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SECTION I 

1.1 Introduction 

This report documents progress and results of Phase I Small Business Innovative Research 
project, "Cognition Models for Visual Target Discrimination," contract number DÄAE07-97-C-X024, 
under TARDEC basic research SBIR topic A96-097, "Vision Research and Human Perception for Target 
Detection." 

I.l.i Background 

TARDEC's mission encompasses the development and integration of ground vehicle 
technologies, including computer-aided design and analysis tools to facilitate cost-effective vehicle 
development. The TARDEC visual perception modeling initiative is directly related to camouflage, 
concealment, and deception technologies for combat vehicle survivability. TARDEC's charter also 
includes technology transfer between the military and commercial automotive sectors, and development 
of dual-need technologies. TARDEC's visual perception modeling initiative includes cooperative 
research and development agreements with major commercial automotive manufacturers to adapt military 
vision models to produce metrics and computer-aided engineering tools for use in automotive safety and 
visibility design and evaluation. As digital systems, computerized "intelligent" assistants, and driver's 
enhanced-vision systems become more prevalent on the battlefield and in commercial automobiles, there 
is an increasing need for tools and data to objectively evaluate the human factors associated with console 
displays and symbols. These human interface issues also fall squarely within TARDEC's responsibility, 
and offer potential for bi-directional technology transfer between the military and commercial automotive 
sectors. 

TARDEC has sponsored the development of visual perception models to fill a variety of needs: 
(1) military applications (e.g., the evaluation of camouflage, concealment, and deception technologies); 
(2) commercial automotive safety applications (e.g., the evaluation of highway and automotive signals, 
warnings, and indicators); and (3) dual-need applications (e.g., enhanced vision systems for driving 
and/or target acquisition, and the design and evaluation of console displays). 

TARDEC has taken an incremental approach to model development, beginning with a model of 
the "front-end" automatic, pre-cognitive aspects of human vision. This led to the TARDEC Visual 
Perception Model (VPM) of front-end visual processing and signal detection. The baseline VPM has 
been calibrated and validated as a predictive model of human performance in simple target detection 
tasks in automotive and military contexts [Witus 1996]. The baseline VPM represents automatic front- 
end visual processes including temporal filtering, color vision, multi-resolution spatial filtering, and 
nonlinear neural receptive field response in the striate cortex. The baseline VPM uses a highly simplistic 
"back-end" model to predict target detection, and does not represent performance of cognitive processes 
in target discrimination. 

1.1.2 Objectives and Scope 

The objective of this SBIR topic is to extend the baseline TARDEC VPM to predict human 
performance in visual target discrimination. The approach includes: (1) developing, testing, and 
integrating new algorithms into the model; (2) calibrating and validating the model in realistic perception 



test scenarios; and (3) refining the model, then iterating the process. Separate but parallel trial design 
applications are being conducted in coordination with current materiel development programs and with 
potential downstream military and commercial users to ensure suitability of the VPM extensions for 
military and commercial applications of priority interest. 

The objective of Phase I was to outline the technical approach for extending the baseline VPM 
for modeling visual target discrimination. The specific sub-objectives were to analyze the task and 
application requirements, formulate the modeling approach, demonstrate key algorithms, identify 
technical research issues, and develop a plan for Phase II. The objective of Phase II is to implement, test, 
calibrate, and refine the approach to produce a calibrated model of visual target discrimination. 

By the end of the Phase II project we will have developed a predictive model of human visual 
discrimination. This model must balance the potentially conflicting requirements of simplicity, fidelity, 
general applicability to a wide variety of visual discrimination tasks, and specific applicability to priority 
applications. In fact, there is no one specific model realization that meets all of these conflicting 
requirements. Instead, the more promising approach is to develop a family of models which employ 
common modules representing elements of visual processing, and which employ a common architecture 
and modeling approach. Specific applications and contexts may then differ in the model realizations they 
employ for a given study. For example, camouflage evaluation applications may require a refined texture 
discrimination module, while automotive turn-signal discrimination may not require texture 
discrimination but may require a refined luminance adaptation module. 

1.2 Summary of Results 

The Phase I project identified shortcomings in the baseline VPM which limit its usefulness as a 
front end for target discrimination modeling. These shortcomings include luminance adaptation, texture 
perception, neural receptive field saturation, and edge response. Equations to correct these deficiencies 
are presented in Section II. Some of these equations were implemented in code as part of the 
demonstration of visual discrimination processing algorithms. 

The Phase I project completed an analysis of the cognitive processes and types of prior 
knowledge involved in visual target discrimination. The analysis identified different processing modes 
for target discrimination. The processing mode active in any given time depends on a variety of factors 
including the quality of the signature, the target discrimination categories, and the expertise of the 
observer. We outlined the cognitive processing paths to model the different modes. These results are 
described in Section II. 

The Phase I project developed flow charts and equations describing the approaches to modeling 
visual discrimination and candidate algorithms. These results are the basis for implementation in Phase 
II. The flow charts describing the approach to model the different visual discrimination modes, and 
alternative algorithms and equations for the component subprocesses were developed and are presented in 
Section II. The core subprocesses are image segmentation, multi-channel pooling, feature detection 
spatial filtering, spatial/logical induction and object categorization. 

The Phase I project implemented and demonstrated key algorithms and equations for the 
component subprocesses and for selected upgrades to the baseline VPM. These algorithms and equations 
perform the following image processing functions: (1) generating a reference image by replacing the 
target with synthetic content which locally matches the surrounding texture and contrast, (2) computing 
the contributions of intensity and texture gradients to perception of the target shape, and (3) segmenting 
the image into object regions based on texture and contrast. These algorithms were demonstrated using a 
complex and highly heterogeneous scene with many different types of objects, textures and spatial 
relationships. The image processing illustrations are presented and described in detail in Section II. 



The Phase I project outlined the research, test, and evaluation approach for Phase II. This 
approach focused on methods for iterative testing during development to ensure robust model capabilities 
and to develop calibration data for priority operational tasks. The Phase II approach is described in 
Section II, and includes illustration of methods to develop perception test stimuli by image transformation 
and deformation. 

1.3 Conclusions 

The Phase I project has successfully accomplished the main objective of outlining the technical 
formulation for modeling visual target discrimination and specifying details of the modeling approach. 
We implemented key elements of the technical model formulation as extensions to the baseline TARDEC 
Visual Perception Model at the TARDEC facilities, and ran the extensions to illustrate the analytic 
methods. These illustration results demonstrate the technical merit of the approach. We have also 
outlined and illustrated key elements of the approach for iterative model test and refinement in Phase II. 
Throughout Phase I, we have coordinated with potential downstream users in order to ensure that the 
modeling focus and emphasis addresses the dual-use military and commercial needs of TARDEC and 
industry. 

The Phase I results provide a solid foundation for implementation, test, and refinement in Phase 
II. They provide a high degree of confidence in the technical merit and commercial value of the Phase II 
products. 



SECTION II 

This section documents the results of the Phase I project. There were five major technical tasks: 
(1) assessing critical shortcomings in the baseline VPM front end and designing upgrades; (2) performing 
task analysis of component processes and alternative modes of visual discrimination; (3) developing flow 
charts and equations describing the approaches to modeling visual discrimination and candidate 
algorithms; (4) implementing and demonstrating key algorithms; and (5) outlining the research, test, and 
evaluation approach for Phase II. This section documents the results of each of these tasks. 

II.l Upgrades to the Baseline VPM 

Our technical coordination with potential downstream military ground vehicle and commercial 
automotive applications revealed that there are shortcomings in the current TARDEC VPM front end 
which need to be corrected before it will provide the appropriate outputs to the new target-discrimination 
back end being developed under this project. These upgrades are particularly relevant for camouflaged 
and concealed targets for which figure-ground discrimination is nontrivial, and for low-light conditions. 
Upgrading the retinal-cortical processing model (the VPM front end) is needed to provide adequate input 
to the visual cognition back-end models under development in the current SBIR project. Some of these 
shortcomings were also noted in the VPM documentation [Witus 1996]. 

The current VPM front end does not represent luminance adaptation. It does not represent 
texture-gradient perception or the contribution of texture gradients to object segmentation. It does not 
fully represent the sensitivity of the visual system to edges. It does not represent saturation in the neural 
receptive field (RF) nonlinear response module. These visual phenomena need to be represented in the 
VPM front end for accurate modeling of object segmentation and shape discrimination, especially for 
military targets employing camouflage, concealment, and deception. In addition to the visual processing 
issues, we identified needed enhancements in the VPM enabling software workbench used to implement 
the VPM. These enhancements are described in the following sections. 

11.1.1 Nonlinear Luminance Adaptation Module 

Luminance adaptation is the combined effect of pupil response, photo-pigment bleaching and 
regeneration, and neuro-electrical coupling. The transfer function is closely approximated by the 
following equation: 

G = [l/(Y + a*Ap + y)] (1) 

where G is the gain, Y is the luminance input image, A is the adaptation level, and a, ß, and y are 
constants. A module is needed to implement this equation. The module will compute a gain map, i.e., a 
different gain at each point in the image, based on the Y (luminance) plane, the luminance adaptation 
level, and the visual system parameter. The gain will be applied to each of the image planes 
corresponding to the S, M, and L cones before the linear luminance/color-opponent transform. 

11.1.2 Oriented Receptive Field (RF) Spatial Filtering Module 

Neural RFs act as two-dimensional spatial band-pass filters. Spatial filtering on the red-green 
and yellow-blue color-opponent channels is adequately represented by filters which have a circular 
annulus shape, i.e., band-pass in all orientations. On the luminance channel, most RFs are oriented (i.e., 



low-pass in one direction and band-pass in the orthogonal direction) with a median orientation bandwidth 
of 45 degrees. This processing can be represented by applying four convolution kernels (oriented at 0, 
45, 90, and 135 degrees) to each multi-resolution plane on the luminance channel. 

11.1.3 Between-Band Cross-Covariance Module 

The covariance between the output on adjacent spatial frequency bands measures the correlation 
in phase and magnitude. The outputs on adjacent bands are in phase at edges, and the covariance analysis 
is needed to improve the sensitivity to edges and boundaries. The module to compute the between-band 
cross-covariance images will simply multiply the output from spatial filters at adjacent spatial frequencies 
and the same orientation. This will be done at the same point in the model that the in-band auto- 
covariance is currently computed (by squaring the outputs of the spatial filtering operations). This 
module should be connected in parallel with the current pyramid-squaring module in the nonlinear RF 
transfer function. 

11.1.4 Second-Stage Texture-Gradient Response Module 

The current VPM front end represents neural RFs that detect contrast gradients (luminance and 
color differences), but not texture gradients. Texture gradient response is essential for analysis of 
camouflaged vehicles. This module will compute the energy envelope (magnitude squared) of the output 
from the spatial band-pass filters, and then process this output with a duplicate of the first stage spatial 
filtering and nonlinear RF response module. This module will be applied only on the luminance channel, 
enabling the VPM to represent detection of boundaries by perceiving texture gradients. 

11.1.5 Neural Receptive Field Saturation Module 

The current equation for neural RF response is linear in the square of the contrast modulation, 
and does not represent the saturation nonlinearity. The current formulation is: 

RF_Output = CRf
2/(a*CTf

2 + Boxcarn(CRf
2)) (2) 

A common analytic form to model saturation is: 

RF_Output = CRf
2 / ( CRf

2 + a*CTf
2 + ß*Boxcarn( CRf

2 ) ) (3) 

where CRf denotes the contrast ratio image at a spatial frequency f, CTf denotes the standard laboratory 

contrast threshold at spatial frequency f, a and ß are empirical constants, and Boxcarn(.) is a spatial filter 

with a uniform square convolution kernel of width n. An alternative form is the negative exponential. 

