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ABSTRACT 

This report details the development and evaluation of a new direction finding 

estimator, the Spread Maximum Likelihood algorithm, targeted for high latitude HF prop- 

agation conditions. Of particular concern are patches of enhanced electron density and 

associated instabilities in the ionosphere which drift across the polar cap during dark- 

ness causing scattering of the propagated signal over a range of azimuth and elevation 

directions (the signals are spatially spread). The new estimator incorporates a spatial 

spreading model allowing it to simultaneously deal with both patch scattered signals and 

signals propagated by more normal propagation mechanisms, as well as to distinguish be- 

tween the two types. Evaluation of the new estimator using both simulation and collected 

data show it to be considerably superior to both conventional and modern superresolution 

approaches for high latitude propagation conditions. 

RESUME 

Ce rapport decrit une technique pour l'estimation de Tangle de gisement des 

ondes HF ainsi que son evaluation. L'algorithme intitule "vraisemblence de l'etalement 

maximal" s'applique aux ondes HF transmisse dans les latitudes elevee. II s'applique 

particulierement aux zones de l'ionosphere oü des perturbations associees ä une densite 

d'electrons plus elevee se produisent. Ces zones derivent au-dessus de la calotte polaire 

pendant la nuit, ce qui entraine une diffusion du signal propage sur une gamme d'azimuts 

et de directions d'elevation, ce qui veut dire que les signaux subissent un etalement spatial. 

La technique d'estimation comprend un modele d'etalement spatial qui permet de traiter 

les signaux se propageant ä traver les zones instables ainsi que les signaux propages par 

des mecanismes plus conventionnels et de faire la distinction entre les deux. L'evaluation 

menee avec des donnees fictives et reelles a demontre que la methode proposee est superieur 

aux approches conventionnelles et modernes de superresolution pour la propagation en 

haute latitude. 
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EXECUTIVE SUMMARY 

The requirement exists to improve the accuracy of strategic high latitude HF 

direction finding (DF) systems. In the past, poor DF accuracy derived from Arctic mea- 

surements has led to low confidence in high latitude sites despite the strategic relevance 

of these sites for transmitter geolocation. 

The biggest problem appears to be patches of enhanced electron density and 

associated instabilities in the F layer of the ionosphere which drift across the polar cap 

during darkness. These patches scatter the signal over a range of azimuth and elevation 

directions (the signals are spatially spread) which are very different from the expected 

bearing given the transmitter's location. 

Although the bearings of these spatially spread signals provide no indication of 

the true bearing of the transmitter, there is evidence that sporadic-E propagation (i.e. 

reflections from the E layer of the ionosphere) may sometimes be supported during these 

conditions and that this propagation mode yields the desired signal bearing. Unfortu- 

nately, conventional DF approaches estimate the bearing of the most dominant propaga- 

tion mode which will generally be the patch scattered signals. Newer superresolution DF 

algorithms, which can simultaneously DF signals from several directions, tend to become 

overloaded by the range of directions occupied by the scattered signals. Hence there is 

a need for a new approach which is capable of dealing with this unique high-latitude 

phenomena. 

In this report, a new high latitude HF DF algorithm is introduced. The theo- 

retical development of this new algorithm is based on maximum likelihood principles and 

the key feature is that a model of the spatial spreading is incorporated. The performance 

of this new algorithm - the spread maximum likelihood (SML) method - is evaluated 

using both simulated data and off-air data collected at the Arctic site CFS Alert. This 

evaluation included the effects of noise, the amount of spatial spreading, and the shape of 

the spread region. It also included an evaluation of the ability to detect a weaker point- 

source (no spatial spreading) signal in the presence of stronger spatially spread signals. 

The results of this evaluation show that the new algorithm is not only capable of dealing 

with spatially spread signals but also provides information on the amount of spreading. 

This extra information is invaluable since it provides a useful means of qualifying signal 

accuracy. For example, a large amount of spatial spreading indicates a patch scattered 

signal which can be ignored, while little spreading indicates the signal was propagated 



by a more conventional propagation mode and more likely yields the correct transmitter 

bearing. 

As is already evident, the main advantages of the SML algorithm are that, for 

high latitude HF conditions, it provides more useful information about the received sig- 

nals, and it is considerably more accurate than both conventional and modern superreso- 

lution DF approaches when propagation conditions are poor (i.e., when patch scattering 

occurs). For more benign conditions, the performance of the SML algorithm is at least as 

good as the other approaches. For these reasons, serious consideration should be given to 

its implementation at high latitude DF sites. * 

The main disadvantage of the SML algorithm is that it is computationally very 

intensive which makes it an order of magnitude or more slower than other approaches. For 

operational purposes, this problem could be overcome by using the SML algorithm only 

when patch scattering conditions are suspected, and using faster DF methods otherwise. 

Future research should focus on developing realtime implementations of the SML 

algorithm. This is a possibility which could be realizable within the next few years given 
the ever increasing speed of modern computing power. 
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1.0    INTRODUCTION 

The requirement exists to improve the accuracy of strategic HF direction finding sys- 

tems, particularly in the Arctic. In the past, poor DF accuracy derived from Arctic 

measurements has led to low confidence in high latitude sites despite the strategic rele- 

vance of these sites for transmitter geolocation. 

The biggest problem appears to be patches of enhanced electron density and associated 

instabilities in the F layer of the ionosphere which drift across the polar cap during 

darkness in a roughly antisunward direction at speeds ranging from a few hundreds to 

over one thousand meters per second [1]. These patches can cause scattering of a signal 

from azimuth directions which are very different from the true bearing of the transmitter. 

One avenue of investigation being pursued is the development of new DF algorithms 

which are better matched to the high latitude HF signal environment. Currently popular 

DF algorithms assume that the incoming signal can be modeled as a point source, or 

equivalently, the incoming signal has a planar wavefront. This is reasonable if the size of 

the transmission source is extremely small relative to its range; the size of the DF array is 

also small relative to the transmitter range; the ionosphere acts as a perfect or near-perfect 

reflector; and local site multipath can be ignored. Unfortunately at high latitudes, during 

periods where scattering from large moving patches is occurring, the received signals are 

distributed over a range of bearings in both azimuth and elevation. Current DF algorithms 

handle this phenomena by splitting it up into several signals coming from the same area 

of the ionosphere. 

Although representing a signal scattered from a region of the ionosphere (called a 

spread-source signal in this report) by several point-source signals is still informative, it 

degrades the ability of the algorithm to detect weaker signals that may also be present. For 

example, previous studies have indicated that the E layer of the ionosphere acts as a good 

reflector when it supports signal propagation (i.e. sporadic-E) between the transmitter 

and receiver. Hence, it is important that a DF algorithm be able to detect and determine 

the bearing of a weaker sporadic-E reflected signal in the presence of one or more stronger 

spread signals. 

In attempts to meet these requirements, a number of DF algorithms were developed 

at McMaster University [2]. Although these algorithms showed promise, in their develop- 

ment a strong effort was made to keep the processing considerations reasonable and this, 



unfortunately, resulted in algorithms which were only able to deal with a single signal. 

To overcome the single signal limitation, processing considerations were abandoned in 

favour of developing the most accurate approach possible capable of dealing with mul- 

tiple spread signals. To this end, the maximum likelihood approach was chosen, since 

this approach leads to optimal estimators when all known information about the signal 

environment is taken into account. The result is a new estimator called the Spread Max- 

imum Likelihood Estimator whose development and testing is the subject of the rest of 

this report. 

The layout of the rest of the report is as follows. In Section 2, the maximum likelihood 

method is introduced followed by the development of the specific signal model used by 

the spread maximum likelihood (SML) variant. In Sections 3-5, a detailed description of 

the SML algorithm is provided, including the initial value assessment in Section 3, the 

refinement procedure in Section 4, and the step-by-step algorithm summary in Section 

5. In Section 6, the optimum settings for various algorithm parameters is investigated 

through simulation. Comparisons are also made with the MUSIC DF algorithm (an 

algorithm that is commonly used in advanced DF processing) using simulated data and 

off-air data collected with a 12-channel DF system in the Arctic. Finally, in Section 7 the 

conclusions and recommendations are presented. 



2.0    SPREAD MAXIMUM LIKELIHOOD METHOD OVERVIEW 

2.1    Maximum Likelihood Estimation 

A successful, albeit often computationally intensive, approach to estimation is based 

on the maximum likelihood method. Essentially the idea is to find the most likely state of 

a signal process given a set of measurement observations made of the process. Since this 

is a statistical approach, the method applies to cases where either the signal generation 

is a random process, or the measurements have been corrupted by additive noise (which 

is a random process), or both. 

Assuming the random processes are all normally Gaussian distributed, and measure- 

ments are made using N sensors, then the associated probability density function is given 

by [3] 

/(x0>Xi,...,Xjif_i) = -traceftx-M^c-^x-M)) 
(1) [Tr^detC]* 

where the superscript H denotes the conjugate-transpose operation, the vectors x0,..., xK-i 

represents the random complex measurement data associated with all TV sensors for time 

instances t = t0, t\,..., tn-i as defined by 

xfc = 

x0(k) 

Xi(k) 

x2(k) for 0 < Jb < K. (2) 

Additionally, the matrix X is merely a compact way of representing all K measurement 

vectors and is given by 

X=[xo,Xi,...,Xür_i], (3) 

the matrix M represents the corresponding mean values of the measurements, and C 

is the N x N covariance matrix describing the correlations among sensors. The exact 

definitions of the matrices M and C depend on how the above density function is applied 

to the particular estimation problem to be solved, as will be seen. Once this equation 

has been properly set up, the maximum likelihood solution is then found by maximizing 

the probability density function by making the appropriate choice of M and/or C from 

among the allowable choices. The optimum choices of M and/or C can then be related 



back to the signal parameters of interest. 

For direction finding purposes Xi,..., X.K-I are taken to represent the complex baseband 

outputs from an array of iV antennas. The definitions for M and C depends on the 

assumptions made about the signals. The two most commonly used assumptions are 

either 

1. the signal is deterministic but unknown, or, 

2. the signal is stochastic with a zero-mean Gaussian distribution. 

Choosing the first assumption, the data can be decomposed as 

xn(k) = mn(k) + r)n(k) (4) 

where mn{k) is the exact (but unknown) signal value and T]n(k) is the value of the noise 

corrupting the measurement. From this expression it follows that the elements of M are 

given by mn(k), and the elements of C then represent the covariance of the noise processes 
only, as defined by 

cmn = E[T]m(k)rjn(k)*]      for   0 < k < K and 0 < m, n < N. (5) 

The approach based on the first assumption is called the deterministic maximum likelihood 

method. 

Choosing the second signal assumption leads to 

mn{k) = 0 (6) 

and 

Cmn = E[xm(k)xn(k)*]      for   0 < k < K and 0 < m,n < N (7) 

since the sum of two or more zero-mean Gaussian processes is still a zero-mean Gaus- 

sian process. The approach based on the stochastic assumption is called the stochastic 

maximum likelihood method. 

Comparing these two approaches reveals that the main differences are the constraints 

placed on the estimated complex signal amplitude(s). The deterministic signal assumption 

(usually) leads to no constraint while the stochastic signal assumption leads to a Gaussian 



distribution. Given that man-made signals are bounded (finite power) and often have a 

Gaussian-like distribution, the second assumption generally results in better estimator 

performance [4] (see also [5] for a comparison of the deterministic approach with better 

modeled methods). An exception to this might be the case of constant modulus signals 

(e.g., fm, psk, fsk, etc.) since a constant amplitude constraint could more easily be 

added to the deterministic approach than the stochastic approach. However, for the HF 

signals considered in this report, the dynamic nature of the ionosphere tends to destroy 

the constant modulus properties of the received signal, so that the stochastic maximum 

likelihood approach was followed (in fact the deterministic approach was tried but was 

not found to be nearly as successful). 

2.2    The Cost Function 

In this section, the stochastic maximum likelihood method is further refined. The 

central key to this refinement is the development of a signal plus noise model which 

accurately reflects the high latitude HF environment. This involves accounting for signals 

which are diffusely reflected or scattered off a highly disturbed region of the ionosphere 

with an angular extent of several degrees or more in both azimuth and elevation, hence 

the name Spread Maximum Likelihood Estimator. By comparison, the standard stochastic 

maximum likelihood approach considers only point-sources signals. 

Before beginning the model development, the probability density function (1) can be 
simplified using (6) to give 

^ x-) = RWe-traCe(X"C"'X) («> 
by using the stochastic signal model. The objective remains the same as before, that is, 

find the unknown covariance matrix C which maximizes this expression. This is equivalent 

to maximizing the cost function Lc = ln/(x0,xi, ...,x.K_{) or, 

Lc = -NK ln(7r) - K ln(det C) - trace (X^C^X). (9) 

Since the addition or multiplication by a constant value has no effect on the maximization, 
the cost function can be simplified to 

L = - ln(det C) - trace(RC_1) (10) 



where R is the data covariance matrix constructed from X using 

R=1XX* (11) 

2.3    Modeling the Signal Environment 

The modeling aspect comes into play when C is being selected. A model is used to 

generate C based on input modeling parameters such as, for example, the number of 

signals, signal bearings, signal amplitudes/powers, and noise powers. For this reason, 

C is referred to as the model covariance matrix in this report. Once the model has 

been setup, a common approach, and the approach employed here, is to choose some 

initial model parameters, generate C, and then determine the cost function value L. The 

model parameters are then successively refined and C recomputed until the maximum 

cost function value has been achieved. The model parameter values corresponding to this 

maximum value are then taken to be the optimum or maximum likelihood estimates. 

The particular model used to generate the model covariance matrix depends on many 
factors including the transmitter(s) and receiver characteristics, the signal propagation 

environment, the noise sources, and so on. One way to set this model up, is to consider the 

generation of synthetic data which imitates the collected data, and then use this synthetic 
data to determine C according to 

C = -^YYff (12) 

where Y is the matrix of model data and has the same form and dimensions as X. 

Proceeding in this manner, it becomes necessary to make certain assumptions about 

the environment in order to simplify the derivations. Initially, the following ideal assump- 
tions can be made: 

1. M incoming point-source signals arrive from M different directions. 

2. The noise is additive and Gaussian. 

3. The receiver channels are linear and perfectly matched. 

4. The receive antennas are isotropic and located at the same height. 

5. There is no coupling among the receive antennas or with the local environment. 



Modifications to these assumptions will then be introduced as appropriate. 

