0.0231 
pole line flash 0.0337 0.4836 0.0561 0.0211 0.1767 0.0283 0.0221 
pole line flash 0.0329 0.5336 0.0582 0.0241 0.1676 0.0275 0.0205 

pole line retard 0.0326 0.2056 0.0548 0.0230 0.0854 0.0262 0.0156 

3 Classifying Faults 

In this paper, the classification of six high voltage power system faults relative to 
candidate waveforms is carried out with a neural network which combines the use of 
rough sets and fuzzy sets. 

3.1        Basic Concepts of Rough Sets 

Rough set theory offers a systematic approach to set approximation [6]-[7]. To begin, 
let S = (U, A) be an information system where U is a non-empty finite set of objects 
and A is a non-empty finite set of attributes where a: U -» Va for every a e A. For 

each BcA, there is associated an equivalence relation IndB(A) such that 

Ind.(B) = {(*,*■) £ U2 I Va e B. a(x) = a(x')) 

If (x, x') e IndB(A), we say that objects x and x' are indiscernible from each other 
relative to attributes from B. The notation [x]B denotes equivalence classes of IndB(A). 
For X c U, the set X can be approximated only from information contained in B by 

constructing a B-lower and B-upper approximation denoted by BX and BX respectively, 
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where BX = { x I [x]B c X} and BX = { x I [x]B nX^0}. The objects of BX 

can be classified as members of X with certainty, while the objects of BX can only be 

classified as possible members of X. Let BNB(X) = BX - BX. A set X is rough if 
BNB(X) is not empty. The notation aB(X) denotes the accuracy of an approximation, 

where 

«BW = 
BX 

BX 

where I X I denotes the cardinality of the non-empty set X, and orB(X) e [0, 1]. The 
approximation of X with respect to B is precise, if aB(X)= 1. Otherwise, the 

approximation of X is rough with respect to B, if aB(X) < 1. 

3.2      Example 

Let PLF denote a pole line fault in a high voltage power system. The set P = {x I 
PLF2(x) = yes} consists of pole line fault readings which are judged to be type 2 
waveforms (see Table 2). 

Table 2.   Sample PLF2 Decision Table 
PLFa PLF2 

xl in[T, 11 yes 
x2 in [0, ß) no 

x3 in TT, 11 yes 
x4 in[/3,T) yes/no 

x5 in r-r, 11 yes 

In effect, PLF2 is a decision attribute whose outcome is synthesized in terms of hidden 
condition attributes. To see this, let T, ß be thresholds used to assess the candidacy 
of a fault reading in particular type of waveform and numerical boundary separating the 
possible approximation region from the rest of the universe, respectively. Recall that a 
power system fault f is considered to be a waveform of type t if the degree-of- 
membership of t is greater than or equal to some threshold. Next, we construct a 
sample decision table for pole line faults of type 2 (see Table 2). From Table 2, we 
obtain approximation regions BP= {0.6734, 0.5836, 0.4836, 0.5336} and BP = 
{0.3389, 0.6734, 0.5836, 0.4836, 0.5336} relative to condition attributes B (see Fig. 
1). The set of pole line fault readings being classified is rough, since the boundary 
region BNB(P) = {0.3389} in Fig. 1 is non-empty.   The accuracy of the approximation 
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is high, since ccB(P) = 4/5. We use the idea of approximation regions to design a 

rough neuron. 

X={x|x<=0.3389} 

{0.3389} 

Yes 

{0.6734,0.5836,0.4836,0.5336} 
Yes/No 

No 

Fig. 1 Approximating the Set of Pole Line Fault Recordings 

Notice that six power system faults are represented in Table 1. The degree-of- 
membership of each fault is computed relative to seven types of waveforms. This 
leads to 42 different rough sets, seven rough sets for each of the set of fault readings. 

3.3       Design of Rough Neurons 

A neuron is a processing element in a neural network. Informally, a rough_ neuron is a 
processing element designed to construct approximation regions BX and BX based on 
the evaluation of its input X on the basis of knowledge in a set of condition attributes 
B. Let rm be a rough neuron with memory. Let X, T be a set of unclassified fault 
readings and threshold used to assess the candidacy of a fault reading in a particular type 
of waveform, respectively. Further, let a be a degree-of-membership function such 
that a:X-»[0,l]. Internally, a rough neuron rm performs the following 
computation on each x e X. 

BXuW, ifa(x) > T 

rm(x) = -BXuW, ifa(x) < T 

U-BXuW, ifO < a(x) < ß 

In effect, a rough neuron constructs approximation regions over time. To make this 
possible, a rough neuron is endowed with memory. During calibration, the 
approximation regions from the previous epoch are recalled and updated during the 
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current epoch.     The accuracy of the approximation computed by a rough neuron is 
measured by aB{X), which is the output of a rough neuron. 

4        Rough-Fuzzy Neural Network Computation 

The basic features of a rough-fuzzy neural computing algorithm used to classify the 
waveforms of power system faults are shown in the flowchart in Fig. 2. 

selected inputs: e.g. 
main bandwidth, 
subband am 
of pulse signal 

nplitude compute degree-of-membership pulse 
signal in fault type i waveform 

rough neuron     V 
T ""I 

compute degree-of-membership pulse 
^ signal in fault type 1 waveform 

construct 
BP 

ponsti 

IK 
[construct 

BP 
2 

! ^measure accuracy*} 

"        TäB"(>) 

(classify a%(P) 

adjust 
r, w, u 

Fig. 2   Rough-Fuzzy Neural Computation 

The details of the underlying network have been omitted due to space constraints. The 
computation in Fig. 2 begins with the initialization of modulator r and strengths-of- 
connection w, u. During calibration, r, w, u will be adjusted until the error Q is less 
than some threshold 8. 

Let a: X -» [0,1] be a degree-of-membership function used in Fig. 2. The output 
of each rough neuron is aggregated with the degree-of-membership values using a t-, s- 
norm and implication (-») operations from fuzzy set theory to compute Zj. 
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^[fo->«<*>') swJ 
In the next stage of the neural computation in Fig. 2, the weighted z-values are 
aggregated with an s-, t-norm operations to compute y. 

,= 5[z,.tUj] 

4.1       Calibration 

The flowchart in Fig. 2 has a feedback loop used to calibrate r, w, and u relative to 
target values of the estimated type-of-fault. The calibration scheme for rough-fuzzy 
neural networks exploits the learning method given in [8]. What follows is a brief 
summary of the calibration steps: 

1. Initialize modulator r and strength-of-connections w and u. 
2. Introduce a training set representing data sets of values containing information 

of fault signals. 
3. Compute y of the output neuron. 
4. Compute error indices Q, by comparing network outputs with target values 

using Q = target - y. 
5. Let a>0 denote the positive learning rate. Based on the values of the error 

indices, adjust the r, w, and u parameters using the usual gradient-based 
optimization method suggested in (1) and (2). 

dÖ 
param(new) = param - a  (1) 

dparam 

3ß       3ß    3v (2) 

dparam     3v dparam 

4.2      Learning Performance of Two Types of Networks 

A rough-fuzzy and pure fuzzy neural network have been calibrated, and compared (see 
Figures 3, 4, and 5). 
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Fig. 3 Rough-fuzzy network performance    Fig. 4 Performance of fuzzy network 

A plot showing a comparison of learning performance of these networks during 
calibration is given in Figures 3 and 4. It is clear that for the same learning iteration, 
the performance of rough-fuzzy neural network is better than that of pure-fuzzy neural 
network. After the calibration of both neural networks, all of the connections relative 
to the r, w and u parameters have been determined. To test the performance of the 
sample rough-fuzzy and pure fuzzy neural networks, we utilize an additional 26 data sets 
of fault signals. 
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Fig. 5 Verification of rough-fuzzy and pure fuzzy networks 
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Notice in Fig. 5 that the estimation of the fault type by the rough-fuzzy neural network 
is more precise than that of the pure-fuzzy neural network. 

5      Concluding Remarks 

The design of a rough neuron in the context of rough sets has been given. The output 
of a rough neuron is an accuracy of approximation measurement, which is granulated 
and used in conjunction with aggregation methods from fuzzy sets to classify the type 
of waveform of detected high voltage power system faults. This work is part of a study 
begun at Manitoba Hydro in 1998. 

Acknowledgements 

First, we wish to thank Prof. Pawan Lingras, St. Mary's University, Nova Scotia, 
Canada, for sharing copies of his papers with us. We also want to thank the reviewers 
for their comments concerning this paper. We also gratefully acknowledge the support 
for this research provided by Manitoba Hydro and the National Sciences and Engineering 
Research Council of Canada (NSERC). 

References 

1. PJ. Lingras, Rough neural networks. In: Proc. of the 6th Int. Conf. on 
Information Processing and Management of Uncertainty in Knowledge-based 
Systems (IPMU'96), Granada, Spain, 1996, 1445-1450. 

2. PJ. Lingras, P. Osborne, Unsupervised learning using rough Kohonen neural 
network classifiers. In: Proc. Symposium on Modelling, Analysis and 
Simulation (CESA'96), Lille, France, 1996, 753-757. 

3. P.J. Lingras, Comparison of neofuzzy and rough neural networks. In: Proc. of 
the 5th Int. Workshop on Rough Sets and Soft Computing (RSSC'97), Durham, 
NC, March 1997. 

4. P.J. Lingras, Applications of rough patterns. In: Rough Sets in Knowledge 
Discovery edited by L. Polkowski and A. Skowron. Physica Verlag, a division 
of Springer Verlag, vol. 2, 1998, 369-384. 

5. L. Han, R. Menzies, J.F. Peters, L. Crowe, High voltage power fault-detection 
and analysis system: Design and implementation.   Proc. CCECE99, 1253-1258. 

6. Z. Pawlak. Reasoning about data-A rough set persepective. Lecture Notes in 
Artificial Intelligence 1424, L. Polkowski and A. Skowron (Eds.). Berlin, 
Springer-Verlag, 1998,25-34. 

7. J. Komorowski, Z. Pawlak, L. Polkowski, A. Skowron, Rough sets: A tutorial. 
In: S.K. Pal, A. Skowron (Eds.), Rough Fuzzy Hybridization: A New Trend in 
Decision-Making.   Singapore: Springer-Verlag, 1999, 3-98. 

8. W. Pedrycz, J.F. Peters, Learning in fuzzy Petri nets, in Fuzziness in Petri Nets 
edited by J. Cardoso and H. Scarpelli. Physica Verlag, a division of Springer 
Verlag, 1998. 



Toward Spatial Reasoning in the Framework of 
Rough Mereology 

Lech Polkowski 

Polish-Japanese Institute of Information Technology 
Koszykowa 86 02008 Warsaw Poland 

k. Institute of Mathematics 
Warsaw University of Technology 

Pl.Politechniki 1 00661 Warsaw Poland 
email:polkowQpjwstk.waw.pi 

Abstract. Rough mereology is a paradigm allowing to blend main ideas of two 
potent paradigms for approximate reasoning : fuzzy set theory and rough set 
theory. Essential ideas of rough mereology and schemes for approximate reason- 
ing in distributed systems based on rough mereological logic were presented in 
[13], [14], [17]. Spatial reasoning is an extensively studied paradigm stretching 
from theoretical investigations of proper languages and models for this reason- 
ing to applicational studies concerned with e.g. geographic data bases, satellite 
image analyses, geodesy applications etc. We propose a rough mereological envi- 
ronment for spatial reasoning under uncertainty. We confront our context with 
an alternatively studied mereological context denned within Calculus of Individ- 
uals [10] by Clarke [5] and developed into schemes for spatial reasoning in [2], 
[3] where the reader will find examples of linguistic interpretation. We outline 
how to define in the rough mereological domain the topological and geometri- 
cal structures which are fundamental for spatial reasoning; we show that rough 
mereology allows for introducing notions studied earlier in other mereological 
theories [2], [3], [5]. This note sums up a first step toward our synthesis of intel- 
ligent control algorithms useful in mobile robotics [1], [7], [8]. 

Keywords rough mereology, mereotopology, spatial reasoning, connection, 
rough mereological geometry 

1    Introduction 

Rough mereology has been proposed in [13] and developed into a paradigm for 
approximate reasoning in [14]. Its applications to problems of approximate syn- 
thesis, control, design and analysis of complex objects have been discussed in 
[17] and in [15] a granular semantics for computing with words was proposed 
based on rough mereology. We are concerned here with the issues of spatial rea- 
soning under uncertainty. Therefore we study the rough mereological paradigm 
in a geometric - mereotopological setting (cf. [2], [3]). Spatial reasoning plays 
an important role in intelligent robot control (cf. [1], [7], [8] and we are aiming 
at synthesizing a context for control under uncertainty of a mobile robot which 
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may possibly involve natural language interfaces. Rough Mereology is a natu- 
ral extension of Mereology (cf. [11], [18]) and we give as well a brief sketch of 
relevant theories of Ontology and Mereology to set a proper language for our 
discussion. 

2 Ontology 

Ontological theory of Lesniewski [9], [18] is concerned with the explanation of 
meaning of phrases like "X is Y" . Naive set theory solves this problem via 
the notion of an element; in Ontology, the esti symbol € is replaced by the 
copula e (read "is"). Ontology makes use of functors of either of two categories: 
propositional and nominal; the former yield propositions the latter new names. 
We begin this very concise outline of Ontology by selecting symbols X, Y, Z .... 
to denote names (of objects); the primitive symbol of ontology is e (read "is"). 

The sole Axiom of Ontology is a formula coding the meaning of e as follows 

2.1    Ontology Axiom 

XeY ^ 3Z.ZeX AW, W.(UeX A WeX =>■ UeW) A VT.{TeX => TeY) 
This axiom determines the meaning of the formula XeY ("XisY") as the 

conjunction of three conditions: 3Z.ZeX ("something is X"); VC7, W.(UeX A 
WeX =>• UeW) ("any two objects which are X are identical" i.e. X is an 
individual name); VT.fTeX =>• TeY) ("everything which is X is Y"). 

Therefore the meaning of the formula XeY is as follows: X is a non-empty 
name of an individual (X is an individual) and any object which is X is also Y. 

We introduce a name V defined via : XeV <=> 3Y.XeY being a name 
for a universal object. The copula e formalized as above permits to accomodate 
distributive classes (counterparts of sets in the naive set theory). The next step is 
to formalize the notion of distributive classes (counterparts of unions of families 
of sets ). This belongs to Mereology. 

3 Mereology 

Mereology of Lesniewski [11], [19] can be based on any of a few primitive notions 
related one to another: part, element, class..; here, we begin with the notion of 
a part conceived as a name - forming functor pt on individual names. 

3.1    Mereology Axioms 

We start with basic axioms for pt. 
(ME1) Xept(Y) =$■ 3Z.ZeX A XeV A YeV; 
(ME2) Xept(Y) A Yept(Z) =► Xept(Z); 
(ME3) non(Xept(X)). 
Then Xept(Y) means that the individual denoted X is a proper part (in 

virtue of (ME3)) of the individual denoted Y. The concept of an improper part 
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is reflected in the notion of an element el;   this is a name - forming functor 
defined as follows: 

Xeel(Y) <=>■ Xept(Y) VX = Y. 
We will require that the following inference rule be valid. 
(ME4) \/T.(Teel(X) =* 3W.Weel{T) A Weel(Y)) ==> Xeel{Y). 

3.2 Classes 

The notion of a collective class may be introduced at this point; this is effected 
by means of a name - forming functor Kl defined as follows. 

XeKl{Y) <=> 
3Z.ZeY A VZ.{ZeY =► Zeel(X))A 

VZ.{Zeel{X) => 3U, W.UeYAWeel(U) AWeel(Z)). 
The notion of a class is subjected to the following restrictions 
(ME5)  XeKl{Y) A ZeKl(Y) =► ZeX (Kl(Y) is an individual); 
(ME6) 3Z.ZeY <=>• 3Z.ZeKl(Y) (the class exists for each non-empty name). 
Thus, Kl(Y) is defined for any non-empty name Y and Kl(Y) is an individual 

object. One can also introduce a less restrictive name viz. of a set: 
Xeset(Y) <=> 

3Z.ZeYA\/Z.(Zeel{X) =» 3U,W.UeYAWeel(U)AWeel{Z)). 
Thus, a set is like a class except for the universality property MZ.(ZEY => 

Zeel(X)). 

3.3 Mereotopology: first notions 

Within mereology one may define (cf. [11]) some functors expressing relative 
position of objects. The functor ext expresses disjointness in terms of parts: 

Xeext(Y) ««=» non(3Z.Zeel{X) A Zeel(Y)). 
The notion of a complement is expressed by the functor comp : 
Xecamp(Y,relZ) <=> Yesub{Z) A XeKl(elZ\extY) 
where UeelZ\extY iff Ueel(Z) A Usext(Y). 

4    Rough Mereology 

Approximate Reasoning carried out under Uncertainty needs a weaker form of 
part predicate: of being a part in a degree. The degree of being a part may then 
be specified either on the basis of a priori considerations and findings or directly 
from data [14]. In our construction of rough mereoogical predicate, we are guided 
by the tendency to preserve Mereology as an exact skeleton of reasoning . 

Rough Mereology has been proposed and studied in [13], [14], [17] as a first- 
order theory. Here, we propose a formalization in the framework of Ontology; 
hence, rough mereology becomes now a genuine extension of mereology in a 
unified framework. By virtue of our earlier studies cited above, we may now 
assume that rough mereology is defined around a certain mereological theory as 
its extension. We therefore assume that a mereological predicate el of an element 
is given and e is a symbol for ontological copula as defined above. 
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4.1 Rough Mereology Axioms 

The following is a list of axiomatic postulates for Rough Mereology. We introduce 
a graded family ßr, where r £ [0,1] is a real number from the unit interval, of 
name-forming functors of an individual name which would satisfy 

(RM1)  Xeßi(Y) <=£> Xeel(Y) (any part in degree 1 is an element); 
(RM2)  Xeni(Y) =* VZ.(Zefj,r(X) =>• Zepr(Y)) (monotonicity); 
(RM3)  X = Y A XeßT{Z) => Yeßr{Z) (identity of objects); 
(RM4) Xeßr(Y) A s < r => Xefis(Y) (meaning of \ir: a part in degree at 

least r); 
we introduce a following notational convention: 
Xeß+(Y) *=> Xeßr{Y) A nan(3s > r.Xeßs{Y)). 
In some versions of our approach, we adopt one more axiom 
(RM5) Xeext(Y) => Xeßo(Y) (disjointness of objects is fully recognizable) 
or its weakened form expressing uncertainty of our reasoning 
(RM5)* Xeext(Y) => 3r < l.Xefj,+(Y) (disjointness is recognizable up to 

a bounded uncertainty). 

4.2 Models 

One may have as an archetypical rough mereological predicate the rough mem- 
bership function of Pawlak and Skowron [12] defined in an extended form as: 

XeßriY) <=► *i§£P > r 
where X, Y are (either exact or rough) subsets in the universe U of an infor- 

mation/decision system (U, A). 

4.3 Mereotopology: Cech Topologies 

Topological structures are important for spatial reasoning: setting the interior 
and the boundary of an object apart, allows for expressing various spatial re- 
lations of contact (cf. eg. [2], [3]). We point here that (weak) topologies are 
immanent to rough mereological structures. 

We define an object KlrX, each X, r < 1, as follows: 
ZeKlrX <=^ ZeKl(ßrX) where ZeßrX <=3- Ze/j,r(X). 
Thus KlrX is the class of all objects Z such that Zeßr(X). 
A simplified description of KlrX may be provided as follows. 
Let BrX be defined via: ZeBrX <^> 3T.Zeel(T) A TeßrX. 
Then we have 

Proposition 1. KlrX = BTX. 

Proof. Let Zeel(BrX); there is T such that Zeel(T) and TeßrX. Hence the 
following is true: VZ.Zeel(BrX) =*■ BU.Ueel(Z)AUeel(KlrX) and BrXeel(KlrX) 
follows by (ME4). Similarly, for Zeel(KlrX), we have P, Q with Peel(Z), Psel(Q), 
Qeßr(X). Hence Peel(BrX) and (ME4) implies that KlrXeel(BrX) so finally, 
I\lrX = BrX. 

There is another property, showing the monotonicity of class operators. 
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Proposition 2. For s <r, KlrXeel{KlsX). 

Indeed, by the previous fact, Zeel(KlrX) implies that Zeel(T) and Tefj,rX 
for some T hence TefisX and a fortiori Zeel(KlsX). 

Introducing a constant name A (the empty name) via the definition: 
XeA <=> XeX A non(XeX) 
and defining the interior IntX of an object X as follows: 
IntXeKl(int.X) 
where ZeintJX <=^ 3T3r < l.Zeel(KlrT) A KlrTeel{X) 
i.e. IntX is the class of objects of the form KlrT which are elements of X, 

we have 

Proposition 3. (i) IntAe IntA 4=> AeA (the interior of the empty concept is 
the empty concept); 

(ii)  Xeel(Y) =>■ IntXeel(IntY) (monotonicity of Int); 
(Ui)IntKlVeKlV (the universe is open). 

Properties (i)-(iii) witness that the family of all classes KlrT, r < 1, is a base 
for a Cech topology [21]; we call this topology the rough mereological topology 
(rm-topology). 

5    From Cech mereotopologies to mereotopologies 

We go a step further: we make rm-topology into a topology (ie. open sets have 
open intersections); this comes at a cost: we need a specific model for rough 
mereology. 

5.1    A t-norm model 

We recall that a t-norm is a 2-argument functor T(x,y) : [0, l]2 —► [0,1] satis- 
fying the conditions: 

(i) T(x,y) = T{y,x); (ii) T(x,l) = x; (iii) x' > x,y' > y —► T(x',y') > 
T(x,y); (iv) T(x, T(y,z)) = T(T(x,y),z) 

and that the residual implication induced by T,in symbols T, is defined via 
"f(r,s) >t^^T(t,r) <s. 

We apply here the ideas developed in [14] and we define, given a part in 
degree predicate //, a new measure of partiality in degree, /ir, defined as follows 

(*) Xevn{r)(Y) <^ VZ.(Zeß{u)(X) A Ze/i(v)(Y) => T(u,«) > r). 
It turns out that 

Proposition4.  The functor ßr satisfies axioms (RM1)-(RM5), (RM5)*. 

Proof. We may check (RM1): XefiT(l)(Y) implies that from Ze/z(u)(X) A 
Zen(v)(Y) it follows that u < v for each Z hence: Zeel{X) => Zeel(Y) 
follows for any Z i.e. Xeel(Y). Similarly, Xeel{Y) implies via (RM2) for fi 
that Zefi(u)(X) A Zep(v)(Y) yields u < v i.e. ^t(u,v) > 1 for any Z thus 



60 

Xe/n(i)(Y). (RM2), (RM3), (RM4) are checked similarly, for (RM5), we begin 
with the premise Xsext(Y) hence Xefi$(Y); assuming Xefir{r)(Y) we get by 
(*) for Z = X that T\I,0) > r i.e. T(r,l) = r < 0. Similar argument handles 
(RM5)*. 

Thus /XT is a partiality in degree predicate. 
Modifying a proof given in ([9], Prop.14), we find that the following deduction 

rule is valid for /iy : 

We denote with the symbol Kl^jX the class KlrX with respect to HJ. 

We may give a new characterization of KlrjX. 

Propositions. Yed{Klr,TX) <=*• Yefj,T(r)(X). 

Indeed, Yeel{Klr,TX) means that Yeel(Z) and ZeßT(r)(X) for some Z. Prom 
Ye/xT(l)(Z) and ZeßT(r)(X) it follows by (MPR) that YefiT(J(l,r) = r)(X). 

We may regard therefore Klr^X as a "ball of radius r centered at X" with 
respect to the "metric" fir- 

Furthermore, we have by the same argument 

Proposition6. Yeel{Klr^X) and s0 = min_arg(T(r,s) > r) imply 
KlSOiTYeel(Klr,TX). 

It follows that the family {Klr<rX : r < l,X} induces a topology on our 
universe of objects (under the assumption that T(r,s) < 1 whenever rs < 1). 
This allows us to define a variety of functors like: Tangential Part, Non-tangential 
Part etc. instrumental in spatial reasoning (cf. [2], [3]). 

6    Connections 

We refer to an alternative scheme for mereological reasoning based on Clarke's 
formalism of connection C [5] in Calculus of Individuals of Leonard &Goodman 
[10]; see in this respect [3]. This formalism is a basis for some schemes of ap- 
proximate spatial reasoning (eg. various relations of external contact, touching 
etc. may be expressed via C) (op.cit.). The basic primitive in this approach is 
the predicate C{X, Y) (read "X and Y are connected") which should satisfy : (i) 
C(X,X); (ii) C(X,Y) =* C(Y,X); (iii) VZ.(C(X,Z) ^ C{Y,Z)) =► X = Y. 
From C other predicates (as mentioned above) are generated and under addi- 
tional assumptions (cf. [5]) a topology may be generated from C. 

We will define a notion of connection in our model; clearly, as in our model 
topological structures arise in a natural way via "metrics" ß, we may afford a 
more stratified approach to connection and separation properties. So we propose 
a notion of a graded connection C(r, s). 
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6.1    From graded connections to connections 

We let 
BdrXeKl(ß+X) where Ze^+(X) <^=> Ze\ir{X) Anon(Ze^s{X),s > r) 
and then 
XeC(r,s)(Y) <=> 3W.Weel(BdrX) A Weel{BdsY). 
We have then clearly: 
(i) XeC{l,l){X); (ii) XeC(r,s)(Y) => YeC(s,r)(X). 

Concerning the property (iii), we may have some partial results However, we 
adopt here a new approach. It is realistic from both theoretical and applicational 
points of view to assume that we may have "infinitesimal " parts i.e. objects as 
"small" with respect to ß as desired. 

Infinitesimal parts model We adopt a new axiom of infinitesimal parts 
(IP) nan(Xeel(Y)) => Vr > 03Zeel(X),s < r.Zeßt(Y). 
Our rendering of the property (iii) under (IP) is as follows: 
nan{Xeel(Y)) => Vr > 03Z, s < r.Zen+{Y).ZeC(l, 1)(X) A ZeC{l, s){Y). 

Introducing connections Our notion of a connection will depend on a thresh- 
old, a,set according to the needs of a context of reasoning. 

Given 0 < a < 1, we let 
(CON) XeCa{Y) <=^>3r,s> a.XeC(r,s)(Y). 
Then we have 
(i) XeCa{X), each a; 
(ii) XeCa(Y) =* YeCa(X); 
(iii) X^Y => 3Z.(ZeCa(X)Anm(ZeCa(Y))VZeCa(Y)Anan{ZeCa(X))) 
i.e. the functor Ca has all the properties of connection in the sense of [5] and 

[2], [3]. 

Restoring rough mereology from connections We show now that when 
we adopt mereological notions as they are defined via connections in Calculus of 
Individuals, we do not get anything new: we come back to rough mereology we 
started from. The formula 

Xeelc(Y) <=^ VZ.(ZeC(X) =^ ZeC(Y)) is the definition of the notion of 
an element from a connection C. We claim 

Proposition?. XeelCc,(Y) <^=> Xeel(Y). 

Clearly, XeelCa(Y) => Xsel(Y). Assume that Xeel(Y); ZeCa(X). There 
is W with Went(Z) and Wen+{X), r,s>a. Then by (RM2), Weß+,{Y) with 
an s' > s and so ZeCa(Y). It follows that Xeel(Y) => XeelCa(

Y)- 
Any of connections Ca restores thus the original notion of an element, el. 
Therefore in our setting of rough mereology, we may have as well the mereotopo- 

logical setting of [2], [3], [5]. 
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Let us observe that in general Ca ^ OV where XeOV(Y) <=*• 3Z.Zeel(X)A 
Zeel(Y) is the functor of overlapping (in our context, objects may connect each 
other without necessarily having a part in common). 

7    Geometry via rough mereology 

It has been shown that in the mereotopological context of Calculus of Individ- 
uals one may introduce a geometry (cf. [3]). We show that in the context of 
rough mereology geometric structures arise naturally without any resort to the 
intermediate structure of connection. It is well known that elementary geometry 
may be developed on the basis of eg. the primitive notion of "being closer to ... 
than to..". We consider here the axioms for this notion going back to Tarski (cf. 
eg. [4]) and we introduce a name - forming functor on pairs of individual names 
CT(Y, Z) (XeCT(Y, Z) is read "X is closer to Y than to Z") subject to 

(CT1) XeCT{Y, Z) A XeCT(Z, W) => XeCT(Y, W); 
(CT2) XeCT(Y, Z) A ZeCT(X, Y) => YeCT(X, Z); 
(CT3) non(XeCT(Y,Y)); 
(CT4) XsCT(Y, Z) =^ XeCT(Y, W) V XeCT(W, Z). 
We define this notion in the context of rough mereology: for X, Y, we let 

p+{X, Y)=r^> Xen+(Y) and then 
XsCT(Y,Z) ^ max{ß+(X,Y),ß+(Y,X)) > max(ß+(X,Z),ß+(Z,X)). 
Then 

Propositions.    The functor CT thus defined satisfies (CT1)-(CT4). 

We may now follow e.g. the lines of [4], [3] and give definitions of a other geo- 
metric notions; for instance, letting 
T{X, Y, Z) «=> VW.X = WV CT(Y, X, W) V CT(Z, X, W) 
we may render the notion that X is positioned between Y and Z and this may 
permit to define a straight line segment and further notions as pointed to in e.g. 
[4]. The details will be presented elsewhere (cf. [16]). 

8    Conclusion 

We have presented a scheme for developing conceptual spatial reasoning under 
uncertainty in the framework of rough mereology. In this framework, as it will 
be presented elsewhere, we may develop various approaches to spatial reasoning, 
including metric geometry based on predicates fx and metrics derived from them. 
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Abstract. Rough sets theory depending upon DIS(Deterministic In- 
formation System) is now becoming a mathematical foundation of soft 
computing. Here, we pick up NIS(Non-deterministic Information Sys- 
tem) which is more general system than DIS and we try to develop 
the rough sets theory depending upon NIS. We first give a definition 
of definability for every object set X, then we propose an algorithm for 
checking it. To find an adequate equivalence relation from NIS for X 
is the most important part in this algorithm, which is like a resolution. 
According to this algorithm, we implemented some programs by prolog 
language on the workstation. 

1    Introduction 

Rough sets theory is seen as a mathematical foundation of soft computing, which 
covers some areas of research in AI, i.e., knowledge, imprecision, vagueness, 
learning, induction[l,2,3,4]. We recently see many applications of this theory to 
knowledge discovery and data mining[5,6,7,8,9]. 

In this paper, we deal with rough sets in ^/^(Non-deterministic Information 
System), which will be an advancement from rough sets in D75(Deterministic In- 
formation System). According to [1,2], we define every DIS = (OB, AT, {VALa\ 
a G AT}, /), where OB is a set whose element we call object, AT is a set whose el- 
ement we call attribute, VALa for a £ AT is a set whose element we call attribute 
value and / is a mapping such that / : OB * AT -+ UaeATVALa, which we call 
classification function. For every x,y(x ^ y) € OB, if f(x,a) = f(y,a) for 
every a e AT then we see there is a relation for x and y. This relation becomes 
an equivalence relation on OB, namely we can always define an equivalence re- 
lation EQ on OB. If a set X(c OB) is the union of some equivalence classes in 
EQ, then we call X is definable in DIS. Otherwise we call X is rough[l]. 

Now we go to the NIS. We define every NIS = (OB, AT,{VALa\a e 
AT},g), where g is a mapping such that g : OB * AT —► P(öa^ATVALa) 
(Power set for öa€ATVALa)[3,4\. We need to remark that there are two interpre- 
tations for mapping g, namely AND-interpretation and OR-interpretation. For 
example, we can give the following two interpretations for g(tom, language) = 
{English, Polish, Japanese}. 
(AND-interpretation) Tom can use three languages, English, Polish and Jap- 
anese. Namely, we see g(tom, language) is English A Polish A Japanese. 
(OR-interpretation) Tom can use either one of language in English, Polish or 
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Japanese. Namely we see g(tom, language) is English V Polish V Japanese. 
The OR-interpretation seems to be more important for g. Because, it is related 
to incomplete information and uncertain information. Furthermore, knowledge 
discovery, data mining and machine learning from incomplete information and 
uncertain information will be important issue. In such situation, we discuss NIS 
with OR-interpretation. We have already proposed incomplete information and 
selective information for OR-interpretation[10], where we distinguished them by 
the existence of unknown real value. In this paper, we extend the contents in 
[10] and develop the algorithm for finding equivalence relations in NIS. 

2    Aim and Purpose in Handling NIS 

Now in this section, we show the aim and purpose in handling NIS. Let's con- 
sider the following example. 
Example 1. Suppose the next NISi such that OB = {1,2,3,4}, AT = {A, B, C}, 
Ua€ATVALa = {1,2,3} and g is given by the following table. In this table, 

OB A B C 
1 1V2 2 1V2V3 
2 1 2 1V2V3 
3 1 1V2 2 
4 1 2 2V3 

Table 1. Non-deterministic Table for NISi 

if we select an element for every disjunction then we get a DIS. There are 
72(=2*3*3*2*2) DISs for this NISi. In this case, we have the following issues. 

Issue 1: For a set {1,2}(c OB), if we select 1 from g(l, A) and 3 from g(l, C), 
g(2, C) and g(4, C) then {1,2} is not definable. However, if we select 1 from 
g(l,C) and g(2,C) then {1,2} is definable. How can we check such defin- 
ability for every subset X of OB ? 

Issue 2: How can we get all possible equivalence relations from 72 DISs ? Do 
we have to check 72 DISs sequentially ? 

Issue 3: Suppose there are following information for attribute D: g(l, D) = {1}, 
g(2, D) = {1}, fl-(3, D) = {2} and g(i,D) = {2}, respectively. In this case, 
which DIS from NISi makes (A,B,C) -> D consistent ? How can we get 
all DISs which make (A, B,C) -» D consistent ? 

These issues come from the fact such that the equivalence relation in DIS is 
always unique but there are some possible equivalence relations for NIS. 
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Now we just a little show the real execution for Issue 2 to clarify how our 
system works. 

?-relationall. 
[1] [[1,2,3,4]] 1 [10]  [[1,4],[2],[3]] 5 
[2]  [[1,2,3],[4]]  1 [11]  [[1],[2,3,4]] 5 
[3]  [[1,2,4],[3]] 3 [12]  [[1],[2,3],[4]] 4 
[4]  [[1,2],[3,4]]  2 [13]  [[1],[2,4],[3]]  14 
[5]  [[1,2],[3],[4]] 5 [14]  [[1],[2],[3,4]] 8 
[6]  [[1,3,4],[2]] 2 [15]  [[1],[2],[3],[4]]  19 
[7]  [[1,3],[2,4]]  1 POSSIBLE CASES 72 
[8]  [[1,3],[2],[4]]  1 EXEC_TIME=0.1566100121(sec) 
[9]  [[1,4],[2,3]]  1 yes 

In the above execution, we see there are 15 kinds of equivalence relations and 
there are 19 DISs whose equivalence relation is {{1},{2}, {3}, {4}}. Accord- 
ing to this execution, we can see that 2 cases of {{1,2}, {3,4}}, 5 cases of 
{{1,2}, {3}, {4}}, 8 cases of {{1},{2},{3,4}} and 19 cases of {{1},{2},{3}, 
{4}} make (A,B, C) —► D consistent by Proposition 4.1 in [1]. In the subse- 
quent sections, we discuss the definability of every set in NIS as well as the 
above issues. 

3    An Algorithm for Checking Definability of Set in DIS 

In this section, we simply refer to an algorithm to detect the definability of set 
in DIS. Here, we suppose an equivalence relation EQ in the DIS and we use 
[x] to express an equivalence class with object x. 
An Algorithm in DIS 
(1) Make a set SUP(= L)x€X[x]). 
(2) If SUP = X then X is definable in DIS else go to the next step (3). 
(3) Make a set INF(= U{[x] £ EQ\[x] C -X"}), then lower and the upper ap- 

proximation of X are INF and SUP, respectively. 
The above algorithm manages the definability of set X, upper and the lower 
approximation of X. We will propose a new algorithm in NIS depending upon 
the above one. 

4    Some Definitions and Properties in NIS 

We first give some definitions then we show a proposition. 
Definition 1. For NIS = (OB, AT,{VALa\a £ AT},g), we call NIS' = (OB, 
AT,{VALa\a £ AT},g') which satisfies the following (1) and (2) an extension 
from NIS. 
(1) g'(x, a) C g(x, a) for every x £ OB, a £ AT. 
(2) g'(x, a) is a singleton set for every x £ OB, a £ AT. 
Here, we can see every extension from NIS is a DIS, because every attribute 
value is fixed uniquely. 
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Definition 2. For every extension NIS' from NIS, we call the equivalence 
relation in NIS' a possible equivalence relation in NIS. We also call every 
element in this relation a possible equivalence class in NIS. 
In every DIS, we know the definability of a set X, so we give the next definition. 
Definition 3. A set X(c OB) is definable in NIS, if X is definable in some 
extensions from NIS. 

We soon remind a way to detect the definability of a set X in NIS, namely 
we sequentially make every extension from NIS and execute the program by 
algorithm in DIS. However, we need the same number of files as extensions 
from NIS. Furthermore, if X is not definable in NIS then we have to execute 
the same program for all extensions. So we propose another way from now on. 
We give the following definitions. 
Definition 4. Suppose NIS = (OB,AT,{VALa\a e AT},g). If g(x,a) is a 
singleton set for every a € AT then we call that object x is fixed. Furthermore, 
OBfixed = {x 6 OB\ object x is fixed }. 
Definition 5. Suppose NIS = (OB,AT,{VALa\a e AT},g) and g(x,a) is not 
a singleton set for some a e AT. By picking up an element in such g(x, a), we 
can make object x fixed. Here, we call a set of pairs {[attribute,picked-element]} 
selection in x. For a selection 9, Xe expresses the fixed tuple for x. 
In Example 1, if we take a selection 9 = {[A, 1], [C, 1]}, then the le is (1,2,1). 
For 9 = {[5,2]}, the 39 is (1,2,2). 
Definition 6. Suppose NIS = (OB, AT,{VALa\a e AT},g). For every x{e 
OB) and selection 9 in x, we give the following definitions. 
(1) inf(x, 9) = {a;} U{y e OBfixed\ xe and the tuple for y are the same }. 
(2) sup(x, 9) = {y € OB\ there is a selection 9' such that xg = ye'}. 
According to these definitions, we get the following proposition. 
Proposition 1. 
(1) The inf(x, 9) is the minimal possible equivalence class including object x for 

the selection 9. 
(2) For every y e (sup(x, 9) - inf(x, 9)), there are selections 9' and 9" such that 

xe = ye' and xg ^ye". 
(3) A subset X(c OB) which satisfies inf(x, 9) C X C sup(x, 9) for some x and 

9 can be a possible equivalence class. 
(Proof) (1) For x and 9, the tuple for every y e inf(x, 9) is the same and fixed. 
So inf(x,9) is a minimal possible equivalence class with x for the selection 9. 
(2) For y e (sup(x,9) - inf(x,9)), we get y € sup(x,9) and y g inf(x,9). By 
the definition of sup, there is a selection 9' such that xg = ye' ■ If y 6 OBfixed 
then y e inf(x, 9), which makes contradiction to y 0 inf(x, 9). So y £ OBfixed, 
and there exists at least another selection 9" such that ygn ^ x$. 
(3) According to (1) and (2), inf(x, 9) U M for M C (s«p(a;, 0) - ira/(a;, 0)) can 
be a possible equivalence class. 

In this proposition, the (3) is related to the definability of set in NIS and we 
use this property. However, we have to remark that inf(x, 9) and sup(x, 9) are 
not independent in every x. The inf(x, 9) and sup(x, 9) are mutually related to 
other inf(y, 9') and sup(y, 9'). We show it in the next example. 
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Example 2. Suppose JVISi in Example 1. The OBfixed = 0 and we get the 
following subset of all inf and sup. 

(A) in/(l, {[A, 1], [C, 3]}) = {1}, sup(l, {[A, 1], [C, 3]}) = {1,2,4}. 
(B) inf(3, {[B, 1]}) = {3}, «tp(3, {[B, 1]}) = {3}. 
(C) in/(3, {[5,2]}) = {3}, «ip(3, {[B, 2]}) = {1,2,3,4}. 
(D) in/(4,{[C,2]}) = {4}, sWp(4,{[C,2]}) = {1,2,3,4}. 
(E) inf {A, {[C, 3]}) = {4}, sup(A, {[C, 3]}) = {1,2,4}. 

Here in (A), the following sets {1}, {1,2}, {1,4} and {1,2,4} can be a possible 
equivalence class by (3) in Proposition 1. However, if we make {1,2} a possible 
equivalence class, then we implicitly make object 4 0 [1](= [2]). It implies selec- 
tion [C,3] for object 4 is rejected, because 4{[C)3]} is (1,2,3) which is the same 
as 1{[A,I],[C,3]}- Namely, we can not use (E) and we have to revise (C) and (D) 
as follows: 

(C) tn/(3,{[£,2]}) = {3}, sup(3,{[B,2}}) = {3,4}. 
(D') in/(4,{[C,2]}) = {4}, sup(A,{[C,2]}) = {3,4}. 

If we use (B) then [3] = {3} and reject the (C), because either (B) or (C) hold. 
Here, we have to revise (D') as follows: 

(D") inf(4,{[C,2}}) = {4}, sup(4,{[C,2}}) = {4}. 
For this (D"), only {4} can be a possible equivalence class. Finally we get a pos- 
sible equivalence relation {{1,2}, {3}, {4}} and the selections are {[A, 1], [C,3]} 
for object 1, {[C,3]} for 2, {[B,l]} for 3 and {[C,2]} for 4. These selections 
specify a DIS from NIS. We also know that sets like {1,2,3} and {3,4} are 
definable in NIS but {2,3} is not defiable in this DIS. 

5    Proposal of An Algorithm in NIS 

The following is the overview of proposing algorithm. 
An Algorithm for Checking Definability of Set in NIS 
Suppose we are given inf(x,6) and sup(x, 6) for every x(e OB). 
Input: A set X(c OB). 
Output: X is definable in NIS or not. 
(1) Set X* = X. 
(2) For the first element x(e X*), find X'(c X*) such that inf{x, 9) C X' C 

sup(x, 6) for some 6. 
(3) The usable inf(y,6') and sup(y,6') for y £ OB are restricted by selecting 

X' in (2). So, check the usable inf and sup, and go to (4). 
(4) If there is no contradiction in (3), then set [x] = X', X* = X* - X' and 

go to (2). Especially if X* — 0 then we conclude X is definable. To find 
other cases, backtrack to (2). If there is contradiction in (3), then backtrack 
to (2) and try another X'. If there is no branch for backtrack, then we 
conclude X is not definable. 

In this algorithm, if we set X = OB then we can get all possible equivalence 
relations. This algorithm seems to be simple and natural, but managing the inf 
and sup is very complicated. We also need to discuss how we get inf and sup 
information from NIS. 
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6    Implementation of Proposing Algorithm in NIS 

Now in this section, we show the implementation of a prover for NIS. We depend 
upon prolog language on workstation for implementing this prover. Our prover 
consists of the following two subsystems: 

(1) File translator from data file to an internal expression. 
(2) Query interpreter with some subcommands. 

6.1 Data File for NIS 

Here, we show the data file in prolog, which is very simple. We use two kinds of 
atomic formulas: 

object(number_o /-objects, number.of-attributes). 
data(object, tuple-data). 

The following is the real data file for NISi. 
objGct(4,3).   data(i,[[l,2],2,[l,2,3]]).   data(2, [1,2, [1,2,3]]) . 
data(3,[l,[l,2],2]).  data(4, [1,2, [2,3]]) . 

We use a list to express disjunction. This data structure is so easy that we can 
soon make this file from every non-deterministic table. There is no restrictions 
for every number of items except prolog and workstation's restriction. 

6.2 File Translator from Data File to Internal Expression 

This translator creates an internal expression from every data file, which consists 
of the following three kinds of atomic formulas. 

cond(object, number .for selection, tuple.f or Jhisselection). 
pos(object, number jof -all selections). 
conn(\object, number-for selection], [slist, slistl], [mlist, mlistl], maylist). 

As for the 2nd, 3rd and 4th arguments in conn, we will show their contents by 
using real execution. The following is the translation of data file. 

?-consult(nkbtf.pi). 

yes 

?-go. 

File Name for Read Open:'nkbda23.pl'. 
File Name for Write Open:'out.pi'. 
EXEC_TIME=0.05459904671(sec) 
yes 

In this translation, nkbtf.pl is the translator and nkbda23.pl is a data file for 
NISi. The file out.pl keeps the internal expression for NISi. The following is a 
part of internal expression for object 3. 

cond(3,l,[l,l,2]). 
cond(3,2,[l,2,2]). 
pos(3,2). 
conn([3,l] , [[3] , [1]] , [[] , []] , [[3,1]]) . 
conn([3,2] , [[3] , [2]] , [[1,2,4] , [3,2,1]] , [[3,2] , [1,3] , [2,2] , [4,1]]) . 

The pos(S, 2) shows there are two selections for object 3 and cond(3,1, [1,1,2]) 
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does [1,1,2] is the tuple for the first selection 9(= {[£,1]}). In this selection, 
the 2nd argument in conn([3,1], _,-,-) shows inf (3,9) = {3} and 3rd argument 
does sup(3,9) - inf (3,9) = 0. Similarly for the second selection 9'(= {[B,2]}) 
which makes tuple [1,2,2], we get in/(3,9') = {3} and sup(3,9') - inf (3,9') = 
{1,2,4}. Here, we identify the selections 9 with the second argument in cond. 
For example, we identify a selection 9 = {[B, 1]} as the second argument 1 in 
cond(3,l,[l,l,2]). 
Definition 7. For cond(object,number.f or.selection,tuple), we call number, 
for.selection an index of selection 9 and we do [object, number.for.selection] 
an index of the fixed tuple. 

6.3 An Algorithm for Translator 

Now we simply show the translation algorithm, which consists of two phases. 
In Phasel, we create cond(object,.,-) and pos(object,.) from data(object,.). 
For every data(object,list), we first make the cartesian products from list then 
sequentially we assert cond(object, selection, fixed-tuple), and finally we assert 
pos(object, last.number). 

In Phasel, we make every conn([object, selection], _,_,_) from every cond. 
For every cond(object, selection, fixed-tuple), we first initialize lists [slist, slistl] 
and [mlist,mlisti] and we find other cond(object1, selection', fixedJuple). If 
pos(object', 1) then we add [object1, selection'] to [slist, slistl] else we do to 
[mlist,mlistl]. We continue it for all selections. Finally, we assign the union of 
[slist, slistl] and [mlist,mlistl] to maylist and assert conn([object, selection], 
[slist, slistl], [mlist,mlistl], maylist). We have realized the translator according 
to this algorithm. 

6.4 An Algorithm for Handling Usable inf and sup 

In proposing algorithm, the most difficult part is to handle every subset of objects 
from usable inf and sup. The usable inf and sup are dynamically revised, so we 
need to manage what are the usable inf and sup. For example in the translated 
conn([3,2], [[3], [2]], [[1,2,4], [3,2,1]],.), every {3} U M(M C {1,2,4}) can be a 
possible equivalence class by Proposition 1. To make {1,3} a possible equivalence 
class, we need to positively use object 1 in {1,2,4} and negatively use objects 2 
and 4 in {1,2,4}. 
Definition 8. For X C OB, suppose inf(x,9)  C X C sup(x,9) for some 
x G OB. In this case, we call every element in X positive use of index [x, 9] and 
every element in (sup(x, 9) - X) negative use of [x, 9]. 
To manage such two kinds of usage, we adopt a positive list PLIST and a 
negative list NLIST. The PLIST keeps indexes [object, selection] which have 
been applied as positive use, and the NLIST keeps indexes which have been 
applied as negative use. For these two lists and positive and negative use, we 
have the following remarks. 
Remark for Positive Use of [x, 9] 
Suppose the index for xg is [x, num]. The xg is applicable as positive use only 
when [a;,.] g PLIST and [x, num] $ NLIST. 
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Remark for Negative Use of [x, 6] 
Suppose the index for xg is [x, num]. The x$ is applicable as negative use in the 
following cases; 
(1) [x,num] ENLIST. 
(2) [a;,nra] £ NLIST, [x,num] $ PLIST and [x,num'] £ PLIST for num ^ 

num'. 
(3) [x,num] & NLIST, [x,.] g PLIST and there is at least [x, num"] £ NLIST 

for num ^ num". 
The above remarks avoid the contradiction such that [x, 6] is applied not only 
positive use but also negative use. The third condition in negative use shows 
that [a;, num] E NLIST for all num does not hold. 

Now we show the algorithm for finding a possible equivalence class. 
An Algorithm: candidate 
Input: X = {xi, • • •, xn} C OB, inf, sup, current PLIST and NLIST. 
Output: There is a possible equivalence class [x\] C X such that inf(x\,9) C 

[x\] C sup(xi,6) or not. 
(1) Pick up a selection 0 such that inf(xi,6) C X. If we can not pick up such 

selection then respond there is no possible equivalence class. 
(2) If every element in inf{x\, 6) is applicable as positive use then go to (3) else 

go to (1) and try another selection. 
(3) Pick up a set M(c (sup(xi,9) - inf(xi,9))) and go to (4). If we can not 

pick up any other M then go to (1) and try another selection. 
(4) If M C (X - inf{x\,6)) and every element in M is applicable as positive 

use then set PLIST <- PLISTU{[y,6']\y € inf(x1,0)UM,ye> = xii$} and 
go to (5) else go to (3) and try another M. 

(5) If every element in (sup(xi,6) — (inf(xi,6) U M)) is applicable as negative 
use then go to (6) else go to (3) and try another M. 

(6) Set NLIST+- NLIST U {[y,0']\y 6 (sup{xu9) - (inf(xi,$)UM)),w = 
xifi}. Respond [#i](= inf(xi,6) U M) can be a possible equivalence class. 

According to this algorithm, we realized a program candidate which responses 
a possible equivalence class depending upon the current PLIST and NLIST. 

6.5    Realization of Query Interpreter and Its Subcommands 

Now we show the basic programs class depending upon the algorithm candidate. 
This class manages the definability of a set in NIS. 

class(X.Y.EQUIV.Ppre.Pres.Npre.Nres) 
:-X==[],EQUIV=Y,Pres=Ppre,Nres=Npre. 

class([X|X1],Y,EQUIV,Ppre,Pres,Npre,Nres) 
:-candidate([X|XI],CAN,Ppre,Presl,Npre,Nresl), 

minus([XIXI],CAN,REST), 
class(REST,[CANlY],EqüIV,Presl)Pres,Nresl,Nres). 

In class, the second argument Y keeps the temporary set of equivalence classes, 
the fourth argument Ppre does the temporary PLIST and the sixth argument 
Npre does the temporary NLIST. In the second clause, we first make a set 
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CAN(C [X\X1]) which satisfies all conditions, then we execute the class for a set 
([X\X1]-CAN) again. If this ([X\X1]-CAN) is empty set, then the first clause 
is called and the temporary items are unified to response variable EQUIV, Pres 
and Nres. After finding a refutation for class, we get an equivalence relation 
and DIS. We have also prepared some subcommands depending upon class, 
classex, relation, relationex and relationall. 

Now, we just show the real execution times for some NISs. 
(CASE1) In NISi, we got two DISs for relationex([[l, 2], [3,4]]) in 0.0697(sec). 
(CASE2) The number of object is 20, attribute is 10, DIS from NIS is 648(= 
23 *34). It took 0.1646(sec) for translation. For dass([l,2,3,4,5]), we got no 
DIS in 0.0018(sec). For dass([l,2,3,4,5,6]), we got 324 DISs in 0.0481(sec). 
For relationall which is the most heavy query, we got 48 possible equivalence 
relations in 2.0513(sec). 
(CASE3) The number of object is 70, attribute is 4, DIS from NIS is 34992(= 
24 * 37). It took 0.3875(sec) for translation. For c/ass([l,2,3,4,5]), we got no 
DIS in 0.0053(sec). For relationall, we got 4 possible equivalence relations in 
215.6433(sec). The relations come from 20736 DISs, 2592 DISs, 10368 DISs 
and 1296 DISs, respectively. 

7    Concluding Remarks 

In this paper, we discussed the definability of set in NIS and proposed an al- 
gorithm for checking it. The algorithm candidate takes the important roll for 
realizing some programs, which will be a good tool for handling NIS. We will 
apply our framework to machine learning and knowledge discovery from NIS. 
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Abstract. The rough set theory, based on the conventional indiscerni- 
bility relation, is not useful for analysing incomplete information. We in- 
troduce two generalizations of this theory. The first proposal is based on 
non symmetric similarity relations, while the second one uses valued tol- 
erance relation. Both approaches provide more informative results than 
the previously known approach employing simple tolerance relation. 

1    Introduction 

Rough set theory has been developed since Pawlak's seminal work [5] (see also 
[6]) as a tool enabling to classify objects which are only "roughly" described, 
in the sense that the available information enables only a partial discrimination 
among them although they are considered as different objects. In other terms, 
objects considered as "distinct" could happen to have the "same" or "similar" 
description, at least as far as a set of attributes is considered. Such a set of 
attributes can be viewed as the possible dimensions under which the surrounding 
world can be described for a given knowledge. An explicit hypothesis done in 
the classic rough set theory is that all available objects are completely described 
by the set of available attributes. Denoting the set of objects as A = {ai, • • • an} 
and the set of attributes as C = {ci, • • • em} it is considered that Vo,- € A, c{ e C, 
the attribute value always exists, i.e. C;(OJ) ^ 0. 

Such a hypothesis, although sound, contrast with several empirical situations 
where the information concerning the set A is only partial either because it has 
not been possible to obtain the attribute values (for instance if the set A are 
patients and the attributes are clinical exams, not all results may be available in 
a given time) or because it is definitely impossible to get a value for some object 
on a given attribute. 

The problem has been already faced in literature by Grzymala [2], Kryszkiewicz 
[3, 4], Slowinski and Stefanowski [7]. Our paper enhances such works by distin- 
guishing two different semantics for the incomplete information: the "missing" 
semantics (unknown values allow any comparison) and the "absent" semantics 
(unknown values do not allow any comparison) and explores three different for- 
malisms to handle incomplete information tables: tolerance relations, non sym- 
metric similarity relations and valued tolerance relations. 
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The paper is organized as follows. In section 2 we discuss the tolerance ap- 
proach introduced by Kryszkiewicz [3]. Moreover, we give an example of incom- 
plete information table which will be used all along the paper in order to help 
the understanding of the different approaches and allow comparisons. In section 
3 an approach based on non symmetric similarity relations is introduced using 
some results obtained by Slowiriski and Vanderpooten [8]. We also demonstrate 
that the non symmetric similarity approach refines the results obtained using the 
tolerance relation approach. Finally, in section 4 a valued tolerance approach is 
introduced and discussed as an intermediate approach among the two previous 
ones. Conclusions are given in the last section. 

2    Tolerance relations 

In the following we briefly present the idea introduced by Kryszkiewicz [3]. In 
our point of view the key concept introduced in this approach is to associate to 
the unavailable values of the information table a "null" value to be considered 
as "everything is possible" value. Such an interpretation corresponds to the idea 
that such values are just "missing", but they do exist. In other words, it is our 
imperfect knowledge that obliges us to work with a partial information table. 
Each object potentially has a complete description, but we just miss it for the 
moment. More formally, given an information table IT = (A, C), a subset of 
attributes B C C we denote the missing values by * and we introduce the 
following binary relation T: 
Vx,yeAxA T(x,y) «*■ Vc,- G B Cj(x) = Cj{y) or Cj(x) = * or Cj(y) = * 

Clearly T is a reflexive and symmetric relation, but not necessarily transitive. 
We call the relation T a "tolerance relation". Further on let us denote by IB{x) 
the set of of objects y for which T(x, y) holds taking into account attributes B. 
We call such a set the "tolerance class of x", thus allowing the definition of a 
set of tolerance classes of the set A. We can now use the tolerance classes as 
the basis for redefining the concept of lower and upper approximation of a set <P 
using the set of attributes B C.C. We have: 
$B = {i€ A\IB{X) C 0} the lower approximation of <£ 
§B — {x & A\IB{X) n $ j= 0} the upper approximation of $ 
It is easy to observe that $B = \J{I(x)\x G #} also. Let us introduce now an 
example of incomplete information table which will be further used in the paper. 
Example 1. Suppose the following information table is given 

A ai 0,2 A3 0,4 0,5 Ö6 a7 as «9 aw an a12 

C\ 3 2 2 * * 2 3 * 3 1 * 3 
ci 2 3 3 2 2 3 * 0 2 * 2 2 
C3 1 2 2 * * 2 * 0 1 * * 1 
C4 0 0 0 1 1 1 3 * 3 * * * 

d <£ # V # !? «P # <P W $ V # 

where alt ...., a12 are the available objects, c\, ...., c4 are four attributes which 
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values (discrete) range from 0 to 3 and d is a decision attribute classifying objects 
either to the set # or to the set!?. 

Using the tolerance relation approach to analyse the above example we 
have the following results: Ic(ai) = {01,011,012}, Icfa) = {0,2,0,3}, Ic(o-3) = 
{02,03}, Ic(a4) = {0,4,0,5,0,10,0,11,0,12}, Ic(05) = {04,05,010,011,012}, Ic{a&) = 
{a6}, Ic{ai) = {07,08,09,011,012}, Ic{a&) = {o7,o8,aio},/c(o9) = {07,09,an, 
O12}, /c(«10) = {«4,05,O8,Oi0, on}, /c(aii) = {01,04,05,07,09,010,011,012}, 
jfc(oi2) = {01,04,05,07,09,011,012}. Prom which we can deduce that: 0c = 0, 
$C = {01,02,03,04,05,07,08,09,010,011,012}, $c = {o,ß}, Vc = A 

The results are quite poor. Moreover there exist elements which intuitively 
could be classified in # or in !?, while they are not. Take for instance a\. We 
have complete knowledge about it and intuitively there is no element perceived 
as similar to it. However, it is not in the lower approximation of <P. This is due to 
"missing values" of an and 012 which enables them to be considered as "similar" 
to 01. Of course this is "safe" because potentially the two objects could come up 
with exactly the same values of ai. 

A reduct is defined similarly as in the "classical" rough set the same model, 
i.e. it is a minimal subset of attributes that preserves lower approximations of 
object classification as for all attributes . In Example 1, the set of attributes 
{ci,C2,C4} is the only reduct. Kryszkiewicz [3] discussed the generation of deci- 
sion rules from incomplete information tables. She considered mainly generalized 
decision rules of the form Ai(cj, v)—>V(d, w). If the decision part contains one dis- 
junct only, the rule is certain. Let B be a set of condition attributes which occur 
in a condition part of the rule s —► t. A decision rule is true if for each object 
x satisfying condition part s, IB{%) C [i\. It is also required that the rule must 
have non-redundant condition part. In our example, we can find only one certain 
decision rule: (a = 2)A(c2 = 3)A(c4 = l)->(d = <P). 

3    Similarity Relations 

We introduce now a new approach based on the concept of a not necessarily 
symmetric similarity relation. Such a concept has been first introduced in general 
rough set theory by Slowhiski and Vanderpooten [8] in order to enhance the 
concept of indiscernability relation. We first introduce what we call the "absent 
values semantics" for incomplete information tables. In this approach we consider 
that objects may be described "incompletely" not only because of our imperfect 
knowledge, but also because definitely impossible to describe them on all the 
attributes. Therefore we do not consider the unknown values as uncertain, but 
as "non existing" and we do not allow to compare unknown values. 

Under such a perspective each object may have a more or less complete 
description, depending on how many attributes has been possible to apply. From 
this point of view an object x can be considered similar to another object y only if 
they have the same known values. More formally, denoting as usual the unknown 
value as *, given an information table IT = (A, C) and a subset of attributes 
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ßCCwe introduce a similarity relation S as follows: 
Vx,y S(x,y) <S> Vc,- € B :   Cj(x) # *,   c,-(x) - c,-(») 

It is easy to observe that such a relation although not symmetric is transitive. 
The relation 5 is a partial order on the set A. Actually it can be seen as a 
representation of the inclusion relation since we can consider that "x is similar 
to y" iff the "the description of x" is included in "the description ofy". We can 
define for any object x € A two sets: 
R(x) — {ye A\S(y, x)} the set of objects similar to x 
R~1(x) = {y G A\S(x, y)} the set of objects to which x is similar 

Clearly R(x) and Ä_1(x) are two different sets. We can now define for the 
lower and upper approximation of a set $ as follows: 
$B = {x € AlR^lx) C <£} the lower approximation of $ 
$B — [J{R(x)\x € #} the upper approximation of 0 

In other terms we consider as surely belonging to # all objects which have 
objects similar to them belonging to $. On the other hand any object which is 
similar to an object in # could potentially belong to #. Comparing our approach 
with the tolerance relation based one we can state the following result. 

Theorem 1. Given an information table IT - (A, C) and a set 0, the upper and 
lower approximations of <P obtained using a non symmetric similarity relation 
are a refinement of the ones obtained using a tolerance relation. 

Proof. Denote as $T
B the lower approximation of # using the tolerance ap- 

proach and #| the lower approximation of £ using the similarity approach, #f 
and #f being the upper approximations respectively. We have to demonstrate 
that: $T

B C <2>§ and $§ C $%. Clearly we have that: \fx,y S(x,y)-*T(x,y) 
since the conditions for which the relation S holds are a subset of the conditions 
for which the relation T holds. Then it is easy to observe that: Vx R(x) C 
I(x)a,ndR-l(x)Cl(x). 

1. 0% C <p£. By definition^ = {x e A\I(x) C $} and#£ = {x e A\R~l(x) C 
$}. Therefore if an object x belongs to $T

B we have that JB(X) C # and since 
R~1(x) C I(x) we have that Ä_1(x) C # and therefore the same object x 
will belong to $B. The inverse is not always true. Thus the lower approxi- 
mation of <P using the non symmetric similarity relation is at least as rich as 
the lower approximation of # using the tolerance relation. 

2. $f C #f. By definition <2>f = Uxe$R(x) and <2>f = Ux€*I(x) and since 
R(x) C I(x) the union of the sets R(x) will be a subset of the union of the 
sets I(x). The inverse is not always true. Therefore the upper approximation 
of # using the non symmetric similarity relation is at most as rich as the 
upper approximation of $ using the tolerance relation. 

Continuation of Example 1. Let us come back to the example introduced 
in section 1. Using all attributes C we have the following results: i?_1(oi) = 
{ai}, R(ai) = {oi.oii.ou}, Ä^M = {a2,a3}, Rfa) = {«2,as}, -R"1^) = 
{a2,a3},R(a3) = {a2,a3},R-1(a4) = {04,05}, R(a4) = {04,05,011}, R (aB) = 
{a4,a5}, R(a5) = {04,00, an}, Sr^ae) = {a6}, R(a6) = {a6}, R    (a7) = 
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{a7,a9}, R(a7) = {a7}, R^fa) = {a8}, R(a8) - {a8}, R^fa) = {a9}, 
R(ag) = {a7,ag,an,ai2}, Ä_1(oi0) = {aio}, -R(oio) = {oio}, i?_1(an) = 
{ai,a4,a5,a9,an,ai2}, -R(an) = {an}, .R-1(0i2) = {01,09,012}, #(012) = 
{011,012}. Prom which we can deduce that: $c — {oi,oio}, $C — {01,02,03,04, 
05,07,010,011,012}, &c = {06,08,09}, *'C = {02,03,04,05,06,07,08,09,011,012}. 

The new approximations are more informative than the tolerance based ones. 
Moreover, we find now in the lower approximations of the sets # and & some 
of the objects which intuitively we were expecting to be there. Obviously such 
an approach is less "safe" than the tolerance based one, since objects can be 
classified as "surely in <£" although very little is known about them (e.g. object 
Oio). However, under the "absent values" semantic we do not consider a partially 
described object as "little known", but as "known" just on few attributes. 

The subset C of C is a reduct with respect to a classification if it is min- 
imal subset of attributes C that keeps the same lower approximation of this 
classification. We observe that according to definition of the relation an object 
"totally unknown" (having in all attributes an unknown value) is not similar to 
any other object. If we eliminate one or more attributes which will make an ob- 
ject to become "totally unknown" on the remaining attributes we lose relevant 
information for the classification. We can conclude that all such attributes have 
to be in the reducts. In example 1 there is one reduct {ci, C2, C4} - it leads to the 
same classes R_1(x) and R(x) as using all attributes. 

The decision rule is defined as s-*t (where s — AJ(CJ, v) and t = (d, w)). The 
rule is true if for each object x satisfying s, its class R(x) C [£]. The condition 
part cannot contain redundant conditions. 

In example 1, the following certain decision rules can be generated: 
(ci = 1) -> (d = #), (c3 = 1)A(C4 = 0) -» (d = *), (ci = 3)A(c4 = 0) -> (d = #) 
(c2 = 3)A(c4 = 1) -»(d = 9), (C2 = 0) -» (d = 9), (es = 0) -» (d = !P) 
The absent value semantics gives more informative decision rules than tolerance 
based approach. Nevertheless these two different approaches (the tolerance and 
the non symmetric similarity) appear to be two extremes, in the middle of which 
it could be possible to use a more flexible approach. 

4    Valued tolerance relations 

Going back to the example of section 2, let's consider the elements oi, an and 
012. Under both the tolerance relation approach and the non symmetric similar- 
ity relation approach we have: T(on,ai),T(oi2,ai),S'(aii,ai),S(oi2,ai). How- 
ever we may desire to express the intuitive idea that 012 is "more similar" to ai 
than an or that an is "less similar" to ai than 012- This is due to the fact that 
in the case of 012 only one value is unknown and the rest all are equal, while in 
the case of an only one value is equal and the rest are unknown. We may try to 
capture such a difference using a valued tolerance relation. 

The reader may notice that we can define different types of valued tolerance 
(or similarity) using different comparison rules. Moreover a valued tolerance (or 
similarity) relation can be defined also for complete information tables. Actually 
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the approach we will present is independent from the specific formula adopted 
for the valued tolerance and can be extended to any type of valued relation. 

Given a valued tolerance relation for each element of A we can define a "toler- 
ance class" that is a fuzzy set with membership function the "tolerance degree" 
to the reference object. It is easy to observe that if we associate to the non zero 
tolerance degree the value 1 we obtain the tolerance classes introduced in section 
2. The problem is to define the concepts of upper and lower approximation of a 
set #. Given a set £ to describe and a set Z C A we will try to define the degree 
by which Z approximates from the top or from the bottom the set #. Under 
such a perspective, each subset of A may be a lower or upper approximation of 
$, but to different degrees. For this purpose we need to translate in a functional 
representation the usual logical connectives of negation, conjunction etc.: 
1. A negation is a function N : [0,1] *-+ [0,1], such that JV(0) = 1 and N(l) = 0. 
An usual representation of the negation is N(x) — 1-x. 
2. A T-norm is a continuous, non decreasing function T : [0, l]2 >-► [0,1] such 
that T(x, 1) = x. Clearly a T-norm stands for a conjunction. Usual representa- 
tions of T-norms are: the min: T(x,y) = mm(x,y); the product: T(x,y) = xy\ 
the Lukasiewicz T-norm: T(x, y) = max(x + y - 1,0). 
3. A T-conorm is a continuous, non decreasing function S : [0, l]2 H-> [0,1] 
such that S(0,y) = y. Clearly a T-conorm stands for a disjunction. Usual 
representations of T-conorms are: the max: S(x,y) = max(x,y); the product: 
S(x, y) — x + y-xy; the Lukasiewicz T-conorm: S(x, y) — min(a; + y, 1). 

If S(x, y) = N(T{N(x), N(y))) we have the equivalent of the De Morgan law 
and we call the triplet {N, T, S) a De Morgan triplet. I(x, y), the degree by which 
x may imply y is again a function / : [0, l]2 i-> [0,1]. However, the definition of 
the properties that such a function may satisfy do not make the unanimity. Two 
basic properties may be desired: the first claiming that I(x,y) — S(N(x),y) 
translating the usual logical equivalence x^y=def^x.\/y\ the second claiming 
that whenever the truth value of x is not greater than the truth value of y, then 
the implication should be true (x < y <3> I(x,y) = 1). It is almost impossible to 
satisfy both the two properties. In the very few cases where this happens other 
properties are not satisfied (for a discussion see [1]). 

Coming back to our lower and upper approximations we know that given a 
set Z C A, a set # and attributes B C C the usual definitions are: 
l. Z = *B «VzeZ, 0(z) c*, 2. z = $B ^Vzez, 0(z)n<^0 
O(z) being the "indiscemability (tolerance, similarity etc.)" class of element z. 
The functional translation of such definitions is straightforward. Having: 
V x <f>(x) =def Tx<j>{x); 3 x <j>(x) =def Sx4>(x); $ QV =def Tx(I(^(x),^(x))); 
# n W ± $ =def 3 x <j){x)Mp(x) =def SX(T(IJL*(X), /**(&))) we get: 
\.^B{Z) = Tz€Z(Tx&e{2)(I(R(z,x),x)))> 
2.H*B{Z) = TzeZ{Sxee(z)(T(R(z,x),x))), 
where: [i^B (Z) is the degree for set Z to be a lower approximation of #; /X$B (Z) 
is the degree for set Z to be an upper approximation of $; 6(z) is the tolerance 
class of element z; T, S, I are the functions previously defined; R(z, x) is the 
membership degree of element x in the tolerance class of z; x is the membership 
degree of element x in the set $ (x e {0,1}). 
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Continuation of Example 1. Considering that the set of possible values 
on each attribute is discrete we make the hypothesis that there exists a uni- 
form probability distribution among such values. More formally, consider Cj 
an attribute of an information table IT = (A, C) and associate to it the set 
Ej — {ej, • • • ej1} of all its possible values. Given an element x e A the prob- 
ability that Cj(x) = ej is l/|i5,-|. Therefore given any two elements x,y € A 
and an attribute Cj, if Cj(y) — ej, the probability Rj(x,y) that x is similar to 
y on the attribute Cj is l/\Ej\. On this basis we can compute the probability 
that two elements are similar on the whole set of attributes as the joint prob- 
ability that the values of the two elements are the same on all the attributes: 
R(x,y) = f[c.eCi?j(a;, j/). Applying this rule to objects we obtain the following 
table 1 concerning the valued tolerance relation. 

ai a2 0,3 04 as a6 a? as 09 aio an ai2 

Ol 1 0 0 0 0 0 0 0 0 0 1/64 1/4 
a2 0 1 1 0 0 0 0 0 0 0 0 0 
«3 0 1 1 0 0 0 0 0 0 0 0 0 
04 0 0 0 1 1/256 0 0 0 0 1/1024 1/1024 1/64 

Ö5 0 0 0 1/256 1 0 0 0 0 1/1024 1/1024 1/64 

a6 0 0 0 0 0 1 0 0 0 0 0 0 
07 0 0 0 0 0 0 1 1/256 1/16 0 1/1024 1/64 

as 0 0 0 0 0 0 1/256 1 0 1/1024 0 0 
ag 0 0 0 0 0 0 1/16 0 1 0 1/64 1/4 
aio 0 0 0 1/1024 1/1024 0 0 1/1024 0 1 1/4096 0 
an 1/64 0 0 1/1024 1/1024 0 1/1024 0 1/64 1/4096 1 1/256 

ai2 1/4 0 0 1/64 1/64 0 1/64 0 1/4 0 1/256 1 

Table 1: Valued tolerance relation for Example 1. 

If we consider element ai, the valued tolerance relation R(ai,x), x G A will 
result in the vector [1,0,0,0,0,0,0,0,0,0,1/64,1/4] which actually represents 
the tolerance class &(ai) of element aj. The reader may notice that the crisp 
tolerance class of element ai was the set {«1,011,012} which corresponds to 
the vector [1,0,0,0,0,0,0,0,0,0,1,1]. Following our "probabilistic approach" we 
may choose for T and S the product representation, while for I we will satisfy 
the De Morgan property thus obtaining: T(x, y) = xy, S(x, y) = x + y - xy, 
I(x, y) = 1 — x + xy. Clearly our choice of I(x, y) does not satisfy the second 
property of implication. However, the reader may notice that in our specific case 
we have a peculiar implication from a fuzzy set (0(z)) to a regular set {§), 
such that x e {0,1}. The application of any implication satisfying the second 
property will reduce the valuation to the set {0,1} and therefore the whole degree 
(j,&B(Z) will collapse to {0,1} and thus to the usual lower approximation. With 
such considerations we obtain: 

»*B(Z) = FUz rUe(z)(l - Ä(*, x) + R(z, x)x) 
v*s(z)=rwi - rue^a - *(*,*)*)) 

Consider now the set 0 and as set Z consider the element a\, where R(ai, x) 
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was previously introduced and x takes the values [1,1,0,1,0,0,1,0,0,1,0,1]. We 
obtain p,$c{ai) = 0.98 and /^c(ai) = 1. Operationally we could choose a set Z 
as lower (upper) approximation of set # as follows: 
1. take all elements for which n{6(z)^>$) = 1 (n(0(z) n #) = 1); 
2. then add elements in a way such that (i,(6(z)->$) > k (p,(9(z) n $) > k), 
(for decreasing values of k, let's say 0.99, 0.98 etc.), thus obtaining a family 
of lower (upper) approximations with decreasing membership function fi$B (Z) 

3. fix a nrinimum level A enabling to accept a set Z as a lower (upper) approxi- 
mation of $ (thus n$B(Z) > A). 

The concept of reduct and decision rules are also generalized in the valued tol- 
erance case. Given the decision table (A, C) and the partition y = $\, #2, • • • ^n, 
the subset of attributes C C C is a reduct iff it does not decease the degree of 
lower approximation obtained with C, i.e. if 21,22, • • • ,zn is a family of lower 
approximations of #1, #2, • • • $n then Vj=i „Zi \i$iC (ZJ) < \x<s>iC, {zi). 

In order to induce classification rules from the decision table on hand we may 
accept now rules with a "credibility degree" derived from the fact that objects 
may be similar to the conditional part of the rule only to a certain degree, besides 
the fact the implication in the decision part is also uncertain. More formally we 
give the following representation for a rule pi: pf —def A j (cj(a,i) = v) -* (d = w) 
where: J C C, v is the value of attribute Cj, w is the value of attribute d. 

As usual we may use relation s(x,pi) in order to indicate that element x 
"supports" rule pi or that, x is similar to some extend to the condition part of 
rule pi. We denote as S(pi) = {x : s(x,pi) > 0} and as W = {x : d(x) = w}. 
Then p{ is a decision rule iff: V a: € S(pi) : 6{x) C W. We can compute 
a credibility degree for any rule pi calculating the truth value of the previous 
formula which can be rewritten as: V x,y s(x,pi)-*(R(x,y)->W(y)). We get: 
p(pi) = Tx(ly(s(x,pi),l(fie{x)(y),nw(y)))) ■ Finally it is necessary to check 
whether J is a non-redundant set of conditions for rule pi, i.e. to look if it is 
possible to satisfy the condition: 3 J C J : fi(pf) > p.(p{) or not. 

Continuation of Example 1. Consider again the incomplete table and take as 
candidate the rule: px : (cj = 3)A(c2 = 2)A(c3 = l)A(c4 = 0)->(d = $)■ Since 
in the paper we have chosen for the functional representation of implication the 
satisfaction of De Morgan law and for T-norms the product, we get: 
ß(pi) = Ux€S(Pi) Q--*(x>Pi) + *(*>Pi) Uyee(x) (1 - Mö(x) {y) + fte(x) (v)l*w (v))) 

where s(x,pt) represents the "support" degree of element x to the rule pi. We 
thus get that p,(pi) = 0.905. However, the condition part of rule p\ is redundant 
and is transformed to: px : (ci = 3)A(c3 = l)A(c4 = 0)-»(d = £) with degree 
n(Pl) = 0.905. This rule is supported by objects S(pi) = {01,011,012}. For the 
set 9 we have one rule: p2 : (ci = 2)A(c2 = 3)A(c4 = l)-*(d = V) with degree 
p,(p2) = 1.0 and a supporting object ae- 

Operationally a user may first fix a threshold of credibility for the rules to 
accept and then could operate a sensitivity analysis on the set of rules that is 
possible to accept in an interval of such threshold. 
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5    Conclusions 

Rough set theory has been conceived under the implicit hypothesis that all ob- 
jects in a universe can be evaluated under a given set of attributes. However, 
it can be the case that several values are not available for various reasons. In 
our paper we introduce two different semantics in order to distinguish such sit- 
uations. "Missing values" imply that non available information could always 
become available and that in order to make "safe" classifications and rules in- 
duction we might consider that such missing values are equal to everything. 
Tolerance relations (which are reflexive and symmetric, but not transitive) cap- 
ture in a formal way such an approach. "Absent values" imply that not available 
information cannot be used in comparing objects and that classification and 
rules induction should be performed with the existing information since the ab- 
sent values could never become available. Similarity relations (which in our case 
are reflexive and transitive, but not symmetric) are introduced in our paper in 
order to formalize such an idea. We demonstrate in the paper that our approach 
always lead to more informative results with respect to the tolerance relation 
based approach (although less safe). 

A third approach is also introduced in the paper, as an intermediate position 
among the two previously presented. Such an approach is based on the use of a 
valued tolerance relation. A valued relation could appear for several reasons not 
only because of the non available information and in fact the approach presented 
has a more general validity. However in this paper we limit ourselves in discussing 
the missing values case. A functional extension of the concepts of upper and lower 
approximation is introduced in this paper so that to any subset of the universe 
a degree of lower (upper) approximation can be associated. Further on such a 
functional extension enables to compute a credibility degree for any decision rule 
induced by the classification. 
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Abstract. Another formulation of the notion of rough relations is pre- 
sented. Instead of using two equivalence relations on two universes, or a 
joint equivalence relation on their Cartesian product, we start from spe- 
cific classes of binary relations obeying certain properties. The chosen 
class of relations is a subsystem of all binary relations and represents 
relations we are interested. An arbitrary relation is approximated by a 
pair of relations in the chosen class. 

1    Introduction 

The theory of rough sets is built on partitions of the universe defined by equiva- 
lence relations [6, 16]. A partition of the uninverse represents a granulated view 
of the universe, in which equivalence classes are considered to be basic granules. 
It is assumed that information is available for only the basic granules. One has to 
consider each equivalence class as a whole instead of individual elements of the 
universe. For inferring information about an arbitrary subset of the universe, it 
is necessary to consider its approximations by equivalence classes. More specif- 
ically, a set is described by a pair of lower and upper approximations. From 
existing studies of rough sets, we can identify at least two formulations, the par- 
tition based method and subsystem based method [14, 15]. In partition based 
approach, the lower approximation is the union of equivalence classes contained 
in the set, and the upper approximation is the union of equivalence classes hav- 
ing a nonempty intersection with the set. In subsystem based approach, one can 
use equivalence classes as basic building blocks and construct a subsystem of the 
power set by taking unions of equivalence classes. The constructed subsystem 
is in fact an tr-algebra of subsets of the universe. That is, it contains both the 
empty set and the entire set, and is closed under set intersection and union. The 
lower approximation is the largest subset in the subsystem that is contained in 
the set to be approximated, and the upper approximation is the smallest subset 
in the subsystem that contains the set to be approximated. Each of the two 
formulations captures different aspects of rough set approximations. They can 
be used to obtain quite distinctive generalizations of rough set theory [15, 17]. 

A binary relation is a set of pairs, i.e., a subset of the Cartesian product of 
two universes. It is therefore very natural to generalize rough sets to the notion 
of rough relations. The majority of existing studies on rough relations is relied on 
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partition based approach. It involves two equivalence relations on two universes, 
or a joint equivalence relation on their Cartesian product. This straightforward 
definition of rough relations was proposed by Pawlak [7, 9]. Generalizations of 
rough relations, along the same line of argument, have been made by Diintsch [3], 
Stepaniuk [11, 12, 13], and Skowron and Stepaniuk [10]. An implication of the 
partition based formulation is that the properties of lower and upper approxi- 
mations depend on the relation to be approximated. Although a binary relation 
is a set of pair, it is set equipped with additional properties, such as reflexivity, 
symmetry, and transitivity. The added information provided by binary relations 
is not fully explored in many studies of rough relations. For some applications, 
we may only be interested in approximating a relation in terms of relations with 
special properties [4]. The subsystem based approach may be useful, as one can 
choose the subsystem so that all relations in the subsystem have some desired 
properties. Greco et al. [4] implicitly used subsystem based approach for the 
approximation of preferential information. 

The main objective of this paper is to present an alternative formulation 
of rough relations by extending the subsystem based method. In Section 2, we 
review two formulations of rough set approximations. In Section 3, a subsystem 
based formulation of rough relations is introduced. Special types of subsystems 
are used for defining rough relation approximations. This study is complemen- 
tary to existing studies, and the results may provide more insights into the 
understanding and applications of rough relations. 

2    Two Formulations of Rough Set Approximations 

Let E C U x U denote an equivalence relation on a finite and nonempty universe 
U, where U x U = U2 is the Cartesian product of U. That is, E is reflexive, 
symmetric, and transitive. The pair apr — (U, E) is referred to as a Pawlak ap- 
proximation space. The equivalence relation E partitions U into disjoint subsets 
known as equivalence classes. That is, E induces a quotient set of the universe 
U, denoted by U/E. Equivalence classes are called elementary sets. They are in- 
terpreted as basic observable, measurable, or definable subsets of U. The empty 
set 0 and a union of one or more elementary sets are interpreted as composite 
ones. The family of all such subsets is denoted by Def(f7). It defines a topology 
space (U, Def (C/)) in which Def(C/), a subsystem of the power set of U, consists 
of both closed and open sets. Two formulations of rough sets can be obtained 
by focusing on the partition U/E and the topology Def([/), respectively. 

An arbitrary subset X C U is approximated by a pair of subsets of U called 
lower and upper approximations, or simply a rough set approximation [6]. The 
lower approximation apr(X) is the union of all elementary sets contained in X, 
and the upper approximation äpr(X) is the union of all elementary sets which 
have a nonempty intersection with X. They are given by: 

(defl)      apr{X) = \J{[x]E \x€U, [x]E C X}, 

apr(X) = \J{[x]E \xEU, [x]E n X # 0}, 
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where [X]E denotes the equivalence class containing x: 

[x]E = {y\xEy, x,yEU}. (1) 

For rough set approximations, we have the following properties: 

(LI) apr{X fl Y) = apr(X) n apr(Y), 

(L2) apr(X) C X, 

(L3) qpr(X) = apr(apr(X)), 

(L4) öpr(X) = apr(cipr(X)), 

and 

(Ul) öpr{X U y) = 5pr (X) U öpr(Y), 

(U2) X C öpr(X), 

(U3) 5pf(X) = öpr(5pr(X)), 
(U4) apr(X) = apr(apr(X)). 

The two approximations are dual to each other in the sense that apr(-X) = 
-äpr(X) and äpr{-X) = -apr(X). The properties with the same number may 
be considered as dual properties. It is possible to compute the lower approxi- 
mation of X D Y based on the lower approximations of X and Y. However, it 
is impossible to compute the upper approximation of X n Y based on the up- 
per approximations of X and Y. Similar observation can also be made for the 
approximations of X UY. 

By the properties of rough set approximations, apr(X) is indeed the greatest 
definable set contained in X, apf(X) is the least definable set containing X. The 
following equivalent definition can be used [6, 14]: 

(def2)      apr(X) = \J{Y | Y G Def(/7), Y C X}, 

apr{X) = f]{Y | Y G Dei{U),X C Y}. 

For a subset X G Def(C/), we have X = apr(X) — apr(X). Thus, we can say 
that subsets in Def (U) have exact representations. For other subsets of U, both 
lower and upper approximations do not equal to the set itself, which leads to 
approximate representations of the set. It should be clear by now the reason 
for calling elements of Def (U) definable sets. Mathematically speaking, subsets 
in Def([/) may be considered as fixed points of approximation operators apr 
and äpr. Every other element is approximated using the fixed points. That is, 
apr(X) is the best approximation of X from below, and apr(X) is the best 
approximation of X from above. 

Although both definitions are equivalent, they offer quite different interpre- 
tations for rough set approximations. Definition (defl) focuses on equivalence 
classes, which clearly shows how relationships between elements of U are used. 
The approximations of an arbitrary subset of the universe stem from the gran- 
ulation of universe by an equivalence relation. This definition can be extended 
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to define approximation operators based on other types of binary relations [17]. 
Definition (def2) focuses on a subsystem of U with special properties. With less 
elements in the subsystem than that in the power set, certain elements of the 
power set have to be approximated. The formulation can be easily applied to 
situations where a binary relation is not readily available. It has been used to 
study approximation in mathematical structures such as topological spaces, clo- 
sure systems, Boolean algebras, lattices, and posets [1, 14, 15]. 

In generalizing definition (def2), subsystems of the power set must be prop- 
erly chosen [15]. The subsystem for defining lower approximations must contain 
the empty set 0 and be closed under union, and the subsystem for defining upper 
approximations must contain the entire set U and be closed under intersection. 
In other words, the subsystem for defining upper approximation must be a clo- 
sure system [2]. In general, the two subsystems are not necessarily the same, 
nor dual to each other [1, 15]. The subsystem Def([/) induced by an equivalence 
relation is only a special case. 

3    Rough Relation Approximations 

This section first reviews a commonly used formulation of rough relations based 
on definition (defl) and discusses its limitations. By extending definition (def2), 
we present a new formulation. 

3.1    A commonly used formulation 

A binary relation ßona universe U is a set of ordered pairs of elements from U, 
i.e., RCUxU. The power set ofUxU, i.e., 2UxU, is the set of all binary relations 
on U. The empty binary relation is denoted by 0, and the whole relation is U x U. 
One may apply set-theoretic operations to relations and define the complement, 
intersection, and union of binary relations. By taking U x U as a new universe, 
one can immediately study approximations of binary relations. For clarity, we 
only consider binary relations on the same universe, instead of the general case 
where relations are defined on more than two distinct universes [7]. 

Suppose Ei and E2 are two equivalence relations on U. They induce two 
approximation spaces apn = (U,Ei) and apr2 = (U,E2). The product relation 
E = Exx E2: 

(x, y)E[v, w) <£=>■ xEiv, yE2w, (2) 

is an equivalence relation on U x U. It gives rise to a product approximation 
space apr = (U x U, Ei x E2). In the special case, a single approximation space 
aprjj = (U,Eu) can be used to derive the product approximation space apr = 
(U xU,Eu x Eu)- The notion of product approximation space forms a basis for 
rough relation approximations. For an equivalence relation E C (U x U)2, the 
equivalence class containing (x,y): 

{(x, y)]E = {(v, w) | {x, y)E(y, w), (x, y), (v, w) € U x U}, 

= Mßi x fata» (3) 
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is in fact a binary relation on U. It is called an elementary definable relation. The 
empty relation 0 and unions of elementary definable relations are referred to as 
definable relations. The family of definable relations is denoted by Def(£/ x U). 
Although definable relations are constructed from an equivalence relation E 
on U x U, relations in Def(U x U) are not necessarily reflexive, symmetric, or 
transitive. This can be easily seen from the fact that the elementary relations 
[(a;,y)].E do not necessarily have any of those properties. 

Given a binary relation R C U x U, by definition (defl) we can approximate 
it by two relations: 

(defl)    apr_{R) = \J {[(*, y)]E \(x,y)eUx U, [(*, y)]E C R}, 

W={R) = U {[(*. v)h \(x,y)eUx U, [(x, y)]E n R # 0}. 

Equivalently, definition (def2) can be used with respect to the subsystem Def (U x 
U). The rough relation approximations are dual to each other and satisfy prop- 
erties (L1)-(L4) and (U1)-(U4). Since a binary relation is a set with added in- 
formation, one can observe the following additional facts [7, 11, 13]: 

1. Suppose E — Eu x JE1;/. If Eu ^ Iu, neither apr_(Iu) nor apr(Iu) 
is the identity relation, where Iu = {(%,%) \ x € U] denotes the 
identity relation on U. 

2. For a reflexive relation R, apr(R) is reflexive, and apr_{R) is not 
necessarily reflexive. 

3. For a symmetric relation R, both apr_(R) and apr(R) are symmetric. 
4. For a transitive relation R, apr(R) and äpf(R) are not necessarily 

transitive. 
5. For an equivalence relation R, apr(R) and äpr(R) are not necessarily 

equivalence relations. 
6. Suppose E = Eu x Eu- For an equivalence relation R, apr(R) is an 

equivalence relation if and only if äpr(R) = (R U Eu)*, and apr(R) 
is an equivalence relation if and only if Eu C R, where R* denotes 
the reflexive and transitive closure of a relation R. 

One can therefore conclude that the lower and upper approximations of a relation 
may not have all the properties of the relation to be approximated. If an arbitrary 
relation is approximated by elements of Def([/ x U), one cannot expect certain 
properties of its approximations. However, in some situations, it may be desirable 
that a relation is approximated by relations having certain specific properties. 
We clearly cannot achieve this goal with the standard formulation of rough 
relations. 

3.2    A new formulation 

If subsystems of U x U are properly chosen, some of the difficulties identified in 
the last section can be avoided by generalizing definition (def2). In what follows, 
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a new formulation is presented, with focus on properties, such as reflexivity, 
symmetry, and transitivity, of binary relations. 

Let P = {reflexive, symmetric, transitive} = {r,s,t} denote a set of proper- 
ties of binary relations on U. For A C P, the set of binary relations satisfying all 
properties in A is denoted by SA- For instance, S{r,s} consists of all reflexive and 
symmetric relations (i.e., tolerance or compatibility relations). One can verify 
the following properties: 

1. The system 5{r} is closed under both intersection and union. It does 
not contain the empty relation, i.e., 0 £ S{r), and contains the whole 
relation, i.e., U x U G S{r}- 

2. The system S{,y is closed under both intersection and union. It con- 
tains both the empty relation and the whole relation. 

3. The system S{t} is closed under intersection, but not closed under 
union. It contains both the empty relation and the whole relation. 

4. The system of compatibility relations £{,•,»} is closed under both 
intersection and union. It contains the whole relation, and does not 
contain the empty relation. 

5. The system S{rit} is closed under intersection and not closed under 
union. It contains the whole relation, and does not contain the empty 
relation. 

6. The system S{Sit] is closed under intersection. It contains both the 
empty relation and the whole relation. 

7. The system of equivalence relations S{rtSit] is closed under intersec- 
tion, but not closed under union. It contains the whole relation, and 
does not contain the empty relation. 

They represent all possible subsystems with properties in the set P. It is inter- 
esting to note that the subsystem Def (U x U) induced by an equivalence relation 
on U x U does not belong to any of the above classes. Subsystems that can be 
used for various approximations are summarized as follows: 

Lower approximation: 
S{r}U{0},    S{s},    5{r,ä}U{0}. 

Upper approximation: 
All subsystems. 

Lower and upper approximations: 
5{r}U{0},     S{>},     5{r,j}U{0}. 

Although every subsystem can be used for defining upper approximation, only 
three subsystems can be used for lower approximation. 

Given a subsystem Si C.2U><U containing 0 and being closed under union, and 
a subsystem Su C2UxU containing U xU and being closed under intersection, 
the rough relation approximation of a binary relation R is defined by: 

(def2)      apr{R) = \J{Q \Q€ShQCR}, 

apr(R) = f]{Q \QeSu,RCQ}. 
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In the special case, two subsystems can be the same. For example, one may 
use the subsystem of compatibility relations. By definition, rough relation ap- 
proximations satisfy properties (L2), (L3), (U2), (U3), and the following weaker 
version of (LI) and (Ul): 

(LO)     fiCI?=> apr(R) C apr(Q), 

(UO)     R C Q =» öpr (Ä) C Wpr{Q). 

A detailed discussion of such subsystems in the setting of rough set approxima- 
tions can be found in a recent paper by Yao [15]. 

Regarding the subsystems characterized by properties in P = {r, s,t}, we 
have the following results: 

(i). Suppose the pair of subsystems (5{r} U{0}, S{r}) is used for defining 
lower and upper approximations. We have: 

,m     J0        if/c/gi?, 
?PL(

R
) = {R      XIvCR, 

äpf(R) = RUlu- 

(ii). For the subsystem 5{5}, we have: 

apr(R} = RnR'1, 

äpr(R) = RUR-1, 

where R_1 — {(y, x) \ xRy) is the inverse of the relation R. 
(iii). For the subsystem S{t], we have: 

äpf(R) = R+, 

where R+ denotes the transitive closure of the binary relation R. 
(iv). For the subsystem S{r,s} U {0}, we have: 

f 0 
WL(R) = {Rn. 

if Iv % R, 
iR-1      iiluQR, 

äpr{R) = RUluVR^- 

fr). For the subsystem 5{r,t}> we have: 

äpr{R) = IuUR+ 

(vi). For the subsystem S{Sit}, we have: 

äpr(Ä) = (ÄUÄ_1)+. 

(vii). For the subsystem 5{r|S|t}, we have: 

äpr(R) = (RUluöR-1)*. 
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One can see that the lower approximation is obtained by removing certain pairs 
from the relation, while the upper approximation is obtained by adding certain 
pairs to the relation, so that the required properties hold. This interpretation 
of approximation is intuitively appealing. The definition (def2) only provides a 
formal description of rough relation approximations. In practice, one can easily 
obtain the approximations without actually constructing the subsystems and 
using definition (def2). 

When the subsystem S{r} U {0} is used for lower and upper approximations, 
reflexive relations are fixed points. That is, both lower and upper approximations 
of a reflexive relation equal to the relation itself. Similar observations hold for 
other subsystems. 

Our formulation of rough relation approximations is very flexible. In ap- 
proximating a relation, two different subsystems may be used, one for lower 
approximation, and the other for upper approximation. For example, one may 
approximate an arbitrary binary relation from below by a compatibility relation, 
and from above by an equivalence relation. If the relation is reflexive, then the 
lower approximation is obtained by deleting pairs that violate the property of 
symmetry, while the upper approximation is obtained by adding pairs so that 
the transitivity holds. Such a pair of lower and upper approximations provides 
a good characterization of the original relation. The subsystems discussed so 
far are some examples. In general, one can construct various subsystems for ap- 
proximation as long as they obey certain properties. The subsystem for lower 
approximation must contain 0 and be closed under union, and the subsystem 
for upper approximation must contain U x U and be closed under intersection. 
For example, for defining both lower and upper approximations one may select 
a subset of S{r,s,*} U {0} such that it is closed under both intersection and union. 

4    Conclusion 

A binary relation is not simply a set of pairs, but a set with additional informa- 
tion and properties. The problem of rough relation approximation may therefore 
be different from rough set approximations. In contrast to other related studies, 
the main purpose of this paper is to investigate possibilities of using such ex- 
tra information in approximating relations. An alternative formulation of rough 
relations is proposed based on subsystems of binary relations with certain prop- 
erties, instead of using equivalence relations. From a quite different point of view, 
our formulation explicitly addresses some fundamental issues which have been 
overlooked in existing studies of rough relations. 

The results as shown by (i)-(vii) are simple and they could have been obtained 
easily without the introduction of the new framework. However, the importance 
of the approach may not be taken lightly. The recognization and utilization of 
special classes of binary relations for approximating other binary relations may 
have significant implications on the understanding and applications of rough 
relation approximations. The results may be applied to rough function approxi- 
mations [8]. In this paper, we only considered three properties of binary relations. 
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With our formulation, other properties of binary relations can also be considered. 
Order relations (i.e., preference relations) play a very important role in decision 
theory [4, 5]. It may be useful to apply the proposed method for approximating 
order relations. 
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abstract 

In this paper, we present a novel approach for approximating concepts in the 
framework of formal concept analysis. Two main problems are investigated. The 
first, given a set A of objects (or a set B of features), we want to find a formal 
concept that approximates A (or B). The second, given a pair (A, B), where 
A is a set of objects and B is a set of features, the objective is to find formal 
concepts that approximate (A, B). The techniques developed in this paper use 
ideas from rough set theory. The approach we present is different and more 
general than existing approaches. 

1    Introduction 

Formal concept analysis (FC A) is a mathematical framework developed by Rudolf 
Wille and his colleagues at Darmstadt/Germany that is useful for representa- 
tion and analysis of data [8]. A pair consisting of a set of objects and a set of 
features common to these objects is called a concept. Using the framework of 
FCA, concepts are structured in the form of a lattice called the concept lattice. 
The concept lattice is a useful tool for knowledge representation and knowledge 
discovery [2]. Formal concept analysis has also been applied in the area of con- 
ceptual modeling that deals with the acquisition, representation and organization 
of knowledge [4]. Several concept learning methods have been implemented in 
[1, 2, 3] using ideas from formal concept analysis. 

Not every pair of a set of objects and a set of features defines a concept [8]. 
Furthermore, we might be faced with a situation where we have a set of features 
(or a set of objects) and need to find the best concept that approximates these 
features (or objects). For example, when a physician diagnosis a patient, he finds 
a disease whose symptoms are the closest to the symptoms that the patient has. 

"This research was supported in part by the Army Research Office, Grant No. DAAH04- 
96-1-0325, under DEPSCoR program of Advanced Research Projects Agency, Department of 
Defense and by the U.S. Department of Energy, Grant No. DE-FG02-9 7ER1220. 
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In this case we can think of the symptoms as features and diseases as objects. It 
is therefore of fundamental importance to be able to find concept approximations 
regardless how little information is available. 

In this paper we present a general approach for approximating concepts. We 
first show how a set of objects (or features) can be approximated by a concept. 
We prove that our approximations are the best that can be achieved using rough 
sets. We then extend our approach to approximate a pair of a set of objects and 
a set of features. 

2    Background 

Relationships between objects and features in FCA is given in a context which is 
defined as a triple (G, M, I), where G and M are sets of objects and features (also 
called attributes), respectively, and I C G x M. If object g possesses feature m, 
then (g,m) € I which is also written as glm. The set of all common features to 
a set of objects A is denoted by ß(A) and defined as {m 6 M \ glm V# 6 A}. 
Similarly, the maximal set of objects possessing all the features in a set of features 
B is denoted by a{B) and given by {g G G \ glm Vm € B}. A formal concept 
is defined as a pair (A, B) where ACG, B CM, ß(A) = B and a(B) = A. A 
is called the extent of the concept and B is called its intent. 

Using the above definitions of a and ß, it is easy to verify that A\ C A2 

implies that ß{A{) D ß{M), and Bi C B2 implies that a(B{) 2 a(B2) for 
every Ai,A2 Q G, and B±,B2 Q M [8]. Let C(G,M,I) denote the set of all 
concepts of the context (G,M,I) and (Ai,B\) and (A2,B2) be two concepts 
in C(G,M,I). (Ai,Bi) is called a subconcept of (A2,B2) which is denoted by 
(Ai,Bi) < (A2,B2) whenever A\ is a subset of A2 (or equivalently B\ contains 
B2). The relation < is an order relation on C(G, M,I). 

In the sequel we give an overview of few basic rough set theory terms. Let 
U be a nonempty finite set of objects called the Universe. Let A be a set of 
attributes. Associate with each a £ A a set Va of all possible values of o called 
its domain. Let a(x) denote the value of the attribute a for element x. Let B be 
a subset of A (B can be equal to A). A binary relation RB on U is defined as 
xRBy <^=> a(x) = a(y)Va e B. Clearly, RB is an equivalence relation and thus 
forms a partition on U. Let [X]B denote the equivalence class of x with respect 
to RB. When B is clear from context, we will write [x] instead of [X]B- Let 
U/RB denote the set of all equivalence classes determined by RB. Equivalence 
classes of the relation RB are called ß-elementary sets (or just elementary sets). 
Any finite union of elementary sets is called a definable set. 

Given a set X C U, X may not be definable. The relation RB can be 
used to characterize X by a pair of definable sets called its lower and upper 
approximations. The lower and upper approximations of X with respect to 
RB (or set of attributes B) are defined as B(X) = {m € U \ [m]B Q X} and 

B(X) = {m € U | [m]snX jt 0}, respectively. Clearly, the lower approximation 
of X is the greatest definable set contained in X and the upper approximation 
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of X is the smallest definable set containing X. The difference between the 
upper and lower approximations of X is known as the boundary region of X 
and is denoted by BND{X). If BND{X) is an empty set, then X is a definable 
set with respect to B; on the other hand, if BND(X) is not empty, then X is 
referred to as a rough set with respect to B [6]. 

3 Existing Approach 

The existing approach for approximating concepts is due to Kent and is called 
rough concept analysis [5]. It relies on the existence of an equivalence relation, 
E, on the set of objects, G, that is provided by an expert. A pair (G, E) where E 
is an equivalence relation on G is called an approximation space. An E-definable 
formal context of G-objects and M-attributes is a formal context (G, M, I) whose 
elementary extents {Im \ m £ M} are E-definable subsets of G-objects where 
Im = {g e G | glm}. 

The lower and upper ^-approximations of I with respect to (G, E) are de- 
— fp 

noted by I_E and I  , respectively, and given by 

LE = {(<?> m) | [g}E C Im}   and   JE = {(g, m) \ [g]E n Im ? 0}. 

The formal context (G, M, I) can be approximated by the lower and upper 
contexts (G,M,IE) and (G,M, JB). The rough extents of an attribute set B C 

M with respect to IE and 1   are defined by 

a(BE) = o(ß)E =  f| ME   and   a(ßB) = rtB)E =  f] Tin 

Any formal concept (A,B) € C(G,M,I) can be approximated by means of 
lE and 1E. The lower and upper ^-approximations of (A,B) are given by 

(AlB)B, = (a(BB),j8(a(BB)))    and   XA\E)
E
 = (a(BB),ß(a(BE))) 

4 Formal Rough Concept Analysis 

In the previous section we presented an overview of the existing approach for 
approximating concepts. This approach is not direct because upper and lower 
approximations for the context (G, M, 7) have to be found first and then used for 
approximating a pair (A, B) of objects and features. The resulting upper and 
lower approximations of (G, M, I) depend on the approximation space (G, E) 
as described in Section 3. This means that different equivalence relations on G 
would result in different answers. Furthermore, the set A was not used in the 
approximation. This means that all pairs that have the same set of features will 
always have the same lower and upper E-approximations. 
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In this section we present a different and more general approach for approxi- 
mating concepts. Our approach is consistent in that the relation or relations we 
use in the approximation are defined in a way that assures that the same answer 
is always given. We first show how a set A of objects (or B of features) can be 
approximated by a concept whose extent (intent) approximates A (B). Then we 
show how a pair (A, B) can be be approximated by one or two concepts. 

First, a few definitions need to be given. Let (G, M, I) be a context, not 
every subset A C G is an extent nor every subset B C M is an intent. Wille [8] 
has shown that A C a(ß(A)) for any A C G and B C ß(a(B)) for any B CM. 
Furthermore, ß(\JieJ At) = f]i€J ß(A{) and a(\Ji€J Bt) = f]i€Ja(Bi) where J 
is and index set. This later result will be used later. A set of objects A is called 
feasible if A — a(ß(A)). Similarly a set of features is feasible if B = ß{a{B)). 
If A is feasible, then clearly (.4, ß{Aj) is a concept. Similarly, if B is feasible, 
then (a(B),B) is a concept. Let us also say that a set A C G is definable 
if it is the union of feasible extents; otherwise, we say that A is nondefinable. 
Similarly, B C M is definable if it is the union of feasible intents; otherwise, B 
is nondefinable. A pair (A, B) is called a definable concept if both A and B are 
definable, a(B) = A and ß(A) = B; otherwise, (A, B) is a nondefinable concept. 

4.1    Approximating a Set of Objects 

Given a set of objects A C G, we are interested in finding a definable concept 
that approximates A. We have the following cases: 

Case 1: A is feasible. Clearly (A, ß(Ä}) is a definable concept. Therefore, 
(A, ß{A)) is the best approximation. 

Case 2: A is definable. Since A is definable, it can be written as A = Ax U 
Ai...\J An, where each Ai, i = 1,... n, is feasible. 
Hence, ß(A) = ß(A1UA2 . ..UAn) = ß(A1)nß(A2)n.. .nß(An) = fl^/W- 
Therefore, when A is definable, the best approximation is obtained by 

i~n        i=n 
(A,ß(A)) = (\jAi,f]ß{Ai)). 

Case 3: A is nondefinable. If A is nondefinable, it is not as straightforward to 
find a definable concept that approximates A. Our approach is to think of A as 
a rough set. We first find a pair of definable sets A and A that best approximate 
A. A and A are then used in finding two concepts that best approximate A. 

Let gl = {m G M | glm} denote the set of all features that are possessed by 
the object g. Define a relation R on G as follows: 

gxRg2   iff   g\I = ff2-f   where   g\,gi€.G. 

Clearly, R is reflexive, symmetric and transitive.   Thus, R is an equivalence 
relation on G. Let G/R be the set of all equivalence classes induced by R on G. 
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Lemma 4.1 Each equivalence class X £ G/R is a feasible extent. 

Proof. Assume not, that is, there is an X e G/R which is not a feasible extent. 
Therefore, X C ß(a(X)) and X ? ß{a(X)). So there is an object g e ß(a(X))- 
X such that glm Vm G a(X). But this is a contradiction because by the 
definition of R, g must be in X because it has all the features in a(X). Therefore, 
X = ß(a(X)) which means that X is a feasible extent. □ 

It follows from the previous lemma that each equivalence class X € G/R is 
a feasible extent and thus is an elementary extent. Therefore, define the lower 
and upper approximations of A e G with respect to R as 

A={geG\[g]CA},    and   A = {g e G | [g] n A ? 0} 

Now, we can find two concepts that approximate A. The lowerapproximation 
is given by (A,ß{A)) and the upper approximation is given by (A,ß{A)). 

Lemma 4.2 If A is a nondefinable extent, then the best lower and upper ap- 
proximations are given by (A,ß(A)) and (A,ß{A)), respectively. 

Proof. Ais a union of feasible extents and thus is a definable extent. Therefore, 
{A,ß(A)) is a definable concept. Similarly, we can show that (A, ß(A)) is a 
definable concept. _     _ 
Since AC AC A, we have (A,ß{A)) < (A, ß{A)) <; {A, ß(A)). Furthermore, A 
is the greatest definable extent contained in A and A is the least definable extent 
containing A. This implies that (A, ß(A)) is the greatest definable subconcept of 
(A,ß(A)) and (Ä,ß(Ä)) is_the least definable superconcept of (A,ß(A)). There- 
fore, (A, ß{A)) and {A, ß(A)) are the best lower and upper approximations. 
D 

4.2    Approximating a Set of Features 

Because approximating a set of features is similar to approximating a set of ob- 
jects and because of limitations of space, we will omit some unnecessary details. 

Case 1: B is feasible. The concept (a(B),B) best approximates B. 

Case 2: B is definable. B can be written as B = U<=i B* where each Bit is 

feasible. Hence, a(B) = a(U£i Bt) = fli=i "(ßi) Therefore, B can be approx- 

imated by the definable concept (a(B),B) = (fli=i <*(i?i),Ui=i Bi) 

Case 3: B is nondefinable. Let Im = {g e G \ glm} be the set of all objects 
that posses the attribute m. Define a relation R! on M as follows: 

miR'm2    iff   Imi = Im2    where   mi,m2 £ M. 

Clearly, R' is an equivalence relation. Let G/R1 be the set of all equivalence 
classes induced by R' on M. 



96 

Lemma 4.3 Each equivalence class Y € G/R' is a feasible intent and thus an 
elementary set. 

Using the result of the previous lemma, the lower and upper approximations 
of B € M with respect to R are denned by 

B = {m€M\[m]CB},    and   B = {m <E M \ [m] n B ^ 0} 

The next lemma, which can be proved similar to lemma 4.2, gives two concepts 
that best approximate B. 

Lemma 4.4 If B is a nondefinable intent, then the best lower and upper ap- 
proximations are given by (a(B),B) and (a(B),B), respectively. 

4.3    Approximating A Concept 
Given a pair (A,B) where A C G and B C M, we want to find one or two 
concepts approximating (A, B). Four different cases need to be considered: 
I) Both A and B are definable, II)A is definable and B is not, III)B is definable 
and A is not, and IV) Both A and B are nondefinable. 

4.3.1    Both A and B are Definable 

Four subcases need to be considered. 

1. Both A and B are feasible. If ß{A) = B, then a(B) must equal to A because 
both A and B are feasible. Thus the given concept (A, B) is definable and no 
approximation is needed. 
If ß(Ä) # B, (and thus a(B) # A), let ß(A) = A' and a{B) = B'. Since both 
A and B are feasible, then both (A, A') and (B',B) are definable concepts in 
(G, M, I). Consider the two concepts (A U B',ß(A U B1)) = (A U B', A' n B) 
and (a(A' U B),A' UB) = (An B',A' U B). We notice that ß(B') = B and 
a(A') = A because B and A are feasible. Furthermore, (A n B',A' U B) < 
(A,B) < (A U B',A' n B). Therefore, the lower and upper approximations of 
(A,B) are given by (A,B) = (AnB',A' UB) and (A,B) = (Al)B', A'nB). 

2. A is feasible and B is not. Since B is definable, it can be written as a union 
of feasible intents. Let B = U^i"-5* wnere &i is feasible for i = 1,2,..., m. Let 
a(Bi) = Bi, for i = 1,2,...,m, and a(B) = B'. 

B> = a(B) = a(]Ji=i Bt) = Qi=1 «(*<) = f]i=1 
B^ 

Therefore, the lower and upper approximations of (A, B) are given by 

(A,B) = (An B\ A'UB) = (f)2™(AnBi'^UllV U ßi))' 
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and 

(ITB) = (A u £', /nß) = (f|T^ u Bi">> U=AA'n B<))- 

3. B is feasible and A is not. This case is similar to the previous case and details 
are omitted. The lower and upper approximations are given by 

(A,B)    =(AnB',A'öB)    =(USi(AnB'),n£i(^'Uß)),    and 
(A,B)    =(AöB',A'nB)    =(U-=1(^Uß'),n-=i(Vn5)). 

Where A = Ui=i^» and each Ai is feasible for i = 1,2,..., /. 

4. Both A and B are not feasible. Since A and B are definable, they can be 
written as unions of feasible extents and intents, respectively. 
Let A = Ui=i^j and B = \JjjZiBj, where Ai and Bj are feasible for i = 1,2,..., I 

audj = l,2,...,fc.Let/l', /l/, /?', and /?/denote 0(4), 0(4). «(ß). and a(fl,), 
respectively. Then, 

ii=(  ,4 \ r\i—l at A \ r\i=l A'    =ß(A)    =ß({Jl=[Ai)     =n;=i/3(4)     =n;=i4',    and 
B'    =a(B)    =a{[}i=\Bj)    = H&(^)    = fl^/- 

The lower and upper approximations of (A, B) are given by 

(A,B)    =(AnB',A'\JB) 

= ((U|=Ui) n (fl^iS/), (Di=U/) U (DffBj)),    and 
(A,B)    =(Au5',A'n5) 

= ((u:=Uo u (nSiß/), cn-=Ui') n (ug^o). 
4.3.2    A is Definable and B is not 

Since A is definable, it can be written as A — U;=i4i where each Ai is feasible. 
Define a binary relation R' on M such that for mi,m2 S M, m\R!m,2 if -^m = 
7m2. Clearly, R' is an equivalence relation and thus can be used in creating a 
rough approximation for any subset of M as was done earlier. Let B_ and B be 
the lower and upper approximations of B with respect to R1. 

B and B can be used in creating lower and upper approximations for (A, B) 
in the context (G,M,I). The lower and upper approximations are given by 

(A,B) = (Ana(B),ß(A)l)B),    and   {A,B) = (AUa(B),ß(A) nß). 

The concept {Ana(B),ß(A) US) is definable because ß(Ar\a(B)) = ß(A) US. 
Similarly, {A U a(B),ß{A) n B) is definable because ß(A U a(B)) = ß(A) n £. 

We can show that the approximations developed above are indeed correct 
by observing that BCBCB which implies that ß(A) CiBCBC ß(A) U B 
Therefore, 
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(A n a(B),ß{A) UB)< (A, B)<(AU a{B),ß(A) n B) 

To get the final answer we need to substitute Ui=i^i in Place of A- However, 
we choose not to do that in this context to make the results easier to read. 

4.3.3    B is Definable and A is not 

The scenario here is similar to that in the previous subsection and we will just 
sketch the results. Since B is definable, it can be written as B = Uj=i-^; where 
Bj is feasible for j = 1,2,..., k. Define a relation R on G by giRg2 iff 9\I = gil- 
R is an equivalence relation on G and can be used in approximating the non- 
definable set A. Let A and A represent the lower and upper approximations of 
A with respect to R. The lower and upper approximations of (A, B) are given 
by 

(A,B) = (Ana(B),ß{A)UB)    and    (A,B) = (Aöa(B),ß(A)nB). 

4.3.4    Both A and B are Nondefinable 

Neither A nor B can be used in approximating the nondefinable concept (A, B). 
However, we can combine the approaches from the previous two subsections and 
define R to be an equivalence relation on G and define R' to be an equivalence 
relation on M using the same definitions from the previous two subsections. Let 
the lower and upper approximations of A with respect to G be given by A and A, 
respectively. Similarly, let B and B denote the lower and upper approximations 
of B with respect to R'. Now, A, A, B and B are definable sets that can be used 
for approximating the nondefinable concept (A,B). The lower approximations 
is given by _ _ 

(A,B) = (Ana(B),ß(A)UB), 

Similarly, the upper approximations is given by 

(A,B) = (AUa(B),ß(A)nB). 

Clearly, both (A n a(B),ß(A) U B) and (Ä U a{B),ß(Ä) n B) are definable 
concepts. Furthermore, it is easy to prove that 

(Ana(B),ß(A) UB)< (A,B) < (ÄUa(B),ß(Ä) (IB). 

Hence, our proposed approximations are correct. 

5    Conclusion and Future Work 

This paper presents a new approach for approximating concepts using rough 
sets.  Using this approach the given context is used directly for finding upper 
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and lower approximations for nondefinable concepts without any context ap- 
proximation which is a major difference from the approach given in [5]. Another 
major difference between our approach and the existing approach is that in the 
existing approach an equivalence relation on the set of objects has to be given 
by an expert before the approximation process can start. Different equivalence 
relations would usually result in different approximations for a given nondefin- 
able concept. Our natural choice of an equivalence relation JR on the set of 
objects G is such that objects that share the same set of features are grouped 
together in the same equivalence class. This choice guarantees the uniqueness 
of our approximations. Furthermore, such a definition of R can help automate 
the process of approximating concepts. 

Using the new approach, we showed how a set of objects, features, or a 
nondefinable concept can be approximated by a definable concept. We proved 
that the approximations found for a set of features or objects are the best one 
can get. The ideas developed in this paper are useful for information retrieval, 
knowledge acquisition and conceptual modeling. An implementation of a system 
that uses the ideas developed in this paper is currently in progress. 
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Abstract. A new concept of reduction of non-stationary noise affecting audio 
signals transmitted in telecommunication channels is proposed. This concept 
exploits some features of the human auditory system as well as some methods 
originated from soft computing domain, i.e. rough set-based reasoning and 
neural processing. The foundations of the engineered method and a description 
of applied decision algorithms are presented. A number of experiments have 
been prepared, and some of them have already been carried out. A brief dis- 
cussion of these experiments' results and some conclusions are also included. 

1   Introduction 

The commonly used noise reduction methods do not use some subjective properties 
of the human auditory system, which have been successfully exploited in audio cod- 
ing standards. However, as was revealed by the results of experiments carried out by 
the authors, auditory masking can be also used to the suppression of noise corrupting 
audio signals. The mathematical foundations of this perceptual approach and rele- 
vant algorithms were presented in some recent authors' papers [4][6]. 

In all noise reduction methods, there is a need to know at least approximated sta- 
tistics of the noise. This problem becomes more complex in the case of non- 
stationary noise, since such a method requires choosing a certain noise statistics from 
among others. Hence, a problem of an efficient decision system occurs. Therefore 
intelligent algorithms (i.e. rough sets or neural networks) can be very helpful as 
decision systems in this field of application [2] [4], 

2   Psychoacoustics Principles 

The concept of critical bands is related to propagation and processing of acoustic 
signals in the human auditory system. Well-proven phenomena reveal that the inner 
ear behaves as a bank of band-pass filters which analyse a broad spectral range in 
subbands independently from others. These subbands are called critical bands, and a 
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perceptual unit of frequency has been introduced. It is called Bark and is related to 
the width of a single subband. Often used transformation to this subjective scale of 
hearing is the following relation proposed by Zwicker [11]: 

b = 13 • arctg(0.76 • 1(TJ • /) + 3.5 • arctgj (^)2 (1) 

where b, /denote frequency in Barks and Hz, respectively. 
Another psychoacoustic phenomenon is related to masking. Some tones can be in- 

audible in the presence of others, especially when one of them is louder, and their 
frequencies are not too distant. These tones which mask others are called maskers, 
and this phenomenon is fundamental for contemporary audio coding standards [8]. 
More details on psychoacoustics can be found in abundant literature [11]. 

3  Description Of The Perceptual Noise Reduction System 

The perceptual noise reduction system (Fig. 2) is fed by two inputs: the noisy signal 
y(m) and the noise patterns n (m). The signal y(jn) consists of the original audio 
signal x(m) corrupted by the noise n(m), and is transformed to the spectral repre- 
sentation F(j<w) with the use of the DFT procedure. In turn, the patterns n(m) are 

assumed to be correlated to the noise n(m), and are taken from empty passages of 

the signal transmitted in a telecommunication channel. The signal n(m) is delivered 
to the Noise Estimation Module which task is to collect essential information on the 
noise n(m). At its output, the time-frequency noise estimation p(t,jco) is obtained. 

Both this estimation p(t,jo)) and the spectrum of the corrupted audio Y(ja>) are 
supplied to the Decision Systems. Its first task is to select one of the collected spec- 
tral estimations p(j<o) c p(t,jw) which is correlated best to the corrupting noise in 
a given moment. The second task is to qualify the elements of the signal Y(jw) for 
two disjoint sets: the set U of the useful or the set D of the useless elements. It is 
necessary to know, which spectral components are maskers (useful), and which ones 
are to be masked (useless). 

y(m) = x(m)+n(m) 

y(m) 
DFT 

PERCEPTUAL NOISE 
REDUCTION MODULE 

Y(jco) = X(ja>)+N(ja>) 
U,D 

n(m)- 

DECISION SYSTEMS 

indexy |/j(t,jfl)) 

7fl.jfl>: 

YQm) 
DFT 

,2^0 

NOISE ESTIMATION MODULE 

Fig. 1. General lay-out of the noise reduction system 
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The spectrum of the corrupted signal Y(jw) as well as the sets U, D and the cho- 

sen noise estimation p(t,jco) are fed to the Perceptual Noise Reduction Module that 

executes a perceptual algorithm of noise reduction. Next, the output YQeo) is proc- 

essed by the inverse DFT procedure, and finally the restored signal y(m) is ob- 

tained, which is subjectively perceived as less noisy than the original one. 

4  Implementation of the Noise Reduction System 

4.1  Noise Estimation Module 

The Noise Estimation Module's run can be divided into two modes: the noise analy- 
sis mode and the noise reduction mode (Fig. 2). In the first one (Fig. 2a), the patterns 
n(m) are analysed in the Extraction of Noise Parameters block where they are 

transformed into the spectral domain, averaged upon subsequent L frames and ana- 
lysed. As a result, two kinds of output are obtained: the average power spectrum 

Nk, and the associated vector V" of coefficients related to the spectrum Nk . The 

index k denotes the time interval, within which elements of these vectors are com- 
puted. Subsequent, the both vectors are collected in the Table of Vectors. The content 
of the table is used during the training of decision algorithms in the Decision Sys- 
tems and the noise reduction mode (Fig. 2b). In this latter mode, due to a query to 

the table, the appropriate spectrum Nj is output, which is expected to be mostly 

correlated to the noise currently corrupting the audio. The query index value is pro- 
duced by a decision system, and denotes the index of a desired spectrum in the table. 

a) b) 

index N< index 

Extraction of 
Noise Parameters 

yi>'i 

n(m) 

v,n 

VÜ 

N. 

Nt 

N,- 

Extraction of 
Noise Parameters 

W(w) 

Table of Vectors 

it V\" N\ 
I ... 

v? *k 

Table of Vectors 

Fig. 2. Scheme of the Noise Estimation Module: (a) noise analysis mode, (b) noise reduction 
mode. Dashed lines denote inactive connections 

In the case of use of the Appoint DFT, the vector Nk is defined as below: 

k-L 

Nk=[Nu ...NnJc ...NNIU\,   and:   Kk=J'     £#* > - (2) 
l=(k-l)-L+l 

where Nnk is averaged on the basis of last L values of the spectral power Nn. 
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The associated vector V" serves as a key vector and is exploited during the noise 

reduction mode when a spectrum Nj is searched for. This vector should be unique, 

however in practice the condition is hard to be ensured. Its elements are expected to 
reflect quantitatively a noisy character of the average spectrum Nk. Therefore two 
kinds of parameters are considered that turned out to be very robust in contemporary 
perceptual coding schemes [8]: the Spectral Flatness Measure [5] and the unpredict- 
ability measure [1]. These parameters are computed in each critical band, and their 
definitions for the /-th frame are given further. 

Application of the Spectral Flatness Measure. The SFM parameter is defined as 
the ratio of the geometric Gm to the arithmetic Am mean of the power spectrum [5], 
and is given in dB. In the b-th subband, the parameter can be redefined as follows: 

SF<>=101og10G«/4,'>. <3> 

Hence, the vector V" can be described in the following way: 

k-L 

V* =[sFMlk ... SFMbJe ... SFMB,kf and: SFMbJe = -•     Y,™^ .    (4) 
Z=(fc-1>£+1 

Application of the Unpredictability Measure. Introducing denotations of the spec- 

tral magnitude prediction rf^ and the phase prediction jf-' of the ;'-th spectral 

component on the basis of the their last two real values as below: 

^)=r/M)+(^(M)_r.(/-2))     ^     f<0=,<H> +(^-D_^-2)); (5) 

the unpredictability measure cf* is defined as the Euclidean distance between the 

real values of /j(/), <t>f^ and the predicted ones (?P, $P) as in the formula [1]: 

'   "      >+abs(^) (6) 

In such a case, the k-Üi element of the vector V" =\Pyc •■• Cbjc ••• Cß,feJ 's 

averaged upon last L frames and within the A-th critical band in the following way: 

k-L upper{b) 

Cbk=~-    Yc<£\    where:     C« =—I f cf\ (7) 
/=(fc-l)-L+l V '  i=lower{b) 

where upper(b) and lower(b) denote indexes of the first and the last spectral bin in 
the A-th subband which contains count(b) components. 
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4.2  Decision Systems 

The Decision Systems module (Fig. 3) is fed by the spectral representation of the 
noisy signal YQw). First, the input signal is processed in the Extraction of Pa- 

rameters block which task is to obtain a vector of parameters V,y, and these pa- 

rameters are expected to be mostly related to the noisy character of the input Y()co). 

Therefore elements of V? are defined by analogy to the key vector V" elements, 

and computed as in the formula (4) or (7). The vector V? is next supplied to the 

Decision System I which objective is to give the index value of the noise spectrum 
Nj that should be most correlated to the noise present in the noisy signal Y(jco). 

Having received the desired vector Nj from the Table of Vectors, this vector is 

compared with the spectral representation YQw) in the Decision System II which 
produces two output sets: the set U of useful and the set D of useless components. 

