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Abstract 

I made an initial study of a hybrid genetic algorithm/expert system 
(HGAES) to model targets with nonlinear radar imaging effects 
caused by features such as cavities and canopies. The model for 
the nonlinear parameters was relatively simple, so it should be 
suitable for incorporation into hardware-in-the-loop and 
software-in-the-loop simulations that currently use point scatter 
models. I demonstrated the algorithm on simulated two-dimensional 
(2-D) inverse synthetic aperture radar (ISAR) images using a simple 
technique to determine the initial scattering centers. Many of the 
ideas used in developing the algorithm can be extended to more 
complex targets and from 2-D to 3-D images. A major issue in the 
development of an HGAES is knowledge representation. My 
conclusions are that models determined using this technique have 
the potential to enhance the accuracy of weapon systems 
simulations; thus, this technique is worth further investigation. 
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Introduction 
Software-in-the-loop (SIL) and hardware-in-the-loop (HWIL) simulations 
provide a low-cost alternative to flight-testing weapon systems [1]. These 
techniques require computationally efficient target models that generate 
statistically accurate radar target signatures [2-A]. Simulated radar signa- 
tures can be efficiently computed using isotropic point scatter models. 
The radar cross section (RCS) and the position of point scatterers can be 
calculated from measurements rather than physics. This often leads to 
statistically accurate results but an inaccurate representation of the phe- 
nomenology, such as traveling and creeping waves, cavity resonance, and 
multibounce. Even with the most sophisticated electromagnetic (EM) 
simulation codes, the radar signatures of complex targets are difficult to 
accurately model. As more sophisticated signal processing algorithms are 
being developed, a higher degree of accuracy is required to model the 
target signatures. One approach to increasing model accuracy without 
adding numerous computational requirements is to enhance point scatter 
models. 

For complex targets, point scatter models are typically generated from 
measured inverse synthetic aperture radar (ISAR) images. Figures 1 and 2 
are a photograph and a two-dimensional (2-D) ISAR image measured at 
X-band of a Hind-D helicopter with aluminum foil covering the windows 
and engine inlets. 

The brightness at the top of the image in figure 2 is probably due to 
radiation resonating in various cavities in the target where it is delayed in 
time and dispersed in frequency. It is difficult to capture the effects of 
cavities and canopies on target signatures using traditional point scatter 

Figure 1. Photograph of Hind-D helicopter. Figure 2. ISAR image of Hind-D 
helicopter. 



Review 

modeling techniques. A simple improvement to point scatter models is 
the addition of frequency- and time-dependent terms to selected scatter- 
ers [5,6]. If this approach is used, traditional methods of generating point 
scatterers are not valid. New techniques are needed to account for the 
nonlinear variables. 

The goal of this report is to evaluate the feasibility of developing a hybrid 
genetic algorithm/expert system (HGAES) to generate enhanced point 
scatter models from 3-D BAR images. The methodology is to develop, 
implement, and analyze a simple 2-D algorithm, then extrapolate the 
results to determine the feasibility of developing a more complicated 3-D 
algorithm. 

The HGAES combines ideas from several researchers. Several authors 
have developed genetic algorithms (GAs) to determine scattering centers 
from measured data [7,8]. Techniques have also been developed for 
combining expert systems and genetic algorithms [9,10]. Abrief overview 
of GAs and expert systems follows. 

GAs can be used to solve global optimization problems. Typically, they 
search for the maximum value of a function using techniques that mimic 
natural evolution [11,12]. GAs update a population of solutions, rather 
than a single solution. For example, to find the maximum of a function 
with 10 parameters, the population would consist of several possible 
solutions that each contain 10 parameters. Conceptually, each parameter 
is considered to be a chromosome. The chromosomes in each population 
are randomly mutated and mixed. Chromosomes with real encoding are 
approximated by floating point data structures on a computer. Mutation 
for chromosomes with real encoding is performed by adding random 
values to the parameters represented by the chromosomes. Crossover or 
mixing occurs between chromosomes in different populations. Crossover 
is usually based on criteria modeled after a survival-of-the-fittest sce- 
nario. Populations that are closer to the global maximum are considered 
to be fitter, so there should be a greater probability that chromosomes 
from these populations persist. Often, the fittest realizations of the popu- 
lation are not changed. This is known as elitism. 