Based on these simplifying assumptions, the received signal can be decomposed as 

Y = Yi + Y2 + ... + YM + N (13) 

where the matrices Yi, Y2,..., YM represent the model data for the M individual signals, 

and N is the modeled noise. The matrix Ym, for 0 < m < M, can be defined in vector 

form as 

Ym = ema£ (14) 

where em is the array response (or steering) vector for the mth signal, and a„, is the 

corresponding signal amplitude vector. The definitions for the elements of the steering 

vector are given by 

©m — 
y/N 

gj'xt10 Sin 0"1 C0S ^rn+yo COS (j)m COS tpm) 

gJX^1 sin0™ COS V>m+J/1 COS<f)m COS Vm) 

gJX^-1 Sin ^m C0S i>m+yN-l COS (f>m COS Vm) 

(15) 

where A is the signal wavelength, xn and yn are the Cartesian coordinates for antenna 

n (with the phase center of the array located at the origin), <j>m is the azimuth angle of 

the mth signal measured clockwise with respect to the Y-axis of the coordinate system, 

and ipm is the elevation angle measured with respect to the X-Y plane (the ground). The 

definition for the elements of the signal amplitude vector is given by 

3m — 
Om(l)* 

am(K-iy 

(16) 

where am(0), am(l),..., am(K — 1) are the received complex amplitudes of the mth signal 

for time instances to, t\,..., tx-i- 

Analytically, the preceding approach to generating the model covariance matrix is 

useful, however, it requires too many model parameters. For example, the generation of 

Y requires selecting the azimuth angle, elevation angle, and complex amplitudes for each 

signal plus the corresponding complex noise values for each sensor. With the exception 



of the angles, this must be repeated for each time instance resulting in a total number 

of IM + 2(M + N)K real model parameters (remembering that one complex parameter 

is equivalent to two real parameters). Additionally the noise and signal amplitudes must 

also be chosen so that statistically they have complex Gaussian distributions. 

A more practical approach is to rewrite the model covariance as a sum of the noise 

covariances, the signal covariances, and the signal cross-covariances, or 

M M-\       M 

C = a2Cn + £ Cmm + £    £   (Qmn + Ql) (17) 
m=l m=\   n=m+l 

where a2 is the noise power, C^ is the normalized noise covariance matrix (trace C,, = 1), 

Cmm is the signal covariance matrix for the mth signal, and Qmn is the signal cross- 

covariance matrix. The generation of these matrices is discussed in the following para- 

graphs. 

The noise covariance matrix C^ is assumed to be known a priori and will not be 

considered as part of the estimation process. The determination of Cv can be done either 

through theoretical statistical considerations, or through measurements. For example, if 

the noise is known to be white Gaussian in nature with equal but uncorrelated amplitudes 

in each channel, then E[r]m(k)r]m(k)*] = o2 and E[r)m(k)r]n(k)*] = 0 for 0 < m,n < N 

and m ^ n, hence 

Cr, = ^lN (18) 

where 1^ is the N x N identity matrix. Alternatively, if data measurements can be taken 

when no signals are present, then 

_i J\.J\, ,   * 

" = trace(XX")" (    j 

More elaborate procedures could be developed involving a number of measurement sets 
with the same noise environment but different signal directions, however the development 

of this kind of approach is beyond the scope of this report. It suffices to say that joint 

estimation of both the noise and signal characteristics should be avoided if possible since 

it leads to poorer accuracy. 

The signal covariance matrix Cmm can be defined in terms of the model data as 

Cmm = — YmYm (20) 



which can be further expanded in terms of the component amplitude and steering vectors 

as 
H 

In a similar fashion, the cross-covariance matrix Qmn can also be defined and expanded 

to get 

O       =   —Y YH 

H 

=   ^eme*       for n>m. (22) 

At this point, the number of model parameters has not been changed (except for the 

noise covariances which are now assumed to be known). Simplifications can be introduced 

to the expressions for Cmm and Qmn by recognizing that the term a^a^n/K is the average 

signal power over the given time interval and can be replaced by the single parameter sm. 

Equation (21) can then be rewritten as 

Cmm = smeme*. (23) 

Additionally, defining the complex correlation coefficient 

"- - läsi (24) 

where |a| = (aHa)2, then Qmn can be rewritten as 

Hence the K complex amplitude model parameters for each signal have been replaced by 

a single power parameter plus up to M — 1 complex correlation coefficients. Also counting 

the bearing angles required for each signal {<f)m and ^m), and the noise power, then the 

number of real model parameters is 3M + M(M -1) +1 which is a considerable reduction 

in parameters when K > M (which will normally be true in practice). 

A further major reduction in the number of parameters is possible if the correlations 

pmn are known. For the HF sky wave environment, signals from different transmitters will 

be uncorrelated. Signals originating from the same transmitter but reflected off different 

layers of the ionosphere will also be uncorrelated due to the large path length differences 



usually encountered (i.e., the path delay time differences will be greater than the inverse 

bandwidth of the signal). Hence one can assume that 

Pmn = 0       for 0 < m < n < M (26) 

which eliminates the third term in (17) and reduces the number of real model parameters 

to3Af + l. 

A violation of the assumption of uncorrelated signals is the case of local site multipath. 

However, like the problem of determining the noise correlations, including the signal 

correlations in the estimation process is highly undesirable (although in the standard 

stochastic ML approach this is done [6]). Hence it is assumed that either the receiver site 

is well chosen, or signal correlations can be determined independently and corrected as 

done, for example, in [7]. 

Up until this point, only incoming point-source signals have been considered. For HF, 

this assumes perfect reflections off the ionosphere, which is a reasonable assumption for 

benign atmospheric conditions. At high latitudes, however, the ionosphere can sometimes 

become highly disturbed [8] resulting in behaviour which is not consistent with an ideal 

reflector. For example, measurements have shown that during these disturbed conditions 

Doppler shifts of up to 45 Hz or more can occur in conjunction with large eigenvalue 

spreading in the measured data covariance matrix [9]. These measurements suggest that 

the transmitter signal is scattered from highly dynamic regions of the ionosphere yielding 

the large Doppler spreads. These measurements also suggest that the regions are suffi- 

ciently wide (angular spreads of several degrees or more) that signal decorrelation occurs 

across the region causing the large eigenvalue spreading. 

This interpretation is also supported by HF propagation research work carried out 

at CRC [10]. This work suggests that the most likely mechanism for the ionospheric 

disturbances is moving patches of enhanced electron density with sizes greater than several 

kilometers which drift across the polar cap during darkness. As these patches progress, 

they give rise to short-lived small-scale electron irregularities on the scale of less than one 

kilometer. These irregularities become very elongated along the earth's magnetic field 

lines and tend to scatter incident radio waves through 360° in azimuth with little or no 

scattering in elevation. Given the random and short-lived nature of these irregularities, 

the patch acts as a temporal and spatial incoherent radio scattering region. 

The interpretation of conditions encountered at high latitudes leads to a modified 

10 



Figure 1: Grid of point-source signals used to represent a spread signal. Each grid node 
represents location and power of each corresponding source signal. 

description for the signal covariance matrix Cmm. To begin with, the scattering region 

is divided into a grid where each section in the grid is made small enough that it can be 

accurately represented by a single perfectly reflected point-source signal. Figure 1 shows 

an example plotting the power of the point-source signals versus azimuth and elevation 

angle for a single region. The power towards the edges of the modeled region is tapered 

according to some predetermined taper function which is chosen to best represent the 

actual environment. Given that signals scattered from different parts of the same region 

are uncorrelated, the model covariance matrix can be generated according to the sum of 

the individual covariances of the component point-source signals, or 

M0 

(27) 

where Mg is the number of component point-source signals in the grid, emi represents 

the steering vectors of the grid signals, /?m($, #) is the taper function which is positive 

11 



real-valued and normalized so that 

Mg 

I>m($rm>#mi)     =     1 (28) 
i=l 

and $mi and tymi are the normalized grid angles. The normalized grid angles are defined 

by 

*m* = ^^ (29) 

*mi = ^ ~ ^ (30) 

where <f>m and ipm are the respective azimuth and elevation bearing angles of the center 

of the grid, <f>mi and ij)mi are the respective azimuth and elevation angles of the compo- 

nent point-source signals, and A^m and A^m are the signal spread parameters defining 

the angular extent of the spread signal (width of the grid) in azimuth and elevation, 

respectively. 

In order to be mathematically usable, the taper function must vary smoothly as a 
function of the azimuth and elevation spread parameters, and the differentiated taper 

function must be defined for all valid values of the spread parameters. For example, in 

a rectangular grid with uniform fixed spacings and equal powers for all individual point- 

source signals, the taper function changes in discrete steps as each new column/row of 

point-source signals is introduced or removed when the azimuth/elevation spread changes 

sufficiently. The choice of taper function and grid layout (since this affects the taper 

function) is discussed in Section 4.4. 

Using (17), (27) and incorporating the simplifications to the model covariance gener- 
ation already described, then 

M Mg 

C = a2Cv + £ sm £ ßm($mi, ttm<)emi«& (31) 
m=l        i=l 

where the noise power a2, signal power sm, azimuth bearing <f)m, elevation bearing ipm, 

azimuth spread A^m, and elevation spread A^m are the only input values which are 

explicitly adjusted in order to maximize the cost function L. 

12 



3.0    MODEL PARAMETER ESTIMATION 

The previous section examined the generation of the model covariance matrix and its 

evaluation via the cost function. In this section, an overview of the model parameter 

estimation procedure is provided along with details on determining the initial model 

parameter estimates. Details on the parameter refinement procedure are provided later 

in Section 4.0. 

A major problem with determining the optimum model parameters in maximum likeli- 

hood problems is that it is usually difficult or impossible to develop a closed-form solution. 

The standard approach is to employ some form of search procedure to find the solution. 

An exhaustive search of all possible model parameter values could be performed to do this, 

however, with more than a very small number of model parameters, this is a prohibitively 

time-consuming process. Faster approaches such as gradient ascent/descent techniques 

are useful, but require the initial model parameter to be reasonably close to the optimum 

solution, otherwise the search may converge on a false solution. An approach which has 

been used successfully in the past, and works reasonably well with uncorrelated signals, is 

the Alternating Projection Maximization (APM) method [11]. Although heavily modified, 

the approach employed here is conceptually similar. 

The basic procedure is to build up the model covariance matrix one signal at a time. 

In the very first stage an estimate of the noise power is made assuming the data consists 

of noise only (Section 3.1). Using this as the starting model covariance matrix, a single 

point-source signal is added. This is done by sweeping the signal bearing parameters 

through 360° in azimuth and 90° in elevation, while keeping the noise power fixed and 

optimizing the signal power (Section 3.2). Several potential signal parameter solutions 

corresponding to higher values of the cost function L are selected. For each of these 

candidate solutions, a modified gradient ascent technique is employed to jointly refine 

both the noise power and all the signal parameters including spread (see Section 4.0). 

The refined parameter set yielding the highest value of the cost function is then retained 

and all other refined candidate sets are thrown out. This completes stage one. 

In the next stage, using the new model covariance matrix corresponding to the refined 

model parameter set from the previous iteration, a new set of point-source signal candi- 

dates are identified using the azimuth and elevation search method in the same manner 

as in the first stage. This is followed by another joint refinement of all signal and noise 

parameters, and again, only the refined parameter set yielding the highest value of L is 
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retained. This completes stage two. 

The process described for stage two is repeated again and again until the last (Mth) 

signal has been introduced and the model parameters have been refined. The resultant 

model parameters are then taken to be the optimum maximum likelihood estimates, the 

determination of which will be presented later. 

An extra step is added to the joint refinement procedure when the bearing of a candi- 

date point-source signal falls within the angular spread region of one or more of the refined 

signals selected in the previous stage. In this case, the refinement procedure involving the 

candidate point-source signal is repeated with the following special modifications to the 

parameters of the affected signals (including the candidate signal and the refined signals 

with which it "collides", but no others): the azimuth and elevation spread values are set 

to zero, and the signal powers set equal to the average power of the colliding signals. If 

this modified refinement yields the highest value of L, then the new refined parameter set 

is retained, otherwise it is rejected. 

Performing the azimuth-elevation search at each step using a point-source signal tends 

to favour the detection of point-source signals over spread-source signals. However, since 

point-source signals are of the most interest (i.e., for high latitude HF DF applications, a 

point-source signal is more likely to yield the true bearing of the transmitter than a real 
spread-source signal), this enhancement is not a bad thing. 

The identification of several candidate model parameter sets during the search and 

the ensuing refinement to identify the best solution is a modification to the original APM 

method in order to improve the probability of finding the correct solution. 

The modified gradient ascent technique used for parameter refinement is also a de- 

viation from the original APM method. It was used because it was found to converge 

faster than both the technique proposed for the APM method and the standard gradient 
ascent/descent method. 

The next few sections provide a detailed discussion of the initial noise estimate, the 

azimuth-elevation search procedure for the introduction of new signals, and the modified 

gradient ascent technique used to refine the signal and noise parameters. 
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3.1    Initial Noise Estimate 

The initial noise estimate is made by assuming that there are no signals present and 

then finding the value of a2 which maximizes the cost function L. The no signal assump- 

tion is equivalent to assuming 

C = <72CV (32) 

Substituting this into the expression for cost function (10) gives 

L0   =   -ln(det(<7
2C^))-trace(R(a2C^_1) 

=   -7Vln(<72)-ln(detC„)- — trace(RC~1) (33) 

where L0 denotes the cost function value for zero assumed signals and N is the number 
of sensors. 

The cost function can be maximized (or minimized) by differentiating L0 with respect 

to a2 and then finding the value of a2 which sets the differentiated expression to zero. 

Hence differentiating yields 

I?   =   ^T + ^trace(RC-1) (34) 

where v = o2, and then setting the result to zero and solving gives 

a2 = —trace(RC-1). (35) 

For this value of o2 the value of the second derivative d2Lo/dv2 is 

-N3 

trace(RC-1)2 <   0 (36) 

indicating that value of a2 given by (35) produces a maximum (not minimum) in the cost 
function LQ. 

The expression for the optimum value of a2 (in the no signal case) can be inserted back 

into the expression for the cost function L0 (10) to give a new expression independent of 

a2 (but where the optimum value of a2 is implicitly assumed). The result is 

Lo = Nln(N) - N - ln(det C„) - iVln(trace(RC-1)). (37) 
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3.2    Azimuth-Elevation Search 

In the azimuth-elevation search, a new point-source signal is added to the model 

covariance matrix. In this section, the search procedure is developed so that the azimuth 

and elevation angles of the new signal can be adjusted without having to explicitly adjust 

the signal power as well. Additionally, although the model noise covariance C^ is required 

in this search, an initial estimate of the noise power is not. 