DECISION SYSTEMS A YQa)   „ Decision U,D 

rüg) System II 

1" 
i \ N,- 

Extraction of 
Parameters 

' i —* Decision 
System I 

< ■—>■ 

V 'fto    \inck X 

INU1SÜ Ü.S1 IKIA 1 HJn 1VHJIFU1.I. Nj 
vf "k 

Table of Vectors 

Fig. 3. Scheme of the Decision Module 

Implementation of the Decision System L Decision-making in the Decision System 
I can be based on the rough sets or neural reasoning, and the run of the system can 
be divided into two modes: the training- and the execution one. In the first case, the 
content of the Table of Vectors is exploited, which is depicted in Fig. 3 with dashed 
lines. The intelligent decision algorithms are considered further in the paragraph. 

Application of Rough Sets. In the training mode, related to rule discovery, a part of 
the Tables of Vectors is treated as a decision table, where elements of the key vector 
Vk" defined by the formulas (4) or (7) are conditional attributes and the vector's 
index in the Table of Vectors is a decision attribute. Therefore the fc-th object in the 
table is described by the following relationship: 

SFMllc ,... ,SFMbJe ,... SFMBik => k or:  Cu ,... ,Cbyk ,... CB<k =>k       (8) 

where the variables: SFM, C are given as in the formulae (4) and (7), respectively. 
The rule discovery procedure is based on the rough set principles [7] and algo- 

rithm [2]. It can be noticed that only conditional attributes require quantization. So 



105 

far, only the uniform quantization has been used. In the execution mode, the input 

vector of noisy audio parameters Vf is quantized, and next processed by the set of 

generated rules. In result, the index value of the noisy spectrum Nj in the Tables of 

Vectors is obtained. 

Application of Neural Networks. The applied neural network is a classic feedforward 
structure with hidden neurons [10]. In the preliminary experiments, only one hidden 
layer was considered. The number of input units is equal to the number of elements 
in the vector V", given by eq. (4) or (7). There is only one output neuron which 
produces the entry value {index value) to the Table of Vectors. For all input and 
hidden units, the activation function is sigmoidal. However, since the index value is 
an integer, this function for the output unit is considered as sigmoidal or linear. 

In the training mode, only a part of the Table of Vectors is used in the training 

set: the key vector V" is an input vector, whereas its index in the table is a desired 
output, associated with this vector. Thus, the training set is as follows: 

As a training method, the standard Error Backpropagation Training Algorithm 
[10] is applied, and the error measure is based on the mean squared error. If the 
neuron's activation function of the output neuron is sigmoidal, the desired index 
value should be scaled down in order to match the interval [0,1]. 

In the execution mode, the network's output (related to the index value) must be 
rounded up to the nearest integer. Additionally, if the output unit processes accord- 
ing to sigmoidal function, before the round-up the neuron's output must be scaled up 
by the same factor by which was scaled down. 

Implementation of the Decision System IL In the Decision System II, the division 
into useful and useless elements is executed according to the following simple proce- 
dure. All these components which spectral powers Y exceed the double average value 
of the representative noise estimation Nj are assumed to be the useful elements. In 

turn, the remaining components are regarded as useless ones. Hence, in the case of 
use of the TV-point DFT the sets U and D can defined as follows: 

U = 

D = 

n,Y„:Y„Z2-N„j  and « = 1,...,N/2 

n,Y„:Y„<2-N„j  and n = l,...,N/2  ' (10) 

In general, there can be various methods of such a division [2], and a choice of 
one of them has significant influence on the subjective quality of a restored audio. 
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4.3  Perceptual Noise Reduction Module 

The task of the module is to process the spectral representation of the noisy signal as 
follows. All useful spectral components are reduced according to the spectral sub- 
traction principles [9], whereas the remaining useless components are masked using 
the psychoacoustic approach. This perceptual approach is a separate complex issue 
which is not related to the application of intelligent tools, and due to the space limi- 
tations it is not described in this paper. However, the applied perceptual models, 
engineered methods together with appropriate algorithms were presented extensively 
in details in the recent publications of the authors [4] [6]. 

5   Experiments 

There were two objectives of the experiments: verification of the engineered method 
for non-stationary noise reduction and comparison of different decision algorithms. 
Some verification tests were carried out first, in order to check, whether application 
of intelligent tools could improve the quality of restored audio signals. The results 
were encouraging enough, for the next comparison experiments to be prepared. 

In order to assess the quality of a decision algorithm, the result of such an algo- 
rithm should be compared with the desired output. In the case of the research, it was 
necessary to know whether the noise spectrum pointed by the decision system was 
the best choice, and if not, an error measure was needed. 

For the purpose of the comparison experiments, two recordings were made: a 
male voice (5.81 s) and a non-stationary noise (2.79 s) taken from a radio channel. 
Next, the original audio was corrupted by the additive noise, and in the same time, 
elements of the key vectors of the noise were computed and collected. Since the 
original audio and the noise were given, it was known, which part of the noisy voice 
was described by which key vector and noise spectrum vector. The parameters of 
these recordings were as follows. They both were mono, sampled with 16-bit resolu- 
tion and with the frequency equalled to 8192 Hz, which resulted in B = 18 critical 
bands. During the audio processing, the signals were divided into frames and over- 
lapped. Since the Hamming window function was used, the overlap size was the half 
of the frame length N. In the experiments three values of N are used: 128, 256, 512, 
and their influence on the time- and frequency resolution are shown in Tab. 1. Addi- 
tionally, in Tab. 1 there is a number of the noise key vectors, assuming that signal 
are averaged on last L = 4 frames. It can be notices that the number of these vectors 
is also the number of objects in a decision table or the number of training vectors. 

Table 1. Influence of frame size N on time- and frequency resolution and training set contents 

N Time-resolution frequency resolution Number of vectors 

128 7.83 ms 64 Hz 88 

256 15.63 ms 32 Hz 44 

512 31.25 ms 16 Hz 22 
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The comparison tests were divided with respect to the following variables: 
• various frame size: JV = 128, JV= 256, N = 512 
• various key vector types: based on the SFM parameters (4) and the unpredictabil- 

ity measure (7) 
• various quantization steps: 0.1,0.5,1 
• various number of hidden neurons: 10,15, 20 
• various neuron's activation function of the last unit: sigmoidal, linear 

Hence, a single test attempt can be described by a set of parameters which are 
valid for a given decision algorithm. Thus, the following denotations are proposed: 
(N, vector, RS, quantization step) for application of rough sets, and (A/, vector, NN, 
hidden neurons, output unit) for application of neural nets. Totally, there are 32 
tests, such as the following exemplary ones: (512,£fiW,NN,10,sigmoidal), 
(512.C.NN, 10,sigmoidal), (512,SFA/,RS,0.5). 

In order to assess the quality of a decision system, the error measure E is intro- 
duced. This measure is the average value of the errors E^ produced for all / frames 
of the noisy signal, and is defined according to the following expression: 

* = ±.JV>     and    EV=jjtf.-V«.nJ, (11) 
i=l 6=1 

where V%t is related to the vector of parameters of the noisy audio, and V^index is 

the A-th element of the key vector, placed at position index in the Table of Vectors. 
By analogy, the optimal error measure Eopt and the maximum error EmaK can be 

introduced. Assuming that the i-th frame of the audio is corrupted by the noise de- 
scribed by they'-th vector in the Table of Vectors, these measures is defined as below: 

i=l 6=1 

£max=f2>&*     and    ESL=ma   ^1,-V^J 
i=i 6=1 

(13) 

where K is the number of vectors in the Table of Vectors. 
Finally, the quality coefficient q is introduced as follows: 

£-£opt 
I
=X

-F—zjr~- <14> £max     -^opt 

For the completed surveys this quality coefficient is as follows: 
(512,SKV/,NN, 10,sigmoidal): q = 81.38 % 
(512,C,NN,10,sigmoidal): q = 85.21 % 
(512,SFM,RS,0.5): q = 78.43 % 
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It can be assumed that the best result for the test (512,C,NN,10,sigmoidal) is due 
to the use of the more precise key vector type (based on the unpredictability meas- 
ure). In turn, the worst result obtained with rough sets can be caused mainly by the 
inefficient quantization step. 

6   Conclusions 

In the paper, the engineered system for non-stationary noise reduction has been pre- 
sented, which exploits reasoning based on neural processing and rough sets. A num- 
ber of experiments have been carried out in order to assess the quality of particular 
decision systems. The results of experiments show that computational intelligence 
and soft computing algorithms are applicable to the control of perceptual coding 
algorithms applied to noise reduction. 
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Abstract. A new method of examining the hearing nerve in deaf people has 
been developed at the Institute of Physiology and Pathology of Hearing in 
Warsaw. It consists in testing deaf people by speech signal delivered through a 
ball shaped microelectrode connected to the modulated current source and at- 
tached to the promontory area. The electric current delivered to the ball shaped 
electrode is modulated with real speech signal which is transposed downwards 
the frequency scale. A computer database of patients' data and electrostimula- 
tion test results has been created. This database was analyzed using the rough 
set method in order to find rules allowing prediction of hearing recovery of 
cochlear implantation candidates. The Rough Set Class Library (RSCL) has 
been developed in order to implement data mining procedures to the engi- 
neered database of electrostimulation test results. The RSC Library supports 
symbolic approach to data processing. Additionally, the library is equipped 
with a set of data quantization methods that may be a part of an interface be- 
tween external data environment and the rough set-based kernel of the system. 
The results of studies in the domain of prediction of post-operative profits of 
deaf patients based on the rough set analysis of electrostimulation test data- 
base are presented and discussed in the paper. 

1   Introduction 

The electrostimulation tests are treated as an important tool in preoperative diagnos- 
tics of deaf people who are candidates for the cochlear implantation. The idea of 
electrical stimulation, which goes back to A. Volta, is to electrically stimulate termi- 
nations of the fibers of the auditory nerve in order to evoke an auditory sensation in 
the central nervous system. The electrical stimulation is the application of electrical 
current to the audiovestibular nerve in order to assess its integrity [1]. It can be per- 
formed applying either invasive or non-invasive technique. Using invasive technique 
a promontory needle-electrode is applied transtympanically [3],[8] or ball-shaped 
electrode is placed in the round window niche following a transcanal tympanomeatal 
incision and removal of the bony overhang overlying the round window membrane 
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[4]. A non-invasive alternative is extralympanic ear canal test [6] [7] [9]. During this 
test the metal electrode is inserted into the ear canal, which has been filled with 
physiological saline solution [2]. It is assumed that the non-invasive attachment 
considerably simplifies preoperative electrostimulation. This is especially important 
when testing children is considered [5]. . 
The results of electrical stimulation tests are highly diversified, depending on a pa- 
tient's age and condition, thus there was a need to create a database provided with 
adequate tools allowing to find and to study the correlation between obtained test 
results and patients' ability to receive and understand sounds. However, in order to 
achieve the best perspective in cochlear implantation it is necessary not only to diag- 
nose properly the auditory nerve status, but at the same time to evaluate the future 
benefits of the cochlear implant to the patient. The procedure developed at the In- 
stitute of Physiology and Pathology of Hearing in Warsaw allows determining some 
vital characteristics of the hearing sense that help to make decisions regarding the 
cochlear implantation [11]. The testing based on the electrical stimulation via the 
external auditory canal filled with saline is performed using the ball shaped electrode 
and the spectral transposition of speech signal. Moreover, patients' data such as 
personal data and health history are included in the database. The rough set algo- 
rithm was engineered enabling an analysis of highly diversified database records in 
order to find some dependencies between data and making possible to predict results 
of cochlear implantation basing on the results obtained previously in other patients. 

2   Method of Speech Processing 

The method of spectral transposition of speech signal was engineered earlier for the 
use in special hearing aids applied in the profound hearing loss [10]. Some essential 
modifications were introduced to the previously designed algorithm in order to adjust 
it to the current needs. 

The simplified scheme of the algorithm of spectral transposition of speech signals 
is shown in Fig. 1. It can be noticed that the structure of the algorithm is based on 
the voice coder (vocoder). The natural speech signal is delivered to the transposer. 
Since the energy of sounds lowers upwards the frequency scale, the signal is preem- 
phasized by 6 dB/oct. By analogy, the transposed signal is deemphasized at the out- 
put by the same ratio, i.e. 6 dB/oct. Additionally, in order to get rid of some distur- 
bances that may occur while manipulating the signal, a low-pass filter is applied. 
The deemphasized signal is compressed in the Compressor module, because of the 
serious limitation of the dynamic ratio of signals received by the electrically stimu- 
lated auditory nerve. 

The detection of voiced speech portions is based on the cepstrum analyzis 
method. When voiced sounds are pronounced, a Fundamental Frequency Generator 
is activated. In such a case, the synthesized sound is a result of a convolution of a 
periodic stimulus and the impulse response of a vocal tract represented by spectral 
envelopes. The detected vocal tone frequency is then divided by a factor selected 
from the range of 1.5 to 3, depending on the width of patient's auditory nerve re- 
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sponse frequency band. The resynthesis of speech with the lower vocal tone fre- 
quency allows to maintain speech formants in the low frequency band related to 
patients' auditory nerve sensitivity characteristics. The above procedures make pos- 
sible to resynthesize speech in the lower band of the frequency scale in such a way 
that the formant frequency ratios are preserved. It helps to maintain the synthetic 
speech intelligible, though it is received within a narrow frequency band only. 

Bank of 10 bandpass filters 
related to critical bands 

Input 
Preemphasis 

6dB/oct   F-"* 

I 

h. *" 
h.—*» 
b7 1> 

Cepstrum analysis - 
vocal tone detection 

I 
Frequency division 

Bank of 10 bandpass filters related to the auditory 
nerve frequency response (programmable filters) 
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of spectrum 
envelope 
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filtration) 

10 Mo-^ 
lu lator 

C=> 
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Frequency      |-J 

Generator 

C=> 
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Deemphasis 
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Ö 
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Ö 
Lowpass Filtei 

0 Output 

Fig. 1. General lay-out of the noise reduction system 

3   Examination of the Patients 

A set of charts is prepared in order to facilitate co-operation with patients. The charts 
include responses, such as auditory sensation received by the patient: soft, comfort- 
able, loud, very loud, etc. The charts also include information on the type of received 
signal. During the examination, three standard tests are performed: 
• TMU - dynamics range defined by the auditory threshold (THR) and uncomfort- 

able loudness 
• TDL - Time Difference Limen test 
• TID - test of frequency differentiation 

In the TMU test, the values of intensity in [^iA] of the electrical stimuli evoking 
an auditory response are determined. In the TDL test, the time of subjecting to the 
stimulus is differentiated. The first step is to determine the level of comfortable 
hearing (MCL) for the patient for a stimulus of 125 Hz (or 62.5 Hz). If the dynamics 
in this range of frequencies is as high as 10 dB, this result is recognized as good. 
Next, the patient listens to three sounds, of which one is longer and two are shorter. 
The purpose of this test is to find whether the patient is capable of differentiating the 
sequence in which the sounds are given. The difference in the duration of the long 
and short sound changes, depending on the patient's response. The result of this test 
is given in miliseconds [ms]. 



112 

If the result obtained by the patient is less than 120 ms, this means that the patient 
can recognize time relations well. It gives a good perspective for a patient's achiev- 
ing speech comprehension in an acoustic manner. In the next test (TE>) - the fre- 
quency of the stimulus given is differentiated. This test is done in three frequencies: 
31.25 Hz, 62.5 Hz, 125 Hz. For these frequencies the level of the most comfortable 
hearing is determined. Three different sounds are demonstrated to the patient: I, II, 
m corresponding to the above frequencies. Next, after the sound is given, the patient 
tells which sound he or she has heard: I, II or III. To come up with a statistically 
valid and credible result, the examination has to be repeated at least three times. 

The fourth measurement is the difference between ULL, which is the level of 
feeling discomfort or the level of feeling pain, and THR - which is the lowest thresh- 
old of the stimulus that can be heard. These differences indicate the range of dy- 
namics defined in the decibel scale [dB]. It is a very important measurement because 
it defines the ability of the auditory nerve to be electrically excited and gives a prog- 
nosis as to the postoperative effects. According to results presented in the literature, 
dynamics exceeding 13 dB guarantees good results of postoperative rehabilitation. 

4   Database of Electrostimulation Test Results 

In order to evaluate the results obtained in preoperative electrostimulation tests a set 
of examining techniques is used after the cochlear implantation. These are: screen- 
ing tests and auditory speech perception, recognition and identification tests, the 
latter consisting in using various speech elements, such as single words, vowels, 
monosyllable, onomatopoeias, etc. This aimed at assigning a correlation between 
preoperative and postoperative test results. For this purpose the mentioned database 
containing results obtained by more than 150 implanted patients has been created at 
the Institute of Physiology and Pathology of Hearing in Warsaw. It includes also 
personal data and some additional factors pertaining educational and social skills, a 
degree of motivation, how early a hearing aid was prescribed that provides constant 
acoustic stimulation of the auditory system, etc. 

The created database has been designed for testing by techniques recognized as 
data mining or soft computing. These techniques are very valuable in clinical diag- 
nostics because they can trace some hidden relations between data, not visible in the 
case when patients' data are not complete or there are many records included in the 
database. The database addresses the following issues: a) personal data; b) cause of 
deafness; c) kind of deafness (prelingual, perilingual, postlingual); d) time passed 
since deafness; e) dates of examinations; f) number of tests performed; g) found 
dynamic range of hearing nerve sensitivity [dB]; h) found frequency band of hearing 
nerve sensitivity [Hz]; i) TMU measurement; j) TDL test result; k) TID test result; 1) 
some factors which may influence the results of electrostimulation tests (e.g.: pro- 
gressive hearing loss, acoustic trauma, use of hearing aids, ...); m) use of transposi- 
tion during the voice communication; n) patient's motivation; o) patient social skills; 
p) vowels recognition ability; q) monosyllable recognition ability; r) onomatopoeias 
recognition ability; s) simple commands recognition ability. 
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The patients are divided to the two ranges of age: 0-18 years; more than 18 years. 
There are 5 groups of patients distinguished with regard of the time passed since 
deafness: less than 1 year; 1-5 years; 5-10 years; 10-20 years; more than 20 years. 

As is easy to observe in above list, the database contains highly diversified infor- 
mation, namely text strings (a-b), integers (c-h), real numbers (i-k), binary flags (1- 
m), and grades (n-s). The processing of such of information can be done efficiently 
by the algorithm based on the rough set method. The results of measurements (g-k) 
need to be quantized automatically by some adequate algorithms. 

5   Rough Set Analysis of Electrostimulation Database 

The library of rough set procedures was engineered at the Sound Engineering De- 
partment of the Technical University of Gdansk. This library makes possible to in- 
clude some rough set data analysis procedures in the engineered database software. A 
description of the rough set class library is given below in this chapter. 

5.1   Rough Set Class Library 

The Rough Set Class Library is an object-oriented library of procedures/functions 
which goal is to process data according to principles of the rough set theory. The 
RSCL takes all necessary actions related to data mining and knowledge discovery. 
The engineered library is designed to run in the DOS/Windows environment and 
compiled with the use of Borland™ C++ Compiler v. 3.1. 

In general, implemented functions in RSCL comprise the following tasks: 
• rule induction 
• processing of rules 
• fundamental operations on rough sets: partition of the universe into equivalence 

classes (i.e. sets of objects indiscernible with respect to a given set), calculation of 
lower and upper approximation, calculation of boundary region, calculation of 
positive and negative region 

• supply of auxiliary functions: showing the winning rule and its rough measure, 
calculating number/percentage of certain and uncertain rules, showing range of 
the rough measure for all rules, computing cardinality of data sets. 

The kernel of the rough-set-based data processing system works on symbolic data, 
i.e. symbolic representations of attributes and decisions in an information table. In 
order to facilitate fitting the system's kernel to external, the most frequent non- 
symbolic, data, some methods of quantization are supplied in the library [12]. These 
discretization procedures are as follows: Equal Interval Width Method, Statistical 
Clustering Method and Maximum Distance Method. 
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5.2  The Rough Set Class Implementation 

In this paragraph is given a brief description of some RSCL functions that are related 
to the principles of rough-set-based data processing. 
• quantization of data in the decision table 

The function performs discretization of data values in the decision table accord- 
ing to a given quantization method. 
Input: a decision table, a quantization method. 
Output: the decision table with quantized values. 

• quantization of conditional attributes 
The function performs discretization of values of the conditional attributes ac- 
cording to a given quantization method. 
Input: a set of conditional attributes, a quantization method. 
Output: the set of conditional attributes in an adequate symbolic representation. 

• dequantization of decision attributes 
The function executes the inverse action to the quantization algorithm -replaces 
the symbolic value of data with adequate crisp values. 
Input: a symbolic decision (decision attributes), a quantization method. 
Output: crisp values of the decision. 

• rule induction 
The function induces a rule base. The action is performed on the basis of the 
principles of the rough set method. 
Input: a decision table. 
Output: a table with discovered knowledge (induced rules). 

• processing of rules 
The function deduces a decision on the basis of an event, i.e. set of conditional 
attributes. The rule base has to be induced earlier. 
Input: an event (set of conditional attributes). 
Output: a decision (set of decision attributes). 

• partition of the universe into equivalence classes 
The procedure yields a set of equivalence classes. The decision table is parti- 
tioned into some sets with respect to a certain set of attributes. 
Input: a decision table (the universe), a set of conditional attributes. 
Output: a set of equivalence classes. 

• calculation of lower- and upper approximation and boundary region 
The functions compute sets, which are lower- and upper approximations and a 
boundary region of a set of objects with respect to a certain set of attributes. 
Input: a set of objects (in the form of a decision table), a set of attributes. 
Output: a resultant set of objects. 

• calculation of positive and negative region 
The functions calculate positive or negative regions of classification for a certain 
set of attributes. 
Input: a decision table, two sets of attributes. 
Output: a resultant set of objects. 
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5.3  Rough Set Processing of Electrostimulation Data 

The results of electrostimulation tests are collected in forms, separately for each 
patient. Then they should be transformed to the decision tables used in the rough set 
decision systems (Tab. 1) Therefore, objects t, to t„ represent patient cases. Attributes 
AjtoAn are to be denoted as tested parameters, introduced in Par. 4 (a-s). They are 
used as conditional attributes. The data values are defined by an to a„„ as numbers 
or grades (quantized values). The decision D is understood as a value assigned to the 
overall grade (OVERALL GRADE). This quantity represents the expected post- 
operative profits express in the descriptive scale as follows: 

OVERALL GRADE = 1 - meaning: predicted hearing recovery profits - none 
OVERALL GRADE = 2 - meaning: predicted hearing recovery profits - low 
OVERALL GRADE = 3 - meaning: predicted hearing recovery profits - fair 
OVERALL GRADE = 4 - meaning: predicted hearing recovery profits - well 
OVERALL GRADE = 5 - meaning: predicted hearing recovery profits - very good 

Table 1. Decision table used in electrostimulation database 

"~"^4ttribute 
Patient"^. 

A A2 
... Am D 

»l an an ... a\m dx 
• t i •, : i 

tn am An2 ... anm dn 

The engineered decision system employs both learning and testing algorithms 
[15]. During the first phase rules are derived that from the basis for the second phase 
performance. The generation of decision rules starts from rules of the length equals 
1, then the system generates rules of the length equals 2, etc. The maximum rule 
length may be defined by the operator. The system induces both certain and possible 
rules. It is assumed that the rough set measure (//RS) for possible rules should exceed 
the value 0.5. Moreover, only such rules are taken into account, that have been pre- 
ceded by any shorter rule operating on the same parameters. The system produces 
rules of the following form: 

(attribute_A i = value_a\ \) and... and (attribute_Am=valuea^) => (OverallGradedi) 

The data were gathered from all subjects during the interviews and electrostimu- 
lation test sessions. Some exemplary data records are presented in Tab. 2. Having 
results of several patients, these data are then processed by the rough set algorithm. 
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Table 2. Fragments of electrostimulation database records (described in Par. 4) 

~- Jigjues /Grades 
Patient           -—^ 

(*) (c) W> w (g) ... (d) Overall 
Grade 

'l otitis 3 1 14 11 ... 3 2 

• i • ; • J *, J : 

'n acoust. 
trauma 

1 3 14 14 ... 5 5 

For the discussed example (Tab. 2) the following strongest rules were obtained, 
being in a good accordance with the principles and practice of audiology: 

JF(g = high) THEN (OverallGrade = very good) liRS = 1 
W(d = high ) & (s = low) THEN (OverallGrade = low) ßRS = 0.92 
IF (c = 1) & (g = low) & (s = low) THEN (OverallGrade = none) pRS = 0.8 
IF (b = trauma) & (c = 3) THEN (OverallGrade = well) ßRS = 0.76 
IF (f= high) & (g = high) THEN (OverallGrade = well) /Z/js = 0.72 

Every new patient record can be tested using previously induced rules and on this 
basis a predictive diagnosis of post-operative profits can be automatically provided by 
the system. This diagnosis expressed as a grade value may be used as a supportive or 
a contradictory factor in the process of qualification of the deaf patient to cochlear 
implantation. The accuracy of decisions produced by the intelligent database analysis 
algorithm is expected to grow higher as the number of patient records increase. 

6   Conclusions 

In this paper a new procedure for testing candidates for hearing implantation has 
been presented. The obtained frequency range during the electrostimulation tests 
with the modified ball-shaped electrode allows to deliver not only tones to the audi- 
tory nerve but using the signal processing device also speech signal can be received 
by some completely deaf patients. This may be helpful to properly diagnose and 
qualify patients to cochlear implantation and to give the patients some kind of sound 
experience before the implantation. 

The engineered RSC Library procedures offering a symbolic approach to data 
processing have been implemented in the constructed electrostimulation test database 
allowing to analyze data records automatically in order to mine rules showing some 
hidden dependencies between patients' data and the expected hearing recovery after 
cochlear implantation. 

The proposed method of prediction of post-operative results is presently at the ex- 
perimental stage and requires some more testing in order to reveal its full potential. 
Nevertheless, a diagnosis provided by the algorithm may be already used as a sup- 
portive or a contradictory factor in the process of qualification of deaf patients to 
cochlear implantation. 
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Abstract. A non-trivial obstacle in good text classification for inform- 
ation filtering and retrieval (IF/IR) is the dimensionality of the data. 
This paper proposes a technique using Rough Set Theory to alleviate 
this situation. Given corpora of documents and a training set of ex- 
amples of classified documents, the technique locates a minimal set of 
co-ordinate keywords to distinguish between classes of documents, redu- 
cing the dimensionality of the keyword vectors. This simplifies the cre- 
ation of knowledge-based IF/IR systems, speeds up their operation, and 
allows easy editing of the rule bases employed. The paper describes the 
proposed technique, discusses the integration of a keyword acquisition 
algorithm with a rough set-based dimensionality reduction algorithm, 
and provides experimental results of a proof-of-concept implementation. 

1    Introduction 

Information Filtering (IF) and Information Retrieval (IR) is rapidly acquiring 
importance as the volume of electronically stored information explodes. Text 
classification is an important part of information filtering in that it categorises 
documents within text corpora. The user may then handle the various classes 
of documents in different ways and devote attention only to those classes that 
merit it. For instance, an E-mail classification system could divide incoming mail 
into business-related messages, personal messages and useless, unsolicited mail 
to be deleted automatically. 

However, a non-trivial obstacle in good text classification is the dimension- 
ality of the data. In most IF/IR techniques, each document is described by a 
vector of extremely high dimensionality — typically one value per word or pair 
of words in the document [1]. The vector ordinates are used as preconditions to a 
rule which decides what class the document belongs to. Document vectors com- 
monly comprise tens of thousands of dimensions [2], which renders the problem 
all but intractable for even the most powerful computers. The use of the cosine 
of the angle between two vectors [3] as a comparison metric further increases the 
number of operations to be performed for the classification of one document. 

This paper proposes a technique using Rough Set Theory [4] that can help 
cope with this situation. Given corpora of documents and a set of examples 
of classified documents, the technique can quickly locate a minimal set of co- 
ordinate keywords to distinguish between classes of documents. As a result, it 
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dramatically reduces the dimensionality of the keyword space. The resulting set 
of keywords (or preconditions) is typically small enough to be understood by a 
human. This simplifies the creation of knowledge-based IF/IR systems, allowing 
easy editing of the rule bases. 

The background of text classification and Rough Set theory is discussed in 
Sect. 2. Section 3 provides a description of the proposed system. Section 4 de- 
scribes experimental results. The paper is concluded in Sect. 5. 

2    Background 

2.1    The Rough Set Attribute Reduction Method (RSAR) 

Rough set theory [4] is a flexible, formal mathematical tool that can be applied to 
reducing the dimensionality of datasets. RSAR removes redundant input attrib- 
utes from datasets of nominal values, while ensuring that no information essential 
for the task at hand is lost. The approach is very efficient, taking advantage of 
conventional Set Theory operations. It works by maximising a quantity known 
as degree of dependency. The degree of dependency ip(X) of a set Y of decision 
attributes on a set of conditional attributes X provides a measure of how import- 
ant that set of decision attributes is in classifying the dataset examples into the 
classes in Y. Ifyx(Y) = 0, then classification Y is independent of the attributes 
in X, hence the decision attributes are of no use to this classification. If 7 = 1, 
then Y is completely dependent on X, hence the attributes are indispensable. 
Values 0 < 7x (Y) < 1 denote partial dependency, which shows that only some 
of the attributes in X may be useful, or that the dataset was flawed to begin 
with. 

To calculate jx(Y), it is necessary to define the indiscernibility relation. 
Given a subset of the set of attributes, P C A, two objects x and y in a dataset 
U are indiscernible with respect to P if and only if f(x,Q) = f(y,Q) V gCF 
(where f(a, B) is the classification function represented in the dataset, returning 
the classification of object a using the conditional attributes contained in the set 
B). The indiscernibility relation for all P € A is written as IND(P). U/IND(P) 
is used to denote the partition of U given IND(P): 

U/IND(P) = (g){geP:U/IND(g)} (1) 

where the operator <g>, as applied to two sets of sets A and B, is defined as: 

A®B = {XnY:\/Xe A, W Y e B, X HY ^ H>} (2) 

Rough Sets approximate traditional sets using a pair of other sets, named the 
lower and upper approximation of the set in question. The lower and upper 
approximation of a set P C U, given an equivalence relation IND(P), is defined 
as: 
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PY = {J{X : X G U/IND(P),X C Y} (3) 

PY = \J{X : X £ U/IND(P), X n F ^ 0} (4) 

Suppose that P and Q are equivalence relations in U, the positive region POSp(<5) 
contains all objects in U that can be classified in attributes Q using the inform- 
ation in attributes P and is defined as: 

POSP(Q) = (J PX (5) 
xeQ 

From this, the degree of dependency "fp{Q) is given by: 

|| POSpjQ) || () 
7p(Q) = pJ^  (6) 

where || Set || is the cardinality of Set. 
The naive version of the RSAR algorithm evaluates jp(Q) for all possible 

subsets of the dataset's conditional attributes, stopping when it either reaches 1, 
or there are no more combinations to investigate. The QUICKREDUCT Algorithm 
(described in [5,6]) escapes the NP-hard nature of the naive version by searching 
the tree of attribute combinations in a depth-first manner. It starts off with an 
empty subset and adds attributes one by one, each time selecting the attribute 
whose addition to the current subset will offer the highest increase of jp(Q). 
The algorithm stops when a 7P(Q) of 1 is reached, or when all attributes have 
been added (in which case the dataset could not be correctly classified to begin 
with). 

It is evident from this that the RSAR will not compromise with a set of 
conditional attributes that contains large part of the information of the initial 
set — it will always attempt to reduce the attribute set without losing any 
information significant to the classification at hand. 

Since the QUICKREDUCT algorithm builds conditional attribute subsets in- 
crementally, it is possible to influence its decisions by suitable re-ordering of the 
conditional attributes in the dataset such that attributes suspected to be of more 
importance are placed before (to the left of) attributes of lesser importance. This 
is done by the integrated system described in this paper, in order to suggest to 
RSAR to utilise the better, more characteristic keywords before others. 

2.2    Text Classification 

Text classification aims to separate groups (corpora) of documents into categor- 
ies. Like all classification tasks, it may be tackled either by comparing new doc- 
uments with previously classified ones (distance-based techniques), or by using 
rule-based approaches. 
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Most text classification techniques that do not operate at the semantics level 
work on a hyperplane whose axes represent the presence of different keywords. 
Depending on the specific technique, the axes of this keyword space may be 
discrete (e.g. boolean) or continuous (e.g. frequency of keywords, importance of 
keyword, et cetera). The dimensionality of the keyword space depends on the 
cardinality of the universal set of keywords, defined as the union of all possible 
keywords of all documents examined, as shown in (7). Any document Dj (a set of 
keywords) in the corpora at hand can then be represented by a multidimensional 
keyword vector xD.: 

V = \jDi = {k1,k2,...,kn} (7) 
i 

xDj = (/(£,•, fci), f(Dj, k2),...,f{Dhkn)) (8) 

Where each ordinate f(Dj,ki) (1 < i < n) in the vector represents the weight of 
the keyword k{ in U. The weight is the result of some metric f(Dj,ki), measuring 
the presence, frequency importance or other quantifiable aspect of the keyword 
ki in the document. 

The two most commonly used text classification approaches are outlined 
below. 

Distance-Based Text Classification Distance-based classification involves 
the comparison of high-dimensionality keyword vectors. In cases where the vector 
describes groups of documents, it identifies the centre of a cluster of documents. 
Documents are classified by comparing their document vectors. The metric most 
commonly used is the cosine of the angle between the two vectors, derived in 
terms of the scalar or inner product, though other metrics are also available [1]. 

The set of keywords representing one document (or a cluster of documents) 
may be obtained by numerous different algorithms that scan corpora of docu- 
ments for keywords, ranking them by perceived importance. Weight calculation 
metrics range from a simple frequency-proportional weighting technique that 
naively attaches more importance to the common words in a document, to the 
inverse document frequency that emphasises those keywords that are common in 
the document in question, yet uncommon in the overall collection of documents. 

Datasets for such systems are almost always built automatically and main- 
tained using paradigms like learning by observation, example or imitation that 
abstract away the actual calculation of weights and formation of vectors. This 
allows the user to obtain complex intelligent-like text classification behaviour 
with a minimum of effort. Unfortunately, the dimensionality of the document 
vectors is typically extremely high (usually in the tens of thousands), a detail 
that greatly slows down classification tasks and makes storage of document vec- 
tors expensive [2]. 

Rule-Based Text Classification Rule-based text classification has been in use 
for a relatively long time and is an established method of classifying documents. 
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Common applications include the kill-file article filters used by Usenet client 
software and van den Berg's autonomous E-mail filter, Procmail. 

In this context, keyword vectors are viewed as rule preconditions; the class a 
document belongs to is used as the rule decision: 

ki,k2,...,kn £ U 

n{D) = p{D, h) A p{D, k2)A...A p(D, kn)=>De3 (9) 

Where ki are document keywords, U is the universal keyword set, D is one 
document, 1 is a document class, ri(D) is rule i applied to D and p(D,ki) 
is a function evaluating to true if D contains keyword ki such that it satisfies 
some metric (e.g. a minimum frequency or weight). Not all keywords in the 
universal set need be checked for. This allows rule-based text classifiers to exhibit 
a notation much terser than that of vector-based classifiers, where a vector must 
always have the same dimensionality as the keyword space. 

In most cases, rules are written by the human user. Most typical rule bases 
simply test for the presence of specific keywords in the document (so p(D, ki) <£> 
ki 6 D). For example, a Usenet client may use a kill-file to filter out newsgroup 
articles by some specific person by looking for the person's name in the article's 
'From' field. Such rule-based approaches are inherently simple to understand, 
which accounts for their popularity among end-users. Unfortunately, complex 
needs often result in very complex rule bases, ones that users have difficulty 
maintaining by hand. 

3    The Proposed System 

This paper proposes a system that builds text classification rule bases, although 
it is trivial to adapt it to distance-based approaches by using a different keyword 
acquisition sub-system (as described in sect. 3.1). The modularity of the pro- 
posed technique allows this. 

The application domain chosen to test the system is E-mail, since real-life 
corpora of E-mail messages are very easy to obtain. Most users of E-mail keep 
'folders' of messages related in some way. This provides training data for the 
system. Like many documents, E-mail messages are structured: each message 
comprises a header, itself comprising a number of fields, and a body. Keywords 
may need to be treated differently, depending on where in the message they 
are encountered. For example, the Message-ID field is a unique identifier of an 
E-mail message and, as such, a notorious opportunity for over-training. This 
rigidly structured nature of E-mail messages makes the domain attractive as a 
test-case for a text classification system. 

The system comprises two main stages, as shown in fig. 1: the keyword ac- 
quisition stage reads corpora of documents (folders of similar E-mail messages), 
locates candidate keywords, estimates their importance and builds an interme- 
diate dataset of high dimensionality. The RSAR part examines the dataset and 
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Document Class 1 Documentaass 2 }■< Document Class n 

„ .. r 
Keyword Acquisition +.        High Dimensionality Dataset 

minimal Rule Base Rough Set Attribute Reduction 

Fig. 1. Data flow through the system. 

removes redundancy, insofar as this is possible, leaving a dataset or rule base 
containing a drastically reduced number of preconditions per rule. 

3.1    Keyword Acquisition 

This sub-system uses a set of E-mail folders as input. Each folder is expected 
to contain similar E-mail messages. Folders (in UNIX mailbox format) contain 
standard E-mail messages as described in the RFC-822 document [7]. Messages 
are sequentially read; each field (key/value pair) within each message is treated 
separately. The body of a message is treated as a very long field. 

Within each field, words are isolated and pre-filtered to avoid very short or 
long keywords, or keywords that are not words (e.g. long numbers or random 
sequences of characters). Every word or pair of consecutive words in the text is 
considered a candidate keyword. The name of the current field is also added to 
the keyword, so that information on where in the message the keyword occurred 
is retained. 

At this stage, the keyword acquisition sub-system has two modes of operation: 
one, dubbed single cluster mode, generates a set of keywords characterising each 
entire folder; the other generates separate sets of keywords for each message in 
each folder, ultimately used to create one classification rule per message, hence 
dubbed one-per-message. In the former case, shown in (10), keyword weights 
are calculated such that keywords common to most messages are deemed more 
important. In the latter case (11), the weighting metric emphasises keywords 
that show the message's difference from other messages in the collection. This 
applies pressure to diversify the keyword sets, rather than create multiple copies 
of the same set of keywords for each message. The weighting functions are as 
follows: 

it>i(k) = -log 
N 

fkWf (10) 



124 

w2(k)= log (jQfkwf (11) 

Where wi(k) and W2(k) are the weights of keyword fcona per-folder and per- 
message basis respectively; Nk is the number of messages in the folder containing 
k; N is the total number of messages in the folder; fk is the frequency of the 
keyword k in the current message; and Wf denotes the current field's importance 
to the classification, which depends on the application and user preferences. 
To avoid over-training and other pitfalls, certain fields are marked as far less 
important than others and this influences the weights of keywords within them. 
For instance, it is relatively safe to expect the subject and body of a message to 
contain very useful information, whereas a trace of the message's delivery path 
(the Received field) is unlikely to provide useful keywords. 

Finally, before the weighted keyword is added to the set of keywords, it passes 
through two filters: one is a low-pass filter removing words so uncommon that are 
definitely not good keywords; the other is a high-pass filter that removes far too 
common words such as auxiliary verbs, articles et cetera. This gives the added 
advantage of language-independence to the keyword acquisition algorithm: most 
similar methods rely on English thesauri and lists of common English words to 
perform the same function. Finally, all weights are normalised before the keyword 
sets are output. This allows for more homogeneous handling of weights in the 
next stages and avoids counter-intuitive results as identified in [1]. 

It must be emphasised that any keyword acquisition algorithm may be sub- 
stituted for the one described above, as long as it outputs weighted keywords. 

3.2    Rough Set Attribute Reduction 

The RSAR used here is exactly as described previously. It reads the sets of 
keywords generated by the keyword acquisition algorithm above. A dataset 
is constructed by evaluating the union of all sets of weighted keywords; the 
keywords are sorted in order of decreasing weight. Where one keyword has two 
or more different weights, the maximum one is used. Each keyword maps to one 
conditional attribute in the dataset. The decision attribute is the name of the 
folder from where the keyword set was extracted. Missing values in the dataset 
denote the absence of that particular keyword in the particular keyword set. 

For example, the two sets of keywords below, describing two documents D\ 
and D2, may be used to build the dataset shown in table 1. 

£>i = {(ku 0.19), (k2,0.98), (A*, 0.72), (A4,0.87)} (12) 

D2 = {(A4,0.31), (A5,0.42), (A6,0.56)} (13) 

Since RSAR is better suited to nominal datasets, the dataset is thus quant- 
ised. Two different quantisation methods are available: a boolean quantisation, 
where a value of 1 signifies the keyword's presence and a value of 0 signifies its 
absence; and a quantisation of the normalised weight space into eleven values, 
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Table 1. Dataset produced from (12) and (13), assuming they belong to folders a and 
ß respectively. 

k2       k4       k3       k6       k5       fci    ->•    Class 

Di    0.98   0.87   0.72 0.19    ->       a 

D2 0.31 0.56   0.42 ->       ß 

calculated by [10w\ (where w is a keyword weight and [-J is the floor function, 
evaluating to the greatest integer less than or equal to its argument). The two 
methods are there to allow better interfacing with various classifiers as well as 
to evaluate the best technique for quantising weights in the application domain 

at hand. 
Having quantised the intermediate, high-dimensionality dataset, the RSAR 

can now execute the QUICKREDUCT algorithm to remove all redundant decision 
attributes. This results in a dataset of radically reduced dimensionality. Since 
each object in the dataset comprises a set of conditional attributes accompanied 
by a decision attribute (the document class the object belongs to), it can be 
viewed as a set of production rules, with conditional attribute values being the 
rule preconditions and the document class being the rule's decision. The dataset 
is simply post-processed to remove duplicate rules and output in the form of a 
rule base. 

4    Experimental Results 

The use of the above proposed system allows the generation of rule bases of 
extremely reduced dimensionality from corpora of documents, without reducing 
the classification accuracy, inasmuch as this is possible. To demonstrate this, 
seven different corpora of E-mail messages were used. The corpora were chosen 
so as to provide a wide spectrum of characteristics found in sets of documents: 
some are homogeneous, containing messages by a single author; others contain 
text from multiple authors with different writing styles. Small and larger corpora 
are mixed to ensure that the size of the document collection does not influence 
the quality of the resultant rule base. Each collection of messages represents one 
class of documents. 

Random groups of two to five such message folders are chosen and fed to 
the system. All combinations of keyword generation (single cluster or one-per- 
message) and quantisation method (boolean, weight integer part) are investig- 
ated. Table 2 shows the average dimensionality reduction for each combination. 
Dimensionality reduction is shown in orders of magnitude (base 10). Note that, 
although the one-per-message dataset generation technique shows greater re- 
duction, the dimensionality is typically much higher than for the single cluster 
method. Average pre-reduction dimensionality is 26,827 for the one-per-message 
technique and 338 for the single-cluster technique. The resultant rule bases have 
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Discemibility after Attribute Reduction 
Binary, Single Cluster — 

Weighted, Single Cluster — 
Binary, One-per-message -■- 

Weighted, One-per-message  

4 
Number of Corpora 

Fig. 2. Discemibility after dimensionality reduction. 

rules involving one to six preconditions, with the boolean rule bases exhibit- 
ing slightly higher dimensionality due to boolean conditional attributes' lesser 
information content. 

Figure 2 shows the average discemibility in the generated rule bases. A dis- 
cemibility of 1 indicates no loss of information after the RSAR algorithm has 
executed. A classifier employing the rule base in question will, assuming the 
training set is a good statistical sample, achieve a classification accuracy very 
similar to the discemibility of the rule base. As shown in the figure, generating 
one rule for an entire folder of E-mail messages does not allow for good classifica- 
tion. Discemibility can drop to unacceptable levels and varies widely depending 
on the content of the text corpora. By contrast, generating multiple rules allows 
for much better coverage of the feature space — discemibility is high enough to 

Table 2. Average dimensionality reduction in orders of magnitude for all four com- 
binations of operation modes. 

Single cluster   One-per-message 

Boolean 

Weighted 

2.02 

2.29 

3.62 

3.70 
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satisfactory and appears to be almost constant. Binary quantisation seems to 
offer slightly less satisfactory results than the weighted method. 

In terms of the linguistic nature of the rule bases, it is considerably easier 
for a human to read and understand rules that span entire corpora, rather than 
rules that describe single documents. It is also possible to judge the quality of 
the rule base in an intuitive manner, simply by reading it. 

5    Conclusion 

Text classification relies heavily on the acquisition of sets of co-ordinate keywords 
describing documents. This paper has summarised a technique that reduces the 
need to choose a restricted number of good quality keywords by allowing larger 
collections of keywords to be built. The dimensionality of these sets of keywords 
is then reduced with the aid of Rough Set Theory, while maintaining intact the 
information contained in the keyword sets. The technique is efficient, language- 
independent and particularly flexible due to its modular nature. The decrease 
in dimensionality is drastic, due to RSAR's reduction of the keyword set to the 
minimum required for the classification at hand. 

The system can be interfaced to a number of text classifiers to produce highly 
optimised rule-based text classification applications, while still allowing the user 
to read and intuitively understand the rule bases. 

The approach is still in its early states of research, which accounts for the 
less-than-acceptable results of the single-cluster rule generation method. Fur- 
ther investigation into suitable keyword weighting metrics and rule induction 
especially designed for text classification is in progress, as is an actual test-bed 
application of the present technique to the classification of in-coming E-mail 
messages. 
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Abstract. This article describes a way of designing a hybrid system for 
classification and rule generation, in soft computing paradigm, integrat- 
ing rough set theory with a fuzzy MLP using an evolutionary algorithm. 
An /-class classification problem is split into I two-class problems. Crude 
subnetworks are initially obtained for each of these two-class problems 
via rough set theory. These subnetworks are then combined and the final 
network is evolved using a GA with restricted mutation operator which 
utilizes the knowledge of the modular structure already generated, for 
faster convergence. The GA tunes the fuzzification parameters, and the 
network weights and structure simultaneously, by optimizing a single 
fitness function. 

1    Introduction 

Soft Computing is a consortium of methodologies which works synergetically 
(not competitively) and provides, in one form or another, flexible information 
processing capability for handling real life ambiguous situations [1]. There are 
ongoing efforts to integrate artificial neural networks (ANNs) with fuzzy set 
theory, genetic algorithms (GAs), rough set theory and other methodologies in 
the soft computing paradigm [2]. 

Knowledge-based networks [3,4] constitute a special class of ANNs that con- 
sider crude domain knowledge to generate the initial network architecture, which 
is later refined in the presence of training data. Recently, the theory of rough 
sets has been used to generate knowledge-based networks. 

A recent trend in neural network design for large scale problems is to split the 
original task into simpler subtasks, and use a subnetwork module for each of the 
subtasks [5]. The divide and conquer strategy leads to super-linear speedup in 
training. It has been shown that by combining the output of several subnetworks 
in an ensemble, one can improve the generalization ability over that of a single 
large network [6]. 

In the present article an evolutionary strategy is suggested for designing a 
connectionist system, integrating fuzzy sets and rough sets. The basic building 
block is a Rough Fuzzy MLP [7]. The evolutionary training algorithm gener- 
ates the weight values for a parsimonious network and simultaneously tunes 
the fuzzification parameters by optimizing a single fitness function. Rough set 
theory is used to obtain a set of probable knowledge-based subnetworks which 
form the initial population of the GA. These modules are then integrated and 
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evolved with a restricted mutation operator that helps preserve extracted lo- 
calized rule structures as potential solutions. An restricted mutation operator 
is implemented, which utilizes the knowledge of modular structure evolved to 
achieve faster convergence. 

2 Fuzzy MLP 

The fuzzy MLP model [8] incorporates fuzziness at the input and output levels of 
the MLP, and is capable of handling exact (numerical) and/or inexact (linguistic) 
forms of input data. Any input feature value is described in terms of some 
combination of membership values in the linguistic property sets low (L), medium 
(M) and high (H). Class membership values (/u) of patterns are represented at 
the output layer of the fuzzy MLP. During training, the weights are updated by 
backpropagating errors with respect to these membership values such that the 
contribution of uncertain vectors is automatically reduced. 

A single layer feedforward MLP is used. An n-dimensional pattern Fi = 
[Fii, Fi2,...,Fi„] is represented as a 3n-dimensional vector 

Fi = [^low(Fil)(
Fi).---»Mhigh(Fi„)(Fi)] = [yi.y2'-".y3n]   . (!) 

where the n values indicate the membership functions of the corresponding lin- 
guistic 7r-sets low, medium and high along each feature axis and j/f,... ,y%n refer 
to the activations of the 3n neurons in the input layer. 

When the input feature is numerical, we use the 7r-fuzzy sets (in the one 
dimensional form), with range [0,1], represented as 

p(l_ Jlfipll^.for A < HFjF -c|| < A 

<Fl\ c, A) = I 1 - 2(^li)2, for 0 < ||F, - c\\ < f (2) 
( 0  , otherwise  , 

where A(> 0) is the radius of the 7r-function with c as the central point. Note 
that features in linguistic and set forms can also be handled in this framework 
[8]. 

3 Rough Fuzzy MLP 

Here we describe the Rough Fuzzy MLP [7]. Let S =< U,A > be a decision 
table, with C and D = {di,...,di} its sets of condition and decision attributes 
respectively. Divide the decision table <S =< U, A > into I tables Si = < Ui, A{ > 
, t = 1,...,/, corresponding to the I decision attributes di,...,di, where 

U = C/i U ... U Ui and At = CU {df}. 
The size of each Si (i = 1,...,/) is first reduced with the help of a threshold 
on the number of occurrences of the same pattern of attribute values. This will 
be elicited in the sequel. Let the reduced decision table be denoted by Tu and 
{xii,...,Xip} be the set of those objects of Ui that occur in Tt,i = 1,...,/. 
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Now for each dj-reduct B = {bi,..., bk} (say), a discernibility matrix (denoted 
Mrf, (B)) from the di-discernibility matrix is defined as follows: 

Cij = {a£B : a(xt) ^ a(xj)}, _    (3) 

for i,j = 1, ...,n. 
For each object Xj £ Xiiy..., xtp, the discernibility function fd' is defined as 

fd! = A{V(c'i) : * < *- J < n> 3 < »» c«i ^ 0} > (4) 

where V(cy) is tne disjunction of all members of cy. Then /^ is brought to 
its conjunctive normal form (c.n.f). One thus obtains a dependency rule r,-, viz. 
Pi <- di, where P, is the disjunctive normal form (d.n.f) of f^ ,j £i\,...,ip. 

The dependency factor dfi for r,- is given by 

cardjPOSiidi)) 
dfi =       cardiUt)       ' (5) 

where P05,(dj) = Ux€id. '«(-^0> an(^ '»P0 *s tne l<>wer approximation of X 
with respect to 7*. In this case dfi = 1 [7]. 

Consider the case of feature Fj for class c* in the /-class problem domain. 
The inputs for the ith representative sample Fi are mapped to the corresponding 
three-dimensional feature space of /</0U,(F0)(Fi),Mme(f<um(fji)(Fi) and /uWffft(F(J)(Fi), 
by eqn. (1). Let these be represented by £,-, Mj and Hj respectively. Then con- 
sider only those attributes which have a numerical value greater than some 
threshold Th (0.5 < Th < 1). This implies clamping only those features demon- 
strating high membership values with one, while the others are fixed at zero. As 
the method considers multiple objects in a class a separate n* x 3n-dimensional 
attribute-value decision table is generated for each class c* (where n<, indicates 
the number of objects in c*). 

Let there be m sets Oi,...,Om of objects in the table having identical at- 
tribute values, and cord(0,) = n^,« = 1, ...,m, such that n^ > ... > nkm and 
YaiLi nki = nk- The attribute-value table can now be represented as an m x 3n 
array. Let n^ , n^>,..., n«' denote the distinct elements among n^,..., rikm 

such that nk' > njt' > ... > nk'm ■ Let a heuristic threshold function be defined 
as Em 

«—1   TU 

Tr = i + l 

Th 
(6) 

so that all entries having frequency less than Tr are eliminated from the ta- 
ble, resulting in the reduced attribute-value table. Note that the main motive 
of introducing this threshold function lies in reducing the size of the resulting 
network. One attempts to eliminate noisy pattern representatives (having lower 
values ofnki) from the reduced attribute-value table. 

While designing the initial structure of the rough fuzzy MLP, the union of 
the rules of the I classes is considered. The input layer consists of 3n attribute 
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values while the output layer is represented by / classes. The hidden layer nodes 
model the first level (innermost) operator in the antecedent part of a rule, which 
can be either a conjunct or a disjunct. The output layer nodes model the outer 
level operands, which can again be either a conjunct or a disjunct. For each 
inner level operator, corresponding to one output class (one dependency rule), 
one hidden node is dedicated. Only those input attributes that appear in this 
conjunct/disjunct are connected to the appropriate hidden node, which in turn 
is connected to the corresponding output node. Each outer level operator is 
modeled at the output layer by joining the corresponding hidden nodes. Note 
that a single attribute (involving no inner level operators) is directly connected 
to the appropriate output node via a hidden node, to maintain uniformity in 
rule mapping. 

Let the dependency factor for a particular dependency rule for class Ck be 
df = a = 1 by eqn. (5). The weight w^ between a hidden node i and output 
node k is set at -fa + e, where fac refers to the number of outer level operands 
in the antecedent of the rule and e is a small random number taken to destroy 
any symmetry among the weights. Note that fac > 1 and each hidden node 
is connected to only one output node. Let the initial weight so clamped at a 
hidden node be denoted as ß. The weight w°a. between an attribute a, (where 
a corresponds to low (L), medium (M) or high (H) ) and hidden node i is set 
to -S^ + e, such that facd is the number of attributes connected by the cor- 
responding inner level operator. Again facd > 1. Thus for an i-class problem 
domain there are at least I hidden nodes. All other possible connections in the 
resulting fuzzy MLP are set as small random numbers. It is to be mentioned 
that the number of hidden nodes is determined from the dependency rules. 

4    Modular Knowledge-Based Network 

It is believed that the use of Modular Neural Network (MNN) enables a wider 
use of ANNs for large scale systems. Embedding modularity (i.e. to perform local 
and encapsulated computation) into neural networks leads to many advantages 
compared to the use of a single network. For instance, constraining the network 
connectivity increases its learning capacity and permits its application to large 
scale problems [5]. It is easier to encode a priori knowledge in modular neural 
networks. In addition, the number of network parameters can be reduced by using 
modularity. This feature speeds computation and can improve the generalization 
capability of the system. 

We use two phases. First an /-class classification problem is split into I two- 
class problems. Let there be / sets of subnetworks, with 3n inputs and one output 
node each. Rough set theoretic concepts are used to encode domain knowledge 
into each of the subnetworks, using eqns (3)-(6). The number of hidden nodes and 
connectivity of the knowledge-based subnetworks is automatically determined. 
A two-class problem leads to the generation of one or more crude subnetworks, 
each encoding a particular decision rule. Let each of these constitute a pool. So 
we obtain m > I pools of knowledge-based modules. Each pool k is perturbed to 
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generate a total of n* subnetworks, such that ru = ... = n* = ... = nm. These 
pools constitute the initial population of subnetworks, which are then evolved 
independently using genetic algorithms. 

At the end of training, the modules/subnetworks corresponding to each two- 
class problem are concatenated to form an initial network for the second phase. 
The inter module links are initialized to small random values as depicted in 
Fig. 1. A set of such concatenated networks forms the initial population of the 
GA. The mutation probability for the inter-module links is now set to a high 
value, while that of intra-module links is set to a relatively lower value. This sort 
of restricted mutation helps preserve some of the localized rule structures, already 
extracted and evolved, as potential solutions. The initial population for the GA 
of the entire network is formed from all possible combinations of these individual 
network modules and random perturbations about them. This ensures that for 
complex multi-modal pattern distributions all the different representative points 
remain in the population. The algorithm then searches through the reduced 
space of possible network topologies. 

  Ufui] In» 
@ Mo4ife2  litomfened 

vuue 

Fig. 1. Intra and Inter module links 

5    Evolutionary Design 

Genetic algorithms are highly parallel and adaptive search processes based on 
the principles of natural selection. Here we use GAs for evolving the weight 
values as well as the structure of the fuzzy MLP used in the framework of 
modular neural networks. The input and output fuzzification parameters are 
also tuned. Unlike other theory refinement systems which train only the best 
network approximation obtained from the domain theories, the initial population 
here consists of all possible networks generated from rough set theoretic rules. 
This is an advantage because potentially valuable information may be wasted by 
discarding the contribution of less successful networks at the initial level itself. 
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Genetic algorithms involve three basic procedures - encoding of the problem 
parameters in the form of binary strings, application of genetic operators like 
crossover and mutation, selection of individuals based on some objective func- 
tion to create a new population. Each of these aspects is discussed below with 
relevance to our algorithm. 

5.1 Chromosomal Representation 

The problem variables consist of the weight values and the input/output fuzzi- 
fication parameters. Each of the weights is encoded into a binary word of 16 bit 
length, where [000...0] decodes to -128 and [111...1] decodes to 128. An addi- 
tional bit is assigned to each weight to indicate the presence or absence of the 
link. If this bit is 0 the remaining bits are unrepresented in the phenotype. The 
total number of bits in the string is therefore dynamic [9]. Thus a total of 17 bits 
are assigned for each weight. The fuzzification parameters tuned are the centers 
(c) and radius (A) for each of the linguistic attributes low, medium and high of 
each feature (eqn. 2). These are also coded as 16 bit strings in the range [0,2]. 

Initial population is generated by coding the networks obtained by rough 
set based knowledge encoding, and by random perturbations about them. A 
population size of 64 was considered. 

5.2 Genetic Operators 

Crossover It is obvious that due to the large string length, single point 
crossover would have little effectiveness. Multiple point crossover is adopted, 
with the distance between two crossover points being a random variable be- 
tween 8 and 24 bits. This is done to ensure a high probability for only one 
crossover point occurring within a word encoding a single weight. The crossover 
probability is fixed at 0.7. 

Mutation The search string being very large, the influence of mutation is more 
on the search. Each of the bits in the string is chosen to have some mutation 
probability (pmut). This mutation probability however has a spatio-temporal 
variation. The maximum value of pmut is chosen to be 0.4 and the minimum 
value as 0.01. The mutation probabilities also vary along the encoded string, 
with the bits corresponding to inter-module links being assigned a probability 
pmut (i.e., the value of pmut at that iteration) and intra-module links assigned 
a probability pmut/10. This is done to ensure least alterations in the structure of 
the individual modules already evolved. Hence, the mutation operator indirectly 
incorporates the domain knowledge extracted through rough set theory. 

5.3 Choice of fitness function 

In GAs the fitness function is the final arbiter for string creation, and the nature 
of the solution obtained depends on the objective function. An objective function 
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of the form described below is chosen. 

F = aifi+a2f2 , 

where 

_  No. of Correctly Classified Sample in Training Set 

Total No. of Samples in Training Set 

No. of links present 
h — 1 ~ Total No. of links possible 

Here ai and a2 determine the relative weightage of each of the factors, ai is 
taken to be 0.9 and a2 is taken as 0.1, to give more importance to the classifica- 
tion score compared to the network size in terms of number of links. Note that 
we optimize the network connectivity, weights and input/output fuzzification 
parameters simultaneously. 

5.4    Selection 

Selection is done by the roulette wheel method. The probabilities are calculated 
on the basis of ranking of the individuals in terms of the objective function, 
instead of the objective function itself. Fitness ranking overcomes two of the 
biggest problems inherited from traditional fitness scaling : over compression 
and under expansion. 

Elitism is incorporated in the selection process to prevent oscillation of the 
fitness function with generation. The fitness of the best individual of a new gen- 
eration is compared with that of the current generation. If the latter has a higher 
value - the corresponding individual replaces a randomly selected individual in 
the new population. 

6    Implementation and Results 

The genetic-rough-neuro-fuzzy algorithm has been implemented on speech data. 
Let the proposed methodology be termed Model S. Other models compared 

include: 
Model 0: An ordinary MLP trained using backpropagation (BP) with weight 

decay. Model F: A fuzzy multilayer perceptron trained using BP [8] (with weight 
decay). 

Model R: A fuzzy multilayer perceptron trained using BP (with weight de- 
cay), with initial knowledge encoding using rough sets [7]. 

Model FM: A modular fuzzy multilayer perceptron trained with GAs along 
with tuning of the fuzzification parameters. Here the term modular refers to 
the use of subnetworks corresponding to each class, that are later concatenated 
using GAs. 
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A threshold value of 0.5 is applied on the fuzzified inputs to generate the 
attribute value table used in rough set encoding, such that y° = 1 if yf > 0.5 
and 0 otherwise. Here, 50% of the samples are used as training set and the 
network is tested on the remaining samples. 

The speech data Vowel deals with 871 Indian Telegu vowel sounds. These 
were uttered in a consonant-vowel-consonant context by three male speakers in 
the age group of 30 to 35 years. The data set has three features: F\, F2 and F3 

corresponding to the first, second and third vowel formant frequencies obtained 
through spectrum analysis of the speech data. There are six classes 6,a,i,u, e, o. 
These overlapping classes will be denoted by c\, c2, ■ ■ ■,<%. 

The rough set theoretic technique is applied on the vowel data to extract 
some knowledge which is initially encoded among the connection weights of the 
subnetworks. The data is first transformed into a nine dimensional linguistic 
space. 

The dependency rules obtained are : 

ci <- Mi V L3, a <- Mi V M3, c2i- M2V M3, c3 <- (Li A M3) V (Li A H3), 

c4 <- (L2 A M3) V (Li A L2) V (Li A L3) V (L2 A L3) 

Ci^(L2AH3)V(L1AL2)V(L1AL3)V(L2AL3), c5 «~ (Mi AM3)V(#i AM3), 

c5 <- (Hi A M3) V (Hi A H3) V (M3 A H3)c6 «- Li V M3, 

C6 «- Mi V M3, c6 *r- Li V H3, c6 4- Mi V H3. 

The above rules are used to get initial subnetwork modules using the scheme 
outlined in Section 3. The integrated network contains a single hidden layer 
with 15 nodes. In all, 32 such networks are obtained. The remaining 32 networks 
are obtained by small (20%) random perturbations about them, to generate an 
initial population of 64 individuals. 

The performance of Model S along with its comparison with other models 
using the same number of hidden nodes is presented in Table 1. In the first phase 
of the GA (for models FM and S), each of the subnetworks are partially trained 
for 10 sweeps each. It is observed that Model S performs the best with the least 
network size after being trained for only 90 sweeps in the final phase. Comparing 
Models F and R, we observe that the incorporation of domain knowledge in the 
latter through rough sets boosts its performance. Similarly, using the modular 
approach with GA in Model FM improves its efficiency over that of Model F. 
Note that Model S encompasses both models R and FM. Hence it results in the 
least redundant yet effective model. 

7    Conclusions 

A methodology for integrating rough sets with fuzzy MLP using genetic algo- 
rithms for designing a knowledge-based network for pattern classification and 
rule generation is presented. The proposed algorithm involves synthesis of sev- 
eral MLP modules, each encoding the rough set rules for a particular class. These 
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Table 1. Comparative performance of different models for Vowel data 

Models Model 0 Model F Model R Model FM Model S 

Train Test Train Test Train Test Train Test Train Test 

Cl(%) 11.20 8.10 15.70 14.21 44.12 42.41 42.40 32.50 62.20 58.42 

c2(%) 75.71 76.40 82.58 88.41 88.81 87.53 95.02 88.89 100.0 88.89 

c3(%) 80.00 85.48 90.91 92.42 88.41 88.71 90.91 89.50 94.24 92.42 

c4(%) 71.43 65.20 93.22 87.21 88.23 87.44 90.91 90.00 90.20 90.25 

c5(%) 68.57 59.10 80.00 78.57 94.22 93.45 82.21 80.42 85.84 82.42 

c6(%) 76.47 71.10 96.21 93.90 94.45 94.21 100.0 100.0 95.10 94.90 

Net(%) 65.23 64.20 84.36 81.82 86.82 85.81 85.48 82.45 87.21 85.81 

# links 131 210 152 124 84 

Iterations 5600 5600 2000 200 90 

knowledge-based modules are refined using a GA. The genetic operators are im- 
plemented in such a way that they help preserve the modular structure already 
evolved. It is seen that this methodology along with modular network decom- 
position results in superior performance in terms of classification score, training 
time, and network sparseness (thereby enabling easier extraction of rules) as 

compared to earlier hybridizations. 
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Abstract. We consider approximate versions of fundamental notions of 
theories of rough sets and association rules. We analyze the complexity 
of searching for a-reducts, understood as subsets discerning "a-almost" 
objects from different decision classes, in decision tables. We present how 
optimal approximate association rules can be derived from data by using 
heuristics for searching for minimal a-reducts. NP-hardness of the prob- 
lem of finding optimal approximate association rules is shown as well. 
It makes the results enabling the usage of rough sets algorithms to the 
search of association rules extremely important in view of applications. 

1    Introduction 

Theory of rough sets ([5]) provides efficient tools for dealing with fundamental 
data mining challenges, like data representation and classification, or knowledge 
description (see e.g. [2], [3], [4], [8]). Basing on the notions of information system 
and decision table, the language of reducts and rules was proposed for expressing 
dependencies between considered features, in view of gathered information. 

Given a distinguished feature, called decision, the notion of decision reduct is 
constructed over, so called, discernibility matrix ([7]), where information about 
all pairs of objects with different decision values is stored. A reduct is any min- 
imal (in sense of inclusion) subset of non-decision features (conditions) which 
discern all such pairs, necessary to be considered, e.g., with respect to proper 
decision classification of new cases. 

In real applications, basing on such deterministic reducts, understood as 
above, is often too restrictive with respect to discerning all necessary pairs. In- 
deed, deterministic dependencies may require too many conditions to be involved 
to. Several approaches to uncertainty representation of decision rules and reducts 
were proposed to weaken the above conditions (see e.g. [6], [8], [9]). In the lan- 
guage of reducts and their discernibility characteristics, we can say that such 
uncertainty or imprecision can be connected with a ratio of pairs from different 
decision classes which remain not discerned by such an approximate reduct. 

Applications of rough sets theory to the generation of rules, for classifica- 
tion of new cases or representation of data information, are usually restricted 
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to searching for decision rules with a fixed decision feature related to a rule's 
consequence. Recently, however, more and more attention is paid on, so called, 
associative mechanism of rules' generation, where all attributes can occur as in- 
volved to conditions or consequences of particular rules (compare with, e.g., [1], 
[10]). Relationship between techniques of searching for optimal association rules 
and rough sets optimization tasks, like, e.g., the templates generation, were stud- 
ied in [3]. In this paper we would like to focus on approximate association rules, 
analyzing both complexity of related search tasks and their correspondence to 
approximate reducts. 

The reader may pay attention on similarities between construction of proofs 
of complexity results concerning approximate reducts and association rules. We 
believe that presented techniques can be regarded as even more universal for sim- 
ple and intuitive characteristics of related optimization tasks. What even more 
important, however, is the correspondence between the optimization problems 
concerning the above mentioned notions - Although the problems of finding 
both minimal approximate reducts and all approximate reducts are NP-hard, 
the existence of very efficient and fast heuristics for solving them (compare, e.g., 
with [4]) makes such a correspondence very important tool for development of 
appropriate methods of finding optimal approximate association rules. 

The paper is organized as follows: In Section 2 we introduce basic notions 
of rough sets theory and consider the complexity of searching for minimal ap- 
proximate (in sense of discernibility) reducts in decision tables. In Section 3 
we introduce the notion of association rule as strongly related to the notion of 
template, known from rough sets theory. Similarly as in case of approximate 
reducts, we show the NP-hardness of the problem of finding optimal approx- 
imate (in sense of a confidence threshold) association rule corresponding to a 
given template. In Section 4 we show how optimal approximate association rules 
can be searched for as minimal approximate reducts, by using an appropriate 
decision table representation. In Section 5 we conclude the paper with pointing 
the directions of further research. 

2    Approximate reducts 

An information system is a pair § = (U,A), where U is a non-empty, finite set 
called the universe and A is a non-empty, finite set of attributes. Each a £ A 
corresponds to function a : U -> Va, where Va is called the value set of a. Ele- 
ments of U are called situations, objects or rows, interpreted as, e.g., cases, states, 
patients, observations. We also consider a special case of information system: de- 
cision table S = (U,AU {d}), where d ^ A is a distinguished attribute called 
decision and the elements of A are called conditional attributes (conditions). 

In a given information system, in general, we are not able to distinguish all 
pairs of situations (objects) by using attributes of the system. Namely, differ- 
ent situations can have the same values on considered attributes. Hence, any 
set of attributes divides the universe U onto some classes which establish a 
partition of U ([5]). With any subset of attributes B C A we associate a bi- 



139 

nary relation ind(B), called a B-indiscernibility relation, which is denned by 
ind(B) = {{u,u') €U xU: for every a € B, a{u) = a(u')}. 

Let § = (U,A) be an information system. Assume that U = {UI,...,UN}, 
and A = {ai,...,a„}. By M(S) we denote an JV x TV matrix (CJJ), called the 
discernibility matrix of §, such that Cjii7- = {a € A : a(ui) ^ a(uj)} for i, j" = 
1, ...,N. Discernibility matrices are useful for deriving possibly small subsets 
of attributes, still keeping the knowledge encoded within a system. Given § = 
(U, A), we call as a reduct each subset B CA being minimal in sense of inclusion, 
intersecting with each non-empty Cjj, i.e., such that 

vw(cij^0)=»(Bncj#0) 

The above condition states the reducts as minimal subsets of attributes which 
discern all pairs of objects possible to be discerned within an information sys- 
tem. In a special case, for decision table S = (U,A U {d}), we may weaken this 
condition, because not all pairs are necessary to be discerned, to keep knowl- 
edge concerning decision d - we modify elements of corresponding discernibility 
matrix with respect to formula 

[citj = {a € A : a(ui) ^ a(uj)} O d(ui) ^ d(uj)] A [ctj = 0 & d(ui) = d(uj)] 

In this paper we are going to focus on decision tables, so, from now, we will 
understand reducts as corresponding to such modified matrices. 

Extracting reducts from data is a crucial task in view of tending to possibly 
clear description of decision in terms of conditional attributes. In view of the 
above formulas, such a description can be regarded as deterministic, relatively 
to gathered information (one can show that the above definition of reduct in 
a decision table is equivalent to that based on generalized decision functions, 
considered, e.g., in [8]). Still, according to real life applications, we often cannot 
afford to handle subsets of conditions defining d even in such a relative way. 
Thus, in some applications (see e.g. [6]), we prefer to use a-approximations of 
reducts, where a G (0,1] is a real parameter. 

We consider two versions of such approximations. The first of them is related 
to the task of discerning almost all pairs of objects with different decision classes, 
regardless of information provided by conditional attributes: The set of attributes 
B C A is called an a-reduct iff it is minimal in sense of inclusion, intersecting at 
least a • 100% of pairs necessary to be discerned with respect to decision, what 
means that 

\{cij:Bnaj^9}\     >a 

\{(ui,Uj) : d(ui) ^ d(uj)\ ~ 
Appropriate tuning of parameter a in the above inequality provides representa- 
tion of inconsistent information, alternative to approaches based on generalized 
or other decision functions, proposed, e.g., in [8] or [9]. What similar, however, is 
the complexity characteristics, well known for a = 1, of the following problem: 

Theorem 1. For a given a 6 (0,1), the problem of finding the minimal (in sense 
of cardinality) a-reduct is NP-hard with respect to the number of conditional 
attributes. 
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Because of the lack of space, let us just mention that the proof of Theorem 1 
can be obtained by deriving (in polynomial time) the problem of minimal graph 
covering (i.e. the problem of finding minimal set of vertices which cover all edges 
in a given graph) to that considered above. Let us illustrate this derivation with 
the following example: 

Example 1 
Let us consider the Minimal a-Reduct Problem for c = 0.8. We illustrate the proof 
of Theorem 1 by the graph G = (V, E) with five vertices V = {vi, v2, vz, t>4, vs} and 

six edges E = {eue2,e3,e4,e5,e6}. First we compute k = [j^\ = 4- Hence, deci- 
sion table S(G) consists of five conditional attributes {avi, aV2, a„3, ar4, aV6}, de- 
cision a* and (4 + 1)+ 6 = 11 objects {xi,X2,X3,X4,x*,uei,ue2,ue3,uei,ues,ue6}. 
Decision table S(G) constructed from the graph G is presented below: 

S(G) avi aV2 aV3 civ* o«s a 
XI 1 1 1 1 
XI 1 1 1 1 
X3 1 1 1 1 

X4 1 1 1 1 

x' 1 1 1 1 

uei 0 0 1 1 
ue2 0 1 1 0 

U«S 1 0 1 1 

V,e4 1 0 1 0 

1ieB 0 1 0 1 

«e6 1 1 0 1 0 

Analogous result can be obtained for the Minimal Relative a-Reduct Problem, 
where relative a-reducts are understood as subsets B C A being minimal in 
sense of inclusion, satisfying inequality 

\{dj : Bn«j*Q}\ 

IKi 7^0}| 
>a 

In such a case, since procedure illustrated by Example 1 is not appropriate 
any more, we have to use more sophisticated representation of a graph by a 
decision table. Instead of the formal proof, again, let us just modify the previous 
illustration. Appropriate modification can be seen in Example 2 below. 

Although the above results may seem to reduce the possibilities of deal- 
ing with rough set tools in an effective way, a number of random algorithms 
for finding approximately optimal solutions to mentioned problems can be pro- 
posed. The power of heuristics possible to be implemented by using rough set 
algorithmic techniques (see e.g. [4]) is worth remembering because the majority 
of interesting data mining problems is known to be NP-hard as well. Thus, the 
analysis of correspondence between such problems and the search for (approxi- 
mate) reducts can turn out to be very fruitful in view of many applications. 
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Example 2 

In case of the Minimal Rela- 
tive a-Reduct Problem, a = 0.8, 
graph G = (V, E) from the above 
Example can be translated to de- 
cision table S'(G), where, com- 
paring to S(G), we add four new 
conditions ai, 02,03,04. One can 
show that from a given minimal 
relative a-reduct in S'(G) we can 
derive (in a polynomial time with 
respect to the number of condi- 
tions) minimal graph covering for 
G. 

S'(G) aVl o„2 a«3 Ov4 Uvs a', 02 O3 04 a 
Xl 1 1 1 1 1 0 
X2 1 1 1 1 0 
X3 1 1 1 1 
X4 1 1 1 1 

X* 1 1 1 1 

«ei 0 0 1 1 
Ue2 0 1 1 0 
1le3 1 0 1 1 
«e4 

1 0 1 0 
Ues 0 1 0 1 

Ue6 
1 1 0 1 0 

3    Approximate association rules 

Association rules and their generation can be denned in many ways (see [1]). As 
we mentioned in Introduction, we are going to introduce them as related to so 
called templates. 

Given an information table S = (U,A), by descriptors we mean the terms 
of the form (a = v), where a G A is an attribute and v G Va is a value in the 
domain of a (see [4]). The notion of descriptor can be generalized by using terms 
of the form (a G S), where S C Va is a set of values. By a template we mean 
the conjunction of descriptors, i.e. T = D\ A D2 A ... A Dm, where D\, ...Dm are 
either simple or generalized descriptors. We denote by length(T) the number of 
descriptors in T. 

An object u eU satisfies template T = (a^ = «1) A ... A (ajm = vm) if and 
only if VjOij. («) = Vj. Hence, template T describes the set of objects having the 
common property: " the values of attributes a^,..., Ojm on these objects are equal 
to Vi,...,vm, respectively^. The support of T is defined by support(T) = |{ug 
U : u satisfies T}|. 

Long templates with large support are preferred in many Data Mining tasks. 
Regarding on a concrete optimization function, problems of finding optimal large 
templates are known as being NP-hard with respect to the number of attributes 
involved into descriptors, or remain open problems (see e.g. [3]). Nevertheless, 
the large templates can be found quite efficiently by Apriori and AprioriTid al- 
gorithms (see [1], [10]). A number of other methods for large template generation 
has been proposed e.g. in [4]. 

According to the presented notation, association rules can be defined as im- 
plications of the form (P =£■ Q), where P and Q are different simple templates. 
Thus, they take the form 

(a«i = vh) A ... A (ah = vilt) ^ (a^ = «/,) A ... A (ah = vjt) (1) 

Usually, for a given information system S, the quality of association rule Tl — 
P =» Q is evaluated by two measures called support and confidence with respect 
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to S. The support of rule 11 is defined by the number of objects from S satisfying 
condition (P A Q), i.e. 

support{Tl) = support(P A Q) 

The second measure, confidence of 72-, is the ratio of support of (P A Q) and 
support of P, i.e. 

confidence^) = "^^jQ 

The following problem has been investigated by many authors (see e.g. [1], [10]): 

FOR A GIVEN INFORMATION TABLE §, AN INTEGER S, AND A REAL 

NUMBER C € (0,1), FIND AS MANY AS POSSIBLE ASSOCIATION RULES 

Tl = (P =>- Q) SUCH THAT support{Tl) > s AND confidence(Tl) > c. 

All existing association rule generation methods consist of two main steps: 

1. Generate as many as possible templates T = Di A D2- A Dk such that 
support(T) > s and support(T A D) < s for any descriptor D (i.e. maximal 
templates among these which are supported by not less than s objects). 

2. For any template T, search for decomposition T = P A Q such that: 

(a) support^) < auppf(T)> 
(b) P is the smallest template satisfying (a). 

In this paper we show that the second above step can be solved using rough set 
methods. Let us assume that template T = Dx AD2A.. .ADm, which is supported 
by at least s objects, has been found. For a given confidence threshold c e 
(0,1] decomposition T = P A Q is called c-irreducible if confidence^ => Q) > c 
and for any decomposition T = P' A Q' such that P' is a sub-template of P, 
confidence(P' => Q') < c. 

We are especially interested in approximate association rules, corresponding 
to c < 1. The following gives analogy of this case to well known result concerning 
the search for deterministic association rules. 

Theorem 2. For a fixed c € (0,1), the problem of searching for the shortest 
association rule from the template T for a given table S with confidence limited 
by c (Optimal c-Association Rule Problem) is NP-hard, with respect to the length 
ofT. 

The proof of this theorem is similar to that of Theorem 1. We illustrate it by 
example: 

Example 3 
Let us consider the Optimal o-Association Rules Problem for c = 0.8. We illustrate 
the proof of Theorem 2 analogously to the illustration from Example 1, related 
to the proof of Theorem 1. For graph G = (V, E), we compute k = [j^J = 4 like 
previously. The only difference is that instead of decision table S(G) we begin to 
consider information system S"(G), where o* is a non-decision attribute, like the 
others.   
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4    Application of approximate reducts to the search of 
approximate association rules 

In this section we axe going to show that the problem of searching for optimal ap- 
proximate association rules from the given template is equivalent to the problem 
of searching for minimal a-reducts in an appropriately modified decision table. 
We construct new decision table S|T = (U, A\t U d) from original information 
table S and template T as follows: 

1. A|T = {ar>i)Oz)2)—)023m} 1S the set of attributes corresponding to the de- 
.m       ,  ,,   ,       , .      ( 1 if object u satisfies Di, 

scnptors of T, such that aDi (u) = j Q otherwise 

2. Decision attribute d determines whether a given object satisfies template T, 
,. . _ J 1 if object u satisfies T, 
^ ' ~~ \ 0 otherwise. 

The following theorem describes the relationship between the optimal association 
rule and the minimal reduct search problems. 

Theorem 3. For information table § = (U, A), template T, set of descriptors P 
and parameter c e (0,1], implication A^ep^» =*■ AD^P^O 

,S
 
a c-irreducible 

association rule from T iffP is an a-reduct in §|T, for a = 1 - (| - l)/(y ~ 1)> 
where N is the total number of objects in U and s = support(T). In particular, 
the above implication is a deterministic association rule iffP is a reduct in S|T- 

The following example illustrates the main idea of the method based on the 
above characteristics. Let us consider the following information table S with 18 
objects and 9 attributes: 

s Ol 02 «3 Ö4 as 06 o7 08 Og 
Ml 0 1 1 1 80 2 2 2 3 
«2 0 1 2 1 81 0 aa 1 aa 
U3 0 2 2 1 82 0 aa 1 aa 
U4 0 1 2 1 80 0 aa 1 aa 
UB 1 1 2 2 81 1 aa 1 aa 
«6 0 2 1 2 81 1 aa 1 aa 
«7 1 2 1 2 83 1 aa 1 aa 
«8 0 2 2 1 81 0 aa 1 aa 
«9 0 1 2 1 82 0 aa 1 aa 
«10 0 3 2 1 84 0 aa 1 aa 
«11 1 1 2 2 80 0 aa 2 aa 
«12 0 2 3 2 82 0 aa 2 aa 

«13 0 2 2 1 81 0 aa 1 aa 
«14 0 3 2 2 81 2 aa 2 aa 

«IB 0 4 2 1 82 0 aa 1 aa 

«16 0 3 2 1 83 0 aa 1 aa 
«17 0 1 2 1 84 0 aa 1 aa 
«18 1 2 2 1 82 0 aa 2 aa 

S|T Di 
oi =0 

D2 

o3 = 2 
D3 

04 = 1 
£>4 

06 =0 
D5 

08 = 1 
d 

«l 0 1 0 0 0 
«2 1 1 1 1 1 
«3 1 1 1 1 1 
Ui 1 1 1 1 1 
«6 1 0 0 1 0 
«6 0 0 0 1 0 
«7 0 0 0 1 0 
«8 1 1 1 1 
«9 1 1 1 1 
«10 1 1 1 1 
«11 1 0 0 0 
«12 0 0 0 0 
«13 1 1 1 1 
«14 1 0 0 0 
«IB 1 1 1 1 
«16 1 1 1 1 
«17 1 1 1 1 
«18 0 1 1 0 0 
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Assume that template 

T = (oi = 0) A (o3 = 2) A (a4 = 1) A (a6 = 0) A (a8 = 1) 

has been extracted from information table S. One can see that support(T) = 10 
and length(T) = 5. Decision table S|T is presented below: 

A A A =» A A A A A 
A A A =*• A A A A A 

M(S|T) «2, «3, «4, «8, «9 

«10, «13, «IB, «16, «17 

= 100% =*■ 

A A A A A =>■ -D4 A A 
A A A A A =>• A A A 

«1 A V A V A A A A A A =>• D3 A D4 

«6 D1VD3V A £>1 A Z>3 A £>4 =*• i?2 A £>B 

«6 A V A V A 
«7 A V A V A V A 

=   90% =>• 

£>i A £)2 => I>3 A £>4 A Ds 

Mil D1VD3V A £>i A £)3 =► i>3 A Di A As 

«12 A V A V A Di A At =!► D2 A £>3 A A 

«14 A V A V A A A A =>■ A A A A A 

«18 A VA A A A =► A A A A A 
A A A =*• A A A A A 
A A A =!► A A A A A 

The discernibility function / corresponding to matrix M(S|T) is the following: 

/ = (D2 V Di V As) A (£>i V As V DA) A (£>2 V As V £>4) A (A. V A V A V A) 
A(A v A v A) A (A v A v A) A (A v A v A) A (A v A) 

After simplification we obtain six reducts: / = (As A A) V (A A A) V (A A 
A A A) V (A A A A A) V (A A A A A) V (A A A A A) for decision table 
§|T- Thus, we have found from T six deterministic association rules with full 
confidence. 

For c = 0.9, we would like to find a-reducts for decision table §|T, where 
a = 1 - -§^- — 0.86. Hence we search for a set of descriptors covering at least 

\{n - s)(a)l = 18 ■ 0.86] = 7 elements of discernibility matrix M(S|T)- One 
can see that each of the following sets {A, A}, {A, A}, {A, A}, {A, A}, 
{A, A } > {A, A }, {A, A } intersects with exactly 7 members of discernibility 
matrix M(S|T)- In the above table we present all association rules achieved from 
these sets. 

The problems of finding both minimal a-reducts and all a-reducts are NP- 
hard, so we usually cannot afford for such exhaustive computations like these 
presented above. However, one should remember that the above is just an illus- 
trative example and in real life applications we can use very efficient and fast 
heuristics for solving a-reduct problems (see e.g. [4] for further references). In 
particular, it makes presented derivation very important tool for development of 
appropriate methods of finding optimal approximate association rules. 
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5    Conclusions 

Searching for minimal a-reducts is well known problem in Rough Sets theory. A 
great effort has been involved to solve these problems. One can find numerous 
applications of a-reducts in the knowledge discovery domain. In this paper we 
have shown, that the problem of searching for the shortest a-reducts is NP-hard. 
We also investigated the application of a-reducts to association rule generation. 
Still, further development of the language of association rules is needed for appli- 
cations. In the next papers we are going to present such a development, together 
with new, rough set based algorithms for the association rule generation. 

Acknowledgements Supported by ESPRIT project 20288 CRIT-2 and KBN 
Research Grant 8T11C02412. 
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Abstract. Rough sets proved to be very useful for analysis of decision 
problems concerning objects described in a data table by a set of condition 
attributes and by a set of decision attributes. In practical applications, however, 
the data table is often not complete because some data are missing. To deal with 
this case, we propose an extension of the rough set methodology. The 
adaptation concerns both the classical rough set approach based on 
indiscernibility relations and the new rough set approach based on dominance 
relations. While the first approach deals with multi-attribute classification 
problems, the second approach deals with multi-criteria sorting problems. The 
adapted relations of indiscernibility or dominance between two objects are 
considered as directional statements where a subject is compared to a referent 
object having no missing values. The two rough set approaches handling the 
missing values boil down to the original approaches when the data table is 
complete. The rules induced from the rough approximations are robust in a 
sense that each rule is supported by at least one object with no missing values 
on condition attributes or criteria used by the rule. 

1 Introduction 

The rough sets philosophy introduced by Pawlak [5, 6] is based on the assumption 
that with every object of the universe there is associated a certain amount of 
information (data, knowledge), expressed by means of some attributes used for object 
description. It proved to be an excellent tool for analysis of decision problems [7, 10] 
where the set of attributes is divided into disjoint sets of condition attributes and 
decision attributes describing objects in a data table. 

The key idea of rough sets is approximation of knowledge expressed by decision 
attributes using knowledge expressed by condition attributes. The rough set approach 
answers several questions related to the approximation: (a) is the information 
contained in the data table consistent? (b) what are the non-redundant subsets of 
condition attributes ensuring the same quality of approximation as the whole set of 
condition attributes? (c) what are the condition attributes which cannot be eliminated 
from the approximation without decreasing the quality of approximation? (d) what 
minimal"if..., then..." decision rules can be induced from the approximations? 
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The original rough set approach is not able, however, to discover and process 
inconsistencies coming from consideration of criteria, i.e. condition attributes with 
preference-ordered scales. For this reason, Greco, Matarazzo and Slowinski [1,2] 
have proposed a new rough set approach that is able to deal with inconsistencies 
typical to consideration of criteria and preference-ordered decision classes. This 
innovation is mainly based on substitution Of the indiscernibility relation by a 
dominance relation in the rough approximation öf decision classes. An important 
consequence of this fact is a possibility of inferring from exemplary decisions the 
preference model in terms of decision rules being logical statements of the type "//.., 
then..". The separation of certain and doubtful knowledge about the decision 
maker's preferences is done by distinction of different kinds of decision rules, 
depending whether they are induced from lower approximations of decision classes 
or from the boundaries of these classes composed of inconsistent examples that do 
not observe the dominance principle. Such preference model is more general than the 
classical functional or relational model in multi-criteria decision making and it is 
more understandable for the users because of its natural syntax. 

Both the classical rough set approach based on the use of indiscernibility relations 
and the new rough set approach based on the use of dominance relations suffer, 
however, from another deficiency: they require the data table to be complete, i.e. 
without missing values on condition attributes or criteria describing the objects. 

To deal with the case of missing values in the data table, we propose an adaptation 
of the rough set methodology. The adaptation concerns both the classical rough set 
approach and the dominance-based rough set approach. While the first approach deals 
with multi-attribute classification, the second approach deals with multi-criteria 
sorting. Multi-attribute classification concerns an assignment of a set of objects to a 
set of pre-defined classes. The objects are described by a set of (regular) attributes and 
the classes are not necessarily ordered. Multi-criteria sorting concerns a set of objects 
evaluated by criteria, i.e. attributes with preference-ordered scales. In this problem, 
the classes are also preference-ordered. 

The adapted relations of indiscernibility or dominance between two objects are 
considered as directional statements where a subject is compared to a referent object. 
We require that the referent object has no missing values. The two adapted rough set 
approaches maintain all good characteristics of their original approaches. They also 
boil down to the original approaches when there are no missing values. The rules 
induced from the rough approximations defined according to the adapted relations 
verify some suitable properties: they are either exact or approximate, depending 
whether they are supported by consistent objects or not, and they are robust in a sense 
that each rule is supported by at least one object with no missing value on the 
condition attributes or criteria represented in the rule. 

The paper is organized in the following way. In section 2, we present the extended 
rough sets methodology handling the missing values. It is composed of four sub- 
sections - first two are devoted to adaptation of the classical rough set approach based 
on the use of indiscernibility relations; the other two undertake the adaptation of the 
new rough set approach based on the use of dominance relations. In order to illustrate 
the concepts introduced in section 2, we present an illustrative example in section 3. 
Section 4 groups conclusions. 
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2 Rough approximations defined on data tables with missing values 

For algorithmic reasons, the data set about objects is represented in the form of a data 
table. The rows of the table are labelled by objects, whereas columns are labelled by 
attributes and entries of the table are attribute-values, called descriptors. 

Formally, by a data table we understand the 4-tuple S=<U,Q,V,f>, where U is a 
finite set of objects, Q is a finite set of attributes, V = [JVq and Vq is a domain of 

qeQ 

the attribute q, and f:UxQ-»V is a total function such that f(x,q)eVqu{*} for every 

q€Q, xeU, called an information function. The symbol "*" indicates that the value 
of an attribute for a given object is unknown (missing). 

If set Q is divided into set C of condition attributes and set D of decision 
attributes, then such a data table is called decision table. If the domain (scale) of a 
condition attribute is ordered according to a decreasing or increasing preference, then 
it is a criterion. For condition attribute qeC being a criterion, Sq is an outranking 
relation [8] on U such that xSqy means "x is at least as good as y with respect to 
criterion q". We suppose that Sq is a total preorder, i.e. a strongly complete and 
transitive binary relation, defined on U on the basis of evaluations f(-,q). The 
domains of "regular" condition attributes are not ordered. 

We assume that the set D of decision attributes is a singleton {d}. Decision 
attribute d makes a partition of U into a finite number of classes Cl={Clt, teT}, 
T={l,...,n}, such that each xeU belongs to one and only one ClteCl. The domain of 
d can be preference-ordered or not. In the former case, we suppose that the classes 
are ordered such that the higher is the class number the better is the class, i.e. for all 
r,seT, such that r>s, the objects from Clr are preferred (strictly or weakly) to the 
objects from CIS. More formally, if S is a comprehensive outranking relation on U, 
i.e. if for all x,yeU, xSy means "x is at least as good as y", we suppose: [xeClr, 
yeCls, r>s] => [xSy and not ySx]. These assumptions are typical for consideration of 
a multi-criteria sorting problem. 

In the following sub-sections of this section we are considering separately the 
multi-attribute classification and the multi-criteria sorting with respect to the problem 
of missing values. The first idea of dealing with missing values in the rough set 
approach to the multi-attribute classification problem in the way described below has 
been given in [3]. 

2.1 Multi-attribute classification problem with missing values 

For any two objects x,yeU, we are considering a directional comparison of y to x; 
object y is called subject and object x, referent. We say that subject y is indiscernible 
with referent x with respect to condition attributes PcC (denotation ylpx) if for every 
qeP the following conditions are met: 
■ f(x,q)**, 
■ f(x,q)=f(y,q)orf(y,q)=*. 

The above means that the referent object considered for indiscernibility with 
respect to P should have no missing values on attributes from set P. 
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The binary relation IP is not necessarily reflexive because for some xeU there may 
exist qeP for which f(x,q)=* and, therefore, we cannot state xIPx. Moreover, IP is also 
not necessarily symmetric because the statement yIPx cannot be inverted if there exist 
qeP for which f(y,q)=*. However, IP is transitive because for each x,y,zeU, the 
statements xIPy and yIPz imply xIPz. This is justified by the observations that object z 
can substitute object y in the statement xIPy because yIPz and both y and z, as referent 
objects, have no missing values. 
For each PcC let us define a set of objects having no missing values on qeP: 

UP={xeU: f(x,q)** for each qeP}. 
It is easy to see that the restriction of IP to UP (in other words, the binary relation 

lPnUPxUP defined on UP) is reflexive, symmetric and transitive, i.e. it is an 
equivalence binary relation. 

For each xeU and for each PcQ let IP(x)={yeU: yIPx} denote the class of objects 
indiscernible with x. Given XeU and PcQ, we define lower approximation of X with 
respect to P as 

IP(X)={xeUP: IP(x)cX}. (1) 
Analogously, we define the upper approximation of X with respect to P as 

IP(X)={xeUP:IP(x)nX*0}. (2) 

Let us observe that if xgUP then IP(x)=0 and, therefore, we can also write 

Ip(X)={xeU:IP(x)nX*0}. 

Let XP=XnUP. For each XeU and for each PcC: IP(X)cXPcIP(X) {rough 

inclusion) and IP(X)=UP-IP(U-X) (complementarity). 

The ^-boundary of X in S, denoted by BnP(X), is equal to BnP(X)= IP (X) - IP(X). 
BnP(X) constitutes the "doubtful region" of X: according to knowledge expressed 

by P nothing can be said with certainty about membership of its elements in the set X. 
The following concept will also be useful [9]. Given a partition C1={C1„ teT}, 

T={l,...,n}, of U, the P-boundary with respect to k>l classes {Clt,,...,Cl,k}c 
{Clb...,Cln} is defined as 

/ 
BdP({Cltl,...,Cltk}) = 

/ N 
DBnP(cit) h      n(U-BnP(Clt)) 

\j*tl tk ^t=tl tk ^ 

The objects from BdP({Cl„,...,Cltk}) can be assigned to one of the classes 
Clth...,Cltk but P provides not enough information to know exactly to what class. 
Let us observe that a very useful property of lower approximation within classical 
rough sets theory is that if an object xeU belongs to the lower approximation with 
respect to PcC, then x belongs also to the lower approximation with respect to RcC 
when PcR (this is a kind of monotonicity property). However, definition (1) does not 
satisfy this property of lower approximation, because it is possible that f(x,q)** for all 
qeP but f(x,q)=* for some qeR-P. This is quite problematic with respect to definition 
of some key concepts of the rough sets theory, like quality of approximation, reduct 
and core. 

Therefore, another definition of lower approximation should be considered to 
restore the concepts of quality of approximation, reduct and core in the case of 
missing values. Given XeU and PcQ, this definition is the following: 
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I*P(X)=UIR(X). (3) 
RcP 

Ip (X) will be called cumulative P-lower approximation of X because it includes 

all the objects belonging to all R-lower approximations of X, where RcP. 

It can be shown that another type of indiscernibility relation, denoted by IP, 
permits a direct definition of the cumulative P-lower approximation in a classic way. 

For each x,yeU and for each PcQ, y Ip x means that f(x,q)=f(y,q) or f(x,q)=* and/or 

f(y,q)=*, for every qeP. Let iP (x)={yell: y \? x} for each xeU and for each PcQ. 

Ip is a reflexive and symmetric but not transitive [4]. Let us observe that the 

restriction of IP to Ur> is reflexive, symmetric and transitive whenup={xeU: 

f(x,q)** for at least one qeP}. 

Theorem 1. {Definition (3) expressed in terms of IP )  Ip (X)={xe Up>: IE> (X)CX}. 

Using iP we can give definition of the P-upper approximation of X: 

Ip(X)={xeuP: I*P(x)nX*0}. (4) 

For each XcU, let X*p =Xn UP • Let us remark that xe UP if and only if there 
exists R*0 such that RcP and xeUR. For each XcU and for each PcC: 

Ip (X)c xp c Ip (X) (rough inclusion) and lp (X)= UP - Ip (U-X) (complementarity). 

The P-boundary of X approximated with iP is equal to BnP (X)= IP (X) - Ip (X). 

Given a partition Cl={CIt, teT}, T={l,...,n}, of U, the P-boundary with respect to 
k>l classes {CltI,...,Cltk}c {Cl|,...,Cln} is defined as 

/■ 

BdP({Cltl,...,Cltk}) = nBn;(ci,)]n[ n(u-Bn;(ci,)j|. 
t=tl,...,tk / t*tl,...,tk 

The objects from BdP({Clt|,...,Cltk}) can be assigned to one of the classes 
Clt),...,Cl,k , however, P and all its subsets provide not enough information to know 
exactly to what class. 

Theorem 2. (Monotonicity of the accuracy of approximation) For each XcU and 

for each P,TcC, such that PcT, the following inclusion holds:   i) Ip (X) c IT (X). 

Furthermore, if UP 
= UT >tne following inclusion is also true:   ii) IP (X)3 iT (X). 

Due to Theorem 2, when augmenting a set of attributes P, we get a lower 
approximation of X that is at least of the same cardinality. Thus, we can restore for 
the case of missing values the key concepts of the rough sets theory: accuracy and 
quality of approximation, reduct and core. 

2.2     Decision rules for multi-attribute classification with missing values 

Using the rough approximations (1), (2) and (3), (4), it is possible to induce a 
generalized description of the information contained in the decision table in terms of 
decision rules. These are logical statements (implications) of the type "//..., then...", 
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where the antecedent (condition part) is a conjunction of elementary conditions 
concerning particular condition attributes and the consequence (decision part) is a 
disjunction of possible assignments to particular classes of a partition of U induced 
by decision attributes. Given a partition Cl={Cl„ teT}, T={l,...,n}, of U, the syntax 
of a rule is the following: 

"//f(x,q,) = rq, and f(x,q2) = r^ and... f(x,qp) = rqp, then x is assigned to Cl,, or 
Clt2 or... CV, 

where  {q,,q2,...,qp}cC, (rql,rq2,...,rqp)eVqlxVq2x...xVqp and  {Clt,,Clt2,...,Cltk}c{Cl,, 
C12,...,C1„}. If the consequence is univocal, i.e. k=l, then the rule is exact, otherwise it 
is approximate or uncertain. 

Let us observe that for any Clte{Cl|,Cl2,-,Cln} and PcQ, the definition (1) of P- 
lower approximation of Clt can be rewritten as: 

Ip(Clt)={xeUP: for each yeU, z/yIPx, then yeCt,}. (1') 
Thus the objects belonging to the lower approximation IP(C1,) can be considered as 

a basis for induction of exact decision rules. 
Therefore, the statement "//f(x,q,) = rq, and f(x,q2) = rq2 and... f(x,qp) = rqp, then 

x is assigned to Clt", is accepted as an exact decision rule iff there exists at least one 

ye Ip(Clt), P={q,,...,qp}, such that f(y,q,) = rq, and f(y,q2)=rq2 and ... f(y,qP)=rclp. 

Given {Cl„,...,Cltk}s{Cli,Cl2,...,Cln} we can write: 
BdP({Cltl,...,Cltk})={xeUP: for each yeU, if y\ex, then yeC\ti or ... Cltk}.   (2') 
Thus, the objects belonging to the boundary BdP({Cl,,,...,Cl,k}) can be considered 

as a basis for induction of approximate decision rules. 
Since each decision rule is an implication, a minimal decision rule represents such 

an implication that there is no other implication with an antecedent of at least the 
same weakness and a consequent of at least the same strength. 

We say that yeU supports the exact decision rule if [f(y,qO=rqi and/or f(y,qi)=*] 
and [f(y,q2)=rq2 and/or f(y,q2)=*] ... and [f(y,q„)=rqp and/or f(y,qp)=* ] and yeClt. 
Similarly, we say that yeU supports the approximate decision rule if [f(y,qi)=rqi 
and/or f(y,q,)=*]  and  [f(y,q2)=rq2  and/or f(y,q2)=*]  ...  and  [f(y,qp)=rqp  and/or 

f(y,qP)=*] and ye Bd*c({Cltl,...,Cltk}). 
A set of decision rules is complete if it fulfils the following conditions: 

- each xe 1^ (Clt) supports at least one exact decision rule suggesting an assignment 

toCl„ for each ClteCl, 

- each xe Bdc({Clti,...,Cltk}) supports at least one approximate decision rule 
suggesting an assignment to Cl,i orClt2 or ... Cltk, for each {Clti,Clt2,...,Cltk}c 
{Cl„Cl2,...,Cln}. 

We call minimal each set of minimal decision rules that is complete and non- 
redundant, i.e. exclusion of any rule from this set makes it non-complete. 

2.3 Multi-criteria sorting problem with missing values 

Formally, for each qeC being a criterion there exists an outranking relation [8] Sq on 
the set of objects U such that xSqy means "x is at least as good as y with respect to 
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criterion q". We suppose that Sq is a total preorder, i.e. a strongly complete and 
transitive binary relation defined on U on the basis of evaluations f(-,q). Precisely, we 
assume that xSqy iff f(x,q)>f(y,q). 

Also in this case, we are considering a directional comparison of subject y to 
referent x, for any two objects x,yeU.   We say that subject y dominates referent x 

with respect to criteria PcC (denotation yDp"x) if for every criterion qeP the 
following conditions are met: 
•     f(x,q)**, 
■ f(y,q)>f(x,q)orf(y,q)=*. 

We say that subject y is dominated by referent x with respect to criteria PcC 

(denotation x Dp"y) if for every criterion qeP the following conditions are met: 

■ f(x,q>**, 
■ f(x,q)>f(y,q)orf(y,q)=*. 

The above means that the referent object considered for dominance Dp and Dp" 
should have no missing values on criteria from set P. 

The binary relations Dp and Dp" are not necessarily reflexive because for some 
xeU there may exist qeP for which f(x,q)=* and, therefore, we cannot state neither 

xDpx nor xDpX. However, Dp and Dp   are transitive because for each x,y,zeU, 

(i) xDjy and yDpz imply xDpz, and (ii) xDp"y and yDp"z imply xDpz . 
Implication (i) is justified by the observation that object z can substitute object y in 

the statement xDp"y because yDpz and both y and z, as referent objects, have no 
missing values. As to implication (ii), object x can substitute object y in the statement 

y Dpz because x Dpy and both x and y, as referent objects, have no missing values. 
For each PcC we restore the definition of set Up from sub-section 2.1. It is easy to 

see that the restrictions of Dp and Dp" to UP (in other words, the binary relations 

Dp nUpxUp and DpnUPxUP defined on UP) are reflexive and transitive, i.e. they are 
partial preorders. 

The sets to be approximated are called upward union and downward union of 
preference-ordered classes, respectively: 

Clf=Ucls,   Clf= UC1S,  t=l,...,n. 
s>t s<t 

The statement  Clf = UCis   means "x belongs at least to class Cl,", while 
s>t 

Clf = UCIs means "x belongs at most to class Clt". 
sst 

Let us remark that Clf = Cln=U, Cln=Cln and Clf=Cli- Furthermore, for 

t=2,...,n, we have cif =U- Clf   and ein =U- Clf • 
Given PcC and xeU, the "granules of knowledge" used for approximation are: 

- a set of objects dominating x, called V-dominating set, Dp(x)={y€U: y Dp x}, 
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- a set of objects dominated by x, called P'-dominatedset, Dp(x) ={yeU: x Dp y}- 

For any PcC we say that xeU belongs to Clf without any ambiguity if xe Clf 

and for all the objects yell dominating x with respect to P, we have ye Clf, i.e. 

Dp(x)cClf • Furthermore, we say that xeU could belong to Clf if there would 

exist at least one object ye Clf dominated by x with respect to P, i.e. ye Dp(x). 

Thus, with respect to PcC, the set of all objects belonging to Clf without any 

ambiguity constitutes the P-lower approximation of Clf, denoted by P(Clf), and the 

set of all objects that could belong to Clf constitutes the P-upper approximation of 

Clf, denoted by P(Clf), fort=l,...,n: 

P(Clf)={xeUP:DMx)£Clf}, C5'1) 

P(Clf) = {xeUP:D?(x)ncif*0}. (5.2) 
Analogously, one can define P-lower approximation and P-upper approximation 

of cif,fort=l,...,n: 

P(Clf)={xeUP:Dp(x)£Clf}, (6-1) 

P(Clf)={xeUP:Dp(x)nClf*0}- (6-2) 
Let (Clf)p=ClfnUP and (Clf )p=Clf nUP, t=l,...,n. For each  Clf  and  Clf, 

t=l,...,n, and for each PcC:    P(Clf )c(cif )PcP(Clf), P(Clf )c(Clf )pcP(Clf) 

(rough inclusion). Moreover, for each Clf, t=2,...,n, and Clf, t=l,...,n-l, and for 

each PcC:  P(Clf) = UP-P(Clf_,),  P(Clf) = UP-P(Clf+1) (complementarity). 

The P-boundaries (P-doubtful regions) of Clf and Clf are defined as: 

BnP(cif)=P(Clf)-P(Clf),     BnP(Clf)=P(Clf)-P(Clf),    fort=l,...,n. 
Due to complementarity of the rough approximations [1], the following property 

holds: BnP(cif)=BnP(clf-i), fort=2,...,n, and BnP(cif )=BnP(Clf+,), fort=l,...,n-l. 
To preserve the monotonicity property of the lower approximation (see sub- 

section 2.1) it is necessary to use another definition of the approximation for a given 
Clf and clf ,t=l,...,n, and for each PcC: 

P(Clf)*=  UR(Clf), (7-1) 
RcP 

P(Clf)*=  UR(Clf). (7-2) 
RQP 

P(Clf)* and P(Clf)* will be called cumulative P-lower approximations of unions 

Clf and Clf, t=l,...,n, because they include all the objects belonging to all R-lower 

approximations of Clf and Clf, respectively, where RcP. 

It can be shown that another type of dominance relation, denoted by DP , permits a 
direct definition of the cumulative P-lower approximations in a classical way. For 
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each x,yeU and for each PcQ, yDp* means that f(y,q)>f(x,q) or f(x,q)=* anoVor 
f(y,q)=*, for every qeP. 

Given PcC and xeU, the "granules of knowledge" used for approximation are: 

- a set of objects dominating x, called F'-dominating set, Dp* (x)={yeU: y Dp x}, 

- a set of objects dominated by x, called P-dominated set, Dp* (x)={yeU: x Dp y}- 

Dp is reflexive but not transitive. Let us observe that the restriction of DP to Up 

is reflexive and transitive when up ={xeU: f(x,q)** for at least one qeP}. 

Theorem 3. (Definitions (7.1) and (7.2) expressed in terms of Dp) 

P(Clf)*={x€Up: Df*(x)cClf},  P(Clf)*={xeuP: Dp*(x)cClf}. 

Using Dp we can give definition of the P-upper approximations of Clf and Clj", 

complementary to P(Clf)* and P(Clj")*, respectively: 

P(Clf)*={xeuP: Dp*(x)nClf*0}, (8.1) 

P(Clf)*={xeu*P: Dp"*(x)nClf*0}. (8.2) 

For each ClfcU and ClfcU, let (Clf )* = Clf OU'P and (Clf )* = Clf nu'P . 

Let us remark that xe UP if and only if there exists R*0 such that RcP and xeUR. 

For each Clf and Clf. t=l,...,n, and for each PcC: P(Clf)*c(Clf)*cP(Clf)*, 

P(Clf)*c(Clf)*cP(Clf)* (rough inclusion). Moreover, for each Clf, t=2,...,n, 

and Clf, t=l,...,n-l, and for each PcC: P(Clf)* = UP-P(Clf_,)*, P(Clf)* = UP- 

P(Clj[+|)   (complementarity). 

The P-boundary of and Clf, t=l,...,n, approximated with DP are equal, 

respectively, to Bn; (Clf )=P(Clf)*-P(Clf)*, Bn^cif )=P(Clf )*-P(Clf )* . 

Theorem 4. (Monotonicity of the accuracy of approximation) For each Clf and 

Clf, t=l,...,n, and for each P,RcC, such that PcR, the following inclusions hold: 

P(Clf)*cR(Clf)*,  P(Clf)*cR(Clf)*. 

Furthermore, if UP 
= UT , the following inclusions are also true: 

P(Clf )*3R(Clf)*,  P(Clf )*3R(Clf )*. 
Due to Theorem 4, when augmenting a set of attributes P, we get lower 

approximations of Clf and Clf, t=l,...,n, that are at least of the same cardinality. 
Thus, we can restore for the case of missing values the key concepts of the rough sets 
theory: accuracy and quality of approximation, reduct and core. 

For every teT and for every PcC we define the quality of approximation of 
partition Cl by set of attributes P, or in short, quality of sorting: 
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card 

Yp(Cl) =  

*   / u UBn*p(cifj|)    card  U-| UBnp(cif) 
vteT ;; _ v VteT 

card(U) card(u) 
The quality expresses the ratio of all P-correctly sorted objects to all objects in the 
decision table. 

Each minimal subset PcC such that yP(ci)=yc(Cl) is called a reduct of Cl and 

denoted by REDC) (C). Let us remark that a decision table can have more than one 

reduct. The intersection of all reducts is called the core and denoted by COREa (C). 

2.4     Decision rules for multi-criteria sorting with missing values 

Using the rough approximations (5.1), (5.2), (6.1), (6.2) and (7.1), (7.2), (8.1), 
(8.2), it is possible to induce a generalized description of the information contained in 
the decision table in terms of"//..., then..." decision rules. 

Given the preference-ordered classes of partition CI={C1,, teT}, T={l,...,n}, of 
U, the following three types of decision rules can be considered: 
1) D>-decision rules with the following syntax: 

"// f(x,q,)>rq, and f(x,q2)>rq2 and ...f(x,qp)>rqp, then xe Clf ", 
where P={q,,...,qp}eC, (rqi,...,rqp)eVq,xVq2x...xVqpand teT; 

2) D<-decision rules with the following syntax: 

"// f(x,q,)<rq, Wf(x,q2)<rq2 and... f(x,qp)<rqp, then xe Clf", 
where P={q,,...,qp}c:C, (rq,,...,rqp)eVqixVq2x...xVqpand teT; 

3) D><-decision rules with the following syntax: 

"// f(x,q,)>rql and f(x,q2)>rq2 and ... f(x,qk)>rqk and f(x,qk+|)<rqk+l and ... 
f(x,qp)<rqp, then xeClsuCls+iU...uClt", 

where  0'={q,,...,qk}cC,  0"={qk+l,...)qp}cC)  P=0'uO",  O'  and  O"  not 
necessarily disjoint, (rqi,...,rqp)eVq|xVq2x...xVqp, s,teT suchthat s<t. 

As it is possible that {q:,...,qk}n{qk+i,...,qp}?i0, in the condition part of a Das- 

decision rule we can have "f(x,q)>rq" and "f(x,q)<r'q", where rq<r'q, for some qeC. 
Moreover, if rq=r'q, the two conditions boil down to "f(x,q)=rq". 

Since each decision rule is an implication, by a minimal decision rule we 
understand such an implication that there is no other implication with an antecedent 
of at least the same weakness and a consequent of at least the same strength. 

We say that an object supports a rule if its evaluation by set C of criteria matches 
the condition part of the rule. 

A set of decision rules is complete if it fulfils the following conditions: 

- each ye C(Clf )* supports at least one Da-decision rule of the type "j/T(x,qi)>rql 

and f(x,q2)>rq2 and... f(x,qp)>rqp, then xe C\f", with r,te{2,...,n} and r>t, 

- each >>€ C(Clf )* supports at least one D<-decision rule of the type "//f(x,qi)<rq, 

andf(x,q2)<rq2 and... f(x,qp)<rqp, then xe Cl« "> witn u,te{l,...,n-l} and u<t, 
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- each ys C(Clf )*nC(Clf )* supports at least one D^-decision rule of the type 

"// f(x,q,)>rq, and f(x,q2)>rq2 and ... f(x,qk)>rqk and f(x,qk+1)<rqk+, and ... 
fCx.qp^rqp, then xeClvuClv+1u...uCIz", with s,t,v,zeT and v<s<t<z. 

Let us remark that application of any complete set of decision rules on the objects 
from the data table results in either exact or approximate reassignment of these 
objects to the classes Clt, t€T. Let us explain this reassignment in more detail. 

Given a complete set of rules, and an object yeU, such that ygBnc[Clf J and 

y g Bnc (Cl^ j for any seT, the following situations may occur: 

- yeCIt, t=2,...,n-l; then there exists at least one D£-decision rule with consequent 

x e Clf, and at least one D<-decision rule with consequent x € Clf ; 

- yeCli; then there exists at least one Ds-decision rule with consequent x e Clf ; 

- yeCln; then there exists at least one Dä-decision rule with consequent x e Cl„. 
In all above situations, intersection of all unions (upward and downward) of 

classes suggested for assignment in the consequent of rules matching object y will 
result in (exact) reassignment of y to class Cl,, teT. 

Similarly, for each object ye C(Clf )*nC(Clf )*, s<t, such that yiC{C\^{f r\ 

C(Clfi)*, sl<[<]s and t<[<]tl, which means that y belongs exclusively to boundaries 

Bnc(Cly), v=s+l,...,t, and  Bn£(Clf), z=s,...,t-l, there exists at least one D>£- 

decision rule whose consequent is xeClsuCls+|U...uCl,. Thus, in result of 
application of the complete set of rules to object y, it will be reassigned 
(approximately) to classes ClsuCls+lu...uClt. 

We call minimal each set of minimal decision rules that is complete and non- 
redundant, i.e. exclusion of any rule from this set makes it non-complete. 

3   Conclusions 

We adapted the rough sets methodology to the analysis of data sets with missing 
values. The adaptation concerns both the classical rough set approach based on the 
use of indiscernibility relations and the new rough set approach based on the use of 
dominance relations. While the first approach deals with multi-attribute classification 
problems, the second approach deals with multi-criteria sorting problems. The two 
adapted rough set approaches maintain all good characteristics of their original 
approaches. They also boil down to the original approaches when there are no 
missing values. 

The case of missing values is very often met in practice and not many methods 
can deal satisfactorily with this problem. The way of handling the missing values in 
our approach seems faithful with respect to available data because the decision rules 
are robust in the sense of being founded on objects existing in the data set and not on 
hypothetical objects created by putting some possible values instead of the missing 
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ones. This is a distinctive feature of our extension in comparison with the extension 
proposed by Kryszkiewicz [4]. 
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Abstract. The gRS-ILP model (generic Rough Set Inductive Logic 
Programming model) provides a framework for Inductive Logic Program- 
ming when the setting is imprecise and any induced logic program will 
not be able to distinguish between certain positive and negative exam- 
ples. However, in this rough setting, where it is inherently not possible to 
describe the entire data with 100% accuracy, it is possible to definitively 
describe part of the data with 100% accuracy. The gRS-ILP model is 
extended in this paper to motifs in strings. An illustrative experiment 
is presented using the ILP system Progol on transmembrane domains in 
amino acid sequences. 

Keywords: Rough Set Theory; Inductive Logic Programming; Machine Learn- 
ing; Knowledge Discovery from Data; Molecular biology; 

1    Introduction 

Inductive Logic Programming [1] is the research area formed at the intersection 
of logic programming and machine learning. Inductive Logic Programming (in 
the example setting) uses background knowledge definite clauses, and positive 
and negative example ground facts to induce a logic program that describes the 
examples, where the induced logic program consists of the original background 
knowledge along with an induced hypothesis (as definite clauses). 

Rough set theory [2,3] defines an indiscernibility relation, where certain sub- 
sets of examples cannot be distinguished. A concept is rough when it contains at 
least one such indistinguishable subset that contains both positive and negative 
examples. It is inherently not possible to describe the examples accurately, since 
certain positive and negative examples cannot be distinguished. 

The gRS-ILP model [4] introduces a rough setting in Inductive Logic Pro- 
gramming and describes the situation where the background knowledge, declara- 
tive bias and evidence are such that it is not possible to induce any logic program 
from them that is able to distinguish between certain positive and negative ex- 
amples. Any induced logic program will either cover both the positive and the 
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negative examples in the group, or not cover the group at all, with both the 
positive and the negative examples in this group being left out. 

The gRS-ILP model has useful applications in the definitive description of 
large data. Knowledge discovery in databases is the non-trivial process of identi- 
fying valid, novel, potentially useful, and ultimately understandable patterns in 
data([5]). This usually involves one of two different goals: prediction and descrip- 
tion. Prediction involves using some variables or fields in the database to predict 
unknown or future values of other variables of interest. Description focuses on 
finding human-interpretable patterns describing the data. Definitive description 
is the description of the data with full accuracy. In a rough setting, it is not 
possible to definitively describe the entire data, since some of the positive exam- 
ples and negative examples (of the concept being described) inherently cannot 
be distinguished from each other. 

Conventional systems handle a rough setting by using various techniques to 
induce a hypothesis that describes the evidence as well as possible. They aim to 
maximize the correct cover of the induced hypothesis by maximizing the number 
of positive examples covered and negative examples not covered. This means 
that most of the positive evidence would be described, along with some of the 
negative evidence. The induced hypothesis cannot say with certainty whether 
an example definitely belongs to the evidence or not. However, the gRS-ILP 
model lays a firm theoretical foundation for the definitive description of data in 
a rough setting. A part of the data is definitively described. The rest of the data 
can then be described using conventional methods, but not definitively. 

This paper extends the gRS-ILP model to motifs in strings, and reports an 
illustrative experiment using Progol on transmembrane domains in amino acid 
sequences. 

2    Formal definitions of the gRS-ILP model 

The generic Rough Set Inductive Logic Programming (gRS-ILP) model intro- 
duces the basic definition of elementary sets and a rough setting in ILP [6,4]. 
The essential feature of an elementary set is that it consists of examples that 
cannot be distinguished from each other by any induced logic program in that 
ILP system. The essential feature of a rough setting is that it is inherently not 
possible for the consistency and completeness criteria to be fulfilled together, 
since both positive and negative examples are in the same elementary set. The 
basic definitions formalised in [7] follow. 

2.1    The RSILP system 

We first formally define the ILP system in the example setting of [8] as follows. 

Definition 2.1. An ILP system in the example setting is a tuple Ses = (Ees, B), 
where 
(1) Ees = E+ U E~ is the universe, where E+ is the set of positive examples 
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(true ground facts), and E~a is the set of negative examples (false ground facts), 
and 
(2) B is a background knowledge given as definite clauses such that (i) for all 
er G E-, B\/e-, and (ii) for some e+ G E+, Bi/e+.D 

Let Se3 = {Ees, B) be an ILP system in the example setting. Then let W(Ses) 
(also written as H(Ees,B)) denote the set of all possible definite clause hypothe- 
ses that can be induced from Ees and B, and be called the hypothesis space 
induced from 5es (or from Ees and B). Further, let V(Ses) (also written as 
V(Ees, B) = {P = BAH\He H{Ees,B)}) denote the set of all the programs 
induced from Ees and B, and be called the program space induced from Ses (or 
from Ees and B). 

Our aim is to find a program P G V(Ses) such that the next two conditions 
hold: (iii) for all e~ G E~, P\/e~, (iv) for all e+ € E+, P\~e+. 

The following definitions of Rough Set ILP systems in the gRS-ILP model 
(abbreviated as RSILP systems) use the terminology of [8]. 

Definition 2.2. An RSILP system in the example setting (abbreviated as 
RSILP-E system) is an ILP system in the example setting, Ses = (Ees,B), such 
that there does not exist a program P G V(Ses) satisfying both the conditions 
(iii) and (iv) above. D 

Definition 2.3. An RSILP-E system in the single-predicate learning context 
(abbreviated as RSILP-ES system) is an RSILP-E system, whose universe E is 
such that all examples (ground facts) in E use only one predicate, also known 
as the target predicate. □ 

A declarative bias [8] biases or restricts the set of acceptable hypotheses, and 
is of two kinds: syntactic bias (also called language bias) that imposes restrictions 
on the form (syntax) of clauses allowed in the hypothesis, and semantic bias that 
imposes restrictions on the meaning, or the behaviour of hypotheses. 

Definition 2.4.   An RSILP-ES system with declarative bias (abbreviated as 
RSILPBSD system) is a tuple S =(S',L), where 
(i) 5' = (E, B) is an RSILP-ES system, and 
(ii) L is a declarative bias, which is any restriction imposed on the hypothesis 
space H{E,B). 
We also write S = (E, B, L) instead of S = (5', L). O 

For any RSILP-ESD system S = {E, B, L), let 
H{S) = {H £ 7i(E,B) | H is allowed by L}, and 
V{S) = {P = BAH\He H(S)}. 
H(S) (also written as H{E, B, L)) is called the hypothesis space induced from S 
(or from E, B, and L). V(S) (also written as V(E,B,L)) denotes the set of all 
the programs induced by S, and is called the program space induced from S (or 
from E, B, and L). 
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2.2    Equivalence relation, elementary sets and composed sets 

We now define an equivalence relation on the universe of an RSILP-ESD system. 

Definition 2.5. Let S = (E, B, L) be an RSILP-ESD system. An indiscerni- 
bility relation of S, denoted by R{S), is a relation on E defined as follows: 
Vx,yeE, {x,y)eR(S)ift 
(P h x <& P \~ y) for any P G V{S) (i.e. iff x and y are inherently indistinguish- 
able by any induced logic program P in V(S)). D 

The following fact follows directly from the definition of R(S). 

Fact 1 For any RSILP-ESD system S, R(S) is an equivalence relation. 

Definition 2.6.   Let S = (E,B,L) be an RSILP-ESD system. An elementary 
set of R(S) is an equivalence class of the relation R(S). For each x G E, let 
[
X

]R(S) denote the elementary set of R(S) containing x. Formally, 
[x}R{s) = {yeE\(x,y)eR(S)}. 
A composed set of R(S) is any finite union of elementary sets of R(S). □ 

Definition 2.7.   An RSILP-ESD system S = {E, B, L) is said to be in a rough 
setting iff 
Be+£E+   3e-eE~   ( (e+,e~) G R{S) ). D 

We now define a combination of declarative biases. 
Let S = {E,B) be an RSILP-ES system. Let Lu L2 and L3 be declarative 

biases. L\ A L2 (resp., Lx V L2) denotes the declarative bias such that H(S') = 
W(5i)nW(S2) (resp., W(5") = H{Si) U H{S2)), where 5' = {E,B,LXAL2), 
S" = {E,B,LxW L2), Si = {E,B,Li) and 52 = {E,B,L2) are RSILP-ESD 
systems. 

Li A L2 A L3 (resp., (Li A L2) V L3) denotes the declarative bias such that 
H(S'") = W(Si) n H(S2) n W(53) (resp., W(S"") = (W(Si) n W(S2)) U W(53)), 
where 5'" = {E,B,LXM2M3), S"" = {E,B, (Lx Ai2) VL3), 5i = {E,B,LX), 
S2 = {E,B,L2) and 53 = {E,B,L3) are RSILP-ESD systems. Li V L2 V L3, 
(Li V L2) A L3, ..., etc. are defined similarly. 

2.3    Consistency and completeness in the gRS-ILP model 

Let S = {E,B,L) be an RSILP-ESD system, and V{S) the program space 
induced by S. 

Definition 2.8. The upper approximation of 5, Upap(S), is defined as the least 
composed set of R(S) such that E+ C Upap{S). D 

Definition 2.9.    The Zower approximation of 5, Loap{S), is defined as the 
greatest composed set of i?(S) such that Loap(S) C £+. D 

The set Bndr(S) = Upap(S) - Loap(S) is known as the boundary region of 
5 (or the borderline region of 5). The lower approximation of 5, Loap(S), is also 
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known as Pos(S), the positive region of S. The set Neg(S) = E — Upap(S) is 
known as the negative region of S. 