Expert systems are a specialized branch of artificial intelligence and they 
are suited for solving specific problems that require reasoning with 
imprecise, missing, or fuzzy information and that are static in nature 
[13]. The principal components of an expert system are the knowledge 
base and the inference engine. The knowledge base stores information 
about the subject domain. A common storage method uses if/then rules. 
The inference engine gathers the information from the knowledge base 
and uses reasoning methods to find the solution. Two basic reasoning 



Algorithm 

methods are forward chaining and backward chaining. Forward chaining 
works from data to determine a conclusion. For example, a detective 
investigating a crime uses forward chaining methods to determine which 
suspect to investigate based on the available evidence. Backward chaining 
works from hypotheses and goals to determine supporting evidence. For 
example, a detective may make a hypothesis about a suspect, then collect 
evidence to support or refute it. Uncertainty in reasoning can be repre- 
sented using fuzzy logic, Bayesian statistics, or ad hoc methods. 

There are many advantages to combining a GA and an expert system. 
Both techniques do not require calculating the inverse of an analytic 
model or a gradient. This is a big advantage for modeling radar signa- 
tures because these calculations can be conceptually and computationally 
complex. Also, if models are generated from monopulse radar data, there 
is an ambiguity in the height information. This ambiguity makes it more 
difficult to resolve scattering centers using analytic-based techniques. A 
disadvantage of GAs is that they are slow. Using an expert system to 
guide the mutation and crossover operations in a GA should considerably 
reduce the amount of computer processing time. 

Many aspects of modeling target signatures with point scattering centers 
correspond to an HGAES approach. For example, a GA could be used to 
adjust the position and RCS of scattering centers using mutation, and 
adding and deleting scattering centers could be implemented using 
crossover. An expert system is also suited for several aspects of modeling 
such signatures. It is possible for an RCS analyst to determine which 
pixels in an ISAR image are due to specular reflection, edge effects, and 
cavity resonance based on experience and knowledge of the target. Many 
simple rules can be determined for guiding mutation and crossover in a 
GA. For example, one would not mutate the position from a scattering 
center to a location where there is no radar return. Mutations could be 
guided by an expert system to resolve ambiguous height information 
provided by a monopulse radar image. For example, scattering centers 
could be split but constrained, so that their average height is unchanged. 

In this report, an HGAES will be described and implemented that can 
determine an enhanced point scatter model representation of a target 
from 2-D ISAR images of a simple target. Time- and frequency-dependent 
parameters will be used to supplement a point scatter model. The algo- 
rithm will be tested using simulated radar data generated with a target 
model that matches the model used in the algorithm. 

Far-field radar data will be simulated using a simple target and radar 
model. The simulated radar will be based on an existing U.S. Army 
Research Laboratory (ARL) W-band instrumentation radar [14,15]. This is 



a frequency-stepped system with a total bandwidth of 640 MHz. The 
simulated target will consist of six isotropic point scatterers with user- 
selected RCS values and 2-D locations. Two of these scatterers will have 
frequency- and time-dependent parameters that are modeled with third- 
order polynomials, as shown in equation (2). The simulated electric fields 
will be calculated based on the principle of superposition using 

£(^)=Xpf(aWw/(t), (i) 

pi(t,k) = oj/2eiai{k-a2)3eibi{t-b2)3 . (2) 

and 

di{t)= R0 + fi(t) (3) 

where E(k,t) = electric field computed without any range attenuation, 
k = propagation number, t = time, pftjc) = time- and frequency-dependent 
backscatter coefficient of the z'th scatterer, ai = RCS of the fth scatterer, 
j = complex number, b and a are time- and frequency-dependent coeffi- 
cients, dj(t) = distance from the radar to the z'th scatterer, R0 = range of the 
radar to the center of rotation of the target, and r{(t) = 2-D location of the 
fth scatter relative to the target at t. 

Figure 3 shows an example of a 2-D BAR image generated from data 
simulated using equations (1), (2), and (3). The data consisted of simu- 
lated electric field values in meters for 64 frequencies and 64 aspect 
angles. Standard range-Doppler processing techniques were applied to 
radar data that were prewarped to lie on a rectangular grid in the spatial- 
frequency domain [16,17]. Normally, ISAR radar data are collected in a 
polar coordinate system, then interpolated to a rectangular coordinate 
system. This step was bypassed. The total number of scatterers simulated 
was six, and two of these scatterers had time- and frequency-dependent 
parameters. The scatterers with these parameters are located at the x,y 
coordinates (-2.0,-3.2) and (1.0,1.0). A constant RCS of -15 dBsm was 
selected for each scattering center. For standard point scatterers, the a and 
b coefficients in equation (2) were set to zero. For scatterers with time- and 
frequency-dependent parameters, the a and b coefficients were set to one 
in the simulation. The parameters being estimated by the HGAES are the 
position and RCS of the six scattering centers and the time and frequency 
coefficients for two scattering centers. I assume that I know the total 
number of scattering centers and the number of time- and frequency- 
dependent scattering centers. 

