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INTRODUCTION 
Experimental Context - The most dangerous attribute of cancer cells is their ability to spread 

(metastasize). Our objective is to determine the molecular mechanisms responsible for controlling breast 
cancer spread. The timing and location of nonrandom karyotypic abnormalities has provided clues 
regarding the genes involved in breast carcinoma progression. In breast cancer, structural changes 
frequently involve chromosomes 1, 6, 8,11,13,16 and 17. Chromosomes 8,13 and 17 changes generally 
occur early in progression; whereas, deletions and rearrangements of chromosomes 1, 6,11 and 16 often 
occur later (reviewed in (Welch and Wei, 1998)). As a corollary, one would hypothesize that genes 
relevant to breast cancer progression toward metastasis are encoded on the latter chromosomes. To test 
this hypothesis, we introduced an intact, normal human chromosome 11 into the metastatic human breast 
carcinoma cell line, MDA-MB-435 using microcell-mediated chromosome transfer (MMCT). We showed 
that metastasis was suppressed by 95%, but tumorigenicity was unaffected (Phillips et al, 1996). This 
finding suggested the presence of at least one human breast carcinoma metastasis-suppressor gene on 
chromosome 11. Please note: We define a metastasis-suppressor gene as blocking tumor spread without 
suppressing tumorigenicity. A tumor suppressor gene would suppress tumor growth and, by inference, 
metastasis as well. 

The goals of DAMD-17-1-96-6152 were to map and/or clone a gene(s) on chromosome 11 
responsible for metastasis suppression. In addition, we wanted to test whether similar metastasis 
suppression occurs if chromosome 11 is introduced into other metastatic human breast carcinoma cell 
lines. These technical objectives fall within the ultimate goal of understanding the mechanisms underlying 
breast cancer metastasis. 

Background- Metastasis results from accumulated genetic changes from which a subset of late-stage 
cancer cells evolve that are no longer confined to their tissue of origin for growth. In order to successfully 
colonize a distant organ, metastatic cells must survive transport through the body, interact with a variety 
of host cells and successfully penetrate numerous barriers. If a cell cannot complete every step, it is 
nonmetastatic. The multistep metastatic cascade involves numerous genes (Ahmad and Hart, 
1997;Beckmann et al, 1997;Price et al, 1997;Welch and Goldberg, 1997;Welch and Wei, 1998). Two 
classes of metastasis-associated genes have been identified — (i) genes that drive metastasis formation, 
and (ii) genes that inhibit metastasis. However, the identities of most of these genes remain unknown. 
Correspondingly, it is not known how these genes are regulated in normal and/or cancer cells. 
Nonetheless, it is well recognized that the probability for long-term survival is extremely low if 
metastases develop. 

In addition to the findings mentioned above, we have made four observations relevant to the genetics 
of human breast cancer metastasis. (1) The melanoma metastasis-suppressor gene KiSSl also suppresses 
metastasis of human MDA-MB-435 cells. (2) The prostate carcinoma metastasis-suppressor gene Kail 
also suppresses metastasis of human MDA-MB-435 cells. (3) Introduction of a normal human 
chromosome 11 into human MDA-MB-435 cells suppresses metastasis by at least 90%. 

BODY 

Positional cloning has been used to identify a number of rumor-suppressor genes (e.g., WT1, Rb, 
FHIT) and genes for mutations that predispose cancer susceptibility (e.g, NF1, APC) (reviewed in 
(Stanbridge, 1990)). As mapping nears completion, detection of mutations among cancer families 
confirms a particular gene's role as a tumor suppressor. Since mutations are relatively rare, equally strong 
evidence for a role in cancer etiology is required. Thus, positional cloning is reasonable if strong, well- 
characterized pedigrees are available. However, determining roles for genes in sporadic tumors or 
progression-associated genes (e.g., metastasis-controlling) is difficult because of tumor heterogeneity, 
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genetic instability and the huge number of experiments necessary to prove causality. This is further 
complicated for multigenic, complex phenotypes, like metastasis. Simply, the statistical likelihood for 
identifying a specific gene over the immense background of genetic instability typical of late-stage 
tumors is difficult. Thus, alternative approaches are required. 

MMCT (microcell-mediated chromosome transfer) has provided functional evidence for tumor 
suppressor genes when other approaches have failed (Anderson and Stanbridge, 1993;Hunt, 1996). The 
functional data have provided the necessary information for successful mapping of the genes responsible 
(Saxon et al, 1986;Trente?a/., 1990;Lohe?a/., 1992;Churchetf a/., 1993;Chene*a/., 1994;Colemane* 
al, 1995;Ewinge?a/., 1995;Ohmura ef al, 1995;Theile*tfa/., 1995;Englande*a/., 1996;Casey et al, 
1997;Gioeli et al, 1997;Koi et al, 1997;Kuramochi et al, 1997;Reiss et al, 1997;Kon et al, 
1998;Robertson et al, 1998). As an intermediate, some have utilized a modification of MMCT in which 
the donor chromosome has been irradiated to produce deletions (Dowdy et al, 1990;Koi et al, 
1993;Coleman et al, 1995;Murakami et al, 1995;Gioeli et al, 1997;Plummer et al, 1997). This 
modification is based upon a loss of function (i.e., failure to suppress) associated with the deletion. 

The strategies we proposed for identifying metastasis-controlling genes in human breast cancer were 
based upon those listed above as well as those we used to identify novel metastasis-suppressor genes in 
human melanoma (Welch et al, 1994;Jiang et al, 1995;Lee et al, 1996;Lee and Welch, 1997;Miele et 
al, 1997). Basically, two concurrent approaches were outlined. First, progressively smaller fragments of 
neo-tagged human chromosome 11 were to be introduced into MDA-MB-435 by MMCT. By evaluating 
regions of overlap for chromosomal fragments present/absent in suppressed/non-suppressed hybrids, the 
location of the putative metastasis-suppressor gene(s) would be defined. The second approach was to use 
differential display (Liang and Pardee, 1992;Liang et al, 1993)and subtractive hybridization (Ausubel et 
al, 1990;Hutchins et al, 1991). Once candidate genes were identified, transfections and testing for 
metastasis in appropriate animal models would confirm that a bonafide metastasis-suppressor gene had 
been cloned. 

The second major objective of DAMD-17-1-96-6152 was to demonstrate the introduction of 
chromosome 11 into another metastatic human breast carcinoma also suppresses metastasis. 

This progress report will be organized in sections. Each section summarizes results from related series 
of experiments and the relationship of those experiments to a particular Specific Aim is noted. Only new 
data, collected since submission of the FY97-98 progress report, is included. 

Section 1: Welch, D.R. and Wei, L.L. (1998) Molecular control of breast cancer progression and 
metastasis. Endocrine Related Cancers 5: 155-196. 

Summary: This was an invited paper in which I was asked to review briefly the literature about 
metastasis-controlling genes in human breast cancer, particularly genes that are hormonally regulated. 
However, there were over 8000 papers in the literature which claimed to present data showing association 
between metastasis and particular genes. This necessitated that the breadth of the review be expanded in 
order to review the role of genes in breast cancer at "all" stages of progression. Basically, most papers 
speculated a role of genes in invasion, progression and metastasis but presented no data to support such 
claims. Additionally, the problems associated with ill-defined model systems (i.e., what kind of breast 
cancer is being studied?) was addressed. 

While not directly addressing a specific aim from the original proposal, this review was extremely 
useful for formulating and modifying my thinking about breast cancer genetics. During the writing 
process, I had to address many issues related to breast cancer metastasis research and organize them. The 
critical review also helped us focus on key issues which need to be addressed in order to accomplish the 
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aims set forth for this program. 

Section 2: MMCT of pieces of chromosome 11 into MDA-MB-435 [Unpublished] 

This results reported in this section are based upon the strategy proposed for Specific Aim 1 in the 
original proposal. The goal of this aim is to introduce progressively smaller pieces of chromosome 11 in 
order to map gene(s) responsible for metastasis suppression. 

Our initial approach was to prepare chromosome 11 microcell donors that have deletions as a result 
of radiation damage (Dowdy etal, 1990;Bader*tfa/., 1991;Robertsone?a/., 1996;Robertson^a/., 
1997). Deletion mutants would then be introduced by MMCT into MDA-MB-435 followed by 
assessment of metastasis in athymic mice. With this approach, random deletions need not be mapped 
beforehand. They could be mapped following fusion based upon predetermined polymorphisms spanning 
chromosome 11. If the metastasis-suppressor gene is retained, functional complementation of the defect 
would be repaired and the cells would be nonmetastatic. If the gene had been deleted, suppression would 
not occur. Metastatic hybrids would then be evaluated for portions of the chromosome 11 retained. 
Position of the metastasis-suppressor gene could be inferred by the smallest region of shared deletion. 
This has most recently been used to clone tumor or growth suppressor genes for a variety of cancers 
(Murakami et al, 1995;Kawanaefa/., 1997;Plummerefa/., 1997;ReisseM/., 1997;Chekmarevaef a/., 
1998;Mashimoefa/., 1998;Uejimaef a/., 1998;Uzawaefa/., 1998;Robertson ef al, 1999;Gao etal, 
1999;Nihei et al, 1999). We recently used this approach and verified that the PTEN/MMAC1 
phosphatase gene functions as a tumor suppressor in some human melanoma cell lines (Robertson et al, 
1998). 

The second approach is to utilize MMCT donors with previously defined fragments of chromosome 
11 (Chen et al, 1995 Robertson et al, 1996;Robertson et al, 1997). The advantage of this approach is 
that fully-defined DNA is introduced into the cells. While aesthetically pleasing, the time required to fully 
characterize the donor chromosome fragment can take months to years. 

Initially, the second approach was only to be a contingency because characterization of chromosome 
donors is highly labor intensive. However, we have a collaboration with Dr. Jane Fountain (University of 
Southern California) where our objective is to map melanoma tumor suppressor genes on chromosome 11 
(Robertson et al, 1997). Unfortunately, similar problems have been encountered for the melanoma 
transfer experiments that have been encountered for the breast MMCT. 

After several discussions, Dr. Fountain and I have concluded that it will be worthwhile to take 
advantage of the large body of published positional cloning (loss of heterozygosity) data from clinical 
samples to map hot spots in breast cancer. This would identify large-insert vector forms (PI, PAC, BAC, 
YAC ...) which could then be retrofitted with selectable markers. Vectors are now available to retrofit PI, 
BAC or PAC clones 1 l(Mejia and Monaco, 1997). Based upon their relatively large average insert size of 
BAC/PAC/P1 (100-200 kb), it has become feasible to individually transfect PI or PAC clones into breast 
carcinoma cells. Even with 3 chromosomal regions of 1 Mb each (total 3 Mb), the maximum number of 
transfectants would be 300. Although this number is not trivial, we estimate that the quantity of work for 
retrofitting and transfection would be estimated in months rather than years for the chromosome pieces. 
Given that the efficiency of transformation with these vectors is more efficient than MMCT, the 
probability for success would be higher. In addition, the PI, BAC and PAC clones have relatively low 
recombination frequencies (unlike YAC and even chromosome fragments), making their use "safer" for 
introduction into mammalian cells. Since the chromosome pieces are generated using radiation, we 
always run the risk of false negative results because an (in)active point mutant has been introduced. 

We did obtain a retrofit vector, but our analysis did not correspond to the published sequence. After 
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losing approximately four months, a replacement was obtained. We have now successfully introduced a 
BAC clone into this vector and have selected single cell colonies for analysis. Now that we have obtained 
the necessary experience for this technique, our progress should become more rapid. 

Section 3: Introduction of chromosome 11 into MDA-MB-231 [Unpublished] 

This objective corresponded to specific aim 2 in the original proposal. The purpose was to determine 
whether chromosome 11 with suppress metastasis in independently derived human breast carcinoma cell 
line. Since MDA-MB-231 is the only other human breast carcinoma cell line that metastasize is a high 
frequency, we proposed to insert chromosome 11 into MDA-MB-231. 

In previous progress reports, we reported our difficulty in obtaining metastatic variants other than 
MDA-MB-435. The original grant proposal proposed use MDA-MB-231; however, another variants we 
obtained were indeed metastatic. This deficiency was rectify in summer 1998 when he received a variant 
of the MDA-MB-231 from Dr. Janet Price (U.T.-M.D. Anderson Cancer Center, Houston, TX).  The 
proposed strategy, to introduce chromosome 11 into MDA-MB-231, was considered lower priority 
because the MDA-MB-231 exhibited no defects for chromosome 11. Several considerations contributed 
to this decision. First, we were experiencing difficulty in obtaining reliable chromosome 11 fragment 
donors. Second, we were having some success in the differential display approach, providing the 
opportunity to directly test individual genes in this cell line. Were we not to have success following 
transfection, microcell-mediated introduction of chromosome 11 into MDA-MB-231 would have been 
initiated. 

Toward the objective of testing for metastasis suppressors in human breast cancer, we have 
continued to search for metastatic cell lines using three parallel approaches. (1) On an ad hoc basis, we 
have assayed in vivo metastatic potential of a series of breast tumor cell lines developed by Dr. Steven 
Ethier (University of Michigan). While two of the cell lines to develop the single regional lymph node 
metastasis, none were reproducibly metastatic in sufficiently high frequency to justify further study. 

Since MDA-MB-435 is metastatic and heterogeneous, we decided that alternative strategies may be 
useful. (2) Isolation of single cell clones did not yield reproducibly more highly metastatic variants than 
the parental cells. (3) Likewise, despite selection for increased lung colonization potential (in a manner 
analogous to Fidler), no significantly more highly metastatic variant was obtained (Since the data has not 
substantially changed from last year's progress report, it is not included herein.). The latter two 
approaches have been moved to the back burner in lieu of other aspects of this research which were being 
more productive (see below). 

Section 4: BRMS1, a suppressor of metastasis in human breast carcinoma (1999) M.J. Seraj, R.S. 
Samant, T.O. Leonard, M.F. Verderame, D.R. Welch (Submitted, Nature Medicine) 

Results reported in this section correspond to Specific Aims 3 and 4 in the original proposal. Briefly, 
our approach was to use differential display in order to identify candidates which were significantly more 
expressed metastasis-suppressed neol 1/435 hybrid cell clones (Aim 3) and test them in vivo for metastatic 
potential (Aim 4). Six candidate genes were identified. Three were novel and full-length cDNAs were 
obtained for two of the three. A manuscript describing the first, BRMS1, was submitted earlier this 
month (full-length manuscript is enclosed in the appendix). Characterization of BRMS2 is underway. 

BRMS1 maps to the one arm of chromosome 11 by fluorescence in situ hybridization. Specifically, 
BRMSlmapstollql3. 
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KEY RESEARCH ACCOMPLISHMENTS 

This section is organized according the statement of work initially proposed. 

Objective #1: Map the gene(s) responsible for suppressing metastasis of MDA-MB-435 to within 5 
Mb by using MMCT with radiation-deletion variants of chromosome 11 

Task 1-1 (Months 1-12): Identify polymorphic markers distinguishing MDA-MB-435 and 
donor chromosome 11 

We have identified more than 30 polymorphic markers 
Task 1 -2 (Months 6-18): Prepare deletion variants of chromosome 11 

Several chromosome 11 donors with deletions are in hand (Section 4) 
Task 1 -3 (Months 7-19): Prepare microcell hybrids with radiation deletion variants 

This task has been initiated. Progress has been slower than expected. (Section 4). An 
alternative approach using PAC and BAC transfections is being considered 
as an alternative. The technician responsible for this objective has been 
replaced by a postdoctoral fellow. 

Task 1-4 (Months 8-24): Confirm hybrids actually contain added chromosome 11 material 
by multiple criteria 

This task has been initiated with the hybrids in -hand (Section 4). 
Task 1-5 (Months 12-24): Test hybrids for metastasis in orthotopic metastasis model 

One of the hybrids was tested. No suppression was observed in limited experiment 
(Section 4, Table 2) 

Task 1-6 (Months 24-48): Repeat above in independent series 
Task 1 -7 (Months 24-26): Map deletions in hybrids (1 st set), prepare map of overlapping 

regions 
Task 1 -8 (Months 36-48): Map deletions in hybrids (2nd set), prepare map of overlapping 

regions 

Objective #2: Stably introduce intact neo-tagged human chromosome 11 into MDA-MB-231 cells by 
MMCT 

Task 2-1 (Months 1-6): Expand MDA-MB-231 cultures, verify pathogen-free 
(Mycoplasma free) 

Completed first round of experiments, but none of the MDA-MB-231 variants were 
metastatic. Alternative strategies to obtain metastatic human breast 
carcinomas initiated. (Section 2) 

Task 2-2 (Months 6-12): Prepare chromosome 11 hybrids 
Not done, see below 

Task 2-3 (Months 10-18):Confirm hybrids actually contain added chromosome 11 material 
by multiple criteria 

Task 2-4 (Months 8-24):Test hybrids for metastasis in orthotopic metastasis model 
Task 2-5 (Months 12-24): Prepare chromosome 6 and chromosome 15 hybrids, repeat 

metastasis study 
Task 2-6 (Months 24-36):Confirm hybrids actually contain added chromosome 11 material 

by multiple criteria 
Task 2-7 (Months 24-36): Test hybrids for metastasis in orthotopic metastasis model 

Tasks 2-2 through 2-4 could not be done due to lack of appropriate models. We are 
attempting to obtain metastatic human breast carcinoma models in order to 
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accomplish this important aim.  We have obtained a variant of MDA-MB- 
231 which is metastatic following intravenous inoculation. This model was 
used to characterize the metastasis suppressor gene, BRMS1, identified 
using specific aims 3 and 4. Work will continue in order to assess retrofit 
technologies to introduce portions of chromosome 11 into human breast 
carcinoma cells. 

Objective #3: Identify metastasis-associated genes in neol l/MDA-MB-435 cells using differential 
display and/or subtraction hybridization 

Task 3-1 (Months 6-12): Prepare cDNA library from neol 1/435.B1 cells, Prepare 
"screening" RNA blots 

Completed. 
Task 3-2 (Months 6-9): Perform random primer amplification and repeat amplification for 

differential display 
Completed. 

Task 3-3 (Months 9-12): Perform "screening" Northern blots with probes from differential 
display 

Completed. 
Task 3-4 (Months 12-18): Sequence positive sequences, determine novelty, obtain full- 

length 
Completed.   Three novel cDNAs were identified.  Full length cDNAs were obtained 

for two of the three.  Despite repeated attempts to obtain full length for 
clone 8A3 from several cDNA libraries from several tissue sources, we are 
missing approximately 100 base pairs at the extreme 5' end. 

Task 3-5 (Months 18-24): Repeat Northern blots with longer probes for specificity 
Completed. 

Task 3-6 (Months 9-18): Prepare subtraction library 
See Tasks 3-1 and 3-2. Subtraction library approach was put on hold. 

Task 3-7 (Months 18-30): Probe Northern blots with subtraction library 
See Tasks 3-1 and 3-2. Subtraction library approach was put on hold. 

Task 3-8 (Months 36-48): Obtain full-length sequence for genes expressed in subtraction 
library 

See Tasks 3-1 and 3-2. Subtraction library approach was put on hold. 

In general, this aim has been completed and we are now focusing on Objective #4 to 
characterize and assess the functionality of the candidates. 

Objective #4: Determine whether specific genes (such as KAI-1) is a metastasis-suppressor gene in 
MDA-MB-435 and MDA-MB-231 cells 

Task 4-1 (Months 1-6): Prepare transfectants with KAI-1 
Completed 

Task 4-2 (Months 6-8): Select transfectants with increased KAI-1 expression 
Completed 

Task 4-3 (Months 9-18): Evaluate transfectants in orthotopic metastasis assay 
Completed 

Task 4-4 (Months 18-48): Prepare and evaluate transfectants prepared from genes isolated 
in Technical Objectives 1 and 3 above. 

One of the three novel cDNAs isolated by differential display, BRMS1, was 
transfected into MDA-MB-435 and MDA-MB-231.  BRMS1 maps to human 
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chromosome 11 and suppresses metastasis of both human metastatic breast 
carcinoma cell lines.  Full length BRMS2 has an isolated in transfected into 
both human breast carcinoma cell lines.  Colonies are now being expanded 
for in vivo testing. Preliminary tests regarding mechanism of action of 
BRMS1 and brings to are underway. 
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MDA-MB-435 metastasis by the melanoma metastasis-suppressor gene, KiSS-1. An Era 
of Hope - U.S. Army Medical Research and Materiel Command Breast Cancer Research 
Program (1997) 2: 715. 

Jaken, S., Kiley, S.C., Medina, D. Welch, D.R. Protein kinase C in mammary carcinogenesis. An 
Era of Hope - U.S. Army Medical Research and Materiel Command Breast Cancer 
Research Program (1997) 2: 411. 

Lee, J.-H., Hicks, DJ., Goldberg, S.F. Welch, D.R. Suppression of human breast carcinoma 
MDA-MB-435 metastasis by the melanoma metastasis-suppressor gene, KiSS-1. An Era 
of Hope - U.S. Army Medical Research and Materiel Command Breast Cancer Research 
Program (1997) 2: 715. 

Welch, D.R., Lee, J.-H., Miele, M.E., and Weissman, B.E. Identification of metastasis suppressor 
genes in human cancer. Molecular Determinants of Cancer Metastasis (1997) pp. 71-73. 

Kiley, S., Goodnough, M, Clark, K., Welch, D.R, Jaken, S. Dominant negative protein kinase C-6 
inhibits the metastatic progression of mammary tumor cells in vivo. Proceedings of the 
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American Association for Cancer Research (1998) 39: 534 
Alessandrini, A. and Welch, D.R., Constitutively active MEK1 induces metastatic potential in 

NIH-3T3 cells. Cold Spring Harbor Meeting - Cancer Genetics and Tumor Suppressor 
Genes. (1998) 

Fountain, J.W., Karanjawala,Z., Sridhar,A., Chen, L-L., Walker, G.J., Hayward, N.K., Welch, 
D.R., Rice, A., Kurera, D., Yebha, Y., Glendening, J.M., Goldberg, E.K. Localization of 
melanoma tumor suppressor genes on chromosome 11 using a novel method, 
homozygosity mapping of deletions (HOMOD) analysis. Cold Spring Harbor Meeting - 
Cancer Genetics and Tumor Suppressor Genes. (1998) 

Alessandrini, A. and Welch, D.R. Transfection with constitutively active Mekl confers 
tumorigenic and metastatic potential to NIH-3T3 cells. Clinical and Experimental 
Metastasis (1998) 

FY98-99 
Full-length papers *** 

Welch, D.R. and Wei, L.L. (1998) Molecular control of breast cancer progression and 
metastasis. Endocrine Related Cancers 5: 155-196. 

Kiley, S.C., Clark, K.J., Duddy, S.K., Welch, D.R. and Jaken, S. Protein kinase C ö 
potentiates growth in metastatic mammary cell lines. Cancer Research (In press). 

Kiley, S.C., Clark, K.J., Goodnough, M., Welch, D.R. and Jaken, S. Dominant-negative 
protein kinase C-Ö inhibits the metastatic progression of mammary tumor cells in 
syngeneic rats. Oncogene (In press). 

Welch, D.R. In vivo cancer metastasis assays. In: Laboratory Techniques in Biochemistry 
and Molecular Biology, Editors: Burger, M.M., Rusciano, D. and Welch, D.R. 
(In press) 

Seraj, Md. J., Samant, R.S.., Verderame, M.J. and Welch, D.R. BrMSl, a novel human 
breast carcinoma metastasis suppressor gene. (Submitted) 

Phillips, K.K., White, A.E., Hicks, DJ., Welch, D.R., Barrett, J.C., Wei, L.L. and 
Weissman, B.E. (1998) Suppression of metastasis in the MDA-MB-435 model 
system correlates with increased expression of KAI-1 protein. Molecular 
Carcinogenesis 21: 111-120. 

Welch, D.R., Harms, J.F., Goldberg, S.F., Meehan, W.J., Seraj, M.J., Leonard, T.O., 
Samant, R.S., Miele, M.E., Lee, J.-H. and Hicks, D.J. Identifying and 
characterizing metastasis-suppressor genes in human cancer. Biological 
Approaches to Cancer Therapy 1: 32-38. 

*** Copies of the manuscript/reprints/abstracts are included in the appendix. The two 
papers by Kiley et al are not included since they were submitted with the FY97-98 
progress report. 

Abstracts *** 
Alessandrini, A. and Welch, D.R. Transfection with constitutively active Mekl confers 

tumorigenic and metastatic potential to NIH-3T3 cells. Proceedings of the 
American Association for Cancer Research (1999) 40:1312. 

Verderame, M.F. and Welch, D.R. Genetic complementation of a host-dependent v-src 
mutant allele. Proceedings of the American Association for Cancer Research 
(1999) 40:2453. 

Barnum-Huckins, K.M., Cover, C, Robertson, G., Welch, D.R., Selmin, O., Nelson, 
M.A. Uniquely expressed cDNAs mediated by chromosome 1 in tumorigenicity 
suppressed melanoma cells. Proceedings of the American Association for Cancer 
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Research (1999) 40: 2122. 
Rieber, M., Welch, D.R., and Rieber, M.S. Differential gene expression associated with 

suppression of metastatic melanoma cell spreading and proliferation on adhesion- 
restrictive substrates. Proceedings of the American Association for Cancer 
Research (1999) 40: 491. 

Seraj, Md. J., Samant, R.S., Verderame, M.F., Hicks, DJ., Sakamaki, T., Hwang, C.K. 
Weissman, B.E., and Welch, D.R. Identification of breast cancer metastasis- 
suppressor genes from metastasis-suppressed chromosome 1 l/MDA-MB-435 
hybrids. Proceedings of the American Association for Cancer Research (1999) 
40: 689. 

Welch, D.R. Genetic regulation of cancer metastasis. 8* Annual Meeting of the Japanese 
Association for Metastasis Research (1999) 8: 36. 

Patent application - U.S. and Worldwide patent application has been filed for BRMS1 by Perm State 
University. The Office of Technology Transfer has advised that the sequence of BRMS1 not be 
included in this progress report 

Degrees obtained that are supported by this award - None 

Development of cell lines, tissue or serum repositories - Transfectant cell lines described in appended 
manuscripts and abstracts are available to anyone requesting them. 

Informatics - None 

Funding applied for based upon this work - An ROl application will be submitted in Fall 1999 to 
continue this work. 

Employment/research opportunities - Not applicable 
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CONCLUSIONS 
Our preliminary data indicated the presence of one or more breast carcinoma metastasis suppressor 

genes on human chromosome 11. The goal of this program is to identify and begin characterizing the 
gene(s) responsible. Two parallel approaches were proposed - (1) introduction of smaller pieces of 
chromosome 11 into cells with assessment of metastatic potential; and (2) identification of differentially 
expressed mRNA in metastasis suppressed cells. Progress using Approach #1 has been frustrating. 
Therefore, we have modified the approach (i.e., assessment of retrofit technology for introduction of 
BAC/PAC/YAC clones into mammalian cells). While this strategy is reasonable, it has required us to 
learn and develop new technology within our lab. 

Approach #2 has been quite productive. We have identified three novel cDNAs using differential 
display which are more highly expressed in the metastasis suppressed neol 1/435 hybrids. Moreover, one 
of those candidates, BRMS1, significantly suppresses metastasis in two human breast carcinoma cell lines 
when transfected and constitutively expressed. BRMS1 maps to 1 lql3, a site commonly involved in late- 
stage breast carcinoma. A second candidate is being characterized and will be tested for efficacy by the 
end of the funding period (June 2000). 

In short, we have essentially accomplished our objectives for the funding period. This has required 
modification of the experimental approaches initially proposed. But the general tenor of the experimental 
outline has been retained. We are presently completing analysis of the genes identified. 
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APPENDICES 
AACR Abstracts 

#1312 Transfection with constitutively active Mekl confers tumorigenic and metastatic 
potential to NIH-3T3 cells. Alessandrini, A. & Welch, D.R. Massachusetts General Hospital, Charleston, 
MA 02129; Jake Gittlen Cancer Research Institute, Penn State University College of Medicine, Hershey, 
PA 17033-0850. 

Transfection of NIH3T3 cells with constitutively active Ras results in a tumorigenic and 
metastatic phenotype. To identify key downstream pathways that might be involved in this process, 
Raf-phosphorylated serines (Ser218 and Ser222) of Mekl were mutated to acidic residues 
(DS=Asp218/Ser222 and DD=Asp218/Asp222) which results in constitutively active Mekl. Transfection 
of DS and DD clones into NIH-3T3 or Swiss-3T3 cells increases growth in soft agar, but this growth 
does not correlate with Erk or Raf activity~DS lines activate Erkl/2 but yield fewer colonies. When 
dominant-negative Ras was introduced, Erk and Raf activities were not greatly affected. However, the 
same dominant negative construct introduced into v-src- or DD-transformed cells caused severe reversion 
of src-expressing cells, but mild reversion of DD-expressing cells. These data suggest that maintenance 
of in vitro transformation by Mekl occurs through a Ras-independent pathway, and that the degree of 
transformation is independent of Rafl and Erkl activity. NIH3T3 cells transfected with DS or DD were 
tested for metastatic potential following i.v. injection into athymic mice. Parental cells were 
nontumorigenic, but DS and DD cells formed macroscopic metastases. Thus, like Ras, constitutively 
active Mekl can confer both tumorigenic and metastatic potential. Further, these results refine the 
mechanism through which Ras could confer tumorigenic and metastatic potential~i.e., the critical 
determinants of tumorigenic and metastatic potential are downstream of Mekl and may not involve 
Erkl/2. Support: Am Heart Assoc, CA62168, DAMD 17-96-6152, Natl Fndn Cancer Res. 
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#2453 Genetic complementation of a host-dependent v-src mutant allele. Verderame, M.F. 
and Welch, D. Department of Medicine, and Jake Gittlen Cancer Research Institute, The Pennsylvania 
State University College of Medicine, Hershey, PA 17033. 

Host-dependent alleles of v-src frequently result from mutations in the SH2 domain, whose role in 
transformation by v-src is poorly understood. One such host-dependent allele, v-src-F 172[Delta], 
transforms chicken cells to a fusiform morphology but does not transform rat cells. For this allele, 
autophosphorylation of pp60v-src is required in fusiform-transformed chicken cells, and absent in 
non-transformed rat cells. To complement this SH2 domain defect, rat cells expressing v-src-F 172 [Delta] 
were transfected with several v-src alleles that are transformation-defective (td) due to mutations in 
different domains of the protein. Neither a td v-src allele encoding a protein that is kinase-active, not 
membrane localized and has no SH3 domain, nor a td allele encoding a protein that is SH2 defective and 
has no autophosphorylation site (but is kinase active) were able to complement v-src-F 172[Delta]. In 
contrast, two td v-src alleles were able to effectively complement v-src-F 172[Delta]: 1) v-src-K295M 
encoding a kinase-defective, membrane-localized src protein, and 2) v-src-G2A encoding a kinase-active 
src protein that is not membrane localized; both alleles retain an intact SH2 domain. Phenotypes 
complemented by these td alleles included morphological transformation, anchorage independent growth 
and tumorigenicity in syngeneic rats. These results reveal that transformation by v-src requires activation 
of multiple downstream signaling pathways, and provides the genetic tools to identify such pathways. 
Support: CA62168, DAMD17-96-6152, Natl Fndn Cancer Res. 

#491  Differential gene expression associated with suppression of metastatic melanoma cell 
spreading and proliferation on adhesion-restrictive substrates. Manuel Rieber*, Danny R. Welch** 
& Mary Strasberg Rieber*. *IVIC, Tumor Cell Biology, Apartado 21827, Caracas 1020 A, Venezuela; 
**Jake Gittlen Cancer Research Institute, Pennsylvania State University, 500 University Drive, Hershey, 
Pa., 17033-0850, USA. 

C8161 human melanoma metastasis is suppressed following introduction of chromosome 6 or by 
transfection of the KiSS-1 gene. To gain insight about the control of metastatic progression, we developed 
an adhesion-restrictive assay which selectively prevents spreading and proliferation of non-metastatic 
tumors, but is permissive for metastatic tumors. To begin elucidating the molecular processes responsible, 
differential gene expression was compared for cells cultured under poorly adhesive conditions. Metastatic 
C8161 cells exhibited increased expression of genes like [alpha]3[beta]l integrin and 92 kDa collagenase 
for which expression has been associated with cell spreading and tumor invasion. In contrast, poorly 
metastatic cells had higher expression of genes associated with metastasis-suppression, growth arrest 
and/or repair of DNA damage, and down-regulation of anti-apoptotic bcl-2, cyclin D3 and 92 kDa 
collagenase. Decreased proliferation on suboptimal or restrictive substrates appears to be one of the 
mechanisms responsible for metastasis suppression in these human melanoma cells lines. Support: 
CA62168, DAMD 17-96-6152, Natl Fndn Cancer Res. 

