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ABSTRACT 

When attempting to predict the acquisition costs of U.S. Navy surface ships, 

current models cannot produce a repeatable answer when the details of the acquisition 

program are not well defined. This thesis formulates a parametric model that predicts the 

average procurement cost of a conventional U.S. Navy surface ship based upon known 

(or assumed) physical and performance characteristics. The source data for the cost 

model is obtained from U.S. Weapons Systems Costs, a tabulation of annual procurement 

costs for major system programs, published by Data Search Associates. Standard 

regression techniques return cost estimating relationships able to predict average 

procurement cost from ship light displacement, ship overall length, ship propulsion shaft 

horsepower or number of propulsion engines. The formulated parametric cost model is 

approximate and appropriate only for rough order of magnitude studies, but can be used 

by the DoD cost community to produce justifiable estimates when other models do not 

have sufficient information to generate an answer. 
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EXECUTIVE SUMMARY 

When evaluating new systems and strategies for programs with incomplete or 

loosely defined details, military decision makers have few tools with which to evaluate 

the expected program acquisition costs. Current tools have difficulty overcoming such 

limited information to produce a cost estimate. Robust methods such as cost 

extrapolation from a similar historical system or consulting with an expert to ascertain an 

opinion about the expected cost are difficult to validate. In addition, by its very name, 

any estimate will certainly be in error, and it is important to be able to determine the 

magnitude ofthat error. 

This study utilizes parametric cost analysis to mitigate these problems, employing 

standard regression techniques to generate a number of parametric cost estimation models 

capable of transforming scant physical parameter data into a prediction of the 

procurement cost of a naval ship, including the uncertainty associated with that estimate. 

The model is also simple and sufficiently documented and may be used without 

specialized instruction. 

The cost estimate produced by any of these models is justifiable as it has been 

based upon historical cost data. Ship procurement cost data are obtained from U.S. 

Weapons Systems Costs, published by Data Search Associates. Twenty-three surface 

ships, including small combatants, hydrofoils, cruisers, amphibious assault ships, oilers, 

support ships and others are included. Seven classes were removed as unsuitable: two 

ship classes were canceled before production or involved only the modification of 

existing ships; five additional ship classes were nuclear combatants and demonstrated 
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distinct cost and performance characteristics that made them unsuitable for inclusion in 

the database. 

These models predict the average procurement cost (in constant 1999 dollars) of a 

conventional U.S. Naval surface ship. Four ship characteristics may be used as inputs: 

the ship light displacement, the ship overall length, the ship propulsion shaft horsepower, 

or the number of propulsion engines. 

The models demonstrate a coefficient of variation (CV) between 74% and 83%, 

depending on the input variables selected; therefore predictions may still be expected to 

overestimate or underestimate the actual cost by more than 75 percent. The significant 

uncertainty of the model limits its applications to planning or evaluative purposes where 

a rough order of magnitude answer will suffice. 

The models are unsuitable for applications requiring a tight tolerance around 

estimates; analysts seeking such predictions must select other methods. However, the 

models provide answers when no other tools are available. The Naval Center for Cost 

Analysis (NCCA) often requires rough order of magnitude estimates for a future ship's 

procurement cost. Similarly, the Office of the Chief of Naval Operations, Assessment 

Division (N81) requires models capable of estimating the costs of future systems to 

weigh against the benefits associated with particular strategic proposals. The models 

from this study are intended to provide these services. 

The parametric acquisition cost estimating models are able to produce verifiable 

and defendable estimates from loosely defined parameters when detailed models can not. 

However, these models demonstrate significant limitations and would benefit from 

xvin 



additional refinements. New physical and performance data addressing weapons and 

sensor capabilities may capture aspects of procurement cost not addressed by the 

parameters chosen in this study. Also, an expanded database would further refine cost 

estimating relationships. However, within the scope defined herein, the models provide 

tools able to answer difficult questions about ship acquisition costs in a repeatable, 

defendable and justifiable manner. 
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I.      INTRODUCTION 

The Navy of today owes its shape to the strategies prevalent during the Cold War. 

During the course of that conflict, the Navy grew towards 600 ships, refining a strategy 

of sea control that re-cast the aircraft carrier from a significant component of the fleet 

into the preeminent instrument of naval strategy. Admiral Bernard Smith, commander of 

the Navy Warfare Development Command (NWDC) concurs; "Our force today was 

certainly designed around the open ocean and warfare that went along with the Cold 

War." (Peters) The strategy grew into the carrier battle group, defining both military and 

political strength, acting both as a symbol and instrument of foreign policy power. 

And then it was over. The Berlin Wall fell; the Soviet economy collapsed; the 

United States emerged as the sole superpower. Without a clear opponent, military 

downsizing reduced the size of the Navy to 323 ships and left an acquisition plan that 

forecasts smaller numbers in the near future. The changing times and lack of clear 

direction foster uncertainty about what procurement plans the Navy should follow. 

This does not imply that the Navy does not have a plan for the future. 'Joint 

Vision 2010' and 'From the Sea' provide the guidance for operational concepts that 

direct the strategy for fighting the fleet of today and stress capabilities that will be 

invaluable when fighting the fleet of tomorrow. 

A.        PROBLEM DESCRIPTION 

Unfortunately, predictions in the face of uncertainty will never fit perfectly with 

the Navy of tomorrow, when tomorrow becomes today. To answer what should be done, 



doctrines and strategies are corrected and updated to fit the changing world. However, 

the problem is not how to fight the forces in use or in production today. It is not what 

should be purchased to harness new technologies and tactical opportunities; although, it 

would appear to be so. The real problem is how to find the best economical solution. 

The questions of today have already been answered. The innovations of 

'dominant maneuver' and 'precision engagement' integral to the current strategy of 

converting information superiority into massed effects are well defined. (DoD Joint 

Warfighting Science and Technology Plan, chapter II.) Contractors provide competing 

proposals to fulfill the needs these strategies require. In the long term, however, the 

answers are harder to find. 

New strategies in warfare, especially material decisions, must answer the 

questions: what are the benefits, and what will they cost? The first question may be 

answered by weighing anticipated capabilities of alternative systems against the 

perceived threats and challenges. Increasingly, they may be tested in simulated combat 

after making rudimentary assumptions about system capabilities. The second question— 

what will they cost—has fewer methods available to provide similar answers. In the 

absence of specific information, an analyst may either extrapolate from a single system 

that appears similar or consult with an expert to ascertain an opinion about the expected 

cost. Neither method offers much insight into the validity of the answer. The estimate is 

certain to be off; but how far off is anyone's guess. Parametric analysis offers an answer. 



1.        Selecting Parametric Analysis 

Cost estimation may be divided into five distinct techniques, each with its own 

advantages and disadvantages. The first, engineering estimation, involves detailing every 

required item and process, assigning dollar figures to each identified element. 

Unfortunately, the details must all be known in order to pursue this technique, which is 

seldom the case when analyzing future warfighting strategies. 

Another technique, analogy estimation, involves taking the known costs from a 

comparable system and stretching or twisting them until they appear similar to the 

unknown system. Although useful when the systems are similar, analogies do not 

provide significant information about the uncertainty of the estimation, because they are 

based on a single data point. 

A third technique, expert opinion, harnesses the significant power of the human 

imagination to turn experience into an estimate, and often works well in the face of 

uncertain information. Unfortunately, one expert may produce a different estimate than 

another, and, without any means of substantiating one over the other, subject the estimate 

to human biases. There are methods, such as the Delphi and Consensus techniques, 

which combine different expert opinions into a single determination. (OA4702, p. 12-7, 

12-8) 

A fourth alternative, extrapolation, requires a well defined system both in place 

and already producing the product in question; estimates are generated by observing the 

actual costs of the existing system in the past and inferring that future costs will behave 

accordingly. While the technique applies well to predicting the cost of producing a few 



more articles from a production facility currently in business, attempting to coerce 

estimates for new products represents a misuse of the technique. (NAWC, p. 9) 

Finally, parametric analysis offers particular advantages when answering a cost 

analysis question of this type. Estimates may be produced at low cost, using a database 

of similar programs. The techniques also quantify the uncertainties associated with the 

cost estimate. Although limited by the quantity and quality of the database, the 

information may be updated easily, enabling the estimate to be reformulated quickly after 

a database addition. Finally, the parametric analysis provides a simple mathematical 

relationship that enables the user to quickly convert a set of independent variables into a 

reproducible cost estimate. 

B.        THE PURPOSE 

The purpose of this study is to generate a series of parametric cost estimation 

models capable of transforming scant physical parameter data into predictions, including 

the uncertainty associated with the prediction, for the procurement cost of a naval ship. 

Cost estimates will be based upon historical cost data. The model must be simple enough 

to use with little instruction. Finally, it must be sufficiently documented, in order to 

allow similar techniques to be employed on new databases or subsets of data without 

excessive difficulty or repetition. 

The models are intended to be high-level estimating tools, able to roughly 

estimate costs rather than precisely identify them. They are not intended for use by 

program managers to estimate current program costs. Rather, the models are designed to 

be used for evaluative purposes. The Naval Center for Cost Analysis (NCCA) often 



requires Rough Order of Magnitude estimates for a future ship's procurement cost. 

Similarly, the Office of the Chief of Naval Operations, Assessment Division (N81) 

requires models capable of estimating the costs of future systems when weighing the 

benefits and risks associated with particular strategic proposals in Force Structure Cost 

Analysis. The models from this study are intended to provide these services. 
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II.    PARAMETRIC COST ESTIMATION PROCESS 

The methodology for performing parametric cost estimation is well defined. The 

separation of the tasks into particular stages differs with background sources and 

presentation format, but the underlying milestones and their order are reasonably 

consistent. Section II will provide general information about how to conduct cost 

estimates and will provide an overview concerning the particular techniques this study 

will use in later sections. 

The parametric cost estimating process begins when an analyst poses a question 

about the costs of an unknown system and collects information in the pursuit of an 

answer. It continues through the postulation and verification of cost estimating 

relationships (CERs) that describe system costs as mathematical functions of physical 

parameters and characteristics and ends when a useful model has been developed to 

answer that question. 

Each step in the process outlines particular tasks that should be completed before 

progressing to the next step. By following the steps in order, the necessary foundations 

of the cost analysis will be completed before elaborate and logically risky conclusions are 

drawn. This cost estimating process is illustrated in Figure 1. 

Define 
Purpose 

Normalize 
Data 

Data 
Analysis 

Relationship 
Determination 

Sensitivity 
and 

Validation 

Figure 1: Parametric Cost Estimating Process (OA4702, p. 2-2). 



A.       DEFINING THE PURPOSE 

As a first step, the analyst must determine the purpose of the cost estimate. This 

purpose will determine practically every aspect of the eventual analysis, including the 

time needed to complete it, the desired accuracy and precision of the study, appropriate 

analysis methods and the scope of the required data. (OA4702, p. 2-4, 2-5) 

1.        Cost Analysis Applications 

Several specific types of cost estimates deserve additional attention, as they shall 

be specifically addressed in this study. The purpose of the cost estimate dictates the type 

of analysis performed. 

a. Rough Order of Magnitude (ROM) Estimate 

By their title, ROM estimates value a quick answer over a precise solution. 

Because an answer is available quickly, ROM estimates are able to approximate a 

funding requirement in advance of a detailed study, although the actual costs may be 

difficult to justify under scrutiny. A ROM estimate may be used in other applications, 

especially when comparing alternatives in the distant future. (OA4702, p. 2-8) 

b. Feasibility Study 

When a new concept begins evolving into a program, it invokes questions 

about whether the concept is attainable and practical. These questions may be addressed 

using a feasibility study to decide whether the new idea appears worth, in benefits and 

performance, the investment of time and money the program would require. Because the 

new program may not yet be well defined, feasibility studies may also include ROM 

estimates in their analysis. (OA4702, p. 2-8) 



c. Economic Analyses (EA) and Analysis of Alternatives (AOA) 

Economic Analyses compare two or more alternative investment decisions 

in terms of their costs and benefits. An Analysis of Alternatives is a specific form of EA 

used to compare alternative weapons systems in terms of their costs and effectiveness in 

meeting particular mission areas. (DoDINST 5000.2R, 2.4.1) Both are intended to aid 

decision makers in judging whether or not any of the proposed alternatives to an existing 

system or investment offer sufficient military and/or economic benefit to justify the cost. 