11.1.6 VPM Enabling Software Workbench 

The VPM is implemented using a visual-processing-model development workbench. The 
workbench separates low-level C++ code from the high-level model flow. Individual modules become 
part of a library for use in different applications. This software implementation approach significantly 
reduced the time and cost of model implementation and testing. However, there are several limitations to 
the workbench which need to be corrected. It lacks automatic memory management. It has a clumsy 



interface for displaying images and denoting the target regions of interest. The workbench needs to be 
implemented in two versions: a full-up developer's version, and a streamlined "execution-only" version 
for finished applications. These steps will reduce model development time and improve execution. The 
VPM lacks a graphic user interface for displaying and editing the visual-perception-model data flow 
diagrams. This interface is needed to reduce the time and cost of model development, tailoring, and 
documentation. 

II.2 Task Analysis 

The task analysis was based on a review of the relevant literature in computational cognitive 
psychology on visual discrimination, coordination with potential downstream military and commercial 
customers to identify application contexts and priorities, and personal experience in target acquisition 
with baseline and low-signature targets. We identified several distinct modes of target shape 
discrimination. Kosslyn's [1994] Image and Brain is devoted to an analysis of the mechanisms of visual 
recognition and identification. It is based on extensive empirical results of careful psychophysical testing 
with normal and brain-damaged human subjects, and neurophysiological testing with both human 
subjects and laboratory animals.   The model of multiple paths to object categorization shown in figure 1 
is based largely on Kosslyn's analysis, but is also consistent with personal experience in target acquisition 
testing, anecdotal evidence from military survivability technologists, and photo-intelligence analysis 
methods. Kosslyn's model, briefly summarized in appendix C , is too broad in scope and at too high a 
level of aggregation to be directly applicable. However the analysis underlying Kosslyn's model was a 
valuable resource for this project. 

Figure 1 illustrates the alternative paths to target categorization. The different paths employ 
common modules, connected in different sequences. All begin with front-end retinal-cortical processing. 
One path goes immediately to feature detection spatial filtering by neurons tuned to specific shapes. This 
path is active when the signature is relatively high-quality and is clearly a separate and distinct object 
(i.e., not obscured and not connected to other objects), and the target has a simple and familiar distinctive 
shape, or distinctive component shape elements. The other path involves image segmentation and multi- 
channel pooling prior to feature detection spatial filtering. This path is active when the signature is 
relatively poor quality so that no individual color/luminance or texture channel has sufficient information 
to perceive the target as a whole and categorize it, when the signature is obscured, or when the target has 
a complex or unfamiliar shape. 

II.2.1 Trivial Discrimination 

Feature detection spatial filtering effectively compares the internal pattern of neural activation to 
the pattern corresponding to an ideal or iconic target or to characteristic components or features.  When 
the characteristic shape is highly familiar, the overall target shape is the basis for spatial filtering (e.g., 
researchers have found individual neurons tuned to respond to the images of faces). In these cases the 
prior knowledge can be represented by the ideal or iconic form of the target. 

In some cases, the overall target shape is complex and insufficiently familiar for immediate full 
shape recognition, but the target is clearly a distinct object and has its distinctive features or shape 
elements. In these cases, the prior knowledge for feature detection spatial filtering are the distinctive 
features or shape elements. In both of these cases the visual processing is essentially a visual pattern 
matching of the perceived signal to the prior mental image of the iconic or ideal form. Wolfe and Bennett 
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Fig. 1. Multiple paths for object categorization 

[1997] present compelling empirical evidence that this is part of the automatic, massively parallel visual 
processing system, and is clearly distinct from serial processing when the target does not have simple 
distinctive features, or is not clearly separate from other objects. 

When the target is clearly segmented from the surround, i.e., there is no obstruction or other 
adjacent objects to confuse the figure-ground discrimination, and when the target has a simple and 

• distinctive overall shape or features, then the target discrimination is a parallel process and we have a 
"pop-out" target. When the target shape is complex, and lacking in distinctive features, but is still 
unambiguously segmented as a distinct object, then target is recognized based on the spatial and logical 
relations among the component features [Wolfe and Bennett 1995] [Kosslyn 1994: 54-104]. This 
spatial/logical induction requires serial inspection, and the target is no longer a "pop-out." In these cases 
the prior knowledge is represented by the visual appearance of the component shapes and the categorical 
relations or predicate calculus of the spatial and logical relationships among the component parts. 

When the figure-ground discrimination is trivial, the visual cognition processing focuses on the 
individual features, or spatial/logical combinations of features, which distinguish one type of target from 
another.  The signature of the target can be reduced to its distinguishing features. 



11.2.2 Nontrivial Discrimination 

In many real-world situations, the figure-ground discrimination is not trivial. The target may be 
partially obscured so that its parts appear unconnected, or the different parts may have significant color, 
luminance or texture gradients between them, or the target may have insignificant color, luminance or 
texture gradients between it and the objects adjacent to it.  In these cases, figure-ground discrimination is 
required to perceive the target as an object, and this must precede recognition/identification. Even if the 
target has simple distinctive features or overall shape, it will not be a "pop-out" target because it does not 
have "pop-out" figure-ground discrimination. In these cases, figure-ground discrimination precedes 
feature detection spatial filtering. Figure-ground discrimination is performed in two stages: independent, 
single-channel image segmentation, followed by multi-channel pooling. 

Image segmentation separates regions from surround. On each visual channel, the interior of a 
segmented region has similar value, and the surround has different values. There is a gradient between 
the region and its surround. Segmentation operates independently on the different color- 
opponent/luminance, temporal, and spatial band-pass channels. The segments do not necessarily 
correspond to physical objects. An object, especially complex objects built up from separate parts, may 
contain regions of different color, luminance or texture which cause it to be segmented into several 
regions. Shadows or other large-scale scene features (e.g., contrast with the sky) may create large 
segments which encompass several distinct objects. 

Multi-channel pooling follows image segmentation. Split-and-merge (intersection and union) 
operations refine and consolidate the results of independent channel segmentation. Multi-channel 
pooling feeds feature-detection spatial filtering. When the figure-ground discrimination is nontrivial, 
then the visual cognition processing becomes a constructive process. The iconic features for feature 
detection spatial filtering are no longer the features which distinguish one type of target from another, but 
are the features or components from which the target signature can be constructed. 

11.2.3 Object Categorization 

Object categorization refers to the final step of deciding on the response: whether or not to 
assign the target to one (or more) of the prior target categories, and the degree of confidence in the 
categorization. There are two modes of decision-making in assigning a target to a particular prior 
category. These modes depend on the nature of the task. In multiple-alternative forced-choice (MAFC) 
tasks, the observer knows that a target is present and must assign it to exactly one category out of a set of 
mutually exclusive alternatives. In multiple-alternative open-choice (MAOC) tasks, the observer assigns 
a confidence rating to the different possible categories. A target may "possibly" belong to several 
different categories. Furthermore, in MAOC tasks the categories may not be mutually exclusive. These 
two modes of decision-making require different models. The MAFC case is easier, the common model is 
Baysean classification with a "winner take all" end-rule. [Kosslyn 1994: 119; Wandell 1995: 426-9]. 
The MAFC task is closely related to the detection of distinguishing features. In the MAOC task, we must 
also address whether there is enough information in the signature to make any decision at all. The MAFC 
paradigm is applicable when figure-ground discrimination is trivial and the target is not obstructed and 
not presented in an unusual perspective or configuration. In all other cases, the MAOC paradigm is more 
applicable. 

Simple and highly familiar shapes are directly detected on individual neural receptive fields of 
the front-end visual system tuned to the particular shapes. This mode applies to "pop-out" targets: 
simple shapes, well trained observers, clean signatures, benign backgrounds, and extremely coarse 
discrimination selectivity. Ophthalmologists, neurologists, developmental psychologists, and vision 



research psychologists may be interested in modeling the performance of visually or cognitively impaired 
individuals in response to "pop-out" targets. 

Predicting observer performance for "pop-out" targets is not a focus of interest for the 
downstream military and commercial applications. The downstream application contexts are 
characterized by observers with normal vision in degraded viewing or low signature conditions and one 
or more of the characteristics of "pop-out" are missing: either the shapes are complex, the observers do 
not know what configuration the target will be in or how it will be obscured, the signature is suppressed 
and camouflaged, visibility is poor, the observer is not looking directly at the target, or the decision task 
involves target identification or recognition of subtle detail. 

More complex and less highly familiar shapes, finer discrimination tasks, or targets with 
degraded signatures or cluttered backgrounds, are recognized only after segregating the target from its 
surround, integrating the multi-channel outputs of the front-end visual system's basic neural receptive 
fields, then analyzing the combined output to determine the shape of the target. The target must first be 
segmented from the background to be perceived as an object before the shape of the object can be 
ascertained. Portions of the target may be visible due to luminance contrast, other portions due to color 
or texture contrast, but the combined effects are needed to see a sufficient portion of the target to 
recognize it. Camouflage and signature management often concentrate on defeating the figure-ground 
discrimination process. If it is not perceived as an object, it will not be recognized as a target. 

Both of these modes apply to relatively simple targets consisting of a single region in which the 
shape of the target is characterized by its outer boundary. The visual resolution of the boundary is 
sufficient to measure the information available to discriminate the target, and target categorization is a 
matter of matching the target outline to the iconic forms characteristic of the different categories. The 
measure of perceived information on the boundary is useful to predict how well people are able to 
discriminate the target. The measure of relative similarity of the perceived signature to that of the icons 
or ideal images characteristic of the different target categories is useful for predicting what target 
categorization decisions people will make. These are two different prediction problems, which require 
different model formulations. 

Highly complex objects which consist of a spatial organization of a number of components 
involve recognizing individual components in a spatial and/or logical configuration characteristic of the 
complex object. This mode requires first categorizing the components of the target, then matching the 
spatial and/or logical relationships among the components to templates for alternative types of targets. 
This mode of discrimination applies to very complex targets, fine levels of target identification, images 
with poor visual signature, or images so cluttered that even simple or familiar shapes cannot be 
recognized directly. This is particularly important when the target may be presented at noncanonical 
orientations or when its components are in different relative orientations. Kosslyn [1994: 241] concludes 
that "one identifies contorted objects by recognizing individual parts and distinguishing characteristics in 
the pattern activation subsystem, and computing the categorical spatial relations among them in the dorsal 
system." 

In this situation the feature detection spatial filtering icons do not correspond to the entire target, 
but only to characteristic components or shape elements. Some features may be important for 
constructing the target (they are important for the observer to have confidence that he is looking at a 
target), but may not be valuable for distinguishing between alternative categories because the features are 
common to several categories. In particular, some features may be common to a broad class of targets, 
e.g., military combat vehicles, and distinguish that class of targets from other classes of targets. But these 
features will not be of value for distinguishing types of targets within the broad class precisely because 
they are shared features. Other features may not contribute significantly to confidence that the object is a 
target, but may be important for distinguishing between target types. This mode of discrimination does 
not necessarily imply conscious, deliberate inspection (although this may occur), but it does imply use of 



categorical knowledge of spatial and logical relations among parts rather than strictly visual image 
matching. 