#689 Identification of breast-cancer metastasis-suppressor candidate genes from 
metastasis-suppressed chromosome ll/MDA-MB-435 hybrids. Seraj, M.J., Samant, R.S., Verderame, 
M.F., Hicks, D.J., Sakamaki, T., Hwang, C.K., Weissman, B.E., Welch, D.R. Jake Gittlen Cancer 
Research Institute, Penn State College of Medicine, Hershey, PA 17033, Lineberger Cancer Center, 
University of North Carolina, Chapel Hill, NC 27599. 

We previously showed that introduction of a normal, neo-tagged, human chromosome 11 into the 
breast cancer cell line MDA-MB-435 suppressed metastasis without affecting tumorigenicity (Cancer. 
Res. 56: 1222,1996). We hypothesized that this was due to a metastasis-suppressor gene(s) on 11. To 
identify the gene(s), differential display was undertaken. Initially, 64 differentially expressed cDNA 
fragments were up-regulated in the metastasis-suppressed hybrids. Subsequent screens (e.g. replicate 
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DD-RT-PCR, Northern blots) identified six candidate genes which were expressed >=5 fold more in 
neol 1 hybrids than in metastatic, parental MDA-MB-435 cell s. Three of the cDNAs represented novel 
genes (8A3, Gl A2, F5A3) while the other three cDNAs were homologous to known genes 
(N-acetylgalactosamine 6-sulphatase, adenine phosphoribosyltransferase and hexokinase II). Apparently 
full-length cDNAs of the novel genes have been isolated, introduced into mammalian expression vector 
and experiments to directly test their effects on metastatic potential are underway. Supported by 
DAMD17-96-6152, CA62168, Natl. Fndn. Cancer Res. 

Japanese Association for Metastasis Research 
Genetic Regulation of Cancer Metastasis, D. R. Welch, Jake Gittlen Cancer Research Institute, 

The Pennsylvania State University College of Medicine, Hershey, PA 17033 
The ability to metastasize occurs concomitantly with nonrandom chromosomal alterations in both 

malignant melanoma and breast carcinoma. Among the most common aberrations occurring at the 
benign=»metastatic transitions of these cancers are losses involving chromosomes 6q and 1 lp/1 lq, 
respectively. These observations led to the hypothesis that these chromosomal regions encode metastasis- 
suppressor genes. To test this, normal human, neomycin-tagged chromosomes 6 and 1 lwere introduced 
into C8161 human melanoma and MDA-MB-435 breast carcinoma cell lines by microcell-mediated 
transfer. In vivo metastasis assays involving orthotopic injection into athymic mice showed that chromo- 
some 6 suppressed melanoma, but not breast carcinoma, metastasis. In contrast, chromosome 11 
suppressed breast, but not melanoma, metastasis. Tumorigenicity was unaffected in both cases. 

To identify the genes responsible, differential display and subtractive hybridization were used. 
Comparison of nonmetastatic chromosome 6/C8161 hybrids to metastatic C8161 cells revealed several 
qualitative and quantitative differences. The best characterized is KiSS-1. Expression was evaluated by 
Northern blot. KiSS-1 was not detectable in any metastatic melanomas, but was expressed in normal 
human melanocyte and benign radial growth phase cultures. Transfection of five human melanoma cell 
lines (C8161, MelJuSo, M24met, A375M, MeWo-3S5) and one breast (MDA-MB-435) resulted in 
significant (>50%) suppression of metastasis without impacting tumorigenicity. So, KiSS-1 satisfied the 
criteria to be called a metastasis-suppressor gene. Surprisingly, KiSS-1 mapped to lq32 and its expression 
appears to be regulated by genes encoded at 6ql3-q23. The regulators) has not yet been identified. 
Genomic KiSS-1 has recently been cloned and analysis of the 5'-UTR is currently underway. 

The KiSS-1 cDNA is predicted to encode a novel protein of Mr «15.4 kDa which is mostly hydro- 
philic, and which contains no obvious signal or nuclear localization sequences. The amino acid sequence 
includes several motifs surrounding Ser/Thr/Tyr residues indicative of KiSS-1 being a phosphoprotein. 
Most putative interactors thus far identified by yeast two-hybrid screening have known functions 
consistent with the hypothesis that KiSS-1 is a cytoplasmic protein involved in cell signaling (S.F. 
Goldberg, J.E. Hopper & D.R. Welch, unpublished). 

In a protocol analogous to the one used to identify KiSS-1, three novel and four known cDNAs have 
been isolated from chromosome ll/MDA-MB-435 hybrids. All of these cDNAs are expressed at >5-fold 
higher levels in the hybrids than the metastatic parental cells. Preliminary data will be presented. 

In addition to the above findings supporting the existence of cancer type-specific metastasis 
suppressor activities, metastasis-enhancing signals have been identified. Using a panel of differentially 
metastatic rat mammary adenocarcinoma cell lines, PKCÖ expression was found to increase with 
metastatic potential. Upregulation of PKCÖ in poorly metastatic clones and downregulation using a 
dominant negative construct in highly metastatic clones resulted in increased and decreased metastatic 
potential, respectively. 

Taken together, the results show that metastasis in melanoma and breast share some, but not all, 
regulatory mechanisms. 

Supported by: PHS R01-CA62168 , U.S. Army Medical Research and Materiel Command DAMD- 
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17-96-6152, National Foundation for Cancer Research, and Jake Gittlen Memorial Golf Tournament. 
Collaborators: S. Goldberg, D. Hicks, J. Hopper, S. Jaken, S. Kiley, J.-H. Lee, M. Miele, J. Seraj, B. 
Weissman, and A. West. 



APPENDICES: 

DAMD-96-1-6152 

Principal Investigator: Danny R. Welch, Ph.D. 
Jake Gittlen Cancer Research Institute 
Perm State University College of Medicine 
Box059;Rm.C7810 
500 University Dr. 
Hershey, PA 17033-2390 

BRMS1, a suppressor of metastasis in human breast carcinoma 
Manuscript in preparation 
Expected submission - July 31,1999 
Note: Figure 2 (Sequence of BrMSl) is omitted from this progress report. 

Welch, D.R., Harms, J.F., Goldberg, S.F., Meehan, W.J., Seraj, M.J., Leonard, T.O., Samant, R.S., Miele, 
M.E., Lee, J.-H. and Hicks, DJ. Identifying and characterizing metastasis-suppressor genes in human 
cancer. Biological Approaches to Cancer Therapy 1: 32-38. 

Phillips, K.K., White, A.E., Hicks, D.J., Welch, D.R., Barrett, J.C., Wei, L.L. and Weissman, B.E. (1998) 
Suppression of metastasis in the MDA-MB-435 model system correlates with increased expression of 
KAI-1 protein. Molecular Carcinogenesis 21: 111-120. 

Welch, D.R. In vivo cancer metastasis assays. In: Laboratory Techniques in Biochemistry and 
Molecular Biology, Editors: Burger, M.M., Rusciano, D. and Welch, D.R. (In press) 

Welch, D.R. and Wei, L.L. (1998) Molecular control of breast cancer progression and metastasis. 
Endocrine Related Cancers 5: 155-196. 



Nature Medicine 
Submitted: DRAFT v. July 5,1999 

BRMS1, a suppressor of metastasis in human breast carcinoma 

Mohammed Jabed Seraj ', Rajeev S. Samant', Timothy O. Leonard ', Michael F. Verderame2, Danny R. 
Welch1-3 

Jake Gittlen Cancer Research Institute ' and Department of Medicine ?, The Pennsylvania State 
University College of Medicine, Hershey, Pennsylvania, USA 

3 To whom all correspondence should be addressed at Jake Gittlen Cancer Research Institute, Box H-059, 
Room C7810, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, 
PA 17033-2390 

Abbreviations: 

BAC, bacterial artificial chromosome; BRMS1, Breast cancer metastasis suppressor-1; CMF- 
DPBS, calcium- and magnesium-free Dulbecco's phosphate buffered saline; DAPI, 4',6- 
diamidino-2-phenylindole; DD-RTPCR, Differential display; DME/F12, mixture (1:1) of 
Dulbecco's-modified minimum essential medium and Ham's F-12 medium; FISH, fluorescence 
in situ hybridization; HBSS, Hank's balanced salt solution; PAC, PI artificial chromosome; SDS, 
sodium dodecyl sulfate; PAGE, polyacrylamide gel electrophoresis; TE, 0.125% trypsin, 2 mM 
EDTA solution in CMF-DPBS; TTBS, Tris-buffered saline. 

Key Words: Differential display, chromosome 11, 

Running title:   BRMS1, a cancer metastasis suppressor gene 

Figures: 5 

Tables: 2 

Seraj et al (Nature Medicine) BrMS 1 .wpd Page 1 of 24 



Abstract 

Introduction of normal human chromosome 11 reduces the metastatic capacity of MDA-MB-435 human 

breast carcinoma cells without affecting tumorigenicity [Phillips et al. (1996) Cancer Research 56: 1222- 

1227]. This suggests the presence of one or more metastasis suppressor genes on human chromosome 11. 

Differential display was undertaken to identify mRNAs with increased levels of expression in neol 1/435 

hybrids compared with their metastatic counterparts. Six cDNA fragments were consistently 

differentially expressed in replicate amplifications and RNA analyses at levels at least 5-fold greater in 

metastasis-suppressed neol 1/435 hybrids. Three of the six candidates were homologous to known 

cDNAs (N-acetylgalactosamine-6-sulfate-sulphatase, adenine phosphoribosyltransferase and hexokinase 

II). The remaining three had minimal homology to known sequences or ESTs. In this paper, we describe 

the isolation and functional characterization of a full-length cDNA for one of the novel genes, designated 

BRMS1 (Breast-cancer Metastasis Suppressor 1), which maps to human chromosome 1 Iql3.1-ql3.2 by 

fluorescence in situ hybridization. JMHßtf-transfected MDA-MB-435 and MDA-MB-231 cells form 

significantly fewer metastases in athymic mice than parental or vector-only controls in an expression- 

dependent manner, demonstrating that BRMS1 is a metastasis-suppressor. Like the neol 1/435 hybrids, 

BRMS1 transfectants remain tumorigenic. The mechanism by which BRMS1 suppresses metastasis is not 

fully elucidated, but does not appear to involve upregulation of Nm23-Hl, KiSSl or KAI1 metastasis- 

suppressor genes. BRMS1 predicted protein sequence contains regions with homology to DNA binding 

domains, coiled-coil, leucine zipper, nuclear localization and some consensus phosphorylation sites. 

These homologies suggest that BRMS1 may function in a signaling cascade as a transcription factor. 

Introduction 

Worldwide mortality from breast carcinomas is expected to exceed 300,000 people in 1998 {Landis, 

Murray, et al. 1999 13573 /id}. When breast carcinoma cells are confined to breast tissue, long-term 

survival rates are high. However, when tumor cells disseminate to and colonize secondary sites, cure 

rates drop significantly. Likewise, quality of life for patients with Stage IV (metastatic) disease is 

significantly worse than for those with Stage I (local) carcinoma {Hortobagyi & Piccart-Gebhart 1996 

7522 /id}. Thus, decreased morbidity and mortality will depend upon prevention of and/or effective 

treatment of metastatic disease. To that end, understanding the biologic, biochemical and genetic 

mechanisms underpinning tumor cell invasion and metastasis will be required {Fidler 1999 15017 /id}. 

To metastasize, neoplastic cells dissociate from the primary tumor, enter a circulatory compartment 

(typically lymphatics or blood vasculature), survive transport, arrest, exit the circulation and finally 

Seraj et al (Nature Medicine) BrMS 1.wpd Page 2 of 24 



proliferate at a discontinuous site in response to local growth factors. Unless cells accomplish every step 

in the metastatic cascade, metastases cannot develop. The process is highly inefficient, i.e., less than 

0.1% of cells entering the vasculature form clinically detectable secondary tumors {Weiss, Dimitrov, et 

al. 1985 390 /id} {Weiss & Ward 1983 6355 /id} {Luzzi, MacDonald, et al. 1998 12361 /id}. It is clear 

that at each step of the metastatic cascade, multiple genes and proteins are involved. Because 

inappropriate movement of cells with subsequent colonization of secondary sites inherently implies that 

some genes are either mutated or aberrantly regulated, it follows that identifying and manipulating 

metastasis-regulatory genes could lead to decreased efficiency of the metastatic process and better 

systemic control of neoplasia. Moreover, it must be emphasized that each of the genetic defects 

responsible for developing metastatic potential is superimposed over those already involved in the 

genesis of a tumor {Dear & Kefford 1990 314 /id} {Welch & Goldberg 1997 6584 /id} {Welch & Wei 

1998 11672 /id}. In the case of negative regulators, the distinction between tumor suppressors and 

metastasis suppressors is critical. While the former will block tumorigenicity, tumor suppressors also 

block metastasis since tumor formation is a prerequisite to metastasis. However, metastasis suppressors 

will block spread without stopping tumor formation. As such tumor suppressors and metastasis 

suppressors represent distinct therapeutic targets. In addition, just as there are patterns of association for 

various oncogenes and tumor suppressor genes in the ontogeny of various tumor types, different 

metastasis suppressors and metastasis promoters will also very likely have unequal involvement in 

tumors of diverse histologic origin. 

To study the genetics of metastasis by human infiltrating ductal carcinoma of the breast, we have taken 

advantage of an extensive literature showing high frequency non-random chromosomal alterations 

associated with different stages of tumor progression (reviewed in {Welch & Wei 1998 11672 /id}). 

Specifically, some chromosomal gains/losses occur concomitant with acquisition of invasive and 

metastatic competency. Among the most common chromosomal alterations in late-stage breast carcinoma 

are losses involving the short and long arms of chromosome 11. The temporal association of 

chromosomal alterations with phenotypic changes leads to the hypothesis that those regions would harbor 

metastasis-controlling genes. To determine the effect of chromosome 11 on breast carcinoma metastasis, 

we introduced a normal human chromosome 11 into metastatic MDA-MB-435 cells using microcell- 

mediated chromosome transfer. Hybrid cell clones, abbreviated neol 1/435, were suppressed for 

metastasis but tumorigenicity was unaffected {Phillips, Welch, et al. 1996 5718 /id}. Based upon these 

results, we refined the hypothesis to predict that a breast cancer metastasis-suppressor gene is encoded on 

chromosome 11. To identify the gene(s) responsible, differential display {Liang & Pardee 1992 2358 

/id} {Liang, Averboukh, et al. 1993 2359 /id} was used to compare gene expression in metastasis- 

Seraj et al (Nature Medicine) BrMS 1 .wpd page 3 of 24 



competent with metastasis-suppressed MDA-MB-435 variants. We report here the identification, 

isolation and characterization of one of those genes, BRMS1, which suppresses metastasis and maps to 

human chromosome Ilql3.1-ql3.2. 

Materials and Methods 

Cell Lines. MDA-MB-435 and MDA-MB-231 are human estrogen receptor- and progesterone receptor- 

negative, metastatic, infiltrating ductal breast carcinoma cell lines {Price, Polyzos, et al. 1990 246 

/id} {Price 1996 6298 /id} {Cailleau, Olive, et al. 1978 2282 /id} {Cailleau, Young, et al. 1974 2334 /id}. 

Both cell lines form progressively growing tumors when injected into the mammary fat pads of 

immunocompromised mice. MDA-MB-435 cells develop macroscopic metastases in the lungs and 

regional lymph nodes by 10-12 weeks post-inoculation, but rarely metastasize following direct injection 

into the lateral tail vein. The opposite pattern exists for MDA-MB-231 in athymic mice. MDA-MB-435 

cell clones into which a normal, neomycin-tagged human chromosome 11 had been introduced by 

microcell-mediated transfer (designated neol 1/435) are suppressed at least 75% for metastasis from the 

mammary fat pad {Phillips, Welch, et al. 1996 5718 /id}. 

BRMS1 transfectants (see below) were derived following transfection of full-length BRMS1 cDNA in 

constitutive mammalian expression vector, pcDNA3 (Invitrogen, San Diego CA). All cell lines were 

cultured in a 1:1 mixture of Dulbecco's-modified minimum essential medium and Ham's F-12 medium 

(DME/F12) supplemented with 5% fetal bovine serum (Atlanta Biologicals, Atlanta, GA), 1% in non- 

essential amino acids, 1.0 mM sodium pyruvate, but no antibiotics or antimycotics. Transfected cells and 

neol 1/435 hybrids also received 500 ug/ml geneticin (G-418, Life Technologies, Inc. [GIBCO-BRL], 
o 

Gaithersburg, MD, USA). Cell cultures were maintained on 100 mm Corning tissue culture dishes at 37 

C with 5% C02 in a humidified atmosphere. When cultures reached 80-90% confluence, they were 

passaged using a solution of the 0.125% trypsin, 2 mM EDTA (TE) in Ca+2/Mg+2-free Dulbecco's 

phosphate buffer saline (CMF-DPBS). 5i?MS7-transfected MDA-MB-435 cells acquired an acute 

sensitivity to trypsin; so, cultures were thereafter passaged using 2 mM EDTA solution in CMF-DPBS. 

Cells could be routinely split at ratios of 1:10-1:30. In vitro doubling times for all cells were typically 

between 24-36 hr. MDA-MB-435 and MDA-MB-231 cells were used between passages 119-139 and 

161-166, respectively. Hybrid clones and transfectants were used before passage 11 in all cases to 

minimize the impacts of clonal diversification and phenotypic instability {Welch & Tomasovic 1985 90 

/id}. For all functional and biological assays, cells between 70-90% confluence were used with viability 

>95%. All the lines were routinely checked and found to be negative for Mycoplasma spp. contamination 

using the GenProbe method (Fisher Scientific, Pittsburgh, PA). 
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Cell line nomenclature was developed to identify the origin and nature of each cell line as unambiguously 

as possible. Single-cell clones are identified by the cell line preceding a "." followed by a clonal 

designation while uncloned, populations are identified by a "-" after the parental cell line name. 

Microcell hybrids are identified by the tagged chromosome number followed by a "/" (e.g., 

neol 1/435.A3 is single cell clone A3 derived following microscope mediated transfer of chromosome 11 

into MDA-MB-435). Where appropriate, numbers in parentheses following the cell line designation 

indicate the number of subcultures following cloning or establishment of the cell line. Numbers preceded 

by a "TE" indicate that the cells were passaged in a mixture of trypsin-EDTA . Numbers preceded by a 

"P" indicate the cells were passaged using EDTA alone. In many figures, MDA-MB-435 cells are 

abbreviated "435" and MDA-MB-231, "231" for space considerations. 

Transfections. BRMS1 was cloned into the constitutive mammalian expression vector, pcDNA3. To 

detect BRMS1 protein expression, a chimeric molecule was also constructed with an N-terminal epitope 

tag (SV40T epitope 901, see below {Fu, Bonneau, et al. 1996 15116 /id} {Kierstead & Tevethia 1993 

15117 /id}). Epitope-tagged and native BRMS1 plasmids as well as pcDNA3 vector only were transfected 

into MDA-MB-435 and MDA-MB-231 cells by electroporation (BioRad Model, Hercules, CA; 220V, 

960uFd, °°Q). Briefly, cells (0.8 ml; lxlO7cells/ml) from 80% confluent plates were detached using a 2 

mM EDTA solution. Plasmid DNA (10-40 ug) was placed onto ice for 5 min before electroporation 

followed by 10 min afterward before plating onto two 100 mm tissue culture dishes. One day later, 

transfectants were selected by addition of G-418. Single cell clones were isolated by limiting dilution in 

96 well plates. Stable transfectants ofBRMSl were assessed for their expression of transcripts by 

Northern blotting and, as appropriate by Western blotting. 

Differential Display (DD-RTPCR). To identify differences in mRNA expression between metastatic and 

nonmetastatic neol 1/435 hybrid cells, a differential display approach was undertaken. The methods used 

involved minor modifications of the method described by Liang and Pardee {Liang & Pardee 1992 2358 

/id} {Liang, Averboukh, et al. 1993 2359 /id} as available in the Delta™ Differential Display kit 

(Clontech Laboratories, Inc., Palo Alto, CA, USA). Briefly, poly A+-enriched mRNA was isolated using 

oligo dT cellulose (Invitrogen Corp., USA) as previously described {Ausubel, Brent, et al. 1998 11068 

/id}. Also, to minimize the impact of clonal heterogeneity, equal parts mRNA from three neol 1/435 

hybrid clones (neol 1/435.A3 (TE5), neol 1/435.B1 (TE4), neol 1/435.D1 (TE10)) were used. RT-PCR 

products were resolved in a denaturing 5% polyacrylamide /8 M urea gel. Dried gels were then exposed 

to X-ray film (Reflection™, DuPont-NEN, Boston, MA, USA) for 2 to 12 h at room temperature and/or 

-70°C. Unique bands from metastasis-suppressed neol 1/435 lanes that were reproducibly obtained in two 
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independent DD-RTPCR reactions and the corresponding areas from metastatic MDA-MB-435 lane were 

excised from the dried gel. cDNAs were eluted by soaking the gel slices in H20 (100 pi) for 10 min and 

boiling for 15 min before ethanol precipitation in the presence of 3 M sodium acetate and 50 ug glycogen 

as a carrier. They were then re-dissolved in water (10 jal). Aliquots (2 ul) were subjected to another 

round of PCR using the same set of primers and conditions except no radioisotope was included in the 

reaction mixture. The amplified PCR products were analyzed on a 2% agarose gel. To minimize risks of 

false positives, failure to amplify a product from an irrelevant region of the gel was also a criterion 

before proceeding to the Northern blot analyses. 

Differentially expressed cDNAs and the primers used for the initial DD-RT-PCR reactions were: BRMS1 

[P9/P9]; F5A3 [P9/T5], 8A3 [P3/T4], adeninephosphoribosyltransferase [P1/T9]; N-acetyl- 

galactosamine-6-sulfate sulfatase [P6/P6]; hexokinase II [P10/T8]. 

PI: 5' - ATTAACCCTCACTAAATGCTGGGGA - 3' 

P3: 5' - ATTAACCCTCACTAAATGCTGGTGG - 3' 

P6: 5' - ATTAACCCTCACTAAATGCTGGGTG - 3' 

P9: 5' - ATTAACCCTCACTAAATGTGGCAGG - 3* 

P10: 5' - ATTAACCCTCACTAAAGCACCGTCC - 3' 

T4: 5' 

T5: 5' -1 

T8: 5' -< 3' 

T9: 5' 

Northern Blot Hybridization. Poly A+-enriched mRNAs (2 |Xg) were size-separated on denaturing 1% 

agarose formaldehyde gels before transferring onto a positively charged Hybond-N nylon membrane 

(Amersham Life Sciences Inc., Arlington Heights, IL, USA) using the Turboblotter system (Schleicher & 

Schuell, Keene, NH, USA) and fixation by UV cross-linking. Differentially expressed, gel-purified PCR 

products were radiolabeled by [a-32P]dCTP (Dupont-NEN) using the random primer labeling method and 

used as probes. All prehybridization and hybridizations were carried out using ExpressHyb Solution 

(Clontech) according to the manufacturer's recommendations, except that washes were performed at 

55°C rather than 50°C. The membranes were exposed to Kodak BioMax MR x-ray film. Equal loading 
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and transfer efficiency were assessed by hybridizing the blots with human GAPDH cDNA (Pstl/Kbal 

780 bp fragment of ATCC57090/ATCC57091 in pBR322). 

Novel candidates exhibiting differential expression between the neol 1/435 and MDA-MB-435 cells were 

then assayed for mRNA expression patterns in multiple human tissues using a human mRNA master dot 

blot (Clontech) using the same PCR product probes described above and quantified by phosphorimage 

analysis. This information was used to identify the best library from which to obtain full-length cDNAs 

(see below). Once full-length cDNAs were obtained, differential expression was verified in the human 

breast carcinoma cell lines and multiple tissue northern blots (Clontech). 

Cloning of differentially expressed fragments. Only cDNA clones that consistently expressed at least 5- 

fold more in the neol 1/435 hybrids were chosen for further analysis. PCR fragments were subcloned into 

the pCR2.1 TA cloning vector (Invitrogen) and sequenced using the dye terminator Cycle Sequencing 

Ready Reaction Kit (Applied Biosystems, Foster City, CA). Nucleotide sequences were compared to 

known genes in the Genbank, EMBL and EST databases using the computer program BLAST. 

cDNA library screening. For isolation of the full length cDNA, a normal adult human kidney cDNA 

library constructed in ATripIEx vector (Clontech) was screened using the [a32P] dCTP-labeled BRMS1 

PCR product as a probe. Briefly, unamplified library (1 x 104pfu; 1 |J.l; 1:5 dilution) was used to infect 

200 |!l of E. coli XL1 blue MRF' culture (O.D.600 = 2.00) grown in LB medium supplemented with 

MgS04 (10 mM) and maltose (0.2%). The infected culture was mixed with 2.5 ml melted LB/MgS04 top 

agar and poured onto 90 mm LB/MgS04 plate pre-warmed to 37° C. The plates were then incubated at 

37° C for 14 hr. Plaques were lifted using plaque screen hybridization transfer membranes (Dupont- 

NEN). The membranes were treated 10 min each with denaturation solution (0.5 N NaOH, 1.5 M NaCl) 

followed by neutralization solution (0.5 M Tris-Cl pH 8.0, 1.5 M NaCl). Dried membranes were fixed by 

baking at 80°C for 2hr. After three rounds of screening, the ATripIEx lysate from the confirmed positive 

plaques was transduced into E. coliBM 25.8, to promote Cre recombinase- mediated release and 

circularization of the pTripIEx at the loxP site. The recombinant pTripIEx were then maintained in E. 

Coli XL1 blue MRF'. The isolated cDNA clones were sequenced and compared with BRMS1 and 

scanned for a continuous open reading frame preceded by a Kozak sequence {Kozak 1984 5598 /id}. 

Southern Blot Hybridization. The presence oiBRMSl gene in various eukaryotic species other than 

human was examined by Southern blot hybridization. Full-length BRMS1 cDNA was used to probe a 

Zoo-blot (Clontech) that had genomic DNA from nine eukaryotic species (chicken, cow, dog, human, 

monkey, mouse, rabbit, rat, yeast) digested with EcöRl, resolved on a 0.7% agarose gel, transferred to a 
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charge-modified nylon membrane by capillary transfer and fixed by UV irradiation. 

In vitro transcription and translation. To demonstrate that a full-length cDNA would indeed produce 

protein, BRMS1 was cloned directionally into pcDNA3 (Invitrogen). The resultant plasmid construct was 

used for TNT® T7 Quick Coupled Transcription/Translation System (Promega Corp., Madison, WI, 

USA). 

Chromosomal localization ofBRMSl. BRMS1 cDNA was used to screen bacterial artificial chromosome 

(BAC) and PI artificial chromosome (PAC) libraries at Genome Systems, Inc. (St. Louis, MO, USA). 

BAC clones 412(n24) and 536(hl8) harboredBRMS1 and was confirmed by direct sequencing (R.S. 

Samant and D.R. Welch, unpublished observations). DNA was isolated and labeled with digoxigenin 

dUTP by nick translation and combined with sheared human DNA before hybridization to metaphase 

chromosomes derived from phytohemagglutinin-stimulated peripheral blood leukocytes in a solution 

containing 50% formamide, 10% dextran sulfate and 2X SSC. Specific hybridization signals were 

detected by exposing the hybrid cell lines to anti-digoxigenin antibodies followed by counterstaining 

with DAPI. Specific labeling along the proximal long arm of a group C chromosome, which was 

subsequently confirmed to be chromosome 11 based upon co-hybridization with genomic probes known 

to map to 1 lpl5 and 1 lcen. Measurements of 71/80 specifically labeled chromosomes 11 in metaphase 

spreads demonstrated that BRMS1 is located at a position which is 19% of the distance from the 

centromere to the telomere of chromosome 1 lq. This corresponds to band 1 Iql3.1-ql3.2 (data not 

shown). 

Immunoblotting. A monoclonal antibody developed against the 901 epitope of the SV40T antigen (amino 

acids 684-698, developed in the laboratory of Dr. Satvir Tevethia, Department of Microbiology and 

Immunology, Penn State University College of Medicine {Fu, Bonneau, et al. 1996 15116 /id} {Kierstead 

& Tevethia 1993 15117 /id}) was generously provided. BRMS1 with the 901 epitope fused in-frame to 

the N-terminus was cloned into pcDNA3 before transfection into MDA-MB-435 and MDA-MB-231 and 

single cell cloning as above. 

BRMS1 expression was determined by collecting total protein of 70-90% confluent cell cultures. 

Following aspiration of medium, plates were rinsed three times with CMF-DPBS before addition of 1 ml 

lysis buffer (50 mM Tris-HCl, pH 6.8; 2% ß-mercaptoethanol, 2% SDS). Lysates were centrifuged at 

10,000 x g at 4°C for 15 min to remove insoluble material. Protein concentration was determined using 

the Bradford method {Bradford 1976 2212 /id}. Protein (20-30 |lg per lane) was mixed with 5X loading 

buffer (50% glycerol, 1.5% bromphenol blue) and separated by 12.5% SDS-PAGE {Laemmli 1970 1180 
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/id}. Proteins were transferred to PolyScreen® membrane (NEN-Dupont) by semi-dry transfer (5.5 

mA/cm2, 20V, 30 min). Proteins were fixed by air drying for 15 min at room temperature. Membranes 

were then wetted in absolute methanol, rinsed in distilled water and blocked in a TTBS solution (0.05% 

Tween-20; 20 mM Tris, 140 mM NaCl, pH 7.6) containing 5% dry nonfat milk for 1 hr. The 901-tagged 

BRMS1 was detected using a 1:5000 dilution of mouse anti-901 ascites for 1 hr at room temperature 

under constant agitation. Membranes were then washed with TTBS and probed with a 1:10,000 dilution 

of sheep anti-mouse secondary antibody conjugated to horseradish peroxidase (Amersham-Pharmacia 

Biotech, Buckinhamshire, UK) in a solution of 5% nonfat dry milk/TTBS for 1 hr at room temperature 

before washing in TTBS. Bound secondary antibodies were detected using ECL™ (Amersham- 

Pharmacia Biotech) for 30 sec to 10 min. Similar protocols were used to detect Kail (rabbit anti-KAIl, 

Santa Cruz; 1:5000); Nm23 (rabbit anti-human, NeoMarkers, Fremont, CA, 1:5000) and E-cadherin 

(rabbit anti-E-cadherin, Transduction Laboratories, Lexington, KY, 1:3000) using donkey anti-rabbit IgG 

HRP conjugate as a secondary antibody at a titre of 1:5000. Some of the blots were stripped and re- 

probed using a solution of 200 mM glycine, 50 mM potassium acetate and 0.2% ß-mercaptoethanol, pH 

4.5. 

Metastasis Assay. Immediately prior to injection, cells (7-11 passages following transfection) at 80-90% 

confluence were detached with a 2 mM EDTA solution. Cells were washed, counted on hemacytometer, 

and resuspended in ice-cold HBSS to a final concentration of 2.5 x 106 cells/ml for MDA-MB-231 cells 

and 1 x 107 cells/ml for MDA-MB-435 cells. MDA-MB-231 cells and derivatives (0.5 x 106 in 0.2 ml) 

were injected intravenously into the lateral tail vein of 3-4 wk old, female athymic mice (Harlan Sprague- 

Dawley, Indianapolis, IN) using a 27 gg needle affixed to a 1 cc tuberculin syringe. Mice were killed 4 

weeks post-injection and examined for the presence of metastases. Lungs were removed, rinsed in water 

and fixed in Bouin's solution before quantification of surface metastases as previously described {Welch 

1997 7126/id}. 

Similar procedures were used for the spontaneous metastasis assay using MDA-MB-435 cells, except 

that 1 x 106 cells (0.1 ml) were injected into exposed axillary mammary fat pads of anesthetized 5-6 wk 

old, female athymic mice {Welch 1997 7126 /id}. Tissue from representative metastatic lesions was 

preserved for histologic analyses. Sections (4-6 |lm) were prepared by fixation in Bouin's solution or 

neutral buffered formalin followed by dehydration, paraffin embedding, sectioning and staining with 

hematoxylin and eosin. 

