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DEPENDENT TYPES AND EXPLICIT SUBSTITUTIONS 

CESAR MUNOZ* 

Abstract. We present a dependent-type system for a A-calculus with explicit substitutions. In this 

system, meta-variables, as well as substitutions, are first-class objects. We show that the system enjoys 

properties like type uniqueness, subject reduction, soundness, confluence and weak normalization. 

Key words, explicit substitutions, dependent types, lambda-calculus 

Subject classification. Computer Science 

1. Introduction. Since the Aer-calculus of explicit substitutions was introduced in [1], several other 

variants of explicit substitution calculi have been proposed; among others [38, 27, 20, 4, 28, 7, 24, 31, 10, 33]. 

By using substitutions as first-class objects, and de Bruijn indices notation for variables, the Acr-calculus 

allows a first-order encoding of the A-calculus. In consequence, technical nuisances due to higher-order 

aspects of the A-calculus, for example a-conversion, can be minimized or eliminated in explicit substitution 

calculi. For instance, higher-order unification problems have been reformulated in a first-order setting via 

some variants of Xa [8, 9, 25, 5]. 

However, explicit substitutions are not free of difficulties. Typed versions of these calculi lead to unex- 

pected problems. It is well known now that.Acr does not preserve strong normalization [30], that is, well-typed 

terms may not terminate in ACT. Furthermore, as a rewrite system, Xa is not confluent on open terms [7]. 

In constructive logic, explicit substitutions and open terms form a framework to represent incomplete 

proofs, i.e., proofs under development [29, 32]. In this approach, meta-variables are place-holders in a 

proof-term, and an explicit substitution notation is necessary to delay the application of substitutions to 

meta-variables waiting to be instantiated. Meta-variables have also been used as unification variables in the 

higher-order unification methods presented in [8, 9, 25]. 

In order to apply explicit substitution techniques in a dependent-type framework, we develop a A-calculus 

of explicit substitutions, called XUc, with dependent types and support for meta-variables. 

The rest of this section gives an overview of the dependent-type theory in which we are interested, and 

to the simply-typed version of Xa. We finish the section with a discussion about the main difficulties to 

set the Acr-calculus in a dependent-type theory. In Section 2 we present the All^-calculus. Just as the 

A-calculus extended with the 77-rule, which is not confluent on terms with type annotations (not necessarily 

well-typed), XUc is not confluent due to type annotations on substitutions. However, using a technique 

proposed by Geuvers in [11], we prove that it is confluent on well-typed expressions. We show how to adapt 

Geuvers' technique to XTi.£ in Section 3. In Section 4 we show the elementary typing properties of XUc'- sort 

soundness, type uniqueness, subject reduction and soundness. In Section 5 we prove the main properties 

on well-typed All^-expressions: weak normalization, Church-Rosser, and confluence. In the last section we 

discuss related work and summarize our work. 

"Institute for Computer Applications in Science and Engineering, Mail Stop 132C, NASA Langley Research Center, Hampton, 

VA 23681-2199, email: munoz@icase.edu. This research was supported by INRIA - Rocquencourt while the author was an 

international fellow at the INRIA institute, and by the National Aeronautics and Space Administration under NASA Contract 

NAS1-97046 while he was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA 

Langley Research Center, Hampton, VA 23681-2199. 



1.1. Dependent types. The Dependent Type theory, namely All [18], is a conservative extension of 

the simply-typed A-calculus. It allows a finer stratification of terms by generalizing the function space type. 

In fact, in All, the type of a function Xx:A.M is Ux.A.B where B (the type of M) may depend on x. Hence, 

the type A -*• B of the simply-typed A-calculus is just a notation in All for the product Ux.A.B where x 

does not appear free in B. 

From a logical point of view, the All-calculus allows representation of proofs in the first-order intu- 

itionistic logic using universal quantification. Via the types-as-proofs principle, a term of type Ux.A.B is a 

proof-term of the proposition Vx:A.B. 

Terms in All can be variables x,y,..., applications (M N), abstractions Xx:A.M, products Ux.A.B, 

or one of the sorts Type, Kind.1 Notice that terms and types belong to the same syntactical category. 

Thus, Ux.A.B is a term, as well as Xx:A.M. However, terms are stratified in several levels according to 

a type discipline. For instance, given an appropriate context of variable declarations, Xx:A..M : Ux:A..B, 

Ux:A..B : Type, and Type : Kind. The term Kind cannot be typed in any context, but it is necessary since 

a circular typing as Type : Type leads to the Girard's paradox [15]. 

Typing judgments in An have the form 

T\-M :A 

where T is a context of variable declarations, that is, a set of type assignments for free variables. We use the 

Greek letters T, A to range over contexts. Since types may be ill-typed, typing judgments for valid contexts 

are also necessary. The notation 

hr 

captures that types in T are well-typed. The An-type system is given in Fig. 1.1. 

In a higher-order logic, as An, it may happen that two syntactically different types become identical via 

/3-conversion. Rule (Conv) uses the equivalence relation =ß which is defined as the reflexive and transitive 

closure of the relation induced by the /3-rule:  (Xx:A.M N)  >- M[N/x}.  We recall that M[N/x) is just 

a notation for the atomic substitution of the free occurrences of x in M by N, with renaming of bound 

variables in M when necessary. 

1.2. Explicit substitutions and simple types. The Air-calculus [1] is a first-order rewrite system 

with two sorts of expressions: terms and substitutions. 

Simple types are generated from a denumerable set of basic types a,b,... and their functional closure, 

i.e., if A, B are simple types, then A -> B is also a simple type. Well-formed expressions in the simply-typed 

Atf-calculus are defined by the following grammar: 

Terms M, N 

Substitutions    S, T 

Types A, B 

:=     1 | (M N) | XA.M | M[S] 

:=    id\ f \M-S\SoT 

:=     a.b.... \ A-^ B 

In Au, free and bound variables are represented by de Bruijn indices. They are encoded by means of the 
«-times 

constant 1 and the substitution f- We write |n as a shorthand for f ° • • • ° t- We overload the notation i to 

:The names Type and Kind are not standard, other couples of names used in the literature are: (Set, Type), (Prop, Type) 
and (*,□). 



1^ 
(Empty) 

T\-A:s 

s S {Kind, Type} 

x is a fresh variable 
hru{x:A} 

(Var-Decl) 

h r 
r h %>e : Kind(Type) 

t-r 
(g: A) e r 
ri-x:i4 

(Var) 

T\- A: Type 

x does not appear in T 

ril{x:A}\-B:s 

s e {Kind, Type} 
r I- Ux:A.B : s ^roa; 

T\- A: Type 

x does not appear in T 

T U {x : A} h M : B 

TU{x:A}\-B:s 

s £ {Kind, Type} 
T h Xx:A.M : Ux:A.B 

(Abs) 

r h M : Ux:A.B 

T\- N : A 
T\-(MN): A[N/x\ (Appl) 

T\-M:A 

T\-B:s 
s 6 {Kind, Type} 

A=0B 
T\-M :B 

(Conv) 

FIG. 1.1. The Xü-system 

represent the Acr-term corresponding to the index i, i.e., 

.     ( I        if» = 1 
l\ l[tn]    if i = n + 1. 

An explicit substitution denotes a mapping from indices to terms. Thus, id maps each index i to the 

term i, f maps each index i to the term i + 1, 5 o T is the composition of the mapping denoted by T with 

the mapping denoted by S (notice that the composition of substitution follows a reverse order with respect 

to the usual notation of function composition), and finally, M ■ S maps the index 1 to the term M, and 

recursively, the index i + 1 to the term mapped by the substitution S on the index i. 

A context in Xa is a list of types. The empty context is written e. A context with head A and rest T is 

written AI\ In that case, A is the type of the index 1, the head of T (if T is not empty) is the type of the 

index 2, and so on. 

The type of a substitution is a context. This choice seems natural since substitutions denote mapping 

from indices to terms, and contexts are list of types. In fact, if the type of a substitution S is the context 

A.A, the type of the term mapped by the substitution S on the index 1 is A, and so for the rest of indices. 

Typing judgment for substitutions in ACT have the form: 

rhSr>A. 

