
NASA/CR-1999-209713 
ICASE Report No. 99-42 

Statecharts via Process Algebra 

Gerald Lüttgen 
ICASE, Hampton, Virginia 

Michael von der Beeck 
Munich University of Technology, München, Germany 

Ranee Cleaveland 
State University of New York at Stony Brook, Stony Brook, New York 

October 1999 n.o-r„.~ 
DISTRIBUTION STATEMENT A 

ApSÄSr   19991202 K9 
K iC QUALITY IKSFEGTBD 4 



NASA/CR-1999-209713 
ICASE Report No. 99-42 

I V/,*"m*J 

Statecharts via Process Algebra 

Gerald Lüttgen 
ICASE, Hampton, Virginia 

Michael von der Beeck 
Munich University of Technology, München, Germany 

Ranee Cleaveland 
State University of New York at Stony Brook, Stony Brook, New York 

Institute for Computer Applications in Science and Engineering 
NASA Langley Research Center 
Hampton, VA 

Operated by Universities Space Research Association 

National Aeronautics and 
Space Administration 

Langley Research Center 
Hampton, Virginia 23681-2199 

Prepared for Langley Research Center 
under Contract NAS1-97046 

October 1999 



STATECHARTS VIA PROCESS ALGEBRA* 

GERALD LÜTTGENt, MICHAEL VON DER BEECK*, AND RANCE CLEAVELAND§ 

Abstract. Statecharts is a visual language for specifying the behavior of reactive systems. The language 

extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity 

as a design notation for embedded systems, precisely defining its semantics has proved extremely challenging. 

In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is 

expressive enough for encoding Statecharts in a structure-preserving and semantics-preserving manner. It is 

established that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics. 

Key words, bisimulation, compositionality, operational semantics, process algebra, Statecharts 

Subject classification. Computer Science 

1. Introduction. Statecharts is a visual language for specifying the behavior of reactive systems [7]. 

The language extends the traditional notation of finite-state machines with concepts of (i) hierarchy, so 

that one may speak of a state as having sub-states, (ii) concurrency, thereby allowing the definition of 

systems having simultaneously active subsystems, and (iii) priority, so that one may express that certain 

system activities have precedence over others. Statecharts has become popular among engineers as a design 

notation for embedded systems, and commercially available tools provide support for it [10]. Nevertheless, 

precisely defining the semantics of the language has proved extremely challenging, with a variety of proposals 

[8, 9, 18, 19, 21, 28, 29] being offered for several dialects [34] of the language. While the research results 

have yielded insight into different aspects of the notation, no definitive account has emerged. This has an 

obviously undesirable practical ramification; tool builders for Statecharts must resort to ad hoc decisions 

in their implementations of semantically-based tools, such as model checkers [16, 23], and this means that 

designs developed by engineers have a meaning that may vary from implementation to implementation. 

The semantic subtlety of Statecharts arises from the language's capability for defining transitions whose 

enablement disables other transitions. A Statechart may react to an event by engaging in an enabled 

transition, thereby performing a so-called micro step, which may generate new events that may in turn 

trigger new transitions while disabling others. When this chain reaction comes to a halt, one execution 

step, a so-called macro step, is complete. Technically, the difficulty for defining an operational semantics 

capturing the "macro-step" behavior of Statecharts arises from the fact that such a semantics should exhibit 

the following desirable properties: (i) the synchrony hypothesis [2], which guarantees that a reaction to an 

external event terminates before the next event enters the system, (ii) compositionality, which ensures that 

*This work was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 

while the first author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA 

Langley Research Center, Hampton, VA 23681-2199, USA. The third author was supported by NSF grants CCR-9257963, 

CCR-9505662, CCR-9804091, and INT-9603441, AFOSR grant F49620-95-1-0508, and ARO grant P-38682-MA. 
tlCASE, Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23681-2199, USA, e-mail: luettgen@icase.edu. 
^Department of Computer Science, Munich University of Technology, Arcisstr. 21, D-80290 München, Germany, e-mail: 

beeck@in.tum.de. 
§ Department of Computer Science, State University of New York at Stony Brook, Stony Brook, NY 11794-4400, USA, e-mail: 

rance@cs.sunysb.edu. 