The analysis must be quantitative, specifying requirements, necessary performance 

criteria and particular means of evaluating the criteria. (DoDINST 5000.2R, 2.4) 

d. Force Structure Cost Analysis (FSCA) 

A force structure cost analysis addresses the cost of an entire concept or 

strategy. Instead of concentrating on a particular acquisition program, an FSCA 

evaluates the effects on cost of a change in the existing force structure. Examples include 

Base Realignment and Closure (BRAC) studies, downsizing the service strength of the 

Navy, embracing a new strategy of massed power projection; all raise questions about the 

cost of the changes. (OA4702, p. 2-17) An example FSCA shall be presented in Section 

IV to demonstrate the use of the models developed by this study. 

B.        DATA NORMALIZATION 

Once the purpose has been determined, the cost estimation process moves into its 

second phase, data normalization. Typically a cost model predicts costs of new systems 

based on underlying relationships discovered from historical systems. These 

relationships will form the basis of the eventual model. They must be grounded in reality 



by normalizing the data or the cost estimate will not be credible. In particular, the 

historical data must be normalized for content, quantity and inflation. 

1.        Normalization for Content 

Before any other adjustments are made, the data must be verified to be 

approximately comparable to one another, both physically and programmatically. This is 

the logical "apples-to-apples" argument, ensuring that each item in the data set is a 

member of the same underlying population as every other item in the set. As an example, 

a database that includes the procurement costs of frigates and the reactivation cost of 

battleships would not be appropriate for predicting the procurement cost of a new 

destroyer, despite the physical similarities of each historical element. The battleship 

costs include only the upgrade costs for an existing ship, while the frigate costs include 

the production of an entirely new ship. This does not imply that the data cannot reflect 

differences among the included systems, but rather that at some functional level they 

must be equivalent. The comparison is typically made using a work breakdown structure 

(WBS), which is an outline of program costs partitioned into various hierarchical 

subcategories. A WBS for Naval Ships is shown in Table 1. (MIL-HDBK-881) Cost 

analyses may address the WBS at almost any level, from detailed divisions of 

subcategories of program elements to broad overviews summarizing entire programs. 
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Level 1 
Ship System Work Breakdown Structure 

Level 2 Level 3 
Ship System 

Ship 
Hull Structure 
Propulsion Plant 
Electric Plant 
Command and Surveillance 
Auxiliary Systems 
Outfit and Furnishings 
Armament 
Integration/Engineering 
Ship Assembly and Support Services 

Systems Engineering/Program Management 
System Test and Evaluation 

Training 

Data 

Peculiar Support Equipment 

Common Support Equipment 

Operational/Site Activation 

Industrial Facilities 

Initial Spares and Repair Parts 

Development Test and Evaluation 
Operational Test and Evaluation 
Mock-ups 
Test and Evaluation Support 
Test Facilities 

Equipment 
Services 
Facilities 

Technical Publications 
Engineering Data 
Management Data 
Support Data 
Data Depository  

Test and Measurement Equipment 
Support and Handling Equipment 

Test and Measurement Equipment 
Support and Handling Equipment 

System Assembly, Installation and 
Checkout on Site 
Contractor Technical Support 
Site Construction 
Site/Ship/Vehicle Conversion 

Construction/Conversion/Expansion 
Equipment Acquisition or Modernization 
Maintenance (Industrial Facilities)  

Table 1.   Example Work Breakdown Structure. 
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2.        Normalization for Quantity 

When analyzing cost data from several different systems, the associated 

production quantities play a significant role. Each new unit coming off a production line 

typically costs less than the units produced before, as workers and supervisors learn from 

experience and improve in efficiency. In learning curve theory, the production cost of a 

unit is reduced by a constant percentage each time the production quantity is doubled. In 

order to compensate for this effect, it is desirable to relate all costs to a common point of 

production, such as the theoretical first unit cost (Tl), when comparing production cost 

data. The Tl cost may differ from the actual cost of the first-produced unit. An example 

of actual costs, the fitted curve and the resulting Tl is shown in Figure 2. (USALMC, p. 

7-1 to 7-3) 

Learning Curve 

+       Actual Unit Cost 
    Theoretical Unit Cost 

&       T1 

10 15 
I 

20 

Quantity 

Figure 2: Example Learning Curve. 
Showing actual and theoretical costs. 
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3.        Normalization for Inflation 

Because any particular monetary unit 'doesn't buy what it used to,' costs from 

different programs need to be adjusted to a common time reference to be compared. 

Often, historical data describe how money was actually spent during a given year of a 

program. The dollar values are current dollars, and reflect the purchasing power of a 

specific amount of money in each given year. For the example program in Table 2, the 

nominal costs of the two programs are equal. However, the Program 1 dollars were spent 

ten years before those in Program 2. During those ten years, inflation has reduced the 

value of a dollar in purchasing a product. Thus Program 2 has purchased less, with its 

less valuable dollars, than Program 1. 

Program Year Spending ($) 
Program* 1970 1971 1980 1981 1982 Total 
Program 1 25 75 100 
Program 2 30 30 40 100 

Table 2.    Unadjusted Program Spending. 
Showing spending in budget year dollars. 

The solution is to adjust each yearly total to a common time reference. This adjustment 

is made using tables designed to convert between different years, using historical cost 

changes in specific economic commodities to measure the change in value of a dollar 

over time. (USALMC, p. 11-1) These adjusted values are called constant year (CY) 

values, and represent the price of acquiring a particular product in a specific year. 

Because labor wages and other factors change at different rates for different products, the 

tables are tabulated for particular Naval program areas, such as ship construction (SCN), 

weapons construction (WPN) or aviation programs (APN). A properly adjusted 
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comparison, assuming SCN program dollars, is shown in Table 3, clearly showing that 

Program 1 is a more expensive program than Program 2. 

Constant Year Spending (CY98$) 
Program* 1970 1971 1980 1981 1982 Total 
Program 1 149.25 410.73 559.98 
Program 2 63.83 57.20 66.72 187.75 

Table 3.   Adjusted Program Spending 
Showing spending in constant year dollars. 

C.       DATA ANALYSIS 

Once the purpose of the cost estimate has been chosen and the data normalized, 

data analysis can be used to identify the relationships between the historical cost data and 

the specific attributes of the historical systems. 

1.        Variable Selection 

The first task is to select variables suitable for predicting the cost. Parametric 

methods are often viewed as a panacea for understanding the reason behind a particular 

effect. Unfortunately, the view is often misguided—the relationships demonstrated by 

parametric analysis establish associations, but not causality. As an example, modern 

grenades have become both smaller and more lethal. However, reducing the size of 

munitions will not increase their lethality. A separate factor, technological improvement, 

accounts for the trend between size and lethality. 

The independent variables chosen for parametric analysis should cause the 

changes in the dependent variable. When demonstrating that a relationship is causal 

instead of associative, three concepts must be addressed. First, the relationship between 

the independent and dependent variables must be consistent; when other things are equal 

in a population, the relationship should consistently differ in a specific direction, or even 
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in magnitude, when the independent variable is adjusted. For instance, holding all 

characteristics of a product constant except the number purchased, buying two items 

usually costs more, often exactly twice as much, as buying one. Second, the relation 

must be responsive to changes in the independent variable; altering the independent 

variable should cause a change in the dependent variable. Doubling the weight of a 

satellite should increase the cost of getting it into orbit. Finally, a mechanism, obvious or 

not, should be responsible for the change. (Mosteller & Tukey, p.260-1) For example, 

antennas designed for higher frequencies are smaller than ones designed for low 

frequencies, since a relationship exists between the surface area of an antenna and its 

frequency. Conversely, although a platform may have fewer large search radar antennas 

than small fire-control antennas, the relationship between size and number is only an 

association—the number of antennas is determined by mission need. 

The assurance of causality is best established not by statistics, but by expert 

opinion. While not infallible, experts often have the practical experience necessary to 

separate the prospective causal factors from the myriad associative ones. They might 

also offer guidance as to the mathematical form such relationships take; certain 

parameters vary linearly; others vary exponentially, requiring transformation to coax 

them into a linear form suitable for regression analysis. 

In addition to the causal nature of the independent variables, the ranges over 

which the historical observations occur must also be considered. A regression model 

calculates the line which best fits the points in the data set. Extrapolating this 

relationship outside the range of the data extends it into new areas where the relationship 
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may no longer hold. Most physical phenomena are subject to this problem. In electrical 

theory, for example, a resistor develops a voltage across it directly in proportion to the 

amount of current that passes through it. The relationship may be verified by varying the 

current and plotting the developed voltage. But driving an exceptionally large current 

through a small resistor will not develop a proportional voltage across the resistor—it 

will simply turn the resistor into smoke and gas. To predict a relationship outside the 

range of the data raises serious questions of credibility and should be avoided whenever 

possible. 

2.        Relationship Determination and Transformation 

The importance of seeking a linear relationship cannot be overstated. When 

regression techniques are applied to a data set, they will identify all trends as linear 

functions. If a variable shares a non-linear relationship with the dependent variable, it 

must be transformed to make the relationship linear or the regression will exhibit 

excessive error. A pair-wise examination of the independent variables against the 

dependent variable may show evidence for or against the claim that a relationship 

between them is linear. Caution should be exercised however; transformations make the 

model difficult to interpret—log(hours) are not an intuitive measure of time. Also, with 

relatively small data sets, the determination that a relationship between two variables is 

non-linear is subjective at best. 

3.        Regression Model Postulation 

After collecting, normalizing and transforming the data, statistical analyses may 

be employed to identify the underlying relationships which show promise as predictors 
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for the dependent variable. Foremost in this category is ordinary least-squares (OLS) 

regression. OLS reduces a collection of points into a set of coefficients defining a line. 

With OLS regression, the sum of squared vertical distances from each data point to the 

line is made to be as small as possible. Each regression forms a mathematical model, 

which takes as inputs the independent variables of the OLS regression and returns an 

estimate of the dependent variable. The number of independent variables used in a 

regression formulation provides a convenient classification scheme. 

a. Single Variable Models 

Single variable models are the simplest linear regressions. They describe 

the dependent variable, often cost, as a linear function of a single independent variable. 

Because they may be fully described in two dimensions, they are easy to display and 

explain. Also, they provide invaluable insight during high-level studies when detailed 

information about new systems, required to fulfill the data requirements of a multivariate 

model, cannot be reasonably generated. However, if several independent variables are 

available, the additional information that may be contained in the remaining independent 

variables is lost. An easy solution to the problem of lost information would be to include 

more variables. However, this solution creates new problems of its own, as will be 

described in the next paragraph. 

b. Multiple Variable Models 

Multiple independent variable models often describe the dependent 

variable better than single variable models. The additional information enables the 

multivariate model to make predictions of the dependent variable with greater accuracy 
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than a univariate model. However, the multiple variables often interact behind the scenes 

to mask their effectiveness in predicting the dependent variable. Variables are considered 

correlated if a relationship exists between them, i.e. if knowing some information about 

one variable offers some information about the other. An example shows the possible 

errors associated with correlation (p) in a regression model. Consider a study where cost 

is being predicted by two variables, weight and length. In this example, the correlation 

between the two variables is 1.0, indicating that by knowing one variable, the other one is 

completely known as well (weight is directly proportional to length). Several univariate 

mathematical relationships describe the models of Figure 3: 

l)Cost=l*Weight 
2)Cost=l*Length 
3) Length = l*Weight 

Cost vs. Length Cost vs. Weight Weight vs. Length 

l  - 

Figure 3: Correlated Multivariate Data. 
Showing relationships between dependent and independent variables. 
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Because of the collinearity between length and weight, several multivariate models 

perform equally well. The models themselves however appear contradictory. 

Model 1: Cost = 1.5*Weight - 0.5*Length 
Model 2: Cost = -0.5*Weight + 1.5*Length 
Model 3: Cost = 0.5*Weight + 0.5*Length 

All describe the relationship perfectly. However, the models should be used only if the 

collinear relationship between the two independent variables (the direct proportionality 

between weight and length) holds for the new data. If not, the model predictions are 

suspect. Note for the above models, an object with weight=l and length=3 (the collinear 

relationship is violated) would cost zero, four or two dollars, depending on the model 

used to predict a cost. This does not immediately disqualify a model with a high p, but 

cautions that the relationship between the correlated variables must also be found within 

the new data before that new data may be used with such a model for predictive purposes. 