Note that the brightness of the scattering centers in figure 3 appears to 
vary even though their RCS is constant. This effect is caused by the point 
spread function being sampled at different locations for four scattering 



Figure 3. Example of 
a simulated 2-D 
ISAR image. 
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centers and by the addition of time- and frequency-dependent parameters 
for two scattering centers. 

Figure 4 shows an overview of an HGAES used to determine an enhanced 
point scatter model representation of a target from measured radar data. 
First, simulated data will be generated and imaged using the procedure 
described above. Next, initial scattering centers will be determined using 
an ISAR peak-detection algorithm [18]. Then these scattering centers will 
be randomly mutated to generate additional populations. Next, the 
scattering centers will be mutated according to the rules described by an 
expert system. Then a fitness function is evaluated for each population of 
scattering centers. The stopping condition is currently based on the 
iteration number, but it could be easily changed to a fitness threshold 
level. Next, crossover between the populations is performed according to 
rules described by another expert system. 

The scattering center parameters will be randomly mutated and mixed, 
but constrained and directed by an expert system. The knowledge base in 
the expert system will be represented by if/then rules generated by the 
author. Since the algorithm is being tested with simulated data, complete 
knowledge of the target is available to develop the expert system. ARL 
has a large database of target signatures that can be used to help develop 
a future knowledge base for an expert system. Inferences will be reached 
using forward chaining, and uncertainty will be represented using an 



Figure 4. Flow chart 
ofanHGAES. Simulate or measure radar data 

necessary to create an ISAR image. 

Generate ISAR image and coarsely locate scattering centers. 
Perform initial mutations to generate populations. 

Mutate using 
expert system 

Mutate using 
expert system 
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expert system 
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ad hoc approach with both parametric and nonparametric statistics. 
Presently, there is no explanatory interface to help analyze conclusions. 
The following text describes the individual components in more detail. 

Figure 5 is an outline of a simple expert system that is used to guide 
mutation. First, localized areas of interest are determined by examining 
the differences between the actual and simulated images. Then simple 
statistics around this location are computed in square meters. The mean 
and standard deviation are calculated for the actual, modeled, and actual 
minus modeled ISAR images. The size and order of these statistics are 
used to determine which scatterers to mutate. Next, the RCS of regions 
with larger errors are selected and adjusted so that the mean difference is 
zero. In the current implementation, scatterers may be created and de- 
stroyed, but the net gain or loss is constrained to be zero. Also, only one 
scatterer can be created or destroyed per algorithm iteration. The differ- 
ence between moving versus destroying and creating a scattering center 



Figure 5. Expert 
system used to guide 
mutations. 
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is that a scatterer is moved around a region while a scatterer can be 
created and destroyed from different regions. 

The next step in the flow chart in figure 4 is to evaluate the fitness func- 
tion for the different populations of scattering centers. The fitness func- 
tion selected is 

R2 Ö ro r      ö rO r (4) 

where R2 = a 2-D grid sampled at the center of the pixel locations of the 
2-D ISAR image, gr g* = the simulated scatterer brightness at the rth 
pixel, and * = complex conjugate. The scatterer brightness is equal to the 
scatterer RCS plus imaging errors [19]. The absolute difference of the 
error was chosen rather than the squared difference of the error because 
of the potential large dynamic range of the radar returns. 



The last step in the flow chart in figure 4 is to perform crossover between 
the populations of scattering centers. Figure 6 shows an overview of 
expert system rules used to guide crossover. First an initial population is 
sorted based on fitness value, then chosen based on a loop index. A 
second population is randomly selected, but with a bias toward popula- 
tions with a higher fitness rank. Scatterer centers in the second population 
are not changed; they are only used to modify the first population. Next, 
the location and magnitude of the three largest errors between the image 
generated using the first population and the actual image are computed 

Figure 6. Expert system 
used to guide 
crossover. 
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Results 

using a peak detection algorithm. A single location is randomly selected 
from these three choices with a higher probability assigned to locations 
with larger errors. Next, the closest scatterers to this location in the first 
population are replaced with the closest scatterers to this location in the 
second population. This process is repeated for each population that is 
not designated as elite. Keeping elite populations also results in the 
elimination of the populations with the lowest fitness values. 