2. Statecharts. Statecharts is a specification language for reactive systems [27], i.e., concurrent systems 

which are characterized by their ongoing interaction with their environment. They subsume finite state 

machines whose transitions are labeled by pairs of events, where the first component is referred to as trigger 

and may include negated events, and the second component is referred to as action. Intuitively, if the 

environment offers the events in the trigger, but not the negated ones, then the transition is triggered 

and can be executed; it fires, thereby producing the events in the label's action. Concurrency is achieved 

by allowing complex Statecharts to be composed from more simple ones running in parallel, which may 

communicate via broadcasting events. Elementary, or basic states in Statecharts may also be hierarchically 

refined by injecting other Statecharts. Concurrency and hierarchy are especially important concepts, since 

they allow for bottom-up and top-down specifications of systems. 

FIG. 2.1. Example Statechart 

As an example, consider the Statechart depicted in Figure 2.1. It consists of a so-called and-state, labeled 

by n9, which denotes the parallel composition of the two Statecharts labeled by n3 and n$. Actually, 713 and 

ng are the names of or-states, describing sequential state machines. The first consists of two states n\ and 

712 that are connected via transition t\ with label -ia/b. The label specifies that t\ is triggered by ~^a, i.e., 

by the absence of event a, and produces event b. States n\ and n2 are not refined further and, therefore, 

are also referred to as basic states. Or-state n8 is refined by or-state n6 and basic state 717, connected via a 

transition labeled by b/a. Or-state n§ is further refined by basic states n^ and n$, and transition t2 labeled 

by b/c. 

It should be mentioned that the variant of Statecharts considered here does not include "features" present 

in some other variants. In particular, we prohibit interlevel transitions, i.e., transitions crossing borderlines 

of states, and triggers of the form inn, where n is the name of a state. Moreover, state hierarchy does not 

impose implicit priorities to transitions, where transitions on higher levels of the hierarchy have precedence 

over transitions on lower levels; e.g., transition £3 does not have priority over transition t2 in our example. 

The impact of altering our approach to accommodate these concepts is discussed in Section 6. 

2.1. Statecharts Terms. For our purposes, it is convenient to represent Statecharts not visually but 

by terms. This is also done in related work [17, 18, 31], and our approach closely follows the one described 

in [18]. Formally, let TV be a countable set of names for Statecharts states, T be a countable set of names 

for Statecharts transitions, and II be a countable set of Statecharts events. Moreover, we associate with 

every event e £ II its negated counterpart ->e. We also lift negation to negated events by defining —■—ie =<jf e. 

Finally, we write -iE for {->e \ e G E}, if E C U U {->e | e £ II}. Then, the set of Statecharts terms is defined 

to be the least set satisfying the following rules. 



TABLE 2.2 
Step-construction function 

function step-construction^, E);  var T :— 0; 

while T C enabled(s,E,T) do choose t G enabled(s,E,T)\T;  T := TU {£} od; 

return T 

TABLE 2.3 
Function update 

update([n],T') =df [n]        update([n : s\,T') =df [n : (update(si,Ti),... , update(sfc,Ti:))] 

update([n:s;Z;T],T') =df < 

[n:s;l;T] if T = 0 

[n:(si,... ,update(sj,r'),... ,sk);l;T] if 0 ^ T' C trans(sj) 
[n:(ai)...>default(«m),...,«*);m;T] if 0 ± T' = {(t',l,E, A,m)} C T 
fnl otherwise 

micro steps, or transitions, that are triggered by events offered by the environment or generated by other 

micro steps, that are mutually consistent, compatible, and relevant, and that obey causality. The Statecharts 

principle of global consistency, which prohibits an event to be present and absent in the same macro step, is 

subsumed by the notions of triggered and compatible. 

A transition t £ trans(s) is consistent with T C trans(s), in signs t G consistent(s,T), if t is not in the 

same parallel component as any transition in T. Formally, 

consistent(s, T) =df {t <E trans(s) | W £ T. t±st'} . (2.1) 

Here, we write t±st', if t = t', or if there exists an and-state [n : (si,... , Sk)] in s, i.e., n G states(s), such 

that t G trans(sj) and t' G trans(sj) for some 1 < i, j < k satisfying i ^ j. 