Definition 2.10.   The consistent program space VCOns(S) of S is defined as 

Vcons{S) = {Pe V{S) \P\fe-, Ve- G E~}. 
A program P £V(S) is consistent with respect to S iff P G VCOns{S)- 
The reverse-consistent program space Vrev-Cons{S) of 5 is defined as 

Vrev-c<ms{S) = {P G P(S) I ^ ^e+, Ve+ G £+}. 
A program P G V{S) is reverse-consistent w.r.t.   5 iff P G TVeu-con«^)- □ 

Definition 2.11.   The complete program space VComP{S) of S is defined as 

Vcomp(S) = {Pe V(S) | P h e+, Ve+ G .B+}. 
A program P G P(5) is complete with respect to S iff P G VCOmp(S). □ 

Definition 2.12.   The cower of a program P G P(5) in 5 is defined as 

cover{S, P) = {e G E \ P V- e}. G 
The following facts follow directly from the definitions. 

Fact 2 VP G VconsiS), cover{S,P) C Loap(5). 

Fact 3 VP G Vcomp(S), cover{S,P) D Upap{S). 

Fact 4 VP G PComP(S), (E - cover(S,P)) C (£? - Upap(S)). 

Fact 5 VP G -Pre„-conS(S), cot;er(5,P) C (£? - Upap{S)). 

Fact 6 VP G Pcons(5), P h e =► e G E+. 

Fact 7 VP G PcompCS1), P\/e=>eeE-. 

Fact 8 VP G Pre„_co™(S), P I- e => e G £-. 

These facts are used in a rough setting for the definitive description of data. 
Definitive description involves the description of the data with 100% accuracy. 
In a rough setting, it is not possible to definitively describe the entire data, 
since some of the positive examples and negative examples (of the concept being 
described) inherently cannot be distinguished from each other. These facts show 
that definitive description is possible in a rough setting when an example is 
covered by a consistent program (the example is then definitely positive), covered 
by a reverse-consistent program (the example is then definitely negative), or is 
not covered by a complete program (the example is then definitely negative). 

2.4    Some useful declarative biases 

Let Lpi be the declarative bias such that for any RSILP-ESD system 5 = 
(E,B,Lpi), H G H(S) => head predicate of C is the target predicate, for any 
C G H (predicate invention is not allowed), 
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let Lrd be the declarative bias such that for any RSILP-ESD system S = 
(E,B,Lrd), H G H{S) =>■ head predicate of C is not in the body of C, for 
any C G H (directly recursive definition is not allowed), and 
let Leu be a declarative bias such that for any RSILP-ESD system S — (E, B, Leu), 
H e H(S) =*> e g C for any e G E and any CeH. 

Let V be any set of ground atoms. Let pred(V) denote the set of predicate 
symbols used in V. For each A C pred(V), let VA = {q(...) G V | q G A}, and 
pZaceHsi(yl) = {(g, i) | g € A, and 1 < i < nq where nq is the arity of q}. Let ß be 
any background knowledge of an RSILP-ES system. For each Z C placelist(A), 
where A C pred(B), let Lz be the declarative bias such that, for any RSILP-ES 
(E, B) with B as the background knowledge: 
MH eH{E,B,Lz), MCeH 
[q{ti, ■ ■ ■ ,tn) G C=> [q 6 A AVi G {!,..., n) [(q,i) eZ=>U is a variable]]]. 

3    The gRS-ILP model and motifs in strings 

3.1    Definition of a motif-RSILP-ESD system 

Let £ be a finite alphabet of letters. A string over £ is any sequence of finite 
length composed of letters from E. We use E+ to denote the set of all the strings 
over £. Let the term substring of a string have its usual meaning. (Note that the 
characters in a substring of a string x must occur contiguously in x.) If r (G £+) 
is a substring of a string s (G E+), then r is called a positive motif of s. If r is 
not a substring of the string s, then r is called a negative motif of s. 

Definition 3.13. We define a motif-RSILP-ESD system as a 2-tuple S = 
(5', {£lf £2, ■■■, En}), for some finite n > 1, where: 
(1) each Ei, 1 < i < n, is a finite alphabet of letters, and 
(2) S' = {E,B,L) is an RSILP-ESD system such that 
(i) E is the universe of examples consisting of a unary predicate, say p, 
(ii) B is the background knowledge consisting of ground unit clauses, using the 
following three predicates: strings (of arity, say m), contains and abstains (both 
of arity 2), where for any p(x) G E: 

(a) strings(x, si, s2, ■ • ■. sm-i) G -B => Si, s2, • • •, «m-i are attribute strings 
of the example p(x), 
where for each 1 < j < m - 1, Sj G Ef for some 1 < i < n, 

(b) contains(r, s) G B =» r (e ^) is a positive motif of attribute string 
s (G £:•"), 1 < i <n, and 

(c) abstains{r,s) G B => r (G 27t) is a negative motif of attribute string 
s (G £■/■), 1 < i < n, and 
(iii) L is the declarative bias L = Lz A Lpj A Lrd A Leu) 
where A = {strings, contains, abstains} = pred(B) and Z = {(strings, 1), 
(strings, 2),..., (strings,m), (contains, 2), (abstains, 2)}. D 

It is seen that the motif-RSILP-ESD system is an R-RSILP-ESD system 
studied in [7]. 
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It is to be noted that the model can be expressed in an alternate manner, with 
B using 2-arity predicates of the form di(x, s\), d2(x,S2), ■ ■ ■, dm-i(x,sm-i), 
rather than the single m-arity predicate strings(x, si,s2, ■ ■ ■, sm-i)- Lz is then 
suitably modified with A = {di,d2, ■■■ ,dm-i> contains, abstains} and Z = 
{(di, 1), (di, 2),..., (dm_i, 1), {dm-i, 2), (contains, 2), (abstains, 2)}. 

3.2    An example 

We now consider an illustration of a motif-RSILP-ESD system. 
The Protein Identification Resource database [9] contains amino acid se- 

quences, with the FEATURE field for each sequence indicating where the trans- 
membrane domains are located within the sequence. The amino acid sequences 
are cut into substrings in such a manner that positive example attribute strings 
are entirely within transmembrane domains, and negative example attribute 
strings are entirely outside transmembrane domains. 

The identification of transmembrane domains from amino acid sequences is 
described in [10]. A decision tree is learnt that can classify any new attribute 
string as a transmembrane domain. The simple form 'xAy' of a regular pattern 
language [10] is used in the nodes of a decision tree, 'x' and 'y' are variable sub- 
strings and 'A' is a given fixed substring (the motif). The decision tree consists 
of leaf nodes (labelled with the resulting class) and internal nodes (labelled with 
a regular pattern of the form 'xAy')- At an internal node, the decision tree tests 
if the attribute string matches the regular pattern. The 'Y' path of the node of 
the decision tree is taken when the attribute string is of the form 'xAy', that 
is, the motif 'A' is contained in the attribute string; and the 'N' path taken 
otherwise. 

The simple form 'xAy' of a regular pattern language determines whether a 
given motif 'A' is 'contained' in the attribute string. The 'contains' operator has 
been studied in detail in [11]. The 'contains' and 'abstains' operators are used 
in [12,13] to learn transmembrane domains from amino acid sequences. The 
'contains' operator is true when the motif is contained in the attribute string 
and false otherwise. The operator 'abstains' is the opposite of contains, and is 
true when the motif is not contained in the attribute string. 

The Kyte and Doolittle hydropathy index [14] of an amino acid is used to 
distinguish the amino acids into three distinct categories. The twenty symbol 
amino acid sequences are transformed into three symbol strings by assigning 
each amino acid symbol to one of the following three distinct categories: amino 
acids with positive hydropathy index (1.8 to 4.5) (*), with slightly negative 
hydropathy index (-1.6 to -0.4) (+), and those with very negative hydropathy 
index (-4.5 to -3.2) (-). Ex is an alphabet of the 3 letters +, - and *. S2 is an 
alphabet of 3 letters a, b, n according to whether the amino acid is acidic, basic 
or neutral. 

That is, let Ex = {+,-,*} and E2 = {a,b,n}. 
LetE={p(el),p(e2),p(e3)}. 
Let B = {siTOi0s(el,+++-++,aaaaaa), string s(e2,++-,za.b), strings(e3,++-,aba), 
contains(++,+++-++), contains(+-,+++-++), contains(-+,+++-++),..., 



165 

abstains(+*,+++-++),... ,contains(&, aaaaaa), contains (a, aab),..., 
abstains(b, aaaaaa),...}. 
Let L = Lz A Lpi A Lrd A Leu,where A = pred(B) and Z = {(strings,!), 
(strings,2), (strings, 3), (contains,2), (abstains,2)}. 

5 = (S", £i, 272), where S' = (E, B, L), is a motif-RSILP-ESD system. 

3.3    Experimental illustration 

583 positive and 583 negative examples of the transmembrane data from PIR 
[9] are used in this experimental illustration. The amino acid sequences are con- 
verted into three symbol strings based on the Kyte and Doolittle hydropathy 
index of the amino acid as described above. This is the same translation mech- 
anism used initially in [10]. The symbols 0, 1 and 2 are used instead of the 
symbols *, + and -, respectively, that are used in [10]. Motif length of 2 is used. 

Progol is an Inductive Logic Programming system written in C by Dr. Mug- 
gleton [15]. The syntax for examples, background knowledge and hypothesis is 
Dec-10 Prolog. Headless Horn clauses are used to represent negative examples 
and constraints. Progol source code and example files are freely available (for 
academic research) from ftp.cs.york.ac.uk under the appropriate directory 
in pub/ML_GROUP. Progol version 4.4 dated 25.08.98 is used in this study. 

Since only one type of string is used in this experimental illustration, a sim- 
plified form of the motif-RSILP-ESD system is used. The background knowl- 
edge B consists of predicates such as c(pl,s22) or a(pl,s22), when the motif 
'22' (equivalent to '—') is present or not present, respectively, in the attribute 
string of example tm(pl). The positive examples (E+) are given as 'tm(pl).' 
to 'tm(p583).' and the negative examples (E~) are given as ':- tm(nl).' to 
': - tm(n583).' Appropriate mode declarations are used in Progol to incorporate 
the required declarative bias L. Let S = (E,B,L). 

The first step is any conventional Progol experiment using the data set. Con- 
ventionally, the aim is to maximise the correct cover of both positive and negative 
examples (in other words, try to increase the number of positive examples cov- 
ered and decrease the number of negative examples covered). Let this induced 
program be known as P for the purpose of this outline. 

The second step uses Progol with the default noise setting of zero, where 
any induced hypothesis is consistent and cannot cover any negative example. 
Let this induced consistent program be PCOns ■ 

The induced hypothesis of Pcons follows. 

tm(A) 
tm(A) 
tm(A) 
tm(A) 
tm(A) 
tm(A) 

a(A,sll), a(A,sl2), a(A,s22). 
a(A,s20), a(A,s21), c(A,sl2). 
a(A,sl2), a(A,s22), c(A,s21). 
a(A,sl2), a(A,s20), c(A,s22). 
a(A,s02), a(A,sll). 
a(A,sll), a(A,s21), a(A,s22). 



tm(A) 
tm(A) 
tm(A) 
tm(A) 
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a(A,sll), a(A,s20). 
a(A,sl2), a(A,s20),   c(A,s02). 
a(A,s02), a(A,sl2),   c(A,s20). 
a(A,slO), a(A,s21). 

The third step is to determine a reverse-consistent program denoted by 
Prev-cons, by exchanging the roles of E+, E~, and then repeating step 2. The 
induced hypothesis of P7 rev—cons follows. 

tm(A) 
tm(A) 
tm(A) 

- a(A.sOO). 
- a(A,slO),   c(A,s21). 
- a(A,s01),   c(A,s22). 

The results are tabulated below. 

\E+\ \E-\ \E\ \cover(S, PCOns)\ \cOVer(S, PTev-cons)\ 

583 583 1166 249 55 

Using Facts 6 and 8 we have the following. 
If Peons I- e, then e G E+. 

If Prev-cons H e, then e G E~. 

Otherwise P is used: 
If P h e, then it is very likely that e G E+\ 
else if P \/ e, then it is very likely that e G E~. 

249 out of 583 positive examples are definitively described by Pa 

out of 583 negative examples are definitively described by Prev-cons- 
and 55 

Earlier systems conventionally do not use PCOns and Prev-cons- They han- 
dle the rough setting by inducing P to maximize correct cover by maximizing 
the number of positive examples covered and negative examples not covered. 
However, this does not definitively describe the data, since P cannot say with 
certainty whether an example definitely belongs to the evidence or not. When 
the gRS-ILP model is used, Pcons and Prev-cons are induced to definitively de- 
scribe part of the data. The rest of the data can be described by P, but not 
definitively. 

4    Conclusions 

The gRS-ILP model is extended to motifs in strings. An illustrative experiment 
is presented regarding the definitive description of transmembrane domains from 
amino acid sequences using Progol. Possibilities for further work include exten- 
sions of the gRS-ILP model to areas other than definitive description, such as 
prediction, and to other application areas. 
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Abstract. Inductive Logic Programming (ILP) is a relatively new method 
in machine learning. Compared with the traditional attribute-value learn- 
ing methods, it has some advantages (the stronger expressive power and 
the ease of using background knowledge), but also some weak points. One 
particular issue is that the theory, techniques and experiences are much 
less mature for ILP to deal with imperfect data than in the traditional 
attribute-value learning methods. This paper applies the Rough Set the- 
ory to ILP to deal with imperfect data which occur in large real-world 
applications. We investigate various kinds of imperfect data in ILP and 
identify a subset of them to tackle. Namely, we concentrate on incomplete 
background knowledge (where essential predicates/clauses are missing) 
and on indiscernible data (where some examples belong to both sets of 
positive and negative training examples), proposing rough problem set- 
tings for these cases. The rough settings relax the strict requirements in 
the standard normal problem setting for ILP, so that rough but useful 
hypotheses can be induced from imperfect data. 

1    Introduction 

Inductive Logic Programming (ILP, see [2, 6, 7, 8]) is a relatively new method 
in machine learning. ILP is concerned with learning from examples within the 
framework of predicate logic. ILP is relevant to Knowledge Discovery and Data 
Mining (KDD), and compared with the traditional attribute-value learning meth- 
ods (the main stream in KDD community up to date), it possesses the following 

advantages: 

- ILP can learn knowledge which is more expressive than that by the attribute- 
value learning methods, because the former is in predicate logic while the 
latter is usually in propositional logic. 

- ILP can utilize background knowledge more naturally and effectively, be- 
cause in ILP the examples, the background knowledge, as well as the learned 
knowledge are all expressed within the same logic framework. 

However, when applying ILP to KDD, we can identify some weak points com- 
pared with the traditional attribute-value learning methods, such as: 

- It is more difficult to handle numbers (especially continuous values) prevail- 
ing in real-world databases, because predicate logic lacks effective means for 

this. 
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- The theory, techniques and experiences are much less mature for ILP to deal 
with imperfect data (uncertainty, incompleteness, vagueness, impreciseness, 
etc. in examples, background knowledge as well as the learned rules) than in 
the traditional attribute-value learning methods (see [3,13,15], for instance). 

In [4], we suggested Constraint Inductive Logic Programming (CILP), an 
integration of ILP and CLP (Constraint Logic Programming), as a solution for 
the first problem mentioned in the above. 

This paper addresses the second problem, applying the Rough Set theory to 
ILP to deal with some kinds of imperfect data which occur in large real-world ap- 
plications. Namely, we concentrate on incomplete background knowledge (where 
essential predicates/clauses are missing) and on indiscernible data (where some 
examples belong to both sets of positive and negative training examples), propos- 
ing rough problem settings for these cases. The rough settings relax the strict 
requirements in the standard normal problem setting for ILP, so that rough but 
useful hypotheses can be induced from imperfect data. 

This paper is organized as follows: First in Section 2 we give the standard 
problem setting for ILP which assumes that everything is correct and perfect. 
Section 3 lists various kinds of imperfect data in ILP and identifies a subset of 
them to tackle in this paper. Section 4 is a brief review of some part of the 
Rough Set theory, which is relevant to our purpose in this paper. Section 5 
proposes rough problem settings for incomplete background knowledge and for 
indiscernible data, and discusses the related work. Finally in Section 6 we sum- 
marize our work and point out the future research directions. 

2    The Normal Problem Setting for ILP 

We follow the notations of "[8]. Especially, supposing C is a set of clauses {c\, c-i,...}, 
we use C to denote the set {~ci,~C2,...}. The normal problem setting for ILP 
can be stated as follows: 

Given the positive examples E+ and the negative examples E~ (both are 
sets of clauses) and the background knowledge B (a finite set of clauses), 
ILP is to find a theory H (a finite set of clauses) which is correct with 
respect to E+ and E~. That demands: 
- VegB+iJ U B (= e (completeness wrt. E+); 
- H U B U E~ is satisfiable (consistency wrt. E~). 

The above ILP problem setting is somewhat too general. In most of the ILP 
literature, the following simplifications are assumed: 

— Single predicate learning. The concept to be learned is represented by a 
single predicate p (called the Target predicate). Examples are instances of the 
target predicate p and the induced theory is the defining clauses of p. Only 
the background knowledge B may contain definitions of other predicates 
which can be used in the defining clauses of the target predicate. 
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- Restricted within definite clauses. All clauses contained in B and H are 
definite clauses, and the examples are ground atoms of the target predicate. 
We can prove that in this case the condition of consistency has an equivalent 
form: supposing that E is a set of definite clauses, E~ is a set of ground 
atoms, then E is consistent with respect to E~ if and only if Veeg--^1 W e- 
This form is more operational than the general condition (i.e., E U E~ is 
satisfiable). 

This paper also takes these simplifications. For the convenience of later refer- 
ence, here we restate the (simplified) normal problem setting for ILP in a more 
formal way: 

Given: 

- The target predicate p. 
- The positive examples E+ and the negative examples E~ (two sets of ground 

atoms of p). 
- Background knowledge B (a finite set of definite clauses). 

To find: 

- Hypothesis H (the defining clauses of p) which is correct with respect to E+ 

and E~, that is, 

1. H U B is complete with respect to E+ (i.e. Ve6B+# U S (= e). We also 
say that HUB covers all positive examples. 

2. HUB is consistent with respect to E~ (i.e. Ve€B- H U B ft e). We also 
say that HUB rejects any negative examples. 

To make the ILP problem meaningful, we assume the following prior condi- 
tions: 

- B is not complete with respect to E+. (Otherwise there will be no learning 
task at all, because the background knowledge itself is the solution). 

- BUE+ is consistent with respect to E~ (Otherwise there will be no solution 
to the learning task). 

In the above normal problem setting for ILP, everything is assumed correct 
and perfect. But in large, real-world empirical learning, data are not always 
perfect. In contrary, uncertainty, incompleteness, vagueness, impreciseness, etc. 
are frequently observed in training examples, in background knowledge, as well 
as in the induced hypothesis. Thus ILP has to deal with imperfect data. In 
this aspect, the theory, measurement, techniques and experiences are much less 
mature for ILP than in the traditional attribute-value learning methods. This 
paper addresses this problem, focusing on the potential role of the Rough Set 
theory in it. 
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3    Imperfect Data in ILP 

We distinguish five kinds of imperfect data encountered in ILP: 

1. Imperfect output 
In ILP, even the input data (examples and background knowledge) are "per- 
fect" , there are usually more than one hypotheses which can be induced and 
the preferential order among hypotheses is an important issue. If the input 
data is imperfect (see below), the situation is more serious: we have imperfect 
hypotheses. At present, quantitative measures associated with hypotheses in 
ILP are not as rich as those of the attribute-value learning [15]. 

2. Noise data 
This includes erroneous argument values in examples, and/or erroneous clas- 
sification of examples as belonging to E+ or E~. The ILP community has 
made some advances in noise-handling, using heuristics to avoid overly spe- 
cific hypotheses which will have low prediction accuracy (see [2] for details). 
The ideas come from the similar techniques developed within the attribute- 
value learning framework. 

3. Too sparse data 
This means that the training examples are too sparse to induce reliable 
hypothesis H. The noise-handling mechanisms mentioned above usually also 
take care of too sparse data. Zhong[16,17] proposes a mechanism considering 
unseen instances, which can be also extended to ILP. 

4. Missing data 

(a) Missing values 
This means that some arguments of some examples have unknown values. 
A simple way to deal with this problem is to induce a missing value from 
other examples (e.g. the value occurring in the same argument place of 
the majority of other examples). 

(b) Missing predicates 
This means that the background knowledge B lacks essential predicates 
(or essential clauses of some predicates) so that no non-trivial hypothesis 
H can be induced. (Note that E+ itself can be always regarded as a 
hypothesis, but it is trivial). Especially, even though a large amount 
of positive examples are given, some examples are not generalized by 
hypotheses if some background knowledge is missing. This is a big topic 
in the research area of ILP. In recent study of Muggleton, has taken some 
important steps in the field of ILP [5]. 

5. Indiscernible data 
This means that some examples belong to both E+ and E~. In this case, the 
prior condition 2' (B U E+ is consistent with respect to E~) in the normal 
setting is not satisfied, so there will be no solution to the learning task. 

As the above list clearly shows, imperfect data handling is a too vast task 
to tackle in one paper. In the following of this paper, we will concentrate on 
item 4(b) (Missing predicates) and item 5 (Indiscernible data). In both cases, 
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the requirement in the normal problem setting of ILP that H should be "correct 
with respect to E+ and E~" needs to be relaxed, otherwise there will be no 
(meaningful) solutions to the ILP problem. We will give rough problem settings 
in the cases of missing predicates and indiscernible data, using concepts from 
the Rough Set theory [9, 10]. 

4    Rough Set Theory 

The Rough Set theory is a powerful mathematical model of imprecise infor- 
mation. For reader's convenience, here we review some concepts in the theory 
[9, 10, 14] which are relevant to our rough problem settings of ILP presented in 
the next section. 

Approximation space A = (U, R). Here U is a set (called the universe) and 
R is an equivalence relation on U (called an indiscernibility relation). In fact, U 
is partitioned by R into equivalence classes, elements within an equivalent class 
are indistinguishable in the approximation space A. 

Lower and upper approximations. For an equivalence relation R, the lower 
and upper approximations of X C U are denned by 

ASLA(
X

) =   U Mfi = {*etf|MflCX} (i) 
[x]RCX 

äWA(X)=    U   [*]R = {*eu\[x]Rnx?o} (2) 
[x]RnXjto 

where [x]R denotes the equivalence class containing x. Furthermore, AprA(X) 
can be simply denoted as Apr(X) when A is implicit. 

Boundary. BndA(X) = AprA(X) - AgrJX) is called the boundary of X in 

A. 
Rough membership. 

- element x surely belongs to X in A if x G AprA(X); 

- element x possibly belongs to X in A if x G AprA(X); 
- element x surely does not belong to X in A if x £ AprA(X). 

5    Rough Problem Settings for ILP 

5.1    Rough Problem Setting for Missing Predicates/Clauses 

Considering the following ILP problem (adapted from [1]): 

Given: 

- The target predicate "customer(Name, Age, Sex, Income)" 
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— The positive examples JE1"1" : 

customer(a, 30, female, 1). 
customer(b, 53, female, 100). 
customer(d, 50, female, 2). 
customer(e, 32, male, 10). 
customer(f, 55, male, 10). 

— The negative examples E~ : 

customer(c, 50, female, 2). 
customer(g, 20, male, 2). 

- Background knowledge B defining predicate "married_to(Husband, Wife)" 
by 

married_to(e, a). 
married_to(f, d). 

To find: 

- Hypothesis H (the definition of customer/4) which is correct with respect 
to E+ and E~. 

The normal problem setting (see Section 2) is perfectly suitable for this prob- 
lem, and an ILP system can induce the following hypothesis H (a Prolog program 
defining customer/4): 

customer(N, A, S, I) :- I > 10. 
customer(N, A, S, I) :- married_to(N', N), customer(N', A', S', I'). 

However, if predicate marriedJo/S (or its second clause "married_to(f, d)") is 
missing in the background knowledge B (and no other predicates/clauses in 
B that tell any essential difference between persons c and d), no meaningful 
hypothesis will be induced, because no Prolog program defining customer/4 can 

explain why person d is a customer while person c is not, given the fact that 
except their Names, all descriptions of the two persons are the same. 

This illustrates that even a learning task can be expressed in the normal 
problem setting for ILP, it is possible that no meaningful hypothesis can be 
induced due to the lack of essential predicates/clauses in the background knowl- 
edge. In order to learn something useful in these cases, the requirement in the 
normal problem setting of ILP that H should be "correct with respect to E+ 

and E~" has to be relaxed. We propose the following rough problem setting for 
incomplete background knowledge. 
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Rough Problem Setting 1 (for missing predicate/clauses) 

Given: 

- The target predicate p (the set of all ground atoms of p is U) 
- An equivalent relation R on U (we have the approximation space A = (U, R)) 
- E+ C U and E~ C U satisfying the prior condition: B U E+ is consistent 

with respect to E~ 
- Background knowledge B (may lack essential predicates/clauses) 

Considering the following rough sets: 

- E++  = AprA(E+), containing all positive examples, and those negative 
examples £J-+= {e'€-B~|3e6B+efie'} 

- E— = E~ - E~+, containing the "pure" (remaining) negative examples 
- E++ = Apr  (E+), containing the "pure" positive examples. That is, E++ = 

E+ - E~ where E+~ = {e G E+\3e,^E-eRe'} 
- E = E~ +E+- containing all negative examples and "non-pure" positive 

examples 

To find: 

- Hypothesis H+ (the defining clauses of p) which is correct with respect to 
E++ and E—, that is, 

• H+ U B covers all examples of E++. 
• H+ U B rejects any examples of E     . 

- Hypothesis H~ (the defining clauses of p) which is correct with respect to 
E++ and E , that is, 

• H~ U B covers all examples of Ü7++. 
• H~ U B rejects any examples of E  

Returning to our illustrating example, where predicate Married Jo ß is miss- 
ing in the background knowledge B. Let R be defined as 

"customer(N, A, S, I) R customer(N', A, S, I)", 

with the rough problem setting 1, we may induce H+ as: 

customer(N, A, S, I) :- I > 10. 
customer(N, A, S, I) :- S = female. 

which covers all positive examples and the negative example "customer(c, 50, 
female, 2)", rejecting other negative examples. We may also induce H~ as: 

customer(N, A, S, I) :- I > 10. 
customer(N, A, S, I) :- S = female, A < 50. 

which covers all positive examples except "customer(d, 50, female, 2)", rejecting 
all negative examples. 
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These hypotheses are rough (because the problem itself is rough), but still 
useful. On the other hand, if we insist in the normal problem setting for ILP, 
these hypotheses are not considered as "solutions". 

5.2 Rough Problem Setting for Indiscernible Examples 

In the KDD community, people have to deal with situations such as: two pa- 
tients showing the same symptoms have got different diagnostic results; two 
person records in a database having the same values for condition attributes 
have different decision attribute values; etc. In ILP, the similar situation is that 
example e belongs to E+ as well as to E~. 

In the illustration given in Section 5.1, if we ignore the person names, the 
target predicate will be "customer(Age, Sex, Income)" and we will encounter 
indiscernible examples: "customer(50, female, 2)" belongs to E+ as well as to 
E~. Then the problem cannot be expressed in the normal problem setting at 
all, because the prior condition 2' {B U E+ is consistent with respect to E~) is 
violated. In order to learn something useful in these cases, the requirement in 
the normal problem setting of ILP that H should be "correct with respect to 
E+ and E~" has also to be relaxed. We propose the following rough problem 
setting for indiscernible examples, which essentially is a special case of the above 
rough setting 1. 

Rough Problem Setting 2 (for indiscernible examples) 

Given: 

- The target predicate p (the set of all ground atoms of p is U) 
- E+ C U and E~ C U where E+ D E~ # 0. 
— Background knowledge B 

The rough sets to consider and the hypotheses to find: 

— Taking the identity relation / as a special equivalent relation R, the remain- 
ing description of rough setting 2 is the same as in rough setting 1. 

5.3 Related Work 

Siromoney[12] also tries to apply the Rough Set theory to ILP. It considers 
A = (U, R) where U is the set of all possible positive and negative examples, the 
equivalent relation R on U is defined as eRe' iff for any H which can be induced, 
either H \= e,H \= e' or H ft e,H ft e'. Then it considers the concept to be 
learn as a subset C of U, and points out that 

E+ C AprJC) and E~ C U -A~pTA(C). 

However it did not distinguish different kinds of imperfect data, nor give any 
problem settings for ILP. We think this is not surprising, because R and C used 
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in [12] are posterior in the sense that the user does not know them prior. In 
contrary, we use user-defined R, and E+, E~ etc. (all known to the user) as the 
start point, so we can give rough problem settings for ILP, and it is possible to 
develop ILP systems allowing the user to specify rough problem settings, as well 
as the normal problem setting. These ILP systems will be able to induce useful 
hypotheses even when the input data are imperfect. 

6    Conclusions and Future Work 

This paper addresses the problem of imperfect data handling in Inductive Logic 
Programming (ILP). We discuss various kinds of imperfect data in ILP, and ap- 
ply the Rough Set theory to incomplete background knowledge (where essential 
predicates/clauses are missing) and to indiscernible data (where some examples 
belong to both sets of positive and negative training examples), proposing rough 
problem settings for these cases. The rough settings relax the strict require- 
ments in the standard normal problem setting for ILP, so that rough but useful 
hypotheses can be induced from imperfect data. 

Future work in this direction includes: 

- Trying to apply the Rough Set theory to other kinds of imperfect data (noise 
data, too sparse data, missing data, etc.) in ILP. 

- Giving quantitative measures associated with hypotheses induced within the 
rough problem settings of ILP, using appropriate concepts and techniques 
from the Rough Set theory. 

- Developing a new ILP system (or extend an existing ILP system) which 
allows the user to specify rough problem settings, as well as the normal 
problem setting. The new ILP system will be able to induce useful hypotheses 
even when the input data are imperfect. 
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Abstract. Practical machine learning algorithms are known to degrade 
in performance when faced with many features that are not necessary 
for rule discovery. To cope with this problem, many methods for select- 
ing a subset of features with similar-enough behaviors to merit focused 
analysis have been proposed. In such methods, the filter approach that 
selects a feature subset using a preprocessing step, and the wrapper ap- 
proach that selects an optimal feature subset from the space of possible 
subsets of features using the induction algorithm itself as a part of the 
evaluation function, are two typical ones. Although the filter approach 
is a faster one, it has some blindness and the performance of induction 
is not considered. On the other hand, the optimal feature subsets can 
be obtained by using the wrapper approach, but it is not easy to use 
because the complexity of time and space. In this paper, we propose 
an algorithm of using the rough set methodology with greedy heuristics 
for feature selection. In our approach, selecting features is similar as the 
filter approach, but the performance of induction is considered in the 
evaluation criterion for feature selection. That is, we select the features 
that damage the performance of induction as little as possible. 

1    Introduction 

Generally speaking, the purpose of building databases in most organizations is 
that of managing information sources effectively. In other words, data are rarely 
specially collected/stored in a database for the purpose of mining knowledge in 
most organizations. Hence, a database always contains a lot of attributes that 
are redundant and not necessary for rule discovery. If these redundant attributes 
do not be removed, not only the time complexity of rule discovery will increases, 
but also the quality of the discovered rules may be much degraded. 

Which attribute should be deleted is very difficult to decide for non-experts 
and even for experts. Clearly, we need additional methods for selecting the fea- 
ture subset. The problem of feature subset selection is that of finding an optimal 
subset of features of a database according to some criterion, so that a classifier 
with the highest possible accuracy can be generated by an inductive learning 
algorithm that is run on data containing only the subset of features. 

Many researchers have investigated this field and several methods have been 
proposed [1, 3, 11, 6, 5]. A kind of these methods is that of ranking features 
first according to evaluation measures such as consistency, information, distance, 
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and dependence, and then selecting the features with a higher rank. This kind 
of methods considers only data but not the classifying properties. The filter ap- 
proach belongs to this type. Another kind of methods such as wrapper approach 
is that of using the induction algorithm itself as an evaluation function for se- 
lecting the optimal subsets from the space of all possible subsets. Furthermore, 
the rough set theory provides a mathematical tool to find out all of possible 
feature subsets (called reducts)[i\. Unfortunately, the number of possible subsets 
are always very large when N is large because there are 2iV~1 subsets for N 
features. Therefore examining exhaustively all subsets of features for selecting 
the optimal one is NP-hard. Most practical algorithms attempt to be fit for the 
data by solving the NP-hard optimization problem [4]. 

In this paper, we propose an algorithm of using the rough set theory with 
greedy heuristics for feature selection. We attempt to find an approach that is 
not heavy but effective. In our approach, features are selected from the space of 
features but no the space of reducts, and using the evaluation criterion in which 
the performance of induction is considered. That is, we select the features that 
damage the performance of induction as little as possible. 

2    Dispensable and Indispensable Features 

In the rough set theory, a decision table is denoted T = (U, A,C, D), where 
U is universe of discourse, A is a family of equivalence relations over U, and 
C, D C A are two subsets of features that are called condition and decision 
features, respectively[1]. 

Before describing what are the dispensable and indispensable features, some 
basic terms and notations on the rough set theory must be explained first. 

Lower Approximations: 
The lower approximations of a set, RX, is the set of all elements of U which 

can be with certainty classified as elements of X, in the knowledge R, where 
X C U. It can be presented formally: 

RX = \J{Y £ U/R : Y C X) 

The Positive Region: 
We also using a positive region to denote the lower approximations of a set. 

Let P and Q be equivalence relation over U, P C U and Q C U. The P- 
positive region of Q, POSp(Q), is the set of all objects of universe U which can 
be properly classified to classes of U/Q employing knowledge expressed by the 
classification U/P. 

POSP(Q)=    U    RX 
xeu/Q 

Dispensable and Indispensable Features: 
The dispensable and indispensable features are defined as follows: 



180 

Let c G C. A feature c is dispensable in T, if POS^c-e){D) = POSc(D); 
otherwise feature c is indispensable in T. 

If c is an indispensable feature, deleting it from T will cause T to be incon- 
sistent. Otherwise, c can be deleted from T.T = (?7,v4,C,£>) is independent if 
all c G C are indispensable in T. 

Reduct 
The set of features RCC will be called a reduct of C, if T = (U, A, R, D) is 

independent and POSR{D) = POSc{D). 

CORE: 
The set of all indispensable features in (C, D) will be denoted by CORE(C, D). 

CORE(C, D) = f] RED(C, D) 

where RED(C, D) is the set of all reducts of (C, D). 

3    Searching Indispensable Features 

All of indispensable features should be contained in an optimal feature subset, 
because removing any of them will cause inconsistent in a decision table. As 
defined in Section 2, CORE is the set of all indispensable features. Hence the 
process of searching indispensable features is that of finding CORE. 

The discernibility matrix proposed by Skowron [2, 1] can be used for CORE 
searching. The basic idea of the discernibility matrix can be briefly presented as 
follows: 

Let T = (U, A,C,D) be a decision table, with U = {«i,W2, • • • ,««}• By a 
discernibility matrix of T, denoted M(T), we will mean n x n matrix defined 
thus: 

rriij = {a € C :   a{u{) ^ a(«;)   A   D(u{) ^ D(UJ) } for i,j = 1,2,...,n. 

Thus entry m,-j is the set of all attributes that discern objects «,- and Uj. 
The CORE can be defined now as the set of all single element entries of the 

discernibility matrix, that is, 

CORE(C) = {aeC : my = (a),    for some i, j }. 

Searching CORE is to search such a set of features in which each feature is 
unique to discern some objects. 

Example 
The discernibility matrix corresponding to the sample database (the decision 

table) shown in Table 1 with U = {«i,«2, • • •,«7}, C = {a,b, c}, D = {d} is as 
follows: 
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Table 1. A Sample Database 

a b c d E 
ul 
u2 
u3 
u4 
u5 
u6 
u7 

1 
1 
1 
1 
2 
2 
2 

0 
0 
2 
2 
1 
1 
1 

2 
2 
0 
2 
0 
1 
2 

1 
0 
0 
1 
0 
0 
1 

1 
1 
2 
0 
2 
2 
1 

ul   u2 u3 u4   u5 u6 

u2 - 
u3 b,c,d b,c 
u4 b   b,d c,d 
u5 a,b,c,d a,b,c- a,b,c,d 

u6 a,b,c,d a,b,c - a,b,c,d - 

u7 -   -  a,b,c ,d a,b  c,d c,d 

The CORE is the feature 6. We can see that 6 is the unique feature for discerning 
ul and «4. Furthermore, two reducts are {b, c} and {b, d}. Since the feature a 
is not contained in any reduct, it could be deleted. 

4    Feature Subset Selection 

An optimal feature subset selection based on the rough set theory can be viewed 
as finding such a reduct R, R C C with the best classifying properties. R will 
be used to instead of C in a rule discovery algorithm. 

Selecting an optimal reduct R from all subsets of features is not an easy 
work. Considering the combinations among N features, the number of possible 
reducts is 2N~1. Hence, selecting the optimal reduct from all of possible reducts 
is NP-hard. For this reason, many methods for finding approximate results have 
been proposed [1, 3, 11, 6, 5]. However the features in CORE must be included 
whatever in an optimal result or in an approximate result. It is obvious that 
all of indispensable features in CORE(C, D) cannot be deleted from C if the 
accuracy of a decision table is not changed (dropped). The feature(s) in CORE 
must be the member of feature subsets. Note that not all of the features in an 
optimal feature subset must be indispensable. Therefore, The problem of feature 
subset selection will become how to select the features from dispensable features 
for forming the best reduct with CORE. We use CORE(C, D) as the core of 
feature subsets. liCORE is not a reduct of (C, D), some of dispensable features 
must be selected to make up a reduct. 

Basically, the feature selection approaches can be divided into two types: the 
filter approach and the wrapper approach [11]. 
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4.1 The Filter Approach 

The filter approach selects the features using a preprocessing step. The main 
disadvantage of the filter approach is that it totally ignores the effect of the 
selected feature subset on the performance of the induction algorithm. 

The main feature selection strategies of the filter approach are as follows: 

1. The minimal subset of features (the MINIMAL-FEATURES bias). 
This bias has severe implications when applied blindly without regard for 
the resulting induced concept. For example, the ID number of the patient in 
a medical diagnosis data may be picked as the only feature needed. Given 
only the ID number, any induction algorithm is expected to generalize very 
poorly. 

2. Selecting the features with a higher rank. 
Ranking a list of features according to some measures. A measure can be 
based on any of accuracy, consistency, information, distance, and depen- 
dence. However, this bias does not help with a redundant feature. Moreover, 
it may not be wise to use this bias on the data in which some irrelevant 
feature is strongly correlated to the class feature. 

4.2 The Wrapper Approach 

In the wrapper approach, the features subset selection is done using the induction 
algorithm as a black box. A search for a good subset is done using the induction 
algorithm itself as a part of the evaluation function. 

The wrapper approach conducts a search in the space of possible subsets of 
feature. For example, the space of reducts. There are several search methods 
that can be used for the wrapper approach, 

— Exhaustive/Complete search 
— Heuristic search 
— Nondeterministic search 

and so on. 
When the number of features N is small, the search space may be not so large, 

but it grows exponentially when N increases. In general, given a search space, 
the more you search it, the better the subset you can find. But the resource is 
not unlimited, we have to sacrifice optimality of selected subsets. The sacrifice 
has also a limit, we must keep the optimality of a feature subset as much as 
possible while spending as little search time as possible. 

Exhaustive/Complete search exhausts all possible subsets and find the op- 
timal ones. It is obvious that no optimal subset can possibly be missed. The 
number of possible subsets is 2JV_1, so that the time complexity of searching all 
of them is 0(2N~1). Using heuristics in search avoids brute-force search, but at 
the same time risks losing optimal subsets. Heuristic search is obviously much 
faster than exhaustive search since it only searches a part of subsets and finds a 
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near-optimal subset. Nondeterministic search is also called random search strate- 
gies. Searching for the next set at random, that is, a current set dose not directly 
grow or shrink from any previous set following a deterministic rule. There are 
two characteristics: (1) do not need to wait until the search end; (2) do not know 
when the optimal set shows up, although we know a better one appears when it 
is there. 

5    Heuristics for Feature Subset Selection 

In this section, we describe our approach for feature subset selection. The data 
we faced are almost very large and the number of features are a quite many, so we 
select the heuristic search as our search strategy, because exhaustive/complete 
search is too time consuming and nondeterministic search is difficult to know 
when the optimal subset appears. Although the heuristic search cannot guarantee 
that the result must be the best one, it is a better way for solving very-large, 
complex problems [8]. 

A search is invalid if it totally ignores the effect of the selected feature subset 
on the performance of the induction algorithm. Using an induction algorithm 
itself as a part of the evaluation function like the wrapper approach, no doubt, 
a good subset can be searched. However, evaluating all subsets of features, even 
evaluating just a part of feature subsets selected by some strategy, are also time 
consuming. 

For selecting feature subsets from a large database with a lot of features, we 
select the best features one by one by using the evaluation criterion in an induc- 
tion algorithm, until a reduct is found. However, unlike the wrapper approach, 
we do not select the best feature subset from all of possible subsets of features. 

The evaluation criterion used in our feature selection approach is that of 
the rule selection used in the rule discovery system, GDT-RS, developed by us 
[9, 10]: 

1. Selecting the rules that cover as many instances as possible; 
2. Selecting the rules that contain as little features as possible, if they cover 

the same number of instances; 
3. Selecting the rules with larger strengths, if they are in the same generaliza- 

tion (condition features) level and cover the same number of instances. 

Where the strength of a generalization is related to the number of values in each 
feature in the generalization. The more the number of values the stronger the 
generalization. 

A feature subset, is good or not, depends on the strengths of the rules dis- 
covered by using this subset. The strong the strength, the better the subset. To 
select the feature that is of benefit to acquire the rules with a larger cover rate 
and a strong strength, the following selection strategies are used: 

- To obtain the subset of features as small as possible, selecting the features 
that cause the number of consistent instances increases faster. 
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To avoid the features with a lot of attribute values such as the ID number or 
continuous attributes are considered first, not only the preprocess of delet- 
ing unnecessary attribute and the discretization of continuous attributes is 
important, but also the features that can generate the strong rules must be 
selected first. The size of the maximal subset in POSR(D)/IND({R,D}) 

should be considered since it affects the strengths of rules. In general, the 
more the number of attribute values in a feature in R, the more the num- 
ber of subsets, and the smaller the size of the maximal subset. Selecting a 
feature, by which a bigger subset can be acquired, is a way for our purpose. 

Let a cardinality of the lower approximation of a set, card POSR(D), denote 
the number of consistent instances, maxjsize(POSR(D)/IND{{R,D})) de- 
note the size of the maximal subset of the lower approximation of the set 
POSR(D). The feature selection can be regarded as selecting such features: 
if adding them into the subset of features, R, the card POSR(D) increases 
faster and the max.size(POSR(D)/IND({R,D})) is bigger than adding 
other features. 

— When two features have the same performance described above, the one 
that contains a littler number of different values will be selected. This is for 
guaranteeing that the number of instances covered by a rule is as many as 
possible. 

Based on the preparations stated above, a heuristic algorithm is described 
below. At first, we use the features in CORE as the initial feature subset, and 
then choose the features from dispensable features one by one by using the 
strategies stated above, and add them into the feature subset, until a reduct is 
achieved. 

A Heuristic Algorithm 

Let R be a subset of the selected features, P the set of unselected features, 
U all of instances, X the contradictory instances, and EXPECT^ the 
threshold of the accuracy. 

In the initial state, R = CORE(C, D), P = C - CORE(C, D), 
X = U - POSR(D). 

Step 1. Calculate the dependent degree, k, 

, ,m      card (U - X) 
k = 7RiD) =       card U 

where card denotes the cardinality of the set. 
If it > EXPECT Je, then stop. 

Step 2. For each p in P, calculate 

v = card POSR+{p}(D). 

m = card max.set(POSR+{p}(D)/IND(R +{p},D)). 
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Step 8. Choose the best feature p with the largest v * m, do 

R = RDp, 
P = P-p; 

Step 4. Remove all of the consistent instances x that are contained in 
the set of POSR(D) from X. 

Step 5. Goto back to Step 1. 

Example 
We would like to use the sample database shown in Table 1 as an example to 

explain how to get the feature subset using this algorithm. In Table 1, a, 6, c, and 
d are condition features, E is a decision feature, and U - {«1, «2, «3, «4, u5, u6, «7}. 
{b} is a unique indispensable feature, because it will cause inconsistent, \a\c<i&\\ -* 
Ei and {a^di} -+ #o> if deleting {b}. 

Prom the following equivalence classes, 

U/{b} = {{ul, w2}, {u5, «6, u7}, {«3, u4}} 
U/{E} = {{w4}, {«1, «2, ul), {u3, «5, «6}}, 

we know b-positive region of E, POSb(E), is {ul,u2}. Hence, in the initial state, 
R = {b}, P = {a, c, d}, and X = {«3, «4, u5, «6, u7}. The initial state is shown 
as follows: 

u b E 
u3 2 2 
u4 2 0 
u5 1 2 
u6 1 2 
u7 1 1 

Let EXPECTJi — 1, the termination condition will be k > 1. 
Since k = 2/7 < 1, R is not a reduct, we must continue to select. The next 
candidate is a, c or d. Table 2 gives the results of adding {a}, {c}, or {d} into 
R, respectively. 

From Table 2 or the following equivalence classes, 

U/E = {{u4}, {u7}, {u3, u5, «6}}; 
U/{a,b} = {{«3,«4},{u5,u6,w7}}; 
U/{b, c} = {{u5}, {«6}, {«7}, {t/3}, {«4}}; 
C//{6, d} = {{«5, u6}, {t/7}, {«3}, {w4}}; 
P05{a,6}(£) = 0; 
PO5{6,e}(£0 = POS{iid)(E) = {u3,u4,«5,u6,«7}; 
max.size(P05{6|C}(£')/{6,c,£'}) = 1; 
max_size(POS{b,d}(E)/{b,d,E}) = |{u5,«6}| = 2, 
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Table 2. Selecting the second feature from P = {a, c, d}. 

U 

1. selecting {a} 

U 

2. selecting {c} 

u E 

3. selecting {d} 

we can see that selecting the feature a cannot reduce the number of contradictory 
instances, but if selecting either c or d, all of instances become consistent. Since 
the maximal set is in the U/{b,d, E}, d should be selected first. 

After adding d into R, all of instances are consistent and must be removed 
from U. Hence U is empty, k = 1, the process finished. The selected feature 
subset is {b, d}. 

6    Experiment Results 

Using the algorithm stated in Section 5, we have tested several databases. Some 
of them are artificial: Monkl, Monk3; some of them are well made: Mushroom, 
breast cancer, earthquake; and some of them are real world databases: meningi- 
tis, medical treatment, land-slide. Table 3 shows the results of feature selection 
on these datasets. In Table 3, #attr_n, #inst_n, #CORE, and #attt_n(sel) de- 
note the number of features in a dataset, the number of instances, the number 
of features in CORE, and the number of features selected, respectively. 

Table 3. Results of feature selection 

Dataset #attr_n #inst_n #CORE #attr_n(sel) 
Monkl 6 124 3 3 
Monk3 6 122 4 4 

Mushroom 22 8124 0 4 
breast.cancer 10 699 1 4 
earthquake 16 155 0 3 

meningitis 30 140 1 4 
medical treatment 57 20920 2 9 
land-slide 23 3436 6 8 
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7    Conclusions 

In this paper, we presented an approach for feature selection. It is based on the 
rough set theory and greedy heuristics. The main advantages of our approach 
are that it can select a better subset of features quickly and effectively from 
a large database with a lot of features; the selected features do not damage 
the performance of induction so much since the performance of induction is 
considered in the evaluation criterion for feature selection. 
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Abstract. Most of the existing discretization approaches discrete each 
continuous attribute independently, without considering the discretization 
results of other continuous attributes. Therefore, some unreasonable and 
superfluous discretization split points are usually created. Based on 
compatibility rough set model and genetic algorithm, a global discretization 
approach has been provided. The experimental results indicate that the global 
discretization approach proposed can significantly decrease the number of 
discretization split points and the number of rules, but increase the predictive 
accuracy of the classifier. 

1 Introduction 

In the practical application of machine learning and data mining, there are many 
continuous attributes where some symbolic inductive learning algorithm could not be 
applied unless the continuous attributes are first discretized. There are currently several 
discretization algorithms[2,5,9,14,15]. Most are independent methods, meaning that 
they discrete each continuous attribute independently, without considering the 
discretization results of other continuous attributes. 

The final discretization result of a set of continuous attributes mainly depends on 
the locations and the number of the selected discretization split points that come from 
different continuous attributes. Usually, the discretization approaches that consider the 
dependency among multiple continuous attributes are called global discretization. By 
means of the binarization of continuous attributes[8], the problem of the global 
discretization of continuous attributes was converted into the problem of selecting the 
simplest subset of binary attributes[9]. However, the problem with the global 
discretization approach is that the number of the initial binary attributes is extremely 
large, because all potential split points are taken into account. 

Based on the new compatibility rough set model introduced in section 2, we 
proposed a novel approach that can generate reasonable sized initial split points. 
Genetic algorithm is also adopted in order to obtain optimal discretization results. 

2 Compatibility Rough Set 

The standard rough set model introduced by Pawlak, Z. [ 10] is based on the equivalence 
relation on the instances. Many authors have proposed interesting extensions of the 
initial rough setmodel[6,7,13,16]. A common feature of these extended models is the 
induction the unequivalence relation on the instances based on the unequivalence 
relation on the attribute values. In this study, we intent to introduce a compatibility 
rough set model based on the compatibility relation directly on the instances instead of 
the attribute values. 
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Let £ = {Ml,...5«,}isasubsetofthe full set ofthe instances, BcU, C = {clt--,cm} is 

the set ofthe conditional attributes (assume C contains both continuous and symbolic 
attributes). Each instance u, corresponds to an attribute value vector {v/,i>"'>v/,m}. We 

can construct a hyper-region in feature space based on a group of instances by using the 
instances merging operation «,©•••©«,, where © denotes the merging operation. 
Actually, the instances merging operation is realized by the attribute values merging 
operation «,©•••©«, ={{v, ,©•••© v,,},••-,{vlm ©•••©v,m}}. For a continuous attribute, 

vu©"©v,il=[min(v11,-^vM),max(vu,-")vu)]>    and    for    a    symbolic    attribute, 

vu©—®v,_, ={v1|Iu--uv/|1}. 
If the instances in a hyper-region have identical decision label, then the hyper- 

region is called pure hyper-region. Any pair of instances u,,uj in a pure hyper-region is 

called compatibility. The compatibility on uhUj defines a type of binary relation. 

Clearly, this binary relation is reflexive and symmetric, therefore the compatibility on 
the instances is the compatibility relation. 

Basing on the compatibility relation, we can only get some compatibility classes 
on the instances. The union of all the compatibility classes can cover the full set of 
instances, but usually not every compatibility class is required to cover the set. A set of 
compatibility classes is called the simplest closed cover, if it can completely cover a full 
set of instances and contain the least compatibility classes. Because each compatibility 
class can only cover a proportion of a full set of instances, the problem of searching the 
simplest closed cover equals to the problem of minimal set cover, it is NP-hard. Next, 
we will give an greedy algorithm that is able to search for an approximate solution of 
the simplest closed cover. 

Let uIlND({d}) = {Du-,Dr) is the set of decision equivalence classes of a 

decision table A = (t/,Co> {</}), CP is a compatibility class, CPS is the set of 
compatibility classes, TM is a temporary set. 

Stepl. CPS = {); 
Step2. for i=l to r do {TM = D,; 

While(Card(TM) * O) 

{CP = uksTM; TM = TM\uk; 

forj=l to CardiTM) do 
{iffCP is compatibility with u-^D-, against {DM, • • •, Dr} u CPS) 

then {CP = CPVUJ;TM = TM\UJ;} 

} 
CPS = CPSVCP; 

} } 

3    Obtaining the Initial Set of Split Points 

The major objective of introducing this compatibility rough set model is to generate a 
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moderate sized initial set of split points, from which the simplest set of the 
discretization split points will be searched. The valued domain of each attribute is 
divided into some overlapping valued intervals or valued set. For a continuous attribute, 
each valued interval has two boundaries. The boundaries with smaller value and larger 
value are called low boundary and high boundary, respectively. The initial split points 
can be determinate based on the relationship among these boundaries of the valued 
intervals. The actual procedure is described as follows: 

Let LBS = {lb\,■■■,%} and UBS = {ub[,■ ■ ■,ub\} are two sets of low boundaries and up 

boundaries of a continuous attribute c, eC. SPSis the set of split points, TM is a 
temporary set. 

Stepl. SPS = {};TM = {};N = 0; 

Step2. forj=l to q do 

{if (there is a ib'min = min{/6j : üb) < lb'k e LBS}) 

then   look for a ub'min = max{ub'k: lb'min > ub[ e UBS} ; 

TM = TMu {(ubU, lb!
min )};N + + ;} 

Step3.forj=l to N do 

{sp = (lb) + üb))/2;     I* (lb),ub))eTM */ 

SPS = SPS u {sp};} 
Step4. Repeat Stepl andStep3for each c: eC ■ 

4   Selecting the Optimal Set of Split Points 

The three main issues in applying genetic algorithm to any optimization problem are 
the choice of an appropriate representation scheme, a fitness function, and the 
initialization the chromosome population. The natural representation for optimal 
feature subset selection (OFSS) is exactly the same as the bit string of length N 
representing the presence or absence of the N possible binary attributes. 

The problem of OFSS is usually regarded as the problem of searching state space. 
Obviously, the closer the starting search states are to the final optimal state, the higher 
the search efficiency is. H. S. Nguyen [9] had provided a greedy quick discretization 
method by which we can greedily construct some relative reducts of the binary 
attributes (the population of the initial chromosomes). 

Shan [14] had given an entropy function that can measure the discretization 
complexity. 

m n 

j=\ i=\ 

Where p(Dj) is the probability that an instance belongs to decision equivalence class 

D ■, p(C; ID) is the probability that an instance belonging to decision equivalence class 

D- is matched by conditional equivalence class c, • 

In order to measure the simplification (the number of the binary attributes) of a 
relative reduct while the discretization complexity is measured, we slightly modify 
above entropy function as the fitness function: 
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H(CL,) = Card(Cl„,)- ■£p(ö,)i/*C,/Dy)]ogp(C,/ß,) 
j=i 

Where Card(C^tm) is the number of the binary attributes in current chromosome. 
After certain specific genetic operations, such as cross-over or mutation, the 

offspring of two relative reducts may not be a new relative reduct. However, being a 
relative reduct is the essential condition of the optimal subset of the binary attributes. In 
order to efficiently detect whether a new offspring is a relative reduct, we take the 
simplified discernibility factor set (SDFS) oc modulo decision information, which 

was proposed by T. Mollestad[ll], as a filter. Let cB is the full set of the binary 

attributes and cB is a subset of cB, if 3<p e <DC makes q, c CB -c'B is true, then c'B is a 

relative reduct, otherwise, cB is not a relative reduct. Usually Card(<i>c)«Card(U2), so 
the efficiency of the above set containing inquery is quit high. If only the relative 
reducts are forwarded to the fitness function, then we can omit a lot of unnessesary 
fitness function calculation. 

5   Experiments and Conclusions 

In order to test the effectiveness of the discretization approach based on the 
compatibility rough set model, an experiment is conducted. We selected nine data sets 
that are suitable to evaluate the discretizaiton methods from the UCI repository[12], A 
general-purpose genetic algorithm program GENESIS [3] was used as searching 
engine. Parameters for the GA were set using the default values given in GENESIS. In 
the experiment procedure, each data set is divided into two groups, sixty percent as 
training set and forty percent as testing set. AE5 rule induction algorithm [4], which is 
based on the theory of extension matrix, is used to evaluate the predictive accuracy. 
Table 4 shows the experiment results of the nine selected data sets. 

Table 4. The comparison of the number of split points -N. of SP, the number of rules -N. 
of R and the predictive accuracy of classifier between the discretization of entropy and 
the discretization of compatibility rough set. 

Data Set Discretization of Entropy Discretization of Comp. Rough Set 
N. ofSP   N. ofR     Accuracy N. ofSP   N. ofR     Accuracy 

Breast 12           58           81.2% 7            42          92.2% 
Diabetes 49           44           64.8% 19            39          69.4% 
Echo 23           63           32.5% 8            43           70.0% 
Glass 229           93           48.4% 14            20           57.8% 
Heart 41            60           63.2% 12             16          73.8% 
Hepatiti 57           27           74.2% 13            23           74.2% 
Iris 27            19           90.1% 6              8          96.1% 
Thyroid 44           78           62.8% 8            39          98.9% 
Wine 137           123            47.2% 6             19          92.5% 

Comparison of the number of discretization split points, the number of rules and the 
predictive accuracy proves that the discretization method based on compatibility rough 
set model can significantly decrease the number of discretization split points and the 
number of rules, and universally improve the predictive accuracy. 
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Abstract. A necessity measure N is defined by an implication func- 
tion. However, specification of an implication function is difficult. Ne- 
cessity measures are closely related to inclusion relations. In this paper, 
we propose an approach to necessity measure specification by giving an 
equivalent parametric inclusion relation between fuzzy sets A and B to 
NA(B) > h. It is shown that, by such a way, we can specify a necessity 
measure, i.e., an implication function. Moreover, given an implication 
function, an associated inclusion relation is discussed. 

1    Introduction 

Possibility theory [2] [8] has been applied to many fields such as approximate rea- 
soning, data base theory, decision making, optimization and so forth. In possibil- 
ity theory, possibility and necessity measures play key roles to handle uncertain 
information, ambiguous knowledge and vague concepts. There exist quite a lot 
of possibility and necessity measures and the selection of those measures quali- 
fies the properties of fuzzy reasoning, decision principles and so on. Possibility 
and necessity measures should reflect the expert's knowledge and/or decision 
maker's preference. Between possibility and necessity measures, the selection of 
a necessity measure is much more important since (1) it directly qualifies fuzzy 
rules and possibility distributions in approximate reasoning (see [1]) and (2) it 
is used for the measure of safety or robustness. 

A necessity measure N under a possibility distribution (J,A (i-e., fuzzy infor- 
mation that x is in A) is defined as 

NA(B)= inf I(ßA{x),iiB{x)) (1) 

by an implication function 7: [0,1] x [0,1] ->■ [0,1] such that 7(0,0) = 7(0,1) = 
7(1,1) = 1 and 7(1,0) = 0, where PA and ßß are membership functions of fuzzy 
sets A and B of a universal set X. The selection of a necessity measure means 
that of an implication function. In real world situations, it is not easy for us to 
select an implication function directly since we are not aware of what kind of 
implication function is used to evaluate the certainty degree of the conclusion 
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the implication function itself is far from our imagination. On the other hand, the 
necessity measure is closely related to the inclusion relation between A and B as 
is defined in the crisp case. Indeed, for several implication functions, equivalent 
conditions of NA(B) > h are known to be inclusion relations between fuzzy sets 
A and B with a parameter h. An inclusion relation is much more imaginable 
for us than an implication function. Prom this point of view, we will be able to 
specify an inclusion relation with a parameter h as an equivalent condition to 
NA(B) > h. Such a parametric inclusion relation specification is at least easier 
than the implication function specification. In this way, the authors [5] succeeded 
to construct a necessity measure, in other words, an implication function, from 
a given inclusion relation with respect to NA (B) > h and proposed nine kinds of 
necessity measures defined by distinct inclusion relations with h. In this paper, 
an inclusion relation with a parameter h with respect to NA (B) > h is called a 
'level cut condition' and the approach to specify a necessity measure by giving 
a level cut condition is called a 'level cut conditioning approach'. 

Since the level cut conditioning approach has not yet studied considerably, 
there still remain open problems: (Ql) Can we unify the level cut conditions 
without loss of rationality ?, (Q2) Is there any level cut condition of the necessity 
measure associated with an arbitrarily given implication function satisfies ?, 
(Q3) Can any novel necessity measure be derived by this approach ?, (Q4) How 
utilize the results of this approach to real world problems ? and so on. In this 
paper, we answer the questions (Ql) and (Q2). To (Ql), we give a generalized 
level cut condition and show the existence of the necessity measure satisfies the 
condition. To (Q2), we show that a level cut condition can be obtained when 
a given implication function satisfies certain properties. On account of limited 
space, (Q3) and (Q4) are not answered in this paper but in our future papers. 

2    Necessity Measures defined by Level Cut Conditions 

When A and B are crisp sets, the necessity measure TV is uniquely defined by 

The traditional and most well-known necessity measure iVD is the one defined by 
(1) with Dienes implication function ID(a, b) = max(l - a, b). To this necessity 
measure, we have (see [5]) 

N^(B)>h^{A)1-hC[B]h, (3) 

where (A)h and [A]h are strong and weak /i-level sets of A defined by 

{A)h = {x | nA{x) > h},        [A]h = {x | ßA(x) > h}. (4) 

For necessity measures iVG and Nr~G defined by (1) with Gödel implication 
function 7G and reciprocal Gödel implication function 7r_G satisfy (see [5]) 

N%(B) >h& (A)k C (B)k, Vfc < h, (5) 

NrrG(B) >h& [i4]i_h C [B]i_fc, VA; < h, (6) 
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where IG and Jr~G are defined by 

Tfi/       ,\ f 1, if a <  6, rr-d /       n I li        if ß <  ü>, ,_N 

^'^Ulfa^ 7      ^6) = {l-a,ifa;6: (7) 

As shown in (3)-(6), necessity measures are closely related to set inclusion re- 
lations. Moreover, those necessity measures are uniquely specified by the right- 
hand side conditions of (3)-(6) since we have 

NA{B) = sup{/i | NA(B) > h}. (8) 
h 

Prom this fact, it is conceivable to specify a necessity measure by giving a 
necessary and sufficient condition of NA(B) > h. From the practical point of 
view, giving such a condition must be easier than giving an implication func- 
tion directly to define a necessity measure, since inclusion relations are more 
imaginable in our mind than implication functions. From this point of view, the 
authors [5] proposed level cut conditioning approach to define a necessity mea- 
sure. We succeeded to construct nine kinds of necessity measures giving nine 
different level cut conditions. In this paper, generalizing our previous results, we 
discuss measures Nh which satisfy the following condition: 

N\{B) >h& mh(A) C Mk(B), (9) 

where m,h(A) and Mh(A) are fuzzy sets obtained from a fuzzy set A by applying 
a suitable parametric transformation as will formally be defined later. We assume 
that the inclusion relation between fuzzy sets is defined normally, i.e., 

ACB&tiA(x)<fj,B(x),VxeX (10) 

Let a fuzzy set A have a linguistic label a. Then, roughly speaking, nih(A) 
is a fuzzy set corresponding to a linguistic label, "very a", "extremely a" or 
"typically a" and Mh(A) a fuzzy set corresponding to a linguistic label, "roughly 
a", "more or less a" or "weakly a". Thus, (9) tries to capture that an event 'x is 
ß: expressed by a fuzzy set B is necessary to a certain extent under information 
that 'a; is a' expressed by a fuzzy set A if and only if the fact 'a; is very a' entails 
the fact 'a; is roughly ß'. Degrees of stress and relaxation by modifiers 'very' and 
'roughly' decrease as the necessity degree h increases, i.e., m^ and Mh satisfy 

h > h2 =$■ mhl(A) D mh2(A), Mhl(A) C Mh2(A). (11) 

Now let us define m/, and Mh mathematically. m,h(A) and Mh(A) are defined 
by the following membership functions: 

(J-mh(A)(x)=gm{fiA(x),h),        PMh(A){x)=gM{ßA{x),h), (12) 

where functions gm : [0,1] x [0,1] -> [0,1] and gM : [0,1] x [0,1] -+ [0,1] are 
assumed to satisfy 
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(gl)  gm(a, •) is lower semi-continuous and gM(a, ■) upper semi-continuous 
for alia e [0,1], 

(g2)   om(l, h) = 5
M(1, h) = 1 and gm(0, h) = oM(0, /i) = 0 for all h>0, 

(g3)  om(a, 0) = 0 and gM(a, 0) = 1 for all a G [0,1], 
(g4)   Äi > As implies gm(a, In) > gm(a, h2) and gM(a, hi) < gM(a, h2) for 

all a G [0,1], 
(g5)  a > b implies gm(a,h) > gm(b,h) and gM(a,h) > gM(b,h) for all 

J»<1, 
(g6)  om(o, 1) > 0 and gM(a, 1) < 1 for all a G (0,1). 

(gl) is required in order to guarantee the existence of a measure satisfies (9) (see 
Theorem 1). (g2) means that complete members of a fuzzy set A are also com- 
plete members of the fuzzy sets mu(A) and Mh{A) and complete non-members 
of A are also complete non-members of the fuzzy sets m/1(J4) and Mh{A). This 
implies that [mh{A)}x = [Mh(A)]i = [A]i and (mh(A))0 = (Mh(A))0 = (^)o for 
any h > 0. (g3) is required so that the left-hand sides of (9) is satisfied when 
h = 0. (g4) coincides with the requirement (11). (g5) means that the member- 
ship degrees of rrih{A) and Mh{A) increase as that of A increases. (g6) means 
that all possible members of A cannot be complete non-members of rrih{A) at 
the lowest stress level, i.e., h = 1 and that all possible non-members of A cannot 
be complete members of Mh{A) at the lowest relaxation level, i.e., h = 1. As 
described above, those requirements, (gl)-(g6) can be considered as natural. 

It should be noted that gm and gM are defined by 

gm(a,h) = T(a,h),    gM(a,h) = Cnv[I](a,h) = I(h,a), (13) 

where T and 7 are a conjunction function and an implication function satisfy 

(11) I(a, 1) = 1 and 1(0,o) = 1, for all a £ [0,1], 
(12) l(a,0) = 0, for all a e (0,1], 
(13) /(•, a) is upper semi-continuous for all a G [0,1], 
(14) a <c and b > d imply 7(o, b) > I(c, d). 
(15) 1(1,a) < 1, for alia G [0,1). 
(Tl) T(0, a) = 0 and T(a, 0) = 0, for all a G [0,1], 
(T2) T(l, a) = 1, for all a G (0,1], 
(T3) T(a, •) is lower semi-continuous for all a G [0,1], 
(T4) a > c and b > d imply T(a, b) > T(c, d). 
(T5) T(a, 1) > 0, for all a G (0,1]. 

Conversely, I(a,b) — gM(b,a) is an implication function satisfies (II)—(15) and 
T(a,b) = gm(a,b) is a conjunction function satisfies (T1)-(T5). 

Remark 1. In order to express fuzzy sets corresponding to a linguistic labels 'very 
Q' and 'roughly a\ mh(A) and Mh(A) should be satisfy mh(A) CACMh(A), 
V7i G [0,1]. In [5], we required so. However, to generalize the results obtained in 
[5], we dropped this requirement. By this generalization, we can treat conditions 
including /i-level sets. For example, (3) can be expressed by (9) with definitions, 

mi    ,s _ / 1, if a > 1 -/i, MI    h\ _ j 1> if a > h, 
g   (a, ti) - 10> otherwis6) 9   ^ ßJ - 10) otherwise 
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The following proposition guarantees the existence and uniqueness of NL. 

Theorem 1. iVL exists and is defined by 

N%(B) =   sup {h | mh(A) C Mh(B)}. (14) 
0<h<l 

Proof. Suppose mh(A) £ Mh(B) when sup^^Ä; | mk(A) C Mk{B)} > h. 
From (11) and (12), there exists x G X such that gm(ßA(x),k) = ßmk(A){x) < 
ßMk(B)(x) = 9M(ßB(x),k), Vfc < h but gm(nA(x),h) = ßmh{A)(x) > MM„(B)(Z) 

= gM(ßß(x),h). This fact implies 

limmfgm(ßA(x),k)<gm(nA(x),h) or limsupfl
M(/iB(:r),k) > gM(ßB{x),h). 

This contradicts the lower semi-continuity of gm(a, •), Vo £ [0,1] and the upper 
semi-continuity of gM(a, •), Va € [0,1]. Therefore, we have 

sup{fc | mk(A) C Mk{B)} >h^AC Mh(B) 

The converse is obvious. Hence, we have (14). D 

The following theorem shows that NL defined by (14) is a necessity measure. 

Theorem 2. NL is a necessity measure and the associated implication function 
Ih is defined by 

IL(a, b) =   sup {h | gm(a, h) < gM(b, h)}. (15) 
0<h<l 

Proof. Let us consider JL defined by (15). From (g2) and (g3), we obtain 7L(0,0) 
= 7L(0,1) = 7L(1,1) = 1 and 7L(1,0) = 0. Thus, JL is an implication function. 
From (gl), we have 

IL(a,b)>h&gm(a,h)<gM(b,h). (*) 

Consider a measure $A(B) = infx€x IL{ßA(x), ßB{x))- By (*), it is easy to show 

$A{B) >h^ mh{A) C Mh(B). 

Thus, $A{B) < N\(B). Suppose $A{B) < N\{B) = h*. Then there exists an 
x* eX suchthat IL

(HA(X*),IIB{X*)) < h*. From (*), we have gm(ßA(x*),h*) > 
gM(HB(x*),h*). From (12), mh.(A) £ Mh.{B). From (9), we obtain N\(B) < 
h*. However, this contradicts N\(B) > h*. Hence, N^(B) = $A{B). D 

It is worth knowing the properties of JL in order to see the range of implica- 
tion functions defined by level cut conditions. 

Proposition 1. Ih defined by (15) satisfies (II), (U), (15) and 

(16) l(a,0) < 1, for all a e (0,1]. 
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Moreover, IL satisfies (12) if and only ifgm(a,h) > 0 for all (a,h) > (0,0), and 
(17) if and only if gM (a, h) < 1 for all a < 1 and h > 0, where 

(17) 1(1, a) = 0, for all a e [0,1). 

Proof. Except for (15) and (16), all the properties are straightforward from (gl)- 
(g6). Form (g2), we obtain 

/L(l, a) =   sup {h | gM(a, h) > 1},    Ih(a,0) =   sup {h | gm(a, h) < 0}. 
0<fc<l 0<h<l 

From (gl) and (g6), we have (15) and (16). □ 

It should be noted that infinitely many different pairs of (gm,gM) produce the 
same necessity measure as far as the level cut condition, or simply, the condition 
gm(a,h) < gM(b,h) is equivalent. 

Example 1. Let V(A) be the truth value (1 for true and 0 for false) of a statement 
A. When gm(a,h) = min(a,V(h > 0)) and gM(a,h) = max(a,V(o > h)), IL 

is Gödel implication 7G. When gm(a,h) = m.in(a,V(a > h)) and gM(a,h) = 
max(a, V(h = 0)), IL is reciprocal Gödel implication /r_G. 

3    Level Cut Conditions Derived from Necessity Measures 

In this section, given a necessity measure, or equivalently, given an implication, 
we discuss how we can obtain the functions gm and gM. To do this, requirements 
(gl)-(g6) are not sufficient to obtain some results. We add a requirement, 

(g7)  gm(-, h) is lower semi-continuous and gM(-, h) upper semi-continuous 
for all h e [0,1]. 

and assume that gm and gM satisfy (gl)-(g7). Together with (gl), this additional 
requirement guarantees that IL satisfies (13) and 

(18) I(a, ■) is upper semi-continuous. 

First, we look into the properties of pseudo-inverses of gm(-, h) and gM(-, h) 
defined by 

gm*(a,h) =   sup {6 | gm(b,h) < a},    gM*(a,h) =   inf {b \ gM(b,h) > a}. 
0<b<l 0<b<l 

(16) 
We have the following propositions. 

Proposition 2. gm*(-,h) is upper semi-continuous and gM*(-,h) lower semi- 
continuous, for all h £ [0,1]. 

Proof. When h = 0, it is obvious. When h > 0, from the definition and (g5), we 
have 

{o | gm*(a, h)>b*}=    f|   {a\a>gm(b,h)}. 
0<6<6* 

This set is closed and hence, gm*(-, h) is upper semi-continuous. The lower semi- 
continuity of gM*(-, h) can be proved similarly. D 
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Moreover, from (gl), we can prove the upper semi-continuity of gm*(a, •) and 
the lower semi-continuity of gM*(a, ■). 

Proposition 3.  We have 

9m (a, h) < gM (b, h)&a< gm* (gM (b, h),h), (17) 

gm(a, h) < gM(b, h) & gM*(gm(a,h),h) < b. (18) 

Proof. Prom the definition of gm*, we have a < gm* (gm(a, h), h) and gm*{-,h) 
is non-decreasing. Thus, we have 

gm(a,h) < gM(b,h) =► a < gm*(gm(a,h),h)<gm*(gM(b,h),h). 

On the other hand, from the upper semi-continuity of gm*(-,h), we can easily 
prove gm(gm*(a,h),h) < a. Thus, from (g6), we obtain 

a < gm*(gM(b,h),h) =» gm(a,h) < gm(gm*(gM(b,h),h),h) < gM(b,h). 

Hence, (17) is valid. (18) can be proved in the same way. D 

Proposition 3 gives an expression of IL other than (15), i.e., 

IL(a,b)=   sup {h\a<gm*{gM(b,h),h)},   ifgm(-,h) is 1. s. c,      (19) 
0<h<l 

IL{a, b) =   sup {h | gM*{gm{a, h), h) < b},   if gM{-, h) is u. s. c.     (20) 
0<h<l 

Moreover, it should be noted that Im*(a,b) = gm*(gM(b,a),a) is an implica- 
tion function which satisfies (II), (13) (14), (15), (16) and (18) and TM*(a,b) =■ 
gM*(gm(a,b),b) is a conjunctive function which satisfies (Tl), (T3), (T4), (T5), 
(T6) and (T7): 

(T6) T(l,o) >0, for all a € (0,1], 
(T7) T(-,a) is lower semi-continuous. 

This fact together with (19) and (20) remind us functionals a and £ both of which 
yield an implication function from an implication function I and a conjunction 
function T, respectively (see [4][6][7]), i.e., 

a[I]{a,b)=   sup {h\I(h,b)> a},    CP1M) =   sap {h\T(a,h) <b}.   (21) 
0<h<l 0<h<l 

Under assumptions that I satisfies 1(1,0) = 0, (II), (13), (16) and (I4-a): 
I(a, c) > I{b,c) whenever a < b, we can prove a[a[I}] = I and a[I] preserves 
those properties (see [4][7]). Under the assumptions that T satisfies T(l, 1) = 1, 
(Tl), (T3), (T6) and (T4-b): T(a,b) < T(o,c) whenever b < c, we have £[([T]] = 
T and C[T] satisfies 7(1,0) = 0, (II), (15), (18) and (I4-b): I{a,b) < I(a,c) 
whenever b < c (see [6] [7]), where 

m](a,b)=   inf  {h\I(a,h)>b}. (22) 
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Moreover, under the assumptions that I satisfies 1(1,0) = 0, (II), (15), (18) and 
(I4-b), we have <[£[/]] = 7 and £[/] satisfies T(l,l) = 1, (Tl), (T3), (T6) and 
(T4-b). 

Under the assumptions (gl)-(g7), pairs (IL,Im*) and (IL,TM*) satisfy the 
requirements for (a[IL] = Im* and a[Im*} = IL) and (£[/L] = TM* and ([TM*] = 
IL), respectively. Hence, given an arbitrary implication function I which satis- 
fies (II), (I3)-(I6) and (18), we obtain Im* = a[I] and TM* = £[/]. One may 
think that, defining gm(a,h) - a or gM(a,h) = a when ft > 0 so that we have 
gm*(a, ft) = a or gM*(a, ft) = a for all ft > 0, we can obtain gm and gM via (13) 
with substitution of Im* or TM* for I and T. However, unfortunately, there is 
no guarantee that such gm and gM satisfy (g3). The other properties, (gl), (g2), 
(g4)-(g7), are satisfied as is shown in the following proposition. 

Proposition 4. a preserves (12), (U) and (18). Moreover, a preserves (15) 
under (13). On the other hand, when I satisfies (U-a), £[I] satisfies (T4). When 
I satisfies (16) and (18), £[I] satisfies (T5). When I satisfies (17), £[/] satisfies 
(T2). When I satisfies (13), £[I] satisfies (T7). 

From Propositions 1 and 4 together with (13), the following theorem is 
straightforward. 

Theorem 3. Let I satisfy (II), (I3)-(I6) and (18), When I satisfies (12), 

9m(a,h) = ![
a

0'^
h

hl^ gM(a,h)=a[I](h,a), (23) 

satisfy (gl)-(gl). On the other hand, when I satisfies (17), 

9
m(a, ft) = fli](a, ft),        9

M(a, ft) =.{£$£ = £ (24) 

satisfy (gl)-(g7). 

Theorem 3 gives an answer to (Q2) when I satisfies (12) or (17) as well as 
(II), (I3)-(I6) and (18). The complete answer to (Q2) is rather difficult since 
decompositions of Im* and TM* to gm and gM satisfying (gl)-(g7) are not easy. 
In what follows, we give other answers under certain conditions. The following 
proposition plays a key role. 

Proposition 5. When gm is continuous, we have gm(gm*(a,h),h) = a, for all 
ft G (0,1]. Similarly, when gM is continuous, we have gM(gM*(a, ft), ft) = a. 

Proof. Because of (g2), the continuity of gm(-,h) and gM(-,h) implies that 
gm(-,h) and gM(-,h) are surjective for all ft 6 (0,1], respectively. Hence, we 
have gm*(a,h) = supo^Jb | gm(b,h) = a} and gM*(a,h) = inf0<6<i{& | 
gM(b, ft) = a}. Because of continuity, sup and inf can be replaced with max and 
min, respectively. Hence, we have the theorem. □ 

Moreover, the following proposition is straightforward. 
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Proposition 6. If a given function gm : [0,1] x [0,1] -> [0,1] satisfies (gl)-(g6), 

(g8) gm(-, h) is continuous for all h £ (0,1], 
(g9) gm(a[I](a,0),a) = 0 for all a £ (0,1], 

(glO) gm{a, 1) < 1 for all a £ [0,1), 

then I*(a,b)=gm(a[I](a,b),b) satisfies (Il)-(IS), (15) and (18). Similarly, if a 
given function gM : [0,1] x [0,1] -> [0,1], such that gM satisfies (gl)-(g6), 

(gll) ffM(-, h) is continuous for all h £ (0,1], 
(gl2) gM(Z[I}(l,a),a) = 1 for all a £ (0,1], 
(gl3) gM{a, 1) >0 for all £ (0,1], 

then T*(a, b) = <7M(£[7](a, 6), b) satisfies (Tl)-(TS), (T5) and (T7). 

From Propositions 5 and 6, if we find a function gm (resp. gM) satisfies (gl)- 
(g6) and (g8)-(gl0) (resp. (gll)-(gl3)) and I*(a,b) = gm(o-[I](a,b),b) (resp. 
T*(a, b) = gM{£[I}(a, b),b)) satisfies (14) (resp. (T4)), then the pair (gm, Cnv[I*]) 
(resp. (T*,gM)) is an answer to (Q2) with respect to a given implication function 
I, where Cnv[I*} is the converse of an implication function /*, i.e., Cnv[I*]{a, b) 

= 7* (6, a). 
From Propositions 3 and 4, the necessary and sufficient condition of NA(B) > 

h becomes (a) ßA{x) < a[I](h,ßB(x)), Vx £ X, or (b) £[7](/u(a:),/i) < nB(x), 
Vx £ X. As can be seen easily, (a) if and only if max{nA{x),o-[I](h,0)) < 
max{a[I\(h,iiB{x)),(r[r\(h,0)),Vx £ X and (b) if and only if uän^[I\(ßA(x),h), 
£[I](l,h)) < mm(nB(x),£[I](l,h)). From this fact, giving bijective and strictly 
increasing functions p(-,h) : [a{I](h,0),1] -> [0,1] and q(-,h) : [0,Z[I){l,h)} -> 
[0,1], we may define gm(a, h) = p{max{a, o[I\{h,0)), ft) for case (a) and gM{a, h) 
= q{min(a,Z[I](l,h)),h) for case (b) under certain conditions. From this point 
of view, we have the following theorem. 

Theorem 4.   We have the following assertions: 

1. Letp{-,h) : [a[I](h,0),l] -> [0,1] be a bijective and strictly increasing func- 
tion such that 

(pi) hi > h2 implies p(a, hi) > p{a, h2) for all a £ [a[I]{h2,0), 1], 
(p2) p{max(o-[I](h,a),a[I](h,0)),h) is non-decreasing in h, 
(p3) (j[7](-,0) is continuous, 

then gm(a,h) = p(max(a,a[I](h,0)),h) and gM{a,h) = p(m&x(a[I]{h,a), 
a[I]{h,0)),h) satisfy (gl)-(gl) and define the level cut condition. 

2. Let q(-, h) : [0, ^[7](1, h)] -> [0,1] be a bijective and strictly increasing func- 
tion such that 

(ql) hi > h2 implies q{a,hi) < q{a,h2) for all a £ [0,£[7](l,/i2)L 
(q2) q(mm(£[I]{a,h),£,[I](l,h),h) is non-increasing in h, 
(q3) ^[7](1,-) is continuous, 

then gm(a,h)  = q(mm{Z[I](a,h),£[I](l,h)),h) andgM{a,h) = g(min(o, 
£[I](l,h)),h) satisfy (gl)-(gV and define level cut condition. 

Proof. From Proposition 6, it is obvious. □ 
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T^ble 1. gm and gM for Is, IR and F 

I /(0) gm(a,h)(h>0) <?M(a,/i)(/i>0) 

7s — max(0,l-/(o)//(n(A))) min(l,/(n(o))//(n(ft))) 

IR < +00 max(0,l-/(o)/(/(0)-/(A))) min(l,(/(0)-/(a))/(/(0)-/(A))) 
= +00 a /-*(max(0,/(a)-/(/0)) 

jr-R < +oo (/(n(a))-/(A))/(/(0)-/(ft)) min(l,/(n(a))/(/(0)-/(A))) 
= +0O nCr'tmaxCO./Wo))-/^))) a 

Prom Theorem 4, we can obtain the level cut condition of a given neces- 
sity measure when we find suitable functions p and q. Table 1 shows the level 
cut condition for S-, R- and reciprocal R-implication functions of a continu- 
ous Archimedean t-norm t and strong negation n. A continuous Archimedean 
t-norm is a conjunction function which is defined by t(a,b) = /*(/(o) + /(&)) 
with a continuous and strictly decreasing function / : [0,1] ->• [0, +oo) such 
that /(l) = 0, where /* : [0, +00) ->• [0,1] is a pseudo-inverse defined by 
/*(r) = sup{/i I f(h) > r}. A strong negation is a bijective strictly decreasing 
function n : [0,1] —>■ [0,1] such that n(n(a)) = a. Given a t-norm t and a strong 
negation n, the associated S-implication function Is, R-implication function IR 

and reciprocal R-implication /r-R are defined as follows (see [3]): 

Is(a,b)=n(t(a,n(b))),   IR(a,b) = {[t](a,b),   F -R(a,b)=at](n(b),n(a)). 
(25) 
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Abstract. Four methods of c-regression are compared. Two of them are 
methods of fuzzy clustering: (a) the fuzzy c-regression methods, and (b) 
an entropy method proposed by the authors. Two others are probabilistic 
methods of (c) the deterministic annealing, and (d) the mixture distri- 
bution method using the EM algorithm. It is shown that the entropy 
method yields the same formula as that of the deterministic annealing. 
Clustering results as well as classification functions are compared. The 
classification functions for fuzzy clustering are fuzzy rules interpolat- 
ing cluster memberships, while those for the latter two are probabilistic 
rules. Theoretical properties of the classification functions are studied. 
A numerical example is shown. 

1    Introduction 

Recent studies on fuzzy clustering revealed that there are new methods [5,7-9] 
based on the idea of regularization. These methods are comparable with the 
fuzzy c-means [1,3] and their variations. The c-regression model is well-known 
among the variations, namely, Hathaway and Bezdek have developed the method 
of fuzzy c-regression [4]. It is not difficult to show, as we will see below, that the 
new methods have variations that are applied to the c-regression model. 

Another class of methods that may compete with the fuzzy c-means is the 
mixture distribution model [10] with the EM algorithm [2] for the calculation 
of solutions. This method is based on the statistical model and hence the two 
frameworks of fuzziness and statistics are different. Hathaway and Bezdek [4] 
mention a simple type of the mixture model for the c-regression. 

Moreover a method of deterministic annealing has been proposed [11] that 
is also based on probability theory. This method uses the Gibbs distribution 
for determining probabilistic allocation of clusters with the heuristic method of 
using the means for centers. (See also Masulli et. al. [6].) 



204 

In addition to the new methods of fuzzy c-means, we have introduced clas- 
sification functions that interpolate the membership values of the individuals to 
each cluster. Global characters of clusters are accordingly made clear by using the 
classification functions [7-9]. The concept of classification functions is applica- 
ble to the c-regression model. In contrast, classification functions in probabilistic 
models are derived from probabilistic rules such as the Bayes rule. 

We have thus four methods for the clustering with regression: the two fuzzy 
models and the other two probabilistic models. These methods should now be 
compared in theoretical, methodological, and applicational features. In doing 
this, we can use classification functions. 

In the following we first review the four methods briefly, and develop the 
algorithms for calculating solutions that are not shown in foregoing works. The 
algorithm for calculating solutions for the entropy method developed by the 
authors is shown to be equivalent to the method of deterministic annealing, 
although the two models are different. Theoretical properties of the classification 
functions are compared. A numerical example is shown to see differences in 
clustering results and classification functions. 

2    Fuzzy methods and probabilistic methods 

2.1    Two methods of fuzzy c-regression 

A family of methods on the basis of fuzzy c-means have been developed; there are 
common features in the methods. First, an alternative optimization algorithm is 
used to find solutions. Second, objective functions for clustering have a common 
form. 

Let Xi = {x\,...,xp
i)

T, i = l,...,n be individuals to be clustered. They 
are points in p-dimensional Euclidean space. We consider two types of objective 
functions: 

i=l fc=l 
en c      n 

J2= S SUikDik+A_1 USUik log Uik- 
1=1 fc=l i=l fc=l 

where uik is the element of cluster membership matrix U = {uik)- The constraint 
of the fuzzy partition M = {U\ £i=iui* = 1, 0 < uik < l,i = l,...,c,k = 
1,..., n} is assumed as usual. 

The term Dik varies in accordance with the types of clustering problems. In 
the standard fuzzy c-means, Ji is used with Dik = Ua* - t>i||2, the square of 
the Euclidean distance between the individual xk and the center of the cluster 
i, while J2 is used with the same Dik in the method of entropy proposed by the 
authors [7]. 

Since we consider c-regression models, Dik = (yk -fi(xk; ßi)) is used instead 
of \\xk - ViW2. Remark that the set of data has the form of {xk,yk), i = 1,..., n, 
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where x is the p-dimensional independent variable, while y is a scalar dependent 
variable. We wish to find a function /,(»; ßi) of regression by choosing parameters 
ßi so that the objective functions are minimized. Among possible choices for /», 
the linear regression is assumed: 

V = fi(x;ßi) = y£ßix* + ß?+1 (1) 
3=1 

whence ßi = (ß},...,ßf+1) is ap + 1 dimensional vector parameter. 
The term Dik is thus a function of ßf. Dik(ßi) = \y - Yfj=1 ß{x3' - ßf+1\2. 

Let B = (/?!,..., ßc), we can express the objective functions as the function of 
U and B: 

Jx (U, B) = J2 EKfe)m Afe (ßi) (2) 

en en 

j2{u,B) = Y,Y,UikDik^+x~lYlY,Uiklozuik-       (3) 
i=l fc=l t=l fc=l 

Finally, we note that the following alternative optimization algorithm is used 
for finding optimal U and B, in which either J = Ji or J = J2. 

Algorithm of fuzzy c-regression 

Rl Set initial value for B. _ 
R2 Find optimal solution U: J(U, B) =   min J(U, B) 

R3 Find optimal solution B: J(Ü, B) =     min     J(Ü, B) 
ß6R(p+l)c 

R4 Check stopping criterion and if convergent, stop. Otherwise go to R2. 

Assume J = J\ (the standard fuzzy c-regression method is used). It is then 
easy to see that the solution in R2 is 

-l 

Uik = my (4) 

while the solution ßi in R3 is obtained by solving 

\fc=i /     fe=i 

with respect to ßi, where zu = {x\,..., x%, 1)T. 
If we use J = J%, we have 

e-ADifc _       /n VXv^ 
Uik = — , ßi = I 22UikzkZk   I       zLuikVkZk (6) 

y^e-\Djk \fe=i /    fc=i 

3=1 

in R2 and R3, respectively. 
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2.2    Mixture distribution model for c-regression 

The model of the mixture of normal distribution is another useful method for 
clustering with the EM algorithm [2,10]. It is based on the statistical concept of 
maximum likelihood but the results are comparable with those by fuzzy c-means. 
Application of this model to the c-regression has been mentioned by Hathaway 
and Bezdek [4]. 

We simply describe an outline of the algorithm. Notice first that the model 
assumes that the distribution of the error term a = y - Y%=i ßixj ~ ß?+ is 

Gaussian with the mean 0 and the standard deviation ai which is to be estimated 
in the algorithm. 

The distribution is hence assumed to be 

c c 

P(x, V) = ^2 otiPi{x, y\Ci),       (]T ai = 1) (7) 
i=l i=l 

^>2/|Ci) = -^exp(-^(2/-i:^-^+1)2) (8) 

The parameters fa = {ah at, ft) (i = 1,..., c) should be estimated by the EM 
algorithm. For simplicity, let <£ = (fa,..., fa) and assume that p{x, y\$) is the 
density with the parameter #. 

Let an estimate of the parameters be fa (i = 1,.. •, c), then the next estimate 
on by the EM algorithm is given as follows. 

ft      1 ^ a'iPi{xk,ykWi)      . _ n 

n      nj^x   p{xk,yk\$') 

where 

V'ifc 
ct'iPi{xk,VkWi) 

p(xk,Vk\&' >       fe=i 

ßi is obtained from solving the following equation: 

p       n 

jr(X>tt4»i)# + (I>fe4)/3f+1 = £^^ (< = i,.-- ,p) 
j=i fc=i fc=i fc=i 

n 

£(X>*4)# + £ Ak)ß!+1 = $>*» 
j=i fc=i fc=i *:=i 

and finally we have 

^ k=i       j=i 
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Remark moreover that the individual (xk,yk) is allocated to the cluster Cj 
using the Bayes formula. Namely, the probability of the allocation is given by 

p{Ci\xk,yk) = —  (9) 

Y^aiP(xk>Vk\(f>j) 

2.3 Deterministic annealing 

Gibbs distribution is used for probabilistic rule of allocating individuals to clus- 
ters [11]. Namely, the following rule is used: 

p-p\\x-yi\\2 

Pr(*GC0 = -  (10) 
yVpiis-%n2 

in which p is a parameter and j/j is the cluster representative. For given j/, 
(i = 1,..., c), Pr(x £ C{) is determined as above, then the cluster representative 
is calculated again by the average: 

J2x-Pr(xed) 

Vi = ^—, —-• (11) 

X 

Iterations of (10) and (11) until convergence provide clusters by this method. 

2.4 Deterministic annealing and entropy method 

It is now straightforward to use the deterministic annealing for the c-regression. 
We have 

e-pDik(ßi) 
TTifc = Pr((xk, yk) e d) = —  (12) 

\^e-pDjk(ßi) 

J=I 

while 

ßi = [^2^ikZkZk  \      YlWikVkZk (13) 
\fc=i /      fc=i 

(Remark: Detailed proof is omitted here to save the space.) 
Now, readers can see that the method of entropy and the deterministic an- 

nealing provide the equivalent solutions by putting p = A, although the models 
are different; the entropy method is a fuzzy model and is based on the alternative 
optimization, while the deterministic annealing is a probabilistic model and an 
objective function to be optimized is not assumed. Although we have shown this 
equivalence in the case of c-regression, the same argument is applicable to the 
c-means and to other variations of the c-means. 
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3    Classification Functions 

Classification functions in fuzzy c-means and the entropy method have been 
proposed and studied in Miyamoto and Mukaidono [7]. This idea can be applied 
to the c-regression. 

The classification function in fuzzy clustering means that a new generic ob- 
servation should be allocated to each cluster with the membership denned by 
that function, hence the function should have x and y as independent variables 
in this case of c-regression. 

In analogy to the fuzzy c-means, classification functions in fuzzy c-regression 
is defined by replacing xk,Vk by the corresponding variables x = (x1,.. .,xp) 
and y: 

UHx,y) = — (14) 

and when 

y = J2fixJ+l%+1 (15) 

3=1 

for a particular i, the corresponding U}{x, y) = l and U}{x, y) = 0 for I ± i. 
In the case of the entropy method, we have 

Uf(x, y) = 4  (16) 
£c-Ai»-£;-1^-4rhli' 
e=i 

Remark that the values of the parameters #, (i = l,...,c) are obtained 
when the corresponding algorithm of clustering terminates. 

As shown above, the classification function for the deterministic annealing is 
equivalent to that by the entropy method. Thus, Pr((x,y) G C<) = U?(x,y) by 
putting A = p. 

For the mixture distribution model, the same idea is applied. Namely, we 
can define a classification function, or a discrimination function by replacing the 
symbols Xk, Vk by the variables x and y. We thus have 

UT(x, V) = P(Ct\x, y) = —  (17) 
^2atp(x,y\4>t) 

in which the parameter <2> is obtained from the application of the EM algorithm. 
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Comparison of classification functions 
Some of the theoretical properties of classification function are easily proved. 

First, notice that the maximum value Ul(x,y) = 1 is attained at the points 
where (15) is satisfied. On the other hand, when 

|i,-£#aJ-/Sf-1|->+oo 

for all 1 < I < c, we have U}{x, y) —► -. 

We next examine the classification function of the entropy method (and 
equivalently, we are examining the function for the deterministic annealing). 
It should be remarked that the maximum value of Uf(x, y) is not necessarily at 
the point satisfying (15). 

It is easily seen that the value Uf{x, y) = 1 cannot be attained for a particular 
(x, y) in contrast to U}. Instead, we have  lim Uf(x,y) = 1 for some i and 

an appropriately chosen x = x. Whether this property holds or not depends 
upon the relative positions of the vectors (ßj,..., 0?) € Rp, i = l,...,c. Notice 
that /?p+1 is not included in the discussion below. Hence another vector ßt = 
(ßj,..., ßf) is used instaed of ßi. 

For the following two propositions, the proofs are not difficult and are omitted 
here. The first proposition formally states the above result. 

Proposition 1. If there exists an open half space S C Rp such that 

{ße-ßi ■■ l<t<c,t^i}cS (18) 

then there exists x G Rp such that lim Uf(x,y) = 1. If such a half space does 
j/-»oo 

not exist, then for all x G Rp, lim Uf(x, y) = 0. 
y->oo 

A condition for the existence of S in the Proposition 1 is the following. 

Proposition 2. Let T = span{ßi,...,ßc} and CO{/?i,...,ßc} be the convex 
hull in T generated by {/3i,..., ßc}- Assume that {ßi,..., ßc} is independent. 
Then a condition for the existence of S for a particular i such that (18) holds is 
that 

ßi£mt{CO{ßu...,ßc})- 

In other words, such a S exists if and only if the vertex of ßi is not in the interior 
of the above convex hull. 

We thus observe that the maximum value is not at the points of (15) in 
the entropy method. Analogous results hold for the classification function U™ 
of the mixture distribution model, but propositions of the above type cannot 
be derived since the function is too complicated. Nevertheless, it is easily seen 
that the form of the classification function UJ"1 becomes equivalent as Uf in a 
particular case of o\ = • • • = ac and a\ = • • • = ac. We therefore expect that 
the maximum value is not at the points of (15) in the mixture model also. 
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4    A Numerical Example 

Figure 1 shows an artificial example of a set of points with two regression lines. 
The lines in the figure have been obtained from the fuzzy c-regression, but no 
remarkable differences have been observed concerning the regression lines derived 
from the four methods. 

Figure 2 shows the three-dimensional plot of the classification function for one 
cluster by the fuzzy c-regression, whereas Figure 3 depicts the plot of p{C\\x,y) 
by the mixture distribution model. Readers can see remarkable difference be- 
tween these two classification functions. The classification function by the en- 
tropy method (and the deterministic annealing) in Figure 4 is similar to that in 
Figure 3. 

\x»     X 
*   * s' 

»X         * ̂ sü. * B     y/* 
X **» **       □ X* 

"~m» x* 

0         y^ 

**>*/ 
%% 

* * "Wx*V« 
/a Q *    x    *\      . 

X                    "^V 

Fig. 1. Two regression lines Fig. 2. Classification function by FCR 

Fig. 3. Classification function by mix- 
ture distributions 

Fig. 4. Classification function by en- 
tropy method 
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5    Conclusion 

Four methods of c-regression have been considered and classification functions 
have been studied. It should be remarked that the classifications function in 
the standard fuzzy c-regression reveals the shape of regression hyperplane by 
its maximum values, whereas the entropy method, the deterministic annealing, 
and the mixture model do not express those shapes of the regressions. Hence to 
observe outlines and global characteristics of the clusters by the latter class of 
methods require other types of functions, which we will study from now. 

The importance of the entropy method is that it stands between the fuzzy c- 
means and the mixture model. Moreover the deterministic annealing is equivalent 
to the entropy method. It thus is based on fuzzy sets and at the same time a 
probabilistic interpretation is possible. 

Future studies include theoretical investigations of the classification functions 
in the mixture of normal distributions and discussion of other variations of fuzzy 
c-means using the classification functions. 

This study has partly been supported by TARA (Tsukuba Advanced Re- 
search Alliance), University of Tsukuba. 
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Abstract. Conventional studies on rule discovery and rough set meth- 
ods mainly focus on acquisition of rules, the targets of which have mu- 
tually exclusive supporting sets. However, mutual exclusiveness does not 
always hold in real-world databases, where conventional probabilstic ap- 
proaches cannot be applied. In this paper, first, we show that these 
phenomena are easily found in data mining contexts: when we apply 
attribute-oriented generalization to attributes in databases, generalized 
attributes will have fuzziness for classification. Secondly, we show that 
real-world databases may have fuzzy contexts. Then, finally, these con- 
texts should be analyzed by using fuzzy techniques, where context-free 
fuzzy sets will be a key idea. 

1    Introduction 

Conventional studies on machine learning[10], rule discovery[2] and rough set 
methods[5, 12, 13] mainly focus on acquisition of rules, the targets of which 
have mutually exclusive supporting sets. Supporting sets of target concepts form 
a partition of the universe, and each method search for sets which covers this 
partition. Especially, Pawlak's rough set theory shows the family of sets can form 
an approximation of the partition of the universe. These ideas can easily extend 
into probabilistic contexts, such as shown in Ziarko's variable precision rough 
set model[15]. However, mutual exclusiveness of the target does not always hold 
in real-world databases, where conventional probabilstic approaches cannot be 
applied. 

In this paper, first, we show that these phenomena are easily found in data 
mining contexts: when we apply attribute-oriented generalization to attributes 
in databases, generalized attributes will have fuzziness for classification. In this 
case, we have to take care about the conflicts between each attributes, which 
can be viewed as a problem with multiple membership functions. Secondly, we 
will see that real-world databases may have fuzzy contexts. Usually, some kind of 
experts use multi-valued attributes, corresponding to a list. Especially, in medical 
context, people may have several diseases during the same period. These cases 
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also violate the assumption of mutual exclusiveness. Then, finally, these contexts 
should be analyzed by using fuzzy techniques, where context-free fuzzy sets will 
be a key idea to solve this problem. 

2    Attribute-Oriented Generalization and Fuzziness 

In this section, first, a probabilistic rule is defined by using two probabilistic 
measures. Then, attribute-oriented generalization is introduced as tranforming 
rules. 

2.1    Probabilistic Rules 

Accuracy and Coverage In the subsequent sections, we adopt the following 
notations, which is introduced in [9]. 

Let U denote a nonempty, finite set called the universe and A denote a 
nonempty, finite set of attributes, i.e., a : U -» Va for a £ A, where Va is called 
the domain of a, respectively.Then, a decision table is defined as an information 
system, A = {U,A\J {d}). 

The atomic formulas over B C A U {d} and V are expressions of the form 
[a = v], called descriptors over B, where a € B and v 6 Va. The set F(B,V) of 
formulas over B is the least set containing all atomic formulas over B and closed 
with respect to disjunction, conjunction and negation. 

For each / € F(B, V), fA denote the meaning of / in A, i.e., the set of all 
objects in U with property /, defined inductively as follows. 

1. If / is of the form [a = v] then, fA = {s € U\a{s) = v) 
2-  (/ApU = fAr\9A\ (fVg)A = fAV9Al H)A = U-fa 

By the use of this framework, classification accuracy and coverage, or true pos- 
itive rate is defined as follows. 

Definition 1. 
Let R and D denote a formula in F(B, V) and a set of objects which belong to 
a decision d. Classification accuracy and coverage(true positive rate) for R -> d 
is defined as: 

aR(D)=l-^^(=P(D\R)),^d 

KR{D) = \^i(=P(R\D)), 

where \A\ denotes the cardinality of a set A, aR(D) denotes a classification 
accuracy of R as to classification of D, and KR(D) denotes a coverage, or a true 
positive rate of R to D, respectively, 
l 

1 Pawlak recently reports a Bayesian relation between accuracy and coverage[8]: 

aR(D)P(D) = P(R\D)P(D) = P(R,D) 



214 

Definition of Rules 
By the use of accuracy and coverage, a probabilistic rule is denned as: 

Ra4d   s.t.   R = AjVk[aj=vk],aR(D)>6a,KR(D)>6K. 

This rule is a kind of probabilistic proposition with two statistical measures, 
which is an extension of Ziarko's variable precision model(VPRS) [15].2 

It is also notable that both a positive rule and a negative rule are defined as 
special cases of this rule, as shown in the next subsections. 

2.2    Attribute-Oriented Generalization 

Rule induction methods regard a database as a decision table[5] and induce rules, 
which can be viewed as reduced decision tables. However, those rules extracted 
from tables do not include information about attributes and they are too simple. 
In practical situation, domain knowledge of attributes is very important to gain 
the comprehensability of induced knowledge, which is one of the reasons why 
databases are implemented as relational-databases[l]. Thus, reinterpretation of 
induced rules by using information about attributes is needed to acquire compre- 
hensive rules. For example, terolism, cornea, antimongoloid slanting of palpebral 
fissures, iris defects and long eyelashes are symptoms around eyes. Thus, those 
symptoms can be gathered into a category "eye symptoms" when the location 
of symptoms should be focused on. symptoms should be focused on. The rela- 
tions among those attributes are hierarchical as shown in Figure 1. This process, 
grouping of attributes, is called attribute-oriented generalization)!]. 

Attribute-oriented generalization can be viewed as transformation of vari- 
ables in the context of rule induction. For example, an attribute "iris defects" 
should be transformed into an attribute "eye symptoms=yes" .It is notable that 
the transformation of attributes in rules correspond to that of a database because 
a set of rules is equivalent to a reduced decision table. In this case, the case when 
eyes are normal is defined as "eye symptoms=no". Thus, the tranformation rule 
for iris defects is defined as: 

[iris-defects = yes] —> [eye-symptoms = yes] (1) 

In general, when [Ak = V{] is a upper-level concept of [at = Vj], a transforming 
rule is defined as: 

[ai = Vj] ->• [Ak = Vi], 

and the supporting set of [Ak = V{] is: 

[Ai = Vi]A = [j[ai = Vj]a, 
t,3 

= P(R)P(D\R) = KR(D)P(R) 

This relation also suggests that a priori and a posteriori probabilities should be easily 
and automatically calculated from database. 

2 This probabilistic rule is also a kind of Rough Modus Ponens[7]. 
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Head• • • 
Face• • • 

Location < Eye: < 

{hyper 
normal 
hypo 

{megalo 
large 
normal 

antimongoloid slanting of palpebral fissures ■ yes 
no 

iris defects { 
yes 

eyelashes < , a 1 normal 

Noses • • ■ 

Fig. 1. An Example of Attribute Hierarchy 

where A and o is a set of attributes for upper-level and lower level concepts, 
respectively. 

2.3    Examples 

Let us illustrate how fuzzy contexts is observed when attribute-oriented gener- 
alization is applied by using a small table (Table 1). Then, it is easy to see that 

Table 1. A Small Database on Congenital Disorders 

U round telorism cornea slanting iris-defects eyelashes class 
1 no normal megalo yes yes long Aarskog 
2 yes hyper megalo yes yes long Aarskog 
3 yes hypo normal no no normal Down 
4 yes hyper normal no no normal Down 
5 yes hyper large yes yes long Aarskog 
6 no hyper megalo yes no long Cat-cry 
DEFINITIONS: round: round face, slanting: antimongoloid slanting of 
palpebral fissures, Aarskog: Aarskog Syndrome, Down: Down Syndrome, 
Cat-cry: Cat Cry Syndrome. 



216 

a rule of "Aarskog", 

[iris-defects = yes] ->• Aarskog   a = 1.0, K = 1.0 

is obtained from Table 1. 
When we apply trasforming rules shown in Figure 1 to the dataset of Table 

1, the table is tranformed into Table 2. Then, by using transformation rule 1, 

Table 2. A Small Database on Congenital Disorders (Transformed) 

U eye eye eye eye eye eye    class 
1 no no yes yes yes yes Aarskog 
2 yes yes yes yes yes yes Aarskog 
3 yes yes no no no no   Down 
4 yes yes no no no no   Down 
5 yes yes yes yes yes yes Aarskog 
6 no yes yes yes no yes Cat-cry 
DEFINITIONS: eye: eye-symptoms 

the above rule is trasformed into: 

[eye-symptoms = yes] -> Aarskog. 

It is notable that mutual exclusiveness of attributes has been lost by tranforma- 
tion. Since five attributes (telorism, cornea, slanting, iris-defects and eyelashes) 
are generalized into eye-symptoms, the candiates for accuracy and coverage will 
be (5/6, 2/3), (3/4, 3/3), (3/4, 3/3), (3/3, 3/3), and (3/4, 3/3), respectively. 
Then, we have to select which value is suitable for the context of this analysis. 

In [11], one of the authors selected the mimimum value in medical context: 
accuracy is equal to 3/4 and coverage is equal to 2/3. 

Thus, the rewritten rule becomes the following probabilistic rule: 

[eye-symptoms = yes] -*• Aarskog   a = 3/4 = 0.75, K = 2/3 = 0.67. 

This examples show that the loss of mutual exclusiveness is directly con- 
nected to the emergence of fuziness in a dataset. It it notable that the rule used 
for transformation is a deterministic one. When this kind of transformation is 
applied, whether applied rule is deterministic or not, fuzziness will be observed. 
However, no researchers has pointed out this problem with combination of rule 
induction and tranformation. 

It is also notable that the conflicts between attributes with respect to ac- 
cuarcy and coverage correponds to the vector representation of membership 
functions shown in Lin's context-free fuzzy sets[4]. 
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3    Multi-valued Attributes and Fuziness 

Another case of the violation of mutual exclusiness is when experts use multi- 
valued attributes, or a list to describe some attributes in a database. It is a very 
usual way when we cannot expect the number of inputs for attributes. 

For example, in medical context, traffic accidents may injure several parts of 
bodies. Some patients have the damage only on hands and other ones suffer from 
multiple injuries, which makes us difficult to fix the number of attributes. Even 
if we enumerate all the possibilities of injuries and fix the number of columns 
corresponding to the worst case, most of the patients may have only a small 
number of them to be input. Usually, medical experts are not good at estimation 
of possibile inputs, and they are tend to make a list for data storage for the worst 
cases, although the probability for such cases is very low. For example, if medical 
experts empirically knows that the number of injuries is at most 20, they will 
set up 20 columns for input. However, if the averaged number of injuries is 4 or 
5, all the remaining attributes will be stored as blank. Table 3 illustrates this 
observation. Although these attributes look like missing values.they should not 
be dealt with as missing values and have to be preprocessed: such large columns 
should be tranformed into binary ones. For the above example, each location of 
injury will be appended as a column, and if that location is not described in a 
list, then the value of that column should be set to 0. 

U 

T&ble 3. A Small Database on Fracture 

f f f f      f      f f      fffffffffff 

1. arm   finger shoulder -          -          -                          " 
2. foot                    - -          -         -      -      -          -      • 
3. arm       -           - -          -         -      -      - 
4. rib        - -   
5. head    neck shoulder radius ulnaris finger rib pelvis femoral 
6. femoral tibia   calneus         - -  ~ 
DEFINITIONS: f: fracture. 

It is easy to see that mutual exclusiveness of attributes is violated in this case. 
Readers may say that if data is tranformed into binary attributes then mutual 
exclusiveness will be recovered. For example, if one of the above attribute-value 
pairs [fracture = neck] is tranformed into [neckfracture = yes] and others are 
tranformed in the same way, then the datatable will be tranformed into a reg- 
ular information table with binary attributes. It is a very good approach when 
this attribute is a conditional one. But when a decision attribute is described as 
a list, then it may be more difficult to deal with. For example, let us consider 
the case shown in Table 3. Mutual exclusiveness of decision attributes does not 
hold in this table. One solution is to construct new attributes represented by 
the conjunciton of several diseases for construction of a new partition of the 
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universe.3 However, when the number of attribute-value pairs is large, this solu- 
tion may be quite complicated. Also, the conjunction may not be applicable to 
some domains. 

Table 4. A Small Database on Bacterial Tests 

U Diseases Diseases Diseases 
1. Heart Failure SLE        Renal Failure 
2. Pneumonia 
3. Pulmonary Emboli 
4. SLE PSS        Renal Failure 
5. Liver Cirrohsis    Heart Failure Hypertension 

4    Functional Representation of Context-Free Fuzzy Sets 

Lin has pointed out problems with multiple membership functions and intro- 
duced relations between context-free fuzzy sets and information tables[4]. The 
main contribution of context-free fuzzy sets to data mining is that information 
tables can be used to represent multiple fuzzy membership functions. Usually 
when we meet multiple membership functions, we have to resolve the conflicts 
between functions. Lin discusses that this resolution is bounded by the con- 
text: min, maximum and other fuzzy operators can be viewed as a context. The 
discussion in Section 2 illustrates Lin's assertion. Especially, when we analyze 
relational-database, tranformation will be indispensable to data mining of multi- 
tables. However, tranformation may violate mutual exclusiveness of the target 
information table. Then, multiple fuzzy membership functions will be observed. 

Lin's context-free fuzzy sets shows such analyzing procedures as a simple 
function as shown in Figure 4. The important parts in this algorithm are the way 
to construct a list of membership functions and the way to determine whether 
this algorithm outputs a metalist of a list of membership functions or a list of nu- 
merical values obtained by application of fuzzy operators to a list of membership 
functions. 

5    Conclusions 

This paper shows that mutual exclusiveness of conditional and decision at- 
tributes does not always hold in real-world databases, where conventional prob- 
abilstic approaches cannot be applied. 

This idea is closely related with granular computation[3, 14]. 
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procedure Resolution of Multiple Memberships; 
var 

i : integer; La,Li : List; 
A: a list of Attribute-value pairs (multisets:bag); 
F: a list of fuzzy operators; 

begin 
Li := A; 
while (A + {}) do 

begin 
[ai = Vj](k) = first(A); 
Applend /x([aj = Vj](k)) to L[ai=Vj] 

I* L[ai=v.y. a list of membership function for attribute-value pairs */ 
A := A — [en = Vj](k); 

end. 
if  (F = {}) then 

/* Context- Free */ 
return all of the lists L[a.=Viy, 

else 
/* Resolution with Contexts*/ 
while (F / {}) do 

begin 
/ = first(F); 
Apply / to each L[ai=Vi]; i*f([ai = Vj]) = f(L[ai=Vi]) 
Output all of the membership functions fif([a,i = Vj]) 
F:=F-f; 

end. 
end {Resolution of Multiple Memberships}; 

Fig. 2. Resolution of Multiple Fuzzy Memberships 

It is surprising that tranformation will easily generate this situation in data 
mining from relation databases: when we apply attribute-oriented generaliza- 
tion to attributes in databases, generalized attributes will have fuzziness for 
classification. In this case, we have to take care about the conflicts between 
each attributes, which can be viewed as a problem with multiple membership 
functions. Also, real-world databases may have fuzzy contexts when we store 
multiple-values for each attribute. It is notable that this phenomenon is quite 
natural at least in medical doamin. Finally, the authors pointed out that these 
contexts should be analyzed by using fuzzy techniques, where context-free fuzzy 
sets will be a key idea to solve this problem. It will be our future work to induce 
fuzzy if - then rules from this database and to compare these fuzzy rules with 
other conventional approaches. 
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Abstract. Classical statistics and many data mining methods rely on "statistical 
significance" as a sole criterion for evaluating alternative hypotheses. In this 
paper, we use a novel, fuzzy logic approach to perform hypothesis testing. The 
method involves four major steps: hypothesis formulation, data selection 
(sampling), hypothesis testing (data mining), and decision (results). In the 
hypothesis formulation step, a null hypothesis and set of alternative hypotheses 
are created using conjunctive antecedents and consequent functions. In the data 
selection step, a subset D of the set of all data in the database is chosen as a 
sample set. This sample should contain enough objects to be representative of 
the data to a certain degree of satisfaction. In the third step, the fuzzy 
implication is performed for the data in D for each hypothesis and the results 
are combined using some aggregation function. These results are used in the 
final step to determine if the null hypothesis should be accepted or rejected. The 
method is applied to a real-world data set of medical diagnoses. The automated 
perception approach is used for comparing the mapping functions of fuzzy 
hypotheses, tested on different age groups ("young" and "old"). The results are 
compared to the "crisp" hypothesis testing. 

Keywords. Hypothesis testing,  fuzzy  set theory,  data  mining,  knowledge 
discovery in databases, approximate reasoning. 
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1     Introduction 

The analysis of medical data has always been a subject of considerable interest for 
governmental institutions, health care providers, and insurance companies. In this 
study, we have analyzed a data set, generously provided by the Computing Division 
of the Israeli Ministry of Health. It includes the demographic data and medical 
diagnoses (death causes) of 33,134 Israeli citizens who passed away in the year 1993. 
The file does not contain any identifying information (like names or personal IDs). 

In the original database, the medical diagnosis is encoded by an international, 6- 
digit code (ICD-9-CM). The code provides highly detailed information on the 
diseases: the 1993 file includes 1,248 distinct codes. Health Ministry officials have 
grouped these codes into 36 sets of the most common death causes, based on the first 
three digits of the code. 

It is a well-known fact that there is an association between a person's age and the 
likelihood of having certain diagnoses (e.g., heart diseases are more frequent among 
older people). Though this association is present in most types of human diseases (and 
even some unnatural causes of death), it is not necessarily significant, in the practical 
sense, for any diagnosis. Thus, if a certain disease is more likely by only 2% among 
people over the age of 40 than among younger people, this can hardly have any 
impact on the Medicare system. Nevertheless, if the last fact is based on a sufficiently 
large sample, its statistical significance may be very high. 

Our purpose here is to find the types of medical diagnoses where the difference 
between young people and elderly people is practically significant. Once these 
diagnoses are detected, the Ministry of Health (like any other health care 
organization) can invest a larger part of its budget in preventing the related death 
causes in certain age groups of the population. Thus, for every possible cause (e.g., 
cancer, heart disease, or traffic accident) we are testing a single hypothesis saying, 
"The elderly people are more (less) likely to die from this cause than the young 
people." Since the number of available hypotheses is strongly limited (the ministry 
officials have identified 36 sets of major causes), each hypothesis will be tested by a 
verification-oriented approach. For a concise comparison between verification- 
oriented and discovery-oriented methods of data mining, see Fayyad et al [1]. 

This paper is organized as follows. In the next section, we describe a "crisp" 
approach to hypothesis testing, aimed at measuring the statistical significance of each 
hypothesis. The limitations of applying this "classical" statistical approach to real- 
world problems of data analysis are clearly emphasized. In Section 3, we proceed 
with representing a novel methodology of fuzzy hypothesis testing for verification- 
based data mining. The analysis of the medical data set by using the "crisp" approach 
and the fuzzy approach to hypothesis testing is performed in Section 4. Section 5 
concludes the paper by comparing the results of the two methods and outlining other 
potential applications of the Fuzzy Set Theory to the area of data mining. 
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2     "Crisp" Hypothesis Testing 

Statistical hypothesis testing is a process of indirect proof [6]. This is because the data 
analyst assumes a single hypothesis (usually called the null hypothesis) about the 
underlying phenomenon to be true. In the case of medical data, the simplest null 
hypothesis may be that the likelihood of people under 40 having heart disease is equal 
to the likelihood of people over 40. The objective of a statistical test is to verify the 
null hypothesis. The test has a "crisp" outcome: the null hypothesis is either rejected 
or retained (see [6]). According to the statistical theory, retaining the null hypothesis 
should not be interpreted as accepting that hypothesis. Retaining just means that we 
do not have sufficient statistical evidence that the null hypothesis is not true. On the 
other hand, rejecting the null hypothesis implies that there are an infinite number of 
alternative hypotheses, one of them being true. In our example, the set of alternative 
hypotheses includes all non-zero differences between the probabilities of the same 
disease in the two distinct population groups. 

The statistical theory of hypothesis testing deals with a major problem of any data 
analysis: the limited availability of target data. In many cases, it is either impossible 
or too expensive to collect information about all the relevant data items. Hence, a 
random sample, selected from the entire population, is frequently used for testing the 
null hypothesis. In the random sample, like in the entire population, we may find 
some evidence contradicting the statement of the null hypothesis. This does not 
necessarily mean that the null hypothesis is wrong: the real data is usually affected by 
many random factors, known as noise. Representing the distribution of noise in the 
sample cases is an integral part of the null hypothesis. Thus, for comparing means of 
continuous variables derived from large samples, the assumption of a Normal 
distribution (based on the Central Limit Theorem) is frequently used. 

To compare between the probabilities of a diagnosis in two distinct age groups, we 
need to perform the comparison between proportions test (see [5]). This test is based 
on two independent random samples, extracted from two populations. The sizes of the 
samples do not have to be equal, but to apply the Central Limit Theorem, each sample 
should include at least 30 cases. Furthermore, we assume that each person in the same 
age group has exactly the same probability of having a certain disease. The last 
assumption enables us to describe the actual number of "positive" and "negative" 
cases in each group by using the Binomial distribution. 

The massive use of the "crisp" hypothesis testing by many generations of 
statisticians has not eliminated the confusion associated with its practical application. 
Retaining a hypothesis is supposed to increase our belief in it - but how much greater 
should our belief be now? Statistics gives no clear answer. Rejecting a hypothesis 
leaves us even more confused: we are not supposed to believe in the null hypothesis 
anymore. However, which alternative hypothesis should be considered true? 

Apparently, the significance level may be used as a continuous measure of 
evaluating hypotheses. However, as indicated by [6], "significant" is a purely 
technical term and it should not be confused with the practical terms "important," 
"substantial," "meaningful," etc. Very large samples may lead us to statistically 
significant conclusions, based on negligible differences between estimates. In other 
words, statistical significance does not imply practical significance. In the next 
section, we describe a novel, fuzzy method for determining the validity of a 
hypothesis on a continuous scale. 
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3     Fuzzy Hypothesis Testing 

The concept of fuzzy testing, or more specifically, fuzzy hypothesis testing [7] is a 
verification-based method of data mining. A fuzzy hypothesis test is used to 
determine the truth (or falsity) of a proposed hypothesis. The hypothesis may involve 
either crisp or fuzzy data; however, a fuzzy hypothesis test should produce a value on 
[0,1], which indicates the degree to which the hypothesis is valid for given sample 
data. This is an extension of the classical hypothesis test, which yields a crisp value in 
{0,1} (see above). The fuzzy hypothesis test will accept the null hypothesis H0 to 
some degree |i and the alternative hypothesis H, to some degree 1-u.. 

3.1     The Formal Notation 

A set of collected data, i.e. a database, is defined: 

X={xI,x2,x3>...)xil,} 

where m is the number of cases (records) in the database and x, is an «-dimensional 
vector in an n-dimensional feature space: 

A set DcX is chosen, called a sample set, which will be used to test the hypothesis. 
Next, choose a set of hypotheses H={H0,H,,...,Hf} where H0 is the null hypothesis to 
accept or reject and H, through Hf are the alternate hypotheses we must accept if we 
reject H0. A hypothesis can be thought of as an implication of the form: 

if condition^ and condition and ... condition^ 
then       x is a member of F with membership u.(x,) 

In other words, a hypothesis is composed of a set C of k conjunctive antecedent 
conditions and a consequent classification (e.g. cluster, fuzzy set) F. A condition is a 
comparison of one of the components of x, and a constant (possibly fuzzy) value, u. is 
defined as a mapping: |i(xi;H) -> [0,1]. 

In the medical dataset, examples of conditions include: 
• "A person lives in the city of Haifa" (a crisp condition) 
• "A person is old" (a fuzzy condition) 

The value of u. determines whether the data collected agrees with the hypothesis. A 
value of u.0=l means the data is in total agreement with the null hypothesis; a value of 
p(pO means the data totally contradicts the null hypothesis. Additionally, the value of 
u for the alternative hypotheses should be the inverse ofthat of H,„ i.e. |il+u2+...u.f=l- 

3.2     Calculating the Sample Size 

Since it may not always be practical or possible to use all collected data (i.e. the entire 
database), a sampling of data, called a sample set, is used to verify the hypotheses. 
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The sample set D is usually chosen at random from among the set X (the entire 
database). This random sampling must be large enough to make sure that the set D is 
"good"; i.e. that D reflects the contents of X. If D = X it must be accepted; the sample 
is the entire database. If D = 0, it must be rejected; the sample contains no data. 
Otherwise, the number of data in D, denoted d=\D\, will determine if it is "good." 

The following function, called the degree of satisfaction (DoS), is chosen to 
represent the belief that D is a good sample of X based on d (the sample size) and m 
(the size of the entire data set): 

(1) 

/(rf,m) = 
log(-) 
 5L- + 1 Whenrf>- 
log(fc) b 

0 otherwise 

where b is a constant that controls the x-intercept of the function (the sample size of 
zero satisfaction). Larger values of b make the intercept closer to 0. For example, 
when b-\Q, the x-intercept is at 10% of m (10% of the items are guaranteed to be 
selected); for 6=100, the x-intercept is 1% of m (the minimal sample size is 1%). 
Figure 1 shows the graph of the function/for b=\0. In the graph, the x-axis is the 
percentage of the total data, m, selected for D. In other words, the x-axis is dim, where 
0 is 0% and 1.0 is 100%. The function/is used to select the number of items for D: as 
f(d,m)-^l,d->m. Thus, the sample becomes closer to 100% for higher degrees of 
satisfaction required. 

The function is chosen as it meets the criteria given above for selecting the size of 
a "good" sample set. If d=m (i.e. the entire database), then/=1.0. If d=0 (i.e. no data), 
then /=0.0. The introduction of variable b allows us to set a stronger condition of 
/=0.0 when d < m/b, if we have a preference that there should be some lower limit on 
the number of items selected for the sample. We chose the logarithm function because 
of its shape. From the figure we see that as we add items to the sample, the function f 
increases faster at the beginning than later, when the sample set is larger. This agrees 
intuitively with our notion of how a sample works: more items are generally better, 
but once we have a certain amount of items in our sample the additional information 
provided by adding more items is less than that of adding the same number of items to 
a smaller sample. 