The algorithm was run using six scattering centers, two of which had 
time and frequency dependencies. The population size was 20, the num- 
ber of elite populations was 3, and 20 iterations of the algorithm were 
performed. A single run required approximately 1 hr of processing time. 
Figures 7 and 8 show the actual image and the image resulting from the 
HGAES algorithm. Figure 9 shows the maximum of the fitness function 
evaluated for the populations after each iteration. The images in figures 7 
and 8 look similar, and figure 9 indicates that the algorithm converges to a 
stable value after approximately 13 iterations. These qualitative results 
indicate that the algorithm is working reasonably well. 

The algorithm was coded in MATLAB® 5.3. This environment was se- 
lected because it has a short learning curve and good visualization and 
mathematical programming tools. The major disadvantages were its slow 
speed and its inability to represent knowledge with flexible data struc- 
tures and objects. The total runtime was approximately 2 hr on a 
333-MHz Pentium II computer. 
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Figure 7. Actual ISAR image of 6 point scatterers, 
2 with time and frequency dependencies. 
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Figure 8. Image from scatterers estimated using 
HGAES algorithm. 
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Conclusion 
An HGAES was developed for modeling targets with nonlinear time- and 
frequency-dependent radar returns. The algorithm determined an en- 
hanced point scatter model representation of the target from 2-DISAR 
images. The model for the nonlinear parameters was relatively simple, so 
it should be suitable for incorporation into HWIL and SIL simulations 
that use point scatterer models. The algorithm was demonstrated to work 
on simulated radar data using a simple technique for determining the 
initial scattering centers. 

Many of the ideas used in developing the algorithm can be extended to 
more complex targets and from 2-D to 3-D images. The idea of using both 
parametric and nonparametric statistics in the expert system was success- 
ful. Nonparametric statistics simplified the coding, while the parametric 
statistics were better for quantifying errors. Several lessons were learned 
while coding the algorithm that should apply to future algorithms. The 
expert system should not be developed independent of the GA and the 
source code. The expert system can be simplified by taking advantage of 
the random nature of the GA and the programming environment. 

A major issue in the future development of an HGAES is knowledge 
representation. Efforts have been made to develop a framework for 
combining intelligent systems, but flexibility and speed are reduced and 
there is a significant learning curve. Expert system shells are available for 
representing knowledge, but they also lack flexibility and speed. A rea- 
sonable alternative is to develop the algorithm in an object-oriented 
programming language such as C++. This approach would provide speed 
and flexibility, but would require constructing objects. Also, future work 
should use more sophisticated superresolution techniques for estimating 
the initial position and RCS of scattering centers without time- and 
frequency-dependent components. 

An HGAES is a powerful technique for solving nonlinear global search 
problems with faster convergence than a simple GA. The big advantage 
of this technique is that it does not require calculating the inverse of an 
analytic model. The downside of the approach is that it is more difficult to 
implement than a GA. Also, the expert system needs to be constructed so 
that there is sufficient variation in the mutation and crossover process to 
ensure convergence to a global maximum. My conclusions are that 
models developed using this technique have the potential to enhance the 
accuracy of weapon systems simulations and further investigation and 
development of this technique are warranted. 
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Appendix.—Main Function for HG AES Code 

% genetic algorithm/expert system that estimate time and frequency dependent scattering 
% centers from simulated RF data radar simulates 2-D ISAR data collected with a 
% rectangular frequency collection space. 
% Written by Jeff Goldman, June 1999 
% 
function hgaes(seed) 

global c 
c=3e8; 

randn(lseed',seed) ; 
rand(* seed',seed); 

load 'scat_ft.dat' ;  % correct model in file 
[num_scat,nine]=size(scat_ft);  % use correct number of scatterers 

carrier = 95e9;    % radar simulation parameters 
freq_step = 10e6;  % fx and fy are exactly on rectangular grid in simulation 

num_az = 64; 
num_freq = 64; 
ang_inc  =   (0. 5*pi/180)/nunraz; 

drange_len_far = c/(2*freq_step);    % unambiguous down range 
crange_len_far = c/((carrier+freq_step*(num_freq-l)/2)*2*ang_inc); % cross range 