A transition t G trans(s) is compatible to all transitions in T C trans(s), in signs t G compatible(s,T), if 

no event produced by t appears negated in a trigger of a transition in T. Formally, 

compatible^, T) =df {t G trans(s) | W G T. act(t) n -.ev(t') = 0} (2.2) 

A transition t G trans(s) is relevant for s, in signs t G relevant(s), if the root of the source state of t is in 

the configuration of s. Formally, 

relevant(s) =df {t G trans(s) | root(out(i)) G config(s)} (2.3) 

A transition t G trans(s) is triggered by a set E of events, in signs t G triggered(s, E), if the positive, but 

not the negative, trigger events of t are in E. Formally, 

triggered(s, E) =df {* G trans(s) | ev(i) n II C E and ->(ev(*) !~l -<U) D E = 0} (2.4) 

Finally, a transition t is enabled in configuration s regarding a set E of events and a set T of transitions, 

if i G enabled(s,£',T), where 

enabled(s, E, T) =df relevant(s) n consistent(s, T) n triggered(s, E U (J act(i)) n compatible(s, T)       (2.5) 



and synchronization in concurrent systems. The role of actions in process algebras corresponds to the one 

of events in Statecharts. A clock represents the progress of time, which manifests itself in a recurrent global 

synchronization event, the clock transition, in which all process components are forced to take part. However, 

action and clock transitions are not orthogonal concepts that can be specified independently from each other, 

but are connected via the maximal progress assumption [11, 35]. Maximal progress implies that progress of 

time is determined by the completion of internal computations and, thus, mimics the synchrony hypothesis 

of Statecharts. The key idea for embedding Statecharts terms in a timed process algebra is to represent 

a macro step as a sequence of micro steps that is enclosed by clock transitions, signaling the beginning 

and the end of the macro step, respectively. This sequence implicitly encodes causality and, thus, leads to 

a compositional semantics for Statecharts, whose practicality does not suffer from complicated transition 

labels including causal orders [17, 18, 31]. 

Unfortunately, existing timed process algebras are, in their original form, not suitable for embedding 

Statecharts. The reason is that Statecharts transitions may be labeled by multiple events and that some 

events may appear in their negated form. The former feature implies that - in contrast to standard process 

algebras [1, 12, 24] - processes may be forced to synchronize on more than one event simultaneously, and the 

latter feature is similar to mechanisms for handling priority [4]. Moreover, our framework must include an 

operator similar to the disabling operator of LOTOS [3] for resembling state hierarchy [32]. Our Statecharts 

Process Language combines these well-known concepts in a single process algebra, which is expressive and 

flexible enough for embedding several Statecharts variants, as we will show below. 

3.1. Syntax. Formally, let A be a countable set of events or ports, and let a £ A be the distinguished 

clock event or clock tick. Based on A, we define input actions in SPL to be of the form (E,N), where 

E,N C A, and output actions E to be subsets of A. In case of the input action (0,0), we speak of an 

unobservable or internal action, which is also denoted by •. Moreover, we let A stand for the set of all 

input actions. In contrast to CCS [24], the syntax of SPL includes two different operators for dealing with 

input and output actions, respectively. The prefix operator "(E,N)." only permits prefixing with respect to 

input actions (E, N) which are instantly consumed in a single step. Output actions E are signaled to the 

environment of a process by attaching them to the process via the signal operator u[E]a(-)." They remain 

visible until the next clock tick a occurs. The syntax of SPL is given by the following BNF 

P    ::=    0   |   X   |   (E,N).P   |   [E]a(P)   \   P + P   |   P>P   |   P >, P   \   P\P   |   P\L 

where L C A is a restriction set, and X is a process variable taken from some countable domain V. We also 

allow the definition of equations X = P, where variable X is assigned to term P. If X occurs as a subterm 

of P, we say that X is recursively defined. We adopt the usual definitions for open and 'closed terms and 

guarded recursion, and refer to the closed and guarded terms as processes [24]. The symbol V denotes the 

set of all processes and is ranged over by P and Q. Finally, the operators > and >ff - called disabling and 

enabling operator, respectively - allow us to model state hierarchy. 

