
NASA/CR-1999-209722
ICASE Report No. 99-43

Dependent Types and Explicit Substitutions

Cesar Munoz
ICASE, Hampton, Virginia

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

November 1999

ano^ALET* nsmxsD 4 19991206 137

The NASA STI Program Office ...in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this
important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA's scientific and technical information.
The NASA STI Program Office provides
access to the NASA STI Database, the
largest collection of aeronautical and space
science STI in the world. The Program Office
is also NASA's institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed
to be of continuing reference value. NASA
counter-part or peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATIONS.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA's mission.

Specialized services that help round out the
STI Program Office's diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing
research results . .. even providing videos.

For more information about the NASA STI
Program Office, you can:

• Access the NASA STI Program Home
Page at http://www.sti.nasa.gov/STI-
homepage.html

• Email your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at (301) 621-0134

• Phone the NASA Access Help Desk at
(301)621-0390

• Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/CR-1999-209722
ICASE Report No. 99-43

Dependent Types and Explicit Substitutions

Cesar Munoz
ICASE, Hampton, Virginia

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681 -2199 under Contract NAS1-97046

November 1999

Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621 -0390 (703) 487-4650

DEPENDENT TYPES AND EXPLICIT SUBSTITUTIONS

CESAR MUNOZ*

Abstract. We present a dependent-type system for a A-calculus with explicit substitutions. In this

system, meta-variables, as well as substitutions, are first-class objects. We show that the system enjoys

properties like type uniqueness, subject reduction, soundness, confluence and weak normalization.

Key words, explicit substitutions, dependent types, lambda-calculus

Subject classification. Computer Science

1. Introduction. Since the Aer-calculus of explicit substitutions was introduced in [1], several other

variants of explicit substitution calculi have been proposed; among others [38, 27, 20, 4, 28, 7, 24, 31, 10, 33].

By using substitutions as first-class objects, and de Bruijn indices notation for variables, the Acr-calculus

allows a first-order encoding of the A-calculus. In consequence, technical nuisances due to higher-order

aspects of the A-calculus, for example a-conversion, can be minimized or eliminated in explicit substitution

calculi. For instance, higher-order unification problems have been reformulated in a first-order setting via

some variants of Xa [8, 9, 25, 5].

However, explicit substitutions are not free of difficulties. Typed versions of these calculi lead to unex-

pected problems. It is well known now that.Acr does not preserve strong normalization [30], that is, well-typed

terms may not terminate in ACT. Furthermore, as a rewrite system, Xa is not confluent on open terms [7].

In constructive logic, explicit substitutions and open terms form a framework to represent incomplete

proofs, i.e., proofs under development [29, 32]. In this approach, meta-variables are place-holders in a

proof-term, and an explicit substitution notation is necessary to delay the application of substitutions to

meta-variables waiting to be instantiated. Meta-variables have also been used as unification variables in the

higher-order unification methods presented in [8, 9, 25].

In order to apply explicit substitution techniques in a dependent-type framework, we develop a A-calculus

of explicit substitutions, called XUc, with dependent types and support for meta-variables.

The rest of this section gives an overview of the dependent-type theory in which we are interested, and

to the simply-typed version of Xa. We finish the section with a discussion about the main difficulties to

set the Acr-calculus in a dependent-type theory. In Section 2 we present the All^-calculus. Just as the

A-calculus extended with the 77-rule, which is not confluent on terms with type annotations (not necessarily

well-typed), XUc is not confluent due to type annotations on substitutions. However, using a technique

proposed by Geuvers in [11], we prove that it is confluent on well-typed expressions. We show how to adapt

Geuvers' technique to XTi.£ in Section 3. In Section 4 we show the elementary typing properties of XUc'- sort

soundness, type uniqueness, subject reduction and soundness. In Section 5 we prove the main properties

on well-typed All^-expressions: weak normalization, Church-Rosser, and confluence. In the last section we

discuss related work and summarize our work.

"Institute for Computer Applications in Science and Engineering, Mail Stop 132C, NASA Langley Research Center, Hampton,

VA 23681-2199, email: munoz@icase.edu. This research was supported by INRIA - Rocquencourt while the author was an

international fellow at the INRIA institute, and by the National Aeronautics and Space Administration under NASA Contract

NAS1-97046 while he was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA

Langley Research Center, Hampton, VA 23681-2199.

1.1. Dependent types. The Dependent Type theory, namely All [18], is a conservative extension of

the simply-typed A-calculus. It allows a finer stratification of terms by generalizing the function space type.

In fact, in All, the type of a function Xx:A.M is Ux.A.B where B (the type of M) may depend on x. Hence,

the type A -*• B of the simply-typed A-calculus is just a notation in All for the product Ux.A.B where x

does not appear free in B.

From a logical point of view, the All-calculus allows representation of proofs in the first-order intu-

itionistic logic using universal quantification. Via the types-as-proofs principle, a term of type Ux.A.B is a

proof-term of the proposition Vx:A.B.

Terms in All can be variables x,y,..., applications (M N), abstractions Xx:A.M, products Ux.A.B,

or one of the sorts Type, Kind.1 Notice that terms and types belong to the same syntactical category.

Thus, Ux.A.B is a term, as well as Xx:A.M. However, terms are stratified in several levels according to

a type discipline. For instance, given an appropriate context of variable declarations, Xx:A..M : Ux:A..B,

Ux:A..B : Type, and Type : Kind. The term Kind cannot be typed in any context, but it is necessary since

a circular typing as Type : Type leads to the Girard's paradox [15].

Typing judgments in An have the form

T\-M :A

where T is a context of variable declarations, that is, a set of type assignments for free variables. We use the

Greek letters T, A to range over contexts. Since types may be ill-typed, typing judgments for valid contexts

are also necessary. The notation

hr

captures that types in T are well-typed. The An-type system is given in Fig. 1.1.

In a higher-order logic, as An, it may happen that two syntactically different types become identical via

/3-conversion. Rule (Conv) uses the equivalence relation =ß which is defined as the reflexive and transitive

closure of the relation induced by the /3-rule: (Xx:A.M N) >- M[N/x}. We recall that M[N/x) is just

a notation for the atomic substitution of the free occurrences of x in M by N, with renaming of bound

variables in M when necessary.

1.2. Explicit substitutions and simple types. The Air-calculus [1] is a first-order rewrite system

with two sorts of expressions: terms and substitutions.

Simple types are generated from a denumerable set of basic types a,b,... and their functional closure,

i.e., if A, B are simple types, then A -> B is also a simple type. Well-formed expressions in the simply-typed

Atf-calculus are defined by the following grammar:

Terms M, N

Substitutions S, T

Types A, B

:= 1 | (M N) | XA.M | M[S]

:= id\ f \M-S\SoT

:= a.b.... \ A-^ B

In Au, free and bound variables are represented by de Bruijn indices. They are encoded by means of the
«-times

constant 1 and the substitution f- We write |n as a shorthand for f ° • • • ° t- We overload the notation i to

:The names Type and Kind are not standard, other couples of names used in the literature are: (Set, Type), (Prop, Type)
and (*,□).

1^
(Empty)

T\-A:s

s S {Kind, Type}

x is a fresh variable
hru{x:A}

(Var-Decl)

h r
r h %>e : Kind(Type)

t-r
(g: A) e r
ri-x:i4

(Var)

T\- A: Type

x does not appear in T

ril{x:A}\-B:s

s e {Kind, Type}
r I- Ux:A.B : s ^roa;

T\- A: Type

x does not appear in T

T U {x : A} h M : B

TU{x:A}\-B:s

s £ {Kind, Type}
T h Xx:A.M : Ux:A.B

(Abs)

r h M : Ux:A.B

T\- N : A
T\-(MN): A[N/x\ (Appl)

T\-M:A

T\-B:s
s 6 {Kind, Type}

A=0B
T\-M :B

(Conv)

FIG. 1.1. The Xü-system

represent the Acr-term corresponding to the index i, i.e.,

. (I if» = 1
l\ l[tn] if i = n + 1.

An explicit substitution denotes a mapping from indices to terms. Thus, id maps each index i to the

term i, f maps each index i to the term i + 1, 5 o T is the composition of the mapping denoted by T with

the mapping denoted by S (notice that the composition of substitution follows a reverse order with respect

to the usual notation of function composition), and finally, M ■ S maps the index 1 to the term M, and

recursively, the index i + 1 to the term mapped by the substitution S on the index i.

A context in Xa is a list of types. The empty context is written e. A context with head A and rest T is

written AI\ In that case, A is the type of the index 1, the head of T (if T is not empty) is the type of the

index 2, and so on.

The type of a substitution is a context. This choice seems natural since substitutions denote mapping

from indices to terms, and contexts are list of types. In fact, if the type of a substitution S is the context

A.A, the type of the term mapped by the substitution S on the index 1 is A, and so for the rest of indices.

Typing judgment for substitutions in ACT have the form:

rhSr>A.

The Acr-calculus and its typing rules are presented in Fig. 1.2. When meta-variables of terms are

considered, an additional typing rule is necessary to state that each meta-variable is typed in a unique

(XA-M N) —> M[N-id] (Beta)

(M N)[S] —> (M[S]iV[S]) (Application)

(A^.M)[S] —»• AA.M[I-(5of)] (Lambda)

M[S][T] —► M[SoT] (Clos)

1[M-S] —► M (VarCons)

M[tdJ —> M (Id)

(51o52)oT —> 5io(52oT) (Ass)

(M-S)oT —> M[T]-(5oT) (Map)

irfoS —> S (Idl)

5 oid —► 5 (Idr)

fo(M-S) —> 5 (ShiftCons)

1-t —> id (VarShift)

l[5]-(toS) —► S (SCons)

(Abs) AT h 1 : _4 \vaiJ

ri-M :4-»B T\-N:A
] V\-{M N) :B

T\-id> r(W)

ri-s > Ai Ai l-T>A2,

(Appl)

T\-XA.M :A^B

 r h M[Sj : A (Clos)

(Shift) Ar h t > r

ThTo5>A2
(Comp) T h M • 5 > AA (Cons)

FIG. 1.2. 77ie simply-typed Ac -calculus [1]

context by a unique type [8]:

TTFX-?J(Metax).