Beginning with the known model covariance represented by Ca, the addition of a new 

point-source signal yields 

C = Ca + smemeg (38) 

where the indexing begins with m = 1 and is incremented after each stage until m = M. 

The inverse of the matrix C can be found using the augmented matrix inversion lemma 

to give 
<?   n-ip   pffC_1 

Q   " 1 4- <?  ptf r-ip ^   ' 

where it is also assumed here, and throughout the rest of this report, that C and Ca 

are positive definite so that C-1 and C"1 exist and e^C~1em > 0. For simplicity a new 

vector 

qm = C^e™ (40) 

is introduced so that the expression for C-1 becomes 

er1 = c;1 - , 8m<imt& (4i) 
a        1 _i_ o   pi?« 

Plugging the two expressions for C and C-1 into (10) and simplifying 

Lm   =   - ln(det(CQ + smeme»)) - trace(R(C^1 -    *mqm%"   )) 
1 ~r SmGmC[m 

=   - ln(det(I + smqroe£) det(Ca)) - trace(RC;1) + trace ( 5™Rq"ff™ ) 

=   - ln((l + smeUm) det(Ca)) - trace(RC;1) + (fff^ ) ^ 

where Lm is the cost function after the mth signal is introduced into the model. 

To reduce the search to only the azimuth and elevation angles, the cost function can 
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be differentiated with respect to the signal power and then solved to find the optimum 

value of the signal power. Differentiation with respect to sm produces 

dLm   =       -e£qm      |      q^Rgm sme*qmq%Rqm 

dsm l + sme£qm     1 + sme£qm       (1 + sme£qm)2 

and setting this result to zero then solving for sm gives 

*.~q*yrffqw- (44) 
The second derivative d2Lmjds2

m for this value of sm is 

MRÖ5 < ° (45) 

indicating that this value of sm is the desired maximum value, and not a minimum. 

Finally, the expression for sm can be reinserted into (42), and after some manipulation 
the result is given by 

Lm   =   -ln(detCQ)-trace(RC;Vln(^^) + ^qm     1 

e^Qm e£q, mHm 

-    LTO_! - ln( ) + — 1 (46) 
cmVlm em4m 

which is the cost function evaluated for the optimum signal power. Note that in the above 

expression, LTO_i is the maximum cost function value from the previous stage. 

Using (46), the search for the optimum signal parameters can be carried out by varying 

the azimuth and elevation angles only. The maximization process can be simplified even 

more by noticing that the constant terms in (46) have no effect on the maximization, and 

that maximizing g(x) - \ng(x) with respect to x is the same as maximizing g(x), where 

g(x) is a positive real-valued function. Hence maximizing Lm is the same as maximizing 

Srn(<f>rn,M = ^^ (47) e
mqm 

or 
*.(*.,*.) = Ss^«Ä*. (48) 
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The function Sm(</)m, tßm) is not only the specialized cost function for the single signal 

case (or additive signal case), but it can also be interpreted as the whitened beamformer 

spectrum. To see this, consider that in estimation problems a common practice is to 

filter the data in such a way as to whiten the noise spectrum (this assumes that the 

noise spectrum is known a priori). Once this has been done, optimal estimators designed 

for white noise can be used. This simplifies the problem of having to design different 

estimators for white noise and coloured noise. 

For the estimator problem at hand, CQ can be treated as the known "noise" covariance, 

and assuming it to be full rank, then there will exist an appropriate N x N spatial 

whitening filter W such that 

WWF = Cfl-1 (49) 

(how W is actually determined is unimportant here). Using this filter, the whitened data 

is formed according to 

X„ = WfiX (50) 

which leads to the whitened covariance matrix 

R^W^RW. (51) 

To account for the affect of the whitening filter on the response of the sensor array, the 

steering vector e is modified in the same way as the data and then normalized to give 

Wge _       Wge 
Bw \/e"WWffe   ~   jeHC-^e 

The whitened beamformer spectrum is then given by 

brnVPrnilpm) = ew^wGw (53) 

which becomes (48) if R^, and e^ are expanded in terms of (50)-(52). 

From this discussion, it can be seen that the introduction of a new point-source signal 

into the covariance model can be accomplished using a simple beamformer to search in 

azimuth and elevation. Signal power does not have to be explicitly tested. Additionally, 

the first signal can also be determined without knowledge of the noise power since the 

maximum of Sm(<f>m,ipm) remains unchanged whether Ca = a2Cn is used or CQ = C^ is 

used. 
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4.0    PARAMETER REFINEMENT 

In the previous section, initialization of the model parameters was discussed. In this 

section, the gradient ascent method is introduced and developed to further refine and 

optimize the model parameter estimates. The principle strategy employed is to incremen- 

tally adjust the values of the model parameters according to the local gradient of the cost 

function until a maximum in the cost function is found (i.e., climbs the "hill" until the 

peak is reached). Since this approach finds the local maximum, care must be taken in the 

initial model parameter estimates to ensure that the local maximum corresponds to the 
global maximum. 

mi Using a to represent any of the real-valued model parameters (e.g., a2, or sm, or (j>. 

etc.), then the gradient ascent parameter adjustment at each step i is performed according 
to 

a>i — a>i-i + fj,aG(ai-i) (54) 

where G(ai) is the slope or gradient with respect to the model parameter, and /j,a is 

a positive real value used to control the step size. The above expression is performed 

simultaneously for all the adjustable model parameters before proceeding to the next 

step, that is, model parameters for step i are computed using only the model parameters 
from step i — 1. 

The parameter adjustment step size fj, is also modified at each step (in this discussion 

the subscript a is used only when discussing the step size for a single model parameter, and 

dropped when discussing the step sizes for all the model parameters). In each step, after 

all the model parameters have been adjusted, the new parameter set is tested to see if the 

cost function is improved. If Li > Li+1 the parameter adjustment is considered successful 

and the step size for all parameters is slightly increased (// ->• 1.2//). If L^ < Li+1, the 

adjustment is considered unsuccessful, the new parameter set is discarded, and the step 

size for all parameters is decreased (^ -» ///3). 

In addition to these modifications to the step size, a special modification is also used to 

improve the behaviour of the gradient ascent technique when various kinds of structures 

in the cost function are encountered. For these structures, a few parameters will be close 

to their optimum values but their corresponding slopes on both sides of these optimum 

values will be large, while for other parameters their optimum values are further away 

and the slopes are smaller (e.g., consider a long ridge which slowly rises along the length 

of the ridge but has very steep sides). The result is that the closer parameter values will 
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dominate the cost function (the larger slope means a greater change in the cost function 

for a given increment), and the values of ßa will need to be reduced accordingly to keep 

these parameter values in the vicinity of their optimum values. With a small value of /iQ, 

the parameters that are further away take a large number of steps before they come close 
to their optimum values. 

One way to detect this slow convergence condition is to examine the behaviour of the 

gradient function. For a parameter close to its optimum value, the gradient will oscillate 

between being positive and negative as the adjustments overshoot back and forth across 

the optimum value (G(oi-i)G(ai-2) < 0). If this condition is detected after the new 

parameter set has been deemed successful, then the step size ßa is replaced by /^Q/3. 

The definition of the gradient function depends on the model parameter being adjusted, 

however before getting into the finer details, some generalizations can be made. The 

gradient of the cost function (10) is given by 

_ dln(detC)  _  atrace(RC~1) 
da da ' . ' 

This can be simplified somewhat by considering each of the two terms in the above 
expression individually, as will be seen. 

Beginning with the first term, consider the following eigen-decomposition of the model 
covariance matrix 

TV 

C = 2>v,vf (56) 

where \ represents the eigenvalues and v,- represents the eigenvectors of C with the 

properties vf vf- = 1 and vf vfc = 0 for * ^ k. Since the determinant of a matrix is equal 

to the product of it's eigenvalues, the first term in (55) becomes 

dlnjdetC) = dZlM*i) m 

da da ^   ' 

Performing the indicated differentiation and utilizing the eigenvectors and their properties 
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to expand and rearrange the expression, then 

flln(detC)   =   ^,-idK 
da £f   l   da 

= £v*+-&r  rere -ir=o smce v^=i
; 

=   £Ai   iXiV<-da- + -da- + Xi-da-Vi) 

=   traceCEEv^vf^vf + vfc^vf + v^)) 

-   trace(|VlA-Vf|:^W + V^vf + v,A^) 

=   traceEv^vfE^^*-) 
i=l Jb=l 

dC 
=   traceCC-1—). (58) 

The second term can be simplified by first differentiating the equality CC_1 = I, 
which gives 

9CC"1 

where 0 is a matrix of zeros having the same dimensions as C. Expanding the lefthand 
side 

dc„_,     ac-1 

da-C    +C^- = ° (6°) 
and rearranging 

aC-1        ^ .0C     , 

Using this relationship, and carrying out the indicated differentiation of the second term 
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in (55), then 

«»»££3   =   trace(R^) 

=   -trace(RC-1^-C-1) 

8C 
=   -tracetC^RCr1—). (62) 

OOi 

Finally, a general expression for the gradient can be found by substituting (58) and 

(62) back into (57), which gives 

G(a)   =   -trace(C-1^) + trace^^RC"1^) 

=   trace ((C^R-IJCT1^). (63) 

Detailed derivations of the gradient as a function of noise power, signal power, signal 

bearing, and bearing spread are given in the following sections. To simplify the expressions 

that result, the definition 
P = (C-1R-I)C-1 (64) 

is used. The gradient is then given by 

ßC 
G(a) = trace(P—). (65) 

OOi 

Additionally, the definition for the model covariance C used in the following derivations 

is given by (31) and repeated here as 

M Mg 

C = G2Cn + Y, sm £ ßm($mi, ^mi)^m^mi- (66) 
m=l       i=\ 

4.1    Noise Power Gradient 

Letting a = a2 and differentiating the model covariance matrix expression with respect 

to the noise power gives 
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and incorporating this in (65), the noise power gradient becomes 

G(a2) = trace(PC„). (68) 

4.2    Signal Power Gradient 

Differentiating the model covariance matrix expression with respect to the power of 
the mth signal gives, 

dC      Mg 

~ Z_j Pmy^mii *'mij^mi^mij 

and using a = sm in (65), then the signal power gradient becomes 

(69) 

Ma 

G(sm) = trace(P]T/?m($mi, ^mi)emie^.). 
i=i 

(70) 

4.3    Bearing Gradient 

Differentiating the model covariance matrix expression with respect to the azimuth 
bearing angle of the mth signal gives 

M, dC_ 
b™ i=i 

,der t/cmt> 

f)/h     ~ Sm2^i ßm{$mi, *mi)(o,     emi + emi o ,"")■ 0<Prn i=i 0(pm d(pm 
(71) 

Using the definition for the steering vector (15) and the fact that <f)mi differs from <f>m by 
a predetermined constant offset, then 

der, 
d<f>n 

— ■™-mi&mi (72) 

where Ami is a diagonal matrix defined by 

diag(Ami) = jy 

x0 cos <j)mi cos ipmi - y0 sin (j)mi cos ip, 
xi cos <f)mi cos ipmi - y1 sin (f>mi cos ip, 

mi 

mi 

xN-! cos <f>mi cos ipmi - i/iv-i sin <f>mi cos tpn 

(73) 
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Using these definitions and a = (j)m in (65), the azimuth bearing gradient becomes 

Ma 

"(^m) — smtrace(P^_^pm($mi, Wmij(Amiemiemi     emjemiAmj)). (74) 
i=l 

Similarly, the elevation bearing gradient can be derived to get 

M„ 

G{ipm) = smtrace(P £ ßm($mi, ^mi)(Bmiemie^ - emie^Bmi)) (75) 

where Bmj is a diagonal matrix defined by 

diag(Bmi) = -j— 

XQ sin 4>mi sin ipmi + y0 cos<j)mi sin ipmi 

Xi sin <f>mi sin tßmi + yx cos <^mi sin tpmi 

xN_i sin 0mi sin tpmi + yN^ cos 4>mi sin V>n 

(76) 

A special modification to the elevation bearing gradient occurs if part of the spread region 

is cut-off by the horizon or 90° vertical. The expression is then represented by 

Mn 

G(ipm)   =   smtrace   P £ OPmy^mii ^mi) ff 

i=l di)n 

emi^mi 

Mo 

i=l ) 

Since the complete derivation requires the exact definition of the taper function, this 

derivation is discussed separately in Section 4.5. 

4.4    Spread Gradient 

Differentiating the model covariance with respect to the azimuth or elevation spread 

of the mth signal yields 

dC 
dAm 

= Sr, 

Ma 

i=l dKZ 
e   eH- 

+ ßm^mi,^mi)^e^   +   ßm^mi,^mi)emi^)   (78) 
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where Am represents either A^m or A^m. Defining Cmi as the model covariance matrix 
for each grid signal, or 

Cmi = ßm($mi, ^m^mA, (79) 

then the derivative of the model covariance matrix can also be represented in a more 
compact form as 

dC ^ dC. 
—     Sn 

0Am     
m,tr8A„- E^F- (80) 

The corresponding form for the gradient is given by 

M° dCr G(Am) = smtrace(P £ ^). (81) 
»m 

Without further defining the grid layout and taper functions it is not possible to go 
any farther, so for this report, two different choices of grid shape/taper functions were 
investigated. They were as follows: 

1. A rectangular shaped grid using uniform grid spacing except on the outside edge, 
and a uniform power distribution for the individual point-source signals. 

2. An elliptical shaped grid with uniform grid spacing and a raised-cosine power dis- 
tribution for the individual point-source signals. 

Although the second choice was expected to more closely resemble the real world, assessing 
both choices provided a means of comparing performance when very different patch shapes 
were assumed for the same data. 

In the following, the spread gradient is defined for both taper functions under the 
assumption that neither the estimated signal elevation bearing nor spread angles result in 
grid signals below the horizon or above vertical. The special case when this assumption 
is not true is considered in the Section 4.5. 

4.4.1    The Uniform Rectangular Grid 

Figure 2 shows both the general shape of a rectangular grid and the arrangement of 
point-source signals in one row of the grid (the arrangement in a column is the same). With 
the exception of the two outside signals, the grid signal locations are uniformly spaced 
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with uniform power and the central signal located at (4>m,i>m)- The outside signals have 
their power levels scaled according to the angular distance to the neighbouring signal in 

order to provide a smooth transition when the spread is varied to the point that new 

rows/columns of point-source signals must be added or removed from the grid. 

The determination of the values of the taper function for the various grid signals begins 

with the calculation of the numbers of these signals as a function of the spread parameters. 