3.2. Operational Semantics. The operational semantics of an SPL process P £ Pis given by a 

labeled transition system (P,AU {a},—>,P), where V is the set of states, A U {er} the alphabet, —^C 

V x (Ali {a}) x V the transition relation, and P the start state. We refer to transitions with labels in A as 

action transitions and to those with label a as clock transitions. For the sake of simplicity, we write P-^P' 

instead of (P, (E,N),P') € —> and P -^ P' instead of {P,cr,P') 6 —K We say that P may engage in a 

transition labeled by (E,N) or a, respectively, and thereafter behave like process P'. The transition relation 



event in E and if all events in N are restricted. Finally, process variable X, where X = P, is identified with 

a process that behaves as a distinguished solution of the equation X = P. 

TABLE 3.3 
Operational semantics (clock transitions) 

_ p'     Q -1+Q' 
tAct  (E,N)^» tOut  tSum' 

{E,N).P ^> (E,N).P V [E]a{P) ^ P 

p -?-+ p'   n -^ o' — 
tPar ^—»^     V—»V   •$I(P\Q) tNil   —  tDis 

P\Q^P>\Q> ^V|y 0^>0 

P      a s    P' P       -  >    P' A   f 
tRes £lzzü: ,rfl(p\L) tRec±— X = P       tEn 

P\L^P'\L    *        S X^P' P>aQ^P'>Q 

P + Q — ¥P' + Q' 

P-^P' Q- ̂ Q' 
P>Q — ¥P' >Q' 

P^- >P' 

The operational rules for clock transitions deal with the maximal progress assumption, i.e., if • G I(P) =df 

{(E, N) | 3P'. P —> P'} then a clock tick a is inhibited. The reason that transitions other than those labeled 

by • do not have pre-emptive power is that these only indicate the potential of progress, whereas • denotes 

real progress in our framework. Rule tNil states that inaction process 0 can idle forever. Similarly, process 

(E,N).P may idle for clock a, whenever (E,N) ^ •• The signal operator in process [E]a(P), which offers 

communications on the ports in E to its environment, disappears as soon as the next clock tick arrives and, 

thereby, enables process P. Time has to proceed equally on both sides of summation, parallel composition, 

and disabling, i.e., P + Q, P\Q, and P > Q can engage in a clock transition if and only if both P and 

Q can. The side condition of Rule tPar implements maximal progress and states that there is no pending 

communication between P and Q. The reason for the side condition in Rule tRes is that the restriction 

operator may turn observable input actions into the internal, unobservable input action • (see Rule Res) 

and, thereby, may pre-empt the considered clock transition. Finally, Rule tEn states that a clock tick switches 

the enabling to the disabling operator. Rule tRec does not require extra explanation. 

The operational semantics for SPL possesses several pleasant algebraic properties which are known from 

timed process algebras [11, 35], such as (i) the idling property, i.e., • £ I(P) implies 3P' eP.PA P', for 

all P £ V, (ii) the maximal progress property, i.e., 3P' € P.P -^ P' implies • £ I(P), for all P € V, and 

(iii) the time determinacy property, i.e., P -^ P' and P -^ P" implies P' = P", for all P,P',P" G V. 

Moreover, the summation and parallel operators are associative and commutative. 

3.3. A Behavioral Equivalence. As shown above, the SPL operational semantics interprets pro- 

cesses as labeled transition systems. However, from a semantic point of view, several transition systems 

might describe the same observable system behavior. For coping with this situation, standard process alge- 

bras introduce behavioral equivalences which relate processes, or transition systems, that describe the same 

intuitive behavior. One popular behavioral equivalence is bisimulation [24] which may be adapted to cater 

for SPL as follows. 

DEFINITION 3.1 (Bisimulation). Bisimulation equivalence, ~Cpx?, is the largest symmetric relation 

such that whenever P ~ Q, the following conditions hold. 