The simply-typed Atr-calculus with meta-variables of terms is confluent [38] and weakly normalizing
[17, 33],

1.3. Dependent types and explicit substitutions. A dependent-type system for XUc is not a simple

extension of the simply-typed Aa-calculus. First of all, it is not clear how to type expressions containing

meta-variables. Notice that in a dependent-type theory with de Bruijn indices, the order in which variables

are declared in a context is important. In fact, in the context A.T, the indices in A are relative to T. But,

how is the dependence regarding meta-variables?

Even without considering meta-variables, setting ACT in a dependent-type theory presents difficulties.

Take, for example, the typing rule for simultaneous substitutions, the (Cons)-rule:

T\-M :A r I- S > A ,_, ,
 5=n T7—7, 7—k (Cons).

A dependent-typed version of this rule has the form

r \~ M : A[S) r \- S > A A h A : Tfape "
T\-M-S»A.A K n;"

First notice that the type given to M in the premises of the rule is A[S] (up to conversion). The application

of the substitution S to the type A is necessary to take into account possible dependencies of variables in A

with terms in S. Hence, a type inference algorithm should use a higher-order unification procedure to infer

the type of M ■ S which depends on A.

Another drawback of (Consn) is that it is not sound with respect to the usual typing properties. In

particular, a substitution can be typed with two contexts that are not convertible, i.e., types are not unique

modulo conversion. For example, consider the context2

T = 0:nat. l:(Iln:nat.(T n)). T:nat ->• Type. nat.Type

and the valid typing judgments

(1.1) T\-[x:=0-id\> x:nat. T

(1.2) T \-(I 0) : (T x)[x := 0 ■ id\.

Since (T x)[x := 0 - id] and (T 0)[x := 0 • id] are convertible via Xa, and (T 0)[x := 0 • id] is a valid type,

we also have:

(1.3) T \-(I 0) : (T 0)[x := 0 ■ id\.

Using (Consn) with (Eq. 1.1) and (Eq. 1.2), we get:

(1.4) Th[y:=(lO)-x~0-id\>y:(TO).x:nat.T

and with (Eq. 1.1) and (Eq. 1.3):

(1.5) T\-[y:=(lO)-x:=0-id\> y:(T x). x:nat. T.

However, (T 0) and (T x) are not convertible, and then, the substitution [y := (I 0) • x := 0 • id] has two

types, y:(T 0). x:nat. T and y:(T x). x:nat. T, which are not convertible.

To solve these problems, we use type annotations in substitutions, in a similar way as the Church style

A-calculus —as opposed to the Curry style— annotates binder variables in abstractions. The final version

of (Consn) has the form:

T h M : A[S] rhS>A Ahi: Type , _ ,
 T^M.AS>A.A (ConSn)'

Annotations in substitutions act as reminders of types, and they must be introduced and maintained by the

calculus of substitutions. In our previous example, substitutions in Eq. 1.4 and Eq. 1.5 should be annotated

with different types.

2For readability, we use named variables when discussing examples. Nevertheless, as we have said, \a uses a de Bruijn

nameless notation of variables.

A different solution proposed by Bloo in [2] is to introduce substitutions in contexts and to deal with

these extended contexts via additional typing rules. This approach is similar to type systems with definitions

[41, 3], where closures are typeable, but substitutions are not considered as typeable objects. We discuss

this approach in the last section.

When we consider annotated substitutions, the system may lose the subject reduction property due to

the non-left-linear rule (SCons): 1[S] -A (t ° S) - S. For instance, take the context

T = m:(T 0) -> not. 0:nat. l:(Un:nat.(T n)). T:nat ->• Type. nat:Type

and the substitution

S = [y := (I 0) -{T o) x := 0 -nat id\.

We verify that the following typing judgments are valid:

r h S > y:(T 0). x:nat. T

T I- 1[5] -(T x) (t ° S) > y:{T x). x:nat. T.

But also, 1[5] -(T x) (t ° S) > S. However, since (T 0) and (T x) are not convertible, T \f

S > y:(T x). x:nat. T. Therefore, the type of 1[5] -(T x) (f ° S) is not preserved by rule (SCons).

The problem here is not the type system but the substitution calculus. Non-left-linear rules —like

(SCons)— are not only harmful for typing, but are also usually responsible for non-confluence problems

[26,7].

Nadathur [35] has remarked that in ACT with meta-variables of terms, but without meta-variables of

substitutions, rule (SCons) is admissible when the following scheme of rule is added to the system: l[t™] •

t™+1 " tn- Since fn is a shorthand, an infinite set of rules is represented by this scheme. Following

Nadathur's idea, we present in [33] a variant of ACT, namely A£, which has the same general features as ACT,

i.e., simple, finite, and first-order presentation, but without rule (SCons) of ACT.

In this paper, we propose the AIl£-calculus, which is based on A£, and show that An£ is a suitable

calculus for our purpose: explicit substitutions, dependent types and support for meta-variables.

2. An,c-Calculus. As usual in explicit substitution calculi, expressions of AÜ£ are structured in terms

and substitutions. Since we use the left-linear variant of ACT, the A£-calculus, we add the sort of natural

numbers. The AIl£-calculus admits meta-variables only on the sort of terms.

The set of well-formed expressions in AII^ is defined by the following grammar:

Natural numbers n ::= 0| n + 1

Meta-variables X ::= X\Y\ ...

Terms A,B,M,N ::— Kind | Type

M[S] | x
Substitutions S,T ::= t" \M-AS

1 I UA.B | \A.M | (M N) |

|SoT

The equivalence relation =xnc
is defined as the symmetric and transitive closure of the relation induced

by the rewrite system in Fig. 2.1.

The system Il£ is obtained by dropping rule (Beta) from AIl£. As shown by Zantema [47], the Il£-
calculus is strongly normalizing.

(XA.MN)

(XA.M)[S)

(UA.B)[S\

(M N)[S]

M[S][T]

1[M -A S]

M[f]

(M -AS)oT

f°S

tn+1 o (M -A S)

i[tn] -A r+1

Type[S]

M[N -A t°] (Beta)

XA[S]-M[1-A (S< ,f)] (Lambda)

KA[S]-B[1-A (Sc t1)] (Pi)

(M[S) N[S\) (Application)

M[S o T] (Clos)

M (VarCons)

M (Id)

M[T] -A (S o T) (Map)

S (IdS)

t"oS (ShiftCons)
/i-n 0 +ra+l (ShiftShift)
*0 (ShiftO)
^-n (ShiftS)

Type (Type)

FIG. 2.1. The \Iic-rewrite system

LEMMA 2.1. The Uc-calculus is terminating.

Proof. See [34]. The proof uses the semantic labeling technique [46]. D

The AIl£-calculus, just as ACT, uses the composition operation to achieve confluence on terms with

meta-variables. Rules (Idr) and (Ass) of Xa are not necessary in XUc-

We adopt the notation i as a shorthand for l[f"] for i = n + 1. In contrast to ACT, t" is not a shorthand

but an explicit substitution in XUC. Indeed, f° replaces id and t1 replaces t- In general, tn denotes the

mapping of each index i to the term i + n. Using |n, the scheme of rule proposed by Nadathur can be

encoded in a first-order rewrite system. Notice that we do not assume any meta-theoretical property on

natural numbers. They are constructed with 0 and n + 1. Arithmetic calculations on indices are embedded

in the rewrite system.

2.1. Meta-variables in AII^. As we have said, meta-variables are first-class objects in All/;. Just as

variables, they have to be declared in order to keep track of possible dependencies between terms and types.

A meta-variable declaration has the form (X: rA), where T and A are, respectively, a context and a type

assigned to the meta-variable X. The pair (r,^4) is unique (modulo =xnc) f°r eacn meta-variable. This

requirement is enforced by the type system.

A list of meta-variable declarations is called a signature. We use the Greek letter S to range over

signatures. The empty signature is written e. A signature with head (X: rA) and rest S is written (X: rA). S.

We overload the notation Si. S2 to write the concatenation of the signatures Ei and S2-

The order of the meta-variable declarations is important. In a signature (Xi: rx^i). ... (Xn: rnAn), the

type Ai and the context rt,0 <i <n, may depend only on meta-variables Xj,i < j <n. The indices in At

are relative to the context IV

The main operation on meta-variables is instantiation. The instantiation of a meta-variable A' with a

term M in an expression y (where y is a term or a substitution), denoted by y{X ^ M}, replaces all the

occurrences of X in y by M. Application of an instantiation to a context T (signature S) is denoted by

r{AT i-> M) (£{X H-> M}). It is defined in the obvious way.

In contrast to substitutions of variables, instantiations of meta-variables allow capturing of variables.

Instantiations are not first-class objects, i.e., the application of an instantiation is atomic and external to

the AÜ£-calculus.

2.2. The AÜ£-type system. In XEc, we consider typing assertions having one of the following forms:

hs;r

to capture that the context V is valid in the signature E,

E;T\-M:A

to capture that the term M has type A (the type M has the kind A) in E; T, and

E;ThS>A

to capture that the substitution S has the context type A in E; T.