The Acr-calculus and its typing rules are presented in Fig. 1.2. When meta-variables of terms are 

considered, an additional typing rule is necessary to state that each meta-variable is typed in a unique 



(XA-M N) —> M[N-id] (Beta) 

(M N)[S] —> (M[S]iV[S]) (Application) 

(A^.M)[S] —»• AA.M[I-(5of)]     (Lambda) 

M[S][T] —► M[SoT] (Clos) 

1[M-S] —► M (VarCons) 

M[tdJ —> M (Id) 

(51o52)oT —> 5io(52oT) (Ass) 

(M-S)oT —> M[T]-(5oT) (Map) 

irfoS —> S (Idl) 

5 oid —► 5 (Idr) 

fo(M-S) —> 5 (ShiftCons) 

1-t —> id (VarShift) 

l[5]-(toS) —► S (SCons) 

(Abs) AT h 1 : _4 \vaiJ 

ri-M :4-»B T\-N:A 
] V\-{M N) :B 

T\-id> r(W) 

ri-s > Ai    Ai l-T>A2, 

(Appl) 

T\-XA.M :A^B 

 r h M[Sj : A (Clos) 

(Shift) Ar h t > r 

ThTo5>A2 
(Comp) T h M • 5 > AA      (Cons) 

FIG. 1.2. 77ie simply-typed Ac -calculus [1] 

context by a unique type [8]: 

TTFX-?J(Metax). 

The simply-typed Atr-calculus with meta-variables of terms is confluent [38] and weakly normalizing 
[17, 33], 

1.3. Dependent types and explicit substitutions. A dependent-type system for XUc is not a simple 

extension of the simply-typed Aa-calculus. First of all, it is not clear how to type expressions containing 

meta-variables. Notice that in a dependent-type theory with de Bruijn indices, the order in which variables 

are declared in a context is important. In fact, in the context A.T, the indices in A are relative to T. But, 

how is the dependence regarding meta-variables? 

Even without considering meta-variables, setting ACT in a dependent-type theory presents difficulties. 

Take, for example, the typing rule for simultaneous substitutions, the (Cons)-rule: 

T\-M :A    r I- S > A ,_,     , 
 5=n T7—7, 7—k  (Cons). 



A dependent-typed version of this rule has the form 

r \~ M : A[S)    r \- S > A    A h A : Tfape " 
T\-M-S»A.A K       n;" 

First notice that the type given to M in the premises of the rule is A[S] (up to conversion). The application 

of the substitution S to the type A is necessary to take into account possible dependencies of variables in A 

with terms in S. Hence, a type inference algorithm should use a higher-order unification procedure to infer 

the type of M ■ S which depends on A. 

Another drawback of (Consn) is that it is not sound with respect to the usual typing properties. In 

particular, a substitution can be typed with two contexts that are not convertible, i.e., types are not unique 

modulo conversion. For example, consider the context2 

T = 0:nat. l:(Iln:nat.(T n)). T:nat ->• Type. nat.Type 

and the valid typing judgments 

(1.1) T\-[x:=0-id\> x:nat. T 

(1.2) T \-(I 0) : (T x)[x := 0 ■ id\. 

Since (T x)[x := 0 - id] and (T 0)[x := 0 • id] are convertible via Xa, and (T 0)[x := 0 • id] is a valid type, 

we also have: 

(1.3) T \-(I 0) : (T 0)[x := 0 ■ id\. 

Using (Consn) with (Eq. 1.1) and (Eq. 1.2), we get: 

(1.4) Th[y:=(lO)-x~0-id\>y:(TO).x:nat.T 

and with (Eq. 1.1) and (Eq. 1.3): 

(1.5) T\-[y:=(lO)-x:=0-id\> y:(T x). x:nat. T. 

However, (T 0) and (T x) are not convertible, and then, the substitution [y := (I 0) • x := 0 • id] has two 

types, y:(T 0). x:nat. T and y:(T x). x:nat. T, which are not convertible. 

To solve these problems, we use type annotations in substitutions, in a similar way as the Church style 

A-calculus —as opposed to the Curry style— annotates binder variables in abstractions. The final version 

of (Consn) has the form: 

T h M : A[S]    rhS>A    Ahi: Type , _        , 
 T^M.AS>A.A (ConSn)' 

Annotations in substitutions act as reminders of types, and they must be introduced and maintained by the 

calculus of substitutions. In our previous example, substitutions in Eq. 1.4 and Eq. 1.5 should be annotated 

with different types. 

2For readability, we use named variables when discussing examples.  Nevertheless, as we have said, \a uses a de Bruijn 

nameless notation of variables. 



A different solution proposed by Bloo in [2] is to introduce substitutions in contexts and to deal with 

these extended contexts via additional typing rules. This approach is similar to type systems with definitions 

[41, 3], where closures are typeable, but substitutions are not considered as typeable objects. We discuss 

this approach in the last section. 

When we consider annotated substitutions, the system may lose the subject reduction property due to 

the non-left-linear rule (SCons): 1[S] -A (t ° S)  - S. For instance, take the context 

T = m:(T 0) -> not. 0:nat. l:(Un:nat.(T n)). T:nat ->• Type. nat:Type 

and the substitution 

S = [y := (I 0) -{T o) x := 0 -nat id\. 

We verify that the following typing judgments are valid: 

r h S > y:(T 0). x:nat. T 

T I- 1[5] -(T x) (t ° S) > y:{T x). x:nat. T. 

But also, 1[5] -(T x) (t ° S)          > S.    However, since (T 0) and (T x) are not convertible, T \f 

S > y:(T x). x:nat. T. Therefore, the type of 1[5] -(T x) (f ° S) is not preserved by rule (SCons). 

The problem here is not the type system but the substitution calculus. Non-left-linear rules —like 

(SCons)— are not only harmful for typing, but are also usually responsible for non-confluence problems 

[26,7]. 

Nadathur [35] has remarked that in ACT with meta-variables of terms, but without meta-variables of 

substitutions, rule (SCons) is admissible when the following scheme of rule is added to the system: l[t™] • 

t™+1  "   tn-  Since fn is a shorthand, an infinite set of rules is represented by this scheme.  Following 

Nadathur's idea, we present in [33] a variant of ACT, namely A£, which has the same general features as ACT, 

i.e., simple, finite, and first-order presentation, but without rule (SCons) of ACT. 

In this paper, we propose the AIl£-calculus, which is based on A£, and show that An£ is a suitable 

calculus for our purpose: explicit substitutions, dependent types and support for meta-variables. 

2. An,c-Calculus. As usual in explicit substitution calculi, expressions of AÜ£ are structured in terms 

and substitutions. Since we use the left-linear variant of ACT, the A£-calculus, we add the sort of natural 

numbers. The AIl£-calculus admits meta-variables only on the sort of terms. 

The set of well-formed expressions in AII^ is defined by the following grammar: 

Natural numbers n ::= 0| n + 1 

Meta-variables X ::= X\Y\ ... 

Terms A,B,M,N ::— Kind | Type 

M[S] | x 
Substitutions S,T ::= t" \M-AS 

1 I UA.B | \A.M | (M N) | 

|SoT 

The equivalence relation =xnc 
is defined as the symmetric and transitive closure of the relation induced 

by the rewrite system in Fig. 2.1. 

The system Il£ is obtained by dropping rule (Beta) from AIl£. As shown by Zantema [47], the Il£- 
calculus is strongly normalizing. 



(XA.MN) 

(XA.M)[S) 

(UA.B)[S\ 

(M N)[S] 

M[S][T] 

1[M -A S] 

M[f] 

(M -AS)oT 

f°S 

tn+1 o (M -A S) 

i[tn] -A r+1 

Type[S] 

M[N -A t°] (Beta) 

XA[S]-M[1-A (S< ,f)] (Lambda) 

KA[S]-B[1-A (Sc t1)] (Pi) 

(M[S) N[S\) (Application) 

M[S o T] (Clos) 

M (VarCons) 

M (Id) 

M[T] -A (S o T) (Map) 

S (IdS) 

t"oS (ShiftCons) 
/i-n 0 +ra+l (ShiftShift) 
*0 (ShiftO) 
^-n (ShiftS) 

Type (Type) 

FIG. 2.1.  The \Iic-rewrite system 

LEMMA 2.1.  The Uc-calculus is terminating. 

Proof. See [34]. The proof uses the semantic labeling technique [46]. D 

The AIl£-calculus, just as ACT, uses the composition operation to achieve confluence on terms with 

meta-variables. Rules (Idr) and (Ass) of Xa are not necessary in XUc- 

We adopt the notation i as a shorthand for l[f"] for i = n + 1. In contrast to ACT, t" is not a shorthand 

but an explicit substitution in XUC. Indeed, f° replaces id and t1 replaces t- In general, tn denotes the 

mapping of each index i to the term i + n. Using |n, the scheme of rule proposed by Nadathur can be 

encoded in a first-order rewrite system. Notice that we do not assume any meta-theoretical property on 

natural numbers. They are constructed with 0 and n + 1. Arithmetic calculations on indices are embedded 

in the rewrite system. 