TF_INDEX=5; 
num_scat_tf=sum(scat_ft(:,TF_INDEX)); 
isar_truth_m2=abs(gen_isar_ft(carrier,freq_step,num_az,num_freq,ang_inc,scat_ft)).~2; % 

generate image 

fir2coef=ones(3,3)*0.05;  % 2-D filter for smoothing ISAR image 

fir2coef(2,2)=.55; 

isar_truth_filt_m2=filter2(fir2coef,isar_truth_m2); 
RCS_truth=sum(sum(isar_truth_filt_m2)); 

if (1)  % define image parameters 
min_im= -50; 
max_im= -15; 
dr_start=l; 
dr_end=num_freq - dr_start  + 1; 
cr_start=l; 
cr_end=num_az - cr_start + 1; 
x_axis=((dr_start:dr_end)-num_freq/2 -1)*drange_len_far/(num_freq); 
y_axis=((cr_start:cr_end)-num_az/2 -1.)*crange_len_far/(num_az); 

end 

if (1)  % plot original image 
image_dBsm = 10.*loglO(isar_truth_m2)'; 

figure 
imagesc(x_axis,y_axis,image_dBsm,[min_im max_im]) 
colorbar('vert') 
title('ISAR image far-field, exact, with time/frequency dependency') 
xlabel("down range (m)') 
ylabel("cross range (m)') 

end 

NPOP=20; % population size 
n_cases=20;       % number of iterations 
N_elete=3; % number of elete 
P_mutate=0.35; % probability of mutation for scatterer 
p_del_tf_scat=.4; % probabilty of deleting a tf comp of a scatterer, (or 1-P of creating) 
P_add_del=0.2; % probability of adding or deleting a scatterer 
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Appendix 

RN_mut_scat_ele_array=[0.1 0.1 0.0 0.1],- % real number associated with mutation proabability 
for SC 

%  [x,y,z,amp,time/freq, add/del scat]  tf=binary flag 

RNmut_tf_ele_array= [0.05 0.05]; % real number associated with mutation proabability for 
time/freg variation 

% mutate time and frequency simulataneously 
%[freq'amp,freq offset,time amp, time offset]; 

SCAT_ELE=5;  % number of elements for a standard scattering center 
TF_SD_ELE=4;  % number of elements for the time and frequency dependent scatterina 
center 

N_MIN_SCAT_MUT=1;  % minumum number of scatterers to mutate 

% used only during initialization 

P_mut_scat_ele_array=cumsum(RN_mut_scat_ele_array)/sum(RN_mut_scat_ele_array);  % 
normalized cumulative mutation probability 

P_mut_tf_ele_array=cumsum(RN_mut_tf_ele_array)/sum(RN_mut_tf_ele_array);  % 
normalized cumulative mutation probability 

SD_mut_xyz=0.1*[l 1 1]; % in meters 
perc_mut_amp=[0.1];  % amp in meters 
SD_mut_tf=[l 111]; %units = [none, rad,none,rad]; 

ndr_cells_rcs=7;  % make odd 
ncr_cells_rcs=7;  % make odd 

num_nn=3;   % number of nearest neighbors in region of interest 
num_nnl=l;  % number of nearest neighbor 

INIT_MIN_MUT=2;  % initial minimum mutation for initial population (elite) 

% generate population of solutions 

fitness_array=zeros(l,NPOP); 

scat_ft_models=zeros(num_scat,SCAT_ELE+TF_SD_ELE,NPOP);  % GA population 
temp_ft_models=zeros(num_scat,SCAT_ELE+TF_SD_ELE,NPOP);  % temporary storage 
loss_array_mut=zeros(l,NPOP); 
loss_array_cross=zeros(l,NPOP);  % crossover 

init_process_variable % initialize structure process, required by find_peaks 
process.num_scat=num_scat; 

[idr array,icr_array,w_array,rcs_array]=find_jeaks(isar_truth_m2,process) % sorted by best 
match to template 

x_init=((idr_array)-num_freq/2 -1)*drange_len_far/(num_freq); % x positions of peaks 
y_init=(Ucr_array)-num_az/2 -1.)*crange_len_far/(num_az),    % y positions of peaks 
scat_ft_models( 
scat_ft_models( 
scat_ft_models( 