Along each row (defined by constant elevation with increasing azimuth angles measured 

left to right), but excluding the outermost or nonuniformly spaced grid signals, there will 

be 

A^=2int(^=-) + l (82) 

grid positions where d^m is the angular grid spacing within the row (it is also the column 

spacing). Similarly, along each column (defined by constant azimuth with increasing 

elevation measured bottom to top), there will be 

M^=2mt(^-) + l (83) 

grid positions, where d1pm is the spacing within the column (it is also the row spacing). 

Ideally d$m and d$m are chosen to be as small as possible, but since this increases the num- 

ber of computations required, reasonable choices are one fifth the array 3 dB beamwidth 

(which is usually different in the azimuth and the elevation directions). The spacing 

requirement is discussed and evaluated in more detail in Section 6.1. 

The M^,m x M^m grid signals in the interior of the grid will have constant power, and 

the corresponding value of the taper function can be defined as ßom. The value of the 

taper function for the grid signals at the edges is a function of the spacing at the edge 

relative to the spacing of the interior signals. Along the rows, the edge spacing is given 

by 

da = \{&<t>m ~ (M^ - 1KJ- (84) 

Similarly, along the columns the edge spacing is given by 

de = 2^m - (M^ - 1)^J. (85) 

Excluding the corner signals of the grid, the corresponding value of the taper function for 
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Figure 2: Geometry of the uniform rectangular grid showing (a) the general shape, and 
(b) an example of the position and power of the point-source signals making up one row 
of a grid. 
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the edges of each row is given by 

Am     =    ßom~     =     ^rfa-M^+l) (86) 

and of each column is given by 

An,     =    ßom^-     =     ^(^-M,m + 1). (87) 

For the four corners of the grid, the values of the taper function will be a function of both 
the row and column edge spacing values leading to 

An,     =    ßom-/^-    =     %^-M,m+l)(^-M,m+l). (88) 

Since the sum of the values of the taper function for all the grid positions is equal to 
one, then 

M4>mM,Pmßom + 2Mi/mßlm + 2M<j>mß2m + 4ßSm   =   1. (89) 

Substituting for /3lm, ß2m, and ß3m using (86)-(88), and then rearranging in terms of ß0m 

the expression becomes 

■>0m 'M^M^ + M^i^ - M0m + 1) 

+ M^J^ ~ M^ + 1) + (£=■ - Mtm + 1)(^6=. - M*. + 1)) 
-1 

'^m^m     ,     ^4>m     .    ^V> 
(JJ      +=^ + =^ + 1       . (90) 
\   d<f>md^m Hm di>m J 

Having now defined the shape of the grid and the taper function, it is now possible to 
continue the derivation of the gradient from (78). For signals in the interior of the grid, 
only the power varies as a function of the azimuth or elevation spread, so that 9Cmi/9Am 

becomes 
dcmi       dßüm_emA (91) 

dAm dAr: 

where ßom is the value of ßom calculated for the mth grid signal.  Using the result from 
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(90) and carrying out the derivative operation then 

dCmi    =      A>m C^ZZL + lie  .eH (q2) 

Excluding the corner signals, the signals on the top and bottom edges of the grid also 
vary only in power as the azimuth spread varies. Noting that the power is given by ß2m, 
which can be expanded in terms of ß0m using (87), then for the top and bottom edge 
signals the appropriate expression is 

Ir1 - z§^(^+i)<w& 0») 
which is similar to (92). 

For signals on the left and right edges of the grid (and again excluding the corner 
signals), both the power and signal direction vary according to the azimuth spread. The 
relationship between azimuth spread and signal direction for the right and left edge signals 
is given by 

<t>mi = K ± ^ (94) 

where "+" is used for the right edge and "-" is used for the left edge. Using this relation- 
ship plus the fact that the power level is given by ßim, and partially differentiating Cmi 

with respect to A^m, then 

dC™    =    a/?1-e  .e
ff. ± P±ZL(A   e  .eH H A   v (q^ 

where A was previously defined in Section 4.3. Using the definition for ßlm given in (86) 
and the definition for ßQm given in (90) in order to carry out the rest of the differentiation, 
the above result becomes 

acr 
^- (l - 2/W^ + 1)) emie^- ± ^(Amiemie* - emie^Ami). (96) &V 2d, 

Finally, for the signals at the corners of the grid, the differentiation proceeds in a 
similar manner except that the power level is given by ß3m which is defined in terms of 
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ßom Dv (88). The resultant equation is given by 

dA*      ~    I 2d, <Pn 

ßomßzmA^       A -        ^2LCA   e   e^ - e   eH A   ■}  (97^ 
a4>m        aipm ) l 

where, as before, "+" is used for the corners on the right edge of the grid and "-" is used 

for corners on the left edge of the grid. 

Using the same procedure to differentiate the covariance matrix with respect to the 

elevation spread, then for signals located in the interior of the grid 

dA,     ~    <L    (<L    +1Je™e-- W 

Excluding the grid signals at the corners, then for signals on the right and left edges 

8G-    =   ^A^ + D^e», (99) 

and for signals on the top and bottom edges 

dCmi    =    A 
dA^ 2d, 

where 

?-(l- 2ß2m(^ + 1)) emie^ ± ^(Bmiemie* - emie* Bmi) (100) 

i>mi = 1pm ± ^ (101) 

and where "+" is used for the top edge and "-" is used for the bottom edge. Finally, for 

the grid signals at the corners 

dC™      _     /Am ßomßsmsA^       -.A H    +fo?L(Tl    .P    .P#   _ P    .P# R    .) 
QA ~     \2d d d I       'mi 2 l      l  mi      Cml*;miJ-'mi)- 

(102) 

Having differentiated the covariance matrix in terms of all the component signals of 

the grid, the gradient G{A(j>m) is computed using (81) where dCmi/dA^ is defined by 

one of equations (92), (93), (96), or (97) depending on the location of the signal in the 

grid. 

Similarly, the gradient G{A^m) is also computed using (81) where dCmi/dA^m is 

computed using one of equations (98), (99), (100), or (102) depending on the location of 

the signal in the grid. 
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4.4.2    The Raised-Cosine Elliptical Grid 

Figure 3 shows both the general shape of an elliptical grid using a raised-cosine taper 

function and the arrangement of point-source signals in one row of the grid (the arrange- 

ment in a column is the same). With the taper function going to zero at the edges of the 

region, no special edge spacings are required to introduce or remove new signals. However, 

for smaller spread values it becomes necessary to reduce the grid spacings so that at least 

three point-source signals are used in the center row or center column of the grid. Other- 

wise the resultant signal could end up being composed of a signal point-source signal in 

each row and/or column with no way to compute the spread gradient. Additionally, for 

signals where the spread region drops below the horizon, or above vertical, modifications 
are required which are discussed in Section 4.5. 

For convenience, it will be initially assumed that both the azimuth and elevation spread 

values (A^ and A^) are large enough that the spacing parameters d$ and d^ can be chosen 

to be some constant fraction of the horizontal and vertical beamwidths of the antenna 

array. The case involving smaller spread values will then be dealt with afterwards. 

The taper function for the elliptical grid is defined by 

' Cm(l + cos(27rrmi))       if rmi < 0.5 

Pmi — * (103) 

0 otherwise 

where ßmi is used as'a shorthand way of writing /?m($mi,#mi), cm is a normalization 
factor so that J^iJi ßmi = 1 and can be determined from 

°™   =   ^MiTTT To ^ (104) Efc=si(l + cos(27rrmfc)) 

and rmi is the normalized distance from the center of the grid expressed mathematically 

as 

- = ViOT = ^(^)2
+(^)2.       m 

To avoid unnecessary computations, the grid is only generated in the elliptical region 

defined by rmi < \. The resultant elliptical grid then measures A^,m along the azimuth 

axis from left to right and A^m along the elevation axis from top to bottom (or slightly 

less than these dimensions depending on the spacing parameters).  Additionally, if the 
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Azimuth 

(a) 

k   P(°.°) 

A. Ja. 
♦-2d, 

Azimuth Angle 

♦+2ri 

(b) 

Figure 3: Geometry of the raised-cosine elliptical grid showing (a) the general shape, 
and (b) an example of the position and power of the point-source signals making up one 
row of a grid. 
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grid extends below 0° or above 90° in elevation (which is an unrealistic condition for the 

kinds of signals being dealt with in this report), these parts of the grid are removed. 

Based on the fixed spacing for all the signals used in the grid, the intermediate result 

(91) found for the rectangular grid is also appropriate for the elliptical grid and, after 
making the appropriate modifications, is shown here as 

dCmi   -   dß™~  .pi? /infix 
dAm    ~   dAm 

mi ™- {106) 

Using the definition for ßmi for the elliptical grid, and letting Am = A^ then 

dßmi 47T2Cm   /   2       . ^ . \ 
äÄ"   =   "Ä    $mi sinc(2rmi) - ßmi £ &mk sinc(2r-mfc) (107) 

and the azimuth spread gradient (106) becomes 

dCmi 4^2Cm ( Mg \ 
-QKT   

=   "Ä7"   ®2™ sinc(2r™) - A»»' E &mk sinc(2rmfe)   emie* (108) 

where   sinc(x) = sin(7rx)/(7ra;)   and   sinc(0) = 1 .  Letting Am = A^ the equivalent 
elevation spread gradient becomes 

dCmi 4iTr2Cm ( M9 \ 
dX^   =   ~Ä~   ^sinc(2rmi)_/5miE^mA;sinc(2rm,)) emie^. (109) 

Wm tfim      \ k=1 J 

These last two expressions can then be substituted back into (81) to compute the gradients 
G(A<t>J and G(AiPm), respectively. 

If the azimuth and/or elevation spread value is reduced sufficiently, the above approach 

fails because the number of rows and/or columns in the grid is reduced to one. For 

example, if the spread A^ < 2^ in Figure 3, then there would be a single point-source 

signal at (j) in each row of the grid. At this point, then, the corresponding value of ßmi will 

not change as the given spread is further reduced so that the corresponding differential 
becomes zero. This condition occurs when 

A*m < 2<^m (110) 

and/or 

^m < 2^m (Hi) 
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where d$m and d^m are fixed values. 

To overcome this difficulty, modeling of the spread signal is changed so that the central 

row and column contain at least three point-source signals. This is done by using the 

adjustable azimuth grid spacing 

1 
d'<t>m  =   4 A*n for A0m < 4^m (112) 

instead of the fixed spacing d^, and using the adjustable elevation grid spacing 

d\m = 4An for A^m < Ad, i>r, (113) 

instead of the fixed spacing d^m. An example for the case of narrow spreading in azimuth 

is shown in Figure 4. The conditions placed on d^m and d'^m in the preceding expressions 

have been chosen to ensure continuity between the narrow spread model and the wide 

spread model since for A^m = 4c^m and/or A^m = 4c^m, the two models are identical. 

\c * 

ß(0,0) 

r* 

.....-■■-A"--..... 

f f 
Q-AJ4 

9 
♦+4,/4 

Azimuth Angle 

Figure 4: Position of point-source signals in a raised-cosine elliptical grid used for narrow 
spread signals. 

For the narrow spread model, the angles of the outer point-source signals are always in 

the same relative position with respect to the central point-source and the spread angle, 

so that the corresponding values of ßmi become constant. For example, assuming that 

A^m < 4d<t, then the values of (j)mi are chosen from the set 

{<j>m -f1,    <Pm,    4>m + —f^}- (114) 

Since $mi = (0m - ^mi)/A^m, then the corresponding values of $m; are chosen from the 
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set 
r     1      n      li 
{"4-  °'  4> (115) 

which is independent of A<pm. Based on the relationship between $m^ and ßm{ expressed in 

(103)-(105), then ßmi will also be independent of the azimuth spread. Similarly, assuming 

that A^,m < 4e^ then the values of (f>mi are chosen from the set 

{Ifcn-^S    0,    iPrn-^}. (116) 

Since \?mj = (tpm — ipmi)/A^m, the resultant values of \&m; are also given by (115), and as 

before, this leads to ßm{ being independent of the elevation spread. 

Deriving the gradient for the narrow spread case is very similar to deriving the bearing 

gradient since only the point-source signal directions are affected by changes in spread, 

and not the value of the taper function ßmi. Hence using the results from the bearing 

gradient case, then for A^,m < Ad^ the azimuth spread gradient is then given by 

dC 
dA, 

M„ 

— ^m / j Pmi V 
de 

i=i dA 
mi    JJ    , 

6m,- "T 671 -mi   *  ^m« 
deH- 
dA, ) (117) 

where 
f -iA   e 

den 

dAd 

iA  -e  • 

for $mi = -J 

for $mi = 0 

for $mi = \ 

For A^m < Adjp the elevation spread gradient is given by 

(118) 

dC 
dA^„ 

Mo 

— &m / j Pmi v 
de mi     JJ 

i=l dA, ^mi ~*~ ^mi 
deH uc

mt 

dA^ 
(119) 

where 
f -±B   e 4 L,micmi 

de  ■ 

d~KT = < o 

±B   e A 
1-tmicmi 

for <ami = -\ 

for #„ 

for tf mi = i 

(120) 

/^'-'mi^-mi ""■    ^mi — 4 

The matrices Ami and Bmi were defined previously by (73) and (76), respectively, in 
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Section 4.3. 

4.5    Out-of-Bounds Signals 

This section deals with the problem of modeling the spread region with a planar array, 

when part of the grid is adjusted so that it falls below the horizon or above vertical (out- 

of-bounds). Without compensation, the out-of-bound signals are folded back in-bounds 

corrupting the shape of the signal model spread region (i.e., grid signals below the horizon 

act as if the elevation angle is —ipmi, while signals above the vertical act as if the elevation 

angle is Vw — 90°- The compensation required depends on the taper function used. 