Tumor size was measured weekly by taking orthogonal measurements and was expressed as mean tumor 

diameter. Mean tumor diameter was calculated as described {Welch 1997 7126 /id} by used of the 
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following the equation: ^{diameterx X diametery) 

where x andy are orthogonal measurements of the locally growing tumor. 

After the mean tumor diameter reached 1.5- 2.0 cm, tumors were surgically removed under Ketamine: 

Xylozine (80-85 mg/kg:14-16 mg/kg) anesthesia and the wounds closed with sterile stainless steel clips. 

Four weeks, later, mice were killed and visible metastases were counted {Welch 1997 7126 /id}. Lung 

tissues were handled as above. Metastases were also observed in the ipsilateral and contralateral axillary 

lymph nodes of control mice. Occasional recurrences developed at the site of tumor removal but the 

presence of hematogenous metastases did not necessarily correlate with presence of recurrent tumor. 

Animals were maintained under the guidelines of the National Institutes of Health and the Pennsylvania 

State University College of Medicine. All protocols were approved by the Institutional Animal Care and 

Use Committee. Food and water were provided ad libitum. 

Statistical analyses. The number of lung metastases was compared for BRMS1 transfectants and 

corresponding parental and vector-only transfected MDA-MB-435 and MDA-MB-231 cells. For 

experimental metastasis assays, one-way analysis of variance (ANOVA) followed by Tukey's Honestly 

Significant Difference post-hoc test was used. For spontaneous metastasis assays, a Kruskal-Wallis 

ANOVA of ranks procedure was used with Dunn's post-hoc test. Calculations were performed using 

SigmaStat statistical analysis software (Jandel Scientific, San Rafael, CA). Statistical significance was 

designed as P^0.05 using two-tailed tests. 

Results 

To identify the gene(s) responsible for metastasis suppression following introduction of chromosome 11 

into MDA-MB-435 cells {Phillips, Welch, et al. 1996 5718 /id}, differential display was used. Parallel 

DD-RTPCR reactions were performed initially with individual neol 1/435 hybrid clones and parental 

MDA-MB-435; however, none of the differences held up to more rigorous scrutiny (unpublished 

observations). We reasoned that part of the problem could have been heterogeneity within the parental 

population (i.e., presence of both metastatic and nonmetastatic variants). To minimize this complication, 

equal mixtures of RNAs from three neol 1/435 clones were mixed and differential display was repeated. 

To reduce further the chances of proceeding with irrelevant cDNAs, we validated findings at several 

intermediate steps during the experiment. In short, all RT-PCR reactions were replicated using 

independent samples. If PCR products could not be amplified with the same primers, they were no longer 
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pursued. Once PCR products were validated, they were used as probes to examine differential expression 

in Northern blots using progressively more extensive series of cell line mRNAs. Finally, differential 

expression of at least 5-fold was chosen as a criterion for proceeding to the next steps of obtaining full- 

length cDNAs and functional studies. 

Initially, 64 cDNA fragments were detected as upregulated in the neol 1/435 hybrids. A representative 

result is shown in Figure 1A.. Only 18 bands reproducibly amplified in replicate RT-PCR reactions (data 

not shown). Of these, 6 fragments exhibited 2;5-fold higher mRNA expression in neol 1/435 hybrid cell 

clones as detected by Northern blotting and quantified by phosphor image analysis (Figures IB and 1C). 

None of the PCR products detected mRNAs expressed exclusively in the metastasis-suppressed cells. 

The six cDNA inserts were sequenced and homology to known genes and ESTs was assessed by 

comparing with the GenBank / EMBL / DDBJ / PDB combined database (Table 1). Three of the cDNAs 

were highly homologous to known human genes for the regions that overlapped (N-acetylgalactosamine- 

6-sulphatase, adenine phosphoribosyltransferase and hexokinase II). The remainder were novel and 

became priorities for further study. 

In order to obtain full-length cDNA clones, each of the PCR products was used to probe multi-tissue 

RNA blots. Phosphor image analysis of RNA dot blots showed that all three novel cDNAs were most 

highly expressed in kidney, pancreas, spleen and testis (data not shown). A human kidney library was 

chosen for isolation of full-length cDNAs. Here we report on the isolation and functional characterization 

of one of these novel cDNAs, BRMS1. 

The nucleotide sequence of the BRMS1 cDNA initially revealed no significant homologies to any known 

genes, ESTs or proteins deposited in the databases. However, subsequently a deposited partial sequence 

(Accession number AL050008; hypothetical human protein sequenced by AGOWA within the cDNA 

sequencing consortium of the German Genome Project) had 91% homology at the predicted amino acid 

level for the region bounded by amino acids 60-244. Regions ofBRMSl cDNA showed numerous 

homologies to short ESTs isolated from fetal liver and spleen as well as the human tumor cell line HeLa, 

consistent with the wide tissue expression observed in the multi-tissue Northern blots. BRMS1 was 

detected in multiple species at the DNA level, but was most abundant in yeast, human, mouse, rat, rabbit 

and cow in Southern blots. 

The BRMS1 cDNA sequence was submitted to GenBank as a novel human gene with an accession 

number of AF159141. Computerized analysis shows that BRMS1 cDNA length is 1485 base pairs with 

the largest open reading frame of 741 base pairs (from nucleotides 122 to 862 (Figure 2)). BRMS1 
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encodes a novel protein of 246 amino acids (Mr « 28.5 kDa), a result confirmed using in vitro 

transcription and translation (data not shown). Fluorescence in situ hybridization mapping places the 

location ofBRMSl gene at human chromosome 1 Iql3.1-ql3.2. 

The predicted amino acid sequence of BRMS1 was analyzed for structural and sequence homologies in 

order to obtain clues regarding mechanism of action. While the protein is novel, several regions show 

homology to known motifs using the algorithms associated with the search engines mentioned. Using 

PROSITE fhttp://www.genebio.com/prosite.html). several putative phosphorylation sites for 

cAMP/cGMP ([R/K]2-x-[S/T]; amino acids 55-58 and 240-243), protein kinase C ([S/T]-[R/K]; amino 

acids 111-113, 147-149,190-192, 200-202) and casein kinase II ([S/T]-x2-[D/E]; amino acids 19-22, 30- 

33, 37-40, 39-42, 41-44, 46-49) were detected. PSORTII (http://www.psort.nibb.ac.ip:8800) identified 

two putative nuclear localization sequences (amino acids 198-205 and 239-245) and predicted at 60.9% 

probability that BRMS1 would localize to the nucleus. In addition, BRMS1 contains two coiled-coil 

(amino acids 51-81 and 147-180) motifs and several imperfect leucine zipper (L-x6-L-x6-L-x6-L) motifs at 

amino acids 67-88,131-152, 138-159,153-174 and 160-181. No signal peptide motifs were identified but 

there was a potential endoplasmic reticulum retention sequence at amino acids 243-246. These findings 

were also confirmed using the http://www.expasv.ch search engine. There are four cysteine residues 

within the BRMS1 protein, allowing for the possibility of intra- and inter-protein disulfide linkages. 

Full-length BRMS1 cDNA was used to probe mRNA blots prepared from parental MDA-MB-435 and a 

panel of neol 1/435. Again, the metastasis-suppressed lines displayed higher expression (Figure IB). 

Expression in a variety of normal tissues was observed using a multi-tissue Northern blot, with highest 

expression in kidney, pancreas, spleen, testis, skeletal muscle and peripheral blood lymphocytes, 

moderate expression in heart, liver, placenta and intestines, and low levels in brain, lung and thymus 

(Figure 1C). A single 1.5 kb band was detected in all tissues, suggesting that BRMS1 mRNA is present 

as a single form and not commonly as alternatively spliced species. 

To assess the effect oiBRMSl on breast carcinoma tumorigenicity and metastasis, BRMS1 was 

transfected into two metastatic human breast carcinoma cell lines, MDA-MB-435 and MDA-MB-231 

(Figure 3A). In order to more readily assess protein expression. BRMS1 was epitope-tagged using the 

SV40T901 epitope and Western blots were used to assess protein levels in the transfectants. mRNA 

message levels generally correlated well with BRMS1 protein level in these cells (Figure 3B, top panel). 

Concomitantly, MDA-MB-231 transfectants were tested for expression of the known metastasis- 

suppressor genes, Nm23, KAI1, E-cadherin (immunoblot, Figure 3B, lower panels) and KiSSl 

(Northern blot, not shown). These experiments were done to evaluate whether the metastasis-suppressing 
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effect of BRMS1 could be explained by modulation of expression of other known metastasis-suppressor 

genes. Expression patterns of these suppressor genes did not correlate with BRMS1 mRNA or protein 

expression, suggesting that BRMS1 activity is not dependent upon the expression of these other genes. 

However, insufficient data exist to rule out interactions among BRMS1 and the other metastasis 

suppressor genes. MDA-MB-231 cells have no detectable E-cadherin protein in Western blots. It is worth 

noting that the sequence of the other metastasis suppressors has not been determined in the MDA-MB- 

231 cells. 

Clones representing low, medium and high BRMS1 protein expression were chosen for functional 

studies. In cell culture, BRMS1 transfectants generally exhibited a more flattened morphology (Figure 

4A) and tended to aggregate more readily following detachment. However, these properties were not 

evident in every clone isolated, in vitro growth rates for BRMS1 transfectants were similar to parental 

and vector-only transfectants. Surprisingly, MDA-MB-435 transfected with BRMS1 acquired an acute 

sensitivity to trypsin (data not shown). Whereas parental cells were routinely passaged using TE, the 

BRMS1 transfectants died when exposed to even low concentrations of trypsin. Therefore, subsequent 

cultures were handled using EDTA to detach the cells from the substrata. 

BRMS1 -transfectants were assessed for tumorigenicity and metastasis following injection into athymic 

mice. Growth of 5#MS7-transfected MDA-MB-435 tumors in the mammary fat pad was generally slower 

than in the parental and/or vector controls. In general, once the tumors began to grow, their size was 

approximately one week behind the parental, metastatic populations. Representative in vivo growth 

curves are shown in Figure 4B. In general, the in vivo morphologies of MDA-MB-435 and BRMS1- 

transfectants were similar, except that the latter exhibited fewer fibrous bands in the stromal 

compartment of the tumors (Figure 4C). While tumorigenicity was unaltered, the incidence and number 

metastasis to lung and regional lymph nodes was significantly (P=0.004) suppressed in the MDA-MB- 

435 5ÄMS7-transfectants (Table 2). Parental and vector-only transfectant cells formed axillary lymph 

node and lung metastases in 100% of the mice injected. In the BRMS1 -transfectants, the incidence 

dropped by 50-90%. Of the metastases that formed, all were significantly smaller than the parental 

lesions at a comparable time following injection. Even if the the metastases were given more time to 

grow, most did not develop into grossly visible lesions. BRMS1 expression was still detectable in the 

BRMS1-transfected MDA-MB-435 locally growing tumors. Using the model of intravenous inoculation 

of MDA-MB-231 cells, similar suppression of metastasis was observed (Figure 5). Comparison of the 

level of BRMS1 protein with metastatic potential suggests that the effect is dose-dependent. 

Discussion 
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To identify human breast cancer metastasis suppressor genes, we took advantage of observations 

identifying numerous nonrandom chromosomal changes during breast carcinoma progression 

(reviewed in {Welch & Wei 1998 11672 /id}). Although difficult to assign specific chromosome 

structural abnormalities to particular stages of breast cancer; some karyotypic changes commonly 

occur during early-stage breast cancer — 8p, 13q, 16q, 17p, 17q and 19p — while others 

typically occur later in breast cancer progression — lp, lq, 3p, 6q, 7q, 1 lp, and 1 lq. If the latter 

changes occur concomitant with acquisition of metastatic potential, then one can infer that genes 

involved in controlling particular stages of tumor progression (e.g.,metastasis) are encoded 

nearby. 

A paradigm describing the genetics of metastasis is modeled upon the concepts advanced by 

Vogelstein and colleagues in colorectal carcinoma. Analogous to the role of oncogenes in 

tumorigenesis, metastasis-promoting genes drive conversion from nonmetastatic to metastatic. 

The best characterized is the activated ras oncogene which can confer both tumorigenic and 

metastatic potential to fibroblasts (reviewed in {Chambers & Tuck 1993 10058 /id}). Analogous 

to tumor suppressors, metastasis suppressor genes block metastasis. The prototypical metastasis 

suppressor gene, Nm23, was identified in the murine K1735 melanoma using subtractive 

hybridization and two human homologs have been identified, both mapping to chromosome 17q 

{Backer, Mendola, et al. 1993 1806 /id}. Nm23-Hl expression has been correlated inversely with 

many, but not all late-stage, metastatic human tumors (reviewed in {Freije, MacDonald, et al. 

1996 9543 /id}). Likewise, transfection of Nm23-Hl into metastatic human tumor cell lines has 

resulted in suppression of metastasis, notably MDA-MB-435 {Leone, Flatow, et al. 1993 1132 

/id} and the human melanoma cell line, MelJuSo {Miele, De La Rosa, et al. 1997 8530 /id}. The 

mechanism of action for metastasis suppression by Nm23 still remains unknown {Freije, 

MacDonald, et al. 1996 9543 /id}. 

Subsequently, several other genes have been described as metastasis suppressors (reviewed in 

{Fidler & Radinsky 1996 7702 /id} {Welch & Goldberg 1997 6584 /id} {Welch & Wei 1998 

11672 /id}). Three of them suppress metastasis of human cancer cells in animal models — KAI1, 

KiSSl and E-cadherin. KAI1 was discovered in rat prostatic carcinoma cell lines which had been 

suppressed for metastasis following introduction of human chromosome 11 {Dong, Lamb, et al. 

1995 4483 /id}. KAI1 is a glycoprotein belonging to the transmembrane 4 superfamily and is 
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identical to the CD82 or C33 antigens. The human gene maps to 1 lpl 1.2. KAI1 expression 

generally correlates with breast carcinoma aggressiveness {Yang, Welch, et al. 1997 9573 /id} 

and, following transfection into MDA-MB-435, suppresses metastasis without affecting 

tumorigenicity {Phillips, White, et al. 1998 7227 /id}. 

KiSSl was identified using subtractive hybridization comparing metastasis suppressed 

chromosome 6-human melanoma cell lines with their parents {Lee, Miele, et al. 1997 10007 

/id} {Lee, Miele, et al. 1996 7125 /id} {Lee & Welch 1997 7226 /id}. Transfection of KiSSl into 

the human melanoma cell lines C8161 {Lee, Miele, et al. 1996 7125 /id} and MelJuSo {Lee & 

Welch 1997 7226 /id} as well as MDA-MB-435 breast carcinoma cell line {Lee & Welch 1997 

8809 /id} resulted in significant suppression of metastasis without inhibiting tumorigenicity. Like 

Nm23 and KAI1, the mechanism(s) by which KiSSl suppresses metastasis have not been fully 

elucidated. 

E-cadherin is a cell surface glycoprotein involved in calcium-dependent cell-cell adhesion. 

Reduced levels of E-cadherin are associated with decreased adhesion and increased grade of 

epithelial neoplasms {Mareel, Boterberg, et al. 1997 9676 /id}. Mutations of E-cadherin and the 

associated protein a-catenin have been associated with acquisition of the invasive phenotype 

{Vermeulen, Bruyneel, et al. 1995 5385 /id} and transfection of E-cadherin decreases motility 

and invasiveness of cancer cells {Vermeulen, Bruyneel, et al. 1995 5385 /id} {Frixen, Behrens, et 

al. 1991 7131 /id}. Thus, since E-cadherin decreases release of tumor cells from the primary 

tumor, it is considered a metastasis suppressor {Perl, Wilgenbus, et al. 1998 11063 /id}. 

However, there is also evidence that it can function as a tumor suppressor gene {Frixen, Behrens, 

et al. 1991 7131 /id} {Vermeulen, Bruyneel, et al. 1995 5385 /id} {Christofori & Semb 1999 

15140 /id} 

The search for breast cancer metastasis genes acknowledges one of the most common changes in 

late-stage breast carcinoma (familial or sporadic). Losses of genetic material on chromosome 1 lq 

occurs in 40-65% of cases. There are several regions spanning the q-arm of chromosome 11 for 

which associations have been made with breast cancer progression. Among the most common are 

amplifications and deletions involving and 1 lql3. Within this region, there is evidence 

supporting the existence of tumor promoting, tumor suppressing, metastasis promoting and 
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metastasis suppressing genes in this region. The genes int-2, hst, bcl-1, glutathione S-transferase, 

CCND1 and EMS-1, which map to 1 lql3 are amplified in breast cancer at a frequency between 

3 to 20%. Introduction of 1 lq-containing YACs into mouse A9 fibrosarcoma cells suppresses 

tumorigenicity {Koreth, Bakkenist, et al. 1999 13994 /id}. There exists a high frequency 

involvement of rat chromosome 1 (which is syntenic to human chromosome 11 {Rinker- 

Schaeffer, Hawkins, et al. 1994 3668 /id}) in the development and progression of rat mammary 

tumors {Aldaz, Chen, et al. 1992 1544 /id} {Pearce, Pathak, et al. 1984 86 /id}. Based upon these 

observations and high frequency deletions involving 1 Iql3-ql4 in late-stage, metastatic breast 

carcinomas {Zambetti & Levine 1993 2249 /id} {Leone, Flatow, et al. 1993 1132 /id} {Van de 

Vijver 1993 2095 /id}, we tested hypothesis chromosome 1 lq coated metastasis suppressor gene. 

Upon finding that introduction of a normal human chromosome 11 into metastatic MDA-MB- 

435 human breast carcinoma suppressed metastasis without affecting tumorigenicity {Phillips, 

Welch, et al. 1996 5718 /id}, we set out to identify gene(s) responsible. 

DD-RTPCR was used to discover genes more highly expressed in neol 1/435 than in their 

metastatic counterparts. BRMS1, which maps to the region frequently involved in breast 

carcinoma progression (i.e., 1 Iql3.1-ql3.2) was identified and was expressed >5-fold more in 

the metastasis suppressed hybrid clones been in the metastatic parents. When transfected into 

MDA-MB-435 and MDA-MB-231 cells, both the incidence of metastasis and the number of lung 

metastases per mouse were significantly inhibited compared to controls. Even when tumor- 

bearing animals were allowed more time for metastases to develop, metastasis was suppressed. 

Although tumor development BRMS1-transfected MDA-MB-435 cells was slightly delayed 

compared to controls, tumors still formed. BRMS1 mRNA was still detectable within the 

primary tumors (data not shown). Taken together, these data fulfill all requirements that BRMS1 

is metastasis suppressor gene. Metastasis is suppressed whereas tumorigenicity is not, even when 

BRMS1 means expressed within the locally growing tumor. 

The mechanism by which BRMS1 suppresses metastasis is still not fully determined; however, 

several features lead to the hypothesis that this gene encodes a novel protein that functions in a 

signaling cascade to control transcription. The presence of two nuclear localization domains 

suggest that BRMS1 localizes to the nucleus. Several potential phosphorylation sites suggest that 

BRMS1 could be part of a signaling pathway while presence of a coiled-coil periodicity and 
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imperfect leucine zipper suggest that BRMS1 interacts with other proteins. Collectively, these 

characteristics suggest that BRMS1 might mediate metastasis suppression by altering the 

expression of known metastasis-suppressor genes. 

To test this possibility, protein levels of KAI 1 and Nm23 were measured in BRMSl-transfected 

MDA-MB-231 cells. KAI1 and Nm23 were both expressed in all of the clones to varying 

degrees. The level expression of of KAI 1 and Nm23 did not appear to correlate with the protein 

expression of BRMS1 in any of the transfected clones. The similar study was done to measure E- 

cadherin of levels in the MDA-MB-231 BRMSl-transfected clones. Parental MDA-MB-231 

cells did not express E-cadherin nor did any of BRMS1 transfectants. Metastatic MDA-MB-231 

cells express high levels of KiSSl mRNA. Data of the BRMSl-transfected MDA-MB-231 cells 

exhibited a noticeable change in KiSSl expression. Taken together, these observations suggest 

that if BRMS1 is a transcription factor, it is not acting through transcriptional modulation of any 

of the known human metastasis suppressor genes. Results in these experiments do not, however, 

preclude the possibility that BRMS1 is interacting directly with metastasis suppresses. One 

possibility, albeit unproven, is that BRMS1 might interact with Nm23 via the leucine zipper 

motifs within both proteins {Postel, Berberich, et al. 1993 2094 /id}. 

Using a variety of in vivo and in vitro assays, no simple mechanism emerges. BRMS1 

transfectants are still adherent, invasive, and proliferative. The BRMSl-transfected breast 

carcinoma cells display similar morphology to their metastatic parental cells both in vitro and in 

vivo. Curiously, BRMSl-transfected MDA-MB-435 cells acquired acute sensitivity to trypsin 

treatment. Whether this is related to be decreased in stromal fibrous material present in the 

tumors remains to be determined. Among the possible mechanisms of action of BRMS1 could be 

alteration in how the breast carcinoma cells secrete and/or manipulate extracellular matrix. It 

must be noted, however, that MDA-MB-231 cells did not acquire trypsin hypersensitivity like 

MDA-MB-435. Other preliminary data that support the role of BRMS1 altering cell-cell and cell- 

matrix interactions is the acquisition of tight junctional communication in BRMSl-transfected 

breast carcinoma cells whereas the parental cells exhibited none (M.J. Seraj, M. Saunders, H. 

Donahue and D.R. Welch, unpublished observations). 

BRMS1 is widely expressed in a wide variety of normal human tissues at the mRNA level. 
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BRMS1 transcript (1.5 kb) was detected in virtually every human tissue examined. The uniform 

size of BRMS1 transcript suggests that it is not alternatively spliced in various tissues. However 

because of the presence of relatively broad bands in pancreas and peripheral blood leukocytes, 

alternative splicing cannot be ruled out. The genomic organization of BRMS1 was not identical 

in the multiple eukaryotic species examined according to Southern Blot analysis; however, the 

presence of bands in multiple species suggests that BRMS1 (or related genes) is relatively well 

conserved (data not shown). 

Compared to the many normal tissues examined, BRMS1 mRNA expression was very low in the 

MDA- MB-435 and MDA-MB-231 cells by both RT-PCR and poly(A)+-enriched mRNA 

Northern blots. Expression of the protein levels is not yet confirmed because specific 

antibody/antiserum recognizing native BRMS1 has not yet been developed. A preliminary study 

was undertaken to measure BRMS1 in a northern blot comprised of a panel of human breast 

carcinoma cell lines: MCF10A, MCF7, T47DC0, MDA-MB-435, MDA-MB-231, LCC15, 

SUM 185, SUM1315 (http://p53.cancer.med.umich.edu/clines/clines.htmn and MKLF {Pauley, 

Soule, et al. 1993 14590 /id} {Soule, Maloney, et al. 1990 8475 /id} {Wei & Miner 1994 2454 

/id} {Sung, Gilles, et al. 1998 11976 /id}. All of the cell lines have characteristics which labeled 

them as "aggressive" but in our hands only MDA-MB-435 and MDA-MB-231 are reproducibly 

metastatic in athymic mouse models. Mice the mRNA level, expression was high in LCC15 and 

MKLF, but expression was observed in MCF10A, T47D, SUM185 and SUM1315 cell lines (data 

not shown). A more extensive analysis is required. Sequencing is underway to determine whether 

BRMS1 is wild-type or mutant. 

In summary we of found a new human breast carcinoma metastasis suppressor gene by 

differential display comparing metastatic MDA-MB-435 cells and metastasis suppressed 

neol 1/435 cells. The BRMS1 gene maps to a "hot spot" in breast cancer progression, 1 lql3, 

further supporting the likelihood that BRMS1 is important in human breast cancer progression 

towards metastasis. In general, low expression of BRMS1 correlates with the metastatic potential 

in human breast carcinoma cells in nude mice. It will be necessary to further analyze BRMS1 

gene in other breast carcinomas during various stages of progression. The predicted BRMS1 

protein has several features which its role as a transcription factor in a signaling cascade, 

although dysfunction has yet to be proven. It is intellectually satisfying that any metastasis 
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suppressor would mediate a variety of downstream pathways. This is consistent with the concept 

that BRMS1 is a transcription factor. However it must be noted that BRMS1 did not significantly 

modified the mRNA expression of a variety of known human metastasis suppressor genes. Since 

the most lethal attribute of breast cancer cells is their ability to spread and colonize distant sites, 

BRMS1 may represent an early step toward preventing metastasis and improving breast cancer 

survival. 
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Figure legends 

Figure 1. Identification of differentially expressed genes in metastasis-suppressed neol 1/435 hybrid cell 

clones using differential display. (A) DD-RTPCR result in which BRMS1 was identified. Replicate 

reactions were done in parallel to compare parental, metastatic MDA-MB-435 (Lanes 1 and 2) with 

metastasis-suppressed mixtures (1:1:1) of neol 1/435 clones A3, Bl and Dl (Lanes 3 and 4). Lanes 2 and 

4 contained twice as much starting material as Lanes 1 and 3. An equal mixture of neol 1/435 hybrid cell 

clones was used to minimize the impact of tumor heterogeneity on the differential display reaction. (B) 

Northern blot analyses using candidate differential display products as probes. Only candidates 

displaying ^5-fold higher expression in neol 1/435 hybrid cell clones are presented. Poly(A)+ mRNA (2 

Jig) was electrophoresed on denatured agarose gels, transferred to a nylon membrane and fixed and 

probed with random-prime radiolabeled PCR products from the differential display reaction. Equal 

loading was verified by probing with GAPDH cDNA. Approximate transcript sizes are depicted to the 

right of each gel. The gels labeled 1, Al and G1B5 represent the known genes (N-acetylgalactosamine-6- 

sulfate-sulphatase, adenine phosphoribosyltransferase and hexokinase II) identified in the differential 

display reactions. (C) Differential expression of the novel genes was quantified using phosphor image 

analysis. Relative expression was compared to parental MDA-MB-435; and only genes showing £ 5-fold 

higher (reference line) expression in the neol 1/435 hybrid cell clones were chosen for further study. (D) 

Expression of BRMS1 mRNA in normal tissues. Multi-tissue RNA blots [2 |lg of poly(A)+ mRNA per 

lane] were purchased from Clontech Laboratories Inc.The blot was hybridized using full-length BRMS1 

probe as described above. Detection of BRMS1 message (1.5 KB) was possible following overnight 

exposure. Alternative splicing was not evident in any of these lanes. Lanes are loaded in the following 

order: heart, brain, placenta, lung, liver, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, 

testes, ovary, small intestine, colon, and peripheral blood leukocytes. To separate gels were used for 

these experiments. 

Figure 2. Nucleotide and predicted amino acid sequence of BRMS1. 

Figure 3. Northern blot (Panel A) of MDA-MB-435 and MDA-MB-231 parental (P) and BRMS1- 

transfected cell clones. GAPDH was used to verify equal loading and transfer. Panel B: Western blot (50 

|lg/lane) measuring expression of BRMS1-901 (epitope-tagged) in MDA-MB-231 parental (P), pcDNA3 

vector (V) and 2M?MS7-transfectants. The clones in panel A (right six lanes) are the same ones evaluated 

in panel B. Note: relative mRNA and protein expression are similar for BRMS1 transfectants. The blots 

were stripped and re-probed with antibodies/antisera to the human metastasis suppressor genes KAI1 and 

Nm23, with ß-tubulin and ß-actin used to monitor equal loading. Protein loading for 5ÄMS7-transfectant 
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clones 3, 4, and 5 was lower than the other lanes. This was most evident with regard to the ß-tubulin 

detection. A similar experiment was done to measure expression of E-cadherin using the same clones. E- 

cadherin positive control (+) was included. Parental MDA-MB-231 and none of the clones expressed E- 

cadherin. Expression of the other metastasis suppressors did not correlate with BRMS1 expression. 

Figure 4. BRMSl-transfected MDA-MB-231 and MDA-MB-435 cell morphology is similar in vitro 

(Panel A, Magnification = 100X). BRMSl-transfected MDA-MB-435 tumor histologic appearance is 

similar to that of parental, metastatic MDA-MB-435 (Panel B, Magnification = 160X). Cells (1 x 106) 

were injected into the mammary fat pad of athymic mice. Tumors were removed approximately 4 weeks 

after injection, fixed in formalin, sectioned and stained with hematoxylin and eosin. The tumor formed 

by MDA-MB-435 cells exhibited tightly packed cells with pleomorphic nuclei and prominent nucleoli. 

Fibrous bands (arrows) are present throughout the tumor. Tumors formed by the BRMSl-transfected 

cells were histologically similar, with tightly packed cells, nuclear degeneration and occasional mitotic 

figures (arrowhead). The stromal elements of these two tumors, however, were somewhat distinct (i.e., 

BRMSl-transfectant tumors lacked the fibrous bands). Growth of BRMSl-transfected MDA-MB-435 

tumor cells following injection into the mammary fat pad was modestly delayed (Panel C) whether 

BRMS1 was native or epitope-tagged (*). 

Figure 5. BRMSl-transfected MDA-MB-231 cell clones are significantly (PO.05) suppressed for 

formation of pulmonary metastases following intravenous injection into the lateral tail veins of athymic 

mice compared to control cells. Parental (P) and pcDNA3 vector-only transfectant (V) are controls for 

two independent experiments. An uncloned population of BRMSl-transfected MDA-MB-231 (mix) is 

also included in these experiments. Metastasis suppression generally correlated with the level of BRMS1 

mRNA and protein expression (see Figure 3). 
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Table 1. Differentially expressed cDNAs isolated using DD-RTPCR of metastasis-suppressed 
neol l/MDA-MB-435 hybrid cell clones compared to metastatic MDA-MB-435 

Fragment Size (bp) Homology % homology 

BRMSr 

F5A3 

634 

174 

novel 

novel 

8A3 454 novel — 

1 370 adenine phosphoribosyltransferase 99 b 

Al 387 N-acelyl-galactosarnine-6-sulfatesulfatase 100 

G1B5 673 hexokinase II 97 

8 BRMS1 -breast cancer metastasis-suppressor gene 1. F5A3 and 8A3 are interim nomenclature only. 
They will be renamed BRMS2 andBRMS3, respectively, following confirmation of function. 
b Note: Although the levels of homology between the PCR products and the known proteins are high, 
the expected size on Northern blotting did not corroborate the identity of the known genes (APRT « 
0.8 kb; GALNS « 1.6 kb; HKII « 5.3 kb). No further follow-up for genes with high homology was 
undertaken. 
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Table 2. BRMS1 suppresses metastasis of MDA-MB-435 

Incidence of metastases 

Lung Extrapulmonary 

Cell line (No. mice with 
metastases/No. mice 

injected) 

P<0.05 (No. mice with 
metastases/No. mice 

injected) 

P<0.05 

MDA-MB-435 9/15 15/15 

MDA-MB-435/pcDNA3 9/13 13/13 

BRMS1.3 (901-tagged) 2/15 *** 3/15 *** 

BRMS1.4(901-tagged) 5/14 5/14 

BRMS 1.6 (901-tagged) 2/15 *** 0/15 *** 

BRMS1.1 2/8 *** 0/8 *** 

BRMS 1.3 1/8 *** 3/8 *** 

BRMS 1.5 3/7 5/8 

Cells (1 x 106) were injected into the axillary mammary pads of 5-6 wk old female athymic mice. 
Tumors were removed when the mean tumor diameter reached 1.3-1.5 cm. Four weeks later, mice 
were killed and presence of metastases determined. 

The number and incidence of lung metastases were compared to vector-only transfected MDA-MB- 
435 using the Kruskal-Wallis ANOVA followed by Dunn's post-test. Incidence of extrapulmonary 
metastases (usually ipsilateral axillary lymph nodes, but occasionally ribcage, diaphragm and chest 
wall) was similarly examined. 

Data are pooled from two independent experiments involving 7-8 mice per group. Data for the native 
BRMS1 (i.e., not epitope-tagged) was collected from a single study.  
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The most lethal attribute of cancer cells is their ability to establish secondary colonies at distant sites. 

Metastasis is the culmination of tumor cell evolution toward increasing autonomy. Fortunately, only a 

small subset of tumor cells acquire this complex phenotype. Most neoplasms arise from single mutated 

cells but are inherently unstable and become heterogeneous as they accumulate genetic alterations [1; 2]. 