The scoping rules for variables and meta-variables in the above type assertions are as follows. Contexts

T, A, and expressions M,A,S may depend on any metavariable declared in the respective signature E.

Indices in M, A, and S are relative to their respective context T.

Typing rules for signatures, contexts, terms, and substitutions are all mutually dependent. They are
given in Fig. 2.2.

In the following, we use h E, h T, T h M : A, and T h S > A as shorthands for h E; e, h e; T, e; T h M : A,

and e; T h S > A, respectively.

Since there are no typing rules for Kind, the term Kind does not occur as a sub-term of a well-typed
expression.

The An£-system types at least as many terms as All. In other words, Aü^ is a conservative extension
of An.

LEMMA 2.2 (Conservative extension). Let M,A be ground terms in XUC, and F a ground context such

that M, A, T do not contain explicit substitutions, then T \- M : A in AIl£ if and only ifT\-M:Ain\U

(modulo de Bruijn indices translation).

Proof. By induction on the typing derivation. □

The following lemma states the conditions that guarantee the soundness of instantiation of meta-variables
in An£.

LEMMA 2.3 (Instantiation soundness). Let M be a term such that E^T h M : A, and E a signature

having the form E2. (X:rA). Ei,

1. if h E; A, then I- ELY (-> M}; A{X ^ M],

2. if E; A h N : B, then

E{X h+ M}; A{X H-> M} h N{X H> M} : B{X .-> M}, and

3. if E; Ai I- 5 > A2, then T,{X H- M}; A^X i-> M} \-S{X H- M} > A2LY >-)• M}.

Proof. By induction on the typing derivation. D

2.3. Type annotations. Type annotations in substitutions are introduced with rules (Beta), (Lambda),

and (Pi), and then propagated with rule (Map). They can also be eliminated with rules (VarCons), (Shift-

Cons), and (ShiftO). Notice that the type annotation propagated by rule (Map): (M -AS)oT «- M[T] -A

(SoT)is A, not A[T\.

Consider the following example.

h e;e
(Empty)

S;rhi:s

s 6 {Kind, Type}

X is a fresh meta-variable
\-(X:rA).V

(Metavar-Decl)

H;T\-A:a

s E {Kind, Type}
hS;ir (Var-Decl)

hs;r
£; r h Type : /find

(Type)
I 2-i) J\..JL /T T \

E;A.rhI:4tr

E; T h 4 : Type

E;Arhfl:8

s € {üfmd, Type}
Ejrt-IlA.i^rs

(Prod)

S; T \- A : Type

E; A.T \- M : B

T,;T\-UA.B : s

s £ {Kind, Type}
S;Th XA.M :UA.B

(Abs)

H;T\-M :I[A.B

£■ r h N : A
E;Th(MN):B[N.Ar] (APP'}

s;ri-5>A
X;AhA:Kind

X;T^A[S\:Kind{a°s-Kmd)

T,;T\-S>A

S;AhM:4
£;Ar-A:s

s 6 {Ämd, T/pe}
£;ri-MlSj:4Sj (Uos)

hs;r
(X:A^)€S

A = V
S;r~hX:A (Metavar)

S;rhM: A

E;rhB:s

s S {Kind, Type}

A =xuz B
H:T\- M:B

(Conv)

E;THS>Ai

hS;A2

Ax =An£ A2

S;rh5>A2
(Conv-Subs)

hSi£_(Id) s;ri-r>r

hS;Ar
s;rht">A

S;Arhtn+1>A
(Shift)

S;ri-5>Ai
S;A1hT>A2

S;rr-To^>A2
(Comp)

S; T h M : 4[S]
S;rh5>A

S; Ah A: Type
S;rhM-^>4.A (ConsJ

FIG. 2.2. The All^-tj/pe system

Let T = z:nat. T:nat -> Type, nat: Type. We verify that

(2.1) r h (Xx:nat.Xf:((T x) -> nat).Xy:(T x).(f y) z) : ((T «) ->• not) -»• ((T z) -> nat)-

Reducing the (Beta)-redex and distributing the substitution inside the abstraction, we get

(\x:nat.\f:((T x) -> nat).\y:(T x).(f y) z) (Beta).

A/:((T z) -» nat).((Ay:(T z).(/ y))[/ := / -(T zHnat x := z -nat f]).

We will check that the type in Eq. 2.1 is preserved by the reduction.

Thanks to the rewrite rule (Lambda), the type annotation for / in the substitution [/ := / -(T x)_>nat

x := z -nat t1] is (T x) -» nat, that is, the type of the variable / before the distribution of the substitution

[x := z -nat t°] in the abstraction A/:((T x) -» nat).Xy:{T x).(f y).

The typing rules for substitutions install the right context of variables. For example, the expression

Xy:(T x).(f y) will be typed in a context where the variable declaration / : (T z) -» nat has been replaced

by / : (T x) -> nat. In fact, we verify

(2.2) /:(T z) -»■ nat. T h [/ := / -(T x)^„a< a; := z -nat f
1] > /:(T x) -> not. x:nat. T

(2.3) /:(T a;) -»• nat. x:nat. T h Ay:(T s).(/ y) : (T x) -> nat

hence, by rule (Clos) applied to Eq. 2.2 and Eq. 2.3:

(2.4) f:(T z) -> nat. T h (Xy:(T x).(f y))[f := f -(T x)^nat x := z -nat f] : (T z)-> nat

and by rule (Abs) applied to Eq. 2.4:

Th Xf:((Tz)^nat).(Xy:(Tx).(fy))[f:=f.{Tx)^natx:=z-natf]:
({T z)^nat)->((T z)->nat).

The above example is due to Geuvers and Bloo [13], and it happens to be a counter-example for subject

reduction in calculi of explicit substitutions with dependent types where substitutions do not keep track of

typing information. The use of annotated substitutions in An£ keeps the right type when a substitution is

propagated under an abstraction or a product. In fact, as we will show below, subject reduction holds in
AII£.

However, annotated substitutions raise a technical problem: the All^-rewrite system is not confluent.

The problem even exists if we only consider local confluence on ground terms. In fact, the following critical

pair is not joinable in the general case, e.g., assume A and B to be different ground All^-normal forms:

(l-Af)o(M-BS)

(ShiftO); (IdS)/ \(Map); (VarCons); (Shift Cons); (IdS)

M-BS M-AS

This problem is similar to the one pointed out by Nederpelt for the A-calculus extended with the n-

rule [36]. In that case, the confluence property holds on terms without type annotations in abstractions

(A-calculus in the Curry style), but does not on terms with annotated abstractions (A-calculus in the Church

style). In [11], Geuvers proposes a method to prove confluence for the ßrc-reduction on well-typed A-terms

written in the Church style. In the next section we adapt this technique in order to prove the confluence

property on well-typed AII^ expressions.

10

(XA-MN) -> M[N ■ t°] (Beta)

(XA.M)[S] -> A^[S].M[1 (5 of)] (Lambda)

(UA.B)[S] -> n^[s].ß[i (S of)] (Pi)

l[M ■ S] -!• M (VarCons)

(M-S)oT -> M[T] • (5 c >T) (Map)

t"+1 o(M-S) - ->■ tno5 (ShiftCons)

1 • t1 . AO (ShiftO)

l[tnl • tn+1 — , -t-n (ShiftS)

FIG. 3.1. Modified rules in the AH^-rewrite system

3. Geuvers' Lemma. Geuvers' lemma is a weak form of the Church-Rosser property which suffices

to prove the main typing properties in systems where confluence on terms with type annotations —i.e., in

the Church style— is not available. Geuvers' technique uses a positive reformulation of the counter-example

of non-confluence, and the fact that the underlying calculus without typing annotations —i.e., in the Curry

style— is confluent.
The underlying Curry style of AÜ£ is called XU°. In this calculus, substitutions do not have type

annotations (but abstractions do keep their type annotations). The set of well-formed terms in Aü° are the

same as in XUc, but substitutions have the following grammar:

Substitutions S,T ::= f1 I M ■ S \ S o T.

As in the case of AÜ£, only meta-variables of terms are enabled in AII°. The AII°-calculus is obtained

by affecting the reduction system XUc as shown in Fig. 3.1. As expected, we define the n°-calculus as AII°

without rule (Beta).

The positive reformulation of the confluence counter-example in Aü^ states that if two terms are equal

without type annotations, then they are convertible via =\nc ■
DEFINITION 3.1. The erasing mapping |.| : XIlc -»• AII° is defined as follows:

\x\ = x if x € {1, Type, Kind} or x is a meta-variable

\UA.B\ = nlA[.\B\

\XA.B\ = \\A\.\M\

\(MN)\ = (\M\\N\)

\M[S]\ = \M\[\S\]

\SoT\ = \S\o\T\

\M-AS\ = \M\-\S\

The following are useful properties of the erasing mapping.

LEMMA 3.2 (Erasing properties). Let x and y be expressions in XUc, w be an expression in Afl°, R

one of the rewrite systems Allr or He, and RD the corresponding rewrite system without type annotations,

i.e., An? orTPc, then

1. if x " y, then \x\ \y\ or \x\ = \y\,

11

Ra R
2. if \x\ w, then there exists w' in XUc such that x >• w' and \w'\ = w, and

3. if x is an R-normal form, then \x\ is an Ra-normal form.