,l,l)=x_init; 
,2,1)=y_ini t; 

,4,l)=rcs_array.~0.5;  % amplitude 

n_mut_array=sum(rand(num_scat-INIT_MIN_MUT,NPOP) < P_mutate) + INIT_MIN_MUT; 
% number of scatterers to mutate 
for ipop=l:NPOP  % mutate initial estimate to form population 

scat_ft_models(:,:,ipop)=scat_ft_models(:,:,!);     % initialize to best guess 
end 

for ipop=l:NPOP  % mutate initial estimate to form population 

imut_scat_array=ceil(num_scat*rand(l,n_mut_array(ipop)));  % select scattering centers to 
mutate 

while (imut_scat_array(l)==imut_scat_array(2)) % make sure first two elements are not 
equal 

% fix later to be more general 
imut_scat_array=ceil(num_scat*rand(l,n_mut_array(ipop) ) ) ; 

end 

for itf=l:num_scat_tf 
iscat=imut_scat_array(itf) ; 
scat_ft_models(iscat,TF_INDEX,ipop)=1; 

scat_ft_models(iscat,6:9,ipop)=SD_mut_tf.*rand(l,4) + 0.5*ones(1,4); 
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end 
for iscat=l:n_mut_array(ipop)  % loop through scatterers for the ipop population 

iscat_ele=get_rand_index(P_mut_scat_ele_array);  % find scattering element 
if (iscat_ele <= 3) % add gaussian pertubation to position of scatterer 

scat_ft_models(iscat,iscat_ele,ipop)=scat_ft_models(iscat,iscat_ele,ipop) + ... 

SD__mut_xyz (iscat_ele) *randn (1) ; 
elseif (iscat_ele==4) % for RCS , multiple by gaussian pertubation 

scat_ft_models(iscat,iscat_ele,ipop)=scat_ft_models(iscat,iscat_ele,ipop)* ... 

(1 + perc_mut_amp*randn(l)); 

else 
error('iscat should be 4 or less') 

end 
end 

end 

original=scat_ft_models(:,:,1) 
mut_image=scat_ft_models(:,:,2) 

if (0)  % plot best estimate 
isar_mut=gen_isar_ft(carrier,freq_step,num_az,num_freq,ang_inc,scat_ft_models(:,: , 1)) ; % 

generate image 
image_m2=(abs(isar_mut(dr_start:dr_end,cr_start:cr_end)))."2; 

image_dBsm = 10 . *logl0 (image__m2 ) ' ; 
figure 
imagesc(x_axis,y_axis,image_dBsm,[min_im max_im]) 

colorbar('vert') 
title!'peak ISAR image far-field, exact, time/frequency dependent') 
xlabel('down range (m)') 
ylabel('cross range (m)') 

end 

% start GA 
% first mutate all scatterers, no elete, than crossover 

if (N_MIN_SCAT_MUT < 1) 
error('N_MIN_SCAT_MUT >= 1')  % mutate atleast one scattering center 

end 

for icases=l:n_cases 
for ipop=l:NPOP % rerank after crossover 
isar_sim=gen_isar_ft(carrier,freq_step,num_az,num_freq,ang_inc,scat_ft_models(: , : , ipop) ) ; 

% generate image 
isar_sim_filt_m2=filter2(fir2coef,abs(isar_sim)."2); 
isar_diff=(isar_truth_filt_m2-isar_sim_filt_m2); 
loss_array_cross(ipop)=sum(sum(abs(isar_diff))); 

end 
[temp,ifitness_cross]=sort(loss_array_cross); 

loss_min_cross=temp(l); 
loss_array_mut(ifitness_cross(l))=loss_array_cross(ifitness_cross(l));  % propagate the elite 

population 

for iipop=2:NPOP  % 1 elete for mutation 
ipop=ifitness_cross(iipop); 
ipop_in_mut=ipop; 
scat_mut_array='';   % variable size, start over for each-population 

region_mut_array=''; 
n_scat_mut=sum(rand(l,num_scat) < P_mutate); 
if (n_scat_mut < N_MIN_SCAT_MUT) 

n_scat_mut=N_MIN_SCAT_MUT; 

end 

isar_sim=gen_isar_ft(carrier,freq_step,num_az,num_freq,ang_inc,scat_ft_models(:,: , ipop)); 