D.        MODEL DETERMINATION AND CER SELECTION 

The goal of every regression strategy is to produce a simple expression relating 

cost as the dependent variable to one or more independent variables. Although it would 

seem that regression analysis should fulfill this objective easily, the regression techniques 

must be justified by further analysis. 

The statistics generated by OLS regression will be used to justify both the form 

and the coefficients of the model. The form of a model consists of the independent 

variables used to make the model. When justifying a model form, the analyst will decide 

which variables to include, as well as the appearance they should take—whether sums, 

products, ratios or other combinations. In addition, the analyst must verify the actual 

19 



coefficients of each independent variable. The cost estimating relationship (CER) 

includes both a form and specific values for all coefficients. 

1.        Justifying the Model Form 

Determining a model form consists of deciding which of the independent 

variables should be included in the model. It is assumed that the variables were selected 

because they have a causal relationship with the dependent variable that would help 

predict new values. With the data in hand, that assumption may be tested. The 

regression returns statistics to back up or refute the expected relationship. These statistics 

provides an indication about whether particular variables should be included in a model, 

enabling the analyst to sort, build and shrink regression models by adding, removing and 

combining variables until an acceptable form is found. 

Two indicators of the acceptability of a model form are the p-values associated 

with the F statistic and the p-values associated with particular variables, or t statistics. 

The p-value may be interpreted as follows: when a gambler asserts that three rolls of a die 

will result in three sixes, one might consider such an event to be unlikely or rare, 

assuming the die is fair. Observing him roll a six on all three attempts raises the question 

of whether the die is indeed fair. The chances of having a six occur three times in a row 

are (1/6) , or 0.0046. An event this rare or more so should only happen about once in 

every 200 tries. This backs up the suspicion that the die is probably not fair. So, a p- 

value may be interpreted as the probability of seeing an event this rare or more so if the 

assertion being made is true. The significance of the p-value is measured by its 

magnitude. In the example the significance of the fairness of the die is 0.0046. 
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The p-value associated with the F statistic can be interpreted as the probability 

that the coefficients of the independent variables in the model are all zero. In such a case, 

the average cost (y) would provide an equally accurate estimate of a predicted cost. The 

p-value for the t statistic associated with each independent variable describes a similar 

probability, but with respect only to the coefficient of a particular independent variable. 

Multivariate models cannot rely only on the F statistic to determine whether a 

model is acceptable. One common strategy for generating prospective multivariate 

model forms is backward elimination. Backward elimination first generates a composite 

model by performing a regression of the dependent variable against all independent 

variables, then systematically eliminates individual independent variables until a model is 

found in which all coefficients are reasonably significant. 

The level of significance at which remaining variables are deemed worth keeping, 

or the required significance (a), is a subjective determination. Although an a level of 

0.05 is a common requirement in scientific analysis, this study shall select a less 

restrictive level of 0.2 as a maximum acceptable variable p-value significance. The 

reason for increasing the required a to 0.2 is two-fold. First, the required accuracy of a 

cost model does not usually require a 5% tolerance. The goal is not to eliminate all 

variables that do not explain a majority of the change of the dependent variable, but to 

identify all variables that appear to contain information that assists in the prediction of the 

dependent variable. 

Second, the meaning of the p-value has been skewed because of the method used 

to generate the models. When a regression is conducted once, the p-value describes the 
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chances of seeing a result as rare or more so, given that a model describes the data just as 

well without the variable in question. With an a=0.05, the rare event happens only once 

in twenty times. But when regressions are conducted repeatedly, the odds of the rare 

event increase significantly. If twenty regressions are performed, it would be unlikely for 

the rare event not to occur. Thus the actual significances are larger than the p-values 

reported by the statistical tests. Arbitrarily setting a low a will not assure model 

parameters are significant, only that additional parameters shall be eliminated. 

The larger a poses no serious problem. If an insignificant variable is accidentally 

included in the model, the true coefficient associated with the variable would be zero. 

Including such a variable does not change the prediction. On the other hand, if a 

significant variable is omitted, the model becomes biased; a change to the omitted 

variable causes the dependent variable to change and the model's prediction will be in 

error, not just by chance, but specifically because of the changing omitted variable 

(Hamilton, p. 73). 

If a model contains only variables whose individual p-values are <0.2, the overall 

model F-statistic p-value will also be smaller than 0.2, as the probability of several 

unlikely events happening simultaneously is always smaller than the probability of any of 

the events individually. 

2.        Justifying the Coefficients of the Model 

In addition to justifying the model form, the coefficients of the model, as well as 

their signs, must be considered when deciding whether a particular model is acceptable. 
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Two areas must be evaluated: the assumptions of the model and how well the model fits 

the data it was built around. 

a.       Evaluating the Assumptions of the Model 

A linear regression describes the value a dependent variable should take 

given a particular set of independent variable values. OLS regression supplies the best 

way to describe a data set with a linear model, provided certain conditions are met. If the 

conditions do not hold, the results of OLS become less trustworthy. In these cases, OLS 

may still provide insight into a database, but might not provide the best description of the 

data. As the assumptions are disobeyed, the OLS model becomes progressively less 

capable of describing the data. (Hamilton, p. 109) 

Under OLS, every dependent variable may be written as a linear 

combination of the independent variables, together with a random error term. The error 

term explains all variations in the dependent variable not caused by the independent 

variables in the equation, and is often named the residual. Equation 1 summarizes this 

relationship. 

Yi =ßQ + A X(i,i) + ß2 X(,-,2) + - + ßk X(i,k) + £i [1] 

Yi : actual dependent variable data value 
ßj : coefficient for independent variable j 
X(ij) : 1th individual independent variable data value for variable j 
£i : i* error term or residual 
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The linear regression depends upon the validity of five underlying 

assumptions. They are: 

1) Every variable that causes the dependent variable to change is 
in the model. Because of this, a given set of independent variables 
shall always produce the same result, along with an error term. 

2) The error terms will have a mean of zero. 
E[$] =0 V i. 

3) The error terms will have constant variance. 
Var[£j = a2 V i. 

4) Error terms are not correlated with one another. 
Cov[£,£;] =0       V i?j. 

5) Error terms are normally distributed, (with a mean of zero and 
a constant variance) 
£/~ Normales2) Vi. 

(Hamilton, p. 110-3) 

Unfortunately, with sample data, two of these assumptions cannot be verified (Hamilton, 

p. 112-3). Assumption (1) assumes perfect knowledge about the relationship between the 

dependent and independent variables—this kind of assurance can never be provided by 

science, regardless of the topic or application. Similarly, Assumption (2) can never be 

verified in practice—if the error terms have a non-zero mean \L', all predictions would 

miss the true dependent variable value by [i\ However, when this situation is estimated, 

that discrepancy would be corrected by modifying ß0. The following two situations are 

indistinguishable: {E[£j = 0 with ß0 = c} and {E[f;] = \i' * 0 with ß0 = c - \L'}. 

The remaining three assumptions should be investigated using analytic 

techniques and diagnostic plots. If Assumption (3) does not hold, a condition known as 

heteroscedasticity, the variance of the model will be estimated overly high or low, 

making estimates of confidence intervals inaccurate. (Hamilton, p. 113) 

Heteroscedasticity among the e, may be seen easily in a plot of predicted dependent 
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variables against l$l, when the average residual magnitude is not constant over the range 

of predicted dependent variable values. 

If the data violates Assumption (4), and error terms are correlated, the 

model's variance will also be affected. The difficulties of a correlated model have 

already been described when discussing multivariate models. Correlation is best detected 

using a covariance matrix of the independent variables. Real data can be expected to 

show some correlation; a lpl<0.3 should not be a concern. If lpl>0.7, the correlation must 

be addressed. To put the effects in perspective, if two variables in a model are mildly 

correlated (p=0.3), the actual standard error could be 105% of the reported standard error. 

If p=0.7, the actual standard error could be almost 140% of the reported value. 

(Hamilton, p. 113, 133-6) 

In a similar way, violations of Assumption (5), or non-normality, also 

make the model less accurate—calling into question the p-values of both the t and F 

statistics. (Hamilton, p. 112-3) Since the residuals are supposed to have a normal 

distribution, with a particular mean and variance, any non-normality may be detected 

using a quantile plot of the residuals. The plot compares the fraction of residuals that are 

smaller than each quantile of the normal distribution with the same mean and variance. A 

straight line on the quantile plot indicates the residuals are indeed normal. 

b.        Evaluating the Fit of the Model 

Three additional statistics, the coefficient of determination (T?2), the 

residual standard error (RSE) and the coefficient of variation (CV), offer insight into how 

well a model fits the data around which it was built. Each presents similar information in 
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a different way. The RSE provides a measure of the typical deviation of an actual data 

point from the predicted value on the regression line. The calculation returning the RSE 

is similar to the calculation of a variance or standard deviation. Equation 2 describes the 

process: 

V   n-k-l L J 

RSE : Residual Standard Error 
n : number of data points in database 
k : number of independent variables 
yt : actual dependent variable value 
y{ : predicted dependent variable value 

The RSE may be used as an estimate for the standard error of a predicted value from a 

model, and is useful in calculating uncertainty and confidence interval information about 

model predictions. (Hamilton, p. 36) 

The coefficient of variation (CV) places the RSE in perspective by 

describing the ratio of the RSE to the average value of the dependent variable. Less 

formal than a confidence interval, the CV returns the relative size of the error to the 

average value of the dependent variable. The CV thus describes the expected percentage 

error of a prediction. The coefficient of variation may be determined using equation 3. 

_,T.    RSE 
CV=— [3] 

CV : coefficient of variation of model 
RSE : residual standard error of model 
y        : average value of dependent variables 
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The coefficient of determination (R2) is a ratio of the explained variation 

to the total variation. R2 values range from zero, for a model that explains none of the 

variation shown by the dependent variable, to 1.0, for a model that completely describes 

the data used to generate the model. The coefficient of determination may be calculated 

using Equation 4. 

r2_s(yi-y)*_r xfe-y»)2 r41 R-^j-l~^?w [4] 

yt       : actual dependent variable value 
yt       : predicted dependent variable value 
y        : average value of dependent variables 

The coefficient of determination will always increase as additional 

independent variables are added. The new variables cannot make the fit of the model 

worse, but they provide some additional information about the makeup of the data set. 

However, adding variables simply to raise R2 does not necessarily improve the model. 

An extreme case would add a binary variable for every data point in the database. Such a 

model would have an R2 of 1.0, as it perfectly describes the data set, but would not offer 

any information about a new data point that did not correspond exactly to a previous 

point. Accordingly, to balance the improvement in R2 to the cost of using additional 

parameters, the coefficient of determination can be adjusted. The adjusted/?2 accounts for 

the model size relative to the sample size by reducing the R2 by a fraction of the 
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unexplained model variation, and is described in Equation 5. In general: 

I»-*/ [5] 

Rl : adjusted coefficient of determination 
R2 : coefficient of determination 
k : number of model parameters, including intercept 
n : sample size 

Note as k approaches n, R2
a is reduced towards zero and can even become negative. This 

adjustment emphasizes the objective of the model, predicting future values instead of 

simply describing the current data. Any model can describe the database by using the 

database—only by identifying the underlying relationships with CERs may a model be 

applied effectively to new data. 

E.        MODEL SENSITIVITY AND CROSS-VALIDATION 

Once a model has been created that justifiably describes the data set, the question 

of how well it predicts new values may be addressed. The statistics from the model 

justification are often used to show that it will work in a new setting with new data. But 

those statistics actually describe only how closely the model fits the old data used in its 

construction. OLS will make the best use of the information contained in the data set- 

both the underlying relationships between the variables and the patterns that occur simply 

by chance. 