Fig. 1. Plot of function/(b=\ 0) 

As shown above, the fuzzy method of calculating the sample size does not depend 
on the hypotheses we are going to test on the data. This approach agrees with the 
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common process of knowledge discovery in databases (see [1]), where the target data 
is selected before the data mining stage. The procedure for selecting an appropriate 
sample size, suggested by the statisticians (see [6]), is more complicated and it 
assumes knowing in advance both the hypotheses to be tested and the underlying 
distributions. According to [6], the first step is specifying the minimum effect that is 
"important" to be detected by the hypothesis testing. The linguistic concept of 
importance is certainly beyond the scope of the statistical inference. However, it is 
directly related to the process of approximate reasoning, easily represented by the 
Fuzzy Set Theory (see [2]). 

3.3     Creating the Mapping Function for Each Hypothesis 

The mapping function u,t maps each vector in D for a given hypothesis Hj to a value in 
[0,1]. This number represents the degree to which each sample agrees with the 
hypothesis. In order to determine the agreement, the membership function of the 
consequent F, must be known. If the data described by the vector x lies within F,, then 
\yt should equal the degree of membership of x in F.r Usually F, will be some 
geometric function on [0,1], such as a triangular or trapezoidal shaped function. 

The vectors in D are compared with the conjunctive conditions in the antecedent of 
the hypothesis. For crisp conditions, any condition(s), which are false, cause x to be 
excluded from consideration since they do not lend any support to the null hypothesis 
or alternative hypotheses. For fuzzy conditions, it may be necessary to use some 
threshold value to determine if the vector x should be excluded. For example, for a 
fuzzy value of 0.5 or less, the vector x may be closer to some other fuzzy set. Each 
fuzzy condition in the antecedent will have a value on [0,1] for each x, and these 
values must be combined using a t-norm operation, such as min. The resulting value 
indicates the degree to which x supports the antecedent conditions of H. The Dienes- 
Rescher fuzzy implication [8] is then performed for the combined antecedent values 
and the consequent value: 

u., = max(l-P„/;) (2) 

where P is the value of the combined antecedents and / is a function describing the 
fuzzy membership of the consequent. Here the subscript / denotes to which hypothesis 
each variable belongs; it will range from 0 (the null hypothesis) to k, for k alternative 
hypotheses. Thus, P2 would be the antecedents for hypothesis H2, f3 would be the 
fuzzy membership of the consequent for hypothesis H3, etc. 

Once the membership u.0 for each x in D is determined, the values must be 
aggregated to determine if the values in D, taken as a whole, support Hn. This can be 
done in a variety of ways including arithmetic mean (each point contributes to the 
decision), minimum (pessimistic - if any x fail H(), then H0 is rejected), or maximum 
(optimistic - if any x pass H0, then H0 is accepted). For arithmetic mean, denote the 
overall mapping function Mk for hypothesis k: 
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5>*(*i) (3) 
Mk(D)=*a—  

where 8 is the number of vectors in D that are relevant to the hypothesis under 
consideration. 

3.4     Comparing Fuzzy Hypotheses 

In the medical database, our objective is to compare between the overall mapping 
functions of two hypotheses: 

• Hypothesis No. 1:  If the age is young, then diagnosis (cause) = x 
• Hypothesis No. 2:  If the age is old, then diagnosis (cause) = x 

If the second mapping function is significantly greater (or significantly smaller) 
than the first one, then we can conclude that older people have a higher (or a lower) 
likelihood of having that diagnosis than young people. "Significantly greater 
(smaller)" are fuzzy terms depending on human perception of the difference between 
the mapping functions. We have outlined a general approach to automated perception 
in [3-4]. For automating the perception of this difference, we are using here the 
following membership function u : 

l + exp(-/?.(M2W-M/D;); 
1 

I + exp(/WAf2fOJ-M/DJ)) 

, M ,JD) > M t(D) 

otherwise 

(4) 

where ß is an adjustable coefficient representing the human confidence in the 
difference between frequencies, based on a given sample size. The membership 
function \isg increases with the value of ß. 

4     Analysis of the Medical Data 

4.1     Hypothesis Testing 

In order to create the mapping functions for each fuzzy hypothesis, the fuzzy sets 
corresponding to "young age" and "old age" have been determined. These fuzzy sets 
are shown in Fig. 2. Both sets are represented by triangular membership functions. 
The definition of these membership functions is completely subjective and user- 
dependent. 

To perform an objective comparison between the fuzzy hypothesis testing and the 
"crisp" approach, we have used the threshold of 45 years to divide the records into 
"young" and "old" people. Afterwards, the proportion of each diagnosis under the age 
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of 45 has been compared statistically to the proportion of the same diagnosis for 
people over 45 years old. The statistical significance of the difference between 
proportions has been evaluated by the comparison between proportions test (see 
Section 2 above). 

Both methods of hypothesis testing have been applied to the same random sample. 
The sample size has been determined by the fuzzy method of Section 3.2 above, using 
DoS (Degree of Satisfaction) equal to 0.90 and the constant b = 100. The number of 
records obtained is 20,907 (out of 33,134), including 1,908 young people and 18, 998 
elderly people. For comparing fuzzy hypotheses, based on this sample size, the 
coefficient ß = 25 has been selected. 

Fig. 2. Fuzzy sets "young age" and "old age" 

4.2    Summary of Results 

The 36 diagnoses present in the medical dataset can be divided into the following 
categories, by the effect of person age: 

• Five diagnoses (death causes), where the difference between the young people 
and the elderly people is highly significant according to both the fuzzy test and the 
"crisp" test. These causes include: Ischaemic Heart Disease, Cerebrovascular 
Disease, Diseases of Pulmonary Circulation, Motor Vehicle Traffic Accidents, and 
Other Accidents. The likelihood increases with the age for the first three causes 
and decreases for the last two. From the viewpoint of the health care system, this 
means that older people have a higher risk of dying from the first three diseases. 
Consequently, this age group should be subject to frequent medical assessments as 
a preventive treatment. To decrease the number of traffic and other accidents in the 
young age group, some restrictions may be applied (and are actually applied) with 
respect to young drivers. 
• Nineteen diagnoses, where the statistical significance of the difference is also 
very high (over 99.9%), but the fuzzy test has shown a relatively low significance 
varying from 0.50 to 0.78. For example, only 0.28% of young people have diabetes 
vs. 2.77% of elderly people. The significance of the fuzzy test in this case is only 
0.65. However, the statistical test of comparison between proportions has provided 
us with a statistic z = 10.44, which has a very high significance (almost 1.00). 
• Eleven diagnoses, where the significance of both tests is relatively low. 
• One rare diagnosis, which has been completely omitted from the random sample. 
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5     Conclusions 

The results of the hypothesis testing represented in Section 4 above emphasize the 
main drawback of statistical methods: the statistical significance should not be used 
as a synonym for importance. Relying solely on the results of the "crisp" testing in 
the above dataset would lead (actually, mislead) the analysts into concluding that 
almost all death causes have a strong association with the age. This could cause a 
wrong setting of health care priorities or even completely ignore the age for this 
purpose. The main contribution of Fuzzy Set Theory to this problem is the improved 
differentiation of diagnoses, starting with those completely unaffected by age, and 
ending with the five causes (see sub-section 4.2 above) where the age is the leading 
factor. 

As we have shown in our work on automated perceptions [3], the potential benefit 
of applying fuzzy logic methods to data mining is yet to be studied. After solving one 
limitation of the traditional data analysis, moving from verification of hypotheses to 
their discovery, many data mining methods are still anchored to the statistical methods 
of significance testing. Consequently, a lot of unimportant (mostly, random) 
hypotheses are "discovered" in data. The fuzzy hypothesis testing is challenging this 
problem. 
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Abstract. Fuzzy logic has not been applied to macro-economic modelling 
despite advantages this technique has over mathematical and statistical 
techniques more commonly used. The use of fuzzy logic provides a technique 
for modelling that makes none of the theoretical assumptions normally made in 
macroeconomics. However, in order to avoid making assumptions, we need to 
elicit fuzzy rules directly from the data. This is done using a genetic algorithm 
search for rules that fit the data. The technique discovered rules from artificially 
generated data that was consistent with the function used to generate the data. 
The technique was used to discover rules that predict changes to national 
consumption in order to explore the veracity of two economic theories that 
propose different causes for changes in consumption. The fuzzy rules generated 
illustrate a more fine-grained analysis of consumption than is predicted by 
either theory alone. Predictions made using the generated rules were more 
accurate following ten-fold cross validation than those made by a neural 
network and a simple linear regression model on the same data. 

Introduction 

Macro-economic modelling and forecasting has traditionally been performed with the 
exclusive use of mathematical and statistical tools. However, these tools are not 
always appropriate for economic modelling because of uncertainty associated with 
decision making by humans in an economy. The development of any economy is 
determined by a wide range of activities performed by humans as householders, 
managers, or government policy makers. Persons in each role pursue different goals 
and, more importantly, base their economic plans on decision-making in vague and 
often ambiguous terms. For example, a householder may make a decision on the 
proportion of income to reserve as savings according to the rule- {IF my future salary 
is likely to diminish, THEN I will save a greater proportion of my current salary}. 
Mathematical models of human decision-making impose precise forms of continuous 
functions and overlook the inherent fuzziness of the process. 

In addition to imposing a crispness that may not be appropriate, mathematical and 
statistical models necessarily make assumptions that derive from economic theories. 
A large variety of sometimes conflicting models have emerged over the years as a 
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consequence of this. Inferences drawn from a model hold only to the extent that the 
economic theoretical assumptions hold yet this is often difficult to determine. 

Macroeconomic researchers solely using mathematical or statistical models are 
compelled to make assumptions based on their own subjective view of the world or 
theoretical background and beliefs. For example, hypotheses generated by researchers 
who accept Keynesian assumptions are quite different from hypotheses from Classical 
theorists. Hypotheses are not only dependent upon the subjective beliefs of their 
creators but can easily become obsolete. Completely different economic systems can 
rise in different times in different countries and be described by different models. 
Thus, if making assumptions and deriving hypotheses about an economy leads to 
subjective models, and successful theories do not last long, then the following 
questions arise: Is it possible to eliminate model dependence on the subjective 
researcher's assumptions about features and properties of the object of study?; Can 
there exist an approach that automatically generates a hypothetical basis for 
constructing a model ?; Can this approach be applied in different times to different 
types of economic systems ? 

In this paper we introduce a modelling approach that does not rely on theoretical 
assumptions or subjective fine-tuning of system parameters. We apply fuzzy theory 
and use an evolutionary programming approach to pursue two goals: 
1. To provide a user with a system, which better represents uncertainty caused by the 

prevalence of human decision making in an economy 
2. To build a forecasting model without any initial assumptions, which aims solely to 

be consistent with observed economic data. 

Our approach derives fuzzy rules from macro-economic data. We use an 
evolutionary programming approach to search for rules that best fit the data. A user 
can glance at the rules and visualise the main dependencies and trends between 
variables. Moreover, if there are exogenous variables in the model presented among 
input indicators, a user is able to foresee a possible impact of their simulations on 
other variables of interest. For example, quickly glancing at the fuzzy rules shown in 
Table 1, we can say that in order to obtain a large values of the output we need to 
increase the value of exogenous variable x2. 

XI 
SMALL LARGE 

X2 SMALL SMALL SMALL 
LARGE LARGE LARGE 

Table 1. Sample fuzzy rules table 

We believe that fuzzy logic, though not normally used in macro-economic 
modelling is suitable for capturing the uncertainty inherent in the problem domain. An 
evolutionary approach to building the system can facilitate the design of a system free 
of subjective assumptions, and based only on patterns in the data. 

In the following section we describe the concept of hybrid fuzzy logic and genetic 
algorithms. Following that we describe our method in some detail and provide an 
example with data that is generated from artificial rules. In Section 5 we apply the 
method to macro-economic data before outlining future directions. 
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Mining forecasting fuzzy rules with genetic algorithms 

Our task is to model a macro-economic environment and capture any uncertainty in a 
macro-economic agent's decision-making behaviour in order to generate predictions 
of the economic system's development in the future. We are required to mine 
knowledge of this process in flexible human-like terms. The application of the fuzzy 
control architecture for this forecasting problem proceeds with the following 
modifications: 
1. Macro-economic data is sourced from national repositories. 
2. The fuzzy sets and denazification methods are set as parameter features of the 

system. No attempt is made to automatically discover membership functions. 
3. The rules governing the process are required to be discovered from the data. 

Research in fuzzy control focuses on the discovery of membership functions, and 
independently on the fine tuning of fuzzy rules for given data. Both research strands 
are aimed at adjusting a fuzzy control system to the specific data. Several researchers 
[1], [3] used genetic algorithms to simultaneously find fuzzy rules and parameters of 
the membership functions. However the simultaneous search for rules and 
membership functions adds complexity and may not be necessary if we are dealing 
with economic data. With most economic indicators there is general agreement about 
the mapping of qualitative terms onto quantitative terms. Most economists would 
regard a gross domestic product (GDP) rise of 1% to be low, one of 5% to be high. 
There may be some disagreement surrounding a GDP value of 3% but there is 
expected to be little disagreement about the precise form of the function between high 
and low. 

In order to reduce the complexity of the search problem, and, in light of the nature 
of economic data, we do not search for near optimal membership functions but 
instead determine a membership function that seems reasonable. Fuzzy rules are 
discovered using an evolutionary search procedure. Fuzzy rules derived by the genetic 
algorithm are applicable only to the pre-set membership functions but this is minor 
limitation. 

Machine learning methods have been applied to the problem of mining fuzzy rules 
from data. For example, Hayashi and Imura [2] suggested a two-step procedure to 
extract fuzzy rules. In the first step, a neural network (NN) was trained from sample 
data. In the second step, an algorithm was used to automatically extract fuzzy rules 
from the NN. Kosko [6] interprets fuzzy rules as a mapping between fuzzy 
membership spaces and proposed a system, called Fuzzy Cognitive Maps, to integrate 
NN and fuzzy systems. Lin and Lee [7] proposed a NN-based fuzzy logic system, 
which consists of five layers. The first is linguistic input, the second and fourth are 
terms representing a membership function, the third is a set of rules and the fifth is an 
output. The common weaknesses of NN, however, are the lack of analytical guidance, 
where all relationships are hidden in the "black box" of the network connections. 
Furthermore, training neural networks is not deterministic and the learning process 
may be trapped in local solutions. 

Another widely used machine learning method used is the induction of fuzzy 
decision trees where fuzzy entropy is used to guide the search of the most effective 
decision nodes [10], [11],  [13]. Although,  in most situations the decision tree 
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induction works well, it has some limitations. According to Yuan and Zhuang [14] the 
one-step-ahead node splitting without backtracking may not be able to generate the 
best tree. Another limitation is that even the best tree may not be able to present the 
best set of rules [12]. Furthermore, this method has been found to be sub-optimal in 
certain types of problems such as multiplexer problems [8]. 

In this paper we use an evolutionary approach to find fuzzy rules from macro- 
economic data. Genetic algorithms have been used by Rutkowska [9] to find near- 
optimal fuzzy rules and learn the shapes of membership function. Karr [4] also 
focussed his work on looking for a high-performance membership function using 
genetic algorithms. Yuan and Zhuang [14] discovered fuzzy rules for classification 
tasks that were most correct, complete and general. 

In our work, we do not seek rules that are most general, complete and correct but 
initially focus only finding a complete list of rules that best describe the data. The 
generalisation of rules is a manual process exercised if required. Often with systems 
as complex as dynamic economies few general rules are non-trivial and more 
attention is focused on specific rules. Furthermore in order to find the most general, 
complete and concise rules Yuan and Zhuang [14] proposed definitions of these 
concepts. The adoption of similar definitions with macro-economic data is one step 
toward re-introducing theoretical assumptions in our model and was thus avoided. 

In the next section we describe the procedure used to design a genetic algorithm 
search for mining fuzzy rules. 

Description of method 

To apply the genetic algorithm search there are two main decisions to make: 
1. How to code the possible solutions to the problem as a finite bit strings and 
2. How to evaluate the merit of each string. 

Because solutions in our case are fuzzy terms in the fuzzy rules table, we construct 
the solution strings as rows of the rules table. 

Theoretically, it is possible to apply this coding for genetic search in any multilevel 
fuzzy rules space. But, the length of strings increases dramatically with an increase in 
number of inputs, outputs and fuzzy sets, over which these inputs and outputs are 
defined. We limited our examples to two inputs and one output defined over four 
fuzzy sets. 

Although the use of binary coding is preferable by many researchers we use integer 
numbers. Binary coding can code variables, which can take only 2 values. To code 
variables, which can take more than 2 values in binary coding we have to use several 
genes to code each variable and deal with unused coding patterns. To avoid this 
complexity and to cover the possibility of the appearance of more than two values in 
each cell of fuzzy the rule table, we used integer coding. We assign numbers from 1 
to N for each of N fuzzy sets defined for the output variable. Thus, each rule is 
represented with the corresponding number as a gene in the coded chromosomes. 

The second task concerns the determination of the fitness function. Those 
chromosomes, which represent fuzzy rules that are more consistent with the data, are 
considered fitter then others. We calculate the sum of squared deviation between the 
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output of the fuzzy control with a given set of rules and a real value of the output 
indicated in the data record. This value represents a fitness function value and is used 
as criteria in producing a new generation. In early trials we used a sum of modulus 
instead of the sum of squares of the difference between actual and predicted values to 
measure error, and obtained almost identical results. In order to be able to compare 
our system's performance to other techniques we preferred to use the sum of squared 
metric as the evaluation criteria. 

The crossover and mutation procedures are quite common for genetic algorithms 
and are as follows. The current population is ranked according to the values of fitness 
function. The probability for each chromosome to be chosen is proportional to the 
place of chromosomes in the ranked list of the current population. Chromosomes are 
paired and either get directly copied into a new generation or produce a pair of 
children via a crossover operation. The newly produced children are placed in the new 
generation. The probability of two parents crossing over is set as a parameter of the 
algorithm. The crossover procedure can have one or several crossover points. We 
break the parent chromosomes in pre-determined places and mix the consequent parts 
to build a new child chromosome. 

The mutation process is applied to each gene of each chromosome in all 
generations. The integer number in a gene randomly increases or decreases its value 
by one. This allows us to represent new genes in a population for a given place in 
chromosome, whilst avoiding huge changes in the original solution pattern so as to 
adjust the solution toward a mutant in the neighbourhood area. 

The following section presents an implementation and tests the described method 
with data generated from known rules. 

Example with generated data 

In order to test our method we ran the system over data generated artificially. By 
defining the functional dependence between input and output variables we know 
exactly what the derived fuzzy rules should be. 

Two inputs and one output were used to test the system. The same four fuzzy sets - 
{Negative high (NH), Negative low (NL), Positive low (PL) and Positive High (PH)} 
were defined over all system's variables as shown in the Figure 1. Thus, possible 
solutions representing the 4x4 fuzzy rule table were coded into 16 gene-length 
chromosomes. The most popular denazification method, centre of gravity, was 
chosen. The task was to find all rules in a view {If xl is FuzzySet(i) AND x2 is 
FuzzySetG), THEN y is FuzzySet(k)}, where i,j,k=1..4 and FuzySet(i), FuzzySet(j) 
and FuzzySet(k) belong to the set - {Negative high, Negative low, Positive low and 
Positive High}. 
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M  (*) 

Fig. 1. Fuzzy sets for xl, x2 and y 

Artificial data was constructed as follows. One hundred random values were 
generated from the interval (-5,5) for the variables xl and x2. Then we put them 
through a pre-defined function, y=(10*xl-x2)/ll and stored output. The function 
y=(10*xl-x2)/ll has been chosen randomly only to demonstrate the method's 
performance. We ran the system with a crossover probability of 40%, mutation rate of 
0.1% and a population size = 50. The genetic algorithm was run 50 times with 
different initial populations. In 100% of these test simulations the search converged to 
the solution presented in Table 3 after approximately 50 generations. 

Table 3 illustrates that the search algorithm finds a "very good" solution, for data 
generated by the function y=(10*xl-x2)/ll. As expected, the order of fuzzy outputs 
for y in the fuzzy rule table decreases with an increase in x2 and increases with an 
increase in xl. This fact is consistent with the positive coefficient on variable xl and 
negative coefficient of variable x2. Moreover, the value of xl is more significant in 
determining an output y, as we would expect given the coefficient of xl is 10 times 
larger than that for x2 in the function. This fact can be observed in the first and the 
fourth row, where the values for y are Negative high and Positive high respectively 
regardless of the values of xl. The rest of the cells also confirm that positive values of 
xl are more prominent in determining the value of y than negative values of x2 and 
visa versa. 

X2 
AW NL PL PH 

XI Nil Ml Ml Ml Ml 
NL PL NL NL Nil 
PL PL PL PL NL 
I'll Pll I'll Pll Pll 

Table 2. Fuzzy rules for the dummy data 

The next section describes an example of applying the algorithm to real world 
economic data. 

Example with economic data looking for theoretical assumptions 
e.g. keynesian theory 

In this section, in order to test the algorithm with real economic data, we chose 
economic indicators with well-known interrelationships. The Keynesian General 
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Theory is based on a fundamental assumption that the level of national income 
determines the level of consumption [5]. In his famous multiplier model he introduces 
an increasing function C=f(Y), where C is consumption and Y is a national income. 
This hypothesis has been quite successfully tested in many developed countries. 

According to classical economic theory, interest rates impact on the level of 
consumption,. Classical theorists provide the following reasoning to support this 
hypothesis. If the level of interest rates rise, then people expect to earn more money in 
the future on each dollar saved in the present. More people will therefore prefer not to 
spend today, but wait for a future time when they will have more to spend. Provided a 
given level of Production Output or National Income, more savings mean less 
consumption. 

In our study we expect to find evidence for well-known associations depicted by 
both Keynesian and Classical theories. Economic data, describing dynamics of these 
indicators in the United States was obtained from The Federal Reserve Bank of St 
Louise. The records were collected on a regular basis from 1960 till 1997. 

We compared our fuzzy rules generation method with linear regression and feed- 
forward neural network on the same Federal Reserve Bank data. 

Data transformation took the form transforming actual quarterly values of 
consumption and national income into changes in those values over a quarter. 150 
records representing change from one quarter to the next was collected. This data 
allowed us to make our system more sensitive to changes in the modelling economic 
indicators. 

The first input is the change over a quarter period of the level of national income. 
The second input is the change in the interest rate over a quarter. The output was 
changes in the level of real personal consumption over a quarter. The interval of real 
values of inputs and the output were set from minimum and maximum observed 
changes in the corresponding variables. The four fuzzy sets - {Negative high (NH), 
Negative low (NL), Positive low (PL) and Positive High (PH)} were set in a manner 
illustrated in Figure 1. The choice of fuzzy sets is supported by the importance in 
economic modelling to distinguish between an increase and a decrease in the control 
variable, which reflected in the negative or positive direction of the changes. 
Furthermore, it is valuable to distinguish between different degrees of change, 
therefore high and low fuzzy sets are distributed over both positive and negative sides 
of the variables domain. 

Ten fold cross-validation was used with hold out sets of size 15 and training sets of 
size 135. For each cross validation set, fuzzy rules were generated as described above. 
The sum of square of differences between consumption predicted by the fuzzy rules 
and actual consumption on the test set was recorded. This was repeated with a simple 
linear regression model and also with a feed-forward neural network trained with 
back-propagation of errors (3 layer, learning rate = 0.2, no improvement in error rates 
after 40-55 epochs). Table 4 illustrates the median, average and standard deviation of 
the sum of square of the difference between predicted and actual change in 
consumption for the fuzzy rules, neural network and linear regression over the ten 
cross-validation sets. 
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Fuzzy rules Neural network Linear regression 
Mean 14.75 17.31 23.25 
Std. Deviation 5.5 5.56 10.42 
Median 13.59 15.4 21.98 

Table 3. Comparison of fuzzy rules, neural network and linear regression 

The fuzzy rules generated by the genetic algorithm method proposed here 
performed very well in comparison to a linear regression model. This was perhaps to 
be expected because the relationship between changes in national income, interest 
rates and consumption is expected to be more complex than a simple linear one. 
Neural networks can capture non-linear relationships and the networks trained 
performed better than the linear regression models. However, the performance of the 
fuzzy rules was comparable to the trained networks. 

The table of rules is included in Table 4 where Y is change in national income and 
I is change in interest rates. The fuzzy rules predict change in consumption. 

I 
NH NL PL PH 

Y NH PH PL NH NL 
NL NH NL NL NL 
PL NL PL PL NL 
PH PH PH PH NL 

Table 4. An optimal set of fuzzy rules for the data of Example 2. 

The black box nature of neural networks is a distinct disadvantage for the analysis 
of macro-economic data. In contrast, as Table 4 illustrates, fuzzy rules generated 
without any theoretical assumptions can be used to explore patterns and to even assess 
the veracity of theories. To perform this assessment let us summarise search results in 
light of both theories. Firstly, taking into account that both types of economists 
usually assume consumption dependencies close to linear we can approximately 
define them in rule view as it shown in Table 5. Then, The Table 6 can be interpreted 
as to what degree it confirm either or both theories. 
I C 
NH PH 
NL PL 
PL NL 
PH NH 

Y C 
NH NH 
NL NL 
PL PL 
PH PH 

NH NL PL PH 
NH Classical Classical Cl. & Kn. Cl. & Kn. 
NL Keynesian Keynesian Cl. & Kn. Cl. & Kn. 
PL CI. & Kn. Keynesian Classical 
PH Cl. & Kn. Cl. & Kn. Keynesian Classical 

Table 5. Classical and Keynesian consumption dependecies Table 6. Rules interpretetion 

The selected part of the table is areas where two theories do not contrivers each 
other and both theories are confirmed by the rules. In fact, according to the table 5, 
when interest rates rise and national income falls, then consumption shrinks and, on 
the other corner, when interest rate fall and national income rise, consumption rises. 
The (Y-PL, I-NH) cell is the only exception to the theory predictions in these areas. 

In the rest of the table we can observe that high rises in interest rates make 
consumption behaviour classically, while under low rises in interest rates it confirms 
to Keynesian theory. Regarding national income, under high decrease in national 
income consumption reacts in classical manner, while low decreases in national 
income consumption is determined in Keynesian way. 
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Conclusions 

In this paper we demonstrated an application of fuzzy logic to macro-economic 
modelling. Despite benefits, fuzzy logic has not been used as widely as mathematical 
and statistical techniques for this purpose. Our use of fuzzy logic makes none of the 
theoretical assumptions normally made in macroeconomics and is more intuitive. We 
elicited fuzzy rules directly from macro-economic data using a genetic algorithm 
search for rules that best fit the data. The technique was evaluated initially with 
artificially generated data and then with data from the US economy. Fuzzy rules were 
successfully discovered that described the function used to generate the artificial data. 
Furthermore, fuzzy rules generated from real economic data provided a fine grained 
analysis of economic activity and was used to explore the relationship between two 
diverse economic theories. The fuzzy rules generated by this approach were 
compared for predictive accuracy with a linear regression model and with a neural 
network. The fuzzy rules out-performed both approaches. 
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Abstract. In the most of adaptive fuzzy control schemes presented so far still only the 
parameters (weights of each rule's consequent), which appear linearly in the radial 
basis function (RBF) expansion, were tuned. The major disadvantage is that the 
precision of the parameterized fuzzy approximator can not be guaranteed. 
Consequently, the control performance has been influenced. In this paper, we not only 
tune the weighting parameters but tune the variances which appears nonlinearly in the 
RBF to reduce the approximation error and improve control performance, using a 

lemma by Annaswamy et al (1998) which was named as concave/convex 
parameterization. Global boundedness of the overall adaptive system and tracking to 
within precision are established with the proposed adaptive controller. 

1.  Introduction 

The application of fuzzy set theory to control problems has been the focus of numerous 
studies. The motivation is that the fuzzy set theory provides an alternative way into the 
traditional modeling and design of control systems when system knowledge and 
dynamic models in the traditional sense are uncertain and time varying. In spite of 
many successes, fuzzy control has not been viewed as rigorous approach due to the lack 
of formal synthesis techniques, which guarantee the basis requirements for control 
system such as global stability. Recently, various adaptive fuzzy control schemes have 
been proposed to deal with nonlinear systems with poorly understood dynamics by 
using the parameterized fuzzy approximator [1-3]. However, most of the schemes 
presented so far still only the parameters (weights of each rule's consequent), which 
appear linearly in the radial basis function (RBF) expansion, were tuned. The major 
disadvantage is that the precision of the parameterized fuzzy approximator can not be 
guaranteed, therefore, the control performance may be affected. In the RBF expansion, 
three parameter vectors are used, which are named as connection weights, variances 
and centers. Recently, very few results are available for adjustment of nonlinearly 
parameterized systems. Though the gradient approaches were used [4-6], however, the 
way of fusing into the adaptive fuzzy control schemes to generate a global stability is 
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still left behind. The desirable approach will be apparently to tune the three parameter 
vectors simultaneously. However, it can definitely lead complicated algorithms and 
cost of calculation. Since the RBF expansion is just a kind of approximetor and nothing 
more, we can refer to neural networks, which has perfect ability of approximation as 
known. In the neural network, it is sufficient to tune the weights and variances in 
general due to improve the precision to approximation, whereas the centers are simply 
placed on a regular mesh covering a relevant region of system space. In this paper, 
using a lemma by Annaswamy et al which was named as concave/convex 
parameterization [7], we not only tune the weighting parameters, but tune the 
variances, which appear nonlinearly in the RBF to reduce the approximation error and 
improve control performance. Global boundedness of the overall adaptive system and 
tracking to within precision are established with the proposed adaptive controller. 

2. Problem Statement 
This paper focuses our attention on the design of adaptive control algorithms for a class 
of dynamic systems whose equation of motion can be expressed in the canonical form: 

*(n) (0+Mt)j(t),- ■ ■ >_,) (0) - b{x(t)M0,- ■ ■ *{n-2) (0)"(0 (!) 

where u(t) is the control input, /(•) and g() are unknown linear or nonlinear function 

and b is the control gain. It should be noted that more general classes of nonlinear 

control problems can be transformed into this structure [8]. 

The control objective is to force the state X(t) = [x(t)j(t),~ -j™(f)] to follow a 

specified desired trajectory, Xd (t) = [xd {t)jd(f),-,x2"l)(0j' • Defining the tracking error 

vector, X(t)-X(t)-Xd(t), the problem is thus to design a control low u(t) which 

ensures that X(t) —■ 0, as t —■». For simplicity in this initial discussion, we take b=\ 

in the subsequent development. 

3. Fuzzy System 

Assume that there are N rules in considered fuzzy system and each of which has the 

following form: 
R, •.IFxiisA)andx2isA)and--andxnisAn

r THENzisBj 

where j-l,2,-,N, *,(i-l,2,-,») are the input variables to the fuzzy system, z is 

the output variable of the fuzzy system, and A] and B, are linguistic terms 
characterised by fuzzy membership functions fiA, (*,) and nB/ (z), respectively. As in 
[2], we consider a subset of the fuzzy systems with singleton fuzzifier, product 
inference, and Gaussian membership function. Hence, such a fuzzy system can be 

written as 
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h(X) -S-'lü'H (2) 
where h:UCR"-*R, X "(xitx2,-,x„)eU; o>, is the point in Ä at 

whichy.Bj(foj)'l, named as the connection weight; nAl(x,) is the Gaussian 

membership function, defined by 

M^fo)-«*[-(<*;&-$;»'] (3) 

where £!, a) are real-valued parameters. Contrary on the traditional notation, in this 

paper we use  l/aj   to represent the variance just for the convenience of later 

development. 
Definition 1: Define fuzzy basis functions (FBF's) as 

S/M*-§j)=fW*.)>    J-1A-,N (4) 

where nA, {xt) are the Gaussian membership functions defined in (3), 

f, -(£]»§/,—.1") and ai ~{a),a),—,a]). Then, the fuzzy system (2) is equivalent 

to a FBF expansion 

jK*)-£«,,,(*,|z-e,|) (5) 

Remark: It is obvious that g,() is convex and -g;() is concave with respect to ay. 

The definitions of the concave and convex can be refer to [7]. 

Theorem 1: For any given real continuous function / on the compact set UeR" and 

arbitrary sh > 0, there exists optimal FBF expansion h'(X)EA suchthat 

sup\f(X)-h-(X)\<e„ (6) 

This theorem states that the FBF expansion (5) is universal approximator on a compact 

set. Since the fuzzy universal approximator is characterized by parameters wj, as and 

§;, the optimal h'(X) contains optimal parameters w*, a] and §j. 

Without doubt, the desirable approach is to tune the three parameter vectors 

simultaneously. However, it can lead to complicated algorithms and cost of calculation 

definitely. Since in this paper, the FBF expansion is just a kind of approximator and 

nothing more, we can refer to neural networks, which has perfect ability of 

approximation as known. In the neural network, it is sufficient to tune the weights and 

variances in general due to improve the precision to approximation, whereas the centers 

are simply places on a regular mesh covering a relevant region of system space. 

To guarantee the stability of proposed adaptive fuzzy system, we lead the algorithm 

into a min-max problem in UP. Though solving the Min-max problem is an ordinary 
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problem in LP and there are a lot of approaches [9-10], the most of the approaches are 

with a complicated procedure. In this paper, we use a lemma by Annaswamy et al 
which was named as concave/convex parameterization to develop adaptive fuzzy 

control system. 

4. A Solution of Min-Max Problem 

Let's consider a scalar function f((p(t),0), which is continuous and bounded with 

respect to its arguments. 0 is an unknown parameter vector and belongs to a known 

hypercubeOefl", <l>(t)&R" is a known bounded function of X , and for any 0(0, 

f((p(t),0) is either convex or concave on 0S, where 0S is a simplex in R" suchthat 

6,39. Suppose that vertices of 0S are denoted as 0„. (i =1,2,---,« ). Then 0, may 

be expressed as 

0. = )s«, si (7) 

Theorem 2: a'and K' are the solutions of the min-max optimizations as follows: 
a' = min max ßj(w,8) 

K' - arg min max ßJUoß) 

j(oi,e) = f(<i>,e)-f(<t>,e)+KT(S-e) 

where flee, and ß  is a known non-zero constant. Then 

\A     if ßf is convex on&s . _ jA2    if ßf is convex on 0S 

"  " | 0     if ßf is concave onS/ ~ {v/„   if ßf is concave on 0S 

where V/e = df/dO ,A = [i,,^] = G'lb , Ax is a scalar, A2 GR", 

(8) 

(9) 

(10) 

(11) 

-1    ßiß-ßJ 
-l   ß(6-e,2y 

-i   ß{e-eaJ 

b = 

'ß(f-L) 

(12) 

and/^/^ej, 

Remarks: 
1) The solution to such an LP problem will generally involve numerical searches over 

the feasible set of solutions. The above Theorem introduced the simplex, 0S, 

precisely to avoid such a search. 
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2) To decide the solutions in (11), the Theorem2 requires that either convex or concave 
of ßf would be known. Moreover ß is a known non-zero constant. This is a strict 

restriction to apply the theorem into some applications. Though the convex/concave 
of discussed function / is known, however, the sign of ß could not be unknown 

generally. To deal with the problem, we introduce a concept of one-to-one mapping 

in the next section. 

We are now ready to develop the adaptive fuzzy control system in which the parameters 

o)s and aj will be tuning and the stability of system will be ensured. 

5. Adaptive Fuzzy Control System 

Firstly applying the Theorem 1, unknown function in (1) can be approximated by a 

fuzzy approximator f'(X), 

f\X) - Va'frlpp -fJ)- |j»>,M (13) 

Where a>*e7? and a] -(cr}*,af ,--,a"*) are optimal parameters for unknown function 

f(X) in (1). It is reasonable to suppose that it exists a known constant ef > 0, so that 

the approximation error e , defined as in (18), satisfies that |e| s ef. 
e-f(X)-f'(X) (14) 

Normally, the unknown parameters values m] and a] are replaced by their estimates 

m1 and aj, and the estimate function f(X) - V ^gjlaJ.X'-§J)- /*,.,<"/£/(<*/)> 

instead of f'(X), is used to approximate the unknown function f(X). The parameter 

in the estimate function f(X) should then be stably tuned to provide effective tracking 

control architecture. Define the estimation errors of the parameters as 
aj mm'j -wjt aj ma'j -6s (15) 

As in [2], an error metric is defined as 
(. n-l 

y + A|    X(t)     with A>0 (16) 

which can be rewritten as s(t)-\TX(t) with AT -[*"-',(«-l)A"-2,-,l] • The equation 

5(0-0 defines a time-varying hyperplane in R" on which the tracking error vector 

decays exponentially to zero, so that perfect tracking can be asymptotically obtained by 

maintaining this condition. In this case the control objective becomes the design of 

controller to force s(t) = 0. The time derivative of the error metric can be written as 

iff) - -*r (0 + K*(t)+u-f(X) (1?) 
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where AT
V - [(U""1,(« - 1)A""2 ,• ••,(«- 1)A]. 

Our adaptive control law is now described below: 

«(o - -kds(t)+**°(o - Km+/(*) - («*+*, W) (18) 

£(0~V(0*,(<?,) (19) 

6}—ßlK'}s(t) (2°) 

where Ay and ß^R1"""" are rates of adaptation, a'Gi? and jc'ei?"'"1   will lead to 

global stability and be clear as follows. 
Consider Liapunov function candidate 

:Uo + ^V*^W*,) (21) 

Time derivative of V is given, 

V(t)=-klls
2(t)-es(t)-ef\s(t)\-S(t) \\((o](gl(.o])-gi(.6l))+K'i{öj-o]))+a'spl(S)        (22) 

We now consider three cases, (a) s(t) = 0, (b) s(t) < 0 and (c) s(t) > 0, and show that 

V(t) s 0 in the three cases, 

(a) 5(0 = 0. 

It is clear that V(t) = 0. 

(b)5(0<0. 

It follows that V(t) s 0 if 

"' * VfafaiaJ-gföJj+K'sfp, -<*;)) (23) 

Therefore, we choose 

a' = S?J k(pAaJ)-^(tfi))+r/^ -ai)) (24) 

Since the form of the controller in equation (21) suggests that the quantity a' in like a 

gain, we seek to find an K] SO that a  is minimized. Hence our goal is to choose K\ as 

"' - ™1S£ AfofeAa/)-*i<*/))+,r/fo -°J)) (25) 

Performing the min-max optimization to find a* and K] is needed to complete the 

controller design. As a PL problem, there are a lot of algorithms [9-10] to solve the 

values of a" and K*, however it generally involves a numerical search over the feasible 

set of solutions with a complicated procedure. Hence, we use the theorem 2 to solve the 

values of a and K* in (25). Though at first glance, the Theorem 2 looks like providing 

a way to solve the values, however, in order to determine that the function «,■#, (o-;.) is 
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either convex or concave, the sign of a) must be known. Namely, because g;(cr,) is 

convex on 0 , so w;'g;(cry) will be convex when a) &0 , and concave when a] <0 . 

Hence it is obvious that the Theorem 2 can not apply directly, since it does not show us 

any clue on how to determine the sign of w]. 

Since a) is the optimal weights in (6), it is reasonable to assume that the range of co) is 

known, i.e., co)€{co'mia,m'ma\. Now, we set up a new parameter pt £[pmi0,pmm], the 

boundaries p^ and pK are positive constants, which can be chosen by the designer. 

To deal with the problem of sign of co], we introduce the following one-to-one 

mapping: 
a] -m + npj-,       P,>Q (26) 

where 

mm0)m\TL ~Z"ml» ' 

CO max min (>0) 
/'max ~ Irmia 

Substituting (26-27) to (25), we have 

where 

a  = minmsx.\{(!n+npj^j(p'j)-gj(aj))+K'j(aj -o'))*^ +a'2 

a[ = min max V {w\, [g, {a]) - g, (aj))+ K\S {aj - a))) 

a\ = imna^y^lp -p^jg^o^-gjid^+K^iai-a')) 

(27) 

(28) 

(29) 

(30) 

Remark: The either convex or concave of ca'^g^o^ and n(pj -/>„,,„ )£,(<*,) could be 

determined in both (29) and (30) via the one-to-one mapping, since the sign of comin is 

known by the assumption and n(pj -/>„,,„)> 0 ■ 

Now applying the Theorem 2 straightforwardly, we can get the solutions of a\, 

a\, K[] and K'V as follows, 

(o     ifa>:,<o        KV^ i/a,-<0 

where A, - [AJVA]2} - G]%, Afl is a scalar, A]2 ei?"", 

-1 a>L(°, -aj,iY 

(31) 

-1 o»««(^ -ai,2) 

^mlASj ~8]iNn+l) 

gj„-gj(crsi)        (32) 
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and 
N 

«2 - y Bn , K'2] =n(p! -pai^J2 

where Bj = [BSI,BI2} =G:1bj, Bfl is a scalar, Bj2 eRm, 

-1  «(P;-Pmi„^;-aJJ])
r 

-1   nipj-p^Yoj-crj^Y 

n(pi-PmmY§,-gj,i) 
"(Pj-Pmto\ij-gj,2) 

nlPj-PmmKBj-SjsNn^) 

(c)s(t)>0. 

Similar argument to (b), it follows that V(t) s 0 if 

«* '™l™gY [-k:(gy(CT,:)-^(^))+^(^ -"/'))J-«i +fl2 

where 

a. - nun max 

We can get the solutions of a[, a\, K'V and K2j as follows, 

a, - mm max 

«/0>mta Ä ° 

4i     '/"d»*0' 

' 0*^8,6,        '/«mlna0 

where At -[d;],;4/2J =G],bJ, An is a scalar, AJ2ER* 

-1    -a>L(°j-ai,i)T 

-1    -o»l(o-/-^2)T 

-1       -0>min(^-°';«Af»+l)r 

— min \o; "™ 6 /rl / 

- '"min \8j ~8jsNn*\) 

and 

«2=0. 'f2/=-"(P;-JPminfe/ 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

The stability of the closed-loop system described by (1), (18-20), (28),  (31-35) and 

(38-40) is established in the following theorem. 
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Theorem 3: If the robust adaptive control (18-20), (28), (31-35) and (38-40) is applied 

to the nonlinear plant (1), then all closed-loop signals are bounded and X(t) -*■ 0 as 

t ->oo . 

6.  Conclusion 
The novel feature of results in this paper is that, thanks to Min-max's solutions of 
Annaswamy et al which could simplify the procedures of our proposed algorithm, a 
new adaptive fuzzy control law is presented. The adaptive fuzzy control law is capable 
of stably turning the parameters which appear nonlinearly in the fuzzy approximator in 
an effort to reduce appximation error and improve control performance. The developed 
controller guarantees the global stability of the resulting closed-loop system in the 
sense that all signals involved are uniformly bounded and tracking to within a desired 
precision. Hereafter, we will verify our theoretic analysis by computer simlation. 
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Abstract. This paper presents a new approach to controlling chaotic 
systems using fuzzy regulators. The relaxed stability conditions and LMI 
(Linear Matrix Inequalities) based designs for a fuzzy regulator are used 
to construct a fuzzy attractive domain, in which a globed solution is 
obtained so as to achieve the desired stability condition of the closed-loop 
system. In the control of chaotic systems, we use two-phases of control, 
first phase uses an open-loop control with inherent chaotic features of 
the system itself and a fuzzy model-based controller is employed under 
state feedback control in the second phase of control. The Henon map is 
employed to illustrate the above design procedure. 

Keywords: Chaotic systems, Fuzzy model-based control, Evolutionary computa- 
tion, Nonlinear dynamics, System stability, Lyapunov function. 

1    Introduction 

Recently, development of chaos theory brings up scientist into a new era in an- 
alyzing nonlinear systems. It is known that the chaos exhibits a deterministic 
random behavior. Yet it needs more investigation on such nonlinear systems in 
designing control algorithms. Edward Lorenze, the first experimenter in chaos 
was a meteorologist and described his model of weather prediction phenomena 
with a set of nonlinear differential equations in 1963. Among the various meth- 
ods available to analyze such nonlinear systems, there exist fixed point analysis, 
linearization, Pioncare map, Lyapunov method, spectral analysis, fractal, chaos 
etc. [1],[2],[8]. Employing intended deterministic chaos to control nonlinear dy- 
namical systems is an interesting in the development of control theory [1]. In 
this method, it is proposed that in a nonlinear dynamic system, a chaotic at- 
traction can be formed by an appropriate usage of open-loop control until the 
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system states converge within a specified area of attractive domain and then 
a state feedback control can be used to converge the system states to desired 
values. In this approach, the usage of state feedback control involves finding a 
largest level curve based on Lyapunov stability condition in advance. However 
this optimization problem will generally have multiple local minima. Therefore 
to find a global minimum, almost all such local minima have to be identified 
with trial and error. That implies the complexity of this approach. 

Recent advances in LMI (Linear Matrix Inequalities) theory [3],[4],[5],[10] 
allowed to handle nonlinear control system problems, via semi-definite program- 
ming. For an example, stability condition is guaranteed by the well-known Lya- 
punov approach [7] for fuzzy model-regulators and the LMI tool searches the 
solution space subjected to various constraints. In particular, Takagi-Sugeno 
(T-S) fuzzy model plays an important role in designing such fuzzy regulators 
[4],[5],[7]. In fact, the fuzzy model-based control (FMC) can be applied very well 
to nonlinear dynamic systems, this attempt also implies the ability of controlling 
chaotic systems via FMC. 

In the control of chaotic systems, there are two phases of control. First phase 
uses an open-loop control such that the inherent chaotic features attract the 
states to a desired area as studied in [1]. Once the system has entered a specified 
area, open-loop control is cut off and the second phase of control is adopted. In 
the proposed second phase, an FMC is employed under state feedback control; it 
has been implemented by employing a set of IF-THEN fuzzy rules and assuring 
the global stability of domain constructed by the total FMC. For this purpose, 
the state feedback gain scheduling of the control system in the second phase is 
achieved by solving a set of LMIs via an optimization technique based on evolu- 
tionary computation. The rest of the paper is organized as follows: In section 2, 
introduction of dynamic system modeling and FMC are reviewed. The proposed 
fuzzy-chaos hybrid control scheme is presented in section 3. Finally, the chaotic 
system, Henon map is taken into consideration to illustrate the design procedure 
and a simulation result of the fuzzy model-based regulator is presented in section 

4. 

2    System Modeling 

Inherent chaotic characteristics can be useful in moving a system to various 
points in state space. In the proposed method, this feature is used to drive 
the system states to a pre-defined domain C. An appropriate open-loop con- 
trol (OLC) input can be employed to create chaos or to use chaos in a nonlin- 
ear system itself. Once it reaches to the pre-defined fuzzy attractive domain, a 
fuzzy model-based controller (FMC) is employed under state feedback control 
to achieve desired target. This design concept is schematically given in Fig. 1 for 
a two dimensional case. Here it is intended to drive the system state Pi to P3. 
The feedback controller design is based on multiple linearizations around a sin- 
gle equilibrium point, i.e., so called off-equilibrium linearizations. It is known [7] 
that the method will significantly improve the transient dynamics of the control 
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system for a general control problem. Rather, it is interesting to note that such 
a technique is useful for constructing a globally stable fuzzy attraction domain 
without trial and error. 

State variable 1 

Fig. 1. Fuzzy-chaos hybrid control scheme 

2.1    Off-equilibrium Linearization 

Nonlinear dynamic continuous time systems (CS) can be described by nonlinear 
differential equations [1],[2] (or difference equations for discrete time systems 
(DS)) as 

x = F(x,u)  for CS 

x(t + l) = F(x,u)  for DS (1) 

where x£Rn is the state vector and u&Rm gives the control input vector of the 
systems. The equilibrium points (x,ü) (or fixed points) of the dynamic system 
satisfy 

£ = {{x,u)ERn+m | F(x,ü) = 0 }  for CS 

£ = {(x,u)eRn+m | x = F{x,ü) }  for DS (2) 

In this paper, it is proposed to select a suitable set of off-equilibrium points 
such that all the subsystems compose a convex region C€Rn+1 which keeps the 
equilibrium point (X,ü)EC. More generally, n-dimensional state space system 
needs at least n + 1 off-equilibrium points which represent the convex region to 
ensure the stability of a particular subsystem. 

Neglecting higher order terms, we obtain a linearized model around any ar- 
bitrary point (xo,uo)& C as follows: 

x — A0(x - x0) + B0{u - M0) + F(x0,u0)  for CS 

x(t + 1) = A0(x - x0) + B0{u - «o) + F(X0,UQ) for DS (3) 
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A0 = —{XO,U0) 

0 = 'dü^X°'U°' 
For an example, two dimensional state space model needs three off-equlibrium 
points such that the equilibrium point lies on the center of mass of an equilateral 
triangle keeping its corners on the three off-equilibrium points. 

2.2    Fuzzy Models and Regulators 

The dynamics of the nonlinear system are approximated near an arbitrary point 
(x0,Uo)e C. Then, equation (3) can be rewritten in the form: 

x = AQX + BQU + do  for CS 

x{t + 1) = Aax + B0u + do forDS (4) 

where do = F(x0, uo)-A0xo-B0uo. Note here that an arbitrary point (a;0,«o) 
need not be an equilibrium point (x,ü). 

Fuzzy models due to Takagi-Sugeno consist of a set of IF-THEN rules [7] for 
the above approximate systems. The j'th plant rule of each subsystems for both 
continuous-time and discrete-time fuzzy systems is given by 

IF zi(t) is Mn and...and zp(t) is Af,-P 

i(t) = Aix(t) + Biu(t) + di forCS 
THEN   { x(t + 1) = Aix{t) + Biu(t) + d; for DS 

y{t) = Qx(t) i = 1, •• 

(5) 

where r is the number of fuzzy rules and Mtj (i = l,...,r and j = l,...,p) are 
the fuzzy sets. The state vector is x{i) € Rn, input vector is u(t) G Rm and the 
output vector is given by y(t) € Rq. AitBi and Q are the system parameter 
matrices and di is the offset term of the ith fuzzy model. For a given state, 
zi(t), ...,zp(t) are the premise variables (or antecedent inputs). 

Subjecting to the parallel distributed compensation, we can design the fol- 
lowing fuzzy regulators: 

Regulator Rule  i: 

IF  zx(t) is Mn and...and Zp(t) is Mip 

THEN    u(t) = -Ki[x{t)-xr] + ur,   t = l,...,r 

for the fuzzy models (5), where xr is a state reference trajectory, ur is the 
corresponding input trajectory, and Kt is the local feedback gain matrix. Thus, 
the fuzzy regulator rules have linear state-feedback laws in the consequent parts 
and the overall fuzzy regulator can be reduced to 

r 

u{t) = -J2 hi(z{t))Ki[x{t) - xr] + ttr (6) 
1=1 
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where 

*(*) = [*!(<),-, %>(*)] 

«,,-(*(*)) = f[Mijfait)),   hi(z(t)) = E^(z\t)) 

for all t, in which Mij(zj(t)) denotes the confidence (or grade) of membership 
of Zj(t) in Mij. 

3    Fuzzy-Chaos Hybrid Controller 

In order to control the original nonlinear system with a chaotic input in the 
open-loop system or a fuzzy controller in the closed-loop system, a fuzzy-chaos 
hybrid control scheme is proposed here. Such a control scheme can be considered 
in two cases, depending on the choice of equilibrium points as the reference. 

3.1    Stabilization of a Prespecified Equilibrium Point 

In this case, the fuzzy-chaos hybrid control can be implemented by 

r 

IF  J\>i(z(t)) = 0 THEN 
i=i 

u(t) = u(t) 

ELSE (7) 

u(t) = -J2 hi{z(t))Ki[x(t) -x] + ü 
>=i 

where u(t) is an open-loop input to make the original nonlinear system chaotic 
and (x,ü) is the prespecified equilibrium point which would be stabilized. 

3.2     Stabilization of any Equilibrium Point 

If the stabilized equilibrium point is arbitrary among all the equilibrium points, 
the above fuzzy-chaos hybrid control can be modified as follows. 

r 

IF  ^2wi{z{t))=0  THEN 
»=i 

u(t) = «(f) 

ELSE (8) 

«max = max{Äi(*(<)),..-A(*W)} 
U(t) - -Kimax[x - «max] + «max 
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where imax denotes the rule number that has largest rule confidence, Ä",-mM is the 
corresponding feedback gain matrix, and (imM,«max) is an equilibrium point 
existing in the fuzzy attractive domain constructed by using the imax-th rule. 

Gain scheduling of the feedback controller is determined by employing a set 
of LMIs [3] and eigenvalue minimization algorithm was developed to determine 
the positive definite and positive semi-definite matrices associated with various 
linear matrix inequalities, using evolutionary computation technique by making 
a penalty for an individual which violates the inequality condition. This opti- 
mization problem can be also efficiently solved by means of recently developed 
interior-point methods [5]. 

4    Design Example and Results 

4.1    Henon Map 

In this example, the chaotic system, Henon map, is presented to illustrate the 
proposed design procedure. The nonlinear dynamic equations of the Henon map 
are given by 

zi(t+ 1) =-1.4x1+ X2 + 1 

x2{t + 1) = 0.3*i (9) 

Fixed points of the system of difference equations (9) are satisfied as the equation 
(2), resulting two fixed-points (0.6314, 0.1894) and (-1.1314, - 0.3394). There- 
fore, we can design two convex regions which correspond to two fixed-points. 
Here we select a triple point sub-region (Aix(t) + 5,«(i) for i = 1,2,3) such 
that it surrounds the fixed-point (xa - 0.6314, xb - 0.1894) as shown in Fig. 2. 
The equilibrium point lies on the center of mass of an equilateral triangle having 
the coordinates (xal, xbi), {xa, xb2) and (xa3, xbi) in order to determine the 
common P and common Q. The open-loop control input to the system (9) u is 
selected as in equation (10) in implementing the desired control system. 

Xl (t + 1) = -1.4x1 +x2 + l + u 

*2(* + l) = 0.3*i (10) 

Three linearized models corresponded to the first fixed-point are given below 
taking (xa — *ai) = 0.2. 

Ax = 
-1.4878 1 

0.3     0 
,5i = 

-1.7678 1 
0.3     0 ,B2 

-2.0478 1 
0.3     0 

,5,= 
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Fixed point 

'HMv 
Fig. 2. Tripple point sub-system (i = 1,2,3) and its membership functions 

The same procedure is repeated to select the next sub-region (Aix(t)+Biu(t) for i = 
4,5,6) around the second fixed-point and the three linearized models are given 
below. 

3.4478 1 
0.3    0 

,BA — ; A5 = 
3.1678 1 

0.3   0 
,B5 — 

Ae = 
2.8878 1 

0.3   0 
,BR 

4.2    Calculation of Feedback Gains 

Gain scheduling of the above problem can be formulated as an optimization 
problem with the LMIs [3] and it is solved by using an optimization technique 
based on evolutionary computation [9]. Here we obtain the common P and com- 
mon Q for the first fixed-point guaranteeing the stability. We obtained the P\ 
and Qi as follows at ß = 0.6020 (s = 3): 

Pi = 
292.519 39.7689 
39.76891 535.242 Qi = 

13.8323 15.8108 
15.8108 142.855 

Similarly, Pi and Q2 matrices associated with the second fixed-point can be 
obtained as follows at ß = 0.9581 (s = 3): 

Pi 
633.277 29.3221 
29.3221 656.3649 Q2 

55.4408 30.5980 
30.5980 76.9469 

The gains Kx, K2 and K3 are obtained as below providing the global stability 
of the fuzzy control system for the first sub-region, 

Kx = [-0.3318  1.0329],   K2 = [-1.2171  0.7717] 

#s = [-2.1002 0.5644] 
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Similarly, the gains K4, K5 and K6 are obtained for the second sub-region as 
follows: 

K4 = [3.4272 0.7360],   K5 = [3.8298  1.5356] 

K6 = [2.6047 0.8615] 

Based on the methodology, as proposed in section 2, the Henon map is controlled 
by a fuzzy-chaos hybrid controller. Since the system has been already a chaotic, 
it can be used for the first phase of control with no input (ü = 0). Once the 
system states reach to one of the above two sub-domains, fuzzy controller will 
drive the system towards the fixed point. For example, by using the above gains 
Ki (i = 1,2,3), the fuzzy controller is constructed from the following IF-THEN 
rule base: 

Rx : IF xi is PS AND x2 is PS 
THEN K = Ky 

R2 : IF xi is P AND x2 is PB (n) 

THEN K = K2 
K   ' 

R3 : IF Xi. is PB AND x2 is PS 
THEN K = K3 

where PS, P and PB represent the words positive small, positive and positive 
big respectively. In order to verify the above design procedure in sections 2 and 
3, the proposed fuzzy-chaos hybrid controller is applied to the chaotic system 
(9). Here we allow the system to drive its states towards one of the above two 
fixed points chaotically. The rule base (8) was employed here to construct the 
controller as follows: 

IF X>(z(t)) = 0 

u = ü = 0 

ELSE 

u = -KimJx-ximJ(i=l,...,6) (12) 

where Ä,-max is the gain which corresponds to wim^(k) (i = 1,...,6). Figure 3 
shows the resulting trajectory of the chaotic system controlled by the proposed 
controller starting from (—0.3,0). 

5    Conclusions 

Inherent chaotic features have been used to drive the system states to a prede- 
fined domain using an OLC. Once it reaches to the predefined fuzzy attractive 
domain, a fuzzy model-based controller is employed under state feedback control 
to achieve reference target. Eigenvalue minimization algorithm was used to de- 
termine the positive definite and positive semi-definite matrices associated with 
various LMIs, using evolutionary computation technique. 
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Fig. 3. Trajectory of the controlled Henon map starting from (—0.3,0). 

In the example, the Henon map was driven by chaotic system itself before 
reaching the fuzzy attractive domain with no control input. Once it reaches to 
one of the two fuzzy domains, a fuzzy model-based controller drives the system 
towards the equilibrium point. The simulation result has shown the good tracking 
performance of the proposed controller in spite of the uncertainties of the chaotic 
system. Thus, the proposed methodology is useful for the design of nonlinear 
control systems which exhibit deterministic random-behaviors. 

References 

1. Vincent,T. L.: Control Using Chaos. IEEE Control Systems Society. 17-6 (1997) 
65-76 

2. Kapitaniak, T.: Chaos for Engineers—Theory, Applications and Control. Berlin: 
Springer-Verlag (1998) 

3. Tanaka, K., Ikeda, T., Wang, H. O.: Fuzzy Regulators and Fuzzy Observers: Re- 
laxed Stability Condition and LMI-Based Designs. IEEE Trans, on Fuzzy Systems, 
6-2 (1998) 250-265 

4. Limanond, S., Si, J.: Neural-Network Based Control Design: An LMI Approach. 
IEEE Trans, on Neural Netwirks, 9-6 (1998) 1422-1429 

5. Boyd, S., Ghaoui, L. E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in 
Systems and Control Theory. Philadelphia, PA: SIAM (1994) 

6. Driankov, D., Palm, R.: Advances in Fuzzy Control. Berlin: Springer-Verlag (1998) 
7. Palm, R., Driankov, D.: Model Based Fuzzy Control, Berlin: Springer-Verlag (1997) 
8. Vincent, T. L., Grantham, W. J.: Nonlinear and Optimal Control Systems. New 

York, NY: Wiley (1997) 
9. Nanayakkara, T., Watanabe, K., Izumi, K.: Evolving in Dynamic Environment 

through Adaptive Chaotic Mutation. Procs. of Fourth Int. Symposium on Artificial 
Life and Robotics, 2 (1997) 520-523 

10. Ying, H.: Constructing Nonlinear Variable Gain Controllers via the Takagi-Sugeno 
Fuzzy Control. IEEE Trans, on Fuzzy Systems, 6-2 (1998) 226-234 



Fuzzy Behavior-Based Control for the Obstacle 
Avoidance of Multi-link Manipulators 

Palitha Dassanayake1, Keigo Watanabe2, and Kiyotaka Izumi3 

1 Faculty of Engineering Systems and Technology, 
Graduate School of Science and Engineering, 

Saga University, 1-Honjomachi, Saga 840-8502, Japan 
vpalithaChotmail.com 

2 Dept. of Advanced Systems Control Engineering, 
Graduate School of Science and Engineering, 

Saga University, 1-Honjomachi, Saga 840-8502, Japan 
vatanabeGme.saga-u.ac.jp 

3 Dept. of Mechanical Engineering, 
Faculty of Science and Engineering, 

Saga University, 1-Honjomachi, Saga 840-8502, Japan 
izumiQme.saga-u.ac.jp 

Abstract. The behavior based approach has been actively used in many 
applications of intelligent robots due to the advantages of dividing the 
control system according to the task achieving behaviors over the conven- 
tional method in which the division is based on functions. One important 
application that had been done is for a mobile robot to reach a target 
while avoiding obstacles. The objective of this paper is for a multi-link 
manipulator to reach a target while avoiding obstacles by using a fuzzy 
behavior-based control approach. The control system that had been ap- 
plied to the mobile robot in the previous work, is modified to suit to 
the manipulator. Fuzzy behavior elements are trained by a genetic algo- 
rithm. An additional component is also introduced in order to overcome 
the gravitational effect. Simulation results show that the manipulator 
reaches the target with an acceptable solution. 

Keywords: Manipulator, Fuzzy control, Behavior-based control system, Obstacle 

avoidance, Genetic algorithms 

1    Introduction 

Brooks [1] proposed a new architecture called "Subsumption Architecture" for 
controlling a mobile robot. Layers of control system were built to let the robot 
operate at increasing level of competence. Decomposition of the control system 
was based on task achieving behaviors. This behavior-based control has been 
actively applied to several intelligent robots [2-6]. Watanabe and Isumi [5] stud- 
ied a fuzzy behavior-based control system for a mobile robot by applying the 
concept of subsumption-like architecture using soft computing techniques, in 
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which a simple fuzzy reasoning was assigned to one elemental behavior consist- 
ing of a single input-output relation, and then two consequent results from two 
behavioral groups were competed or cooperated. 

On the other hand, Rahnanian-shahri and Troch [7] presented a new method 
to on-line collision-avoidance of redundant manipulators with obstacles. Ding 
and Chang [8] introduced a real-time planning algorithm for avoidance of re- 
dundant robots in collision-free trajectory planning. Nearchou and Aspragathos 
[9] presented an algorithm for Cartesian trajectory by redundant robots in envi- 
ronments with obstacles. It should be noted that all the above mentioned works 
are based on trajectory planning while avoiding obstacles, but none of them is 
based on behavior-based control strategy. 

A fuzzy behavior-based control method developed in references [4] and [5] 
is used to control a multi-link manipulator to reach a target while avoiding 
obstacles in this work. The basic concept used for the mobile manipulator [4,5] 
is applied with some modifications. Thus, a fuzzy behavior-based control system 
is applied to three-degree-of-freedom, three-link manipulator to reach a target 
from a given point while avoiding obstacles. 

2    Three-Link Manipulator 

It is assumed that the robot has three-degree-of-freedom and it moves in a two 
dimensional vertical plane. The axes are selected such a way that O — X — Y is 
the vertical plane where the center of gravity acts opposite to the O — Y axis 
and O — Z is selected according to the right hand rule. Let [fx fy fz]

T and 
[nx ny nz]T be the force vector and the moment vector at the end-effector of the 
robot, where the subscripts x, y and z are used to represent O — X axis, O — Y 
axis and O — Z axis respectively. Since the robot is moving in O — X — Y plane, 
fz, nx and ny are zero. Link coordinate axes O, — Xi — YJ are defined in such a 
way that the origin of each link coordinate system is selected at the end of the 
respective link and the O, — Xi axis is selected along the link. Oi — Yi axis is 
perpendicular to the O, — Xj axis in the counterclockwise direction and Oi — Zi 
axis is selected according to the right hand rule. 

Length, joint angle and mass for link i are denoted by U, Oi and ra* respec- 
tively, ii and Iixx, yi and Iiyy, and, z, and J,-zz are the center of gravity and the 
moment of inertia for link i in Oi — Xi, Oi — Yi and Oi — Z, directions respec- 
tively. It is assumed that all links are homogenous and the center of gravity acts 
in the middle and each link is symmetrical about its center of gravity. Therefore 
ii = -k/2, yi -Zi- 0.0, Iixx = 0.0, and Iiyy - Iizz = mtf/M. 

To simulate this model on a computer, dynamic equations for this manipu- 
lator are derived using Newton-Euler method [11]. The dynamic equations are 
given by Eq. (1) in the matrix-vector form: 

T(t) = D(6(t))0(t) + h(8(t),9(i))+gm) (!) 

where D(6(t)) is the 3x3 inertia matrix; h(9(t),6(t)) is the 3x1 Coriolis and 
centrifugal force vector; and g(0(t)) is the 3x1 gravitational vector. 
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3    Behavior Model for the Manipulator 
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Fig. 1. Fuzzy behavior-based control system for the manipulator 

Figure 1 shows the behavior-based control system consisting of three behavior 
groups for the manipulator with the higher level behavior group shown over 
the lower behavior group. Inputs for the objective behavior group are Dx, Dy 

and $, where Dx and Dy are the distances between the end-effector point and 
the target in O — X direction and O - Y direction respectively, and * is the 
relative angle between the moving direction of the end-effector point and the 
objective point. Inputs to the reactive behavior group are vx, vy and wz, where 
vx and vy are the velocities at the end-effector point in O — X direction and 
O — Y direction respectively, and uz is the angular velocity of the end-effector 
point. vx, vy and UJZ must be calculated by using the Jacobian matrix with the 
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angular velocities of link 1, link 2 and link 3'(0i, 92, 03). All the obstacles are 
assumed to be circles in the O - X - Y plane and they are sensed by a CCD 
camera. It is assumed in this work that the camera vision system can process 
its data and the center coordinates and the radius of each obstacle are known. 
The center coordinate and radius of the j'-th obstacle are denoted by (xcj, ycj) 
and rj respectively. Together with the obstacle data, if the angular positions 
of link 1, link 2 and link 3 (0i, 02, #3) are known, sy, the minimum distance 
from each link i to every obstacle j can be calculated. Once all sy values are 
calculated, the respective dy, the minimum distance from link i to obstacle j can 
be obtained by dy = «y-r,-. Thereafter d, the minimum within all the minimum 
distances from the each link to the every obstacle, can be found and afterthat 
ip, the relative angle between the respective link and the vector d measured in 
counterclockwise direction, and S, the angle of the distance vector d with respect 
to the O — X axis of the base coordinate system, are calculated. The inputs to 
the reactive behavior group are given by dx, dy and ip, where dx = dcos(S) and 
dy = dsin(S). For each behavior group the output variables are the force required 
in O - X direction, the force required in O - Y direction and the moment in 
O-Z direction in the respective order. Their output vectors are represented by 
\fio fyo n'zof, [£/ /;/ KfV and [£r fyr <rY for the objective behavior group, 
free behavior group and reactive behavior group respectively. Forces and moment 
in the absolute coordinate systems F = [fx fy nz]T, are obtained by fusing the 
reasoning results generated from each behavior group through the nonlinear 
suppression unit with S [4,5]. Fuzzy rule relations and fusion of behavior groups 
are later explained in Section 3.2. To transform the above quantity to the torque 
in the joint coordinate system, the following Jacobian transpose is used [10]: 

T* = JTF (2) 

where T* = [rj* T% T^Y is tne torque vector obtained as if there are no grav- 
itational effects. When considering the additional gravitational torque vector 
AT = [ATI AT2 AT3]

T
, which is explained in Section 3.1, the final output torque 

vector r =  [ri r2 r3]T is given by 

T = T* + AT (3) 

3.1    Compensation of the Gravitational Effect 

Each behavior group controls the movements of the robot. For example, in the 
objective behavior group, the first input element Dx must be reduced in order 
to reach the target. This is obtained by controlling the output element fx. Since 
none of the behaviors does not consider the gravitational effect, the required 
torque to overcome the gravity is added to the output torque from the fuzzy 
behavior-based control before applying to the manipulator and it is assumed in 
this work that the length, mass and center of gravity of the links are available. 
The required torque equations for this calculation are given by 

An = mig(h + xi)ci + m2g[hci + {h + S2)ci2] 

+m3g[lic1 + l2c12 + (h + X3)ci23] (4) 
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AT-L - m2g(l2 + x2)ci2 + m3g[l2c12 + (*3 + £3)cm] (5) 

AT3 = rmg{h + x3)ci23 (6) 

where, a = cos(#i), c12 = cos(l?i + 02), c123 = cos(0i + 92 + 63), and g is the 
gravitational acceleration. However for a robot moving in a horizontal plane this 
additional torque is not required. 

3.2    Fuzzy Rule of a Behavior Group 

A simple fuzzy reasoning is applied to one behavioral element using one sensor 
information or processed sensor information y, and it generates one reasoning re- 
sult u*. Gaussian-type function is used as the membership function, and uses the 
simplified fuzzy reasoning. The resultant fuzzy reasoning consequent is obtained 
as 

M 
u* = ^PiWb, (7) 

«=i 

where M denotes the total number of rules, WM the constant in the conclusion 
of the 2-th rule, and pi the normalized rule confidence such as 

» = £& <8) 

Hi = exp{(ln(0.5)(y - wci)
2w2

di} (9) 

where wci denotes the center value associated with the i-th membership function, 
and Wdi denotes the reciprocal value of the deviation from the center wci to which 
the i-th Gaussian function of the input data on the support set has value 0.5. 
Consider two behavior groups i and i+1, where the behavior group i represents 
the lower behavior group and the behavior i + 1 represents the higher behavior 
group. Let the two same outputs from two behavior groups be described as a 
and 6 from behavior group i and behavior group i + 1, respectively. The fusion 
result is given by c, 

c = (1 - s)a + sb (10) 

with 

«=|sat(a)+sat(6)|/2 (11) 

Here the saturation function "sat" is given by 

sat(x) = (Sgn
/
(a;)!a;!>e (12) v ;      (^   x/e   \x\<s 

where e denotes a positive number. 
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4 Learning Using Genetic Algorithm 

For the tournament selection, the fittest individual is selected as the parent out of 
the three individuals. Two-point crossover is used with a crossover probability of 
0.6. One individual has 135 training parameters, because np = NfxNrxNexNb, 
where np denotes the number of training parameters, Nj the fuzzy parameters 
(wci, wdi, wbi), Nr the number of rules (5), Ne the number of elements in one 
group (3), and Nb the number of behavior groups (3). Since one parameter is 
represented by an 8 bit string, the code length is 1080 (i.e., 135x 8). The number 
of individuals in one generation is 60, the elite number is 8, which is kept for 
the next generation, and the number of parents selected is 52, which generate 
52 offspring. The mutation rate is equal to the 1/code length which is 1/1080. 

4.1    Fitness Function 

One individual run of the manipulator is over if one or more links go out of 
range or any of the link collides with the obstacle or the given time is over or 
the end-effector point moves 0.5 [m] away from the minimum distance between 
the end-effector point and the target during the run or the end-effector point 
reaches the target successfully. Fitness value, Fitness, is given by 

Fitness = -dmin + (D0 - dmin)/TD - 3.0 x N0 - 0.1 x Nc (13) 

where dm,n is the minimum distance between the end-effector of the robot and 
the target during the run, D0 is the initial distance between the end-effector 
and the target, and TD is the travel distance of the end-effector point during the 
period ofthat run. Here N0 is equal to the number of links went out of range and 
Nc is equal to the number of links collided with the obstacle. The objective of 
the optimization is to minimize the distance of travel to an acceptable solution 
while avoiding the obstacles to reach the target. 

5 Simulations 

5.1    Parameter Settings 

The manipulator parameters are 0.5 [m], 0.4 [m] and 0.3 [m] in length, 0.48 [kg], 
0.36 [kg] and 0.24 [kg] in mass and -160 to +160, -135 to +135 and -110 to 
+170 in joint range for link 1, link 2 and link 3 respectively. C programming 
was used to model the manipulator dynamically using the dynamic equations 
given by Eq. (1). Sampling time interval is 0.05 [s] and the differential equations 
are solved by the numerical method known as Runge-Kutta-Gill method. The 
maximum time allowed for one individual run is 15 [s]. Three obstacles are 
considered and two simulations were carried out. In the first simulation the robot 
is placed initially on the O - X axis horizontally and in the second simulation 
it is placed initially on the O - Y axis vertically. In each case, 1000 generations 
were taken into account to train the fuzzy parameters. 



263 

5.2    Results 

Figure 2 shows the end-effector point path for an individual with the best fitness, 
whose value is 0.847344, after 1000 generations in simulation 1, and Fig. 3 shows 
the corresponding best and the average fitness values of each generation. Figures 
4 and 5 present the similar results with the best fitness values equal to 0.968144 
for simulation 2. These results show that for all cases the robot managed to 
reach the target with an acceptable solution. Therefore, it is confirmed from 
these simulations that the present approach is useful for the task control of 
multi-link manipulators, while avoiding obstacles. 
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Fig. 2. End-effector point path with a best individual for simulation 1 

6    Conclusions 

The fuzzy behavior-based control strategy has been applied to controlling a 
multi-link manipulator. It was proved from simulations that such an approach is 
effective for complex manipulators to achieve certain tasks while avoiding obsta- 
cles. Also, this approach had the advantage of moving towards a particular point 
without knowing the inverse kinematics while avoiding obstacles. It means that 
the manipulator can be controlled to achieve the desired task with on line infor- 
mation and suitable fitness function without going into actual analytical details. 
This is very useful especially in robot manipulators because the kinematics and 
dynamics of the manipulators are usually complex by nature and the analysis 
gets more sophisticated for redundant manipulators. This approach is of course 
suitable not only when the relationships of the system dynamics are linear, but 
also when the relationships are nonlinear. 
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Abstract: Cash amounts and interest rates are usually estimated by using 
educated guesses based on expected values or other statistical techniques to 
obtain them. Fuzzy numbers can capture the difficulties in estimating these 
parameters. Fuzzy equivalent uniform annual value, fuzzy future value are the 
methods examined with numeric examples in the paper. The paper also gives 
the ranking methods of flizzy number 

1 Introduction 

To deal with vagueness of human thought, Zadeh [1] first introduced the fiizzy set theory, 
which was based on the rationality of uncertainty due to imprecision or vagueness. A major 
contribution of fuzzy set theory is its capability of representing vague knowledge. The 
theory also allows mathematical operators and programming to apply to the fiizzy domain. 

A fuzzy number is a normal and convex fuzzy set with membership function ftA(x) 

which both satisfies normality: fiA(x)=\, for at least one xeR and convexity: 

fiA(x') £ ft/t(xi)A/iA(x2), where /»^f» €[0,1] and Vx' e[xj,x2]- 'A' stands for 
the minimization operator. 

Quite often in finance future cash amounts and interest rates are estimated. One usually 
employs educated guesses, based on expected values or other statistical techniques, to 
obtain future cash flows and interest rates. Statements like approximately between $ 12,000 
and $ 16,000 or approximately between 10% and 15% must be translated into an exact 
amount, such as $ 14,000 or 12.5% respectively. Appropriate fiizzy numbers can be used to 
capture the vagueness of those statements. 

A tilde will be placed above a symbol if the symbol represents a fuzzy set. Therefore, 
P,F,G,A,T,r are all fiizzy sets. The membership functions for these fuzzy sets will be 

denoted by fi(x\P),H(X\F),H(X\G), etc. A fuzzy number is a special fiizzy subset of the 

real numbers. The extended operations of fuzzy numbers can be found in [11, 12]. A 
triangular fuzzy number (TFN) is shown in Figure 1. The membership function of a TFN 
(M) defined by 

Kx\M) = (mxJx{y\tt)lm2,m2 I f2(y\M),m3) (1) 
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where m <m < m , /"((MA/) is a continuous monotone increasing function of y for 

0£y£\ with /, (0| M) = w, and /,(lM) = m2and /^(MÄ/) 's a continuous monotone 

decreasing function ofy for 0£y£\ with /2(I\M) = m2 and /2(0 M)^m3. fi(x\M) is 

denoted simply as (m, /»»2 ,m2 /m3). 

Figure 1. A Triangular Fuzzy Number, M 

A flat fuzzy number (FFN) is shown in Figure 2. The membership function of a 
FFN, V is defined by 

(2) 

where /», -< m2 -< m3 -< /n4, /, 0>| F) is a continuous monotone increasing function of y for 

0£y£l with /,(OJF) = m,and /, (1^) = m2 and /jO^is a continuous monotone 

decreasing function of y for O^^^l with /2(l|F) = m3and /2(O|K) = mA. tt(y\v) is 

denoted simply as (m, fm2,mi/mA). 

p{x\V) = («,,/,(#)/W21/»j //2(y\V),m4) 

Figure 2. A FlatFuzzy Number, V 
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The fuzzy sets P, F,G, ÄJ,r are usually fuzzy numbers but n will be discrete positive 
fuzzy subset of the real numbers [2]. The membership function //(x|w) is defined by a 

collection of positive integers «,, 1 <. i <. K, where 

p(x «) = 
fi(ni\n) = Xlfi<.X, SI 

(3) 
0, otherwise 

2 Fuzzy Future Value Method 

The future value (FV) of an investment alternative can be determined using the relationship 

n 

FK(r) = £/>,(!+ /)"""' (4) 

(-0 

where FV(r) is defined as the future value of the investment using a minimum attractive rate 
of return (MARR) of r%. The future value method is equivalent to the present value 
method and the annual value method. 

Chiu and Park's [3] formulation for the fuzzy future value has the same logic of fuzzy 
present value formulation: 

(5) 

Buckley's [2] membership function n(x\P) is determined by 

My\K)=MA^l+fMr^ (6) 

For the uniform cash flow series, fi{x\F) is determined by 

fMn=fM^"'My\n) (7) 

where »=1,2 and /7(«,r) = (((l + r)" -l)/r) and A>~0 and r !-0. 

3 Fuzzy Equivalent Uniform Annual Value (EUAV) Method 

The EUAV means that all incomes and disbursements (irregular and uniform) must be 
converted into an equivalent uniform annual amount, which is the same each period. The 
major advantage of this method over all the other methods is that it does not require making 
the comparison over the least common multiple of years when the alternatives have different 
lives [5]. The general equation for this method is 
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EUAV = A = NPVr~l(n,r)=NPV[ (1+r) *" ] (8) 
(l + r)"-l 

where NPV is the net present value. In the case of fuzziness, NPV will be calculated and 
then the fuzzy EUAV (Att) will be found. The membership function ft(x\AM) for An is 
determined by 

fm OR)=f, (y\NPnr~l («./, (Jf)) (9) 

and TFN(y) for fuzzy EU A V is 

NPV,(y)     NPVt(y) 

^»W = ( 1ÜT> Krt") (10) 

Example 
Assume that NPV = (-$3,525.57,-$24.47,+$3,786.34) and r = (3%,5%,7%). Calculate the 
fuzzy EUAV. 

Ai OR) = (3,501.1y-3,525.57)[  6     ] 
(1.03 + 0.02^)  -1 

(1.07 - 0.02y)6 (0.07 - 0.02y), 

(1.07-0.02y)-l 

Fory=0,/61(^6) =-$650.96 

Fory-1, AiOi^)- A2 0p6) = -$4-82 

Fory=0,/62(yp6) = +$795.13 

It is now necessary to use a ranking method to rank the triangular fuzzy numbers such as 
Chiu and Park's [3], Chang's [6] method, Dubois and Prade's [7] method, Jain's [8] method, 
Kaufmann and Gupta's [9] method, Yager's [10] method. These methods may give different 
ranking results and most methods are tedious in graphic manipulation requiring complex 
mathematical calculation. In the following, two of the methods which does not require 
graphical representations are given. Chiu and Park's (3) weighted method for ranking TFNs 
with parameters (a, b, c) is formulated as 

((a + b + c)ß) + wb (11) 

where w is a value determined by the nature and the magnitude of the most promising value. 
The preference of projects is determined by the magnitude of this sum. 

Kaufmann and Gupta (9) suggest three criteria for ranking TFNs with parameters (a,b,c). 
The dominance sequence is determined according to priority of: 
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1. Comparing the ordinary number (a+2b+c)/4 
2. Comparing the mode, (the corresponding most promise value), b, of each TFN. 
3. Comparing the range, c-a, of each TFN. 

The preference of projects is determined by the amount of their ordinary numbers. The 
project with the larger ordinary number is preferred. If the ordinary numbers are equal, the 
project with the larger corresponding most promising value is preferred. If projects have the 
same ordinary number and most promising value, the project with the larger range is preferred. 

4 Conclusions 

In this paper, capital budgeting techniques in the case of fuzziness and discrete 
compounding have been studied. Fuzzy set theory is a powerful tool in the area of 
management when sufficient objective data has not been obtained. Appropriate fuzzy 
numbers can capture the vagueness of knowledge. The other financial subjects such as 
replacement analysis, income tax considerations, continuous compounding in the case of 
fuzziness can be also applied [11], [12]. Comparing projects with unequal lives has not been 
considered in this paper. This will also be a new area for a further study. 
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Abstract. In this paper we introduce the concepts of fuzzy solution for 
a semi linear equation with fuzzy parameters. The extension principle 
described by L. A. Zadeh [5] provides a natural way for obtaining the 
notion of fuzzy solution. The fuzzy extension of the solution operator is 
shown to provide the unique solution in the formar case. 

1     Introduction 

Fuzzy sets theory is a powerful tool for modelling uncertainty and for processing 
vague or subjective information in mathematical models. While its main dir- 
ections of development have been information theory, data analysis, artificial 
intelligence, decision theory, control, and image processing (see e.g. [1], [6], [7]), 
fuzzy set theory is increasingly used as a means for modelling and evaluating the 
influence of imprecisely known parameters in mathematical, technical, physical 
models. The purpose of this paper is to work out this approch when the models 
are constitued by partial differential equations. 
Based on the fuzzy description of parameters and mathematical objects, we shall 
be concerned here with partial differential equation in the scalar case of the form 

ut + Xux = au 

u (x, 0) = «o (x) 

Here the parameters a and A will be fuzzy numbers. The solution u (x, t) at any 
fixed point (x, t) will be a fuzzy number as well. 

2     Partial differential equations 

Consider a semi-linear equation : 

Ut + Attj; = 014 (1) 

for a function u = u(x, t), where A =const. > 0. Along a line of the family 

x — \t = £ = const. 
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("characteristic line "in the zt-plane) we have for a solution u of (1) 

— = —«(At + f, t) = Aux +ut= au (2) 
dt      dt   K 

Hence u is constant along a line, and depends only on the parameter f which 
distinguishes different lines. The general solution of (1) has the form 

u(x, t) = u0(£) exp(at) = u0{x - At) exp(at) (3) 

Formula (3) represents the general solution u uniquely in terms of its initial 

values 
u(x,0) = uo{x) 

Conversely every u of the form (3) is a solution of (l)with initial values u0 

provided u0 is of class C^R). We notice that the value of u at any point (x,t) 
depends only on the initial value u0 at the single argument f = x - At, the 
abscissa of the point of intersection of the characteristic line through (x, t) with 
the initial line, the z-axis. We consider Q, = M x IR+ 
introducing the equation operator 

E : Cl(n) -» C(Q) : v -* [(x,t) -»■ vt + Aux - av] , 

the restriction operator V(x, t) € fi 

Rx>t : C^ß) -> H : u -> w(x, t) = u0(a: - At)eot, 

and the solution operator 

L : 1R2 -» Cx(ß) : (A, o) -» L (A, a). 

3    Fuzzy sets and fuzzy numbers 

Geven a set X, a fuzzy set A over I is a map 

mA : X —> [0,1] 

called the membership of yl (it is convenient to distinguish between A and its 
membership functions IUA to be able to employ the usual language of sets the- 
ory). Thus given x € A, m^(x) is considered the degree to which, respectively 
the possibility that, x belong to A (In calssical sets theory, TUA would correspond 
to the characteristic function of A). This concept allows to model uncertainty in 
situations where more information than just upper and lower bounds is available 
(in contrast to interval analysis), but no probability distribution are available. 
This situation often arises e.g. in engineering practice, when parameters are 
estimated partially in subjective way. 
We denote the family of fuzzy sets over X by W(X). The or-level sets are the 
classical sets 

Aa^ = {x G X : mA{x) > a} 
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A fuzzy real number is an element A £ W (IR) such that all level sets Aa- are 
compact intervals (0 < a < 1) and A1- is not empty. The graph of TUA has a 
monotonically increasing left branch, a central point or plateau of membership 
degree one, and a monotonically decreasing right branch. Similary, one can define 
fuzzy vectors, fuzzy functions etc.The extension principle introduced by [5] allows 
the evaluation of functions on e.g. fuzzy numbers according to the following 
definition : Let 

/ : ]Rn -+ IR 

be a function, define the extension [1], [3] 

/:(F(H))n^F(lR) 

by 
mf(ai,...,an)(y) =        sup        mf(mai(xi),...,man(xn)) 

It can be shown that in case / is continuous, f(ai,..., on) is a fuzzy number as 
well, and 

the set theoretic image of the level sets. Thus the upper and lower endpoints of 
the interval /(oi,..., an)a- can be obtained by minimizing / maximizing / over 

we denote by 0 the crisp zero function in F (IRn), that is, 

...      f 1 if / = 0 
mo(/)=\0 otherwise 

Definition 1. Let A a fuzzy set 

— A is normalized if there exists an element x in A such that m^ix) = 1. 
— The a-level sets Aa- for (0 < a < 1) of a fuzzy set A are the classical (crisp) 

sets. 
— A is convex if and only if its a-level are convexs. 
— A fuzzy number is a convex, normalized fuzzy subset of the domain A 

The concept of fuzzy number is an extension of the notion of real number : its 
encodes approximate but non probabilistic quantitative knowledge [2]. 

4     Fuzzy semi-linear equation 

Let us consider a fuzzy semi-linear equation 

\ üt + \ux = äü ,., 
\ü(x,0) = u0(x) W 

with A and a are two fuzzy numbers, the initial condition UQ is a classic function 
in C(IR). 
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by the extension principle 

E 
Rx,t 

L 

W(&{ü))^W{C{£i)) 
FfC1^)) -*F(1R) 
F(F2)      ^F(C

X
(ü)) 

V(x,t) € FxF+ 

LX]t:F(El2)^F(R) 

(Ä, ö J   H-» ü(x, t) solution of (4) 

The fuzzy value Lx>t (A, ö) may be computed by the extension principle in this 

way 
mLI,(Ä,a)Ü/) = suP{inf (mx(A)>ma(°)) : y= £*,*(*> °)} 

Lemma 2.   We ftaue 
ÄXit o L = Lx>t   mF(lR2) 

Proof (of lemma). 

mLx45,ä)(y) = suP(A,a) € 1R2     min K(A)'™«(a)) 
3/ = ia;,t(A,a) 

«L(Ä,a)(/)    = SUP       (A,a)eF2        ndn(mX(A),ms(a)) 

/(a,t) = Lx>t(X,a) 

™R,,t0L(l,a)(v) = SUP      (A, a) e F2      min (m*(A)l ^^ 
y = Rx,t°L(\,a) 

= sup      /A    , e ^2       min (m^(A), mä(a)) 

y = uo(x — Xt)eat 

= sup   /A    x e jp2   min (m^(A), ms(o)) 

= mL(\,ä)(y) 

we have 

and 

mL(/) = sup {inf (m^(A),ma(a)) : /= L(\,a)} 

. .(X,a)(v) = SUP (m-^) : ^ e Cl(°) with y = f^X' ^ 
= sup   /A    x e ^2   min(m3;(A)! m5(a)) 

y = Lx,t(^, a) 

D 



275 

Definition 3. An element ü G F(C1(Ü)) is called a fuzzy solution with the 

initial data u0 G C(fi), if E (fi) = 0 in F(C(0)), ÄB,t(ü) = u0 (a - At) eu in 

F(H) 

Proposition 4.  Given X, a in F (IR), ü= L (x,a\ is a fuzzy solution of (4) 

Proof (of proposition). To show that ü = L \X,a\ solves the fuzzy partial dif- 

ferential equation, we compute : 

m j3(«)=L(X,a) M = SUP f m«=L(Ä,a) («) : w = £(«)} 
= sup {sup {inf (-m^(A), ma(o)) : u : '= L(A,a)} : w = E(v)} 

if w ^ 0 and w = E(v); then {(A, a) G IR2 : u = i(A,a)} = 0, so the inner 
supremum is zero and mEL(k,ä)(w) = ®- 
if w = 0, we may take (A, o) G IR2 with m^(A) = ma(o) = 1 and v = L(X, a). 
Then E(w) = 0, and so the supremum equals 1. 
Let S = {ue C^fl) : E(u) = 0}. We can view W(S) as a subset of F (C1^)), 
setting the membership degree of any u G CX(£2)\S to some ü G F (S) equal to 
zero. n 

Lemma 5. 7/ü G F (Cx(ü)) is a solution to (4) , then ü belongs to F (S) 

Proof (of lemma), we have that 

mE(i)(«) = sup {mfi(w) : v = E(w)} 

suppose there exist v £ S , such that m(„)(t>) > n- Putting w = E(v) we have 
mE(ü)iw) > ™ü(u) > 0, contradicting the hypothesis that E(u) = 0. D 

Proposition 6.  The fuzzy solution ü G F (C1^)) to (4) is unique. 

Proof (of proposition). Since L : F2 —> 5 is bijective, the same is true of the 
extension L : F (F2) -> F(5). If ü G F(Cx(ft)) is a solution, it belongs to 
F (S) by the lemma and hence is uniquely determined by the initial data.       D 
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Abstract. Based on axiomatic rough set theory, first order rough logic 
was developed earlier. In this paper, a new model theory for that logic 
is introduced. With this new semantic, first order rough logic is shown 
to be equivalent to first order S5, and hence consistent and complete. 

1    Introduction 

One of the most important studies of rough set theory is the study of the lower 
and upper approximations of equivalence relations. Many interesting properties 
have been reported [4]. In 1993, we presented an axiomatic approach to such 
a study, namely, we showed two abstractor operators which are characterized 
by certain axioms are the lower and upper approximations of an equivalence 
relation [1]. By translating these axioms into logic terms, we constructed first 
order rough logic. The syntax is similar to the modal logic 55, its semantics, 
however, is different [2]; we showed the model is consistent, but we had not 
proved its completeness. In this paper, we revisit the model and propose a new 
semantics. With this new semantics, we show that first order rough logic is 
equivalent to first order 55, and hence it is consistent and complete. 

2    Possible Worlds Semantics - An Informal Overview 

In this section we shall describe the relationships between rough logic and rough 
set theory. Rough set theory is based on a known equivalence relation (indis- 
cernibility relation). However, in applications, the equivalence relations are often 
unknown, so the proposed rough logic is based solely on the notions of "lower" 
and "upper" approximations without using an explicit equivalence relation. How- 
ever, in order to see clearly the relationships between rough logic and rough set 
theories, we explain the idea using explicit equivalence relations. Subsequent 
expositions, the use of equivalence relations is avoided. 
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2.1    Observable Worlds 

Let E be the universe of discourse and P an equivalence relation. Note that 
we should view P as the one induced by the axioms of two abstract opera- 
tors. By abuse of notation, we will use P to denote the corresponding partition. 
The collection of all equivalence classes is called quotient space, denoted by Q. 
Based on the available information, all elements in the same equivalence class 
are indistinguishable. To each observer, an equivalence class is a multi-set (bag) 
that consists of multiple copies of one element. We should, however, also note 
that different observers may see the multiple copies of different element (but in 
the same equivalence class). This led us to define an observable world as the 
collection of one representative from each equivalence class. Different observers 
have different collections of representatives. We should also point out that not 
all mathematical combinations of representatives will be observed by some one. 
In other words, a collection of all observable worlds is a subset of all possible 
combinations. 

The intent of rough logic is 

1. to describe E as much as we can, using 
2. only the available imperfect observations (observable worlds). 

Example. The universe E = {1,2,3,4,5,6,7,8,9} has a partition: 

Hi = {3,6,9},       #2 = {2,5,8},       ff8 = {1,4,7}. 

Then, the quotient space is Q = {Hi, Hi, #3} 

Observers may see E as, for example, 

^ = {1,1,1,2,2,2,3,3,3},       W2 = {1,1,1,2,2,2,6,6,6} 

If we use set notations, they are 

^ = {1,2,3}, W2 = {1,2,6}, 

Other possible observable worlds are 

W3 = {1,2,9}, W4 = {1,5,3}, 

W26 = {7,8,6}, W27 = {7,8,9} 

Each Wh is a set of representatives and equivalent to the quotient space Q. 
The relational structure on each Wh is induced from E by restriction; see next 
subsection. 
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2.2    Induced Structures on Observable Worlds 

In this section, we will explain how observable worlds get their relational struc- 
tures. The material in this section is slightly different from the corresponding 
structures given in [2]. The structure on relations is the same. For the structure 
of functions is slightly different; in the cited paper, the function values that are 
out of "range" was treated as has missing values; in this paper, we replace the 
missing values by their equivalent ones. Each Wh is a subset of E, hence all rela- 
tions and functions on E can be interpreted to Wh by restricting their domain to 
Wh. Intuitively, each Wh represents one particular imperfect observation. These 
induced functions may be distorted and relations may have missing values. 

Functions 

Let E = {1,2,3,4,5,6,7,8,9} be the universe of discourse. Let /(-) be a func- 
tion denned by 

f(x) = 9-[x/2), 

where [z] represents the integral part of z. The function /(-) induces a new 
function on each Wh, for example, 

(1) In Observable World W1 = {1,2,3}, the function values are: 

/(l) = 9, /(2) = 8, /(3) = 8, 

since these values lie outside of W1, we replace them by their equivalent values, 
namely, 

/(l) = 3, /(2) = 2, /(3) = 2, 

Such a new function is the induced view of / on W1. 

(2) In Observable World W2 = {1,2,6}, the same function will be replaced by 
their equivalent values in W2,i.e., 

/(I) = 6, /(2) = 2, /(6) = 6. 

It is the induced view of / in W2. 

So the same function f is distorted into a different, yet equivalent, function on 
each observable world. These distorted functions are equivalent in the sense that 
each function induces the same function in the quotient space Q. Intuitively, 
each distorted function represents an imperfect observation of the "true" func- 
tion. The goal of rough logic is to recapture some essential features of the function 
/ via these distorted versions. 

Relations 

Let R denote the collection of all relations in E. Let r be an n-ary relation, and 
rh its restriction to Wh; some values in r may not appear in rh. The collec- 
tion of these restricted relations will be denoted by Rh. We do require Rh is an 
non-empty set; see next subsection. 
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2.3    Impossible World 

First we should note that not all mathematical Wh,s would be an observable 
world. In order for it to be qualified as an observable world, at least, one of these 
n-ary relations r^'s is an non-empty relation. Informally, an impossible world is 
a world in which all predicates are evaluated to false in all instances. So we do 
require 

no observable world is an impossible world. 

Let P(xi,X2,...) be a n-ary predicate and the variable #,• are assigned to e,- £ 
E,i = 1,2,.... Then the predicate P(ei,e2,...) is evaluated to truth at Wh 

if the relation rh that interprets P contains the tuple, {ei,e2, ■ ■ ■)■ A world in 
which Rh is an empty set is an impossible world. 

3 Axiomatic Rough Set Theory 

In last few subsections, we explain the possible world semantics using an explicit 
equivalence relations. In applications, such explicit equivalence relations may not 
be available. We recall here the axiomatic rough set theory, in which only upper 
and lower approximate operators are available. 

Pawlak introduced rough sets via equivalence relations. He derived many 
interesting properties of upper and lower approximation. In [1], we showed that 
Pawlak's lower and upper approximation can be characterized axiomatically by 
the following "Six" Axioms: Let E be the universe of discourse, X C E, and 
C{X) - E ~ X. Let L and H be the lower rough and upper (higher) rough 
operators. 

(1)#(0) = 0; (2)L(X) C X; 
(3)L(X) C L(L(X));        (4)H(X)\JH(Y) = H(X\JY); 
(b)L(C(X)) = C(H(X)); (6)L(X) = H(L(X)); 
(6a)H(X) = L(H(X));     (6a)ff(X) = L(H(X)); 

These seven axioms are not minimal. Since this is not a mathematical paper, 
we will not digress on it. The axioms consist of the Kuratowski's axioms of 
topological spaces and one additional axiom that declare open sets are close sets 
and vise versa. Essentially, the seven axioms characterize clopen spaces. It is 
easy to see that a clopen space induces a partition, and hence an equivalence 
relation. The two abstract operators H and L turns out to be the upper and 
lower approximations of the induced equivalence relation. 

4 Rough and S5 Models 

The language and axioms of rough and 55 logic are not specifically referenced 
in this paper, so we refer readers to [2] for details. 



280 

In this section, we will show that the models of rough and 55 logic are 
equivlent. Following [3], a frame for 55, or for short 55-frame, is: 

SM = (D,N,W,B,j) 

where 

1. D is a non-empty set, called domain of SM. 
2. N is a subset of D, called constants. 
3. W is a non-empty set of possible worlds. 
4. B is a binary relation of "accessibility" on W; for 55 logic, B can be the 

trivial one, namely, every worlds are accessible to each other. 
5. 7 is a function which assigns to each pair consisting of an n-ary predicate 

symbol n > 0, differ from "=", and an element w of W, an n-ary relation 
on D, to the symbol "=", if present in the language, the identity relation on 
D, and to each n-ary functions symbol, and to each n-ary function symbol 
a function from Dn to D. 

7 is called an interpretation. Intuitively D is "equivalent" to the quotient set Q. 

4.1    Rough Model 

A Rough Model is a 7-tuple 

RM = (E, N, R, F, RO, W, 7) 

where: 

1. E is a set of entities {e, e\,...}; 
2. TV is a set of distinguished entities {n, n\,...}, called the domain of constants; 

moreover     üT(n,-) = n,-,i= 1,2,  
3. R is a set of non-empty relations {r, n,...}, each of which is defined on E; 
4. F is a set of functions {/,/1,...}, each of which is defined on E; 
5. RO is a set of rough operators satisfying six axioms, i.e., RO = {H}; 
6. 7 is a function which assigns to each n-ary predicate symbol n > 0, differ 

from "=", an n-ary relation on E, to the symbol "=", if present in the 
language, the identity relation on E, and to each n-ary functions symbol a 
function from En to E. 

7. W is a collection of observable worlds which are constructed from E and RO 
as explained in Section 2, 

Wh = (Wh,Nh,Rh,Fh), 

where we require that Rh is non-empty; note that this condition exculdes the 
impossible worlds. 
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Roughly, the new model is the same as the one in [2], except we exclude the 
"impossible worlds." 

Two rough models 

RM = {E,N,R,F,RO,W,-i) 
RM = (£', N', R',' F, RO', W, 7') 

are said to be equivalent, if there is a map F between two models such that F 
induces isomorphism between the two families of observable worlds. 

or more formally, F induces an isomorphism between 

Wh = {Wh,Nh,Rh,Fh), and 
W'h = {W'h,N'h,R'h,F'h) 

in the sense there is four family of one-to-one maps 

Wi, Wh -► W'h, 
V/i, Nh->N'h, 
V/i, Rh -+ R'h, 
V/i, Fh -> F'h 

Remark: It should be noted we have not required the two model RM and RM' 
to be isomorphic. 

4.2    The Equivalence of Two Models 

Next we will have the most important result of this paper 

Proposition. A rough model induces an So-frame and vice versa. 

Proof: We will prove this proposition in three steps. First we will show that 
a rough model induces an So-frame, then in the second step we construct a 
rough model from a given S5-frame. In third and fourth steps, we show that the 
compositions these two steps are identity. 

(1) Step One: Assume we are given a rough model RM, namely, 

RM = {E, N, R, F, RO, W, 7) 

Note that the rough model has the following family W of observable worlds, 

W = {Wh I h an index set }, where Wh = (Wh, Nh, Rh,Fh), 

We will show that the family W determines an S5-frame: 

Fist, note that all Wh's are "isomorphic" to each other, that is Wh = Wk; 
see Section 2.1; so are Nh,s and Fh's respectively. We will identify them via 
respective isomorphisms. 

DS5 = Wh,  Vft,       NS5 = Nh,  VA,        FS5 = Fh,  Vft. 
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Let us write, 

W55 = {NAME(Wh) I   VA} 

We will show Dss,Nss,Fs5, Wss together with an equivalence relation Bss and 
an interpretation 755, both to be defined below, do form an 55-frame. 

A) Construction of Bss' First, we note that the isomorphism among Wh's V h 
defines an equivalence relation on Wss] it is a trivial one, i.e., there is only one 
equivalence class; We will denote this equivalence relation by £55. 

B) Define the induced interpretation 755: Let R'h (in domain D55) be the iso- 
morphic copy of i?h(in domain Wh). The union of all those R'h, Vh is denoted 
by/?. 

Then the induced interpretation can be defined as follows: In rough model the 
interpretation 7 assigns a predicate symbol to a relation r € it. In trun, r in- 
duces a relation rh on each Wh Vft; see Section 2. So the predicate is interpreted 
to Wh Wh via such a route. The interpretations of function symbols is the same; 
See Section 2.2. 

Thus we have an 55-frame, 

SM = (D,N,W,B,y). 

(2) Step Two: Conversely, given an 55-frame SM, we will construct a rough 
model A) Construction of E, N and RO: First, we need to set up the notations 
for symbols in SM. We write 

D = {dk I Ar is an index }        W = {wh | h is an index }. 

Next, we consider E' = D x W, and write 

E'k = {(dk, w) I dk is a fixed element in D and w varies through W } 

The collection of E'k, Vfe forms a partition of E', we call it vertical partition and 
each E'k a vertical equivalence class. Now, we will consider a quotient set E as 
follows: First note that AT is a subset of D. If dk = nk is an element of N, then 
we collapse the vertical equivalence class E'k to an element, denoted by (nfe,0) 
or simply n*. This new set is denoted by E; the collapsing map is denoted 
by Q : E' —> E. E inherits a partition from E': if dk G N, the equivalence 
class is singleton, if dk G (D\ N) then the equivalence class is the vertical 
equivalence class. By abuse of terminology, we will refer to such "collapsed" 
vertical partition as vertical partition; similarly, each equivalence class still be 
called vertical equivalence class. Finally, we observe that the vertical partition 
of E gives rise to the upper approximation operator H, which satisfies the six 
axioms; see Section 3. This constitutes the component RO. 

B) Construction of R. Let p be an n-ary predicate symbol, and its interpretation 
in (55-frame SM) be 

j(p,wh) = r h 
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where rh is an n-ary relation in D, that is, 

rfc = {(«M..,d?)|d*€D}CD» 

We should stress that those dk
r are associated with wh. We shall "embed" rh 

into a relation on E through the following consideration. First, we "embed" it 
toE' 

(*)      r»xwh = {((dl, wh), (d?rw
h),..., (<*?, w")) | (<fj, d2

r..., <f?) € rh for a 
fixed h } 

Then we apply the collapsing map Q. Q(rh xwh)is the induced relation on E\ it 
will be denoted by r, i.e., r = Q(rh x wh) Next, we consider the union (varying 

h), 

r is a subset of E", hence is a relation on £. This r is an interpretation of p in 
£. Let the collection of all such r's be denoted by R; a required component of 
RM. 

C) Construction of F: F consists of all functions that are the Cartesian product 
of a function d : Dn —> D and identity map on W. 

D)Construction of W: The observable worlds will be induced from E, and its 
vertical partition, as explained in Section 2.1 

Combining A), B), C) and D), we have constructed RM. 

(3) Step Three: Now, we need to complete "the cycle." By Step Two, we have 
constructed RM2 from SMi; please note the index. By Step One RM2 is trans- 
formed back to SM3; finally, we need to show two SM's are equivalent. Let X 
be an SM and is transformed to Y by Step Two. In the model Y, E has a ver- 
tical partition. To get an observable world, we select a representative from each 
vertical equivalence class. The selection can be expressed by the composition of 
a map d' —> (d,w) and Q. We write the composition, d —>■ (d',w)) —> w, 
by /, understanding that when d = n£N,w = d.We will say / is a constant 
map, if f(d) = w0 is a constant on D \ N, D minus N. The observable world 
selected will be denoted by W} From Step One, we know that each Wf is an 
observable world, if Rf is non-empty. However, from the equation (*) in Step 
Two, one observes that if / is not a constant map, then R* is an empty set, 
hence WJ are not included in the family of observable worlds. So the observable 
worlds are precisely the same as those given in SM. This completes the proof of 
cycle one. 

(4) Step Four. Let Y be an RMt. By Step One, it is transformed to X, an 
SM2. We need to show, by Step two X will be transformed back to RM3; 
we need to show that two RM are equivalent (not necessarily equal); see Sec- 
tion 4.1 Remark 4.1. In (3) Step 3, we have shown that X is transformed by 
Step Two, then Step One back to X. Now we take Y and transform it to X by 
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Step One. By it Step Two, we get Y'. Now note that the observable worlds of 
Y' is precisley X, so Y and Y' are equivalent. QED. 
Since 55-frame is complete, we have 

Theorem. Rough logic with this new interpretation is sound and complete. 

5    Conclusion 

Rough set theory models uncertainty by equivalence relations (indiscernibility 
relations). In real world applications, such a precise knowledge of equivalence 
relations is often unavailable. However, one could often observe the approxima- 
tions, in other words, the knowledge of approximate operators are reasonably 
available. Based on such belief, we developed the axiomatic rough set theory 
and the first order rough logic [2] without explicit equivalence relation. 

The model, namely RM, proposed is too rich in semantics for the syntax. 
The language can not completely determine the model. So in this paper, we 
introduce the equivalence relation among those modelsjsee Section 4.1. Then the 
equivalence class contains the right amount of information to be characterized 
by the syntax. In other words, RM is the "ideal world" that the syntax intend to 
address. However, due to insufficient information, the syntax can only determine 
an equivalence class of the "ideal" worlds; there are uncertainty. From this aspect, 
rough logic is richer than S5. 
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Abstract. A generalized decision logic in interval-set-valued informa- 
tion tables is introduced, which is an extension of decision logic studied 
by Pawlak. Each object in an interval-set-valued information table takes 
an interval set of values. Consequently, two types of satisfiabilities of 
a formula are introduced. Truth values of formulas are defined to be 
interval-valued, instead of single-valued. A semantics model of the pro- 
posed logic language is studied. 

1    Introduction 

The theory of rough sets is commonly developed and interpreted through the 
use of information tables, in which a finite set of objects are described by a 
finite number of attributes [10, 11]. A decision logic, called £>L-lan'guage by 
Pawlak [11], has been studied by many authors for reasoning about knowledge 
represented by information tables [8, 11]. It is essentially formulated based on 
the classical two-valued logic. The semantics of the £>L-language is defined in 
Tarski's style through the notions of a model and satisfiability in the context 
of information tables. A strong assumption is made about information tables, 
i.e., each object takes exactly one value with respect to an attribute. In some 
situations, this assumption may be too restrictive to be applicable in practice. 
Several proposals have been suggested using much weaker assumptions. More 
specifically, the notion of set-based information tables (also known as incomplete 
or nondeterministic information tables) has been introduced and studied, in 
which an object can take a subset of values for each attribute [3, 14, 16, 20]. 
Based on the results from those studies, the main objective of this paper is to 
introduce the notion of interval-set-valued information tables by incorporating 
results from studies of interval-set algebra [17, 19]. A generalized decision logic 
GDL is proposed, which is similar to modal logic, but has a different semantics 
interpretation. 

* This study is partially supported by the National Natural Science Foundation of 
China and Natural Science Foundation of JiangXi Province, China. 
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This paper reports some of our preliminary results. In Section 2, we first 
briefly review Pawlak's decision logic DL, and then introduce the notions of 
a-degree truth and a-level truth. In Section 3, the notion of interval-set-valued 
information tables is introduced. A generalized decision logic DGL is proposed 
and interpreted based on two types of satisfiabilities. The concepts of interval- 
degree truth and interval-level truth are proposed and studied. Inference rules 
are discussed. In Section 4, two related studies are commented. 

2    A Decision Logic in Information Tables 

The notion of an information table, studied by many authors [3, 10, 11, 16, 21], 
is formally defined by a quadruple: 

S = (U,At, {Va\a€ At}, {Ia\a£ At}), 

where 

U is a finite nonempty set; of objects, 

At is a finite nonempty set of attributes, 

Va is a nonempty set of values for a € At, 

Ia ■ U —> Va is an information function. 

Each information function Ia is a total function that maps an object of U to 
exactly one value in Va. Similar representation schemes can be found in many 
fields, such as decision theory, pattern recognition, machine learning, data anal- 
ysis, data mining, and cluster analysis [11]. 

With an information table, a decision logic language (£>L-language) can be 
introduced [11]. In the DL-language, an atomic formula is given by (a, v), where 
a 6 At and v £ Va. If <j> and ip are formulas in the .Di-language, then so are 
-'(f), <f>Aip, <j>Vrp, <f> —> ip, and 4> = ip. The semantics of the £>L-language can be 
defined in Tarski's style through the notions of a model and satisfiability. The 
model is an information table S, which provides interpretation for symbols and 
formulas of the .DL-language. The satisfiability of a formula <j> by an object x, 
written x (=5 <j> or in short x (= <j> if S is understood, is given by the following 
conditions: 

(al). x \= (a, v) iff Ia{%) = v, 

(a2). x \= -><j> iff not x |= <j>, 

(a3). x\=<f>Aipifix\=<f) and x \= ip, 

(a4). x \= <j> V tp iff x \= <f> or x ^= i\>, 

(a5). x\=<j>—tij>iffx\= -«p V ip, 

(a6). x\=<f> = ipiffx\=<l>—> ip and x \= xj) -» <j>. 

For a formula <f>, the set ms(<j>) defined by: 

msfo) = {* e tf| * M}, (1) 
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is called the meaning of the formula <f> in S. If S is understood, we simply write 
m(<f>). Obviously, the following properties hold [8, 11]: 

(bl). m(a, v) = {x G U | Ia{x) = v}, 

(b2). m{-«j>) = -m((j>), 

(b3). m{<f> A V) = "*(</•) n m(V>), 

(b4). m(<j> V ip) = m{<j>) Ö m(ip), 

(b5). m{<f> -+ i>) = -m{<t>) Um(^), 

(b6). m((j> = V) = (™M n m(V>)) U (-m(<£) H -m(V>)). 

The meaning of a formula <£ is therefore the set of all objects having the property 
expressed by the formula <j>. In other words, <f> can be viewed as the description of 
the set of objects m(<f>). Thus, a connection between formulas of the DL-language 
and subsets of U is established. 

A formula <j> is said to be true in an information table S, written \=s <j> or \= <j> 
for short when S is clear from the context, if and only if m(^) = U. That is, <f> is 
satisfied by all objects in the universe. Two formulas <f> and ^ are equivalent in 
5 if and only if m(<f>) = m{i>). By definition, the following properties hold [11]: 

(cl). |= <f> iff m{<j>) = U, 

(c2). (= -•<£ iff m(<£) = 0, 

(c3). t=^-J-Viffm(^)Cm(^), 

(c4). \=<t> = i)ifim{<}>) = m(i)). 

Thus, we can study the relationships between concepts described by formulas of 
the DL-language based on the relationships between their corresponding sets of 
objects. 

The previous interpretation of £>L-language is essentially based on classical 
two-valued logic. One may generalize it to a many-valued logic by introducing 
the notion of degrees of truth [4, 5]. For a formula <f>, its truth value is defined 

by [4, 5]: 

v(4) - -|j7p W 

where | • | denotes the cardinality of a set. This definition of truth value is 
probabilistic in natural. Thus, the generalized logic is in fact a probabilistic 
logic [7]. When v{<j>) = a £ [0,1], we say that the formula <j> is a-degree true. By 
definition, we immediately have the properties: 

(dl). |= 0 iff w(^) = 1, 

(d2). |= -.^ iff v{4>) = 0, 

(d3). i>(-tf) = l-vM, 
(d4). v(<f> A ij)) < mm(v(<l>),v(il>)), 

(d5). v{<j> Vtp)> max(v{<l>),v{ip)), 

(d6). v{<f>Vrp) = v{<t>) + v(ip)-v{<j)Aip). 
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Properties (d3)-(d6) follow from the probabilistic interpretation of truth value. 
Similar to the definitions of a-cuts in the theory of fuzzy sets [2], we define a- 
level truth. For a G [0,1], a formula <f> is said to be a-level true, written \=a <j>, if 
v(<f>) > a, and <f> is strong a-level true, written \=a+, \iv(<f>) > a. From (dl)-(d6), 
for 0 < a < ß < 1 and 7 G [0,1] we have: 

(el). No 4>, 
(e2). If \=ß 4>, then  \=a <j>, 

(e3). \=a ->(f> iff not  |=(i_a)+ <j>, 

(e4). If \=a (j> A ip, then  \=a (j> and  \=a ip, 

(e5). If \=a<f>, then  \=a<l>Vip, 

(e6). If |=a^and  |=7 ip, then  (=max(c<,7) <f> v i'- 

Property (e5) is implied by properties (e2) and (e6). 
With the concept of a-level truth, we have the probabilistic modus ponens 

rule [15]: 

K* </>-* i> u(^ —>• if)) > a 

¥ß<t> v{4>) > ß 

Fmax(0,«+/?- !) ip            v(ip) > max(0, a + ß — 1) 

Given conditions v{4> —> if) > a and v{<j>) > ß, from properties 
we have: 

v(<j> —^ip)>a 

=> v{-«j> V ip) > a 

=> v[~"l>) + V(V') — fC-1^ A ip) > a 

=> (1 - v(<l>)) + v(i/>) > a 

=» v(ip) > a + v{4>) — 1 

=> v(il>) >a + ß-l. 

Since the value v(ip) must be non-negative, we can conclude that the proposed 
modus ponens rule is correct. Similar properties and rules can be expressed in 
terms of strong a-level truth. 

3    A Generalized Decision Logic 

Let X be a finite set and 2X be its power set. A subset of 2X of the form: 

A = [A1,A2] = {Xe2x \AiCXCA2} (3) 

is called a closed interval set, where it is assumed Ax C A^. The set of all 
closed interval sets is denoted by I(X). Degenerate interval sets of the form 
[A, A] are equivalent to ordinary sets. Thus, interval sets may be considered as 
an extension of standard sets. In fact, interval-set algebra may be considered as 
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a set-theoretic counterpart of interval-number algebra [6]. A detailed study of 
interval-set algebra can be found in papers by Yao [17, 19]. 

An interval-set-valued information table generalizes a standard information 
table by allowing each object to take interval sets as its values. Formally, this 
can be described by information functions: 

Ia:U—>I(ya). (4) 

For an object x G U, its value on an attribute a G At is an interval set 
Ia(x) = [Iat(x),Ia*{x)\. The object x definitely has properties in Ia*{x), and 
possibly has properties in Ia*{x). With the introduction of interval-set-valued 
information tables, a generalized decision logic language, called GDL-language, 
can be established. The symbols and formulas of the GDiHanguage is the same 
as that of the DL-language. The semantics of the GD-Manguage can be defined 
similarly in Tarski's style using the notions of a model and two types of satisfia- 
bilities, one for necessity and the other for possibility. If an object x necessarily 
satisfies formula <£, we write x |=» <j>, and if x possibly satisfies <j>, we write x \=* <j>. 
The semantics of f=* and (=* are defined as follows: 

(fl).       x\=*(a,v)iffv£lat{x), 
x\=* {a,v) iff v(Ela*(x), 

(f2).       x\=* -.^ iff nota;|=*<£, 

x \=* -><f> iff not x |=* <j>, 

(f3).       x (=* <f> A i> iff x [=* <j> and x |=» V. 

x (=* <j> A tp iff x [=* <f> and x \=* i/>, 

(f4).       x (=♦ 4> V tp iff x (=» $ or x |=, V, 

a; (=* 0 V ^ iff a; (=* <£ or x (=* V, 

(f5).       z K <£ -> V iff x \=, -^ V V, 

a: [=* <£ -> V> iff a; f=* -■<£ V V>, 

(f6).       a: (=, <f> = ip iff a; (=» 0 -> V> and x (=♦ V ~> 0> 

x \=* <j> = 4> iff x |=* <£ -»• ip and x |=* V ~> </•> 

The following property follows immediately from definition: 

(gl).      If x \=* <£, then x (=* <£. 

Although the introduced notions of necessity and possibility are similar in nature 
to the notions in modal logic [1], our semantics interpretation is different. There 
is a close connection between the above formulation and three-valued logic [19]. 

In GDL, with respect to an interval-set-valued information system S, the 
meaning of a formula <f> is the interval set m(<f>) defined by: 

m{4>) = [{* G U | x K *}, {* e ^ I * K *}] = K(«i),m*(^)]. (5) 
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It can be verified that the following properties hold: 

(hi). rn{a, v) = [{* G U \ x f=. cf>}, {x G U \ x \=* <j>}}, 

(h2). m(^) = \m(<l>), 
(h3). m{4> Aip) = m((f>)n m(ip), 

(h4). m{<t> Vip)= m{<j>) \Jm(ip), 
(h5). m{<t>^i>) = \m{4>)Um(il>), 

(h6). m{<j> = V) = {\m{<j>) U m(V-)) n (m(<f>) U \m(^)), 

where \, n, and U are the interval-set complement, intersection, and union given 
by [17]: for two interval sets A = [^1,^2] and B = [B1,B2], 

\A = {-X\XeA} = [-A2,-A1], 
AH B = {X C)Y \ X e A,Y e B} = [AxH BuA2n B2], 
AU B = {X UY \ X e A,Y £ B} = [AiU BltA2U B2]. (6) 

The meaning of a formula <f> is therefore the interval set of objects, representing 
those that definitely have the properties expressed by the formula <f>, and those 
that possibly have the properties. 

Given the meaning of formulas in terms of interval sets, we define the interval- 
valued truth for a formula <j> by extending equation (2): 

»(*) = 
\\m,(<f>)\   \m*{<f>)\ 

\U\    '     \U\    J [«.(*),«*(*)]• (7) 

Both lower and upper bounds of [v,(<f>),v*(</>)] have probabilistic interpretation, 
hence we have a probability related interval-valued logic [18]. Properties corre- 
sponding to (d3)-(d6) are given by: 

(il).       «,(-.# = 1-Vfo), 
v*(^) = l-vt(<f>), 

(i2).       v*(4>Aif>) < mm(v*(<l>),Vi,(ip)), 

v* (</> A VO < min(ü* (4>), v* (V>)), 
(i3).       vt(^V i(>) > ma.x(vt(</>), v^)), 

v*(<f>Vil)) >mzx(v*{(f>),v*(tp)), 

(i4).       v*{<i>V V») = «*(<£) + V*W ~ v*(<f> AV")> 
«*(0 V V) = w*(^) + v*{i>) -v*{cf>A ip). 

The formula <f> is said to be [v*(<£), v*(<£)]-degree true. For a sub-interval [a», a*] 
of the unit interval [0,1], a formula <f> is [a*, a*]-level true, written [=[<*.,<*♦] <f>, if 
a» < v*(<£) < D*(0) < a*, and ^ is strong [a*, a*]-level true, written |=[0.,<*•]+ <f>, 
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if a* < v,(4) < v*{cj>) < a*. For sub-intervals [or.,a*] C [ß*,ß*] C [0,1] and 
[T»> 7*] != [0,1], the following properties hold: 

(jl)-       r=fl>,i] $> 
(j2).       If (=[<**,<*•] 4>, then  [=[/?*,/?•] 0> 

(j3). \=la.,a'] -"<t> iff not   |=[i_a.,l_a.]+ <£> 
(j4). If !=[„.,„.] ^ A V, then  (=[«.,1] <£ and \=[a.,i] 1>, 

(j5). If (=[a.,o'] <£, then  |=[a.,i] <£ V V, 

(j6). If |=[a„«»]^and  |=[7.,7'] V>> then  |=[max(a.)7.),i] <£ V tf>, 

(j7). If \=[a.,a*]<l>Vil>, then  (=[0,a.] ^ and |=[o,a«] Vs 

(j8). If J=[a.,a.] ^, then  |=[o,«'] <£ A ip, 

(j9). If |=[o.|C(.]^and  (=[7.,r] V>, then t=[o,min(a«,7')] ^ A ^. 

They follow from (i2) and (i3). In fact, properties (j4)-(j6) are the proper- 
ties (e4)-(e6) of the £>L-language. Properties (j4)-(j6) show the characteristics 
of the lower bound, while (j7)-(j9) state the characteristics of the upper bound. 

The generalized interval-based modus ponens rule is given by: 

\=\p.,ß.] *  ß*<v*(<t>)<v*(<i>)<ß* . 

NwoMft-i),«'] ^ max(0,a, +/?. - 1) < v.(1>) < v*{^) < a* 

The part concerning the lower bound is in fact the probabilistic modus ponens 
rule introduced in Section 2. The upper bound can be seen as follows. From 
v*(<j) -¥ VO < <** and (i3), we can conclude that: 

«*W0 < v*h<l> V i>) = v* (4>-+il>) < a*. 

Thus, the interval-based modus ponens rule is correct. Finally, it should be 
pointed out that the logic of Section 2 is a special case of interval-valued logic. 
More specifically, a-level truth can be translated into the [a, l]-level truth. 

4    Comments on Related Studies 

An interval-valued logic can also be introduced in the standard information 
tables through the use of lower and upper approximations of the rough set the- 
ory [5, 9]. For each subset of the attributes, one can define an equivalence relation 
on the set of objects in an information table. An arbitrary set is approximated 
by equivalence classes as follows: the lower approximation is the union of those 
equivalence classes that are included in the set, while the upper approximation 
is the union of those equivalence classes that have an nonempty intersection with 
the set. Thus, for a formula <f> with interpretation m(<j>), we have a pair of lower 
and upper approximations apr(m((f>)) and äpr(m(<f>)). An interval-valued truth 
can be defined as: 

•|apr(ro(0))|   |öpr(m(^))|" 
v(4) = \U\       '        \U\ = [v.(4>)y (<i>)}-        (g) 
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Based on this interpretation of interval-valued truth, Parsons et al. [9] introduced 
a logic system RL for rough reasoning. Their inference rules are related to, but 
different from, the inference rules introduced in this paper. A problem with RL 
is that the interpretation of the rough measure is not entirely clear. The measure 
is not fully consistent with the definition of truth value given by equation (8). It 
may be interesting to have an in-depth investigation of the interval-valued logic 
based on equation (8). An important feature of such a logic is its non-truth- 
functional logic connectives. This makes it different from the interval set algebra 
related systems GDL and RL. 

In a recent paper, Pawlak [12] introduced the notion of rough modus ponens 
in information tables. The logical formula cf> -> ip is interpreted as a decision 
rule. A certainty factor is associated with <f> —>■ ip as follows: 

It can in fact be interpreted as a conditional probability. The rough modus 
ponens rule is given by: 

<f> : v(4>) 

ip : v(-«f> A ip) + v(<f>)fis{<i>, if>) 

This rule is closely related to Bayes' theorem [13]. One may easily generalize 
the rough modus ponens if a-level truth values are used. The main difference 
between two modus ponens rules stems from the distinct interpretations of the 
logical formula <j> —> ip. 

5    Conclusion 

Two generalizations of Pawlak's information table based decision logic DL are 
introduced and examined. One generalization is based on the notion of degree of 
truth, which extend DL from two-valued logic to many-valued logic. The other 
generalization relies on interval-set-based information tables. In this case, two 
types of satisfiabilities are used, in a similar spirit of modal logic. They lead to 
interval-set interpretation of formulas. Consequently, interval-degree truth and 
interval-level truth are introduced as a generalization of single-valued degree of 
truth. The truth values of formulas are associated with probabilistic interpreta- 
tions. The derived logic systems are essentially related to probabilistic reasoning. 
In particularly, probabilistic modus ponens rules are studied. 