2.1. Meta-variables in AII^. As we have said, meta-variables are first-class objects in All/;. Just as 

variables, they have to be declared in order to keep track of possible dependencies between terms and types. 

A meta-variable declaration has the form (X: rA), where T and A are, respectively, a context and a type 

assigned to the meta-variable X. The pair (r,^4) is unique (modulo =xnc) f°r eacn meta-variable. This 

requirement is enforced by the type system. 

A list of meta-variable declarations is called a signature. We use the Greek letter S to range over 

signatures. The empty signature is written e. A signature with head (X: rA) and rest S is written (X: rA). S. 

We overload the notation Si. S2 to write the concatenation of the signatures Ei and S2- 

The order of the meta-variable declarations is important. In a signature (Xi: rx^i). ... (Xn: rnAn), the 

type Ai and the context rt,0 <i <n, may depend only on meta-variables Xj,i < j <n. The indices in At 

are relative to the context IV 

The main operation on meta-variables is instantiation. The instantiation of a meta-variable A' with a 

term M in an expression y (where y is a term or a substitution), denoted by y{X ^ M}, replaces all the 

occurrences of X in y by M. Application of an instantiation to a context T (signature S) is denoted by 

r{AT i-> M) (£{X H-> M}). It is defined in the obvious way. 



In contrast to substitutions of variables, instantiations of meta-variables allow capturing of variables. 

Instantiations are not first-class objects, i.e., the application of an instantiation is atomic and external to 

the AÜ£-calculus. 

2.2. The AÜ£-type system. In XEc, we consider typing assertions having one of the following forms: 

hs;r 

to capture that the context V is valid in the signature E, 

E;T\-M:A 

to capture that the term M has type A (the type M has the kind A) in E; T, and 

E;ThS>A 

to capture that the substitution S has the context type A in E; T. 

The scoping rules for variables and meta-variables in the above type assertions are as follows. Contexts 

T, A, and expressions M,A,S may depend on any metavariable declared in the respective signature E. 

Indices in M, A, and S are relative to their respective context T. 

Typing rules for signatures, contexts, terms, and substitutions are all mutually dependent. They are 
given in Fig. 2.2. 

In the following, we use h E, h T, T h M : A, and T h S > A as shorthands for h E; e, h e; T, e; T h M : A, 

and e; T h S > A, respectively. 

Since there are no typing rules for Kind, the term Kind does not occur as a sub-term of a well-typed 
expression. 

The An£-system types at least as many terms as All. In other words, Aü^ is a conservative extension 
of An. 

LEMMA 2.2 (Conservative extension). Let M,A be ground terms in XUC, and F a ground context such 

that M, A, T do not contain explicit substitutions, then T \- M : A in AIl£ if and only ifT\-M:Ain\U 

(modulo de Bruijn indices translation). 

Proof. By induction on the typing derivation. □ 

The following lemma states the conditions that guarantee the soundness of instantiation of meta-variables 
in An£. 

LEMMA 2.3 (Instantiation soundness). Let M be a term such that E^T h M : A, and E a signature 

having the form E2. (X:rA). Ei, 

1. if h E; A, then I- ELY (-> M}; A{X ^ M], 

2. if E; A h N : B, then 

E{X h+ M}; A{X H-> M} h N{X H> M} : B{X .-> M}, and 

3. if E; Ai I- 5 > A2, then T,{X H- M}; A^X i-> M} \-S{X H- M} > A2LY >-)• M}. 

Proof. By induction on the typing derivation. D 

2.3. Type annotations. Type annotations in substitutions are introduced with rules (Beta), (Lambda), 

and (Pi), and then propagated with rule (Map). They can also be eliminated with rules (VarCons), (Shift- 

Cons), and (ShiftO). Notice that the type annotation propagated by rule (Map): (M -AS)oT «- M[T] -A 

(SoT)is A, not A[T\. 

Consider the following example. 



h e;e 
(Empty) 

S;rhi:s 

s 6 {Kind, Type} 

X is a fresh meta-variable 
\-(X:rA).V 

(Metavar-Decl) 

H;T\-A:a 

s E {Kind, Type} 
hS;ir (Var-Decl) 

hs;r 
£; r h Type : /find 

(Type) 
I 2-i)   J\..JL /T   T \ 

E;A.rhI:4tr 

E; T h 4 : Type 

E;Arhfl:8 

s € {üfmd, Type} 
Ejrt-IlA.i^rs 

(Prod) 

S; T \- A : Type 

E; A.T \- M : B 

T,;T\-UA.B : s 

s £ {Kind, Type} 
S;Th XA.M :UA.B 

(Abs) 

H;T\-M :I[A.B 

£■ r h N : A 
E;Th(MN):B[N.Ar] (APP'} 

s;ri-5>A 
X;AhA:Kind 

X;T^A[S\:Kind{a°s-Kmd) 

T,;T\-S>A 

S;AhM:4 
£;Ar-A:s 

s 6 {Ämd, T/pe} 
£;ri-MlSj:4Sj (Uos) 

hs;r 
(X:A^)€S 

A =       V 
S;r~hX:A   (Metavar) 

S;rhM: A 

E;rhB:s 

s S {Kind, Type} 

A =xuz B 
H:T\- M:B 

(Conv) 

E;THS>Ai 

hS;A2 

Ax =An£ A2 

S;rh5>A2 
(Conv-Subs) 

hSi£_(Id) s;ri-r>r 

hS;Ar 
s;rht">A 

S;Arhtn+1>A 
(Shift) 

S;ri-5>Ai 
S;A1hT>A2 

S;rr-To^>A2
(Comp) 

S; T h M : 4[S] 
S;rh5>A 

S; Ah A: Type 
S;rhM-^>4.A (ConsJ 

FIG. 2.2. The All^-tj/pe system 



Let T = z:nat. T:nat -> Type, nat: Type. We verify that 

(2.1) r h (Xx:nat.Xf:((T x) -> nat).Xy:(T x).(f y) z) : ((T «) ->• not) -»• ((T z) -> nat)- 

Reducing the (Beta)-redex and distributing the substitution inside the abstraction, we get 

(\x:nat.\f:((T x) -> nat).\y:(T x).(f y) z) (Beta). 

A/:((T z) -» nat).((Ay:(T z).(/ y))[/ := / -(T zHnat x := z -nat f]). 

We will check that the type in Eq. 2.1 is preserved by the reduction. 

Thanks to the rewrite rule (Lambda), the type annotation for / in the substitution [/ := / -(T x)_>nat 

x := z -nat t1] is (T x) -» nat, that is, the type of the variable / before the distribution of the substitution 

[x := z -nat t°] in the abstraction A/:((T x) -» nat).Xy:{T x).(f y). 

The typing rules for substitutions install the right context of variables. For example, the expression 

Xy:(T x).(f y) will be typed in a context where the variable declaration / : (T z) -» nat has been replaced 

by / : (T x) -> nat. In fact, we verify 

(2.2) /:(T z) -»■ nat. T h [/ := / -(T x)^„a< a; := z -nat f
1] > /:(T x) -> not. x:nat. T 

(2.3) /:(T a;) -»• nat. x:nat. T h Ay:(T s).(/ y) : (T x) -> nat 

hence, by rule (Clos) applied to Eq. 2.2 and Eq. 2.3: 

(2.4) f:(T z) -> nat. T h (Xy:(T x).(f y))[f := f -(T x)^nat x := z -nat f] : (T z)-> nat 

and by rule (Abs) applied to Eq. 2.4: 

Th    Xf:((Tz)^nat).(Xy:(Tx).(fy))[f:=f.{Tx)^natx:=z-natf]: 
({T z)^nat)->((T z)->nat). 

The above example is due to Geuvers and Bloo [13], and it happens to be a counter-example for subject 

reduction in calculi of explicit substitutions with dependent types where substitutions do not keep track of 

typing information. The use of annotated substitutions in An£ keeps the right type when a substitution is 

propagated under an abstraction or a product. In fact, as we will show below, subject reduction holds in 
AII£. 

However, annotated substitutions raise a technical problem: the All^-rewrite system is not confluent. 