II.3 Approach to Modeling Visual Discrimination 

Visual discrimination modeling is focused on situations with degraded signature or viewing 
conditions (the nontrivial paths in figure 1), and excludes the more direct discrimination paths for "pop- 
out" targets (the trivial paths in figure 1). The processing flow for "pop-out" targets involves a subset of 
the processing functions for degraded scenes. Should modeling discrimination performance for "pop- 
out" targets become a priority, the models developed for degraded scenes should be able to be 
reconfigured for "pop-out" targets. 

The proposed visual discrimination modeling approach and alternatives are illustrated in figure 2. 
In section II.3.1 we have outlined two different approaches to modeling performance in visual 
discrimination subprocesses (image segmentation, multi-channel pooling, and feature detection spatial 
filtering). In section II.3.2 we describe two alternative approaches to modeling spatial-logical induction 
processing. In section II.3.3 we describe formulations to predict object categorization performance for 
MAFC and MAOC tasks. 

Retinal-Cortical Processing: 

• TARDECVPM 

Image Segmentation, Multi-channel Pooling and 
Feature Detection Spatial Filtering: 

• Information Metric Approach 
• Visual Pattern Matching Approach 

Object Categorization: 

• MAFC task model 
• MAOC task model 

Spatial-Logical Induction 

• Description Matching Approach 
• Neural Network Approach 

1 ' 
Object Categorization: 

• MAFC task model 
• MAOC task model 
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Fig. 2. Nontrivial Visual Discrimination Modeling Approach and Alternatives 

II.3.1 Modeling Image Segmentation, Multi-channel Pooling, and Feature Detection Spatial 
Filtering 

There are two alternative approaches to modeling image segmentation, multi-channel pooling, 
and feature detection spatial filtering: (1) an information metric approach, and (2) a visual pattern 
matching approach. The information metric approach attempts to predict performance from a measure of 
the useable information in the image. It is an evolutionary modeling approach in that it is a generalization 
of the signal detection framework of the baseline VPM. The visual pattern matching approach is new in 
that it attempts to explicitly represent the processing of vision subsystems. 

The information metric approach attempts to predict observer performance based on a measure of 
the amount of information the visual system can extract from the image, relative to the amount of 
information needed to perform the discrimination task given the shape of the target object. This approach 
does not predict what the observer will do with the information. Suppose a tank were constructed so that 
it looked like a cow. This model would compute how much visual information there was to categorize 
the shape, relative to the amount of visual information needed to categorize the shape. It might predict 
that the subject had sufficient information to categorize the shape, but it would not predict whether the 
subject would report seeing a cow or a tank. This modeling approach is promising for camouflaged and 
concealed targets, but not for deception. The information metric approach does not attempt to mimic the 
internal cognitive processing. It is an evolutionary approach because it is an extension of the 
psychometric modeling approach used for target detection in the baseline VPM. This approach does not 
explicitly represent the internal mental visual models of target appearance. 

The visual pattern matching approach attempts to mimic the internal processes of mental imagery 
and image comparison. The visual pattern matching approach is model-based, in that it attempts to match 
the internal visual representation to a prior model. It is a much more ambitious, and hence risky, 
approach in terms of technical feasibility, time and financial resources. Well-respected researchers (e.g., 
Biederman [1987], Lowe [1985,1987a, 1987b]) have pursued this approach with only limited success, 
and then only for line drawings and low-noise easily segmented images. Variations on this approach, but 
without the multi-channel front end, have been proposed for Automatic Target Recognition, and have 
also met with only limited success. Applying the method is also difficult because it requires external 
specification of the iconic target forms, which are a function of observer training, operational task, 
anddiscrimination mode (which depends on image quality). However this is the only approach which has 
potential to adequately handle decoys and deception. 

Both approaches are applicable to simple targets which do not require spatial/logical induction, 
and to complex targets which do. At this time it appears that a common approach to spatial/logical 
induction can be developed for use with both the information metric and visual pattern matching 
approaches. Both approaches are applicable to MAFC and MAOC object categorization tasks. The 
information metric approach predicts the probability of correct response. The visual pattern matching 
approach computes the probability of each response. 

Section IL3.1.1 describes the information metric approach for situations in which target 
signatures do not require spatial/logical induction for target discrimination. Section II.3.1.2 describes the 
visual pattern matching approach, also for situations in which target signatures do not require 
spatial/logical induction for target discrimination. 

II.3.1.1 Information Metric Modeling Approach 
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This approach computes the perceptible information available to the observer for discriminating 
the target from its surroundings and to determine the shape of the target. Kosslyn [1994: 226] finds that: 

Two sorts of top-down control strategies appear to underlie the patterns of eye 
movements that occur when people cannot identify an object at a glance. First, in some 
cases, top-down attentional control is driven by a specific hypothesis, such as that one is 
viewing a cat and hence should look for whiskers at the front of its face. Second, in some 
cases, subjects do not appear to be testing a specific hypothesis, but instead engage in 
systematic search strategies If the input is weakly consistent with many possible 
objects, a good strategy is to scan the object systematically looking for more information. 
The highest-information parts of an object are often along its contour, and hence top-down 
mechanisms might simply lead to scan along the object's boundary. 

The information metric model measures the information available from the target boundary, whether the 
information is perceived at a glance or by scanning along the boundary. It measures the information 
available for making a decision relative to the information needed to make a decision. Image 
segmentation is implicit in the information metric modeling approach in that an analyst must outline the 
region of interest, much like the current VPM. Multi-channel pooling is explicit: the probability that a 
spatial unit of information on the boundary (at each multi-resolution scale) is resolved is a function of the 
pooled signal over all channels at that position and spatial frequency band.  This approach computes the 
number of units of resolvable spatial information integrated over the boundary. It also computes the 
number of units of information needed to recognize the target shape as a function of a set of shape 
complexity factors. The psychometric function to predict subject response compares the amount 
information available to the amount of information required. 
The flow for the boundary shape information metric analysis is illustrated in figure 3. The RGB image is 
first converted to the internal luminance/color-opponent coordinate system. The next step is to analyze 
the texture magnitude on the luminance channel. The luminance, color-opponent, and texture planes are 
individually analyzed to compute its neural RF response image. 
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Fig. 3. Overall Model Flow for Boundary Information Metric Model 

Figure 4 illustrates the single image plane neural RF response analysis. This is nothing more than an 
extension to the baseline VPM to include luminance and texture channels. The background bias image is 
a key element in this processing. It represents the visual content due to the background, independent of 
the target and without target-background interactions. The background bias image represents "zero." 
The neural RF response to the background bias image is subtracted from overall neural response in order 
to determine what response is due to the target. The spatial filtering module is essentially the current 
VPM spatial filtering, with the addition of orientation filtering on the luminance channel. The 
normalization and adaptive gain formulations are essentially the current VPM formulation with the 
addition of RF saturation. 

Next the neural RF response maps are pooled over the luminance, texture, and color- 
opponent channels. The initial pooling formulation is power-law summation [Graham 1989: 164-80]. It 
is simply the nth root of the sum of the nth power of the RF output on each channel. This is computed for 
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Fig. 4. Single image plane neural receptive field response model 

each multi-resolution pixel location (ij) for each spatial frequency b and f, each orientation 8 on the 
luminance channel, and each color-opponent/luminance/texture input channel: 

Pooled_RF_Responsef(i j) = [ Zcfe RF_Responsecf9(i j)n ]1/n (4) 

The pooling stage also includes a nonlinear transformation to yield the probability of detecting 
each RF location in the image. The initial analytic form for the cumulative distribution function is the 
negative exponential distribution. There are two calibration parameters:   the input level for 50 percent 
probability of detection, Pso, and an exponent, ß, governing the spread of the distribution. 

Prob_Detectf (ij) = 1 - e xp( ln(l/2) * ( Pooled_RF_Responsef(i,j)/P50 )ß ) (5) 

These probabilities are integrated over the target boundary to yield the expected number of 
detectable RF locations on the target boundary. This yields the boundary information vector. There is 
one component for each spatial frequency band. The cumulative information is simply the sum over the 
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spatial frequency bands. In essence it measures the number of units of spatial information the visual 
system detects on the target boundary. 

This metric by itself is not sufficient to predict target discrimination and shape perception 
performance. Complex shapes require more information than simple shapes. We need to compute a 
measure or measures of the target shape complexity, then compute the shape discrimination performance 
from the shape complexity metric and the amount of visual shape information. A variety of shape metrics 
have been proposed in the literature [Brady and Yuille 1987: 329-60] [Gonzalez and Wintz 1987: 391- 
414]. In general, shapes with more concavities, more disjoint regions, more holes, more fine detail, more 
asymmetries appear more complex. We have found no basis to prefer any particular shape metrics in the 
literature on visual cognition, nor have we found any a priori reasons in the digital image processing 
literature to select any particular metrics as measures of complexity for visual cognition. The selection 
of the shape parameters, and the form of the psychometric function to predict discrimination performance 
from the boundary metric and shape complexity are empirical questions for Phase II. Some of the 
promising shape complexity metrics to be considered in Phase II include the following: 

1. the area, perimeter, ratio of the area to the square of the perimeter (i.e., the compactness), length 
of the major axis, length of the minor axis, and ratio of the major axis to the minor axis; 

2. the moments of the distribution of the distance from the points on the boundary to the center of 
mass of the boundary (or center of mass of the region), especially the mean and variance; and 

3. the area and perimeter of the smallest circumscribing ellipse, the area and perimeter of the largest 
inscribed ellipse, and the ratios of their areas and perimeters to the area and perimeter of the 
region. 

For whole target recognition, i.e., when spatial-logical inference is not applicable, the analyst 
designates the outline of the whole target.  For complex targets, the analyst outlines and evaluates each 
of the target components individually to generate the input for spatial-logical inference. 

II.3.1.2 Ideal Image Matching Modeling Approach 

One of the main conclusions of Kosslyn [1994] is that visual pattern matching between the 
perceived image and a mental image of an ideal or iconic form (either an entire object or principal 
components) is a key element of visual cognition. Kosslyn also concludes that this visual pattern 
matching process includes rotating, re-scaling, and stretching to register the perceived object with the 
icon, before evaluating the strength of the match. Kosslyn further asserts that the icons are stored as 
images, and not reconstructed from a propositional description of the targets. He sites Standing's [1973] 
experimental results on human visual image recall, showing the vast capacity and high processing rate for 
mental imagery. Standing calculated that normal subjects had a mental search rate for specific pictures of 
50,000 images per second, with a 99 percent accuracy for near-term recall, and 73 percent accuracy for 
delayed recall, with a short-term capacity for over a million pictures. 

The objective of this model is to measure the strength of association between the perceived form 
of the image and the perception of an ideal target or iconic form characteristic of the alternative category 
choices, and from this to predict the probability that an observer will make a given categorization 
decision. The technical formulation is very similar to that previously described for measuring the 
perceptual boundary information. The major difference is that instead of integrating the perceptual 
boundary information over the target boundary, we compute the correlation between the perceptual 
boundary information from the image and the perceptual boundary information from an ideal target or 
iconic form. 

Bergen and Landy [1991] used this approach as the back end to a simple computational vision 
model front end to predict successfully observers' ability to discriminate the orientation of asymmetrical 
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targets. This approach, using an ideal target and ideal observer as a reference point to evaluate the 
quality of an image, is described in detail in Geisler [1989]. 

The ideal target is a high contrast target image in a low noise background, with the minimal size 
for performance of the discrimination task [Nakayama 1990]. The modeling steps are: (1) process the 
actual image to obtain the neural RF output, (2) process the ideal image to obtain the theoretical RF 
output, (3) re-sample the actual image to scale the target to the same size as the icon, then (4) compute the 
correlation of the RF responses for the actual and ideal targets. 