4.5.1    The Uniform Rectangular Grid 

For the uniform rectangular taper function, the problem of out-of-bound grid signals 

can be easily handled by readjusting the elevation angle and spread parameters. For 

spreading below the horizon (ipm — A^m /2 < 0°) the modifications are 

1L = lw>m + ^r) (i2i) 

A^m   =   2^m (122) 

where the ip'm and A'^,m are the updated values, and for spreading above vertical (ipm — 

A^m/2 > 90°) the modifications are 

tin     =     l&m-^)+M° (123) 

A^m   =   2(90°-^). (124) 

These readjustments avoid the need to derive expression (77) since the readjustment can 

be done without affecting the shape or distribution of the spread region. 
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4.5.2    The Raised-Cosine Elliptical Grid 

For the raised-cosine elliptical taper function things are not as easily handled as for 

the uniform rectangular taper function due to its nonuniform nature. Instead the part of 

the grid that is out-of-bounds is first removed. However, this leads to discontinuities in 

the gradient functions when grid signals are added or deleted in this manner. To handle 

this transition, a new row of grid signals are introduced right at the boundary as shown 

in Figure 5. The power of these boundary signals are determined in much the same way 

as done for the edge signals of the uniform rectangular grid. The model covariance matrix 

is then formed using 

M 

C = a2^ + Y, sm  EA^v4 + E/WW& 
m=l 

(125) 

where the shorthand form ßmi is again used for An($mx,*m/), and the summation with 

respect to the index j is assumed to include all boundary grid signals while the summation 

with respect to the index k is assumed to include all other grid signals which are within 

the boundaries. To remain consistent throughout the rest of this section, the indices j and 

f will be used to denote a parameter associated with the grid signals on the boundary, 

and k and k' will be used to denote a parameter associated with grid signals inside the 

boundaries. It is also assumed that the elevation spread region is narrow enough that the 

removed grid rows are either all below the horizon or all above vertical, but not both. 

te   ß(o.o) -3H a 

A. 
V-2dy v-dy   o V+d V+2d 

Elevation Angle 

Figure 5: Position of point-source signals in a raised-cosine elliptical grid where the 
spread region goes below the horizon. Dotted arrows show angular positions of rows that 
have been removed. 

The value of the taper function for ßmk is computed in the same way as before, namely, 

ßmk = Cm(l + cos 27rrmk) (126) 
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while the adjusted value of the taper function ßmj is computed using 

On 

dm 
ßmj = Cm(l + -j^)(l + COS 2'Kprnj) (127) 

where dm is the grid elevation spacing parameter defined as 

f d^m for Atm > Ad^ 

dm = ' (128) 

I   4^V» for A^m < 4d, 'V>n 

and dm is the angular elevation difference between the boundary and the first deleted grid 

row as shown in Figure 5. More specifically, it is defined according to 

Otm = < 

Ipr, 

( 90° - ^ 

below the horizon 

above vertical 

(129) 

where tpmv is defined as the elevation angle of the removed (or virtual) row of grid signals 

closest too, but below the horizon or above vertical (the corresponding elevation angles 

ipmj are either 0° or 90°). The normalizing constant then becomes 

Cm OLr, 
^(l + cos27rrmfe)   +   (1 + -f±) 53(1 + cos 2npmjl) 

(130) 

d„ 

The definition for rmk is given by (105) and the definition of pmj is the same as rmk except 

that the elevation angle used in this case is ipmv (instead of ipmj), so the definition becomes 

Pmi   =   V^TTS   =   ^ (**£*)   + (*£»*) . (13!) 

Additionally, Ymj is used in place of \&mj- in the above expression to indicate the modifi- 

cation to the elevation angle. 

Using these new definitions, the calculation of the noise, signal power, azimuth bearing, 

and azimuth spread gradients proceed in the same manner as before. The gradients for 

the elevation bearing and elevation spread, however, need modification. 

Starting with the elevation bearing, and given the modifications made to the signal 

38 



grid, the gradient given by (77) can be expressed as 

G«w)   =   »„trace (pE^e^ 

+ P£ 
k 

dßmk^        H emk^mk + ßmk(Bmkemkemk - emkemkBmk) 

Performing the derivative operations indicated then 

=   -^(1 + cos27rpmi) - -^(1 + cos27rpm,)(l + Ä £(1 + COS27TPmJ0 
am 0"m Urn      -•/ 

(132) 

3' 
J-—-(1-ZM (133) 

Ö/3mJfc 0Cm 
-07—   =   ^—(l + cos27rrmJt) 

IV 
d, 

±C2 

(-l)-j^(l + cos27rrmfc) £(1 + cos 2^^/) 
i' 

=   (-«T^E/W (134) 
J' 

where given a choice, "+" is used for below horizon conditions and "-" is used for above 

vertical conditions. The elevation gradient expressed in (132) can now be computed by 
substituting (133) and (134) for the derivatives. 

Before continuing on to the spread gradients, it is useful to distinguish between the 

two separate cases, namely modeling signals with a wide elevation spread where 

A„,m > 4e^m, (135) 

and modeling signals with a narrow elevation spread where 

^m < 4e^m- (136) 
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The main difference is that in the wide case the grid elevation spacing is fixed while in 

the narrow case the grid elevation spacing changes as a function of the elevation spread 

angle (see (128)). Since these differences lead to different derivations, the two cases are 
handled separately. 

Starting with the wide elevation spread case, the gradient is given by 

G(A*J   =   -mtracefpE^-e^e^ + PE^-e^eg»). (137) 

The derivatives of ßmj and ßmk are practically identical to the corresponding derivative 

for ßmi in the previous section (107) except for minor modifications to account for the 

boundary signals. With these modifications, then 

VPmj                     47T Cm   I     2    /-.    ,    ara \    ■      n 0     /■,    ,    am \ v^ *<r2        •      n 
~äÄ~       =       ~A      T"WC1 + T~> SmC 2pmi    "    Ml + -7—) 22 Tmj' SmC 2Pmf 

- ßmj^lk smc2rmk) (138) 
k ) 

dßmk 47T Cm   I    -       . Cim s ^ „2        •      o 
ÖÄ—     =     "A    ^mfc sinc2rmfc   -   ßmk(l + —) 2^Tmjl smc2rmj, 

- /5mfcE*mJt sinc2rmfc,) . (139) 
k' J 

The gradient for the azimuth spread (wide case) can then be computed by substituting 

(138) and (139) for the appropriate derivatives in (137). 

For the narrow azimuth spread case the gradient is given by 

G(A*J   =   *mtracelP£|^emj<. 

+ P£ 
dßmk        H   , a   / demk   H degk ^ 
rjA       Cmk^mk "•" PmH ~A       emfc "*" e™fc"öÄ       / (140) 

where demk/dA^m is defined by (120).  Using the fact that tpmj = ipm - dL   for below 
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horizon signals, ipmj = ipm + c^,m for above vertical signals, and d'^m = A^m/A then 

ßmj = Cm -—(1 + cos 2irrmj) (141) 

and 

Cm   =   — 4^  (142) 
2^(1 + COS 2-KTmk)    +    -r-^^(l +cos 27rrmi0 

where 

k A4>* 

ipm below the horizon 

(143) 

90° — ipm       above vertical 

The differentiation of ßmj then proceeds as 

dA^ dA^ A«,m {i + C0SZwVmj)        ^ A%m (1 + C0S 27rrmj) 

.-^(1 + cos 2irrmj) £(1 + cos 27rrmf)   -   -£ 
I'm j' ^Vm 

- xr^^mi' " AT' (144) 

In a similar manner, the differentiation of ßmk yields 

dÄ7~ = ÄT^ßmj'- (145) 

Based on the derivations here and those in the previous section, the gradient for the 

azimuth spread (narrow case) can be computed from (140) by substituting (120), (144), 
and (145) as appropriate. 
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5.0    SML ALGORITHM SUMMARY 

The following two sections summarize the main SML routine and the gradient ascent 

routine. The gradient ascent routine was summarized separately owing to its complexity, 

otherwise the resultant combined routine would have been more difficult to follow. 

In the main SML routine, two different constant values are introduced which affect 

algorithm performance. The first is a 30% threshold level used to determine whether a 

maximum value found for the function Sm(<f)m, ipm) is significant with respect to the global 

maximum value. A higher value could be used to reduce the number of maximum values 

which exceed this threshold, however through numerous simulations it has been found 

that this reduces accuracy for conditions where angular separations between signals are a 

beamwidth or less. 

The second constant value is the grid spacing which is chosen as 30% of the array 

beamwidth. The reasons for this choice are discussed later in Section 6.1. 

5.1    Main SML Routine 

1. Compute the data covariance matrix using (11) 

R = ^zXXH. (146) 
K 

2. Set the stage counter index: m = 0. 

3. Estimate the normalized noise covariance matrix based on using theoretical con- 

siderations or practical measurements. For example, the theoretical covariance for 

white Gaussian noise is found according to (18) 

C, = -^Itf. (147) 

Alternatively, if measurements of noise only data are available then the normalized 

noise covariance matrix is given by (19) 

c' = i^xx*)- (148) 
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4. For the moment, assume the data contains no signals and estimate the noise power 
using (35) 

a2 = -trace(RC-1), (149) 

then generate the initial model covariance matrix using (32) with C = C0 giving 

Co = o Cn (150) 

5. Increment the index: m = m + 1. 

6. Create a list of candidate azimuth and elevation bearings (within the angular ranges 

of interest) yielding local maximum values within 30% of the global maximum of 

the function defined by (48) where CQ = Cm_i, or 

C   (A     «/.   \ _ em^m-l-"^m-len (151) 

The matrix Cm_i represents the model covariance matrix generated at stage m -1, 
and the array response or steering vector is given by (15) 

Cm — 
VN 

e3 ^x (X° sin ^m C0S I'm +VO COS 4>m COS Vm ) 

gj X (Xl Sin 0"> C0S ^>rn +2/1 COS <f>m COS $m ) 

eJ-X-(XN-l Sin<l>m COS Ipm+VN-l COS<j>m COS1pm) 

(152) 

7. For each list entry containing candidate signal bearings, include the corresponding 

signal power calculated using(40), (44), and (47), or equivalently 

öm     
cmv^m-lcm 

and the spread values 

A^ = A,*   = 0. 

(153) 

(154) 

Also include all the signal and noise model parameters from the optimum model 

computed at stage m-1. Hence each list entry will contain the initial estimates for 

a possible solution involving one new signal, m-1 previously established signals, 
and noise. 

8. If for any list entry the new candidate signal bearing coincides (collides) with the 
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scattering region of any of the established signals, perform the following: 

(a) create a new list entry by repeating all the parameters from the colliding entry; 

(b) reset the signal power of all colliding signals in the new entry to the average 

signal power of these same signals; and 

(c) set the azimuth and elevation spread values of all colliding signals to zero. 

9. Refine the noise and signal parameter values of each list entry using the gradient 

ascent technique. If the uniform rectangular taper function is employed, make 

adjustments to the appropriate parameters if out-of-bound conditions are detected 

as outlined in Section 4.5.1. 

10. Update the model covariance matrix Cm associated with each list entry according 

to the current model parameter refinements using either (31) 

Cm = a2C7? + 5>n£/?n($„i,#ni)eme* (155) 
n=l       i=l 

where the values of ßn($ni, \Pnj) are computed as discussed in Section 4.4, or if the 

raised-cosine elliptical taper function is employed and out-of-bounds conditions are 
detected then use (125) 

Cm = a2Cv + 53 Sn I Y,ßnienienj    +    53 ßnk^nk^nk (156) 
n=l        \ j k ) 

where ßnj and ßnk are computed as discussed in Section 4.5.2. 

11. Also compute the cost function value of the refined model for each list entry using 
(10) with C = Cm which yields 

Lm = - ln(det Cm) - trace(RC-x). (157) 

Note that if the number of list entries is excessive, pruning of this list to improve 

computational speed can be accomplished by performing Steps 9-11 using only 20 

iterations of the gradient ascent technique and then retaining the list entries cor- 

responding to the four highest cost values. Steps 9-11 are then repeated for the 

four remaining entries using the full number of iterations for the gradient ascent 

technique. 
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12. Select the model parameters in the list corresponding to the highest cost function 

value. These are considered the optimum model parameters estimates for stage m. 

13. Repeat Steps 5-13 as long as m < M. 

14. Output the model parameter results from stage M. 

5.2    Gradient Ascent Routine 

1. Save the value of the cost function for the current unrefined model: Lmax = Lm. 

2. Initialize the gradient ascent loop parameters according to the following 

loop = 0 

to, = £ 

/*<* = £ 

Hk = f 

N>k = f 

»*»   =   * 

where k = l,...,m and f is the initial step size. A suggested approach to determine 

an appropriate initial step size is to compute the initial gradients of the azimuth and 

elevation bearings and the initial gradients of the bearing spreads for all signals in the 

current model using Steps 4-5. The maximum absolute value gmax is selected from 

these gradients and the initial step size is then computed using £ = 0.05<^6u;/yma:c 

where <£6u, is the 3 dB azimuth beamwidth of the antenna array. This restricts the 

initial adjustment of the bearing and spread parameters to no more than 5% of the 
azimuth beamwidth. 

3. Increment the loop counter: loop = loop + 1. 

4. Compute the quantity (64) 

P = (C-1R-I)C-1. (158) 
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5. Compute the gradients 

G{a2)   =   trace(PC„) (159) 

Ma 

G(sk)   =   trace(P£Ä(*w,**i)e*ie£) (160) 
i=l 

Mg 

G(4>k)   =   sktra,ce(P^ßk($ki,'$ki)(Akiekiete-ekie%iAki)) (161) 
i=l 

Mg > 

G(Vfe)   =   sktiace(P^ßk($ki,*ki)(pkiekiß%i-ekie%Bki)) (162) 
i=i 

(from (68), (70), (74), and (75), respectively) for k = l,...,ra and where Aki and 

Bfcj are diagonal matrices defined by (73) and (76) respectively, which are repeated 

here as 

diag(Afcj)   =   j 
2TT 

x0 cos 4>ki cos tpki - y0 sin <f>ki cos ipki 

Xi cos <f>ki cos tpki - 2/i sin 4>ki cos Vfe 

XJV_I cos 4>ki cos 7/»jbi - yiv-i sin <f>ki cos ^ 

(163) 

diag(Bjfci) 
.2TT 

rr0 sin fyu sin ^fci + y0 cos (f>ki sin T/;*,- 

Zi sin <ßki sin V^i + V\ cos 0fci sin ^ 

xN-i sin 0fcj sin ^fci + VN-\ COS <fe sin tpki 

(164) 

Since the gradients for G(A^,k) and G(A^) cannot be easily summarized in one 

line, refer to Section 4.4. Additionally, for out-of-bounds conditions (which affects 

G(ipk) and G(A^k)), refer to Section 4.5. 

6. Update the model parameters by adapting (54) as appropriate and letting i = loop 

to get 

a2 -» a2 + fj,vG(a2) 

Sk -> sk + /jiSkG(sk) 

4>k   ->   <t>k + V>4kG(<j>k) 

(165) 

(166) 

(167) 
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ipk   ->   1>k + mkG(il;k) (168) 

^   -+   A^+M^G(A0J (169) 
A^   ->   ^k+^G(Ai!k) (170) 

for fc = 1,..., m. If the uniform-rectangular taper function is used and out-of-bounds 
conditions are detected, adjust the appropriate model parameters as outlined in 
Section 4.5.1. 