In this paper, we only presented the basic formulation and interpretation of 
the generalized decision logic. As pointed out by an anonymous referee of the 
paper, a formal proving system is needed and applications need to be explored. 
It may also be intersting to analyze other non-probabilistic interpretations of 
truth values. 
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Abstract. This paper presents an integration of the dynamic logic se- 
mantics and rational decision theory. Logics for reasoning about the ex- 
pected utilities of actions are proposed. The well-formed formulas of the 
logics are viewed as the possible goals to be achieved by the decision 
maker and the truth values of the formulas are considered as the utili- 
ties of the goals. Thus the logics are many-valued dynamic logics. Based 
on different interpretations of acts in the logics, we can model differ- 
ent decision theory paradigms, such as possibilistic decision theory and 
case-based decision theory. 

1    Introduction 

Rational decision theory is a very important research topic in many academic 
fields such as economics, politics, and philosophy. Recently, it has also received 
more and more attention of the AI community due to the development of intel- 
ligent agent systems. The basic execution loop of an intelligent agent consists 
of three phases: perception, deliberation, and action. In the perception phase, 
the agent senses the status of the environment and receives information from 
other agents. Then, in the deliberation phase, the agent reasons with the ob- 
served and received information and plans its actions for achieving its goals. 
Finally, in the action phase, the plan is really executed. The capabilities of both 
reasoning about actions and decision making are crucial to the success of the 
deliberation phase since it has to know the possible effects of actions and select 
the appropriate actions for achieving its goals. 

A variety of formalisms for reasoning about actions have been developed in 
AI, theoretical computer science, and philosophical logic. Among them, dynamic 
logic is originally proposed for reasoning about program behavior [10], and sub- 
sequently adopted for reasoning about actions by the AI community. Though 
the advantages of using dynamic logic for reasoning about actions have been 
emphasized in [6], the traditional dynamic logic has only limited capability in 
handling uncertainty. 

In dynamic logic, a formula \a\ip denotes that <p holds after the execution of 
(possibly compound) action a, so in principle, if the agent's goal is <p and \a]<p 
can be derived from the description of the initial situation, then a is a feasible 
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plan for achieving the goal. This gives rise to a decision theoretic reading of 
dynamic logic semantics. Since nondeterministic actions are allowed in dynamic 
logic, it may capture the agent's ignorance on the possible effects of actions to 
some extent. However, uncertainty pervades the whole deliberation phase, so 
further extensions of dynamic logic for handling different forms of uncertainty 
are needed. In general, there are three forms of uncertainty in the deliberation 
process. 

- The perception of the agent may be imperfect and its received informa- 
tion may be incomplete and faulty, so its knowledge in the status of the 
environment is uncertain. Sometimes, the probabilistic instead of the exact 
knowledge is available. However, in other times, even probabilistic knowledge 
is not available, so more general consideration is also needed. 

- In multi-agent systems, our agent may not be the only one which can cause 
the change of the world, so it has only partial knowledge about the possible 
effects of the actions. The classical dynamic logic may handle the case when 
the knowledge is imprecise (i.e. the effect of an action is represented as a set 
of states). However, the knowledge may be also probabilistic or possibilistic 
(i.e. the effect of an action are represented as a probability or possibility 
distribution on the set of states). We recall that a possibility distribution on 
a set X is a mapping 7r : X —> [0,1] such that n(x) measures the extent to 
which x is likely to be the actual consequence[14]. The dynamic logic should 
be extended to cover such cases. 

- Since dynamic logic is two-valued, the goal for an agent to achieve must be 
crisp and non-flexible. A goal is either satisfied or non-satisfied. However, 
sometimes, we may want to describe more flexible goals. A goal may be sat- 
isfied to some degree. In decision theory, this is in general described by a 
real-valued utility function. Recently, more general notions of ordinal pref- 
erence are considered[l, 13]. To represent the flexible goals in dynamic logic, 
we will generalize its semantics to a many-valued one. 

On the other hand, in the decision theoretic contexts, far richer notions of 
uncertainty have been explored. Besides classical decision theory, in which the 
notions of probability and expected utility are of central importance, some al- 
ternatives, such as possibilistic decision theory[l], case-based decision theory[7], 
and belief function-based decision theory[11] have been proposed and axiomati- 
cally justified in different settings recently. The main concern of decision theory 
is to choose an action which will maximize the expected utility of performing 
the action given some knowledge on the effects of the action and the desirability 
of these effects. In the extreme case that the utility function is two-valued and 
the available knowledge is imprecise, this is just a rephrasing of the decision 
theoretic interpretation of dynamic logic. The only difference is that in general 
the set of available acts in decision theory is not algebraically structured as in 
dynamic logic. Thus, due to the usefulness of dynamic logic in reasoning about 
actions and the rich notions of uncertainty in decision theories, the combina- 
tion of decision theory and dynamic logic semantics will have the advantages of 
cross-fertilization. 
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In this paper, we suggest a kind of integration between decision theoretic 
notions and dynamic logic semantics. The dynamic logic semantics is enhanced to 
a many-valued one, so the truth value of a formula in a state plays a two-fold role. 
One is the degree of satisfaction of the formula and the other is the utility of the 
state. Since each formula corresponds to a goal and we can consider more than 
one formulas in the same time, this means that we can easily describe the multiple 
objective decision-making in the logic. In classical dynamic logic, each action is 
interpreted as a binary transition relation on the set of states. Here, depending 
on the different uncertainty handling formalisms, we can generalize it to a fuzzy 
relation, a set of probability distributions, or a set of possibility distributions 
generated from a similarity relation. Thus, we will try to develop several many- 
valued dynamic logics for reasoning with different uncertainty formalisms. 

In what follows, we will first review the basic notions from classical deci- 
sion theory and some recent proposals of qualitative alternatives. Then the dy- 
namic logics for possibilistic decision theory and case-based decision theory are 
considered respectively. Finally, conclusion is given and some possible research 
directions are suggested. 

2    Review of Some Decision Theories 

Classical quantitative decision theory considers expected utility maximization 
(EUM) as the criteria of rational choice. In the theory, a decision framework 
is a 4-tuple (D,X,/i,u), where D is a set of available decision acts, X is a set 
of possible outcomes, // : D X X —> [0,1] assigns to each decision act d € D 
a probability distribution fi(d, ■) on X, and u : X —» 3? is the utility function. 
Then the expected utility of a decision d is defined as 

U(d) = ExeXp(d, x) ■ u(x), 

and the decision maker will choose do such that U(do) = maxdeD U(d). 
While the computation of E(d) relies on the arithmetic operations (mainly + 

and •) on real numbers, qualitative decision theory concentrates more on the de- 
cision maker's ordinal preference and uncertainty about the possible outcomes. 
Recently, a qualitative decision theory(PODT) based on possibilistic logic is pro- 
posed^]. In the theory, a possibilistic decision framework is a 4-tuple (D, X, IT, u), 
where D and X are defined as above, w : D x X —> 7\ assigns to each decision act 
d € D a possibility distribution w(d, •) : X -> Ti, and u : X -► T2 is the utility 
assignment function. Here, Ti and Tb are linearly ordered scales, and under the 
commensurability assumption, we can assume Ti = T2 = T without loss of gen- 
erality. Typical examples of T are [0,1] or a subset of [0,1]. Let n : T —> T be an 
order-reversing map on T, then two qualitative expected utilities for a decision 
d can be defined. For the risk-averse decision maker, the pessimistic expected 
utility is 

U*(d) = min max(n(7r(d, x)),u(x)), 
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and for a risk-prone decision maker, the optimistic expected utility is 

U*(d) = maxmin(7r(d, x),u(x)). 
x£X 

The PODT is particularly suitable for complicate situations in which complete 
probabilistic information is rarely available. 

Another recent proposed alternative decision theory is the case-based one. 
According to [7], the purpose of case-based decision theory(CBDT) is to mod- 
el decision making under uncertainty by formalizing reasoning by analogies. It 
suggests that decision makers tend to choose actions which performed well in 
similar past cases. Each case is viewed as a triple of a situation (i.e. a decision 
problem), the action chosen in it, and the consequence of performing the action. 
Thus, a case-based decision framework is a 6-tuple (P,D,X,C,s,u), where D, 
X, and u are defined as above, P is a set of situations, CCPxDxXisa finite 
set of cases, called the memory of the decision maker, and s : P X P —» [0,1] is a 
similarity function which measures the similarity between situations. Then, for 
a given situation p, the expected utility for a decision d is defined as 

(q,d,x)£C 

However, it is also pointed out that Uc is cumulative in nature, so the number of 
times a certain act was chosen in the past will affect perceived desirability. Thus, 
an act that was chosen repeatedly producing bad results may be considered 
superior to an act that was chosen only once but producing good result. To 
overcome the difficulty, the average utility is considered in [7], namely, in the 
above equation, the similarity function s is replaced by s' which is defined as 

S'(p,9) = {f' ^/^(q',d^)ecs(P'l')if well-defined 
otherwise 

In [2], a more qualitative version of expected utility is considered which can also 
eliminate the cumulation assume the utility values are normalized to the range 
[0,1]. The definition is analogous to the pessimistic and optimistic expected 
utility in the PODT. 

Uc*(d) =    min    max(n(s(p, q)),u(x)), 
(q,d,i)eC 

K(d) = , max   min(s(p,?),«(i)). 

While in PODT, it is observed that the criterion of maximizing U*(d) is some- 
times over-optimistic[5], it seems that for CBDT, the pessimistic utility has some 
counterintuitive results. For example, if an act a was only adopted in the past 
for the cases that are completely different with the present situation, i.e., for all 
(q, a,x) € C, s(p.q) = 0, then we will have Uct(a) = 1 which is the maximum 
value. This phenomenon is due to the fact that the case memory is only a partial 
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description of the world, so we may encounter a novel situation in which no past 
experience can be followed. In CBDT, we tend to find the most similar past case 
and apply its solution to the new situation, so the optimistic criterion seems 
more suitable. 

3    Possibilistic Dynamic Logic 

The possibilistic dynamic logic (PoDL) provides the integrated treatment of 
possibilistic decision theory and dynamic logic. The syntax and semantics of 
PoDL is an extension of that for dynamic logic [10] and fuzzy modal logic SLMV 
in [8], which in turn bases on rational Pavelka logic proposed in [9]. 

3.1 Syntax 

The alphabet of PoDL consists of 

1. A set of propositional letters, PV = {p, q,...}, 
2. a set of atomic actions, A = [a, b,c,...}, 
3. the set of truth constants r for each rational r G [0,1], and 
4. the logical symbols ~, ->, A, V, [, ], ;, *, U, and ?. 

The set of well-formed formulas (#) and the set of action expressions(H) are 
defined inductively in the following way. 

1. # is the smallest set such that 
- PV C <£ and r G <P for all rational r G [0,1], and 
- if tp, ip G # and a G E, then ~ (p, ip —»rp, ip A ip, <p V rp, \a](p € #. 

2. E is the smallest set such that 
- ACE, and 
- if a, ß £ E and (p€$, then Q^.OU ß, a*, <p7 G II. 

Some abbreviations of PoDL include -vp = tp -> Q, <p®ip = ->(<p —* -np), 
<p@ip = -«p —► tp, and (a)(p = -i[a]-i(p. 

3.2 Semantics 

The semantics of PoDL is defined relative to a given Kripke structure M = 
(Wi T, | • |, too), where W is a set of possible worlds, r : W X PV -» [0,1] is the 
truth valuation function, | • J : A -» (W x W -> [0,1]) is the action denotation 
function, and w0 G W is a designated world. The mappings r and | • | is extended 
to $ and E as follows. 

1. r{w,r) =r, 
. ,   f 0 if T{W, <p) = 1 

V   i     f)      ^ i otherwise 
3. T(W,<P -> ip) = I(T(w,ip),T(w,rp)), 
4. r(w,(p A Tp) = mm(T(w,(p),r(w,ip)), 
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5. T(w,ip V ip) = max(T(w,<p),T(w,^))), 
6. r(w, [a]ip) = infxelymax(l - \a\(w,x),T(x,<p))t 

7. \a; ß\ = \a\ o \ß\, i.e„ composition of two fuzzy relations |a| and |/?j, 
8. \aUß\ = \a\U\ß\, 
9. |Q*| = ]a|*, i.e., the reflexive and transitive closure of \a\, 

io. |v?|(tt,,») = |^    ;
otherwise 

where / : [0,1] x [0,1] —» [0,1] is an implication function. Typical implication 
functions include material implication I(x,y) = max(l — x,y), Lukasiewicz's 
implication I(x,y) = min(l, 1 — x + y), and Gödel implication I(x,y) = 1 if 
x < y and = y if x > y. Here we will let I denote the Lukasiewicz's implication. 

Let w |=M <p denote r(w,<p) = 1, then <p is true in M, written as M (= <p if 
wo \=M <P and for a set E of wffs, we write M \= U ii M \= <p for all tp € E. 
Furthermore, <p is said to be an (external) logical consequence of E, denoted by 
E (= if, if for any model M, M )= E implies M \= (p. When E is the empty set, 
this is abbreviated as \= <p and tp is said to be valid. Moreover, <p is satisfiable if 
~ <p is not valid and weakly satisfiable if -up is not valid. 

3.3    Discussion 

In the semantics above, if we consider S as the set of available acts, and $ the 
set of goals, then a Kripke structure is a generalization of possibilistic decision 
framework. It can be seen that r(w, [a]<p) and T(W, (a)(p) are respectively the 
pessimistic and optimistic utility of doing a under state w with respect to the 
decision objective y. 

To see how the PoDL model generalize a possibilistic decision framework, let 
us consider the formal correspondence between them. Let M — (W, r, | • |, wo) be 
a PoDL model and <p be a fixed wff, then P(M, ip) = (D, X, w, u) is a possibilistic 
decision framework, where 

-D = S, 
- x = w, 
- 7T : D x X -4 [0,1], n(a,w) = \a\{w0, w) for all a G D and w G X, 
— u : X —> [0,1], u(w) = T(VJ, <p) for all w € X. 

The difference is made explicit from the formal correspondence. First, in a possi- 
bilistic decision framework, the set of available decision acts is taken as primitive, 
so it is only needed to specify the possible effects of each act from the initial 
situation xu0, which is implicitly assumed. On the other hand, in PoDL, the set 
of actions is composed from some atomic ones, so to know the effects of an action 
under the initial situation, we have to know also effects of its constitutive ac- 
tions under different situations. In other words, the decision maker choose plans 
instead of a single action in PoDL model. Second, in a possibilistic decision 
framework, a utility function is given, which is implicitly assumed to correspond 
to a goal of the decision maker, whereas in PoDL, we have a bundle of utility 
functions, each corresponding to a wff of the language. Thus, we can know the 
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Utilities of not only some primitive goals p and q, but also the conjunctive goal 
pAq, the aggregated goalp®g, the negated goal ->p, and so on. This is in partic- 
ular suitable for multiple objectives decision making. Moreover, because of the 
use of rational Pavelka logic, the prioritized or thresholded goals mentioned in [3] 
can also be expressed in PoDL. For example, we can write goals like yV(l — r) 
or r —> (p. 

When we can completely specify a possibilistic decision framework or a PoDL 
model M, then the decision making process amount to the model checking prob- 
lem in M. For example, if M \= r —> [a]ip, then we know that for goal <p, the plan 
a has pessimistic expected utility at least r. If M \=~ ([«]</? —* [/?]y)> tnen a ls 

a better plan than ß for satisfying (p according to the criterion of maximizing 
[/*. Sometimes, it is not easy to have a complete specification of the decision 
framework. Instead, we may have only some partial description of the status of 
the environment and the preconditions and effects of the primitive actions. Some 
typical sentences for the description are non-modal wffs of PoDL, or formulas of 
the form ip —► (r —> [a]ip) where a is atomic and tp and ip are non-modal. In this 
case, assume 27 C $ is the set of descriptions, then the decision making process 
amount to deduction problem in the logic. We must try to derive the formulas 
like r —> [«]</? or ~ (\a\(p —» \ß]<p) from E by proof methods of the logic. Though 
the development of proof methods for the logic is beyond the purely semantic 
concern of the paper, it is indeed a very interesting direction for further research. 

4    Case-based Dynamic Logic 

Analogous to PoDL, in this section, we develop a case-based dynamic logic(C6£)L) 
for reasoning about actions and decisions according to CBDT. Though the syn- 
tax of CbDL is similar to that of PoDL, we will add a similarity-based modal 
operator which is of independent interest to fuzzy reasoning[4,8]. Furthermore, 
a more classical dynamic operator {■} is used for describing primitive actions in 
case bases. 

Thus, the alphabet of CbDL consists of those for PoDL and three additional 
logical symbols {,}, V and the following formation rules are added to those for 
PoDL, 

- if <p € # and a £ A, then {a}<p and V<p 6 <£. 

To define the semantics for CbDL, we first recall the definition of fuzzy 
similarity relation. A fuzzy relation S : X x X -> [0,1] is a similarity one if it 
satisfies the following three properties, for all x,y € X, 

1. reflexivity: S(x,x) = 1, 
2. symmetry: S(x,y) = S(y,x), and 
3. transitivity: S(x,y) > sup2gj?min(S(o;,2),5(z,2/)). 

Then a CbDL model is a 5-tuple M = (W,T, | • |0, S,w0), where W, r, and w0 

are as above, | • |0 : A -> 2WxW, and S : W x W -> [0,1] is a similarity relation. 
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The mapping | ■ | : A -» (W x W -» [0,1]) is defined by 

\a\(x,y)=        sup        S(x,z). 

That is, |a| = S o |a|0. Then the mappings r and | ■ [ is extended to # and S 
as in PoDL with the extra rules for wffs of the forms Vy> and {a}<p, 

10. T(W, VV?) = infl6w max(l - S(w, x), r(x, <p)), 
11. r(iü,{a}(^) = infieW|(U)iI)€|aj0r(x,v?). 

The definitions of logical consequence, validity, and satisfiability, etc. are analo- 
gous to those of PoDL. Sometimes, to distinguish the logical consequence rela- 
tions between PoDL and CbDL, we will add the subscripts to them. 

The mapping | - |0 is to model the case memory, The definition is such that 
a case {x,a,y) is in the memory iff (x,y) G \a\0. This restricts that the actions 
appearing in the memory must be atomic. This restriction is not so restrictive 
as it seems at the first glance. Imagine that the agent has a detail trace of the 
execution of the actions in the past cases. Then for a compound action like 
a;/?, if we know the intermediate state after the execution of a, then we can 
decompose a case (x, a; ß, y) into two cases (x, a, z) and (z, ß, y), and store the 
latter two on the memory. According to the original restriction of case memory 
in [7], there do not exist two cases (p,a,x) and (p,a',x') in the memory such 
that a ^ a' or x ^ x', so we can also require that \a\0 is a partial function in 
the CbDL model. However, for generality, we do not impose the restriction on 
the models. 

The definition of | ■ | from | • |0 and S make the following a valid axiom 
schema in CbDL. That is, 

\= [a]<p = V{a}y>, 

for a G A and ip G <P. 
Apparently, the CbDL and PoDL models have some correspondence. In the 

semantics for CbDL, we have constructed f • | from | • Jo and S, if we then ignore 
the latter two components, a PoDL model is obtained. Since the language of 
PoDL is a sublanguage of CbDL, this means that CbDL is an extension of 
PoDL. Namely, if S is a set of wffs of PoDL and ip is a wff of PoDL, then 
-£ \=PoDL <P implies E \=cbDL {P- 

However, unlike PoDL, we can not find a direct correspondence between 
CbDL models and CBDT framework. This is due to the fact that in CBDT, the 
set of situation P and the set of consequence X are not necessarily the same, 
whereas in CbDL models, we model the past cases by a set of binary relations 
on W, so W plays both the roles of P and X. To transform a CBDT framework 
(P, D, X, C, s, u) into a CbDL model, we can let W = P U X, and then extend 
the similarity function s to W x W and the utility function u to W. However, 
is is likely that s is not well-defined outside P X P and u is not definable in P. 
In this case, a simple approach is just let u(p) = 0 for all p G P and s(x, y) = 0 
for x G X or y G X. Then the extended s is just the similarity fuzzy relation 
5 and for the extended u, u(xu) is the truth value T(w,tp) for some fixed goal 
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tp. The mapping | • |0 is derived from the case memory C, i.e., (p,x) G \a\0 if 
(p, a, x) G C. If the process of extending s and u does not distort the original 
CBDT framework, then we have a complete speciGcation of CbDL model. This 
reduces the process of reasoning about actions and decision in the original CBDT 
framework to the model checking problem in CbDL as in the case of PoDL. 

On the other hand, from a more practical viewpoint, we may have only a 
partial description of the whole CBDT framework from the beginning. In this 
case, we assume there is a subset of crisp propositional symbols PV0 C PV for 
describing the case memory. Let $o is the set of sentences resulting from Boolean 
combinations of symbols in PVQ. Then in general, we have four sets of proper 
axioms for the description of the framework. The first one 27s is to describe the 
similarity function, so each sentence in it is of the form tp —> (r —► VVO for some 
tp, i> G #o, the second is 27c for the case memory, so its sentences are in the form 
of tp —* {a}tp for some tp, Tp G $0 and a G A, the third is 27„ which specifies the 
utility functions, so each sentence is of the form tp —► (r —> tp) for some tp G $o 
and V € #, and the last is 270 = {p V -ip \ p G PV0} to enforce that each p G PV0 

is two-valued. These four sets are proper axioms instead of premises because we 
require that they are true not only in w0 but also in all possible worlds of a 
model. Let Q = 27s U Ec U 27„ U So and suppose the agent faces a new problem 
described by a set of (possibly just propositional) wffs 27, then our problem is a 
theorem-proving one. For example, if we have 27 \=n~ ((«)v —» {ß)<f)i fchen a 

will be a better plan for the goal tp with respect to the criterion of maximizing 
[/*, where \=n means the logical consequence relation in a CbDL system with 
.f? as the set of proper axioms. 

5    Future Works and Conclusion 

We have outlined two logical languages for reasoning about actions and decisions 
based on the dynamic logic semantics and decision theory framework. One is 
based on possibilistic decision theory and the other on case-based decision theory. 
The language for PoDL is a subset of CbDL and it is shown that CbDL is a 
conservative extension of PoDL. Both logics can be used in two ways. When we 
have a complete specification of the decision frameworks, the logic can be used 
in a model checking way and if we have only a partial description of the problem, 
then the logic should be used in a theorem proving way. 

As mentioned above, since theorem proving is in general more difficult than 
model checking, the development of theorem proving methods for both logics is 
the first demanding problem for further research. 

Second, while the logics developed here are mainly based on qualitative de- 
cision theories, we would also like to develop similar logics for quantitative de- 
cision theories. In particular, probabilistic dynamic logics [12] should be a good 
starting point. However, since these logics are aimed at reasoning about the be- 
havior of probabilistic algorithm, they are still two-valued, so the generalization 
to many-valued ones are needed. If this is successful, we can model the classical 
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decision framework as well as the original quantitative criterion of maximizing 

Uc in CBDT. 
In conclusion, the results reported in this paper is just at the early stage of 

a long-term goal to integrate logical reasoning and decision theories. We expect 
the cross-fertilization of both fields can result from the research. 
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Abstract. This paper is concerned with a preliminary consideration 
to provide the formal specification of language of knowledge processing 
system SKAUS (Super Knowledge Acquisition and Utilization System) 
which incorporates uncertain knowledge processing and non-symbolic in- 
formation processing units in the system. SKAUS is planned as a super 
set of KAUS developed by the authors. KAUS implement multi-layer 
logic (MLL for short) based on classical set theory. SKAUS is intended 
to have additional capabilities of KAUS, such as representing uncertain 
knowledge in the forms of language used in fuzzy set theory and proba- 
bility theory. In addition to this extension, we try to incorporate matrix 
logic into our extension so as to process non-symbolic information in 
corporation with neural networks. 

1    Introduction 

For the practical AI systems, the ability of reasoning with uncertainty is very 
important [1-3]. For example, in the application of AI technology to problem 
domains of diagnosis, control and prediction, the systems are required to have 
the facility of reasoning with uncertainty because these domains are usually ill- 
defined and so the problems and the solving method could not be well described. 
Another example is seen in intelligent information retrieval systems. The users 
sometimes pose ambiguous queries to the retrieval systems. In this case, the 
systems have to resolve ambiguities involved in the queries so that the systems 
can retrieve the users' surely desired data. 

The aim of this paper is to give a preliminary consideration to extend MLL [5, 
6] so that we can handle reasoning with uncertainty by incorporating fuzzy sets 
originated by Zadeh [4] into the extended MLL. In addition to this extension, we 
try to incorporate matrix logic into our system so as to process non-symbolic in- 
formation in corporation with neural networks. We have a plan to extend KAUS 
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[10] as SKAUS (super knowledge acquisition and utilization system) which en- 
ables us soft computing with these extensions. We introduce here MLL and 
KAUS shortly. More details of MLL are discussed in the literatures [5,6]. 

In 1985 we have formalized multi-layer logic (MLL for short) which is an 
extended version of first order logic. MLL was formulated as a formal system 
for constructing general purpose knowledge processing systems. Though ordi- 
nary first order logic does not assume any structural constraints to variable and 
constant terms, these in MLL may be structured in the set hierarchy. The sets 
treated in MLL are crisp sets based on axiomatic set theory, specifically, based 
on admissible sets [7]. 

Adopting MLL as the theoretical basis, we have developed KAUS (knowledge 
acquisition and utilization system) and it is used as a tool for building knowledge- 
based systems. Until now we have applied KAUS to various model building and 
evaluation by computer [8,9]. 

Rules described in KAUS language are not restricted Horn clauses but arbi- 
trary AND-OR clauses. Variables appearing in KAUS clauses may be universally 
quantified or existentially quantified with type restrictions. For example, (1) Ev- 
ery boy likes a girl, (2) The age of John is 24 or 25, (3) // a person X does not 
have his own car, then X is not a car driver or X is a paper-driver, and (4) If 
each member Y of the students X who is a group interested in computer science 
learns a programming language are respectively expressed in KAUS as follows. 

(1).[AX/boy][EY/girl](like X Y). 
(2).(I   (age John 24)   (age John 25)). 
(3).[AX/person][ACar/car] 

(I   (I   ~(carDirver X)   (paper-driver X)  )   (have X Car)). 
(4).[AX/*student][AY/X][EL/programmingLanguage] 

(I (learn Y L) "(interestedGoroup X computerScience)). 

As seen above, we represent a clause A —> B by ->A V B. 
We have implemented inference rules given in [5,6] with the unification al- 

gorithm based on resolution principle, in which if the two variables to be unified 
are typed variables (as seen in the above example), type unification is also per- 
formed [10]. Relating to uncertain reasoning, disjunctive logic programming [11], 
though in the limited way, and building models of possible worlds using the world 
constructor of KAUS are possible. 

2    Incorporating Fuzzy Set Theory into MLL 

The most primitive concept in a set theory and so in MLL is the membership 
relation that an element x belongs to a set A. In the classical set theory we 
write this relation as x € A. The truth value of x € A is often described using 
its characteristic function <j>{x) such that <j>(x) = 1 if and only if x e A, and 
<f)(x) = 0 if and only if x $. A. For example, John is a student will be described 
as John £ student and (j>student{John) = 1. How about John is a tall student? 
We might write it as John € tallstudent and (j>taU.student{John) = 1. However, 
if we want to classify Jim as Jim € talLstudent from the fact Jim is a student 
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and his height is 180cm, we have to clarify the concept tall. Since HalV is a 
vague concept, we cannot define exactly what is meant by tall. In the approach 
of classical logic and so MLL, we can only heuristically or subjectively define 
tallness in a logical form such as 

(Vx G student)[height(x, h)Ah>175*-+ tall(x)} 

Prom this we can say that the set of all tall students (denoted by taltstudent) 
is the subset of the set student that satisfies the above relation. This is a defi- 
nition from the intensionallity of a set. Another definition is possible from the 
extensionality of a set. In the extensional definition of a set, we explicitly enu- 
merate all elements of the set. For example, tallstudent = {John, Jim,...}. 
The enumerated elements are thought of having the common properties and 
attributes. There is no ambiguity in the definitions of intensionality and exten- 
sionality of sets in the classical set theory. Furthermore it seems that classical 
set theory is enough for describing all things including ambiguous and vague 
concepts in such a way. All descriptions by the classical theory can be evalu- 
ated exactly true or false. So, one could say that MLL is enough and there is 
no problem in MLL. However if we describe ambiguous and vague concepts in 
MLL cooperating with fuzzy set theory, such MLL will become more practical 
theory because fuzzy set theory is very practical and intuitive theory for real 
applications. In the following we describe extended MLL from the point of views 
describe above. 

2.1    Extending Set Relationships in MLL 

Our criterion of incorporating fuzzy sets into MLL is that set relationships de- 
fined in MLL are special cases in that the fuzzy set membership functions are 
restricted to the extreme points {0,1} of [0,1]. Because of this we adopt a-level 
sets to define set relationships. The a-level set Aa of a fuzzy set A is defined as 
follows [12,13]. 

Definition 1. (a-cuts) Given a G [0,1] and the membership function HA of a 
fuzzy set A, we define a-level sets Aa of A from the following a-cuts (a) or 
strong a-cuts (b). 

(a). 4 = {xe U\HA(X) > a} 
(b). Aa = {x G U\(J,A(X) > a} (1) 

We can reconstruct \IA from the family of a-level sets Aa of A : 

HA(X) = sup{a\x eAa} (2) 

An a-level set is a crisp set and the € -relation used in (2) is the ordinary 
membership relation. Since as described earlier in this chapter the membership 
relation is the most fundamental relation in a set theory, we define the similar 
€ -relation for fuzzy sets. 
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Definition 2. (ea -relation) We write x ea A iff x belongs to an a-level set 
Aa of a fuzzy set A, and x <£a A iff x does not belong to an a-level set Aa of a 
fuzzy set A. 

(x ea A iffxe Aa /3N 

\xiaA iffx$Aa 
w 

The inclusion relation between fuzzy sets is defined using a-cuts of fuzzy 
sets. 

Definition 3. (inclusion relation) 

AaCBß:      (Vx)[x G Aa -> x G Bß] <-► ß < a (4) 

Union, intersection, and complementation operators are defined as follow. 

Definition 4. (union and intersection operators) Given X whose elements are 
fuzzy sets and a, ß G [0,1], we define union and intersection operators as follows. 

union UX :    [x GQ UX «-» {3Z)(3ß)[ß > a A x €p Z A Z G X]} (5) 

intersection nX :    [x ea nX +* {WZ)(3ß)[ß < a A x &ß Z A Z G X}]      (6) 

For example, if X = {A, B}, l)X = A U B. The membership function of 
AllB is defined from the a-cuts given in (1) and (2). Typically, the membership 
function of Al)B is a s-norm (t-conorm) such that HA\JB(X) = ®(HA(X),HB(X)) 

where each membership function of A and B is defined from some ßA-cuts and 
ßB-cuts such that ßA < a and ßB < a. The membership function of A n B is 
given by the t-norm such that fiAnß{x) = <8>(^(x),Mß(a;))- 

Definition 5. (complementation) Given A as a fuzzy set and a G [0,1], we 
define the complement set of A as follows. 

complementation A:      [x ea A <-> x Gi_Q A] (7) 

Definition 6. (powerset) Given a fuzzy set X, we define the powerset of X as 
follows. 

powerset *X:       [Ye*X^YCX] (8) 

These definitions (1) - (8) are used for defining the inference rules of the extended 
MLL. 

2.2    Extending Inference Rules in MLL 

In a fuzzy system, a typical pattern of the fuzzy inference rules is expressed like 

if x is A, then x is B 
a is A*  (9) 

aisB* 

where x is a variable and a is a constant. A, A*, B and B* represent fuzzy 
predicates (fuzzy sets) [14]. For example, from (9), if Hfx is tall, then x is heavy' 
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and 'John is very tall' are given as premises, we can conclude that 'John is 
very heavy'. Zadeh defined such a generalized modus pones rule [14]. However, it 
should be noted here that there exists the difference between 'if x is A, x is B' 
and 'if the more x is A, the more x is B' and it should be clarified in the inference 
system [14]. We agree to this and our inference system will reflect this agreement. 
As for fuzzy unification, unification rules between fuzzy predicates have been 
discussed and formulated [15-18]. Until now some real tools for developing fuzzy 
systems have been also developed [19,20]. 

In this section we attempt to extend MLL so that we can handle such a fuzzy 
inference as (9) in the extended MLL. In MLL predicates are assumed 2-valued 
predicates. The variables may be quantified like (Vx/X) indicating (Vx G X) 
and (Bx/X) indicating (3x G X). The values of variables may be sets but they 
are assumed crisp sets. Constant terms may also be sets but they are assumed 
crisp sets. The inference rules of MLL are formalized in [5,6]. We show two of 
these here. 

{(\/x/X)P[x},a€X}\-P[a\. (10) 

{(Vx/X)P[x], (Vy/Y)[P[y] - Q[y]],Y DX}h- ^x/X)Q\x). (11) 

(11) is the modus pones rule in MLL. To incorporate fuzzy inference rule into 
MLL, we need additional inference rules. Relating to (10) and (11), we need 

{(\/x/Xa)P[x],aeaX}hP[a}. (12) 

{(Vx/Xa)P[x],(Vy/Yß)[P[y) - Q[y}},Yß D Xa} h (\/x/X^)Q[x}. (13) 

where 7 in the conclusion of (13) is conditioned to be 7 = *8>{(J,x(x),ßy(x)}- 
The unification rule of fuzzy constants is also required to the extended MLL. 

For example, unification between height(x, tall) and height(x, very.tall) should 
be possible. Unification between a literal value and a numerical value of a fuzzy 
constant is also considered. 

In the following, we illustrate a simple example of inference involving fuzzy 
predicates. We transform following (14) step by step into the form in the ex- 
tended MLL. 

(Vx)\person(x) A tall(x) —> heavy(x)] 
{Mx)[boy{x) -»person(x)] .^ 
boy(john),very.tall(john) ^gr^ 

very.heavy (John) 

In (14), 'very' is attached to the horizontal line to indicate that the inference 
is performed with fuzzy unification between 'tall' and 'very.tall'. It shows that 
the grade of tallness should be transmitted to the grade of heaviness in the 
conclusion. 

We transform (14) to (15) using the axiom of intensionality of a set and a-cuts 
of a fuzzy predicate (fuzzy set), we first rewrite person(x) by a; € PERSON, 
boy(x) by x G BOY, and boy(john) by John G BOY. Next we rewrite each 
fuzzy predicate. For example, tall(x) by talla(x) indicating that 'tall' is a fuzzy 
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predicate and its fuzziness is determined by the fuzzy membership function 
induced from the a-cuts TALLa of the fuzzy set TALL. Finally we rewrite 
very.tall(john) by tallvery{john). The fuzziness 7 of the conclusion is calcu- 
lated by the composition rule attached to the horizontal line: 

(Wx)[x e PERSON A talla(x) -> heavy0(x)} 
(\/x)[x G BOY -tie PERSON] ^ 

John g BOY,tallvery(john)     (y = (B{®{a,verv},ß}) 
heavy<^(john) 

We next transform (15) into (16) using the notations given in (17). 

(\/x/PERSON)[talla(x) -► heavyß(x)] 
BOY c PERSON (16) 

John € BOY,tallvery(john)     (7 = ©{®{a,i>cry},/3}) 
heavy-y(john) 

where 
(Vx/X)p(x) = (Vx)[x eX^ p(x)} ,    . 
(3x/X)p(x) = {3x)[xeXAp(x)] V    ; 

In (16), the fuzzy predicates are left as these are, but the second premise in 
(15) is replaced by the set inclusion relation. Similar to (15), the calculation of 
fuzziness 7 of the conclusion is performed using the composition rule attached 
to the horizontal line. 

Finally we transform (16) into the complete extended MLL form. Until now 
we have represented a fuzzy predicate such as Pa{x). Here we introduce a new 
notation p : a in order to declare that a predicate p is a fuzzy predicate or a 
fuzzy term having a as its fuzzy parameter. If we write p : a(x), we assume 
that p : a is a fuzzy predicate identifier. Otherwise, namely, if we write simply 
p : a, we assume it is a fuzzy term. This results in the extension of the well 
formed formulas in MLL. a may be a variable or a constant given either literally 
or numerically. We note here that the truth value of p : a(x) is determined as 
follows. 

. . _ ( true   iff x G Pa n X where Pa is an a-cut of P , _. 
\ /a'se otherwise 

where X denotes the domain of x. Then for the first premise of (16), talla(x) is 
written as tall : a(x), heavyp(x) as heavy : ß(x). Using this notation (16) can 
be rewritten as follows. 

(Vx/PERSON)[tall: a{x) -> heavy : ß{x)] 
BOY c PERSON (19) 

johnGBOYMl-very(john)     (^ = ®{®{a,very},ß}) 
heavy : ^{john) 

As a result, if a = ß in (19) and <g> = min and © = max, we can easily conclude 
in 7 = very in heavy : j(john), that means 'John is very heavy1. The extended 
MLL intends to use such a notation as (19). 
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2.3    Probabilistic Reasoning 

We can apply probability theory to reasoning with uncertainty. However the 
mixed use of probability theory and fuzzy set theory is dangerous. There exist 
critical differences between them. Fuzzy set theory deals with vague and impre- 
cise notions and defines partial degrees of truth. On the other hand, probability 
theory deals with crisp notions and does not define partial degrees of truth but 
defines the degree of belief on truth [21]. Consider the following assertion. 

If x is tall (A) and x is heavy (B), then x is strong (C). (20) 

In fuzzy set theory, if A and B are partially satisfied with some evidence A* and 
B*, then the graded truth value of the conclusion C* can be assigned with the 
composition rules between the membership functions of A* and B*. In proba- 
bility theory, (20) can be rewritten using probabilities such as 

If A is p-probable and B is g-probable, then C is r-probable. (21) 

where p, q and r are probabilities of A, B and C respectively. These probabil- 
ities define the degrees of beliefs of A, B and C. If some evidences p*(A) and 
q*(B) are given, then we can conclude r*{C) by some probabilistic composi- 
tion rules. For example, plausible and possibility reasoning are formulated by 
using belief functions in Dempster-Shafer's evidence theory [1,22] and proba- 
bilistic measures described in [23]. The Bayes approach [22] using conditional 
probabilities is strictly probabilistic approach. Baldwin et al. have relaxed prob- 
ability measures and they have formulated support pairs of necessity measures 
and possibility measures [19] as probabilistic measures for formulas. Dubois et 
al. also have relaxed probability measures by using mass functions as probabil- 
ities [18]. In any way, we can apply probabilistic approach for reasoning with 
uncertainty under certain restrictions. The main problems would be what norms 
of uncertainty and composition rules are available to reasoning with uncertainty 
in real applications. The real implementation of SKAUS which can reason with 
uncertainty should incorporate a selection mechanism of appropriate uncertainty 
measures and composition rules. 

3    Incorporating Matrix Logic into MLL 

In August Stern's matrix logic [25], logical truth values and connectives are rep- 
resented by logic vectors and matrix operators. In this formulation, not only 
the ordinary 2-valued logic but also many valued logic including fuzzy logic, 
modal logic and probabilistic logic are uniformly treated in the same frame- 
work. Matrix logic is closely related to neural network computing because of its 
algebraic treatment of objects. By incorporating matrix logic into SKAUS as 
a meta-predicate, we could expect that the fusion of symbolic processing and 
non-symbolic processing is realized. 
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3.1    Matrix Logic 

In this section, we introduce matrix logic by August Stern shortly. First we give 
some notations used in matrix logic. 

row logic vector :       <p\ = 05, p)      (called bra vector) 

column logic vector :       \q>= (q)      (called ket vector) 

where p and q in the left side of (22) are atomic formulas, whereas p and q in the 
right side represent truth values. In 2-valued logic, if p is true, then < p\ = (0,1). 
The inner product and outer product of logic vectors are written as follows. 

xy 
(23) 

inner product : < x\y >= {x,x)[\ = xy + 

outer product : \x >< y\ = [ Xt XV )     (= O), \\ Q ||= xy + xy + xy + xy = 1 
\xy xy J 

Q is called universal operator. A matrix operator L is written as follows. 

< x\L\y >=< x\ ( £U L
12 ) \y >= xiLnyi + xiLi2y2 + x2L2iyi + X2JW2     (24) 

_Note that < x\L\y > =< x\L\y >, x = 1 - x, \x >= 1 - \x >= -^\x >, and 
L = i - L ^ -iL, where 1 and i indicate a special vector and an operator 
respectively, and these components are all one. Another point is 

< x\ A \y >=< x\l >< l\y >=< l\x >< y\l >=< l\L(\x >< y\)\l >     (25) 

where |1 > is a column vector of < 1| = (0,1), and L(\x >< y\) is a variable 
logic operator, taking different shapes, depending on the values obtained by the 
vectors \x > and < y\. 

Some examples of matrix operators are shown below. 

A = (S?),v = (!}),-=(äO.- = (-).i=(-).t=(iS)     (26) 

J. and t are nand and nor operators respectively. We see —►= -iV from (26). In 
matrix logic, the modus ponens rule is represented like 

(x A (x -> y)) -+ y = < x|l >< x\ -+ \y >< 0\y > = 1 (27) 

Note here that (27) is obtained using (25) and < 0|y >= -i|y >. 

3.2    Neural Networks 

In this section we consider the problem of adjusting membership functions of 
fuzzy sets using neural network techniques. As well known, by combining fuzzy 
systems with neural networks, we can add the learning ability to fuzzy systems. 
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On the other hand, difficulties of the plain explanation of neural computations 
are overcome [25]. 

We consider here a fuzzy inference scheme given in (9). We encode (9) in the 
neural network using matrix logic as follows. 

input from neuron X hidden layer output to neuron Y 
(r): < A(x)\ -> \B(x) > (    . 

(a):<^(a)l     m   ^ 
(b): \B*(a) > (P ' 

The hidden layer receives input (a) and computes (b) by applying (r). In each 
computing cycle of (b), the output function of the hidden neuron adjust mem- 
bership functions used in (r) by applying a fuzzy version of (27), such that the 
following equation is satisfied. 

(1 -a*,a*) (J) (1 -a,a) (j j) (* ß
ß^j = ß* (29) 

We note here that we used the algebraic product as t-norm, and the algebraic 
sum as s-norm for calculating ß* in (29). We also assumed fuzzification of input 
at (a) and defuzzification of output at (b) in (28) are performed as the preprocess 
and postprocess respectively. Furthermore, we note that in a fuzzy version of (27) 
under (29), < ß*\ A \ß* >=< ß*\ A ->\ß* >= /?*(! - /?*) ^ 0 in general. 

4    Conclusion 

We have applied an idea of a-cuts of fuzzy sets to formulate the extended MLL 
which can perform reasoning with uncertainty. We have also considered matrix 
logic as a tool for the fusion of symbolic computation and non-symbolic (nu- 
merical) computation with relation to neural networks. SKAUS which is based 
on the extended MLL and having a meta-predicate of matrix logic computation 
will be expected to enlarge applications under the real environments. 
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Abstract. In this paper, we will introduce a novel perspective on Fuzzy 
Logic by referring to the theories of Chu Space and Information Flow, 
i.e., Channel Theory, which results in a deep insight on the interac- 
tion and coordination of agents with environments. First, a constraint- 
oriented interpretation of fuzzy set is introduced yielding the notion of 
Constraint-Interval Fuzzy Set (CoIFS). Then the above theories are in- 
troduced, which elucidate the basic structures of fuzzy inference as con- 
straint propagation yielding the spaces of Coordination and Interaction. 
Also, the structure of Information Transmission Channel of constraint 
propagation is clarified together with its relevance with the results by 
the theory of Chu Space. All the results can be used to elucidate the 
basic structure of "interfacing (interfacing media)" between agents and 
environments. 

1    Introduction 

Various artificial systems are concerned complicatedly with human beings, soci- 
etal systems, and environments. It becomes more and more important to manage 
these complexities and to improve the quality of interactions among them. We 
will focus ourselves to the boundaries, media, and mechanisms of interactive 
systems concerned with the structural coupling between subjects and environ- 
ments. Here we will introduce constraint-oriented perspectives on these interac- 
tions and the symbolization of continuously valued quantities. For this symbol- 
ization, we will introduce the notion of Constraint-Interval Fuzzy Set (CoIFS) 
which we have introduced to tie up Fuzzy Logic and the traditional two-valued 
logic which underlies the traditional AI. Namely, we encode action space of the 
subject and sensation signal space from the environment into constraint-interval 
fuzzy sets and also introduce spaces for representing the background structures 
of situation-action relation, where the correspondence of "constraint-intervals" 
with "constraint-levels" between CoIFSs is treated. 

Moreover, by introducing the theories of Chu Space and Information Flow 
to Fuzzy Logic, we will provide two novel perspectives on the theory of CoIFS's. 
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Introducing Chu Space provides us with not only formal treatment of constraint 
propagation among fuzzy sets but also a new relation among fuzzy sets. Also, 
introducing Information Flow gives new perspective on the constraint propa- 
gation as flow of information and on systems of fuzzy sets as distributed and 
decentralized systems. 

2    Fuzzy Logic-Based Coding of Constraints 

Based on the constraint-oriented perspectives on problem solving, a constraint- 
interval fuzzy set (CoIFS) is given as an ordered collection of intervals (constraint- 
intervals). We have also proposed fuzzy logic-based operations and the defuzzi- 
fication for the CoIFS and also elucidated the specificities of CoIFS, i.e., 

- Symbolic (hard) inference can be related to fuzzy (soft) inference on the 
same ground [1]. 

- CoIFS involves chaotic characteristics in the interaction of constraint prop- 
agation via symbolic reasoning [2]. 

- CoIFS plays a role of distributed, concurrent and self-organizing module for 
"symbiotic" problem solving [3]. 

About 
4 hours, 

Constraint 
0 ^ 100 Distance 

Fig. 1. An example of constraint-interval fuzzy set 

As shown in the X - A space of Fig. 1, a CoIFS is given as an ordered col- 
lection of "crisp" intervals on the universe of discourse (i.e., the space X) each 
of which represents a constraint called interval constraint. The grade axis (in 
the traditional Fuzzy Set Theory) is now regarded to be an "ordinal" scale axis. 
By introducing this notion of fuzzy set, a continuous variable can be coded into 
symbols via fuzzy sets (fuzzy labels), which divides the domain of a variable 
(universe of discourse) into intervals. Fuzziness in each variable is derived by de- 
composing a "joint constraint" on several variables into componential (marginal) 
constraints through "projection" of the joint constraint onto componential vari- 
ables. 
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Relations between constraint intervals of two fuzzy sets are represented by 
"rectangles" in the X - Y space as shown in Fig. 1 [1]. Namely, if we have a crisp 
constraint relation C on a pair of variables (say x and y), we can approximate 
constraint C by introducing an appropriate constraint interval fuzzy set on x and 
that on y, respectively. 

Suppose that we are now planning to go to a tourist resort R for the next 
holiday. Now we have to decide a sightseeing spot in the outskirts of R to visit. 
The constraint now is the speed limit on the freeway (60 < s < 100). We have 
about 4 hours for one way, but it depends on the time when all of us get up. In 
this case, constraint C is represented as the meshed area shown in Fig. 1, and 
the "time for one way" and the "distance from our city to the sightseeing spot" 
are represented by fuzzy sets. A portion of the constraint region is approximated 
by "rectangles" which represent the relations between constraint-intervals of two 
fuzzy sets. The vertically oblong rectangles show that if all of us assemble at the 
meeting time conscientiously, there may be many alternatives for visiting spots. 
Otherwise, the alternatives are limited. 

CoIFS is a kind of "topological" representation of fuzzy sets. Departing from 
the direct representation of fuzzy sets by numeric "membership grade value" 
results in the following characteristics: 

- The "shape" of a fuzzy set is of no use, and only their "types" such as 
symmetricity are meaningful. 

- In the traditional Fuzzy Set Theory, it is implicitly assumed that fuzzy 
sets are related "statically" via grade values. For CoIFSs, the same rela- 
tion (constraint-level equivalence) can be defined, which is "dynamically" 
changeable according to the contexts of problems. 

- Several concepts such as a-level set [4] and L-fiow set [5] have been already 
proposed, where fuzzy sets are dealt with a set of intervals. However, CoIFS 
involves the following novel characteristics: 1) fuzzy sets are related to each 
other through the correspondence among constraint-levels in order to reflect 
the topological structure of universe of discourse. 2) fuzzy sets are regarded 
as the organization of the crisp constraint-intervals, which is changeable 
according to the order relations. 

The A- A' space of Fig. 1 shows the constraint-level equivalence relations be- 
tween two fuzzy sets shown in the X - A and Y - A' spaces in the figure. 

3    Introducing Chu Space to Fuzzy Logic 

In this section, we will introduce the notion of Chu Space [6,7] to Fuzzy Logic 
for the formal treatment of constraint propagation among two fuzzy sets. 

3.1    A brief review of Chu Space 

A Chu space A = (I, A, R) is a binary relations between two sets I and A, where 
R : I x A -» S gives a binary relation, and £ is the set {0,1}. A Chu space can 
be represented as a binary matrix of dimension \A\ x \I\ (Chu map). 
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Given a Chu space A = (I,A,R), functions R : I -> EA and R : A -> 
E1 satisfying R(i){a) = R{i,a) = R{a)(i) are the representations of I and A 
respectively 1. R(i) : A -> E and R(a) : / -» E are called column and row of A, 
respectively. R(i) represents i as a function from A to E, and R(a) represents a 
as a function from I to E. 

Given two Chu spaces A = (7,4,-R) and B = (J,B,S), a pair of functions 
/ : I -» J and 3 : B ->• A is called "Chu transform" from .4 to B, provided that 
the following adjointness condition holds: 

(Vie/, V&eß)  S(f(i),b) = R(i,g(b)). (1) 

The rfwa/ of .4 = (J, A, J?) is defined as 4X = (A, I, Ru), where Ru : A x I -> 
I?. The dual of Chu transform (f,g) from 4 to B is a Chu transform (g, f) from 
ßx to Ax. 

The composition of S : J -)■ i7B and / : I -> J, denoted as 5/, represents 
/, since S(f(i)) represents the image of / as a function from B to E. Later on, 
we will write Sf as <£ : / -»• £B such that 0(t,6) = S(f(i))(b) = S(f(i),b). The 
Chu space ^ = {I,B,<f>) represents /. On the other hand, the composition of 
R : A -f E1 and g : B -» A, denoted as (fiu : B -t E1, satisfies the relation: 
</>u(6,i) = R{g(b))(i) = R(g(b),i). The Chu space Ty = {B,I,4>U) represents 3. 

Prom the fact that the relation: (j>{i, b) = <ßu(b, i) implies S(f(i),b) = R(i,g(b)), 
we can interpret the adjointness conditions as follows: 

Given two Chu spaces A = (I,A,R) and B = (J,B,S), (f,g) is a Chu 
transform from A to B, where T = (I,B,</>) represents the function 
f : I -> J from A to B, and its dual TL = (B,7,</>u) represents the 
function p : B ->• .4 from ß-1 to 4-1. 

3.2    Coding fuzzy sets and their constraints by Chu Space 

We introduce an interpretation of fuzzy set as a Chu space which consists of 
the set X of universe of discourse, a constraint-level set A and their relation 
R : X x A -» E. 

As shown in Fig. 1, a portion of the constraint C on a pair of variables X and 
Y is approximated by a set of rectangles, which transmit intervals from one fuzzy 
set to another. In the case where two fuzzy sets are represented by Chu spaces 
A = (X,A,R) and B = (Y,A',S), the constraint propagation (transmission) 
is represented as A ->■ Bx, which can be seen as a Chu transform (f,g) from 
A = (X,A,R) to Bx = (A',Y,S°), where two functions / : X -> A' and 
g : V -> yl satisfy the following condition: 

(Vs € X, Vy £ y)   5u(/(a:),2/)=fi(a;,fl(2/)). (2) 

The Chu transform (f,g) : A ^ BL itself also constitutes a Chu space T = 
(X,y,</>) which is represented as a Chu map with dimension \Y\ x \X\. Namely, 
1 EA is the collection of all maps from A to E 
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Chu space T means a portion of the constraint region of space X — Y which is 
approximated by rectangles. 

Since T represents g and T1- represents /, we can interpret the adjointness 
condition as follows: 

(V* £X, Wye Y)  <j>(x, y) = Su(f(x), y), 

(yxeX,VyeY)  </>u{y,x) = R{x,g(y)). 
(3) 

(4) 

The map between row y of T and the corresponding row g(y) of A is given by 
g, and that of column x of T and the corresponding column f(x) of B1- is given 
by /. In other words, / and g provide projection of T onto A and BL as shown 
in the left part of Fig. 2. 

col y\^ col f(x) 
f 

A 
A         p 

F ™*k     Y 

Fig. 2. Chu transform between two fuzzy sets with adjointness relation 

The function / associates each point x e X with an interval represented 
by A' e A' which equivalently represents constraint propagation. Conversely, 
function g transforms a point y € Y to A € A showing a constraint propagation to 
an interval, where constraint propagation is given as yielding an interval derived 
by the intersection of associated intervals for points in the original interval. 

Based on Chu transform (f,g) : A -+ B^, we can define a Chu transform 
i?x -> A which is a pair of function p : A' ->■ X and q : A -»• Y, denoted by 
(p, q), such that the following condition holds: 

(Va e A, V6 6 A')  R(p(b),a) = Su(b,q(a)). (5) 

The Chu transform BL -)■ A is a Chu space denoted as V = (A1, A, ip) as shown 
in the upper-right part of Fig. 2. 

While space T represents the propagation of horizontal intervals in fuzzy 
sets, the space V represents those of vertical intervals, i.e., the corresponding 
constraint-levels. The matrix representation of T does not correspond directly 
to the rectangular representation of constraint combination of fuzzy sets. The 
rectangles are generated from the matrix representation of T by referring to V. 
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A pair of fuzzy sets that are connected by Chu transform (/, g) = A -» B1 

and (p,q) = B-1 -> A can be interpreted as a Chu transform from T to V. In 
other words, it is a transformation from the space of constraint-intervals to that 
of constraint-levels, and vice versa. 

We will call A and ßx Fuzzy Spaces, respectively, and T and V will be 
called Interaction Space and Coordination Space, respectively. These four spaces 
constitute a unified construction of the interaction and coordination involved in 
the setting of problems. 

4    Introducing Channel Theory to Fuzzy Logic 

In this section, we will introduce the notion of Channel Theory[8],[9] to Fuzzy 
Logic for organizing distributed systems which consist of CoIFSs. 

4.1    A brief review of Channel Theory on Information Flow 

Barwise and Seligman have proposed Channel Theory which gives a mathemat- 
ical framework to Dretske's qualitative theory of information. Channel Theory 
is a qualitative theory of information which treats the content of information 
rather than its amount. Based on the notion of classification and isomorphism, 
Channel Theory involves the concepts of information channel and local logic. 

A "classification" A = {A, SA,\=A) consists of a set A of objects to be 
classified, called "tokens" of A, a set EA of objects used to classify the tokens, 
called "types" of A, and a binary relations \=A between A and EA indicating 
the types to which the tokens to be classified into. 

For any classification A, a pair (r, A) of sets of types EA is called a "sequent" 
of A. A token a of A satisfies (r, A) provided that if o is of type a for every 
a £ r then a is of type a for some a € A If every token a of A satisfies (f, A), 
it will be written as T h^ A 

Given A = {A, EA, \=A) and C = {C, Ec, \=c), a pair (/", /') of functions is 
called an "infomorphism" from A to C, provided that the following holds: 

f': SA -> Ec, 
f':C^A, 

VceC,VaeEA, 
/-(c) \=A a & c \=c /»• 

An information channel consists of an indexed family C = {fi : Ai -> C}i€j of 
infomorphisms with a common codomain C as shown in Fig.3. The classification 
C is called the "core" of the channel and its token is called "connection" among 
tokens a* = ff, i £ I. 

A local logic C = (A, \~c, Nc) consists of the following three components: 

1. a classification A = (A, SA, ^=A)- 

2. a set r-£ of sequents of A. 
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type 

v y " 
token 

Fig. 3. An example of an information channel 

3. a subset Nc Q A, called the normal tokens of £, each element (token) of 
which satisfy all the sequents of (-£. 

According to the definition of normal tokens, there exit several local logics in a 
classification in general. In such a sense, local logic has "locality" in the core C 
of the channel. 

4.2    Coding fuzzy sets and their constraints by Channel Theory 

By regarding a collection Ix of intervals over the universe of discourse X and 
a constraint-level set A as tokens and types, respectively, we interpret a fuzzy 
set as classification A = (Ix,A, \=A)- A token which is associated with a type 
represents a "constraint interval" and the collection of these tokens constitute 
the fuzzy set. 

type 

Fig. 4. A channel theoretic model of constraint propagation 

Given two fuzzy sets A = {Ix,A, \=A) and B = (IY,A', \=B) as being classi- 
fications, the "constraint region" generated by these fuzzy sets is represented as 
the following classification C: 

1. The tokens of C is the Cartesian product of Ix and Iy- More precisely, the 
tokens of C are pairs (ix,iy) of tokens (ix £ Ix,iy € Iy) and represent 
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"rectangular region" which is the product of interval ix over X and interval 
iy over Y. 

2. The types of C is the disjoint union of A and A'. For simplicity, the types of 
C are represented as pairs (i, a), where i = 0 and a e A or i — 1 and a 6 /l'. 

3. The classification relation \=c is defined by 
(ix,iy) \=c (0,A)    iff ix \=A A, 
(i„i»)N(U')  iff i,N»' 

The infomorphism (er^*, cr^") : .4 -» C and {aB~, aB~) ■ B -> C is defined as 
follows: 

1. ^(A) = (0, A) for VA G/l, 
2. <Tß-(A') = <1,A'> for VA' e /l', and 
3. for each pair {ix,iy), 

(?A~{(ix,iy)) = ix and (TB'((ix,iy)) = V 

We can describe "regularity" and "order formation" among conclusion re- 
lations over several spaces through infomorphism. More precisely, when certain 
relation is given as a conclusion of other relations, each infomorphism maps the 
types representing these relations onto the core and the relations among mapped 
images (types) is formulated as the statement that a token satisfies a "sequent", 
that is a kind of proposition on C. These relation is represented by the sequent 
(r, A) which consists of a pair of T = {(74(A)} and A = {aß(\')}, where A € A 
and A' £ A'. The sequents (r,A) to which every token in C should be subject 
can be considered as rectangular regions generated by constraint intervals of two 
fuzzy sets. Furthermore, the whole order formation given by these propositions 
is formalized as a "local logic". 

5    New Perspective on Fuzzy Logic by Introducing 
Theories of Chu Space and Information Flow 

We have introduced Chu Space and Channel Theory to Fuzzy Logic in the pre- 
vious two sections. In this section, we will discuss the place where the structural 
coupling between subjects and environments takes place, what we call interfac- 
ing media. This structural coupling in the interfacing media will be, we think, 
elucidated from two points of view, i.e., from Chu Space and Channel Theory. 

We encode action space of the subject and the sensation space from the 
environment into constraint-interval fuzzy sets, and also introduce spaces for 
representing the background structures of situation-action relation, where the 
correspondence of constraint-intervals with constraint-levels between two fuzzy 
sets is treated. 

By introducing Chu Space Theory to Fuzzy Logic, we can clarify that CoIFS 
can naturally represents the Coordination Space which stands for the coordi- 
nation relation between constraint-intervals in two fuzzy sets. A coupling of 
sensation and action is represented as the adjointness relation among constraint 
intervals in the Interaction Space and the adjointness relation among constraint 
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levels in the Coordination Space. These spaces prescribe each other, which in 
turn leads to the "stabilization of coupling" as shown in Fig.5. 

While each of these spaces represents adjointness relation as a Chu transform, 
they have adjointness relation of sensation and action in meta level when these 
spaces have the correspondence with each other. Given certain fluctuation on the 
side of the subject or that of the environment, the adjointness relation in meta 
level is newly formed. Such a stabilization of coupling makes the interaction with 
the environment smooth and to form certain order. 

Sensation  **■     /' 
Space        / 

Interaction 
Space   p \     —-y 

/    P    Coordination 
^y ^ Space 

Action 
Space 

Fig. 5. Stabilization of the structural coupling 

On the other hand, Channel Theory treats information flow qualitatively, 
i.e., it puts emphasis on the "content" of information rather than its amount. 
Constraint propagation among fuzzy sets propagates the constraint informa- 
tion (intervals) with preserving the relational structure among constraint levels. 
In this sense, constraint propagation can be seen as information flow through 
channel as shown in Fig.6. CoIFSs with constraint relations among them can 
be interpreted as a distributed and decentralized system on the medium of the 
channel. 

Sensation Space 

Channel 

Infomorphism 

Constraint Space of   \, 
sensation and action % 

•:■:■ 

■•tmm'i» ""••••■■•■■■■■■» 

Interaction Space 
,■■l■■■••«•■••^^,, 

Y Action Space 

Fig. 6. Formation of the structural coupling 
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Roughly speaking, an infomorphism which constitutes a channel is equivalent 
to a Chu transform which connects Chu spaces. Chu Space and Channel Theory 
respectively can be regarded as a local view and a global view on the distributed 
and decentralized system. 

6    Conclusion 

Introducing the theories of Chu Space and Information Flow has shown to pro- 
vide us with a new perspective on Fuzzy Logic. Particularly, the notion of CoIFS 
prescribes the coupling structure as constraint region between two variables such 
as sensation and action, and Chu Space can be used to clarify the new relational 
structure in the coupling, which we have called Coordination Space. Channel 
Theory gives the form of constraint propagation as flow of information and also 
provides us with a novel view that elucidates CoIFSs connected by constraint 
relations as a distributed and decentralized system. 

There will be the following things as future works. Namely, we have to exam- 
ine theoretically whether our treatment of sequents is suitable for Fuzzy Logic or 
not. Since the fundamental relationship of Channel Theory with Fuzzy Logic is 
still not so clear, we have to examine more detailed relationship with Shannon's 
Information Theory. 
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Abstract. This paper presents pattern reasoning, that is, the logical 
reasoning of patterns. Pattern reasoning is a new solution for the knowl- 
edge acquisition problem. Knowledge acquisition tried to acquire linguis- 
tic rules from patterns. In contrast, we try to modify logics to reason pat- 
terns. Patterns are represented as functions, which are approximated by 
neural networks. Therefore, pattern reasoning is realized by logical rea- 
soning of neural networks. A few non-classical logics can reason neural 
networks, because neural networks can be basically regarded as multilin- 
ear functions and the logics are complete for multilinear function space, 
therefore, the logics can reason neural networks. This paper explains in- 
termediate logic LC as an example of the logics and demonstrates how 
neural networks can be reasoned by LC. 

1    Introduction 

This paper presents pattern reasoning, that is, the logical reasoning of patterns. 
An example of pattern reasoning is presented. For example, expert doctors di- 
agnose using a lot of images like brain images, electrocardiograms and so on, 
which can be formalized as follows: 
Rule 1: If a brain image is a pattern, then an electrocardiogram is a pattern. 
Rule 2: If an electrocardiogram is a pattern, then an electromyogram is a pat- 
tern. 
Using the above two rules, we can reason as follows: 
If a brain image is a pattern, then an electromyogram is a pattern. 
This is a pattern reasoning. Symbols can be regarded as special cases of patterns. 
For example, let a rule be 
If a brain image is a pattern, then a subject has a disease. 
The right side of the rule is a symbol. The rule can be regarded as a special case 
of pattern reasoning. 

The pattern reasoning is a new solution for knowledge acquisition problem. 
The explanation is as follows. Since it is important to simulate human experts by 
computer software, expert systems have been studied to simulate human experts 
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by computer software. Many expert systems are based on classical logic or some- 
thing like classical logic (Hereinafter " classical logic" is used for simplification). 

Knowledge acquisition is necessary, because the obscure knowledge of hu- 
man experts cannot be reasoned by classical logic, while linguistic rules can be 
reasoned by classical logic. Knowledge acquisition means the conversion from 
obscure knowledge of human experts to linguistic rules. Knowledge acquisition 
has been studied by many researchers, but the results have not been successful, 
that is, the results show that knowledge acquisition is very difficult. 

Generally speaking, a processing consists of a method and an object. For ex- 
ample, logical reasoning consists of the reasoning as the method and the symbols 
as the object. The methods of the processings by human experts are a kind of 
reasoning, which are different from the reasoning by classical logic. The objects 
of the processings by human experts are patterns (and symbols). That is, a lot 
of the processings by human experts can be regarded as the pattern reasonings. 

Therefore, the pattern reasoning is a solution for the knowledge acquisition 
problem based on conversion of the knowledge acquisition to a completely differ- 
ent problem. However, readers may think that it is impossible to reason patterns. 
This paper shows that patterns can be reasoned by non-classical logics. 

There are several possible definitions for patterns. Patterns such as images 
can be basically represented as functions. For example, two-dimensional images 
can be represented as the functions of two variables. Patterns are functions. Since 
it is desirable to be able to deal with any function, 3-layer feedforward neural 
networks, which can basically approximate any function[5], are studied. 

Therefore, pattern reasonings are realized as logical reasonings of neural 
networks. However, classical logic cannot reason neural networks, while a few 
non-classical logics can reason neural networks. For example, intermediate logic 
LC[1],[4], product logic[4], and Lukasiewicz logic[4] can reason neural networks. 
The reason why the above three logics can reason neural networks is as follows: 
Neural networks are multilinear functions in the discrete domain and are well 
approximated to multilinear functions in the continuous domain, and the three 
logics are complete for multilinear function space, therefore, the three logics can 
reason neural networks. 

The key is the multilinear function space. In the domain {0,1}, the multilin- 
ear function space is an extension of Boolean algebra of Boolean functions. The 
space is the linear space expanded by the atoms of Boolean algebra of Boolean 
functions and can be made into a Euclidean space. Logical operations are repre- 
sented as vector operations, which are numerical computations. In the domain 
[0,1], continuous Boolean functions can be obtained. Roughly speaking, continu- 
ous Boolean functions consist of conjunction, disjunction, direct proportion and 
inverse proportion. The multilinear function space of the domain [0,1] is the lin- 
ear space of the atoms of Boolean algebra of continuous Boolean functions and 
can be made into a Euclidean space. 

As explained above, multilinear function space is a model of three logics, 
but due to space limitations, intermediate logic LC(Hereinafter, LC for short) is 
explained in this paper. Intermediate logics are logics which are stronger than in- 
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tuitionistic logic and weaker than classical logic. The multilinear function space is 
an algebraic model of intuitionistic logic, but intuitionistic logic is not complete 
for the space. For intuitionistic logic, refer to [1]. LC, which is stronger than 
intuitionistic logic and weaker than classical logic, is complete for the space. 
Therefore, multilinear functions can be regarded as propositions of LC. Neural 
networks which can be basically regarded as multilinear functions, can also be 
regarded as propositions of LC. Therefore, neural networks can be logically rea- 
soned. 

Section 2 explains multilinear function space which is the theoretical founda- 
tion for the logical reasoning of neural networks. Section 3 explains LC. Section 
4 describes how neural networks can be reasoned by LC. Section 5 states several 
remarks on pattern reasoning. 

2    Multilinear function space 

First, the multiliner functions are explained. The domains are divided into dis- 
crete domains and continuous domains. The discrete domain is reduced to {0,1} 
and the continuous domain is normalized to [0,1]. Therefore, {0,1} domain and 
[0,1] domain are discussed. Second, it is shown that multilinear function space 
of the domain {0,1} is a Euclidean space spanned by the atoms of Boolean al- 
gebra of Boolean functions. Third, it is explained that the space of the domain 
[0,1] can be made into a Euclidean space. Fourth, the vector representations 
are explained. Finally, the relationship between neural networks and multilinear 
functions is explained. 

2.1 Multilinear functions 

Definition 1 Multilinear functions of n variables are as follows: 

2-(i=l aixl    ' 'xnn> 
where Oj is real, Xi is a variable, and e» is 0 or 1. 

In this paper, n stands for the number of variables. 
Example Multilinear functions of 2 variables are as follows: 
axy + bx + cy + d. 
Multilinear functions do not contain any terms such as 
«kl ~&2  . . . ™fc„ 

1      2 n   ' 
where fc, > 2. A function / : {0,1}™ -> R is a multilinear function, because 
x*' = Xi holds in {0,1} and so there is no term like x^x^2 ■ • ■ x*n (h > 2) 
in the functions. In other words, multilinear functions are functions which are 
linear when only one variable is considered and the other variables are regarded 
as parameters. 

2.2 Multilinear function space of the domain {0,1} 

Definition 2 The atoms of Boolean algebra of Boolean functions ofn variables 
are as follows: 
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& = n"=ie(*i)_(* = l,...,2"), 
where e(xj) = Xj or Xj. 

Example The atoms of Boolean algebra of Boolean functions of 2 variables are 
as follows: xAy,   xAy,   xAy,   xAy. 

Theorem 1 The space of multilinear functions ({0,1}" ->■ Rj is the linear space 
spanned by the atoms of Boolean algebra of Boolean functions. The proof can be 
found in [11],[12J. 

Definition 3 The inner product is defined as follows: 
<f,9>= Eio,i}" fg- 
The sum in the above formula is done over the whole domain. 

Definition 4 Norm is defined as follows: 

l/l = A^X7> = yE{0,i}«/2- 

Theorem 2 The multilinear function space is a Euclidean space with the above 
norm. The proof can be found in [11]. 

2.3    Multilinear functions of the domain [0,1] 

Multilinear functions of the domain [0,1] are briefly described in this subsection. 
For details, see [8]. 

Definition 5 Definition of T 

Let f(x) be a real polynomial function. Consider the following formula: 
f{x) = p(x)(x -x2) + q(x), 

where q(x) = ax + b, where a and b are real, that is, q(x) is the remainder. rx is 
defined as follows: 

TX : f(x) -> q(x). 
The above definition implies the following property: 

Tx(x
n) =x. 

In the case of n variables, r is defined as follows: 
T = Yl?=iTXi. 

Example r(x2y3 +y + 1) = xy + y + 1. 

Theorem 3 The space of multilinear functions ([0, l]n -> R) is a Euclidean 
space with the following inner product: 

<f,g>=2n^T(fg)dx. 
The proof can be found in [8]. 

Definition 6 Logical operations are defined as follows: 
AND: r(fg), OR: r(f + g- fg), NOT: r(l - /). 
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Theorem 4 The functions obtained from Boolean functions by extending the 
domain from {0,1} to [0,1] can satisfy all axioms of classical logic with the 
logical operations defined above. The proof can be found in [9j. 

Therefore, in this paper, the functions obtained from Boolean functions by ex- 
tending the domain from {0,1} to [0,1] are called continuous Boolean functions. 
Example x, 1 - x(= x), and xy are continuous Boolean functions, where x, y € 
[0,1]. x means a direct proportion and x means an inverse proportion. 

2.4 Vector representations of logical operations 

Multilinear functions are divided into Boolean functions and the others. The oth- 
ers can also be regarded as logical functions, which will be explained later. The 
vector representations of logical functions are called logical vectors, f ((/i)), g((gi)), ■ 
stand for logical vectors. Note that / stands for a function, while /» stands for 
an component of a logical vector f. 

Vector representations of logical operations are as follows: 
f Ag = (Minify)), f Vg = (Max(fi,gi)), f = (1-/0- 

When multilinear functions are Boolean functions, the above vector representa- 
tions of logical operations are the same as the representations below. 

f A g = Ui9i), fV8 = (Ji+9i- fi9i), f = (1 - /i). 

2.5 The relationship between neural networks and multilinear 
functions 

Theorem 5 When the domain is {0,1}, neural networks are multilinear func- 
tions. 

Proof As described in 2.1, a function whose domain is {0,1} is a multilinear 
function. Therefore, when the domain is {0,1}, neural networks are multilinear 
functions. 
When the domain is [0,1], neural networks are approximately multilinear func- 
tions with the following: 

xk = x(k<a), = 0(k>a), 
where a is a natural number. When a = 1, the above approximation is the linear 
approximation. 

3    Intermediate logic LC and multilinear function space 

The section briefly explains an intermediate logic LC and multilinear function 
space. Intermediate logics are weaker than classical logic and stronger than intu- 
itionistic logic. An explanation of intermediate logics can be found in [1]. LC is 
an intermediate logic, which was presented by Dummett[2]. The logic is defined 
as follows [1]. 
LC=intuitionistic logic + (x -> y) V (y -> a;), 
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where x and y are logical formulas. LC stands for Logic of Chain, which comes 
from the fact that the model of the logic is a chain, that is, a linearly ordered 
set. 

First, it is explained that LC is complete for the interval[0,l]. The proof 
for the completeness of LC for the model cannot be described due to space 
limitations, and so an intuitive explanation is given. Second, it is explained that 
the multilinear function space is an algebraic model of LC. Finally, an example 
of logical reasoning of multilinear functions by LC are given. 

3.1 An intuitive explanation for LC 

Interval [0,1] is a Heyting algebra, which is the algebraic model of intuitionistic 
logic, with the following definitions: 

x A y = Min{x, y), x V y = Max(x, y), 

XDy-\y(x>y), 
T = 1,     -L = 0, where x and y stand for points. 

The above fact can be easily verified. Let x and y stand for two points, then 
(x < y) V (y < x) 
holds. Roughly speaking, by replacing < in the above formula by ->, the following 
formula is obtained. 
(x -> y) V (y -> x), 
where x and y are propositions. The above formula does not hold in intuitionistic 
logic. In other words, intuitionistic logic is not complete for an interval. 

If the above formula is added to intuitionistic logic, a logic which is complete 
for an interval is obtained. The logic is LC. 
(x -) y) V (y -> x), 
holds in LC, therefore, LC is complete for an interval. 

The completeness of LC for an interval can be proved using the fact that 
LC is complete for linearly ordered Kripke models [1] and the correspondence 
between Kripke models and algebraic models [3]. 

3.2 The multilinear function space is an algebraic model of LC 

It is explained that the multilinear function space is an algebraic model of LC 
as follows[10]. 

1. If an interval is a model of a logic, the direct sum of the intervals is also a 
model of the logic[6]. The logical operations are done componentwise. There- 
fore, since an interval [0,1] is an algebraic model of LC, a direct sum of 
intervals [0, l]m(m is dimension) is also an algebraic model of LC. 

2. The multilinear function space is a linear space, therefore, a subset of the 
space [0, l]m is a direct sum of the interval [0,1]. 

3. From item 1 and 2, the subset [0, l]m of the multilinear function space is an 
algebraic model of LC. 
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Theorem 6 LC is complete for the hypercube [0, l]m of the space. The defini- 
tions are as follows: 

f < g = V»(/i < 9i), f Ag = {Min{fi,9i)), f Vg = (Max(fi,gi)), 
f D g = (/i D 9i) 

f (   Hfi < H) 
f2D9l~\9i(fi>9i), 

where f and g stand for logical vectors. This theorem is understood from the 
above discussions. The proof is omitted. 

Example 
/ = 0.6xy + O.lx + O.ly + 0.1 

is transformed to 
0.9xy + 0.2xj7 + 0.2x2/ + 0.1x17, 
therefore, / = (0.9,0.2,0.2,0.1). 
In the same way, 
7= (/< D 0) = (0.9 D 0,0.2 D 0,0.2 D 0,0.1 D 0) = (0,0,0,0). 
Therefore, from Theorem 6, 
/V7= (0.9,0.2,0.2,0.1), 
which means / V / # 1 
This example shows that the law of excluded middle / V / = 1, 
which holds in classical logic, does not holds in LC. If / is limited to Boolean 
functions, the law of excluded middle holds. For example, let / be xy, that is, 
/ = l.Oxy + O.Ox + O.Oy + 0.0 = l.Oxy + O.Oxy + O.Oxy + O.Oxy, 
then/= (1,0,0,0), 
/ = (/j D 0) =_(1 D 0,0 D 0,0 D 0,0 D 0) = (0,1,1,1). 
Therefore, / V / = (1,1,1,1), that is, / V / = 1. 

4    Logical reasoning of neural networks by LC 

Neural networks are multilinear functions and the multilinear function space is 
an algebraic model of LC. Therefore, neural networks can be reasoned by LC. 
The domain is {0,1}™, where n is the number of variables. 

Let Ni and N2 be two trained neural networks, which have 3 layers, two 
inputs x and y, two hidden units, and one output. The output function of each 
unit is a sigmoid function. The following tables show the training results of weight 
parameters and biases of Ni and the training results of weight parameters and 
bias of N2. 

unit wl(w3, w5) w2(w4,w6) bias 
hidden 1 
hidden 2 
output 

-4.87 
-2.86 
7.61 

-4.86 
-2.88 
-3.83 

-6.70 
3.50 
4.50 

unit wl(w3, w5) w2(w4,w6) bias 
hidden 1 
hidden 2 
output 

4.80 
-3.49 
5.81 

4.72 
-3.56 
-4.62 

-2.31 
1.67 
-0.42 

Ni is as follows: 
5(7.615(-4.87x - 4.86y - 6.70) - 3.835(-2.86x - 2.88j/ + 3.50) + 4.50), 
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Prom the above formula, the logical vector is calculated as follows: 
(0.98,0.01,0.01,0.00). 
The logical vector of iV2 is calculated in the same way as follows: 
(0.02,0.98,0.98,0.99). 
The logical conjunction of the two logical vector is as follows: 
(0.02,0.01,0.01,0.00), 
which is nearly equal to 0. 
The multilinear function is as follows: 
0.02xy + 0.01x(l - y) + 0.01(1 - x)y + 0.00 = 0.01a; + O.Oly. 

The function is nearly equal to 0. The above result shows that the logical 
conjunction of two trained neural networks is almost false, which cannot seen 
from the training results of neural networks. iVi has been trained using x Ay 
and N2 has been trained using the negation of x A y. Therefore, the logical 
conjunction of Ni and N2 is as follows: 
JVi A JV2 ~ (x A y) A {x A y) = 0. 
As seen in the above example, the logical reasoning of neural networks shows the 
logical relations among neural networks. If the components of logical vectors are 
0 or 1, the calculation can be done by Boolean algebra, that is, classical logic. 
However, even if the training targets are Boolean functions, the training results 
of neural networks are not 0 or 1, but are values like 0.01 or 0.98. These numbers 
cannot be calculated by Boolean algebra, but can be calculated by LC. In the 
above example, the training targets are Boolean functions for simplification. 
However, any function can be the training target of neural networks and any 
trained neural network can be reasoned by LC. The logical implication between 
a neural network and another neural network can be calculated in a similar way 
as in the above example. 

The computational complexity of the logical reasoning is exponential. There- 
fore, efficient algorithms are needed, which have been developed[12]. However, 
due to space limitations, the efficient algorithms cannot be explained in this 
paper. They will be explained in another paper. 

5    Remarks on pattern reasoning 

Patterns can be regarded as functions and the functions can be approximated 
by neural networks. Neural networks can be reasoned by a few logics such as 
LC, Lukasiewicz logic and product logic. Therefore, pattern reasoning can be 
realized by logical reasoning of neural networks. However, there are a lot of open 
problems for pattern reasoning to be applied to real data. 

1. Computational complexity 
A basic algorithm is exponential in computational complexity, therefore, a 
polynomial algorithm is needed. A polynomial algorithm for a unit in a 
neural network has been presented. For networks, an algorithm which uses 
only big weight parameters has been presented. The reduction of computa- 
tional complexity is included in future work. 
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2. Appropriate logics for pattern reasoning 
Probability calculus is similar to a reasoning for patterns, although it does 
not have the formal system. Probability calculus does not satisfy the con- 
traction rule[7l: 

x, x -> y 
contraction   . 

x-t y 
Therefore, appropriate logics for pattern reasoning should not satisfy the 
contraction rule. From this viewpoint, Lukasiewicz logic and product logic, 
which do not satisfy the contraction rule, are more appropriate than LC, 
which satisfies the contraction rule. It is desired that probability calculus be 
formalized logically, but this is very difficult. We are investigating appropri- 
ate logics for pattern reasoning. 

3. Typical patterns 
There are countless patterns, and some patterns are appropriate for pattern 
reasoning, while other patterns are inappropriate. Therefore a dictionary of 
patterns is necessary. The patterns included in the dictionary are typical pat- 
terns, which cannot be described linguistically. The typical patterns can be 
gathered by various methods, but we do not have to be seriously concerned 
with gathering typical patterns, because pattern reasoning is flexible as ex- 
plained in the next item. However, gathering typical patterns are important 
for efficient pattern reasoning. 

4. A difference between pattern reasoning and symbol reasoning in the reason- 
ing mechanism 
In symbol reasoning, when the left side of a rule is not matched, the rule 
does not work, while, in pattern reasoning, even when the left side of a rule 
is not matched, the rule works. For example, let a rule be a -> b and the 
left side of the rule be a'. If a is very similar to a', the truth value of the 
rule is almost 1. On the other hand, if a is very different from a', the truth 
value of the rule is almost 0. Pattern reasoning works like this, because the 
pattern reasoning makes use of continuously valued logics. There are several 
other methods which deal with matching degrees of the left sides of rules. 
However, the methods are basically arbitrary, whereas the pattern reasoning 
presented in this paper includes the matching degrees in the system. 

5. Formal system 
In pattern reasoning, for example, a question like "Is this pattern logically 
deduced from the set of rules of patterns?" should be answered. Therefore, 
formal systems are needed for pattern reasoning. 

6. Incompleteness 
In mathematical logic, completeness is important. In reality, humans can- 
not reason or prove true things, that is, humans are incomplete. Therefore, 
pattern reasoning should deal with incompleteness. 

7. The relationship with probability theory 
Probability calculus deals with continuous values, but probability events are 
not continuous, that is, the objects of probability theory are not continuous, 
while the objects of pattern reasoning are continuous. Therefore, pattern 
reasoning can be regarded as an extension of probability calculus. 
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8. Experimental study 
The most typical patterns are images, therefore the final target is the reason- 
ing of images. We have to begin experiments with simple examples. We have 
tried to realize pattern reasoning for one-dimensional data, for example, time 
series data, by logical reasoning of neural networks using LC, Lukasiewicz 
logic or product logic. The results show that the logical reasoning of neural 
networks works well, which will be reported in another paper. 

6    Conclusions 

This paper has presented pattern reasoning, which is a new solution for the 
knowledge acquisition problem. Knowledge acquisition tried to acquire linguistic 
rules from patterns. In contrast, we have tried to modify logics to reason pat- 
terns. Patterns are represented as functions, which are approximated by neural 
networks. Therefore, the logical reasonings of neural networks have been studied. 
A few logics can reason neural networks. This paper has explained intermedi- 
ate logic LC. There are a lot of open problems, therefore the author strongly 
encourages the readers to join the research field. 
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Abstract. Probabilistic reasoning is an essential approach of approx- 
imated reasoning to treat uncertain knowledge. Bayes' theorem based 
on the interpretation of a If-Then rule as the conditional probability 
is widespread in applications of probabilistic reasoning. A new type of 
Bayes theorem based on the interpretation of a If-Then rule as the logical 
implication is introduced in this paper, where addition and subtraction 
are employed in the probabilistic operations instead of multiplication 
and division employed for the conditional probability of the traditional 
Bayes' theorem. Inference based on both interpretations of the If-Then 
rules, conditional probability and logical implication, are discussed. 

1    Introduction 

In propositional logic, the truth values of propositions are given either l(true) or 
O(false). Inference based on propositional (binary) logic is done using inference 
rule : Modus Ponens, shown in Fig. 1. This rule implies that if an If-Then rule 
"A -+ B" and proposition A are given true(l) as premises, then we come to a 
conclusion that proposition B is true(l). 

A-±B 
A 

B 

Fig. 1. Modus Ponens 

The inference rule based on propositional logic is extended to probabilistic 
inference based on probability theory in order to treat uncertain knowledge. 
The truth values of propositions are given as the probabilities of events that 
take any value in the range of [0,1]. Here, U is the sample space (universal set), 
A,B C U are events, and the probability of "an event A happens", P(A) is 
denned as P(A) = \A\/\U\ {\U\ = 1, \A\ = a € [0,1]) under the interpretation 
of randomness. Thus the probabilistic inference rule can be written as Fig. 2 

adapting the style of Modus Ponens. 
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P(A -> fl) = i 
P(A) = a 

P(B) =b       *.».» 6 [0, 1] 

Fig. 2. Probabilistic Inference 

If the probability of A —>■ B and .A are given 1 (i = a = 1), then 6 is 1, since 
the probabilistic inference should be inclusive of modus ponens as a special 
case. Our focus is to determine the probability of B from the probabilities of 
A —y B and A that take any value in [0,1]. A —*■ B is interpreted as "if A 
is true, then B is true" in meta-language. Traditional Bayes' theorem applied 
in many probability system adopts conditional probability as the interpretation 
of If-Then rule. However, the precise interpretation of the symbol "—■>•" is not 
unique and still under discussion among many researchers. 

E. Trillas and S. Cubillo [1] remarked the inequality x ■ (x —> y) < y (where 
x —> y = x~ V y) valid in an arbitrary Boolean algebra (B, V, -,~ ,0,1), and 
determined Boolean variants of modus ponens by replacing conjunction (•) and 
implication (—>■) by other truth functions. Nilsson [2] presented a semantical 
generalization of ordinary first-order logic in which the truth values of sentences 
can range between 0 and 1. He established the foundation of probabilistic logic 
through a possible-world analysis and probabilistic entailment. However, in most 
cases, we are not given the probabilities for the different sets of possible worlds, 
but must induce them from what we are given. 

Our goal is to deduce a conclusion and its associated probability from given 
rules and facts and their associated probabilities through simple geometric anal- 
ysis. The probability of the sentence "if A then B" is interpreted in two ways: 
conditional probability and the probability of logical implication. In this paper, 
we define the probabilistic inferences based on the two interpretations of "If- 
Then" rule, conditional probability and logical implication, and introduce a new 
variant of Bayes' theorem based on the logical implication. 

2    Inference Based on Probability Theory 

2.1    Conditional Probability 

Conditional probability, "how often B happens when A is already (or necessary) 
happens", only deals with the event space that A certainly happens. Thus the 
sample space changes from U to A. 

P(A^B) = P(B\A)=\AnB\/\A\, (1) 
ic = -p(Ar\B)/a.        (o^O) (2) 

Since P(A HB) = icxa from Equation (2), the possible size of B is restricted 
from \A n B\ = ic x a to \AC U B\ = 1 — (a — a x ic). Thus the probabilistic 
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inference based on the interpretation of if-then rule as the conditional probability 
determines P(B) from given P(A -»• B) and P(A) by the following inference style 
in Fig. 3. 

a - \A n B\ 7k   "v 
,:•:■:■:■:* ■■■■ > 

*:;::::::/.v.Y.\\7.r 

3^ ->:' 

14 n B| 

= o X «c 

P(vl -» B) = t« 

P(i4) = a 

P(B) € [a x ic, 1 - a(l - tc)] 

Fig. 3. Conditional Probability 

Note, P(B) can not be determined uniquely from P(A -> B) and P(A) thus 
expressed as the interval probability [3]. When the condition, ox ic = l-a(l-i<;) 
(thus a = 1), holds, P(B) is unique and equal to P(A -» B). 

P(vl -»■ B) = »<: 

P(A) = 1 

P(B) G [1 X ic,  1 - 1 + 1 x ic] = [ic, ic] = ic 

Fig. 4. Conditional Probability a = 1 

2.2    Logical Implication 

The interpretations of-» (implication) in logics: prepositional (binary or Boolean)logic, 
multi-valued logic, fuzzy logic, etc., are not unique in each logic. However, the 
most common interpretation of A —► B is ~.A V B. 

P{A -> B) = P(^c UB)= |Ae U B|/|tf |, 

t| = P(J4 n B) + (1 - a).        (a + «( > 1) 

(3) 

(4) 

In order to avoid contradiction in premises, the relationship between o and ij 
must hold the condition: a + U > 1. 

Since P(A flB)=o-(l-«i) from Equation (4), the possible size of B is 
restricted from |J4 f"l B | = a - (1 -1/) to |.Ae U B | = t/. The probabilistic inference 
based on the interpretation of if-then rule as the logical implication determines 
P(B) as the interval probability from given P(A -> B) and P{A) as shown in 
Fig. 5. 

Similar to the conditional probability case shown in Fig. 4, P(B) is unique 
and equal to P(A -> B) when the condition »j + a - 1 = ij (thus a = 1) holds. 
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P(A->B)=i, 

P(A) = a 

P(B)G[o-(l-i,), ii] 

Fig. 5. Logical Implication 

3    Bayes' Theorem 

Bayes' theorem is widespread in application since it is a powerful method to trace 
a cause from effects. The relationship between a priori probability P(A —>■ B) 
and a posteriori probability P(B —> A) is expressed in the following equation by 
eliminating P(A n B) from the definitions. 

P(A -»■ B) = P{B\A) = P(A n B)/V(A), 
P(B ->A) = P{A\B) = P(A n B)/P(B), 

P(B ->A) = P(A) x P(A -> B)/P(B) (5) 

Theorem 3.01   The interpretation of —> as the logical implication satisfies the 
following equation. 

P(B -+A)= P(A) + P(A -> B) - P(B) 

Proof. Given P(^ -»• B) = ih P(A) = a, and P(B) = b, 

P(B -> A) = P(BC U A) 

= i - P(J5 n AC
) 

= 1 - (b - (a - 1 + <,)) 
= 1 - (6 - a + 1 - it) 
— a + ii — b 
= P(A) + P{A^B)-P(B). 

(6) 

D 

i -i, 

o- (1-i,) 

\AC n B| 

= » - (a - 1 + i, ) 

Fig. 6. Bayes' Theorem with Logical Implication 
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Note, the new variant of the Bayes' theorem based on logical implication 
adopt addition + and subtraction - where the traditional one adopt multi- 
plication x and division /. This property is quite attractive in operations on 
multiple-valued domain, and simplicity of calculation. Farther discussion is to 
apply this new variant of the Bayes' theorem to the systems that employ logical 

implication. 

4    Inference Applying Bayes' Theorem 

4.1     Bayes' Inference Based on Conditional Probability 

Now, we apply Bayes' theorem as the inference rule, and define P(2? ->■ A) from 
P(A -> B), P(A), and P(J3). The inference based on the traditional Bayes' the- 

orem (conditional probability) is shown in Fig. 7. 

P(A -» B) = ic 

P{A) = a 

P(B)=b 

P(B -)• A) = a x ic/b 

Fig. 7. Bayes' Inference - Conditional Probability 

The condition, max((a + 6-l),0)/a < ic < b/a, must be satisfied between 
the probabilities o, 6, and ic. Since ic = P(A D B)/a thus max(a + b - 1,0) < 

P(^ DB)< min(a, 6). 
From P(A -> B) and V{A), P(B) is determined as the interval probability 

by the inference rule, Fig. 3 in the previous discussion. Thus P(S -*■ A) can be 
determined as follows when P(B) is unknown. 

P(A -»■ B) = ic 

P(A) = a 

P(B) e[axic, 1 - a(l - ic)] 

P(B ->A)£[ax Ü/1 - a(l - ic), 1] 

Fig. 8. P(S) : unknown 

P(B -+ A) is unique (P(5 -»^4) = 1) when a x ic = 1 - a(l - ic), that is 
a = 1. Note, P(f? -» Jl) does not depends on ic = P(^4 ->• B). 
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P(A -+ B)=ic 

P(A) = 1 

P(B -4 A) = 1 

Fig. 9. P(i4) = 1 

4.2    Bayes' Inference Based on Logical Implication 

Similarly, applying the new variant of Bayes' theorem based on logical implica- 
tion, we get the following inference rule in Fig. 10. 

T?(A -»■ B) = ii 

P(A) = a 

P(B)=6 

P(B ^ A) = a + h-b 

Fig. 10. Bayes' Inference - Logical Implication 

The condition, max(6,1 - o) < ij < 1-a + b, must be satisfied between 
the probabilities a, b, and ij. Since ij = P(A l~l B)/a thus max(o + 6 - 1,0) < 

P(.AnB)< min(o,b). 
P(B) is determined from P(A -*• B) and P(A) by the inference rule, Fig. 5. 

Thus P(B -> A) can be determined as follows when P(B) is unknown. Note, 
the result of inference does not depend on the probability of P(A ->■ B). Clearly, 
P(B -> A) is unique (P(B -> A) = 1) when o = 1. 

P(A -»• B) = ti 

P(A) = a 

P(B)G[a + ii-l,*i] 

P(B -4 A) S [a, 1] 

Fig. 11. P(B) unknown 

5    Generalization on Interval Probability 

Since the results of inferences are given as interval probability, we shall discuss 
the inference methods when the probability of sentences are given as the interval 
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probabilities. Given the set of all interval value X, 

I = {[a,b] | 0 <a<b< 1} 

the interval probability of "A happens" is P(A) G [01,02]. 

5.1    Interval Probabilistic Inference 

In the previous section, the probabilistic inference based on the conditional prob- 
ability determines P(B) G [a x ic, 1 — a(l — ic)] from given P(A -> B) = ic and 
P(A) = a. Thus, given P(A —»■ B) and P(-A) as interval probabilities [ici,ic2] 
and [01,02], the possible probability of P(23) is minimum oi X ic\ and maximum 
1 - oi(l - ic2). 

P{A^B) G [ic!,ic2] 
P(A) e[oi,a2] 

P(B) G [ai x ici, 1 — ai(l — ic2)] 

Fig. 12. Probabilistic Inference Based on Conditional Probability 

Similarly, the probabilistic inference based on the interpretation of if-then 
rule as the logical implication determines P(-B) from given P(^4 —>■ B) G [Hi, U2] 
and P(A) G [01,02] as shown in Fig. 13. P(B) is minimum if both P(A —> B) and 
P(J4) takes minimum value Hi and a\. However, in order to avoid contradiction, 
the condition a + il > 1 must be satisfied between any combination of the 
probabilities a and il. Thus the minimum value of P(B) is restricted to max(ai + 
ili, 1) — 1 = max(oi + Hi — 1,0). 

P(A^B)e[ih,il2] 

P(A) e[ai,a2] 

P(B) G [ai + ih - 1, ih] 

Fig. 13. Probabilistic Inference Based on Logical Implication 

Note, in both cases, the results of inference P(B) does not depends on 02 
(the maximum value of P(^4)). 

5.2    Inference on Interval Probability based on Bayes' Theorem 

Now, we apply Bayes' theorem as the inference rule on interval probabilities. 
Given P(A —> B) as the conditional interval probability, P(B —>• A) is deter- 
mined from P(J4 ->• B) G [ici,ic2], P(A) G [oi,a2] and P(B) G [61,62] by the 
Bayes' theorem as shown in Fig. 14. 
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P(A-+ B) €[ici,ia] 

P{A)£ [oi,o2] 

P(B)G [61,62] 

P(B -> A) G [01 x ici/b2,a2 x ic2/bi] 

Fig. 14. Bayes' Inference - Conditional 

Note, the same condition in previous section 4.1, max((<x -f 6 — l),0)/a < 
ie < b/a, must be satisfied between any combinations of the probabilities a, b, 

and ic. 
V(B) is determined as the interval probability from P(A ->■ B) and P(.A) by 

the inference rule as shown in Fig. 12 in the previous discussion. Thus P(B —► A) 

can be determined as follows when P(JB) is unknown. 

P(A-+ B) G [ici,ic2] 

P(A) G [oi,o2] 

P(B) G [oi x icu 1 - ai(l - ic2)] 

P(B-^ A) G [ai xici/l-ai(l-ici), 1] 

Fig. 15. Bayes' Inference - Conditional: P(B) unknown 

V(B ->■ A) = 1 when ax x ici = 1 - oi(l - ici), that is ai = 1. P(B -> yl) 
does not depends on P(A —>• B). 

Similarly, applying the new variant of Bayes' theorem based on logical impli- 
cation on interval probabilities, P(^4 ->■ B), P(A) and P(£), we get the following 
inference rule in Fig. 16. 

P(A->B)e[ih,il2] 

P(A)£[ai,a2] 

P(B) G [61,62] 

P(B ->• A) G [oi + ih - 62, o2 + ih - 61] 

Fig. 16. Bayes' Inference - Logical Implication 

The same condition in previous section 4.2, max(6,1 — a)  <  ii  <  1 — a + b 
must be satisfied between the probabilities a, b, and ij. 
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P(B) is determined as the interval probability from P(A -» B) and P(A) by 
the inference rule as shown in Fig. 13 in the previous discussion. Thus P(B —> A) 
can be determined as follows when P{B) is unknown. 

p(A^B)e\ih,u2] 
P(A) £[ai,a2] 

P(B) 6[ai +ih -l,ih] 

P(B^A)e[ai, 1] 

Fig. 17. Bayes' Inference - Logical Implication: P(B) unknown 

Note, the result of inference does not depend on the probability ofP(A —> B). 
P(B ->■ A) = 1 when ai = 1. 

6    Conclusion 

Inference based on probability theory is discussed as a method of approximated 
reasoning that treat uncertain knowledge. A new type of Bayesian theorem based 
on the interpretation of a If-Then rule as the logical implication is introduced. 
The new variant of the Bayes' theorem based on logical implication adopt ad- 
dition + and subtraction — where the traditional one adopt multiplication x 
and division /. This property is quite attractive in consideration of operations 
on multiple-valued domain, and simplicity of calculation. Interesting topic for 
farther discussion should be to apply this new variant of the Bayes' theorem to 
the systems that employ logical implication. 
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Abstract. This article presents a neural network approach for human 
reasoning. It is based on a three-valued Boolean logic. We will first laying 
down the foundations for study of a neural logic and represent it by a neural 
logic network. We than realize the process of reasoning by the structure 
of a neuro model. The nodes represents the function of reasoning and 
the connection weights the parameter of reasoning. The model is close to 
realization of the particular application. The goal of this research is to 
develop a reasoning system capable of human reasoning based on neural 
logic network. 

1    Introduction 

Rule-based systems have been successfully applied in many domains. However, 
the current rule-based technology is generally lacking in learning capability and 
parallism. It is also weak in dynamic reasoning, control, and uncertainty process- 
ing. The reasoning proceeds through a pre defined tree. Neural logic networks, 
on the other hand, lend themselves very well to learning and parallelism due to 
their self-organization features. In additions, it is also capable of incorporating 
temporal reasonings, and certainty factors with ease. In spite of these capabil- 
ities, however, neural logic networks basically are confined to relatively simpler 
problem. They generally are deficient in the in-depth reasoning afforded by the 
rule based-based systems. In view of the above, one of the goals of current neural 
logic networks research is to bridge the gap between symbolic and sub-symbolic 
approaches with the fusion of hybrid systems. We propose a computional model 
that combines the best of the both worlds by integrating an ordinary rule-based 
system into a neural logic network architecture. The model contains a neural 
logic based inference engine that dynamically chains active rules together into a 
neural logic network. Parallel execution of rules becomes possible when active 
rules are being chained along different path. The system further exhibits learning 
capability by allowing weights to be adjusted during training sessions. 

Logic has traditionally been one of the foundations for symbolic paradigm. A 
neural logic network model that represents propositional truth values as neural 
activations and logical operations as connection weights, has been proposed by 
[4,2] to represent logic and perform logical inference by the structure and dynam- 
ics of the network respectively. The underlying neural logic network demonstrates 
a multitude of logical operations, besides the standard operators such as AND, 
OR, NOT, NOR and NAND. Particularly, the user is free to define any opera- 
tions to meet any specific needs. The strengths of neural logic thus provide a 
much greater expressive power for the systems's rules syntax than a ordinary 
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rule-based systems. We present, a rule inferencing system whereby the internal 
representation and the inferencing mechanism of propositional rules are driven 
by a neural logic network. We base our discussion on a framework for deductive 
systems in A.I., namely the logic level, the calculus level, the representation level, 
and the control level. We will show that neural logic does enrich the meaning 
logic with DONT KNOW truth value and human-like logical operators which are 
more appropriate for knowledge processing and decision making. 

The paper is organized as follows. We start next section with introducing 
the basic of neural logic network and give the definitions of standard and non 
standard logical operators. We describe than the human logical reasoning. We 
conclude with a discussion of the presented method and look ahead to extension 
and future directions of this work. 

2    Neural Logic Network 

Neural logic network is a class of artificial neural network which is used to model 
human intelligence by computing systems. It can model classical two-valued 
Boolean logic effectively. This logic is in fact a good model to study human logic 
which is multivalued, fuzzy and biased. The neural logic network considered in 
this work is inspired from [4J. 

A Neural Logic Network (NLN for short) is a finite directed graph. It contains 
a set of input nodes and output nodes. Every node can take one of the three 
order pair activation values: (1,0) for true (0,1) for false and (0,0) for unknown. 
Every edge in net is also associated with an ordered pair weight (t,f) where t 
and / are real numbers of positive, negative or zero value. 

2.1    Mathematical definition of NLN 

An abstract neural logic network is a mathematical system with following fea- 
tures: 

• It is a finite directed graph consisting of a set of nodes N and a set of links 
E; 

• A non-empty subset I of N is chosen as input nodes. Another non-empty 
subset O of N is chosen as output nodes. Other nodes are called hidden 
nodes; 

• An algebraic system < R, +, x > which is satisfying the axioms of a ring. 
An association of a set of links to a set of R is defined by a mapping v?i 
ipi : E -» R 
That is to say, every links of the directed graph is given a value from the 
chosen ring < R,+, x >; 

• A subset of A is chosen from the ring R together with a specially chosen 
mapping <p2 from the set of all non-input nodes (i.e. N ~ I) to the set A 
tp2 : (N ~ /) -¥ A 
That is to say, non-input node of N is given a value in A. The elements in 
A are to be called truth-values; 
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Q(x.y) 

(an, bn) 
a) Pn(xn,yn)   (J     ^"•""> b)« < 

Figure 1: a) 3-valued NLN, b) Boolean NLN 

• A mapping from R to A i.e. 
/: R->A 
called the threshold function. 

An abstract neural logic can now be denoted by 

Net=<N,E,I,0,R,A,<pu<P2j> 

By changing ring R and the threshold function different sub-classes of neural logic 
network can be obtained. Three-valued NLN, Boolean NLN and Fuzzy NLN are 
the three main sub-class of NLN. For instance the 3-valued NLN can be obtained 
by representing the value of input Pi{i = l,...n) by ordered pairs (xityi) with 
the weights (aj.fy) and the value of output Q by an ordered pair (x,y). Letting 
A = AW - {(1,0), (0,1), (0,0)}, (where A<T) means the truth value set in 3- 
valued NLN) be the truth value set, where (1,0), (0,1), (0,0) represent true, false 
and don't know respectively, a*, 6< be any real numbers and the threshold function 
can be defined as __ ^_    , 

f (1,0)  if E?=i«^-ELi^>i 
{x,y) = \   (0,1)   if      ..     -  ElU^-Eti «<*<>! 

[ (0,0)    otherwise 
Fig. 1 a) shows the general structure of a single 3-valued NLN. 
Boolean NLN is the simplest type of NLN. Its theory plays a special role 

because of its link to other well known neural networks such as multi-layer per- 
ceptron [3], Kohonen nets [1], etc. In a boolean NLN, single real numbers a{ are 
used for weights of the links and boolean numbers 1 or 0 are used for value of 
input P{ (i = 1, ...n) and output Q . The truth value set is then denoted by 
AW ( where B for Boolean NLN) and A<B> - {0,1} . The threshold function 
is defined as 

Q- {o if       Er=i«ifl<i 
Suppose we are given a boolean neural logic network and suppose Q is one of 

its nodes with incoming links such as Fig. 1 b) 
To find the value of Q we need to find the current values of nodes at Pi, Pi, Pz 

, say ai,aj,a3 respectively. Then we find sum x = 2ai -1*2 + 03 and put this 
number x into the threshold function f(x) to decide whether it should be 1 or 0. 

The choice of weights associated with NLN offers a great variety of different 
logic operations. In theory, for a network with two inputs, total of 39 distinct 
meaningful binary logical operations are possible. The definition of AND, OR 
and NOT are as follows: 
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• An AND operation of n inputs is defined as a neural logic function, written 
as AND(Pi,P2,....P„) or Q = Pi AND P2 AND, ...Pn with the weights 
(ai,bi) = (i,n) for i = l,2,...n 

• An OR operator of n inputs is defined as neural logic function as OR(P\, P2, —Pn) 
or Q = Pi OR P2 OR,...Pn with the weights (aitb() = (n,£) for i = 
l,2,...n 

• A NOT operation of 1 input is defined as a neural logic function, written 
as NOT(P) or Q = NOT(P) with the weight (a,b) = (-1, -1). 

Fig. 2 shows several useful operations in 3-valued NLN. 

3    Logical Reasoning 

In section 2, we have introduced the Neural Logic model and its capability to 
incorporate the local inference of Boolean logic. The interconnection of this 
model called Neural Logic Network (for short NLN). In this section we introduce 
a rule inferencing system based on neural logic model for propositional knowledge 
base. 

A proposition is represented as a neural logic neuron labelled Q. The truth 
value of Q, denoted as t(Q), is given by neuron's activation. The truth values: 
true, false, and don't-know are denoted by ordered pair (1, 0), (0, 1) and (0, 
0) respectively. The connection weight from a neuron denoting proposition Q is 
also extended to ordered pair (x, y) where x and y are real numbers that can 
be viewed as the truth and false value or as the strength of the support and 
opposition respective of proposition P for proposition Q. 

Definition Given proposition Pi,P>i, Pn with truth values 
fai 1 V\)> (a^i 1/2)1 —■(xn,y„), which are connected to proposition Q with the weights 
(ai,bi),(a2,b2),....(an,bn) respectively. The Netinput(Q) is defined as, 
Netinput(Q) = £(a<x< - %,•). The activation of neuron is defined as follows: 

((1,0) if Netinput(Q) > X 
(0,1) if Netinput(Q) <-X 
(0,0) otherwise 

where X is threshold, usually set to 1. The P< 's and Q in Fig. 1 are referred 
as inputs nodes and output node respectively. 

3.1    Neural Logic Element 
A Neural Logic Element (for short Netelm) can be seen as one layer or maximum 
two layers neural network with n input nodes and one output node, and an 
optional layer of hidden nodes. With reference to Fig. 1 the definition of a 
neural logic element can be given as follows. 

Definition A neural logic element of n inputs with the proposition 
Pi,Pi Pn connected to proposition Q is defined as 

Netelm :        {(1,0), (0,1), (0,0)}» -► {(1,0), (0,1), (0,0)} 
{(1,0) if Netinput(Q) > 1 

(0,1) if Netinput(Q) < -1 
(0,0) otherwise 
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PI 

P2 

1/2) 

Q-PIvP2 

(2,1/2) 

The OR operation 

O Q-PU   P2 

l>2U      (1/2,2) 

The AND operation 

P1Q ^^-O   Q"~l  P 

The NOT operation 

(0,1) 

PI 

(1.0) 
(1.0) 
(1.0) 
(0.1) 
(0.1) 
(0,1) 
(0,0) 
(0,0) 
(0,0) 

PI 

(1.0) 
(1.0) 
(1.0) 
(0.1) 
(0,1) 
(0.1) 
(0,0) 
(0,0) 
(0.0) 

p 

(1.0) 
(0.1) 
(0,0) 

P2 

(1.0) 
(0,1) 
(0.0) 
(1.0) 
(0,1) 
(0,0) 
(1.0) 
(0.1) 
(0,0) 

P2 

(1.0) 
(0,1) 
(0.0) 
(1.0) 
(0,1) 
(0,0) 
(1.0) 
(0,1) 
(0.0) 

(0.1) 
(1.0) 
(0,0) 

PlvP2 

(1.0) 
(1.0) 
(1.0) 
(1.0) 
(0.1) 
(0,0) 
(1.0) 
(0,0) 
(0,0) 

PUP2 

(1.0) 
(0.1) 
(0,0) 
(0.1) 
(0,1) 
(0.1) 
(0.0) 
(0.1) 
(0,0) 

Q.(l,0)iffatleattkofPl,...Pnare(l,0) 

Q . Vk (PI, P2, ....Pn) <J ■ <*»lff •« "-■»» « «■ » 

Q - (0,0) otherwise 

The At-Least-k operation    V k 

Q-M (P1.P2 Pn) 

Pn U (1/k, 1/k) 

The Majorlty-K operation M^ 

Q. A (P1.P2, Pn) 

Q ■ (1,0) irr there are k more (1,0) than (0,1) 

among the vahiei of PI, P2 .Pn 

Q - (0,1) Iff there arekmore (0,1) than (1,0) 

among the value« of PI, P2, ...Pn 

Q-(0,0) otherwise. 

Q-Pl   If PI *«S (0,0) 

Q • P2 If PI - (0,0) & P2 *4 (0,0) 

Q-P3 If PI .P2«(0,0)&P3^(0,0) 

Q-Pn 

The Priority operation A 

Figure 2: Operations in 3-valued neural logic 
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richer(x> V. 2) P10\(M> Bt Q^O/2, 2) 
ES 

(1/2.2) 

a) stronger(x, y) 0"1l/2,2) 

Figure 3: Examples of Nctelm for rules a) better b) prioritized view c) excellent 
student 

Every Netelm has two equivalent forms; one is the usual textual form similar 
to that in the conventional rule based system, and the other in a graphical form 
that pictorially represents the network element. The following example illustrates 
the equivalence between a rule in a rule based system and Netelm. 

For rule: if richer(x, y) AND stronger(x,y) then better(x, y), the equivalent 
Netelm is shown in Fig. 3 a). The weights attached to the edges correspond to 
the AND connective in the rule. 

Fig. 3 b) shows an example of how usefully and flexibly a neural element 
can be used to model human inference or decision pattern. In this example the 
priorities of P< 's views in encoded are their corresponding weights: 

When Pi gives his view, his view is outcome; 
If Pi withhold his view i.e. Pi (0,0), then Pi 's view will be the outcome. 
Pi's view will be the outcome only when both Pi and P% withhold their views. 

A Netelm in Fig. 3 c) represents the following rule: 
if Better-Than(Academiq.-grade(x),A-minus) 
AND Min-Percentage(class-attendance(x), 95) 
tlien Excellent-Student(x) 

3.2    Neural logic program 
Neural logic program is the formal representation of the neural logic network. 
We use the Horn Claus for the representation of facts and rules in knowledge 
base expressed in terms of neural logic. The Horn Claus can easily transformed 
to a Prolog program. 

Definition A fact clause is of the form: Q, where Q is a symbol and t(Q) 
denotes truth value of Q. By default t(Q) is (1, 0). This allows compatibility 
with standard Prolog syntax. 

Definition A rule clause is of the form: 
Q:-A(Pi,P2)---P„) or Q : -PiwuP2w2)-- -Pnwn 

where Q and P< 's are symbols for propositions, A is a neural logic function 
(eg. AND,OR etc.) and w\ is of the forms: < X(,yi > denoting the weight 
(xi, yi) from Pi to Q for i = 1,2, ...n. When A is a null string, it means an AND 
neural element. If some propositional symbol, such as Q, appears as the head 
of more than one clause, the Q 's are interpreted as the input nodes to an OR 
neural element. These again allow compatibility with standard Prolog syntax. 
W{ in the formula is for specifying arbitrary weight to define any neural logic 
function. The neural logic network representation for a rule clause will be the 
same as one in fig.l. 
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PI. 

P5. 

Q  :- not(PI),   P2. 
Q P5 Q  !-  P2,   P3,   P4.       ps 

0.0) 
P3   !- ti,   P5. 

(1/2, 2)   ,~Q1 

P3   (1/3,3) 
a) / b) 

Figure 4: Neural logic network program for a) a fragment clauses, b) an example 

Definition A program clause is either a fact clause or a rule clause. A 
neural logic program is a collection of program clauses. It will be represented as a 
forest of neural logic net trees, each consists of a number of neural elements joined 
as follows: the output node of a neural element becomes an input node of another 
neural element if they both denote the same proposition. The truth values of the 
proposition as specified by the fact clauses are the activation attached beside the 
relevant neurons. Thus, every neural logic program has a unique neural logic 
network representation and the number of distinct symbols (propositions) in the 
program equals the number of nodes in the neural logic minus the number of 
hidden nodes in the neural elements. 

To further illustrate the implicit AND and OR operators in standard Prolog 
program and its corresponding neural logic network representation, consider the 
following program fragment: 

Ql:-Pu,Pi2,'Pin 
Q2:-P2i,P22,..P2n 

V     • — ■«ml) "■ml ,''' "mn 

Where QX,Q2,••-Qm refer to the same syntactical symbol Q. m hidden 
nodes, Ql,Q2,'"Qm will be created, each of which is an output from AND 
neural element of n inputs {Pa,Pa,• - • Pin) as well as an input node to an OR 
neural element of m input as shown in Fig. 4 a) 

Fig. 4 b) shows a simple neural logic program in standard Prolog's syntax 
and its corresponding neural logic network representation. 

3.3    The proposed system 

A schematic diagram of the system is shown in Fig. 5). The system allows conver- 
sion from if..then... rules into a neural logic program. Every rule is represented 
in the knowledge base by netelm. Standard logic operations in conventional rules 
are readily transformed into netelms with fixed weights assigned for the corre- 
sponding logic operators. 

The Rule Editor and Query Manager combine two forms of user interaction 
with the system. Besides providing a friendly environment for the user to convert, 
create and maintain netelm knowledge base, they also derive the conclusion. 

The netelm rule base is the depository area of knowledge to be used in the 
inference process. It is made of the rules from three main sources: conventional 
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Figiire 5: Architecture of the reasoning system 

rules being transformed into netelms by the rule editor; rules added/modified by 
the uses; and, meta rules learned by the inference engine through consultations. 

The Inference Engine dynamically links up relevant rules from the netelm 
rule base in the process of deriving at a conclusion for the user. The inference 
engine may run in consultation or training mode. In either case it chains active 
rules together into a neural logic network like a tree structure. With the netelm 
schema discussed earlier, tree structure is essentially made of fragments of neural 
logic network to be fitted together dynamically during the inferencing process, 
similar to the chaining of rules in the working memory of a conventional rule- 
based system. 

3.4    Learning 
Since all logical operations in the system are presented by arc weights, this pro- 
vides a mean of modifying the rules by adjustment of weights. This is especially 
useful for rules that involve non standard logic operations such as that of human 
logic. In such cases, weight may initialy be created on the basis of some intuition 
but later tuned by training with examples. 

The system may be trained in two ways. First, learning mechanism allows 
alternation of the logical operation of a rule by training a corresponding body of 
connected netelms with known exemplary deductions. Second, learning mecha- 
nism allows fine tuning of weights without altering the basic logical operations 
defined in the netelms. In the dynamic linking of netelms, either forward or back- 
ward, paths that fail to achieve the desired conclusions will have their weights 
decreased. Other paths that confirm the desired conclusions may have their 
weights increased. In training mode, when a training example is presented to the 
system, it will chain up an inference tree from the input nodes to the desired goal 
node. Relevant netelm rules are selected from the knowledge base depending on 
the input variables in the training example. After the activation and propaga- 
tion, the activation state of the network output node is compared to the desired 
value in the training example. If the network is not able to derive the desired 
conclusion, the error is back propagated and the netelm in the inference tree 
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will have their connection weights adjusted. However, the system assumes that 
the netelm rules articulated by the human experts are sufficiently close to the 
global minima of the neural network representing the domain knowledge. The 
constituent netelm therefore only require small weight adjustment - perhaps out- 
put nodes of certain netelms in the inference network fall slightly short for the 
threshold of the neural logic network activation. This means that the iterative 
process for error back propagation will only need to occur a small number of 
times. 

4    Conclusion 
We have described a rule inferencing system based on neural logic model. The 
model provides a richer set of logical operations which arc close to human rea- 
soning and decision making that is not easy if not impossible to be modeled by 
classical logic. We define a neural logic program for representation of the specific 
application. We also suggested the search strategy with heuristic search and an 
adaptive strategy for standard operators. Comparing to the rule based systems 
the knowledge is usually constructed in a hierarchy. However, the predefined gen- 
eralization hierarchy limits the system flexibility. It is difficult to update those 
assumptions that are no longer significant. In this approach, when a query is 
assigned to the system, it will be mapped dynamically to a neural network. In 
doing so, the topology of the network is reduced to the size of query. 

Furthermore, the conventional rule based systems often lack learning ability. 
Finally, the system is made more resilient to the brittleness problem of conven- 
tional rule based system which could fail abruptly in the face of fuzzy data 

From the above discussion and examples, it is not difficult to envisage the 
power of neural logic model consisting of chain of neural logic elements to repre- 
sent interesting and realistic human logic which is not possible in classical logic. 
We arc at the beginning of the project, therefore we can not report about a real 
world application. This is a subject to future work. We will explore the limita- 
tions of this approach on a number of domains and we hope to show that this 
idea is extendible to many other AI problems. 
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Abstract 

Based on First-Order Rough Logic Studied by Lin and Liu, this paper 
establishes rough propositional logical system with rough lower (L) and 
upper (H) approximate operators. It discusses the resolution principle 
in the system. The soundness of resolution deduction, soundness and 
completeness of the refutation are also studied in the paper. 
Keywords:Rought Propositional Logic, Resolution Principle, Resolution 
Deduction, Soundness Theorem, Refutaion. 

1 Introduction 

Lin and Liu studied a first-order rought logic based on six topological properties, 
in particularly, using the axioms of Kuratowski's closure (H) and interior (L) 
operators. Thus, the first-order rough logic system with operators L and H is 
developed!1]. The revision studied further by Lin and Liu considers a map /, it 
is defined as the map of one to one between boundary-line region in the logic 
and undefinable region in classical logic. Hence, the logic is proved to be sound 
and complete with the new intertation in the revision^. 

We bear in mind the idea of studying resolution reasoning. This paper will 
first establish a rough propositional logical system (RPLS) with operators (L) 
and (H) which are defined rough lower and upper approximate operators!1!; 
Next, the paper describes the resolution principle and the soundness of resolu- 
tion deduction in the logic. Hence, this paper is different from other systems, it 
focuses in the resolution reasoning, but not the logical systems based on rough 
concept. 

2 Rough Propositional Logical System 

Let w be a rough propositional formula, We will call m(w) C U the meaning 
of w.   Meaning sets of the formulas Lw and Hw with rough lower and upper 
approximate operators are defined as follows: 
(1). x satisfies w iff xem(w); 

°*The study is supported by national natural science fund and JiangXi Province natural 
science fund in China 
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(2). x satisfies Lw iff Vy{yeH(x) -> yem{w)), i.e... H(x) C rh(w); 
(3). x satisfies Hw iff 3y(»eJ(s) A yem(w)), i.e., H{x)f]m{w) ^ 0. 
Where H{x) is a equivalent calss containing x'1,2'. 

Well-formed formulas(Wffs): 
(1). All atomic formulas are Wff; 
(2). If w and u>i are W7//, then so are ~ w, w — u>i and Lw; 
(3).  The only W// are those obtainable by finite applications of (1) - (2) in 

the above. 
Other logical connectives V, A, *-* are defined by ~ and -* and operator H is 

defined by ~ and i'1'3'. 
Axiom Schemas 
Ai. r- w -* {wi —> w ); 
A2. I- (w —> (u»i -» it'o)) -» (w — t"i) ~* (w -* u'2); 
J43. h (~ u)i -»~ w2) —» (u>2 -» w'l); 
Aj. r- L(u»i —»u>2) -♦ (Iwi -^Liüo); 
,A5. h Z-iu —* w\ 
A6. h JJLtw --> CUJ- 

Rules of inference 
iJi. Modus Ponens (MP):From h uij —+ wo and h u>i, we have I- w2: 
i?2. L insertion (LI):From h i«, we have (- Lw. 
Where Ä2 means that Lw is valid if w is valid for all obserable world'1'. 
The semantics of the logic 
The semantic model of formulas in RPLS is defined as a triple: 

M -< W,E.m> ■     • '  - 
where W is a non-empty set of observable worlds'1', if each observable world 
are viewed as a state, then W is a state set'3'. R is a binary relation on W, 
such that VseW7, 3s'eW, (s, s')eR; m is a meaning function that assigns to each 
propositional variable p a subset m(p) of W. 
Given a model M we say that formla w is satisfied by a state s in model Af, 
written by (=, u> iff the following conditions are satisfied: 
(1). M |=j p iff s£m(p), where p is a propositional variable; 
(2). M \=,~w iff ~ AT (=, tw;       ■ 
(3). Af |=, ioi V w2 iff Af [=, u>i V Af (=, w2; 
(4). M \=, Wi A v>2 iff Af £=, Wi A Af |=2 u>2; 
(5). Af (=, w)j —+K»2 iff Af (=a~ i«! V u»2; 
(6). M \=, wi *-> u>2 iff Af (=, (ii>i —> ui2) A (ii»2 -* v>i); 
(7). Af |=, Lw iff WeW, if (s,»')e7Z then Af f=,. u>; 
(8). Af (=3 if 11» iff Bs'eW, (s\ «)cÄ A Af (=,' to. 

Given a model Af, for each formula w in RPLS, which is assigned a set of 
states in model Af, detoned by m(w) = {seW : M \=s to}. 
We introduce truth and validity of formulas. A formula v> is true in a model 
Af iff m(w) = W; A formula w is valid in RPLS iff w is true in every, model in 
RPLS; a formula w is satisfiable iff for some model Af and state s, Af |=, w; If 
w includes operators L and H, the description is also validable by (7) and (8). 
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3 Conjunctive Normal Form (CNF) 

Let w be a formula in RPLS, then there is a CNF corresponding to w^3'4' 

Ci A C2 A ... A C„ 

where n > 1 and each clause d is a disjunction of the general form: 

d = pi V ... Vpni V LQl V ... V Lqn2 V Erx V ... V Hrn3, 

where each p, is a literal; each qj is a disjunction, it possesses the general form 
of the clauses; rt is a conjunction, where each conjunct possesses the general 
form of the clauses. 
For examples, The following formulas are conjuctive normal forms: 
(1). i(pVgV#(rAt)); 
(2). ff((pV«)A~p); 
(3). ~pVpV L(r V s) V H((p V Lr) A e); 
(4). ~pV L(LpV (H(q A ir)) V H{L(H((Lq V Ht)Ar) V Lt)Ap). 
Any formula to in RPLS is transformed eqivalently into the conjunctive normal 
form. For example, w = L(p A H(q V L(r A t)) A (p -► L(g A ifi))) 
The followings are the procedure that is trasformed into CNF: 
(1). LpALH{qV{LrALt))A{p^L{qAHt)); 
(2). Lp A LH((q V Lr) A(?V Lt)) A (p -* (L(q A Ht)))\ 
(3). Lp A LH((q V Lr) A (q V it)) A (~ p V i(g A Ht)); 
(4). Ip A LH((q V £r) A (q V it)) A (~ p V (ig A ifft)); 
(5) Lp A LH((q V Lr) A {q V it)) A (~ p V ig) A (~ p V ifft). 
Where each conjunct is the general form of the clause. 

4 The Resolutions in the RPLS 

For any two clauses C\ and C2, if there is literal pi in Ci, that is complementary 
to a literal P2 in C2, then delete pi and p2 from Ci and C2 respectively, and 
construct the disjunction of remaining clauses. Therefore, we have resolution 
rule: 

C\   with pieCi 
C*2    with P2tC2 

(C1-{p1})U(C2-{p2}) 
(I) 

It is possible there are literals with operators i and H in the clauses of RPL, 
and Lp is complementary pair of literals to H ~ p. Hence following resolution 
is valid: 
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C\    with LpeC\ 
C2    with 77 ~ peC2 

(d - {Lp}) U (C2 - {77 ~ p}) 
(II) 

The forms of lower of level line of (7) and (77) are called resolvent obtained 
from C\ and C2- Hence the resolution principles in RPLS consist of (7) and 
(77). As an example, consider the following deductive resolution: 

(1) L(p V q) V Ci    premise 
(2) 77 ~ p V C2    premise 
(3) L ~ q V C3    premise 

(4) 77g V Ci V C2    using (1) and (2) 
(5) Ci V C2 V C3    using (3) and (4) 

Where fourth step (4) has a 77g, since premise (1): ~ (L(p V q) <-► (7p V Lq)), 
but 7(p V g) A 77 ~ p —> 77(p V gA ~ p). Hence, the resolution of using L(p V g) 
and H ~ p gets the resolvent J7g. 