Metastatic cells acquire requisite genetic and phenotypic changes by intrinsic genetic means upon which 

extrinsic selection pressures are applied [3]. While the exact mechanisms leading to malignancy are 

poorly understood, it is clear that metastatic cells must have the ability to complete a complex series of 

steps in order to form secondary foci: growth of the primary tumor, neo-vascularization, invasion into 

surrounding tissue, intravasation into the blood vessels and/or the lymphatic system, circulation and 

dissemination, attachment to endothelial cells or basement membrane at the secondary site, extravasation, 

migration and finally, growth at the target organ (reviewed in [4-11]). It is now believed that this process 

is controlled by a finite number of key genes [10-14]. 

Genes that control metastasis may be broadly placed into two categories: those which inhibit 

metastasis ("metastasis-suppressors") and those which drive metastasis formation ("metastasis 

promoters") [10; 11; 13]. These categories are the late-stage equivalents to tumor suppressor genes and 

oncogenes. However, they are distinct in one key way — all tumor suppressor genes are, by definition, 

also metastasis suppressors since any cell that cannot form a tumor cannot metastasize. However, 

metastasis-suppressor genes are those for which expression results in a non-metastatic phenotype, but 

which leave tumorigenicity unaffected. Therefore, metastasis suppressor genes control processes 

subsequent to tumor formation, demonstrating specificity. 

The location of metastasis-controlling genes can be inferred from clinical cytogenetic data. Some 

chromosomal aberrations are shared between tumor types, while the location of other chromosomal 

differences are relatively specific. For malignant melanoma, among the most common chromosomal 

aberrations are deletions involving the long arm of chromosome 6. Similarly, deletions involving 

chromosome 11 are often seen in late-stage breast carcinomas. Using microcell-mediated chromosomal 

transfer, introduction of chromosome 6 into metastatic human melanoma cell lines [15; 16] or 

chromosome 11 into a metastatic human breast carcinoma cell line [17] suppressed metastasis in athymic 

mouse models. Tumorigenicity was not affected in any of these cases. Conversely, chromosome 11 had 

no affect on the tumorigenicity of melanoma cell line C8161 and chromosome 6 did not affect metastasis 

of MDA-MB-435 breast carcinoma cells. 

The observations described above demonstrate several important points. First, genes controlling 

metastasis are distinct from those involved in tumor formation. Second, tumorigenic cells acquire 

metastatic capability only after accumulating additional genetic defects. Third, cells may not necessarily 

share the same regulatory pathways for the metastatic phenotype. Collectively, our results imply that 

mutations of genes on chromosome 6, which are late events in melanoma progression, may be 

responsible for metastatic potential, and that metastasis-suppressor gene(s) may be encoded on 

chromosome 6 or be regulated by genes encoded on that chromosome. The obvious question is: what 

gene(s)? Similar logic can be used for chromosome 11 in breast carcinoma. 
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To identify the gene(s) responsible, modified differential display and subtractive hybridization 
approaches were initiated. Candidate metastasis-suppressor genes have been identified and data will be 
presented for both melanoma and breast carcinoma. 

Melanoma metastasis-suppressor genes: Comparison of metastasis-suppressed human melanoma 
hybrids (neo6/C8161) with matched parental populations (C8161) by subtractive hybridization was 
utilized to identify several candidate genes [18-20]. The best characterized of these candidates is KiSSl. 
KiSS 1 exhibits extremely low or undetectable mRNA expression in metastatic melanomas, but can 
readily be detected in normal melanocytes and in cell lines derived from a radial growth phase (benign) 
melanoma [20]. Unfortunately, determination of protein expression patterns is not yet possible since 
antibodies recognizing mammalian KiSSl are not yet available. 

Transfection of full-length KiSSl under the control of a strong, constitutive promoter (CMV) into 
multiple human cancer cell lines (melanoma and breast) suppressed metastasis without affecting 
tumorigenicity [10; 18; 19]. Thus, KiSSl satisfies the criteria of a metastasis-suppressor gene (i.e., 
metastasis is suppressed, but tumorigenicity is not). 

The mechanism of action of KiSSl remains enigmatic. Thus far, data only point to what KiSSl does 
not do. Metastasis-suppressed, chromosome 6 hybrids and KiSSl transfectants grow slightly more slowly 
than their parental counterparts, but slower growth was eliminated as key since tumor cells injected into 
mice were allowed compensatory time to grow. Still, metastases did not develop. Metastasis-suppressed 
hybrids and KiSSl transfectants were equally invasive as assessed in vivo as well as in vitro [15; 16; 21]. 
Tumor cells have even been detected in efferent vessels [15; 16], suggesting that the suppression of 
metastasis is downstream of this step in the metastatic cascade. 

Just as invasiveness does not appear different, adhesion to endothelial monolayers or extracellular 
matrix components is not significantly different in neo6/melanoma and KiSS 1 -transfectant cells. 
Metastasis suppression does not appear due to increased susceptibility to NK cell killing since metastases 
were not observed in athymic/beige mice (M.E. Miele and D.R. Welch, unpublished observations). 
Similarly differences in sensitivity to humoral immune mechanisms are unlikely since the same 
metastasis suppression was also seen in severe combined immunodeficiency mice (SCE), xid) (S.F. 
Goldberg and D.R. Welch, unpublished observations). Finally, metastasis inhibition does not appear due 
to failure to induce angiogenesis since vessel counts are not grossly different (R. Radinsky and D.R. 
Welch, unpublished preliminary results). 

A modest reduction of pseudopod extension was found in the neo6/C8161 hybrids compared to the 
metastatic C8161 cells, suggesting that metastasis suppression by the exogenous chromosome 6 may be 
the result of alterations in cell motility [21]. These observations were made using collagen type IV as a 
chemoattractant. Coupled with the predicted protein sequence information (see below), we speculate that 
metastasis suppression due to chromosome 6 introduction is due, in part, to altered "outside-in" signaling 

of the chemoattractant. 

Restoration of KiSSl expression correlated with a reduced ability to form colonies in both soft 
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(0.3%) or hard (0.9%) agar [20]. Clonogenicity in hard agar has been associated with metastatic 

propensity [22], but there are exceptions to this correlation. Nonetheless, this data implies that KiSSl 

may be involved in cell growth (although growth on plastic substrates is unaffected) or cell shape. These 

observations have been further extended in a collaboration with Drs. Manuel Rieber and Mary Strasberg- 

Rieber. Briefly, metastatic melanoma cells have the ability to proliferate on suboptimal adhesion matrices 

(i.e., bacterial petri dishes), a condition under which normal melanocytes undergo apoptosis. 

Interestingly, neo6/C8161 cells and KiSSl transfectant clones display an intermediate phenotype. That is, 

they undergo growth arrest, apparently entering a quiescent phase. We do not yet know how long the 

cells can remain in this state. This is accompanied by a corresponding shift in the expression of cell cycle 

and apoptosis genes (M. Rieber, M.S. Rieber, and D.R. Welch, manuscript submitted). These data 

suggest that metastatic cells can thrive under conditions which favor apoptosis for normal cells. While 

the nonmetastatic cells do not thrive under these conditions, they can apparently tolerate it. This finding 

has implications not only for the function of melanoma metastasis suppression, but perhaps for 

understanding occult disease as well. 

Taking all of these results together, our working hypothesis is that KiSSl controls metastasis at a 

terminal step in the metastatic cascade (i.e., after arrest in the microvasculature). Preliminary data 

support this contention. Metastatic C8161 cells and nonmetastatic neo6/C8161 cells have been 

engineered to produce Enhanced Green Fluorescent Protein (GFP). Kinetic studies indicate that the 

nonmetastatic cells arrest in the lung, but do not proliferate (S.F. Goldberg, J.F. Harms and D.R. Welch, 

manuscript in preparation). Whether the occult cells are viable and capable of eventually forming 

metastases is not known. Certainly, previous experiments in which several months elapsed following 

injection without development of macroscopic metastasis, would argue that this is not the case. However, 

additional studies are underway to explore this possibility. 

Clues into KiSS 1 function can be gained by comparing nucleotide and amino acid sequences to 

known genes/proteins in the databases. KiSSl encodes a novel gene that encodes a mostly hydrophilic 

protein of 145 amino acids (Mr« 15.4 kDa) which contains several consensus phosphorylation site motifs. 

Based upon the sequence information alone, we hypothesized that KiSSl is a cytoplasmic signaling 

molecule. We have initiated three parallel strategies for assessing KiSSl mechanism of action. 

Generation of site-directed and truncation mutations is underway, but the data are too preliminary to 

report. Subcellular localization studies utilizing chimeric KiSSl »GFP suggest that KiSSl is indeed 

located in a cytoplasmic compartment (J.F. Harms, S.F. Goldberg and D.R. Welch, manuscript in 

preparation). More detailed studies are underway to determine which compartment(s). Finally, yeast two 

hybrid experiments using KiSSl as "bait" have been used to identify interacting proteins. Among the 

candidate interactors identified in this screen was the 0 isoform of 14-3-3, a ubiquitous protein 

implicated in various signal transduction pathways. 14-3-3 family members have been associated with the 

formation of protein complexes, and are known to bind phosphoserine residues [23-25]. Other genes 

identified encode 1) a protein containing a tetratricopeptide repeat domain, which is likewise associated 

with the formation of protein complexes and shares significant structural homology with the binding 

region of 14-3-3 [26], and 2) a human HLA-B associated transcript [27]. Several novel putative 
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interactors have also been identified (S.F. Goldberg, J.E. Hopper and D.R. Welch, unpublished 
observations). Collectively, these data are consistent with KiSSl functioning in signal transduction. 

Surprisingly, the KiSSl gene is not encoded on chromosome 6. Rather it maps to chromosome lq32, 
suggesting that the gene is regulated by genes on chromosome 6. Moreover, the data strongly suggest that 
intact KiSS 1 was present and functional in the metastatic C8161 and MelJuSo cell lines, but is not 
expressed. From this, one can infer that the defect in these cells is loss of a KiSSl transcriptional 
regulator. The identity of the regulator is still unknown although genomic sequence has recently been 
identified [28] (R.S. Samant, unpublished observations). However, some clues exist. KiSSl mRNA is 
undetectable in a highly metastatic C8161 cell line into which an exogenous human chromosome 6 with a 
complex deletion involving 6ql6.3-q23 has been introduced [19]. This result suggests that genes encoded 
within 6ql6.3-q23 are involved in regulation of KiSSl expression. 

Expression of KiSSl has been evaluated in various normal human tissues by RNA blotting. 
Abundant KiSS 1 transcript was found in the placenta, with weak expression evident in the kidney 
(detectable only after long exposure) and pancreas. The transcript sizes detected in pancreas (0.8 kb) and 
kidney (0.9kb) were different than that in placenta (1.0 kb) suggesting the possibility of tissue-specific 
alternative splicing or processing. Probing a human RNA master blot (Clontech, Palo Alto, CA) which 
contained RNA samples from 50 different human tissues showed a similar expression pattern, with 
additional weak hybridization shown for brain (whole, hippocampus, occipital lobe, substantia nigra), 
and fetal thymus, kidney, spleen, lung, and liver (Md. J. Seraj and D.R. Welch, unpublished 
observations). A zoo blot was probed with full-length KiSS 1 cDNA to assess whether the KiSS 1 gene (or 
family members) are present in other species. The probe hybridized to distinct DNA bands in several 
species, including cow, dog, mouse, rat, and chicken (S.F. Goldberg and D.R. Welch, unpublished 
observations). This suggests that KiSSl is evolutionarily conserved and may even suggest that it is 
involved in controlling metastasis in other species. 

KiSSl was not the only candidate metastasis suppressor found in the subtractive hybridization 
experiments. Seven candidate metastasis-suppressor cDNAs were identified with quantitatively (our 
arbitrary cut-off was £ 10-fold) or qualitatively higher levels of expression in the non-metastatic variants. 
Four of the sequences represented known genes, including HMG-1(Y), AP-2A, and a novel isoform of 
Nucleophosmin B23. All of these genes are involved in transcriptional regulation. The forth gene, 16A7, 
is a partially sequenced cDNA fragment of unknown function [20]. Three of the identified cDNA clones, 
including KiSS 1 had no significant homology to known genes. 

Although clinical correlations have not been established for KiSSl in human cancer specimens, the 
biological data are intriguing and promising. For melanoma, in particular, the need for more accurate and 
less subjective markers to discriminate benign from malignant lesions (i.e., radial growth phase from 
vertical growth phase) is essential. Recent studies have shown a high level of discordance among the 
preeminent dermatopathologists, demonstrating clearly how difficult this problem is [29-31]. 

Breast carcinoma metastasis-suppressor genes 
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The genetic underpinnings of breast cancer development and progression are even more complex in 
that they are in melanoma. Nonetheless, some patterns of karyotypic abnormality accompanying 
acquisition of malignant characteristics have emerged. Among them, loss of heterozygosity (LOH) 
involving the long and short arms of chromosome 11 has been observed frequently in late-stage breast 
carcinomas (reviewed in [11]). To determine whether chromosome 11 harbors a human breast carcinoma 
metastasis-suppressor gene, studies analogous to those performed in melanoma were initiated. 

Microcell-mediated chromosome transfer of chromosome 11 into the metastatic human breast 
carcinoma cell line MDA-MB-435 resulted in greater than 95% suppression of metastasis [32]. It is 
important to note that all of these studies were done following injection of MDA-MB-435 into the 
mammary fat pad. This cell line infrequently metastasizes following intravenous injection [33]. As in the 
melanoma experiments, tumorigenicity was not inhibited in the neol 1/435 hybrids. 

Since LOH had been described for loci at 1 lp 15 in breast carcinoma [34-36] and since the KAI1 
prostate metastasis-suppressor gene mapped to approximately the same region [37; 38], we tested 
whether KAI1 might be the metastasis suppressor implicated in the microcell transfer experiments. We 
also asked whether the KAI 1-related gene, TAPA1, mapping to the same region might be responsible 

[17]. 

Both KAI1 and TAPA1 protein expression were evaluated by Western blotting and found to be more 
highly expressed in the neol 1/435 hybrid cell lines. However, transfectants of MDA-MB-435 having 
full-length KAI1 cDNA did not exhibit decreased metastatic potential. Interpretation was complicated 
since the metastases expressed lower KAI1 than the primary tumor or the corresponding cells in culture. 
Moreover, the KAI1 protein appeared to be differently glycosylated in the transfectants than in the 
neol 1/435 hybrids. Thus, using functional data as a criterion, it is still not certain whether KAI1 is a 
bonaflde human breast carcinoma metastasis suppressor gene. However, KAI1 expression levels did 
appear to correlate with breast tumor progression at the mRNA level [39]. 

A modified differential display approach was undertaken to identify metastasis suppressor genes in 
neol 1/435 hybrids. This series of experiments was more difficult than the melanoma studies for the 
following reasons. First, the metastasis suppression was not complete. As a result, the impact of 
heterogeneity on differential gene expression complicated the differential display. To compensate equal 
mixtures of mRNA from four neol 1/435 clones were compared to parental MDA-MB-435. Since the 
latter was not clonal, the impact of "noise" was decreased. 

Six candidate genes which were expressed >5 fold more in neol 1/435 hybrids versus metastatic, 
parental MDA-MB-435 cells were identified [40]. Three of the cDNAs represented novel genes (8A3, 
G1A2, F5A3) while the other three cDNAs were homologous to known genes (N-acetylgalactosamine 6- 
sulphatase, adenine phosphoribosyltransferase and hexokinase ET). Full-length cDNAs of the novel genes 
have been isolated, introduced into a mammalian expression vector. Experiments to directly test their 
effects on metastatic potential are underway. 
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Metastasis is defined as the formation of tumors that are discontinuous from the primary 
tumor. These secondary tumors can be at nearby or distant sites and can form following 
dissemination of cells via lymphatic, hematogenous, coelomic cavities or epithelial cavities 
(Willis 1973). The most common routes for metastatic spread are lymphatic and hematogenous 
metastasis; so, secondary tumor formation via those routes will be the focus in this chapter. 
However, it must be noted that these routes are not necessarily the common ones for spread of 
some tumor types (e.g., ovary (Cannistra 1993)). 

For a cell to successfully colonize a secondary site, it must complete every step of a complex, 
multistep cascade (Fidler & Radinsky 1990; Radinsky & Fidler 1992). Malignant cells invade 
adjacent tissues and penetrate into the lymphatic and/or circulatory systems. Then tumor cells 
detach from the primary tumor and disseminate. During transport, cells travel individually or as 
emboli composed of tumor cells (homotypic) or tumor cells and host cells (heterotypic). At a 
secondary site, cells or emboli either arrest because of physical limitations (e.g., too large to 
traverse a capillary lumen) or by binding to specific molecules in particular organs or tissues. 
Once there, tumor cells then proliferate either in the vasculature or extravasate into surrounding 
tissue (Chambers, et al. 1995; Koop, et al. 1996; Luzzi, et al. 1998). To form macroscopic 
metastases, cells must then recruit a vascular supply (Ellis & Fidler 1995; Folkman 1995; Kohn 
& Liotta 1995; Rak & Kerbel 1996; Weinstat-Saslow & Steeg 1994; Weinstat-Saslow, et al. 
1994) and respond appropriately to the tissue's environmental milieu by proliferating (Nicolson 
1994; Radinsky 1995a; Radinsky 1995b). Less than 0.1% of cells that intravasate survive to form 
clinically detectable, macroscopic metastases (Fidler 1970; Tarin, et al. 1984). At which step(s) 
of the metastatic cascade circulating tumor cells commonly succumb is debatable (Chambers, et 
al. 1995; Koop, etal. 1995; Koop, etal. 1996). 

The very nature of the metastatic process dictates that the organization of this chapter differ 
from other chapters dealing with in vitro studies. At the outset, it is important to acknowledge 
that there are as many variations for how to study metastasis in vivo as there are people doing 
them. While the chapter will conclude with specific technical recommendations, most of the 
chapter will outline the theoretical considerations and rationale for experimental design and 
interpretation of metastasis assays. 

Why study metastasis in vivo? 

Metastasis is not equivalent to invasion, adhesion, growth rate, susceptibility to immune cell 
killing, or any of the many steps in the metastatic cascade. These processes are necessary for 
successful colonization of secondary sites, but they are not sufficient for a cell to be metastatic. 
Failure to distinguish between individual steps from the complete process of metastasis has 
contributed greatly to confusion and misinterpretation in the scientific literature. Just because a 
cell line is highly invasive or adheres strongly to extracellular matrices does not necessarily 
translate to its having the ability to metastasize. Yet, this type of faulty extrapolation is common. 

Despite the wealth of useful information than can be gleaned from in vitro assays measuring 
a step(s) in the metastatic cascade, the only method for assessing metastatic potential involves the 
use of in vivo models. In vitro models are simply not of sufficient complexity to recapitulate the 
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multitude of steps of the metastatic process. This is not to demean the usefulness of in vitro 
models. To the contrary, they are extremely useful because in vitro studies minimize or eliminate 
variables that complicate interpretation, contribute to inter-experimental variability, and cloud 
model development. Other chapters in this volume will focus on the proper use of and 
interpretation of in vitro assays of adhesion, invasion, etc. The focus of this chapter will be on the 
methodologies used to study metastasis in vivo. Parallel studies utilizing both in vivo and in vitro 
approaches are powerful strategies for dissecting the biochemical and molecular basis for cancer 
metastasis. 

Another common issue relates to the relationship between rumorigenicity and metastasis. 
They are distinct phenotypes. Tumorigenicity is a prerequisite to metastasis, but metastasis is a 
property of only a small portion of cells within a neoplasm (reviewed in (Chambers, et al. 1995; 
Fidler & Nicolson 1987; Luzzi, et al. 1998; Weiss 1990)). Metastatic cells represent a 
subpopulation having additional capabilities to those required for uncontrolled growth. So, in 
order to study metastasis, models designed specifically for this purpose are necessary. Moreover, 
the appropriate use of these models is required. 

What defines an appropriate model of metastasis? 

As long as a model allows testing of a defined hypothesis, its use is appropriate. However, 
the quality of the model for emulating the pathobiology of human disease determines whether the 
model is relevant. Relevance is difficult to define as all models are inadequate for studying some 
aspects of metastasis. It is beyond the scope of this chapter to evaluate the validity of individual 
models. Readers are referred to other reviews which more adequately cover this area (Welch, et 
al. 1986; Welch 1986; Welch 1997). 

Two criteria must be met if a model is to be considered useful for studying metastasis. First, 
one must use metastatic cells. Unfortunately, it is still commonplace that many studies utilize 
nonmetastatic cells for studies of metastasis. The primary reason for this is the rationalization 
that if cells are derived from metastases, they are de facto metastatic. This conclusion does not 
necessarily follow. For example, virtually all human breast carcinoma cell lines were isolated 
from metastases or pleural effusions; however, few (e.g., MDA-MB-435 and MDA-MB-231) 
reproducibly form macroscopic metastases in a majority of immunocompromised mice (Sung, et 
al. 1998). Additionally, some investigators started their studies with metastatic cells, but the 
conditions under which the cells were maintained rendered them nonmetastatic. This does not 
necessarily mean that cell culture maintenance was flawed. Rather it could simply reflect the 
inherent phenotypic instability of tumor cells (Cheng & Loeb 1993; Nowell 1976). Nonetheless, 
phenotypic instability and inconsistent culture conditions have resulted in several variants of 
cells with the same name, but profoundly different biologic properties. Therefore, it is incumbent 
upon every investigator to replicate previously published experiments in his/her laboratory prior 
to initiating further studies. This point cannot be overemphasized. 

The second criterion is that tumor cells must be compatible with the animal model. This is 
analogous to Paget's "Seed and Soil" hypothesis (Paget 1889). This parameter may explain the 
difficulties in obtaining relevant models for certain tumor types and/or sites of metastatic 
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colonization. 

Cell lines 

The most critical component for the study of metastasis is metastasizing cells. Since most 
people obtain their cells from cell culture, it is important to outline some of the criteria for the 
proper preparation and maintenance of those cultures. Details are omitted regarding verification 
of species of origin (karyotype, isozyme expression, etc.), tissue of origin (surface markers, 
enzyme expression patterns) and absence of opportunistic infections. It is presumed that such 
characterization will be done by readers of this volume before any studies are undertaken. 
Another assumption is that the conditions used to culture the cells have been optimized. That is, 
the cells are not allowed to undergo stress due to neglect. If this happens, unintended selection 
will have occurred and stability of cellular behavior cannot be ensured. The third assumption is 
that the culture conditions used are standardized. That is, cells will be cultured under identical 
conditions (e.g., same medium, culture plates, serum type and concentration, detachment 
procedures, etc.) to those utilized in previously published papers. Although the latter is 
intellectually apparent, it is least the one least adhered to by investigators new to the metastasis 
field. The following section outlines the reasons why this parameter deserves focused attention of 
an investigator. 

Cells should never be used unless they are at least 90% viable. Dead cells can modify the 
behavior of viable cells. Fidler, using B16 melanoma cells, showed that presence of lethally 
irradiated cells within an inoculum greatly changed metastatic potential (Fidler 1973). This 
situation is reminiscent of the so-called feeder layer or Revesz effect seen in survival curve data 
(Puck, et al. 1956; Revesz 1958; Revesz 1956). Yet the mechanisms are not known. 

Even when culture conditions are optimized and great care is taken to minimize iatrogenic 
effects, tumor cell populations display greater genetic instability than their normal counterparts. 
Metastatic cells are no exception. At diagnosis, tumors are already complex mixtures of cells 
despite the fact that the vast majority of tumors are clonal in origin. Among the earliest 
detectable changes in transformed cells (anchorage-independent growth, not contact-inhibited, 
and immortal) is genetic instability (reviewed in (Greller, et al. 1996; Heppner & Miller 1997; 
Tlsty 1997)). Even before they become tumorigenic, transformed cells display genomic 
instability that is apparently the driving force for further progression. Genomic plasticity is 
crucial for the generation of intratumoral heterogeneity (Cheng & Loeb 1993; Tlsty 1997; Welch 
& Tomasovic 1985). Heterogenous populations are subjected to selection pressures that drive 
evolution toward increasingly malignant characteristics (i.e., invasion and metastasis). Besides 
the inherent differences between cells at the genetic level, cells also respond to signals from the 
host and other tumor cells. Thus, it is common to observe phenotypic drift over time (reviewed in 
(Nowell 1976; Welch & Tomasovic 1985)). This change is often gradual, presumably as 
proportions of different clones change within the population, but the rate and direction of drift 
are clone-dependent. To minimize the impact of phenotypic drift (since there is currently no 
know way to eliminate it), behavior must be periodically compared to a baseline. When 
behaviors change (i.e., when metastatic potential increases or decreases, or when distribution of 
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metastasis is altered), frozen aliquots from a lower passage should be retrieved and used. As long 
as metastatic potential does not change within that interval, use of cells is acceptable. 

Further complicating the situation is a series of experiments which show that "trivial" culture 
conditions can profoundly affect metastatic potential of cells ((Welch 1997) and references 
therein). Examples of culture conditions that affect metastatic potential or metastasis-associated 
phenotypes include pH of the culture medium (Martinez-Zaguilan, et al. 1998), the type of 
medium in which the cells are grown (Prezioso, et al. 1993) and confluence (see (Welch 1997) 
and references therein). 

The number of metastases in patients and in animal models is proportional to the number of 
tumor cells present (i.e., primary tumor size). This correlation is imperfect, but still a reasonably 
good rule of thumb (Glaves 1983; Hejna, et al. 1999; Liotta, et al. 1974). Recall that Tarin and 
colleagues demonstrated that the mere presence of tumor cells in the circulation does not always 
portend development of metastases. Perhaps a more critical parameter is the number or 
proportion of tumor cell-containing emboli in the blood (Fisher & Fisher 1967; Fisher & Fisher 
1967; Lane, et al. 1989; Zeidman & Buss 1952). This has been shown in experimental systems. 
Specifically, the number and size of the emboli determined the frequency and efficiency of 
metastasis (Fidler 1973; Liotta, et al. 1976; Updyke & Nicolson 1986). These results demonstrate 
the need to control the inoculum, specifically, single cell suspensions should be used. To achieve 
predominantly single cells, the majority of clumps can be dissociated by gentle pipetting. This is 
maximized by the use of smaller bore pipets. However, it is important that the bore not be too 
small since cell killing can occur if the diameter is too small. Another condition that maximizes 
single cells is the use of ice-cold media or saline throughout the cell preparation steps of the 
procedure. The number and size of emboli increases as temperature rises. And finally, cell 
clumping is a time-dependent phenomenon, necessitating that inocula-containing syringes be 
prepared immediately before injection (Updyke & Nicolson 1986). An estimate of cell clumping 
can easily be determined by processing cells exactly as would be done for injection, except that 
they are delivered into a small dish and examined under a microscope. Single cells and clumps of 
various sizes can be counted directly. 

Cells are loaded into the syringe when no needle is in place. The negative pressure combined 
with the relatively small bore of a needle causes damage and death to a relatively large number of 
cells. Of course, the sensitivity of cells to this particular manipulation is cell line-dependent. 
Until proven otherwise, it is better to be safe than sorry. As soon as the inoculum is loaded into 
the syringe, This makes the subsequent process of injection easier since it is easier to see the 
amount injected. 

To obtain suspensions of mostly viable single cells, the methods used to obtain the cells from 
a culture are crucial. For cells growing in suspension, the technique is simple washing and 
dilution in an appropriate inoculation fluid (i.e., isotonic, non-allergenic). However, for adherent 
cultures, other methods must be employed. Scraping cells followed by gentle pipetting, filtration 
and/or sedimentation has been used but the yields can be inconsistent. Viability and proportion of 
single cells can be suboptimal using this approach (D.R. Welch, personal communication). For 
these reasons, enzymatic or chemical detachment are more commonly used. 

The most common variations involved solutions containing the proteolytic enzyme trypsin 
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(0.05%-0.25%) or the chelating agent ethylenediaminetetraacetate (0.5-5 mM EDTA). 
Detachment times vary from less than one minute to more than one hour and this must be 
determined empirically. However, it is important to emphasize that exposure to any detachment 
agent be minimized. Prolonged treatment affects survival and metastatic potential. In the same 
vein, failure to remove all cells from a plate imposes a selection for weakly adherent cells which 
have different survival, growth and metastatic potentials than strongly adherent cells (Akiyama, 
etal. 1995; Albelda 1993; Behrens 1993; Hart, etal. 1991; Roos 1991; Tang & Honn 1994; 
Weiss 1994). And while the method of detachment may seem trivial, it is not. Metastatic 
potentials are profoundly affected by the conditions chosen and the magnitude and direction of 
the change are cell line-dependent (Welch 1997). So, until otherwise determined, conditions for 
cell lines received from another laboratory should not be altered. And, when a cell line is being 
developed and characterized, systematic evaluation of these conditions would be recommended. 
This notion is illustrated by a recent experience in Dan Welch's laboratory. Following 
transfection of human breast carcinoma cells with a candidate metastasis-suppressor gene, the 
cells, which are routinely subcultured using a mixture of trypsin and EDTA, became exquisitely 
sensitive to the presence of trypsin. In fact, even minuscule amounts of trypsin proved toxic (Md. 
J. Seraj and D.R. Welch, unpublished observations). 

Once a properly diluted and a single cell suspension of viable cells at the "correct" level of 
confluence is obtained, there is yet another parameter that should be controlled. Suspensions 
should be maintained in polypropylene containers rather than polystyrene. Typically, tumor cells 
adhere better to the latter and the number of cells being injected can change as cells adhere to the 
walls. 

Considerations regarding animals 

Ultimately, the decision of which host to use is determined by the metastatic cells to be 
evaluated. Initially, immunologic considerations predominate the considerations. A few rules of 
thumb apply. 

Whenever possible, syngeneic animals should be used. It is intuitively obvious that tumor 
development and progression are most closely recapitulated in syngeneic mice, more so in 
autochthonous models (Potter, et al. 1983; Price, et al. 1984). Syngeneic models are those in 
which tumor cell lines are derived from the same inbred strain. Autochthonous models are those 
in which the tumor arises within a host and the experiment is carried out in that host. The latter 
can be spontaneous tumors, carcinogen-induced tumors or tumors that arise in knockout, knock- 
in or animals. The major limitation to the use of autochthonous models relates to the large 
number of animals required to achieve statistically valid interpretation. This issue mostly relates 
to the incidence of tumors developing and the proportion of those which develop metastases. The 
use of genetically engineered animals may overcome these limitations (Webster & Müller 1994); 
however, the number of transgenic models that metastasize is still relatively limited. Table 1 lists 
the currently available transgenic and knockout mouse cell lines which reportedly metastasize. 
Readers are cautioned that this list is neither exhaustive nor does it imply a recommendation. 
While the use of transgene and specific gene knockouts holds great promise, a great deal more 
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research is required to determine the impact upon our understanding of the metastatic process. As 
well, more studies are required to demonstrate that the models mimic the pathobiology of human 
disease. Of some concern is whether more subtle aspects of the metastatic process will be 
discernable in these systems. 

Analysis of tumor growth and metastasis of human cancers requires the use of 
immunodeficient animals. The most common xenograft host is the athymic mouse (nu/nu, T-cell 
deficient), also known as the "nude" mouse. Xenografts generally retain morphologic and 
biochemical characteristics following transplantation. Unfortunately, not all tumor types appear 
amenable to growth in athymic mice, making this host suboptimal. To some extent, this is 
alleviated with the availability of other immunodeficient strains such as the SCID (xid, T-cell and 
B-cell deficient), beige (bg, NK cell deficient) or mice with a combination of immune 
deficiencies. Intuitively, one would predict that metastatic potential would inversely correlate 
with relative immunodeficiency, this is not always the case (Clarke 1996; Garafalo, et al. 1993; 
Mueller, et al. 1991; Phillips, et al. 1989; Xie, et al. 1992). To date, there is no certain method to 
predict behavior in each strain. 

Regardless of strain, it is crucial that all animals are tested and found to be free of infections 
with endoparasites (pinworm, tapeworm,....), ectoparasites (lice, mites,...), viruses (minute 
mouse virus, mouse hepatitis virus, hepatitis, pneumonia virus,...), bacteria (Pseudomonas, 
Staphylococcus,...) and Mycoplasma. Infections can profoundly affect experimental outcome. 
Therefore, sentinel animals should be tested frequently (monthly or bi-monthly) for infestation by 
opportunistic pathogens using sentinel animals from every animal room throughout the facility. 
"Routine" animal maintenance conditions (caging, light/dark cycles, diet, water chlorination, 
etc.) are also important and it is incumbent upon each investigator to monitor animal conditions 
throughout the course of the experiment. 