7. Compute the model covariance matrix using (31) 

m Mg 

Cm = Cr2C„ + £ Sn J2 ßn($ni, ttmKieS (171) 
n=l       i=l 

where the values of ßn(^ni,^ni) and the corresponding grid of point-source sig- 
nals are computed as discussed in Section 4.4 (see equations (82)-(90) for a rect- 
angular grid and equations (103)-(105) for an elliptical grid) Alternatively, if the 
raised-cosine elliptical taper function is employed and out-of-bounds conditions are 
detected then using (125) 

Cm = a2Cr, + jrsnl'Eßnjenje%   +   £/3nJfcenfce* ) (172) 
«=1        \ 3 k J 

where ßnj, ßnk and the corresponding grid of point-source signals are computed 
as discussed in Section 4.5.2 (see equations (126)-(131)). The grid spacing values 
are chosen as d^,m = O.S(pbw and c^m = 0.3Vw, where ipbw is the 3 dB elevation 
beamwidth of the antenna array. 

8. Update the cost function using (10) 

Lm = - ln(det Cm) - trace(RC~1). (173) 

9. If the new cost value is less than the old cost value (Lm < Lmax) then: 

(a) reset the model parameters and the model covariance matrix to their original 
values at the beginning of the loop; 

(b) reduce all the step size parameters by a factor of 3; and 

(c) if loop < 200 go to Step 3, otherwise continue on to Step 10. 
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Otherwise if (Lm > Lmax) then: 

(a) save the new cost value: Lmax = Lm; 

(b) increase all step size values by a factor of 1.2; 

(c) compare all gradient values to the corresponding value from the previous loop 

and if there has been a sign change (negative to positive or vice versa) decrease 

the associated step size value by a factor of 3; and 

(d) if any of the azimuth or elevation bearings changed more than 5 x 10-6 degrees 

in Step 8 and loop < 200, then go to Step 3, otherwise continue on to Step 10. 

10. If loop < 5 , then reinitialize the step size parameters (using the same method as 

in Step 2) and go to step 3. Otherwise continue on to the next step. 

11. Output the final model parameter results. 
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6.0    SML CONTROL PARAMETER SETTINGS 

In the previous sections, the SML algorithm has been described in some detail. A few 

of the more practical considerations have not yet been discussed adequately. This includes 

the control parameter settings for the grid spacing to be used for the signal model, the 

amount of data that should be collected to form the data covariance matrix, the choice 

of the taper function, and the assumed number of signals. 

To investigate these control parameters, numerical simulations were carried out to 

determine their most appropriate settings or range of settings. In the simulations, the 

signals received at the antenna array consisted of a single point-source signal, representing 

a signal from the desired great circle direction, plus two stronger spread signals, represent- 

ing signals off the great circle bearing scattered by closely following ionospheric patches. 

The spread signals were modeled using a large number of point-source signals spread with 

random amplitudes, phases, and bearings. Unless otherwise specified, the spread signals 

were set up to have an elliptical shape with a raised-cosine power distribution. The spread 

signals were also uncorrelated from sample to sample by computing every sample using 

different random values. Ground reflections and local site multipath effects were not in- 

cluded. Noise was uncorrelated (both spatially and temporally) white Gaussian noise. 

The relevant parameters, as measured at the receiver, are given in Table 1. 

Table 1: Simulation Signal Parameters 

Signal <t> i> A* A^ Power 
1 50° 10° 0° 0° -20 dB 
2 180° 30° 30° 10° OdB 
3 210° 25° 15° 5° OdB 

noise - - - - -15 dB 

The antenna array geometry was as shown in Figure 6. This geometry was investigated 

in [12] and [13] and found to have very good characteristics for direction finding. Assuming 

an ideal free space response, for a given signal bearing the 3 dB azimuth beamwidth of 

the array is relatively constant with respect to the azimuth bearing but varies with the 
elevation bearing according to 

(f>Bw = 7.8°/1 cosxp\     for \ip\ < 90° (174) 
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Figure 6: Three dimensional view of the antenna array. Each grid square has a dimension 
of 1A x 1A. 
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Figure 7: Antenna array elevation beamwidth as a function of elevation comparing the 
simulated response (solid line) with the sin-1^ predicted response (dashed line). 
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for the array size shown. Note that measuring the azimuth beamwidth at or near ip = 90° 

is effectively meaningless. The 3 dB elevation beamwidth is given by 

ipBW = 7.8°/| sin V|     for \ij>\ > 30°. (175) 

For elevation bearings below 30° the 3dB beamwidth is somewhat more complicated as 

shown in Figure 7. The failure of the above expression at the lower elevation angles is 

due to the distortion of the main lobe in the antenna pattern at the elevation angle ip 

by the reflection of this lobe at the elevation angle —ip. For example a 2-dimensional 

x-y array, using the free space assumptions, has a symmetrical gain pattern for elevation 

angles above and below the horizon, i.e., a main lobe and a reflection lobe. At low signal 

elevations, the main and reflection lobes begin to merge. Using the 3 dB criteria, the 

lobes are considered merged when the minimum gain between the two lobes is greater 

than -3 dB the maximum gain. For the array configuration shown this occurs at 21.2°. 

At this point, the beamwidth effectively doubles. For even lower signal elevations the 

merged lobes move closer together so the beamwidth actually decreases. 

When processing the simulated data using the SML algorithm, the default values for 

the parameters under investigation (unless otherwise specified) were: a grid spacing of 

0.3 times the 3 dB beamwidth of the antenna array {d^ = 0.3(f>Bw and d$ = 0.3i/>Bw); 

a data block size of K = 100 samples; the raised-cosine elliptical taper function; and an 

assumed number of signals equal to the actual number of signals. 

The processed results were quantified in two ways. The first was the measurement of 

the failure rate of signal bearing estimates, and the second was the measurement of the 

accuracy of the successful estimates. In this report, a bearing estimate was considered 

to be a failure if it deviated from the true signal bearing by more than half the array 

beamwidth (taking into account both the azimuth and elevation beamwidths). Accu- 

racy was determined by calculating the root-mean-squared (RMS) error of the estimates 
according to 

RMS Error  =   ^1 "£(L - <t>m)2 + ft. - ifc»)s (176) 

where the summation was performed for all H successful estimates of signal m. Other 

specifics of the simulations and processing were dependent on the aspect of the SML 

algorithm being investigated, and are discussed in the following three sections. 
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6.1    Signal Model Grid Spacing 

The angular spacing between point-source signals used in the signal model grid must 

be sufficiently narrow for the model to adequately represent a real spread signal. However, 

making this spacing too narrow can unnecessarily increase the number of computations 

involved in generating these models (the increase in computations is inversely proportional 

to the square of the spacing). Hence it is useful to determine the widest spacing that can 

be used before introducing too much error due to the poorer modeling that results. 

Since the resolving power of any antenna array is a function of the beamwidth of the 

array, a natural choice would be to use a spacing value which is some fraction of the 

beamwidth. To evaluate the effect of changing the azimuth and elevation grid spacing 

values, a series of 100 simulations were carried out generating 100 sets of data. The data 

set was then processed using grid spacings which were varied from 0.1 beamwidths up to 

1.0 beamwidths in 0.1 beamwidth increments in both azimuth and elevation relative to 

the appropriate azimuth and elevation beamwidth. The results are shown in Figure 8. 

In generating Figure 8 the true bearings were taken to be those estimated using the 

0.1 beamwidth spacing instead of the actual bearings given in Table 1. This is the only 
occasion that it was done this way. The intent was to find the widest spacing that yielded 

the same results (or reasonably close to the same results) as if the signal model had 
been generated using infinitesimally narrow spacings. A spacing of 0.1 beamwidths was 

considered sufficiently narrow for these purposes. Note also that perturbations observed 

in the plotted results (relative to the general trends) are almost certainly statistical effects 

introduced by using finite (versus infinite) data sets. 

Examining the relative failure rate, it remains low up until 0.8 beamwidths. (Using 

the actual signal bearings from Table 1, instead of the values estimated for a spacing 

of 0.1 beamwidths, the failure rate varies from 18% to 20% for the same beamwidths). 

Above 0.8 beamwidths the increase is more dramatic. From these results it would appear 

that spacings of up to 0.8 beamwidths could be used with reasonable performance still 

achieved. For the rest of the results provided in this report a more conservative spacing 

of 0.3 beamwidths was used. 
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Figure 8: Effect of grid spacing on SML estimation performance relative to the perfor- 
mance for a grid spacing of 0.1 beamwidths. The plots show (a) the relative failure rate 
for each of the three bearing estimates, and (b) the corresponding relative accuracy of the 
successful estimates. The solid lines, dashed lines, and dash-dot lines correspond to the 
results for the point-source signal at <j) = 50°, the spread-source signal at <j> = 180°, and 
the spread-source signal at <j) = 210°, respectively. 

53 



6.2    Data Block Size 

In the assessment of the effects of ionospheric scattering patches, it has been found 

that signals arriving from one part of a scattering region appear to be uncorrelated with 

signals arriving from any other part of the scattering region. To take advantage of this 

requires collecting enough samples of sensor data over a long enough time period that the 

signals become reasonably decorrelated. Assuming that the samples are taken at intervals 

which exceed the correlation time constant of the data, then the question becomes: how 

many samples are enough? 

To answer this question, a series of simulation data sets were produced. Each set 

consisted of 100 trials with a given number of sensor samples (or block size) K collected 

for each trial, which was varied from set to set. To account for the most obvious effects of 

averaging inherent in processing larger block sizes (which leads to an equivalent increase 

or processing gain of lOlogif dB in the SNR), the noise level was also adjusted according 
to 

Noise Level  =   lOlogÜf   -   35 dB. (177) 

This noise level compensation was done to avoid masking other effects which might not 

otherwise be apparent. The results are shown in Figure 9. 

Inspection of the failure rate reveals that it is high for very small block sizes (e.g., 

K = 1,2,3) but decreases rapidly to zero as the block size increases. The accuracy results 

are interesting. Ignoring the effects of simple averaging, then for the point-source signal, 

there is no significant change in accuracy as the block size increases since it can be well 

modeled, even for a single sample. Additionally it is already spatially decorrelated from 

the other two signals given the angular separation of several beamwidths. The bearing 

estimation accuracy for the spread signals decreases at a relatively constant rate with 

a reduction in the error by a factor of 10 as the block size is increased from 1 to 100. 

The improvement is a reflection of the fact that the larger block sizes enhance the effects 

of decorrelation on which the signal modeling relies. Given that the spread signals are 

ten times greater in power than the point-source signal, this improvement would only be 

expected to continue until the RMS errors were on the order of ten times less than that 
of the point-source. 

This upper limit on accuracy as a function of block size is confirmed in the simulation 

results shown in Figure 10. In this case only the two spread signals were simulated and 

the noise level was 15 dB higher than specified in (177). Comparing the RMS error results 
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Figure 9: Effect of the number of data samples (block size) on SML estimation perfor- 
mance showing (a) the failure rate for each of the three bearing estimates, and (b) the 
relative accuracy of the successful estimates. The solid lines, dashed lines, and dash-dot 
lines represent the point-source signal at <f> = 50°, the spread-source signal at <j) — 180°, 
and the spread-source signal at 4> = 210°, respectively. Note that the effect of simple 
averaging as a function of block size has been removed. 
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Figure 10: Effect of the number of data samples (block size) on the estimation of the 
spread signals for a lower SNR (15 dB lower than in the previous example) showing (a) 
the failure rate for the two spread signal bearing estimates, and (b) the relative accuracy 
of the successful estimates. The dashed and dash-dot lines represent the spread-source 
signal at <f) = 180° and the spread-source signal at 0 = 210°, respectively. Note that the 
effect of simple averaging as a function of block size has been removed. 
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to those in Figure 9(a), below K = 12 the results are very similar despite the difference 

in SNR. Above this, the RMS error plots in Figure 10 flattens out as suggested already, 

indicating that sufficient decorrelation has occurred for the spread signals to be accurately 

modeled. For these higher values of K, the dominant error mechanism is noise. 

The total effect of increasing the block size on RMS bearing error can be determined 

by including the effects of simple averaging. The effect of averaging on accuracy is found 

by considering the equivalent increase in SNR and then utilizing the results from Section 

7.1 to relate this to the RMS bearing error. Combining this with the results observed 

here, then the block size can be related to the RMS error e according to 

e   oc   < 
K for small K 

(178) 
^ y/K       for large K 

where a constant SNR is assumed. In the above expression, small K means that not 

enough samples are available for sufficient signal decorrelation, while large K means there 

are enough samples and noise effects dominate. For a point-source signal the delineation 
between small and large is K = 1. 

Based on the failure rate results, K = N (number of samples equal to the number of 

sensors) is a reasonable lower limit for the number of samples. A more suitable choice 

would be to select a value of K large enough that sufficient signal decorrelation has 

occurred, although this would involve a careful assessment of the expected signal envi- 

ronment in terms of the expected signal SNR's and spreading values. For the rest of the 
simulations that follow in this report K = 100 was deemed suitable. 

One final observation is that wider spatial spreading of the received signal results in 

poorer RMS accuracy of the bearing estimate (everything else being equal). This effect 
is discussed in more detail in Section 7.2 . 

6.3    Taper Function 

The choice of taper function is ideally based on the shape of the ionospheric scattering 

region and the density of signal power across this region. However, since the ionosphere is 

highly dynamic, it is likely that there will be differences in these characteristics between 

different scattering regions, or even differences for the same region observed at different 
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periods of time. 

To investigate the effect of mismatches between the assumed signal model and the 

actual signal spreading distribution, three simulation data sets were produced, each con- 

sisting of 100 trials. The first data set was produced using the signal parameters listed in 

Table 1 and using the raised-cosine elliptical power distribution to generate the simulated 

signals. The second data set was produced using the signal parameters listed below in 

Table 2 and used the uniform rectangular power distribution to generate the simulated 

signals. The third data set was produced also using the signal parameters listed below 

in Table 2, but using the asymmetric power distribution shown in Figure 11 to generate 

the simulated signals. For all simulations the SNR was set to -12 dB (lowered from the 

default value of -15 dB to increase the probability of failures). 