This process compares the target to each of the ideal targets representing the different target 
categories for whole target matching, and to component categories for input to spatial-logical induction. 
Biederman [1987] attempted to demonstrate a single, universal set of iconic forms ("geons") underlying 
visual pattern matching (within the scope of his line-drawing stimuli). It is unlikely that such a set of 
universal forms exists. Instead the set of target categories and iconic forms is entirely task dependent, 
and is input to the model. The set of icons depends on what features distinguish the object categories, 
and what features are common to the object categories. Further research is needed to establish guidelines 
and procedures to define the response categories and corresponding iconic forms. We have formulated 
the following preliminary guidelines for further refinement in Phase II: 

1. The categories must be narrowly enough defined so that instances of target masks are more 
highly correlated with members of their own category than they are with instances of other 
categories. 

2. The icon for each category is essentially a mask, i.e., high-contrast, low-clutter image. 

3. The resolution of the icon images should be the lowest resolution consistent with a 
designated threshold level of response, e.g., X percent correct discrimination for all icons in 
MAFC tasks, or for MAOC tasks, X percent correct discrimination at Y percent error at some 
specified confidence level. 

4. Candidate iconic forms are: (a) the average of the target mask instances in the category and 
(b) the one instance with the highest correlation with all other instances in the category. 

II.3.2 Modeling Spatial-Logical Induction 

The spatial-logical induction module is used when the target type is inferred from the recognition 
of component parts in a characteristic logical or spatial relationship. Logical and structural models are 
needed to represent target discrimination through logical deduction or inference [Medin and Ross 1991: 
128-34]. These models provide a framework for combining predictions regarding the discrimination of 
components to predict the discrimination of the whole. This type of approach to modeling very high- 
level aspects of visual cognition has been employed by Feldman [1987]. The computed inputs to the 
spatial-logical induction module are the probabilities that the component parts are correctly categorized 
(using the MAOC task formulation described in section II.3.3). These probabilities can be computed 
either by the information metric approach or the visual pattern matching approach. The module also 
requires inputs which specify what characteristic spatial and logical relations among the component parts 
characterize the different types of targets. 

We have identified two alternative approaches to modeling spatial-logical induction: (1) 
description matching, and (2) neural network. Both approaches require that an analyst specify in advance 
the target categories, the types of components which characterize the targets, and the types of spatial- 
logical relationships between components. The description matching approach requires that the analyst 
define the specific spatial-logical relationships which characterize each target category, whereas the 
neural network approach requires that the analyst provide a robust set of exemplar training images which 
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characterize the target categories. These two approaches are described in sections II.3.II.1 and II.3.2.2, 
respectively. The description matching approach represents the spatial-logical relationships with a formal 
grammar, whereas the neural network approach uses the connection weights on the hidden layer. 

II.3.2.1 Description Matching Approach 

The description matching approach employs a generalized "And/Or" graph to represent the 
spatial and logical relationships among components of the target, and their contribution to overall target 
discrimination. In its simplest form, this approach assumes all leaf nodes are statistically independent and 
the graph has a true tree structure with alternating "And" and "Or" nodes traversing from root to leaf. 
The leaf nodes represent facts. Each fact has a probability of being true. The probability that the root 
node is true is evaluated recursively: the probability that an "Or" node is true is the probability that any 
of its branches are true; the probability that an "And" node is true is the probability that all of its branches 
are true. If all nodes are independent, then traditional probability calculus can be used to evaluate the 
"And" and "Or" nodes. The value of an "And" node is the product of the probabilities of its branches. 
The value of an "Or" node is one minus the product of one minus the probabilities of its branches. 

In general, the nodes are not independent, and the same node may be on two different branches. 
In this case the graph is not a true tree structure and the fuzzy logic calculus of possibilities is used 
instead: the value of an "And" node is the minimum of the values of its branches, and the value of an 
"Or" node is the maximum of the value of its branches. Fuzzy logic approaches have shown significant 
potential for use in predictive models of target discrimination [Singh et al. 1996]. 

A generalization to this framework is to include a "weight" between zero and one for each node. 
The gain represents the confidence or value of the node. It is the maximum contribution the node can 
make, even when its possibility value is unity. This generalization has been effectively used in risk 
analysis [Schmucker 1984: 43-77]. The US Army Ballistics Research Laboratory (BRL) uses this 
approach to model the effects of component damage on vehicle function. In the vulnerability analysis, 
backup systems may be able to perform a function, but not as well as the primary system. 

This weighted, fuzzy-logic "And/Or" graph is the basis for the logical induction model 
framework. However, it must be extended to include spatial relationship nodes in addition to the strictly 
logical "And" and "Or" nodes. Spatial relationships are binary nodes which are evaluated like "And" 
nodes if the spatial relationship is true, but has value zero if the spatial relationship is false. If the spatial 
relationship is true, its strength is the minimum strength of the two components. We also need to add a 
"Not" relationship, since the perception of components can be used to reject possibilities. The "Not" 
relationship is evaluated as one minus the input value. Kosslyn [1994: 192-214] addresses the 
transformation from coordinate to categorical spatial relations, and suggests a number of categorical 
spatial relationships in the internal encoding of object structure. These relationships include the 
following: 

1. inside / outside 

2. connected to / not connected to 

3. above/below 

4. left of /right of , 

5. close to / far from 

6. similar size as / larger than 

7. similar orientation / orthogonal relative orientation / 45-degree relative orientation. 
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Kosslyn does not propose quantitative definitions for the relations which categorically encode relative 
size or distance. We propose to explore using the number of orders of magnitude, base 2, for the 
coordinate-to-categorical transformation. So the categorical values of the relative size of two components 
would be the base 2 logarithm of the ratio of their size, rounded to the nearest integer. Relative distance 
(close/far) can be categorized relative to the size of the larger component and smaller component using 
the same transformation. 

II.3.2.2 Neural Network Approach 

We consider the use of neural nets to be highly exploratory. Most of the examples of neural nets 
as models of visual processing have been demonstrated only for relatively small problems and simple 
stimuli. In all cases that we encountered, they were used to actually categorize the stimuli, not to predict 
the probability of correct observer classification. 

The success and robustness of any use of neural nets is highly dependent on the quality of the 
training image set. The selection of the image set requires that the analyst identify in advance the various 
possible spatial relationships among component parts, and select a set of images representing all of these 
combinations, with and without degraded appearance. Given that the analyst has to develop this 
knowledge, he could then simply define the characteristic relations using the extended spatial And/Or 
graph structure. Since the neural nets represent interactions and nonlinear relationships, the set of 
training images must represent the full set of combinations, and design-of-experiment methods cannot be 
used to reduce the training set. 

There are several alternative uses of neural nets. In the simplest approach, the inputs to the 
neural net are categorical spatial relations to the neural net, and the probability of categorizing the 
components. The neural net has only to compute the strength of association with the different categories. 
Another avenue of investigation is input images showing the strength of association of each 
component/feature at each different position. The neural net must then determine the spatial relationships 
and then the strength of association with different categories based on the probability of recognition of 
the components and their spatial positions in the image. Kosslyn et al. [1992] employed a neural net in 
this manner, but only for a very small problem (two types of components and four possible positions). 
Another avenue of investigation is to input the categorical spatial relations to the neural net, and the 
probability of categorizing the components. We are not proposing to use the neural net determine the 
nature and location of the characteristic components. Neural nets have been used this way, but only for 
extremely small artificial retinas, and extremely simple figures [Rueckl et at. 1989]. 

II.3.3 Modeling Object Categorization Performance 

When the input to this stage comes directly from the information metric model, we can only 
evaluate the probability of correct response. We propose to calibrate a simple psychometric function to 
predict the probability of correct categorization, e.g.: 

Probcorrect = 1 - exp( ln(l/2) * ((InformationMetric - k) / f( Shape Complexity ) )r )  (6) 

where f( Shape Complexity ) expresses the value of the information metric for 50% probability of correct 
response, k is the response bias, and r is a steepness factor. The calibrations will be different for different 
sets of prior categories, and will be different for MAOC and MAFC tasks. It is possible that the response 
bias, k, and the function f may also need to be function of the correlations among the alternative 
categories. This is an empirical question that will be examined further in Phase II. 

When the input to this stage comes from the visual pattern matching or spatial-logical induction, 
it will receive a strength of response, Sc, for each target category c. In MAOC tasks the subject has can 
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give a positive response to more than one category at any given confidence level, or can express a 
confidence level for each category. For MAOC tasks the probabilities of positive response do not need to 
sum to unity. For MAFC tasks they must sum to unity. Kosslyn [1994: 119] observes that each choice 
inhibits every other choice, and the strength of inhibition is proportional to the strength of activation, and 
that the recognition process depends both on the absolute and relative strength of activation. A candidate 
form for the probability of positive response in the MAOC task is 

MAOC_prob_respondc = ( Sc / ( Sc + k )(S(j/X) (7) 

X = ((l/n)*EiSir)1/r (8) 

where n is the number of categories, k and r are calibration parameters. The exponent (Sc/X) represents 
the inhibition effect. As r becomes large, the term X approaches the maximum value of Sj. 

For MAFC tasks the candidate model is simply the MAOC probability of response, normalized to 
the sum of the probability of response over all categories: 

MAFC_prob_respondc = MAOC_prob_respondc / Sj MAOC_prob_respondj (9) 

II.4 Demonstrating Selected Key Algorithm Components 

This section describes and illustrates selected key algorithm components implemented in Phase I. 
We demonstrated a technique to generate background bias images for detection of target boundaries due 
to first-stage luminance gradients and due to second-stage texture gradients. This was selected as a 
priority topic for early demonstration because of the critical role of the background bias image in model 
formulation and because "inverting the model" to generate the background bias image demonstrates the 
strengths and limitations of the formulation. In implementing the background bias image synthesis 
algorithm, we also implemented and demonstrated methods for evaluating texture and adding orientation 
filtering to the spatial processing. 

We demonstrated the algorithms for single plane neural RF response analysis. This analysis 
produces the RF response images which are input to multi-channel pooling. These techniques are 
demonstrated on the luminance gradient and texture gradient channels using the luminance and texture 
background bias images. The demonstration showed how these analysis methods measure the 
perceptibility of the target boundary. The results are very significant because they demonstrate that this 
approach will produce meaningful target boundary information metrics, even in very complex and 
heterogeneous scenes. 

We demonstrated algorithms for multi-resolution region segmentation, including algorithms to 
distinguish between modulation due to boundaries between objects and modulation due to the texture 
within an object. These results are significant because it is necessary to make this distinction in order to 
segment whole objects when the objects have internal texture (e.g., a type of foliage or camouflaged 
target), and not break the object up. However it is difficult because the appearance of texture is due to the 
boundaries between many smaller regions. 

In order to perform these demonstration analyses, a number of new modules were added to the 
baseline TARDEC VPM. These modules are listed in Appendix B, and were installed at TARDEC for 
the demonstration analyses. 