Consider the database; from a statistical perspective, the points have been selected 

from an infinite number of possible choices. Each point consists both of information 

explained by the model and random error. However, the error terms will, through 

random chance, form patterns periodically, as though they were information. The OLS 
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procedure does not waste any of this information—it will describe the patterns within the 

data set, whether the cause of the pattern was real or happenstance. Therefore, the model 

will better describe the data from which it was built than any new data used later. When 

the sample size is relatively small, the chances of improperly characterizing a relationship 

are greater still, hi order to gain some appreciation of a model's ability to predict new 

data, it must be validated. Validating a model by evaluating its ability to predict new data 

is called cross-validation. (Mosteller & Tukey, p. 36-7) 

1.        Cross-validation Performance 

Cross-validation may be performed in several ways, under the categories of 

'simple' or 'double' cross-validation. The categories reflect the degree to which the new 

data has been previously studied or used. 

a.        Double Cross-validation 

The fundamental way to perform cross-validation, often described as 

double cross-validation, involves acquiring new data after the form and coefficients of 

the model have been determined. Alternatively, the data set can be separated and a 

portion withheld before any examination has taken place. The new data is held in reserve 

until the models are completely determined, then the withheld data are entered in the 
k 

model and the predicted values are compared with the actual dependent variable values. 

The difference between the actual and predicted values represents the performance of the 

models on entirely new data. (Mosteller & Tukey, p. 36-38) 
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b.        Simple Cross-validation 

Unfortunately, many data sets are too small to be cut into pieces and still 

produce worthwhile models. Recalling that adjusted Z?2 is a function of the relative size 

of model to the database, using a subset may eliminate any hope of statistical 

significance. In such a case, simple cross-validation provides a reasonable alternative. 

In simple cross-validation, the data are partitioned into several (r) subsets of 

approximately equal size (/*') after the determination of a model's form has been made. 

Withholding one of the subsets, the particular coefficients for the model are determined 

from the remainder. The model is then used to predict the dependent variables in the 

withheld subset, using the subset's associated independent variables. Each prediction 

will miss by a particular amount, from which a squared residual may be calculated. The 

squared residual is calculated as in the RSE, the square of the difference between the 

actual and predicted value of the dependent variable. This process is repeated in turn 

with each subset, noting the squared residual of each. The average squared residual 

provides some measure of the quality of a regression on a data set of size n - n'. Because 

regression performs better on large data sets, this process can be maximized by 

withholding only a single data point, creating a model with the remaining data, predicting 

the excluded point and repeating the process until every point has been excluded 

(Mosteller & Tukey, p. 38-9). The average of the squared residuals may be used to 

calculate a cross-validated RSE that approximates the expected performance of the model 
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when predicting new data. This cross-validated RSE may also be used in the equation for 

CV. The equation for cross-validated RSE (RSEa,) follows as Equation 6. 

V    n-k-l 

RSEcv : cross-validated Residual Standard Error 
n : number of data points in database 
k : number of independent variables 
V,- : actual dependent variable value 
y\' : predicted dependent variable value using subset model 

The sum of squared residuals may be used as in the Equation 3 to calculate a cross- 

validated coefficient of determination (RI ). The equation for a cross-validated 

coefficient of determination is Equation 7. 

R2
C : cross-validated coefficient of determination 

y, : actual dependent variable value 
yV : predicted dependent variable value using subset model 
y : average value of dependent variables 

The cross-validated coefficient of determination may also be adjusted 

using Equation [5]. Although simple cross-validation does not actually demonstrate the 

model's future performance, it provides a better measure of the predictive qualities of the 

models than RSE and RI alone. 
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IE.   METHODS 

The methodology outlined in Section II must now be tailored to create predictive 

cost models that turn estimated data into quantitative predictions. Section HI details the 

specific procedures and decisions required when generating a cost estimation model that 

will accept such approximate data. 

A.       PURPOSE DEFINITION AND DATA COLLECTION 

The purpose of the cost estimate will determine most aspects of the study. But the 

availability of data will drive the ability to create useful models. The cost data used in 

this study was the most comprehensive available at the time. 

1.        Defining the Purpose 

This study shall focus on the creation of a parametric cost estimation model that 

converts approximate and uncertain estimates about Naval ship parameters into an 

average ship procurement cost estimate, including a measure of uncertainty. Cost will be 

the dependent variable, with physical and performance parameters serving as independent 

variables. The models are intended to be used in force structure cost analysis, 

particularly in the context of new force activation and acquisition; and reorganization, 

modification and modernization, as defined in Section II under Cost Analysis 

Applications. As such, the information about ship parameters is expected to be rough and 

incomplete; however, the cost models should be able to generate answers even in the face 

of limited information. The models will also be able to describe the expected variability 

of their estimates. 
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2.        Data Collection 

Because the parametric model will be expected to generate cost estimates for 

future systems that have not yet been designed, the model must be built from general 

data. While identifying the particular relationships specific to guided missile destroyers 

(DDGs) would provide additional accuracy when predicting the cost of new DDGs, the 

models for this study must be able to predict a wide variety of platform types. Therefore, 

the data includes as many classes and spans as much historical ground as possible. 

a.       Cost Data 

The reference, U.S. Weapon System Costs (Data Search Associates), 

tabulates procurement cost data for several ship classes. The entries represent major 

Naval ship acquisitions from 1973 to the present. All shipbuilding programs from the 

aforementioned tables have been incorporated into the cost data set. Several of the 

entries had missing ship class names and dated or inconsistent ship class designators, but 

the errors were easily corrected using supplied shipbuilder or contractor information and 

program start year data. The ship classes included in the data set are summarized in 

Table 4. 
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Class Class Name Data Duration 
AD41 Yellowstone •   1975-1981 
TAE26 Kilauea 1995-1997 

AGOR23 Thomas G. Thompson 1985-1999 
TAGS60 Pathfinder 1995-1996 
A0177 Cimarron 1976-1983 
A0E6 Supply 1985-1993 
ARS50 Safeguard 1979-1985 
CG47 Ticonderoga 1976-1988 

CVN68 Nimitz 1973-1999 
DDG51 Arleigh Burke 1981-1999 
DD963 Spruance 1973-1983 
FFG7 Oliver Hazard Perry 1975-1986 

LCAC1 not applicable 1982-1994 
LHD1 Wasp 1981-1999 
LPD17 San Antonio 1996-1999 
LSD41 Whidbey Island 1987-1993 
MCM1 Avenger 1979-1991 
MHC51 Osprey 1985-1993 
MKV not applicable 1994-1998 
MSH1 Cardinal 1982-1984 
PHM1 Pegasus 1973-1978 

SSBN726 Ohio 1973-1991 
SSN688    . Los Angeles 1973-1991 
SSN774 Virginia 1992-1999 
SSN21 Seawolf 1985-1999 

TAG0S1 Stalwart 1978-1990 
TA0187 Henry J. Kaiser 1980-1991 

TAFS Lyness 1982-1984 
TARC7 Zeus 1979-1983 

TATF166 Powhatan 1975-1979 
Table 4.   Ship Classes. 
Including class name and procurement period. 
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b.        Weapon System Class Parameters 

Performance and technical parameters of the naval ship classes have been 

obtained from JANE's Fighting Ships (JANE's Publishing) and verified using Ships and 

Aircraft of the U.S. Fleet (Polmar). Seven attributes were chosen for inclusion in the data 

set: 

1) Length (LEN), the overall length of the craft in feet. 
2) Light Displacement (DISP), the weight in tons of the ship hull, 

machinery, equipment and spares. (Transportation Institute) 
3) Beam (BEAM), the vessel width at its widest point, in feet. 
4) Number of Engines (ENGNUM), the number of engines used for 

propulsion. 
5) Propulsion Type (PROP), the engine type used for propulsion, 

d: diesel, s: steam, t: gas turbine, n: nuclear power. 
6) Shaft Horsepower (SHP), the total engine power, in hp, used for 

locomotion. 
7) Maximum Speed (MAX), the published maximum speed of the craft in 

knots. 

These attributes represent the general information that might be available or estimable for 

a Naval ship long in advance of specific designs. Detailed information cannot always be 

expected when performing a force structure cost analysis. General parameters allow the 

analyst to identify aspects of force structure elements that may be similar to historical 

craft in the database. The data for each class, together with average cost given in 

constant 1999 dollars (CY99M$), is shown in Table 5. 
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Ship Class 
AVGCOST 
(CY99M$) NUM DISP 

(tonsj 
LEN 
(feet) 

BEAM 
(feet) 

ENGNUM PROP SHP 
(khp) 

MAX 
(knots) 

AD41 852.265 4 13318 643.8 85 2 s 20 20 

TAE26 35.354 3 9238 563.8 81 3 s 20 22 

AGOR23 131.306 7 2100 274 52 3 d 6 15 

TAGS60 24.417 3 3019 329 58 2 d 8 16 

A0177 349.113 5 8210 708.3 83 1 s 24 19.4 

AOE6 559.479 4 19700 754.8 107 4 t 100 26 

ARS50 124.418 4 2725 254.9 51 4 d 4.2 13.5 

CG47 1459.251 27 7015 567 55 4 t 86 30+ 

CVN68 5107.259 7 77606 1092 134 4 n 260 30+ 

DDG51 971.560 47 6682 504 66.9 4 t 105 32 

DD963 606.673 15 6156 563.2 55.1 4 t 86 33 

FFG7 484.068 50 2770 445 45 2 t 41 29 

LCAC1 34.089 84 102.2 81 43.7 4 t 15.82 50 

LHD1 1405.056 7 28233 844 106 4 s 77 24 

LPD17 810.509 4 25300 683.7 104.7 4 d 40 22 

LSD41 330.789 4 11125 609.6 84 2 d 41.6 22 

MCM1 154.282 17 1195 224.3 38.9 2 d 2.6 12.5 

MHC51 180.747 9 803 187.8 35.9 2 d 1.16 12 

MKV 8.626 18 75 82 18 2 d 4.506 50 

PHM1 228.469 4 198 131.5 28.2 1 t 16.77 50 

SSBN726 2362.590 19 16600 560 42 2 n 60 24 

SSN688 944.541 51 6082 362 33 2 n 35 32 

SSN774 3475.525 2 7700 377 34 2 n 24 28 

SSN21 2212.306 3 7460 353 42.3 2 n 52 35 

TAGOS1 82.593 23 1600 224 43 4 d 3.2 11 

TA0187 211.402 18 9500 677.5 97.5 2 d 32.54 20 

TARC7 473.616 1 8297 502.5 73.2 5 d 12.5 15.8 

TATF166 47.389 7 2000 240.5 42 2 d 4.5 15 

Table 5.   Ship Class Physical and Performance Parameters. 
Showing all prospective dependent and independent variables. 

B. DATA NORMALIZATION 

Because the data includes a variety of ship classes, proper normalization is of key 

importance. Each data point must be carefully evaluated to ensure it is equivalent to 

every other in terms of content, quantity and inflation. 
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1.        Content Normalization 

Cost data may be normalized using the WBS of the platform in question. The 

Weapon System Cost data (Data Search Associates) divides procurement costs into two 

categories: Procurement Costs and Other Procurement Costs. 

Procurement Costs include costs of all WBS Level 2 categories from Table 1. 

except Training, Peculiar Support Equipment and Common Support Equipment. It also 

includes all costs, both contract and in-house of the Production Non-recurring and 

Recurring cost categories, including allowances for engineering changes, warranties and 

first destination transportation, unless the latter is a separate budget line item. 

Other Procurement Costs represent the costs of outfitting the ships. The costs 

include spares, repair parts, escalation and cost growth, post-delivery and other material 

required for storeroom and operating space initial allowances. It also includes design, 

planning, government-furnished materials and related labor costs required to correct sea- 

trials deficiencies. 

The performance and technical data were also investigated to ensure that 

measurements from one ship class corresponded to similar measurements from another. 

Overall length was chosen instead of waterline length because it does not depend on ship 

draft. Beam measurements, as used, do not include protrusions such as the flight deck or 

bridge wings. The engine number consists of the steam or gas turbines used for 

locomotion and diesel engines used directly or indirectly for propulsion. The maximum 

speed figures are unclassified estimates. Several classes did not list a particular top 

speed, listing instead 30+, indicating an unspecified speed in excess of thirty knots. 
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Substituting thirty knots would not properly reflect the actual capabilities of the classes, 

and inputting an N/A effectively removes those classes from consideration at all with 

respect to the MAX independent variable. As a compromise, a figure was obtained by 

using the highest published speed of a similar craft, the DD 963. Because of this, a speed 

of 33 knots was used for the CVN 68 and CG 47. Although imprecise, the estimate 

provides some accuracy without making the data classified. 