The problem even exists if we only consider local confluence on ground terms. In fact, the following critical 

pair is not joinable in the general case, e.g., assume A and B to be different ground All^-normal forms: 

(l-Af)o(M-BS) 

(ShiftO); (IdS)/ \(Map); (VarCons); (Shift Cons); (IdS) 

M-BS M-AS 

This problem is similar to the one pointed out by Nederpelt for the A-calculus extended with the n- 

rule [36]. In that case, the confluence property holds on terms without type annotations in abstractions 

(A-calculus in the Curry style), but does not on terms with annotated abstractions (A-calculus in the Church 

style). In [11], Geuvers proposes a method to prove confluence for the ßrc-reduction on well-typed A-terms 

written in the Church style. In the next section we adapt this technique in order to prove the confluence 

property on well-typed AII^ expressions. 
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(XA-MN) ->     M[N ■ t°] (Beta) 

(XA.M)[S] ->     A^[S].M[1 (5 of)] (Lambda) 

(UA.B)[S] ->   n^[s].ß[i (S of)] (Pi) 

l[M ■ S] -!•     M (VarCons) 

(M-S)oT ->     M[T] • (5 c >T) (Map) 

t"+1 o(M-S)     - ->■    tno5 (ShiftCons) 

1 • t1 .        AO (ShiftO) 

l[tnl • tn+1          —  ,       -t-n (ShiftS) 

FIG. 3.1. Modified rules in the AH^-rewrite system 

3. Geuvers' Lemma. Geuvers' lemma is a weak form of the Church-Rosser property which suffices 

to prove the main typing properties in systems where confluence on terms with type annotations —i.e., in 

the Church style— is not available. Geuvers' technique uses a positive reformulation of the counter-example 

of non-confluence, and the fact that the underlying calculus without typing annotations —i.e., in the Curry 

style— is confluent. 
The underlying Curry style of AÜ£ is called XU°. In this calculus, substitutions do not have type 

annotations (but abstractions do keep their type annotations). The set of well-formed terms in Aü° are the 

same as in XUc, but substitutions have the following grammar: 

Substitutions    S,T     ::=     f1 I M ■ S \ S o T. 

As in the case of AÜ£, only meta-variables of terms are enabled in AII°. The AII°-calculus is obtained 

by affecting the reduction system XUc as shown in Fig. 3.1. As expected, we define the n°-calculus as AII° 

without rule (Beta). 

The positive reformulation of the confluence counter-example in Aü^ states that if two terms are equal 

without type annotations, then they are convertible via =\nc ■ 
DEFINITION 3.1.  The erasing mapping |.| : XIlc -»• AII° is defined as follows: 

\x\ = x    if x € {1, Type, Kind} or x is a meta-variable 

\UA.B\   = nlA[.\B\ 

\XA.B\     = \\A\.\M\ 

\(MN)\  = (\M\\N\) 

\M[S]\     = \M\[\S\] 

\SoT\     = \S\o\T\ 

\M-AS\ = \M\-\S\ 

The following are useful properties of the erasing mapping. 

LEMMA 3.2 (Erasing properties). Let x and y be expressions in XUc, w be an expression in Afl°, R 

one of the rewrite systems Allr or He, and RD the corresponding rewrite system without type annotations, 

i.e., An? orTPc, then 

1. if x " y, then \x\  \y\ or \x\ = \y\, 
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Ra R 
2. if \x\  w, then there exists w' in XUc such that x >• w' and \w'\ = w, and 

3. if x is an R-normal form, then \x\ is an Ra-normal form. 

Proof. Properties (1) and (2) are proved by structural induction on x. Property (3) is a consequence of 

(2).D 

LEMMA 3.3 (Positive counter-example). Let x and y be expressions in XUc, if \x\ = \y\, then x =nc y, 

and therefore, x =\nc V- 

Proof. Since |a;| = \y\, x and y have the same principal constructor. We proceed by structural induction 

on x. If x = XA.M, y = XB.N, and \x\ = \y\, then by definition, A|yi|.|M| = A|B|.|iV| and thus, \A\ = \B\ 

and \M\ = \N\. By induction hypothesis, A =nc B and M =n£ N, and thus, XA.M =nc XB.N. In fact, 

the only interesting case is x = M -A S and y = N -BT. We get by induction hypothesis: 

(3.1) M=UcN 

(3-2) S=ncT 

Since the function |.| erases type annotations from substitutions, we do not have by induction hypothesis 

A =nc B. However, by using the counter-example, we have 

M-BS2£-{1-A f) o (M -B S) -H£l M -A S. 

We conclude with Eq. 3.1 and Eq. 3.2 that x = M -A S =nc M -B S =nc N -BT = y. D 

A consequence of the reformulation of the counter-example is that, if we erase the type annotations of 

a term M and then annotate it again with an arbitrary term, we get a term iV which is equivalent to M 

modulo =\uc ■ 
DEFINITION 3.4.  Let A be a term in \nc, the annotation mapping (.)4. : AITg -» XUC is defined as 

follows: 

x— = x    if x € {1, Type, Kind} or 2 is a meta-variable 

{UBl.B2)± = nB±-B^ 
(AB.M)4-    = \BA.M± 

(M N)±     = (M±N±) 

(M[S])±     = M^[SÄ] 

(SoT)±     = S±oT± 

{M-S)±     = M±-AS± 

LEMMA 3.5 (Erasing inverse). Let x be an expression in \Hc and Abe a term in Au/;, x =xnc \x\—. 

Proof.  It is not difficult to show that if w is an expression in AII°, then w = \w—\.  Let w = |a;|, by 

Lemma 3.3, x =\nc \x\—- D 

We use the next lemma in the proof of Geuvers' lemma. 

LEMMA 3.6. Let x and y be expressions in AII° and A be a term in XUc, if x —+ y, then x— =\nc y—. 
AnD * 

Therefore, if x —^* y, then x— =\nc V~- 

Proof. By induction on the depth of the An°-redex reduced in x. □ 
The proof of Geuvers' lemma uses a confluence property on the calculus without type annotations. We 

left the proof of that property (confluence of AII°) for the last part of this section. 
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THEOREM 3.7 (Confluence of Äug).  The XU^-calculus is confluent. 

THEOREM 3.8 (Geuvers' lemma). Let Ax,Bx,A2,B2,M,N be terms in XUc, 

1. ifUAl.Bx =xuc UA^.B2, 
then Ai =Anc M and Bx =xnc B2, and 

2. if M =\ac N, where N is a XUc-normal form, then there exists M' in XUc such that M * M' 

and \M'\ = \N\. 
Proof. We show only the first case. The second case is similar. By Lemma 3.2(1) and the definition of 

|.|, we have u^^-IBil =xua n|^2|.|52|- Since AII°. is confluent (Theorem 3.7), there exists M in AII°. such 
An° * 

Wl-Bil —^ M and nl^l- 
\-prD * ATT     ' 

that II u \.\Bi\ —^ M and IL^i-II^I —^* M. But there is no All^-redex with a product as the main 
irrD * \nD * AnD * Anc 

constructor, so M has the form UA.B where \Ax\ —^ A, \Bi\ —±~ B, \A2\ —^* A, and \B2\ —^ B. 

By Lemma 3.5 and Lemma 3.6, for any All^-term N, Ax =An£ l-^i|— =An£ A&-, Bx =xuc \Bx\— =An£ B—, 

A2 =An£ \A2\^=xnc-A*-, and B2 =Xuc |S2|^=An£ B*-. Therefore, Ax =xuc M and Bx =xnc B2. D 

The rest of this section addresses the proof of confluence of the All^-calculus (Theorem 3.7). 

First, we prove that the Ilg-calculus —Allg without (Beta)— is terminating and confluent. 

LEMMA 3.9 (Termination of Tig). 11°. is a terminating rewrite system. 

Proof. Since any reduction in Ilg can be properly simulated in n£ (Lemma 3.2(2)), any infinite reduction 

in 11°- corresponds to some infinite reduction in UC- But Uc is terminating (Lemma 2.1), thus Ilg is 

terminating. D 

LEMMA 3.10 (Confluence of 11°).  The U°-calculus is confluent. 

Proof. We mechanically check, e.g., by using the RRL system [23], that the Tig-rewrite system has the 

following critical pairs: 

• 

• 

(Id)-(Clos) 

(Clos)-(Clos) 

(ShiftO)-(Map) 

(ShiftS)-(Map) 

M[S]  2¥- M[S][f]  ^  M[Sot°] 

M[(Sx°S2)oT]  H^-  M[Sx][S2][T]  H.  M[Sx°(S2oT)] 

S Hi  (l-fJoS  "H  ItSJ-^oS) 

t' noS  JH_  (i[t"].tn+1)o5  H-  I[tn o S] ■ (t"+1 o S) 

(Lambda)-(Clos) and (Pi)-(Clos)   . 