Proof. Properties (1) and (2) are proved by structural induction on x. Property (3) is a consequence of

(2).D

LEMMA 3.3 (Positive counter-example). Let x and y be expressions in XUc, if \x\ = \y\, then x =nc y,

and therefore, x =\nc V-

Proof. Since |a;| = \y\, x and y have the same principal constructor. We proceed by structural induction

on x. If x = XA.M, y = XB.N, and \x\ = \y\, then by definition, A|yi|.|M| = A|B|.|iV| and thus, \A\ = \B\

and \M\ = \N\. By induction hypothesis, A =nc B and M =n£ N, and thus, XA.M =nc XB.N. In fact,

the only interesting case is x = M -A S and y = N -BT. We get by induction hypothesis:

(3.1) M=UcN

(3-2) S=ncT

Since the function |.| erases type annotations from substitutions, we do not have by induction hypothesis

A =nc B. However, by using the counter-example, we have

M-BS2£-{1-A f) o (M -B S) -H£l M -A S.

We conclude with Eq. 3.1 and Eq. 3.2 that x = M -A S =nc M -B S =nc N -BT = y. D

A consequence of the reformulation of the counter-example is that, if we erase the type annotations of

a term M and then annotate it again with an arbitrary term, we get a term iV which is equivalent to M

modulo =\uc ■
DEFINITION 3.4. Let A be a term in \nc, the annotation mapping (.)4. : AITg -» XUC is defined as

follows:

x— = x if x € {1, Type, Kind} or 2 is a meta-variable

{UBl.B2)± = nB±-B^
(AB.M)4- = \BA.M±

(M N)± = (M±N±)

(M[S])± = M^[SÄ]

(SoT)± = S±oT±

{M-S)± = M±-AS±

LEMMA 3.5 (Erasing inverse). Let x be an expression in \Hc and Abe a term in Au/;, x =xnc \x\—.

Proof. It is not difficult to show that if w is an expression in AII°, then w = \w—\. Let w = |a;|, by

Lemma 3.3, x =\nc \x\—- D

We use the next lemma in the proof of Geuvers' lemma.

LEMMA 3.6. Let x and y be expressions in AII° and A be a term in XUc, if x —+ y, then x— =\nc y—.
AnD *

Therefore, if x —^* y, then x— =\nc V~-

Proof. By induction on the depth of the An°-redex reduced in x. □
The proof of Geuvers' lemma uses a confluence property on the calculus without type annotations. We

left the proof of that property (confluence of AII°) for the last part of this section.

12

THEOREM 3.7 (Confluence of Äug). The XU^-calculus is confluent.

THEOREM 3.8 (Geuvers' lemma). Let Ax,Bx,A2,B2,M,N be terms in XUc,

1. ifUAl.Bx =xuc UA^.B2,
then Ai =Anc M and Bx =xnc B2, and

2. if M =\ac N, where N is a XUc-normal form, then there exists M' in XUc such that M * M'

and \M'\ = \N\.
Proof. We show only the first case. The second case is similar. By Lemma 3.2(1) and the definition of

|.|, we have u^^-IBil =xua n|^2|.|52|- Since AII°. is confluent (Theorem 3.7), there exists M in AII°. such
An° *

Wl-Bil —^ M and nl^l-
\-prD * ATT '

that II u \.\Bi\ —^ M and IL^i-II^I —^* M. But there is no All^-redex with a product as the main
irrD * \nD * AnD * Anc

constructor, so M has the form UA.B where \Ax\ —^ A, \Bi\ —±~ B, \A2\ —^* A, and \B2\ —^ B.

By Lemma 3.5 and Lemma 3.6, for any All^-term N, Ax =An£ l-^i|— =An£ A&-, Bx =xuc \Bx\— =An£ B—,

A2 =An£ \A2\^=xnc-A*-, and B2 =Xuc |S2|^=An£ B*-. Therefore, Ax =xuc M and Bx =xnc B2. D

The rest of this section addresses the proof of confluence of the All^-calculus (Theorem 3.7).

First, we prove that the Ilg-calculus —Allg without (Beta)— is terminating and confluent.

LEMMA 3.9 (Termination of Tig). 11°. is a terminating rewrite system.

Proof. Since any reduction in Ilg can be properly simulated in n£ (Lemma 3.2(2)), any infinite reduction

in 11°- corresponds to some infinite reduction in UC- But Uc is terminating (Lemma 2.1), thus Ilg is

terminating. D

LEMMA 3.10 (Confluence of 11°). The U°-calculus is confluent.

Proof. We mechanically check, e.g., by using the RRL system [23], that the Tig-rewrite system has the

following critical pairs:

•

•

(Id)-(Clos)

(Clos)-(Clos)

(ShiftO)-(Map)

(ShiftS)-(Map)

M[S] 2¥- M[S][f] ^ M[Sot°]

M[(Sx°S2)oT] H^- M[Sx][S2][T] H. M[Sx°(S2oT)]

S Hi (l-fJoS "H ItSJ-^oS)

t' noS JH_ (i[t"].tn+1)o5 H- I[tn o S] ■ (t"+1 o S)

(Lambda)-(Clos) and (Pi)-(Clos) .

Let51 = l-((Sot1)o(l-(Tot1)))and52 = l-((5oT)ot1),

XA[SoT].M[Sx] HI (XA.M)[S][T] HI XA[SoT].M[S2]

UA[SoT].B[Sx] HI (UA.B)[S][T] HI UA[SoT].B[S2]

These critical pairs are Ilg-joinable (we recall that only meta-variables of terms are admitted). Using

an extension to the Critical Pair lemma proposed in [33] (based on similar extensions originally presented in

13

X ► X (Reü„) A ~TJ -J^V N (Lambda'l)

A1 >■ Bi A2 >- B2 rpi x M - N S *T ,-,, ,
IW-Bi - U^m (^1||j M[S\ ► N[T\ (CloS||)

Mi M2 Ni. -No ,. ,. ,. N M —— N S -T,„
{Ml Nl)-^ (M2 N2) (Application,,) M.S__^N.T (Cons,,)

5i - S2 7i - T2 (n , Mj M2 JVi —» JV2rt3l ,
StoT^ioT, (Comp») (A^.M.JVO — M^-f] (Beta,l)

FIG. 3.2. The parallelization of (Beta)

[22, 40]), we conclude that U^ is locally confluent. Therefore, by Newman's lemma and Lemma 3.9, Ilg is

confluent. D

The confluence proof of the An°-calculus uses a general method proposed in [45] to prove confluence of

abstract relations: the Yokouchi-Hikita's lemma. This method shows to be suitable for left-linear calculi of

explicit substitutions [7, 37, 33].

LEMMA 3.11 (Yokouchi-Hikita's lemma). Let R and S be two relations defined on a set X such that: 1)

R is confluent and terminating, 2) S is strongly confluent, and 3) S and R commute in the following way:

for any x,y,z € X, if x ——*■ y and x >- z, then there exists w € X such that y «- w and z -^-*- w.

Then the relation R*SR* is confluent.

Proof. See [7]. D

We take the set of All^-expressions as X, Ilg as R and ßy as 5, where £„ is the parallelization of (Beta)
defined in Fig. 3.2.

LEMMA 3.12. 11° commutes over B\\, i.e., if x reduces in one U°-step to y, and in one B^-step to z,

then there exists w such that y ——" c» w and z —£— w.

Proof. By case analysis on the redex reduced in x. □

We are now ready to prove the confluence property of Aff^.

Theorem 3.7. The An°-calculus is confluent.

Proof. We verify that n£ and B\\ satisfy the conditions of Yokouchi-Hikita's lemma, that is,

1. n° is terminating and confluent (Lemma 3.9 and Lemma 3.10),

2. B|| is strongly confluent, since (Beta) by itself is a left linear system with no critical pairs (c.f. [19]),
and

3. n° commutes over B\\ (Lemma 3.12).

Therefore, n°*ß||n°* is confluent.

Note that An? C IL^B^* C Ang*. Let ar.be an expression in XU^. If x ^£ y and x ^* z, then

there exists w such that y ("£ B^c \ w and z ("£ g""£ }, „,. So, y ^1 w and z ^* w. D

4. Elementary Typing Properties. The elementary typing properties of An^ are

• Sort soundness: the type of a term is a valid sort.

• Type uniqueness: the type of a term is unique module =\nc ■
• Subject reduction: the An^-rewrite system preserves typing.

14

• Soundness: there always exists a path of well-typed terms between equivalent well-typed terms.

We use Geuvers' lemma to prove the last two of the above properties.

THEOREM 4.1 (Sort soundness).

1. If £; T h- M : A, then A = Kind or £; T h A : s, s 6 {Kind, Type}, and

2. if E;rhS>A then Z; A.

Proof. By induction on the typing derivation. D

THEOREM 4.2 (Type uniqueness). Let I\ and T2 be such that Pi =\nc F2>

1. if S; Ti h M :A and £; T2 h M : B, then A =Xnc B, and

2. if £;]?! \- S> Ai and S;T2 r-5 > A2, then Aj =An£ A2.

Proo/. By simultaneous structural induction on M and 5. D

THEOREM 4.3 (Subject reduction). The \nc-calculus preserves typing, if x —£* y, for an expression

x, then

1. if x is a term and £; T h x : A, then £; T \- y : A, and

2. if x is a substitution and £; T \- x > A, then £; T h y > A.

Proo/. We show that typing is preserved for one-step reductions (i.e., —^-), and therefore, it is also

for the reflexive and transitive closure (i.e., —^*). Let x —5- y be a one-step reduction. We proceed by

induction on the depth of the redex reduced in x.

In the initial case, x is reduced at the top level, and we proceed by case analysis. We show the case of

rule (Beta):

Let E; T h (XA.M N) : B. We show E; V h M[N -A f] : B.

We have:

1. (a) E;T h XA.M : U^.-Bi, (b) S;T h JV : Ai, and (c) B =mc Bi[N -Al t°], by inversion of rule

(Appl) applied to the hypothesis.