Another consideration is natural killer (NK) cell activation. In short, metastasis has been 
shown to correlate inversely with NK activity (Hanna & Schneider 1983; Hanna 1982; Hanna & 
Fidler 1980; Hanna 1985; Urdal, et al. 1982). Since young mice (3 wk) have lower NK activity 
than older (6-8 wk) mice (Hanna, et al. 1982; Hanna 1982; Pollack & Fidler 1982), there is 
greater likelihood for observing metastases in younger, rather than older, mice. Generally, use of 
young mice is recommended if metastasis is a desired end point (Fidler 1986). 

Site of injection 

Animal models for metastasis typically involve two approaches. The first involves 
inoculation of tumor cells into tissue sites (i.e., subcutaneously (s.c), intradermally (i.d.), 
intramuscularly (i.m.), or into specific organs or tissues (e.g., mammary fat pad (m.f.p.)) which 
results in the formation of a local tumor from which spontaneous metastases eventually form. 
The second approach bypasses local tumor growth and intravasation by introducing tumor cells 
directly into the vasculature (usually intravenously (i.V.), but also intra-arterially (i.a.) or intra- 
cardially (i.e.)). This results in formation of experimental metastases. Both methods have 
contributed to our understanding of the multigenic, multistep metastatic phenotype; however, the 
experimental metastasis assay has been maligned by some. While there are valid reasons for 
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questioning the direct vascular injection of tumor cells (reviewed in (Welch, et al. 1983; Welch 
1997), there are equally cogent assertions that this model is appropriate. It is crucial, however, to 
establish whether results from both assays are equivalent. An example where distribution of 
metastases is significantly different depending upon route of injection involves use of the MDA- 
MB-231 human breast carcinoma cell line. Intravenous injection produces lung metastases with 
occasional extrapulmonary metastases. However, inoculation directly into the left ventricle 
results in formation of osteolytic metastases in the long bones, a condition rarely seen in mice 
(Guise & Mundy 1998; Rabbani, et al. 1999; Yang, et al. 1999; Yin, et al. 1999; Yoneda, et al. 
1994), but common in human breast carcinomas. 

Some argue that bolus inoculation of thousands of tumor cells directly into the vasculature 
does not reflect the situation in humans; however, quantification of tumor cells in patient blood 
indicates that numbers between 104 to 107 are not unreasonable (Tarin, et al. 1984; Willis 1973). 
Indeed, mere presence of large numbers of tumor cells in the blood does not necessarily mean 
that macroscopic metastases will develop (Luzzi, et al. 1998; Tarin, et al. 1984; Weiss 1990). 
Perhaps the more relevant concern is the condition of the tumor cells at the time of injection and 
the site at which cells enter the vasculature. 

Although injection of tumor cells into the vasculature results in wide distribution of tumor 
cells throughout the body (Chan, et al. 1988; Juacaba, et al. 1989; Potter, et al. 1983), the most 
cells interact with and are arrested in the first capillary bed encountered. It follows, then, that the 
site of injection can be used to enhance development of metastases at a particular organ. This 
strategy has been taken advantage of during the selection of subpopulations with increased 
propensity to colonize a particular organ (Chambers, et al. 1982; Chambers & Wilson 1988; 
Fidler 1973; Giavazzi, et al. 1986; Kawaguchi, et al. 1983; Miner, et al. 1982; Nicolson, et al. 
1989; Sargent, et al. 1988). Intravenous inoculation into the lateral tail vein is the most common 
route of injection for the experimental metastasis assay. As expected, the typical site colonized is 
at the first capillary bed encountered - lung. 

A great deal of attention has been recently afforded the orthotopic injection of cancer cells. 
Even a cursory review of the literature shows that most investigators have injected tumor cells 
subcutaneously. The reasons are simple - injections are convenient, tumor monitoring and 
measuring are convenient and skill level required is minimal. For a substantial number of 
tumorigenicity studies, more complicated protocols are not necessary. However, most tumors fail 
to metastasize from this site (Liotta 1986), despite maintaining morphological and biochemical 
characteristics. It is logical to contend that injection into an orthotopic site is more relevant and 
some investigators contend that orthotopic implantation is essential (Fidler 1990; Fidler 1991; 
Hoffman 1994; Kerbel, etal. 1991; Kubota 1994; Meyvisch 1983). Orthotopic implantation 
(colorectal carcinoma— caecum (Bresalier, etal. 1987; Dong, etal. 1994; Fidler 1991; Fu, et 
al. 1991; Morikawa, et al. 1988; Singh, et al. 1997), renal carcinoma — kidney or subrenal 
capsule (Clayman, et al. 1985; Naito, et al. 1986; Naito, et al. 1982; Singh, et al. 1994), 
cutaneous melanoma — intradermal (Juhasz, et al. 1993; Miele, et al. 1996; Welch, et al. 1991), 
ocular melanomas — intra-ocular or choroidal (Albert, et al. 19880; Niederkorn, et al. 1981), 
bladder carcinomas — bladder wall (Ibrahiem, et al. 1983; Kawamata, et al. 1995a; Kawamata, 
etal. 1995b; Kerbel, etal. 1991; Theodorescu, etal. 1991; Theodorescu, etal. 1990), breast 
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carcinoma — mammary fat pad (Bao, et al. 1994; Kaufmann, et al. 1996; Levy, et al. 1982; 
Miller & Mclnerney 1988; Phillips, et al. 1996; Price 1996; Price & Zhang 1990; Price, et al. 
1990), prostatic carcinoma — prostate (Dong, et al. 1999; Knox, et al. 1993; Rembrink, et al. 
1997; Stephenson, et al. 1992; Yang, et al. 1999), pancreatic carcinoma — pancreas (An, et al. 
1996; Marincola, et al. 1989; Reyes, et al. 1996; Tan & Chu 1985), osteosarcomas — bone 
(Berlin, et al. 1993; Crnalic, et al. 1997; Simon, et al. 1998), gastric adenocarcinoma — stomach 
wall (Fujihara, et al. 1998; Togo, et al. 1995), lung tumors — intrabronchial or intrapleural 
(Howard, et al. 1991; McLemore, et al. 1987; Nagamachi, et al. 1998)) often results in greater 
metastatic efficiency and more relevant colonization patterns (i.e., similar to human cancer) than 
ectopic implantations into age- and sex-matched mice. Hoffman and colleagues further contend 
that surgical implantation of tumor fragments increases metastatic potential compared to 
inoculation of single cells into an orthotopic site (Hoffman 1994). The mechanisms for the 
orthotopic effect remain largely unknown, but insights are forthcoming (Hoffman 1994; Kerbel, 
etal. 1991; Singh, etal. 1997). 

Another common occurrence is injection of tumor cells into multiple sites of the same 
animal. This practice may complicate interpretation since tumor cells communicate with each 
other and profoundly influence the biological behavior of distant cells. Several examples are 
described in the clinical and experimental literature (Brunschwig, et al. 1965; Clark, et al. 1989; 
Fidler & Lieber 1972; Fisher, et al. 1989; Howard 1963; Koike, et al. 1963; O'Reilly, et al. 1994; 
Southam & Brunschwig 1961; Sugerbaker, et al. 1977; Warren, et al. 1977; Woodruff 1990; 
Woodruff 1980)or inhibit (Gorelik, et al. 1982; Isoai, et al. 1990; Torosian & Bartlett 1993). So, 
unless cell-cell communication is being tested, in vivo studies should not employ inocula into 
multiple sites of the same animal. 

Materials Needed 

All of the materials needed for these studies are available through a variety of scientific 
product distributors. Unless specifically warranted, specific brand names are not recommended 
since they vary considerably according to availability. Rather, key manufacturing criteria (e.g., 
construct material or components) are provided. 

It is advised that all the cell inoculum be prepared with 25-50% more volume than the 
amount calculated to be necessary. During the course of injections, volume is lost. Rather than 
cutting it close, it is advisable to prepare extra. Also, during the injection process, trituration of 
the cell suspension (with the needle absent) is encouraged to minimize cell clumping or 
sedimentation. 

Spontaneous metastasis assays 

There are so many variations of the spontaneous metastasis assay that it is impossible to 
describe all of them here. Therefore, two approaches are provided as examples from which the 
reader is to extrapolate to his/her situation. Once cells are prepared according to the criteria 
outlined above, the next decision is site of injection. Unless a bonafide scientifically-based 
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reason is presented, orthotopic injection is recommended. The two examples provided will be 
injection of melanoma cells intradermally and breast carcinoma cells into the mammary fat pad. 
In both cases, the experiments outlined involve mice, but other animals can be used as warranted 
by the model. 

There are two common variations of the spontaneous metastasis assay: (1) animals in which 
the primary tumor remains throughout the experiment; and (2) animals in which the primary 
tumor is removed (to allow time for metastases to grow to detectable size). With regard to the 
former, it is becoming increasingly common that animal facilities will not allow tumors to 
achieve sizes £ 1 cm. Under these conditions, the likelihood of developing metastases, especially 
in xenograft models, is low. The honorable intention of avoiding suffering has an undesirable 
byproduct for the metastasis researcher - studies of late-stage tumor biology becomes 
increasingly difficult, perhaps impossible. Therefore, it is important that two things take place. 
First, institutional animal care and use committees should be educated regarding this issue. 
Emotional arguments must be countered with rational, persuasive, yet still compassionate, 
polemic. Second, appropriate safeguards should be introduced so that euthanasia or treatment is 
initiated at the first sign of distress. 

Some of these issues are alleviated when the primary tumors are surgically removed. Timing 
of this operation is critical. Since tumor size is proportional to the likelihood of developing 
metastases (Price, et al. 1990; Safarians, et al. 1996), one must balance probability that 
metastases will have developed with the complexity of the surgery. Generally, a mean tumor 
diameter (square root of the product of orthogonal measurements) or geometric tumor diameter 
(cubed root of the product of three orthogonal measurements, distinct from mean tumor diameter 
because depth is measured) of 1.0-1.5 cm achieves the balance. If metastases are going to 
develop, they will likely have done so once a tumor has reached this size. And, even in small 
mice, a tumor can be removed without difficulty or post-surgical complications. 

The choice to focus on intradermal and mammary fat pad injection also allows a discussion 
of other anatomic considerations. While obvious for skin, it is less well known that the mammary 
fat pads are extensive and span nearly the entire length of the ventral surface of mature rats and 
mice. There are even vestiges of mammary tissue on the flanks and backs of rats and mice. 
Orthotopic introduction of breast tumor cell lines into these animal could, therefore, be done over 
a wide area. Nonetheless, assurance that one is actually injecting into the mammary fat pad is 
easiest near the teats. Which teat? Kyriazis and Kyriazis (Kyriazis & Kyriazis 1980) indicate that 
there is a so-called "cranial-caudal" gradient that influences tumor behavior. MDA-MB-435 
human breast carcinomas metastasize more often from the thoracic mammary fat pad than from 
the inguinal mammary fat pad (Meschter, et al. 1992). The pattern of metastases also changed - 
tumors in the inguinal region produced extensive intra-abdominal lymph node metastases; 
whereas, thoracic tumors developed more blood-borne metastases. Similar findings with 
melanoma cells have been described (Bani, et al. 1996; Welch 1997). Clearly, the frequency and 
location of metastasis is altered based upon implantation distance from the head (Price 1996). 
Placement also will impact the ability to remove the locally growing tumor if needed. 

Inoculation volumes vary according to the site of injection. Maximum inoculum volume 
should not exceed 100 |il for mammary fat pad injections, 50-100 |il for intrasplenic injections, 
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25-50 |il for intraadrenal injections or 50-100 |il for intradermal injections. Subcutaneous 
injections can utilize volumes as high as 0.5 ml. Keeping the volume below these levels 
minimizes leakage into surrounding tissues and stromal and epithelial damage. On the other 
hand, if the volume is too small, accuracy of injection becomes difficult to control. For volumes 
less than 100 |il, accuracy of delivery volume is best accomplished with a sterile Hamilton 
syringe or tuberculin syringes. The viscosity of solution being inoculated is also important. It is 
therefore recommended that cell concentrations no greater than 1 x 108 cells/ml be used. In 
addition, it is important that the inoculum not leak from the needle tract. While this is not always 
easy to insure, some precautions should instituted to minimize the possibility. 

Injections into the subcutaneous or intradermal sites do not require that the animals are 
anesthetized; however, intradermal injections are significantly easier when the animals are 
unconscious or sedated. Metastatic potential does not seem to be affected by anesthetics at this 
step. Methoxyflurane (Metofane®, Pitman-Moore) inhalation anesthetic is relatively inexpensive 
and effective for this purpose. A homemade anesthesia jar will suffice. Place a small volume of 
Metofane® under a wire screen suspended above the floor of a container with a lid. Mice and rats 
will be unconscious within a 3-5 minutes and the effects will last less than 5 minutes. It is crucial 
that the animals never come into contact with the fluid. Transdermal absorption can be lethal. 
Also, anyone using this inhalant should also be cognizant of the content within the Material 
Safety Data Sheets (MSDS) and the chances of pathologies if overexposed. Hint: construct the 
anesthesia jar with a wire mesh that allows feces to drop as this maintains clean conditions. This 
provides for easier and more complete cleaning of the jar. 

For injection into other sites (mammary fat pad, intrasplenic, other orthotopic sites), a 
mixture of Ketaset-Rompun (Ketamine-HCl, xylazine) injected intramuscularly provides 
excellent results. This anesthetic is also useful for simple surgical procedures like tumor removal. 
A stock solution of 10 ml Ketamine (100 mg/ml) containing 1.6 ml xylazine (20 mg/ml) works 
well for rats. A female Fisher 344 rat weighing 150-180 gm inoculated i.m. with 0.1-0.15 ml will 
remain unconscious for 1-4 hr. For mice, the stock solution should be diluted 1:10 in saline. For 
most mice, we have found that 0.1 ml/10 g body weight is sufficient to anesthetize for 30 min to 
1 hr. However, nude mice require a higher dose 0.15 ml/10 g body weight). The reasons for this 
difference in dosage are not completely understood. 

Figures 2 and 3 show intradermal and mammary fat pad injections, respectively. For 
photographic purposes, the animals were also sedated for intradermal injections. Both types of 
injection used 27 gauge needles attached to tuberculin 1 cc syringes. The single cell suspension 
was prepared in ice-cold Hank's Balanced Salt Solution (however, any isotonic liquid will work 
as long as it does not contain serum). Note that the bevel faces the syringe markings, making it 
easy to see injection volume. Also note that for all of the injections the bevel is oriented so that 
the bore is visible from the top. 

For the mammary fat pad injection, a small incision is made toward the midline of the teat 
using scissors (a scalpel works also) (Figures 2A and 2B). The mammary fat pad is exposed in 
the incision by inverting the tissue using a finger and sliding the needle into the fat pad 
immediately under the teat (Figure 2C). A "blister" forms at the site of injection that is 
translucent and relatively fragile. For this type of injection, slower injection rates are 
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recommended. When the inoculum has been injected, the needle is withdrawn and the incision is 
closed with sterile wound clips (Figure 2D). Removal of the wound clips is usually not necessary 
since they usually fall out with 1-2 weeks. If, however, the clips remain, they pose no adverse 
threat to the animal or the tumor. 

Intradermal injections are similar to mammary fat pad injections in many respects (Figure 3). 
Photographically, the intradermal injection is indistinguishable from a subcutaneous injection. 
The needle is inserted into a skin fold and then reintroduced into the skin from the internal 
surface. For a subcutaneous injection, the needle is simply placed into the skin fold. A hallmark 
of intradermal injection is greater resistance during the process. Subcutaneous injections seldom 
require much pressure to be placed on the plunger. 

If the local tumor (sometimes called the "primary" tumor) is to be removed, the animals are 
anesthetized using the same Ketamine-Rompun solution described above. Adequate sedation is 
easily determined by pinching a foot between ones fingers. If the animal responds, it is not 
adequately sedated. Tumors are removed with a wide margin (highly variable) with scissors or a 
scalpel. At this stage premeditation is key in order to produce a cosmetically and medically 
acceptable result. Deliberate maneuvers utilizing the fewest possible cut angles is best. This 
leaves smooth edges which are less prone to infection and which heal faster. The wounds can be 
sutured (consult a veterinarian for advise regarding the best composition) or stapled with sterile 
wound clips. Depending upon the facility and the site, topical antibiotics can be applied to further 
decrease the chances for infection. Standard aseptic techniques are typically all that is necessary 
for infection not to be a problem. Dissolving sutures is recommended in order to minimize 
follow-up anesthesia. This is particularly desirable if visceral tumors are removed. Wound clips 
are not recommended for internal wound closure. It is not necessary to remove them as they tend 
to fall out shortly after healing is complete anyway. 

Experimental metastasis assays 

The mechanics for experimental metastasis assays are similar to those for the spontaneous 
metastasis assay. As above, volume and viscosity of the inoculum are important parameters. 
Volumes should never exceed 0.2 ml because plasma blood volume exceeds the normal range (± 
10%) such that the distribution pattern of cells is altered. Tumor density is even more critical for 
intra-vascular injections since introduction of emboli can cause death because of vascular 
obstruction. Therefore, the same concentration maximums are also applicable for this type of 
assay. 

The key difference for intravenous injection is the use of a restrainer in which allows the tail 
to extend outside of the enclosure for i.v. injections. Several restrainer designs are available. The 
most common are plexiglass. The preferred design is a hinged stainless-steel tube suspended on a 
weighted pedestal (Please note that the restrainer shown (Figure 1 A) is custom made for D.R. 
Welch.). This unit is autoclavable; however, rinsing with a dilute bleach solution suffices for 
sterilization. A mouse is placed into the tube and enclosed while holding the tail (Figure IE). The 
dark environment has a calming effect (A similar effect can be obtained in the plexiglass 
restrainers by wrapping with electrical tape and attaching a piece of lead to the bottom of the 
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restrainer to increase the weight in order to minimize movement during the injection process.). A 
lateral tail vein is identified and the needle is gently inserted to just below the skin. After 
"tracking" for some distance to minimize leakage and backwash when the needle is withdrawn, 
the cells are injected using a 27 gauge needle fitted onto a 1 cc tuberculin syringe (some prefer a 
26 gg needle) (Figure IE). During the process, a slow, steady rate of injection is the objective. 
For i.v. injections, successful inoculation is evident by the lack of resistance during the process. 
If any resistance is felt, the process should be restarted. It is best to begin injections at the most 
distal part of the tail. If the injection is missed, one can proceed cranially. If one starts at the base 
of the tail, the effort cannot be redeemed without subsequent inocula leaking from the hole(s) 
generated by prior injections. Although i.v. inoculations can be done without the aid of 
procedures to dilate tail veins, the process is facilitated when tail veins are enlarged. This can be 
accomplished by dipping the tails into hot water, swabbing with irritants (such as xylenes) or 
brief warming under a heat lamp (preferred). A high-walled container is useful in order to 
decrease the chances for mice escaping (Figure IB). This is a particular concern for 
"hyperactive" mice such as C57BL/6. Use of a heat (infrared) lamp requires close monitoring to 
assure that the animals do not get overheated and that personnel are careful not to touch the bulb 
since second and third degree burns can result. 

Enumeration ofmetastases 

After injecting the tumor cells. The hardest part of the experiment follows - waiting. The 
interval can be a few days for particularly aggressive cells to several months for others. When a 
new model is being developed, it is important to allow adequate time for metastases to develop. 
Therefore, periodic euthanasia of a subset is advised. If, at any time, animal health appears to 
diminish, the experiment should be terminated for humane reasons. 

For some studies, the mere presence or absence ofmetastases is sufficient; however, 
quantification ofmetastases is often desired. To assess metastasis, animals are killed, organs are 
examined then removed and rinsed in cold water to remove excess blood. 

Euthanasia methodology affects the ease by which metastases can be detected and quantified. 
Three methods have been used by my laboratory — carbon dioxide asphyxiation, cervical 
dislocation and overdose using anesthetics. All methods for euthanizing animals must be 
approved beforehand by Institutional Animal Care and Use Committees (IACUC). Guidelines for 
euthanasia are evolving; so, regular consultation with veterinarians concerning procedures is 
advised. 

Carbon dioxide is not recommended because of a substantial number of petechia in the lungs. 
They complicate counting of tumors, particularly for less inexperienced lab personnel. Cervical 
dislocation works well but sometimes can result in the presence of clots in the lungs. 
Nonetheless, cervical dislocation is still used as the primary method for mouse euthanasia (See 
below). For rats and as an alternative for mice, Metofane inhalation works extremely well. The 
animals fall asleep and then die. Lungs are clear and quantification of metastasis is unimpeded . 
However, this is more expensive. 

Identification of macroscopic metastases is easier if coloration is different from parenchyma. 
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This was a major advantage when studying melanoma; however, this characteristic was not 
available for other tumor types. It is possible to identify metastases in most tissues. They appear 
as clear or white raised gelatinous surface structures. Examination is facilitated by the use of a 
dissecting or stereomicroscope. However, if there are imperfections in the tissue or if the tumor is 
small, errors can occur. Therefore, different approaches have been employed to enhance visual 
contrast between tumor and parenchyma. 

For lung metastases, the trachea can be injected with 1.5-2.5 ml of a 15% solution of India 
ink in neutral buffered formalin (37% formaldehyde (100 ml), tap water (900 ml), sodium 
phosphate monohydrate (4 g), disodium phosphate (6.5 g), pH 7.0). Following sealing with 
surgical suture to prevent leakage; the lungs are then suspended in a beaker of tap water. Tumor 
colonies are then bleached with Fekete's solution (37% formaldehyde (10 ml), glacial acetate (5 
ml), 70% ethanol (100 ml)). Metastases appear as white colonies against a black background. 
While this approach works well, it can be impractical when lots of animals are being necropsied 
simultaneously. Also, it can be done more easily with assistance. Therefore, the preferred method 
is fixation of organs and tissues in Bouin's solution (saturated picric acid (300 ml), neutral 
buffered formalin (100 ml), glacial acetate(20 ml)). After fixation, the tumors appear as white or 
pale yellow spots against a darker yellow background. The use of Bouin's is not without 
problems, however. Tissues become brittle making subsequent confirmatory histology difficult. 
To partially alleviate this problem, we use a mixture of 1 part Bouin's fixative in 5 parts neutral- 
buffered formalin. 

One important consideration when removing tissues is to avoid touching the surface with 
forceps. Striations caused by the teeth complicate visualization of small metastases. Most lung 
(Polissar & Shimkin 1954; Welch, et al. 1983; Wexler 1966; Wood, et al. 1954) and liver 
(Lefreniere & Rosenberg 1986) metastases develop near the surface; therefore, anything which 
compromises visualization will affect quantification. Similar precautions should be taken during 
the preparation of other tissues. 

Random samples of tissues should be submitted for histologic confirmation of 
presence/absence of metastases. Ideally, one could quantify metastasis by serially sectioning 
tissues, measuring the surface area of the lesions, calculating total tumor volume and comparing 
that to the organ/tissue volume (Boeryd, et al. 1966). Unfortunately, this is impractical. The use 
of histologic preparations allows determination of total tumor burden. Most investigators merely 
count the number of metastases. Small lesions are not equivalent to large lesions, however. 
Assessment of metastatic tumor burden should not only include assessment of number, but also 
size/volume of lesions. In the lung, the majority of metastases are spherical (Welch, et al. 1983) 
making this calculation straightforward. Side-by-side comparison of the number and volume of 
metastases can give important information regarding mechanism responsible for developing 
metastasis by different cell lines. 

Although well established, counting and measuring metastasis can be tedious, especially for 
large-scale experiments such as drug screening for antimetastatic compounds. Organ weight can 
offer an option. However, care must be taken to properly control for experimental read-out. 

First, organ weight is not a valid measure alone since this is proportionate to animal 
weight/mass. Therefore, a ratio of organ weight to animal weight should be calculated. Second, 
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measurements must accompany verification that ancillary variables have not caused changes. For 
example, some treatments can cause edema which would increase organ weight thereby 
mimicking tumor burden. Organ weight and metastatic tumor burden correlates well in some 
tumor models (e.g., Lewis lung carcinoma (Gorelik, et al. 1980), but not in others (Welch 1997). 
Therefore, use of organ weights as a measure of metastasis must be confirmed on a case-by-case 
basis. 

Welch has considered development of image analysis software for quantification of 
metastasis (D.R. Welch, personal communication). While this would greatly aid the metastasis 
researcher, three limitations remain - variable "staining" of the metastases; difficulty 
distinguishing organ surface imperfections from bonafide small metastases; and three- 
dimensional nature of organ surfaces. Staining conditions could be worked out with systematic 
evaluation. The imperfection issue is more difficult because such imperfections are not 
predictable or consistent, making programming very difficult. Finally, image analysis is 
dependent upon two-dimensional photographic or imaging systems. Unless multiple images from 
different angles are prepared and assimilated using computer algorithms, this is not likely to be 
cost-effective in the short term. 

Another method for estimating the number of metastatic cells successfully colonizing a tissue 
is accomplished using tumor cells tagged with a drug resistance, genetic or color marker. 
Visualization of metastases can be enhanced if the cells are tagged with the lacZ gene (Brunner, 
etal. 1992; Brunner, etal. 1993; Fujimaki, ef a/. 1993;Kurebayashi,ef a/. 1993; Lin, et al. 1990; 
McLeskey, et al. 1996) or fluorescein (Potter, et al. 1983). The tumor cells appear blue or 
yellow-green, respectively. However, stability of the transfectants in vivo can vary considerably 
and a substantial proportion of macroscopic metastases will no longer be colored or the 
metastases will contain mixtures of colored and colorless cells. Therefore, if coloration were 
used as a criterion, the number and volume of metastasis would be underestimated (Fujimaki, et 
al. 1993). If tumor cells are tagged with a drug resistance or genetic marker, cells colonizing 
different organs can be recovered from dissociated tissues (Miller, et al. 1990) and the proportion 
compared to the inoculum. Similarly, cells labeled with 125IUdR or BrdU can be detected in 
dissociated tissues using a gamma counter or ELISA, respectively (Fujimaki, et al. 1993). To use 
these approaches, prior verification that the label does not affect biological behavior of cells must 
be obtained. 

Cells transfected with enhanced green fluorescent protein (GFP (Cubitt, et al. 1995)) are 
exposed to blue light and the tumor cells fluoresce in the green range. This approach was first 
utilized by others to visualize metastases in vivo (Chishima, et al. 1997; Chishima, et al. 1997; 
Farina, et al. 1998; Yang, et al. 1999; Yang, et al. 1998) and offers a significant increase in 
sensitivity since metastases are more visible. However, a caveat to these techniques deserves 
mention. Presence of single cells in an organ should not be equated with metastasis formation. 
Clinically relevant metastases are those which have grown to sufficient size to disrupt cellular or 
tissue function. This is usually not the case with single cells. As such, single cells do not qualify 
as having completed all steps in the metastatic cascade. That being said, single cells can remain 
as occult disease for several years until stimulated to divide (i.e., complete the metastatic 
cascade). Presence of single cells should not be ignored, but should be categorized differently 
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than macroscopic metastases. 

Statistical considerations 

New investigators are often shocked by the relatively high variability observed when doing in 
vivo studies. While it should not be surprising, given the increased number of variables 
incorporated into the experimental design, the "shock" that accompanies an inadequately 
designed experiment is real. It is critical, therefore, that each experiment include sufficient 
"power" to provide a statistically valid result. For most studies, groups of a minimum of 8-10 
animals are required, but sometimes more are needed. The total number of test animals needed 
can be determined using appropriate power calculations (Heitjan, et al. 1993). 

As with most statistical calculations, increasing the number of measurements increases the 
likelihood that one will obtain normally distributed data. If this is the case, then parametric 
assays can be used. However, for many studies, non-parametric statistics are necessary. The most 
common reasons for needing non-parametric tests are non-normal distribution of low 
metastasizing cell lines (i.e., the numbers of metastases are mostly zero) or counts greater than a 
countable number (i.e., >250 metastases per lung). In both cases, the data are not normally 
distributed. In this situation, the statistic used is the Mann-Whitney U-test which evaluates 
differences between groups using ranks. Readers are encouraged to consult with a statistics 
textbook and/or a statistician prior to beginning a study and when interpreting the results. 

Concluding remarks 

Metastasis assays are, by their very nature, complicated. This is largely because the process of 
metastasis is itself complex and variable. The key elements to successfully studying metastasis 
are careful consideration of the question(s) being asked, quality characterization of the cell lines 
being used for the study, and utilization of appropriate model(s). The technical components of 
the studies require due care, but attention to the details will enhance the likelihood of success. 
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Figure Legends 

Figure 1: Depiction of the set-up and intravenous injection of tumor cells for the 
experimental metastasis assay. Panel A shows a restrainer sitting atop a sterile surgical pad. 
Sufficient needles and syringes are opened and immediately available to complete all of the 
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injections. To the right of the restrainer is a cage which sits underneath an infrared light used to 
cause dilation of the tail veins (Panel B). The syringe is loaded with cell suspension when there is 
no needle attached to the syringe (Panel D). Following syringe loading, the needle is placed with 
the bevel opening aligned with the syringe markings (Panel C). The lateral tail vein is located, 
visualized and the needle is inserted under the skin and "tracked" up the vein (not the dark vein). 
Tail coloration in this photograph is the result of room lighting conditions and proximity to the 
heat lamp. Tail reddening should never occur. 

Figure 2: Key steps involved in orthotopic mammary fat pad injections. An incision is made 
medially to the teat under which the fat pad will be exposed (Panels A and B). The fat pad is 
externalized by inverting the skin using a finger (Panel C). The needle is inserted into the fatty 
tissue below the teat and inoculum injected. Panel D shows the mouse following closure of the 
incision with wound clips. As noted in Figure 1, coloration is distorted due to room lighting, 
flash and sterile hood lighting conditions. 

Figure 3: Intradermal injection of cells into the athymic mouse. The needle is inserted 
subcutaneously and then tracked to injected into the skin from the internal side. A bleb indicates 
that the inoculate is being injected. 