Let51 = l-((Sot1)o(l-(Tot1)))and52 = l-((5oT)ot1), 

XA[SoT].M[Sx]  HI  (XA.M)[S][T]  HI  XA[SoT].M[S2] 

UA[SoT].B[Sx]  HI  (UA.B)[S][T]  HI  UA[SoT].B[S2] 

These critical pairs are Ilg-joinable (we recall that only meta-variables of terms are admitted). Using 

an extension to the Critical Pair lemma proposed in [33] (based on similar extensions originally presented in 
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X  ► X (Reü„) A ~TJ -J^V N (Lambda'l) 

A1  >■ Bi        A2  >- B2 rpi x M - N        S *T ,-,,     , 
IW-Bi  - U^m       (^1||j M[S\ ► N[T\ (CloS||) 

Mi  M2        Ni. -No ,.    ,.   ,.     N M —— N        S -T,„ 
{Ml Nl)-^ (M2 N2)       (Application,,)  M.S__^N.T        (Cons,,) 

5i  - S2        7i  - T2 (n        , Mj  M2        JVi —» JV2rt3l   , 
StoT^ioT,       (Comp») (A^.M.JVO — M^-f] (Beta,l) 

FIG. 3.2. The parallelization of (Beta) 

[22, 40]), we conclude that U^ is locally confluent. Therefore, by Newman's lemma and Lemma 3.9, Ilg is 

confluent. D 

The confluence proof of the An°-calculus uses a general method proposed in [45] to prove confluence of 

abstract relations: the Yokouchi-Hikita's lemma. This method shows to be suitable for left-linear calculi of 

explicit substitutions [7, 37, 33]. 

LEMMA 3.11 (Yokouchi-Hikita's lemma). Let R and S be two relations defined on a set X such that: 1) 

R is confluent and terminating, 2) S is strongly confluent, and 3) S and R commute in the following way: 

for any x,y,z € X, if x ——*■ y and x >- z, then there exists w € X such that y «- w and z -^-*- w. 

Then the relation R*SR* is confluent. 

Proof. See [7]. D 

We take the set of All^-expressions as X, Ilg as R and ßy as 5, where £„ is the parallelization of (Beta) 
defined in Fig. 3.2. 

LEMMA 3.12. 11° commutes over B\\, i.e., if x reduces in one U°-step to y, and in one B^-step to z, 

then there exists w such that y ——"   c» w and z —£— w. 

Proof. By case analysis on the redex reduced in x. □ 

We are now ready to prove the confluence property of Aff^. 

Theorem 3.7. The An°-calculus is confluent. 

Proof. We verify that n£ and B\\ satisfy the conditions of Yokouchi-Hikita's lemma, that is, 

1. n° is terminating and confluent (Lemma 3.9 and Lemma 3.10), 

2. B|| is strongly confluent, since (Beta) by itself is a left linear system with no critical pairs (c.f. [19]), 
and 

3. n° commutes over B\\ (Lemma 3.12). 

Therefore, n°*ß||n°* is confluent. 

Note that An? C IL^B^* C Ang*. Let ar.be an expression in XU^. If x ^£ y and x ^* z, then 

there exists w such that y ("£ B^c \ w and z ("£ g""£ }, „,. So, y ^1 w and z ^* w. D 

4. Elementary Typing Properties. The elementary typing properties of An^ are 

• Sort soundness: the type of a term is a valid sort. 

• Type uniqueness: the type of a term is unique module =\nc ■ 
• Subject reduction: the An^-rewrite system preserves typing. 
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• Soundness: there always exists a path of well-typed terms between equivalent well-typed terms. 

We use Geuvers' lemma to prove the last two of the above properties. 

THEOREM 4.1 (Sort soundness). 

1. If £; T h- M : A, then A = Kind or £; T h A : s, s 6 {Kind, Type}, and 

2. if E;rhS>A then Z; A. 

Proof. By induction on the typing derivation. D 

THEOREM 4.2 (Type uniqueness). Let I\ and T2 be such that Pi =\nc F2> 

1. if S; Ti h M :A and £; T2 h M : B, then A =Xnc B, and 

2. if £;]?! \- S> Ai and S;T2 r-5 > A2, then Aj =An£ A2. 

Proo/. By simultaneous structural induction on M and 5. D 

THEOREM 4.3 (Subject reduction). The \nc-calculus preserves typing, if x —£* y, for an expression 

x, then 

1. if x is a term and £; T h x : A, then £; T \- y : A, and 

2. if x is a substitution and £; T \- x > A, then £; T h y > A. 

Proo/. We show that typing is preserved for one-step reductions (i.e., —^- ), and therefore, it is also 

for the reflexive and transitive closure (i.e., —^* ). Let x —5- y be a one-step reduction. We proceed by 

induction on the depth of the redex reduced in x. 

In the initial case, x is reduced at the top level, and we proceed by case analysis. We show the case of 

rule (Beta): 

Let E; T h (XA.M N) : B. We show E; V h M[N -A f] : B. 

We have: 

1. (a) E;T h XA.M : U^.-Bi, (b) S;T h JV : Ai, and (c) B =mc Bi[N -Al t°], by inversion of rule 

(Appl) applied to the hypothesis. 

2. (a) E;r h i :  Type, (b) £;AI? h M : B2, (c) S;AT h B2 : s2, s2 £ {^»nd, Tj/pe}, and (d) 

UA.B2 =\nc n^j.ßi, by inversion of rule (Abs) applied to (1-a). 

3. (a) A =An,c ^i and (b) B2 =\uc B\, by Geuvers' lemma (Theorem 3.8) applied to (2-d). 

4. E; T h N: A, by rule (Conv) applied to (1-b), (2-a), and (3-a). 

5. E; T h N -A t° > AT, by rule (Cons) applied to (4), (2-a), and E; F h f° > r. 

6. B2[N -A f] =xnc Bi[N -A f ] =An, B,[N -Al t°] =An£ B, by (1-c) and (3). 

7. E;T \- B : s\, si e {Kind, Type}, by sort soundness (Theorem 4.1) applied to the hypothesis. Note 

that the case s = Kind is not possible. 

Therefore, we have the derivation 

E; AT\-M: B2 (2-b) 

E;A.rhB2:«2 (2-c) 
E;rhiV^t0>Ar (5) 

X;T\-M[N-Af]:B2[N.Af}        °S) (6)    (7) 

Sjri-MtJV^t0] -B 

The other cases are similar. The induction step cases do not present any difficulty. D 
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Sometimes the conversion rule (Conv) is expressed as [14]: 

T\- M :A 

Th-B-.s 

s £ {Kind, Type] 

A  B or B - A 
(Conv') 

T\-M:B 

Rule (Conv) seems to be more general than rule (Conv'). In fact, the latter one allows conversions of 

types only via a path of well-typed terms. Geuvers and Werner [14] define a type system to be sound if the 

convertibility of terms remains in the set of well-typed terms. In sound systems, rules (Conv) and (Conv') 

are equivalent. 

We use the following lemma in the soundness proof of the All^-system. 

LEMMA 4.4. Letx,y be All/;- expressions in He-normal form such that \x\ = \y\, ifx andy are well-typed 

expressions, then they are convertible via a path of well-typed expressions. 

Proof. By structural induction on x and y. D 

THEOREM 4.5 (Soundness).   If  E;T h M : A, S;T h N : B and M =Xuc N, then M and N are. 

convertible via a path of well-typed terms. 

Proof. From Lemma 3.2(1), we have \M\ =xnc \N\- The confluence property of All? states that there 

exists a; € Allg such that |M| —±+ x and \N\ —£— x. By Lemma 3.2(2), there exist Mx,Ni in \U.C 

such that M —^* Mu N -^£* Nx, and |Mi| = \NX\ = x. Since Uc is terminating (Lemma 2.1), there 

exist M2,N2 Il^-normal forms such that Mi —-^- M2, Ni —^— N2. By the subject reduction property 

(Theorem 4.3), E; T \- M2 : A and E; T h JV2 : B, and all the terms in both reductions are well-typed. 

Now, from Lemma 3.2(1), we have x —^- \M2\ and x —£->► \N2\. But M2 and iV2 are n£-normal 

forms, thus, by Lemma 3.2(3), |M2| and |i\^| are Ilg-normal forms. Since Ilg is confluent, |M2| = |iy2|. By 

Lemma 4.4, M2 and N2 are convertible via a path of well-typed terms. Therefore, M and N are convertible 
via a path of well-typed terms. D 

A direct consequence of typing soundness and subject reduction is the following property. 