2. (a) E;r h i : Type, (b) £;AI? h M : B2, (c) S;AT h B2 : s2, s2 £ {^»nd, Tj/pe}, and (d)

UA.B2 =\nc n^j.ßi, by inversion of rule (Abs) applied to (1-a).

3. (a) A =An,c ^i and (b) B2 =\uc B\, by Geuvers' lemma (Theorem 3.8) applied to (2-d).

4. E; T h N: A, by rule (Conv) applied to (1-b), (2-a), and (3-a).

5. E; T h N -A t° > AT, by rule (Cons) applied to (4), (2-a), and E; F h f° > r.

6. B2[N -A f] =xnc Bi[N -A f] =An, B,[N -Al t°] =An£ B, by (1-c) and (3).

7. E;T \- B : s\, si e {Kind, Type}, by sort soundness (Theorem 4.1) applied to the hypothesis. Note

that the case s = Kind is not possible.

Therefore, we have the derivation

E; AT\-M: B2 (2-b)

E;A.rhB2:«2 (2-c)
E;rhiV^t0>Ar (5)

X;T\-M[N-Af]:B2[N.Af} °S) (6) (7)

Sjri-MtJV^t0] -B

The other cases are similar. The induction step cases do not present any difficulty. D

15

Sometimes the conversion rule (Conv) is expressed as [14]:

T\- M :A

Th-B-.s

s £ {Kind, Type]

A B or B - A
(Conv')

T\-M:B

Rule (Conv) seems to be more general than rule (Conv'). In fact, the latter one allows conversions of

types only via a path of well-typed terms. Geuvers and Werner [14] define a type system to be sound if the

convertibility of terms remains in the set of well-typed terms. In sound systems, rules (Conv) and (Conv')

are equivalent.

We use the following lemma in the soundness proof of the All^-system.

LEMMA 4.4. Letx,y be All/;- expressions in He-normal form such that \x\ = \y\, ifx andy are well-typed

expressions, then they are convertible via a path of well-typed expressions.

Proof. By structural induction on x and y. D

THEOREM 4.5 (Soundness). If E;T h M : A, S;T h N : B and M =Xuc N, then M and N are.

convertible via a path of well-typed terms.

Proof. From Lemma 3.2(1), we have \M\ =xnc \N\- The confluence property of All? states that there

exists a; € Allg such that |M| —±+ x and \N\ —£— x. By Lemma 3.2(2), there exist Mx,Ni in \U.C

such that M —^* Mu N -^£* Nx, and |Mi| = \NX\ = x. Since Uc is terminating (Lemma 2.1), there

exist M2,N2 Il^-normal forms such that Mi —-^- M2, Ni —^— N2. By the subject reduction property

(Theorem 4.3), E; T \- M2 : A and E; T h JV2 : B, and all the terms in both reductions are well-typed.

Now, from Lemma 3.2(1), we have x —^- \M2\ and x —£->► \N2\. But M2 and iV2 are n£-normal

forms, thus, by Lemma 3.2(3), |M2| and |i\^| are Ilg-normal forms. Since Ilg is confluent, |M2| = |iy2|. By

Lemma 4.4, M2 and N2 are convertible via a path of well-typed terms. Therefore, M and N are convertible
via a path of well-typed terms. D

A direct consequence of typing soundness and subject reduction is the following property.

LEMMA 4.6. If£;T \- Mx : Au E;T h M2 : A2, and Mi =mc M2, then Ax =xuc M-

Proof. By induction on the length of the paths of well-typed expressions converting Mi to M2. D

5. The Main Properties: Weak Normalization and Confluence. In this section we address the

proof of the main properties of \Hc on well-typed expressions: weak normalization and confluence.

5.1. Weak normalization. The All^-calculus does not preserve strong normalization of All. In fact,

the counterexample shown in [30] for Ac may be reproduced in XTLc with some minor modifications.

Nevertheless, we prove that AIl£ is weakly normalizing on well-typed expressions, i.e., there exists a

strategy to find Aü^-normal forms on well-typed expressions. In particular, we propose a proof of strong

normalization of the strategy that performs one step of (Beta) followed by a Il£-normalization.

We use the standard technique of reducibility, originally due to Tait for the simply-typed A-calculus

[42], and then extended by Girard to the system F (the A-calculus of second-order) [15]. From the diverse

proofs of termination using a reducibility notion, we follow the presentation given in [12] for the Calculus of

Constructions, which is based on saturated sets. We adapt this proof for the All^-calculus. In order to avoid

some technical problems due to the non-confluence of the calculus with type annotations (not necessarily

well-typed), we define saturated sets in a slightly different way. However, the structure of the proofs is the
same.

16

We use (x)lUj. as a shorthand for the set of n^-normal forms of x. The set containing all the Ilr-normal

forms of XUc is denoted by NT.
ßUc , (Beta)

DEFINITION 5.1. Let x,y £ NT, we say that x /ftl^-reduces to y, denoted by x «- y, if x «- w

and y £ {w)iUj.. Notice that the set of /Jll^-normal forms is equal to the set of Aür-normal forms, and

that x -^£* y implies x -^* y. In fact, we will show that ßUc is strongly normalizing on well-typed

expressions, and therefore, AII^ is weakly normalizing on well-typed expressions.

We denote by SN the set of ßü^-strongly normalizing expressions of NT.

DEFINITION 5.2. Let M be a term in NT. The term M is neutral if it does not have the form XA-N.

The set of neutral terms is denoted by NT-

DEFINITION 5.3. Let x be in NT. The set of annotations of x, denoted by tt(x), is defined inductively

as follows:

tt(x) =0 if x £ {Kind, Type, 1} or x =t™ or x is a meta-variable

X(nA.B) = K(,4)UN(S)

H(A^.M) = N(,4)UN(M)

N(MJV) = N(M)UN(W)

K{M[S}) = N(M)UN(S)

H(5oT) = N(S)UN(T)

K(M-AS) = {i}uN(M)UK(S)

DEFINITION 5.4. A set of terms A C NT is saturated if

LAC SN,

2. ifM£k and M -^ N, then N £ A,

3. if M € NT, and whenever the reduction of a ßUc-redex of M leads to a term N £ A, then M € A,

and

4. ifMG A, \M\ = \N\, and N(iV) C SN, then N e A.

The set of saturated sets is denoted by SAT.

The following corollary is a trivial consequence of Def. 5.4(3).

COROLLARY 5.5. Let M e NT such that M is a ßUc-normal form, for any A e SAT, M € A.

The following lemmas show particular cases of terms that are in saturated sets.

LEMMA 5.6. For any A e SAT, substitution S £ SN, and meta-variable X, we have (X[S])iUc C A.

Proof. Let A £ SAT and M € (X[5])4.n£. Since M is neutral it suffices to consider the reductions of M

(Def. 5.4(3)). We reason by induction on v(S)3. Only two reductions are possible:

• M — X, and by Corollary 5.5, X e A.

. M -^> X[T] where S -^* T. By hypothesis, T £ SN, and v(S) > v(T), so by induction

hypothesis, (X[T])±ac C A.

In both cases, M reduces to terms in A, thus, M 6 A. D

LEMMA 5.7. For any A £ SAT, and terms A,B e SN, UA.B £ A.

Proof. The term UAB is neutral. By Def. 5.4(3) it suffices to consider the reductions of UAB. We

reason by induction on v{A) + v{B). D

LEMMA 5.8. SN £ SAT.

Proof. We verify the following conditions (Def. 5.4).

3 "If x is strongly normalizing, v{x) is a number which bounds the length of every normalization sequence beginning with

x" [16].

17

□

1. SM c SM.

2. If M G SM and M Ä N, then N G SAT.

3. If M G MT, and whenever the reduction of a /ffl^-redex of M leads to a term N G <SA/", then

Af eSA/\

4. If M G SAT, |M| = |JV|, and N(JV) C £A/\ then AT G ÄA/\

DEFINITION 5.9. If A, A' e SAT, we define the set

A -* A' = {M e AT | VN G A, (M N) G A'}.

LEMMA 5.10. SAT is dosed under function spaces, i.e., if A, A' G SAT, tfften A -> A' G SAT.

Proof. We verify the conditions in Def. 5.4:

1. A -> A' C SM:

Let M be in A -+ A'. By Def. 5.9 and Def. 5.4(1), (M N) G A' C SAf for all TV G A. Thus, M G SM.

2. If M G A ->■ A' and M -^ AT, then AT G A -> A'.

Let Wi be in A. We show that (N Nt) G A'. By hypothesis, (M ATi) G A' and (M A^) -^i (AT A^).

Thus, (JV JVi) G A' by Def. 5.4(2).

3. If M G AT, and whenever the reduction of a ßü^-redex of M leads to a term AT G A -» A', then
M G A -»• A'.

Let ATi be in A, we show that (M ATi) e A'. Since (M A^) G AT, it suffices by Def. 5.4(3) to prove

that if (M Nx) -^ A^, then N2 G A'. We have JV^AC <SA/\ We reason by induction on i/(ATi).

Since M G AT, (M ATi) /ffl,c-reduces in one step to

• (Mi A^i), with M Ä Mi. By hypotheses, Mj G A -»■ A' and JVi G A, thus (Mj Nx) G A'.

• (M N2), with JVi -^ AT2. By Def. 5.4(2), AT2 G A and v{N2) < K^i), thus, by induction
hypothesis, (M N2) G A'.

In both cases, (M ATi) reduces to terms in A'. Hence, (M Nx) G A'

4. If M G A -> A', \M\ = \N\, and N(W) C SÄT, then JV € A -> A'.

Let ATi be in A. We show that (AT ATi) G A'. By hypothesis, (M ATi) G A', but also, \{M Nx)\ =

\{N JVi)|. By Def. 5.4(4), it suffices to show that K(AT JVi) C SM. Since Nx G A C SM, we have

HNi) C <SA/\ Therefore, N(AT JVi) = N(JV) U N(JVi) C SA/".