1. I(P) C 1{Q) 

2. IfP-^ P' then 3Q' CV.Q-^Q1 and P'~Q'. 



TABLE 4.1 

Embedding of the Example Statechart 

[*3] = 

Us] 

[s6] =n6 = 

[*4] 

[*6] 

def       , 
n9 = n3 | n8 

def . n3 = m 

ni = rii t> (0,{o,-io}).ti 

*i   - [{&) -ia}]o-("2) 
def .     def _ 

Til   — nl   —  0 
def ~    def „ 

n2  = Tl2   =  0 
def „ 

n8 = n6 

n6 = n6 > ({&},{-,a}>-*3 

*3   =f[W]^(n7) 
def . 

n6 = ri4 

n4 = n4 t> ({ö},{-^c})i2 

*2   =[{c}Hn5) 
def .     def _ 

7I4 = n4  =  U 
def ~    def „ n5  = n5   =0 
def .     def _ 

m = Tl7  =  0 

-a.blCtjT^Q^C^n, 

be) 

-.a.b,c)(T t 

>a,b) 

been triggered. Accordingly, it offers the events in A until the current macro step is completed, i.e., until a 

clock transition is executed. In order to ensure global consistency, process * also offers the events in IS n-ill. 

It is worth noting that SPL's two-level semantics of action and clock transitions allows for broadcasting 

events using SPL's synchronization mechanism together with its maximal progress assumption. 

We now return to our introductory example by presenting its formal translation to SPL in Table 4.1, 

left-hand side. The embedding's operational semantics is depicted on the right-hand side of Table 4.1, where 
{■ def t2 =t2 \>a {{b},{^a})-h, and h = 0 O ({6},{-io})i3. Moreover, the initial output action set H(P), for 

some P e V, is denoted next to the ellipse symbolizing state P, and the sets TV' appearing in the label 

of transitions are underlined in order to distinguish them from the sets E'. Let us have a closer look at 

the leftmost path of the transition system, which passes the states (n3 | n8), (h \ n8), (*i | £2), (0 | h), (0 113), 

and (010). The first three states are separated from the last three states by a clock transition. Hence, the 

considered sequence corresponds to two "potential" macro steps. We say "potential," since macro steps only 

emerge when composing our Statecharts embedding with an environment which triggers macro steps. The 

events needed to trigger the transitions and the actions produced by them can be extracted from a macro- 

step sequence as follows. For obtaining the trigger, consider all transition labels (E, N) occurring in the 

sequence, add up all events in components E, and include the negations of all positive events in components 

N. Regarding the generated actions, consider the set of positive events in the initial output action sets of 

the states preceding the clock transition which signals the end of the macro step. Thus, the first potential 

macro step of the example sequence is triggered by -KZ and produces events b and c, whereas the second is 

triggered by b and produces a. The state names along a sequence also indicate the transitions which have 

fired. More precisely, whenever a state includes a variable t e T at its top-level, transition t participates in 

the current macro step. Thus, for the first potential macro step, transitions t\ and t2 are chosen, whereas 

11 



corresponds to the firing of tt in s. Vice versa, if (EnvB | [s]) \ A is the origin of an SPL path to a process 

which can only engage in a clock transition to (01P') \ A and which mimics the triggering of a transition 

sequence T = (h,... ,tk), then T can be generated by the step-construction function relative to s and E. 

Moreover, [update(s.T)] = P'. 

The formalization of the above intuition requires the following auxiliary properties, where s G SC and 

^iClI. Here, T stands for an arbitrary prefix of the above transition sequence (tx,... ,tk) interpreted as 

set, i.e., T - {h,... ,tt} for some 0 < / < k, and act(T) stands for \JteTact{t). 

1. 3t G enabled(s,P,^T) \T implies {s,T}j;P' for some E',N' C A and P' G V, such that P' = 

[s,T U {*}], E' = (ev(t) n Ü) \ act(T), and N' = -.(ev(t) n -II) U --act(i). 