Table 2: Simulation Signal Parameters for Uniform Rectangular and Asymmetric Spread 
Distributions 

Signal 4> tf A* A^ Power 
1 50° 10° 0° 0° -20 dB 
2 180° 30° 18.9° 6.3° OdB 
3 210° 25° 9.5° 3.2° OdB 

noise - - - - -12 dB 

To simplify the comparison of results, the spread values in Table 2 were chosen so that 

processing any of the data sets using the same SML algorithm variant produces nearly the 

same mean spread values. For example, using the SML algorithm with the raised-cosine 

elliptical taper function (denoted SML(e)) produced mean spread values that were the 

same as those listed in Table 1 for all three data sets. This means that the spread results 

were correct for the first data set but were overestimated for the other two data sets 

the results due to the modeling mismatch. Similarly, using the SML algorithm with the 

uniform rectangular taper function (denoted SML(u)) produced mean spread values that 

were the same as those listed in Table 2 for all three data sets. In this case the spread 

results for the first data set were underestimated while the results for the other two data 
sets the results were correct. 

To process the three data sets, both the SML(e) and SML(u) algorithm variant 

were employed. For both variants grid spacings of d^m = O.lcßsw and d$m = O.ltpBw 

beamwidths were used because it was found that for spacings of 0.3 beamwidths the failure 

rate significantly increased when using SML(u) (but not SML(e)). Table 3 shows the over- 

all RMS bearing error and failure results for each signal. The results are shown in order, 
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Figure 11: Asymmetric power distribution used for spread signal simulations, 

that is, the corresponding bearing angles are 0 = (50°, 180°, 210°) and iß - (10°, 30°, 25°). 

Table 3: Effect of Taper Function on SML Performance 

Signal Type 
SML(e) Results SML(u) Results 

RMS Errors Failure Rate RMS Errors Failure Rate 
Elliptical 
Uniform 

Asymmetric 

(0.50°, 0.20°, 0.14°) 
(0.41°, 0.17°, 0.13°) 
(0.42°, 0.95°, 0.53°) 

(1%, 0%, 0%) 
(2%, 0%, 0%) 
(1%, 0%, 0%) 

(0.54°, 0.20°, 0.15°) 
(0.42°, 0.16°, 0.12°) 
(0.44°, 0.77°, 0.47°) 

(5%, 0%, 0%) 
(2%, 0%, 0%) 
(2%, 0%, 0%) 

Examining the results for the point-source (at <f> = 50°), SML(e) performed better 
than SML(u) regardless of the spread distribution types of the other two signals. For 
the spread signals (at <f> = 180° and 210°), the SML algorithm employing the matched 
taper function performed better for both spread signal types (i.e., SML(e) performed best 
for signals using the raised-cosine elliptical spread distribution, and SML(u) performed 
best for signals using the uniform rectangular spread distribution). The degradation 
that resulted from using an improperly matched taper function was almost insignificant 
in terms of accuracy for the uniform and elliptical signal types although there was an 
increase in the failure rate for SML(u). For the asymmetric signal type, the accuracy in 
estimating the spread signals was significantly degraded although the errors were still less 
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than 1° . The poorer accuracy was due to the signal models for both SML(e) and SML(u) 

being biased towards the peak in the asymmetric spatial power distribution of the spread 

signals. This biasing was greater for SML(e) than SML(u). Removing the biasing yields 

error results very similar to the results for the elliptical and uniform signal types. 

Based on preceding results, it seems clear that the best performance, not surprisingly, 

is obtained when the taper function is matched to the actual signal spread distributions, 

although the SML approach seems to be reasonably robust when mismatches occur (at 

least for the type of array tested in this report - a larger array with a narrower beamwidth 

could lead to a greater sensitivity to modeling errors). Given the superior performance of 

the raised-cosine elliptical taper function for point-source signals, and the greater likeli- 

hood that this taper function would be better matched to real world signals, it was used 

exclusively throughout the rest of this report. 

6.4    Assumed Number of Signals 

A common difficulty with many advanced direction finding algorithms is determining 

the correct number of signals intercepted in the receiver pass band. In this report, unless 

otherwise stated, it is assumed that the number of signals is known. Given that the number 

of signals may sometimes be incorrectly chosen, it is useful to know what effect this has 

on performance of the SML algorithm. Using the default settings for the simulations (as 

discussed in Section 6.0) to produce 100 trials, the data was then processed assuming 

from one signal up to six signals. The overall results are shown in Figure 12. 

Inspecting these results reveals several things. When the number of signals is under- 

estimated, then either the strongest signals are detected only, or two or more signals are 

wrongly identified as being a single signal. For example, in the case where only one signal 
is assumed, the weakest signal (the point-source signal at <f> = 50°) is never seen. The 

spread signal at <f> = 210° is sometimes correctly identified while the rest of the time the 

two spread signals are mistakenly identified as a single signal with an intermediate bear- 

ing. In terms of initial detection, the spread signal <j) = 210° is favoured over the spread 

signal at (f> = 180° since, even though the two signals have equal power, the signal at 

(f> = 210° has less spreading giving it a higher power density (more power per solid angle). 

When two signals are assumed, the two stronger spread signals are properly estimated, 

but the weaker point-source signal still remains undetected. 

When the number of signals is overestimated, either spurious results are generated, or 
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Figure 12: Effect of the assumed number of signals on SML estimation performance 
showing (a) the failure rate for each of the three bearing estimates, and (b) the relative 
accuracy of the successful estimates. The solid lines, dashed lines, and dash-dot lines 
represent the point-source signal at 0 = 50°, the spread-source signal at <j> = 180°, and 
the spread-source signal at (f> = 210°, respectively. The results for spurious signals are not 
shown. 
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a single spread-source signal is identified as two spread-source signals. The splitting of 

the spread-source signals explains the worsening error as the number of assumed signals 

is increased past three (the bearings of the split signals tend to be offset on either side of 

the true signal). 

In general, from the point of view of estimator performance, it is better to overestimate 

the number of signals than underestimate the number of signals, since overestimating 

yields all the signal directions. The main problem with overestimating is the generation 

of spurious signal directions and errors due to splitting of the spread region. 
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7.0    SML PERFORMANCE 

The previous section dealt with modifying various control parameters and the effect 

these modifications had on the performance of the SML algorithm. In this section, the 

effect of various uncontrolled parameters and their effect on the performance of the SML 

algorithm is studied. These parameters are discussed in the next few sections and include 

SNR, signal spreading, and angular spacing between signals. Where appropriate, the 

results using the MUSIC DF algorithm are also shown for comparison purposes. 

7.1    Effect of Noise 

As was done when investigating the effects of various control parameters, the effect of 

noise was investigated through simulation. In the first series of simulations, a single point 

source signal at (<f>, ip) - (180°, 30°) was generated and the SNR was varied from -20 dB 

to +40 dB in 2 dB increments. One hundred trials were generated for each SNR setting. 

In the second series of simulations, the point-source signal was changed to a spread-source 

signal with spread parameters (A^,A^) = (30°, 15°), but all other parameters remained 

the same. The results are shown in Figure 13. 

Several features of the results are worth pointing out. The SNR at which the failure 

rate dramatically departs from 0% is called the threshold SNR. For the point-source this 

occurs between -12 and -10 dB and for the spread-source, it is slightly worse, occurring 

between -8 and -10 dB. The poorer performance for the spread signal (including both 

threshold and accuracy) is a function of the amount of spreading and is discussed in more 
detail in the next section. 

The scales used to display the RMS bearing errors in Figure 13(b) were chosen because 

they linearize the accuracy results for the point-source signal above the threshold SNR. 

In this region, for every 20 dB increase in SNR the RMS bearing error is reduced by a 

factor of 10. Written mathematically, the relationship is expressed as 

e oc y/SNR (179) 

where e is the RMS bearing error. The spread-source also exhibits the same behaviour 

between -8 and 0 dB, but above this SNR the error begins to level out as the uncertainty 

in the signal model begins to dominate the error (as discussed previously in Section 6.2). 
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Figure 13: Effect of the signal-to-noise level on SML estimation performance showing (a) 
the failure rate, and (b) the accuracy of the successful estimates. The solid lines represent 
the point-source signal and the dashed lines represent the spread-source signal. 
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At higher SNR's then, the only way to improve accuracy would be to use a larger block 

size assuming the signal was well modeled. 

To determine whether including the azimuth and elevation spread parameters in the 

SML signal model degrades performance when estimating point-source signals, the point- 

source simulation results were reprocessed using the MUSIC algorithm. The results were 

virtually identical to the SML results indicating that any degradation that does occur is 
insignificant. 

7.2    Effect of Signal Spreading 

The effect of signal spreading was investigated through simulation by measuring ac- 

curacy as the azimuth and elevation spreads of the generated signal was varied. In the 

simulation a single signal at ((f>, tp) = (180°, 30°) was used with three different SNR's, 

namely, 0, 15, and 30 dB. The azimuth spread was varied from 1° to 30° according to 

the sequence A^ = 1°, 2°, 4°, 6°, 8°, 10°, 15°, 20°, 25°, 30° for each value of the SNR. The 

elevation spread was set to one half the azimuth spread (A^ = A^/2). One hundred trials 

were generated for each spread and SNR setting. The results are shown in Figure 14. 
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Figure 14:  Effect of signal spread on SML accuracy for SNR's of 0, 15, and 30 dB. 
Elevation spread was varied according to one half the azimuth spread. 

The effect of signal spreading on accuracy can be attributed to two factors: signal 

model uncertainty and the filter effect. The first factor, signal model uncertainty arises 

from the fact that the spatial model for the spread signals is stochastic and requires a 

sufficient number of snapshots to build up the appropriate statistics in the data as was 

discussed in Section 6.2. For a single point-source signal, a single snapshot is sufficient, 

but for a spread-source, the number of snapshots required to achieve a given accuracy 

rises as the spread region increases in size (e.g., compare the accuracies of the two spread 
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signals in Figure 9(b)). Conversely, for a given number of snapshots, accuracy degrades 

as the spread region increases. 

The effect of the model uncertainty can be seen in the accuracy results for the SNR 

= 30 dB setting. Compared to the accuracy results for the SNR = 15 dB setting, the 

improvement at the higher SNR is only marginal (e.g., compare this to the improvement 

that occurs when the SNR is increased from 0 to 15 dB). Hence the main source of error 

at the higher SNR is model uncertainty, even for spreading as narrow as 1°. For example, 

from Figure 14 the accuracy for A^ = 1° is approximately 0.02° RMS while the accuracy 

for a point-source signal under the same conditions is approximately 0.003° RMS (see 

Figure 13). 

The second factor, the filter effect, arises from the fact that many advanced DF es- 

timators, such as MUSIC and SML, can be interpreted as techniques which use spatial 

filters to suppress the signal content of the input data in the estimation procedure (con- 

sider the discussion of the whitening filter in Section 3.2). For point-source signals, this 

requires creating a filter with M notches corresponding to the M signals. These notches 

are then adjusted so they are located in the same direction as the signals themselves. 

The adjustment of the notch can be made by measuring the filtered power and then 

adjusting each notch to minimize this power. Ideally the beamwidth of each notch would 

be infinitely narrow so that the filtered power would be reduced only when the notch was 

placed exactly in the direction of a signal. In reality, the width of the notch is finite so 

that some noise also passes through the filter which, in turn, affects the accuracy of the 

adjustment procedure. The width of the notches is related to the inverse of the array 

aperture, hence an array with a smaller aperture provides better accuracy. 

For spread signals, the beamwidths of the generated filters become much wider be- 

cause they are designed to match the spread widths of the signals. The wider beamwidth 

naturally results in a greater amount of noise passing through the filter with a corre- 

spondingly greater degradation in accuracy. Given that the results for SNR = 30 dB are 

dominated by the model uncertainty, the results for SNR = 0 dB are certainly dominated 

by the filter effect. In this case, there is little degradation in accuracy for spreading angles 

less than 4 — 5° (one half the beamwidth of the array) compared to the accuracy of a 

point-source signal (0.1° RMS). This is due to the limitations on the narrowness of the 

filter beamwidths discussed above. For greater spreading values, the change in accuracy 

due to noise as a function of spreading angle follows approximately the same trend as for 

the change in accuracy due to model uncertainty. 
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7.3    Detection of a Weaker Signal 

As mentioned in the introduction, it is important that a DF algorithm be able to 

detect a weaker point-source signal in the presence of stronger spread-source signals. To 

evaluate the performance of the SML algorithm, simulations were run involving a single 

spread-source with a fixed bearing and a single point-source whose bearing was adjusted 

incrementally, beginning with a large initial angular difference, until the two bearings 

coincided. After each increment, the signal power of the point-source was increased from 

a low value in 0.5 dB intervals until the failure rate dropped below 5% (5 out of 100 trials). 

The corresponding SNR of the point-source signal is defined here as the threshold SNR 

and provides a good indication of the limits of detectability of the point-source signal 

for the given signal environment. The relevant signal and noise parameters are shown in 

Table 4. 

Table 4: Signal Parameters for Signal Detectability Simulation 

Signal ^ tf A* A^ Power 
1 
2 

noise 

180° 
adjusted 

30° 
30° 

30° 
0° 

15° 
0° 

OdB 
adjusted 
-20 dB 

The results from the simulations are shown in Figure 15. In this case the failure rate is 

not shown since it was fixed to approximately 5%. From the results it is clear that when 

the point-source and spread-source signals are well separated, 25° or more (> 1.2(J)BW), 

the presence of the spread source signal has a small but significant effect. For example, 

the threshold SNR for a point-source without any other signals present occurs at -12 dB 

(see Figure 13). In the presence of the spread-source, the threshold SNR ranges from -10 

to -7 dB which is a degradation of 2 to 5 dB. As the separation between signals is reduced 

from 25° to 0°, the threshold SNR increases dramatically until it reaches a maximum at 

16 dB. However, even with both signals arriving from coincident directions, detection of 

both signals is not only possible, but the minimum point-source power is still 4 dB less 

than the spread-source power. 

The differences between the wide and narrow separation cases can be understood in 

terms using a spatial filter to suppress the effects of the spread-source signal. In the wide 

separation case, the filtering can be accomplished easily, leaving only the noise as the 

main source of error. In the narrow separation case, it is more and more difficult to filter 

out the spread signal independently of the point-source signal as the separation decreases. 
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Consequently, the spread-source signal begins to act as a strong noise background and 

the threshold increases accordingly. 

The accuracy results for the two signals are relatively constant for wide spacing and 

relatively independent of the presence of each other. For example, in the single signal 

case, the accuracies were measured to be 0.15° for the spread-source and no point source, 

and 0.7° for the point-source and no spread source - worse for the point-source due to the 

much lower SNR. For narrower spacings, the threshold signal power of the point-source 

signal increases, degrading the accuracy of the spread-source signal until the separation 

becomes as small as 8°. Under 8° separation, the accuracy actually improves even though 

the signal power of the point-source signal is still increasing, perhaps because the two 

signal directions are too similar to cause an appreciable error. The accuracy of the point- 

source remains in the range of 0.5° —1.5° for most separation angles with the lowest errors 

occurring for the smallest separations. 