II.4.1 Background Bias Image 

Figure 5 illustrates that the spatial pattern analysis model used in this demonstration has two 
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Fig. 5. Spatial filtering flow diagram 

stages of spatial processing. Each stage consists of linear spatial filtering, followed by a nonlinear 
transformation. Multi-resolution linear spatial filtering is implemented by multi-resolution spatial band- 
pass filtering without orientation selection, followed by orientation filtering. The spatial filtering flow is 
illustrated in figure 6. The band-pass filtering is implemented as a difference of Gaussian low-pass filters: 

Lo(Input) = Initial Input (10) 

Lj+i (Input) = Subsample( K * Lj(Input)) (11) 

Bj(Input) = Lj(Input) - Expand( Lj+i (Input) ) (12) 

Lj(.) denotes the im multi-resolution level of low-pass filtering; B {(.) denotes the im multi-resolution 
level of band-pass filtering; Subsample(.) denotes 2:1 horizontal and vertical subsampling; ExpandQ 
denotes the inverse of SubsampleQ, i.e., 1:2 spacing with linear interpolation in each direction; and K 
denotes a convolution kernel discrete approximation to a 2-D Gausian filter. The multi-resolution process 
stops when the minimum dimension of Lj(.) is equal to one. Lmax(-)is the low-pass residual. 
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Fig. 6. Multi-resolution linear spatial filtering flow diagram 
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Each step of the spatial band-pass filtering is at one octave lower frequency. The subsampling 
process stores each low-passed image at the Nyquist limit for efficient storage.   The result of multi- 
resolution spatial band-pass filtering is illustrated in figure 7. 
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Fzg. 7. Example multi-resolution band-pass pyramid 

The inverse band-pass filtering operation simply involves expanding and summing the band-pass 
planes with the low-pass residual: 

Li(Input) = Bj(Input) + Expand( Lj+i (Input) ) (13) 

Reconstructed Image = Bo(Input)    " (14) 

The orientation filtering is implemented via convolution of the band-pass output Bi(.) using 
kernels which are band-pass in one orientation and low-pass in the orthogonal direction: 

Ci6(Input) = Ke * B;(Input) (15) 

Ke are the orientation filtering kernels. In the trial demonstration, we used four orientation filtering 
kernels, with the low-pass orientations at 0,45, 90 and 135 degrees. The kernels were chosen so 
that kernels representing orthogonal directions were orthogonal (i.e., their inner products were zero), so 
that the kernels sum to the identify transform, and so that the filtering in the low-pass direction is a 
discrete approximation to a Gaussian. 

Table 1 shows the kernels for unoriented low-pass filtering and oriented band-pass X low-pass 

1/16    1/8    1/16 0 -1/8 0 -1/8 0 1/8 
1/8      1/4    1/8 1/8 1/4 1/8 0 1/4 0 
1/16     1/8    1/16 0 -1/8 0 1/8 0 -1/8 

Unoriented Ko K90 

Table 1. Kernels for Unoriented Filtering and Oriented Filtering at 0 and 45 Degrees 
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filtering at 0 and 45 degrees. Figure 8 illustrates the impulse response of the initial band-pass filter, and 

Fig. 8. Impulse response of2-D band-pass filter, and 2-D band-pass filter followed by a 2-D band-pass 
X low-pass filter 

the impulse response of the band-pass filter followed by the 45-degree-oriented band-pass X low-pass 
filters. With this choice of kernels, the inverse 2-D orientation filtering is simply summation over 
orientation: 

Dj(Input) = Ze Cie(Input) (16) 

We chose four orientations at 45-degree intervals because 45 degrees is the median orientation 
bandwidth of human visual neural RFs. Actual RFs occur at all orientations with a distribution of 
orientation bandwidths. The computer model is a discrete approximation. We note that these four 
kernels do not constitute a basic set, but neither do the neural RFs. Lines at 45 and 90 degrees are not 
orthogonal; filters to detect edges at those orientations cannot be orthogonal. Consequently, the set of 
kernels can not simultaneously conserve energy and sum to the identity transform. An alternative 
approach would have been to use a basic set of kernels oriented at 0 and 90 degrees. 

The absolute value function was used as the nonlinear transformation in the example analysis. In 
the multi-resolution representation at the Nyquist limit, the phase at each location is either -n/2 or 7t/2, so 
the sine of the phase is either -1 or 1. Consequently, taking the absolute value yields the local magnitude 
of the signal. 4 

The orientation kernels sum to the identity transform, so the sum of the absolute value of the 
orientation filters applied to the band-pass image is equal to the absolute value of the sum of the 
orientation filters applied to the band-pass image. Squaring to use the energy envelope instead of the 
amplitude envelope would have been the correct nonlinear formulation if we had chosen a set of kernels 
that conserved energy. 

n.4.1.1 Scene Synthesis Algorithm 

The scene synthesis algorithm creates new content inside the target region in two passes, one for 
each stage of processing in the spatial vision model. Each processing step uses a spatially nonstationary 
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multi-resolution low-pass filtering operation to extrapolate the background characteristics (the intensity 
and the intensity modulation amplitude envelope) into the target region. 

The first pass extrapolates the local background intensity into the target region. It creates a new 
image directly and is entirely deterministic.  After the first pass the content in the target region converges 
to the local background intensity at each point on the boundary on each multi-resolution spatial frequency 
band. 

The second pass extrapolates the amplitude envelope on each orientation and spatial frequency 
band into the target region. The amplitude envelope does not contain phase information, and phase 
information is required to create a realization, or visualization, of target region content. Near the 
boundary, i.e., within one-half wavelength at each multi-resolution spatial frequency band, the phase is 
determined by the constraint that the characteristics of the synthetic content converge to those of the local 
background. Deep inside the target region, i.e., more than one-half wavelength, the phase is 
indeterminate.  Phase information is needed to create an image realization to visualize the background 
characteristics.  In the deep interior, synthetic phase is created via a pseudo-random process. Once the 
phase information is incorporated, the resulting band-pass planes are recombined to create an image by 
inverting the orientation filtering and the multi-resolution spatial band-pass filtering as described in the 
preceding section.   After the second pass, the new content converges to both the local background 
intensity and the local amplitude envelope of the background intensity modulation, at each point on the 
boundary on each orientation and spatial frequency band: 

Pass 1 Image = Extrapolation(Original Image, Mask) (17) 

InnerMaskj = { 1 when Lj(Mask) > s, else 0} (18) 

NewSignje = InnerMaskj * Sign( Cje( Randomlmage)) + ( 1- InnerMaskj) * 
Sign(Cj6(PasslImg)) (19) 

NewAbsEnvelopeje = Extrapolation | Cje(PasslImg) |, InnerMaskj) (20) 

NewBje(Input, Mask) = NewSignje * NewAbsEnvelopeje (21) 

The extrapolation algorithm avoids use of any content from inside the target region, so that 
synthetic content has the characteristics of the background only. The extrapolation computes the 
expected value of the local background signal at each multi-resolution scale: 

No(Input, Mask) = Input x Mask (22) 

Nj+i(Input, Mask) = Lj(Input* Mask)/Lj(Mask + e) (23) 

Mj(Img, Mask) = Lj( Mask) * Nj(Img, Mask) + (1 - Lj(Mask) ) * 
Expand( Nj+i(Img, Mask)) (24) 

Extrapolation(Input, Mask) = Mo(Input, Mask) (25) 

where Input is the input image, Mask is an image containing zero inside the target region and one outside 
the target region, and e is a small number to prevent zero divides. For the second stage, Input is a multi- 
resolution amplitude envelope pyramid, and Mask is a multi-resolution mask pyramid containing zero 
deep inside the target region and one elsewhere. 

II.4.1.2 Example Background Bias Image Results 

We selected a complex image containing a variety of conditions under which to test the 
algorithm. The image is a still life. It contains a variety of objects with different shapes, textures, and 
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luminance. It contains complex shadowing, layering, and juxtaposition. Some objects have regular 
shapes, some are irregular. Some are large, and some are small. The overall organization of the scene is 
irregular, but recognizable as a classic still-life form. The still-life image is shown in figure 9. 

Fig. 9. Original image 

We designated a dozen target regions in the image. The target regions were selected with a 
variety of shape characteristics—some were rectangular, some were circular, some highly irregular. 
Some target regions were narrow and some were wide. The positions of the target regions were selected 
to sample a variety of simple and complex local background conditions.   Some of the target regions are 
surrounded by relatively uniform luminance and texture, while others border on different luminance and 
textures. Some of the target regions appear against a single background object, while others straddle 
several background objects. In some cases the obscured background object borders are regular and easily 
anticipated, and in other cases are irregular and less easily anticipated. The target region mask is shown 
in figure 10. 
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Fig. 10. Mask image 

Figure 11 shows the results of the first pass of the algorithm. This is the background bias image 
for computing the first-stage (luminance gradient) metric component. The target region is matched to the 
local luminance on each spatial frequency band. Luminance gradients are extrapolated into the target 
regions. 

The target regions are easily distinguished by their lack of internal texture and by very local 
contrasts against background areas of high modulation. Except where the local background is relatively 
uniform, the region boundaries are visible due to texture gradients. For the most part, luminance 
gradients do not contribute to the boundary definition. One exception is the upper right arc of the large 
apple. In this instance the target mask missed part of the apple, and it is the missing sliver of apple that 
creates the boundary appearance. 
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Fig. 11. Luminance gradient background bias image 

Figure 12 shows the results of the second pass of the algorithm. This is the background bias 
image for computing the second-stage (texture gradient) metric component. The target region matches 
the local intensity and amplitude envelope at each point on the boundary. This pass significantly reduces 
the visibility of the boundary for most of the target regions. With the exception of the large apple, it is 
very difficult to determine the shapes of the target regions. Portions of the boundary of the apple are still 
distinct. The apple is a problem because it is large, its boundary is regular, and it borders on a variety of 
different objects. 

The pseudo-random texture interior is less distinctive than the uniform interiors of the first pass. 
Many of the target regions are difficult to distinguish from the background, especially when the 
surrounding texture is relatively homogeneous. On the interior of the large target regions, the amplitude 
envelope is relatively uniform, and this uniformity of texture is noticeable. In some cases, boundaries 
between background objects are extrapolated into the target regions, but in other cases the boundaries are 
simply blurred. 

The boundary of the plate is blurred where tip of leaf crosses it in the center of the image. The 
boundary of upper left leaf (just above the rose) is indistinct, but the replacement content is distinctly not 
representative of the scene. The gradient between the table cloth and the table top is clearly not 
extrapolated through region. This is due in part to the presence of the bright flower just below the leaf. 
In 
essence, the algorithm blends the characteristics of the tablecloth, the tabletop, and the boundaries 
between them. It creates a mixture of the local characteristics, which ends up looking like none of the 
particular objects or boundaries. 

The algorithm does not "know" about objects, boundaries, and textures; it treats the image as a 
stochastic process with statistical properties. The algorithm does not "know" to extrapolate only from 
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Fig. 12. Texture gradient background bias image 

immediately adjacent objects, and to disregard remote objects. It does not distinguish between 
modulation at the boundaries between objects and modulation due to interior texture. 

The appearance of texture is, in fact, due to fine boundaries between small regions within an 
object. Visual perception of modulation as texture rather than boundaries is influenced by prior 
knowledge of the objects in the scene, and their relative size and scale. The distinction is not necessarily 
an inherent property of the image, but depends on what we are looking for in the image. When we are 
parsing the scene into large objects, the tablecloth has a texture and the apple has a texture. If we were 
looking for small details, we would parse the scene into many small regions. The spots on the apple skin 
which create the texture can also be viewed as individual objects, and the weave of the fabric can also be 
seen as individual fibers. 

II.4.1.3 Findings and Recommendations 

The algorithm was effective at reducing the visibility boundary and region shape in most cases. 
This indicates that the background characterization provides a good reference to use in computing the 
perceptibility of the external shape of a target region. The algorithm was, understandably, unable to 
affect the boundary when a portion of the target was left outside the target region. 