Two programs were found to be incompatible with the remaining data and were 

stricken, as they did not represent actual new-production programs. The MSH-1 program 

was cancelled before entering production, and the TAFS program dollars were used only 

to convert existing vessels rather than to produce new ones. 

Additionally, five classes were deemed too dissimilar from the rest of the data to 

be included. The nuclear powered vessels—four submarines and one carrier class do not 

obey the same production cost rules as conventional ships. They differ from remaining 

ships both in value and trend, reflecting their unique production methods, quality 

assurance requirements, labor costs, environmental support and other factors. 

2.        Quantity Normalization 

While normalization of cost figures to theoretical first unit cost (Tl) values for 

comparative purposes provides the most accurate representation of skilled production on 

unit cost, the process requires individual procurement costs for individual vessels from 

individual shipyards. Unfortunately, the cost data available for this study does not 

include such information. The data is tabulated in a 'by-year' format and cannot be 

separated into specific units, lots or shipyards. 
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While not ideal, the data are sufficient to create an estimate for hypothetical 

alternatives and components of strategic plans. If the objective of the study were to 

predict the cost of producing an additional number of ships from a well-defined program, 

the use of averaged values might be questionable. However, the objective is a model that 

predicts cost from uncertain inputs. In such circumstances, inflation-adjusted averaged 

cost figures provide an acceptable compromise between cost accuracy and data 

availability. 

3.        Inflation Normalization 

The tabulated cost figures consist of actual dollars spent in a given year. To 

normalize all values for inflation, individual amounts are converted into constant 1999 

(CY99) dollars using "Inflation Indices and Outlay Profile Factors" prepared by the 

Naval Center for Cost Analysis (NCCA). These normalized figures are then summed by 

class and divided by the number of craft produced in the program, yielding an average 

procurement cost in CY99M$. Values for the average procurement costs of all classes 

are also included as the variable AVGCOST in Table 5. 
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As an example, the Kilauea class (TAE 26) data covers the years 1995 to 1997. 

The procurement cost from each year is adjusted to CY99 by multiplying by the inflation 

index for the particular year. The adjusted dollars are then added and divided by the total 

quantity of ships produced within that time frame, resulting in an inflation adjusted 

average cost for the TAE 26 class. The data is summarized in Table 6. 

Procurement 
Year 

Procurement 
Cost 

(BYM$) 

Inflation 
Index 

Adjusted 
Procurement Cost 

(CY99MS) 

Quantity 
Produced 

1995 30.3 1.0899 32.70 1 
1996 30.0 1.0685 32.38 1 
1997 39.2 1.0455 40.98 1 

Total Cost 106.06 
Total Quantity 3 

Average Cost (CY99MS) 35.35 

Table 6.    Inflation Adjustment for TAE 26 Class. 
Converting yearly budget spending into an adjusted class average. 

C.        DATA ANALYSIS 

The data analysis follows the procedure outlined in Section IIC. Deviations from 

the outline shall be explicitly described and justified. 

1.        Relationship Determination and Transformation 

Linear regression best explains the relationships between independent and 

dependent variables if the relationships are linear. If the relationships are not linear, they 

must be transformed or the models will exhibit excessive error. No preconceived 

inferences are made as to the expected relationship form. The statistical package S-Plus 

provides a function called loess that may be used to subjectively evaluate the linearity of 

the data. Loess is a locally weighted regression that picks the best line segment to 

describe only the points in the immediate vicinity of every point. (S-Plus Guide to 

Statistics, p. 159-60) When plotting both the OLS line and loess line, departures between 
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the two indicate local behavior that does not match the overall linear trend of the OLS 

line. If the loess line significantly strays from the OLS line, transformations may be 

required to convert the data into following a linear relationship. Both the OLS line and 

loess line for conventional ships are shown in Figures 4 and 5. Although the loess lines 

do not mirror the OLS lines exactly, they do not exhibit any particular behavior to 

suggest a non-linear relationship. Therefore, all variables will be used in models without 

transformation. 
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Figure 4: Plot of Average Cost Against Independent Variables. 
For number, light displacement, length and beam. 
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Average Cost vs. Number of Engines        Average Cost vs. Shaft Horsepower 
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Figure 5: Plot of Average Cost Against Independent Variables. 
For number, light displacement, length and beam. 

2.        Regression Model Generation 

This study is intended to generate simple yet accurate models that predict the 

average cost of a hypothetical system, when only a few system details may be known. 

Therefore, the model building process shall begin with single variable linear models. 
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a.        Single Variable Linear Models 

Because of the manageable number of independent variables, a regression 

of average cost is performed separately against each independent variable. The models 

are created using the statistical package S-Plus 4.0. When exploring the performance of 

each formulation, models are rejected if the indicated significance (or p-value) of the 

respective F-statistic exceeds 0.2. An example regression summary for the univariate 

model relating average cost to light displacement is included as Figure 6. A complete 

summary of models shall be included in Part D, Model Determination and CER 

Selection. 

*** Linear Model *** 

Call: lm(formula = AVGCOST - DISP, data = shipcost.sm) 
Residuals: 

Min    IQ Median   3Q Max 
-446.7 -198.5 -98.76 145.9 1056 

Coefficients: 
Value Std. Error t value Pr(>|t|) 

(Intercept) 155.9316  96.0895 1.6228 0.1196 
DISP   0.0353   0.0090 3.9118 0.0008 

Residual standard error: 332.8 on 21 degrees of freedom 
Multiple R-Sguared: 0.4215 
F-statistic: 15.3 on 1 and 21 degrees of freedom, the p-value is 
0.0008021 

Figure 6:  Sample S-Plus Output for Univariate Model. 
Showing a regression of light displacement on AVGCOST. 
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b.        Multiple Variable Linear Models 

In order to capitalize on the additional information provided by multiple 

independent variables, S-Plus is also used to create multivariate linear models. The 

strategy of backward elimination begins with a regression using all possible technical and 

performance variables. Variables with a significance (t-statistic p-value) >0.2 are 

removed, one at a time, and a new model is generated. This process continues until all 

variables appear significant to the model. In Figure 7, the variable NUM shall be 

eliminated because it has a p-value >0.2. The variable SHP will not be eliminated during 

this iteration as only one may be removed at a time. NUM shall be removed before SHP 

because in addition to having a p-value >0.2, the sign of the coefficient indicates that as 

more ships are produced, they become more expensive, an unrealistic characterization. 

*** Linear Model *** 

Call: lm(formula = AVGCOST - NUM + DISP + LEN + BEAM + ENGNUM t- SHP, data = 
shipcost.sm) 
Residuals: 

Min    IQ Median  3Q  Max 
-346.9 -89.88 11.02 94.2 420.2 

Coefficients: 
Value Std. Error t value Pr(>|t|) 

(Intercept) 303.4141  221.9271 1.3672 0.1905 
NUM 3.1693'   3.0191 1.0497 0.3094 
DISP 0.0442    0.0147 3.0042 0.0084 
LEN 1.9458    0.7230 2.6912 0.0161 
BEAM -21.3256    6.3467 -3.3601 0.0040 

ENGNUM 54.0394   50.3269 1.0738 0.2989 
SHP 2.2534    2.5713 0.8764 0.3938 

Residual standard error: 223.2 on 16 degrees o f freedom 
Multiple R-Squared: 0.8018 
F-statistic: 10 .79 on 6 and 16 degree s of freedom, the p-value is 0.00007286 

Figure 7: Sample S-PIus Output for Multivariate Model. 
Showing a regression of six independent variables on AVGCOST. 
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D.       MODEL DETERMINATION AND CER SELECTION 

Several models performed at a reasonable level of significance. They represent 

the contenders as CERs. However, the selection of a CER as a useful predictor will also 

depend on additional information not captured by the p-values. 

1.        Significant CERs 

Significant CERs demonstrate p-values that are less than the limit of 0.2. The 

insignificant models need not be considered further as useable CERs. Additional 

statistical measures such as the coefficient of determination and residual standard error 

shall be used to further evaluate the significant models; 

a.        Single Variable Models 

Five of the seven independent variables demonstrate promise as predictors 

of acquisition cost. The variables NUM and PROP have p-values of 0.91 and 0.33 

respectively and are removed from further consideration. The remaining formulations, 

together with the range of variables used in their construction and coefficients of 

determination and variation, are detailed in Table 7. The range indicates the extreme 

Independent 
Variable 

SHP 
LEN 
DISP 

BEAM 
ENGNUM 

Formulation 

AVGCOST=103.6+9.545*SHP 
AVGCOST=-\ \32+\205*LEN 

AVGCOST=155.9+0.0353*DISP 
AVGCOST=-79.54+7.837*BEAM 

AVGCOST=-1224+U7.0*ENGNUM 

Independent 
Variable Range 

1.16 to 105 khp 
81 to 844 ft. 

75 to 28233 tons 
18 to 107 ft. 

1 to 5 engines 

Rl 
0.5490 
0.4122 
0.4014 
0.2179 
0.1526 

RSE 
284.8 
329.6 
332.8 
384.3 
401.0 

cv 
68.5% 
79.3% 
80.0% 
92.4% 

Table 7.   Single Variable Model Performance. 
Showing model formulations, range of independent variables, coefficients of variation 
and determination and standard error. 

96.4% 
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values of the independent variable from the data set and is included to specify the scope 

of values that could credibly be used with the model under the expectation of a linear 

relationship. 

b.        Multiple Variable Models 

The technique of backward elimination starts with a single model with 

seven independent variables. By eliminating the insignificant variables, the model was 

reduced to a four variable model. The regression output is shown in Figure 8. The model 

displays two shortcomings that must be addressed before accepting the model. First, 

BEAM has a negative coefficient. This would seem to indicate that by making a ship 

*** Linear Model *** 

Call: lm(formula = AVGCOST - DISP + LEN + BEAM + SHP, data = 
shipcost.sm) 
Residuals: 

Min    IQ Median   3Q  Max 
-354.2 -111.9 -6.38 94.52 477.8 

Coefficients: 
Value Std. Error t value Pr(>|t|) 

(Intercept) 477.6136  188.6964 2.5311   0.0209 
DISP 0.0429    0.0142 3.0259    0.0073 
LEN 1.3812    0.6393 2.1606    0.0445 
BEAM -18.0386    6.0903 -2.9619    0.0083 
SHP 4.7917    2.0396 2.3493    0.0304 

Residual standard error: 226.5 on 18 degrees of freedom 
Multiple R-Squared: 0.7704 
F-statistic: 15 .1 on 4 and 18 degrees of freedom, the p-value is 
0.00001409 

Correlation of Coefficients: 
(Intercept) DISP LEN      BEAM 

DISP 0.7055 
LEN 0.2221    -0.0070 
BEAM -0.7717     -0.5737 -0.7379 
SHP -0.2347     -0.2184 -0.5646  0.4124 

Figure 8: Regression Results for Multivariate Model. 
Showing a regression of AVGCOST on DISP, LEN, BEAM and SHP. 
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fatter, it would be cheaper to build. The second problem is actually the same problem 

revealed in a new way. The two variables LEN and BEAM are highly correlated (p=-.74), 

indicating that they both describe similar information. Indeed, in the univariate models, 

both variables have positive coefficients, indicating that as length or beam is increased, 

average cost will also increase. The correlation indicates that as a ship gets longer, its 

beam typically gets larger also. Because of this, some of the price increase due to a 

larger beam is attributed to the variable coefficient for LEN. The negative coefficient for 

BEAM is a correction that reflects the higher cost of narrow ships, compared to wide 

ones, for a given length. 

In an attempt to correct the multicollinearity, the two variables LEN and 

BEAM may be combined into the aspect ratio LENBEAM, where LENBEAM =  LEN 

BEAM ' 

The backward elimination procedure is then repeated, starting with a full model including 

all variables except LEN and BEAM, substituting instead the aspect ratio LENBEAM. 

The resulting three-variable model produces similar results but exhibits much less 

correlation between variables. The multiple variable models are summarized in Table 8. 