The next step in the proof is the interpretation of types.

DEFINITION 5.11. The type interpretation function of terms in XRC is defined inductively as follows:

\x\ = SM ifxe {Kind, Type,l} or x is a meta-variable

lM[S}j = [M]

[(MAT)] = [M]

[XA-B] = [B]

IUA.BJ = [A] -> [B] ■

We have the following corollary of Lemma 5.10.

COROLLARY 5.12. For any term M, [M] G SAT.

Lists of types, i.e., contexts, are interpreted by a set of explicit substitutions.

18

DEFINITION 5.13. The valuations of T, denoted by [r], is a set of substitutions in MT defined

inductively on T as follows:

[e] — {\n | for any natural n}

{A.Aj = [e] U {M -B S G MT \ M G [B],S G [A], B € SA/\ [A] = [B]}

LEMMA 5.14. For ant/ T, [T] C <SA/\

Proof. We show by structural induction on 5 that if S G {Tj, then 5 G SM. D

DEFINITION 5.15. Lei M be a term in MT and S be a substitution in MT. We define

1. r satisfies that M is of type A, denoted by T (= M : A, if and only if (M[T])inc C {A} for any

TG[r].
2. r satisfies tftot 5 is o/ type A, denoted by T \= S > A, if and only if (S o T)4-n£ C [A] for any

TG[r].

We are almost ready to prove the key property which leads to the strong normalization property of ßUc-

It states that if T \= M : A, then T\- M : A. Before that, we need some more technical lemmas.

LEMMA 5.16. Let A be a term in SM. For all substitutions S G [r] and term M G {A], (M -A S)iUc C

[A.T\.
Proof. Note that M -A S is not necessarily in MT. But there are two cases: (M -A S)iUc = {M -A S}

or (M -A S)\.nc = {V}- In both cases we verify that (M -A S)inc C [AT]. D

LEMMA 5.17. Lei M a term in MT, if S; T h M : A and S; T h A : %>e, i/ien [M] = <S7V.

Proof. By structural induction on M. We show the case where M = (Mi M2), the other cases are

similar. We have:

1. (a) E;T I- Mi : UAl.Bu (b) S;T h (Mx M2) : BX\M2 -M f], and (c) A =An£ Bi[M2 -^, t°], by

inversion of rule (Appl) applied to the hypothesis.

2. (a) S;T h Ai : Type and (b) E; AiT h £?i : sx, si G {ifmd, Type}, by inversion of rule (Prod)

applied to (1-a).

3. E;T h Bi[M2 -Al t°] : «2, s2 G {ifmrf, Type}, by sort soundness (Theorem 4.1) applied to (1-b).

4. s2 =\nc Type, by Lemma 4.6 applied to E;T h A : Type, (1-c), and (3).

5. s2 = Ti/pe, by Geuvers' lemma (Theorem 3.8) applied to (4).

■ 6. «i = Type, by (2-b), (3), and (5).

Then, applying rule (Prod) to (2) and (6), we get E;T h UM.Bi : Type. By Def. 5.11 and induction

hypothesis, [(Mi M2)] = [Mi] = SM. U

LEMMA 5.18. Let M be a term in MT and S a substitution in MT,

1. ij:S;r h M : A and E; T h M : B, then [A] = \B\, and

2. if E;n-S>Ai and E;ri-5>A2, then [Ai] = [A2].
Proof. We only show the first case. The second case is proved by structural induction on Ai. By type

uniqueness (Theorem 4.2), we have A =xnc
B-> and bY sort soundness (Theorem 4.1), A = B = Kind or

(E;T h A : si, E;T h B : s2, and si,s2 G {Kind, Type}). The first case is trivial. For the second one, we use

soundness of \Uc (Theorem 4.5) to conclude that A and B are convertible via a path of well-typed terms.

Hence, it suffices to prove that for any well-typed term 7V"i, if Nx -^- N2, then [iVi] = [JV2]. We prove

this by induction on the depth of the ßUc-redex reduced in Ni. The only interesting case is (VarCons), i.e.,

l[Mi -Al S] » Mi. We show that [l[Mi -M S]\ = [Mi].

• From Def. 5.11, [l[Mi -Al S]] = [1] = SM.

19

• If l[Mi -Al S] is well-typed in E; T, then by inversion of rule (Cons), we have E; T h Mx : Ai [S] and

E;T h Ai[S] : Type. Therefore, by Lemma 5.17, [Mi] = SAf.

So, [l[Mx -^ S]] = [Mi] = ÄAf. D

LEMMA 5.19. Let Ax G SAf, and M,A2,B G JV.F, if for all N £ [A2], (M[N -Al t°])ln£ C [B], then

\Al.M€[A2]^[B].

Proof. Let JV G [A2]. We want to show (XAl.M JV) £ [B]. Since (XAl.M JV) £ AfT and [B] C SAT,

it suffices to prove that if (XAl.M JV) -^* M', then M' £ [B]. By hypotheses, for all JV £ [A2],

(M[N-Al f])inc C [B] C 57V; in particular, (M[l Ml t°]Hnc C SjV. But, M £ (M[l-Al f°])lnc, and

thus, M G <SA/\ We also have JV £ [A2] C S/V and Ax £ SAf. Thus, we can reason by induction on

v{M) + v(N) + v{A{). In one step (A^, M JV) /?n£-reduces to:

• (M[N -Al t°]Hn£- By hypothesis, (M[N -Al f])iU/. C [B].

• {XAl.M iVi), with JV Ä TVi. By Def. 5.4(2), JVX € [A2], then by hypothesis, (Af[M -Al f])lnc C

[B]. But also, i/(JVi) < i/(JV), thus, by induction hypothesis, (XAl.M JVi) £ [B].

• (A^.M JV), with Al -^i A. But A G ÄA/", since Ai £ SAf, therefore, for any Mx £ (M[N -A f})inc,

N(Mi) C Ä/V. We have, \(M[N -Al f])inJ = |(M[JV -^ t°])lnj4- By Def- 5.4(4), (M[7V -A f]);n^ C

[£]. But also i/(A) < I/^J), thus, by induction hypothesis, (Ayt.M JV) £ [B].

• {XAl.Mx JV), with M -^ Mi. Using the properties of An£ and Aug. if JVi £ (M[N -M f])lnc,

then Ni Ä jv2, where |JV2| = |(Mi[JV -Al t°]HnJ- By hypothesis, Nx £ [B], thus, by Def. 5.4(2),

N2 £ IB}. Since Mi and Ax are in SAf, for any M2 G (Mi[JV -^ t°]Hnc.
N(M2) C <SJV. We obtain

(Mi[JV -^ T0]Un£ C [B] by Def. 5.4(4). But also v{Mx) < u{M), thus, by induction hypothesis,
(XAl.M1N)£lBj.

In any case, (XAl.M JV) reduces to a term in [B] and, therefore, (A^.M JV) 6 [B]. D

We are ready to prove the key lemma, the soundness of |= with respect to K

LEMMA 5.20 (Soundness of f=). Let M,S £ AfT,

1. ifE; T h M : A, then T \= M : A, and

2. ifY,;T\- S>A, thenT\=S»A.

Proof. Let T £ [Tj. We proceed by simultaneous structural induction on M and S. We show the main
cases. In the proof, itA(S) is a shorthand for 1 -A (S o f2).

• M = X (X is a meta-variable). We show that (X[T])iUc C [A].

There are two cases:

- T =t°. Therefore, (X[T])^n£ = {X}. But also, X is a neutral ^n£-normal form. Hence by
Corollary 5.5, X £ \A\.

- T ^t°- Therefore, (X[T])iUc = {X[T]}. By Lemma 5.14, T £ SAf. Hence by Lemma 5.6,
X[T) £{A\.

• M = nAl.Bx. We show that (n^.Bi[T]);n£ C [A].

By inversion of rule (Prod), S;T h Ai : T»/pe and E; AiT h Bj : s, s £ {Kind, Type}. Note that if

Mi G ((n^.BOp1])^, then Ml = IlA2.B2, where A2 £ (A^T])^ and B2 G (Bi[itAl(T)])in£.

By induction hypothesis on Ax, (Ai[Tx])4.n£ C {Type} = SAT holds for all Tj G [T]. Assuming

Ti = T, we conclude A2 G SAf, and assuming Ti =t°, we conclude A± £ SAf.

Let T2 G (^^T))^. We have |B2| = UBilT^^J and T2 G [AT]. By induction hypothesis on

Bi, (Bi[T2])4n£ C [s] = ,SA^ holds. But, N(B2) C <SAT. Hence by Def. 5.4(4), B2 G [*] = SAf.

4Since the n°-calculus (n£ without annotations of types in substitutions) is confluent (Lemma 3.10), we use the following
property: for any Mi,M2 € {M)iUc, \Mi\ = \M2\.

20

Since A2,B2 are both in SJ\f, we have UA2-B2 G {A} (Lemma 5.7).

• M = XAl.Mi. We show that (XAl.Mi[T\)inc C{Aj.

By inversion of rule (Abs), S;T h Ax : Type, Y,;Al.T h Mx : B and S;T h A^.Mi : nAl.ß.

By Lemma 5.18, [A] = pW-B] = [Aj] ->■ [B]. Note that if JV € ((AAl.Mi)[T]Hn£, then

iV = XA2-M2, where A2 G (Ai[T])4.n£ and M2 £ (Mift^CT)])^- By induction hypothesis on Au

(A![Ti])inc C [Type] = SA/" holds for all Tj G [r]. Assuming Tx = T, we conclude A2 G SA/", and

assuming 7\ =f\ we conclude A\ G SA".