LEMMA 4.6. If£;T \- Mx : Au E;T h M2 : A2, and Mi =mc M2, then Ax =xuc M- 

Proof. By induction on the length of the paths of well-typed expressions converting Mi to M2. D 

5. The Main Properties: Weak Normalization and Confluence. In this section we address the 

proof of the main properties of \Hc on well-typed expressions: weak normalization and confluence. 

5.1. Weak normalization. The All^-calculus does not preserve strong normalization of All. In fact, 

the counterexample shown in [30] for Ac may be reproduced in XTLc with some minor modifications. 

Nevertheless, we prove that AIl£ is weakly normalizing on well-typed expressions, i.e., there exists a 

strategy to find Aü^-normal forms on well-typed expressions. In particular, we propose a proof of strong 

normalization of the strategy that performs one step of (Beta) followed by a Il£-normalization. 

We use the standard technique of reducibility, originally due to Tait for the simply-typed A-calculus 

[42], and then extended by Girard to the system F (the A-calculus of second-order) [15]. From the diverse 

proofs of termination using a reducibility notion, we follow the presentation given in [12] for the Calculus of 

Constructions, which is based on saturated sets. We adapt this proof for the All^-calculus. In order to avoid 

some technical problems due to the non-confluence of the calculus with type annotations (not necessarily 

well-typed), we define saturated sets in a slightly different way. However, the structure of the proofs is the 
same. 
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We use (x)lUj. as a shorthand for the set of n^-normal forms of x. The set containing all the Ilr-normal 

forms of XUc is denoted by NT. 
ßUc          ,       (Beta) 

DEFINITION 5.1. Let x,y £ NT, we say that x /ftl^-reduces to y, denoted by x «- y, if x «- w 

and y £ {w)iUj..    Notice that the set of /Jll^-normal forms is equal to the set of Aür-normal forms, and 

that x -^£* y implies x -^* y.   In fact, we will show that ßUc is strongly normalizing on well-typed 

expressions, and therefore, AII^ is weakly normalizing on well-typed expressions. 

We denote by SN the set of ßü^-strongly normalizing expressions of NT. 

DEFINITION 5.2. Let M be a term in NT. The term M is neutral if it does not have the form XA-N. 

The set of neutral terms is denoted by NT- 

DEFINITION 5.3. Let x be in NT. The set of annotations of x, denoted by tt(x), is defined inductively 

as follows: 

tt(x) =0    if x £ {Kind, Type, 1} or x =t™ or x is a meta-variable 

X(nA.B) = K(,4)UN(S) 

H(A^.M) = N(,4)UN(M) 

N(MJV) = N(M)UN(W) 

K{M[S}) = N(M)UN(S) 

H(5oT) = N(S)UN(T) 

K(M-AS) = {i}uN(M)UK(S) 

DEFINITION 5.4. A set of terms A C NT is saturated if 

LAC SN, 

2. ifM£k and M -^ N, then N £ A, 

3. if M € NT, and whenever the reduction of a ßUc-redex of M leads to a term N £ A, then M € A, 

and 

4. ifMG A, \M\ = \N\, and N(iV) C SN, then N e A. 

The set of saturated sets is denoted by SAT. 

The following corollary is a trivial consequence of Def. 5.4(3). 

COROLLARY 5.5. Let M e NT such that M is a ßUc-normal form, for any A e SAT, M € A. 

The following lemmas show particular cases of terms that are in saturated sets. 

LEMMA 5.6. For any A e SAT, substitution S £ SN, and meta-variable X, we have (X[S])iUc C A. 

Proof. Let A £ SAT and M € (X[5])4.n£. Since M is neutral it suffices to consider the reductions of M 

(Def. 5.4(3)). We reason by induction on v(S)3. Only two reductions are possible: 

• M — X, and by Corollary 5.5, X e A. 

. M -^> X[T] where S -^* T.   By hypothesis, T £ SN, and v(S) > v(T), so by induction 

hypothesis, (X[T])±ac C A. 

In both cases, M reduces to terms in A, thus, M 6 A. D 

LEMMA 5.7. For any A £ SAT, and terms A,B e SN, UA.B £ A. 

Proof. The term UAB is neutral. By Def. 5.4(3) it suffices to consider the reductions of UAB. We 

reason by induction on v{A) + v{B). D 

LEMMA 5.8. SN £ SAT. 

Proof. We verify the following conditions (Def. 5.4). 

3 "If x is strongly normalizing, v{x) is a number which bounds the length of every normalization sequence beginning with 

x" [16]. 
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□ 

1. SM c SM. 

2. If M G SM and M Ä N, then N G SAT. 

3. If M G MT, and whenever the reduction of a /ffl^-redex of M leads to a term N G <SA/", then 

Af eSA/\ 

4. If M G SAT, |M| = |JV|, and N(JV) C £A/\ then AT G ÄA/\ 

DEFINITION 5.9. If A, A' e SAT, we define the set 

A -* A' = {M e AT | VN G A, (M N) G A'}. 

LEMMA 5.10. SAT is dosed under function spaces, i.e., if A, A' G SAT, tfften A -> A' G SAT. 

Proof. We verify the conditions in Def. 5.4: 

1. A -> A' C SM: 

Let M be in A -+ A'. By Def. 5.9 and Def. 5.4(1), (M N) G A' C SAf for all TV G A. Thus, M G SM. 

2. If M G A ->■ A' and M -^ AT, then AT G A -> A'. 

Let Wi be in A. We show that (N Nt) G A'. By hypothesis, (M ATi) G A' and (M A^) -^i (AT A^). 

Thus, (JV JVi) G A' by Def. 5.4(2). 

3. If M G AT, and whenever the reduction of a ßü^-redex of M leads to a term AT G A -» A', then 
M G A -»• A'. 

Let ATi be in A, we show that (M ATi) e A'. Since (M A^) G AT, it suffices by Def. 5.4(3) to prove 

that if (M Nx) -^ A^, then N2 G A'. We have JV^AC <SA/\ We reason by induction on i/(ATi). 

Since M G AT, (M ATi) /ffl,c-reduces in one step to 

• (Mi A^i), with M Ä Mi. By hypotheses, Mj G A -»■ A' and JVi G A, thus (Mj Nx) G A'. 

• (M N2), with JVi -^ AT2.  By Def. 5.4(2), AT2 G A and v{N2) < K^i), thus, by induction 
hypothesis, (M N2) G A'. 

In both cases, (M ATi) reduces to terms in A'. Hence, (M Nx) G A' 

4. If M G A -> A', \M\ = \N\, and N(W) C SÄT, then JV € A -> A'. 

Let ATi be in A. We show that (AT ATi) G A'. By hypothesis, (M ATi) G A', but also, \{M Nx)\ = 

\{N JVi)|. By Def. 5.4(4), it suffices to show that K(AT JVi) C SM. Since Nx G A C SM, we have 

HNi) C <SA/\ Therefore, N(AT JVi) = N(JV) U N(JVi) C SA/". 

The next step in the proof is the interpretation of types. 

DEFINITION 5.11.  The type interpretation function of terms in XRC is defined inductively as follows: 

\x\ = SM ifxe {Kind, Type,l} or x is a meta-variable 

lM[S}j = [M] 

[(MAT)] = [M] 

[XA-B] = [B] 

IUA.BJ = [A] -> [B]        ■ 

We have the following corollary of Lemma 5.10. 

COROLLARY 5.12. For any term M, [M] G SAT. 

Lists of types, i.e., contexts, are interpreted by a set of explicit substitutions. 
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DEFINITION 5.13. The valuations of T, denoted by [r], is a set of substitutions in MT defined 

inductively on T as follows: 

[e]        — {\n  | for any natural n} 

{A.Aj  = [e] U {M -B S G MT \ M G [B],S G [A], B € SA/\ [A] = [B]} 

LEMMA 5.14. For ant/ T, [T] C <SA/\ 

Proof. We show by structural induction on 5 that if S G {Tj, then 5 G SM. D 

DEFINITION 5.15. Lei M be a term in MT and S be a substitution in MT. We define 

1. r satisfies that M is of type A, denoted by T (= M : A, if and only if (M[T])inc C {A} for any 

TG[r]. 
2. r satisfies tftot 5 is o/ type A, denoted by T \= S > A, if and only if (S o T)4-n£ C [A] for any 

TG[r]. 

We are almost ready to prove the key property which leads to the strong normalization property of ßUc- 

It states that if T \= M : A, then T\- M : A. Before that, we need some more technical lemmas. 