The algorithm did not fully obscure the boundary when the target region simultaneously met 
three conditions: (1) it had a simple, smooth, regular shape; (2) it was adjacent to different background 
components with large contrasts and texture gradients, and sharp boundaries between them; and (3) it was 
large with respect to the adjacent background features. 
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These observations suggest that the predictive model of shape perception will need to account for 
the complexity of the shape of the target region, e.g., to employ a shape complexity metric, and will need 
to account for the combination of size and shape of the region. 

The algorithm always treats modulation as a statistical, stochastic process, and does not recognize 
that sometimes there is a deterministic, discrete component associated with object boundaries. The 
algorithm does not distinguish between modulation which should be treated as a boundary between 
objects, and modulation which should be treated as the texture of an object. It is possible that scene 
segmentation can be used in the local background characterization process to improve sensitivity to the 
discrete components. 

The algorithm was moderately effective at creating synthetic target content which was not visibly 
distinct from the background in most of the cases. This indicates that in many cases the background 
characterization is also a useful reference for computing how distinctive a target is from its surroundings. 
It was somewhat less effective at suppressing the distinctiveness of the target regions than it was at 
suppressing the shapes of their boundaries. 

The most notable exception is when the target occludes a boundary between two background 
regions, and at the same time is near other large contrasts and gradients. The algorithm does not "know" 
that it should only respond to one or another of the features, and not to average their characteristics. The 
problem is that when the distribution of surrounding background characteristics is bimodal the 
extrapolation into the target may be between the modes of the distribution and not resemble either.   Once 
again, it is possible that scene segmentation can be used in the local background characterization process 
to improve performance in this case. 

Filling in large target regions so that they are not distinguishable from their surroundings requires 
more than filling with statistical patterns and textures. It requires generating the appearance of decoys 
which make the target look like another object or objects. This requires model-based or knowledge-based 
generation of scene content, not merely statistical pattern analysis. 

II.4.2  Information Metric Model: Boundary Information from Intensity and Texture 
Gradients 

This section describes and illustrates the core elements of the information metric model. These 
algorithms compute the boundary information from first-stage (intensity) and second-stage (texture) 
gradients. These algorithms are integrated with the background bias image generation methods described 
in section II.4.1. These results are very significant because they tangibly demonstrate how the 
information metric model performs for high- and low-intensity gradient and contrast gradient regions in 
complex heterogeneous scenes. 

Figures 13,14 and 15 illustrate the first-stage (luminance) modulation amplitude envelope for the 
first-stage and second-stage background bias images, and the highest and second-highest spatial 
frequencies. We see in figures 13 and 15-left that the magnitude of the modulation inside the perimeter 
of the target regions is very low, except where gradients between portions of the local background bleed 
into the target. These images illustrate the analytical explanation for the observation that target-to- 
background contrast contributes little to boundary definition in the first-stage background bias image. 
The figures also show the high amplitude around the boundaries of the other objects in the scene, e.g., the 
peaches on the plate, flowers, etc. Figures 14 and 15-right show the modulation amplitude on the interior 
of the target regions for the second-stage background bias image. This demonstrates that the pseudo- 
random texture inside the target regions will produce a small but nonzero first stage measure of 
integration around the target region boundaries. These illustrations indicate that integrating the first-stage 
amplitude envelope around the target boundary will measure the contribution of target-background 
contrast to boundary perception. They also show that the integral around the interior of the target regions 
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in the first-stage amplitude envelope of the first-stage background bias image yields the minimum 
possible value, given the surrounding image. 

Fig. 13. First-stage (luminance modulation) amplitude envelope on the highest spatial frequency band of 
the first-stage (luminance modulation) background bias image 
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Fig. 14. First-stage (luminance modulation) amplitude envelope on the highest spatial frequency band 
of the second-stage (texture) background bias image 

Fig. 15. First-stage (luminance modulation) amplitude envelope on the second-highest spatial frequency 
band for the first-stage (luminance modulation) (left) and the second-stage (texture) (right) background 
bias images 
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Figures 16, 17 and 18 illustrate the corresponding results for the second-stage (texture) 
modulation amplitude envelope. In figures 16 and 18-left, we see the characteristic bright ring on the 
inside of target regions, showing the magnitude of the texture gradient and its contribution to the 
boundary information metric. These images show the analytical explanation for the observation that the 
texture gradients reveal some of the shape of the target regions in the first-stage background bias image. 
The figures also show the high amplitude around the boundaries of the other objects with texture 
gradients, e.g., the peaches on the plate, flowers, etc. Figures 17 and 18-right show the texture 
modulation amplitude on the interior of the target regions for the second-stage background bias image. 
These illustrations show that integrating the second-stage amplitude envelope around the target boundary 
will measure the contribution of target-background texture contrast to boundary perception. They also 
show that the integral around the interior of the target regions in the second-stage amplitude envelope of 
the second-stage background bias image yields the minimum possible value, given the surrounding 
image. 

Fig. 16. Second-stage (texture) amplitude envelope on the highest spatial frequency band of the first- 
stage (luminance modulation) background bias image 
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Fig. 17. Second-stage (texture) amplitude envelope on the highest spatial frequency band of the second- 
stage (texture) background bias image 

Fig. 18. Second-stage (texture) amplitude envelope on the highest spatial frequency band of the first- 
stage (luminance) (left) and second-stage (texture) (right) background bias images 
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II.4.3 Image Segmentation 

This section illustrates multi-resolution image segmentation algorithms. The initial concept was 
to segment the image at the zero-crossings on each multi-resolution band-pass image plane. For purposes 
of the illustration, we focused on the first-stage band-pass of the intensity image, rather than the second- 
stage amplitude envelope images. Segmenting on each multi-resolution plane captures different features 
at the different resolution levels. Segmenting at the zero-crossings separates regions which, at each 
multi-resolution plane, are lighter than their local surround from those which are darker than their local 
surround. Marr [1982] posited a multi-scale representation in his theory of edge detection in which the 
zero-crossings define the region boundaries at each level of spatial resolution. The zero-crossings are the 
boundaries between the positive and negative regions of each multi-resolution band-pass plane. 

Before elaborating on this approach, it is worth noting that image segmentation is also a topic in 
the digital image processing literature. Gonzalez and Wintz [1995: 331-90] review these techniques. The 
techniques did not offer much promise for complex heterogeneous scenes such as the sample image. 
Although mathematically interesting, the examples were restricted to simple targets and backgrounds 
with simple noise processes. 

The value of the information contained in just the zero-crossings is illustrated in figure 19. This 

Fig. 19. Multi-resolution magnitude equalization 

figure was constructed by segmenting each plane of the multi-resolution image into its positive and 
negative components. Pixel values of+1 were assigned to pixels where the sign of the band-passed 
image was positive, and -1 where it was negative. These image planes contained only the multi- 
resolution phase information and no magnitude information. The image planes were then expanded and 
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summed to construct the image in figure 19 using the standard VPM inverse band-pass operation to 
represent the phase content of all the band-pass channels in a single image. The algorithm is 

Xfmax = SignC Bfmax ) (26) 

Xf = Sign( Bf) + Expand( Xf+i) (27) 

Multi-resolution magnitude equalization image = Xo (28) 

where Bf denotes the multi-resolution band-pass image planes. 
The result is an enhancement of local detail at all spatial scales.  In figure 19 we are able to see 

the heretofore invisible pattern on the plate, and mottled texture of the fruit without losing any of the 
larger features of the shadows, and relative darkness of the tablecloth. Large, medium, and small features 
are all equally visible. Large and small luminance gradients are also equally visible. It is worth noting 
that the band-pass images could have been passed through a "dead-band" filter to eliminate small 
modulations relative to the eye noise magnitude before segmentation. 

This example illustrates the potential value of the information in the multi-resolution sign images. 
Unfortunately, the multi-resolution zero-crossings do not turn out to be directly useful in complex 
heterogeneous images which are the focus of this research. They tend to divide complex objects, not to 
segregate whole objects, and they fail to distinguish texture from boundaries. There are many boundaries 
between light and dark regions in heterogeneous scenes which do not correspond to anything that we 
want to call objects. These boundaries create zero-crossings at multiple levels of resolution, just like 
"true" boundaries. 

In heterogeneous scenes, the region segments often do not correspond to the objects in the scene. 
Most of the objects in the sample scene contain both light and dark regions. The zero-crossings divide 
the objects into different regions, rather than isolate unified objects. In some cases, e.g., the flowers and 
leaves, the internal zero-crossings delineate boundaries between different regions of the same object. At 
scales smaller than the objects of interest, the zero-crossings tend to break up the objects rather than 
consolidate them. This is because the objects in the scene (e.g., the rose flowers, or the leaves, or the 
plate) consist of both light and dark regions. At scales larger than the objects of interest, the zero- 
crossings tend to consolidate different objects, and smooth the boundaries thus losing important shape 
detail. These problems are exacerbated if we do not know the scale of the objects of interest in advance, 
or if the objects of interest are at difference scales in the image (e.g., targets at different ranges). 

In other cases, e.g., the woven cloth and the mottled fruit, the zero-crossings correspond to the 
internal texture of the objects.  When examined closely, the apparent texture actually is created by many 
small regions, with boundaries between them. A grassy field has the texture of grass, but also consists of 
many individual blades of grass. The mottled texture is created by individual blotches. The woven 
texture is created by many small shadows. The zero-crossings cannot directly distinguish between 
modulation that we perceive as a region of texture, and modulation that we perceive as boundaries 
between light and dark regions. 

II.4.3.1 Identifying Object Boundaries 

We attempted to improve the object segmentation performance by selecting the scale for the 
initial segmentation, disregarding all lower frequency information, then using the higher frequency 
information to refine the location of the boundaries defined at the basic spatial frequency. The basic idea 
is to select the scale appropriate to the size of the objects of interest for the initial segmentation, then to 
sharpen the boundary definition by using higher spatial frequency information. The equations for the 
algorithm are: 

Xfmax = Sign(Bfmax) _ (29) 
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Xf = Zf * Sign( Bf) + ( 1 - Zf) * Sign( Expand( Xf+i ) ) (30) 

If ( Bf = 0, or Expand( Xf+i) > s ), Zf = 0 else Zf = 1 (31) 

Segregation Image = Xfmin (32) 

Bf denotes the multi-resolution band-pass image planes. The free parameters are fmax, the initial 
(lowest) spatial frequency, fmin, the final (highest) spatial frequency, and e , the decision threshold 
specifying when to sharpen with the sign of the higher frequency band-pass data versus using the 
expanded lower frequency intermediate results. 

Figure 20 shows the fully expanded segregation using only the fourth level of the Laplacian 
pyramid. This starting point was chosen because the scale corresponds approximately to the size of the 
plate, flowers and pieces of fruit that we would like to call the objects in the scene. However many of the 
objects of interest are connected and not individually segmented. 

Fig. 20. Initial segmentation image on multi-resolution plane 3 

Figures 21, 22, and 23 show the sequence of sharpened segregation images with large value of 
the decision threshold (s = 0.99). The image sequence shows improved segmentation of the objects in the 
scene, but at the same time there is greater segregation of features in the image which we do not 
necessarily want to call objects, e.g., the details of the woven cloth texture. There is no spatial frequency 
cutoff that achieves one without the other. 
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Fig. 21. First refinement (s = 0.99) 

Fig. 22. Second refinement (s = 0.99) 
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Fig. 23. Third and final refinement (s = 0.99) 

Figures 24, 25, and 26 show the sequence of sharpened segregation images with small value of 
the decision threshold (s = 0.5). The sharpened boundaries stay much closer to the original, with little 
extraneous segmentation, but at the same time do little to improve the segmentation of the objects of 
interest. 