Figure 4: Visualization of lung metastases following staining with Bouin's fixative (lighter 
colored nodules on the surface, Panel A, two lungs to the right of the normal lung) or following 
injection of India ink solution into the trachea followed by destaining with Fekete's solution 
(Panel B depicting white nodules against the background. 
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Table 1: Transgenic and knockout mice which develop metastases 

Transgene or knockout Site of primary 
tumor 

Reference(s) 

Review of transgenic metastasis models mammary (Dankort & Müller 1996) 

Nf2+/- multiple (McClatchey.efa/. 1998) 

p27KIPl'- prostate (Cordon-Cardo,efa/. 1998) 

p53'+TGF-ßl skin (Akhurst & Balmain 1999) 

tg: SV40T prostate (Foster, et al. 1997; Gingrich, et al. 1997; 
Gingrich,eM/. 1996) 

tg: X SCID, beige (immune-deficient mice) pancreas (Gallo-Hendrikx, etal. 1994) 

tg: cryptdin-2-SV40T prostate (Garabedian.efa/. 1998) 

tg: Metallothionein - Ret melanoma (Asai.efa/. 1999) 

tg: MMTV-LTR-mtsl X GRS/A mammary (Ambartsumian, et al. 1996) 

tg: polyomavirus middle T mammary (Ritland, et al. 1997) 

tg: MMTV-Fgf8b mammary, salivary 
gland 

(Daphna-Iken,efa/. 1998) 

tg: Tyr-SV40E + UV irradiation melanoma (Kelsall&Mintzl998) 

tg: Tyr-SV40T retinal pigment 
epithelium 

(Penna, etal. 1998) 

tg: fetal globin-SV40T prostate (Perez-Stable, et al. 1997) 

tg: RiplTag2 X E-cadherin dominant 
negative 

pancreatic (Perl, etal. 1998) 

tg: RET/PTC3 papillary thyroid (Powell, Jr., et al. 1998) 

tg: MMTV-neu mammary (Ritland,efa/. 1997) 

tg: MMTV-polyoma middle T mammary (Ritland, et al. 1997) 

tg: MMTV-polyoma middle T mammary (Lifsted,efa/. 1998) 

tg: keratin-p53172H keratinocyte (Wang, etal. 1998) 

tg: Probasin- SV40T prostate (Kasper, et al. 1998) 

tg:C3(l)-SV40TXp53"/- prostate (Maroulakou, etal. 1997) 

tg: HGF/SF melanoma (Otsuka,efa/. 1998) 
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Note: Several papers utilize tumor cell implants into knockout or transgenic mice with associated changes in metastatic 
potential (Araki, et al. 1997; Biancone, et al. 1996; Bourguignon, et al. 1998; Davies, et al. 1996; De Vries, et al. 1995; 
Driessens, et al. 1995; Eitzman, et al. 1996; Goldfarb, et al. 1998; Hall & Thompson 1997; Kruger, et al. 1998; Lloyd, et al. 
1998; Marvin, et al. 1998). The citations listed above are those in which metastases are observed in the genetically engineered 
mice without inoculation of tumor cells. 
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Table 2: Commonly used metastasis models 

Cell Line Route(s) of Injection Organ tropism Species Reference(s) 

B16 melanoma 

B16-F10 i.V., s.c., i.m. Lung, brain, ovaries, 
intestine 

mouse, C57BL/6 (Fidler 1973) 

B16-F1 i.V., s.c, i.m. Lung mouse, C57BL/6 (Fidler 1973) 

B16-O10 i.v. Ovary, lung, other mouse, C57BL/6 (Brunson & Nicolson 
1979) 

B16-B15b i.v. (carotid) Meninges, lung, other mouse, C57BL/6 (Kawaguchi, et al. 
1983; Miner, et al. 
1982) 

B16-BL6 i.m. (With leg 
amputation) 

Lung mouse, C57BL/6 (Poste,efa/. 1980) 

13 762 A mammary i.p. Lymph node, ascites rat, F344 (Osbakken, et al. 
1986) 

13762NF mammary m.f.p., i.v. Lung, lymph node rat, F344 (Neri, et al. 1982; 
Welch, et al. 1983) 

C8161 melanoma i.v., i.d. Lung, brain, liver, 
ovaries 

human (nu/nu, SCID) (Welch, etal. 1991) 

Co-3 colon colon liver human (nu/nu) (An, etal. 1997) 

Dunning R3327 
prostate 

s,c, lung, lymph node rat, Copehnagen (Isaacs, et al. 1978) 

Esb/Eb lymphoma s.c. Liver, lung, spleen mouse, DBA/2 (Altevogt, et al. 1985) 

F9 teratocarcinoma i.v. Liver, lung mouse, C57BL/6 (Cotte, etal. 1982) 

HRCC kidney lung human (nu/nu) (Naito,efa/. 1986) 

Kl 735 melanoma i.v. Lung mouse, (Volk, et al. 1984) 

Lewis lung carcinoma 
(3LL) 

s.c, i.v. Lung mouse, C57BL/6 (Giraldi,efa/. 1977; 
Gorelik, et al. 1980; 
Gorelik,e?a/. 1982; 
Hilgard,efa/. 1976; 
Young, etal. 1990) 

LOX melanoma i.V., s.c, i.d. Lung human (nu/nu) (Shoemaker, et al. 
1991) 

M24met melanoma i.V., s.c. Lung human (nu/nu, SCID) (Mueller, etal. 1991) 

M4Be melanoma s.c Lung rat (nu/nu) (Bailly & Dore 1991) 

MDA-MB-231 i.e. Bone human (nu/nu) (Sasaki, et al. 1995) 

MDA-MB-231 i.v. Lung human (nu/nu) (Price, et al. 1990) 
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MDA-MB-435 breast m.f.p. Lung, lymph node human (nu/nu) (Price, et al. 1990) 

MDAY-D2 lymphoma s.c, i.v. Liver, lungs, spleen, 
kidney 

mouse, DBA/2 (Kerbel, et al. 1978) 

MelJuSo melanoma i.d., i.v. Lung human (nu/nu) (Miele,efa/. 1996) 

MeWo melanoma i.V., s.c. Lung human (nu/nu) (Ishikawa & Kerbel 
1989; Ishikawa, etal. 
1988) 

MMTV mammary 
tumors 

s.c, i.V., m.f.p. Lung, liver, lymph 
node 

mouse, BALB/c (Heppner, et al. 1978; 
Miller 1981) 

P574 mammary spontaneous Lung, adrenal, ovary, 
kidney 

mouse, C3H (Price, et al. 1984; 
Tarin& Price 1981) 

PAN-12 pancreas pancreas liver, kidney, lymph 
node 

human (nu/nu) (An, et al. 1996) 

ras-transfected NIH- 
3T3 fibrosarcoma 

i.v. Lung mouse (nu/nu) (Chambers & Tuck 
1988) 

RAW117 
lymphosarcoma 

i.v., s.c. Liver, spleen mouse, BALB/c (Branson & Nicolson 
1978) 

SP1 mammary s.c. Lung mouse, CBA (Frost, et al. 1987) 

UV2237 fibrosarcoma i.v. Lung, skin, mesentary mouse, C3H/HeNCr (Kripke, etal. 1978) 

The cell lines listed in this table are not complete, particularly with regard to variants selected from the parental. Since the 
B16 melanoma is the most commonly used metastatic cell line used, the most popular variants are listed with associated 
references. 

Abbreviations used: i.V., intravenous; s.c, subcutaneous; i.e., intracardiac; m.f.p., mammary fat pad; i.d., intradermal; i.p., 
intraperitoneal 

Note: This list of tumors is not exhaustive and is provided only as a resource to identify some commonly used metastatic 
tumor cell lines. 
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, Using microcell-mediated transfer of a normal chromosome 11 into the highly metastatic MDA-MB-435 hu- 
man breast carcinoma cell line, we previously showed that human chromosome 11 contains a metastasis- 
suppressor gene for breast cancer. A known metastasis-suppressor gene, kai-1, and a related family member, 
tapa-1, have been mapped to chromosome 11 p11.2 and 11 p15.5, respectively. To determine if these genes are 
responsible for the metastasis suppression seen in our microcell hybrids, we examined their expression by 
western blot analysis. Although tapa-1 expression did not significantly correlate with metastasis suppression, 
kai-1 production was dramatically increased in the metastasis-suppressed chromosome 11 microcell hybrids 
and unchanged in the metastatic chromosome 6 controls. Transfection of full-length kai-1 cDNA into MDA- 
MB-435 cells resulted in clones that did not have a significantly decreased in vivo incidence of lung metastases. 
However, western blot analysis showed that the primary tumors and the metastatic lesions of the transf ectants 
had decreased levels of kai-1 protein compared with the inoculated cells. Furthermore, several of the transfectant 
clones expressed heavily modified kai-1 protein compared with that of the microcell hybrids. Our data indicate 
that protein modification may affect the normal function of kai-1 in vivo and that a threshold level of kai-1 
protein expression may be necessary for suppression of the metastatic phenotype. Mol. Carcinog. 21:111-120, 
1998.      ©1998Wiley-Liss,lnc. 

Key words: metastasis; suppressor gene; breast cancer; human chromosome 11; microcell hybrid 
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INTRODUCTION 

Loss of heterozygosity (LOH) studies have impli- 
cated several genes on chromosome 11 in the for- 
mation of many tumor types, including breast [1-3], 
cervical [4], lung [5,6], nasopharyngeal [7], and ova- 
rian carcinoma [8], as well as neuroblastoma [9] and 
malignant melanoma [10]. Furthermore, a tumor- 
suppressor gene for Wilms' tumor and a metasta- 
sis-suppressor gene for prostate cancer map to 
chromosome llpl3 and llpl2, respectively [11- 
13], and the llpl5.5 region is under investigation 
for a second sporadic Wilms' tumor gene [14,15]. Ad- 
ditionally, the a2-integrin gene and the ATM (ataxia 
telangiectasia gene), which both map to chromosome 
11, have been implicated in malignancy [16,17]. 
Therefore, studies that help to define the importance 
of genes on chromosome 11 have been among the 
most important for determining molecular events 
leading to neoplasia. Indeed, to fully comprehend 
the mechanisms involved in tumor progression, it 
may be critical to identify changes in gene expres- 
sion on chromosome 11 for all cancer types. 

Different stages of cancer may also be controlled 
by different genes on chromosome 11. For example, 
cytogenetic analyses of metastatic breast tumors have 
shown that chromosome 11 rearrangements often 
appear late in breast cancer [18], suggesting the pres- 
ence of a metastasis-suppressor gene. Previous work 
in our laboratory has shown that introduction of 
human chromosome 11 into the highly metastatic 
breast carcinoma cell line MDA-MB-435 significantly 
reduces the metastatic potential of the hybrid clones 
[19]. Metastasis suppression was not observed with 
the control chromosome 6 microcell hybrids. This 
functional experimental evidence corroborated with 
primary breast tumor cytogenetic findings by also 
indicating that chromosome 11 harbors a metasta- 
sis-suppressor gene for human breast cancer. 
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To date, only a few metastasis-suppressor genes 
have been isolated from the human genome [20]. 
The kai-1 gene, also known as CD82 (C33 antigen), 
maps to llpll.2 and codes for a glycoprotein in the 
transmembrane 4 super family (TM4SF) of proteins 
[13,21-22]. Because it is operative in suppressing 
prostate cancer metastatic ability, kai-1 is also an at- 
tractive candidate for a breast cancer metastasis-sup- 
pressor gene on chromosome 11. In addition, the 
gene for another TM4SF member, tapa-1 (CD81), also 
maps to chromosome 11, at band pl5.5 [23]. Al- 
though tapa-1 has not been implicated in cancer 
suppression, it has been shown to induce cell-cell 
adhesion [24,25], a property often altered in meta- 
static cells [18]. The functions of these TM4SF sur- 
face proteins are largely unknown. Some associate 
with cell-surface receptors and are components of 
signaling complexes [26], whereas others may be 
important for maintenance of cell integrity, prolif- 
eration, and adhesion [27]. Therefore, alterations in 
expression levels of the kai-1 protein, the tapa-1 pro- 
tein, or both could result in acquisition of invasive 
or metastatic ability. 

To determine if either the kai-1 or tapa-1 proteins 
might control human breast metastatic ability, we 
examined their expression by western blot analysis 
in chromosome 11 microcell hybrids, MDA-MB-435 
parental cells, and chromosome 6 controls. We also 
directly tested the role of the kai-1 gene in our sys- 
tem by transfection of kai-1 cDNA into both a mass 
population of MDA-MB-435 and a well-characterized 
subclone. Our data showed a positive correlation 
between increased kai-1 protein production and de- 
creased metastatic ability among the chromosome 
11 microcell hybrids. However, the kai-1 transfectants 
were not significantly altered for metastatic ability. 
The transfectants expressed a more heavily glyco- 
sylated form of the protein than the microcell hy- 
brids did, and there was a decrease in kai-1 protein 
in the primary tumors and metastatic lesions of the 
transfectants. Our results suggest that progression to 
metastasis in breast cancer may occur by a mecha- 
nism that either fails to check the degree of post- 
translational modification of kai-1, downregulates 
kai-1 protein production below some threshold level, 
or involves interactions with other proteins encoded 
by genes on chromosome 11. 

MATERIALS AND METHODS 

Cell Lines 

Chromosome 11 and chromosome 6 microcell 
hybrids were generated as previously described by 
introducing single human chromosomes tagged with 
the neomycin-resistance gene into the highly meta- 
static human breast carcinoma cell line MDA-MB- 
435 [19]. Chromosome 11 microcell hybrid clones 
(neol 1/435.A3, neoll/435.Bl, neoll/435.Dl, and 
neoll/435.El) were derived from fusions using the 

mass population of MDA-MB-435 cells. Chromosome 
6 microcell hybrid clones (neo6/435.7.Al, neo6/ 
435.7.C1, neo6/435.7.E2, and neo6/435.7.Gl) were 
derived from fusions using a subclone (MDA-MB- 
435.sub7) of the mass population. Transfected cDNA 
clones, designated Kail/435.Pickl, Kail/435.Pick 2, 
Kail/435.Pick3, and Kail/435.Pick 4, were generated 
by lipofectin-mediated transfection of the MDA-MB- 
435 cells with the supercoiled 8.2-kb plasmid pCMV- 
kail [13]. Transfectants were also made from a 
subclone of MDA-MB-435 (MDA-MB-435.subl), and 
these were designated Kail/435.subl.Pickl, Kail/ 
435.subl.Pick3, and kail/435.subl.Pick4. The expres- 
sion vector alone was used to generate neo-trans- 
fected control clones, designated neo/435.A8, neo/ 
435.B8, neo/435.C8, neo/435.D8, and neo/435.E8. 
All cell lines were maintained in RPMI and 10% fetal 
bovine serum, and microcell hybrids and transfectant 
clones were also supplemented with 600 ng/mL 
G418. 

Western Blot Analysis 

Cells were harvested from near-confluent T-75 
flasks and lysed according to a previously described 
protocol [21]. Proteins were separated on 12.5% 
nonreducing sodium dodecyl sulphate-polyacryla- 
mide gels containing 20-40 ug of nonreduced sample 
per lane. The protein was transferred to membranes 
(Immobilon-P; Millipore Corp., Bedford, MA) and 
incubated overnight in phosphate-buffered saline, 
0.1% Tween-20, and 10% dry milk before addition 
of antibody for the TM4SF proteins. C33 (kai-1) and 
CD81 (tapa-1) antibodies were detected by using stan- 
dard enhanced chemiluminescence techniques (ECL; 
Amersham Corp., Arlington Heights, IL). The C33 
and TAPA1 monoclonal antibodies were kind gifts 
from Osamu Yoshie and Shoshana Levy, respectively 
[22,28]. 

Because the ß-actin antibody does not hybridize 
to a blot run under nonreducing conditions, load- 
ing-control analysis was accomplished by simulta- 
neously running a second gel loaded with equivalent 
amounts of dithiothreitol-reduced sample. Other- 
wise, treatment of the reduced gel and blot was iden- 
tical to that of the kai-1 western blot. The protein 
levels were quantified by densitometric analysis with 
the NIH Image 1.55 program. 

Polymerase Chain Reaction Analysis 

The presence of full-length kai-1 cDNA in the trans- 
fected cell lines was confirmed by polymerase chain 
reaction (PCR). Genomic DNA was amplified by us- 
ing previously described primers [13] for the cDNA 
insert, yielding an amplicon of approximately 1 kb. 
The PCR solutions contained 400 ng of genomic DNA 
from parental cells and transfectants, standard buffer 
components, and 1.0 mM MgCl2. The reaction con- 
ditions (50 |xL) consisted of 30 cycles at 94°C for 1 
min; 62°C for 2 min; and 72°C, for 2 min. The PCR 
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products were visualized in ethidium bromide- 
stained 2% agarose gels. 

Spontaneous Metastasis Assay 

Cells (1 x 106) were injected into the subaxillary 
mammary fat pads of 3- to 5-wk-old female, non- 
ovarectomized, athymic mice (Harlan Sprague 
Dawley, Madison, WI). The animals were killed about 
3 mo after inoculation when their tumors were 1.5- 
2.0 cm in diameter or when the mice were moribund. 
In some mice, the primary tumors were surgically 
removed at about 60 d, but the animals were not 
killed until 90 d after inoculation to allow existing 
lung metastases to enlarge. Visible lung metastases 
were counted in Bouin's-fixed tissues, as previously 
described [29]. 

Cellular Morphology Analysis 

All cell lines (1 x 106 cells) were plated into T-25 
flasks (Corning, Corning, NY) and photographed 3 
d later. Cell lines were visualized with an inverted 
microscope (Carl Zeiss, Inc., Thornwood, NJ) at 200x. 

RESULTS 

Characterization of kai-1 Expression in Parental 
and Microcell Hybrid Cell Lines by Western 
Blot Analysis 

To determine the kai-1 protein levels of the meta- 
static MDA-MB-435 breast cancer cells and the four 
metastasis-suppressed chromosome 11 microcell 
hybrids, lysates were prepared from each cell line for 
western blot analysis with C33 antibody. As shown 
in Figure 1, almost no protein was expressed in pa- 
rental MDA-MB-435 and MDA-MB-435.subl cells 
(lanes 1 and 2). However, each metastasis-suppressed 
neol 1/435 hybrid (lanes 3-6) showed an increased 
level of kai-1 protein (Table 1) [19]. As was previ- 

ously shown with immunoprecipitation experiments, 
the normal size of the kai-1 protein varies from 40 
to 75 kD; the protein produces one to three major 
bands corresponding to its various N-glycosylation 
states [22]. kai-1 in the chromosome 11 microcell 
hybrids fell within this range (46-56 kD) and had 
the normal two- or three-band pattern. One of the 
hybrids, neoll/435.El, expressed amounts of kai-1 
similar to those of a prostate microcell hybrid line 
(AT6-11-1), which is also suppressed for metastasis 
[13]. These data showed that introducing chromo- 
some 11 into the metastatic breast cell line resulted 
in increased kai-1 protein expression that correlated 
with metastasis suppression (Figure 1 and Table 1). 

To determine if the increase in kai-1 expression 
was specific to chromosome 11 microcell hybrids, 
we also examined the four chromosome 6 cell lines 
that remained metastatic [19]. Figure 2 shows a west- 
ern blot comparing the amount of kai-1 protein in 
three parental cell lines with chromosome 6 and 
chromosome 11 microcell hybrids and «eo-trans- 
fectant controls. Again, the four lanes with lysate 
from the metastasis-suppressed cell lines (neoll/ 
435.A3, neoll/435.Bl, neoll/435.Dl, and neoll/ 
435.E1) had the highest levels of the kai-1 protein. 
Three of four chromosome 6 microcell hybrids (lanes 
4-7) showed kai-1 levels that were not significantly 
greater than those of the parental cells and neo 
transfectants. Interestingly, neo6/435.7.Gl (lane 7) 
showed some increase in kai-1 expression. We pre- 
viously showed that whereas these cells are not sig- 
nificantly suppressed for metastasis, they are the least 
aggressive of the four chromosome 6 hybrid cell lines 
[19]. The kai-1 blot was stripped and reprobed for 
tapa-1 expression, revealing only a slight increase in 
the levels of this protein among the metastasis-sup- 
pressed cell lines. Hybridization of the blot with 

Parental 
Neo11/435 hybrids 

kD 
46-! 

n   A3 B1 D1 E1      AT6.1  AT6-11-1 

Figure 1. western blot analysis of kai-1 protein levels for 
MDA-MB-435 and MDA-MB-435.sub1 parental cells (lanes 1 and 
2, respectively), chromosome 11 microcell hybrids (lanes 3-6), 

8 

and negative (AT6.1) and positive (AT6-11-1) control cell li 
(AT6-11-1 is a metastasis-suppressed chromosome 11 micrc 
hybrid of the highly metastatic AT6.1 prostate cell line.) 
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Table 1. Metastasis Analysis of Transfectants and Microcell Hybrids  
Incidence of Metastases 

Cell Line* 

MDA-MB-435 
Parental cells 
neol 1/435.A3 
neol 1/435.B1 
neo11/435.D1 
neol 1/435.E2 
neo/435.A8* 
neo/435.B8* 
neo/435.C8* 
neo/435.D8* 
neo/435.E8* 
Kai/435.Pick1 
Kai/435.Pick2 
Kai/435.Pick3 

Mean no. of 
Metastases 

16.1 
0.9 
1.7 
0.8 
1.5 
5.2 
7.0 
1.0 
1.5 
2.4 
2.7 
7.1 
8.0 

Range of 
Metastases 

0-130 
0-8 
0-37 
0-6 
0-24 
0-35 
0-37 
0-3 
0-7 
0-9 
0-22 
0-23 
0-67 

Ratio+ Percentage 

28/32 87.5 
3/15 20.0 
2/26 7.7 
6/16 37.5 
3/17 17.6 
9/15 60.0 

12/14 85.7 
9/15 60.0 
9/15 60.0 

10/15   .. 66.6 
16/23 69.6 
14/19 73.7 
16/22 72.2 

*At least three single-cell clones of each group were expanded for inoculation into the mammary fat pads of nude mice with one inoculation site 
per animal. 
tNumber of mice with lung metastases/total number of mice inoculated. All metastases were counted at least 92 d after inoculation, except for 
the neo-transfectant controls, which had to be killed early to prevent compromising animal welfare due to a large tumor burden. The data are 
results from at least two independent experiments. 
*Animals killed early (76d). 

kD 

46- Kai-1 

1    2    3    45    67    89   10   11   12  13 14 

30- TAPA-1 

21.5- 
-fiilr :||||p      «?*«&  i 

1     2    3    4    5    6    7    8    9   10   11   12  13 14 

Figure 2. Relative amounts of kai-1 and tapa-1 proteins in 
the metastatic parental MDA-MB-435 mass population and two 
subclones (lanes 1-3, respectively), metastatic lines neo6/ 
435.7.A1, neo6/435.7.C1, neo6/435.7.E2, and neo6/435.7.G1 
(lanes 4-7, respectively); neo-transfectant controls (lanes 8-10); 
and metastasis-suppressed lines neo11/435.A3, neol 1/435.B1, 
neol 1/435.D1, and neol 1/435.E1 (lanes 11-14, respectively). The 

lanes were loaded with 20 ng of protein, probed with a 1:50 
dilution of C33 antibody, and then stripped and reprobed with 
a 1:1000 dilution of tapa-1 antibody. Protein size is given in 
kDa to the left of each blot. The western blot of ß-actin anti- 
body is a separate blot made from reduced samples and was 
used to assess equal lane loading. 
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ß-actin antibody indicated that the lanes were evenly 
loaded. These data strongly indicate that kai-1 ex- 
pression, and not tapa-1 expression, in the neoll/ 
435 microcell hybrids correlates with the ability to 
suppress metastasis. 

Transfection of the kai-1 Gene into MDA-MB-435 

To determine if the increase in kai-1 protein was 
responsible for the metastasis suppression seen in 
the chromosome 11 microcell hybrids, kai-1 cDNA 
was transfected into the MDA-MB-435 cell line. Iso- 
lated colonies of presumed clonal origin, designated 
Kail/435.Pickl, Kail/435.Pick2, Kail/435.Pick3, and 
Kail/435.Pick4, resulted from transfection of the full- 
length kai-1 cDNA into the mass population of MDA- 
MB-435 cells. Kail/435.subl.Pick 1, Kail/435. 
sublPick3, and Kail/435.sub.Pick4 clones resulted 
from transfection into the MDA-MB-435.1 subclone. 
PCR was used to verify that the insert was success- 
fully transfected into each clone (Figure 3). Five of 
the seven kai-1 transfectants (Figure 3, lanes 3-9) 
showed the expected 1-kb PCR product, which the 
parental cells (lanes 1 and 2) and the «eo-transfected 
control cell lines (lanes 10-14) lacked. The kai-1 
cDNAs of Kail/435.Pick 1 and Kail/435.Pick 3 did 
not amplify to the same extent as that of other 

transfectant clones, and we presume that a full-length 
cDNA copy of the gene was not successfully intro- 
duced into these two transfectants. 

To determine the level of kai-1 expression in the 
transfected clones, each clone was checked by west- 
ern blotting. Figure 3 shows the level of expression 
in several kai-1 transfectants after a short (15 s) en- 
hanced chemiluminescence exposure. Although dis- 
tinct bands were evident, several of the clones had 
protein in a wider size range (40-75 kDa) than the 
microcell hybrids did. This is suggestive of more ex- 
tensive kai-1 protein post-translational modification, 
presumably heavier glycosylation. A longer exposure 
of this blot showed that Kail/435.Pickl and Kail/ 
435.Pick3 (Figure 3, lanes 1 and 3, respectively) ex- 
press levels of the kai-1 protein that are increased 
over the parental cells (data not shown), however 
these two clones express the least amount of kai-1 
compared with the other transfectants. This was ex- 
pected, because PCR indicated that the full-length 
copy of kai-1 might not have been present. Kail/ 
435.subl.Pickl and Kail/435.subl.Pick3 (Figure 3, 
lanes 5 and 7, respectively), had the highest levels of 
kai-1 protein. (The kai-1 transfectants in lanes 6 and 
8 had comparatively low levels of protein and were 
not further examined.) Three of the transfectants 

M 1   2  3 4   5  6  7  8  9 10 11121314 15 16 

Kai/435.Clones 
r 

Pick 
kD   j 
66- 

I 
46- I 

30- 

1 

Kai/435.Sub1.Clones 

4 

8 
Figure 3. Upper panel: kai-1 PCR of MDA-MB-435 and MDA- 

MB-435.sub1 parental cells (lanes 1 and 2, respectively), Kail/ 
435.Pick1, Kai1/435.Pick2, Kai1/435.Pick3, and Kai1/435.Pick4 
(lanes 3-6, respectively), Kai1/435.sub1.Pick1, Kai1/435. 
sub1.Pick3, Kai1/435.sub1.Pick4) (lanes 7-9, respectively), neo- 
transfectants (neo/435.A8, neo/435.B8, neo/435.C8, neo/435.D8, 
and neo/435.E8) (lanes 10-14, respectively), supercoiled kai-1 

plasmid (lane 15), and a water blank (lane 16). The PCR prod- 
ucts of about 1000 bp correspond to cDNA sequence present 
only in the kai-1 transfectants and whole plasmid. M, marker. 
Lower panel: Western blot of the/ca/-7-transfected clones. Lanes 
1-9 each contain 20 |xg of total protein lysate from different 
kai-1 transfectant clones. Seven of the nine clones were desig- 
nated as Picks and expanded for inoculation into nude mice. 
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(lanes 4, 5, and 7) had considerable amounts of pro- 
tein smaller than the expected 46 kDa. This may re- 
sult from inefficient clearing of protein degradation 
products in cells that are overproducing the protein. 
These data show that, unlike our observations with 
the chromosome 11 microcell hybrids (Figure 1), the 
amount of kai-1 protein and the degree of posttrans- 
lational glycosylation vary greatly among trans- 
fectants. Furthermore, because the transfectants 
shown in Figure 3 expressed kai-1, which appeared 
to be more heavily modified than that of the 
microcell hybrids (Figure 1), the kai-1 expression 
from an introduced vector appeared to be qualita- 
tively distinct from that seen after introduction of a 
whole, normal chromosome 11. 

Characterization of In Vitro 
Morphology Differences 

To determine if the variations in kai-1 expression 
and glycosylation affect cell phenotype, the cell size 
and shape in culture of each of the microcell hy- 
brids and transfectants was compared. Because the 
TM4SF proteins are cell-surface molecules, the 
amount of kai-1 expression, the degree of glyco- 
sylation, or both could presumably affect cell-cell 

interactions. Figure 4 shows representative photo- 
graphs of cell lines with lesser amounts of kai-1 (two 
left panels) next to cell lines with greater and more 
glycosylated amounts of the protein (two right pan- 
els). The neoll/435.Dl cells were more compact and 
more spindle-shaped than the neoll/435.El cells. 
Likewise, Kail/435.subl.Pick4 grew much more com- 
pactly in culture, and the cells were smaller than the 
Kail/435.subl.Pick3 cells. In general, for all cell lines, 
there were morphological differences in culture that 
correlated with the expression level and glycosylation 
pattern of the kai-1 protein. Furthermore, popula- 
tion doubling time tended to be higher in those cell 
lines that grew less compactly (data not shown). 
These data indicate that the level of kai-1 expression 
may influence in vitro phenotypic growth charac- 
teristics. 

Metastasis Assay of Transfectant Clones 

We next tested whether kai-1 transfectants 
showed reduced metastatic potential. Transfectant 
clones were inoculated into the mammary fat pads 
of athymic nude mice and assayed for metastatic 
ability. Table 1 lists the metastasis data for the pa- 

Figure 4.    Photomicrographs (200x) of cells growing in 
culture: neol 1/435.D1 (upper left), neol 1/435.E1 (upper 

right), Kai1/435.sub1.Pick3 (lower left), and Kai1/435. 
sub1.Pick4 (lower right). 
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rental cell line, kai-1 transfectants, neo-transfectant 
controls, and chromosome 11 microcell hybrids. 

As with most solid tumors, inherent heterogene- 
ity for metastatic potential existed within the MDA- 
MB-435 parent cell population. As seen with five 
clones transfected with the neo vector alone, the av- 
erage number of metastases per lung varied over a 
large range, whereas the incidence of metastases was 
similar to that of the parental cell line (Table 1). Simi- 
lar results were observed with thekai-1 transfectants, 
indicating no differences between the control neoR- 
transfectants and the kai-1-producing transfectants. 
The only cells that produced significantly fewer lung 
metastases were from the chromosome 11 microcell 
hybrid group (Table 1). Introduction of kai-1 into 
the Kail/435.subl cell line had little effect on its 
metastatic potential (Table 2). This indicated that a 
gene other than the kai-1 gene on chromosome 11 
is important in controlling metastasis in the neoll/ 
MDA-MB-435 model. 

kai-1 Expression in Primary Tumors 

There is one other possible explanation for the lack 
of significant metastasis suppression among the 
kai-1 transfectants. Loss of the cDNA or failure to 
continue expressing kai-1 protein could explain the 
seeming disparity between the western blot analysis 
data and the lack of metastasis suppression in the 
kai-1 transfectants. To test this possibility, locally 
growing tumors were analyzed for kai-1 protein ex- 
pression and compared with inocula. Figure 5 shows 
a western blot of inoculated cells and locally grow- 
ing tumors for three kai-1 transfectants and the MDA- 
MB-435 parental cells. The blot showed a decrease 
in the amount of kai-1 protein in each transfectant 
primary tumor, ranging from 45% (Kail/435. 
subl.Pickl) to 22% (Kail/435.Pick4) (Figure 5). Very 
little protein could be detected in the primary tu- 
mor or the metastatic lesions of the MDA-MB-435 
cells, but the inoculated cells showed the same low 
level (Figure 1). We also observed a 50% decrease in 
the lung metastases of the Kail/435.Pick 4 cell line. 
A comparable analysis of three inoculated neol 1/435 
hybrids (neoll/435.A3, neoll/435.Bl, and neoll/ 
435.E1) with matched locally growing tumor pro- 
teins (Figure 6) showed slightly decreased levels of 
kai-1 (75% in neoll/435.El to more than 500% for 
neoll/435.Bl) for all hybrids. The neoll/435.Bl 
tumor reconstitute showed an unexplained dramatic 

increase in kai-1 expression over that of inocula, as 
did one of the neol 1/435.Dl tumors in a prelimi- 
nary experiment (data not shown). These data show 
that kai-1 expression in the transfectants was con- 
sistently reduced in vivo during tumor progression 
to metastasis, perhaps owing to the heavy glyco- 
sylation. The chromosome 11 microcell hybrids, 
which were metastasis suppressed, generally showed 
no such decrease in kai-1 expression in vivo. Taken 
together, the western blot, transfection, and in vivo 
expression data suggest that kai-1 is a metastasis-sup- 
pressor gene on chromosome 11 for breast cancer, 
and metastasis is permitted only when protein lev- 
els fall below a threshold, when the protein is heavily 
modified post-translationally, or both. 

DISCUSSION 

A previous study showed that chromosome 11 
harbors a strong metastasis-suppressor gene for the 
MDA-MB-435 cell line. Candidate breast cancer me- 
tastasis-suppressor genes on chromosome 11 are 
kai-1 and tapa-1, which code for structurally related 
proteins, respectively mapped to llpll.2 and 
llpl5.5. The kai-1 gene is a particularly attractive 
candidate for several reasons. It is a known prostate 
cancer suppressor gene, and its expression in tumors 
was recently found to correlate with favorable out- 
come in non-small cell lung cancer patients [30]. 
Also, similar to our findings with breast cancer, kai- 
1 expression is decreased in pancreatic metastases 
[31]. Both kai-1 and tapa-1 express proteins that are 
TM4SF family members and probably function in 
maintenance of cell integrity and adhesion. Also, 
markers surrounding the tapa-1 locus show LOH in 
breast tumors [2], thus Suggesting the presence of a 
suppressor gene in the region. Furthermore, both 
prostate and breast tissues are hormonally regulated; 
hence, loss of hormonal regulation could result from 
the loss of activity of a common suppressor gene. 