Now we prove that Ayt2.M2 G [AJ ->• [5]. From Lemma 5.19, it suffices to prove that for any Ni G

Hi], (M2[Nx -A2 f})inc C\B]. Let JV2 G {M2[NX -Aa f])ln£ and T2 G (ft^T) o (Nx -M f))W

We verify that |JV2| = |(Mi[T2])|nJ and T2 G \Ai.Y\. Therefore, by induction hypothesis on Mu

(Mi[T2]Hn£ C [-B]. But N(AT2) C SAT, thus, JV2 G [S] by Def. 5.4(4).

D

Now, we show that ßUc is strongly normalizing.

LEMMA 5.21 (Strong normalization of ßUc)- Let M be a term in MT and S be a substitution in MT.

1. If S; T h M : A, then M G SM, and

2. if S; T h S > A, then S G SM.

Proof. By Def. 5.13, t°G [r].

1. By Lemma 5.20, M G (Af[f]Hn£ C {A}. By Corollary 5.12 and Def. 5.4(1), [A] C &V.

2. By Lemma 5.20, 5 G (5 o fHru Q IA1> and bY Lemma 5.14, [Al C SM.

D

Finally, we prove weak normalization on well-typed XUc-expressions.

THEOREM 5.22 (Weak normalization). Let M be a term in XUC and S a substitution in XIi.c.

1. If S;T h M : A, then M is weakly normalizing, and

2. if S; T h S > A, i/ien 5 is weakly normalizing.

Therefore, M and S have XTLc -normal forms.

Proof. By Lemma 2.1 there exist Mi,Si G MT such that M -^— Mi and S -^— Si. The subject

reduction theorem (Theofem 4.3) states that typing is preserved under reductions. Hence, S; T \- Mi : A

and S;T h Si > A. Therefore, by Lemma 5.21, Mi and Si are both in SM. Finally, note that ßn£-normal

forms in MT are All^-normal forms, too. D

5.2. Confluence. The Church-Rosser property states that if two well-typed expressions are convertible,

then they are joinable. The confluence property states that all the reductions of a well-typed expression are

joinable.

We need the following lemma coined in [44].

LEMMA 5.23. Let x and y be XUc-normal forms such that x =\nc V- Then, x = y if

• x is a term, S; Ti I- x : A and S; T2 1- y : B, or

• x is a substitution, E;Ti h x > Ai, E;T2 h y > A2, and Ai =\nc A2.

Proof. By Lemma 3.2(3), |x| and \y\ are All^-normal forms, and by Lemma 3.2(1), \x\ =An° |j/|- Since

An^ is confluent (Theorem 3.7), |x| = \y\ holds. Finally, we proceed by structural induction on x. We use

the fact that sub-terms of well-typed normal forms are well-typed normal forms. The only interesting case

is x = M[T]. Since x is a An^-normal form, only two cases are possible:

• M = 1 and T =tn+1. This case is trivial, since by Def. 3.1, l[tn+1] = |I[tn+1]|- Therefore, x = y.

• M = X, where X is a meta-variable and T ^f°- By hypothesis, y = X[Ti] where \T\ = |Tj|. By

Lemma 3.3, T =\uc
Ti- Let A be the tvPe of T and Ai *ne tyPe of Tl- B^ the inversion of rule

21

(Clos) applied to x and y, it holds that X is well-typed in both contexts A and Ax. By inversion of

rule (Metavar), A =Xnc Ai. Thus, by induction hypothesis, T = Tly and thus, x = y.
D

The above property is not valid when Ai ^An£ A2. Take, for example, the context

r = m:{T 0) ->■ nai. 0:na£. Z:(IIn:nai.(T n)). T:noi -4 Type. natType

and the two substitutions

51-[2/:=(/0)-(T:c)a::=O-„ait
O]

and

52 = [2/-(/0)-(TO)x:=0-natt°]-

By Lemma 3.3, Si =\nc 5-2 • Also,

rhSi >y.{Tx).x:nat. T

and

T h S2 > 2/:(T 0). x:nat. T.

In this case, the well-typed substitutions Si and S2 are =Xnc -convertible, but they are not identical.

THEOREM 5.24 (Church-Rosser). Letx andy be such that x =Xnc V- Then, x andy are XUc-joinable,

i.e., there exists w such that x —^*- w and y —^- w, if

1. x is a term, E; Ti h x : A and S; T2 I- y : B, or

2. x is a substitution, S;Ti h x > Alt E;T2 h y > A2, and Ai =Xnc ^2-

Proof. By weak normalization theorem (Theorem 5.22), there exists All^-normal forms x' and y' such

that x x' and y —^* y'. It suffices to show that x' = y', which is a consequence of subject reduction

theorem (Theorem 4.3) and Lemma 5.23. D

Confluence of An£ is a consequence of the Church-Rosser property (Theorem 5.24) and subject reduction
(Theorem 4.3).

COROLLARY 5.25 (Confluence). Letx be an arbitrary well-typed expression. If x —^* y andx —^* z

for some y,z, then there exists w such that y —^-- w and z —^* w.

Since All£ enjoys both Church-Rosser and weak normalization, we have that All^-normal forms on well-

typed terms always exist and they are unique. Thus, the equivalence on well-typed expressions is decidable.

COROLLARY 5.26 (Decidability). The equivalence x =xn£ V is decidable if

• x is a term, E; Ti h x : A and E; T2 \- y : B, or

• x is a substitution, E; Ti h x > A, E; T2 h y > A.

6. Related Work and Conclusion. Explicit substitutions and the let-in constructor of functional

ML-style programming languages have similar characteristics. In both mechanisms the application of a

substitution to a term can be delayed. For example, let x := 0 in Xy.A.x will be unfolded to Xy.A.O, in the

same way that (Xy.A.x)[x := 0] reduces to Xy.A.O. In their simply-typed versions, explicit substitutions and

let-in constructors act in the same way. However, in dependent-type systems, the relationship between

both mechanisms is not immediate.

22

To illustrate this, let us take the typing rule for closures —explicit applications of substitutions to

terms— in a dependent-type system:

rhS>A Ahl:i ... ,„ ,
 r h M[S] : A[S) (Cl0Sn)"

Consider the context

T = m:{T 0) ->■ nat. 0:nat. l:(Un:nat.{T n)). T:nat -> Type. nat.Type.

Using the above typing rule, the term (m (/ a;)) [a; := 0] is ill-typed. This is because the information that the

variable x will be substituted by 0 in (m (/ x)) is not taken into account by rule (Closn). Therefore, the

type of (/ x) is (T a;), but not (T 0) as expected by m. On the other hand, the same term can be written

using the let-in notation as: let x :- 0 in (m (/ a;)). This term is well-typed because x has the value 0 in

(m (/ x)), and thus let x := 0 in (m (I a;)) is going to be typed as (m (/ 0)).

The unfolding of definitions before typing is not sufficient when we admit meta-variables. The reason is

that substitutions and meta-variables may appear in normal forms. In this case, we cannot avoid having a

(Closn)'s like rule. The approach we have taken is to consider explicit substitutions different from the let-in

mechanism. The explicit substitution technique allows substitutions to be part of the formal language by

means of special constructors and reduction rules. In this way, the term (m (/ a:))[a; := 0] is ill-typed, just

as the term (Xx:nat.(m (I x)) 0) is. The let-in structure has a more complex behavior. It provides a

mechanism for definitions in the language. Formal presentations of type systems with definitions are given

in [41, 3].
Some type theories extended with explicit substitutions have been proposed: The Simple Type Theory

[1, 27, 8, 21, 6], the Second-Order Type Theory [1], the Martin Löf Type Theory [43], the Calculus of

Constructions [39], and Pure Type Systems [2]. Except for the simply-typed version of ACT in [8], neither of

them considers terms with meta-variables as first-class objects.

Our main contribution is the complete meta-theoretical development of a dependent-type system with

explicit substitutions which handles explicitly open expressions (i.e., expressions with meta-variables). The

system enjoys the usual typing properties: type uniqueness, subject reduction, weak normalization, and

confluence. Applications of such a calculus are frameworks for the representation of incomplete proofs, and

first-order settings for higher-order unification problems.

In this paper, we have presented the All-theory. Although full polymorphism or inductive definitions are

not considered in this theory, the main difficulties, due to the mutual dependence between terms and types,

already arise in All. Other theories, such as the Calculus of Constructions, can be considered as the logical

framework for AII^ [34]. Note also, that AII^ does not handle the 77-rule. Extensional versions of explicit

substitution calculi have been studied for ground terms [24]. However, work is necessary to understand the

interaction with dependent types and meta-variables.

Acknowledgments. A major part of this research was done while the author was a research assistant in

the Coq Project at INRIA-Rocquencourt. Many persons have contributed to this work with useful remarks

and suggestions, in particular Gilles Dowek, Delia Kesner, and Nikolaj Bj0rner. The author is very grateful

to them.

23

REFERENCES

[1] M. ABADI, L. CARDELLI, P.-L. CURIEN, AND J.-J. LEVY, Explicit substitution, Journal of Functional

Programming, 1 (1991), pp. 375-416.

[2] R. BLOO, Preservation of Termination for Explicit Substitution, Ph.D. thesis, Eindhoven University of

Technology, 1997.

[3] R. BLOO, F. KAMAREDDINE, AND R. NEDERPELT, The Barendregt cube with definitions and generalised

reduction, Information and Computation, 126 (1996), pp. 123-143.

[4] R. BLOO AND K. H. ROSE, Preservation of strong normalisation in named lambda calculi with explicit

substitution and garbage collection, in Proceedings of CSN-95: Computer Science in the Netherlands,

Nov. 1995.