5 Transformable strategies of the Resolutions 
in RPLS 

Let C\ and C2 be two clausee in RPLS, we can transform for them, so that we 
find out the complementary pair of literals in C\ and C2.  Therefore, we give 
the following transformable strategies: 
(1). T(p,~p) = R(p,~p); 
(2). T((d V C2), C3) = R(d, C3) V C2; 
(3). T(Ci A C2 A C3 A C4) = Ä(Ci, C3) A C2 A C4; 
(4). T(£C1,£C2) = IÄ(Ci,C2); 
(5). T(7C,

1)77C2) = FÄ(C1,C2); 
(6). T(7C1,C2) = Ä(C1,C2); 
(7). T(Ci VC,C2V C) = Ä(Ci, C2) V C V C"; 
(8). Substitution: 0 for every occurrence of (0 A C); C for every occurrence of 
(0 V C); 0 for every occurrence of 70 or J70. 
Where R(X, Y) denotes that X and Y is resolvable. 

6 Soundness of Resolution in RPLS 

Theorem 1 (soundness theorem) If there is a deduction of resolution of a clause 
C from a set of clauses, A, then A logically implies C.   ' 
Proof The proof is achieved by simple induction on the longer of resolution 
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deduction. For the induction, we need to show only that any given resolution 
step is sound. Suppose, C\ and C2 are arbitrary clauses, resolution of them 
produces a new clause C : (d - {pi}) U (C2 - {pz}) by (/) or C : (Ci - {Lp}) U 
(C2 — {H ~ p}) by (II). By induction assumption, \=s C\ and |=s C2, that is, 
C\ and C2 are true, we prove \=s C and \=, C, where seW, namely C and C" 

are also true. 
If |=, Lp, then ~)=s H ~ p, because lp and H ~ p is a complementary pair of 
literals in RPL, and so |=, (C2 - {H ~ p}). If |=, H ~ p, then ~|=5 Lp, and so 
(=, (Ci - {Lp}). But then (=ä C", that is, |=, (Ci - {Lp}) U (C2 - {H ~ p}). 
Similarly, we obtain |=s C, that is, |=s (Cj - {pi}) U (C2 - {p2})- 

Given a set of clauses, it can derive empty using resolution deduction, we 
call the resolution deduction a refutation. Such as, given the three clauses Lp, 
H(~ p V q) and L ~ 3, the deductive steps of them are as following: 

(1) Lp   premise 
(2).ff(~pVg)    premise 
(3) L ~ 5    premise 

(4) Jig    using (1) and (2) 
(5) 0    using (3) and (4). 

The theorem of soundness and completeness for Resolution refutation is 
vaild, that is, a set of clauses, A, is unsatisfiable iff A is refutable. 

7     Conclution 

We study the resolution of RPL, the aim is in order to establish a rough reason- 
ing system using resolution method. The operators L and H in the paper come 
from rough lower and upper approximate operator defined by Lin and Liu in the 
references'1'2!, they are different to necessary (□) and possible (O) operators in 
Modal Logic in the interpretation of semantis. 
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Abstract. We propose to use complex information granules to extract 
patterns from data in distributed environment. These patterns can be 
treated as a generalization of association rules. 

1    Introduction 

Notions of granule [15], [9] and granule similarity (inclusion or closeness) are 
very natural in knowledge discovery. The exact interpretation between granule 
languages of different information sources (agents) often does not exist. Hence 
closeness (rough inclusion) of granules is considered instead of their equality. 

For example, the left and right hand sides of association rules [1] describe 
granules and the support and confidence coefficients specify the inclusion degree 
of granule represented by the formula on the left hand side into the granule 
represented by the formula on the right hand side of the association rule. 

Reasoning in distributed environment requires a construction of interfaces 
between agents for learning of concepts definable by different agents. In this pa- 
per we suggest one solution based on exchanging views of agents on objects with 
respect to a given concept. An agent delivering concept is giving positive and 
negative examples (objects) with respect to a given concept. The agent receiv- 
ing this information can describe objects using its own attributes. In this way a 
data table (called a decision table) is created and the approximate description 
of concept can be extracted by the receiving agent. 

An analogous method can be used in case of the customer-agent (agent 
specifying tasks) searching for a top-level cooperating agent (root-agent). The 
customer-agent is presenting examples and counter examples of objects with 
respect to her/his concept. The concept specified by customer-agent is approxi- 
mated by agents and an agent returning the best approximation of the customer- 
agent concept is chosen to be the root agent. The goal of cooperating agents is 
to produce a concept sufficiently close (or included) to the concept specified by 
the customer-agent. This concept has to be constructed from some elementary 
concepts available for agents called inventory or leaf-agents [8]. This is realized 
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by searching for an agent scheme [8]. The schemes are represented in the paper 
by expressions called terms. 

We emphasize the fact of approximate (vague) understanding of concepts 
received by any agent from other agents. Our solution is based on rough set 
approach. We point out that our approach can be treated as an approach for 
extracting generalized association rules in distributed environment. 

2    Rough Sets and Approximation Spaces 

We recall general definition of approximation space [11], [13]. 

Definition 1. A parameterized approximation space is a system 
AS#t$ = (U,I#,v$), where 

— U is a non-empty set of objects, 
— I# :U -> P (U) is an uncertainty function and P (U) denotes the powerset 

ofU, 
— v$ : P (U) x P (U) -> [0,1] is a rough inclusion function. 

The uncertainty function defines for every object x a set of similarly described 
objects. A constructive definition of uncertainty function can be based on the 
assumption that some metrics (distances) are given on attribute values. For 
example, if for some attribute a € A there is a metric Sa : Va x Va —► [0, oo), 
where Va is the set of all values of attribute a then one can define the following 
uncertainty function 

y 6 Ifa
a (x) if and only if Sa (a (x), a (y)) < fa (a (x), a (y)), 

where fa:VaxVa-> [0, oo) is a given threshold function. 
A set X C U is definable in AS#t$ if it is a union of some values of the 

uncertainty function. 
The rough inclusion function defines the value of inclusion between two sub- 

sets of U [11], [9]. 
Now we can define the lower and the upper approximations of subsets of U. 

Definition 2. For a parameterized approximation space AS#$ = {U,I#,v$) 
and any subset X CU the lower and the upper approximations are defined by 

LOW {AS#tS, X) = {x&U:u% (J# (x), X) = 1} , 
UPP (AS#,t,X) ={xeU:v$ (I# (x),X) > 0} . 

Approximations of concepts (sets) are constructed on the basis of background 
knowledge. Obviously, concepts are also related to unseen so far objects. Hence 
it is very useful to define parameterized approximations with parameters tuned 
in the searching process for approximations of concepts. This idea is crucial for 
construction of concept approximations using rough set methods. In our notation 
#, $ are denoting vectors of parameters which can be tuned in the process of 
concept approximation. 

m^t 
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The presented above definition of approximation space can be treated as 
a semantic part of the approximation space definition. Usually there is also 
specified a set of formulas # expressing properties of objects. Hence we assume 
that together with the approximation space AS#t$ there are given 

- a set of formulas # over some language, 
- semantics ||»|| of formulas from #, i.e., a function from # into the power set 

P(U). 

Let us consider an example [7]. We define a language Lis used for elementary 
granule description, where IS = {U, A) is an information system. The syntax of 
Lis is defined recursively by 

1. (a G V) G Lis, for any aE A and V C Va. 
2. If a, ß G LJS, then a A ß G LIS. 
3. If a, ß G LJS, then a V ß G LIS. 

The semantics of formulas from Lis with respect to an information system 
IS is defined recursively by 

1. \\a e V\\IS = {x G U : a(x) € V}. 
2. ||aA/3||/s = |M|/sn||/3||/s. 
3. ||aV/3||/s = |H|/sU||/?||7S. 

A typical method used by classical rough set approach [7] for constructive 
definition of the uncertainty function is the following: for any object x G U there 
is given information IU/A (X) (information vector, attribute value vector of x) 
which can be interpreted as conjunction of selectors a = a (x) for a G A and the 
set 7# (x) is equal to \\f\a€A a = a (x)\\JS . One can consider a more general case 
taking as possible values of /# (x) any set ||a||/s containing x. Next from the 
family of such sets the resulting neighborhood I# (x) can be selected. One can 
also use another approach by considering more general approximation spaces in 
which i# {x) is a family of subsets of U [2], [6]. 

3    Mutual Understanding of Concepts by Agents 

One of the important task for Knowledge Discovery and Data Mining (KDD) 
[1], [4] in distributed environment is to develop tools for modeling mutual un- 
derstanding of concepts definable by different agents. Mutual understanding 
through communication is one of the key issues to enable collaboration among 
agents [5]. We assume agents specify their knowledge using data tables. 

3.1    Understanding of Concept Definable by Single Agent 

Let us consider two agents. There are two data tables I Si = (U, Ai) and 
J52 = ([/, {a}) corresponding to agents. We assume that a : U -> {0,1} is a 
characteristic function of a concept X = {x eU : a(x) = 1} . 
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In this, typical for rough set approach, situation the first agent is specifying 
the characteristic function of its concept on examples of objects. The second 
agent is trying to describe the concept using values of its own attributes from 
Ai on objects considered by the first agent. In this way it is constructed a 
decision table with condition attributes from Ai and the decision a. Next it is 
computed the lower and the upper approximation of the decision class X. The 
size of the boundary region of X with respect to Ai can be used a measure of 
uncertainty in understanding X by the agent with attributes A\. 

Closeness of X to its approximations in the language used by the first 
agent can be represented by accuracy of approximation, i.e., by the coefficient 

card{LOW(ASAl,X)) 
a{AbAl,X)- card{ypP(ASAitX))- 

The presented above approach can be used for learning by one agent of 
concepts definable by another agent. 

Let us consider again two agents. There are two data tables IS\ = (U, Ai) and 
IS2 = {U, A2) corresponding to agents. We assume that in both data tables there 
is the same set of objects U and A\ = {a{,... , a}} , and A2 = {of,... , a|} are 
two sets of attributes, where / > 0 and k > 0 are given natural numbers. Let us 
consider concepts definable by attributes from the set A2. For example suppose 
that we consider concept defined by formula (of = 1 A o\ = l) V a\ = 1. This is 
a concept definable by the second agent. Hence this agent can compute values of 
the characteristic function of the concept on objects from U and the first agent 
can find approximations of the concept following the procedure described above. 

In this way we define approximations by the first agent of concepts definable 
by the second one. 

Let us mention that the approximation operations are in general not dis- 
tributive with respect to disjunction or conjunction. Hence one can not expect 
to construct concept approximations of the good quality from approximation of 
atomic concepts (e.g. descriptors). 

3.2    Understanding of Concept Definable by Team of Agents 

Assume that a set of agents Ag = {agi,... ,agp} where p > 0 is a given natural 
number. Let us consider a data table ISag = (U,Aag) for any agent ag € Ag. 
We assume any agent from Ag is defining a concept X using the above proce- 
dure. One can construct a decision table DT with condition attributes being 
the characteristic functions of the lower and upper approximations of X defined 
by all agents from Ag and the decision being the characteristic function of X 
on given examples of objects. The lower and upper approximation of X with 
respect to condition attributes of DT describe the vagueness in understanding 
of X by agents from Ag. One can also use other features summarizing the result 
of voting by different agents. Examples of such features are the majority voting 
feature, accepting object as belonging to concept if the number of voting agents 
is greater than a given threshold or the characteristic function of the intersection 
of the upper approximations f)ageAg UPP (ASAag, X) or the intersection of the 
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lower approximations ^\ag^Ag LOW (ASAag,X). One can observe that in some 
cases the above intersections can be undefinable by single agent. 

The described problem is analogous to resolving conflict between decision 
rules voting for decision when they are classifying new objects. 

One can extend our approach to the case when e.g. one agent is trying to 
understand concepts definable by the second agent on the basis of understanding 
these concepts by the third agent. Common knowledge of a given team of agents 
about concepts definable by members of this team [3], [14], [10] can also be 
considered in this framework. 

One can also consider the discussed above new features as the characteristic 
functions of concepts definable in some new approximation spaces constructed 
from approximation spaces of agents from Ag. 

4    Rough Sets in Distributed Systems 

In this section we consider operations on approximation spaces which seem to be 
important for approximate reasoning in distributed systems. We consider a set of 
agents Ag. Each agent is equipped with some approximation spaces. Agents are 
cooperating to solve a problem specified by a special agent called customer-agent. 
The result of cooperation is a scheme of agents. In the simplest case the scheme 
can be represented by a tree labeled by agents. In this tree leaves are delivering 
some concepts and any non-leaf agent ag G Ag is performing an operation o (ag) 
on approximations of concepts delivered by its children. The root agent returns a 
concept being the result of computation by the scheme on concepts delivered by 
leaf agents. It is important to note that different agents use different languages. 
Hence concepts delivered by one agent can be only perceived in an approximate 
sense by another agent. 

We assume any non leaf agent is equipped with an operation 

o(ag) : Uag x ... x Uag -t Ua°g ■ Any agent ag together with an operation 

o (ag) has different approximation spaces ASag ,■■■ ,ASdg , ASag with universes 
U^g ,.■■ ,ui'g ,Uag^, respectively. We assume that the agent ag is perceiving 
objects by measuring values of some available attributes. Hence some objects 
can become indiscernible [7]. This influences the specification of any operation 
o (ag). We consider a case when arguments and values of operations are repre- 
sented by attribute value vectors. Hence instead of the operation o (ag) we have 

its inexact specification o* (ag) taking as arguments Iag' (xi),... ,Iag' (xk) for 
some xi G uig\... ,xk G Uaf and returning the value Iag (o(ag)(xi,... ,xk)) 
if o(ag)(xi,...,Xk) is defined, otherwise the empty set. This operation can be 
extended to the operation o* (05) with domain equal to the Cartesian product of 
families of definable sets (in approximation spaces attached to arguments) and 
with values in the family of definable set (in the approximation space attached 
to the result) 
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o* (ag) (X1,...,Xk)= U o* (ag) (Tlt... , Yk), 
Y1CX1,...,YkCXk 

where Y\,... ,Yk are neighborhoods of some objects in definable sets X\,... ,Xk, 
respectively. In the sequel, for simplicity of notation, we write o (ag) instead of 
o* {ag). 

This idea can be formalized as follows. First we define terms representing 
schemes of agents. 

Let Xag, Yag,... be agent variables for any leaf-agent ag 6 Ag. Let o (ag) de- 
note a function of arity k. We have mentioned that it is an operation from Carte- 
sian product of Def.Sets(ASi1g)),... ,DefSets(AS(ag]) into Def.Sets(ASiag

)), 
where DefSets(ASag) denotes the family of sets definable in ASl

ag. Using the 
above variables and functors we define in a standard way terms, for example 
t = o (ag) (o (agi) (Xagi, Yagi), o (ag2) (Xag2, Yag2)). Such terms can be treated 
as description of complex information granules. By a valuation we mean any 
function val defined on the agent variables with values being definable sets sat- 
isfying val(Xag) C Uag for any leaf-agent ag £ Ag. Now we can define the lower 
and the upper values of any term t under the valuation val with respect to a 
given approximation space of an agent ag 

1. If t is of the form Xag, then val [LOW^S^) (t) = LOW (ASi$\t>alOl)) 

and val (uPP,AS^>j (t) = UPP (A£$tval(tj) if val(t) C Uag, otherwise 

the lower and the upper values are undefined. 
2. If t = o(ag)(ti,... ,tk), where *i,... ,tk are terms and o(ag) is an operation 

of arity k then 

val (LOW,ASi°j) (t) = LOW (ASi°J,o(ag) [val (LOW,AS$) (h), 

...,val(LOW,AS<$)(tkj)), 

val (UPPASM) (t) = UPP (ASi°g\o(ag) (val (uPP,AS$) (h), 

...,val(uPP,ASif)(tk))). 

if val (LOW, AS$) (n),val (UPP, AS$) (U) C U$ for i = 1,... , k, oth- 

erwise val (LOW,ASL°A (t) and val (uPpASlty (t) are undefined. 

Example 1. We assume Ag = {ag,agi,ag2} and o(ag) is a binary operation of 
ag. Two information systems ISagi, ISag2 presented in Tables 1(a),(b) describe 
input information granules. We also consider operation o (ag) described in Table 
3. Two data tables DTX = (Ui,Ax U {di}) and DT2 = (U2, A2 U {d2}) described 
in Tables 2(a) and 2(b) characterize interfaces between agents agi,ag2 and ag. 
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di 

yi 1 
2/2 0 
«/3 1 
2/4 0 

d2 

Zl 1 
^2 1 
Z3 1 
24 0 

Table 1. (a) Information System ISagi (b) Information System ISa 

Ui a[ a2 ai di 

2/1 yes yes no 1 

V2 no yes no 0 
2/3 no yes no 1 

2/4 no no yes 0 

u2 a{ 
•1 a2 a3 di 

Z\ yes yes yes 1 
Z2 yes yes yes 1 
«3 no no yes 1 
Z4 no no yes 0 

Table 2. (a) Data Table DTi (b) Data Table DT2 

The first four columns of Table 2(a) (2(b)) define information system I Sag 

(I Sag) corresponding to the approximation space ASig  (ASag)- 

Lett = o (ag) (Xagi, Xag2) and val (Xagi) = {y±, y3 } . Hence 

val (WW,AS$) (Xa9l) = LOW (AS$,{ylty3}) = ft/i} , 

val (uPP,ASag]) (Xagi) = UPP (AS$,{Vi,Va}) = {2/1,2/2,2/3} • 

Let val (Xag2) = {zi,z2,z3} . Hence 

val (LOW, AS®) (Xag2) = LOW (AS®,{zltz2,z3}) = {*i, *a} , 

val (UPP,AS$) (Xag2) = UPP(ASa
2g\{zuz2,z3}) = {z1,z2,z3,zi} . 

We obtain o (ag) ({j/i} , {zu z2}) = 

o(ag) \J\a\ = yes Aa\ = yes Aa\= Hl/s<y ' IK = 2/esll/s<2
s>) - Hd = +H/s<°> • 

o(ag) ai „1 a2 
„1 a3 af •2 a2 ai d 

(yuzi,wi) yes yes no yes yes yes + 
(yuz3,w2) yes yes no no no yes + 
(y2,z2,w3) no yes no yes yes yes + 
(y3,Zi,W4) no yes no no no yes - 
(j/4,Zl,W5) no no yes yes yes yes - 
(y4,Z4,w6) no no yes no no yes - 

Table 3. Operation o(ag) 
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The support of the rule if t then d = + under the valuation val with respect to 

the lower approximations is equal to card (val {LOW, ASiJ) (t) l~l ||d = +||/s<o) J 

= 1 and the confidence is also equal to 1. 
We also obtain o(ag) ({2/1,2/2,2/3} , {ZI,Z2,Z3,Z4L}) = 

o(ag) (\\al =yes\\Ism , ||o? =yesVal = no\\IsmJ = {w1,w2,w3,wi}. 

The support of the rule if t then d = + under the valuation val with respect to 

the upper approximations is equal to card (val WPP, ASag J (*) n \\d = +||/sw J 

= 3 and the confidence is equal to 0.75. 

Let us observe that the set val(UPP, AS$)(t) - val(LOW, ASi°J){t) can be 
treated as the boundary region of t under val. Moreover, in the process of term 
construction we have additional parameters to be tuned for obtaining sufficiently 
high support and confidence, namely the approximation operations. 

A concept X specified by the customer-agent is sufficiently close to t under 
a given set Val of valuations if X is included in the upper approximation of t 
under any val e Val and X includes the lower approximation of t under any 
val e Val as well as the size of the boundary region of t under Val, i.e., 

card(   pi    val(UPP,ASi°j)(t)-    [j    val (LOW, AS™) (t) J , 
\valeVal valeVal / 

is sufficiently small relatively to f)vai€Val val {UPP,ASi°J) (t). 
We conclude by formulating some examples of basic algorithmic problems. 

- Synthesis of generalized association rules. Searching for a scheme (term t) 
over a given set Ag of agents and for a valuation val such that the rule if t 
then a, where a is a concept description specified by customer-agent, has 
the support at least s and the confidence at least c under the valuation val. 

- Synthesis of complex concepts close to the concept specified by the customer- 
agent. Searching for a scheme (term t) over a given set Ag of agents and a 
set Val of valuations such that the concept specified by the customer-agent 
is sufficiently close to t under Val and the total size of the term t and the 
set Val is minimal. 

Conclusions 

Our approach can be treated as a step towards understanding of complex in- 
formation granules in distributed environment. The approximate understanding 
of concepts definable by agents in the language of other agents is an important 
aspect of our approach for calculus on information granules. In our next paper 
we will present bounds on the complexity of the above formulated problems as 
well as heuristics for solving them. 
Acknowledgments. This research was supported by the Research Grant of the 
European Union - ESPRIT-CRIT 2 No. 20288 and the grant No. 8 T11C 023 15 
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Abstract. This paper proposes an evolutionary approach for discover- 
ing difference in the usage of words to facilitate collaboration among 
people. When people try to communicate their concepts with words, 
the difference in the meaning and usage of words can lead to misun- 
derstanding in communication, which can hinder their collaboration. In 
our approach each granule of knowledge in classification from users is 
structured into a decision tree so that difference in the usage of word can 
be discovered as the difference in the structure of tree. By treating each 
granule of classification knowledge as an individual in Genetic Algorithm 
(GA), evolution is carried out with respect to the classification efficiency 
of each individual and diversity as a population so that difference in the 
usage of words will emerge as the difference in the structure of decision 
tree. Experiments were carried out on motor diagnosis cases with artifi- 
cially encoded difference in the usage of words and the result shows the 
effectiveness of our evolutionary approach. 

Keywords: usage of words, classification, decision tree, evolutionary approach 

1    Introduction 

In accordance with the need for dealing with large-scale and complex problems, it 
is required to support collaborative works among people through the interaction 
between people and machine since people often form a team to tackle such a 
problem. Generally different people seem to have different ways of conception 
and thus can have different concepts even on the same thing. When people try 
to communicate their concepts with abstract or vague words, such a difference in 
the meaning or usage of words can lead to misunderstanding in communication, 
which can hinder their collaboration. Difference in the usage of words can also 
be reflected on the description of data in large scale databases, which are often 
be constructed with the participation of many people. 

This paper proposes an evolutionary approach for discovering difference in 
the usage of words to facilitate collaboration among people. Although words 
can be utilized to represent meaning at various level, i.e., abstract or concrete 
meaning in general, this paper focuses on dealing with the difference in the us- 
age of symbol for concept. When users specify their classification knowledge as 
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diagnosis cases, which are represented with the symbols for attributes, values 
and classes, they are structured into decision trees so that the trees reflect their 
conceptual structure of diagnostic knowledge. By treating each granule of clas- 
sification knowledge as an individual in Genetic Algorithm (GA), this paper 
proposes to carry out evolution with respect to the classification efficiency of 
each individual and diversity as a population so that the difference in the usage 
of words will emerge as the difference in the structure of decision tree. 

2    Framework of Discovering Difference in the Usage of 
Words 

2.1 Difference in the Usage of Words 

This paper focuses on dealing with the difference in the usage of words which 
represent conceptual meaning at the symbol level. Hereafter we call such a dif- 
ference as "conceptual difference". Usually different symbols are used to denote 
different concepts, however, the same symbol can be used to denote different 
concepts depending on the viewpoint in which the symbol is used. In contrast, 
different symbols can be used to represent the same concept. The types of con- 
ceptual difference dealt with in this paper are defined as follows: 

- Type 1: different symbols are used to denote the same concept. 
- Type 2: the same symbol is used to denote different concepts. 

Suppose there are an expert in electric engineering called Adam and an expert 
in mechanical engineering called Bob. When they carry out the diagnosis of 
motor failure, Adam might point out "anomaly in voltage frequency" and Bob 
might point out "anomaly in revolutions" for the same symptom. The above two 
symbols or terms represent different concepts in general, however, they can be 
considered as denoting the same concept when they are used in the context of 
the diagnosis of motor failure. 

2.2 Discovering Conceptual Difference 

The kind of problem which can be dealt with in our approach is classification 
such as diagnosis and the class of cases is determined based on the attributes 
and values, which characterizes the cases [3]. The system tries to construct the 
decision tree for cases which is most effective for their classification based on the 
information theory. A node in decision trees holds the attribute to characterize 
cases. Each link below a node holds the value for the attribute at the node and 
cases are divided gradually by following links. The class of cases is determined 
at the leaf which is reached as the result of link following. We utilize ID3 al- 
gorithm [5] to construct decision trees since it is fast and thus is suitable for 
interactive systems. 

The system architecture which incorporates the descovering method in this 
paper is shown in Fig 1. Currently the system requires that two users represent 
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their knowledge as cases with their respective symbols for them. By accepting the 
cases as input the system constructs decision trees for them and tries to detect 
conceptual differences in attributes, values and classes based on the structural 
differences in trees. Since there are 2 types of conceptual differences for 3 entities, 
the system tries to discover 6 kinds of conceptual differences and shows the 
candidates for them in the descending order of the possibility to users. The 
system also displays the decision trees for cases. Visualizing their knowledge as 
concrete decision trees is expected to help them modify their knowledge and to 
stimulate further conception. Based on the result from the system users discuss 
each other to change their concepts toward reducing conceptual differences and 
modify input data to the system. The above processes are repeated interactively 
to remove conceptual difference gradually. In future we plan to extend the system 
so that it be applicable to more than two users. 

?" 
?' 

f      Decision Tree Producing Module        J r 
f Conceptual Difference Detecting Module 1 

... I     Candidates for Conceptual Difference     | 

Fig. 1. System Architecture 

2.3    Discovery Algorithms for Conceptual Difference 

The algorithms are designed based on the role of the symbols for the classification 
of cases, which is discovered from the structural characteristics of decision trees 
This section briefly explain the key idea for discovering conceptual difference in 
our approach. The details of the algorithm are described in [4, 2, 7]. Hereafter 
the set of cases from each user and that of synthesized cases are called as A, B, 
A+B, respectively. 

Conceptual difference for class sysmbol is defined as: 

Cl : different symbols are used to denote the same class 
C2 : the same symbol is used to denote the different classes 

These are discovered based on the "inconsistency in the classification knowledge" 
for cases in A+B. Cl is discovered when different sysmbols are used as the class 
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symbol for the cases with the same value for each attribute. C2 is discovered 
when the same symbol is used as the class symbol for the cases with the different 
value and/or attribute. 

The algorithms for 

Al : different symbols are used to denote the same attribute 
A2 : the same symbol is used to denote the different attributes 
VI : different symbols are used to denote the same value 
V2 : the same symbol is used to denote the different values 

are defined similarly based on the structure of decision tree [7]. 

3 Discovery Method for Conceptual Differences based on 
Diverse Structures 

3.1 Problems in Utilizing ID3 

In general there can be several decision trees with the equivalent classification 
for a set of cases, however, ID3 algorithm constructs the most simple tree in the 
sense that classification is carried out as fast as possible at the upper nodes in 
a decision tree by reducing the redundant information held in the cases. Since 
the time complexity of ID3 algorithm is not heavy, it is suitable for interactive 
systems. However, reducing redundant information held in a set of cases can- 
not always be advantageous for the aim of our approach, namely, discovering 
conceptual differences among people. With ID3 algorithm, attributes which do 
not contribute to classifying cases are not represented in the decision trees, even 
if they are utilized in the representation of the cases to denote the knowledge 
held by users. Since such an attribute is not represented in the decision tree, 
it is impossible to discover conceptual difference for the attribute or the values 
for it by comparing the decision trees. This implies that sometimes it would be 
impossible to discover the difference in concpet as the difference in structure 
when the structure is constructed by ID3 algorithm. 

3.2 Constructing Decision Trees with Diverse Structures 

Genetic Algorithm (GA) is utilized in our approach to construct decision trees 
with diverse structure so that effective decision trees can be sought in search by 
preserving the accuracy in the classification of cases. Hereafter, in decision trees 
the node in which the class of cases is determined is called a "leaf node", and 
the node in which the attribute of case is tested is called a "condition node". 

Coding, Crossover and Mutation We employ GA with tree structure, which 
is often used in Genetic Programming, for constructing decision trees [6, 1] A 
node in a decision tree is represented as a gene in the coding of genetic informa- 
tion. The gene for a condition node contains the information for the position in 
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a decision tree and the attribute to judge the branch in the decision tree. The 
gene for a branch contains the value for the attribute above the branch, which 
indicates the branch to follow in the decision tree. 

Crossover is carried out by exchanging partial trees, as shown in Figure 2. A 
partial tree is denned as the tree which has a condition node as its root. Mutaion 

Fig. 2. Crossover by exchanging partial trees 

is carried out by randomly selecting several childen which are constructed by 
crossover and coping them. Arbitrary nodes in these copied trees are specified as 
crossover points and the partiall trees below the nodes are replaced with either 
other partial tree or a leaf node. 

Survival Strategy It is desirable to leave the set of decision trees for the next 
generation, each of which has high accuracy for the classification of cases and 
their structures are as different as possible. The following two criteria are utilized 
as the survival strategy in GA to select decision trees for the next generation. 

(1) Error Rate 
"Error rate" is defined as the index which 

- decreases when cases are classified into one class at shallower depth 
- increases when cases are not classified into one class even at deeper depth 

The decision tree with small error rate has better capability for classification. 
Error rate is calculated as shown in Fig 3. First, cases are classfied by a 

decision tree and stored into the leaf nodes in the tree at which the class of 
case is determined. Error rate for a leaf node is determined depending on the 
capability of the classification of cases along the path from the root to the leaf 
node and assigned as: 

- "0" when a leaf node has only the cases with the same class. 
- "nc - 1" when a leaf node has cases with multiple classes (#class is nc). 
- "Nc" (the number of all classes) when a leaf node has no case. 

The above calculation of error rate treats the leaf node with no case as the worst 
one and penalizes a leaf node more severely when it has multiple classes. 
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depthd-1 

—I— #class = l #class =0 

#class= "V 

Fig. 3. Calculation of error rate 

As for a condition node, all the error rates assigned to its childlen are summed 
and then divided by the number of branches, which is number of values for 
the attribute at the condition node. Taking the average of error rates below a 
condition node contributes to alleviating the difference in error rates, which will 
arise due to the difference in the number of values for each attribute. The average 
is multiplied by "d - 1" (d is the depth of the condition node in the tree) and 
assigned as the error rate for the condition node. The depth of root in a tree is 
treaed as 1. Utilizing the depth of node as multiplying the average by "d - 1" 
contributes to reflecting the efficiency of classification. 

The equations for calculating error rate are summarized as follows: 

- Error rate at leaf nodes 
number of class 1 • • • 0 
number of class nc(> 2) • • • nc — 1 
number of class 0 • • • Nc(> nc) (the number of all classes) 

- Equations for error rate at condition nodes 

E=        (E^o^)K (d=l) 

d: depth of node nv: number of values ev: error rate for each child node 

(2) Mutual Distance between Decision Trees 
"Mutual distance between decision trees" is utilized to measure the degree 

of divergence in structure for a set of decision trees. It is calculated by summing 
up the distance for each pair of decision trees in the set. A set of decision trees 
with larger mutual distance has more divergence in structure and thus has the 
possibility of including the attribute or value which cannot be represented in a 
single decision tree. 

An example of the calculation of distance between decision trees is shown in 
Figure 4. Suppose the number of all the decision trees is Nt and the number of 
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decision trees which are left for the next generation is nt. First, a set of decision 
trees is constructed by picking up nt decision trees from all the decision trees. 
Then, two decision trees are selected from the set. After that, vectors of size na 

(which is the number of attributes in these trees) are constructed for each tree. 
Vectors are prepared for each depth in the trees. 

depth 1 

index of Attribute 

veclla 

vecl2a 

vecl3a 

X 1 z 3 

depth of 
node 

i 1 0 0 
2 0 1 1 

' 3 0 0 0 

10 10 

_2 _£__£_ _1 
3   10   0 

vec2la 

vec22a 

vec23a 

Distance =2 + a +a 

Fig. 4. Calculation of the distance between decision trees. 

The value of element in a vector is set to "1" when the attribute for the 
element exists at the condition node with the depth; otherwise it is set to "0". 
Then, the vectors with the same depth are compared and the number of elements 
with different value is counted. Since the number of condition nodes grows in 
accordance with the depth in general, the attribute for the condition node with 
small depth is considered as significant. Thus, the result of counting is multiplied 
by the weight which is in inverse proportion to the depth of vector to reflect the 
degree of significance of each attribute. The above operations are carried out for 
all the combination ntC2 of each pair of decision trees and the result is treated 
as the mutual distance for a set of decision trees. 
Equation for the mutual distance of decision trees 

nt <?2    D na 

Dist. — ^2 ^]{ad_1 ^2 \vec^-d,a - vec2d>a\} 
d=l o=l 

nt'- #decision trees in one generation na: #attributes in decision trees 
a(< 1): weight for the depth of node D{= na)- maximum depth of condition node 

4    Experiments and Evaluations 

A prototype system has been implemented on the UNIX workstation with C lan- 
guage. The experiments on motor diagnosis cases were carried out to evaluate 
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the approach in this paper. In experiments two persons specified their knowledge 
in the form of 100 cases (as shown in Fig ??), which were composed of six at- 
tributes, two or three values and five classes, respectively. Conceptual differences 
are artificially encoded into the cases in B by modifying the original cases. 

Experiments were carried out in the condition that two kinds of conceptual 
difference occured at the same time in the test cases to see the interaction and/or 
interference between the algorithms. As the quantitative ealuation, the number 
of discovery and its probability of discovery up to the third candidate were 
collected in the experiments both for the system with ID3 and that with GA. 
As described in Section 2.2, conceptual difference is resolved by repeating the 
interaction between the suggestion by the system and the modification of cases 
by the user in our approach, however, the result for the first cycle of suggestion by 
the system was focused on in the experiments. Summary of the result of discovery 
is shown in Table 4 and Table 4. The result shows that the system with ID3 can 

Table 1. Result with ID3. 

number 
of 

trials 

1st 2nd 3rd probability 
of 

discovery 

Cl 
C2 

20 20   0 
18   0 

0 
0 

100% 
90% 

Cl 
A2 

30 17   1 
5    3 

0 
7 

60% 
50% 

Cl 
V2 

30 30   0 
52   0 

0 
0 

100% 
87% 

C2 
VI 

30 22   0 
24   4 

1 
0 

77% 
93% 

Al 
A2 

30 12   13 
6    3 

3 
7 

93% 
53% 

Al 
V2 

30 12   11 
45   2 

7 
6 

100% 
88% 

Table 2. Result with GA. 

number 
of 

trials 

1st 2nd 3rd probability 
of 

discovery 

Cl 
C2 

20 20   0 
18   0 

0 
0 

100% 
90% 

Cl 
A2 

30 30   0 
19   6 

0 
2 

100% 
90% 

Cl 
V2 

30 30   0 
52   8 

0 
0 

100% 
100% 

C2 
VI 

30 23    1 
30   0 

0 
0 

80% 
100% 

Al 
A2 

30 14   10 
20   8 

4 
2 

93% 
100% 

Al 
V2 

30 20   9 
38  22 

1 
0 

100% 
100% 

accurately discover conceptual difference for Cl and Al. However, it cannot 
discover other kinds of conceptual difference with high accuracy, for instance, 
the probability of discovery remains at 50 % for A2. It is noticed that conceptual 
difference is suggested as the first to third candidate. On the other hand, the 
system with GA can discover conceptual difference more accurately in general, 
and conceptual difference is suggested as the higher rank in candidates. These 
results show that the structures which are suitable for our discovery algorithms 
are not necessarily represented in the decision trees with ID3. Thus, diverse 
structure with GA can be said to contribute to improving the peformance of 
discovery of conceptual difference. Suggesting conceptual difference as the first 
candidate will also contribute to reducing the possibility of suggesting conceptual 
difference erroneously. Moreover, utilizing the average of discovery over multiple 
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decision trees might make the system with GA more robust for noise due to the 
statistical effect of averaging. 

The experiments show that utilizing diverse structures with GA is superior to 
that with ID3 for the construction of decision trees with respect to the precision 
of discovery for conceptual difference. On the other hand, with respect to the 
computation complexity, ID3 takes much less times than GA and thus is suitable 
for the interactive system. 

5    Conclusion 

This paper has proposed an evolutionary approach for discovering difference in 
the usage of words to facilitate collaboration among people. In our approach 
knowledge of users is structured into decision trees and candidates for concep- 
tual difference are suggested based on the structural characteristics of decision 
trees. By pointing out the problem in utilizing deterministic approach for the 
construction of decision trees, this paper has proposed to carry out evolution 
with respect to the classification efficiency of each decision tree and diversity 
as a population. Experiments were carried out on motor diagnosis cases with 
artificially encoded conceptual difference. The result shows that our approach is 
effective to some extent as the first step for dealing with the issue of conceptual 
difference toward facilitating collaboration among people. 
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Abstract. In AHP, there exists the problem of pair-wise consistency 
where evaluations by pair-wise comparison are presented with crisp value. 
We propose the interval AHP model with interval data reflecting Rough 
Set concept. The proposed models are formulated for analyzing interval 
data with two concepts (necessity and possibility). According to necessity 
and possibility concepts, we obtain upper and lower evaluation models, 
respectively. Furthermore, even if crisp data in AHP are given, it is il- 
lustrated that crisp data should be transformed into interval data by 
using the transitive law. Numerical examples are shown to illustrate the 
interval AHP models reflecting the uncertainty of evaluations in nature. 
Key-word: AHP, Evaluation, Rough sets concept, Upper and lower 

models, Intervals 

1    Introduction 

AHP(Analytic Hierarchy Process) proposed by T.L.Sattyfl] has been used to 
evaluate alternatives in multiple criteria decision problems under a hierarchical 
structure and has frequently been applied to actual decision problems. Satty's 
AHP method is based on comparing n objects in pairs according to their relative 
weights. Let us denote the objects by Xi,..., Xn and their weights by wi,..., wn 

. The pair-wise comparisons can be denoted as the following matrix: 

/ Xi Xi . ■ Xn\ 

Xi 

x2 
W\     W2 
W-2     Wi 

W\ 
' wn 

Wi 
' wn 

\xn 
Wn    Wn 

W\     Wi wn 1 

which satisfies the reciprocal property a,-,- = ■£-. . If the matrix A satisfies the 

cardinal consistency property aijajk = aik , A is called consistent. Generally, A 

is called a reciprocal matrix. 
According to Satty's method, we have 

Aw = Xw 
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where a weight vector w can be obtained by solving the above eigenvalue prob- 
lem. 

Now suppose that the pair-wise comparison ratios are given by intervals, 
although they are real numbers in the conventional AHP. Intervals scales are 
estimated by an individual as approximations. In AHP, the ratio scale for pair- 
wise comparisons ranges from 1 to 9 to represent judgment entries where 1 is 
equally important and 9 is absolutely more important. It should be noted that 
the reciprocal values a,-,- = ^ are always satisfied. As an example of interval 

ratios, we can give an interval Aij = [3,5] and then, Aji must be [|,|]. AHP 
with fuzzy scales has been studied by C.H Cheng and D.L. Mon[2] where fuzzy 
scales are transformed into ordinal scales. Considering fuzziness of scales, sensi- 
tivity analysis for AHP has been done in [3]. 

In this paper, we propose an interval AHP model, given interval scales as pair- 
wise comparison ratios. Dealing with interval data, we can obtain the upper and 
lower models for AHP which are similar to Rough Sets Analysis [4]. Even when 
crisp data are given, interval data can be obtained from crisp data by using the 
transitive law. Thus, our proposed method can be described as reflecting the 
uncertainly of evaluations in nature. Our method resorts to linear programming 
so that interval scales can easily be handled. This approach to uncertain phe- 
nomena has been used in regression analysis and also identification of possibility 
distributions^]. Numerical examples are shown to illustrate the interval AHP 
models. 

2    Interval AHP 

Let us begin with interval scales in a reciprocal matrix denoted by Aij = 

a,j,5jj   where a,j and äjj are the lower and upper bounds of the interval Aij. 

The reciprocal property is represented as 

&i» — 
Qji 

j "ij (1) 
Uj, 

Reflecting interval scales, let us suppose that weights are found as interval 
weights Wij by 

Wj    wl 
Wij = 

Wj    Wj 
(2) 

where Wi and W{ are the lower and upper bounds of the interval weight Wi = 
[«;,-, wi]7 Given an interval matrix [A] denoted as 

[A] = 

(An Au ■■■Aln\ 
A21  A22  ■ ■ ■ A2n 

\A„i An2 ...Ann) 

(3) 
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the problem under consideration is to find out interval weights W = [u^.W] 
which can be an approximation to the given interval matrix [A] of (3) in some 
sense. Since we deal with interval data, we can consider two approximations 
shown in Fig.l as follows. The lower and upper approximations should satisfy 

Upper 

WLc[A]cwu 

Fig. 1. Upper and lower approximations 

the following constrain conditions 

(4) 

,tJ^JV_._  (5) 

where Wf< and W-j are the estimations of lower and upper intervals. (4) and (5) 
can be rewritten as 

Wk C [Aij] (LowerApproximation) 

WE 2 [Aij] (UpperApproximation) 

Wk C [Aij] «—► a 
Wi Wi       — 

■ij < — <   < aÜ J Wi Wi 

W? 2 [Aij] 

üijWj > Wi,   OijWj < W£ 

Wi  wl 
= < aij <. aij <. — 
Wi Wi 

aijWj < Wi,   Wjüij > Wj_ 

(6) 

(7) 

Now let us consider how to normalize an interval vector (W\,..., Wn) , al- 
though in the conventional AHP a weight vector is normalized so that its com- 
ponents sum to unity. The conventional normalization can be extended into the 
interval normalization^] defined as follows: 

An interval weight vector (Wi,..., W„) is said to be normalized if and only if 

(8) 

(9) 

2_]Wi — max (Wj — Wj j > 1 
i 

2_] Wi_ + max (wj — Wj J < 1 
> 

(8) and (9) can be described as 

Vj wj_ > 1 -    Yl   W 
ien-{j} 

(10) 
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Vj wj < i — yj w, 
<6ß-{i} 

(11) 

where Q — [1,..., n]. Using the concepts of "Greatest Lower Bound" and "Least 
Upper Bound", we can formulate the lower model and the upper model, respec- 
tively. The concept of two approximations is similar to Rough Set concept. 

(12) 

< Lower Model > 

Max ]P (Wi - Wj) 

subject to 

Vi',j'(i^ j) äijwj > wj 

V», j (i # j) OijWj > Wi 

Vj Wj > 1 —    2_,    ^H 
ien-{j} 

Vj Wj < 1 —       2_)      wi 
•€ß-{i} 

Vt Wi < Wi 

Vi Wi,Wi> 0   Vi 

< Upper Model > 

Min yj (wi — Wj) 

subject to 

V i, j (i ^ j) 

Vi,i(«'#i) 

Vi 

Vi 

Vi 

dijWj < W{ 

wjaij > Wi VjUij  ^ 

Wj_> 1 

wj< 1 

ien-{j} 

£ 
>'€ß-{j} 

Wj < W{ 

Wi,Wi > 0 

Examplel: 
The pair-wise comparisons matrix is given as: 

/    1     [1,3]   [3,5]   [5,7] [5,9]\ 
[§,l]     1     [|,2]  [1,5] [1,4] 

[A]=     [UHI.2]     1     [|,3][2,4] 
[UHMtM]     1     [1,3] 

V [*■ in*, m IHi.l] 1 ) 

(13) 

(14) 
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Using the lower and the upper models, we obtained the interval weights shown 
in Table 1. 

Table 1 Interval weights obtained by two models (Example 1) 
Alternatives   Lower model Upper model 

Wi [0.4225,0.5343] [0.3333,0.3750] 
W2 [0.1781,0.2817] [0.1250,0.3333] 
w3 [0.1408,0.1408] [0.0417,0.2500] 
WA [0.0763,0.0845] [0.0536,0.1250] 
W5 [0.0704,0.0704] [0.0417,0.1250] 

It can be found from Table 1 that the interval weights obtained by the lower 
model satisfy (6) and the interval weights obtained by the upper model satisfy 
(7) . The obtained interval weights can be said to be normalized, because (8) 
and (9) hold. 

3    Interval scales by transitivity 

If a consistent matrix A is given, the following consistency property holds: 

Vi, j  dij = ctikcikj (15) 

However, this property does not hold in general. Therefore, interval scales can 
be obtained by transitivity from crisp scales. Denote an interval scales Ay as 
A{j = [ aij,äjj] and an interval matrix [A] as [A] = [A{j] . Given a crisp matrix 
A, the interval matrix [A] can be obtained as follows: 

a.j = miny (aik ■ ■ ■ aij) (16) 

57/" = maxv (aik ■ ■ ■ ay) (17) 

where V is a set of all possible chains from i to j without any loops. 

Example2: 
Let us start with a crisp scale matrix as follows. 

/I 3 3 57\ 
±1123 
| 1 1 1 3 

ft113 v i i i i i / \7333V 

Using (16) and (17), we obtained the interval matrix [A] . 

(18) 

[A} = 

1       [1,5] 
ill]       1 
ri «i [.L 
L6> 7J    L18' 

1.6' 71 L 15 ' 7J Ll8' 7J 
I r_L £1 [i I] [I 61 
\ Ll8' 2J L6' 7J  L6' 7J 

[1-6]    [1,6]   [f. 18] \ 
it mum [f,6] 

3J 
rz ill 
L9'   7 J 

1 
[I   61 
L3' 7J 

[1,6] 
[1,3] 

1 

(19) 
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We applied the interval matrix (19) to the lower and the upper models and 
obtained the interval weights shown in Table 2. 

Table 2 Interval weights obtained by two models (Example2) 
Alternatives   Lower model Upper model 

Wi [0.2972,0.5868] [0.2967,0.4723] 
W2 [0.1528,0.2547] [0.0945,0.2543] 
w3 [0.0991,0.2547] [0.0787,0.2543] 
W4 [0.1189,0.1274] [0.0787,0.1272] 
w5 [0.0425,0.0660] [0.0262,0.0675] 

Example3: 
Let us consider the binary problem shown in Fig.2 where © -> ® means that 

Fig. 2. Binary Problem 

i won against j. It is assumed that the value of 2 is assigned to wins and also the 
value of \ is assigned to defeats. Then we obtain the matrix A with unknown 
scales denoted as *. 

A = 

/l2 2 |\ 
|l* * 
|*12 

V2 * § 1/ 

(20) 

Using transitivity (16) and (17), we have 

[A} = 

(    1 
l 

4>' 

2        ,2 

1     [IX 
[1,8]     1 

i   4 

r2 
L4>2j 

(21) 

We applied the interval matrix (21) to the lower and upper models and obtained 
the interval weights shown in Table 3. 
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Table 3 Interval weights obtained by two models (Example3) 
Alternatives   Lower model Upper model   

Wi [0.2500,0.2500J [0.0909,0.3636] 
w2 [0.1250,0.1250] [0.0455,0.1818] 
w3 [0.1250,0.3723] [0.0909,0.3636] 
w4 [0.2527,0.5000] [0.0909,0.3636] 

4    Concluding Remarks 

In the conventional AHP, pair-wise comparisons range from 1 to 9 as ration 
scale. Therefore the scales range from | to 9. If we use transitivity (16) and (17), 
the upper and lower bounds of interval scales obtained by (16) and (17) may be 
not within the maximal interval [±,9]. Thus, instead of (16) and (17), we can 
use 

a,j = min f (aik ■ ■ ■ atj) (22) 

äjj = ma.xf(aik---aij) (23) 

where the function / (x) is defined by 

{I; for x which is less than | 
x; for x which is within[§, 9] (24) 
9; for x which is larger than 9 

Instead of the function /, the geometric mean can be used to obtain interval 
scales. 
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Abstract. Interval density functions are non-additive probability mea- 
sures representing sets of probability density functions. Pawlak proposed 
a novel approach called conflict analysis based on rough set theory. In 
this paper, we propose a new approach of presenting expert's knowledge 
with interval importances and apply it to conflict analysis. It is assumed 
that the importance degrees are given for representing expert's knowl- 
edge. Using conditions of interval density functions, we represent many 
experts' knowledge as interval importance degrees. A simple example of 
the new introduced concepts is presented. 
Keyword: Interval density functions; Decision analysis; Rough sets; Con- 
flict analysis 

1    Introduction 

Interval density functions (IDF)[1] are non-additive probability measures repre- 
senting sets of probability density functions. An interval density function consists 
of two density functions by extending values of conventional density function to 
interval values, which do not satisfy additivity. 

Conflict analysis plays an important role in many real fields such as busi- 
ness, labor-management negotiations, military operations, etc. The mathemat- 
ical models of conflict situations have been proposed [2][3] and investigated. 
Conflicts are one of the most characteristics attributes of human nature and a 
study of conflicts is important theoretically and practically. It seems that fuzzy 
sets and rough sets [4] are suitable candidates for modeling conflict situations 
under the presence of uncertainty. 

In this paper, we propose a new approach of presenting expert's knowledge 
with interval importances and apply it to conflict analysis. It is assumed that an 
expert's knowledge is given as a relative importance for each attribute. When 
there are plural experts, their knowledge is formulated as an interval importance 
using interval density functions. Then, a conflict degree between two agents has 
an interval value. 
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2    Interval Density Functions 

In this section, we introduce the concept of interval density functions [1]. Proba- 
bility distributions have one to one correspondence with their density functions. 
A probability density function d : X -* 3J on the disjoint finite universe X is 
defined as: 

Vx € X,   d{x) > 0, ^ dW = L 

rex 

Then the probability of the event A is gives as: 

xeA 

For all A, B C X, the additivity holds as follows: 

Anß = 0   =>•   P{AU B) = P(A) + P{B). 

Interval density functions being non-additive probability measures are defined 
as follows: 

Definition 1 (A interval density function on the disjoint finite universe): A 
pair of functions (ht, h*) satisfying the following conditions is called an interval 
density function (IDF): 

h„ h* : X -> 3?; Vx' € X, h*{x') > /i.(x') > 0, 

(I)  £ M*) + (*V) " M*')) < L 
xex 

(ii) 5>*(*)-(ÄV)-M*'))>i- 
x€X 

The conditions (I) and (II) can be transformed as: 

(P)  ^Mx)+max[fc*(x)-Mx)]<l, 
x€X 

(IP)  53 h*(x) ~ max [&*(*) - M*)] > L 

x€X 

Then, we have the following theorem. 

Theorem 1 For any IDF, there exists a probability density function h'(-) satis- 
fying that 

h4x)<h'{x)<h*{x),   £V(x) = l. 
xex 

To illustrate an interval density function let us consider the case shown in 
Fig.l where the number 6 is most likely occurred comparatively with the num- 
ber 1 to 5. Interval density functions for the number 1 to 5 are (ft*, h*) = 
(1/10, 1/6), and interval density function for the number 6 is (ft*, h*) = 
(1/6, 1/2). 
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(IDF) 

1/2 

1/6 

1/10 IIIIL: 
1    2   3   4   5   6 

Fig. 1. Example for interval density functions 

It is clear that these interval density functions satisfy Definition 1. Taking 
the number 6 for x , 

X)M*) + (AV)-M*')) = f + !<i 
xex 

J2h*(x)-(h*(x')-h*(x>)) = l-l>l 
xBX 

6     6 

Using this functions (ht,  h*), we can define two distribution functions as 
follows: 

(Lower boundary function (LB) and upper boundary function (UB) of IDF): For 
h' satisfying h,(x) < h'(x) < h*(x), VA C X 

LB(A) = min ( J»)) , 
\x£A ) 

UB(A)=mzx(j2h'(*))- 
\x£A ) 

Then, lower and upper boundary functions have the following properties. 

ViCX 

LB{A) = Y, M*) V I 1 - J2 h*(x) 
x£A xeA 

UB(A) = Y,h*(x)A    1-£>,(*) 
x£A \ x£A 
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And, the duality of LB and UB holds. 

1 - UB{Ä) = 1 - J2 h*(x) A (1 - £ M*) 

Importance degrees from experts will be formulated as interval importance 
degrees using interval density functions in Section 4. 

3    Conflict analysis 

In this section, we will outline about conflict analysis from Pawlak [3]. In a 
conflict, at least two parties, called agents, are in dispute over some issues. The 
relationship of each agent to a specific issue can be clearly represented in the 
form of a table, as shown in Table 1. This table is taken from [3]. 

u a b c d e 

1 -1 1 1 1 1 
2 1 0 -1 -1 -1 
3 1 -1 -1 -1 0 
4 0 -1 -1 0 -1 
5 1 -1 -1 -1 -1 
6 0 1 -1 0 1 

Table 1. Example of infomation system 

Table 1 is called an information system in rough sets theory [4]. The ta- 
ble rows of information systems are labelled by objects, the table columns are 
labelled by attributes and the entries of table are values of attributes, which 
are uniquely assigned to each object and each attribute. Then, the information 
system, 5, is given as (U,Q, V) where U is the set of objects, Q is the set of 
attributes and V is the set of attribute values. In conflict analysis, a conflict 
situation is represented as a form of restricted information system. Then, ob- 
jects correspond to agents and attributes correspond to issues. So, in Table 1, 
U = {1,..., 6} is a set of agents and Q = {a,..., e} is a set of issues. And, values 
of attributes are represented the attitude of agents to issues: 1 means that the 
agent is favorable to the issue, -1 means that the agent is against the issue and 
0 means neutral. 

In order to express the relation between agents, the follwing auxiliary function 
on U2 [3] is defined as 
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(1    if q{x)q(y) = 1  or x = y 
0    if q{x)q(y) =0 and x ^ y (1) 
-1 if q(x)q(y) = -1 

where q(x) is the attitude of the agent x to the issue q. This means that, if 
<j>q(x,y) = 1, the agents x and y have the same opinion about the issue q, if 
<f>q(x,y) = 0, at least one agent has neutral approach to q and if <j>q(x,y) = —1, 
they have different opinions about q. 

We need the distance between x and y to evaluate the relation between x 
and y. Therefore we use Pawlak's definition as follows: 

P*{x'y)=\Q\  (2) 

where 

rq(x, y) =        *i(  'y> = { 0.5 if q(x)q(y) = 0 and x^y (3) 
2 [1    i/9(*My) = -l 

Applying PQ{X, y) to the data in Table 1, we obtained Table 2. 

U  1    2    3    4    5  6 
_ 

2 0.9 
3 0.9 0.2 
4 0.8 0.3 0.3 
5 1   0.10.10.2 
6 0.4 0.5 0.5 0.6 0.6 

Table 2. Distance functions between objects in Table 1 

4    Interval importances to conflict analysis 

In this section, we will add subjective evaluations for issues to conflict analysis. 
It is assumed that non-negative relative weights are given for all issues. Using a 
non-negative weight w(q) for each issue q, a new distance function p'g is defined 
as follows: 

J2<f>*q(
x,y)w{q) 

p'Q(*,y) = qe*       .. (4) 

ge<3 
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where YlqeQ w(l) ^ 0- ^et W
'(Q) ~ *r- y We can rewrite p'Q under the 

normality condition, J2qeQ w'(9) = 1, as follows: 

qeQ 

When an expert's knowledge is given as the following weights, then the dis- 
tance function with weights is calculated in Table 3 using (4). 

w{a) = 0.2; w(b) = 0.8; w(c) = 0.5; w{d) = 1.0; w{e) = 0.6. 

U   1      2      3      4      5   6 

1 
2 0.87 
3 0.90 0.23 
4 0.81 0.32 0.29 
5 1.00 0.13 0.10 0.19 
6 0.35 0.52 0.55 0.65 0.65 

Table 3. Distance Functions with weights 

When we can use many experts' knowledge, they are formulated as interval 
density functions [1] as shown in Section 2. It is assumed that an expert gives 
normal weights, that is, the sum of them becomes 1. When there are plural ex- 
perts, then the following functions (w*, w*) becomes an interval density function. 

Proposition: When there exist plural normal weights, w, (i = l,...,n), over 
the disjoint space Q, two functions are defined as 

w*(q) =     min    u>i(q) 
ie{i,••-,«} 

w*(q) =     max    W{(q) 
«6{i, •-,"} 

Then, (w»,iu*) becomes an interval density function. 

Proof: It is clear that 

Y^w*{q) < 1  and   ^2w*(q) > 1 

holds. If there exists some q' G Q such as J2geQ u,*(tf) + (W*W) ~ W*W)) > 1> 
then there is no set of normal weights which w*(q') belongs to. Therefore, for 
all q' € Q, 

£ w.(q) + (w*(q')-w.(«?')) <1 
9€Q 
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holds. Similarly, for all q' €Q, 

qeQ 

holds. Consequently, (wt, w*) becomes an interval density function.        Q.E.D. 

Using functions (w*,w*), instead of p'q we can write a distance function 

^2<l>*q(x,y)wt(q) 

P3.(«,y) = 2f£_—_  (6) 

qeQ 

and 

geQ 

When many experts' knowledge are given as Table 4, then the distance func- 
tion with weights is calculated in Table 5 using (6) and (7). 

Q importance 
a [0.15, 0.30] 
b [0.20, 0.35] 
c [0.10, 0.25] 
d [0.25, 0.40] 
e  [0.10, 0.20] 

Table 4. Experts' knowledge with interval density functions 

5    Conclusion 

A new approach of conflict analysis with interval importance representing ex- 
perts' knowledge is proposed under the assumption that an expert's knowledge 
is given as a relative importance for each attribute. Importance degrees from ex- 
perts are formulated as interval importance degrees using interval density func- 
tions and then, conflict degrees between two agents are obtained as an interval 
value. 

The presented approach for conflict analysis depends on experts' knowledges 
which lead to interval conflicts. In order to judge some relationship between two 
agents as one of conflict, neutral, and alliance, the judgement measure proposed 
by Pawlak can be used. 
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1 
2 [0.875, 0.886] 
3 [0.933, 0.938] [0.187, 0.188] 
4 [0.750, 0.753] [0.353, 0.375] [0.300, 0.313] 
5 [1.000, 1.000] [0.120, 0.125] [0.063, 0.067] [0.233, 0.250] 
6 [0.375, 0.400] [0.487, 0.500] [0.533, 0.563] [0.600, 0.625] [0.600, 0.625] 

Table 5. Distance functions by interval density functions 
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Abstract. As the end-user computing grows up, the volume of infor- 
mation defined by users is increasing. Therefore, incorporating the in- 
formation defined by users is a core component of the knowledge man- 
agement. In this paper, the author proposes a method for incorporating 
personal databases, which is based on granular computing and the rela- 
tional database theory. 

1 Introduction 

As the end-user computing grows up, the volume of information defined by users 
is increasing. Using the databases defined by users is very convenient for our daily 
work. At the same time the personal databases are also an important source of 
knowledge of an organization. It is necessary to incorporate personal databases 
for using them as primary knowledge sources. 

A possible way for the database incorporation is the relation transformation 
based on the normalization theory of relational databases[l]. However, the nor- 
malization theory focuses on the formal aspect of relational databases only. To 
incorporate the personal databases defined by users, a method that reflects the 
meaning of a domain is required. 

Data mining based on granular computing is essentially a "reverse" engineer- 
ing of database processing. The latter organizes and stores data according to the 
given semantics, while the former is "discovering" the semantics from stored 
data[5]. This assertion suggests that data mining based on granular computing 
is an efficient way for incorporating personal databases. 

In this paper, the author proposes a method for incorporating personal 
data resources. This method is based on granular computing and the relational 
database theory. At first, anomalies on personal databases are discussed, and 
then the proposed incorporating method and its theoretical background are de- 
scribed. 

2 Properties of Personal Data 

At the first step of our study, we made an inquiry about personal databases. As 
a result of this inquiry, the following derivations can be found in the databases 
defined by users. 
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- Derivation on data definition. 
In Japanese language environment, there are many ways to express some 
words with same meaning. However, the words with same meaning are pro- 
cessed as different words. 

— Derivation on database schema definition. 
• Derivation on attribute definition. 

For example, when defining a field about a customer's name, a user may 
use two attributes: the family name and the first name, but the other 
user may define only one attribute: the name. 

• Functional dependencies. 
Functional dependencies define a relation between key values and depen- 
dent values. There may be various key definitions on same relation. Even 
though same relation definition is provided for users, each user probably 
defines different keys on the relation. 

• Relation. 
If a relation on a database satisfies only the first normal form in the 
normalization theory, sometimes, abnormal results are obtained by an 
ordinary SQL operation. These abnormal results are caused by struc- 
ture of relation that is intermixed several different relations. Usually, a 
translation into the second normal form is considered when a database 
application developer meets these abnormal results. 

In the relational database theory, the normalization theory has become a core 
one for database normalization^]. Many personal databases do not clear all levels 
of relational database normal forms. From the practical view, it is sufficient if 
every personal database satisfies the third normal form in the relational database 
theory. 

Formal translating methods from a first normal form relation to the second 
normal form relation have been developed. Most methods translated relations 
based on their syntactical aspects, but the main task that translates a first 
normal form relation has semantic issues. When we translate a first form relation, 
we should pay an attention to its semantic aspects. So we need to develop a 
semantic based translation method for translating a first normal form relation 
into a second normal form relation. 

3    Schema Discovery by Granular Computing 

3.1    Functional Dependencies and Normalization 

In this section, we give a brief overview about the functional dependencies and 
the relational database normalization theory according to the literature[2]. 

Let sets X and Y be two attribute sets of a relation R(A\, A2, ...,An), where 
X U Y = QR and X DY = Z(^ 0) where QR is the set of all attributes on a 
relation R. The functional dependency X —► Y is defined as the definition 1. 
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Definition 1. We say the functional dependency from X to Y in R exits, if the 
condition (1) is satisfied in all instances r of R. 

(\ft, f € R)(t[X] = t'[X] => t\Y) = t'[Y]) (1) 

The multi-valued dependency X —>—► V is a generalization of the functional 
dependency defined as Definition 2. 

Definition 2. X and Y are an attribute on a relation R. We say X decides Y in 
multi-value or Y depends on X in multi-value when the condition 2 is satisfied 
all instances r in R. 

(Vt,t' 6 R)(t[X) = t'[X] =>t[XUY] = t'[Z]) £ R (2) 

h{t'[XUY},t[Z]eR) 

where Z = QR-{X-Y). 

The definition says that the new tuples (t[X U Y],t[Z]) and (*'[X U Y],t[Z]) 
that are made from tuples t and *' are also tuples in the R where t and <' satisfy 
the condition t[X] = <'[X]. 

We say two projections R[X] and R{Y] on the relation R is information loss- 
less decomposition if R = R[X] x R[Y]. The necessary and sufficient condition for 
information lossless decomposition is guaranteed by the following propositions 
and theorem. 

Proposition 3. // X and Y are information lossless decomposition of R, AC 
Ä[X]MÄ[y]. 

Proposition 4. The necessary and sufficient condition for R C R[X] M R[Y] is 
the multi-valued dependency X f)Y -*-*■ X\Y that is satisfied on R. 

By the proposition 3 and 4, the following theorem can be obtained. 

Theorem 5. The necessary and sufficient condition for R C R[X] M R{Y] is 
the multi-valued dependency X f\Y -»->• X\Y is satisfied on R. 

3.2    Granular Computing 

We introduce the notations and theorems on granular computing followed by 
Lin[5]. An equivalence relation divides the universe into disjoint elementary sets. 
A binary relation decomposes a universe into elementary neighborhoods that are 
not necessarily disjoint. The decomposition is called a binary granulation and 
the collection of the granules a binary neighborhood system[3, 4]. 

Let (U; Bl; C', i = 0,1,2,...) be a collection of granular structure where U is 
a set of entities or an ATS-space imposed by B, B' is elementary neighborhoods 
and C* is elementary concepts (= NAME(BJ) and each C* is an NS-spa.ce. The 
relationships among attribute values of a table are defined by the elementary sets 
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of a multiple partition. Inclusion of an elementary set in another elementary set is 
an inference on the corresponding elementary concepts. A functional dependency 
of two columns is a refinement of two corresponding partitions. 

On the granular structure, the following rules are defined[5]. 

1. Continuous inference rules: 
A formula Cj  —►£>/, is a continuous inference rule, if NEIGH(Pj)  C 
NEIGH(Qh). Here, NEIGH(Pj) means a neighborhoods of Pj. 

2. Softly robust continuous inference rules: A formula Cj —► JD/, is a softly con- 
tinuous inference rule, \iNEIGH(Pj) C NEIGH(Qh) and \NEIGH(Pj)C\ 
NEIGH(Qh)\> threshold. 

3. High level continuous inference rules: Suppose PN = B*,QN = B3, QN = 
B3 ,QN = B3, and j ^ i are two nested granular structures, that is, PN1 ■< 
PN(i+k> and QN4 -< QN(-i+k\ Write P = PNm and Q = QNn, where 
m > m and ife > 0.. A formula Cj —> Dj, is a high level continuous inference 
rule, if NEIGH(Pj) C NEIGH(Qh) and \NEIGH(Pj)n NEIGH(Qh)\ > 
threshold. 

The above rules can be regarded as the generalization for the definition about 
functional dependencies in relational database. Furthermore, we can extend these 
concepts to the method for discovering functional dependencies. 

4    Incorporating Personal Databases 

The main procedure of incorporating personal databases is described as follows. 

1. Data normalization. 
The data normalization procedure is consist of following two sub-procedures. 

(a) Continuous data quantization. 
(b) Word correction. 

The first sub-procedure is the continuous data quantization if a data set is 
continuous values. The second sub-procedure is the data correction. For the 
word correction, we use a simple structured thesaurus. In the thesaurus, the 
following Japanese specific word correct relation are stored. 

— Conversion rules between han-kaku kana and zen-kaku kana. 
— Special characters with same meaning. 
— Rules about okuri-gana. 

According to these rules, different characters with same meaning is corrected 
automatically. 

2. Obtaining elementary concepts and elementary neighborhoods for each at- 
tribute on relations. 

3. Detection of originally identical attributes. 
If \C n C3\ > threshold, the attributes i and j seem to be identical at- 
tributes where C" is the elementary concepts of the attribute i, and C3 is 
the elementary concepts of the attribute j. 
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Detection of functional dependencies. 
Functional dependencies in a relation are found according to the following 
procedure. 
(a) For each attribute in a relation, level of the derivable rule on the granular 

structure is determined. 
(b) According to the determined level, the following schema transformations 

are possible. 
- If the continuous inference rule is established between C and C3, a 

functional dependency between attributes i and j is established. 
- If the continuous inference rule is established from C to C1 and Ch 

at the same time, the attributes j and k seem to be the attributes 
in which a functional dependency between attributes i and j D Ar is 
established. 

- If the softly robust continuous inference rules is established between 
C' and C1, a multi-valued dependency between attributes i and j is 
established. Moreover, the attribute j can be another relation. If the 
attribute j is decomposed into another relation, this decomposition is 
the information lossless decomposition. It is evident from Definition 2 
and the properties of the rules on the granular structure. 

5    Conclusion 

In this paper, a method for incorporating personal databases was proposed. We 
described that incorporating information defined by users is a core component of 
the knowledge management. Some kinds of deviations of data and schema were 
argued. Another type of data deviation that was not argued in this paper is how 
to handle null values. How to handle null values is depend on different users. We 
are also developing a more sophisticated method for handling this issue. 
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Abstract. Knowledge representation which is internal to a computer 
lacks empirical meaning so that it is insufficient for the investigation of 
the external world. All intelligent systems, including robot-discoverers 
must interact with the physical world in complex, yet purposeful and 
accurate ways. We argue that operational definitions are necessary to 
provide empirical meaning of concepts, but they have been largely ig- 
nored by the research on automation of discovery and in AI. Individual 
operational definitions can be viewed as algorithms that operate in the 
real world. We explain why many operational definitions are needed for 
each concept and how different operational definitions of the same con- 
cept can be empirically and theoretically equivalent. We argue that all 
operational definitions of the same concept must form a coherent set 
and we define the meaning of coherence. No set of operational defini- 
tions is complete so that expanding the operational definitions is one of 
the key tasks in science. Among many possible expansions, only a very 
special few lead to a satisfactory growth of scientific knowledge. While 
our examples come from natural sciences, where the use of operational 
definitions is especially clear, operational definitions are needed for all 
empirical concepts. We briefly argue their role in database applications. 

1    Operational definitions provide empirical meaning 

Data about external world are obtained by observation and experiment. Sophis- 
ticated procedures and instruments are commonly used to reach data of sci- 
entific value. Yet we rarely think systematically about methods by which data 
have been procured, until problems occur. When a set of data is inconsistent 
with our expectations, we start asking: "How was this particular measurement 
obtained?", "What method has been used?", "How is this method justified?". 
Often it turns out that a method must be changed. Because data can be wrong 
in so many ways, sophisticated knowledge is required in order to examine and 
improve measurement methods. 

It is critical to the growth of scientific knowledge to study new situations, 
for which no known method can measure a particular quantity. For instance, 
we may wish to measure temperatures lower than the capabilities of all existing 
instruments. Or we want to measure temperature change inside a living cell, as 
the cell undergoes a specific process. 
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When no known method applies, new methods must be discovered. New 
measurement methods must expand the existing concepts. For instance, a new 
thermometer must produce measurements on a publicly shared scale of temper- 
ature. 

Discovery of new measurement methods, which we also call operational def- 
initions, is the central problem in this paper. We provide an algorithm that 
demonstrates how empirical knowledge is used to construct new operational def- 
initions, how new methods can be empirically verified and how choices can be 
made among competing methods. 

We end each section with a few basic claims about operational definitions. 

Claim 1: For each empirical concept, measurements must be obtained by repeat- 
able methods that can be explained in detail and used in different laboratories. 

Claim 2: The actual verification in empirical science is limited to empirical 
facts. Operational definitions determine facts; thus they determine the scope of 
scientific verification. 

Claim 3: In contrast, scientific theories often make claims beyond the facts that 
can be empirically verified at a given time. Theoretical claims often apply to all 
physical situations, whether we can observe them or not. 

In this paper we use examples of numerical properties of objects and their 
pairs. The numbers that result from measurements, for instance temperature or 
distance, we call values of empirical concepts. 

Claim 4: Operational definitions can be classified in several dimensions: (a) they 
apply to objects, states, events, locations and other empirical entities; (b) they 
may define predicates of different arity, for instance, properties of individual 
objects, object pairs (distance) or triples (chemical affinity); (c) some opera- 
tional definitions provide data while others prepare states that possess specific 
properties, such as the triple point of water. 

2    The AI research has neglected operational definitions 

Operational semantics links the terms used in scientific theories with direct ob- 
servations and manipulations (Bridgman, 1927; Carnap, 1936). While important 
in empirical science, the mechanisms that produce high quality experiments have 
been neglected not only in the existing discovery systems but in the entire do- 
main of artificial intelligence. 

The distinction between formalism and its interpretation, also called seman- 
tics, has been applied to the study of science since 1920's and 1930's. Scientific 
theories have been analyzed as formal systems whose language is empirically 
interpreted by operational definitions. 

A similar distinction applies to discovery systems and to knowledge they 
create. A discovery mechanism such as BACON (Langley, Simon, Bradshaw k 
Zytkow, 1987) can be treated as (1) a formal system that builds equations from 
data that are formally tuples in the space of the values of independent and 
dependent variables plus (2) a mechanism that procures data. 
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Similarly to scientists, BACON and other discovery systems use plans to pro- 
pose experiments. Each experiment consists in selecting a list of values x\,..., Xk 
of empirical variables X\,...,Xk, and in obtaining the value y of a dependent 
variable Y which provides the "world response" to the empirical situation char- 
acterized by *i, ...,Xk- But instead of real experiments, the values of dependent 
variables are either typed by the user or computed in simulation, in response to 
the list of values of independent variables. 

This treatment bypasses real experimentation and measurements. Other pa- 
pers and collections that consider many components of the scientific methods 
(Kulkarni & Simon, 1987; Sleeman, Stacey, Edwards & Gray, 1989; Shrager k 
Langley, 1990; Valdes-Perez, 1995) neglect operational definitions of concepts. 

In the wake of robotic discovery systems, operational semantics must, at the 
minimum, provide realistic methods to acquire data. Zytkow, Zhu & Hussam 
(1990) used a robotic mechanisms which conducted automatically experiments 
under the control of FAHRENHEIT. In another robotic experiment, Zytkow, Zhu 
k Zembowicz (1992) used a discovery process to refine an operational defini- 
tion of mass transfer. Huang &c Zytkow (1997) developed a robotic system that 
repeats Galileo's experiment with objects rolling down an inclined plane. One 
operational definition controlled the robot arm so that it deposited a cylinder 
on the top of an inclined plane, while another measured the time in which the 
cylinder rolled to the bottom of the plane. 

While operational semantics must accompany any formalism that applies to 
the real world, it has been unnoticed in AI. Jackson's claim (1990) is typical: 
"a well-defined semantics ... reveals the meaning of ... expressions by virtue of 
their form." But this simply passes on the same problem to a broader formalism, 
that includes all the terms used in formal semantics. Those terms also require 
real-world interpretation that must be provided by operational definitions. 

Plenty of further research must be conducted to capture the mechanisms in 
which operational definitions are used in science and to make them applicable 
on intelligent robots. 

Claim 5: Formal semantics are insufficient to provide empirical meaning. 

Claim 6: Robotic discoverers must be equipped in operational definitions. 

3    Operational definitions interact with the real world 

Early analyses of operational definitions used the language of logic. For instance, 
a dispositional property "soluble in water" has been defined as 

If x is in water then (x is soluble in water if and only if x dissolves) 

But a more adequate account is algorithmic rather than descriptive: 

Soluble (x) 
Put x in water! 
Does x dissolve? 
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As an algorithm, operational definition consists of instructions that prescribe 
manipulations, measurements and computations on the results of measurements. 
Iteration can enforce the requirements such as temperature stability, which can 
be preconditions for measurements. Iteration can be also used in making mea- 
surements. The loop exit condition such as the equilibrium of the balance, or 
a coincidence of a mark on a measuring rod with a given object, triggers the 
completion of a step in the measurement process. 

Procedures that interpret independent and dependent variables can be con- 
trasted as manipulation and measurement mechanisms. Each independent vari- 
able requires a manipulation mechanism which sets it to a specific value, while 
a response value of an dependent variable is obtained by a measurement mech- 
anism. In this paper we focus on measurement procedures. 

It happens that an instruction within procedure P does not work in a spe- 
cific situation. In those cases P cannot be used. Each procedure may fail for 
many reasons. Some of these reasons may be systematic. For instance, a given 
thermometer cannot measure temperatures below -40C because the thermomet- 
ric liquid freezes or above certain temperature, when it boils. Let us name the 
range of physical situations to which P applies by Rp. 

Often, a property is measured indirectly. Consider distance measurement 
by sonar or laser. The time interval is measured between the emitted and the 
returned signal. Then the distance is calculated as a product of time and velocity. 
Let C{x) be the quantity measured by procedure P. When P terminates, the 
returned value of C is /(mi,..., rnk), where mi,..., mk are the values of different 
quantities of x or the empirical situation around x, measured or generated by 
instructions within P, and / is a computable function on those values. 

Claim 7: Each operational definition should be treated as an algorithm. 

Claim 8: The range of each procedure P is limited in many ways, thus each is 
merely a partial definition applicable in the range Rp. 

Claim 9: An operational definition of concept C can measure different quantities 
and use empirical laws to determine the value of C: C(x) = /(mi,..., mj,) 

Claim 10: An operational definition of a concept C(x) can be represented by a 
descriptive statement: "If x is in Rp then C(x) = /(mi, ...,rrik)" 

4    Each concept requires many operational definitions 

In everyday situations distance can be measured by a yard-stick or a tape. But 
a triangulation method may be needed for objects divided by a river. It can be 
extended to distance measurement from the Earth to the Sun and the Moon. 
Then, after we have measured the diameter of the Earth orbit around the Sun, 
we can use triangulation to measure distances to many stars. 

But there are stars for which the difference between the "winter angle" and 
the "summer angle" measured on the Earth, is non-measurably small, so another 
method of distance measurement is needed. Cefeids are some of the stars within 
the range of triangulation. They pulsate and their maximum brightness varies 
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according to the logarithm of periodicity. Another law, determined on Earth and 
applied to stars claims that the perceived brightness of a constant light source 
diminishes with distance as 1/d2. This law jointly with the law for cefeids allows 
us to determine the distance to galaxies in which individual cefeids are visible. 

For such galaxies the Hubble Law was empirically discovered. It claims pro- 
portionality between the distance and red shift in the lines of hydrogen spectrum. 
The Hubble Law is used to determine the distance of the galaxies so distant that 
cefeids cannot be distinguished. 

Similarly, while a gas thermometer applies to a large range of states, in very 
low temperatures any gas freezes or gas pressure becomes non-measurably small. 
A thermometer applied in those situations measures magnetic susceptibility of 
paramagnetic salts and uses Curie-Weiss Law to compute temperature. There are 
high temperatures in which no vessel can hold a gas, or states in which the inertia 
of gas thermometer has unacceptable influence on the measured temperature. 
Measurements of thermal radiation and other methods can be used in such cases. 

Claim 11: Empirical meaning of a concept is defined by a set of operational 
definitions. 

Claim 12: Each concrete set is limited and new methods must be constructed 
for objects beyond those limits. 

5    Methods should be linked by equivalence 

Consider two operational definitions Pi and Pi that measure the same quantity 
C. When applied to the same objects their results should be empirically equiva- 
lent within the accuracy of measurement. If P\ and P2 provide different results, 
one or both must be adjusted until the empirical equivalence is regained. 

From the antiquity it has been known that triangulation provides the same 
results, within the limits of measurement error, as a direct use of measuring rod 
or tape. But in addition to the empirical study of equivalence, procedures can 
be compared with the use of empirical theories and equality of their results may 
be proven. 

Triangulation uses a basic theorem of Euclidean geometry that justifies the- 
oretically the consistency of two methods: by the use of yard-stick and by tri- 
angulation. To the extent in which Euclidean geometry is valid in the physical 
world, whenever we make two measurements of the same distance, one using a 
tape while the other using triangulation, the results are consistent. 

Claim 13: Methods can differ by their accuracy and by degree to which they 
influence the measured quantity. 

Claim 14: When two operational definitions define the same property and apply 
to the same objects, their results should be empirically equivalent. If they are 
not, additional data are collected and methods are adjusted in order to restore 
their equivalence. 

Claim 15: When two operational definitions define the same concept C(x), it is 
possible to prove their equivalence. The prove consists in deducing from a verified 
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empirical theory that the statements that represent them are equivalent, that is, 
/i(mi,..., mk) = /2(n!,..., n,) 

Claim 16: When the statements that represent two procedures use empirical 
laws C{x) = /i(mi, ...,mk), C(x) = /2(ni, ...,n,), theoretical equivalence of both 
procedures follows from those laws. 

Claim 17: The more general and better verified are the theories that justify the 
equivalence of two procedures Pi and P2, the stronger are our reasons to believe 
in the equivalence of Pi and P2. 

Claim 18: Proving the equivalence of two procedures is desired, because the 
empirical verification of equivalence is limited. 

6    Operational definitions of a concept form a coherent set 

We have considered several procedures that measure distance. But distance can 
be measured in many other ways. Even the same method, when applied in dif- 
ferent laboratories, varies in details. How can we determine that different mea- 
surements define the same physical concept? Procedures can be coordinated by 
the requirements of empirical and theoretical equivalence in the areas of common 
application. However, we must also require that each method overlaps with some 
other methods and further, that each two methods are connected by a chain of 
overlapping methods. 

Definition: A set <2> = {^1,..., <j>n} of operational definitions is coherent iff for 
each i, j = l,...,n 

(1) 4>i is empirically equivalent with <f>j. Notice that this condition is trivially 
satisfied when the ranges of both operational definitions do not overlap; 

(2) there is a sequence of definitions <f>-ii,...,<t>-ik, such that <j>-ii = <f>i, <t>-ik = 
<j>j, and for each m = 2,..., k the ranges of <f>-im and (j>-im+i intersect. 

The measurements of distance in our examples form such a coherent set. Rod 
measurements overlap with measurements by triangulation. Different versions 
of triangulation overlap with one another. The triangulation applied to stars 
overlaps with the method that uses cefeids, which in turn overlaps with the 
method that uses Hubble Law. 

Similarly, the measurements with gas thermometer have been used to cali- 
brate the alcohol and mercury thermometers in their areas of joint application. 
For high temperatures, measurements based on the Planck Law of black body 
radiation overlap with the measurements based on gas thermometers. For very 
low temperatures, the measurements based on magnetic susceptibility of para- 
magnetic salts overlap with measurements with the use of gas thermometer. 

Claim 19: Each empirical concept should be defined by a coherent set of op- 
erational definitions. When the coherence is missing, the discovery of a missing 
link becomes a challenge. 

For instance, the experiment of Millikan provided a link between the charge 
of electron and electric charges measured by macroscopic methods. 
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Claim 20: By examining theoretical equivalence in a coherent set <? of opera- 
tional definitions we can demonstrate that the values measured by all procedure 
in 0 are on the same scale. 

Claim 21: Operational definitions provide means to expand to new areas the 
range of the laws they use. 

7    Laws can be used to form new operational definitions 

Operational definitions can expand each concept in several obvious directions, 
towards smaller values, larger values, and values that are more precise. But the 
directions are far more numerous. Within the range of "room" temperatures, 
consider the temperature inside a cell, temperature of a state that is fast varying 
and must be measured every second, or temperature on the surface of Mars. Each 
of these cases requires different methods. A scientist may examine the shift of 
tectonic plates by comparing the distances on the order of tens of kilometers 
over the time period of a year, when the accuracy is below a millimeter. 

Whenever we consider expansion of operational definitions for an empirical 
concept C to a new range R, the situation is similar: 

(1) we can observe objects in R for which C cannot be measured with the 
needed accuracy; 

(2) some other attributes A\,..., An of objects in R can be measured, or else 
those objects would not be empirically available; 

(3) some of A\,..., A„ are linked to C by empirical laws or theories. We can 
use one or more of those laws in a new method: measure some of Ai,..., An and 
then use laws to compute the value of C. 

Consider the task: determine distance D from Earth to each in a set R of 
galaxies, given some of the measured properties of R: Ai, A^,..., An. Operational 
definitions for Ai, ...,An are available in the range R. For instance, let Ai mea- 
sure the redshift of hydrogen spectrum. Let D = h(A%) be Hubble Law. The 
new method is: 

For a galaxy g,  vhen no individual cefeids can be distinguished: 
Measure A2 of the light coming from g by a method of spectral analysis 
Compute the distance D(Earth,  g)  as h(A2(g)) 

The same schema can yield other operational definitions that determine dis- 
tance by properties measurable in a new range, such as yearly parallax, perceived 
brightness or electromagnetic spectrum. 

Some laws cannot be used even though they apply to galaxies. Consider 
D = a/yB (B is brightness). It applies even to the most remote sources of 
light. But B used in the law is the absolute brightness at the source, not the 
brightness perceived by an observer. Only when we could determine the absolute 
brightness, we could determine the distance to galaxies by D = o/V5- 

The following algorithm can be used in many applications: 
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Algorithm: 
Input:  set of objects observed in range R 

attribute C that cannot be measured in R 
set of attributes Al,...,Ak that can be measured in R 
set {Fl,...,Fp} of known operational definitions for C 
set LAVS of known empirical lavs 

Output:  a method by which the values of C can be determined in R 

Find in LAWS a law L in which C occurs 
Let Bl Bm be the remaining attributes that occur in L 
Verify that C can be computed from L, and the values of Bl,...,Bm 
Verify that {Bl Bm} is subset of {Al,...,Ak}, 

that is, Bl Bm can be measured in at least some situations in R 
Use L and Bl,...,Bm to create new procedure F for C 
Make F consistent with procedures in {Fl,...,Fp} 

After the first such procedure has been found, the search may continue for each 
law that involves C. 

In set-theoretic terms, each expansion of concept C to a new range R can be 
viewed as a mapping from the set of distinguishable classes of equivalence with 
respect to C for objects in R to a set of possible new values of C, for instance, the 
values larger than those that have been observed with the use of the previous 
methods. But possible expansions are unlimited. The use of an existing law 
narrows down the scope of possible concept expansions to the number of laws 
for which the above algorithm succeeds. But the use of an existing law does 
not merely reduce the choices, it also justifies them. Which of the many values 
that can be assigned to a given state corresponds to its temperature? If laws 
reveal the real properties of physical objects, then the new values which fit a law 
indicate concept expansion which has a potential for the right choice. 

Claim 22: Whenever the empirical methods expands to new territories, new 
discoveries follow. New procedures are instrumental to that growth. 

Claim 23: Each new procedure expands the law it uses to a new range. If 
procedures Pi and P2 use laws L\ and L2 respectively, and produce empirically 
inconsistent results for new objects in range R, the choice of Pi will make L2 

false in R. 

If a number of procedures provide alternative concept expansions, various 
selection criteria can be used, depending on the goal of research. 

Claim 24: Among two methods, prefer the one which has a broader range, for 
it justifies concept expansion by a broader expansion of an existing law. 

Claim 25: Among two methods, prefer the one which has a higher accuracy, 
since it provides more accurate data for the expansion of empirical theories. 

Claim 26: Methods must and can be verified in their new area of application 
or else, the empirical laws they apply would be mere definitions. 
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8    Operational definitions apply to all empirical concepts 

While explicit operational definitions are rarely formed by experimental scien- 
tists, they become necessary in autonomous robots. A robot explorer can also 
benefit from mechanisms for generation of new procedures. 

Operational meaning applies to databases. They are repositories of facts that 
should be shared as a major resource for knowledge discovery and verification. 
But data and knowledge can be only useful for those who understand their mean- 
ing. Operational definitions describe how the values of all fields were produced. 

Similarly to our science examples, operational definitions can be generated 
from data and applied in different databases. Consider a regularity L, discovered 
in a data table D, which provides accurate predictions of attribute C from known 
values of Ait..., An. L can be used as a method that determines values of C. 

Consider now another table £>i, that covers situations similar to D, but differs 
in some attributes. Instead of test C, tests Bit..., Bm are provided, which may 
or may not be compatible with C. Suppose that a doctor who has been familiar 
with test C at his previous workplace, issues a query against £>i that includes 
attribute C which is not in D\. A regular query answering mechanism would fail, 
but a mechanism that can expand operational meaning of concepts may handle 
such a query (Ras, 1997). A quest Q for operational definition of concept C with 
the use of B\,..., Bm will be send to other databases. If an operational definition 
is found, it is used to compute the values of C in the doctor's query. 
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ABSTRACT: In real-life data, in general, many attribute values are missing. 
Therefore, rule induction requires preprocessing, where missing attribute 
values are replaced by appropriate values. The rule induction method used in 
our research is based on rough set theory. 

In this paper we present our results on a new approach to missing attribute 
values called a closest fit. The main idea of the closest fit is based on 
searching through the set of all cases, considered as vectors of attribute 
values, for a case that is the most similar to the given case with missing 
attribute values. There are two possible ways to look for the closest case: we 
may restrict our attention to the given concept or to the set of all cases. 
These methods are compared with a special case of the closest fit principle: 
replacing missing attribute values by the most common value from the 
concept. All algorithms were implemented in system OOMIS. Our 
experiments were performed on preterm birth data sets collected at the Duke 
University Medical Center. 

KEYWORDS: Missing attribute values, closest fit, data mining, rule 
induction, classification of unseen cases, system OOMIS, rough set theory. 

1   Introduction 

Recently data mining, i.e., discovering knowledge from raw data, is receiving a 
lot of attention. Such data are, as a rule, imperfect. In this paper our main focus is on 
missing attribute values, a special kind of imperfection. Another form of 
imperfection is inconsistency—the data set may contain conflicting cases (examples), 
having the same values of all attributes yet belonging to different concepts (classes). 

Knowledge considered in this paper is expressed in the form of rules, also called 
production rules. Rules are induced from given input data sets by algorithms based on 
rough set theory. For each concept lower and upper approximations are computed, as 
defined in rough set theory [4, 6, 12, 13]. 

Often in real-life data some attribute values are missing (or unknown). There are 
many approaches to handle missing attribute values [3, 5, 7]. In this paper we will 
discuss an approach based on the closest fit idea. The closest fit algorithm for 
missing attribute values is based on replacing a missing attribute value by existing 
values of the same attribute in another case that resembles as much as possible the 
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case with the missing attribute values. In searching for the closest fit case, we need 
to compare two vectors of attribute values of the given case with missing attribute 
values and of a searched case. 

There are many possible variations of the idea of the closest fit. First, for a 
given case with a missing attribute value, we may look for the closest fitting cases 
within the same concept, as defined by the case with missing attribute value, or in all 
concepts, i.e., among all cases. The former algorithm is called concept closest fit, the 
latter is called global closest fit. 

Secondly, we may look at the closest fitting case that has all the same values, 
including missing attribute values, as the case with a missing attribute value, or we 
may restrict the search to cases with no missing attribute values. In other words, the 
search is performed on cases with missing attribute values or among cases without 
missing attribute values. 

During the search, the entire training set is scanned, for each case a proximity 
measure is computed, the case for which the proximity measure is the largest is the 
closest fitting case that is used to determine the missing attribute values. The 
proximity measure between two cases e and e' is the Manhattan distance between e and 
e\ i.e., 

ri 

Zi   distance (e;, ej), 
i= 1 

where 

distance 

f 0 if e,- and e\ 
,      ,,     J 1   if et = ei, 

are symbolic and ei * e\, 

\e • — e'\ 
1 - p T^T if e[ and e\ are numbers and e,- ^ e\, 

ai — "i] 

where a,- is the maximum of values of A/, bi is the minimum of values of A;, and A; 
is an attribute. 

In a special case of the closest fit algorithm, called the most common value 
algorithm, instead of comparing entire vectors of attribute values, the search is reduced 
to just one attribute, the attribute for which the case has a missing value. The 
missing value is replaced by the most frequent value within the same concept to 
which belongs the case with a missing attribute value. 

2   Rule Induction and Classification of Unseen Cases 

In our experiments we used LERS (Learning from Examples based on Rough Set 
theory) for rule induction. LERS has four options for rule induction; only one, called 
LEM2 [4, 6] was used for our experiments. Rules induced from the lower 
approximation of the class certainly describe the class, so they are called certain. On 
the other hand, rules induced from the upper approximation of the class describe only 
possibly (or plausibly) cases, so they are called possible [8]. Examples of other data 
mining systems based on rough sets are presented in [14, 16]. 

For classification of unseen cases system LERS uses a modified "bucket brigade 
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algorithm" [2, 10]. The decision to which class a case belongs is made on the basis 
of two parameters: strength and support. They are defined as follows: Strength is the 
total number of cases correctly classified by the rule during training. The second 
parameter, support, is defined as the sum of scores of all matching rules from the 
class. The class C for which the support, i.e., the value of the following expression 

E Strength(Ä) 
matching rules R describing C 

is the largest is a winner and the case is classified as being a member of C. The 
above scheme reminds non-democratic voting in which voters vote with their 
strengths. 

If a case is not completely matched by any rule, some classification systems use 
partial matching. During partial matching, system AQ15 uses the probabilistic sum 
of all measures of fit for rules [11]. Another approach to partial matching is presented 
in [14]. Holland et al. [10] do not consider partial matching as a viable alternative of 
complete matching and thus rely on a default hierarchy instead. In LERS partial 
matching does not rely on the input of the user. If complete matching is impossible, 
all partially matching rules are identified. These are rules with at least one attribute- 
value pair matching the corresponding attribute-value pair of a case. 

For any partially matching rule R, the additional factor, called Matchingjactor 
(R), is computed. Matching_factor is defined as the ratio of the number of matched 
attribute-value pairs of a rule with a case to the total number of attribute-value pairs 
of the rule. In partial matching, the class C for which the value of the following 
expression 

£ Matching_factor(fl) * Strength (R) 
partially matching rules R describing C 

is the largest is the winner and the case is classified as being a member of C. 
During classification of unseen (testing) cases with missing attribute values, 

missing attribute values do not participate in any attempt to match a rule during 
complete or partial matching. A case can match rules using only actual attribute 
values. 

3   Description of Data Sets and Experiments 

Data sets used for our experiments come from the Duke University Medical Center. 
First, a large data set, with 1,229 attributes and 19,970 cases was partitioned into two 
parts: training (with 14,977 cases) and testing (with 4,993 cases). We selected two 
mutually disjoint subsets of the set of all 1,229 attributes, the first set containing 52 
attributes and the second with 54 attributes and called the new data sets Duke-1 and 
Duke-2, respectively. The Duke-1 data set contains laboratory test results. The 
Duke-2 test represents the most essential remaining attributes that, according to 
experts, should be used in diagnosis of preterm birth. Both data sets were unbalanced 
because only 3,103 cases were preterm, all remaining 11,874 cases were fullterm. 
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Table 1.  Missing attribute values 

Number of missing attribute values in data sets processed by 

 Global closest fit       Concept closest fit        Most common value 

Duke-1 1,1641 505,329 0 
Duke-2 615 1,449 0 

Similarly, in the testing data set, there were only 1,023 preterm cases while the 
number of fullterm cases was 3,970. 

Both data sets, Duke-1 and Duke-2, have many missing attribute values (Duke-1 
has 505,329 missing attribute values, i.e., 64.9% of the total number of attribute 
values; Duke-2 has 291,796 missing attribute values, i.e., 36.1% of the total number 
of attribute values). 

First, missing attribute values were replaced by actual values. Both data sets 
were processed by the previously described five algorithms of the OOMIS system: 
global closest fit and concept closest fit, among all cases with and without missing 
attribute values, and most common value. 

Since the number of missing attribute values in Duke-1 or Duke-2 is so large, we 
were successful in using only three algorithms. The version of looking for the 
closest fit among all cases without missing attribute values returned the unchanged, 
original data sets. Therefore, in the sequel we will use names global closest fit and 
concept closest fit for algorithms that search among all cases with missing attribute 
values. For Duke-1 the concept closest fit algorithm was too restrictive: All missing 
attribute values were unchanged, so we ignored the Duke-1 data set processed by the 
concept closest fit algorithm. Moreover, global closest fit or concept closest fit 
algorithms returned data sets with only reduced number of missing attribute values. 
The results are presented in Table 1. 

Since using both closest fit options result in some remaining missing attribute 
values, for the output files the option most common value was used to replace all 
remaining missing attribute values by the actual attribute values.  Thus, finally we 

Table 2.  Training data sets 
Global 

closest fit 
Concept 

closest fit 
Most 

common value 
Number of 

Duke-1 
conflicting cases 

Number of 

8,691 10,028 

unique cases 6,314 - 4,994 
Number of 

Duke-2 
conflicting cases 

Number of 

7,839 0 8,687 

unique cases 7,511 9,489 6,295 
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obtained five pre-processed data sets without any missing attribute values. 
To reduce error rate during classification we used a very special discretization. 

First, in the training data set, for any numerical attribute, values were sorted. Every 
value v was replaced by the interval [v, w), where w was the next bigger values than v 
in the sorted list. Our approach to discretization is the most cautious since, in the 
training data set, we put only one attribute value in each interval. For testing data 
sets, values were replaced by the corresponding intervals taken from the training data 
set. It could happen that a few values come into the same interval. 

Surprisingly, four out of five training data sets, after replacing missing attribute 
values by actual attribute values and by applying our cautious discretization, were 
inconsistent. The training data sets are described by Table 2. 

For inconsistent training data sets only possible rule sets were used for 
classification. Certain rules, as follows from [8], usually provide a greater error rate. 
Rule induction was a time-consuming process. On a DEC Alpha 21164 computer, 
with 512 MB of RAM, 533 MHz clock speed, rule sets were induced in elapsed real 
time between 21 (for Duke-2 processed by the concept closest fit algorithm) and 133 
hours (for Duke-2 processed by the global concept fit algorithm). Some statistics 
about rule sets are presented in Table 3. 

As follows from Table 3, as a result of unbalanced data sets, the average rule 
strength for rules describing fullterm birth is much greater than the corresponding rule 
strength for preterm birth. Consequently, the error rate on the original rule sets is not 
a good indicator of the quality of a rule set, as follows from [9]. 

Our basic concept is the class of preterm cases. Hence the set of all correctly 
predicted preterm cases are called true-positives, incorrectly predicted preterm cases 
(i.e., predicted as fullterm) are called false-negatives, correctly predicted fullterm cases 
are called true-negatives, and incorrectly predicted fullterm cases are called false- 
positives. 

Sensitivity is the conditional probability of true-positives given actual preterm 
birth, i.e., the ratio of the number of true-positives to the sum of the number of true- 

Table 3.  Rule sets 
Global 

closest fit 
Concept 

closest fit 
Most 

common value 

Number of 
rules 

Preterm 
Fullterm 

734 
710   

618 
775 

Duke-1 
Average 
strength 
of rule set 

Preterm 
Fullterm 

4.87 
39.08 

- 8.97 
44.73 

Number of 
rules 

Preterm 
Fullterm 

1,202 
1,250 

483 
583 

1,022 
1,642 

Duke-2 
Average 
strength 
of rule set 

Preterm 
Fullterm 

2.71 
15.8 

9.69 
43.99 

4.60 
11.37 
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Fig. 1. P(TP) - P(FP) versus rule strength multiplier for Duke-2 data set and most 
common value method used for replacing missing attribute values 

positives and false-negatives. It will be denoted by P(TP), following notation from 
[15]. Specificity is the conditional probability of true-negatives given fullterm birth, 
i.e., the ratio of the number of true-negatives to the sum of the number of true- 
negatives and false-positives. It will be denoted by P(TN). Similarly, the conditional 
probability of false-negatives, given actual preterm birth, and equal to 1 - P(TP), will 
be denoted by P(FN) and the conditional probability of false-positives, given actual 
fullterm birth, and equal to 1 - P(TN), will be denoted by P(FP). Obviously, 

Sensitivity + Specificity = P(TP) - P(FP) + 1, 

so all conclusions drawn from the observations of the sum of sensitivity and 
specificity can be drawn from observations of P(TP) - P(FP). Another study of the 
sum of sensitivity and specificity was presented in [1]. 

Following [9], we computed the maximum of the difference between the 
conditional probabilities for true-positives given actual preterm birth and false- 
positives given actual fullterm birth as a function of the rule strength multiplier for 
the preterm rule set. A representative chart is presented in Fig. 1. For completeness, 
a typical chart (Fig. 2) shows how the true-positive, true-negative and total error rate 
change as a function of the rule strength multiplier. The total error rate is defined as 
the ratio of the number of true-positives and true-negatives to the total number of 
testing cases. 
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Fig. 2. Sensitivity (series 1), specificity (series 2), and total error rate (series 3) 
versus rule strength multiplier for Duke-2 data set and most common value method 
used for replacing missing attribute values 

Again, following the idea from [9], in our experiments we were increasing the 
strength multiplier for each five rules describing preterm birth and observed P(TP) - 
P(FP). For each rule set, there exists some value of the rule strength multiplier, 
called critical, for which the values of P(TP) - P(FP) jumps from the minimal value 
to the maximal value. The respective values of true positives, true negatives, etc., 
and the total error rate, are also called critical. The results are summarized in Table 4. 
The total error rate, corresponding to the rule strength multiplier equal to one, is 
called initial. 

The corresponding values of P(TP) - P(FP) are presented in Table 4. The critical 
total error rate from Table 4 is computed as the total error rate for the maximum of 
P(TP) - P(FP). 

4    Conclusions 

In our experiments the only difference between the five rule sets used for 
diagnosis of preterm birth is handling the missing attribute values. The maximum of 
the sum of sensitivity and specificity (or the maximum of P(TP) - P(FP)) is a good 
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Table 4. Results of experiments 

Global Concept Most 
closest fit closest fit common value 

Duke-1 Duke-2 Duke-2 Duke-1 Duke-2 
Initial total 
error rate 21.67 21.93 20.75 22.15 22.27 

Critical total 
error rate 68.48 64.09 54.30 42.40 45.88 

Maximum of 
P(TP) - P(FP) 3.65 5.97 11.69 17.07 14.43 

Minimum of 
P(TP) - P(FP) -15.96 -11.28 -5.37 -3.52 -2.67 

Critical number of 
true-positives 882 838 747 615 639 

Critical number 
of true-negatives 692 955 1535 2261 2063 

Critical rule 
strength multiplier 8.548 6.982 6.1983 6.1855 3.478 

indicator of usefulness of the rule set for diagnosis of preterm birth. It is the most 
important criterion of quality of the rule set. In terms of the maximum of the sum of 
sensitivity and specificity (or, equivalently, the maximum of P(TP) - P(FP)), the best 
data sets were processed by the most common value algorithm for missing attribute 
values. Note that the name of the algorithm is somewhat misleading because, in our 
experiments, we used this algorithm to compute the most common attribute value for 
each concept separately. The next best method is the concept closest fit algorithm. 
The worst results were obtained by the global closest fit. 

The above ranking could be discovered not only by using the criterion of the 
maximum of the sum of sensitivity and specificity but also by using other criteria, 
for example, the minimum of the sum of sensitivity and specificity, the number of 
critical true-positive cases, critical false-positive cases, etc. 

The initial total error rate is a poor indicator of the performance of an algorithm 
for handling missing attribute values. Similarly, the number of conflicting cases in 
the input data is a poor indicator. 

Finally, it can be observed that the smaller values of the minimum of P(TP) - 
P(FP) correspond to the smaller values of the maximum of P(TP) - P(FP), so that 
the sum of the absolute values of these two numbers is roughly speaking constant. 
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Abstract. This paper presents a post-processing algorithm of rule dis- 
covery for augmenting the readability of a discovered rule set. Rule dis- 
covery, in spite of its usefulness as a fundamental data-mining technique, 
outputs a huge number of rules. Since usefulness of a discovered rule is 
judged by human inspection, augmenting the readability of a discovered 
rule set is an important issue. We formalize this problem as a trans- 
formation of a rule set into a tree structure called a visual graph. A 
novel information-based criterion which represents compressed entropy 
of a data set per description length of the graph is employed in order to 
evaluate the readability quantitatively. Experiments with an agricultural 
data set in cooperation with domain experts confirmed the effectiveness 
of our method in terms of readability and validness. 

1    Introduction 

Knowledge Discovery in Databases (KDD) [4] represents a novel research area for 
discovering useful knowledge from large-scale data. With the rapid proliferation 
of large-scale databases, increasing attention has been paid to KDD. In KDD, 
rule discovery [1, 7,9] represents induction of local constraints in a data set. Rule 
discovery is, due to its applicability, one of the most fundamental and important 
methods in KDD. 

In general, a huge number of rules are discovered from a data set. In order 
to evaluate interestingness of a discovered rule set precisely, it is desirable to de- 
crease the number of uninteresting rules and to output the rule set in a readable 
representation. However, conventional rule-discovery methods [1,7,9] consider 
mainly generality and accuracy of a rule, and readability1 of a discovered rule 
set has been curiously ignored. Usefulness of a rule can be only revealed through 
human inspection. Therefore, visualization of a discovered rule set is considered 
to be highly important since it augments their readability. 

Rule discovery can be classified into two approaches: one is to discover strong 
rules each of which explains many examples, and the other is to discover weak 

1 In this paper, we define readability as simplicity and informativeness. 
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rules each of which explains a small number of examples [8,10]. This paper 
belongs to the first approach, and presents a method which transforms a set 
of strong rules with the same conclusion into a readable representation. As a 
representation, we consider a visual graph which explains the conclusion with 
premises agglomerated with respect to their frequencies. There exist methods for 
discovering graph-structured knowledge, such as Bayesian network [6] and EDAG 
[5]. However, our method is different from these methods since readability is our 
main goal. We propose, as a novel criterion for evaluating readability of a visual 
graph, compressed entropy density which is given as compressed entropy of the 
data set per description length of the graph. We demonstrate the effectiveness 
of our method by experiments using an agricultural data set in cooperation with 
domain experts. 

2    Problem Description 

In this paper, we consider transforming a data set D and a rule set R into a visual 
graph G{D,S), where S is a subset of R and represents the rule set contained 
in G(D, S). We assume that the number \S\ of rules in the rule set S is specified 
as a threshold by the user prior to the transformation. 

The data set D consists of several examples each of which is described with 
a set of propositional attributes. Here, a continuous attribute is supposed to be 
discretized with an existing method such as [3], and is coverted to a nominal 
attribute. An event representing that an attribute has one of its values is called 
an atom. Proportion of examples each of which satisfies an atom a is represented 
by Pr(a). 

The rule set R consists of \R\ rules T\, r2, • • •, r|B|, which are discovered with 
an existing method [7,9] from the data set D. 

R = {n,r2,---,r\R\} (1) 

In KDD, important classes of rules include an association rule [1] and a conjunc- 
tion rule [7,9]. In an association rule, every attribute is assumed to be binary, 
and a value in an atom is restricted to "true". An association rule represents a 
rule of which premise and conclusion are either a single atom or a conjunction 
of atoms. In a conjunction rule, every attribute is assumed to be nominal. A 
conjunction rule represents a rule of which premise is either a single atom or a 
conjunction of atoms, and conclusion is a single atom. In this paper, we con- 
sider conjunction rules since they assume a more general class of attributes than 
association rules. For simplification, we assume that each rule r< has the same 
conclusion a;. 

n = yn A y<2 A • • • A 2/;„(i) -¥ x (2) 

where yn> Sfc2,• • • >2/«/(i)> x represent a single atom with different attributes re- 
spectively. 

A visual graph G(D,T) represents, in a graph format, a rule set T which 
consists of |T| rules ti,*2)-".*|T|- As mentioned above, this rule set T is a 
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subset of the input rule set R. A visual graph G(D, T) is a tree structure in which 
n(D, T) premise nodes 61 (D, T), b%(D, T), • • •, &„(D,T)(A T) has their respective 
arc to a conclusion node bo(D, T). Here, the conclusion node bo(D, T) represents 
the atom a; of conclusions in the rule set T. A premise node bi(D, T) represents 
the premises of rules each of which has the i-th most frequent atom d{ in the rule 
set T. Our method constructs a premise node bi(D, T) with an ascending order 
of i, and a rule represented in a premise node is no longer represented in the 
successive premise nodes. When more than two atoms have the same number 
of occurrence, the atom with the smallest subscript is selected first. Figure 1 
shows an example of a rule set and its corresponding visual graph. In the visual 

U, V —•• X 
u, w —► X 

u,y —► X 
u —► X 
v,w, z — X 
V —* X 

y,z — X 

x| 

li 

V 

y, z 

V 
w 
y 

w, z 

rule set visual graph 

Fig. 1. Example of a rule set and its corresponding visual graph 

graph, the upmost atom x represents a conclusion node, and the other nodes 
are premise nodes. In the figure, the most frequent atom u is first agglomerated 
as a node, and the premises of the four rules each of which contains u represent 
the premise node 1. Although three rules contain atom v, the premise node 2 
represents two rules since one of the three rules is employed in the premise node 
1. 

While a visual graph is uniquely determined by a rule set S, there are |jj|C|5| 
ways of selecting a subset 5 from the rule set R. In the next section, we describe 
how to choose a subset S from the rule set R in order to obtain a visual graph 
G(D, S) with high readability. 

3    Transformation of a Rule Set into a Visual Graph 

3.1    Compressed Entropy Density Criterion 

In order to obtain a visual graph with high readability, an appropriate subset S 
should be selected from the rule set R. In this paper, we consider an evaluation 
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criterion for the readability of a visual graph, and propose a novel method which 
does not necessarily require user interaction. 

The readability of a visual graph depends on two main factors. One factor is 
graph complexity which can be represented by the number of nodes and arcs in 
the graph. A complex graph is considered to have low readability. For example, 
if we consider intuitively, a graph with 300 nodes has lower readability than 
a graph with 30 nodes. The other factor is graph description-power which can 
be represented by the information content of the data set D in the graph. For 
example, if a visual graph A represents a subset of a rule set represented by 
another visual graph B and these two graphs have the same complexity, A has 
lower readability than B. 

As explained in the previous section, a visual graph represents a tree structure 
of depth one in which each premise node has an arc to a conclusion node. Since 
the atom in the conclusion node is fixed and the depth is one, visual graphs vary 
with respect to the atoms in the premise nodes. Assuming that every atom has 
the same readability, graph complexity can be approximated by the number of 
atoms in the premise nodes. We can also consider the branching factor of the 
conclusion node, but we ignore it since it is equal to the number of premise nodes 
and can be approximately estimated by the number of atoms. 

In order to provide an intuitive interpretation to the evaluation criterion, 
we represent graph complexity by its description length. If there are A kinds 
of atoms, the description length of an atom is log2 A bit. Therefore, complexity 
U(D, T) of a visual graph G(D, T) is given as follows. 

U(D,T) = \G(D,T)\\og2A (3) 

where \G(D,T)\ represents the number of atoms in the visual graph G(D,T). 
Since A is fixed, U(D,T) is a linear function of \G(D, T)\. 

Since a visual graph and a rule set has one-to-one correspondence, the in- 
formation content of a data set D represented by a visual graph G(D, T) is 
equivalent to the information content of the data set D represented by the rule 
set T. The information content is calculated with respect to either the whole 
rule set or each rule. In rule discovery, although readability should be consid- 
ered with respect to the whole rule set, usefulness is considered for each rule. 
Therefore, we take the latter approach. We first obtain the information content 
of a data set D represented by each rule in the rule set T, and then regard 
their add-sum as the graph-description power V(D, T) for the data set D of the 
visual graph G(D,T). Note that, this formalization ignores dependency among 
rules. We have also pursued another formalization in which premises of rules are 
mutually exclusive. However, this approach has turned out to be less effective 
by experiments with an agricultural data set. 

In ITRULE rule discovery system [7], Smyth employed compressed entropy 
of a data set D by a rule t: y -> x as an evaluation criterion J-measure J(t, D) 
of the rule. 

J(t,D) = Pi(y) p*«»*^+ *«»>.* 3$ (4) 
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where x represents the negation of the atom x. J-measure is a single quantita- 
tive criterion which simultaneously evaluates the generality Pr(y), the accuracy 
Pr(x|y) and the unexpectedness Pr(x|y)/Pr(a;) of a rule, and is reported to be 
effective in rule discovery [7]. Interested readers can consult [7] for theoretical 
foundation and empirical behavior of J-measure. In this paper, we represent 
information content of a data set D by each rule t with J-measure J(t,D). 
Therefore, graph description-power V(D, T) for a data set D of a visual graph 
G(D, T) is given as follows. 

r(£>,T) = 5>(t,0) (5) 

Note that readability of a visual graph G{D, T) decreases with respect to 
graph complexity U(D, T), and increases with respect to graph description- 
power V(D, T). The former is represented by the description length of the graph, 
and the latter is represented by the compressed entropy of the data set by the 
graph. Here, the quotient of graph description-power by graph complexity rep- 
resents compressed entropy of the data set per description length of the graph, 
and can be regarded as density of compressed entropy. If this quotient of a graph 
is large, we can regard the graph as representing information of the data set with 
high density. We propose, as the evaluation criterion of readability of a visual 
graph, compressed entropy density W(D, T) which is given as follows. 

Behavior of W(D, T) cannot be analyzed exactly since it is highly dependent 
on the nature of the input data. Probabilistic analysis, based on average per- 
formance over all possible input data sets, is too difficult to carry out directly 
without invoking unrealistic assumptions concerning the nature of the inputs. 
We leave more rigorous analysis of the problem for further research. 

3.2    Search Method 

Our algorithm obtains a rule set S by deleting, one by one, rules in the input 
rule set R until the number of rules becomes \S\. In a KDD process, we cannot 
overemphasize the importance of user interaction [2]. In rule visualization, users 
may iterate visualization procedure by inspecting the output and specifying new 

, conditions. Therefore, our algorithm employs hill climbing since its computation 
time is relatively short. Our algorithm is given as follows. 

1. (Set) T «- R 
2. (Delete rules) 

(a) while(|T| > \S\) 
(b) T <- arg max W{D, T - {t}) 

3. (Return) Return G{D, T) 
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4    Application to an Agriculture Data Set 

In this section, we demonstrate the effectiveness of our method by applying it 
to "Agriculture" data sets. "Agriculture" is a series of data sets which describes 
agricultural statistics such as various crops for approximately 3200 municipal- 
ities in Japan. We have followed suggestions of domain experts and analyzed 
"semi-mountainous municipalities". Japanese ministry of agriculture specified 
approximately 1700 municipalities as semi-mountainous for conservation of agri- 
culture in mountainous regions, and analysis on these municipalities is highly 
demanded. We have used the 1992 version of "Agriculture", and there are 1748 
semi-mountainous municipalities as examples in the data set. 

Since Japan has diverse climates, there are many crops each of which is 
cultivated in a restricted region. An atom representing the absence of such a 
crop is frequent in discovered rules. However, such an atom is uninteresting 
to domain experts since it represents another view of climatic conditions. In 
order to ignore such atoms, we employed 148 attributes each of which has a 
positive value in at least one-third of municipalities. These attributes represent, 
for instance, summaries of municipalities, shipments of crops and acreages of 
crops. In discretizing a continuous attribute, we first regarded "0" and missing 
values as a new value, then employed equal-frequency method [3] of three bins. 

According to domain experts, conditions on high income are their main in- 
terests. First, we settled the atom of the conclusion "agricultural income per 
farmhouse = high". We obtained a rule set which consists of 333 rules with a 
rule discovery method [9]. For the rule set S in the output visual graph, we 
settled as \S\ = 15. Figure 2 shows the result of this experiment. 

- agricultural income per farmhouse=high| 

- ratio of secondary industry»low 

vegetable production per farmer=higl 

_ annual expenditures for agriculture 
per farmer=high 

agriculture promotion areaotrue 

number of companies per population»high 
annual expenditures for agriculture per farmer«high 

annual expenditures per population-high 
annual revenue per population=high 

annual expenditures for agriculture per farmerehigh 
annual expenditures per population*high 
number of companies per population*high 
annual revenue per populatlon=high 

ratio of forestelow 

ratio of cultivable area»high 

•—ratio of cultivable area*high 

Fig. 2. Visual graph for conclusion "agricultural income per farmhouse = high" with 
\S\ = 15 
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Atoms in this figure can be classified into four groups. The first group rep- 
resents that a considerable amount of subsidies are granted by the administra- 
tion. Atoms which belong to this group are "agriculture promotion area=true", 
"annual expenditures for agriculture per farmer=high", "annual expenditures 
per population=high" and "annual revenue per population=high". These atoms 
represent that agriculture is highly-promoted by administrations, and their fi- 
nancial status are excellent. The second group represents that vegetables are 
well-cultivated. Atoms which belong to this group are "vegetable production 
per farmer=high", "ratio of cultivable area=high" and "ratio of forest = low". 
These atoms represent that high income is gained with vegetables, and acreage 
for vegetables is large. According to domain experts, difference in cultivation 
technique of vegetables has considerable influence on income. The third group 
represents that companies are highly-active, and "number of companies per pop- 
ulation=high" belongs to this group. This atom represents that a municipality 
is located close to cities, each of which gives opportunity of shipment and side 
income. The fourth group represents that a municipality depends mainly on 
agriculture, and "ratio of secondary industry=low" belongs to this group. This 
atom represents that, for instance, each farmer has large acreage. This analysis 
shows that each atom in the premise nodes in figure 2 is appropriate as a reason 
of "agricultural income per farmhouse = high". 

In the next experiment, the atom in the conclusion is settled to "agricul- 
tural income per farmer = high", and a rule set which consists of 335 rules is 
obtained with the same procedure. Figure 3 shows the visual graph obtained by 
our method with the same conditions. 

r- agricultural income per farmer-high 

ratio of production generation-high 

- vegetable production per farmer-higl 

- agriculture promotion area-true 

number of companies per population-high 

annual expenditures for agriculture per farmer«high 

annual expenditures per population-high 

annual revenue per population-high 

annual expenditures for agriculture per farmer-high 

annual expenditures per population-high 

number of companies per population-high 

annual revenue per population-high 

ratio of cultivable area-high 

ratio of cultivable area-high 

-ratio of forestry farmer-low 

-ratio of aged generation-low 

Fig. S. Visual graph for conclusion "agricultural income per farmer = high" with \S\ 
15 
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In Japan, municipalities of "agricultural income per farmer = high" are al- 
most equivalent to municipalities of "agricultural income per farmhouse = high". 
Large-scale farmhouses are dominant in these municipalities. Since atoms in the 
premise nodes in figure 3 are similar to those in figure 2, this visual graph can 
be validated with similar discussions as above. 

In the last experiment, the atom in the conclusion is settled to "agricul- 
tural income per 10A = high", and a rule set which consists of 319 rules is 
obtained with the same procedure. Figure 3 shows the visual graph obtained by 
our method with the same conditions. 

r- agricultural income per 10A=high 

ratio of living area-high 

vegetable production per farmer-higj 

_ ratio of forest-low 

number of companies per population-high 

annual expenditures per population-high 

annual revenue per population-high 

ratio of forest-low 

annual expenditures for agriculture per farmer=high 
annual expenditures per population-high 
number of companies per population-high 
annual revenue per population-high 

annual expenditures per population-high 
number of companies per population-high 
annual revenue per population-high 

—agriculture promotion area-true 

Fig. 4. Visual graph for conclusion "agricultural income per 10A = high" with \S\ = 15 

Unlike the other two visual graphs, visual graph in figure 4 has "ratio of 
living area = high", and considers "ratio of forest = low" as more important. It 
should be also noted that atoms "ratio of secondary industry=low" and "ratio of 
production generation=high" have disappeared. These results can be explained 
that some of municipalities in which large-scale farmhouses are dominant are 
excluded in "agricultural income per 10A = high", and cultivation techniques 
are more important for this conclusion. 

From figure 2 to 4, each obtained visual graph has a simple structure and 
contains valid rules. Domain experts evaluated these three results, and claimed 
that each visual graph has a simple structure and thus has high readability. 
They also concluded that each visual graph contains accurate and valid rules in 
explaining the conclusion. 

5    Conclusion 

Existing rule discovery methods induce a huge number of rules, and inspection of 
these rules for judging their usefulness requires considerable efforts for humans. 
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In order to circumvent this problem, we proposed a novel method for transform- 
ing a discovered rule set into a visual graph which has a simple structure for 
representing information of a data set. For this transformation, we presented a 
novel criterion: compressed entropy density which is given by the quotient of 
compressed entropy by the description length of the graph. Our method has 
been applied to an agricultural data set for 1748 municipalities in Japan, and 
the results were evaluated by domain experts. Obtained visual graphs have high 
readability and contain valid rules even for these experts. We consider that this 
fact demonstrates the effectiveness of our method. 
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Abstract. Association rule is a kind of important knowledge extracted 
from databases. However, a large number of association rules may be 
extracted. It is difficult for a user to understand them. How to select 
some "representative" rules is thus an important and interesting topic. In 
this paper, we proposed a distance-based approach as a post-processing 
for association rules on numeric attributes. Our approach consists of 
two phases. First, a heuristic algorithm is used to cluster rules based 
on a matrix of which element is the distance of two rules. Second, after 
clustering, we select a representative rule for each cluster based on an 
objective measure. We applied our approach to a real database. As the 
result, three representative rules are selected, instead of more than 300 
original association rules. 
Keywords: Association rules, Rule clustering, Rule selection, Numeric 
attributes, Objective Measures, Discretization. 

1    Introduction 

Data mining has been recognized as an important area of database research. 
It discovers patterns of interest or knowledge from large databases. As a kind 
of important pattern of knowledge, association rule has been introduced. An 
association rule is an implication expression: C\ => C2, where C\ and C2 are 
two conditions. It means that when the condition C\ is true, the conclusion C2 
is almost always true. 

Association rule is first introduced in Agrawal et al.'s papers [AIS93, AS94]. 
They considered only bucket type data, like supermarket databases where the 
set of items purchased by a single customer is recorded as a transaction. When 
we focus on data in relational databases, however, we have to consider var- 
ious types of data, especially continuous numeric data. For example, (age 6 
[40,60]) =$■ (own-house = yes). In this case, we may find hundreds or thou- 
sands of association rules corresponding to a specific attribute. Fig. 1 shows all 
rules (about 300) that we extracted from an adult database. The rules have the 
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form "fnlwgt G [a,b] =>■ (income < 50K)", where fnlwgt is a numeric attribute 
and income is a decision attribute. We order the rules by the ranges in the LHS. 
It is not accteptable to show all rules to users. To tackle this problem, Fukuda 
et. al. [FMMT96a, FMMT96b] proposed so-called optimized association rule. 
It extracts a single association rule from all candidates which maximizes some 
index of the rules, for example, support. In many cases, however, it is just a 
common sense rule and has no value at all. 

fnlwgt 

Fig. 1. Many similar rules are extracted 

To overcome this shortcoming, in our opinion, it is reasonable to divide the 
process of discovering association rules into two steps: one is to find all can- 
didates of which support and confidence are greater than the thresholds given 
by users; the other is to select some representative rules from all candidates. 
Although most of existing papers contributed to the first step, an incremental 
interesting has been paid on the second step [KMR+94, MM95, Fre98, GB98, 
Kry98a, Kry98b, WTL98]. Various measures for interestingness of association 
rules have been proposed. 

In general, the evaluation of the interestingness of discovered rules has both 
an objective and a subjective aspect. Kiemettinen et al.[KMR+94] proposed a 
simple formalism of rule templates to describe the structure of interesting rules, 
like what attributes occur in the antecedent and what attribute is the consequent. 
Liu et al. [LHC97] proposed a user-defined impression to analyze discovered rules. 
Other authors choose to look for objective measures for rule selection. Gago et 
al.[GB98] defined a distance between two rules, and select n rules such that they 
are the most distinguished. Major et al.[MM95] proposed a set of measures, 
like simplicity, novelty, statistical significant, and a stepwise selection process. 
Kryszkiewicz [Kry98a, Kry98b] defined a cover operator for association rule on 
bucket data, and found a least set of rules that covers all association rule by 
the cover operator. However, since downward closure property is not true for 
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association rules on numeric attribute, Cover operation is not appropriate for 
rule selection. 

In this paper, we focus on selection of association rules on numeric attributes. 
We assume that a set R of association rules have been extracted. We then se- 
lect a subset of R as representative rules of R. Our approach is first to cluster 
association rules according to the distance between rules, and then to select a 
representative rule for each class. In this paper, we also focus on objective mea- 
sures for association rules. We observe from Fig. 1 that many similar rules exist. 
It is because a rule candidate which is close to a rule with high support and 
confidence is most possibly an association rule too. Hence, it is reasonable to 
define a representative rule for a set of similar rules. Two objective measures are 
proposed for clustering and selection of rules, respectively. 

The paper is organized as follows: In Section 2, we present basic terminology 
and an overview of the work. Section 3 defines a distance between rules which 
is used for grouping similar rules. In Section 4, we propose a coverage measure 
for selection of representative rules. In Section 5, we present some experimental 
results. Section 6 concludes and presents our future work. 

2    Overview of Our Work 

In this section we present basic terminology for mining association rules on 
numeric attributes, and then give an overview of our approach. 

Assume there is a relation D{A\, A2,- •» An,C), where At is an attribute 
name, and C is a decision attribute. For a tuple t & D, t.Ai denotes the value of 
Ai at t. An association rule is an expression of the form C\ => C2, where C\ and 
Ci are two expressions, called left-hand side (LHS) and right-hand side (RHS) 
of the rule, respectively. In this paper, we consider association rules on numeric 
attributes with the form: 

R •■ (ai < Ax < 61) A • ■ • A (an < An'< bn) =*• (C = yes) 

where At is a numeric attribute and C is a Boolean attribute. Without confusion, 
we usually denote a rule by an area P in the n dimension space, t € P means 
(ai < t.Ai < h) A • • • A (a„ < t.An < &„)}. 