In this study, we wanted to determine whether 
either kai-1 or tapa-1 was the operative metastasis- 
suppressor gene in our microcell hybrid cell lines. 
tapa-1 appears to be a poor candidate, as western blot 
analysis revealed only a slight increase in the pro- 
tein expression levels that correlated with metastatic 
potential. We presume that this increase is due to 
expression from three normal alleles. In contrast, 
western blots showed that kai-1 levels inversely cor- 
related with metastatic ability in the microcell hy- 

Table 2. Metastasis Analysis of MDA-MB-435.sub 1 Transfectants 

Cell Line 
Mean # of 
Metastases 

Range of 
Metastases 

Incidence of Metastases 

Ratio*             Percentage 

MDA-MB-435.sub1 
Kai1/435.sub1.Pick1 
Kai1/435.sub1.Pick3 

5.8 
3.0 
7.5 

2-15 
0-7 
2-15 

4/4 
3/4 
4/4 

100.0 
75.0 

100.0 

*Number of mice with lung metastases/total number of mice inoculated. All metastases were counted at least 90 d after inoculation. Primary 
tumors were removed at 60 d to reduce tumor burden on the animals. 
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Figure 5. Western blot of matched sets of parental cells and 
three transfectant clones, showing kai-1 levels of inoculated 
cells (A), primary tumors (B), and lysates from metastatic le- 
sions (C). Ten micrograms of protein was loaded in each lane. 

Equal loading control was assessed with a separate blot run 
identically and simultaneously with the kai-1 blot, except that 
the sample was reduced before loading. 
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Figure 6. Western blot of matched sets of parental cells and 
three chromosome 11 microcell hybrids, showing kai-1 levels 
for inoculated cells (A), primary tumors (B), and lysates from 

ß-Actin 

metastatic lesions (C). Ten micrograms of protein was loaded 
in each lane. 
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brids. This result was consistent with the metastasis 
suppression resulting from transfer of normal human 
chromosome 11 and could be caused by an increase 
in kai-1 protein expression. 

To test the importance of kai-1 as a metastasis-sup- 
pressor gene in breast cancer, we transfected full- 
length kai-1 cDNA under the control of a constitutive 
cytomegalovirus promoter into MDA-MB-435. In 
theory, if kai-1 were the key gene controlling me- 
tastasis, the same strong suppression of metastasis 
seen in the chromosome 11 microcell hybrids should 
have been seen in the transfectants. In this study, 
we could not clearly establish an effect of kai-1 ex- 
pression on metastasis, because kai-1 transfectants 
were not significantly suppressed for metastasis. 
However, there were two important differences be- 
tween the protein in the transfectant clones and the 
chromosome 11 microcell hybrids. First, many of the 
transfectant clones produced more heavily modified 
kai-1 protein, the amount of which seemed to in- 
crease with decreased confluency in culture. This dif- 
ference did correlate with metastatic ability among 
the transfectant clones themselves in that the most 
glycosylated clones tended to form the most meta- 
static lung lesions. Heavy glycosylation was not seen 
with the suppressed chromosome 11 microcell hy- 
brids, perhaps because other genes alter posttransla- 
tional modification (e.g., fucosyltransferase on llq21 
[32]). Deglycosylation experiments could better 
clarify these data. Second, analysis of the metastatic 
lesions and primary tumors by western blotting re- 
vealed that kai-1 levels had been reduced in vivo for 
all transfectant cell lines. We could not eliminate 
the possibility that kai-1 levels dropped below a 
threshold level required for metastasis suppression. 
Examining kai-1 gene expression under the control 
of a stronger or inducible promoter may allow us to 
answer this question. 

Why do metastatic MDA-MB-435 cells express a 
reduced level of kai-1 protein? There may be loss of 
some trans-activating factor or factors necessary for 
expression, or expression could be altered by DNA 
modification of the kai-1 gene itself. In fact, we have 
preliminary evidence that endogenous kai-1 genes 
in metastatic MDA-MB-435 could be silenced because 
of methylation (Phillips KK, Weissman BE, unpub- 
lished observations). These data support the obser- 
vations of Dong et al. [33], which suggest that 
methylation could be silencing kai-1 in prostate tu- 
mors. Demethylation experiments with 5-azacytidine 
could help clarify these data. 

In summary, our results indicated the kai-1 me- 
tastasis-suppressor gene may contribute to the pro- 
gression of breast cancer in humans. Our results 
suggest two possible mechanisms: reduction of ex- 
pression in vivo and posttranslational modification, 
which affects normal function. Furthermore, we can- 
not rule out the possibility that kai-1 acts in concert 
with other genes on chromosome 11 to control breast 

cancer malignancy. The modest decreases in metasta- 
sis observed in the transfectants support this theory. 
More thorough analyses of the mechanisms mediat- 
ing kai-1 protein function will help to elucidate these 
possibilities. 
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Introduction 
Breast cancer is the most common malignancy and a major 
cause of cancer-related deaths among women in the 
United States and Western Europe (American Cancer 
Society 1998, Wingo etal. 1998). Most women succumb 
to breast cancer if their tumors metastasize but cures are 
more likely if the cancers remain localized (Harris et al. 
1992a,b,c, Walker et al. 1997). Thus, a greater 
understanding of the metastatic process in human breast 
cancer should translate into substantial improvements in 
therapeutic outcome for breast cancer patients. Towards 
that end, we will review and summarize the literature 
about, and begin to develop a working model for, the 
genetics of human breast cancer metastasis. There have 
been great strides in recent years with regard to our overall 
understanding of metastasis. Yet our apparently 
straightforward objective — to define cause-effect 
relationships for genes in breast cancer — was difficult 
because of four issues. First, many reports fail to 
distinguish between oncogenesis and progression or 
invasion and metastasis when reporting data. Secondly, 
there is a failure, by some, to recognize that breast cancer 
is not a single disease, but a collection of diseases. This is 
particularly apparent in the genetics literature. Thirdly, it 
is difficult to evaluate the relative importance of 
correlative data, particularly as they relate to mechanistic 
control of steps in the metastatic cascade. Fourthly, there 
is a tremendous noise-to-signal ratio for genetics of late- 
stage, metastatic breast cancers resulting from genotypic 
instability, phenotypic drift and tumor heterogeneity. 

There are several assertions in the literature claiming 
a role for genes in controlling progression and/or 
metastasis of breast cancer. Out-of-hand dismissal of 
some of those claims was possible because the studies 
lacked necessary controls. For other genes, the data were 
more preliminary or correlative and, for an extremely 
small number of genes, functional data demonstrating 
regulation of breast cancer metastasis were available. The 
text of this review will focus on the latter; however, we 

decided that the utility of this article would be maximized 
if we summarized the known role(s) of individual breast 
cancer-associated genes, clearly discriminating the genes 
that regulate oncogenesis from those that control 
metastasis. The most effective method to accomplish this 
goal was to create tables that summarize the references 
providing evidence for a particular role(s) of genes in 
human breast cancer. Table 1 is designed to be used as a 
resource. Putative role(s) of individual genes in breast 
cancer are separated into two categories — oncogenesis 
and progression/metastasis — where key references are 
given to substantiate/refute a role. Although we attempted 
to be thorough and inclusive, the extensive historical 
literature combined with the rapidly evolving breast 
cancer genetics field limit the completeness of this review. 
We apologize to those whose work was not included 
because of space considerations or whose papers were 
inadvertently omitted. However, we hope that this review 
fulfils our fourfold objective: (1) to highlight the genes for 
which roles in late-stage human breast cancer and/or 
metastasis have been functionally demonstrated; (2) to 
distinguish those genes from the more numerous 
oncogenic or tumor suppressors involved in breast cancer; 
(3) to evaluate the literature in order to identify needs for 
the field of breast cancer metastasis research to move to 
the next level; and (4) to propose a working model for the 
genetics of human breast cancer progression, focusing on 
the genes that have demonstrable metastasis-regulatory 
activity. 

Breast cancer is a collection of diseases 
Invasive breast cancers are an histologically and 
biochemically heterogeneous set of diseases. Lesions are 
typically categorized on the basis of histological 
appearance, resembling either ductal or lobular 
components of the healthy breast. Most studies suggest 
that the majority of tumors arise in the terminal ductal unit 
of the breast, perhaps in a single type of 'target' cell 
(Goehring & Morabia 1997, Russo & Russo 1997). By far 
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the most common type of breast cancer is infiltrating 
ductal carcinoma. This class of tumors represents nearly 
three-quarters of all human breast cancers. Infiltrating 
lobular carcinomas account for 5-10% of breast 
carcinomas and are often characterized by multicentric 
tumors in the same or contralateral breast. Both ductal and 
lobular carcinomas have a predisposition for metastases to 
draining axillary lymph nodes, but each has differential 
predisposition for bone or visceral metastasis (Harris et al. 
1984, Coleman et al. 1998). The molecular basis for these 
differences are mostly unknown. There are numerous 
other special types of invasive breast carcinomas. The 
most common are medullary, tubular and mucinous 
carcinomas. Medullary accounts for 5-7% of all breast 
carcinomas and are frequently well-circumscribed and 
exhibit lymphocytic infiltration (Fisher et al. 1990). 
Mucinous (or colloid) carcinomas account for 1-3% of 
breast carcinomas and are characterized, as their name 
implies, by accumulation of mucin around the tumor cells. 
Overall prognosis for mucinous tumors is better than 
ductal or lobular carcinomas. 

Solely on the basis of their clinical behaviors, these are 
distinct types of breast carcinoma. It is likely that different 
genes are involved in controlling development and 
progression of each type. Yet most discussions of breast 
cancer genetics have not, for the most part, discriminated 
between each type of carcinoma. This is even more 
apparent when discussing the genetics of late-stage breast 
cancer. Since infiltrating ductal carcinomas are the most 
prevalent breast carcinoma type, most of the published 
results probably apply to ductal carcinomas, but this is not 
necessarily a good assumption (Larsson et al. 1990, Afify 
etal. 1996, Nishizakiefa/. 1997, Toikkanenef al. 1997). 
There is, fortunately, a recent trend towards studying 
cancer genetics using more refined pathological criteria; 
however, more effort is required. 

Further complications occur because of the use of cell 
lines which have been maintained in culture or passaged 
in animals for several years. The cells have probably 
undergone genotypic and phenotypic drift as well as 
selection pressures so that resemblance of the cell lines to 
the original tumor may be minimal. Sadly, although most 
breast carcinoma cell lines were derived from metastatic 
lesions, most no longer retain this ability in experimental 
systems (i.e. metastasis from mammary fat pads in 
immunocompromised (athymic or severe combined 
immunodeficiency (SCID) mice). This limitation severely 
hinders the ability of investigators to assess directly the 
metastasis-regulatory effects of individual genes. Given 
these caveats, any generalizations should be viewed with 
healthy skepticism. Nonetheless, certain patterns emerge 
and allow us to make a reasonable first approximation for 
a model of the molecular underpinnings of breast cancer 
progression and metastasis. 

Oncogenesis and tumor progression are 
linked, but distinct, phenotypes 

One area of confusion relates to terminology. Sloppy use 
of, and dual meanings of, some terms (depending upon 
one's specialization) are prevalent in the literature. Of 
particular relevance to this review are the distinctions 
between tumorigenesis vs tumor progression and 
malignant vs metastatic. Tumorigenesis and oncogenesis 
refer to the ability of cells to proliferate continuously in the 
absence of persistent stimulation by the triggering 
agent(s). Tumor progression is the evolution of already 
tumorigenic cells (populations) towards an increasingly 
autonomous state (i.e. decreased dependence upon host- 
derived growth factors and/or increased resistance to 
negative regulatory molecules). The distinction between 
oncogenesis and progression is crucial when asking 
whether a gene is important in controlling steps associated 
with malignancy, as compared with whether that gene is 
involved in tumor formation. 

The distinctions between malignant and metastatic are 
more subtle. Attributes of malignant cells include (but are 
not limited to) less differentiated morphology, less 
differentiated cytology, level of vascularity, level of 
necrosis, mitotic index, aneuploidy, nuclearxytoplasmic 
ratio. The incontrovertible hallmarks of malignancy are 
invasion of cells through a basement membrane and/or 
metastasis. All other characteristics used to label a tumor 
(and the cells within it) as malignant have exceptions 
(Pfeifer & Wick 1995). For example, morphologically 
indolent cells may be behaviorally malignant and vice 
versa. Clearly, parameters associated with pathological 
examination are invaluable when estimating the 
probability for local, regional or distant recurrence in a 
clinical setting. Nonetheless, subjectivity leads to 
ambiguity when trying to assign responsibility for a 
phenotype (i.e. metastasis). 

Metastasis is defined as the formation of secondary 
tumor foci discontinuous from the primary tumor. The 
metastases can be nearby or at distant sites. Metastases can 
form following dissemination of cells via the lymphatic 
system, hematogenous system, coelomic cavities or 
epithelial cavities. Since they are by far the most common 
routes for metastatic spread of human breast cancer, 
lymphatic and hematogenous metastasis will be the focus 
here. In order to metastasize, cells must complete every 
step of a complex cascade. Malignant cells invade 
adjacent tissues and penetrate into the lymphatic and/or 
circulatory systems. Then tumor cells detach from the 
primary tumor and disseminate. During transport, cells 
travel individually or as emboli composed of tumor cells 
(homotypic) or tumor cells and host cells (heterotypic). At 
a secondary site, cells or emboli arrest either because of 
physical limitations (e.g. too large to traverse a capillary 
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lumen) or by binding to specific molecules in particular 
organs or tissues. Once there, tumor cells then proliferate 
either in the vasculature or, after extravasation, into 
surrounding tissue (Chambers et al. 1995, Koop et al. 
1996). To form macroscopic metastases, cells must then 
recruit a vascular supply (Weinstat-Saslow & Steeg 1994, 
Ellis & Fidler 1995, Folkman 1995, Kohn & Liotta 1995) 
and respond appropriately to the tissue's environmental 
milieu (Nicolson 1994, Radinsky 1995). Fewer than 0.1% 
of cells that enter the vasculature survive to form clinically 
detectable, macroscopic metastases (Fidler 1970, Tarin et 
al. 1984). At which step(s) of the metastatic cascade 
circulating tumor cells commonly succumb is debatable 
(Chambers etal. 1995, Koop et al. 1995,1996). 

In the context of a multistep, multigenic cascade, it is 
critical to recognize that the terms invasiveness and 
adhesion are not equivalent to metastatic propensity. Both 
invasion and adhesion are necessary, but not sufficient for 
metastasis. Cells that are efficient at either or both — but 
which lack the ability to complete any other step of the 
metastatic cascade — are non-metastatic (Fidler & 
Radinsky 1990). Therefore, correlations of genetic 
expression to a particular step in the metastatic cascade 
may lead to erroneous conclusions. 

Taken together, these points emphasize the importance 
of distinguishing tumor-suppressor and metastasis- 
suppressor genes. The former predominantly inhibit tumor 
formation when wild-type expression is restored in a 
neoplastic cell. By definition, then, metastasis would also 
be suppressed (since the cells are non-tumorigenic). 
Metastasis-suppressor genes, on the other hand, block 
only the ability to form metastases. Restoring expression 
of a metastasis-suppressor would yield cells which are still 
tumorigenic, but are no longer metastatic. 

At diagnosis, breast carcinomas are typically mixtures 
of genotypically and phenotypically distinct cells, despite 
having arisen from a single cell (Welch & Tomasovic 
1985, Fujii et al. I996a,b, Rebbeck et al. 1996, Shows et 
al. 1997). One of the earliest detectable changes in 
transformed cells (anchorage-independent, not contact- 
inhibited, immortal but not necessarily able to form a 
tumor in an appropriate host) is a several-fold increase of 
genomic instability compared with normal cells (Ling et 
al. 1985, Cheng & Loeb 1993, Tlsty et al. 1993, Tlsty 
1997). Karyotypic and genomic instability is present in 
transformed cells even before they acquire tumorigenic 
potential (Otto et al 1989, Tlsty 1990, 1993, Jonczyk et 
al. 1993). Thus, genomic instability appears to be the 
driving force by which cells acquire the cumulative 
genetic defects necessary to be fully tumorigenic. 
Likewise, the development of heterogeneity, coupled with 
selective pressures results in continued evolution of the 
tumor population, usually towards increasing autonomy 
from the host (Foulds 1954, Heppner 1984, Welch & 

Tomasovic 1985, Heppner & Miller 1997). Eventually, 
some subpopulations of cells within the mass are amply 
self-sufficient that they have the ability to metastasize. 
This does not imply that metastatic cells do not respond to 
host-derived growth signals. Rather, it means that they do 
not necessarily require them. In conclusion, oncogenesis 
is a prerequisite for metastasis formation. In other words, 
metastatic cells represent a subset of tumorigenic cells. 

One measure of genetic instability is microsatellite 
instability. Several reports have suggested that 
microsatellite instability is a useful prognostic indicator 
for breast cancer (Patel et al. 1994, Yee et al. 1994, 
Paulson et al. 1996); however, a role in development of 
metastasis has not been established. Recently, another 
means for developing genetic instability in non-hereditary 
nonpolyposis coli colorectal cancers was described (Cahill 
et al. 1998). Defective segregation machinery results in 
unequal partitioning of chromosomes in daughter cells, 
leading to aneuploidy. While it is common for breast 
carcinomas to be aneuploid, it has not yet been determined 
whether a similar mechanism is taking place in breast. 
Regardless of mechanism, genetic instability has practical 
consequences with regard to our ability to isolate and 
characterize metastasis-associated genes — key genetic 
changes are sometimes clouded by background 'noise' 
due to heterogeneity. Techniques such as tissue 
microdissection are now being utilized to minimize this 
problem (Zhuang et al. 1995). 

Therefore, the ability to establish a role for a given 
gene in breast cancer metastasis is complicated by a 
variety of factors. The following discussion will focus on 
those genes for which genetic manipulation has been 
utilized to establish a role in controlling metastasis. 
Largely, the results are based upon experimental systems. 
Combined with clinical correlations, there is substantial 
evidence for controlling the metastatic potential of breast 
carcinoma. 

The use of knockout and transgenic mice to study 
various aspects of breast cancer biology has been 
increasing in recent years (reviewed in (Thomas & 
Balkwill 1994, Amundadottir et al. 1996, Clarke 1996, 
Bennett & Wiseman 1997, Li et al. 1998). The use of such 
models has focused on tumor development rather than the 
later stages of tumor progression and metastasis. While 
improvements are occurring at a rapid rate, the models are 
still limited by relatively poor mimicry of the pathogenesis 
of human breast cancer. 

Metastasis-controlling genes in breast 
carcinoma 
Since a working model for tumorigenesis involves 
mutations of key genes that control cell growth and/or 
death, it appears plausible that metastasis will also be 
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controlled by a select set of genes controlling key steps in 
the cascade. On the basis of this presumption, we will 
focus on genes that appear likely to be important in either 
the suppression or promotion of breast cancer metastasis. 
In this regard, the genetic basis of metastasis would 
parallel the genetics of tumor formation. Evidence shows 
that metastasis involves numerous genes (Fidler & 
Radinsky 1990, Chambers & Matrisian 1997, Price et al. 
1997, Welch & Goldberg 1997) that fall into two 
categories — (1) genes that drive metastasis formation, 
and (2) genes that inhibit metastasis (Dear & Kefford 
1990, Welch et al. 1994, De La Rosa et al. 1995, Dong et 
al. 1995, Lee etal. 1996, Phillips etal. 1996, Lee & Welch 
1997ft). The number of identified metastasis-associated 
genes are growing rapidly. However, their mechanisms of 
action, their regulation in normal and/or cancer cells, and 
the universality of function in cancers of different origin 
remain largely unknown. 

The best characterized dominantly acting metastasis 
gene (i.e. met-oncogene, which drives conversion from 
benign to malignant) is the activated ras oncogene 
(Collard et al. 1987, Chambers et al. 1990, Phillips et al. 
1990). Transfection and constitutive expression of non- 
senescent rodent fibroblasts with activated Ha-ras leads to 
development of tumorigenic and metastatic properties 
(Muschel et al. 1985, Egan et al. 1987). However, 
complete induction of metastasis does not occur in all cell 
lines or cell types (Chambers etal. 1990, Tuck et al. 1990, 
Jessell & Melton 1992), nor is retention of ras oncogene 
expression necessary to maintain the metastatic phenotype 
(Schlatter & Waghorne 1992). In human breast cancer, 
overexpression of normal or mutant ras in human breast 
cancer has been associated with increased malignant 
properties (e.g. reduced responsiveness to estrogens, 
increased invasiveness, morphological abnormalities 
(Lundy et al. 1986, Theillet et al. 1986, Fromowitz et al. 
1987)), but association with metastatic potential has not 
been unequivocally demonstrated. Mutations of ras, per 
se, are relatively uncommon in human breast cancer; so, 
the importance of ras in controlling breast cancer 
metastasis is not completely understood. 

The prototypical metastasis-suppressor gene, Nm23, 
was first identified in the murine K1735 melanoma using 
subtractive hybridization, and its expression is inversely 
correlated with lung colonization (Steeg et al. 1988, 
Bevilacqua et al. 1989); however, there are exceptions 
(Radinsky et al. 1992). The human homolog, Nm23-Hl 
(also known as NME1), exhibits decreased expression in 
late-stage, metastatic human breast, endometrial, ovarian, 
melanoma and colon cancers (reviewed in Freije et al. 
1996). However, long-term prognostic value has been 
questioned in some studies (Kapranos et al. 1996, Russell 
etal. 1997). Nonetheless, NME1 is abonafide metastasis- 
suppressor  gene   in   human   breast  carcinoma,   since 

transfection of metastatic MDA-MB-435 cells resulted in 
a significant suppression of metastasis from the mammary 
gland in experimental mouse models (Leone etal. 1993). 
The mechanism of action for NME1 remains unknown 
(De La Rosa et al. 1995), but motility of the transfectants 
was significantly suppressed (Kantor etal. 1993). NME1 
is homologous to Drosophila awd and encodes a 17 kDa 
protein. NMEl's nucleoside diphosphate kinase 
homology (Biggs et al. 1990) and function (Steeg et al. 
1991) have recently been dissociated from its metastasis- 
suppressor function (MacDonald et al. 1993, Royds et al. 
1994, De La Rosa et al. 1995). Some recent reports 
suggest that NME1 may be involved in controlling cell 
cycle progression (Cipollini et al. 1997) and histidine- 
dependent protein phosphorylation reactions (Freije et al. 
1997). 

The story for Nm23 becomes more complicated 
because three additional family members (Nm23- 
H2/NME2, Nm23-DR, Nm23-H4) have recently been 
identified and cloned. NME2 has been shown to regulate 
transcription of the (proto)oncogene, c-myc (Postel et al. 
1993, Berberich &Postel \995,iletal. 1995, Seifert etal. 
1995). Some studies have shown that NME2 can suppress 
metastasis (Engel et al. 1993, Mandai et al. 1994, Marone 
et al. 1996), whereas others have not (Arai et al. 1993, 
Tokunaga et al. 1993, Yamaguchi et al. 1994, Baba et al. 
1995). Nm23-DR is differentially expressed during 
myeloid differentiation (Venturelli et al. 1995) but 
association with metastatic potential has not yet been 
tested in either clinical samples or experimental systems. 
Nm23-H4 differs structurally from the other homologs in 
that it appears to have additional N-terminal basic amino 
acid residues (Milon etal. 1997). However, its mechanism 
of action and relevance to breast cancer biology have not 
yet been reported. 

A recent study even suggests that expression levels of 
Nm23-Hl in human breast cancer cell lines (HT115 and 
MDA-MB-231) can be influenced by diet. Increased 
consumption of linoleic and arachidonic acids reduced 
expression, whereas linolenic acid increased expression 
(Jiang etal. 1998). These conditions lowered invasiveness 
as measured by in vitro invasion assays. While a 
significant amount of work needs to be done to determine 
whether dietary regulation of metastasis is mediated 
through modulation of Nm23, dietary fat intake has been 
shown to control breast and mammary tumor metastasis 
(Hubbard & Erickson 1987, Rose et al. 1994,1995). 

KAI1 (also known as CD82 or C33, members of the 
TM4SF superfamily of adhesion molecules) was recently 
discovered as a prostate cancer metastasis-suppressor 
gene on the p-arm of chromosome 11 (Dong et al. 1995). 
Other members of the TM4SF family, namely 
MRP-1/CD9 and CD63/ME491, have been associated 
with metastatic potential of non small-cell human lung 
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carcinomas (Ikeyama et cd. 1993) and early stage 
melanomas (Hotta et al. 1988) respectively. Thus, a role 
for KAI1 in breast cancer metastasis was possible. To test 
this hypothesis, we measured KAI1 mRNA expression in 
a panel of human cell lines representing a continuum from 
nearly normal breast cells (MCF10A) to highly metastatic 
cells (MDA-MB-435). KAI1 mRNA expression 
decreased with increasing invasive and metastatic 
potentials (Yang etal. 1997). 

Lower KAI1 expression in metastatic breast cancers 
correlated well with previous findings that chromosome 
11 deletions are common in late-stage breast carcinoma 
(Devilee & Cornelisse 1990, 1994, Mars & Saunders 
1990, Negrini et al. 1995, Trent et al. 1995). To test 
directly whether changes on chromosome 11 were 
responsible for suppressing metastatic potential, we 
introduced a normal chromosome 11 into metastatic 
MDA-MB-435 breast carcinoma by microcell-mediated 
chromosomal transfer. Chromosome 11 significantly 
reduced the metastatic properties without affecting 
tumorigenicity (Phillips et al. 1996). Since KAI1 
expression was higher in the chromosome 11 hybrids, we 
hypothesized that KAI1 is the gene responsible for 
suppressing metastasis. Expression of another TM4SF 
family member, TAPA-1 which is also encoded on 
chromosome 11, did not correlate with metastatic 
potential. Transfection and stable constitutive expression 
of KAI1 in MDA-MB-435 cells suppressed metastasis 
from tumors following injection into the orthotopic site — 
mammary fat pad (Phillips et al. 1998). However, the cell 
lines did not maintain transgene expression levels 
following in vivo growth. This complicated interpretation. 
Preliminary studies using a panel of human breast 
specimens of varying grades indicate that KAI1 protein 
staining was inversely related to grade of disease (XH 
Yang, LL Wei, C Tang & ME Lippman, unpublished 
observations). Nonetheless, KAI1 appears to meet the 
criteria described above for a metastasis-suppressor gene 
in human breast cancer. 

Chromosome lq deletions occur with variable 
frequency in late-stage human breast carcinomas. Since 
the recently discovered melanoma metastasis-suppressor 
gene, KiSS-l,maps to chromosome lq32 (Lee et al. 
1996), we tested whether KiSS-1 could suppress 
metastasis of the human breast ductal carcinoma cell line, 
MDA-MB-435. Parental MDA-MB-435 cells did not 
express KiSS-1, but non-metastatic MDA-MB-231 breast 
carcinoma cells did. Transfection of a full-length, 
constitutive mammalian expression construct suppressed 
metastasis of MDA-MB-435 from the mammary fat pad 
of athymic mice, whereas vector-only transfectants were 
unaffected (Lee & Welch 1997ft). 

The mechanism of action for KiSS-1 has not yet been 
determined, although its ability to suppress metastasis has 

been demonstrated in six independently-derived human 
cancer cell lines of melanoma and breast origin (Lee et al. 
1997, Lee & Welch 1997a,ft). Based upon the cDNA 
sequence, the predicted KiSS-1 protein would be a 
hydrophilic, 164 amino acid protein with molecular mass 
of 15.4 kDa. The sequence is novel, having no strong 
homology to any known human cDNA sequences. Four 
regions within the predicted KiSS-1 protein match 
consensus as phosphorylation sites for protein kinase C, 
protein kinase A and a tyrosine kinase (Lee et al. 1997). 
These sequences suggest that KiSS-1 is a phosphoprotein 
and our working hypothesis is that it functions within a 
signal transduction pathway. Thus far, KiSS-1 expression 
has never been detected in any cells that have metastatic 
potential. However, all studies have measured mRNA 
expression since antibodies are not yet available. This 
deficiency limits our ability to measure clinical 
correlations, although this is certainly a high priority goal. 

Other metastasis-promoting or invasion-promoting 
genes have been identified in a variety of human and 
rodent tumor models. The genes include TIAM-1 (Habets 
etal. 1994), mtsl (Grigorian etal. 1994), mtal (Toh etal. 
1994), TI-241 (Ishiguro et al. 1996), fibroblast growth 
factor-4 (Dickson & Lippman 1992, McLeskey et al. 
1996), and cathepsin D (Rochefort et al. \99Qa,b). 
Transfection of these genes into experimental cell systems 
(usually fibroblasts) is reported to increase invasiveness 
and metastasis. Again, the definitive roles of these genes 
in mammary or breast cancers are not well-defined. 

Protein kinase C (PKC) activities are important for 
several physiological processes relevant to mammary 
tumor promotion and progression (e.g. proliferation, 
motility, anchorage-independent growth, responses to 
growth factors, etc.). In collaboration with Drs Susan 
Jaken, Sue Kiley and Daniel Medina, we recently 
compared PKC isoenzyme levels in mouse and rat 
mammary tumor cell lines (S C Kiley, K Clark, S K Duddy, 
DR Welch & S Jaken, unpublished observations; Kiley et 
al. 1996, Jaken etal. 1997). Of particular relevance to this 
review, 13762NF mammary adenocarcinoma cell clones 
that have low, moderate and high metastatic potentials 
were evaluated for expression of PKCs a, 8, e and £. All 
isoforms were expressed in each of the cell lines; however, 
PKC5 was significantly greater in highly metastatic 
compared with poorly metastatic cells. To determine 
whether this correlation was physiologically relevant, 
transfections were carried out to increase (full-length 
PKC8 cDNA in constitutive and inducible expression 
constructs) or decrease (dominant negative PKC8 
regulatory domain (RD8) in inducible expression 
constructs) PKC8 expression. Increased expression of 
PKC8 enhanced clonogenicity in soft agar and metastatic 
potential, but did not affect anchorage-dependent growth. 
Expression of the RD8 inhibited metastasis when cells 
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were injected into syngeneic rats. Moreover, induction of 
the RD8 with doxycycline (which induces the 
tetracycline-inducible promoter) caused a significant 
reduction in metastatic potential. Taken together, our 
results strongly imply that PKC8 is an important regulator 
of mammary tumor metastasis. Experiments are under 
way to determine the relevance of RD8 in controlling 
human breast cancer metastasis. 

Chromosomal changes in breast cancer 
may predict the location of metastasis- 
controlling genes 
As alluded to above, consistent, non-random re- 
arrangements, deletions and/or amplifications have been 
instrumental in identifying oncogenes and tumor- 
suppressor genes involved in the development of human 
cancer. Over 56 distinct regions of loss of heterozygosity 
(LOH) have been identified in breast cancer (Kerangueven 
et al. 1997). The frequency of involvement of each ranges 
from 20% to >50% depending upon the study, tumor type 
and markers used. Unfortunately, as tumors progress, they 
accumulate changes, leading to complex karyotypes. 
Structural or numerical aberrations for virtually every 
chromosome have been described in human breast cancer 
(see Table 2 for an example). Experience has told us that 
some of the chromosomal changes occur at a frequency 
higher than could be explained on a random mutational 
basis. These findings increase the probability that genes 
associated with tumor progression will be encoded at 
those sites. LOH has been found in chromosomal regions 
correlating with parameters associated with breast cancer 
progression/metastasis (see Table 3). To emphasize the 
point made above — i.e. that different types of breast 
cancer exhibit different chromosomal changes — 
Nishizaki and colleagues (1997) used the comparative 
genomic hybridization technique to compare lobular and 
ductal carcinomas. Lobular carcinomas had increased 
copies of DNA from chromosome lq in 79% of patient 
samples and losses of chromosome 16q in 63%. The 
lobular carcinomas showed higher frequency of 16q loss 
than ductal carcinomas and lower frequency of 8q and 20q 
gains (Nishizaki etal. 1997). 

In metastases vs primary tumors, karyotypic 
abnormalities of chromosomes 1, 6, 7, and 11 are 
particularly prevalent. Among the more common 
cytogenetic changes in metastases from breast is 
amplification in the region surrounding band ql3 on 
chromosome 11. The amplicon includes the following 
genes: int-2 gene (which is syntenic to a site of frequent 
mouse mammary tumor virus (MMTV) insertional 
mutagenesis in mice (Lee et al. 1995), but the protein is 
not usually expressed in human breast tumors); hst (which 
is a member of fibroblast growth factor (FGF) family but 

this is not expressed at the mRNA level (Nguyen ef al. 
1988, Theilet et al. 1989)); bcl-1 (which was discovered 
by involvement in chromosomal translocations in some 
lymphomas (Tsujimoto et al. 1984, Theilletef al. 1990)); 
and PRAD-1 (which was initially discovered in 
parathyroid adenomas (Motokuraetal. 1991, Motokura& 
Arnold 1993), but subsequently found to be cyclin Dl 
(Motokura et al. 1991, Motokura & Arnold 1993)). 
Amplification in this region is associated with poor 
prognosis (Lidereau et al. 1988, Tsuda et al. 1989), 
presence of lymph node metastases (Zhou et al. 1988, 
Theilet et al. 1989, Adnane et al. 1991), and ER and 
progesterone receptor (PR) status (Theilet et al. 1989, 
Fantl et al. 1990, Borg et al. 1991). While these 
correlations are compelling, definitive association of 
1 lql3 amplification with metastatic potential has not been 
demonstrated. 