[5] D. BRIAUD, Higher order unification as a typed narrowing, CRIN report 96-R-112, 1996.

[6] R. D. COSMO AND D. KESNER, Strong normalization of explicit substitutions via cut elimination in

proof nets (extended abstract), in Proceedings, 12th Annual IEEE Symposium on Logic in Computer

Science, Warsaw, Poland, 29 June-2 July 1997, IEEE Computer Society Press, pp. 35-46.

[7] P.-L. CURIEN, T. HARDIN, AND J.-J. LEVY, Confluence properties of weak and strong calculi of explicit

substitutions, Journal of the ACM, 43 (1996), pp. 362-397.

[8] G. DOWEK, T. HARDIN, AND C. KIRCHNER, Higher-order unification via explicit substitutions (ex-

tended abstract), in Proceedings of the Tenth Annual IEEE Symposium on Logic in Computer

Science, San Diego, California, 26-29 June 1995, IEEE Computer Society Press, pp. 366-374.

[9] G. DOWEK, T. HARDIN, C. KIRCHNER, AND F. PFENNING, Unification via explicit substitutions: The

case of higher-order patterns, in Proceedings of the Joint International Conference and Symposium

on Logic Programming, M. Mäher, ed., Bonn, Germany, Sept. 1996, MIT Press.

[10] M. C. F. FERREIRA, D. KESNER, AND L. PUEL, Lambda-calculi with explicit substitutions and com-

position which preserve beta-strong normalization, in Algebraic and Logic Programming, Fifth In-

ternational Conference, ALP'96, M. Hanus and M. Rodriguez-Artalejo, eds., Vol. 1139 of LNCS,

Aachen, Germany, 25-27 Sept. 1996, Springer, pp. 284-298.

[11] H. GEUVERS, The Church-Rosser property for ßrj-reduction in typed X-calculi, in Proceedings of the

Seventh Annual IEEE Symposium on Logic in Computer Science, Santa Cruz, California, 22-25

June 1992, IEEE Computer Society Press, pp. 453-460.

[12] , A short and flexible proof of strong normalization for the calculus of constructions, in Selected

Papers 2nd Intl. Workshop on Types for Proofs and Programs, TYPES'94, Bastad, 6-10 June

1994, P. Dybjer, B. Nordström, and J. Smith, eds., Vol. 996 of Lecture Notes in Computer Science,

Springer-Verlag, Berlin, 1995, pp. 14-38.

[13] H. GEUVERS AND R. BLOO, Counter-example for subject reduction in calculi of explicit substitutions

with dependent types, personal communication, 1997.

[14] H. GEUVERS AND B. WERNER, On the Church-Rosser property for expressive type systems and its

consequences for their metatheoretic study, in Proceedings of the Ninth Annual IEEE Symposium

on Logic in Computer Science, Paris, 4-7 July 1994, IEEE Computer Society Press, pp. 320-329.

[15] J.-Y. GlRARD, Interpretation Fonctionelle et Elimination des Compures de VArithmetic d'Ordre

Superieur, these de doctorat, Universite Paris VII, 1972.

[16] J.-Y. GIRARD, P. TAYLOR, AND Y. LAFONT, Proof and Types, Cambridge University Press, 1989.

[17] J. GOUBAULT-LARRECQ, A proof of weak termination of typed lambda-calculi, Lecture Notes in Com-

24

puter Science, 1512 (1998), pp. 134-153.

[18] R. HARPER, F. HONSELL, AND G. PLOTKIN, A framework for defining logics, Journal of the Association

for Computing Machinery, 40 (1993), pp. 143-184.

[19] G. HUET, Confluent reductions: Abstract properties and applications to term rewriting systems,

J.A.C.M., 27 (1980).
[20] F. KAMAREDDINE AND A. Rios, A lambda-calculus ä la De Bruijn with explicit substitutions, LNCS,

982 (1995), pp. 45-62.
[21] , The Xj-calculus: Its typed and its extended versions, personal communication, June 1995.

[22] D. KAPUR, P. NARENDRAN, AND F. OTTO, On ground-confluence of term rewriting systems, Infor-

mation and Computation, 86 (1990), pp. 14-31.

[23] D. KAPUR AND H. ZHANG, RRL: A rewrite rule laboratory-user's manual, Tech. Report 89-03, De-

partment of Computer Science, University of Iowa, 1989.

[24] D. KESNER, Confluence properties of extensional and non-extensional X-calculi with explicit substi-

tutions (extended abstract), in Proceedings of the Seventh International Conference on Rewriting

Techniques and Applications (RTA-96), H. Ganzinger, ed., Vol. 1103 of LNCS, New Brunswick,

New Jersey, 1996, Springer-Verlag, pp. 184-199.

[25] C. KIRCHNER AND C. RINGEISSEN, Higher order equational unification via explicit substitutions, in Pro-

ceedings of the International Conference PLILP/ALP/HOA'97, Vol. 1298 of LNCS, Southampton,

Sept. 1997, Springer.

[26] J.-W. KLOP, Combinatory reduction systems, Mathematical Center Tracts, (1980).

[27] P. LESCANNE, From Xa to Xv a journey through calculi of explicit substitutions, in Proceedings of the

21st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Jan.

1994, pp. 60-69.
[28] P. LESCANNE AND J. ROUYER-DEGLI, Explicit substitutions with de Bruijn's levels, in Proceedings of

the International Conference on Rewriting Techniques and Applications (RTA-95), J. Hsiang, ed.,

Vol. 914 of LNCS, Chapel Hill, North Carolina, 1995, Springer-Verlag, pp. 294-308.

[29] L. MAGNUSSON, The Implementation of ALF—A Proof Editor Based on Martin-Löf's Monomor-

phic Type Theory with Explicit Substitution, Ph.D. thesis, Chalmers University of Technology and

Göteborg University, Jan. 1995.

[30] P. A. MELLIES, Typed lambda-calculi with explicit substitutions may not terminate, LNCS, 902 (1995),

pp. 328-338.
[31] C. MUNOZ, Confluence and preservation of strong normalisation in an explicit substitutions calculus

(extended abstract), in Proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer

Science, New Brunswick, New Jersey, July 1996, IEEE Computer Society Press, pp. 440-447.

[32] , Proof representation in type theory: State of the art, in Proceedings of the XXII Latinamerican

Conference of Informatics CLEI Panel 96, Santafe de Bogota, June 1996.

[33] , A left-linear variant of Xa, in Proc. International Conference PLILP/ALP/HOA'97, Vol. 1298 of

LNCS, Southampton, Sept. 1997, Springer, pp. 224-234.

[34] , Un calcul de substitutions pour la representation de preuves partielles en theorie de types, these de

doctorat, Universite Paris VII, 1997. English version available as INRIA research report RR-3309.

[35] G. NADATHUR, The (SCons) rule, personal communication, 1996.

[36] R. P. NEDERPELT, Strong normalization in a typed lambda calculus with lambda structured types, Ph.D.

thesis, Technical University Eindhoven, Eindhoven, 1973.

25

[37] B. PAGANO, Confluent extensions of X^, personal communication, 1996.

[38] A. Rfos, Contributions ä l'etude de X-calculs avec des substitutions explicites, these de doctorat, Uni-

versite Paris VII, 1993.

[39] E. RITTER, Categorical abstract machines for higher-order lambda calculi, Theoretical Computer Sci-

ence, 136 (1994), pp. 125-162.

[40] M. SCHMIDT-SCHAUSS, Computational aspects of an order-sorted logic with term declarations, Vol. 395

of LNCS and LNAI, Springer-Verlag, New York, 1989.

[41] P. SEVERI, Normalisation in LAMBDA CALCULUS and its relation to type inference, Ph.D. thesis,

Eindhoven University of Technology, 1996.

[42] W. W. TAIT, Intentional interpretation of functionals of finite type i, Journal of Symbolic Logic, 32

(1967).

[43] A. TASISTRO, Formulation of Martin-Löf's theory of types with explicit substitutions, tech. report,

Chalmers University of Technology, University of Göteborg, Göteborg, May 1993.

[44] B. WERNER, Une Theorie des Constructions Inductives, these de doctorat, Universite Paris VII, 1994.

[45] H. YOKOUCHI AND T. HlKlTA, A rewriting system for categorical combinators with multiple arguments,

SIAM Journal on Computing, 19 (1990), pp. 78-97.

[46] H. ZANTEMA, Termination of term rewriting by semantic labelling, Fundamenta Informaticae, 24 (1995),

pp. 89-105.

[47] , Termination of 4> and Tl$ by semantic labeling, personal communication, 1996.

26

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

mm^msmim^sE^=m^
1. AGENCY USE ONVf(Leave blank) 2. REPORT DATE

November 1999
3. REPORT TYPE AND DATES COVERED

Contractor Report

4. TITLE AND SUBTITLE

Dependent types and explicit substitutions

6. AUTHOR(S)

Cesar Münoz

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-2199

5. FUNDING NUMBERS

C NAS1-97046
WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 99-43

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-1999-209722
ICASE Report No. 99-43

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report
Submitted to Mathematical Stuctures in Computer Science.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 60, 61
Distribution: Nonstandard
Availability: NASA-CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) , . . , „ . , . • u l
We present a dependent-type system for a A-calculus with explicit substitutions. In this system, meta-vanables, as
well as substitutions, are first-class objects. We show that the system enjoys properties like type uniqueness, subject
reduction, soundness, confluence and weak normalization.

14. SUBJECT TERMS
explicit substitutions, dependent types, lambda-calculus

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

31
16. PRICE CODE

 A03
20. LIMITATION

OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