2. [s,T\ -^P' for some E' CE,N'n(EU -.4) = 0, and P' G P implies 3t G T. P' = [s,T\J {*}], 

t G enabled(s,E, A,T) \T,E' = (ev(t) nn) \ act(r), and N' = ->(ev(t) n -.H) U -iact(t). 
3. enab\ed(s,E,A,T)\T = 0 implies [a,r] -^ P' for some P' G V, where P' = [update(s,T),0], and 

V<£', iV') G I([«, T\). E' \ E ? 0 or N' n (E U -A) ^ 0. 
4. |S:T] _f^ p' for some P' G P and P' \ E ± 0 or TV' n (E U -A) # 0 for all (£', JV') G I([s,Tl) 

implies enabled(s,P,A,T) \T = 0 and P' = [update(s,T),0]. 

The above properties establish a micro-step level relationship between Statecharts terms and the processes 

occurring in their embedding. The proof of each property can be done by induction on the structure of s and 

uses our extensions of the enabled function (cf. Section 2.3) and the embedding mapping (cf. Section 4.2). D 

5.2. Preservation Results. We close the technical part by returning to the behavioral relation ~ of 

bisimulation equivalence. First, we state a preservation result involving ~ and SPL's macro-step semantics. 

THEOREM 5.3. Let P,P',Q€ V such that P ~ Q and P^P'- Then 3Q' eV.Q^Q' and P' ~ Q'. 

The validity of this theorem relies on the congruence property of ~ for SPL. When combining the insights 

obtained by establishing Theorems 5.2 and 5.3, one may derive the following corollary which relates bisim- 

ulation equivalence and Statecharts macro-step semantics. 

COROLLARY 5.4. Let E,ACU, se SC, and P G P such that [s] ~ P. Then 

1. W G SC. s=^s' implies 3P' G P.P4>P' and [«'] ~ P'. • 

2. VP' eV.P^P' implies 3s' G SC. s ==*"s'   and ls'1 ~ P' ■ A A 

6. Adaptability to Other Statecharts Variants. For Statecharts, a variety of different semantics 

has been introduced in the literature. The comparison paper [34] surveys over twenty Statecharts variants. 

In this section, we show how our approach can be adapted to these variants and, thereby, testify to its 

flexibility. We focus on the most relevant issues of Statecharts semantics, which are identified in [34]. 

As is immanent in this paper, we favor an operational semantics over a denotational one, since we 

feel that operational models are more intuitive and, therefore, easier to understand. Moreover, operational 

models provide an immediate interface to verification tools which implement state-exploration techniques. 

An important observation of this paper is that the concept of a single, global clock together with maximal 

progress is the key to providing a compositional, causal state-machine semantics for Statecharts. Although 

the semantics is defined on the micro-step level, it allows for an easy identification of macro steps. The clock 

enforces global synchronizations which mark the beginning and end of macro steps. Thus, macro steps are 

represented as sequences of micro steps, which encode the underlying causality of Statecharts semantics. 

13 



compositionality holds on the micro-step level, i.e., the level of SPL action transitions, whereas responsiveness 

and causality is guaranteed on the macro-step level, i.e., the level on which sequences of SPL action transitions 

between global synchronizations, caused by clock ticks a, are bundled together. 

Uselton and Smolka [31] and Levi [17] also focused on achieving a clean, compositional semantics for 

Statecharts by referring to process algebras. In contrast to our approach, Uselton and Smolka's notion of 

transition system involves complex labels of the form (E, -<), where E is a set of events and -< a transitive, 

irreflexive order on E, for encoding causality. Unfortunately, their semantics suffers from some serious 

problems, as pointed out in [17, 18]. Essentially, the semantics does not correspond - as intended - to the 

Statecharts semantics of Pnueli and Shalev [28]. Levi repaired this shortcoming by modifying the domains of 

the arguments of -< to sets of events and by allowing empty steps to be represented explicitly. However, we 

believe that our semantics, where labels do not contain any order at all, profits from improved readability. 