As mentioned above, microcell-mediated 
chromosomal transfer of chromosome 11 reveals that 
there exists a metastasis suppressor activity on 
chromosome 11. However, these types of experiments are 
complicated because results vary according to the 
experimental models used. Microcell transfer into MCF7 
breast cancer cells revealed that BrCa-1- and p53- 
independent growth inhibitors (i.e. inhibitors of 
tumorigenicity) are encoded on chromosome 17 (Casey et 
al. 1993, Theile et al. 1995, Plummer et al. 1997). 
Additional growth inhibitors have been described on 
chromosomes 6 and 11 (Negrini et al. 1994, Theile et al. 
1996, Shows et al. 1997). Interestingly, transfer of 
chromosome 11 suppresses growth in culture and tumor 
formation in the MDA-MB-231 and MCF7 models, but 
neither phenotype was significantly, nor consistently 
affected in MDA-MB-435. These data clearly show that 
extrapolation based upon data from a single model is ill- 
advised. However, this problem is not easily solved 
because of a lack of relevant metastatic models of human 
breast cancer. 

Inadequate models exist to study breast 
cancer metastasis 

Despite the fact that the majority of human breast cancer 
cell lines have been derived from metastatic lesions, only 
MDA-MB-435 reproducibly forms macrometastases 
when evaluated in athymic or SOD mice (Price et al. 
1990, Price 1996). This is a serious limitation for 
investigators wishing to study metastasis of human breast 
cancer. Several investigators have found that MDA-MB- 
231 will form lung metastases following injection into 
the mammary fat pad (Price et al. 1990, Rose et al. 1994) 
or bone metastases following intracardiac injection 
(Mbalaviele etal. 1996, Guise 1997). Interestingly, none 
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of the models currently available metastasize to bone 
following tumor growth in the mammary fat pad, despite 
this being the most common site for metastasis in clinical 
breast cancer (Coleman 1997). Three points deserve 
emphasis. First, lung colonization efficiency is generally 
lower in MDA-MB-231 than in MDA-MB-435. If 
metastasis suppression is the desired biological endpoint, 
it is important that baseline levels be as high as possible. 
Secondly, as with MCF7 cells, there are several different 
sublines of MDA-MB-435 and MDA-MB-231 that have 
been artificially selected over the years in many different 
laboratories. Some of these cells are no longer tumorigenic 
in immunocompromised mice. Therefore, it is incumbent 
upon each investigator to verify metastatic potential in his/ 
her laboratory. Thirdly, the distribution of metastatic 
lesions in immunocompromised mice does not completely 
mimic the clinical situation. While not inappropriate, the 
models are somewhat lacking in this regard. 

Breast cancer metastasis is not solely due 
to genetic changes 
A heritable component of the metastatic phenotype has 
been demonstrated numerous times by experimental 
isolation of metastatic and non-metastatic clones as well 
as selection of increasingly metastatic variants from 
heterogeneous tumor populations. For cells to metastasize 
successfully, they must also interact with a variety of host 
cells   and   their   secreted   molecules   and   respond 

appropriately. Thus, any discussion of factors controlling 
metastasis must include an evaluation of exogenous 
regulators of the process (or its component steps). Normal 
breast tissue growth, differentiation and regression after 
lactation are all exquisitely controlled by hormones. 
Indeed initiation, promotion and progression of breast 
carcinomas are strongly regulated by endocrine 
mechanisms (Dickson etal. 1993, Kaufmann 1997). 

Hormones contribute to breast cancer 
development and metastasis 
Hormones have long been implicated in the initiation, 
development, and progression of breast cancer. Numerous 
epidemiological studies spanning almost two decades 
have established that, excluding a genetic predisposition, 
the reproductive history of a woman is an important risk 
factor associated with the development of breast cancer. 
Early menarche and late menopause have been shown to 
be associated with an increased risk of breast cancer. 
Epidemiological studies also show that early pregnancy 
provides a protective effect against breast cancer, but that 
the protection declines as the age of first pregnancy 
increases. Taken together, these studies suggest that the 
length of time between menarche and menopause or 
menarche and first pregnancy are contributing factors 
towards the risk or likelihood of breast cancer oncogenesis 
(Staszewski 1971, Key & Pike 1988, Henderson et al. 
1991). 

Table 3 Chromosomal location of LOH and the correlation with parameters associated with breast cancer 
progression/metastasis 

Chromosome region Parameter Reference 

1P Nodal status (Borg era/. 1992D) 
1p36,1p34-p35 Nodal status (Tsukamoto etal. 1998) 
1q21-q24 Stage (Devilee etal. 1991) 
3p21.3 Metastasis (Driouch etal. 1998) 
3p21-p25 LOH on 11p, 17p, 17q and aneuploidy (Devilee etal. 1994) 
7q23 Metastasis-free overall survival (Bieche etal. 1992) 
8p21.3-p23 Low grade DCIS (Anbazhagan etal. 1998) 
9q LOHonlq, 17p, 18q (Devilee etal. 1994) 
11p15 ER" tumors, grade III tumors and distant metastasis (Ali et al. 1987) 
11p15 Lymph node status (Takita etal. 1992) 
11p15.5-15.4 Histologie grade (Kamikefa/. 1998) 
13q12-q14 ER content (Devilee etal. 1994) 
13q12-q14 Ductal carcinoma tumor size (Andersen etal. 1992) 
13q12-q14 Aneuploidy and S-phase fraction >12% (Borg etal. 1992b) 
16q22.2-q23.2 Metastasis (Driouch etal. 1998) 
16q23.2-q24.2 Good prognosis (Hansen etal. 1998) 
16q24 ER content (Devilee etal. 1994) 
17q12-q24 c-erb-B2 amplification (Sato et al. 1991) 
17q12-q24 Age of onset (Devilee etal. 1994) 
17q12-q24 c-erb-B2 amplification/post-menopausal status (Andersen etal. 1992) 

ER", estrogen receptor negative tumors; DCIS, ductal carcinoma in situ. 
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The two principal hormones involved both in the onset 
of menarche and in menopause are the female sex steroids, 
estrogen (specifically 17ß-estradiol) and progesterone. It 
is well established that estrogen promotes breast cancer by 
stimulating cell division. Although the main source of 
estrogen is the ovary in premenopausal women, estrogen 
can also be synthesized directly in adipose tissue and 
breast cancer cells via the enzyme aromatase (Yue et al. 
1998). Aromatization is typically thought to be the 
predominant source of estrogens in post-menopausal 
women (Brodie & Santen 1994, Harvey 1997, Kaufmann 
1997). More controversial is the role that estrogens or 
estrogen metabolites can have in causing or initiating 
breast cancer. Recent findings suggest that metabolites of 
17ß-estradiol may be among the culprits leading to DNA 
damage and subsequently for initiation of breast cancer 
(Fishman et al. 1995, Cavalieri et al. 1997, Lavigne et al. 
1997, Zhu & Conney 1998). However, this interpretation 
is debatable and additional research will be required to 
establish this definitively. Nonetheless, there is little doubt 
that estrogens play a key role in promoting initiated human 
breast cancer to grow and to progress. 

A role for progesterone in breast cancer development 
is less clear than for estrogen. At one time, it was generally 
accepted that progesterone was a natural antagonist of 
estrogen action — suggesting that it would inhibit or block 
growth-promoting effects of estradiol on breast cells 
(normal and tumor). This paradigm was based upon 
findings in the uterus in which progestins reduced or 
eliminated the risk of estrogen-induced endometrial 
cancer. Recently, the effect of progesterone (analogs) on 
normal breast epithelial cells has been re-examined. The 
mitotic index of normal breast epithelial cells parallels 
changes in hormone levels during the menstrual cycle. In 
cyclic women, serum estrogen levels are highest during 
the follicular phase, with a secondary resurgence in the 
secretory phase. The mitotic index of endometrial cells 
parallels serum estrogen levels. In contrast, breast 
epithelial mitoses are greatest during the secretory phase 
when serum progesterone levels are maximal (Masters et 
al. 1977, Meyer 1977, Going et al. 1988). The latter raises 
the possibility that progesterone may have growth- 
promoting effects on breast epithelial cells. This 
supposition is further supported by the following lines of 
evidence: (1) progestins are mitogenic for established 
breast cancer cell lines in vitro (Hissom & Moore 1987, 
Hissom et al. 1989, Manni et al. 1991); (2) progestins 
promote growth of established mammary tumors 
(Huggins & Yang 1962, Huggins 1965, Robinson & 
Jordan 1987); (3) progestins stimulate expression of 
mitogenic growth factors and/or their receptors (Dickson 
& Lippman 1988, Murphy etal. 1988, Lanari et al. 1989, 
Murphy & Dotzlaw 1989, Papa et al. 1991); and (4) anti- 
progestins induce apoptosis in experimental mammary 

tumor models (Michna et al. 1989, Schneider et al 1989). 
Thus, progesterone exposure may be a contributing factor 
towards the development of breast cancer (Groshong et al. 
1997). 

Estrogen and progesterone exert their cellular effects 
through interactions with nuclear receptor proteins called 
the estrogen receptor (ER) and the progesterone receptor 
(PR) respectively. The recognition that these receptors are 
the primary mediators of estrogen and progesterone action 
and that their presence within a tumor specimen can help 
predict the responsiveness of human breast cancer to 
hormonal therapy is particularly useful. Today, the 
measurement of ER levels is standard practice and is a 
useful prognostic marker in determining which patients 
are most likely to respond to estrogen antagonist therapies 
such as the anti-estrogen, tamoxifen (also known as 
Nolvadex). Since PR is an estrogen-induced product, 
simultaneous detection of PR in the presence of ER from 
a single tumor is indicative of a functional estrogen 
receptor pathway and further improves the ability to 
predict the response to anti-estrogen therapy. 
Alternatively, the absence of ER and PR is associated with 
early recurrence and poor survival of the breast cancer 
patient. 

The ER mentioned above refers to the alpha ER 
(ER-oc). Recently, a second ER form has been cloned 
(ER-ß) (Kuiper et al. 1996). ER-oc and ER-ß both bind 
17ß-estradiol in traditional binding assays. However, 
current data suggest that the amount of ER-ß relative to 
ER-oc in breast cancer cells is minor (Kuiper et al. 1996, 
Petersen et al. 1998). In the normal mammary glands of 
mice, ER-ß is undetectable (Couse et al. 1997). Whether 
ER-ß will play an important role in breast cancer biology 
or etiology remains to be determined, although there have 
been reports of ER-ß mutants in breast cancer cells 
(Dotzlaw etal. 1997, Vladusic etal. 1998). It is important 
to remember that many of the studies with ER-ß are based 
upon mRNA, rather than protein, expression. Once more 
robust protein detection methods/reagents have been 
developed, the relative importance of ER-ß in breast 
cancers, if any, will be more easily evaluated. 

Since almost all breast cancers progress from a 
hormone-responsive state to a hormone-resistant or 
hormone non-responsive state, the possibility was raised 
that mutations in the ER-oc (the predominant form of ER 
in breast cancers) could be a factor leading to anti-estrogen 
resistance in breast cancer. Several investigators pursued 
this line of thought and have shown that mutant ERs exist 
in some breast cancer cell lines and tumor specimens 
(Graham etal. 1990,Fuquaef al. 1991o, 1992, Scott et al. 
1991, Wang & Miksicek 1991). Moreover, mutations of 
ER can lead to variant estrogen receptor activity which, in 
turn, may explain estrogen resistance (Fuqua et al. 1991a, 
1992). Furthermore, from these and other studies that have 

173 



Welch and Wei: Genetics of metastasis in breast cancer 

focused on ligand-receptor interactions, it is apparent that 
variations in ER structure and ligand-specific (estrogen 
versus anti-estrogen) interactions with ER may lead to 
altered and unexpected biological responses 
(Katzenellenbogen 1996, Mclnerney & Katzenellenbogen 
1996, Montano et al. 1996, Levenson et al. 1997). This is 
further complicated by promoter and cell-specific factors 
(Katzenellenbogen 1996, Yang et al. 1996). Although the 
existence of mutant ERs is very appealing, their actual 
contribution to disease progression, particularly anti- 
estrogen resistance, appears to be small. Furthermore, 
most of the variant ER data to date have been found at the 
mRNA level. It is still not known whether they are 
translated into proteins (Dowsett et al. 1997, Murphy et al. 
1997a,b, Tonetti & Jordan 1997). 

Although less research has been dedicated towards the 
identification of variant PR, there are several papers 
reporting the existence of variant PR mRNA and protein 
(Wei et al. 1990, Wei & Miner 1994, Leygue et al. 1996a, 
Richer et al. 1998, Yeates et al. 1998). One variant PR 
protein form is N-terminally truncated compared with the 
previously reported A and B PR isoforms. This third form, 
the C-receptor, has unique transcriptional enhancing 
properties when in the presence of the two larger PR 
isoforms and ligand (Wei et al. 1996). From this work and 
the abundance of other studies, it is becoming apparent 
that steroid-regulated growth and gene expression 
involves multiple regulatory factors, of which the steroid 
receptor is but one component, and that the eventual 
biological outcome is dependent upon the interaction of 
steroid receptors with non-receptor proteins (i.e. adaptors) 
(Katzenellenbogen et al. 1996, Glass et al. 1997, Shibata 
et al. 1997). Several proteins to date have been associated 
with gene transcriptional enhancing properties such as 
SRC-1 (Onate et al. 1995, Spencer et al. 1997), AIB-1 (a 
member of the SRC-1 family) (Anzick et al. 1997) and 
RIP140 (Cavailles et al. 1995). Likewise, transcriptional 
repressor proteins have been identified (Chen & Evans 
1995). Steroid-regulated gene expression is further 
complicated because some neurotransmitters and growth 
factors (e.g. epidermal growth factor) can activate steroid 
hormone receptors independently of ligand (Ignar- 
Trowbridge etal. 1992, Gangolli et al. 1997). Also, some 
steroid hormones can mimic growth factor action in the 
absence of steroid hormone receptors e.g. progesterone 
binds to oxytocin receptor (Grazzini et al. 1998) and 
estrogen receptor binds to cerbB-2 receptor (Matsuda et 
al. 1993). Collectively, these studies indicate that steroid- 
driven gene activation is modulated by multiple factors, of 
which only one component is the receptor. So, although 
estrogen and progesterone are key hormones in the 
regulation of breast cancer growth, there are many 
additional contributory factors (i.e. growth factors and co- 
factors) that also regulate breast cancer proliferation. 

Although steroid hormone receptor levels can be used 
as a marker to assess the extent of tumor progression 
towards malignancy, few studies directly demonstrate a 
functional role in this regard, especially with regard to 
metastasis. The most direct test was by Garcia etal. (1992) 
who transfected the ER-negative MDA-MB-231 breast 
carcinoma cell line with estrogen receptor (ER-oc) and 
then treated the transfectant cells with estrogens and anti- 
estrogens. Experimental metastatic potential following 
intravenous inoculation of cells was inhibited threefold by 
estradiol whereas the anti-estrogen tamoxifen had little 
effect (Garcia et al. 1992). Estradiol also increased the 
invasive capabilities of these transfectants in an in vitro 
invasion assay using Matrigel; anti-estrogens inhibited 
these effects. Interestingly, in contrast to the typical 
stimulatory effect of estradiol on ER-positive breast 
cancer cell growth, estradiol inhibited the cell 
proliferation of ER-transfectants. These results must be 
viewed cautiously until further experiments are done to 
explain this phenomenon or the experiments are replicated 
in another cell line. 

Endocrine regulation does not act independently to 
regulate breast tumor cell behavior. The biochemical 
changes resulting from modified ligand and receptor 
expression and activation, combined with inter- 
relationships with other growth factors and intracellular 
signaling pathways, reveal a byzantine regulatory 
machinery. Abnormal tissue growth is due to a disruption 
of the balance between stimulated proliferation and 
inhibition of cell death. Transformation and progression 
can be due to: (1) increased production of growth- 
promoting factors; (2) decreased synthesis of growth- 
inhibitory factors; (3) decreased responsiveness to 
growth-promoting factors; or (4) decreased sensitivity to 
growth inhibitory signals. The latter two mechanisms can 
be direct, because of alterations in receptors, or via 
modifications in the downstream signaling pathways. For 
purposes of this review, only selected growth factors will 
be presented to provide examples of the complexities of 
growth regulation of breast cancer growth and 
progression. 

Transforming growth factors 

Transforming growth factors (TGFs) were identified 
initially and named based on their ability to transform 
selected cell types. This family of growth factors has 
expanded extensively and is now known to consist of 
several families of polypeptides (Hartsough & Mulder 
1997). These are produced and secreted by normal and 
cancerous cells. TGF expression can be regulated by 
steroids as well as by other growth promoting factors, 
thereby leading to an intricate complex of negative and 
positive pathways modulating cell cycle progression or 
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homeostasis. TGF-oc and TGF-ß represent two distinct 
families of growth factors that are structurally and 
functionally distinct. 

TGF-oc and epidermal growth factor 
families 
Many members of the TGF-oc family compete with 
epidermal growth factor (EGF) for binding to the EGF 
receptor. Like EGF, TGF-oc binding results in receptor 
dimerization, activation of tyrosine kinase activity and 
eventually leads to stimulation of cell proliferation or 
differentiation (Massague 1983, Derynck 1988, Todaro et 
al. 1990). Other members of this family include 
amphiregulin, heparin-binding EGF, cripto-1, and a 
subfamily of heparin binding proteins called heregulins 
(the human homolog) (Bates et al. 1988, Todaro et al. 
1990, Higashiyama et al. 1991). Heregulin does not 
appear to bind the classic EGF receptor, but initially was 
thought to bind instead to a related EGF receptor protein 
called erbB-2 (HER-2/neu) (Schechter et al. 1984, 1985, 
Coussens et al. 1985, Bargmann et al. 1986, Stern et al. 
1986, Yamamoto et al. 1986). Studies now indicate that 
heregulin does not bind directly to erbB-2, but rather to 
two related receptor forms, erbB-3 (Kraus et al. 1989, 
Plowman et al. 1990) and erbB-4 (Plowman et al. 1993, 
Carraway et al. 1994). All four receptor forms (EGF 
receptor, erbB-2, -3 and -4) have been reported to be 
present in human breast cancers. In about 30% of human 
breast cancers, erbB-2 is amplified or overexpressed; this 
is associated with poor patient prognosis and maintenance 
of the malignant phenotype (Slamon et al. 1987, Allred et 
al. 1992). 

Overexpression of erbB-2/HER-2/neu and its 
relationship with other prognostic factors change during 
the progression of in situ to invasive breast cancer (Van de 
VijverefflZ. 1988, De Potter et al. 1990, Paik et al. 1990, 
Allred et al. 1992, Gusterson et al. 1992, Toikkanen et al. 
1992). Because of this, erbB-2 overexpression was 
thought to be a key factor that increased the invasive 
potential of breast cancer cells; however, studies 
examining comedo-type intraductal carcinomas showed 
that a higher proportion overexpressed erbB-2 protein 
compared with invasive cancer, thereby indicating that, 
although erbB-2 overexpression may play a role in 
invasion, it does not singly lead to increased invasiveness 
(Van de Vijver et al. 1988). The roles of erbB-3 and -4 in 
breast cancer invasion and metastasis are not known. 

TGF-ß family 
The TGF-ß family of polypeptide growth factors is 
comprised of several related gene products that form 
either homodimers or heterodimers. TGF-ß isoforms are 

found in both normal mammary epithelium and in breast 
tumors. The interactions of these various isoforms is 
further complicated by the presence of specific binding 
proteins (ChefietzefaZ. 1988, Murphy-Ullrich etal. 1992, 
Wakefield et al. 1992, Butzow et al. 1993). In addition, 
two TGF-ß receptors (type I and type n) have been 
identified. Four type I receptors have been cloned (Wang 
et al. 1994&). Type I and type II receptors can 
heterodimerize. Because there are a wide variety of 
receptor combinations as well as the existence of multiple 
TGF-ß forms, a diverse number of pathways appear 
available to regulate breast cancer growth and 
differentiation. 

Most normal epithelial cells are growth inhibited when 
exposed to TGF-ß (Arteaga et al. 1996). Restoration of 
TGF-ß receptors in non-responsive MCF7 cells renders 
the cells less tumorigenic and less proliferative when 
grown in the presence of TGF-ß (Sun etal. 1994). Because 
of this, studies on the role of TGF-ß in cancer biology have 
mostly focused on this factor's effect on growth regulation 
and tumor formation. However, there is accumulating 
evidence that TGF-ß plays a critical role in tumor invasion 
and metastasis. 

TGF-ß overexpression in breast tumors has been 
associated with a more malignant phenotype (Dickson & 
Lippman 1996). A specific role in invasion and metastasis 
was demonstrated when Welch and colleagues (1990) first 
showed that exposure of mammary adenocarcinoma cell 
lines to picomolar concentrations of TGF-ßl or TGF-ß2 
induced production of metalloproteinases, with a 
corresponding increase in invasiveness and experimental 
metastatic potential. At these concentrations, growth 
inhibition was not observed. Similar findings have been 
reported for the metalloproteinases as well as the 
urokinases (Walker & Dearing 1992, Agarwal et al. 1994, 
Walker et al. 1994, Sehgal et al. 1996, Reiss & Barcellos- 
Hoff 1997, Dong-Le et al. 1998). It is important to note 
that the source of the TGF-ß can be the tumor cells 
themselves or nearby host cells. Indeed TGF-ß can 
increase stromal cell secretion of urokinase (Hildenbrand 
et al. 1998). Thus, tumor cells which produce TGF-ß 
could manipulate stromal cells to assist in their 
malignancy. This concept is substantiated by the known 
roles of TGF-ß in angiogenesis and immunosuppression 
(Enenstein et al. 1992, Reif et al. 1997, De Jong et al. 
1998a,fc). 

Interestingly, TGF-ß expression was originally 
correlated with increased bone colonization by Walker 
256 carcinosarcoma cells (Orr et al. 1993). Since bone is 
the most common site for breast cancer metastasis, 
organotropism may be partly explained by differential 
expression of TGF-ß. This hypothesis is, at least partially, 
supported by Guise and colleagues who showed that 
TGF-ß can alter expression of parathyroid hormone- 
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related protein (FTHrP) which is, in turn, involved in bone 
resorption. Expression of FTHrP, with or without exposure 
to TGF-ß, regulates bone colonization by MDA-MB-231 
cells (Guise 1997). Still, it must be emphasized that a role 
for TGF-ß in bone colonization by breast cancer has still 
not been definitively established. 

Other growth factors 
In addition to the EGF and TGF-ß families, numerous 
other growth factor families have been identified and 
found in breast cancer cells. These include the insulin-like 
growth factors (IGF-I and IGF-II), fibroblast growth 
factors (FGFs), platelet-derived growth factors (PDGFs), 
and vascular endothelial growth factor (VEGF) (Heldin & 
Westermark 1984, Goustin et al. 1986, Sporn & Roberts 
1986, Ferrara etal. 1992). The expression of many of these 
growth factors can be regulated by estrogen and 
progesterone (Dickson & Lippman 1996). 

Thrombospondin is a 450 kDa adhesive glycoprotein 
present in high concentrations in the platelet alpha- 
granule. It is also synthesized by other cells and is 
incorporated into extracellular matrices. The role of 
thrombospondin in breast cancer biology is checkered 
(Walz 1992, Volpert etal. 1995, Qian & Tuszynski 1996, 
Roberts 1996). Transfection experiments suggest that it 
can promote cell adhesion, invasion and/or metastasis in 
some tumor models (Tuszynski et al. 1987a, Pratt et al. 
1989, Walz 1992, Arnoletti et al. 1995, Incardona et al. 
1995, Wang et al. 1996), whereas it is suppressive in 
others (Weinstat-Saslow et al. 1994, Zabrenetzky et al. 
1994, Qian & Tuszynski 1996). Metastasis-promoting 
effects are often attributed to changes in adhesion whereas 
the suppressive effects can be, at least partially, explained 
by the anti-angiogenic effect of thrombospondin 
(Dameron et al. \994a,b, Weinstat-Saslow et al. 1994, 
Volpert et al. 1995). Interestingly, thrombospondin 
expression is regulated by progesterone in the 
endometrium (Iruela-Arispe et al. 1996), opening the 
possibility that analogous regulation could occur in the 
breast. Also, thrombospondin-1 (TSP-1) expression 
appears to be regulated by p53 (Dameron et al. 1994ft), 
which itself has been implicated in breast tumorigenesis 
(see TP53 in Table 1). 

Thus, there are a multitude of interrelated growth 
factors, receptor types, and steroid hormones in the normal 
mammary epithelium that tightly regulate and coordinate 
cell proliferation and differentiation. In breast cancer cells, 
the intricate balance is perturbed. Invasive and metastatic 
cells further circumvent the regulation by overexpression 
or downregulation of growth factors and/or their 
receptors. Aberrations of downstream signaling cascades 
further contribute to cellular delinquency. Delineation of 
these pathways and their impact on angiogenesis, immune 

response, growth, invasion, and metastasis will require 
new models. 

Immune regulation of breast 
cancer metastasis 
There is clear evidence that breast cancer metastasis is 
based upon the inherent genetic makeup of the tumor cells. 
However, tumor cells do not exist in isolation and their 
biological properties are not fully self-determined. 
Examples are described above but there is one more that 
merits mentioning. The role of the immune system in 
cancer is usually considered to be the elimination of tumor 
cells; however, because metastatic cells and activated 
leukocytes share many properties, including the ability to 
attach to endothelium (Hoover & Ketcham 1975, Yong & 
Linch 1993) as well as degradation of and penetration of 
basement membranes (Wright & Gallin 1979, Klotz & 
Jesaitis 1994), it was suggested that, under certain 
conditions, tumor cells might exploit normal leukocyte 
function to increase metastatic efficiency (Gorelik et al. 
1982,Aeedefa/. 1988). 

Rats injected with syngeneic 13762NF mammary 
adenocarcinoma cell clones developed neutrophilia 
(i.e. tumor-elicited neutrophilia) proportional to the 
metastatic potential of the primary tumor (Aeed et al. 
1988). We showed that the metastatic tumor variants did 
so by secreting granulocyte-macrophage colony- 
stimulating factor (GM-CSF) and/or interleukin-3 (IL-3) 
in proportion to their metastatic propensity (McGary et al. 
1995). More importantly, tumor-elicited neutrophils 
increased metastatic potential and invasiveness of breast 
cells 2- to 25-fold when co-injected intravenously (Welch 
et al. 1989), whereas normal circulating/fleutrophils, 
proteose peptone-elicited and activated neutrophils and 
phorbol ester-activated neutrophils did not. Alone, these 
findings may have been merely an experimental curiosity. 
However, anecdotal clinical data suggest that these types 
of observations are not altogether uncommon. 
Leukocytosis (Sawyers et al. 1992), granulocytosis 
(Hughes & Higley 1952, Suda et al. 1980), eosinophilia 
(Sawyers et al. 1992) and neutrophilia (Lee et al. 1987) 
have been described in patients with advanced neoplasms 
of multiple histological types. This could not be explained 
solely by infection or tumor necrosis (Aeed et al. 1988). 
In experimental models, the evidence predominantly 
supports secretion of factors that stimulate bone marrow 
precursor cells. Lee and colleagues have shown that GM- 
CSF levels may be correlated with more advanced 
mammary tumors (Lee & Baylink 1983, Lee & Lottsfeldt 
1984, Lee et al. 1987). Factor(s) produced by other tumor 
cell types that elicit bone marrow proliferation vary by 
tumor type, stage and size (Asano et al. 1977, Wu et al. 
1979, Mano et al. 1987, Fu et al. 1991, Nitta et al. 1992, 
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Sawyers et al. 1992). Takeda et al. (1991) found that 7/14 
metastatic transplantable tumors produced GM-CSF 
mRNA and/or detectable GM-CSF activity, whereas the 
non-metastatic tumors did not. Taken together, these 
results demonstrate that breast cancers may modulate their 
metastatic potential, in part, by manipulation of the 
immune system. 

A molecular genetic model for breast 
tumor progression 
The collection of neoplastic breast diseases are 
sufficiently distinct that it is unlikely that a single model 
could describe the genetic changes leading to metastasis. 
At the root of any model must be a clear understanding of 
the cell type from which a particular neoplasm developed. 
Notwithstanding, the majority of evidence suggests that 
cells from the terminal ductal structures are the cells of 
origin. Insufficient biochemical and molecular markers 
defining each breast cell type allow for more refinement 
than that with regard to cellular origin of breast neoplasms. 
It is believed that the conversion to neoplasia has an 
intermediary atypical hyperplasia in which the cells have 
lost some aspects of growth control, but still retain 
vestigial response to growth controlling signals. During 
the proliferative phase, cells are responding to the usual 
milieu of positive and negative endocrine, paracrine and 
juxtacrine signals. During this hyperproliferative phase, 
breast epithelial cells accumulate mutations in oncogenes 
and tumor suppressor genes so that they appear even less 
'normal' or differentiated and are classified as carcinomas 
in situ. Further proliferation results in accumulation of 
mutations, increasing malignant characteristics (i.e. 
invasion, aneuploidy, angiogenesis, etc.), so that 
eventually a subset of cells is no longer confined to the 
breast. 

Over 150 genes and genetic loci have been associated 
with breast cancer development. Of those changes, this 
review summarizes evidence implicating a role in 
progression to malignancy for over forty different genes. 
The magnitude of these numbers highlight the tremendous 
complexity of breast cancer as a family of diseases. The 
good news is that all of these markers have been identified, 
in spite of the extraordinary heterogeneity that exists 
within breast neoplasms at diagnosis. The bad news is that 
these changes are only the tip of the iceberg. How, then, 
can one determine which changes are essential and which 
are ancillary? 

For oncogenes and tumor suppressor genes, the data in 
breast cancer oncogenesis are relatively mature. While 
there is still plenty of room for further study, correlative 
data are often corroborated by functional studies (i.e. 
transfection with wild-type cDNA followed by bioassay). 
The mechanism of action is not always known; however, 

the biological endpoints are unambiguous. The situation is 
less clear with regard to genes/loci involved in breast 
tumor progression, invasion and/or metastasis. Only four 
genes (Nm23-Hl, KiSS-1, KAI1 and TSP-1) have been 
demonstrated to suppress metastasis of human breast 
carcinoma cells following orthotopic implantation of 
tumor cells into immunocompromised mice. Of these, 
only one, NME1 has been studied adequately in the 
clinical arena to warrant serious consideration as having 
prognostic value. KAI1 suppressed metastasis at a level 
comparable to Nm23, but KiSS-1 was more potent than 
any of the other genes tested with regard to reduction in 
metastasis incidence. To claim TSP-1 as a metastasis- 
suppressor gene may be a misnomer since tumor growth 
was also inhibited. Nonetheless, the tumor cells still 
expressed the transgene, allowing TSP-1 still to qualify by 
the criteria listed above. 

Considering the number of papers claiming to study 
metastasis of breast cancer, the number of bona fide 
functionally tested metastasis-suppressor genes is 
surprisingly small. In part, this is due to the paucity of 
models which allow testing in vivo. Indeed most of the 
functional studies were done using the MDA-MB-435 
model. Validation in other models has not been done. 
Certainly, testing in other breast tumor types has not been 
attempted. Thus, for the breast cancer metastasis field to 
advance further, more and better models will be required. 

Despite the discovery and identification of four (and 
probably more) metastasis-suppressor genes, several 
questions remain regarding control of the metastatic 
phenotype in human breast cancer. Do the identified genes 
represent rate-limiting steps? Are these genes functioning 
in a single pathway or convergent pathways of metastasis 
control? What are the signals that control these genes? Are 
the key controlling signals among the correlations already 
established for breast cancer progression (i.e. hormonal or 
growth factor control)? While much has been learned, 
more still remains to be found. 
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