The simulations were also repeated using the MUSIC algorithm. The assumed number 

of signal directions (a parameter also required by this algorithm) used was six, since 

occasionally up to five directions were required to describe the spread-source leaving at 

least one direction for the point-source. In most cases, however, only three or four signal 

directions were required for the spread signal, resulting in one or more false direction 

estimates. This is illustrated in Figure 16 which shows the results of processing 100 trials 

using MUSIC. 

Generally, the necessity of using several signal directions to describe a spread-source 

and the problem of extraneous signals, makes the interpretation of the MUSIC results 

somewhat problematic. For the sake of this report, only the two (out of six) estimated 

signal bearings closest to the true signal bearings were used when generating the statistical 

results. Additionally, since for separation angles less than 10° there was no obvious way 

to determine whether a peak was associated with the spread signal or the point-source 

signal (compare the examples shown in Figure 17(a) and (b)), no statistical results for 

MUSIC were calculated for these angular separations. The failure and accuracy results 

are shown as the dashed lines in Figure 15. 

Comparing the results for the SML and MUSIC algorithms, for all signal separations 

measured, SML performed better. In terms of threshold performance, the differences 

were no more than 2.5 dB for the wider signal separations, but are as large as 7.5 dB for 

the narrower separations. Additionally, for angular separations less than 10°, the SML 

algorithm was still able to produce results which could be unambiguously associated with 
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Figure 15: Effect of angular spacing on the ability to detect a weaker point-source signal 
in the presence of a stronger spread-source signal showing (a) the detection threshold 
SNR for the weaker point-source signal, (b) accuracy of the spread-source estimates at 
threshold, and (c) accuracy of the point-source estimates at threshold. The solid lines 
represent the SML results, and the dashed lines represent the MUSIC results. 
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Figure 16: MUSIC azimuth bearing estimates for 100 trials assuming 6 signal directions. 
Bearing estimates of the spread-source signal at 180° and the point source signal at 90° 
are clearly evident along with various false signal bearing estimates (particularly at 222°). 

the two signals using either signal power or spread estimates, whereas with the MUSIC 

algorithm this was not possible as previously discussed. 

The accuracy in estimating the point-source signal direction was the same for both 

algorithms. However, since the SML algorithm has a lower threshold, this implies that 
tested at the same SNR (e.g., the MUSIC threshold) the SML algorithm is more accurate 

than MUSIC. The accuracy of MUSIC for estimating the direction of the spread-source 

signal was very poor, highlighting the difficulty of estimating spread-source signals using 

a point-source model. 

Generally the results show that for signal environments with spread-source signals, 

improved modeling leads to significantly better performance. 

7.4    Performance using High Latitude Off-Air Data 

The ultimate test for the SML algorithm is against the data for which it was originally 

developed, namely actual high latitude HF measurement data. To this end, an off-air 

measurement data set was processed which had been collected on January 23, 1996, using 

the Vortex DF system at CFB Alert which is located on the northern tip of Ellesmere 

Island in Northern Canada (82.50° N, 62.35° W). The received signal was from the CZD 
transmitter located further south at Iqaluit (63.45° N, 68.30° W) and transmitting at a 

frequency of 9.292 Mhz. The great circle signal bearing (azimuth) was 188.5° measured 

clockwise from north. The signal itself was composed of a 15 second tone followed by a 

15 second Morse code call sign repeated continuously for a total period of 25 minutes. 

This was, in turn, followed by a 5 minute sounder slot during which time there was no 
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Figure 17: Detection of a weaker point-source signal in the presence of a stronger spread- 
source signal using MUSIC. The azimuth spectrum is shown for an elevation angle of 
ip = 30°. The simulation parameters for the noise and spread-source are listed in Table 4, 
and the point-source parameters were (a) <f) = 150° with a signal power of-7.5 dB and (b) 
(j) - 172° with a signal power of 14.5 dB. When the separation between the spread-source 
and point-source is too narrow, as in (b), there is confusion as to which spectral peak 
belongs to which signal. 
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transmission. This whole sequence was then repeated over and over again. 

The Vortex system consisted of an array of 12 antennas connected to a 12 channel 

receiver. The antenna array arrangement, which is as shown in Figure 18, utilized 8 

elevated feed monopole antennas from the inner ring of a Pusher array (a circular array 

with 24 antennas) and 4 outlying antennas (also elevated feed monopole antennas) used 

to increase the array aperture. 

!~'Z\T~r   • 

mm 
i 

--'----/■    / 

Figure 18: Three dimensional view of the Vortex antenna array. Each grid square has a 
dimension of 1A x 1A. 

The Vortex receivers were used to downconvert the input signals from HF to 2.5 kHz 

with a filtered bandwidth of 3.5 kHz. The downconverted signals were then digitized at 

a rate of 10 kHz. 

To generate the covariance estimates, an FFT was first performed on each block of 

12 x 16000 data points and only the positive frequency data corresponding to 3.8 to 4.2 

kHz were retained. This served the dual purpose of converting the data to IQ format 

and suppressing interference due to noise and other unintended HF signals. The data 

covariance matrix was then formed directly from this frequency domain data. 

The particular time of the data collection was a very active period in terms of iono- 

spheric disturbances. Previous analysis using the MUSIC algorithm [9] found that there 

were very large bearing swings over time. A high degree of scatter in the measured bear- 

ings was also observed, which is indicative of spread signals. The results of reprocessing 
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the data as described here and using the MUSIC algorithm are shown in Figure 19. For 
this processing, the number of signals parameter was set to 7 which was very likely an 
overestimate of the number of signal directions required, but which was far less detri- 
mental to the overall accuracy than underestimating this number would have been. For 
display purposes, only the bearings corresponding to the four largest peaks in the MUSIC 
spectrum are plotted in the figure. Additionally, thresholding was applied to reject peaks 
in the MUSIC spectrum which were clearly due to noise. 
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Figure 19: MUSIC results for high latitude off-air data collected on January 23rd 1996. 
Only the directions corresponding to the four highest peaks in the MUSIC spectrum are 
shown for (a) azimuth, and (b) elevation. 

Even limiting the number of signal directions displayed leads to some confusion in the 
interpretation of the results, particularly in elevation. To provide some additional insight, 
the results have been replotted in Figure 20, except this time showing only the direction 
of the signal with the largest peak. It is quite evident from these results that the azimuth 
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bearing was increasing over time and that there was considerable scatter in the results. 
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Figure 20: MUSIC results for high latitude off-air data collected on January 23rd 1996. 
Only the direction corresponding to the largest peak in the MUSIC spectrum is shown 
for (a) azimuth, and (b) elevation. 

Before discussing the SML results, a comment is in order about the block size. Al- 

though a block size of 16000 (representing 1.6 seconds) would appear to be sufficient for 

SML processing purposes, this does not take into consideration the requirement for sample 

to sample decorrelation. The time required to achieve this decorrelation is related to the 

Doppler spreading of the signal, and can be approximated by r = l/(Doppler Spread). 

Values of about 20 Hz were observed for the collection period discussed here [9] giving a 

value of T = 50 mS. Hence for 1.6 seconds of data, this corresponds to an effective block 

size of K = 32. Although a higher value would be better from the accuracy standpoint, 

this value was not considered unreasonable. 

In processing the actual data, the estimated signal azimuth and elevation spread values 
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Figure 21:   SML estimated bearing results for high latitude off-air data collected on 
January 23rd 1996. The results are shown for (a) azimuth, and (b) elevation. 
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were normally found to be less than 60° except for signals with low SNR. Given the 

likelihood that the very large spread estimates (> 60°) were errors due to noise, the 

spread values used by the SML algorithm were limited to the range from 0° to 60° to 

avoid unnecessarily increasing the computational requirements. 

The results of processing the data using the SML algorithm are shown in Figure 21. 

Since the number of signals was unknown in this case, the data was processed assuming 

M = 3 signals while also retaining the results for the intermediate cases of M = 0, M = 1, 

and M = 2. Bearing estimates for data block k were then compared to data blocks k — 1 

and k + 1 for the M = 3 case. Real signals were counted as those whose estimates varied 

by less than one beamwidth over the span of the three blocks. Additionally, estimated 

signal bearings were only counted if their corresponding estimated SNR exceeded -5 dB. 

Estimates not meeting both criteria were assumed to be due to noise or other error 

mechanisms. The results for a given data block were then taken according to the case 

M — m where m was the number of real signals counted. 

The results for the SML algorithm are considerably more informative than those of the 

MUSIC algorithm, with a number of different "tracks" evident. The track corresponding 

to the signal with most power (dominant) is shown in Figure 22 which is similar to the 

results in Figure 20 except that there is less scatter in the estimates. The estimated signal 

spread for the dominant signal is shown in Figure 23. Interestingly, given the observed 

trend in the azimuth spread, the lowest spread occurs during the period 8:48 to 8:52 UT 

when the azimuth signal direction corresponded to the great circle bearing. 

The estimated power of the dominant signal and of the noise are shown in Figure 24. 

The drop-outs in the signal power results (the measurements where signal power dropped 

to approximately 0 dB after being at higher levels in previous measurements) correspond 

to measurements when the transmitter was off for all or part of the measurement period. 

Inspecting the estimated noise power results reveals that modeling of the data was less 

than ideal as the noise power was correlated with the signal power resulting in noise 

power estimates up to 10 dB higher than the true power level (which could be measured 

during periods when the transmitter was off). The cause of the modeling error is probably 

due to array calibration problems. For example, mutual coupling will have had an effect 

on the antennas selected from the inner circular ring of the Pusher array, but this was 

not accounted for in the processing. This kind of miscalibration would then "warp" the 

apparent spatial distribution of a received spread signal causing errors. 

The other signal tracks shown in Figure 21 were due to signals with low SNR (typically 

76 



less than 0 dB) which leaves open the possibility that some of these tracks may have 
been processing artifacts due to the calibration problems already mentioned. Despite 
these problems, however, the SML algorithm still produced results which had much less 
scatter than MUSIC. Additionally, the parameter estimates from the SML algorithm could 
be more easily used to determine the number of signals by comparing sequential signal 
parameter estimates, to filter out wild bearings using SNR, and to provide a useful quality 
estimate based on both SNR and signal spreading. 
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Figure 22: SML results for high latitude off-air data collected on January 23rd 1996. 
Only the estimated bearing corresponding to the dominant signal is shown for (a) azimuth, 
and (b) elevation. 
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Figure 23: SML spreading results for the dominant signal showing the (a) estimated 
azimuth spreading, and (b) the estimated elevation spreading. Spreading estimates were 
limited to the range from 0° to 60°. 
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Figure 24: SML results showing (a) the estimated power of the dominant signal and (b) 
the estimated noise power. Both power levels are shown relative to the true noise power. 
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8.0    CONCLUSIONS AND RECOMMENDATIONS 

In this report a new direction finding estimator based on maximum likelihood princi- 

ples was introduced. It is distinguished from other maximum likelihood DF estimators by 

the fact that it deals with signals that are spatially spread in terms of both the received 

azimuth and elevation angles. For this reason it is called the Spread Maximum Likelihood 

(SML) algorithm. 

The implementation of the actual algorithm relies loosely on an approach called the al- 

ternating projection maximization method [11]. The main differences are that it performs 

more checking of intermediate solutions (for improved accuracy) and it uses a gradient as- 

cent technique as the search engine. The gradient ascent technique has also been modified 

from the normal approach to improve convergence speed. 

Testing of the SML algorithm to provide guidelines on the various control parameters 

was performed through simulation. These parameters included the grid spacing used for 

modeling the spread signals, the data block size (the amount of data required to generate 

the data covariance matrix), the spread signal shape, and the assumed number of signals. 

The testing showed that these parameters could be varied for a range of values over 

which the performance of the SML algorithm was either almost unaffected, or was very 

predictable. 

Testing of the SML algorithm was also carried out through simulation to evaluate its 

performance as a function of various conditions of the signal environment. This included 

the effect of noise, signal spreading, and the detection of a weaker signal in the presence of 

a stronger signal. In all cases, the performance of the SML algorithm was predictable, and 

as good as or better (particularly for spatially spread signals) than the MUSIC algorithm 

(a modern superresolution DF algorithm). 

Finally, testing was performed using off-air data collected at CFS Alert which is located 

in the Arctic. Again the results showed that the SML algorithm outperformed MUSIC 

in terms of the variance in the bearing estimates. The SML estimates also included the 

amount of signal spreading (MUSIC does not) which was on the order of tens of degrees in 

azimuth. From an understanding of the mechanisms giving rise to signal spreading, these 

measurements alone indicate that the signals were scattered from moving patches. The 

observed trend of the bearing estimates over time essentially confirmed this. Although no 

evidence of sporadic-E propagation was found for this particular data set, it was observed 
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that the lowest amount of signal spreading occurred when the estimated azimuth bearing 

coincided with the great circle bearing. 

The main advantage of the SML algorithm is that, compared to conventional and 

other modern superresolution techniques, it better models the high latitude HF signal 

environment. This leads to more accurate bearing estimates, less confusion in the inter- 

pretation of the results (MUSIC interprets a spread signal as a multitude of point-source 

signals), and a greater ability to detect a weaker point-source signal in the presence of 

stronger spatially spread signals. This last point is important since a point-source signal 

will generally yield a bearing estimate close to the great circle bearing while a spread 

signal will not. Additionally, the ability of the SML algorithm to measure spatial signal 

spreading provides valuable information on the reliability of the corresponding bearing 
estimate. 

The main disadvantage of the SML algorithm is that it is computationally very in- 

tensive which makes it an order of magnitude or more slower than other approaches. For 

more benign propagation conditions, current superresolution techniques such as MUSIC 
might be more appropriate for use. 

There are two main recommendations stemming from the work detailed in this report. 

The first recommendation is that for high latitude operational HF DF sites, given its 

benefits, the SML algorithm should be employed in some form. For example, given the 

computational requirements of the SML algorithm, this algorithm could be used in con- 

junction with faster approaches such as MUSIC. The faster approach could be used until 

spread conditions are suspected, such as when a number of signal bearings are estimated 

from similar directions, at which point, the SML algorithm would then be used. The 

second recommendation is that future research should focus on developing realtime im- 

plementations of the SML algorithm. Coupled with the ever increasing processing speed 

of modern computers, a realtime implementation could be a practical reality within a few 
years. 
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