The regression output is shown in Figure 9. 
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Independent 
Variables Formulation 

Independent Variable 
 Range Ri RSE CV 

DISP 
LEN 

BEAM 
SHP 

AVGCOST=477.6+0.0429*DISP+ 
13&1*LEN+ 

-1&M*BEAM+ 
4.792*SHP 

DISP: 75 to 28233 tons 
LEN: 81 to 844 ft. 

BEAM: 18 to 107 ft. 
SffP:1.16tol05khp 

0.5992 226.5 54.5% 

DISP 
LENBEAM 
ENGNUM 

AVGCOST =- 
693.8+0.0207*DISP+ 

1063*LENBEAM+ 
86.63*ENGNUM 

DISP: 75 to 28233 tons 
LEN: 81 to 844 ft. 

ÄEAM: 18 to 107 ft. 
ENGNUM: 1 to 5 engines 

0.5607 266.0 64.0% 

Table 8.   Multiple Variable Model Performance. 
Showing model formulations, range of independent variables, coefficients of variation 
and determination and standard error. 

*** Linear Model *** 

Call: lm(formula 
shipcost.sm) 
Residuals: 

Min    IQ Median   3Q  Max 
-461.5 -153.4 -81.97 155.5 565.9 

Coefficients: 
Value Std. Error 

(Intercept) -693.7551  245.0980 
DISP    0.0207    0.0083 

LENBEAM  106.2619   30.9323 
ENGNUM  86.6332   51.8724 

AVGCOST - DISP + LENBEAM + ENGNUM, data 

t value Pr(>|t|) 
-2.8305 0.0107 
2.4951 0.0220 
3.4353 0.0028 
1.6701 0.1113 

Residual standard error: 266 on 19 degrees of freedom 
Multiple R-Sguared: 0.6658 
F-statistic: 12.62 on 3 and 19 degrees of freedom, the p- 
value is 0.00009065 

Correlation of Coefficients: 
(Intercept) DISP LENBEAM 

DISP  0.2785 
LENBEAM -0.7831     -0.3814 
ENGNUM -0.5880     -0.3377 0.0664 

Figure 9: Regression Results for Multivariate Model. 
Showing a regression of AVGCOST on DISP, LENBEAM and ENGNUM. 

E.        MODEL APPRAISAL AND VALIDATION 

Unfortunately, model selection cannot rely simply on statistics. After all, the 

searching process that determined each model and required significance level of a=0.2 
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allows useless information to be included into one in every five models. In the end, the 

models must be individually analyzed for plausibility and their credibility tested. 

1.        Single Variable Models 

The five univariate models may be conveniently clustered into two groups, based 

upon individual model coefficients of variation and RSE. The models for BEAM and 

ENGNUM each account for between 16% and 23% of the variability of the database, 

while LEN, DISP and SHP each describe between 40% and 55% of the variability, as 

measured by R\ . 

In addition to outperforming the other two in statistical measures, LEN, DISP and 

SHP represent information likely to be known or estimable in the uncertain situations for 

which the models are being developed. Therefore, only the aforementioned three 

independent variables shall be considered further. Each model shall be referred to by the 

variable name from which it was formed. 

As single variable models, only two regression assumptions are critical to the 

validity of the model, normality of error terms (residuals) and homoscedasticity. The 

three models, LEN, DISP and SHP, each demonstrate sufficient adherence to the required 

assumptions. A graphical summary of each is shown as Figures 10,11 and 12. A 

graphical summary of each model is shown in Appendix A. 

The DISP model has one shortcoming: two points from the database exert 

significant leverage on the formulation; the points for LHD 1 and LPD 17 play a large 

role in determining the direction of the OLS line because they are have larger DISP 

values than other points. However, the influence of each point is relatively low, 
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indicating that the line would have taken a similar form even if the points were not 

included. As such, all three models are worthwhile CERs for average cost. 
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Figure 10: Graphical Performance of the LEN Model. 
Showing residuals, their absolute values, predicted cost vs. actual cost, a quantile plot and 
a leverage plot. 
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Figure 11: Graphical Performance of the DISP Model. 
Showing residuals, their absolute values, predicted cost vs. actual cost, a quantile plot and 
a leverage plot. 
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Figure 12: Graphical Performance of the SHP Model. 
Showing residuals, their absolute values, predicted cost vs. actual cost, a quantile plot and 
a leverage plot. 

52 



2.        Multivariate Models 

Because referring to the multivariate models by their component independent 

variables would be difficult, they Shall be referred as MV1: for the regression of 

AVGCOST on DISP, LEN, BEAM and ENGNUM; and MV2: for the regression of 

AVGCOST on DISP, LENBEAM and SHP. Both multivariate models share similar 

statistical and predictive performance. With the exception of the multicollinearity shown 

with MV1, each adequately meets the required regression assumptions. A graphical 

summary of the multivariate models is included as Figures 13 and 14. 
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Figure 13: Graphical Performance of the MV1 Model. 
Showing residuals, their absolute values, predicted cost vs. actual cost, a quantile plot and 
a leverage plot. 

53 



0      200    400    600    800 

Rtted : ((displacement + lenbeam + numengine 

200    400    600    800 

fits 

i 1— 

0      200    400    600    800 

Fitted : displacement + lenbeam + numengtne 

Fitted Values        Residuals 
8- <» 

to 
3 

O o - 

© 
o ■ 

o°.f.-' 
o-' 

8 
tr 

o  • 

8. 

s. 
<*■' 

-2-10 1 2 

QuantHes of Standard Normal 

Figure 14: Graphical Performance of the MV2 Model. 
Showing residuals, their absolute values, predicted cost vs. actual cost, a quantile plot and 
a leverage plot. 

Although the four variable MV1 model exhibits a slightly superior F2 and RSE, 

the multicollinearity calls into question its output when the highly correlated relationship 

between LEN and BEAM fails to hold. Performing a regression of length on beam returns 

the relationship: LEN = -79.8 + 8.2 * BEAM ; new vessels that do not approximately 

follow this relationship will be poorly predicted by MV1. In fact, with p=-0.74, the RSE 

could be off by 150%. (Hamilton, p. 134-5) Additionally, because both models have 

nearly equal R2
a values, the penalty for having a larger model appears to cancel out the 

benefits of additional independent variables. As such, MV2 appears to be the best 

multivariate model. 
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3.        Model Validation 

Since the regression technique has systematically identified the data set deviations 

and returned a descriptive explanation of them, any model will perform most successfully 

on the data from which it was generated. Cross-validation must be used to evaluate the 

single and multivariate models. Because the normalized database includes only twenty- 

three data points, simple cross-validation shall be used. Although not as powerful as 

double cross-validation, simple cross-validation still provides insight into how well the 

model will perform when faced with entirely new data. The statistics generated during 

cross-validation offer the best characterization of model quality and provide a means of 

selecting models useful in predicting new values. The R2
ac values describe the fraction of 

the variability of a new ship class that should be explained by the models and the RSEC 

values provide a realistic standard error for model predictions when used with new data. 

A summary of the models, their cross-validated coefficients of determination and 

variation and their standard errors is shown in Table 9. The SHP model clearly 

outperforms the remaining single variable models, rivaling even the multivariate 

regressions. MV1 does outperform MV2, indicating that the adjustment in calculating R\ 

may penalize MV1 too harshly. Still, the multicollinearity problems of MV1 restrict its 
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use to situations where the collinear relationship between LEN and BEAM holds, making 

it less useful as general model. 

Model 
Name 
DISP 
LEN 
SHP 
MV1 
MV2 

Ra,c 
0.2908 
0.2930 
0.4243 
0.4664 
0.3715 

RSEr 
344.1 
343.5 
310.0 
276.3 
308.1 

CVr 
82.7% 
82.6% 
74.5% 
66.4% 
74.1' 

Table 9.    Cross-validated Mode Performance. 
Showing model name, cross-validated coefficients of determination and variation and 
standard error. 

56 



IV.   RESULTS 

This section shall present the models most useful as cost estimating relationships 

for a parametric cost analysis and discuss the quality of their predictions. The models 

shall also be used to address a force structure cost analysis as an example application. 

A.       PRESENTATION OF MODELS 

Four models performed reasonably well both in statistical analysis and validation. 

All predict the average cost of a new ship procurement. However, the models are not 

sufficient for most cost estimating purposes; their resolution precludes their use in all but 

rough order of magnitude (ROM) studies. They should be employed only when a ROM 

answer would meet a study's purpose. The performance of each model shall be 

summarized and documented below. 

1.        Summary of Models 

The univariate models LEN, DISP and SHP and the multivariate MV2 model are 

each valid for use as parametric cost models. Each performs to a particular level of 

accuracy. Although either normal or cross-validated statistics could be used to evaluate 

the models, the cross-validated performance provides a better prediction of how a model 

will perform when used with entirely new data. As such, the cross-validated statistics 

should be used when evaluating model suitability for an application and calculating 

model variability. 

57 



a.        The LEN Model 

The LEN model converts the overall length of a ship into an average cost 

of procurement, in constant 1999 dollars (CY99M$). It is suitable for predicting the 

average cost of a vessel with an overall length between 81 and 844 feet. A typical 

prediction may be expected to err by about 83%. The predicted average cost will have a 

standard error of about $345 million. The model and its performance are summarized in 

Figure 15. 

The LEV Model: 

AVGCOST (CY99M$) = -113.23 + 1.2054*L£7V 

Where: 
LEN= Length in ft. 

Allowable Range for independent Variable: 
Length: 81 to 844 ft. 

Cross-validated Statistics: 
Adjusted Coefficient of Determination: 29.3% 
Coefficient of Variation: 82.6% 
Residual Standard Error: 343.5 (CY99M$) 

Figure 15: The LEN Model Summary. 
Predicting average cost with overall length. 
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b.        The DISPModel 

The DISP model converts the light displacement of a ship into an average 

cost of procurement, in CY99M$. It is suitable for predicting the average cost of a vessel 

with a light displacement between 75 and 28233 tons. A typical prediction may be 

expected to err by about 83%. The predicted average cost will have a standard error of 

about $345 million. The model and its performance are summarized in Figure 16. 

The DISP Model: 

AVGCOST (CY99M$) = 155.93 + 0.03S3*DISP 

Where: 
DISP = Light Displacement in tons. 

Allowable Range for independent Variable: 
Light Displacement: 75 to 28233 tons. 

Cross-validated Statistics: 
Adjusted Coefficient of Determination: 29.1% 
Coefficient of Variation: 82.7% 
Residual Standard Error: 344.1 (CY99M$) 

Figure 16: The DISP Model Summary. 
Predicting overall cost with light displacement. 
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c.        The SHP Model 

The SHP model converts the shaft horsepower (khp) of a ship into an 

average cost of procurement, in CY99M$. It is suitable for predicting the average cost of 

a vessel with a propulsion shaft horsepower between 1160 hp and 105,000 hp. A typical 

prediction may be expected to err by about 75%. The predicted average cost will have a 

standard error of $310 million. The model and its performance are summarized in 

Figure 17. 

The SHP Model: 

AVGCOST (CY99M$) = 103.63 + 9.5453*SHP 

Where: 
SHP = Shaft horsepower in khp. 

Allowable Range for independent Variable: 
Shaft Horsepower: 1.16 to 105 khp. 

Cross-validated Statistics: 
Adjusted Coefficient of Determination: 
Coefficient of Variation: 
Residual Standard Error: 

42.4% 
74.5% 
310.0 (CY99M$) 

Figure 17: The SHP Model Summary. 
Predicting overall cost with propulsion shaft horsepower. 
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d.        The MV2 Model 

The MV2 model converts the overall length, beam, light displacement and 

number of engines of a ship into an average cost of procurement, in CY99M$. The 

model may be used for a ship with an overall length between 81 and 844 feet, a beam 

between 18 and 103 feet, a light displacement between 75 and 28233 tons and with one to 

five propulsion engines. A typical prediction may be expected to err by about 75%. The 

predicted average cost will have a standard error of nearly $310 million. The model and 

its performance are summarized in Figure 18. 