The pieces of fruit in the center of the plate are joined into one region in the initial segmentation 
(figure 20), but are separated in the subsequent sharpened segmentations. They are segmented much 
better with epsilon equal to 0.99 (which introduces spurious texture) than with epsilon equal to 0.50 
(which better rejects spurious texture). 

The results are interesting, but do not demonstrate a reliable method for object segmentation.   If 
we set the width threshold high enough to separate distinct objects which were consolidated at the lower 
level of resolution, we see the "fractile" nature of the zero-crossings emerge. They are not smooth and 
small features emerge. If we set the threshold low to reject these features, then we are unable to separate 
objects that we want to separate. 
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Fig. 25. Second refinement (s =0.50) 
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Fig. 26. Third and final refinement (s =0.50) 

II.4.3.2 Distinguishing Object Boundaries from Internal Texture 

The preceding results again highlight the difficulty of distinguishing boundaries from texture, 
even using multi-resolution correlation as the basis to define boundaries. The problem is that the 
appearance of texture is created by a pattern of boundaries of small regions filling a larger area. Filtering 
to find boundaries will inevitably also select the micro-features that create the texture, unless higher level 
knowledge can be applied. However, they provide some valuable insight into the problem of 
distinguishing object boundaries from internal texture: we see that boundary detection will turn up 
texture, and that we want to call things texture when they seem to fill an area rather than delineate a 
region. Boundaries are a linear property. Texture is an area property. 

Gonzalez and Wintz [1987: 414-23] review digital image processing approaches to texture. They 
note that there is no formal definition of what is meant by texture, or standard computational means to 
measure it. They present a variety of statistical, structural, and spectral approaches to quantify texture. 
The spectral methods of Fourier analysis (power spectral density) are very similar to the amplitude 
envelope on the spatial frequency band-pass channels. However, the analysis methods are all global: 
they assume that the images are of a homogeneous texture. The methods are inapplicable to 
heterogeneous images, and even if extended would require external specification of what the texture 
regions are. These methods did not appear to have any potential value for distinguishing modulation 
perceived as texture from modulation perceived as boundary. 

The proposed approach to distinguishing modulation perceived as texture from modulation 
perceived as a boundary hinges on the fact that perceived texture fills a region, whereas perceived 
boundary is linear. Edges, or correlation between multi-resolution planes, create the underlying signal 
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which can be perceived as either texture or boundary. The inspiration for the analysis method is the 
algorithm to draw a line which fills space. The technique is to define a sequence of lines. The im line is 
drawn such that the maximum distance between it and the previous line is 1/21. The result is that for any 
given point (x,y) and any given distance d, there is a sequence number j such that all lines in the sequence 
are within distance d from (x,y). This sequence of lines is dense. It fills area. Lines, or sequences of 
lines, which do not have this property can enclose area, but do not fill area. 

This is the basic idea that we are attempting to exploit to distinguish perceived boundary from 
perceived texture at any given level of resolution. Where the zero-crossings are dense, we call them 
texture. Where the zero-crossings are not dense, we call them boundary. Of course, the size of the 
objects of interest determines whether a region is regarded as containing a texture or many boundaries. A 
grassy field can be perceived as an area with the texture of grass, or a large number of individual stalks of 
grass. 

The basic algorithm is presented in figure 27. The first step is standard multi-resolution band- 
pass analysis. The second step is to segment each image plane into its positive and negative regions. The 
zero-crossings are the boundaries between these regions. The third step is to segment neighborhoods 
near the zero crossings by applying a spatial low-pass filter, taking the absolute value, and thresholding. 
The low pass places values of+1 and -1 away from the zero crossings, and values strictly between +1 and 
-1 near the zero-crossings. The absolute value causes pixels away from the zero-crossings to have value 
of one, and pixels near the zero crossings to have values strictly less than one. The threshold maps pixels 
with value above the threshold to 1 (denoting pixels away from the edge), and pixels with value below the 
threshold to 0 (denoting pixels near the edge). The fourth step collects close neighborhoods and rejects 
narrow isolated neighborhoods. It uses a second low-pass filter, to blend close regions together, then a 
second threshold to unambiguously segment areas near zero-crossings from those which are not. The 
value of the threshold needs to be high enough to reject regions which are near a single zero-crossing 
(and hence perceived as boundary rather than texture). 

Image 

I 
Filter Image into Multi-resolution Band-Pass Components 

Bf = MRBP( Image) 

I 
Segment Positive and Negative Band-Pass Regions 

Sf=SIGN(Bf) 

I 
Segment Neighborhoods around Zero-Crossings 

Nf = 1 if | LOWPASS]( Sf) | > ei, i.e., not near a zero-crossing 
Nf= 0 if | LOWPASSi( Sf) | < e\, i.e., near a zero-crossing 

I 
Group Neighboring Zero-Crossing Neighborhoods (Texture Regions) 

and Reject Narrow, Isolated Neighborhoods (Boundary Regions) 
Gf = 1 if LOWPASS2( Nf) > e2, i.e., boundary region 

Gf=0 if LOWPASS2( Nf) < e2, i.e., texture region 

Fig. 27. Texture /Boundary Segmentation Algorithm 

40 



This provides the input to determine which regions are perceived as being filled with a texture. 
Compact regions of zero-crossings, i.e., in which the ratio of the area to the perimeter squared is large, 
will tend to be perceived as filled with a texture. Regions containing a single zero-crossing line which are 
perceived as a boundary will not be compact. Refinements of this algorithm and its use in image 
segmentation will be considered in Phase II. 

Initial testing indicates that this is a very promising approach. The algorithm has four free 
parameters (two thresholds, and the widths of the two low-pass filters). The following illustration was 
created with "best initial guess" parameter values without any iteration or optimization. The potential of 
the algorithm is shown in figures 28 and 29. We used the algorithm to try to separate the sample image 

Fig. 28. Example Boundary Component Analysis Results 

into its boundary and texture components. Figure 28 is the roll-up, over all spatial frequency 
bands, of the boundary components, and figure 29 is the roll-up of the texture components. For the most 
part, figure 28 shows the objects without internal texture. For the most part, the internal textures are 
contained in figure 29. The performance of the first cut of the algorithm is not perfect. Object 
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boundaries that are adjacent to a texture, e.g., the edge of the plate next to the woven cloth, are picked up 
on the 

Fig. 29. Example Texture Component Analysis Results 

texture channel. Some of the coarse texture appears to have slipped through to the boundary channel. To 
some extent the contrast boundaries appearing on the texture channel are due to aliasing from having 
used a uniform kernel rather than a Gaussian kernel in the low-pass filtering operations. Overall 
however, the algorithm does surprisingly well. The different textures appear clearly on the texture 
channel and the solid boundaries appear on the boundary channel. 

Figure 30 shows the first three planes of the example boundary component analysis pyramid, and 
figure 31 shows the first three planes of the texture component analysis pyramid. These figures illustrate 
the pyramids that were rolled-up to create the aggregate images in figures 28 and 29. These images were 
created by using the zero-one masks produced by the algorithm as "windows" onto the multi-resolution 
band-pass pyramid of the original image. The equations, which use the multi-resolution texture/boundary 
segmentation image pyramid, Gf, as a window onto the multi-resolution band-pass pyramid, Bf, and roll- 
up over all spatial frequencies, are: 
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Fig. 30. Firrf three planes of the example boundary component analysis 
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Fig. 31. First three planes of the example texture component analysis 

44 



Wf=Bf*Gf (33) 

Xfmax = Wfmax (34) 

Xf = Wf + Expand( Xf+i) (35) 

Boundary Component Analysis Image = Xo (36) 

Yf=Bf*(l-Gf) (37) 

Zfmax = Yfmax (38) 

Zf=Yf+Expand(Zf+i) (39) 

Texture Component Analysis Image = Zo (40) 

II.5 Phase II Technical Objectives and Approach 

The objectives of this program are to produce calibrated models to predict human visual 
discrimination response in military scenarios and in commercial automotive scenarios for use in 
analyzing and evaluating candidate vehicle designs. 

The principal Phase II technical objective is to implement, test, evaluate, refine, calibrate, and 
document models of visual discrimination for three different modes of discrimination and application 
tasks, per the outline developed in Phase I. The three visual target discrimination models will address: 
(1) segregating the target from the background and extracting boundary/shape information, (2) matching 
the target with iconic forms characteristic of alternative target categories, and (3) inferring the nature of 
complex targets from the spatial and logical relationships among their components. The model 
development and testing procedure is described in detail in the Work Plan, and the model formulations 
are described in section 2, above. 

The models will be implemented as extensions of the baseline TARDEC VPM, and will be 
implemented using the TARDEC VPM enabling software workbench. The models will be tested in two 
stages. The stimuli for development testing will contain alphanumeric characters with various types and 
levels of degradation. The operational testing to calibrate the models for military and commercial 
applications will use perception test data from separate Cooperative Research and Development 
Agreements (CRDAs) between TARDEC and companies in the commercial automotive and military 
system integration industries. The military testing includes camouflage, concealment, and deception in 
conjunction with combat vehicles and combat vehicle technologies. The commercial automotive testing 
includes automotive conspicuity enhancements (e.g., warnings and indicators) and driver's visibility 
enhancements. 

In addition to the principal objective of model implementation and calibration, a supporting 
objective is to upgrade the underlying VPM enabling software workbench. There are several specific 
improvements needed to transform it from "research-grade" software to "commercial-grade" software. 
The specific details of these improvements are described in the Phase II Work Plan. To the maximum 
extent possible, the software upgrades will make use of commercial subroutine libraries. 

This section outlines the approach to model implementation, test and evaluation in Phase II. The 
major events are the annual software demonstrations and deliveries, with the accompanying 
documentation in the annual technical report. The final product will consist of three models of visual 
discrimination, tested and calibrated against empirical perception test data for military and commercial 
automotive applications. The models will be demonstrated in the context of the military and commercial 
automotive applications to illustrate the transition of the products to the Government and private sectors. 
The technical work is organized into two parallel tasks: (1) target discrimination model implementation 
and calibration, and (2) VPM enabling software workbench upgrades. 
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II.5.1 Target Discrimination Model Implementation and Calibration 

The model implementation, test, and calibration is organized into three sequential stages. Each 
stage address a different aspect of visual discrimination modeling, as determined in the Phase I research. 

The first subtask is to implement, test, and calibrate a predictive model of target segregation and 
shape discrimination based on an information metric derived from the visibility of the target boundary 
and a measure of the complexity of the target shape. The objective of this model is to predict how well 
observers are able to distinguish the target from the background and determine its shape. This model will 
not attempt to predict what target classification decision people make, only their accuracy in making the 
correct decision. 

The second subtask is to implement, test, and calibrate a model to predict what target 
classification decision observers will make, using a pattern-matching methodology and a set of icons 
representing the characteristic shapes of the different target types. Both the first and second subtasks are 
restricted in scope to simple target characterizations in which the external shape of the target is sufficient 
for discrimination, but in which logical deduction based on discrimination of internal components is not 
required. 

The third subtask builds on the results of the preceding work to model the discrimination of 
complex targets based on the spatial and logical relationships among individually discriminated 
component parts. 

Each of these subtasks will be accomplished in three steps: (1) implementation, (2) character- 
recognition testing and model refinement, and (3) calibration to application-task data. 

11.5.1.1 Target Discrimination Model Implementation 

The first step is to implement the initial formulation and any significant alternatives on the VPM 
enabling software workbench. The implementations will build upon the existing modules and will 
interface with the front-end VPM. The details of the initial model formulations are described in section 2, 
Phase I Results. 