Maggiolo-Schettini et al. considered a hierarchy of equivalences for Statecharts, including isomorphism 

and bisimulation, and studied congruence properties with respect to Statecharts operators [18]. For this 

purpose, they defined a compositional, operational macro-step semantics of Statecharts, which slightly differs 

from the one of Pnueli and Shalev since it does not allow the step-construction function to fail. In their 

semantics, labels of transitions consist of four-tuples which include information about causal orderings, 

global consistency, and negated events. This complexity prohibits an intuitive understanding of Statecharts 

semantics and an easy integration with existing analysis and verification tools. However, it should be noted 

that the semantic framework presented in [18] serves well for the purpose of studying certain algebraic 

properties of equivalences on Statecharts, such as fully-abstractness results and axiomatizations [14, 15]. 

Another popular design language with a visual appeal like Statecharts and, moreover, a solid algebraic 

foundation is Argos [20]. However, the semantics of Argos, defined via SOS rules as labeled transition systems, 

significantly differs from classical Statecharts semantics. For example, Argos is deterministic, abstracts from 

"non-causal" Statecharts by semantically identifying them with a failure state, and allows a single parallel 

component to fire more than once within a macro step. 

Interfacing Statemate [10] to model-checking tools is a main objective in [16] and most recently also 

in a series of papers by Mikk et al. [21, 22, 23]. The first paper of this series includes a formalization of 

the semantics of Statemate, as defined in [8], within the specification formalism Z [30]. The second paper 

describes a translation from a subset of Statemate to hierarchical state automata which may be mapped to 

the specification language of the verification tool Spin [13], as shown in Mikk's third paper. 

8. Conclusions and Future Work. This paper presented a process-algebraic approach to defining a 

compositional semantics for Statecharts. Our technique translates Statecharts terms to terms in the process 

algebra SPL which is expressive enough to model the semantic principles underlying Statecharts. SPL allows 

one to encode a "micro-step" semantics of Statecharts in the traditional SOS-style; it is at this level that 

our semantics is compositional, as bisimulation may be shown to be a congruence for the language. The 

macro-step semantics may then be given in terms of a derived transition relation. This semantics cannot 

be compositional, as results of Huizing and Gerth have shown [15]. However, the algebraic basis of our 

semantics permits the investigation of, e.g., the largest congruence consonant within this semantics. Also, 

since these sequences essentially encode total closures of causal orders, partial order methods might be useful 

for avoiding unnecessary state explosion in practice [6]. Note that, although SPL is a newly developed process 

algebra, all of its semantic ingredients have already been studied in the process-algebra community. 

15 



[11] M. HENNESSY AND T. REGAN, A process algebra for timed systems, Information and Computation, 

117 (1995), pp. 221-239. 

[12] C. HOARE, Communicating Sequential Processes, Prentice Hall, London, UK, 1985. 

[13] G. HOLZMANN, The model checker Spin, IEEE Transactions on Software Engineering, 23 (1997), 

pp. 279-295. 

[14] J. HOOMAN, S. RAMESH, AND W.-P. DE ROEVER, A compositional axiomatization of Statecharts, 

Theoretical Computer Science, 101 (1992), pp. 289-335. 

[15] C. HUIZING, Semantics of Reactive Systems: Comparison and Full Abstraction, Ph.D. thesis, Eindhoven 

University of Technology, Eindhoven, The Netherlands, March 1991. 

[16] P. KELB, Abstraktionstechniken für automatische Verifikationsmethoden, Ph.D. thesis, University of 

Oldenburg, Oldenburg, Germany, 1996. 

[17] F. LEVI, Verification of Temporal and Real-Time Properties of Statecharts, Ph.D. thesis, University of 

Pisa-Genova-Udine, Pisa, Italy, February 1997. 

[18] A. MAGGIOLO-SCHETTINI, A. PERON, AND S. TINI, Equivalences of Statecharts, in Seventh Inter- 

national Conference on Concurrency Theory (CONCUR '96), U. Montanari and V. Sassone, eds., 

Vol. 1119 of Lecture Notes in Computer Science, Pisa, Italy, August 1996, Springer-Verlag, pp. 687- 

702. 

[19] F. MARANINCHI, The ARGOS language: Graphical representation of automata and description of re- 

active systems, in IEEE Workshop on Visual Languages, IEEE Computer Society Press, October 

1991. 