The Multivariate MV2 Model: 

AVGCOST (CY99M$) = -693.76 + 0.0207*D/SP + 
106.262*(LEN/BEAM) + 86.6332*ENGNUM 

Where: 
DISP = Light Displacement in tons. 
LEN= Length in ft. 
BEAM = Beam in ft. 
ENGNUM — Number of Propulsion Engines. 

Allowable Range for independent Variable: 
Light Displacement: 75 to 28233 tons. 
Length: 81 to 844 ft. 
Beam: 18 to 103 ft. 
Number of Engines: 1 to 5. 

Cross-validated Statistics: 
Adjusted Coefficient of Determination: 
Coefficient of Variation: 
Residual Standard Error: 

37.2% 
74.1% 
308.1 (CY99M$) 

Figure 18: The Multivariate Model Summary for the MV2 Model. 
Predicting average cost with length, beam, light displacement and shaft horsepower. 
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All three univariate models, as well as the multivariate model have large 

coefficients of variation and RSEs. Cost estimates may be expected to err by at least 

75%, on the average. Again, any user intent on employing these models must be willing 

to accept predictions that miss the true average procurement cost by a factor of two or 

more. 

2.        Model Documentation 

A detailed description and documentation of the cost models developed by this 

study is provided in Appendix B. It is suitable as a stand-alone summary and procedural 

guide for rough order of magnitude cost models when predicting U.S. Navy conventional 

surface ship procurement costs. It also contains the necessary uncertainty information to 

enable cost analysts and decision makers to determine whether the models will be 

suitable to a particular cost estimating application. 

B.        ILLUSTRATED EXAMPLE 

An example of a suitable use for this type of cost model follows. In this example, 

a Force Structure Cost Analysis will compare two alternative strategic decisions and the 

forces necessary to support them. Two competing political strategies requiring different 

military infrastructures will be investigated. Force compositions are hypothetical; they 

do not represent strategic concerns of the U.S. Navy, the U.S. Government or any other 

organization, and are included for illustrative purposes oniy. 

1.        The Scenario 

Angered by the perception of an increasing percentage of federal funds being 

devoted to international policies, a prominent domestic special interest group convinces 
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key political powers to investigate future Naval spending. They argue that the planned 

programs do not reflect the geopolitical environment but are instead a militaristic holdout 

from the heady days of nationalism. Congress appoints a panel to look into the matter. 

The panel identifies two alternatives and proceeds to investigate them. The alternatives 

represent Naval combatant composition choices: 

• Choice 1: In support of a strategy that includes nuclear aircraft carriers and 
carrier battle groups, Choice 1 foresees a four carrier battle group fleet. Each 
fleet will require the support of the following ships: 
• (2) ACX Advanced Strike Cruisers, a 10000 ton missile cruiser capable of 

performing extensive strike and anti-air missions. 
• (1) DGX Cooperative Engagement Destroyer, a 500 ft. destroyer designed 

to leverage expensive sensors from other platforms to perform anti- 
submarine and shore gunfire support missions. 

• (2) DMX Minesweeping Destroyers, a 550 ft, 6000 ton, 67 ft wide, four 
engine derivative of current destroyer designs combining anti-submarine 
and mine-detection missions using remote sensors and active sonar. 

• (1) AFOS Supply and Support ship, a 25000 ton supply ship capable of 
supporting the remaining vessels. 

In order to support the four battle groups, perform all training and 
maintenance, and accommodate additional demands, the following fleet 
configuration is required: 
• (40) ACX 
• (25) DGX 
• (68) DMX 
• (9) AFOS 

• Choice 2: The alternative strategy forsakes the carrier battle group entirely in 
favor of a "Jeffersonian" gunboat strategy of identically configured small 
combatants, dispersed into all regions as global peacekeepers, able to serve as 
measures of containment while multi-national forces are used in major 
engagements. The plan focuses on: 
• (200) FGX Multi-mission Frigates, 5000 ton ships equipped with 

extensive communications capabilities and sufficient defensive weapons 
to establish a presence in a hostile area, provide extensive reconnaissance 
information and maintain that presence until multinational forces arrive. 
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2.        The Cost Analysis 

While other think tanks evaluate the geopolitical threats of the future and the 

value of each fleet against the possible threats, you are assigned to provide a cost estimate 

for each force structure. The information known about each ship is quite modest- 

detailed studies expected to provide additional information are still years from 

completion. However, rough cost figures must be provided to the panel to break a 

deadlock that threatens to stall the passage of the coming budget. The information is 

sufficient to produce a cost estimate. 

a.        The Cost of Each Ship and Total Force Structure 

The appropriate models will calculate individual average ship cost by 

entering the known independent variables. The total cost for the fleet types may be 

generated by multiplying the average cost of each ship by the number required and 

summing the ship totals. Because each individual ship cost estimate has a normal 

distribution, the RSE of the fleet cost estimates may also be calculated by squaring the 

sum of the RSE values for each ship class, adding the squares, and taking the square root 

of the sum. As an example, for the Battle Group Support Fleet, the fleet cost estimate 

RSE = V(40*344.l)2 + (25*343.5)2 + (68*308.l)2 + (9*344.l)2. The models and their 

results are summarized in Table 10. 
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Ship 
Type Model Formulation 

Average 
Cost 

(CY99MS) 

Number 
Required 

Total 
Estimate 

(CY99MS) 

RSE 
(CY99MS) 

ACX DISP 
AVGCOST= 155.93 + 

0.0353*(10000) 
508.93 40 20357.2 344.1 

DGX LEN 
AVGCOST =-113.23 + 

1.2054*(500) 
489.47 25 12236.75 343.5 

DMX MV2 
AVGCOST =-693.76 + 

0.0207*(6000) + 106.262*(550/67) 
+ 86.6332*(4) 

649.27 68 44150.55 308.1 

AFOS DISP 
AVGCOST= 155.93 + 

0.0353*(25000) 
1038.43 9 9345.87 344.1 

Total Cost Estimate for Battle Group Support Fleet 86090.37 26517.8 

FGX DISP 
AVGCOST= 155.93 + 

0.0353*(5000) 
332.43 200 66486.0 344.1 

Total Cost Estimate for Jeffersonian Gunboat Fleet 66486.0 68820.0 

Table 10. Average Cost Estimates for Force Structure Elements. 

From the table, the Battle Group Support Fleet should cost approximately $86 

billion dollars (CY99) while the Jeffersonian Gunboat Fleet should cost only $66 billion 

dollars (CY99). Note, however, the RSE of each prediction. While the Battle Group 

Support Fleet estimate could easily vary by a standard deviation, or $26.5 billion dollars, 

the Jeffersonian Gunboat Fleet estimate could just as easily vary by a standard deviation, 

or $68.8 billion dollars. A decision maker should be much more confident in the Battle 

Group Fleet cost estimate than the Jeffersonian Fleet cost estimate. 

Because of the OLS assumptions, the error terms, or residuals, are normally 

distributed. Therefore, additional information may be extracted to help the decision 

maker analyze alternatives, such as the probabilities of each fleet cost exceeding a 

particular cost. If a cost of 100 billion dollars will cause the panel to reconsider its 

decision, you could inform them that despite the cheaper estimated cost of Choice 2, it is 

more likely to exceed the limit (31.3% vs. 30.0% for Choice 1). 

Similarly, if the decision maker wanted to know the probability of Choice 1 

exceeding Choice 2, the average (mean) cost of (Choice 1 - Choice 2) and its RSE may 
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be calculated: The average cost is: 86090.37-66486=19604.37(CY99M$). The RSE may 

be calculated likewise: 

RSE = V(40*344.l)2 + (25*343.5)2 + (68*308. if + (9*344. if + (-200*344. l)2 

Thus, if x = the difference in cost between choices 1 and 2, the probability of Choice 1 

exceeding Choice 2 is P(x > 0) when x ~ Normal(|i=19604,G2=73752). Converting x to a 

standard normal (O), P(x > 0) is equivalent to P x -19604    0-19604 "\ 
 >    or 

73752 73752   ) 

& 
-19604^ 

, a value of 60.5% from tables of the standard normal, indicating that 
73752 

Choice 1 has a 60.5% probability of costing more than Choice 2. 

3.        The Conclusion 

This example is not designed to champion one fleet structure over another. 

Instead, it illustrates how a high level model may be used to produce meaningful answers 

to important questions. Note however the sizable uncertainty associated with the 

predictions. Although the Jeffersonian fleet is supposed to cost about $67 billion 

(CY99), with an 87% CV, the actual cost could easily be 187%*$67, or $145 billion. If 

the cost estimating purpose cannot allow such a variation, a different method of cost 

estimation must be chosen. 
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V.     CONCLUSIONS AND RECOMMENDATIONS 

A quick perusal of the models reveals that the estimates they generate are rough 

indeed. With coefficients of variation between 74% and 83%, actual program costs could 

easily span from zero to twice the estimate; not an answer on which to stake a reputation. 

Clearly the models are incapable of making a precise estimate of the average 

procurement cost of a new Naval ship. However, this interpretation ignores the purpose 

of the models. An analyst seeking an estimate for the procurement costs of the next six 

ships for DDG 51 Flight II, a well established and detailed program, would be ill served 

by using the models produced by this study. 

The strength of the four models lies with their minimal data requirements. 

Because the models are able to turn a single parameter into a cost estimate, they may be 

used with abstract studies or quick estimates that would defeat a detailed model or 

estimating process. Still, the coefficients of determination show the models describe less 

than half of the variability of the data. Assuming that the remaining variation is not 

merely random error and can actually be predicted, these four models have far to go. One 

area that appears promising is the inclusion of additional descriptive variables. The 

physical and performance parameters from the database are able to capture some of the 

data variability. Other parameters that capture scientific and technical aspects, such as 

weapons systems and sensor suites, may describe much of the remaining variability. 

Additional independent variables must be considered. 
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Additionally, the model results may be leveraged with other general models to 

provide entire life cycle cost estimates. CERs based only on ship length, displacement or 

manning are able to estimate yearly operating and support (O&S) costs (Brandt). Results 

from these O&S models may be leveraged with the results of the procurement cost 

models to estimate the cost of acquiring and maintaining a particular force structure for 

its entire effective life. Such an indicator would be a useful measure in determining the 

life cycle cost or worth of a given force structure. 

A.       RECOMMENDATIONS 

Any parametric method is only as good as the database from which it was created. 

In order to preserve and hopefully improve the quality of the models, the database must 

be updated with every new ship or class procured. Fortunately, updating the current 

CERs requires only the addition of the new data into the database spreadsheet and a new 

regression. 

Additionally, new cost databases offer the promise of models with greater 

accuracy. A database that detailed acquisition costs by WBS category, especially one 

that could identify the WBS Level 3 costs under the 'ship' category, i.e. hull structure, 

propulsion plant, electrical plant, etc. could be used to make models that address only one 

aspect of the ship's cost. In this way, a model could capitalize on the similarities of 

several ships without being penalized for the differences. As an example, the AOE 6 and 

the CG 47 both use similar propulsion systems. Both are also required to keep pace with 

an aircraft carrier as a mission requirement. A model based solely on propulsion 

characteristics would probably estimate a similar value for both; a good bet, as both i use 
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the same set of four LM2500 gas turbine engines. However, the model based solely on 

command and surveillance equipment would likely come to very different estimates for 

the two classes; the phased array radar and anti-aircraft sensors equipping the CG47 are 

unlikely to come as cheaply as the sensor suite from the AOE 6. 

Finally, if cost data can be obtained that details procurement costs in a 'by ship' 

or 'by lot' format instead of a 'by year' accounting, learning curves could be fitted to the 

ship cost data. Because the theoretical first unit cost corrects for differences in the 

number of ships produced, it would allow the cost data to be compared with additional 

precision. The improvement in accuracy would translate into increased precision of the 

cost estimate in subsequent analyses and would lower the RSE of the models. 