LEMMA 5.16. Let A be a term in SM. For all substitutions S G [r] and term M G {A], (M -A S)iUc C 

[A.T\. 
Proof. Note that M -A S is not necessarily in MT. But there are two cases: (M -A S)iUc = {M -A S} 

or (M -A S)\.nc = {V}- In both cases we verify that (M -A S)inc C [AT]. D 

LEMMA 5.17. Lei M a term in MT, if S; T h M : A and S; T h A : %>e, i/ien [M] = <S7V. 

Proof. By structural induction on M. We show the case where M = (Mi M2), the other cases are 

similar. We have: 

1. (a) E;T I- Mi : UAl.Bu (b) S;T h (Mx M2) : BX\M2 -M f], and (c) A =An£ Bi[M2 -^, t°], by 

inversion of rule (Appl) applied to the hypothesis. 

2. (a) S;T h Ai : Type and (b) E; AiT h £?i : sx, si G {ifmd, Type}, by inversion of rule (Prod) 

applied to (1-a). 

3. E;T h Bi[M2 -Al t°] : «2, s2 G {ifmrf, Type}, by sort soundness (Theorem 4.1) applied to (1-b). 

4. s2 =\nc Type, by Lemma 4.6 applied to E;T h A : Type, (1-c), and (3). 

5. s2 = Ti/pe, by Geuvers' lemma (Theorem 3.8) applied to (4). 

■ 6. «i = Type, by (2-b), (3), and (5). 

Then, applying rule (Prod) to (2) and (6), we get E;T h UM.Bi :  Type.   By Def. 5.11 and induction 

hypothesis, [(Mi M2)] = [Mi] = SM. U 

LEMMA 5.18. Let M be a term in MT and S a substitution in MT, 

1. ij:S;r h M : A and E; T h M : B, then [A] = \B\, and 

2. if E;n-S>Ai and E;ri-5>A2, then [Ai] = [A2]. 
Proof. We only show the first case. The second case is proved by structural induction on Ai. By type 

uniqueness (Theorem 4.2), we have A =xnc 
B-> and bY sort soundness (Theorem 4.1), A = B = Kind or 

(E;T h A : si, E;T h B : s2, and si,s2 G {Kind, Type}). The first case is trivial. For the second one, we use 

soundness of \Uc (Theorem 4.5) to conclude that A and B are convertible via a path of well-typed terms. 

Hence, it suffices to prove that for any well-typed term 7V"i, if Nx -^- N2, then [iVi] = [JV2]. We prove 

this by induction on the depth of the ßUc-redex reduced in Ni. The only interesting case is (VarCons), i.e., 

l[Mi -Al S] » Mi. We show that [l[Mi -M S]\ = [Mi]. 

• From Def. 5.11, [l[Mi -Al S]] = [1] = SM. 
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• If l[Mi -Al S] is well-typed in E; T, then by inversion of rule (Cons), we have E; T h Mx : Ai [S] and 

E;T h Ai[S] : Type. Therefore, by Lemma 5.17, [Mi] = SAf. 

So, [l[Mx -^ S]] = [Mi] = ÄAf. D 

LEMMA 5.19. Let Ax G SAf, and M,A2,B G JV.F, if for all N £ [A2], (M[N -Al t°])ln£ C [B], then 

\Al.M€[A2]^[B]. 

Proof. Let JV G [A2]. We want to show (XAl.M JV) £ [B]. Since (XAl.M JV) £ AfT and [B] C SAT, 

it suffices to prove that if (XAl.M JV) -^* M', then M' £ [B]. By hypotheses, for all JV £ [A2], 

(M[N-Al f])inc C [B] C 57V; in particular, (M[l Ml t°]Hnc C SjV. But, M £ (M[l-Al f°])lnc, and 

thus, M G <SA/\ We also have JV £ [A2] C S/V and Ax £ SAf. Thus, we can reason by induction on 

v{M) + v(N) + v{A{). In one step (A^, M JV) /?n£-reduces to: 

• (M[N -Al t°]Hn£- By hypothesis, (M[N -Al f])iU/. C [B]. 

• {XAl.M iVi), with JV Ä TVi. By Def. 5.4(2), JVX € [A2], then by hypothesis, (Af[M -Al f])lnc C 

[B]. But also, i/(JVi) < i/(JV), thus, by induction hypothesis, (XAl.M JVi) £ [B]. 

• (A^.M JV), with Al -^i A. But A G ÄA/", since Ai £ SAf, therefore, for any Mx £ (M[N -A f})inc, 

N(Mi) C Ä/V. We have, \(M[N -Al f])inJ = |(M[JV -^ t°])lnj4- By Def- 5.4(4), (M[7V -A f ]);n^ C 

[£]. But also i/(A) < I/^J), thus, by induction hypothesis, (Ayt.M JV) £ [B]. 

• {XAl.Mx JV), with M -^ Mi. Using the properties of An£ and Aug. if JVi £ (M[N -M f])lnc, 

then Ni Ä jv2, where |JV2| = |(Mi[JV -Al t°]HnJ- By hypothesis, Nx £ [B], thus, by Def. 5.4(2), 

N2 £ IB}. Since Mi and Ax are in SAf, for any M2 G (Mi[JV -^ t°]Hnc. 
N(M2) C <SJV. We obtain 

(Mi[JV -^ T0]Un£ C [B] by Def. 5.4(4). But also v{Mx) < u{M), thus, by induction hypothesis, 
(XAl.M1N)£lBj. 

In any case, (XAl.M JV) reduces to a term in [B] and, therefore, (A^.M JV) 6 [B]. D 

We are ready to prove the key lemma, the soundness of |= with respect to K 

LEMMA 5.20 (Soundness of f=). Let M,S £ AfT, 

1. ifE; T h M : A, then T \= M : A, and 

2. ifY,;T\- S>A, thenT\=S»A. 

Proof. Let T £ [Tj. We proceed by simultaneous structural induction on M and S. We show the main 
cases. In the proof, itA(S) is a shorthand for 1 -A (S o f2). 

• M = X (X is a meta-variable). We show that (X[T])iUc C [A]. 

There are two cases: 

- T =t°. Therefore, (X[T])^n£ = {X}. But also, X is a neutral ^n£-normal form. Hence by 
Corollary 5.5, X £ \A\. 

- T ^t°-  Therefore, (X[T])iUc = {X[T]}.  By Lemma 5.14, T £ SAf.  Hence by Lemma 5.6, 
X[T) £{A\. 

• M = nAl.Bx. We show that (n^.Bi[T]);n£ C [A]. 

By inversion of rule (Prod), S;T h Ai : T»/pe and E; AiT h Bj : s, s £ {Kind, Type}. Note that if 

Mi G ((n^.BOp1])^, then Ml = IlA2.B2, where A2 £ (A^T])^ and B2 G (Bi[itAl(T)])in£. 

By induction hypothesis on Ax, (Ai[Tx])4.n£ C {Type} = SAT holds for all Tj G [T]. Assuming 

Ti = T, we conclude A2 G SAf, and assuming Ti =t°, we conclude A± £ SAf. 

Let T2 G (^^T))^. We have |B2| = UBilT^^J and T2 G [AT]. By induction hypothesis on 

Bi, (Bi[T2])4n£ C [s] = ,SA^ holds. But, N(B2) C <SAT. Hence by Def. 5.4(4), B2 G [*] = SAf. 

4Since the n°-calculus (n£ without annotations of types in substitutions) is confluent (Lemma 3.10), we use the following 
property: for any Mi,M2 € {M)iUc, \Mi\ = \M2\. 
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Since A2,B2 are both in SJ\f, we have UA2-B2 G {A} (Lemma 5.7). 

• M = XAl.Mi. We show that (XAl.Mi[T\)inc C{Aj. 

By inversion of rule (Abs), S;T h Ax : Type, Y,;Al.T h Mx : B and S;T h A^.Mi : nAl.ß. 

By Lemma 5.18, [A] = pW-B] = [Aj] ->■ [B]. Note that if JV € ((AAl.Mi)[T]Hn£, then 

iV = XA2-M2, where A2 G (Ai[T])4.n£ and M2 £ (Mift^CT)])^- By induction hypothesis on Au 

(A![Ti])inc C [Type] = SA/" holds for all Tj G [r]. Assuming Tx = T, we conclude A2 G SA/", and 

assuming 7\ =f\ we conclude A\ G SA". 

Now we prove that Ayt2.M2 G [AJ ->• [5]. From Lemma 5.19, it suffices to prove that for any Ni G 

Hi], (M2[Nx -A2 f})inc C\B]. Let JV2 G {M2[NX -Aa f])ln£ and T2 G (ft^T) o (Nx -M f))W 

We verify that |JV2| = |(Mi[T2])|nJ and T2 G \Ai.Y\. Therefore, by induction hypothesis on Mu 

(Mi[T2]Hn£ C [-B]. But N(AT2) C SAT, thus, JV2 G [S] by Def. 5.4(4). 