Two measures, support and confidence, are commonly used to rank associ- 
ation rules. The support of an association R, denoted by supp(R), is defined by 
\{t\t £ P}|/|D| *. It means how often the value of A occurs in the area P as 
a fraction of the total number of tuples. The confidence of an association rule, 
denoted by conf(R), is defined by \{t\t ePAt.C = yes}\/\{t\t e P}\. It is the 
strength of the rule. 

For a pair of minsup and minconf specified by the user as the thresholds of 
support and confidence, respectively, an association rule is called "interesting" if 
both its support and confidence are over the minimal thresholds. Let fl denote 
the set of all interesting rules. That is J? = {R\supp(R) > minsup A con f(R) > 

or |{t|tePA*.C = »/es}|/|D|. 
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minconf}. Our purpose is to extract a set of representative rules from fi. Our 
approach consists of the following two steps: 

(1) Clustering. We define a distance between two rules, and a diameter of a set 
of rules based on distance of rule pairs. Intuitively, the rules in Fig. 1 should 
be clustered into three groups. 

(2) Selection. For each cluster, we select exactly one rule as its representative 
rule. We define a coverage for each rule. It measures the degree of a certain 
rule to "cover" all others. 

In the following two sections, we discuss these two aspects respectively. 

3    Clustering Association Rules 

Let Ü = {ri, • • •, rn} be a set of association rules. Each rule n contains an area 
in LHS. We denote also the area as rt without confusion. In the followings, we 
use the word "rule" and "area" in the same meaning. 

Definition 1. Let ri and r2 be two rules. The distance of n and r2 is defined 

by   

dist(ri,r2) = ^((aj1» - ai2))2 + (b™ - 6<2))») (1) 

where n = {a^ < Ax < &f\ •■ • ,a^ < An < btf} for i = 1,2. 

In this definition, we view the left and right terminals of a range on a numeric 
attribute as two independent parameters. Thus a rule can be represented as a 
point in a In dimension space. The distance of two rules is defined as the distance 
of the two points in the space. 

Definition 2 . Let C = {n,---,rm} be a set of rules, r £ C be a rule. A 
(average) distance of r to C is defined by 

dist(r, C) = Eri ecdist(r, r^/m (2) 

Definition 3. Let C\ and C2 be two sets of rules. The (average) distance be- 
tween Ci and C<i is defined by 

dist(C1,C2) = Zriec1,rjec2dist(ri,rj)/(\C1\-\C2\) (3) 

where |Ci| and |C2| are the numbers of rules in C\ and C2, respectively. 

The diameter of a cluster is the average distance of all pairs of rules in the 
cluster. 

Definition 4 . Let C = {T*I , • • •, rm } be a set of rules. A diameter of C is defined 
by 

d(C) = Sri<Tj€Cdist{rurj)l{m{m - 1)) (4) 
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Definition 5 . Let C = {C\, ■ ■ ■, Ck), where d C Q. C is called a clustering of 
fi if for a given threshold do> the followings are satisfied. 

1. d D Cj = 4>S± i) 
2. d(d) < do 
3. dist(Ci,Cj)>d0,{i^j) 

This definition gives a basic requirement for clustering. Obviously, the further 
the distance between clusters, the better the clustering. In other words, we expect 
to maximize the sum of the distance of all pairs of clusters. However, there are 
0((n!)2/2n) number of candidates for clusterings. It is impossible to obtain an 
optimized clustering by a native aproach. 

In this section, we propose a heuristic approach to construct a clustering. 
It is a hill-climbing algorithm working on a matrix of which cell represents the 
distance of two rules. That is 

D = (dist(ri,rj))nXn 

We always select two rules (or two sets of rules) between which the distance is 
the minimal. Hence, our algorithm consists of a loop, each of which combines 
two lines/columns of the matrix of which crosspoint cell has the minimal value. 

While combining two rules (or two sets of rules), we have to recompute the 
distance between the combined cell and the other rules. The following properties 
can be used for this increamental recomputing. They can be derived from the 
definitions of diameter and distance, and Fig. 2. 

Property 6 . Let C\ = {ri,---,rm}, C2 — {si,---,s„} be two sets of rules. 
Assume d{C\) = d\, and d(C2) = d2, and dist(Ci,C2) = dist. The diameter of 
C\ U C2 can be evaluated by the following formula. 

d(Ci U C2) = Er,.6C,uca 
dist(r> s)/((m + n)(m + n - 1)) 

— (£r,«eCi +Z)r,ggC2 
+SrgCi,»6C2 

+ 2jgeC1,r6C2)^
sHr' S) 

(m + n)(m + n — 1) 
_ m(ro - l)d(Ci) + n(n - l)d(C2) + {2mn)dist{CuC2) 

(m + ri)(m + n — 1) 
_ m(m — l)d\ + n(n — l)d2 + (2mn)dist 

(m + n)(m + n — 1) 

Property 7 . Let C\ = {ri, • • •,rm}, C2 = {si, • • •,sn} be two clusters. C3 be 
another cluster. Assume C\ and C2 are combined to a new cluster C\ l)C2, then 
the distance between C3 and C\ U C2 can be evaluated by the following formula. 

dist(Cs,d U C2) = (Erec-ecuc, dist(r,s))/(\C3\ ■ |d U C2\) 
Sreca.sec! dist(r,s) + Er6C3,s6C2 dist(r,s) 

|C3| ■ |Ci| ■ distjCsA) + \C3\ ■ \C2\ • dist(C3,C2) 
|c3| |duc2| 

md\ + nd2 

m + n 
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where dx = dist(C3,Ci), and d2 = dist(C3,C2)- 

(1) Diameter of Ci U Ci     (2) Distance between C3 and C\ U C2 

Fig. 2. Diameter and distance of clusters 

The algorithm consists of a loop of two steps. The first step is to select the 
minimal distance from the upper triangle of the matrix. If the value is less than 
the threshold do, the corresponding two rules (clusters) should be combined. The 
next step is to generate a new matrix which has smaller size. 

Algorithm 8. Clustering 
Input: a matrix D(i,j) 
Output: clustering C = {C\, ■ ■ ■,Cfc} 
Method: 

1. d - {i} for i = 1, ■ • •, k; d = mmi#j{£>(t, j')}; Assume D(s,t) is the minimal 
distance element is D. 

2. While (d < d0) Do { 
2-1. combine C„ and Ct, and let the new Cs be CsöCt, 
2-2. delete Ct from C. 
2-3. generate a new matrix D' = (e,)j)(„_i)X(n-i)) where 

_ ns(ns - l)d„,s + nt(nt - l)dM + 2nsntds,t 
e"'s~ (n.+nt)(n,+nt-l) 
esj = (ns * dsj +nt* dtj)/(ns + nt), j ^ «,' 
eitj = dij, i,j^s,t 

where ns and nt are the size of the s-th and t-th clusters, dij is the 
distance between d and Cj. 

2-4. find the minimal distance from D': Let D'(s, t) = mini^j{D'{i, j)} = d. 

3. Output C. Assume the final matrix is D'mxm 

C, is e,,i. 

Then the diameter of cluster 
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The complex of this algorithm is 0(n3). This is because that the most ex- 
pensive step is finding the minimal element of the matrix in each loop. 

Example 1. Let us consider a simple example. The rules contain only one at- 
tribute in its LHS. That is, all rules can be represeted as a range in this case. 
Let Q = {[1,3], [3,5], [2,4], [6,7], [7,9]}. The distance matrix is 

/0 2v^v^V416v^\ 
0    \/2y/Ü^y/2 

0     5   5\/2 
0    VE 

V 0  / 

2. The algorithm runs as follows. 

Dx 

Assume that the threshold d0 

1. Find £>i(1,3) which value is the minimal inDi. Since the value D\{ 1,3) < do, 
we combine the first and the third line/column at first. The new matrix a 
4x4 one. 

D,= 

( V2 (3/2)v^ (V3I + 5)/2 (11/2)v/2\ 
0 V^3 4\/2~ 

0 V5 
0 / 

2. In the new matrix, the minimal value except the elements in the diagonal 
line is D2(l,2) = (3/2)\/(2) < do Hence, we need to combine of the first 
and second line/column of D2- The reduced new matrix Z?3 is, 

/(4/3)^ (v/il + 5 + v/l3)/3 5v/2N 

D3 = ( o VE 
{ 0 

3. Finally, since the minimal value cell £>3(2,3) > do, the algorithm stops. 

Q is thus divided to three clusters. One is {[1,3], [3,5], [2,4]}, and the others 
are {[6,7]} and {[7,9]}. 

4    Selecting Representative Rules 

The next phase of our approach is to select a representative rule for each cluster. 
Since all rules in the same cluster are similar, it is reasonable to select only one 
as a representative rule. 

Definition 9 . Let C = {n,---,rn} be a cluster of rules, and R G C. The 
coverage of R to C is defined as 

a(Ä) = (i7P6£7||rnÄ||/||rUÄ||)/|q (5) 

where ||X\\ is the volume of the area X.röR and rC\R are defined in an ordinary 
way. A rule R is called representative rule of C if a(R) is the maximal. 
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The measure a(R) reflects the degree of one certain rule to cover all others. 
It can be used as an objective measure for selection. In the following section, we 
can see from an example that this measure is better than the others like support. 

Example 2. Let us consider Example 1 once again. For cluster {[1,3], [3,5], [2,4]}, 
we can evaluate that o([l,3]) = 4/9, Q([3,5]) = 4/9, and a([2,4]) = 5/9. Hence, 
[2,4] should be selected as the representative rule of the cluster. The other two 
clusters are single element clusters. The rule itself is thus the representative rule 
of the cluster. Hence, we finally obtain a set of representative rules for Q. It is 
{[2,4], [6,7], [7,9]}. 

It is easy to develop an algorithm with 0(n2) complexity to select a repre- 
sentative rule from the cluster C . 

5    Experiments 

The first experiment is to apply our approach to analyse a set of association rules 
extracted from an adult database. The association rule has the form "fnlwgt € 
[a,b] => (income < 50K)". The RHS of the rule can be viewed as a Boolean 
attribute. The database contains 32560 tuples. When we set minconf = 0.8 and 
minsup = 0.03, we obtained 310 rules. 

In the first step, we represent these rules as points in a 2D space. By our 
algorithm, they formed three clusters (Fig 3(a)). Furthermore, three rules are 
selected from three clusters, respectively. The representative rule of the cluster 
1 is showed in Fig. 3(b). 
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(a) Clustering of association rules (b) Representative rule of cluster 1 

Fig. 3. The X-axis and Y-axis represent the left and right terminal of the range in the 
LHS of a rule, respectively. 
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The second experiment is to compare our coverage measure with the support 
measure as selection metric. We consider another attribute "age" in the adult 
database to see the association relation between "age" and "income", that is, 
pattern of rule "Age e [a, b] =► Income < 50Ä"". Let the threshold of confidence 
6C be 0.8. Fig. 4 (a) shows the range which support is the maximal and confidence 
is greater than 9C. From the figure we can see that the selected range covers a 
large part of which confidence is less than 8C. It is because that the left part of 
the range is with a confidence which is much higher than the 6C. To be opposite, 
Figure 4 (b) shows the range of which coverage is the maximal and its confidence 
and support are greater than the given thresholds. 
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(b) selected by coverage 

Fig. 4. Comparison of the measure of coverage and support 

6    Conclusions and Further Work 

Selection of representative and useful association rules from all candidates is 
a hard problem. Although it depends on user's interests in nature, we believe 
that some objective measures are helpful for users to select. For association 
rules on numeric attributes, we observed that there exist many similar rules. 
We thus propose a distance-based clustering algorithm to cluster them. The 
clustering algorithm is a heuristic hill-climbing and matrix-reducing procedure. 
The complexity is 0(n3), where n is the number of association rules. We also 
propose an objective measure called coverage for selection of representative rule 
for each cluster. 

Some further work is needed. How to deal with attributes with different types 
and/or scales in the LHS of the rules is interesting. Further evaluation of the 
effectiveness of our approach in real applications is also necessary. 
Acknowledgments The authors would like to thank the anonymous reviewer 
who provided critical and detail comments. 



432 

References 

[AIS93] 

[AS94] 

[FMMT96a] 

[FMMT96b] 

[Fre98] 

[GB98] 

[KMR+94] 

[Kry98a] 

[Kry98b] 

[LHC97] 

[MM95] 

[WTL98] 

R. Agrawal, T. Imielinski, and R. Srikant. Mining association rules be- 
tween sets of items in large databases. In Proceedings of SIGMOD, pages 
207-216, Washington, USA, May 1993. 
R. Agrawal and R. Srikant. Fast algorithms for mining association rules. 
In Proceedings of the 20th VLDB Conference, pages 487-499, Santiago, 

Chile, 1994. 
T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining 
using two-dimentional optimized association rules: Scheme, algorithms 
and visualization. In Proceedings of SIGMOD, pages 13-23, Montreal, 
Canada, June 1996. ACM Press. 
T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Mining opti- 

mized association rules for numeric attributes. In Proceedings of PODS, 
pages 182-191, Montreal, Canada, June 1996. ACM Press. 
A.A. Freitas. On objective measures of rule surprisingness. In J.M. 
Zytkow and M. Quafafou, editors, Principles of Data Mining and Knowl- 
edge Discovery (PKDD'98), volume 1510 of Lecture Notes in Artificial 
Intelligence, pages 1-9, Nantes, France, September 1998. Springer. 
P. Gago and C. Bento. A metric for selection of the most promising rules. 
In J.M. Zytkow and M. Quafafou, editors, Principles of Data Mining and 
Knowledge Discovery (PKDD'98), volume 1510 of Lecture Notes in Artifi- 
cial Intelligence, pages 19-27, Nantes, France, September 1998. Springer. 
M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.I. 
Verkamo. Finding interesting rules from large sets of discovered associa- 
tion rules. In N.R. Adam, K. Bhargava, and Y. Yesha, editors, Proceed- 
ings of the Third International Conference on Information and Knowl- 
edge Management, pages 401-407, Maryland, USA, November 1994. ACM 
Press. 
M. Kryszkiewicz. Representative association rules. In X. Wu, 
R. Kotagiri, and K.B. Korb, editors, Research and Developement in 
Knowledge Discovery and Data Mining (PAKDD'98), volume 1394 of Lec- 
ture Notes in Artificial Intelligence, pages 198-209, Melbourne, Australia, 
April 1998. Springer. 
M. Kryszkiewicz. Representative association rules and mining condi- 
tion maximum consequence association rules. In J.M. Zytkow and 
M. Quafafou, editors, Principles of Data Mining and Knowledge Discov- 
ery (PKDD'98), volume 1510 of Lecture Notes in Artificial Intelligence, 
pages 361-369, Nantes, France, September 1998. Springer. 
B. Liu, W. Hsu, and S. Chen. Using general impressions to analyze dis- 
civered classification rules. In Proceedings of KDD-97, pages 31-36, Cali- 
fornia, USA, 1997. 
J.A. Major and J.J. Mangano. Selecting among rules induced from a 
hurricane database. Journal of Intelligent Information Systems, (4):39- 
52, 1995. 
K. Wang, S.H.W. Tay, and B. Liu. Interestingness-based interval merger 
for numeric association rules. In Proceedings of KDD-98, 1998. 



Knowledge Discovery for Protein Tertiary 
Substructures 

Chao-wen Kevin Chen1 and David Y. Y. Yun2 

Laboratory of Intelligent and Parallel Systems, College of Engineering, Univ. of Hawaii 

cwchen@spectra.eng.hawaii.edu1,   dyun®spectra.eng.hawaii.edu2 

Abstract. Mining for common motifs in protein tertiary structures holds the 
key to the understanding of protein functions. However, due to the formidable 
problem size, existing techniques for finding common substructures are 
computationally feasible only under certain artificially imposed constraints, 
such as using super-secondary structures and fixed-length segmentation. This 
paper presents the first, pure tertiary-level algorithm that discovers the common 
protein substructures without such limitations. Modeling this as a maximal 
common subgraph (MCS) problem, the solution is found by further mapping 
into the domain of maximum clique (MC). Coupling a MC solver with a graph 
coloring (GC) solver, the iterative algorithm, CRP-GM, is developed to narrow 
down towards the desired solution by feeding results from one solver into the 
other. The solution quality of CRP-GM amply demonstrates its potential as a 
new and practical data-mining tool for molecular biologists, as well as several 
other similar problems requiring identification of common substructures. 

l.   Introduction 

This paper describes a new algorithm capable of discovering maximal common 
substructures from large, complex graph representations of given structures of 
interest. The ability to produce high-quality solutions in reasonable time has been a 
long standing challenge, since the maximal common subgraph (MCS) problem is 
known to be NP-hard. Overcoming the size limitation of current pattern discovery 
techniques based on conventional graph theory turns out to be even more significant. 
Finally, the algorithm is demonstrated to be not only a general, useful data-mining 
tool but also an effective method for analysis of protein structure, and function. 

In recent years, molecular biologists have been devoting their efforts on the 
analysis of protein structure commonality. It is of great interest for a number of 
reasons. The detection of common structural patterns (or, motifs) between proteins 
may reveal the functional relationships. Moreover, the results of Jones and Thirup [1] 
have indicated that the three-dimensional structure of proteins can often be built from 
substructures of known proteins. In other words, the mining of protein motifs may in 
fact hold the key to the question of how proteins fold into unique and complicated 3D 
structures. The understanding of the 'protein folding' problem will further contribute 
to the design of new and more effective drugs with specific 3D structures. 
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A number of automated techniques have been developed for this purpose. 
Rosmann et al. pioneered the technique of superimposing two proteins. Approaches 
using variations of structure representation, similarity definition, and optimization 
techniques have been deployed [2,3,4]. Most representative among these techniques 
include those of Grindley et al.[3], and Holm and Sander [4]. Grindley et al. pre- 
processed the protein tertiary structures into a collection of coarser representations, 
the secondary structures, then performed maximal common subgraph matching on the 
resultant representations. Holm and Sander discarded the notion of secondary 
structure, and, instead, pre-segmented the proteins into fixed-length patterns. Then a 
Monte Carlo random walk algorithm is used to locate large common segment sets. 

All the aforementioned techniques are subject to artificially imposed constraints, 
such as using super-secondary structures and fixed length segmentation, which could 
damage the optimality of the solution. This paper presents a new maximal common 
sub-graph algorithm that overcomes those limitations. 

2.   Protein Common Substructure Discovery by MCS 

Similar 3D protein structures have similar inter-residue distances. The most often 

used inter-residue distance is the distance between residue centers, i.e. Ca atoms. By 

using the inter- C" distance, the similarity can be measured independent of the 
coordinates of the atoms. 

The similarity of two proteins Pi and P2 tertiary structures can be defined as, 

M   M 

>=\ j=\ (i) 

where Mis the number of matched C" atom pairs from Pj and P2, and 0(i, j) is a 
similarity measure between the matched pair i and y, which is defined as a threshold 

step function that outputs 1 when dthresholod - \ dPi (/', j) - dPi (i, j) |> 0, otherwise 
0. This removes any contribution of unmatched residues to the overall similarity. 

Definition 1: The Protein Common Tertiary Substructure (PCTS) Problem is 
defined as that of maximizing similarity measure of eq. (1), seeking the maximum 

number of matched C" atom pairs satisfying the distance measure. 

2.1   Maximal Common Subgraph Approach 

In recent years, graph matching algorithms have been liberally used to perform 
protein structure analysis (such as the work of Grindley et al. [3]). 

Definition 2: A graph G(V,E) is defined as a set of vertices (nodes), V, together 
with a set of edges, E, connecting pairs of vertices inV(EczVxV). A labeled 
graph is one in which labels are associated with the vertices and/or edges. 

The protein structures can be easily represented as labeled graphs. For the purpose 
of PCTS problem, proteins are considered labeled graphs with vertices being the 
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C" atoms, and edges labeled with the Ca -to- Ca distances between the vertices. 
Then the largest common substructures between two proteins is simply the maximal 
common sub-graph (MCS) isomorphism problem: 

Definition 3: Two graphs, Gj and G2, are said to be isomorphic if they have the 
same structure, i.e. if there is a one-to-one correspondence or match between the 
vertices and their (induced) edges. A common sub-graph of Gj and G2, consists of a 
sub-graph Hi of G,, and a subgraph H2 of G2 such that Hj is isomorphic to H2. 

The flexibility allowed by the similarity measure can be easily incorporated into 
this graph theoretical approach for solving the PCTS problem. For example, the angle 
or bond rigidity in the protein geometry could be relaxed. The similarity measure, 
then, only needs to allow a looser edge label and the distance. 

2.2  Transforming to Maximum Clique Problem 

Brint and Wille« [5] performed extensive experiments in the 80's and concluded that 
the MCS problem can be solved more effectively in the maximum clique domain, 
which can be done by using the following transformation. 

Definition 4: A clique is a complete graph. The Maximum Clique (MC) Problem 
is to find the clique with the maximum number of nodes in a given graph. 

[Transforming from MCS to MC] Barrow et al. [6] gave a transform to convert 
MCS into the MC problem by the following procedures: 
Given a pair of labeled graphs Gj and G2, create a correspondence graph C by, 
1) Create the set of all pairs of same labeled nodes, one from each of the two graphs. 
2) Form the graph C whose nodes are the pairs from (1). Connect any two node 

pairs N^Aj, Bx), N2(AJ5By) in C if the labels of the edges from A, to Aj in Gj and 
Bx to By in G2 are the same. 

Solving the MCS problem becomes that of finding the maximum clique of C and then 
map the solution back into a MCS solution by the inverse transformation. 

3.   Algorithms 

3.1  Exploiting the Relations Between MC and Graph Coloring 

Both problems of maximal common subgraph and maximum clique are NP-hard. 
Numerous MC algorithms have been developed over the years. However, their 
solution quality tends to vary significantly from test case to test case, mainly because 
they are mostly heuristic algorithms trying to solve a multi-dimensional optimization 
problem with local optima "traps". Another NP-hard problem of graph coloring (GC) 
is tightly coupled with MC in an iterative loop aiming to converge to the optimal 
solution of either problem, or in many cases both. In this section, only the most 
relevant parts to the MC-GC solver are included, leaving other details in [7]. The 
algorithmic framework of the MC-GC solver is shown in Figure 1. 

Given a graph G(V,E), the relation between MC and GC is fundamentally 
expressed by the following well-known theorem: 
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MCS problem 

Correspondence l~A 
Graph 

■—\ Maximum 
^~y Clique cl 

Transformed MCS 

Fig. 1. Algorithmic Framework for CRP-MCS 

Theorem 1: Given the size of the maximum clique, ©(G), and the chromatic 

number, A(G), then &>(G) < A(G) < (A +1), where A is the maximum degree of 
G.[8] 

With the chromatic number and maximum clique size bounding each other, it 
provides a perfect termination condition for the loop process shown in Figure 1. If 
such situation occurs, then the optimal solutions for both problems are solved 
simultaneously. 

In order to devise a set of heuristics for clique-finding and graph coloring, the 
following definitions and theorems are utilized. 

Definition 5: Given a coloring for G, the color-degree of vertex vb cdeg(v,), is 
defined as the number of different colors of the adjacent nodes, the color-vector of 
vertex v,-, cv(v/), is defined as the set of colors that v,- can use not conflicting with the 
colors assigned to its adjacent nodes. 

Lemma 1: For any set V of vertices, let the size of the maximum clique that 
includes 5 be a» (G | K). Then, &<G|F)<(cdegf)+|F|). (Proof omitted here.) 

Definition 6: A set D cV is defined to be dominant if 
Vv € (V \ D),3u e D -» (u,v) e E. Given a complete coloring C for G, for 

any color c, {v | c e cv(v)} forms a set of dominant Sc vertices. The color that 
corresponds to the smallest Sc is called the {minimal) dominant color. 

Assuming that the graph has uniform probability for the edge connection, then the 
probability of a vertex in any dominant set can be derived as follows, 

Theorem 2: Given a random graph G£ (V,E), where the graph size is n, the edge 
probability for each pair of vertices e(u,v) = p, and a specific maximum clique is CO, 
for a complete coloring C for G, if the minimal dominant vertex set is Sc. then 
Vv € Sc, the probability that v belongs to a clique of size CO 
( \M-i 

is 

.("). 
\-{X-pf'\ 
Therefore, selecting a vertex from the smallest dominant vertex set means a higher 

probability for it to be in the maximum clique. This then underlies the strategy of 
using a GC solution as an initializing "seed" for the MC computing process. 
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Definition 7: When coloring a graph, the color reduction of node v,- is defined as 
the process of removing colors from cv(v;) in conflict with the colors of all of its 
neighbors. 

Graph coloring is generally accomplished by sequentially assigning colors to 
uncolored vertices. The risk of such sequential decision process is that once a vertex 
is colored with color c when there is more than one choice, due to color reduction, the 
adjacent vertices are forced to use the other available colors. Consequently, the 
coloring solution could be misdirected away from the optimal due to premature color 
decisions. The color reduction process is used in this work precisely to prevent 
premature commitments in the effort of achieving minimal coloring. 

Definition 8: A Saturated Clique (SC) is defined as a clique cl whose size is equal 

to the union of all node color vectors, i.e., | U cv(v) |=| cl \. 
vecl 

3.2  Solving MCS via MC (and GC) 

Based on the observation of the close relations between graph coloring and maximum 
clique problems, a complementary algorithm, CRP-MCS, that combines graph 
coloring and clique-finding algorithms is designed to solve the maximum clique 
problem. A resource management methodology [9], called Constrained Resource 
Planning (CRP), provides the guiding principles and motivates the solution strategies 
for both the coloring and clique-finding processes of the iterative loop. Solution from 
one, and its derived information, is used to initialize the counterpart process, and 
execute alternatingly until a solution is found. Such an initialization process is called 
'seeding' in this work. Each sub-algorithm terminates upon completion of its targeted 
goal and then hands over the result to the other. The entire iterative process 
terminates when certain criteria are met, and the maximal clique solution is 
transformed into a MCS solution. 

3.2.1      Clique-Finding Algorithm 
Each graph coloring process produces different color distribution. Since our clique- 
finding algorithm relies on the coloring information, the coloring result C comes from 
previous coloring process naturally becomes the seed for clique-finding. The set of 
nodes that use the dominant color is set to be the seed, or pivot vertices, for the 
clique-finding process, and large cliques are sought in Nbr(y) for each pivot v. 

In addition, for any clique in the graph, each color contributes at most one vertex. 
Moreover, once a vertex is chosen to add into a temporary clique, vertices that do not 
connect to it have to be disregarded, thus may result in some colors being disregarded 
without contributing any vertex. Therefore, it is highly desirable to preserve as many 
colors as possible during the process of searching for a clique. Similar to the 
principle of selecting the pivot vertices above, the color that contains fewest vertices 
is chosen. Then within the selected color, the vertex v that has highest color degree is 
selected and added into the temporary clique. 

The clique-finding algorithm is summarized as follows. 
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Algorithm CLIQUE-FINDING   (input: coloring C, largest 
clique found cl") 

1: Let Bu= UpperBound(G, C) . If | cl" \   =  Bu,terminate. 
2: Locate dominant color c, set Pivot node set P 

= {v | cv( v) > (Bu -1), v e color c',|c'|=| c |} 

3: For each p in P, 

Set G' = {v | v 6Nbr(p)}. cl=NULL, set tmp-cl= [p] 
While |tmp-cl| > 0, 
bcdeg = MaxCDEG(G') 

select c that MIN\ {v\ ve(7/\ct{v)=CAcdeg;v)>(bcdeg-l)| 

If ties, select c that MAX   2_,deg(v) 
v,cv(v)=c 

Pick node v  from c that MAX(cdeg(v)) 

If ties, pick v  that MAX \ {e(u, W) \ U, W € Nbr(v)} | 
If InHash([v, tmp-cl]), select another node 
Set tmp-cl = [v, tmp-cl], add tmp-cl into HASH 

set G' =G' - Nbr(v) 
If |G' I = 0, Call BackTrackO 

3.2.2      Coloring Algorithm 
As discussed earlier, color reduction (CR) plays an active role in the GC algorithm. It 
not only helps to reduce the solution space by removing conflicted colors from the 
color vectors, but also assists to reach the chromatic number and decide the 
convergence of the solution. 

Theorem 4: [Coloring Lower Bound BL] Given a graph G, assume that a coloring 
initializes with k colors. If during performing pure color reduction, there is any, (1) 

node with zero size cv, or (2) clique cl and m= . y.  v, 0, e cl) 
1 to |c/| 

<|c/|, then G 

needs at least (*+l) colors (k+m-\cl\) if (2) is the case). 
Moreover, since co(G) < A(G), the lower bound for any graph coloring process 

would be the maximum of the BL derived from previous coloring process and the 
largest clique that was found in earlier clique-finding process. 

Because that the largest clique found in earlier clique-finding processes may in fact 
be the new lower bound for graph coloring, it is treated as the 'seed' for a new 
coloring process. Specifically, for the largest clique cl with size k, each vertex in cl is 
assigned with a unique color from 1 through k. 

In order to perform color reduction by using the concept of saturated cliques (SC), 
a set of cliques needs to be identified. Since the proposed algorithm is an iterative 
process, all the cliques found by clique-finding process and stored in the hash can be 
utilized. The more cliques collected, the higher chance of more SC's for color 
reduction, thus postpones unnecessary forced coloring. This could lead to the use of 
fewer colors for coloring the entire graph. A supplement algorithm designed for this 
purpose is described in [11]. 

For any state of the coloring, vertices that have smaller color vectors tend to have 
less chance of being assigned colors on them.  In order to avoid overuse too many 
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colors, it is critical to process these vertices as earlier as possible. Therefore, these 
vertices are regarded as the most constrained tasks to be accomplished. Meanwhile, 
although there is already fewer choices than the others for coloring these vertices, 
careless assigning color would still result in overuse of colors. Thus, each color from 
the color vector needs to be examined to determine which would have least impact on 
the rest. The impact is evaluated by the reduction of color vector sizes of uncolored 
neighbor set, then the color with least impact would be assigned to the vertex. 
The complete algorithm is shown below. 

Algorithm COLORING   (input: graph G, hash memory: HASH) 

1. Set BL=MAX(BL, MAX (HASH)) 

2. VVGG, assign v a color vector cv(v)={l ... BL} 
3. Color the largest untried clique cl  in with 1~|cl| 
4. Perform color reduction, and update BL by Theorem 4 
5. while there is a node uncolored, 

Select a vertex v with MIN(|cv(v) |) 

If ties,   select v that   MIN^j {"I « ^Nbr(v) AC €C^Ü)}\ 
cecv(v) 

select c e cv(v) that MIN \{u\ue Nbr(v) A C e cv(v)} | 

If  ties,   select  c that   MAX^\ CV(v) |   after CR. 
w 

Perform color reduction. 

3.3  Generic Pre-Processing/Dynamic Accessing Strategy for Large Problems 

Although the MC solution provides an effective means for solving MCS, the 0(m2n) 
space requirement for storing the adjacent matrix for the connection information is 
simply too large for applications like the protein common tertiary substructure 
problem. Discarding the adjacent matrix and re-compute the adjacency between 
vertices could alleviate the space consumption, however, it still requires 0{m n) 
computation time for visiting all the possible connections, which is now taking more 
time since it needs to be recalculated. 

A generic pre-processing/dynamic accessing technique is developed in this work to 
handle such situation. For the convenience of discussion, it is described for the 
protein substructure problem, but it can be extended to a more general context easily. 

Assume that Pi of size m and P2 of size n are the two proteins to be explored. The 
dominant subroutine and needs to be repeatedly performed during the computation is 
to finding the adjacent vertex pairs. To be more specific, given that v, in ¥t and v2 in 
P2 is paired (matched), it is crucial to determine which vertex pair in the 
correspondence graph is compatible with vertex pair (v7, v2). Namely, to find out all 

vertex pairs (w,,u},), u,ePltUj eP2 a|d(yx,u,)-d(v2,u})|<dlhreshold. 
The complexity for a specific vertex pair alone is 0(mri), and grows to 0(m2n ) if the 
connections for all vertex pairs need to be re-computed. When the problem is small 
enough to fit in the primary memory space, this can be done by simply a table look-up 
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at the adjacency matrix for the correspondence graph.     However, the  space 
consumption is too expensive for the protein common tertiary problems. 

Instead of searching through the mn vertex pairs repeatedly, the complexity can be 
reduced by pre-sorting all vertices in P2 with respect to each vertex in P2 in ascending 
order in terms of edge labels (distances). The complexity of the sorting can be done 
with 0(n2logri), which needs to be done only once, with the cost of additional 0(n2) 
space to the storage for the protein itself, rather than the expensive 0(m2n2). Each 
time to find the adjacent vertex pairs for vertex pair (v;, v^), it can be simply done 
dynamically with the following algorithm: 

Algorithm DynamicFlndAdjacentPairs   (input:   vlt 

1. Set L=0,   S=sorted_list(v1) 

2. For each vertex v(V^Vj)in Plf 

d=distance(vj,   v) ,   l=d-dth„shold,   u=d+dth„shold 

(s,e)=RangeSearch(2,   u,   S) 
For i=s  to e, L={L| index (v2,   I)}.     Return L 

V2) 

Fig. 1. (a) The backbone view of Synaptotagmin (lrsy), and (b) Fibronectin Type III domain 
(lfha) (c) The similar structures between (a) lrsy and (b) lfha after alignment. (71 pairs 
matched with r.m.s.d. = 1.742632 Angstrom) Red : Similarity from (a) lrsy, Blue : Similarity 
from (b) lfha . (d) The backbone view of Hen egg-white lysozyme (llyz), and (e) T4 phage 
lysozyme (21zm) (f) The similar structure structures between (d) llyz and (e) 21zm after 
alignment. (106 pairs matched with r.m.s.d. = 3.923571 Angstrom) Red: Similarity from (e) 
llyz, Blue : Similarity from (f) 21zm 
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Protein Common Tertiary Substructure 
Discovery Using CRP-MCS and DALI 
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A set of protein files 
[6] frequently 
referenced in the 
molecular biology 
literature is selected 
to test the CRP-MCS 
algorithm. The 
protein sizes range 
from   108   to   497 

Ca atoms. They are 
Hen egg-white 
lysozyme (llyz), T4 
phage        lysozyme 
(21zm),  actinoanthin 
(lacx),     Superoxide 
dismutase      (lcob), 
tumor necrosis factor 
(ltnf),   methylamine 
dehydrogenase 
(2mad), defensin (ldfn), neurotoxin (lshl), fibronectin cell-adhesion module type III- 
10 (lma), and synaptotagmin I (lrsy). The program is implemented in C and run on 
an SGI Onyx(R10000) machine using single processor. Each experiment on a given 
pair of proteins is set with 10 min. time limit, and the best result produced is used to 
align the two proteins and derive the error measurement. 

The solution quality is measured with (a) number (N) of matched C" atom pairs, 

Fig. 3. Comparison of the protein common tertiary substructure 
discovery between using DALI and proposed CRP-MCS. Each 
circled area represents one of the six experiments. 

I"? 
i=l 

N 
and, (b) the root-mean-square deviation (r.m.s.d.) which is defined as 1 

where d, is the distance between the i-th pair of C" atoms. The results are compared 
against those from the DALI web-server fhttp://www2.embl-ebi.ac.uk/dali/), which is 
an implementation of Holm and Sander's work (4). The time cut-off of 10 minutes 
for structures with a homolog in the representative set seems to be sufficient. 

Two typical alignment results are shown in Figure 2, where the optimally aligned 
protiens using the discovered largest common structures are shown. The number of 

matched C" atom pairs and the r.m.s.d. values are also included. 
There are totally six experiments conducted. They are (1) ldfn vs. lshl, (2) lfna 

vs.lrsy, (3) lacx vs.lcob, (4) lacx vs.ltnf, (5) lacx vs. 2mad, and (6) llyz vs. 21zm. 
The results obtained by submitting to DALI server and by the CRP-MCS algorithm 
are plotted in Figure 3, where each experiment is shown in a circled area. Since the 
DALI server usually provides only one solution for each submission, the comparison 
is made by setting corresponding threshold parameters in the CRP-MCS solution such 
that either the no. of matched pairs or the r.m.s.d. as close to the DLAI one as 
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possible. As shown in the comparison chart, the CRP-MCS algorithm resulted in 
better solutions in all six experiments. Analysis on the corresponding pair 
information shows that the solutions contain fragments that can not be detected by 
fixed-length approaches. Therefore, this tool is expected to provide more flexibility 
and optimality for analyzing the protein structures. 

5.   Discussions 
Maximal common sub-graph approach has been of great interest to many areas due to 
its ability to extract the largest common substructure, the ease to mapping the problem 
and the flexibility to incorporating various constraints. However, it has been limited 
to small-size problems due to the lack of efficient algorithms, both in space and time 
complexity. This algorithm, CRP-MCS, solves the MCS problem in the maximum 
clique domain using MC and GC as complementary solvers. Although the problem is 
NP-hard, it's shown to reach near optimal solutions for a spectrum of benchmark 
cases [7] in reasonable time. Moreover, a generic pre-processing and dynamic- 
accessing technique is developed to circumvent the space/time overhead. The result 
is shown to be a new and effective data-mining tool for discovering the large common 
substructures between proteins at pure tertiary level for the first time. 

The tool allows fully free matching among the Ca atoms for the protein problem. 
As demonstrated in the experiments, it has the capability to find near-optimal 
common substructures that are not possibly to be detected by conventional techniques 
that use pre-defined patterns or segments. Thus it provides the molecular biologists 
more flexibility to discover the common tertiary substructures. 

Structural similarity is an important yet difficult data-mining problem. The CRP- 
MCS algorithm presented here is shown to successfully bring the graph-based 
approach to an important real-world problem and is expected have more applications 
in assisting the discovery of new knowledge in other related areas also [7]. 
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Abstract Concept lattice is an efficient tool for data analysis. In this 
paper we show how classification and association rule mining can be 
unified under concept lattice framework. We present a fast algorithm to 
extract association and classification rules from concept lattice. 

1. Introduction 

Concept lattice, also called Galois lattice, was first proposed by Wille[l]. A node of 
concept lattice is a formal concept, consisting of two parts: the extension (examples 
the concept covers) and intension (descriptions of the concept). Concept lattice gives 
a vivid and concise account of relations (generalization /specialization) among those 
concepts through Hasse Diagram. 

Classification rule mining and association rule mining are two important data 
mining techniques. There are already some classification systems based on concept 
lattice. Empirical evaluation shows that concept lattice based systems have 
comparable performance with those typical systems such as C4.5 [5]. Association rule 
mining is a hot research topic in data mining recently. Some authors have shown that 
concept lattice is a nature framework for association rule mining [4]. In this paper we 
would show that concept lattice is an appropriate tool for integrating association and 
classification rule mining. Some author also discussed the topic [2]. But we argue that 
concept lattice embodies the relationships between concepts in a more understandable 
way. Therefore it is very interesting dealing with the task under the context of concept 
lattice. 

2 Basic Notions of Concept Lattice 

In this section we recall necessary basic notions of concept lattice briefly, the detail 
description can be found in [1]. 

Suppose given the context (0, D, R) describing a set O of objects, a set D of 
descriptors and a binary relation R, there is a unique corresponding lattice structure, 
which is known as concept lattice. Each node in lattice L is a pair, noted (X, Y), 
where XeP(0) is called extension of the concept, YeP(D) is called intension of 
concept. Each pair must be complete with respect to R. i.e.: 

(1)   X={x€0|VyeY,yÄx}; (2) Y= {yeZ>l Vx€X,yÄx}o 
A partial order relation can be built on all concept lattice nodes. Given H,=( X„ 

Y,) and H2=( X2) Y2), let H,< H2 <z> Y,c Y2, the precedent order means H, is a direct 
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parent of H2. The Hasse diagram of the lattice can be generated using the partial order 
relation. If H,<H2and there is no other node H3 such that H,<H3<H2 there is an edge 
from H, to H2. 

Below is an example of context and corresponding lattice and Hasse diagram. 

#1({1,2,3,4},0) 

A B C D 
1 a, b, c, d, 
2 a. b2 Ci d2 

3 a2 b, c2 d3 
4 a. b

3 
cl ^ 

#3({1,3}, {ft,}) 
#5({l,2},{a1>Cl}) 

#8({3}, {a^CtA}) 

#7({2}, {ai,b2,Cl,d2}) 

#10(0, {a1,ä2,a3,61,ft2,ft3,cI,4,^i,4><4^4}) 

In our algorithm a node in lattice is denoted by (C=|X|, Y), as content of X does 
not matter. Now it's easy to see if C is bigger than some threshold t, X is a maximal 
large item set. 

Implication rules can be derived from concept lattice. Rule Q=>R holds if and 
only if the smallest concept (intent) containing Q also contains R[6]. 

3 Building the Lattice 

In order to reduce the number of nodes in lattice, it is necessary to introduce a support 
threshold. We adapt Bordat's algorithm [3] by introducing a support threshold s and 
making other minor improvement. Because lattice-constructing algorithm only find 
only maximal itemsets, hence they're much faster than Apriori algorithm. 

The lattice L is initialized with topmost node (|O|,0) and expanded by 
constructing its subnode recursively. In the algorithm we use an array of pointer PX to 
keep track of first appearance of all single attr-val pair in the lattice. This structure 
will be used later in the association rule mining. Once the support of a node is found 
lower than E, the node will no longer be expanded. We improved the original 
algorithm by utilizing counting information. That is, instead of checking whether 
extensions of two attr-val pair set are identical, we check whether the count of either 
extension is equal to the count of extension of the union of the two attr-val pair set. 
Experiments show that it is about five time faster than original algorithm (when e is 
set to 0). The lattice built by this algorithm is in fact a "frequent" lattice, i.e. it 
contains only those nodes whose support is greater than e. Thus the algorithm reduces 
the complexity of building the complete lattice. 
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4 Rule extraction from the lattice 

In this section we present an algorithm which generates all non-redundant rules for a 
given item set (set of attr-val pair) as right hand side (RHS). We first find the smallest 
node containing the item set, then launch a breadth-first traverse to its sub-lattice. 
From each node we generate all non-redundant rule. Because the way we build the 
lattice, the support of all the rule generated are greater than minimal support. We first 
produce all rule whose confidence is 1 (i.e. implication rules) and then appropriate 
lower confidence rules. The way we generate (implication) rule relies on following 
observations. 
Observation 1    If a node H=(C, X) has only one parent node P=(C, X'), then 
(1) The left hand side(LHS) of rules generated from H consists of a single item. 
(2) For each attr-val pe {X-X'}, there is a rule p=>X-p. 

Suppose the LHS of a rule generated from H consists of more than one item 
(attr-val). If all these item are also included in X', they must have been already treated 
in parent P because of our top down traverse fashion; if there exists an item pe {X-X'} 
in LHS, the rule is redundant with respect to p=>X'-p, the latter is simpler. 
Observation 2 If a node H=(C, X) has d parent nodes P,(C„ XO, P2(C2, X2), —, 
Pd(Cd, Xd), there is a rule p=>X-p for each item pe {X-(X,uY2u...uXd}. 

Because any item pe{X-(X,uX2u...uXd} is the first time appearing in the 
lattice, it is obvious its confidence is 1. Any rules whose LHS strictly include p is 
redundant with respect to p=>X-p. 
Observation 3 If a node H=(C, X) has two parent nodes P,(C„ X,), P2(C2, X2), Vp,e 
{X,-X,nX2} and Vp2e {X2-X,nX2}, there is a rule PiP2=>X-p,p2 

That is because if there are two items coming from the same parent, their 
relationship must have been described before. So Any rules whose LHS strictly 
include p,p2 would be redundant with respect to PiP2=>X-p,p2. 

Observation 3 can be generalized to the case of any number of parent nodes. 
In the algorithm, we adopt a heuristic search strategy. If an item set can not form 

a implication rule, it is saved in a candidate set. In the next loop, all items in the 
candidate set are joined in an Apriori-like manner. Then new candidates are tested 
against whether they can form an implication rule. 

As to rules whose confidences are below 1, we use a data structure PX (see 
previous section) to aid computing confidence. PX points to first appearance of every 
single element of LHS. Function PX(lhs) finds the first appearance of LHS and thus 
its support. If LHS of such rule is included in another rule, it will be discarded since 
longer LHS rule have higher confidence. 

The computation depends heavily on judging whether several elements are 
included in a common parent. We introduce a bit vector V to do the judgement 
efficiently. Every element in the node has a bit vector. If the element also appears in a 
parent, the corresponding bit will be set. Thus any combination of those elements can 
be judged by simple and fast AND operations. 
Rule Extraction Algorithm for specific RHS 
1.     GenRule(itemset rhs) 
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2. Find first node H containing rhs by breadth-first traverse 
3. queue<-H, ruleset<-0, singleset<-0 
4. while queue not empty 
5. Remove H from queue head, push all children of H into queue tail 
6. if H not visited   then { GenRuleFromNode(H); mark H as visited} 
7. endwhile 
8. GenRuleFromNode(H=(C,X)) 
9. d<-number of parents of H: (C„X,).. .(Cd,Xd) 
10. if(d==l)    {ruleset=rulesetu{p^rhs |pe{X-X,}};return;} 
11. for every parent of H compute their union S and generate array V. 
12. ruleset=rulesetu{p->rhs, | pe{X-S}}; 
13. ruleset=rulesetu{p-»rhs, conf=||PX(p)||/||H|| | peS, not sameparent(p, rhs), p 

not generated before} 
14. L<-{SluS2|SleS,S2eS} 
15. while L not empty 
16. S<-0 
17. for every element K in L 
18. if each item in K aren't included in same parent and not Reruleset that RcK 
19. raleset=rulesetu{K-»rhs, sup=C/||0||, conf=l} 
20. else 
21. S<-SuK 
22. if not sameparent(K,rhs) then ruleset=rulesetu{K->rhs, conf=||PX(K)||/||H|| } 
23. endif 
24. endfor 
25. L<-{SluS2| SleS, S2eS, ||SluS2||=||Sl||+l} 
26. endwhile 
27. return ruleset; 

Line 14-27 generates rules whose LHS contain more than one item in an 
Apriori-like manner. The algorithm is written according to above observations. The 
rules generated are sorted by confidence (larger to smaller). If confidence is same, 
higher support would be first. The classification is done by matching the new instance 
against every rule from begin to end. If no rule fires, then the majority class is used. 
When building the lattice, class attribute values are treated as an ordinary attribute 
and are added to the lattice. The rule extraction algorithm is run a number of times by 
assigning every class attribute value as parameter value. Then all rules are collected 
together performing the classification. 

5 Experiments and Conclusions 

We implement our algorithm and do the comparison using MLC++. First we did some 
preliminary test on lattice constructing algorithm and found it much faster than 
Apriori. This is because the algorithm produces only maximal large item sets. Thus 
the comparison between them doesn't seem to have much meaning. 

In this section we mainly present the result of comparing C4.5 and our algorithm. 
We use 10 datasets form UCI Repository for the comparison. In our experiment, 
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minimum confidence is set to 0.6 and minimum support is set to 0.01. Our experiment 
is done on a PC with 64Mb PII233 running windows 98. Our algorithm is referred as 
CLACF (Concept Lattice based Association and Classification rules mining 
Framework). The discretization is done using entropy method in MLC++.  

Datasets 
Breast 
Diabetes 
Glass 
Heart 
Iris 
Led7 
Monkl 
Monk2 
Monk3 
Pima 
Average 

C4.5 
5.0 
25.8 
31.3 
19.2 
4.7 
26.5 
19.0 
30.1 
8.3 
24.5 
18.5 

CLACF 
3.8 
27.8 
18.9 
16.6 
4.0 
23.7 
9.0 
19.9 
5.1 
27.1 
15.6 

Rule time 
20.1 307 
2.14 35 
0.88 49 
3.51 528 
0.0 19 
0.83 278 
0.22 127 
0.38 169 
0.28 113 
1.0 25 
2.93 165 

No. of rules Lattice time 
24.6 
0.9 
0.82 
11.1 
0.0 
8.0 
2.5 
4.3 
2.4 
0.4 
5.43 

Column 2 and column 3 show error rates of C4.5 and CLACF. CLACF 
outperforms C4.5 in 8 out of 10 datasets, and has an average error rate of 15.6, which 
is lower than 18.5 of C4.5. Column 4 to 6 give the execution time of the two 
algorithms and the number of rule generated respectively. We can see the algorithm 
produces relatively smaller set of rules comparing with [2] while retaining accuracy. 

In this paper we propose a framework to integrate classification and association 
rule mining based on concept lattice. We adapt an existing lattice constructing 
algorithm to generating a 'frequent' lattice and present an efficient algorithm to 
produce association/classification rules from the lattice. In our future work, we will 
focus on developing faster algorithm by further exploring the relationship stored in 
the concept lattice. 
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Abstract We consider the problem of discovering the conceptual clusters from 
a large database. From Z. Pawlak's information system in rough set theory, we 
define an information matrix, information mappings and some concepts in data 
mining literature such as large sets, association rules and conceptual cluster. We 
propose a combined method of information matrix, Kohonen's neural network 
for large set discovery and genetic algorithm for conceptual cluster validity. We 
present an application of our method to a student database for discovering the 
rules contributing to the training of the gifted students. 

1     Introduction 

Data Mining (DM) is to discover the interesting patterns present implicitly in large 
database [7]. In this paper, we study the problem of conceptual cluster discovery from 
a large database. This problem is stated as: given a set of objects, conceptual 
clustering discovery is to find clusters of objects based on a conceptual closeness 
among objects [1],[2],[3],[4]. We proposed a method for solving and expanding this 
problem. Based on Z. Pawlak's information system [9], we define an information 
matrix and some concepts then we employ a combined Kohonen's self-organizing 
algorithm (SOA) and Genetic algorithm for conceptual cluster discovery and building 
rules from these discovered concepts. We build an information matrix in the computer 
memory for improving the speed of mining process. The paper is organized as 
follows. Section 1: Introduction. Section 2: Formal definitions. Section 3: Problem 
statement. Section 4: Using SOA for discovering large descriptor sets. Section 5: 
Using GAfor cluster validity. Section 6: An application to a student database. Section 
7: Conclusions and future works. 

2     Formal definitions 

In this section, we define an information matrix and some concepts related to our 
proposed method. Based on these definitions, we implement a set of functions for 
processing the mining tasks in the computer memory instead of scanning the whole 
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database in disk. Therefore, we can improve significantly the speed of mining 
process. 

2.1 Definition 1: Information matrix 

Information matrix is defined as B=(0,D) where O={ob...,o„} is a finite set of n 
objects and D={di,...,dm} is a finite set of m descriptors. Let by (i=l,...,n and 
j=l,...,m) be the element of matrix B,bij=l ifo; has dj, otherwise bi,=0. 

2.2 Definition 2: Information mappings 

Given a finite set O of n objects and a finite set D of m descriptors [5]. Let P(D) be a 
power set of D, P(0) be a power set of O. Information mapping % is defined as: 
%. D -K0,1}. Given oeO and deD, x(o,d) = 1 if o has d, otherwise x(o,d)=0. 
Mappings p and X are defined as: p: P(D) -> P(0) and X: P(0) ->P(D) where: 

Given ScD then p(S) ={oeO: VdeS , x(o,d) =1} 
Given XcO then X(X) = {d e D: VoeX, x(o,d) = 1} 

2.3 Definition 3: Large descriptor set 

Given an information matrix B=(0,D) and a threshold x which is the MINSUP of the 
large item set in data mining literature[7]. A large descriptor set S is a subset of D that 
satisfy condition: Card(p(S))/Card(0)>=T, where Card is the cardinality of set. 

2.4 Definition 4: Binary association rule 

Given an information matrix B=(O.D) and a threshold T. Let S be a large descriptor 
set of B. Let U, Lj be the subsets of S. A binary association rule with threshold T is a 
mapping from Li to Lj and is denoted as Lj —> Lj. 

2.5 Definition 5: Confidence factor of a binary association rule 

Let S be a large descriptor set of B, U , Lj be the subsets of S, Li -^ Lj be a binary 
association rule with a threshold T. The confidence factor CF(Li -> Lj) of this rule is 
calculated by Card(p(L0np( Lj)) / Card(p(L0). 

2.6 Definition 6: Concept 

A concept is a pair C= (X,S) where XcO and ScD. X and S satisfy following 
conditions: 
a) Xcp(S)andX(X) = S 
b) V Li, Lj c S and Card(L;) = Card(Lj)=1 then p( L;) c p( Lj). 
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3    Problem Statement 

Problem 1: Given an information matrix B and a threshold T, find all large descriptor 
sets of B. The large descriptor set determines the popular descriptors of data objects. 
The threshold T determines a measure of popularity [7]. 
Problem 2: Given an information matrix B and a threshold T, find k conceptual 
clusters Ci,...,Ck where Cj = (Xj, Sj). These conceptual clusters satisfy: a) rXi = 0 
for i=l,...,k ; b) oSi = 0 for i=l,...,k; c) Card(Xi)/Card(0)>=T; d) Maximize the 
ratio Card(Xi ^>...UK^/Card(0) e) Q is a concept. Conceptual cluster determines an 
object set that has the same set of descriptors. Based on the concept C=(X,S), we 
build rule U -> Lj where hfJLj =S and LirLj =0. It means that if object has all the 
descriptors of Li (rule antecedent) then object has all the descriptors of Lj (rule 
consequent). 

4    Using SOA for discovering large descriptor sets 

In this section, we employ SOA for discovering the potential large descriptor sets [6]. 
SOA can be summarized as follows: 

Step 1. Initialize all weight vectors of Kohonen's neural network 
Step 2. Select the node with minimum distance d, to the input vector v(t). 
Step 3. Update weight vectors of nodes that lie within a nearest neighbor set 

of the node (ic je):  wij(t+1) * w^t) + a(t)(v(t)-wij(t)) 
for ic-Nc(t) <= i <= ic+N0(t) and jc-Nc(t) <= j <= jc+Nc(t) 

Step 4. Update time t = t+1, add new input vector and go to (Step 2) 
In the above algorithm, cL is Euclidean distance, a(t) is a gain ratio (0<=a(t)<=l) and 
Nc(t) is the radius of neighbor set. Nc(t) and a(t) are decreased monotonically with 
time. The algorithm finishes when cc(t) =0 or No(t)=0. 
Given an information matrix in table 1, each row of this matrix corresponds to an 
input vector of Kohonen's neural network. 

Table 1. An information matrix for large descriptor set discovery. 

dl d2 d3 d4 d5 d6 
ol 1 1 1 0 0 0 
o2 1 1 1 0 0 0 
o3 1 1 1 1 0 0 
o4 0 0 1 1 1 1 
o5 0 0 0 1 1 1 
06 0 0 0 1 1 1 

After running SOA, we have the potential large descriptor sets: 
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{du db, d3}, {cU, dj, de}, {du <fe, 4, d.}. With x=50%, {d,, d2, d3}, {d,, d5, d«} are 
large descriptor set; {di, cfe, d3, d} is not a large descriptor set because Card(p({di, 
dz, d3, d,}))/Card(0)F=33.3%< x. 

5     Using GA for cluster validity 

Large descriptor sets discovered by SOA are used for building the initial GA 
population. We hold that the subset of a large descriptor set is also a large descriptor 
set [7]. Let L={Li,...,Lk} be a set of k large descriptor sets, we employ GA[8] for 
finding a set {Si,...,Sk} where St 'c Li (i=l,...,k) and (Si,p(sD) is a concept. A 
chromosome is a set of BSi, each BSi is a bit string corresponding to a large descriptor 
set. With two large descriptor sets {di, d2, d3} and {dt, de}, we have chromosome 
{di:l, d2:l, d3:l, dj:l, d5:0, de'A}. The genetic representation of population P is a set 
of chromosomes. A typical population P with 3 chromosomes is as follows: 
P(t)= {111111,100111,001100}. The genetic operations are defined as: 

5.1    Crossover operator 

Given two parental chromosomes: {ai, a2, a3, 34, a5, %} and {bi, b2, b3, b4, b5, b6} 
where aj, bie{0,l}(i=l,...,6). The crossover will swap a portion of two parental 
chromosomes and yield the offspring: {ai, a2, a3, b4, bj, b6 }and {bi, b2, h^,^, aj, ae}- 

5.2    Mutation operator 

Given a chromosome {ai, a2, 83, a,, a5, aß}. Select a random position he[1..6]. Let h 
be the selected position, if % = 1 then a^ is changed to 0 and vice versa. 

5.3    Fitness factor and fitness value 

Fitness factor Sa: Let Sy be a subset of chromosome BSi, we build set Q containing 
all two-element subsets of Sy. Let {a, b} be an element of Q. From {a, b}, we build 
two rules {a} -> {b} and {b} -> {a} and calculate the CFs of these rules. The Fitness 
factor of Sy is the average of CFS of 2xCard(Q) rules which are built up from Q. 
Fitness value of a chromosome BSi is the average of fitness factor of all Si,- in 
chromosome BSi. 

6    An application to a student database 

We employ our proposed method for discovering the conceptual clusters from a 
student database. An information matrix with 1000 rows and 100 columns is built up 
from this database. In this matrix, each row corresponds to a record and each column 
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corresponds to a descriptor. Some descriptors of the information matrix are "parent of 
student are teachers"; "student is ranked in good level of learning"; "student wins a 
prize of computer science competition". 
The size of Kohonen's output layer is 100x100. With the threshold T=0.7 (70%), we 
discover some large descriptor as {student wins a prize of a math competition; student 
is interested in math}; {student is ranked in good level of learning,; parents of student 
are teachers}; {student is interested in math; student is interested in foreign language; 
student is interested in computer science}. 
We employ the following values for GA parameters: number of chromosomes is 50; 
number of generations is 300; crossover probability is 0.1; mutation probability is 0.1. 
The GA give us some discovered conceptual clusters as {student is ranked in good 
level of learning; student has good behavior; parents of student are teachers; Student 
has the self-learning time greater than 6 hours every day}; {student is interested in 
math; student is interested in foreign language; student is interested in computer 
science}; {student lives in country; income of student family is lower than $100 every 
month; student is ranked in fair level of learning}. 

7     Conclusions and future works 

We gathered some preliminary result in using a combined information matrix, GA 
and SOA for cluster discovery in data mining. The experiment shows very encourage 
in large data set. A matrix expressed in bit is also used for keeping the whole 
information matrix in main memory to increase the efficiency of conceptual cluster 
discovery. We continue to study how to change binary information matrix to fuzzy 
information matrix and use fuzzy cluster discovery for the fuzzy database. 
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Abstract. We propose a knowledge discovery process for multi-factor 
portfolio management on a financial decision support system. We first 
construct an OPen Intelligent Computing System (OPICS) to support 
time series management and knowledge management. A system, Cyclone, 
which efficiently supports financial applications, is developed under the 
OPICS. We then introduce a data mining solution for equity portfolio 
construction using the simulated annealing algorithm. Two data sets con- 
sist of small stocks ranging from 11/86 to 10/91 and from 6/93 to 5/96 
are used. The corresponding rates of return of Russell 2000 index are 
collected as benchmarks for evaluation based on the Sharpe ratios and 

• the turnover ratios. The result shows that the simulated annealing algo- 
rithm outperforms both the market index and the gradient maximization 
method. 

1    Introduction 

Competition in the investment business is intense and increasing. Historically, 
investment managers who actively select stocks employ a team of analysts who 
understand various industries, visit companies, and utilize quantitative tech- 
niques to learn important information to help them recommend which stocks to 
own. While the Internet technology and data availability are rapidly changing, 
quantitative techniques also become more sophisticated. The data warehousing 
and data mining techniques are thus acquired across the financial services as 
well as the banking industry. 

We propose a knowledge discovery process for multi-factor portfolio manage- 
ment on a financial decision support system. The process consists of two con- 
struction phases: the knowledge management functionality, and the data mining 
solution. We first construct an OPen Intelligent Computing System (OPICS) 
to support time series management and knowledge management. A system, Cy- 
clone, is developed under the OPICS. The Cyclone is designed to allow power 
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users to adjust parameters, simulate portfolios easily and efficiently, and even- 
tually, to share knowledge with other power users. We then introduce a data 
mining solution for equity portfolio construction using the simulated annealing 
algorithm. Two data sets consist of small stocks ranging from 11/86 to 10/91 and 
from 6/93 to 5/96 are used. The corresponding rates of return of Russell 2000 
index arc collected as benchmarks. The evaluation is based on the Sharpe ratios 
as well as the turnover ratios. The result shows that the simulated annealing 
algorithm outperforms the market index as well as the gradient maximization 
method. 

2 A Motivating Example 

The process of constructing a portfolio involves defining a universe of stocks, 
dealing with data integrity issues, selecting an appropriate construction tech- 
nique, determining the way of using training and testing data, setting up the 
construction rules and constraints, and selecting a publicly available benchmark 
for evaluating the test results. The whole process is known as the back-testing 
model in the financial investment society. Schock and Brush in [1] show an exam- 
ple in managing a small-stock portfolio, which exploits the above process. The 
first step is to construct a sequence of monthly universe, by ranking a database 
on market capitalization, then eliminating the largest 1,000 stocks and using the 
next 600 excluding limited partnerships, investment trusts and stocks with very 
low trading volumes. 

The second step is to include values and other proven measures to the uni- 
verse. The common factors are earnings to price ratio, book value to price ratio, 
cash flow to price ratio, volatility adjusted price momentum, etc. The rest of 
work is to apply a decision model to construct monthly portfolios through time 
and compute the corresponding returns. The resulting returns of portfolios are 
then used to compare with those of the selected benchmarks. To optimize the 
flow of information and "knowledge-worker-to-knowledge-worker" interaction so 
that companies can make better trading decisions, the specific data and model- 
ing results should then be shared and managed. This is the essence of knowledge 
management. 

3 Knowledge Management 

A successful knowledge management means that our data processes enhance 
the way people work together, enable knowledge workers and partners to share 
information easily so that they can build on each other's ideas and work more 
effectively and efficiently. Though data for financial applications are simple data, 
the data typically includes time series. The empirical research based on time se- 
ries thus is a data intensive activity that needs a knowledge management system 
with data and time modeling capabilities, computational intelligence and perfor- 
mance functionalities (see Schmidt and Marti [2], Dreyer, Dittrich, and Schmidt 

[3])- 
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We develope a time-series management system, OPICS, specifically for se- 
curity investment research. The OPICS is a component-based system enhanced 
with distributed processing capability. To effectively manage the data sets de- 
rived by security firms' knowledge workers, a time series data set is organized 
into two parts, the header and the data. The header is a meta-data about the 
time scries basis and its derived data sets. Wc also develop a time scries manage- 
ment system (TSMS), Cyclone, under the OPICS platform to enable knowledge 
workers in a security research firm to share their idea and models with others. 
See Lu and Cheng in [4] and [5] for the inter-modules, the system architecture, 
as well as other functionalities. 

4    Data Mining for Multi-factor Portfolio Construction 

Building a multi-factor excess return model to select a portfolio stocks becomes 
a widely used tool for portfolio management. We consider the portfolio con- 
struction model as a global optimization problem. To control risk throughout 
a portfolio construction process, we consider the model's objective function as 
to maximize the return over risk. The optimization algorithms to be examined 
in this paper are the gradient maximization method (see Brush [6]) and the 
simulated annealing technique (see kirkpatrick [7]). 

We use the Sharpe excess return (see Sharpe [8]) to illustrate the concerns 
of portfolio managers who seek for high returns with low risks. We apply the 
simulated annealing algorithm in conjunction with the above integrated re- 
turn/risk portfolio model. Since the values of the Sharpe excess return can be 
either positive or negative, we write the dynamic rule in a symmetrical form 
E = 1/(1 4- esharpeExce»Retum^ whjch is referred as an energy measure. For 
each given temperature, the thermal equilibrium can be described by a proba- 
bility distribution function with respect to the occurrence of a state with energy 
E, that is, 

P(E) = (l/Z(r))e<-ß/<*B*T>\ (1) 

where Z{T) is a normalized constant, E is the energy of the state, P(E) is the 
probability of finding a unit in that slate, T is the temperature, and KB is the 
Boltzmann's constant. Let AE be the change of the energy E. The traditional 
hill-climbing algorithm only accepts AE when it is less than zero, while the sim- 
ulated annealing algorithm allows positive AE being accepted with probability 
greater than 0. The process of the simulated annealing involves three steps: the 
generation of a new state, the acceptance criterion of the new state, and the 
condition of the cooling schedule, which will be briefly discussed as follows. 

Generating a new state for the purpose of portfolio optimization is to ex- 
plore the current state region around the current weighting combination. By 
sequentially changing each factor's weight up and down a bit from the original 
weighting combination, local search determines a combination of factor changes 
that identifies a best direction of improving the portfolio return. Having estab- 
lished a direction of local search, we next make a bigger step to weight changes 
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Tabls 1. Portfolio construction using data during 11/86 - 10/91 

Data Set       Y     M Portfo"° Becnmark  Excess  Sharpe Turnover 
(11/86 - 10/91) Year(Bj   Return      Return     Return   Ratio      Ratio 

1 -11.31% -18.04% 6.73% 0.24 8.14% 
2 6.45% 3.21% 3.24% 0.18 8.01% 

GM 3 11.73% 8.64% 3.09% 0.18 7.48% 
4 1.61% -0.08% 1.69% 0.09 6.75% 
5 8.02% 6.97% 1.05% 0.05 6.16% 
1 -9.95% -18.04% 8.09% 0.32 8.97% 
2 7.21% 3.21% 4.00% 0.26 9.20% 

SA 3 13.06% 8.64% 4.42% 0.23 10.43% 
4 2.01% -0.08% 2.09% 0.11 11.31% 
5 8.64% 6.97% 1.67% 0.09 12.06% 

in the portfolio. When AE is less than zero, we accept the new state with prob- 
ability 1. If AE is greater than zero, then we accept the new state with the 
probability e~AElT, where T represents the current temperature. 

The annealing schedule is also critical to the performance of the algorithm. 
Without any prior knowledge of energy landscapes, one can only hope to derive 
an appropriate cooling schedule for a specific random process. As being a cool- 
ing schedule of the temperature T(t), it must be able to decrease from a given 
sufficiently high temperature T0 down to a zero degree. To experiment an initial 
temperature, we first let the system be free running with a 100% acceptance 
rate for a certain number of iterations. By sampling all energy states, we can 
calculate the standard deviation to estimate an initial temperature. We then 
implement the cooling schedule using the formula, T(t) = T0/(l + t), where T0 
is the initial temperature. The equilibrium detection during a particular tem- 
perature is measured by the formula, \Teat - Tc\ < 0.01 * Tc, where Tett is the 
estimated temperature from N samples and Tc is the current temperature (see 
Szu [9]). 

5    Implementation and Results 

We focus on the universe, which is designed to capture the attractive long-term 
return potential associated with small stocks. We purchase a stock when it ranks 
above 10% in any economic sectors. A stock will be sold when it ranks below the 
30% by economic sector. The round-trip trading cost is 3.6%. The total number 
of stocks in our portfolio is between 50 and 60. We also choose two widely used 
value measures and two widely used growth measures to form an integrated 
return/risk portfolio. The value measures are earning to price ratio and book 
value to price ratio, whereas the growth measures are short-term (four quarters) 
earnings change to price ratio and long-term (three-year) earnings change to 
price ratio. 

We collect two data sets: one from 11/86 to 10/91 and the other from 6/93 
to 5/96. The corresponding rates of return of Russell 2000 index are collected as 
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Table 2. Portfolio construction using data during 6/93 - 5/96 

Data Set     v     . . Portfolio Becnmark  Excess  Sharpe Turnover 
(6/93 - 5/96) Year(s)   Return      Return     Return   Ratio      Ratio 

1 36.51% 4.41% 32.10% 1.06 8.67% 
GM 2 19.31% 11.97% 7.34% 0.26 7.74% 

3 20.62% 15.81% 4.81% 0.23 6.88% 
1 36.11% 4.41% 31.70% 1.06 7.96% 

SA 2 20.92% 11.97% 8.95% 0.35 8.41% 
3 24.03% 15.81% 8.22% 0.32 9.10% 

benchmarks. The results in Tables 1 and 2 show that the simulated annealing 
algorithm (SA) outperforms both the gradient maximization (GM) and market 
index in all time periods. Also, the longer the time period, the lower the Sharpe 
ratio, that indicates the risk is proportional to the time period. Although the 
simulated annealing has superior rates of returns, it has higher turnover ratios. 

References 

1. Schock, V.K., Brush, J.S.: Capturing Returns and Controlling Risk in Managing a 
Small-Stock Portfolio. Small Cap Stocks Investment and Portfolio Strategies for the 
Institution Investor, Chapter 13 (1993) 295-326 

2. Schmidt, D., Marti, R.: Time Series, A Neglected Issue in Temporal Database Re- 
search? Recent Advances in Temporal Databases, Workshops in Computing Series, 
Springer (1995) 214-232 

3. Dreyer, W., Dittrich, A., Schmidt, D.: An Object-oriented Data Model for A Time 
Series Management System. Proceedings of the 7th International Working Con- 
ference on Scientific and Statistical Database Management (SSDBMS'94), Char- 
lottesville, Virginia. (Sept. 1994) 186-195 

4. Lu, Y.-C, Cheng, H., Hsu, C, Jung, M.: Financial Decision Support System: A 
Distributed and Parallel Approach. Proceedings of 1999 Workshop on Distributed 
System Technologies and Applications, Taiwan (1999) 425-431 

5. Lu, Y.-C, Cheng, H.: A Time Series Management System for Financial Decision 
Support: Models, Techniques, and Implementations. Technical Report, OPICS - 
Financial Data Mining Lab., Yuan Ze University, Taiwan (1999) 

6. Brush, J.S., Schock, V.K.: Gradient Maximization: An Integrated Return/Risk Port- 
folio Construction Procedure. The Journal of Portfolio Management (summer 1995) 
89-98 

7. Kirkpatrick, S., Gelatt, CD., Vecchi, M.P.: Optimization by Simulated Annealing. 
Science 220 (May 1983) 671-680 

8. Sharpe, W.F.: Mutual fund performance. Journal of Business 30:1, Part 2 (January 
1966) 119-138 

9. Szu, H., Hartley, R.: Nonconvcx Optimization by Fast Simulated Annealing. Pro- 
ceeding of IEEE 75:11 (November 1987) 



Rule-Evolver: An Evolutionary Approach for 
Data Mining 

Carlos Lopes*, Marco Pacheco**, Marley Vellasco** Emmanuel Passos* 

*Departamento de Engenharia Eletrica, Pontificia Universidade Catolica Rio de Janeiro 
Rua MarquSs de Säo Vicente, 225, Gävea, Rio de Janeiro, RJ, CEP. 22453-900, BRASIL 

{ch|marco|marley|emmanuel}@ele.puc-rio.br 

*Dep. de Engenharia e Sistemas e Computacäo, Universidade do Estado do Rio de Janeiro 
Rua Säo Francisco Xavier, 524, Maracanä, Rio de Janeiro, RJ, CEP. 20550-013, BRASIL 

This paper presents a genetic model and a software tool (Rule-Evolver) for the 
classification of records in Databases (DB). The model is based on the 
evolution of association rules of the IF-THEN type, which provide a high level 
of accuracy and coverage. The modeling of the Genetic Algorithm consists of 
the definition of chromosomes representation, the evaluation function, and the 
genetic operators. The Rule-Evolver is a tool that provides an environment for 
the evaluation of the genetic model and implements the interface with DBs. The 
case studies evaluate the performance of the model in several benchmark DBs. 
The results obtained are compared with those of other models, such as 
Artificial Neural Nets, Neuro-Fuzzy Systems and Statistical Models. 

1.  Evolutionary Data Mining Systems 

Genetic Algorithms (GAs) have been successfully used in optimization problems [1] 
and some data mining models can be found in the literature [2]. In the context of GAs, 
classification consists of the evolution of association rules. 

The quality of the rules evolved is measured through their Accuracy and Coverage. 
The accuracy of an association rule, IF C THEN P, measures the rule's degree of 
confidence (Equation 1). 

Acuracy = = \C   r,   P\ (1) 
\C   n   P | +  |C   n   P | 

Rule's coverage may be interpreted as the comprehensive inclusion of all the 
records that satisfy the rule. Equation 2 represents the definition of rule's coverage. 

Coverage        = '—■ |=J r 
\C n P | + f n P I 
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2.   Genetic Algorithm Modeling for Data Mining 

The genetic algorithm consists of 4 main components: Chromosome Representation, 
Evaluation Function, Genetic Operators and Initialization of the Population. 

In chromosome representation, categorical or discrete attributes represent a finite 
value-set, or mapped values, within a set of integers. Quantitative or continuous 
attributes represent value ranges in the attribute domain. 

Thus, a chromosome must represent an association rule by means of the value 
range of the predictive, quantitative and categorical attributes (Fig. 1). 

Attribute        1 Attribute        2 Attribute N 

-► 

I    min Max 1    min Max mini Max 

|   Lower limit 
^ Minimum value 

1    Upper limit 
H Maximum value 

Fig. 1. Representation of the chromosome for the classification task by a vector of 2N values. 

In Fig. 1, each gene has two real numbers: the minimum and the maximum values. 
This representation makes it possible to formulate rules such as: 

IF {(Attr. 1 € [mim 1, max 1]) and (Attr. 2 e [mim 2, max 2]) and ... and (Attr N e 
[mim N, max N])}THEN Target Attribute = P 

where min. X and max. X indicate the minimum and maximum values of each 
predictive attribute that has been defined as quantitative (for categorical attributes, 
only min. X is used), and P is the value of the Target Attribute, which has been 
identified as an objective in the initial phase of the process. 

The advantage of this representation lies in its high level of comprehensibility and 
in the fact that the domain of the attributes values are evolved as real numbers. 

Several evaluation functions were implemented and tested with three types of 
rewards: accuracy, coverage, and/or both [3], according to Equation 3. 

//((accuracy ft) * 0) and/or (coverage ft) * 0)) then (3) 

fitnessft) = /(i,)*accuracy (y*coverage ft); 

Among the functions (ten) that were implemented, the Cbayesian [3] function is 
worthy of note. The Cbayesian function is inspired by the Bayesian classifiers [4] and 
represents the product of the probabilities that the values of a rule's attributes pertain 
to an interval, given that the class of the current record is the one that has been 
specified as the objective. Equation 4 presents this function, where A is an attribute, 
a; is a value interval, C is the target attribute, and c is the value of the specified class. 

P(A, = ail C = c) * P(A2 = a2l C = c) * ... P(Ak = akl C = c) (4) 

Several genetic operators have been tested in this project: one-point, two-point, 
average, and uniform crossovers, simple mutation, and a new mutation operator called 
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"don't care". This operator eliminates a given attribute in the composition of the rule, 
i.e., the entire domain of the attribute is considered valid for the rule. 

Methods to constrain the Genetic Algorithm's search space or to introduce 
promising solutions were implemented to initialize the population, thus increasing its 
performance: 
1. Random seedless initialization methods: a) including the average value of this 

attribute; b) including the median value of this attribute; 
2. Random initialization methods with seeds: a) Seeds from previous evolutions; b) 

Seeds from random Database records. 
The initialization methods for group 1 consist of establishing the limits so as to 

include the average value or the mean value of those attributes, and the second group 
makes use of genetic material which has already been evolved in previous 
experiments and of information from the database itself. 

3.  Rule-Evolver 

The Rule-Evolver is a data mining environment which incorporates a dedicated 
genetic algorithm model to evolve classification rules. 

The Rule-Evolver is capable of extracting all the association rules which 
differentiate a specific record cluster from the other records in a database. It 
comprises 4 dedicated modules: 
• Selection of database attributes -» Allows the user to choose attributes of interest 

based on each attribute's average, variance, and variation coefficient; 
• Interpretation -> Presents the best rules found in the IF (Al and A2 and A3 and 

...An) THEN P format; 
• Graphic Previewing  -»  Plots  the  accuracy,  coverage,  and  fitness   value 

(evaluation function) graphs of the individuals in the course of genetic evolution; 
• Parameterization of the environment -> Allows the user to specify rates, 

parameters, evaluation functions, operators, and evolutionary techniques. 

4.   Case Studies 

The benchmark databases used in this study were obtained from 
"ftp://ftp.ics.uci.edu/pub/machine-learning-databases/" repository. Two case studies 
are summarized in this article: Iris Plants Database and Tic-Tac-Toe Endgame 
Database. These databases were divided into 2 sets: a training set and a test set. 

The "Iris Plants Database" comprises 150 records divided into 3 classes of 50 
records each (Iris Setosa, Versicolour, and Virginica), with 4 attributes: the plant's 
petal and sepal width and length. 

In Table 1, the classification results obtained by the Rule-Evolver are compared 
with those obtained by means of other techniques: the NEFCLASS Neuro-Fuzzy 
System; the Hierarchical Neuro-Fuzzy System (NFHQ), the Bayesian Neural Net with 
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the gaussian approximation method, and a Bayesian Neural Net with the Markov 
Chain Monte Carlo method (MCMC). 

Table 1. Iris and Tic-Tac-Toe database as benchmark 

IRIS DATABASE (Error In The Training And 
Test Set - %) 

TIC-TAC-TOE DATABASE (Error In The 
Test Set - %) 

MODEL TRAINING TEST MODEL TEST 
NEFCLASS [5] 2,67 4 Newld [6] 84 

NFIIQJ7] 2,67 2,67 CN2 [6] 98,1 
RNB (BNN) [8] 0 2,67 MBRTalk [6] 88,4 

RNB (MCMC) [8] 0 2,67 IB3-CI [6] 99,1 
RULE-EVOLVER (GA) 0 13,34 RULE-EVOLVER (GA) 97,6 

The results indicate that, though the Rule-Evolver obtained good results in the 
training set, it presented a low performance level in the test set. Of the 10 records 
reported as errors (13,34%), 3 records were wrongly classified between the Iris 
Versicolour and Virginica classes, and 7 records were not classified, i.e., they were 
not covered by any of the rules obtained during training. This problem is typical of 
models that use training and test sets: the model does not succeed in finding rules 
whose attribute values are not in the training set. 

The second database tested was the "Tic-Tac-Toe Endgame database", which 
encodes the complete set of possible final configurations of the game board under the 
assumption that 'x' has made the first move. It is composed of 958 records, of which 
626 are "x wins" with 9 attributes, each corresponding to a position on the game 
board. 

Table 2 presents the decoding of the rules found by the Rule-Evolver which lead 
"x to win", where symbol # (don't care) means that "x wins" regardless of the values 
contained in that position of the board. Symbol "b" represents a blank field, and 
symbol "o" represents the other player. 

Table 2. Decoding of the rules found by the Rule-Evolver for Tic-Tac-Toe 

Rulel Rule 2 Rule 3 Rule 4 
bx # # # # bx X # # # X # 
# bx # # bx # X XO # # X # 
# # bx bx # # X # # # X # 

216 Records 153 Records 41 Records 39 Records 

RuleS Rule 6 Rule 7 Rule 8 
# # x x X X # # # # # # 
# # X # # # X X X # # # 
# # X # # # # # # X X X 

46 Records 43 Records 39 Records 44 Records 

This example shows that 621 of the 626 (99,2%) records were covered by the 
rules evolved by the Rule-Evolver and 5 records were not covered on account of the 
Rule 3, which specialized in position 5 on the board (xo). 

The results indicate that 4 records have been classified as being characteristics of 
"x's" victory, though they are not, and 3 records that lead to "x wins" have not been 
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classified. The model therefore fits 280 of the 287 records of the test set, thus 
presenting a success rate of 97,6 %. 

5.  Conclusions 

Record classification through the evolution of associative rules with the use of 
Genetic Algorithms has proved to be a promising procedure for characterizing the 
record clusters in a database. When compared with other methods (Artificial Neural 
Nets, Statistical Models), the advantage of rule discovery by means of GAs is that the 
rules evolved are self-explanatory. 

The current model is incapable of evolving correctly the interval of a rule's 
attribute values for values which are not exemplified in the training set. However, the 
genetic model is capable of generating highly accurate rules with a high level of 
coverage without any conflicts for the intervals present in training. 

To evaluate one generation of chromosome rules, the Rule-Evolver makes a 
single pass over the data, which may be all available in the memory, thus reducing 
processing time. The Rule-Evolver automatically tries to load the whole database 
into memory; if not possible, it will access the data through the DBMS. 

For the databases tested (hundred of records of less than ten attributes), the Rule- 
Evolver's run time was satisfactory - about 6 minutes in average on a Pentium II 350 
Mhz for the evaluation of 80 generations of populations of 100 individuals each. 

The scalability of the genetic model in applications with large databases (say with 
millions of records) has not been accessed yet. 
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Abstract. The paper is concerned with the decision making with pre- 
dictive models acquired from data called probabilistic decision tables. 
The methodology of probabilistic decision tables presented in this arti- 
cle is derived from the theory of rough sets. In this methodology, the 
probabilistic extension of the original rough set theory, called variable 
precision model of rough sets, is used. The theory of rough sets is ap- 
plied to identify dependencies of interest occurring in data. The identified 
dependencies are represented in the form of a decision table which subse- 
quently is analyzed and optimized using rough sets-based methods. The 
original model of rough sets is restricted to the analysis of functional, or 
partial functional dependencies. The variable precision model of rough 
sets can also be used to identify probabilistic dependencies, allowing for 
construction of probabilistic predictive models. The main focus of the 
paper is on decision making aspect of the presented approach, in partic- 
ular on setting the parameters of the model and on decision strategies 
to maximize the expected gain from the decisions. 

1    Introduction 

Standard decision tables are tabular models of the functional dependencies be- 
tween input conditions and decisions or actions taken in response to the oc- 
currence of some combinations of conditions. They have been used in software 
engineering, circuit design and other application areas for years [6]. The depen- 
dency is encoded by the table designer in the form of a set a disjoint decision 
rules covering all possible input situations. However, in many problems related 
to decision making with uncertainty, machine learning, pattern recognition and 
data mining, the condition-decision dependency is typically unknown and almost 
always non-deterministic. Often, it is hidden in empirical data. A number of an- 
alytical methodologies have been developed in recent years to approximate this 
kind of the dependency for the purpose of prediction or better understanding 
of the nature of the relationship, for example, by using decision trees, neural 
networks or rough sets [3,5, 9-12]. 

In this paper, we will focus on using decision tables extracted from data for 
that purpose. The research into decision tables acquisition from data was initi- 
ated by Pawlak in the context of rough sets theory[1,2]. His original works were 
concerned with the acquisition of deterministic, or partially deterministic tables. 
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We demonstrate how an extended approach, called variable precision rough sets 
model (VPRS), can be applied to acquistion of non-deterministic decision ta- 
bles with probabilistic characterization of their decision accuracy [8]. In what 
follows, the review of the methods of rough sets for the above mentioned data- 
based modeling problem is presented and illustrated with simple examples. A 
comprehensive discussion of the optimal decision making strategies and param- 
eter setting for the model is also included. Generally, the objective is not to 
construct a predictive system which would guarantee always correct predictions 
(which is typically impossible) , but to have a system which would support de- 
cisions with sufficient success rate in the longer run, or sufficient expected gain 
or profit from the decision making. 

The paper is organized as follows. We first discuss the basics of the formal 
model of decision tables acquired from data. Then, the main definitions of the 
variable precision model of rough sets are introduced. In the next sections, they 
are used to define extended notions of the dependency between attributes, of 
the extended reduct and core attributes. A separate section is devoted to the 
discussion of the optimal decision making with the probabilistic decision tables. 

2    Decision Tables Acquired from Data 

Generally, the decision table is defined here as a tabular representation of a 
relation discovered in data. The relation is identified through a classification 
process in which data objects having the same values of selected attributes, 
or having the same values of properly selected functions of the attributes (for 
example, using some attribute value discretization technique), are considered to 
be identical. It should be noted, however, that this kind of the decision table does 
not necessarily represent functional relationship as it is the case with "classical" 
decision tables known in software engineering and other areas. More precisely, 
the data-extracted decision table is defined as follows: 

Let U be the universe of objects e G U and a £A be the attributes of the 
objects, that is functions a : e -> a(e) assigning some features (attribute values) 
to objects. We assume that every attribute maps into a finite set of values, va 

G range(a). The attributes are divided into two categories, condition attributes 
C = {ai,a2,...,am} and the decision attributes D. Typically, the condition 
attributes represent measurable properties of objects whereas decision attributes 
are the "predictive" attributes (variables) whose values are normally predicted 
based on known values of condition attributes. We will assume here, without 
loss of generality, that there is only one binary-valued decision attribute d E D 
and one value vd (i = 0 or 1) of this attribute has been selected as a prediction 
or modeling "target". With all these assumptions, the decision table can be 
expressed as a quadruple < U, C, d, vd > . Each of the two values v°d, vd of the 
decision attribute d corresponds to a set of objects matching that particular 
value. We will denote these sets as X° and X1 respectively. Clearly, X° = -^X1 

and X°UX1 = U. Our objective in the construction and analysis of the decision 
tables is to develop a simple predictive model for the target set which would 
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CLASS S H E C P(T = l\Ei) P(T = 0\Ei) 
£i 0 0 1 0 0.10 0.00 
B3 1 0 2 1 0.85 0.15 
Ei 1 1 1 0 0.01 0.00 
E< 0 2 1 1 1.00 0.00 
Et 1 2 1 0 0.82 0.18 
Ee 1 0 1 0 0.12 0.88 
E7 1 2 2 1 0.02 0.08 

Ei 0 0 2 1 0.01 0.00 

Table 1. Classification by condition attributes only 

enable us to predict, with an acceptable confidence, whether an object matching 
a combination of attribute values occurring in the decision table belongs to the 
target set, or to its complement. 

3    VPRS Model of Rough Sets 

In data mining and predictive modeling applications the variable precision model 
of rough sets (VPRS) was used for analysis of decision tables extracted from data. 
The VPRS model extends the capabilities of the original model of rough sets 
to handle probabilistic information. The main aspects of the VPRS model are 
presented below. 

Let R be an equivalence relation ( called the indiscernibility relation) and let 
R* be the set of equivalence classes of R. Typically, the relation R represents the 
partitioning of the universe U in terms of the values of condition attributes as 
defined in Section 2. Also, let E G R* be an equivalence class (elementary set) of 
the relation R. With each class E we can associate the estimate of the conditional 
probability P(X\E) by the formula: P(X \ E) = card(X C\E)/card(E) assum- 
ing that sets X and E are finite. This situation is illustrated in Table 1 which 
represents the classification of raw data in terms of condition attributes S,H,E,C, 
with each class Ei being assigned probabilities P(T = l|i?») and P(T = 0\Ei). 

Let 0<l<u<lbe real-valued approximation precision control parameters 
called lower and upper limits respectively. For any subset X CU we define the 
u-positive region of X, P0Su(X) as a union of those elementary sets whose 
conditional probability P{X\E) is not lower than the upper limit, that is 

POSu(X) = \J{E e R* :P{X\E) >  «} 

The u-positive region of X represents an area in the universe which contains 
objects with relatively high probability of belonging to the set X. 

The (l,u)-boundary region BNRiiU(X) of the set X with respect to the lower 
and upper limits I and u is a union of those elementary sets E for which the 
conditional probability P(X\E) is higher than the lower limit t and lower than 
the upper limit u. Formally, 
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CLASS S H E C Ei REGION 
Ei 0 0 1 0 NEG 

E2 1 0 2 1 POS 
E3 1 1 1 0 NEG 
Ei 0 2 1 1 POS 
Es 1 2 1 0 POS 
E6 1 0 1 0 NEG 
E7 1 2 2 1 POS 

Es 0 0 2 1 POS 

Table 2. The probabilistic decision table with u = 0.8 and / = 0.2 

BNRt,u(X) = \J{EeR*:£<P(X\E)<u} 

The boundary area represents objects which cannot be classified with suffi- 
ciently high confidence (represented by u) into set X and which also cannot be 
excluded from X with the sufficiently high confidence ( represented by 1 - /)• 

The l-negative region NEGi(X) of the subset X, is a collection of objects 
which can be excluded from X with the confidence not lower than 1 - /, that is, 

NEGi(X) = [j{E € R* : P{U - X\E) > 1 - /} 

The l-negative region represents objects of the universe for which it is known 
that it is relatively unlikely that they would belong to X. 

In the Table 2, each of the classes E{ of the Table 1 is assigned to one 
of the rough approximation regions, according to the above definitions, with 
u = 0.8 and / = 0.2. The decision table in which each combination of condition 
attributes is assigned its approximation region with respect to the target value 
of the decision attribute (in this example, T = 1) is called probabilistic decision 
table [8]. The probabilistic decision table can be used to predict the target value 
of the decision attribute, or its complement, with probabilities not lower than u 
and 1 - /, respectively. 

4    (i,«)-Dependency in Decision Tables 

The analysis of decision tables extracted from data involves inter-attribute de- 
pendency analysis, identification, elimination of redundant condition attributes 
and attribute significance analysis [2]. The original rough sets model-based anal- 
ysis involves detection of functional, or partial functional dependencies and sub- 
sequent dependency-preserving reduction of condition attributes. In this paper, 
we extend this idea by using (l,u)-probabilistic dependency as a reference rather 
than functional or partial functional dependency. To define (I, ^-probabilistic 
dependency we will assume that the relation R corresponds to the partitioning 
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CLASS S H E C Ei REGION 
ßi 0 0 1 0 NEG 
Et 1 0 2 1 POS 
E3 1 1 1 0 NEG 

£4 0 2 1 1 POS 
Ei 1 2 1 0 BND 
Es 1 0 1 0 BND 
ET 1 2 2 1 POS 
Et. 0 0 2 1 POS 

Table 3. The probabilistic decision table with u = 0.83 and / = 0.11 

of the universe U in terms of values of condition attributes C in the decision 
table < U, C, d, v'd > , (»' = 0 or 1). In other words, we assume that objects 
having identical values of the attributes are considered to be equivalent. 

The (l,u)-probabilistic dependency  7/,u(C, d, i) between condition attributes 
C and the decision attribute  d   in the decision table < U, C, d, vl

d > is denned 
as the total relative size of (/, w)-approximation regions of the subset X% C U 
corresponding to target value of the decision attribute . In other words, we have 

7/,u(C, d, i) = (cardiPOSuiX*)) + card(N EG^X*))) / card{U) 
The dependency degree can be interpreted as a measure of the probability 

that a randomly occurring object will be represented by such a combination of 
condition attribute values that the prediction of the corresponding value of the 
decision attribute could be done with the acceptable confidence, as represented 
by (/, u) pair of parameters. 

To illustrate the notion of (7,uj-dependency let us consider the classification 
given in Table 1 again. When u = 0.80 and / = 0.15 the dependency equals 
to 1.0. This means that every object e from the universe U can be classified 
either as the member of the target set with the probability not less than 0.8, or 
the member of the complement of the target set, with the probability not less 
than 0.85. The lower and upper limits define acceptable probability bounds for 
predicting whether an object is, or is not the member of the target set. 

If (l,u)—dependency is less than one it means that the information con- 
tained in the table is not sufficient to make either positive, or negative predic- 
tion in some cases. For instance, if we take u = 0.83 and / = 0.11 then the 
probabilistic decision table will appear as shown in Table 3. As we see, when 
objects are classified into boundary classes, neither positive nor negative pre- 
diction with acceptable confidence is possible. This situation is reflected in the 
(0.11,0.83)—dependency being 0.7 (assuming even distribution of atomic classes 
Ei, E2,..., -Es in the universe U). 

5    Optimization of Precision Control Parameters 

An interesting question, inspired by practical applications of the variable preci- 
sion rough set model, is how to set the values of the precision control parameters I 
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and u to achieve desired quality of prediction. It is, in fact, an optimization prob- 
lem, strongly connected to the external knowledge of possible gains and losses 
associated with correct, or incorrect predictions, respectively. It also depends on 
the quality of the information encoded in data used to create the probabilistic 
decision table. In general, setting lower values of / and higher values of u re- 
sults in increasing the size of the boundary area on the expense of positive and 
negative regions. In practical terms, this means that we my not be always able 
to make decisions with the confidence level we would like it to be. If nothing 
is known about the potential gains or losses associated with the decisions, the 
reasonable goal is to increase the likelihood of positive correct prediction about 
the target value of the decision attribute, i.e. above random guess probability 
of success (by positive correct prediction we mean correctly predicting that the 
selected value will occur). Similarly, we are interested in increasing the proba- 
bility of negative correct prediction, i.e. predicting correctly that a particular 
target value will not occur. We would like this probability to be above random 
guess probability of success as well. That is, given the distribution of the target 
value of the decision attribute to be (p, 1 — p), where p is the probability that an 
object has the target value of the decision attribute, and 1 — p is the probability 
that it does not, the reasonable settings of the parameters are 0 < / < p and 
1 > u > p. With the settings falling into these limits, in the negative region 
the prediction that object does not belong to the target set would be made with 
the confidence higher than random guess, i.e. with the probability not less than 
1 — / > 1 — p and, in the positive region, the prediction that an object belongs 
to the target set would be made with the probability not less than «, 

Clearly, other factors can affect the selection of the precision control param- 
eters. In particular, an interesting question is how to set those parameters in a 
game playing situation, where each decision making act is carrying a cost (bet 
cost b > 0) and incorrect decision results in a loss whereas correct decision re- 
sults in a win. Because there are two possible outcomes of the decision, and one 
can pick any of these outcomes, there are two kinds of losses and two kinds of 
wins: 

— positive win, when positive outcome is bet (that is, that the target value will 
occur) and that outcome really occurred; the win is denoted here as q++ > 0 
and the cost of this betting is denoted as b+; 

— positive loss, when positive outcome is bet but that outcome did not occur; 
the loss is denoted here as q+~ < 0; 

— negative win, when the negative outcome is bet (that is, that the target value 
will not occur) and that outcome really occurred; the win is denoted here as 
q      > 0 and the cost of this betting is denoted as b~; 

— negative loss, when the negative outcome is bet but that outcome did not 
occur; the loss is denoted here as q~+ < 0; 

In addition to the assumptions listed above we will assume that both positive 
and negative wins are not smaller than the cost of betting, that is q~~ >b~ > 0 
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and q++ > b+ > 0, and that the absolute values of both negative and positive 
losses are not smaller than the bet, that is \q~+\ > b~ and \q+~\ > b+. 

Also, with each approximation region we will associate an expected gain 
function, which is the weighted average of wins and losses in the respective 
region. Our decision making strategy assumes that in the positive region the 
positive outcome is bet, and that in the negative region, the negative outcome 
is bet. The bet in the boundary region will depend on the value of the expected 
gain function, and we will assume that the bet which maximizes the gain function 
is selected. The gain functions Q{approximation region) are denned as follows: 

- Q(POS) = p{+\POS)*q+++p{-\POS)+q+- where p(+|P05) andp(-|P05) 
are conditional probabilities of positive and negative outcomes respectively 
within the positive region; 

- Q{NEG) = p{+\NEG) * q~+ + p{-\NEG) * q— where p(+\NEG) and 
p(-\NEG) are conditional probabilities of positive and negative outcomes 
respectively within the negative region; 

- Q(BND) =p{+\BND)*q+++p{-\BND)*q+- or Q{BND) = p{+\BND)* 
q-+ +p(-\BND) * q— , depending on the bet, whichever value is higher 
with the positive, or negative bet, where p(+\BND) and p(-\BND) are con- 
ditional probabilities of positive and negative outcomes respectively within 
the boundary region. 

Let us note that: 

1. Q{POS) > u * q++ + (1 - u) * q+~   and 

2. Q(NEG) >l*q-+ + (1 - 0 * <T~ • 

The uncertain decision is considered advantageous and justified if the ex- 
pected gain is not lower than the cost of the bet, i.e. if Q(POS) > b and 
Q(NEG) > b, assuming that positive outcome is bet in the positive region 
and negative outcome is bet in the negative region. By focusing on these two 
regions we can determine from (1) and (2) the bounds for parameters / and 
u to maximize the size of positive and negative regions while guaranting that 
Q(POS) > b and Q(NEG) > b. From conditions u * q++ + (1 - u) * q+~ > b 
and / * q~+ + (1 - I) * q— > 6 we get the following bounds for the precision 
control parameters: 

1>«>^$-   and0</<£a^. 
To maximize the sizes of both positive and negative areas the upper limit 

should assume the minimal range value and the lower limit should assume the 
maximal range value, that is: 

« = AV-lV- and l = FT ,++_,+- •        q- + -q- 

We should be aware however that these bounds set only the requirements how 
the rough approximation regions should be defined in order to obtain desired 
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expected results of decision making processes. The actual data set may not 
support these bounds in the sense that the positive, negative or both regions may 
be empty resulting in the boundary area covering the whole universe. In general, 
it can be demonstrated that in the boundary area, regardless whether positive 
or negative bet is made, the expected gain is always less than the respective 
bet, that is Q(BND) < b+, if the positive bet is taken, and Q(BND) < b~, if 
the negative bet is taken. Consequently, if the decision has to be made in the 
boundary area, one should take the one which maximizes Q(BND), but in the 
longer run the "player" is in the loosing position anyway in the boundary area. 
The expected gain G from making decisions based on the whole decision table, 
according with the assumptions and decision strategy described above, is given 
by: 

G = p{POS) * Q(POS) + p{NEG) * Q{NEG) + p(BND) * Q(BND) 

where p(POS), p(NEG) and p(BND) are the probabilities of respective 
approximation regions (the probabilities mentioned here can be approximated 
based on frequency distribution of data records belonging to the respective re- 
gions) . Only if the overall expected gain G is higher than the expected cost of 
betting the "player" is winning in the longer run. This clearly sets the limit on 
the applicability of the probabilistic decision tables to support decision making. 

6    Summary 

We briefly review in this section the main points of the described approach to 
predictive modeling and decision making. 

The main distinguishing feature of this approach is that it is primarily con- 
cerned with the acquisition of decision tables from data and with their analysis 
and simplification using notions of attribute dependency, reduct, core and at- 
tribute significance. The decision tables represent "discovered" inter-data de- 
pendencies which implies that, in general, a number of decision tables can be 
extracted from a given data collection. An important issue in the whole process 
of decision table acquisition from data is a choice of the mapping from original 
attributes, in which raw data are expressed, to finite-valued attributes used in 
the decision table. This is an application domain-specific task, often requiring 
deep knowledge of the domain. One popular technique is discretization of con- 
tinous attributes. However, the discretization of continuous attributes [7], is a 
comprehensive research topic in itself whose discussion goes beyond the scope of 
this article. The decision making with probabilistic decision tables is typically 
uncertain. The decision strategy involves making positive prediction in the pos- 
itive region, negative prediction in the negative region, and positive or negative 
prediction in the boundary region, depending on the value of the gain function. 
The techniques described in this article are aimed at constructing probabilistic 
decision tables which would support uncertain decision making leading to long 
range gains rather than to correct decisions in each case. They seem to be appli- 
cable to practical problems involving making guesses based on past data, such 
as stock market price movements prediction or market research. 
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Abstract. Inspired with Version Space learning, the Iterated Version 
Space Algorithm (IVSA) has been designed and implemented to learn 
disjunctive concepts. IVSA dynamically partitions its search space of 
potential hypotheses of the target concept into contour-shaped regions 
until all training instances are maximally correctly classified. 

1    Introduction 

Since mid 1950s, many AI researchers have developed learning systems that au- 
tomatically improve their performance. Vere's Multiple Convergence Algorithm 
[12] and Mitchell's Candidate Elimination Algorithm [6] introduced a novel ap- 
proach to concept learning known as the Version Space Algorithm (VSA). Un- 
like other learning algorithms, which used either generalization or specialization 
alone, VSA employed both. VSA has advantages - no back tracking for any seen 
training instances and a unique concept description that is consistent with all 
seen instances. VSA has weaknesses - training instances must be noise free and 
the target concept must be simple. These problems have prevented VSA from 
practical use outside the laboratories. 

During the last few years, many improved algorithms based on VSA have 
been designed and/or implemented. In section 2, we first introduce VSA and 
then highlight two improved methods compare with the IVSA approach. The 
discussion in section 2 focuses on learning a disjunctive concept from six training 
instances, which are noise free so that problems caused by learning disjunctive 
concepts can be isolated from problems caused by noise training instances. Sec- 
tion 3 presents the overall approach of IVSA. Preliminary experimental results 
on several ML databases [10] and English pronunciation databases [13] are pre- 
sented in Section 4. Discussions on each specific test and sample rules are also 
given in Section 4. In Section 5, we summarize current research on IVSA and 
give suggestions for future research. 
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2    Version Space Related Research 

2.1    The Version Space Algorithm 

A version space is a representation that contains two sets of hypotheses, the 
general hypotheses (G set) and the specific hypotheses (S set). Both G and S 
must be consistent with all examined instances. Positive instances make the S 
set more general to include all positive instances seen, while negative instances 
make the G set more specific to exclude all negative instances seen. If the training 
instances are consistent and complete, G and S sets eventually merge into one 
hypothesis set. This unique hypothesis is the learned concept description. 

I?,?,?,?,?,?] 
Nl: [supper, expensive, bread, coffee, Tim's, 0] 

[lunch, ?, ?, ?, ?, 1] 
pruned 

[?,?,rice,?,?,l] 
pruned 

[?, ?, ?, ?, Sam's, 1] 
pruned 

no sulution  ►[] 

vruned 
[?,?,?,?,?,?] 

(S3) 

P3: [breakfast, cheap, bread, tea, Tim's, 1] 

S2^ [?,?,rice,?,?,l] 

P2: [supper, cheap, rice, tea, Tim's, 1] 

SI j  [lunch, expensive, rice, coffee, Sam's, 1] 

PI: [lunch, expensive, rice, coffee, Sam's, 1] 

Fig. 1. The Version Space after the Fourth Instance (P3) 

The following six noise-free training instances have been selected to illustrate 
problems with VSA. The value '1' or '0' in each instance indicates that the 
patient had a positive or negative allergic reaction respectively. 

Pi = (lunch, expensive, rice, coffee, Sam's, 1) 
JVi = (supper, expensive, bread, coffee, Tim's, 0) 
P2 = (supper, cheap, rice, tea, Tim's, 1) 
P3 — (breakfast, cheap, bread, tea, Tim's, 1) 
Pi = (supper, expensive, rice, tea, Bob's, 1) 
P5 = (supper, cheap, rice, coffee, Sam's, 1) 
Figure 1 shows that as soon as instance P3 is processed, the new specific 

hypothesis S3 must be discarded due to over-generalization. When either G or 
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S set becomes empty, the version space is collapsed, and thus "No legal concept 
description is consistent with this new instance as well as all previous training 
instances" [6], although a concept description of "tea or rice" can be easily 
derived by hand. To improve VSA learning, Hirsh has designed a new algorithm, 
the Incremental Version Space Merging (IVSM) [3]. 

2.2    The Incremental Version Space Merging 

Instead of building one version space, IVSM constructs many version spaces 
VSi...n where n is the number of training instances. For each i € n, IVSM 
first constructs VSi using only one training instance, and then computes the 
intersection of VSi and VS(,_i). That is, for each pair of boundary hypotheses 
Gl, SI in VSi and G2, S2 in F5,(,_i)n(,-2)) IVSM repeatedly specializes each 
pair of hypotheses in Gl and G2, and generalizes each pair of hypotheses in SI 
and S2 to form a new version space VSin(i-i)- This merging process repeats 
until all the instances have been learned. 

VS|!   Pi! [lunch, expensive, rice, coffee, Sam'«, I] 

© 
[?,?,?,?,?,?] 

[lunch, expensive, rice, coffee, Sam's, 1] 

© 
VS,= VS, merges VS, 

© 
[7,7,7,7,7,71 

(G2J (G3j [G4j 

[kroch,?,?,?,?,!]  [?,?,rlce,?,?,ll [?, 7,7,7, Sam's, 1] 

[lunch, expensive, rice, coffee, Sam's, 1) 

© 

VS»!     Nl: [supper, expensive, bread, coffee, Tun's, 0] 

© 

[breakfast/ 
[lunch,?,?,?,?,ll [0,0,0,0,0,01 I?,?,?,?,Sam'»,ll 

VS4.     M: [supper, cheap, rice, lea, Tim's, 1] 

© 
[?,?,?,?,?,?! 

[supper, cheap, rice, tea, Tim's, 1] 

© 
VSs=VS3mergesVS4 

© 
[?,?, rice,?, 7,1] 

[?, 7, rice, 7,7,11 

© 

VS$:   P3: [breakfast, cheap, bread, tea, Tim's, 1] 

© 
[?,?,?,?,?,?] 

[breakfast, cheap, bread, tea, Tim's, 1] 

© 

VS7=VS,niergesVS< 

© 
[7,7, rice, ?,?,!! 

pruned   ^^^_^^^_ 
[ ] —I No Solutions I 

pruned   ' ' 
[7,7,7,7,7,11 

© 

Fig. 2. The IVSM Approach after Processing the Fourth Instance (P3) 

The same six training instances are used to demonstrate IVSM learning. 
In Figure 2, after IVSM has computed the intersection for VS5 and VSß, the 
resulting specific hypothesis [?, ?, ?, ?, ?, 1] is overly generalized. According to 
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the IVSM merging algorithm [3], the current specific hypothesis must be pruned. 
IVSM, therefore, does not offer a solution for this particular exercise. 

2.3    The Parallel Based Version Space Learning 

Another recent research into VSA is Parallel Based Version Space (PBVS) learn- 
ing [4]. Like the IVSM approach, PBVS also uses a version space merging al- 
gorithm, except that PBVS divides the entire set of training instances into two 
groups and constructs two version spaces simultaneously from each group, and 
then merges these two version spaces as IVSM does. Figure 3 shows the PBVS 
learning process using the the same six instances. Again when PBVS merges the 
VSi into VS2, the resulting boundary sets are empty. Therefore, PBVS learning 
fails to learn this set of training instances due to the same reason that causes 
the IVSM learning fails. 
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Fig. 3. The PBVS Approach after Processing the Fourth Instance 

3    The Iterated Version Space Learning 

The allergy example is simple and can be described with two hypotheses. But 
when the number of training instances, attributes, and classes are getting larger 
and larger, it becomes more and more difficult to detect which attribute value 
would be a true feature that distinguishes instances of different classes. However, 
VSA has already provided a natural way of separating different features. That 
is, whenever VSA collapses, the search has encountered a new feature. This is 
one of the new idea behined I VSA. 

3.1    Learning the Allergy Example with IVSA 

Before showing the detailed algorithm and approach, let us apply the same six 
allergy instances to IVSA. As Figure 1 shows when the version space is collapsed 
by processing P3, instead of failing, IVSA first collects G3 and S2 as candidate 
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Fig. 4. Using IVSA for the Allergy Example 

hypotheses, and then constructs a new version space with P3 to learn a different 
feature of the same concept. When all six training instances have been processed, 
IVSA has collected three candidate hypotheses: [?, ?, rice, ?, ?, 1]; [?, ?, ?, ?, ?, 
1]; and [?,?,?, tea, ?, 1], These candidate hypotheses then are evaluated using 

Rf = J|jU - J|jij, where E+ and E~ are sets of all positive and negative training 

instances respectively. Ef C E+ is a set of positive instances covered by the ith 
candidate hypothesis, and E~ C E~ is the set of negative instances covered by 
the same candidate hypothesis. For the allergy example, R\ = |, R2 = 0, and 
R3 = f. Therefore, [?, ?, rice, ?, ?, 1] and [?, ?, ?, tea, ?, 1] are selected as the 
concept description: ((.A3 = rice) V (A4 = tea)) -> allergy. 

3.2    Learning from Noisy Training Instances 

When training instances contain noise, the noise interferes or even stops the 
learning. With IVSA, noisy training instances are simply ignored. Here we use 
the same allergy example in Section 2.1 plus a noise instance N2 = (supper, 
cheap, rice, tea, Tim's, 0). Figure 5 shows this learning process. In the first 
version space, IVSA simply ignores N2 just like it ignores instances representing 
different features such as P3 in Figure 4 in the second version space. Because 
JV2 is negative, IVSA amalgamates the second version space with P3. But if 
the incorrect instances was classified as possitive, IVSA would start with this 
instance and later the hypothesis generated from this noisy instance would be 
discarded. The learned concept description does not interfered by N2 because 
IVSA recognizes that N2 does not represent the feature of the concept. 
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Fig. 5. Learning Noisy Training Instances with IVSA 

3.3    The IVSA Model 

Learning a concept is similar to assembling a multi-dimensional jigsaw puzzle 
from a large selection of possible pieces. The target concept can be viewed as the 
puzzle and an ordered list of disjunctive hypotheses can be viewed as groups of 
puzzle pieces. One method of solving this problem is to repeatedly generate any 
possible missing pieces and add them to the puzzle until it is complete. IVSA is 
based on this puzzle assembling method. 

As shown in Figure 6, IVSA contains the Example Analyser, Hypothesis 
Generator, Assembler, and Remover. The Example Analyser provides statistical 
evaluation for each attribute value provided by the instance space to determine 
the order of input trining instances. The Hypothesis Generator produces a set of 
candidate hypotheses from the given set of training instances. The Hypothesis 
Assembler repeatedly selects the most promising hypothesis from a large num- 
ber of candidate hypotheses according to the statistical evaluation provided by 
the Example Analyser, and then tests this hypothesis in each position in a list 
of accepted hypotheses. If adding a new hypothesis increases concept coverage, 
it is placed in the position that causes the greatest increase; otherwise this hy- 
pothesis is discarded. After the candidate hypotheses have been processed, the 
list of accepted hypotheses is examined by the Hypothesis Remover to see if any 
of the hypotheses can be removed without reducing accuracy. If the learning ac- 
curacy is satisfactory, the accepted hypothesis set becomes the learned concept 
description. Otherwise, the set of incorrectly translated instances are fed back 
to the generator, and a new learning cycle starts. 
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Fig. 6. The IVSA Model 

4    Experimental Results on UCI Databases 

IVSA is tested on some machine learning databases [10]. To demonstrate the 
consistency of IVSA, a ten-fold cross validation test is used, the cross validation 
test is defined as follows: 

Definition 1. Let I be the set of positive and negative instances given, 
i be the index for 10 ten-fold tests, and j be the index for test instances, 

then    {TesU = {XJ\XJ € J}£ni+10)-m}"      and 

{Traint = {I - Tea*,-}}* °x. 

That is, for each fold of the test, use 90% of instances to train the system 
and then with the rules learned from the 90% instances, testing on 10% unseen 
instances. 

4.1    Learning the Mushroom Database 

The mushroom database [7] has a total of 8,124 entries (tuples or instances). 
Each tuple has 22 feature attributes and one decision attribute. The 22 feature 
attributes have 2-5 values and the decision attribute has two values (or classes) 
'p' (poison) or 'e' (eatable). Because the mushroom database is noise-free, any 
machine learning program should be able to learn it accurately. For example, 
STAGGER "asymptoted to 95% classification accuracy after reviewing 1,000 
instances" [8], HILLARY has learned 1,000 instances and reported an average 
accuracy about 90% on ten runs [5], a back propagation network developed in 
[2] has generated 'crisp logical rules' that give correct classification of 99.41%, 
and variant decision tree methods used in [11] have 100% accuracy by a ten-fold 
cross validation test [11]. With IVSA, the predictive accuracy shown in Figure 
1 on the mushroom database has reached 100% with 9 rules. 
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Table 1. Ten-fold Tests on Mushroom Data (CPU: MIPS R4400) 

Run 
Number 

Number of Instances Accuracies Number 
of Rules 

CPU Time 
(h/m/s) 90% 10% Training Testing 

1 7,311 813 100.00% 100.00% 9 01/42/14 

2 7,311 813 100.00% 100.00% 9 02/09/42 

3 7,311 813 100.00% 100.00% 9 01/45/41 

4 7,311 813 100.00% 100.00% 9 01/53/12 

5 7,312 812 100.00% 100.00% 9 01/40/58 

6 7,312 812 100.00% 100.00% 9 02/30/08 

7 7,312 812 100.00% 100.00% 9 01/46/51 

8 7,312 812 100.00% 100.00% 9 01/59/00 

9 7,312 812 100.00% 100.00% 8 01/46/40 

10 7,312 812 100.00% 100.00% 9 01/56/16 

Ave. 7,312 812 100.00% 100.00% 9 01/55/04 

S.D. 0.49 0.49 0.00 00.00 0.30 859.94 

4.2    Learning the Monk's Databases 

The Monk's Databases contains three sets: Monk-1, Monk-2, and Monk-3. Each 
of the three sets is originally partitioned into training and testing sets [10] [9]. 
IVSA is trained and tested on Monk-1, Monk-2, and Monk-3. In Table 2, the 
experiment shows that 5, 61, and 12 rules learned from Monk-1, Monk-2, and 
Monk-3 databases gives 100%, 81.02%, and 96.30% classification accuracies on 
three sets of 432 previously unseen instances. 

Table 2. Tests on Monk's Databases (CPU: 296 MHz SUNW, UltraSPARC-II) 

Data 
Base 

Instances Accuracy #of 
Rules 

CPU Time 
(seconds) TYaining Testing Training Testing 

Monk-1 124 432 100.00% 100% 5 3 

Monk-2 
Monk-3 

169 432 100.00% 81.02% 61 38 

122 432 100.00% 96.30% 12 5 

Rules learned from Monk-1, (2 2 ? ? ? ? 1), (3 3 ? ? ? ? 1), (1 1 ? ? ? ? 1), 
(? ? ? ? 1 ? 1), (? ? ? ? ? ? 0), show exactly the desired concept description 
with minimum number of rule allowed by the concept language, which can be 
rewritten as: (headshape = bodyjshape) V (jacket = red) -> monk. For the 
Monk-2 database, 61 rules learned which is relatively large compared with the 
other two sets (Monk-1 and Monk-3) due to a highly disjunctive (or irregular) 
concept. However, it can be improved with more statistical analysis or some 
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improved instance space (or representation space) shown in [1] the predictive 
accuracy can be as high as 100% [Bloedorm et al., 1996, p.109]), although this 
method is highly specified for only Monk-2 database. Twelve rules are learned 
from the Monk-3 database with 96.3% classification accuracy despite 5% noise 
added to the Monk-3 training instances: (1 1 1 1 3 1 0), (1 2 1 2 3 1 0), (2 2 1 2 
2 1 0), (2 2 1 3 3 1 0), (2 2 1 3 3 2 0), (2 3 1 1 3 1 1), (3 3 1 1 3 2 1), (3 3 1 1 4 
1 1), (? ? ? ? 4 ? 0), (? 1 ? ? ? ? 1), (? 2 ? ? ? ? 1), (? ? ? ? ? ? 0) 

4.3    Learning English Pronunciation Databases 

IVSA has been applied to learn English pronunciation rules [13]. The task is 
to provide a set of rules that transform input English words into sound sym- 
bols using four steps: (1) decompose words into graphemes, (2) form syllables 
from graphemes, (3) stress marking on syllables, and (4) transform them into a 
sequence of sound symbols. Learning and testing results are shown in Table 3. 

Table 3. Learning and Testing Results for Individual Steps 

Step 
Learning Accuracy Testing Accuracy #of 

Inst. Words Inst. Words Inst. Words Inst. Words Rules 

(1) 118,236 17,951 99.58% 99.19% 13,050 1,995 98.18% 94.89% 1,030 

(2) 56,325 23,684 97.23% 96.34% 6,241 2,656 96.36% 95.41% 248 

(3) 56,325 23,684 78.30% 72.26% 6,241 2,656 77.95% 72.78% 2,080 

(4) 118,236 17,951 98.14% 95.31% 16,418 2,656 96.93% 92.23% 1,971 

5    Conclusions 

We have presented a new concept learning method IVSA, its approach, and 
test results. Our analysis of previous research shows that the empty version 
space signals a new feature of the same target concept presented by a particular 
instance. The hypotheses generated by previous version spaces belong to one 
region of the target concept while the current hypotheses generated by a new 
version space belong to another region of the same concept. IVSA takes the 
advantage of an empty version space, using it to divide the regions of a concept, 
and correctly handles noisy training instances. 

A concept description can be divided into regions, and each region can be 
represented by a subset of training instances. These subsets can be collected 
according to the statistical analysis on each attribute value provided by the 
Example Analyser. The technique of re-arranging the order of training instances 
according to the importance of a particular attribute value provides a practical 
method to overcome order bias dependency of the training instances. 
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The demonstration on learning noisy training instances shows that IVSA has 
strong immunity to noisy data, and has the ability to learn disjunctive concept. 
The preliminary experimental results show that rules learned by IVSA obtain 
high accuracy when applied to previously unseen instances. In the future, we 
will intensively test IVSA with additional databases and improve the Example 
Analyser to obtain higher learning speed and smaller numbers of rules. 
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Abstract. We describe statistical and empirical rule quality formulas 
and present an empirical comparison of them on standard machine learn- 
ing datasets. Prom the experimental results, a set of formula-behavior 
rules are generated which show relationships between a formula's per- 
formance and dataset characteristics. These formula-behavior rules are 
combined into formula-selection rules which can be used in a rule in- 
duction system to select a rule quality formula before rule induction. 

1    Introduction 
A rule induction system generates decision rules from a set of data. The decision 
rules determine the performance of a classifier that exploits the rules to classify 
unseen objects. It is thus important for a rule induction system to generate deci- 
sion rules with high predictability or reliability. These properties are commonly 
measured by a function called rule quality. A rule quality measure is needed in 
both rule induction and classification. A rule induction process is usually consid- 
ered as a search over a hypothesis space of possible rules for a decision rule that 
satisfies some criterion. In the rule induction process that employs general-to- 
specific search, a rule quality measure can be used as a search heuristic to select 
attribute-value pairs in the rule specialization process; and/or it can be employed 
as a significance measure to stop further specialization. The main reason to focus 
special attention on the stopping criterion can be found in the studies on small 
disjunct problems [9]. The studies indicated that small disjuncts, which cover a 
small number of training examples, are much more error prone than large dis- 
juncts. To prevent small disjuncts, a stopping criterion based on rule consistency 
(i.e., the rule is consistent with the training examples) is not suggested for use 
in rule induction. Other criteria, such as the G2 likelihood ratio statistic as used 
in CN2 [7] and the degree of logical sufficiency as used in HYDRA [1], have been 
proposed to "pre-prune" a rule to avoid overspecialization. Some rule induction 
systems, such as C4.5 [12] and ELEM2 [2], use an alternative strategy to prevent 
the small disjunct problem. In these systems, the rule specialization process is 
allowed to run to completion (i.e., it forms a rule that is consistent with the 
training data or as consistent as possible) and "post-prunes" overfitted rules by 
removing components that are deemed unreliable. Similar to pre-pruning, a cri- 
terion is needed in post-pruning to determine when to stop this generalization 
process. A rule quality measure is also needed in classification. It is possible that 
an unseen example satisfies multiple decision rules that indicate different classes. 
In this situation, some conflict resolution scheme must be applied to assign the 
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unseen object to the most appropriate class. It is therefore useful for each rule 
to be associated with a numerical factor representing its classification power, 
its reliability, etc. We survey and evaluate statistical and empirical rule quality 
measures, some of which have been discussed by Bruha [5]. In our evaluation, 
ELEM2 [2] is used as the basic learning and classification algorithms. We re- 
port the experimental results from using these formulas in ELEM2 and compare 
the results by indicating the significance level of the difference between each 
pair of the formulas. In addition, the relationship between the performance of a 
formula and a dataset is obtained by automatically generating formula-behavior 
rules from the experimental results. The formula-behavior rules are further com- 
bined into formula-selection rules which can be employed by ELEM2 to select 
a rule quality formula before rule induction. We report the experimental results 
showing the effects of formula-selection on ELEM2's predictive performance. 

2    Rule Quality Measures 
Many rule quality measures are derived by analysing the relationship between a 
decision rule R and a class C. The relationship can be depicted by a 2 x 2 contin- 
gency table [5], which consists of a cross-tabulation of categories of observations 
with the frequency for each cross-classification shown: 

Class C Not class C 
Covered by rule R nrc »r« nr 

Not covered by R "pc »re n? 

n0 ns N 

where nrc is the number of training examples covered by rule R and belonging to 
class C; nrE is the number of training examples covered by R but not belonging 
to C, etc; N is the total number of training examples; nr, nf, nc and ne are 
marginal totals, e.g., nr = nrc + nrS, which is the number of examples covered 
by R. The contingency table can also be presented using relative rather than 
absolute frequencies as follows: 

Class C Not class C 
Covered by rule R Jrc frc fr 
Not covered by R fi*c /« U 

Sc h 1 
where frc = ^, fre = S^L, and so on. 

2.1     Measures of Association 
A measure of association indicates a relationship between the classification for 
the columns and the classification for the rows in the 2x2 contingency table. 

Pearson x2 Statistic assumes contingency table cell frequencies are propor- 
tional to the marginal totals if column and row classifications are independent, 
and is given by 

.2 y K> ~ "e)2 

X ^ ne 

where n0 is the observed absolute frequency of examples in a cell, and ne is the 
expected absolute frequency of examples for the cell. A computational formula 
for x2 can De obtained using only the values in the contingency table with 
absolute frequencies [61: y2 = N(n"n<"-n"n<">)2. This value measures whether 
the classification of examples by rule R and one by class C are related. The lower 
the x2 value, the more likely the correlation between R and C is due to chance. 
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G2 Likelihood Ratio Statistic measures the distance between the observed 
frequency distribution of examples among classes satisfying rule R and the ex- 
pected frequency distribution of the same number of examples where rule R 
selects examples randomly. The value of this statistic can be computed as 

Q1 = 2( loge 1 loge ). 
nr        nrnc       nr        nrric 

The lower the G2 value, the more likely the apparent association between the 
two distributions is due to chance. 