[20]  , Operational and compositional'semantics of synchronous automaton compositions, in Third Inter- 

national Conference on Concurrency Theory (CONCUR '92), R. Cleaveland, ed., Vol. 630 of Lecture 

Notes in Computer Science, Stony Brook, NY, USA, August 1992, Springer-Verlag, pp. 550-564. 

[21] E. MIKK, Y. LAKHNECH, C. PETERSOHN, AND M. SIEGEL, On formal semantics of Statecharts as 

supported by STATEMATE, in Second BCS-FACS Northern Formal Methods Workshop, Ilkley, UK, 

July 1997, Springer-Verlag. 

[22] E. MIKK, Y. LAKHNECH, AND M. SIEGEL, Hierarchical automata as model for Statecharts, in Proceed- 

ings of Asian Computing Science Conference (ASIAN '97), Vol. 1345 of Lecture Notes in Computer 

Science, Springer-Verlag, December 1997. 

[23] E. MIKK, Y. LAKHNECH, M. SIEGEL, AND G. HOLZMANN, Verifying Statecharts with Spin, in Pro- 

ceedings of the Workshop on Industrial-Strength Formal Specification Techniques (WIFT '98), Boca 

Raton, FL, USA, October 1998, IEEE Computer Society Press. 

[24] R. MILNER, Communication and Concurrency, Prentice Hall, London, UK, 1989. 

[25] D. PARK, Concurrency and automata on infinite sequences, in Proceedings of 5th G.I. Conference on 

Theoretical Computer Science, P. Deussen, ed., Vol. 104 of Lecture Notes in Computer Science, 

Springer-Verlag, 1981, pp. 167-183. 

[26] G. PLOTKIN, A structural approach to operational semantics, Tech. Report DAIMI-FN-19, Computer 

Science Department, Aarhus University, Denmark, 1981. 

[27] A. PNUELI, ed., Linear and Branching Structures in the Semantics and Logics of Reactive Systems, 

Vol. 194 of Lecture Notes in Computer Science, Springer-Verlag, 1985. 

[28] A. PNUELI AND M. SHALEV, What is in a step: On the semantics of Statecharts, in Theoretical Aspects 

of Computer Software (TACS '91), T. Ito and A. Meyer, eds., Vol. 526 of Lecture Notes in Computer 

Science, Sendai, Japan, September 1991, Springer-Verlag, pp. 244-264. 

17 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 

October 1999 
3. REPORT TYPE AND DATES COVERED 

Contractor Report   

4. TITLE AND SUBTITLE 

Statecharts via process algebra 

6. AUTHOR(S) 

Gerald Lüttgen 
Michael von der Beeck 
Ranee Cleaveland 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Institute for Computer Applications in Science and Engineering 
Mail Stop 132C, NASA Langley Research Center 
Hampton, VA 23681-2199 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

National Aeronautics and Space Administration 
Langley Research Center 
Hampton, VA 23681-2199 

5. FUNDING NUMBERS 

C NAS1-97046 
WU 505-90-52-01 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

ICASE Report No. 99-42 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

NASA/CR-1999-209713 
ICASE Report No. 99-42 

11. SUPPLEMENTARY NOTES 

Langley Technical Monitor: Dennis M. Bushnell 
Final Report 
Presented at the International Conference on Concurrency Theory (CONCUR'99). 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Unclassified-Unlimited 
Subject Category 60, 61 
Distribution: Nonstandard 
Availability: NASA-CASI (301) 621-0390 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 
Statecharts is a visual language for specifying the behavior of reactive systems.. The language extends finite-state 
machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for 
embedded systems, precisely defining its semantics has proved extremely challenging. In this paper, a simple 
process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding 
Statecharts in a structure-preserving and semantics-preserving manner. It is established that the behavioral relation 
bisimulation, when applied to SPL, preserves Statecharts semantics. 

14. SUBJECT TERMS 
bisimulation, compositionality, operational semantics, process algebra, Statecharts 

15. NUMBER OF PAGES 

23 
16. PRICE CODE 

 A03 
17. SECURITY CLASSIFICATION 

OF REPORT 
Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 
Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

20. LIMITATION 
OF ABSTRACT 

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 