Overall, the analyses within this study provide a general-purpose estimator for 

ship costs when an approximation is sufficient. The sizable RSEs of the models prevent 

them from producing detailed predictions of future program costs, but this point is of 

little consequence. The models are able to produce a verifiable and defendable estimate 

from loosely defined parameters when detailed models can not. Within their limited 

scope, they offer promise as tools able to answer difficult questions in a repeatable, 

defendable and justifiable manner. 
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APPENDIX A. SELECTED MODEL GRAPHICAL PERFORMANCE 

Model: Light Displacement 

Call: lm(formula = AVGCOST - DISP, data = shipcost.sm) 
Residuals: 

Min    IQ Median   3Q Max 
-446.7 -198.5 -98.76 145.9 1056 

Coefficients: 
Value Std. Error t value Pr(>|t|) 

(Intercept) 155.9316 96.0895 1.6228 0.1196 
DISP             0.0353 0.0090 3.9118 0.0008 

Residual standard error: 332.8 on 21 degrees of freedom 
Multiple R-Sguared: 0.4215 
Adjusted Multiple R-Sguared: 0.4014 
F-statistic: 15.3 on 1 and 21 degrees of freedom, the p-value is 0.0008021 

Correlation of Coefficients: 
(Intercept) 

DISP     -0.6916 

Cross-validated Residual standard error: 
Cross-validated Multiple R-Squared: 
Cross-validated Adjusted Multiple R-Sguared: 

Coefficient of Variation: 
Cross-Validated Coefficient of Variation: 

344.1 
0. 3230 
0. 2908 

80 .0% 
82 .7% 
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Model: Length 

Call: Im (formula = AVGCOST - LEN, data = shipcost.sm) 
Residuals: 
Min    IQ Median   3Q Max 
-531 -183.2 -2.858 83.61 889 

Coefficients: 
Value Std. Error 

(Intercept) -113.2234  148.9854 
LEN   1.2054    0.3011 

t value Pr(>|t|) 
-0.7600    0.4557 
4.0028    0.0006 

Residual standard error:     329.6 on 21 degrees of freedom 
Multiple R-Sguared: 0.4328 
Adjusted Multiple R-Squared:  0.4122 
F-statistic: 16.02 on 1 and 21 degrees of freedom, the p-value is 0.0006454 

Correlation of Coefficients: 
(Intercept) 

LEN -0.8872 

Cross-validated Residual standard error: 343.5 
Cross-validated Multiple R-Sguared: 0.3251 
Cross-validated Adjusted Multiple R-Sguared:     0.2930 

Coefficient of Variation: 79.3% 
Cross-Validated Coefficient of Variation:        82.6% 
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Model: Beam 

Call: Im(formula = AVGCOST - BEAM, data = shipcost.sm) 
Residuals: 

Min  IQ Median 3Q Max 
-519.9 -212 -71.01 149 1108 

Coefficients: 
Value Std. Error 

(Intercept)  -79.5442 214.0376 
BEAM   7.8365   3.1393 

t value Pr(>|t|) 
-0.3716    0.7139 
2.4963    0.0209 

Residual standard error:     384.3 on 21 degrees of freedom 
Multiple R-Sguared: 0.2288 
Adjusted Multiple R-Sguared:  0.2179 
F-statistic: 6.231 on 1 and 21 degrees of freedom, the p-value is 0.02095 

Correlation of Coefficients: 
(Intercept) 

BEAM -0.9273 

Cross-validated Residual standard error: 398.6 
Cross-validated Multiple R-Squared: 0.0914 
Cross-validated Adjusted Multiple R-Sguared:     0.0481 

Coefficient of Variation: 
Cross-Validated Coefficient of Variation: 
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Model: Number of Engines 

Call: lm(formula = AVGCOST - ENGNUM, data = shipcost.sm) 
Residuals: 

Min    IQ Median   3Q  Max 
-541.5 -265.2  -70.3 208.4 883.6 

Coefficients: 
Value Std. Error t value Pr(>|t|) 

(Intercept)  -12.2351  229.6810 -0.0533 0.9580 
ENGNUM 146.9683   73.4341 2.0014 0.0584 

Residual standard error:     401 on 21 degrees of freedom 
Multiple R-Sguared: 0.1602 
Adjusted Multiple R-Squared:  0.1526 
F-statistic: 4.005 on 1 and 21 degrees of freedom, the p-value is 0.0584^ 

Correlation of Coefficients: 
(Intercept) 

ENGNUM       -0.9314 

Cross-validated Residual standard error: 417.6 
Cross-validated Multiple R-Squared: 0.0028 
Cross-validated Adjusted Multiple R-Squared:    -0.0447 

Coefficient of Variation: 96.4% 
Cross-Validated Coefficient of Variation:        100.4% 
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Model: Shaft Horsepower 

Call: Im(formula = AVGCOST 
Residuals: 

Min    IQ Median   3Q  Max 
-498.7 -162.8 -35.24 45.93 566.4 

SHP, data = shipcost.sin) 

Coefficients: 
Value Std. Error t value Pr(>|t|) 

(Intercept) 103.6345  83.3011 1.2441 0.2272 
SHP   9.5453   1.7856 5.3457 0.0000 

Residual standard error:     284.8 on 21 degrees of freedom 
Multiple R-Sguared: 0.5764 
Adjusted Multiple R-Sguared:  0.5490 
F-statistic: 28.58 on 1 and 21 degrees of freedom, the p-value is 0.00002662 

Correlation of Coefficients: 
(Intercept) 

SHP -0.7012 

Cross-validated Residual standard error: 
Cross-validated Multiple R-Sguared: 
Cross-validated Adjusted Multiple R-Sguared: 

Coefficient of Variation: 
Cross-Validated Coefficient of Variation: 

310.0 
0. 4504 
0. 4243 
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74 .5% 
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Model: Multivariate ONE (Light Displacement, Length, Beam, Shaft Horsepower) 

Call: lm(formula = AVGCOST ~ DISP + LEN + BEAM + SHP, data = shipcost.sm) 
Residuals: 

Min    IQ Median   3Q  Max 
-354.2 -111.9  -6.38 94.52 477.8 

Coefficients: 
Value Std. Error 

(Intercept) 477.6136 188.6964 
DISP 0.0429 0.0142 
LEN 1.3812 0.6393 
BEAM -18.0386 6.0903 
SHP 4.7917 2.0396 

t value Pr(>|t|) 
2.5311   0.0209 
3.0259 
2.1606 
-2.9619 
2.3493 

0.0073 
0.0445 
0.0083 
0.0304 

Residual standard error:     226.5 on 18 degrees of freedom 
Multiple R-Sguared: 0.7704 
Adjusted Multiple R-Squared:  0.5992 
F-statistic: 15.1 on 4 and 18 degrees of freedom, the p-value is 0.00001409 

Correlation of Coefficients: 
(Intercept) DISP 

DISP  0.7055 
LEN  0.2221     -0.0070 

BEAM -0.7717     -0.5737 
SHP -0.2347     -0.2184 

Cross-validated Residual standard error: 
Cross-validated Multiple R-Squared: 
Cross-validated Adjusted Multiple R-Sguared 

Coefficient of Variation: 
Cross-Validated Coefficient of Variation: 

LEN BEAM 

0 7379 
0 5646 0.4124 
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Model: Multivariate TWO (Light Displacement, Length/Beam, Number of Engines) 

Call: lm( formula = AVGCOST - DISP + LENBEAM + ENGNUM, data = shipcost. sm) 
Residuals: 

Min    IQ Median   3Q  Max 
-461.5 -153.4 -81.97 155.5 565.9 

Coefficients: 

(Intercept) 
DISP 

LENBEAM 
ENGNUM 

Value Std. Error 
-693.7551  245.0980 

0.0207    0.0083 
106.2619   30.9323 
86.6332   51.8724 

t. value Pr(>|t|) 
-2.8305 0.0107 
2.4951 0.0220 
3.4353 0.0028 
1.6701 0.1113 

Residual standard error:     266 on 19 degrees of freedom 
Multiple R-Sguared: 0.6658 
Adjusted Multiple R-Squared:  0.5607 
F-statistic: 12.62 on 3 and 19 degrees of freedom, the p-Value is 0.00009065 

Correlation of Coefficients: 
(Intercept) DISP 

DISP  0.2785 
LENBEAM -0.7831     -0.3814 
ENGNUM -0.5880     -0.3377 

LENBEAM 

0.0664 

Cross-validated Residual standard error: 
Cross-validated Multiple R-Sguared: 
Cross-validated Adjusted Multiple R-Sguared: 

Coefficient of Variation: 
Cross-Validated Coefficient of Variation: 
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APPENDIX B. DOCUMENTATION OF THE PARAMETRIC COST MODEL 

Title: 

Purpose: 

Applicability: 

Model Description: 

Top-Level U.S. Navy Conventional Surface Ship 
Parametric Procurement Cost Model 

To estimate average procurement costs for conventional 
U.S. Navy surface ships using one of the following three 
physical parameters: ship overall length, ship light 
displacement or propulsion shaft horsepower; or the four 
physical parameters: ship overall length, ship beam, ship 
light displacement and number of engines. 

This top-level procurement cost model is a parametric 
cost-estimating tool which will provide cost analysts and 
decision makers with a standardized method for 
calculating ship procurement cost estimates, based upon 
historical data, for U.S. Navy conventional ships 
(excluding nuclear aircraft carriers and submarines). It 
may be used to estimate costs of roughly defined ships 
when a significant uncertainty in the estimate is 
acceptable, such as Rough Order of Magnitude estimates 
and Force Structure Cost Analyses. 

This top-level procurement cost model consists of three 
univariate cost estimating relationship (CER) equations 
and one multivariate CER. All CERs predict average 
ship procurement costs in constant year 1999 dollars. 
The first univariate CER uses ship overall length in feet, 
the second univariate CER uses ship light displacement in 
tons and the third univariate CER uses ship propulsion 
shaft horsepower in thousands of horsepower, (khp) The 
multivariate CER uses light displacement in tons, the 
ratio of length in feet to beam in feet and number of 
propulsion engines. All four CERs were developed using 
a historical cost database representing major ship 
acquisition programs from 1973 to present, including 
frigates, destroyers, cruisers, amphibious assault ships, 
landing ship docks, oilers, fast combat support ships, 
combat stores ships, hydrofoils, air-cushion vehicles, 
oceanographic research ships, tugs, cable repair ships and 
minesweepers. 
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Status/Availability: 

Input Variables: 
(including range) 

Output: 

Data Sources: 

Point of Contact: 

The top-level procurement cost models are complete. 
Periodic updates of historical data are strongly 
recommended. The original release date for this cost 
model is tentatively scheduled for the first quarter of 
CY2000. The models may be adapted for use in 
spreadsheets for ease of calculation and presentation. 

Ship overall length (ft.) (81 -844) or 
Ship light displacement (tons) (75-28233) or 
Ship propulsion shaft horsepower (khp) (1.16-105) or 

Ship overall length (ft.) (81-844) and 
Ship beam (ft.) (18-103) and 
Ship light displacement (tons) (75-28233) and 
Ship number of propulsion engines (1-5) 

Average cost values in constant 1999 (CY99M$) dollars 
bounded by the residual standard error of the CER model 
inCY99M$. 

Cost data was compiled from U.S. Weapon Systems Costs, 
Data Search Associates (1999,1995,1990,1987), by Ted 
Nicholas and Rita Rossi 
Performance and technical data was compiled from 
JANE's Fighting Ships, JANEs Publishing, Inc. (1998- 
99,1995-96,1990-91,1984-85) 

LCDR Timothy P. Anderson 
Department of Operations Research 
Naval Postgraduate School, Monterey, CA 

Ground Rules/ 
Assumptions/ 
Limitations: 

Software: 

Nuclear powered vessels and submarines were removed 
from the database in order to normalize data. All data 
was normalized to CY99M$. 

The CER equations may be employed with any 
spreadsheet or programming language. 

80 



CER Equations: AVGCOST = -113.23 + 1.2054*LEN        RSE=343.5 
AVGCOST = 155.93 + 0.0353*DISP        RSE=344.1 
AVGCOST = 103.63 + 9.5453*SHP RSE=310.0 

AVGCOST = -693.76 + 0.0207*DISP + 
106.262*(LEN/BEAM) + 
86.6332*ENGNUM RSE=308.1 

Validation: Validation was conducted using the historical database 
and the technique of simple cross-validation. Standard 
errors reported for the models are the cross-validated 
estimates instead of the RSEs generated by the 
regression. The larger magnitude of the cross-validated 
RSEs reflects the additional uncertainty of predicting new 
data with the models. 
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