11.5.1.2 Character-Recognition Testing and Model Refinement 

The second step is to test and refine the model using perception test results for alpha-numeric 
character recognition, in the presence of noise, low contrast, clutter, obstruction, and other degraded 
conditions and transformations. We will compare the model predictions to the results of human-observer 
perception testing. The rationale for using character recognition for the internal screening testing 
includes the following: 

• Alpha-numeric character recognition is a standard and well-accepted approach in vision 
research, and is widely used to measure visual function (e.g., standard Snellen charts for 
visual acuity, Ishahara color-blindness charts, Pelli-Robinson low contrast letter charts, etc.). 

• The model calibration for alpha-numeric character recognition testing will be applicable to 
the design and evaluation of console displays in military and commercial vehicles. 

• Character-recognition testing is simpler than testing with complex vehicle scenarios, and thus 
can more easily be performed with rigorous scientific control and experimental design, and 
can be accomplished with an economy of time and resources. 
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• Character-recognition testing is less subject to variations due to subjective interpretation and 
learning effects than are automotive and military discrimination tasks and scenarios. 

• The test patterns and perception test results may be valuable in and of themselves to diagnose 
or evaluate aspects of visual performance not addressed with standard eye charts. 

A central element of model development will be iterative test and refinement with character- 
recognition test stimuli. This will be done prior to calibration to the application-based test data. By 
applying different levels, types, and mixes of degradation, we can ensure that the models are robust, or 
determine the region in which they are accurate, and the region in which they are not. The use of 
character charts enables us to test over a wide variety of signature scenarios, with a scientifically 
controlled experimental design and well-established test protocols. This scientific rigor would not be 
possible with the application-based test data. 

The test stimuli will be pre-tested to ensure a range of subject responses, i.e., to ensure that some 
cases are hard, some are easy, and some are in between. The stimuli must be designed for significant 
variance in the subject response over the control variables, so that we can statistically test the ability of 
the model to explain the variance in subject response. 

Figures 32 to 36 illustrate some of the types of methods for generating the character-recognition 
charts which may be used. These charts are presented as illustrations only. Their purpose is to illustrate 
some of the variety of image scenarios for developmental testing. The specific stimuli will be generated 
to provide data for the tasks and conditions most appropriate at each stage of modeling. 

We have yet to determine whether we will use the standard eye chart approach in which character 
size is varied in every chart and other control parameters are varied between charts. An alternative 
approach is to hold all factors (including size) constant in each chart.   Standard eye charts support 
collecting accuracy data but not response time data. The alternative approach is better suited to collecting 
both accuracy and response time data.   Accuracy data can include percent correct identification (what 
the character is), and percent correct recognition (that there is a character there), and percent correct 
detection (that something other than background is present). 

The characters in figure 32 were created by changing the following image parameters: size, noise 
magnitude, target contrast, target edge sharpness/blur, target boundary ripple/spatial modulation, edge 
contrast, and texture contrast. Figure 33 illustrates degraded signatures created by obstructing the targets 
at different density and spatial frequency. Figure 34 shows rotation deformations, and figure 35 shows 
targets created by texture (spatial frequency and orientation) gradients. Figure 36 shows the same 
character distorted in different fonts (out of context, some of these characters would be difficult for a 
layman to recognize as an English letter or to identify as the letter "A"). These figures are presented for 
illustration purposes only. The test stimuli may combine one or more of theses methods, as appropriate 
for the stage of model testing. 
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Fzg. 32. Example image degradation methods for character-recognition stimuli 
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Fig. 33. Example obscuration methods for character-recognition stimuli 

A    B    C   ^   S   C 

> oo o v  a  o 
lr    <$>    O    <    CQ    O 

Fig. 34. Example rotation deformations for character-recognition stimuli 
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Fig. 35. Example texture-contrast methods for character-recognition stimuli 
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Fig. 36. Examples of different fonts for the same character 

II.5.1.3 Calibration to Application Task Data 

The third step is to test and calibrate the model using perception test data collected in complex 
vehicle scenarios. Data for this testing will be generated as part of the CRDAs between TARDEC and 
the military system integrators, and between TARDEC and the automotive manufacturers.  The complex 
vehicle perception testing is not part of the Phase II SBIR project. Turing Associates, Inc., will support 
TARDEC in the CRDAs and participate in the design, execution, and analysis of the tests. However, this 
participation in the CRDAs is not part of the SBIR project; this content is the related activity outside the 
scope of the SBIR contract which is being paid for by the TARDEC matching funds. The results of the 
step-three model test and calibration will be coordinated with the CRDA partners to ensure acceptance 
and applicability. This aspect of the model development and testing is focused on ensuring a high 
probability of successful commercialization by making sure that the modeling is focused on Government 
and industry design priorities, and that the models are calibrated and demonstrated in the context of high- 
priority design applications. 

II.5.2 VPM Enabling Software Workbench Upgrades 

The visual perception models are implemented as data flow diagrams on top of VPM enabling 
software workbench execution engine. The data flow diagrams connect native modules of the workbench 
written in C++, and lower-level data flow diagrams. This provides a modular hierarchical structure for 
implementing complex modules with an economy of effort, maximum re-usability of component 
modules, and minimal low-level (C++) coding. The data-flow-diagram approach provides a highly visual 
presentation of the model, and the hierarchical structure simplifies the picture at each level. 

The VPM enabling software workbench consists of two components. The first component reads 
in the data flow diagrams, instantiates the hierarchical modules, and flattens the entire network to a 
complex data flow diagram among only the native modules. The second component instantiates the 
native modules, links them, and executes the model. The workbench automatically handles memory 
management and inter-process communication. The workbench is referred to as the "enabling" software 
because without it the visual perception models could not be executed. 
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There are several enhancements to the VPM enabling software workbench which will greatly 
improve its efficiency, and which are needed to transform it from "research-grade" software to 
"commercial-grade" software. The workbench upgrade is organized into two tasks. The first task is to 
upgrade the infrastructure. The second task is to implement a graphic user interface (GUI) to display, 
edit, and create data flow modules and applications. 

II.5.2.1 Infrastructure Upgrades 

There are three significant infrastructure upgrades: (1) memory management improvement, (2) 
configuration management improvement, and (3) image-display and region-editing interface 
improvements. 

II.5.2.1.1 Memory Management Improvement 

We propose to implement automatic caching and release at output ports without explicit caching 
control statements in the data flows. The current version of the TARDEC VPM enabling software 
workbench requires that explicit cache and release controls be programmed by the model developer. The 
improved memory management will reduce execution time, and improve the clarity of the data flow 
specifications. 

IL5.2.1.2 Configuration Management Improvement 

Configuration management improvement will be accomplished by separating 
development and application versions of the VPM enabling software workbench. Currently, the 
workbench recursively reads a set of hierarchical data flow diagrams, instantiates the modules, and 
creates links between the modules until all modules are resolved down to the lowest level of executable 
native data types. Then the workbench executes the model. We propose to split this process into two 
steps: (1) create the executable model from the data flow diagrams, and (2) execute the model. We 
propose to implement two versions of the VPM enabling software workbench: (1) a model development 
version which has the full functionality of the VPM enabling software workbench and adds the option to 
output a flat file of the data flow with all hierarchical modules resolved down to connections between 
native data types (i.e., to collapse the hierarchical form of the model into the flat, fully-resolved form of 
the model), and (2) an execute-only version for turn-key applications which reads and executes the fully- 
resolved form of the model, but which cannot resolve the hierarchical form of the model. These will be 
called the Developer's Workbench and the Application Execution Workbench. At the present time, the 
only version is the development version. This hinders configuration management because any user 
could, either accidentally or intentionally, modify the model. Having an "execute-only" version will be 
faster for turn-key applications, and will eliminate potential configuration management problems. 

II.5.2.1.3 Image-Display and Region-Editing Interface Improvements 

Improved image editing and display will utilize commercial software libraries. At the present 
time, the VPM enabling software workbench has limited capability to display images and intermediate 
model outputs or to edit images to designate target regions. We propose to integrate display and editing 
routines for standard operations, and to improve the format conversions to export and import image data. 
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II.5.2.2 Graphic User Interface 

The GUI allows the user to create, edit, and display data flow applications and hierarchical modules. 
Currently the data flow applications and models are specified as text files. The user has to manually 
translate the data flow diagrams into text files, typing the name of the modules and input-output port 
connections. More importantly, to document the model, the user has to manually draw data flow diagrams 
from the connections files. These processes are time consuming and error prone. The solution is to 
implement a GUI so that the user can simply select modules from the list of modules in the library, "drag 
and drop" icons for the modules, draw the connections between the input and output ports, add 
hierarchical data flow modules to the library, display embedded documentation comments, and "zoom in" 
on hierarchical modules to display the lower-level map. This eliminates the need for the user to 
remember or look up the module and port names. The GUI will automatically check the data type match 
between the output port of one module and the input port of the next.  This task will use commercial 
software libraries to build GUIs. 
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APPENDIX B:   VPM EXTENSION MODULES FOR 
ALGORITHM DEMONSTRATIONS 

The following modules were created as part of this project to demonstrate selected algorithms. 
The source code for the modules has been provided to TARDEC on magnetic media. These 
modules run on the TARDEC VPM workbench. 

aRun2ndStage.txt 
aRunDeadband.txt 
aRunGains.txt 
aRunMRMasLtxt 
aRunNoTarget.txt 
aRunOneMinusCDP.txt 
aRunSegBndry2.txt 
aRunSegmentor2.txt 
aRunShapeMetric.txt 
aRunTextureSeg.txt 
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APPENDIX C:   KOSSLYN'S ANALYSIS OF VISUAL COGNITION 

Kosslyn's analysis focuses on "high-level" cognitive processing in visual recognition and 
identification, i.e., processing in the context of previously developed characterizations and expectations 
of the appearance and relationships of objects and events. He conceives of visual cognition as being 
accomplished by a network functionally independent subsystems, i.e., other than providing inputs, the 
functioning of one subsystem does not affect the functioning of any other subsystem. The subsystems are 
"plug-compatible". The subsystems operate in parallel, not series, with as much feed-back as feed- 
forward resulting in true cooperative computation. The subsystems tend to have relatively specific 
anatomical locations, but may have overlapping implementation (i.e., one anatomical location may 
participate in more than one subsystem). 

Kosslyn's model of the brain's visual cognition processing architecture is illustrated in figure 37. 
Figure 37 is a reproduction of figure 11.1 in Kosslyn [1994: 383]. The input, process, output, and 
anatomical location in the brain of each function are summarized in table 11.1 in Kosslyn [1994: 380-2]. 
Kosslyn's book is devoted to developing the model, and presenting evidence for each function. Kosslyn 
seeks convergent evidence from psychophysical tests of normal and brain damaged humans, and 
combined pyschophysical/neurological tests of normal humans, brain damaged humans, and animals. 

Kosslyn's model is a functional model, not a computational model. No algorithms are presented. 
Kosslyn uses computational analyses to illustrate the types of algorithms which could be at work in visual 
cognition. The primary image processing algorithm methods are multi-resolution band-pass analysis, 
correlation for visual pattern matching (including whole-figure matching and matching to canonical part), 
and Baysean classification and neural nets for object categorization. He draws on the work of Biederman 
[1987], Lowe [1985,1987a, 1987b], Marr [1982], Zipser and Anderson [1988], his own original research 
[Kosslyn et al. 1992], and others. 
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Fig. 37. Kosslyn's architecture of image processing 
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