D 

Now, we show that ßUc is strongly normalizing. 

LEMMA 5.21 (Strong normalization of ßUc)- Let M be a term in MT and S be a substitution in MT. 

1. If S; T h M : A, then M G SM, and 

2. if S; T h S > A, then S G SM. 

Proof. By Def. 5.13, t°G [r]. 

1. By Lemma 5.20, M G (Af[f ]Hn£ C {A}. By Corollary 5.12 and Def. 5.4(1), [A] C &V. 

2. By Lemma 5.20, 5 G (5 o fHru Q IA1> and bY Lemma 5.14, [Al C SM. 

D 

Finally, we prove weak normalization on well-typed XUc-expressions. 

THEOREM 5.22 (Weak normalization). Let M be a term in XUC and S a substitution in XIi.c. 

1. If S;T h M : A, then M is weakly normalizing, and 

2. if S; T h S > A, i/ien 5 is weakly normalizing. 

Therefore, M and S have XTLc -normal forms. 

Proof. By Lemma 2.1 there exist Mi,Si G MT such that M -^— Mi and S -^— Si. The subject 

reduction theorem (Theofem 4.3) states that typing is preserved under reductions. Hence, S; T \- Mi : A 

and S;T h Si > A. Therefore, by Lemma 5.21, Mi and Si are both in SM. Finally, note that ßn£-normal 

forms in MT are All^-normal forms, too. D 

5.2. Confluence. The Church-Rosser property states that if two well-typed expressions are convertible, 

then they are joinable. The confluence property states that all the reductions of a well-typed expression are 

joinable. 

We need the following lemma coined in [44]. 

LEMMA 5.23. Let x and y be XUc-normal forms such that x =\nc V- Then, x = y if 

• x is a term, S; Ti I- x : A and S; T2 1- y : B, or 

• x is a substitution, E;Ti h x > Ai, E;T2 h y > A2, and Ai =\nc A2. 

Proof. By Lemma 3.2(3), |x| and \y\ are All^-normal forms, and by Lemma 3.2(1), \x\ =An° |j/|- Since 

An^ is confluent (Theorem 3.7), |x| = \y\ holds. Finally, we proceed by structural induction on x. We use 

the fact that sub-terms of well-typed normal forms are well-typed normal forms. The only interesting case 

is x = M[T]. Since x is a An^-normal form, only two cases are possible: 

• M = 1 and T =tn+1. This case is trivial, since by Def. 3.1, l[tn+1] = |I[tn+1]|- Therefore, x = y. 

• M = X, where X is a meta-variable and T ^f°- By hypothesis, y = X[Ti] where \T\ = |Tj|. By 

Lemma 3.3, T =\uc 
Ti- Let A be the tvPe of T and Ai *ne tyPe of Tl- B^ the inversion of rule 
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(Clos) applied to x and y, it holds that X is well-typed in both contexts A and Ax. By inversion of 

rule (Metavar), A =Xnc Ai. Thus, by induction hypothesis, T = Tly and thus, x = y. 
D 

The above property is not valid when Ai ^An£ A2. Take, for example, the context 

r = m:{T 0) ->■ nai. 0:na£. Z:(IIn:nai.(T n)). T:noi -4 Type. natType 

and the two substitutions 

51-[2/:=(/0)-(T:c)a::=O-„ait
O] 

and 

52 = [2/-(/0)-(TO)x:=0-natt°]- 

By Lemma 3.3, Si =\nc 5-2 • Also, 

rhSi >y.{Tx).x:nat. T 

and 

T h S2 > 2/:(T 0). x:nat. T. 

In this case, the well-typed substitutions Si and S2 are =Xnc -convertible, but they are not identical. 

THEOREM 5.24 (Church-Rosser). Letx andy be such that x =Xnc V- Then, x andy are XUc-joinable, 

i.e., there exists w such that x —^*- w and y —^- w, if 

1. x is a term, E; Ti h x : A and S; T2 I- y : B, or 

2. x is a substitution, S;Ti h x > Alt E;T2 h y > A2, and Ai =Xnc ^2- 

Proof. By weak normalization theorem (Theorem 5.22), there exists All^-normal forms x' and y' such 

that x  x' and y —^* y'. It suffices to show that x' = y', which is a consequence of subject reduction 

theorem (Theorem 4.3) and Lemma 5.23. D 

Confluence of An£ is a consequence of the Church-Rosser property (Theorem 5.24) and subject reduction 
(Theorem 4.3). 

COROLLARY 5.25 (Confluence). Letx be an arbitrary well-typed expression. If x —^* y andx —^* z 

for some y,z, then there exists w such that y —^-- w and z —^* w. 

Since All£ enjoys both Church-Rosser and weak normalization, we have that All^-normal forms on well- 

typed terms always exist and they are unique. Thus, the equivalence on well-typed expressions is decidable. 

COROLLARY 5.26 (Decidability).  The equivalence x =xn£ V is decidable if 

• x is a term, E; Ti h x : A and E; T2 \- y : B, or 

• x is a substitution, E; Ti h x > A, E; T2 h y > A. 

6. Related Work and Conclusion. Explicit substitutions and the let-in constructor of functional 

ML-style programming languages have similar characteristics. In both mechanisms the application of a 

substitution to a term can be delayed. For example, let x := 0 in Xy.A.x will be unfolded to Xy.A.O, in the 

same way that (Xy.A.x)[x := 0] reduces to Xy.A.O. In their simply-typed versions, explicit substitutions and 

let-in constructors act in the same way. However, in dependent-type systems, the relationship between 

both mechanisms is not immediate. 
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To illustrate this, let us take the typing rule for closures —explicit applications of substitutions to 

terms— in a dependent-type system: 

rhS>A    Ahl:i     ...      ,„     , 
 r h M[S] : A[S) (Cl0Sn)" 

Consider the context 

T = m:{T 0) ->■ nat. 0:nat. l:(Un:nat.{T n)). T:nat -> Type. nat.Type. 

Using the above typing rule, the term (m (/ a;)) [a; := 0] is ill-typed. This is because the information that the 

variable x will be substituted by 0 in (m (/ x)) is not taken into account by rule (Closn). Therefore, the 

type of (/ x) is (T a;), but not (T 0) as expected by m. On the other hand, the same term can be written 

using the let-in notation as: let x :- 0 in (m (/ a;)). This term is well-typed because x has the value 0 in 

(m (/ x)), and thus let x := 0 in (m (I a;)) is going to be typed as (m (/ 0)). 

The unfolding of definitions before typing is not sufficient when we admit meta-variables. The reason is 

that substitutions and meta-variables may appear in normal forms. In this case, we cannot avoid having a 

(Closn)'s like rule. The approach we have taken is to consider explicit substitutions different from the let-in 

mechanism. The explicit substitution technique allows substitutions to be part of the formal language by 

means of special constructors and reduction rules. In this way, the term (m (/ a:))[a; := 0] is ill-typed, just 

as the term (Xx:nat.(m (I x)) 0) is. The let-in structure has a more complex behavior. It provides a 

mechanism for definitions in the language. Formal presentations of type systems with definitions are given 

in [41, 3]. 
Some type theories extended with explicit substitutions have been proposed: The Simple Type Theory 

[1, 27, 8, 21, 6], the Second-Order Type Theory [1], the Martin Löf Type Theory [43], the Calculus of 

Constructions [39], and Pure Type Systems [2]. Except for the simply-typed version of ACT in [8], neither of 

them considers terms with meta-variables as first-class objects. 

Our main contribution is the complete meta-theoretical development of a dependent-type system with 

explicit substitutions which handles explicitly open expressions (i.e., expressions with meta-variables). The 

system enjoys the usual typing properties: type uniqueness, subject reduction, weak normalization, and 

confluence. Applications of such a calculus are frameworks for the representation of incomplete proofs, and 

first-order settings for higher-order unification problems. 

In this paper, we have presented the All-theory. Although full polymorphism or inductive definitions are 

not considered in this theory, the main difficulties, due to the mutual dependence between terms and types, 

already arise in All. Other theories, such as the Calculus of Constructions, can be considered as the logical 

framework for AII^ [34]. Note also, that AII^ does not handle the 77-rule. Extensional versions of explicit 

substitution calculi have been studied for ground terms [24]. However, work is necessary to understand the 

interaction with dependent types and meta-variables. 
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