2.2 Measures of Agreement 
A measure of agreement concerns the main diagonal contingency table cells. 
Cohen's Formula Cohen [8] suggests comparing the actual agreement on the 
main diagonal {frc + ffc) with the chance agreement (/r/c + ffh) by using the 
normalized difference of the two: 

frc + ffc - (/r/c + fffc) 
QCoHen- 1 _ (/r/e +/f/e) 

When both elements frc and ffs are reasonably large, Cohen's statistic gives a 
higher value which indicates the agreement on the main diagonal. 
Coleman's Formula Coleman [3, 5] defines a measure of agreement between 
the first column and any particular row in the contingency table. Bruha [5] 
modifies Coleman's measure to define rule quality, which actually corresponds 
to the agreement on the upper-left element of the contingency table. The formula 
normalizes the difference between actual and chance agreement: 

^    frc ~ Jrjc 
fJColeman —     r      ft' 

2.3 Measure of Information 
Given class C, the amount of information necessary to correctly classify an in- 
stance into class C whose prior probability is P{C) is defined as -log2P(C). 
Given rule R, the amount of information we need to correctly classify an in- 
stance into class C is -log2P{C\R), where P(C\R) is the posterior proba- 
bility of C given R. Thus, the amount of information obtained by rule R is 
-log2P{C) + log2P(C\R). This value is called information score [10]. It mea- 
sures the amount of information R contributes and can be expressed as 

Qis = -log2 -T7 + log2-^. 
iV nr 

2.4 Measure of Logical sufficiency 
The logical sufficiency measure is a standard likelihood ratio statistic, which has 
been applied to measure rule quality [1]. Given a rule R and a class C, the degree 
of logical sufficiency of R with respect to C is defined by 

P(R\C) 
^LS P{R\C) 

where P denotes probability. A rule for which QLs is large means that the 
observation of R is encouraging for the class C - in the extreme case of QLS 

approaching infinity, R is sufficient to establish C in a strict logical sense. On the 
other hand, if QLS is much less than unity, the observation of R is discouraging 

for C. Using frequencies to estimate the probabilities, we have QLS = 
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2.5 Measure of Discrimination 
Another statistical rule quality formula is the measure of discrimination, which 
is applied in ELEM2 [2]. The formula was inspired by a query term weight- 
ing formula used in the probability-based information retrieval. The formula 
measures the extent to which a query term can discriminate relevant and non- 
relevant documents [13]. If we consider a rule R as a query term in an IR setting, 
positive examples of class C as relevant documents, and negative examples as 
non-relevant documents, then the following formula can be used to measure the 
extent to which rule R discriminates positive and negative examples of class C: 

P(R\C)(1-P(R\C)) 

^MD~   9P(R\C)(1-P(R\C)) 

where P denotes probability. The formula represents the ratio between the rule's 

positive and negative odds and can be estimated as QMD = •%£• 

2.6 Empirical Formulas 
Some rule quality formulas are not based on statistical or information theories, 
but from intuitive logic. Bruha [5] refers to these as empirical formulas. We de- 
scribe two empirical formulas that combine two characteristics of a rule: consis- 
tency and coverage. Using the elements of the contingency table, the consistency 
of a rule R can be defined as cons(R) = ^ and its coverage as cover(R) = *£f. 
Weighted Sum of Consistency and Coverage Michalski [11] proposes to 
use the weighted sum of consistency and coverage as a measure of rule quality: 

Qws = w\ x cons(R) + w2 x cover(R) 

where w\ and w2 are user-defined weights with their values belonging to (0,1) 
and summed to 1. This formula is applied in an incremental learning system 
YAILS [14]. The weights in YAILS are specified automatically as: wi = 0.5 + 
^cons(R) and w2 = 0.5—^cons(R). These weights are dependent on consistency. 
The larger the consistency, the more influence consistency has on rule quality. 
Product of Consistency and Coverage Brazdil and Torgo [4] propose to 
use a product of consistency and coverage as rule quality: 

Qprod = cons(R) x f(cover(R)) 

where / is an increasing function. The authors conducted a large number of 
experiments and chose to use the following form of /: f(x) = ex~1. This setting 
of / makes the difference in coverage have smaller influence on rule quality, which 
results in the rule quality formula to prefer consistency. 

3    Experiments with Rule Quality Measures 
3.1    The Learning System 
ELEM2 uses a sequential covering learning strategy; it reduces the problem of 
learning a disjunctive set of rules to a sequence of learning a single conjunctive 
rule that covers a subset of positive examples. Learning a conjunctive rule begins 
by considering the most general rule precondition, then greedily searches for an 
attribute-value pair that is most relevant to class C according to the following 
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function: SIGc{av) = P(av)(P(C\av) - P(C)), where av is an attribute-value 
pair and P denotes probability. The selected attribute-value pair is then added 
to the rule precondition as a conjunct. The process is repeated until the rule 
is as consistent with the training data as possible. Since a "consistent" rule 
may be a small disjunct that overfits the training data, ELEM2 "post-prunes" 
the rule after the initial search for the rule is complete. To post-prune a rule, 
ELEM2 first computes a rule quality value according to the formula of measure 
of discrimination QMD (Section 2.5). It then checks each attribute-value pair in 
the rule in the reverse order in which they were selected to see if removal of a 
pair will decrease the rule quality value. If not, the pair is removed. 

After rules are induced for all classes, the rules can be used to classify 
new examples. The classification procedure in ELEM2 considers three possi- 
ble cases: (1) Single match. The new example satisfies one or more rules of the 
same class. In this case, the example is classified to that class. (2) Multiple 
match. The new example satisfies more than one rules of different classes. In 
this case, ELEM2 computes a decision score for each of the matched classes as: 
DS{C) = Yjhi=\QMD{Ti), where r< is a matched rule that indicates class C, k 
is the number of this kind of rules, and QMD{ri) is the rule quality of rt. The 
new example is then classified into the class with the highest decision score. 
(3) No match. The new example is not covered by any rule. Partial matching 
is conducted. If the partially-matched rules do not agree on classes, a partial 
matching score between new example e and a partially-matched rule r,- with n 
attribute-value pairs, m of which match the corresponding attributes of e, is 
computed as PMS(n) = f x QMD(ri). A decision score for a class C is com- 

puted as DS(C) = J2i=i PMS{r{), where k is the number of partially-matched 
rules indicating class C. The new example is classified into the class with the 
highest decision score. 

3.2     Experimental Design 
We evaluate the rule quality formulas described in Section 2 by determining 
how rule quality formulas affect the predictive performance of ELEM2. In our 
experiments, we run versions of ELEM2, each of which uses a different rule qual- 
ity formula. The formulas: QMD,Qcohen, Qco!eman,Qis, QLS, QWS, and QpTOd 
are used exactly as described in Section 2. The x2 statistic is used in two ways: 
(1) Qx2 : In post-pruning, the removal of an attribute-value pair depends on 
whetheAhe rule quality value after removing an attribute-value pair is greater 
than x2

05, i.e., the tabular %2 value for the significance level of 0.05 with one 
degree of freedom. If the calculated value is greater than x2os> tnen remove the 
attribute-value pair; otherwise check other pairs or stop post-pruning if all pairs 
have been checked. (2) Qxi : In post-pruning, an attribute-value pair is re- 
moved if and only if the rule quality value after removing the pair is greater 
than x205 and no less than the rule quality value before removing the pair. The 
G2 statistic, denoted as QG2.0&+, is used in the same way as Qx

2
06+- 

Our experiments are conducted using 22 benchmark datasets from the UCI 
Repository of Machine Learning database. The datasets represent a mixture of 
characteristics shown in Table 1. ELEM2 removes all the examples containing 
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missing values before rule induction. For datasets with missing values (such as 
"crx") , the number of examples shown in Table 1 is the number after removal. 

Datasets 
Number of Class 

Distribution Domain classes attributes examples 
1   abalone 3 8 4177 Even Predicting the age of abalone 

from physical measurements 
2  australia 2 14 690 Even Credit card application approval 
3 balance-scale 3 4 625 Uneven Balance scale classification 
4  breast-cancer 2 9 683 Uneven Medical diagnosis 
5  bupa 2 6 345 Uneven Liver disorder database 
6 crx 2 15 653 Uneven Credit card applications 
7 diabetes 2 8 768 Uneven Medical diagnosis 
8 ecoli 8 7 336 Uneven Predicting protein localization sites 
9  german 2 20 1000 Uneven Credit database to classify people 

as good or bad credit risks 
10 glass 6 9 214 Uneven Glass identification for 

criminological investigation 
11 heart 2 13 270 Uneven Heart disease diagnosis 
12 ionosphere 2 33 351 Uneven Classification of radar returns 
13 iris 3 4 150 Even Iris plant classification 
14 lenses 3 4 24 Uneven Database for fitting contact lenses 
15 optdigits 10 64 3823 Even Optical recognition of handwritten 

digits 
16 pendigits 10 16 7494 Even Pen-based recognition of handwritten 

digits 
17 post-operative 3 8 87 Uneven Postoperative Patient Data 
18 segment 7 18 2310 Even image segmentation 
19 tic-tac-toe 2 9 958 Uneven Tic-Tac-Toe Endgame database 
20 wine 3 13 178 Uneven Wine recognition data 
21 yeast 10 8 1484 Uneven Predicting protein localization sites 
22 zoo 7 16 101 Uneven Animal classification 

Table 1. Description of Datasets. 

3.3    Results 
On each dataset, we conduct a ten-fold cross-validation of a rule quality measure 
using ELEM2. The results in terms of predictive accuracy mean over the 10 
runs on each dataset for each formula are shown in Figure 1. The average of the 

1  MD   HChLOG   DChl.OGt    DÖ2.0E+    M Oohon   (SI  Colo t£>   C3 L!3  Ml WS   B Prod  ; 

igUHIllnllltdni 
lOO 

Jeo 
so 

& TO   -S 
1 eo ■■MUSH 

^ 
^- *p 

Fig. 1. Results on the 22 datasets 

accuracy means for each formula over the 22 datasets is shown in Table 2, where 
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Qws QMD QLS VcCofeman Qprod QG2.06+ Qis <?x2 
*.05+ 

Qcohen Qx2 
.05 

Average 82.09 81.34 81.33 80.66 80.33 79.85 79.63 79.51 79.05 72.95 

Table 2. Average of accuracy means for each formula over the datasets. 

the formulas are listed in decreasing order of average accuracy means. Whether 
a formula with a higher average is significantly better than a formula with a 
lower average is determined by paired t-tests using the S-Plus statistics software. 
The t-test results in terms of p-values are reported in Table 3. A small p-value 
indicates that the null hypothesis (the difference between the two formulas is due 
to chance) should be rejected in favor of the alternative at any significance level 
above the calculated value. The p-values that are smaller than 0.05 are shown 
in bold-type to indicate that the formula with higher average is significantly 
better than the formula with the lower average at the 5% significance level. 
For example, Qws is significantly better than Qcoieman, 0G2.06+> QIS, QX

2
0B+> 

Qws QMD QLS Qcoieman Qprod <?G = .08+ Qis <?x2 
*.05+ 

Qcohen x.05 

Qws NA 0.0819 0.1421 0.0119 0.0692 0.002 0.002 0.0073 0.0463 0.0026 
QMD - NA 0.9719 0.1323 0.4032 0.0183 0.01 0.0545 0.1328 0.0069 
QLS - - NA 0.0539 0.4389 0.0026 0.0046 0.0694 0.149 0.0076 

leColeman - - - NA 0.7858 0.0526 0.035 0.256 0.3187 0.0137 
Qprod - - - - NA 0.6947 0.5621 0.4325 0.3962 0.0111 

<2G2.0B+ - - - - - NA 0.5088 0.7512 0.6316 0.0282 

Qis - - - - - - NA 0.9117 0.733 0.0316 

<?x2 - - - - - - - NA 0.6067 0.0144 

Qcohen - - - - - - - - NA 0.0179 

«x2 X
   OB 

- - - - - - - - - NA 

Table 3. Significance levels (p-values from paired t-test) of improvement. 

QCohen and Qx2 ; QMD and QLs are significantly better than CJG2.0B+> QIS and 
Qx? ; and all formulas are significantly better than Qx*m at the 5% significance 
level! Generally speaking, Qws, QMD and QLS are comparable even if their 
performance does not agree on a particular dataset. Qcoieman and Qprod, and 
Qx2 and Qcohen are comparable. QG2.OS+ and Qis are not only comparable, 
but also similar on each particular dataset, indicating that they have similar 
trends with regard to nrc,nr,nc and N in the contingency table. 
4 Learning from the Experimental Results 
From our results, we posit that, even if the learning performance on some 
datasets (such as breast cancer dataset) is not very sensitive to the rule quality 
formula used, the performance greatly depends on the formula on most of the 
other datasets. It would be desirable that we can apply a "right" formula that 
gives the best performance among other formulas on a particular dataset. For 
example, although formula Q%* is not a good formula in general, it performs 
better than other formulas on some datasets such as heart and lenses. If we can 
find conditions under which each formula leads to good learning performance, we 
can select "right formulas" for different datasets and can improve the predictive 
performance of the learning system further. 
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To find out this regularity, we use our learning system, i.e., ELEM2, to learn 
the formula selection rules from the experimental results shown in the last sec- 
tion. The learning problem is divided into (1) learning formula-behavior rules for 
each rule quality formula that describe the conditions under which the formula 
produces "good", "medium" or "bad" results, and (2) combining the rules for 
all the formulas that describe the conditions under which the formulas give the 
"good" results. The resulting set of rules is the formula-selection rules that can 
be used by the ELEM2 classification procedure to perform formula selection. 

4.1    Data Representation 
To learn formula-behavior rules we construct training examples from Figure 1 
and Table 1. First, on each dataset, we decide the relative performance of each 
formula as "good", "medium", or "bad". For example, on the abalone dataset, we 
say that the formulas whose accuracy mean is above 60% produce "good" results; 
the formulas whose accuracy mean is between 56 and 60 produce "medium" re- 
sults; and other formulas give "bad" results. Then, for each formula, we construct 
a training dataset in which an training example describes the characteristics of 
a dataset and the performance of the formula on the dataset. Thus, to learn 
behavior rules for each formula, we have 22 training examples. The dataset char- 
acteristics are described in terms of number of examples, number of attributes, 
number of classes and the class distribution. Samples of training examples for 
learning behavior rules of Qis are shown in Table 4. 

Number of Class 
Distribution Performance Examples Attributes Classes 

4177 8 3 Even Good 
690 14 2 Even Medium 
625 4 3 Uneven Bad 
683 9 2 Uneven Medium 

Table 4. Sam 
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Formula Condition Decision 
Rule 

Quality 
No. of Support 

Datasets 

Qws (NofA<20)and(NofC=2) 
(N<3823)and(classDistr=Even) 

Good 
Good 

1.23 
0.77 

8 
4 

QMD (N>625)and(8<NofA<18) 
(NofC>8) 

Good 
Good 

1.56 
1.07 

6 
3 

QLS (ClassDistr=Even) 
(N<24) 

Good 
Bad 

1.22 
1.61 

6 
1 

QColcman (N>768)and(NofA>8) 
(N>1484) 

(351<N<683)and(NofA<9) 

Good 
Good 
Bad 

1.52 
1.34 
1.57 

5 
4 
2 

Qprod (N<214)and(NofA<13) 
(NofA>20) 

(351<N<653) 

Good 
Good 
Bad 

1.66 
1.05 
1.40 

5 
2 
2 

9G2.0B+ 
(N>1484) 

(NofA>20) 
(NofA<7)and(NofC>2)and(ClassDistr=Uneven) 

Good 
Good 
Bad 

1.77 
1.26 
1.38 

4 
2 
3 

Qis (N>1484) 
(NofA>20) 

(NofA<7)and(NofC>2)and(ClassDistr=Uneven) 

Good 
Good 
Bad 

1.77 
1.26 
1.38 

4 
2 
3 

<?x2 X.05+ 
(87<N<178) 

(13<NofA<15) 

Good 

Bad 

1.27 

1.57 

3 

2 

QCohcn (101<N<1484)and(NofA<8)and(NofC>2) 
(768<N<2310)and(8<NofA<18) 

Good 
Bad 

1.34 
1.40 

4 
2 

«x2 
*.05 

(N<87) 

(9<NofA<14)and(NofC<2) 
(N>87) 

Good 

Good 
Bad 

1.57 

1.57 
1.15 

2 

2 
15 

Table 5. Formula Behavior Rules 

Thus, ELEM2 can use different formulas on different datasets. To show this 
strategy, we conduct ten-fold evaluation of ELEM2 on the 22 datasets we used. 
The result is shown in Figure 2, in which the average accuracy mean from the 
"flexible" ELEM2 (labeled "Combine" in the graph) is compared with ones using 
individual formulas. We also conduct paired t-tests to see how much the flexible 

Fig. 2. Average of accuracy means of each formula on the 22 datasets 

ELEM2 improves over ELEM2 with a single rule quality formula. The p-values 
from the t-test are shown in Table 6. "Combine" improves Qws, QMD and QLS 

at the 2.5% significance level; and it improves other formulas more significantly 
at the 0.5% significance level. 

Qws QMD QLS QcoUman Qprod ÖG2.05+ Qis x.06+ 
Qcohen Qx2 

.05 
Combine 0.0182 0.0217 0.0228 0.0031 0.0002 0.0009 0.0007 0.0005 0.0083 0.0006 

Table 6. Significance levels of the improvement of "Combine" over individual formulas 
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5    Conclusions 
We have described and evaluated various statistical and empirical formulas for 
defining rule quality measures. The performance of these formulas varies among 
datasets. The empirical formulas, especially Qws > work very well. Among sta- 
tistical formulas, QMD and QLS work the best on the tested datasets and are 
comparable with Qws- To determine the regularity of a rule quality formula's 
performance in terms of dataset characteristics, we used ELEM2 to induce rules 
from a dataset constructed from the experimental results. These rules provided 
ideas about the situations in which a formula leads to good, medium or bad 
performance. These rules can also be used to automatically select a rule qual- 
ity formula before rule induction. Our experiment showed that this selection can 
lead to significant improvement over the rule induction system using a single for- 
mula. Future work includes testing our conclusions on more datasets to obtain 
more reliable formula-selection rules. 
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Abstract. A method for constructing classification (decision) systems 
is presented. The use of decision rules derived using rough set methods 
as new attributes is considered. Neural networks are applied as a tool 
for construction of classifier over reconstructed dataset. Possible prof- 
its of such an approach are briefly presented together with results of 
preliminary experiments. 

1 Introduction 

In the process of constructing classification (decision) sytems we have several 
objectives in mind. Among others, we concern robustness, versatility, adaptive- 
ness, compactness and intuitive understanding of produced solution. Of course 
it is tough job to fulfill all the expectations, especially if our system is based 
only on the information contained in the data. In this paper we are trying to 
address the issue of compactness and adaptiveness of a classifier. We propose a 
method of treating decision rules as a source for new features. Using those rules 
we construct new set of data that is easier to classify. A simple artificial neural 
network is used for this purpose 

The classifier constructed in such a way shows, according to preliminary 
experiments, some nice features. It is usually smaller and simpler than rough set 
classifier having comparable quality. It is also easier to explain intuitively as it 
has less components. 

The paper begins with introduction of basic notions. Then some foundational 
features of rule based rough set classifiers are presented. Next sections contain 
short description of proposed solution and the initial experimental results. 

2 Basic notions 

The structure of data that is subject of our study is represented in the form of 
information system [9] or, more precisely, the special case of information system 
called decision table. 

Information system is a pair of the form A = (U, A) where U is a universe 
of objects and A = (ai,...,am) is a set of attributes i.e. mappings of the form 
m : U -* Va , where Va is called value set of the attribute at. The decision 
table is also a pair of the form A = (U,A\J {d}) where the major feature 
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that is different from the information system is the distinguished attribute d. 
In case of decision table the attributes belonging to A are called conditional 
attributes or simply conditions while d is called decision (sometimes decision 
attribute). We will further assume that the set of decision values is finite and 
by rank(d) we will refer to its cardinality. The i—th decision class is a set of 
objects Ci = {o G U : d(o) = di}, where di is the i—th decision value taken from 
decision value set Vd = {di, ■••,dronfc(d)} 

For any subset of attributes B C A indiscernibility relation IND(B) is defined 
as follows: 

xIND(B)y & VaeBa(z) = a(y) (1) 

where x,y £ U. 
Having indiscernibility relation we may define the notion of reduct. B C A 

is a reduct of information system if IND(B) = IND(A) and no proper subset 
of B has this property. 

Decision rule is a formula of the form 

(ah =vx) A... A(aik = vk) =*• d = vd (2) 

where 1< i\ < ... < ü < m, «t G Vai. Atomic subformulae (a^ = vi) are called 
conditions. We say that rule r is applicable to object, or alternatively, the object 
matches rule, if its attribute values satisfy the premise of the rule. With the 
rule we can connect some characteristics. Support denoted as Supper) is equal 
to the number of objects from A for which rule r applies correctly i.e. premise 
of rule is satisfied and the decision given by rule is similar to the one preset in 
decision table. Matcher) is the number of objects in A for which rule r applies 
in general. Analogously the notion of matching set for a collection of rules may 
be introduced. By Match\(R, o) we denote the subset M of rule set R such that 
rules in M are applicable to the object oeU. 

3    Rule based decision systems 

Among the others, we may use the decision (classification) support systems based 
on rules derived from data. There are several approaches to generate such rules. 
They differ in the way the rules are generated as well as in the form of rule 
representation and use. Nevertheless, all the approaches have some common, 
basic questions to answer. One of them, probably most important one while 
classifying new, unseen objects is this about trustworthness of a rule or group of 
rules. Depending on approach, there may be several issues to solve while deciding 
what the decision for new-coming object should be. 

Given a set of decision rules R = (ri, ...,rm) derived from data by some 
method and the new object Oj, we may face several problems while trying to 
make decision. Namely: 

1. They may be no rule in R that is applicable to Oj. In other words the values 
of conditional attributes of o* do not satisfy conditions of any rule in R. In 
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such a case we cannot make decision since there is no knowledge within our 
rule set that covers the case of o*. 

2. There are several rules in R that are applicable to o» but they give con- 
tradictory outputs. This situation, known as conflict between rules must be 
resolved by applying procedures to measure the confidence of particular rules 
(or groups of them). 

There is a number of possible solutions to above two problems. Usually to 
resolve the problem of non-applicability of rules one of three methods may be 
applied: 

- The object is assigned the default value of decision according to preset as- 
sumptions. 

- The rule that has best (according to a given criterion) applicability is chosen 
and the decision is determined by this rule. The applicability criterion may 
be based e.g. on number of conditions in the rule that are satisfied by object. 
Other such criterion may be induced by preferences about decision value like 
in case of ordered decision domain. 

- The "don't know" signal is returned to the user. 

Of course, rule based decision systems axe usually build in the manner to 
avoid the situation of not recognizing new object. But still, the actual accuracy 
depends on the quality of derived rules. 

The matter of resolving conflicts between rules may be even more compli- 
cated, especially in case when we have bunch of them and no external, additional 
information about their applicability and importance. To cope with that prob- 
lem, several techniques may be applied (refer to [7]). Bringing all of them here 
is rather impossible but we discuss some below. 

The most popular way to establish final decision is based on comparison of 
the number of rules form different decision classes that are applicable to a given 
object. The object is assigned to the class determined by majority of the rules 
(in comparison with other classes). This method, however, causes unification of 
rule importance. This may be a serious weakness and in order to avoid it weights 
may be assigned to rules (or groups of them). The method we exploit in our 
experiments is based on the following formula describing weight for set of rules: 

WBss(M,o) = 
£ card(SuppA(r)SCA(r) 

^r^su^rysc^       if   E card(SuppA(r) ■ SCA(r) > 0    (3) 
= < 

0 otherwise 

where SCA(r) is called stability coefficient and it is determined during the pro- 
cess of rule calculation using dynamic reducts (see [3], [4] for detailed explana- 
tion). To give some intuition about SCAM is is worth knowing that it mainly 
depends on frequency of occurrence of rule r in the set of optimal rules at sub- 
sequent steps of the dynamic algorithm for rule generation (see [4]). We use this 
method because numerous experiments (see [4], [3], [11]) prove that it is, on the 
average, better than other. 
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4 Rough set rule induction 

The process of creating rules with use of rough set techniques is essential for our 
ideas of classifier construction. Therefore some basic information about methods 
for rule induction is needed. The base for deriving rules is reduct calculation. 
Numerous practical experiments show that usually there is a need for calculation 
of several reducts in order to get satisfiable quality of classification. Most of the 
cases involving larger set of data require calculation of reducts and rules with use 
of dynamic techniques. Prom technical point of view the process of calculating 
the reducts and rules is computationally exhaustive and for real-world solutions 
some approximate techniques like heuristics or genetic algorithms are engaged 
(see e.g.[12]). 

The derived set of rules R may be for some reason unsatisfactory. The major 
concerns are: 

- The number of rules is excessive so the cost of storing, checking against and 
explaining the rules is not acceptable. 

- The rules are too general, so they do not really contain any valid knowledge, 
or too specific, so they describe very small part of the universe in too much 
detail. 

To avoid at least part of the problems mentioned above we may apply shorten- 
ing procedures. Those procedures allow to shorten the rules and, in consequence, 
reduce the number of them. The process of rule shortening comprises of several 
steps that, in consequence, lead to removing some descriptors from a particular 
rule. Usually, after shortening, the number of rules decreases as repetitions occur 
in the set of shortened rules. There are several methods leading to this goal, for 
details review e.g. [1], [4], [13]. 

5 Rules as attributes 

In the classical approach, once we have decision rules we are at the end of 
classifier construction. But there is also other way of treating the rules since 
they describe relations existing in our data. Therefore we may treat them as 
features of objects. In this view, the process of rule extraction becomes the one 
of new feature extraction. These features are of higher "order" since they are 
taking into account specific configurations of attribute values with respect to 
decision. 

Let us consider set of rules R = (n, ...,rm). We may construct the new 
decision table based on them. 

With every rule r» in R we connect a new attribute ari. The decision attribute 
remains unchanged as well as the universe of objects. The values of attributes 
over objects may be denned in different ways depending on the nature of data. 
For the purposes of this research we use the following three possibilities: 

- ari(oj) = dk where d* is the value of decision returned by rule r* if it is 
applicable to object Oj, 0 (or any other constant) otherwise. 
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- ari(oj) = const (usually const equal 1 or -1) if the rule n applies to the 
object Oj, 0 (or any other constant) otherwise. 

- In case of tables with binary decision ari(oj) = 1 if the rule u applies to the 
object Oj and the output of this rule points at decision value 1. ar^Oj) = -1 
if the rule r< applies to the object Oj and the output of this rule points at 
decision value 0. When the rule is not applicable arj(oj) = 0. 

Due to technical restrictions in further steps of classifier construction it is 
sometimes necessary to modify above methods by e.g. encoding the decision 
values in first of the approaches in order to use neural network as it is in our 
case. 

It can be easily seen how important is to keep the rule set within reason- 
able size. Otherwise the newly produced decision table may become practically 
unmanageable due to the number of attributes. 

6    The making of classifier 

Equipped with the decision table extracted with use of the set of rules we may 
now proceed with construction of final classification (decision) system. In order 
to keep computation within reasonable size with respect to time and spatial 
complexity we apply very simple and straight methods. Namely we use a simple 
sigmoidal neural network with no hidden layers (see [6]). The overall process of 
classifier construction is illustrated in Figure 1. 

Initial decision 
table New clasifier 

+ 
Reduct 

calculation 
ANN learning 

t + ANN design 
Rule calculation 

A 
\ 

i New table 
creation Rule shortening w 

Fig. 1. The layout of new classifier 

We start with initial, training decision table for which we calculate reducts 
and the set of possibly best rules. We may derive rules in dynamic or non- 
dynamic way depending on the particular situation (data). These rules are then 
used to construct new decision table in the manner described in previous section. 
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Over such constructed new data table we build neural network based classifier 
to classify newly formed objects. Then classifier is checked against quality on 
testing set. 

Of course with the proposed scheme we may construct various classifiers as 
some parameters may be adjusted on any step of this process. In the process 
of reduct and rule calculation we may establish restrictions for number and size 
of reducts (rules) as well as on rule specificity, generality, coverage and so on. 
During neural network construction we may apply different learning algorithms. 
The learning coefficients of those algorithms may vary as well. 

To complete the picture of classifier it is important to add a handful of 
technical details. For the purpose of the research presented in this paper we used 
dynamic calculation of rules based on genetic algorithm and incorporating some 
discretisation techniques for attributes continuous in their nature. For details 
consult [5]. On the side of neural network we used simple architecture with 
neurons having classical sigmoid or hyperbolic tangent as the activation function. 
Usually, the network is equipped with bias and trained using gradient descent 
with regularisation, momentum and adaptive learning rate (see [6],[2]). 

The simple architecture of neural network has one additional advantage. 
From its weights we may decipher the importance of particular attributes (rules) 
for decision making. It is usually not the case of more complicated neural archi- 
tecture for which such an interpretation is difficult and the role of single inputs 
is not transparent. 

7    Experimental results 

The proposed methods have been tested against real data tables. For testing we 
used two benchmark datasets taken from repository [14] and one dataset received 
from medical sources. Table 1 below describes basic parameters of decision tables 
used in experiments. The EEG data was originally represented as matrix of 

Dataset Objects Attributes Attribute type rank(d) 
Monkl 432 6 binary 2 
Monk2 432 6 binary 2 
Monk3 432 6 binary 2 
Lymphography 148 18 symbolic 4 
EEG 550 105 binary 2 

Table 1. Datasets used for experiments. 

signals that was further converted to binary form by applying wavelet analysis 
and discretisation techniques as originally proposed in [11], [5] and developed 
in [10]. The MONK datasets have preset partition into training and testing set, 
rest of the data sets were tested using cross-validation method. 
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The rules were calculated using dynamic techniques. Then we performed sev- 
eral experiments using different rule shortening ratio. The table 2 below shows 
best results. Columns in this table describe number of rules used for new table 

Data 
sets 

Number 
of rules 

Shortening 
ratio 

Method Error 
Proposed Other 

Monkl 31 0.6 TT 0/0.03 0/0 
Monk2 26 0.6 TT 0/0.06 0/0.049 

Monk3 44 0.6 TT 0/0.051 0/0.046 

Lymphography 78 0.8 CV-10 0.03/0.19 0/0.15 

EEG 13 0.3 CV-5 0/0.01 0.11/0.16 
Table 2. The results o ! experim snts. 

(Number of rules), shortening ratio of rules (between 0 and 1), method of train- 
ing/testing (TT=train & test, CV-n = n-fold cross-validation), average error on 
training/testing set as a fraction of the number of cases and best results got 
from other rough set methods for comparison. The experiments were performed 
several times in order to get averaged (representaive) results. The comparison 
is made with best result got from application of combined rough set methods. 
However, it is important to mention that those best classifiers are usually based 
on much larger sets of rules. 

The results are comparable to those published in [8] and [3] but they usually 
use much less rules and simpler setting of classifier than in case of best results 
in [4] and [3]. The most significant boost is visible if we compare the outcome 
of classification using only the calculated rules with classical weight setting. 
Especially, in the case of small shortening ratio which corresponds to significant 
reduction of rules, the impact of methods proposed is clearly visible. 

8    Conclusions 

The proposed approach allows to construct classifier with combination of rule 
based systems and neural networks. The rough set rules derived with respect 
to the discernibility of object seem to posses extended importance, if used as 
new feature generators. Application of neural network in last stage of classifier 
construction allows better fitting to particular set of data and makes further 
addition of new knowledge to th system easier due to its adaptiveness. 

Initial experiments show promising results, especially in cases of binary deci- 
sion. Reduction of the number of rules used makes system obtained in this way 
closer to natural intuitions. 

As the work on this issue is on its beginning, there is still a lot to do in many 
directions. Most interesting from our point of view is further investigation of 
relationships between process of rule induction with rough sets and their further 
quality as new attributes. 
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Abstract. In this paper 1 we show a new learning algorithm for pattern 
classification. A scheme to find a solution to the problem of incremental 
learning algorithm is proposed when the structure becomes too complex 
by noise patterns included in the learning data set. Our approach for this 
problem uses a pruning method which terminates the learning process 
with a predefined criterion. Then an iterative model with a 3 layer feed- 
forward structure is derived from the incremental model by appropriate 
manipulation. Note that this network is not fully connected between the 
upper and lower layers. To verify the effectiveness of the pruning method, 
the network is retrained by EBP. We test this algorithm by comparing 
the number of nodes in the network with the system performance, and 
the system is shown to be effective. 

1    Introduction 

Conventional iterative models such as EBP usually have a fixed feedforward net- 
work structure and use an algorithm to gradually modify the weights of networks 
as learning proceeds. So this approach does not allow to expand the network dur- 
ing training. This approach sometimes has a critical limitation, depending on the 
trial and error method or ad hoc schemes to obtain an appropriate architecture 
for learning patterns. 
Therefore another approach is devised to solve this problem by adding nodes 
to the network when necessary. This type of learning is referred to as incre- 
mental learning as the network grows as training occurs. As a procedure, Lee 
et al.[2] have proposed an incremental algorithm using Fisher's Linear Discrimi- 
nant Function(FLDF)[l]. This model searches an optimal projection plane based 
on the statistical method for pattern classification. And then, after projecting 
patterns on this projection plane, this model starts ä search procedure for an 
optimal hyperplane based on an entropy measure and thus determines the neu- 
ron in the structure. 

1 This research is supported by Brain Science and Engineering Research Program in 
Korea 
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Lee et al.[3] introduced a neural network learning algorithm which transforms a 
structure of an incremental model into that of an iterative model. This model 
showed that the weights and thresholds as well as the structure of the 3 layer 
feedforward neural network can be found systematically by examining the in- 
stances statistically. It is well known that a major part of the learning capability 
is in the architecture of its models. 
In iterative models the approaches to solving this problem are as follows. Kung 
et al.[5] proposed a method which is learning with a network structure with a 
predefined node number. But this method had a problem in that it converges 
less than the theoretical bases. Sietsma and Dow[7] devised an algorithm which 
assigns many nodes in prior learning and then removes nodes by making an ob- 
servation of inactive nodes in learning. Though this algorithm can be applied to 
simple problems, when a problem is more complex one encounters many difficul- 
ties. Hanson and Pratt[9] proposed an algorithm which removes hidden nodes 
with a constraint term in EBP function. But this algorithm has a side effect 
which reduces the probability of the convergence. Hagiwara[8] proposed an al- 
gorithm which considers a proper node number and weight values concurrently. 
But this algorithm needs much time to converge. Moody and Rognvaldsson[10] 
proposed adding the complexity-penalty term, but it has much more compli- 
cated form and also demands much more computational complexity. Wangchao 
et al.[ll] introduced the sparselized pruning algorithm for a higher-order neural 
network, but it is applied after all the higher-order weights are trained. 
The incremental model uses an algorithm trying to produce a neural network 
with near-optimal architecture intelligently. But this model has a drawback in 
that it can be extremely extended by noises included in patterns. In this paper 
we propose a method to solve this problem. 

2    Background 

2.1    The Incremental Network Model 

In this paper we present a pattern by a vector of n components and describe 
a pattern classifier as a mapping of the input pattern space, a subset of n di- 
mensional real space, to the set of classes 1,2,...,k. In order to make the output 
decisions we develop the constructs which build internal representations of a 
class description. For doing this, we represent one unit as a hyperplane specified 
by elements (weight vector, threshold value) and then partition the space as 
follows. 

Hyperplane(P) = {X\X € Rn and WTX = T} (1) 

where, X : Input pattern, Rn : Real space, W : Weight, T : Threshold 
The hyperplane P separates the space Hn into two sets, PL and PR. Thus input 
X belongs to PR or PL by P. 

PR = {X\X € Hn and WTX > T} 
PL = {X\X £ Hn and WTX < T} 
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The network structure of the model consists of one input unit, a number of 
hidden units and output units as many as the number of classes. Each unit has 
a weight vector and a threshold value. The input X is broadcasted to all units 
and for each unit at most one path is activated. Thus, in the whole network one 
path at most is activated for each input vector. 

2.2    The Training Process 

During the training phase, a collection of classified patterns describing a de- 
sired class is presented to an incrementally formed network of neurons. And the 
weight vector and threshold values of units of the network are determined by 
an adaptation process. Each unit is assigned to represent a certain hyperplane 
which is part of the discriminant hypersurface represented by the network. The 
training set is presented a number of times and at each presentation the network 
is expanded by adding a number of new units. The adaptation process is carried 
out at each unit independently of others. 
In the adaptation process, the Fisher's linear discriminant function[2] is used 
in order to determine the optimal hyperplane. Fisher's linear discriminant func- 
tion provides the optimal weight for the input pattern data for an arbitrary 
distribution. Fisher's formula for n classes is shown in (2). The optimality is 
characterized by the overall measure representing the mutual distances between 
a set of projected points of a class and that of another class and is achieved by 
maximizing the overall measure, B, standardized by V. We use Cauchy-Schwartz 
inequality for obtaining maximum value of V~1B. 

W
T
BW =    wT[Y,i(x'i-x)Ori-x)Tw (2) 

WTVW    w^Ei Ej Pa - K) (Xu - Xi)T]w ( ' 

Let ß = VXI2W, then (2) becomes PTv~1'p*>v~y*<3. This formulus attains the 
highest value when vector ß becomes the eigenvector e\ which is associated with 
the highest eigenvalue A of the matrix V~1^2BV~1^2. Thus weight vector(W) is 
obtained as V~1/2e\. 
The threshold value determining the position of the hyperplane is obtained based 
on the following entropy function. 

H(C\(Sd))  = PL^H{pi) + PR{*)H(p2) d : cursor position (3) 

After projection(W^X), the projected points are divided into two parts by a 
dividing plane placed on a cursor position. After entropy is measured, the plane 
is moved one at a time from d\ (WTX{) to dn_i (WTXn-i). The optimal position 
is where the smallest value of entropy is found. Let ni (n-z) be the number of left 
(right) region, then PL* = ni/(ni + n?) and PR* = n^/inx + n^)- Let Xij be 
the number of class j events in each region i(left, right). The probability pij 
whose class will be j is Xij/rii. Then, H(pi) = — ^2pijlog2Pij i=l,2 j=l,...,class 
number. 
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2.3    Translation into an iterative model structure 

In this section we present a transforming procedure which converts the incre- 
mental network topology into an iterative one. 

Step 1 : The input layer consists of as many nodes as the number of variables 
(dimensions) in learning patterns. 

Step 2 : The first layer has the same number of nodes as that of the hidden 
nodes except for leaf nodes in the incremental model. The weight and the 
threshold between the input layer and the first layer are fully connected and 
have the same values as those of hidden nodes in the incremental model. 

Step 3 : The second layer has as many nodes as the number of leaf nodes 
representing the region of each class in the incremental model. Each region 
is made by the intersection of hyperplanes in the first layer, thus this layer 
is characterized by AND : when all the inputs are active, the output is 
active. Weight and threshold between the first layer(j) and the second layer(i) 
is determined by each path, from the input node to the leaf node in the 
incremental model : that is, 

ViL = -1, GiR = +1 
Wij(weight) = <riD, Tt = E\aiD\ - 0.5 

Here, i=0,...,(the number of discriminated region-1) and <Tj£)(D=L(left space), 
D=R(right space)) denotes ith path. 

Step 4 : In the third layer there are as many nodes as the number of classes. 
The intersected regions from the second layer are unioned in each class re- 
gion. Weight and threshold between the second(j) and the third(i) layer is 
determined by the class of each region. 

If the region from ith path contains class j : R^ — 1 
Otherwise : R^ = 0 

Wy (Weight) = Rij     . 
Ti(Threshold) =ERij - 0.5 

For further information, please refer to [3]. 

3    Pruning in the incremental learning Model 

3.1    Pruning algorithm for the proposed incremental model 

Most of the network structure of the incremental learning algorithm have the 
shape of the binary trees and hence the number of the nodes does not need 
to be predetermined as the structure is determined. But an incremental model 
has to solve a new problem, as there can be too many nodes to be added. This 
is because a learning pattern set can contain many noisy data. The algorithm 
above also has this problem as it iterates until there is only one class of data 
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contained at a divided space. As the algorithm proceeds recursively, not only the 
computational time but also the memory wastes are increased. Moreover, the 
network performance can be degraded because of the noise effect. Therefore, an 
algorithm must be devised to overcome these problems. The following formulas 
are added to the algorithm introduced in the section 2.2 to solve those problems: 

IF(N(») > PruneRate) Continue the learning procedure. 

ELSE Terminate the learning procedure. 

where Prune Rate is a criterion for the percentage of the noise. And N(») for 
the learning pattern P at node i is determined as follows: 

^={#TIM7E
C°'»™» «> 

- #TE : Total number of patterns at node i. 

- #MCE : The number of patterns of a class with the most number among 
the #TE patterns. 

3.2    Selective-learning algorithm 

In the section of 2.3 we introduced a method which transforms the structure of 
an incremental model into that of a 3 layer iterative model. This transformed 
network structure is not a fully connected but partially connected one except 
for between the input layer and the hidden layer. In this section we propose a 
method to reduce the network structure using an iterative learning algorithm. 
This algorithm is based on the observation that, in the algorithm explained in 
the section 3.1, the pruning procedure corresponds to a node reduction, and 
the partial connection between layers corresponds to a reduction of weights set 
size. The network structure of this model consists of nodes with the threshold 
function and the sigmoid function. This structure is shown in Fig. 1. We use 
the EBP algorithm to train the structure. As an initial structure, the first layer 
is constructed with the nodes with the same weights and threshold values de- 
termined in incremental learning. And the bias nodes are added to the second 
hidden layer and the output layer. 

The learning procedure of this model is described below. The first hidden 
layer(O) is activated as follows: 

IF((ZmjXj)>Ti)Oi = l 
ELSE Oi = 0 

An EBP learning is performed on the upper layer using the output from the 
first layer. As our model is partially connected, the EBP is done according to 
the following: 

ApWji (n + 1) = Cji (r)5Pj 0Pi + aApWji (n)) (5) 

where Cji is 1 if there is a connection between node j in the upper layer and 
node i in the lower layer, and 0 otherwise. 
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Fig. 1. The network structure of the selective learning model 

4    Implementation 

To test our system, we use sleep stage scoring data sets and the speech data 
used by Peterson and Barney. And we implemented the following and measured 
the performance. 

1. Fisher : Weight vector and threshold values are determined using the al- 
gorithm in section 2.2. Prun Rate(PR, 0 < PR < 100) is varied and the 
performance is measured. 

2. Prun : After transforming into the network topology explained in section 
2.3, we train the fully connected network by EBP with the weights and the 
thresholds initialized from the procedure 1. 

3. Sei : After transforming into the network topology explained in section 2.3, 
we train the partially connected network by EBP with weights and thresholds 
initialized from the procedure 1. The performance is measured as the number 
of connections varies. 

PR is increased by 1% from 0 to 30 %, and by 5% after 30%. The learning 
rate rj and the momentum rate a are set to 0.2 and 0.7, respectively. From the 
experiment, we observe that the performance of the "Sei" upto PR equals 21% 
and the "Prun" upto PR equals 40% is similar or even better than that of the 
"Fisher". The result is shown in Fig. 2. Fig. 3 shows that the number of the 
nodes decreases as PR increases. Fig. 4 shows that the number of connections 
decreases as the PR increases. As "Prun" has fully connected network structure 
while "Sei" has a partially connected one, the number of the connections of the 
"Prun" is more than that of the "Sei". 
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Fig. 4. The number of connections vs. PR. 

5    Conclusion 

In this paper a solution is proposed to solve the problem that the network struc- 
ture of an incremental model can be extended excessively when the learning 
pattern contains many noisy patterns. The proposed method uses a predefined 
parameter, PR, to stop the recursive process in making the network structure. 
After this binary tree network structure is transformed into the three layer feed- 
forward structure, the EBP is employed to train the structure further. An ap- 
propriate number of nodes and the corresponding weights between the nodes are 
determined, which is the aim of the pruning process. 
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Abstract. Intuitively, patterns of numerical sequences are often inter- 
preted as formulas. However, we observed earlier that such an intuition 
is too naive. Notions analogous to Kolmogorov complexity theory are in- 
troduced. Based on these new formulations, a formula is a pattern only 
if its pattern complexity is simpler than the complexity of data. 

1    Introduction 

Mathematicians routinely write down the general term of a given sequence by 
inspecting its initial terms. Such actions involve pattern discovery and sequence 
prediction. The automation of the latter has been an important area in machine 
learning [5]. 

Intuitively, the pattern of a numerical finite sequence is often interpreted as 
a formula that generates the finite sequence. Earlier, we observed [3], somewhat 
surprisingly, that such a simple minded formulation leads to no prediction phe- 
nomenon; see Section 3. Briefly, given any real number, there is a "pattern" that 
predicts it. This phenomenon prompts us a more elaborated notion of patterns. 

One possible fundamental approach is Kolmogorov complexity theory [4], in 
which patterns are interpreted as algorithms. This approach is theoretical; there 
is no practical way to determine the complexity of any explicitly given finite 
sequence. Aiming toward practical applications, various notions of pattern com- 
plexities, analogous to that of Kolmogorov's, are proposed; see Section 5. Follow- 
ing Kolmogorov, we define the complexities of patterns and data, but based on 
function theoretic views, instead of algorithmic views; as a conclusion, a formula 
is a pattern, only if its complexity is simpler than that of the numerical data . 

The proposed theories are probably overly simplified notions, but are practi- 
cally manageable approximations to that of Kolmogorov. Finally, we may want 
to point out that mathematicians use not only the numerical values but also 
their "physical" expressions to predict the sequence. In this paper, we focus, 
however, only on the numerical values. 
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2 Patterns of Numerical Data 

Given a finite numerical sequence, 

Seq :   ai,a,2, ■ ■ -an. 

What would be the most natural meaning of its pattern! Intuitively, a pattern is 
a formula G(x) that generates the finite sequence. Mathematically, a formula is 
not a precisely defined term, roughly, it can be interpreted as a function that can 
be expressed by well-known functions, such as polynomials, trigonometric, radial 
basis or other special functions. Since the formula G(x) is often valid beyond n, 
such a formula is also referred to as a generalization. 

Next let us rephrase the problem in geometry; the finite sequence can be 
viewed as a set of points in Euclidean plan. 

(l,ai),(2,a2),...(n,a„)... 

and the problem is to find a function 

G : i   —> a;,   i = 1,2,...n 

whose graph is a "nice" curve passing through these given points. It seems clear 
there would have many "nice" curves. Occam's razors are needed; so pattern 
complexity theories are developed. 

3 Intuitive Solution - No Prediction Phenomenon 

Let us recall the following arbitrary prediction phenomenon [3]: Suppose we are 
given a sequence 

1,3,5,7 

What would be the next number? Commonly, one would say, according to the 
pattern of the initial four terms, 

the next number would be   9. 

However, we have a somewhat surprising observation. We got following examples 
from using Matlab: 

1. fßix) predicts: 1,3,5,7,6 

/6(a;) = -0.1250z4 + 1.2500X3 - 4.3750X2 + 8.2500X - 4.0000 

2. /8(x) predicts: 1,3,5,7,8 

f8(x) = -0.0417a:4 + 0.4167X3 - 1.4583X2 + 4.0833X - 2.0000 
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Let us recall the folowing elementary algebra: If m values are assigned to m 
points in a Euclidean space (of dimension n), then there is a polynomial of n 
variables which assumes the given m values at m given points. 

NO PREDICTION THEOREM 
Given a finite numerical sequence 

and any real number r, there is a pattern that would predict the following pattern 

01,02,03, ...an, r. 

It is clear that mere formula can not be the right notion for patterns. In the next 
few sections, we develop various complexity theories, analogous to Kolmogorov's, 
to formulate the notion of patterns. 

4 An Attempt from Algorithmic Information Theory 

A finite numerical sequence is, of course, expressible as a bit stream. So one 
might be able to apply Kolmogorov complexity theory here. Let us recall few 
notions. Let K denote the Kolmogorov complexity: Let length(p) be the length 
of the program p using a consistent method of counting, such as binary length. 

K(a)  = Min{length(p)  \   p is any conceivable program that generates the 
string a} 

Let length(a) be the length of a string a. Then a is said to be Kolmogorov 
random, if K(a) > length(a). A finite sequence is said to have a pattern if 
K(a) < length(a). Intuitively K(a) measures the complexity of a pattern and 
length(a) the complexity of data. Next let us quote few interesting propositions: 

1. Almost all finite sequences are random (have no patterns). 
2. Gödel type incomplete theorem: It is impossible to effectively prove that 

they are random. 

Due to the last assertion, algorithmic information theory can not be useful here. 
More practically approaches that could approximate the Kolmogorov compexity 
are needed. 

5 Complexity Theories of Patterns 

Instead of capturing the algorithm that defines G(x), we are looking for a method 
to describe G(x) in terms of a class of known functions. 
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5.1    Algebraic Information Theory 

In this section, we will use the class of polynomial functions as our basis. Though 
in apriori, it is not known that G(x), x — 1,21,.. .n is a polynomial, but Weis- 
trass approximation theorem states that G(x) can be approximated by a poly- 
nomial. Since the domain {x |    x = 1,2,.. .n} is a finite set of points, so it ( 

is. 
It is our religious belief that a shortest algorithm defines a simplest polyno- 

mial, and the degree is the best measure of its simplicity. So we believe G is the 
least degree of the polynomials that generate the finite sequence a = {ax \ x = 
1,2,.. .n}. Note that length(a) = (n — 1). By mimic Kolmogorov, let D denote 
the algebraic complexity and define 

D(a)  = Min{degree(p)  \   p is any conceivable polynomials that generates 
the finite sequence a} 

From the well ordering principle ([1], pp 11), there is a polynomial H whose 
degree is D(a). This polynomial H is the desirable G on the domain {x | x = 
1,2,.. .n)}. However, the natural domain of H is the real numbers; it is well 
beyond the original domain of G. 

We need few notions: Let length(a) be the length of a finite sequence a. Then 
a is said to be algebraic random, if D(a) > length(a). A finite sequence is said to 
have a pattern if D(a) < length(a). Intuitively D(a) measures the complexity of 
an algebraic pattern and length(a) the complexity of data. So H is the algebraic 
pattern, if a is not algebraic random. 

Let us apply the theory to answer the no-prediction phenomenon. Note that 
deg(fo{x)) = 4 and length(Seq) = 4, so deg(f6(x)) > length(Seq). By our 
theory, the polynomials found in Section 3 are not patterns. We should point 
out that fe (x) is excluded out by its degree (algebraic complexity). Certainly, it 
is conceivable that fe{x) may not be excluded out from algorithmic view, but 
our religious belief will not admit that. 

Finally, we would like to point out that both algorithmic and algebraic pat- 
terns do meet the requirements of the first and second razors of Pedro Domingos 
[2], except the simplicity for the first razor is measured by two different metrics. 
Even though our religious belief stating that they are the same, in reality, it may 
be different, and the results may be addressing some deep issues; they will be 
investigated in near future. 

5.2    Functional Information Theory 

Instead of polynomial functions, we can also consider any Schauder basis (as 
Banach space [6]) of the function space (under consideration), such as, trigono- 
metric functions in L2-space, radial basis functions in IP -space, and many others. 
In these categories of functions, it is less clear what would be the simplest one. 
For trigonometric functions, such as sin(nx) or cos(mx), we believe the least 
positive norm are the simplest. Roughly, the weights (as used in neural net- 
works) are the measures of their simplicity. The exact meaning of weights is, of 
course, Schauder basis specific; we shall not be specific here. 
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To mimic Kolmogorov, we need some notations: Let B be a selected Schauder 
basis. A linear combination of functions in B will be denoted as 5-combination. 
As before, G denotes the function that generates the sequence x. Now, let F 
denote the functional complexity and define 

F(x) = Min{weight(p)  \   p is any conceivable 5-combination that 
approximates G } 

As in previous section, the domain is a finite set of points, so G is actually a 
B-combination. To illustrate the idea, we will use the terminology of this section 
to explain the results in previous section. Let B be the set of all monomials. B is 
a Schauder basis. Since the domain is a finite set of points, G is exactly a linear 
combination of monomials, in other words, a polynomial. We got the result of 
previous section using the reasoning in this section. 

As before, a finite sequence is said to have a pattern if F(x) < length(x). 

6    Conclusion 

This paper examines various notions of patterns in finite numerical sequences. By 
adopting the approach of classical algorithmic information theory (Kolmogorov 
complexity theory), two approximations, called algebraic and functional infor- 
mation theories are proposed. Base on these theories, we conclude that a formula 
is a pattern only if its pattern complexity (with respect to its proper theory) is 
simpler than that of data. We believe the theories should be useful in scientific 
discovery or financial data mining. 
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Abstract. Performance prediction for classification systems is impor- 
tant. We present new techniques for such predictions in settings where 
data items are to be classified into two categories. Our results can be in- 
tegrated into existing classification systems and provide an accurate and 
predictable tool for data mining. In any given classification case, our 
approach uses all available training data for building the classification 
scheme and guarantees zero classification errors on the training data. We 
re-use the same training data to predict the performance of that scheme. 
The method proposed here enables control of errors over two types of 
error for the classification task. 

Keywords: Classification, Data Mining, Decision Support, Error Pre- 
diction. 

1      Introduction 

Performance prediction is useful for evaluating the performance of a classification 
system and for comparing or combining such systems. Thus, it is an important 
part of data mining [2]. Traditional performance prediction methods [5] withhold 
a portion of the given data during training and estimate the errors after training 
from that portion. Typically, the same process is done iteratively, and the average 
of all error estimations is the final estimate. 

We have developed a new approach for estimating performance of classifica- 
tion systems. We carry out training using all available data and estimate errors 
using the same data. In two-class classification, the predicted error distribution 
can be used to control classification errors. In the next section, we describe how 
to choose a reliable classification method and create a classification family as 
the classifier in our system via the provided training data. Section 3 introduces 
how to use the same training data to estimate the performance of the classi- 
fication family and come out a decision scheme for the classifier based on the 
performance estimation. We give experimental results and conclusions in Section 
4 and 5 respectively. 

* This work was done when the author studied in the Computer Science Department 
of the University of Texas at Dallas. The author is currently working for Alcatel 
Network Systems. 
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2    Construction of a Classification Family 

One can employ any existing classification method such as decision tree, Bayesian 
classifier, neural network, to construct the classification family in this module, 
providing that the method will generate a vote count to a record to indicate its 
classification preference. In our system, we use a method which is developed in 
our lab to generate the classification family C [3]. We emphasize the way of how 
to generate the classification family, and because of the way we choose, we are 
able to do a good estimation of the system performance. 

There are two disjoint populations A and B of records. We are given subsets 
A C A and BCßas training data. Given the training sets A and B, we first 
select an integer d > 5 and partition A into d nonempty subsets A1, A2,..., Ad 

of essentially equal cardinality and view A1, A2,..., Ad as a circular list. We 
choose another variable c be the smallest integer that is larger than d/2; We take 
the union of A' and of the (c — 1) subsequent A? and call that union Af, that is, 
Ai = US"1 A? ■ We obtain A\, A2,..., Ad accordingly. Applying the analogous 
process to B, we obtain the similar sets of Bi. Between each pair of Ai and 
Bi, we use the chosen classification method to generate a classification family 
member C* which gives e votes depending on different criteria [3]. Overall, the 
classification family C will give d • e votes to any record. If we define one vote 
for A is +1 and vote for B is —1, the final total number is referred as vote total. 
Obviously, due to the cancellation effect, the vote total could be in the range 
between — d ■ e and +d • e. We use z to denote the vote total. In our experiments, 
we use d = 10 and e = 4. Thus, z is within the range between —40 and +40. We 
use all the training data to generate a classification family C. And this C will 
be used to classify new data, it is the classifier in this classification system. The 
vote total that C will produce to .4(resp. B) can be viewed as a random variable 
Z^(resp. ZQ). The following section describes how to estimate the probability 
distributions of Z4 and Zß. 

3    Performance of the Classification Family 

In this section, we introduce how to estimate the vote total distribution that C 
will give to the new data. We use A class as an explanatory example and the same 
methodology applies to B class as well. We need to estimate three parameters, 
namely the mean, variance, and distribution shape of the vote total. 

Prom last section, we know that C is composed by C\, C2, • • •, Cd- A record 
is unseen to C, if it is not included in Ai or Bi. The way that we generated Cj 
leaves some records in training data are unseen to C*. That is equal to say, if 
we analyze how Cj performs on these unseen data, we are able to predict the 
performance of C, on new data. Applying the same argument to all C, in C, the 
aggregated performance is exactly the vote total prediction of C. 

The vote count of C* given to an unseen record k is denoted as v(i,k). Let 
Xi be the random variable to represent the vote count given by Cj for unseen 
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records. The unseen records for d is indeed A~i = A-At. Thus, the mean and 
variance of Xi can be estimated by 

(3.1) £x, = [l/|3i|] J>(»,fc) 
k€Äi 

(3.2) a2
Xi = [1/(\M - 1)] £ [«(»,*) - AxJ2 

respectively. 
Since ZA is the vote total of C and thus the mean value for ZA is estimated 

by 
d 

(3.3) ßzA=Y^f*x< 

For the covariance_estimation between Xt and Xj, we have two situations. 
First, if the set Ay = ÄiCiÄj is nonempty, then we can estimate the covariance 
of Xi and Xj by 

(3.4) axiX, = [l/ßij\] J2 K*'^ _ Ajf,][«C?', *) - AxJ 
fc€Ä,-j 

If 3jj is empty, we estimate the covariance for the Xt and Xj by a linear 
approximation function which is constructed by the known covariance values 
and the amount of intersection of Ay [7]. 

We achieve estimating the distribution shape of ZA by first estimating a 
smaller distribution of the total unseen vote of each record and scale up this dis- 
tribution to the same mean and variance values of ZA- The mathematical details 
are described in [7]. Applying the above described methods to both training data 
classes A and B, we have two estimated distributions of how the classification 
family will vote for new data. 

Based on C, a family V of decision schemes Dz is generated, where z ranges 
over the possible vote totals of C. We use this decision scheme Dz to declare a 
record to be in A if the vote total produced by C for that record is greater than or 
equal to z and declares the record to be in B otherwise. The scheme Dz classifies 
a record correctly if the vote total is greater than or equal to z, and thus does so 
with probability P(ZA > z). Conversely, misclassification by Dz of a record of 
A-A and thus a type A error occur with probability a = P(ZA < z). Analogous 
results hold for B. Clearly, if we know the distributions of ZA on A - A and of 
ZB on B — B, we will have the a and ß for each Dz. 

One can define a decision function of Dz based on the two error values, 
namely a and ß. The function can be utilized to control the classification error 
according to different requirements [7]. 
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4    Experiments 

We have implemented the above approaches to a classification system with de- 
cision support as Lsquare. This system takes the input training data, constructs 
a classification family C, estimate the vote total distributions on two classes, 
and provide the decision function. The user can choose the decision threshold 
in the decision function to fulfill the needs of controlling the error of misclassi- 
fication. Several well-known datasets from the Repository of Machine Learning 
Databases and Domain Theories of the University of California at Irvine [6] 
have been tested with Lsquare. We show the results of graphs for the Australian 
Credit Card problem in (5.1). The data were made available by J. R. Quinlan. 
They represent 690 MasterCard applicants of which 307 are declared as positive 
and 383 as negative. We declare A (resp. B) to be the set of negative (resp. 
positive) records. We obtain from A and B randomly selected subsets A and B, 
each containing 50% of the respective source set. We apply Lsquare to A and 
B, obtain the family C of classification methods, and compute the estimated 
error probabilities a and ß. Then we apply C to A - A and B - B to verify the 
error probabilities. The graphs below show the results. The curves plotted with 
diamonds are the estimated a and ß, while the curves plotted with crosses are 
the verified values. 
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5    Conclusions and Future Research 

We have developed new strategies and techniques to predict the performance of 
two-class classification systems. We predict its performance using the same data 
as in training the system. In two-class classification, the predicted error distri- 
butions can be used to control classification errors when new data are classified. 
Predicting performance by training data lets the learning system learn more 
without holding a portion of data for evaluation. The performance prediction is 
based on a system that has learned all the given data, hence it is representative 
of future performance. 

The approaches have been implemented within a learning system Lsquare. 
It was tested by many well-known datasets in the machine learning community. 
It shows our performance prediction mechanism to be very reliable. We plan to 
test this scheme on using different classification methods such as Decision Trees, 
Neural Networks, and Nearest Neighbors Algorithm, etc. This will further trigger 
different analysis on performance prediction for different classifiers. 
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Abstract. The "Ocean SAmpIing MObile Network" (SAMON) Project is a 
simulation testbed for Web-based interaction among oceanographers and 
simulation based design of Ocean Sampling missions. In this paper, the current 
implementation of SAMON is presented, along with a formal model based on 
process algebra. Flexible optimization handles planning, mobility, evolution, 
and learning. A generic behavior message-passing language is developed for 
communication and knowledge representation among heterogeneous 
Autonomous Undersea Vehicles (AUV's). The process algebra subsumed in this 
language expresses a generalized optimization framework that contains genetic 
algorithms, and neural networks as limiting cases. 

1 Introduction 

The global behavior of a group of interacting agents goes beyond juxtaposition of 
local behaviors. Wegner [15] indicates that interaction machines, formed by multiple 
agents, have richer behavior than Turing machines. Milner [7] indicates sequential 
processes cannot always represent concurrent interactive ones. Realistic applications 
of autonomous agents require new models and theories. Three fundamental questions 
remain open: 

• How to produce intelligent global results from group local behaviors? 
• How to decompose problems for solution by independent individual agents? 
• How to integrate reactive and deliberative behaviors? 

Our application uses process algebra and resource-bounded computation to solve 
these problems and plan mobile underwater robot group missions. In this paper, we 
describe a flexible optimization methodology for agent control and evolution. The 

' Research supported by grant NOOO14-96-1-5026 from Office of Naval Research 
2 Support for this author was provided in part by NSERC under grant OGP0046501, on leave 

from Jodrey School of Computer Science, Acadia University, Wolfville, NS, Canada BOP 
1X0, eugene.eberbach@acadiau.ca 
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optimization model unifies genetic algorithms and neural networks in a manner suited 
to reacting to changing dynamic environments with constrained resources. 

2 SAMON Underwater Mobile Robot Testbed 

ARL's SAMON testbed builds upon the ARL Information Science and Technology 
Division's existing AUV technology. The ONR SAMON project [11],[12] studies 
networks of Autonomous Underwater Vehicles (AUVs) for adaptive ocean sampling. 
It contains a Web-based testbed for distributed simulation of heterogeneous AUV 
missions, and advances adaptive autonomous agent design. A group of AUVs 
attempts missions in hazardous environments. The group is organized in a four level 
hierarchy (see Fig. 1). 

Fig. 1. SAMON hierarchy of Tactical Coordinator (TC), Supervisory Autonomous 
Underwater Vehicle (SAUV), Autonomous Underwater Vehicle (AUV) and Fixed 
Sensor Packages (FSP's) 

A Tactical Coordinator initiates missions by transmitting orders to several 
Supervising Autonomous Underwater Vehicles (SAUVs). Each SAUV uses sonar to 
spontaneously form a group of subordinate AUVs. Each AUV collects data from 
Fixed Sensor Packages (FSPs) distributed throughout the region. This data is relayed 
to the commanding SAUV and Tactical Coordinator. SAUVs and AUVs all have 
identical controllers. Continuous sensor inputs are responded to by discrete decisions. 
It is a typical sense-plan-act system. ARL's AUV controller combines fuzzy logic 
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with artificial neural networks as described in [13]. Signal processing routines use 
sensor inputs to estimate physical variables. Tasks are sequences of behaviors, which 
are sequences of atomic actions. Goal Achievement Functions (GAF) monitor system 
progress. The sequence of behaviors is flexible. New elements are inserted as 
required. The testbed allows remote access. It integrates remote heterogeneous 
simulators. A Geographic Information System (GIS) ARCINFO supports the Tactical 
Coordinator. 

3. Process Algebra Model for Adaptive Autonomous Agents 

Expressing and formulating emerging behavior requires a rigorous formal model, with 
the following characteristics: 

Agents are autonomous. 
Agents communicate asynchronously using message-passing. 
Agents are encapsulated. 
Agents can be heterogeneous. 
Agents communicate with a finite number of neighbors. 
Group reconfiguration, such as link and node migration, is possible. 
Groups exhibit complex behavior due to interaction among agents. 
Agents and groups adapt to bounded resources. 

Appropriate formal models for autonomous agent design are rc-calculus [7], 
interaction machines [15], cellular automata, and automata networks [4]. None adapt 
to bounded resources. Our model does, and it is as expressive as any other model. 

Resource bounded computation is known under a variety of names, including 
anytime algorithms [16]. It trades off result quality for time or memory used to 
generate results. It is characterized by: 
• Algorithm construction to search for bounded optimal answers. 
• Performance measure and prediction. 
• Composability. 
• Meta-control. 

We use a process algebra variant of resource-bounded computation to integrate 
deliberative and reactive approaches for action selection in real time. Our approach 
has been developed independently of anytime algorithms under the names modifiable 
algorithms [2], and $-calculus [3]. 

$-calculus proposes a general theory of algorithm construction. Everything is a $- 
expression: agents, behaviors, interactions, and environments. Elementary behaviors 
are $-expressions representing atomic process steps. Simple $-expressions consist of 
negation -., cost $, send -», receive <-, mutation J, and user defined functions. More 
complex actions combine $-expressions using sequential composition °, parallel 
composition ||, general choice U, cost choice u, and recursive definition :=. $- 
expressions use prefix notation similar to Lisp. Each $-expression has an associated 

cost value. Data, functions, and meta-code are written as (f X), where f is name and 
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x=(xi,x2,...) is a possibly countably infinite vector of parameters. $-expression 
syntax is summarized below. Let P denote compound $-expressions and a simple $- 
expressions: 

a ::=(-. a) negation P::= (°iei Pj) sequential composition 
|    ($ P) cost |   (||ieI Pj)   parallel composition 

|  (->(aß))       send I  (^i«iPi)  cost choice 
,  ,    ,   5„ • I (LLIPJ) general choice 
|  (<- (a X))       receive _ 

I (fO) user def. $-expression 
|   (J (a Q))        mutation i v  * / _ v 

|  (:= (f X) P) recursive def. 
|   (aß))    user def. simple $-expr. 

I is a possibly countably infinite indexing set. We write empty parallel composition, 
general and cost choices as ±, and empty sequential composition as s. 1 expresses 
logic false, and e masks parts of $-expressions. Sequential composition is used when 
$-expressions run in order, and parallel composition when they are parallel. Cost 
choice expresses optimization, i.e. it selects the cheapest alternative. General choice is 
used when we are not interested in optimization. Call and definition, such as 
procedure and function definitions, specify recursion or iteration. This approach can 
describe all current heuristic methods, and provide a framework for choosing between 
heuristics. 

Meta-control is a simple algorithm that attempts to minimize cost. Solution 
quality improves if time is available. Performance measures are cost functions, which 
represent uncertainty, time, or available resources. Crisp, probabilistic, and fuzzy- 
logic cost functions are part of the calculus. Users may define their own. 
Incomplete/uncertain information takes the form of invisible expressions whose cost 
is either unknown or estimated. Meta-control can choose between local search and 
global search. Global search methods, like genetic algorithms, process multiple points 
in the search space in parallel. 

Scalability and composability is achieved by building expressions from 
subexpressions. Recursive definitions decompose expressions into atomic 
subexpressions. Composability of cost measures is assumed. Expression costs are 
functions of subexpression costs. Deliberation occurs in the form of select-examine- 
execute cycles corresponding to sense-deliberate-act. An empty examine phase 
produces a reactive algorithm. 

Short (long) deliberation is natural for interruptible (contract) algorithms. 
Interruptible algorithms can be interrupted down to the level of atomic expressions. 
Interruptibility is controlled at two levels: choice of atomic expressions and the length 
of the deliberation phase. Contract algorithms, although capable of producing results 
whose quality varies with time allocation, must be given an agreed upon time 
allocation to produce results. 

At the meta-level, execution is monitored and modified to minimize cost using 
"k-Q optimization." Solutions are found incrementally. They may optimize any of 
several factors. Depending on problem complexity, cost function volatility and level 
of uncertainty, deliberation can be done for £=0,1,2,.... steps or until termination. 
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Optimization is limited to alphabet Q, a subset of the complete expression alphabet. 
This increases run-time flexibility. 

We define an adaptive agent model, as parallel composition of component agents: 

(IliAO 

where (:= (Aj) MAj) defines agent i with meta-system control MA,. Agent MA0 is the 
environment. Each agent MA;, i>0 has a finite neighborhood it communicates with, 
and $-expression: 

(:= MA| (»(initPio) (loop P,))), 

where loop is the select-examine-execute cycle performing k-fl optimization until the 
goal is satisfied. At which point, the agent re-initializes and works on a new goal: 

(:= (loop PO ( LJ (° (-. goal Pj) (sei P,) (exam Pi) (exec Pf) (loop P)) 
(° (goal P) MA,))) 

This general model is an instance of resource-based computation, based on process 
algebras. It covers a wide class of autonomous agents, including SAMON AUV's. 
The graph and nodes can be arbitrary. We only require that the nodes "understand" 
the messages in the network. The environment is modeled as a $-expression, which 
can be a non-deterministic or stochastic (assuming incomplete knowledge of the 
environment). A distributed environment, if needed, can be modeled as a subnetwork, 
instead of a single node. 

The SAMON network topology combines a 4 level tree (starting from the root: 
TC, SAUVs, AUVs, FSPs) and a star topology with the environment as a central node 
connected to all remaining nodes. All nodes communicate by message-passing 
through sensor and effectors. The input and output messages consist of orders (sonar 
or radio), reports (data or status), and sensory data from and to environment. In the 
distributed SAMON testbed, messages take the form of TCP/IP socket 
communication. 

The hierarchical structure hides complexity, improves reliability, increases 
adaptation and execution speed. However, an optimal tree structure must be derived 
for a specific task. To find an acceptable tree, the architecture should evolve. For 
complicated tasks, a strict hierarchy may not suffice. For example, multiple robots 
pulling a heavy object must communicate with peer nodes to be successful. 
Temporary mobile links can do this. Cooperating agents need performance metrics 
with feedback to achieve their objectives. 

4 Generic Behavior Message-Passing Language 

SAMON allows vehicles from collaborating institutions to communicate and 
cooperate. However, existing AUVs (e.g., NPS Phoenix [1], FAU Ocean Explorer 
[12]) employ incompatible designs. It is too early to enforce a single standard AUV 
design. On the other hand, AUVs designed to perform similar missions should be able 
to cooperate. A unique aspect of SAMON is collaboration among heterogeneous 
AUVs. For this purpose, we propose a common communications language: Generic 
Behavior Message-Passing Language. 
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Our collaborative infrastructure (Fig.2) is a network of cooperating agents 
communicating by send and receive primitives. $-calculus provides the 
communications framework, and groups elementary behaviors into complex 
behaviors (missions), or scenarios (programs). Missions are programs of elementary 
behaviors. The amount of decomposition supported depends on the AUV 
implementation. 

Each node is described by a cost expression, and implemented as an autonomous 
unit. Nodes can have heterogeneous architectures, but they share a generic behavior 
message-passing language to interact and cooperate. The nodes can be real or 
simulated vehicles, for instance FAU, NPS or ARL PSU AUV's, TC's (situated on 
land, air, or sea), SAUVs, environment, and base recovery vehicle. Nodes can be 
connected by an arbitrary topology, which we depict as a bus. Nodes communicate 
using their own message formats. Wrappers will convert messages to the generic 
language specification. Future controllers could produce messages directly in the 
standard form. Wrappers should be eliminated as a long term goal. 

Generic behavior message-passing requirements language include: 
Modularization - each node should be independent, easy to replace and modify; 
Autonomy - objects communicate only by message-passing; 
Flexibility - allows arbitrary execution of behaviors; 
Extensible - for new types of vehicles, or new environments; 
Evolving - mechanisms for adaptation optimization; 
Research oriented - communication between real and simulated vehicles; 
Simple - but relatively complete; 
Programmable - messages can be added, but may not be accepted by all. 
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To satisfy these requirements, the language syntax is based on $-calculus. All 
behaviors are functions, transmitted between nodes using send and receive primitives. 
A set of predefined generic-behavior functions is a library on the node. Users can 
define new behaviors, which may not be understood by other controllers. Our 
definition does not specify function implementation. Functions are black boxes. The 
language has two behavior types: 
• elementary behaviors, low level communication between entities, and 
• agglomerate behaviors, group behaviors by scripting programs. 
Send and receive primitives provide message-passing communication and 
synchronization between agents. They use the same communication channel name. 
Channels can be sonar, radio, satellite, etc. If a matching channel name is not found, 
the operation blocks. Parallel composition of send and the rest of program models 
asynchronous communication. A set of elementary behaviors has been formulated for 
undersea applications of hierarchical AUV networks. 

5 Optimization and Adaptation 

Adaptation occurs at all levels in the hierarchy. Optimization is limited. Individual 
AUV's, and the system as a whole, make decisions based on incomplete information 
about dynamic processes. Time is not available to compute strictly optimal solutions 
on-line. Instead, we compute a satis/icing solution that provides a "good enough" 
answer; the best that can be found given current resources and constraints. The 
testbed uses multiple heterogeneous AUV's to collect data from an arbitrary undersea 
environment. Work takes place in hostile environments with noise-corrupted 
communication. Components are prone to destruction or failure. Under these 
conditions, efficient operation can not rely on static plans. Each AUV is self- 
contained and makes as many local decisions as possible. Operational information 
and sensor data travel in both directions in the hierarchy. The final two points imply 
informal activities that are difficult to implement in automated systems. 

An AUV at any level in the hierarchy, when it receives a command, must choose 
from a number of strategies. Decisions are made by evaluating $-functions for the 
behaviors defining a strategy. Current network and AUV states are used as data by the 
$-function. $-functions can be derived in a number of ways. Much of computer 
science is based on deductively deriving asymptotic measures of algorithm 
computational complexity based on characteristics of the data input. They provide 
order of magnitude equations for best, worst, or possibly average algorithm 
performance based on input volume. Constants are irrelevant in asymptotic measures, 
since at some point the value of a higher order factor will be greater than a lower 
order one; no matter what constants are used. These measures are useful for 
determining algorithm scalability, but inadequate for deciding between two specific 
alternatives where constant factors are relevant. In addition, average complexity 
measures are generally based on questionable assumptions concerning the statistical 
distribution of input data, such as assuming all inputs are equally likely. 
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Computational complexity is almost irrelevant to NP-complete problems. 
However, computational complexity does provide a starting point for defining $- 
functions. In some cases, deduction alone can provide useful functions. In other cases, 
especially when noise is an important factor, deduction is insufficient. If that is so, 
empirical testing can be used. Testing is often simulation, where a number of runs are 
replicated with controllable factors set to fixed values and uncontrollable factors 
given random values. Results from a large number of tests provide data points, which 
can be used to derive functional approximations. Derivation of functional 
approximation can be done using a number of approaches, including statistical 
regression [8], rough sets [5], [14], and visualization [6], [9]. The $-functions found 
should then be tested to verify their ability to approximate the desired quality 
measures. Tests could involve either simulations or preferably physical experiments 
for AUV's. 

The AUV's evaluate $-functions using values for the relevant factors, which 
express the current physical environment. Two natural limits exist to this approach: 
not all relevant factors can always be known with sufficient certainty, and the 
physical environment is subject to change. For that reason, we limit our optimization, 
performing what we call k-Q optimization. The variable k refers to the limited 
horizon for optimization, necessary due to the unpredictable dynamic nature of the 
environment. The variable Q refers to a reduced alphabet of information. No AUV 
ever has reliable information about all factors that influence all AUV's participating in 
a mission. To compensate for this, we mask factors where information is not available 
from consideration; reducing the alphabet of variables used by the $-function. This 
can be done by substituting a constant value, or a default function for the masked 
variables. 

This approach allows each AUV to choose between strategies and accomplish its 
mission. $-functions provide a metric for comparing alternatives. By using k-Q 
optimization to find the strategy with the lowest $-function, the AUV finds a 
satisficing solution. This avoids wasting time trying to optimize behavior beyond the 
foreseeable future. It also limits consideration to those issues where relevant 
information is available. This approach, using local optimizations to find globally 
acceptable satisficing solutions, can be generalized to other genetic approaches. 

6 Conclusions 

As part of an ONR program, a testbed is being established for combining 
heterogeneous AUV's for oceanographic sampling. A language describing generic 
AUV behaviors will be used to communicate between vehicles designed by 
independent research groups. Part of the language is a process algebra, which uses 
evolutionary primitives like mutation. The process algebra provides a framework for 
limited optimization. This optimization contains genetic algorithms and neural 
networks as limiting cases. Limiting the optimization allows it to be performed in 
real-time. Currently, the work is underway to implement the Generic Behavior 
Message-Passing Language, to experiment with cooperation and emerging behavior 
using resource-bounded optimization, and    integrating Virtual Environment    for 
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nowcasting and forecasting based on models and data form Harvard and Rutgers 
Universities. 
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Abstract The paper is focused on a distributed agent-based information secu- 
rity system of a computer network. A multi-agent model of an information se- 
curity system is proposed. It is based on the established ontology of the infor- 
mation security system domain. Ontology is used as a means of structuring dis- 
tributed knowledge, utilized by the information security system, as the common 
ground of interacting agents as well as for the agent behavior coordination. 

Keywords: multi-agent system, information security, ontology. 

1 Introduction 

Existing computer security systems consist of a number of independent components 
that require an enormous amount of distributed and specialized knowledge facilitating 
the solution of their specific security sub-problems. Often, these systems constitute a 
bottleneck of the throughput, reliability, flexibility and modularity of the computa- 
tional process. A modern information security system (ISS) should be considered as a 
number of independent, largely autonomous, network-based, specialized software 
agents operating in a coordinated and cooperative fashion designated to prevent par- 
ticular kinds of threats and suppressing specific types of attacks. The modern multi- 
agent system technology presents a valuable approach for the development of an ISS 
that, when implemented in a distributed large scale multi-purpose information system, 
is expected to have important advantages over existing computer security technolo- 
gies. An ontology-based multi-agent model of an ISS is considered herein. In Section 
2, the conceptual level of an ISS model is outlined. In Section 3, we propose the on- 
tology of an information security domain. The topology of a task-oriented distributed 
agent's knowledge and belief, providing a common ground for agent information ex- 
change and utilized for agent behavior coordination and mutual understanding, is con- 
sidered. In Section 4, we outline the ISS architecture and general principles of agents' 
negotiation and coordination within an agent-based ISS. In Section 5, modeling ap- 
proach of an ISS is described. Section 6 contains brief analysis of relevant research 
associated with agent-based ISS. In conclusion, we outline the main results and future 
work aimed at utilizing agent-based technology for the ISS development. 
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2 Conceptual Agent-Based Model of ISS 

Conceptually, a multi-agent ISS is viewed as a cooperative multitude of the following 
types of agents, distributed both across the network and on the host itself. (1) Access 
control agents that constrain access to the information according to the legal rights of 
particular users by realization of discretionary access control rules (ACR) specifying 
to each pair "subject - object" the authorized kinds of messages. Various access con- 
trol agents cooperate for the purpose of maintaining the compliance with discretionary 
ACR on various sites of network. These agents supervise the flows of confidential 
information by realization of mandatory ACR not admitting an interception of confi- 
dential information. (2) Audit and intrusion detection agents detecting non-authorized 
access and alerting the responsible system (agent) about potential occurrence of a 
security violation. As a result of statistical processing of the messages formed in the 
information system, these agents can stop data processing, inform the security man- 
ager, and specify the discretionary ACR. A statistical learning process, crucial for the 
successful operation of these agents, is implemented. It utilizes available information 
about normal system operation, possible anomalies, non-authorized access channels 
and probable scripts of attacks. (3) Anti-intrusion agents responsible for pursuing, 
identifying and rendering harmless the attacker. (4) Diagnostic and information re- 
covery agents accessing the damage of non-authorized access. (5) Cryptographic, 
steganography and steganoanalysis agents providing safe data exchange channels 
between the computer network sites. (6) Authentication agents responsible for the 
identification of the source of information, and whether its security was provided 
during the data transmission that provides the identity verification. They assure the 
conformity between the functional processes implemented and the subjects initiated 
by these processes. While receiving a message from a functional process, these agents 
determine the identifier of the subject for this process and transfer it to access control 
agents for realization of discretionary ACR. (7) Meta-agents that carry out the man- 
agement of information security processes, provide coordinated and cooperated be- 
havior of the above agents and assure the required level of general security according 
to a global criteria. 

3 Ontology of Information Security Domain 

Agents of a multi-agent ISS, performing the global information security task in a dis- 
tributed and cooperative fashion, must communicate by exchanging messages. Mes- 
sage exchange requires that the agents are able to "understand", in some sense, each 
other. Mutual agent understanding implies that each agent "knows" (1) what kind of 
task it must and is able to execute, (2) what agent(s) it has to address when requesting 
help if its functionality and/or available information are not sufficient for dealing with 
a problem within its scope of responsibility, and (3) what are the forms and terms of 
message representation that are understood by the addressee. Therefore, each agent 
must possess its' own model and models of other agents. 
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One of the most promising approaches to model the distributed agents' knowledge, 
beliefs constituting the common ground of an entire multi-agent-system, is the utili- 
zation of domain ontology [3]. Like any other domain, ontology of the information 
security domain is a description of the partially ordered concepts of this domain and 
the relationships over them that should be used by the agents. This ontology de- 
scribes, in a natural way, ontological commitments for a set of agents so that they 
might be able to communicate about a domain of discourse without a necessary op- 
eration of a globally shared theory. In such ontology, definitions associate the names 
of entities in the space of discourse with human-readable text describing the meanings 
of names, and formal axioms that constrain the interpretation and well-established use 
of these terms [3]. A part of the developed fragments of the information security do- 
main ontology, that is associated with the tasks of agents responsible for auditing, 
detecting non-authorized access, and authentication, is depicted in Fig.l. 
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Fig.l. Fragment showing ontology of information security domain 

4 ISS Architecture and General Principles of Agents' Negotiation 

Consider a number of basic ISS construction principles functioning as a community 
of integrated agents distributed in a network environment and allocated on several 
hosts. Each security agent should be host-based and operate on some segment of the 
computer network. In this case, we assume that each meta-agent is host-based as Well. 
A meta-agent manages a set of the above-mentioned specialized agents, that, in turn, 
receive information from the agents-"demons" investigating the input traffic (login, 
password, etc.). The agents-demons perform monitoring of the input traffic to differ- 
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ent servers located on the same host. In essence, they are software sensors that form 
various metrics of input traffic. All agents are expected to communicate that enables 
the ISS to detect attacks on the network when intrusion attempts are undertaken "lo- 
cally" and (or) serially, even when each individual intrusion attempt cannot be inter- 
preted as an intrusion. The offered set of agents can reside on any host and can coop- 
erate through the meta-agent, which operates with the "top level" knowledge base and 
makes conclusions within the framework of one host. The information interchange 
between hosts is carried out either on a peer-basis, or by means of the meta-agent 
acting as the network layer manager. 
The subsets of nodes and relations of ontology, used by particular agents for task 
solving, are determined by agents' functions. The nodes placed on the intersections of 
ontology fragments, reflecting the functions of two individual agents, constitute the 
shared   knowledge   jointly ^ . — —  
used by both agents in deci- ** "^^l^::^^^>~^--_^ _""*" N»- 
sion making (see Fig.2). As- ^ "^^^^^CA^^^^^L ~^

N 
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decision, agent 2 needs to |0 A\ J~^/~y\J~'/ XT ' C\ O ^ ' 
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have   more   detailed   knOWl- ^ Q -~Nodes from conmion fields of knowledge 
edge associated with these Fig.2. Representation of agents'ontologies intersection 
nodes.   Therefore,  agent 2 
should receive this knowledge from them. Similar situations will take place during the 
interaction of other agents. It could be seen that agent 2 "is aware" only of nodes 1 
and 2, it formulates its request in the terms understood by agents 1 and 3, receives 
from them knowledge, and is able to interpret it correctly. 

5 ISS modeling approach 

To demonstrate the validity of our approach we are in the process of developing a 
modeling testbed of an ISS. The hardware part of the testbed includes local computer 
network that has access to Internet. The software part is based on Unix and Windows 
OS and specialized agent-based program package that is being developed in Java and 
Visual C++. At the first step of the testbed realization, the attack intrusion detection 
environment was built. It includes facilities for network attack modeling, simple 
agents investigating the input traffic, intrusion detection agents and meta-agents. 

6 Related works 

Many existing and proposed ISSs use a monolithic architecture. Several approaches 
that exploit the idea of distributed ISS are given in [2,4,6,7]. There exist few papers, 
for example, [1, 5, 8, 9] that consider an agent-based approach for an information 
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security system design. Unfortunately, these papers (1) restrict themselves by solving 
only intrusion detection task, (2) do not pay needed attention to the agent cooperation 
problem and multi-agent system architecture, (3) ignore advantages of using intelli- 
gent agents. Nevertheless, even such a relatively simple agent-based approach as a 
model of ISS leads to a number of advantages such as efficiency, fault tolerance, re- 
silience to subversion, scalability, etc. In our approach we have borrowed the idea to 
overcome all of these shortcomings. 

7 Conclusion and Future Work 

In this paper a multi-agent model of ISS is proposed based on ontology. The main 
paper results include: (1) development of information security domain ontology, that 
is associated with the multitude of information security tasks under consideration, and 
that is considered as the framework for distributed common knowledge and agent's 
individual knowledge development and representation; (2) development of an agent- 
based architecture of ISS that aims at solving the entire multitude of problems related 
to particular tasks. In the future work it is planned to develop the domain ontology, 
the agent-based architecture and the formal frameworks for distributed knowledge 
and beliefs representation in more detail. One more intention is to exploit "learning by 
feedback" methods to provide ISS by real-time adaptation properties. 
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Abstract. Wavelet analysis as a recently data filtering method (or multi-scale 
decomposition) is particularly useful for describing signals with sharp spiky, 
discontinuous or fractal structure in financial markets. 

This study investigates the optimal several wavelet thresholding criteria or 
techniques to support the multi-signal decomposition methods of a daily Korean 
won / U.S. dollar currency market as a case study, specially for the financial 
forecasting with a neural network. The experimental results show that a cross- 
validation technique is the best thresholding criterion of all the existing 
thresholding techniques for an integrated model of the wavelet transformation 
and the neural network. 

Key words: Discrete Wavelet Transform, Wavelet Packet Transform, Wavelet 
Thresholding Techniques, Neural Networks, Nonlinear Dynamic Analysis 

1    Introduction 

Traditionally, the fluctuation in financial market is treated as white noise. However, it 
is not true when trend is properly removed and we can clearly observe some business 
cycles, though they evolve with time. The goal of forecasting is to identify the pattern 
in the time series and use the pattern to predict its future path. 

The issue of generalization in this interpretation becomes one of how to extract 
useful information from the noise-contaminated data, and to rebuild the pattern as 
closely as possible, while ignoring the useless noises. 

Specially, the joint time-frequency filtering techniques such as wavelet transforms 
also have been shown to be useful in estimating coefficients of forecasting models. 
The principal advantage of applying the filtering methods is that the techniques make 
it possible to isolate relevant frequencies. 

During the last decade a new and very versatile technique, the wavelet transform 
(WT), has been developed as a unifying framework of a number of independently 
developed methods (Mallat [34], Daubechies [18]). Recently, the literatures about the 
applications of wavelet analysis in financial markets were introduced (See Table 1). 

One of the most important problems that has to be solved with the application of 
wavelet filters is the correct choice of the filter type and the filter parameters. The 
most difficult choice is that of the cut-off frequency of the filter which has to be 
specified either explicitly or implicitly (Mittermayr et al. [37]). 
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This study is intended to explore the wavelet universal thresholding algorithms to 
denoise data and compare its performance on the basis of the root mean squared error 
(RMSE) with that of other commonly used smoothing filters in financial forecasting. 

We also evaluate the effectiveness of both these transform such as discrete wavelet 
transform and wavelet packet transform on daily Korean Won / US Dollar exchange 
rate market. 

The remainder of this study is organized as follows. The next section reviews time- 
frequency decomposition, and then discrete wavelet transform (DWT) and wavelet 
packet transform (WPT). Section 3 introduces thresholding techniques for financial 
forecasting and describes best basis selection and best level criteria techniques (Tree 
Pruning Algorithm). Section 4 describes our model framework and Section 5 analyzes 
our experimental results.    Finally Section 6 contains final comments. 

Table 1.   Prior Case Studies Using Wavelet Transform Techniques Applied to Financial Markets 

Author (Year) Purpose Data Basis 
function 

Methodology Results 

Pancham 
(1994) 

Test the multi-fractal 
market hypothesis 

Monthly, weekly, 
daily Index 

■ ■ Accepted the 
multi-fractal 
market hypo. 

Cody(1994) Present the concept of 
wavelets and the WT 

methods 

General financial 
market data 

DWT, WPT Multi-scale linear 
prediction system 

Suggested 
possible 

applications of 
the DWT to 

financial 
market analysis 

Tak(1995) Forecasting univariate time 
series 

Standard & Poor's 
500 index 

Mexican-hat 
wavelet 

ARIMA, detrending 
and AR, random 

walk, ANN 

Outperformed 
than original 

data 

Greenblatt 
(1996) 

Analysis for structure in 
financial data 

Foreign exchange 
rates 

Coif-l.Coif-5 Best orthogonal 
basis, Matching 

pursuit, Method of 
frames, Basis pursuit 

Found 
structure in 

financial data 

McCabe and 
Weigend 
(1996) 

Determine at which time- 
scale the series is most 

predictable 

DM/US Dollar Haar wavelet Predictive linear 
models for 

multiresolution 
analysis 

Rarely better 
than predicting 
the mean of the 

process 

H0g(1996) Estimate the fractional 
differencing parameter in 

Fractional Brownian 
Motion models for interest 

rate having the term 
structure 

Monthly US 5-year 
yields on pure 
discount bonds 

(1965.11-1987.02) 

Haar wavelet ARFIMA(0,d+l,0) 
where H=d+l/2 

c7 = 0.900 

95% 
confidence 

interval for d = 
[0.8711, 
0.9289] 

Hag(1997) Analyze non-stationary but 
possibly mean-reverting 

processes 

US interest rate Haar wavelet ARFIMA Showed mean 
reversion of 

US interest rate 

Aussemefa/. 
(1998) 

Predict the trend-up or 
down - 5 days ahead 

S&P 500 closing 
prices 

Ätrous 
wavelet 

Dynamic recurrent 
NN & 1 nearest 

neighbors 

86% correct 
prediction of 

the trend 
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2   Discrete Wavelet Transform and Wavelet Packet Transform 

Recently, local atomic decompositions (wavelets, wavelet libraries) have become 
popular for the analysis of deterministic signals as an alternative to non-local Fourier 
representations. The Fourier transform is usually not to be used in case of non- 
stationary signals. 

Each scale of wavelet coefficients provides a different dimension of the time series 
in the both time and frequency domains. Recently, due to the similarity between 
wavelet decomposition and the idea of combining both wavelet and NN has been 
proposed in various works (Bakshi and Stephanopoulos [4], [5]; Delyon et al. [19]; 
Geva [25]; Zhang [52]; Zhang and Benveniste [51]). 

Recently, the wavelet transform was introduced as an alternatively technique for 
time-frequency decomposition (Daubechies [17], [18]). Wavelets are any of a set of 
special functions satisfying certain regularity conditions. Their support is finite; they 
are non-zero on a finite interval, and they are defined within finite frequency bands.. 

WT is a powerful method for multiresolution representation of signal data (Szu et 
al., [44]). The discrete wavelet transform (DWT) expresses a time series as a linear 
combination of scaled and translated wavelets. Knowing which wavelets appear in a 
transform can provide information about the frequency content of the signal for a 
short time period. 

DWT is generally calculated by the recursive decomposition algorithm known as 
the pyramid algorithm or tree algorithm (Mallat [34]), which offers the hierarchical, 
multiresolution representation of function (signal). As shown in Fig. 1(a), in the tree 
algorithm, the set of input data is passed through the scaling and the wavelet filters. 

Level 0 a" original signal uvel o a0 original signal 

1   H 

1Ü 
d2 

GrnH 

Level p ap dp 

1 
U 1 

Level 1 a1 d1 

G 
1 

H        Ql 
1 H 

Level 2 a2 d2 a2 d2 

< 3 rS H G r1-] H G r1-] HG r^i H 

Level p af dP aP dP aP dP aP dP 

(a) Tree or Pyramid algorithm 
(Mallat, 1989) 

(b) Wavelet packet transform 
(Coifman et al., 1993) 

Fig. 1.. Discrete Wavelet Transform and Wavelet Packet Transform (G: The lowpass 
(or scaling) filter; H: The highpass (or wavelet) filter; dp: = {d0

p, d,p, ..., dN/2.,
p}, the 

detail coefficients (highpass filtered data) at the pth level of resolution; ap: = {a0
p, a,p, 

..., aN/2.,
p}, the approximation coefficients (lowpass filtered data) at the pth level of 

resolution.) 

Coifman and Meyer [12] develop wavelet packet functions as generalization of 
wavelets (DWT). In the pyramid algorithm the detail branches are not used for 
further calculations, i.e. only the approximations at each level of resolution are treated 
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to yield approximation and detail obtained at level m+1. Application of the transform 
to both the detail and the approximation coefficients results in an expansion of the 
structure of the wavelet transform tree algorithm to the full binary tree (Coifman and 
Wickerhauer [15]; Coifman et al. [14]). 

The main difference is that while in the DWT the detail coefficients are kept, and 
the approximation coefficients are further analyzed at each step, in the WPT both the 
approximation signal and the detail signal are analyzed at each step. This results in 
redundant information, as each level of the transform retains n samples. The process 
is illustrated in Fig. 1(b). 

3 Wavelet Thresholding Techniques As Optimal Signal 
Decomposition for Financial Forecasting 

Thresholding is a rule in which the coefficients whose absolute values (energies) are 
smaller than a fixed threshold are replaced by zeroes. The purpose of thresholding is 
to determine which are the good coefficients to keep, so as to minimize the error of 
approximation. 

In this study, we define wavelet thresholding techniques as denoising, and 
smoothing techniques including best basis selection and best level algorithm to 
extract significant multi-scale information from the original time series. 

Several approaches to thresholding have been introduced in the literature (See 
Table 2). 

Table 2. Wavelet Thresholding Techniques 

AuthorsfYear) Thresholding Methods Thresholding Rules 

Donoho and Johnstone (1994) Universal(VisuShrink) 
- Minimax approach 

for all the wavelet coefficients d 
Donoho and Johnstone (1995) Adaptive (SureShrink) 

- Minimax approach 
Based on Estimator of Risk 

Nason(1994,1995,1996), 
Weyrich and Warhola, 1995) 
Jensen and Bultheel (1997) 

Cross-Validation cv=it(yi -yJ 

Abramovich and Benjamini 
(1995, 1996), 

Ogden and Parzen (1996a, 1996b) 

Multiple hypothesis tests Test if each wavelet coefficient is 
zero or not. 

Vidakovic (1994), Clyde et al. 
(1995), Chipman etal. (1997) 

Bayes Rule 

Goel and Vidakovic (1995) Lorentz curve 
po =    T--K*  <,d  ) 

Abramovich and Benjamini 
(1995) 

The False Discovery Rate 
(FDR) approach to multiple 

hypo. Testing 
Johnstone and Silverman (1997) Level-dependent Threshold 

Wang (1996), Johnstone and 
Silverman (1997) 

Correlated errors 
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Table 3. Wavelet Packet Basis Selection Algorithms 

Authors (Year) Basis Selection 
Algorithms 

Contents 

Daubechies(1988) Method of 
Frames (MOF) 

- Synthesis direction approach 
-A straight-forward linear algebra 

Coifman and Wickerhauser 
(1992) 

Best Orthogonal 
Basis 

- Shannon entropy 
- Bottom-up tree searches 

Mallat and Zhang (1993) Matching Pursuit -Synthesis direction approach 

Chen (1995), Chen and Donoho 
(1995b), Chen et al.( 1998) 

Basis Pursuit - Similar to MOF 
-A large-scale constrained opt. 

Donoho (1995b) CART - Shannon entropy 

In wavelet packet functions as generalization of wavelets (DWT), a best basis can 
explicitly contain the criterion of the coefficient selection. For stance, the best basis 
can be defined as the basis with the minimal number of coefficients, whose absolute 
value is higher than the predefined threshold. 

Besides, best level algorithm (Coifman et al. [13]) computes the optimal complete 
sub-tree of an initial tree with respect to an entropy type criterion. The resulting 
complete tree may be of smaller depth than the initial one. The only difference from 
best basis selection algorithms is that the optimal tree is searched among the complete 
sub-tree of the initial tree. 

4   Research Model Architecture 

Our study is to analyze wavelet thresholding or filtering methods for extracting 
optimal multi-signal decomposed series (i.e. highpass and lowpass filters) as a key 
input variable fitting a neural network based forecasting model specially under 
chaotic financial markets (See Fig. 2). 

Neural Network Architecture ~\- 

Multi-Scale decomposition 

• input x(t) 
Nonlinear \ 
Dynamic • 
Analysis 

x(t-1) 
x(t-2) 
x(t-3) 

Wavelet 
Transformation 

T     Supervised Learning 
(Hill Climbing) 

■nfcry bmsed or Mm»« 
Thnshdding erittrf« (I) 
Ibr Optimal MuM-se»to 

DtcompoaUfon 

Fig. 2. Integration Framework of Wavelet Transformation and Neural Networks 

4.1      Nonlinear Dynamic Analysis 

In the chaos theory, it is proved that the original characteristics of the chaos can be 
reconstructed from a single time series by using a proper embedding dimension. 
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In this study, we use the dimension information specially to determine the size of 
time lagged input variables of neural network models. For example, the embedding 
dimension, 5 estimated in our study indicates that 4 time-lag data are matched to input 
factors of a neural network to predict the 5th data point of the time series. 

4.2     Neural Networks 

For time series predictions, the most popularly used neural networks are clearly time 
delay neural networks (TDNN; Weigend et al. [49]) and recurrent neural networks 
(RNN; Elman [24]). While in the dynamic context the recurrent neural networks can 
outperform the time delay neural networks, they occasionally are difficult to be 
trained optimally by a standard backpropagation algorithm due in part to the 
dependence of their network parameters (Kuan and Hornik [33]). 

In this study, The basic model we experiment with is Backpropagation neural 
network (BPN) models which have a parsimonious 4 input nodes, 4 hidden nodes and 
1 output node with single wavelet filter, i.e. highpass or lowpass filter within the 
network structure. The other model we experiment with is BPN models which have 8 
input nodes, 8 hidden nodes and 1 output node with all the multiple filters. 

5   Experimental Results 

In this section, we evaluate prior methodology about wavelet thresholding using a 
case of the daily Korean Won / U.S. Dollar exchange rates are transformed to the 
returns using the logarithm and through standardization from January 10, 1990 to 
June 25, 1997. The learning phase involved observations from January 10, 1990 to 
August 4, 1995, while the testing phase ran from August 7, 1995 to June 25, 1997. 

We transform the daily returns into the decomposed series such as an 
approximation part and a detail part by Daubechies wavelet transform with 4 
coefficients for neural network forecasting models in our study. 

In summary, we use a few thresholding strategies shown in Table 2, 3 and then 
compare each other in forecasting performance using test samples. The results are 
shown in Table 4-6. In our experiments, lowpass and highpass filters are both 
considered in the wavelet transform, and their complementary use provides signal 
analysis and synthesis. 

First, we select the most efficient basis out of the given set of bases to represent a 
given signal (See Fig. 3.). 

(a) WPT (b) Best Orthogonal Basis (c) Best Level 

Fig. 3. WPT Analysis Using Daily Korean Won / US Dollar Returns Data 
[Parentheses contain a information about wavelet level index (left hand size) and 
wavelet coefficient index at the same level (right hand size)] 
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Table 4, 5, and 6 compare thresholding performances from different preprocessing 
methods in forecasting models. 

Firstly, our experimental results (Table 4-6) show that WTs have proved to be very 
good methods for noise filtering and compressing data. This is doubtlessly due to the 
fact that varying resolution scales are treated, thus taking into account a range of 
superimposed phenomena. 

Table 4 and 5 contain the comparison between hard and soft thresholding. Soft 
thresholding is hardly different from hard thresholding in the experimental results. 
Table 4-6 also show the results about the different performances among compression, 
denoising, best basis method, best level method, and cross-validation, etc. 

But, except cross-validation method by DWT, any other method didn't significantly 
out-perform the others in viewpoint of neural network based forecasting performance. 
That is, only cross-validation method significantly has the best performance among 
their techniques and the other methods have almost the same results. 

However, the data driven approach has some limitation as follows. That is, in fact, 
varying results can be obtained with different experimental conditions (signal classes, 
noise levels, sample sizes, wavelet transform parameters) and error measures, i.e. a 
cost function for global model optimization. 

Ideally, the interplay between theory based and experimental (or data driven) 
approach to implement an optimal wavelet thresholding should provide the best 
performance of a model according to the above experimental conditions. 

Table 4.    A Discrete Wavelet Transform Thresholding Performance Using Test Samples 
Threshold 
Techniques 

Cross-validation 
Data Compression 

Data Denoising 

Threshold 
Strategy 

Hard 
Thresholding 

Soft 
Thresholding 

Hard 
Thresholding 

Filter 
Types 

HP&LP" 
LPb 

HP&LP 
LP 

HP&LP 
LP 

HP&LP 

Network 
Structure 

Random Walks 
BPN(4-4-l)c 

BPN(8-8-l) 
BPN(4-4-1) 
BPN(8-8-l) 
BPN(4-4-l) 
BPN(8-8-1) 
BPN(4-4-l) 

BPN(8-8-l) 

RMSE 

2.939007 
1.754525 
1.676247 
1.766189 
1.760744 
1.767864 
1.751537 
1.766579 

1.754131 

a: Highpass and Lowpass filters, b: Lowpass filter, 
c: BPN(I-H-O) = Backpropagation NN(I: Input Nodes; H: Hidden Nodes; O; Output Nodes). 
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Table 5. Wavelet Packet Transform Thresholding Performance Using Test Samples 
Thresholding 
Techniques 

Tresholding 
Strategy 

Filter 
Types 

Network 
Structure 

RMSE 

- - BPN(4-4-l) 1.754525 

Data Compression 
Hard 

Thresholding 
LP BPN(4-4-l) 1.774456 

LP&HP BPN(8-8-l) 1.759434 

Data Denoising 
Soft 

Thresholding 
LP BPN(4-4-l) 1.774456 

LP&HP BPN(8-8-l) 1.759434 

Table 6. Best Basis Selection and Best Level Technique Performance Using Test samples 

Criteria Contents Filter Types BPN Structure RMSE 

Best Coifman and 
Wickerhauser(1992) 

LP (4-4-1) 1.764243 
Orthogonal 

Basis 
LP&HP (8-8-1) 1.74329 

Best Level Coifman et al. (1994) LP (4-4-1) 1.767424 
LP&HP (8-8-1) 1.748388 

6    Concluding Remarks 

Our research was motivated by a few problems central in time series analysis, i.e. how 
to extract non-stationary signals which may have abrupt changes, such as level shifts, 
in the presence of impulsive outlier noise under short-term financial time series. Our 
research indicates that a wavelet approach is basically an attractive alternative, 
offering a very fast algorithm with good theoretical properties and predictability in 
financial forecasting model design. 

From our experimental results, wavelet shrinkage or denoising has also been 
theoretically proven to be nearly optimal from the following perspective: spatial 
adaptation, estimation when local smoothness is unknown, and estimation when 
global smoothness is unknown (Taswell [46]). In the future, the availability of these 
techniques will be promising more and more according to the domain features. 
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Abstract. This article deals with the possible computer applications of 
the Sound Approach to English phonetic alphabet. The authors review 
their preliminary research into some of the more promising approaches 
to the application of this phonetic alphabet to the processes of machine 
learning, computer spell-checking, etc. Applying the mathematical ap- 
proach of rough sets to the development of a data-based spelling recog- 
nizer, the authors delineate the parameters of the international coopera- 
tive research project with which they have been engaged since 1997, and 
point the direction of both the continuation of the current project and 
of future studies, as well. 

1    Introduction 

In 1993-1994, the first author developed and did initial testing on a new system 
of phonetic spelling of the sounds in English as an aid to learning better English 
pronunciation and improving listening and spelling skills in English for Japanese 
students of English. The method, subsequently entitled Sound Approach was 
tested initially on Japanese high school and university students. The results of 
the testing indicated that the creation of a sound map of English was very help- 
ful in overcoming several common pronunciation difficulties faced by Japanese 
learners of English as well as improving their English listening, sight reading, 
and spelling skills [1]. It was further tested on Japanese kindergarten children 
(ages 3-6), primary school pupils (ages 6-11), and Russian primary school pupils 
(ages 9-10) and secondary school students (ages 11-13) with similar results [2-3]. 
It was further tested on a wide range of international ESL (English as a Second 
Language) students at the University of Regina. These latest results, while still 
preliminary, indicate that it is an effective and useful tool for helping any non- 
native speaker of English to overcome pronunciation and orthographic barriers 
to the effective use of English. The current stage of development for ESL/EFL 
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(English as a Second Language/ English as a Foreign Language) includes les- 
son plans for teachers, flip-cards and a workbook for students, and laminated 
wall charts. The next stage of development includes interactive CD-ROMs and 
various computer applications. 

One of the objectives of the Sound Approach to teaching English language 
is the development of a spelling recognition system for words expressed in a 
phonetic alphabet of forty-two symbols known as the Sound Approach Phonetic 
Alphabet (SA). The SA alphabet represents without ambiguity all sounds appear- 
ing in the pronunciation of English language words, and does so without using 
any special or unusual symbols or diacritical marks; SA only uses normal English 
letters that can be found on any keyboard but arranges them so that consistent 
combinations of letters always represent the same sound. Consequently, any spo- 
ken word can be uniquely expressed as a sequence of SA alphabet symbols, and 
pronounced properly when being read by a reader knowing the SA alphabet. Due 
to representational ambiguity and the insufficiency of English language charac- 
ters to adequately and efficiently portray their sounds phonetically (i.e., there 
are between 15 and 20 English vowel sounds depending on regional dialect, but 
only five letters to represent them in traditional English orthography), the rela- 
tionship between a word expressed in SA alphabet and its possible spellings is 
one to many. That is, each SA sequence of characters can be associated with a 
number of possible, homophonic sequences of English language characters. How- 
ever, within a sentence usually only one spelling for a spoken word is possible. 
The major challenge in this context is the recognition of the proper spelling of 
a homophone/homonym given in SA language. Automated recognition of the 
spelling has the potential for development of SA-based phonetic text editors 
which would not require the user to know the spelling rules for the language 
but only being able to pronounce a word within a relatively generous margin 
of error and to express it in the simple phonetic SA-based form. Computerized 
text editors with this ability would tremendously simplify the English language 
training process, for example, by focusing the learner on the sound contents of 
the language and its representation in an unambiguous form using SA symbols, 
and in a wider sense, allow for more equal power in the use of English by any 
native or non-native speaker of English. 

2    Approach 

The approach adapted in this project would involve the application of the math- 
ematical theory of rough sets in the development of a data-based word spelling 
recognizer. The theory of rough sets is a collection of mathematical tools mainly 
used in the processes of decision table derivation, analysis, decision table reduc- 
tion and decision rules derivation from data (see, for instance references [4-9]). 
In the word spelling recognition problem, one of the difficulties is the fact that 
many spoken words given in SA form correspond to a number of English language 
words given in a standard alphabet. To resolve, or to reduce this ambiguity, the 
context information must be taken into account. That is, the recognition proce- 
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dure should involve words possibly appearing before, and almost certainly after 
the word to be translated into standard English orthography. In the rough-set 
approach this will require the construction of a decision table for each spoken 
word. In the decision table, the possible information inputs would include context 
words surrounding the given word and other information such as the position 
of the word in the sentence, and so on. Identifying and minimizing the required 
number of information inputs in such decision tables would be one of the more 
labor-intensive parts of the project. In this part, the techniques of rough sets, 
supported by rough-set bas ed analytical software such as KDD-R [10-11], would 
be used in the analysis of the classificatory adequacy of the decision tables, and 
their minimization and extraction of classification (decision) rules to be used in 
the spelling recognition. It should be emphasized at this point, that the process 
of minimization and rule extraction would be automated to a large degree and 
adaptive in the sense that inclusion of new spoken word-context combinations 
would result in regeneration of the classification rules without human inter- 
vention. In this sense the system would have some automated learning ability 
allowing for continuous expansion as more and more experience is accumulated 
while being used. 

3    Rough Sets 

The theory of rough sets and their application methodology has been under 
continuous development for over 15 years now. The theory was originated by 
Zdzislaw Pawlak [4] in the 1970's as a result of long term fundamental research 
on logical properties of information systems, carried out by himself and a group 
of logicians from the Polish Academy of Sciences and the University of Warsaw, 
Poland. The methodology is concerned with the classificatory analysis of impre- 
cise, uncertain or incomplete information or knowledge expressed in terms of 
data acquired from experience. The primary notions of the theory of rough sets 
are the approximation space and lower and upper approximations of a set. The 
approximation space is a classification of the domain of interest into disjointed 
categories. The classification formally represents our knowledge about the do- 
main, i.e., knowledge is understood here as an ability to characterize all classes 
of the classification, for example, in terms of features of objects belonging to the 
domain. Objects belonging to the same category are not distinguishable which 
means that their membership status with respect to an arbitrary subset of the 
domain may not always be clearly definable. This fact leads to the definition 
of a set in terms of lower and upper approximations. The lower approximation 
characterizes domain objects about which it is known with certainty, or with a 
controlled degree of uncertainty [7-8] that they do belong to the subset of inter- 
est, whereas the upper approximation is a description of objects which possibly 
belong to the subset. Any subset defined through its lower and upper approxi- 
mations is called a rough set .The main specific problems addressed by the theory 
of rough sets are: 

- representation of uncertain, vague or imprecise information; 
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— empirical learning and knowledge acquisition from experience; 

— decision table analysis; 

— evaluation of the quality of the available information with respect to its 
consistency and presence or absence of repetitive data patterns; 

— identification and evaluation of data dependencies; 

— approximate pattern classification; 

— reasoning with uncertainty; 

— information-preserving data reduction. 

A number of practical applications of this approach have been developed in 
recent years in areas such as medicine, drug research, process control and others. 
One of the primary applications of rough sets in artificial intelligence (AI) is for 
the purpose of knowledge analysis and discovery in data [6]. Several extensions 
of the original rough sets theory have been proposed in recent years to better 
handle probabilistic information occurring in empirical data, and in particular 
the variable precision rough sets (VPRS) model [7-8] which serves as a basis of 
the software system KDD-R to be used in this project. The VPRS model extends 
the original approach by using frequency information occurring in the data to 
derive classification rules. 

In practical applications of rough sets methodology, the object of the analysis 
is a flat table whose rows represent some objects or observations expressed in 
terms of values of some features (columns) referred to as attributes. Usually, one 
column is selected as a decision or recognition target, called a decision attribute. 
The objective is to provide enough information in the table, in terms of attributes 
of a sufficient number and quality, and a sufficient number of observations, so 
that each value of the decision attribute could be precisely characterized in terms 
of some combinations of various features of observations. The methodology of 
rough sets provides a number of analytical techniques, such as dependency anal- 
ysis, to asses the quality of the information accumulated in such table (referred 
to as a decision table). The decision table should be complete enough to enable 
the computer to correctly classify new observations or objects into one of the 
categories existing in the table (that is, matching the new observation vector by 
having identical values of conditional attributes). Also, it should be complete 
in terms of having enough attributes to make sure that no ambiguity would 
arise with respect to the predicted value of the target attribute (which is the 
spelling category in the case of this application). One of the advantages of the 
rough sets approach is its ability to optimize the representation of the classifica- 
tion information contained in the table by computing so-called reduct, that is, 
a minimal subset of conditional attributes preserving the prediction accuracy. 
Another useful aspect is the possibility of the extraction of the minimal length, 
or generalized decision rules from the decision table. Rules of this kind can sub- 
sequently be used for decision making, in particular for predicting the spelling 
category of an unknown sound. 
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CLASS -5 -3 -1 spell 
1 0 2 5 ade 
2 a 1 2 ade 
3 0 0 3 aid 
4 0 0 5 aid 
5 0 0 1 aid 
6 0 0 b aid 
7 0 2 c aid 
8 0 1 2 aid 
9 0 2 9 aid 
10 0 0 2 ate 
11 0 8 1 eight 

Table 1. Classification training sentences by using grammatical categories 

In the current preliminary testing of SA, a selection of homonyms were put 
into representative "training" sentences. For each group of "confusing" words one 
recognition table was constructed. For example, one decision table was developed 
to distinguish spelling of sounding similar words ade, aid, ate and eight. Some 
of the training sentences used in deriving the table were as follows: 

"we need aid", "she is a nurse's aid", "we ate chicken for dinner", and so on. 
The relative word positions (relative to the target word) in the sentences were 
plying the role of attributes of each sentence. That is, attribute -1 represented 
the predecessor of the target word, attribute denoted by -2 was the next preced- 
ing word, and so on. Only up to five positions preceding the target word were 
used in the representation. The values of such defined attributes were grammati- 
cal categories of the words appearing on particular positions, eg. verb (value=l), 
noun (value=2), etc. These values were then used to synthesize decision tables 
by categorizing training sentences into a number of classes. The decision tables 
were subsequently the subject of dependency analysis and reduction to elimi- 
nate redundant inputs. For instance, an exemplary final reduced decision table 
obtained for words ade, aid, ate and eight is shown in Table 1. 

In the preliminary experiments, it was found that using the decision ta- 
bles the computer could accurately choose the correct spelling of non-dependent 
homonyms (i.e., those homonyms for which the simple grammatical protocol was 
unable to determine the correct spelling from the context) 83.3 percent of the 
time, as in the sentence, The ayes/eyes have it. With dependent homonyms, as 
in the sentence, ate eight meals, the computer could accurately choose the correct 
spelling more than 98 percent of the time. 

4    Major Stages of the Initial Project 

The initial project was divided into the following major stages which, depending 
on funding, could have significantly shortened time-frames: 

1. Construction of decision tables for the selected number of English language 
homonyms or homophones. This part would involve research into possible 
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contexts surrounding the selected words in typical sentences and their repre- 
sentation in decision table format. This would also involve rough set analysis, 
optimization and testing (with respect to completeness and prediction ac- 
curacy) of the constructed tables using existing software systems Dataquest 
[12,13] or KDD-R. The related activity would be the extraction of classi- 
fication rules from such tables. This is a very labor-intensive part of the 
project since the number of possible homonyms or homophones is in the 
range of approximately 3000. The time-frame for this part of the project is 
approximately two years. 

2. Editor development using the tables constructed in Stage 1 as a main compo- 
nent of the spelling recognition system. The editor would have some learning 
capabilities in the sense of being able to automatically acquire new feedback 
word combinations in cases of unsuccessful recognitions. The editor will be 
constructed in a similar pattern to Japanese Romaji-Hiragana-Kanji word 
processing selection tables. The estimated time for this stage of the project 
is approximately one year to construct a working prototype system assuming 
two full-time programmers would be involved in the system development. 

3. This stage would involve both system testing and refinement, going through 
multiple feedback loops until satisfactory system performance and user sat- 
isfaction is achieved. The system would be tested with English language 
students at Yamaguchi University and other international locations. The 
accumulated feedback would be used to retrain and enhance the system's 
spelling recognition capabilities and to refine the user's interface to make 
it as friendly as possible. It is also felt that using SA, it can be adapted 
to any regional pronunciation style (e.g., Australian, British Received, In- 
dian, Irish, etc.) by offering the user their choice of keyboard's for their 
particular area. For example, in standard International Broadcast English 
the word table would be represented in SA by spelling it teibul, whereas in 
Australian English it could be represented in SA by spelling it taibul and the 
computer would still offer the standard orthographic representation of table 
in the spell-checking process in either keyboard format. At this stage, not 
only could it be used as an ordinary spell checker, but could be programmed 
for speech as well so that the user could have the word or passage read 
and spoken by the computer in either sound spelling or in regular spelling. 
As a normal spell checker, for example, it would be difficult to distinguish 
between the words bother and brother. However, with speech capacity, the 
user could potentially hear the difference and catch the mistake. This could 
also become an excellent teaching/learning device for practicing and learning 
correct pronunciation whether for native or for non-native English speakers. 

5    Conclusions 

In the initial study on the efficacy of the Sound Approach phonetic alphabet in 
meeting the requirements for the development of easily accessible and accurate 



549 

computer word recognition capability conducted at the University of Regina in 
1997, the rough set model was used to construct decision tables on a list of 
various English homonyms. It was found that the Sound Approach phonetic 
alphabet and the rough set model were quite compatible with each other in 
determining decision tables used in decision making for predicting the correct 
spelling of a word written either phonetically or in standard English orthography. 
It was found in preliminary experiments that even using a relatively unrefined 
grammatical protocol and decision tables, we were able to correctly identify the 
correct spelling of non-dependent homonyms 83.3 percent of the time. This ac- 
curacy rate rivals already extant forms of standard spelling recognition systems. 
When confronted with dependent homonyms, the computer could accurately 
choose the correct spelling more than 98 percent of the time. 

It is felt that with further refining of the grammatical protocol and expan- 
sion of the sample sentences using the approximately 3000 English homonyms, 
a spelling recognition system could be constructed that would allow even non- 
native speakers of English to gain equal access and power in the language. Fur- 
ther, this would be but one of the necessary building blocks for the construction 
of a total voice recognition operating system, and a major step forward in com- 
puter speech technology. It is also considered that these advancements have 
considerable commercial possibilities that should be developed. 
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Abstract. This paper describes a recognition system for on-line cursive 
handwriting that requires very little initial training and that rapidly learns, and 
adapts to, the handwriting style of a user. Key features are a shape analysis 
algorithm that determines shapes in handwritten words, a linear segmentation 
algorithm that matches characters identified in handwritten words to characters 
of candidate words, and a learning algorithm that adapts to the user writing 
style. Using a lexicon with 10K words, the system achieved an average 
recognition rate of 81.3% for top choice and 91.7% for the top three choices. 

1   Introduction 

As more people use and depend on computers, it is important that computers become 
easier to use. Many systems for handwriting recognition have been developed in the 
past 35 years [1][4][5][6][7][8]. In contrast to those systems, the method proposed in 
this paper 
• Dispenses with extensive training of the type required for Hidden Markov Models 

and Time Delay Neural Networks [6][7]. Initialization of the knowledge base 
consists of providing four samples for each character. 

• Uses a shape analysis algorithm that not only supports the identification of 
characters but also allows efficient reduction of the lexicon to a small list of 
candidate words [ 1 ] [4]. 

• Uses a linear-time segmentation technique that optimally matches identified 
characters of the handwritten word to characters of a candidate word, in the sense 
that the method completely avoids premature segmentation selections that may be 
made by some techniques [6] [8]. 

• Learns not only from failure but also from correctly identified words, in contrast to 
other prior methods [5] [7]. 

• The dictionary words need not be provided in script form. Thus, switching to a new 
vocabulary becomes very simple, requiring merely a new lexicon[6][7]. 

1 This work is done as part of my Ph.D. study under Professor Klaus Truemper in the AI Lab 
of The University of Texas at Dallas, and funded by the Office of Naval Research. 
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2  Modules of The System 

The system consists of three modules. The preprocessing module accepts as input the 
raw pixel sequence of a handwritten word recorded by a digitizing tablet and converts 
it to a sequence of feature vectors called the basic code. The interpretation module 
receives the basic code of a handwritten word as input, deduces word shapes, selects 
from a lexicon a list of candidate words, and from these candidates deduces by a 
matching process the interpretation. The learning module analyzes the correct word, 
which is either the output word of the interpretation module or the intended word 
supplied by the user, and locates opportunities for learning from misidentified letters 
and from identified letters with low match quality values. The insight so obtained 
results in addition, adjustment, or replacement of templates. The next three sections 
describe the preprocessing, interpretation and learning module respectively. 

Fig.   1.   An example of handwritten word 'help' with extracted features and regions; and 
possible shapes of strokes. 

3  Preprocessing Module 

An on-line handwriting recognition system accepts handwriting from a digitizer. Due 
to technical limitations of the tablet, the raw pixel sequence of a handwritten word 
includes imperfections and redundant information. We first delete duplicate pixels 
caused by a hesitation in writing and interpolate non-adjacent consecutive pixels 
caused by fast writing, to produce a continuous pixel sequence. We then identify 
pixels with particular characteristics such as local maxima and local minima. We also 
normalize the handwritten word and extract other features such as locations of 
extrema, shapes of strokes, slopes of strokes, curvatures of strokes, connections of 
strokes, and openings associated with maxima and minima. We organize these 
features into a sequence of feature vectors called basic code which is input of the 
interpretation module. The left part of Figure 1 shows an example of a handwritten 
word with extracted extrema and regions. The right part gives some sample shapes of 
strokes. 
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4  Interpretation Module 

The interpretation module takes the basic code as input and interprets it as some word 
of a given lexicon. The module carries out that task as follows. It initially extracts the 
shape of the handwritten word, such as ascenders, descenders and their positions with 
respect to the baseline of the word. By using the shape information, it reduces a large 
reference lexicon to a list of candidates which have the same shape as the handwritten 
word. For each candidate, the module carries out the following steps. First, the 
module identifies letters of the candidate in the basic code using template matching 
and computes a match quality for each identified letter. We emphasize that the 
portions of the basic code corresponding to identified letters can, and often do, 
overlap. Second, for each contiguous segment of basic code connecting identified 
letters, a certain length is computed. Similarly, for the unidentified letters of the 
candidate, a certain length is determined as well. Third, a linear-time segmentation 
algorithm finds an optimal matching of identified characters of the handwritten word 
to the characters of the given candidate word, in the sense that the matching 
maximizes the sum of the match quality values for the identified letters minus the sum 
of the length differences for the unidentified letters. Once all candidate words have 
been processed, the optimal matching of each candidate word is scored and the 
candidate with the highest score is selected as the desired word. 

5   Learning Module 

The learning algorithm adapts the system to a specific writing style by learning user 
behavior and updating the template set. User-adaptive systems reported in the 
literature conduct their adaptive processes only when a word is not recognized 
correctly [5][7]. We employ a more elaborate adaptive learning strategy. The system 
learns the user's writing not only when the output word of the system is wrong, but 
also when it is correct. In the latter case, the system learns individual characters or 
sub-strings of the word that have not been recognized correctly. 

With knowing the correct word of a handwritten word, which is either the output 
word of the interpretation module confirmed by the user, or the intended word 
supplied by the user, the learning module analyzes the identified segments and 
unidentified segments of the basic code to identify errors for learn. We do learning on 
the unidentified segments and the identified segments with low match quality. For 
each learning case, the learning module picks up one of the following three methods 
subsequently: 
1. Adding the segment of basic code as a new template if the number of templates 

does not reach the maximum allowed in the systems. 
2. Adjusting the parameters of a template so that the match quality is increased. Such 

a change may cause the template less often occurrences of other letters/strings. 
Hence, we evaluate the positive and negative impact of such adjustments to decide 
if we want to adjust a template or use the next method. 

3. Replacing the least frequently used templates by the basic code segment. 



554 

6  Experimental Results 

The handwriting data is collected using the Wacom ArtZ II tablet (140 samples per 
second and 100 lines per inch). The initial set of templates was collected from one 
writer who did not participate in the testing. Test data were collected from four 
writers. The user-independent system using preprocessing and interpretation modules 
had an average recognition rate of 65.5%, and the user-adaptive system using three 
modules reached 81.3%. Thus, the learning module improved the average system 
accuracy by 15.8%. 

We have conducted experiments to analyze the error distribution. Table 1 shows 
the percentage of correct words appearing in different ranges using the user-adaptive 
system. The table shows that the system always determines the correct shape class. 
The screen process, which reduces the shape class to a small list of candidates, causes 
an average 4% error. The average performance at the top 1 choice is 81.3%. In the 
experiment of the top three choices, the average performance is improved to 91.7%. 
However, the average recognition rate of the top five choices is 92.5% which does 
not improve much on the top 3 choices. 

Table 1. Recognition rates of the sytem on different criteria 

Writer Top 1 Top 3 Top 5 Candidate 
list 

Shape 
Clase 

A 84% 93% 93% 96% 100% 
B 80% 91% 92% 97% 100% 
C 75% 89% 91% 95% 100% 
D 86% 94% 94% 97% 100% 

7  Conclusions 

This paper has presented a new approach for on-line handwriting recognition. The 
framework of our approach dispenses with elaborate training of the type required for 
statistical pattern recognition. Initialization of the system consists merely in providing 
four samples for each character, written in isolation by one writer. The dictionary 
words need not be provided in script form. Thus, even switching to a new vocabulary 
becomes very simple, requiring merely a new lexicon. While principles underlying 
the present approach are general enough, the techniques of segmentation and learning 
are particularly well suited for Roman scripts. Tests have shown that the method is 
robust because performance does not degrade significantly even when words written 
by one writer are interpreted using reference characters from another. 

In creating a complete handwriting interpretation system, one must decide where 
effort can be most effectively applied to increase the performance. It is felt that in this 
system, the effort has been distributed with an emphasis on the work of the 



555 

interpretation module. The preprocessing module could be improved upon, for 
example, by extracting a set of better features from the raw pixel sequence. 
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