% generate image 
isar_sim_filt_m2=filter2(fir2coef,abs(isar_sim)."2); 
isar_diff=abs(isar_truth_filt_m2-isar_sim_filt_m2); 
isar_abs_diff=abs(isar_diff); 
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process.num_scat=n_scat_mut; 
process.templete=l; 
process.n_remove_dr=7; % make odd 
process.n_remove_cr=7; % make odd 

[idr_array,icr_array,w_array,rcs_array]=find_jeaks(isar_abs_diff,process);   % sorted by best 
match to template 

x_array=((idr_array)-num_freg/2 -1)*drange_len_far/(num_freg); 
y_array=((icr_array)-num_az/2 -1.)*crange_len_far/(num_az); 

nmean_di f f_array=''; 
mean_diff_array=''; 
nstd_diff_array=''; 

% generate statistics to guide mutation 

for imut=l:n_scat_mut  % calculate statistics, mutate regions with largest errors first 

[rcs_mean_diff,rcs_std_diff]=local_rcs_stat(isar_diff,idr_array(imut),icr array(imut),ndr cells 
rcs,ncr_cells_rcs); ~ 

[rcs_sim_mean,rcs_sim_std]= 

local_rcs_stat(isar_sim_filt_m2,idr_array(imut),icr_array(imut),ndr_cells_rcs,ncr_cells_rcs); 

[rcs_true_mean,rcs_true_std]=local_rcs_stat(isar_truth_filt_m2,idr_array(imut),icr array(imut), 
ndr_cells_rcs,ncr_cells_rcs); ~ 

% rcs_mean_ratio=rcs_sim_mean/rcs_true_mean; 
std_ratio_array(imut)=(rcs_true_std -rcs_sim_std)/(rcs_sim_std + rcs_true_std)• 
nmean_diff_array (imut)=rcs_mean_diff/(rcs_sim_mean+rcs_true_mean); 
mean_diff_array(imut)=rcs_mean_di ff ; 

nstd_diff_array(imut)=rcs_std_diff/(rcs_sim_std+rcs_true_std); 
end 

% first determine tf scatterers to add/delete 

del_tf_flag=(rand(l) < P_del_tf_scat);  % add/delete only one scatterer per mutation 
del_scat_flag= (rand(l) < P_add_del); 
n_scat_move = n_scat_mut -del_tf_flag -del_scat_flag; 
iscat_mut=0; % counter to keep track of scatterers mutated 

if (del_tf_flag) 
score_move_array=''; 
score_add_tf_array=''; 

del_tf_scat = num_scat + 1 -ceil(rand(l)*num_scat_tf);   % randomly determined which 
tf scatterer to delete 

% fix later, make' smarter, not random 

ttemp,itf_array]=sort(scat_ft_models(:,TF_INDEX,ipop));    % itf last elements 
[ireg,temp] = find_region(scat_ft_models(itf_array(del_tf_scat),1,ipop)  

scat_ft_models(itf_array(del_tf_scat),2,ipop),x_array,y_array); 

scat_ft_models(itf_array(del_tf_scat),TF_INDEX:9,ipop)=zeros(1,5); 

iscat_mut=iscat_mut + 1; 

scat_mut_array(iscat_mut)=itf_array(del_tf_scat); 
region_mut_array(iscat_mut)=ireg; 

[temp,instd_diff_array]=sort(nstd_diff_array);  % determine which scatterer to add 
[temp,istd_ratio_array]=sort(std_ratio_array); 
for iregion=l:n_scat_mut  % large score better, limit search to number of mutations 

score_add_tf_array(iregion)=find(instd_diff_array==iregion) + 
find(istd_ratio_array==iregion); 

end 

[temp,iadd_tf]=sort(score_add_tf_array); % large score indicates add scatterer 
% fix, check to make sure not adding and deleting same tf scatterer 

[innl,temp]=find_nn(x_array(iadd_tf(n_scat_mut)),y_array(iadd_tf(n_scat_mut)),num nnl,sca 
t_ft_models(:,:,ipop)); — 

ireg=iadd_tf(n_scat_mut); 
loop=0; 

18 



Appendix 

while (scat_ft_models(innl(l),TF_INDEX,ipop)==1  & n_scat_mut - loop -1 > 0)  %if 

already set, find another scatterer 
loop=loop + 1; 
[innl,temp]=find_nn(x_array(iadd_tf(n_scat_mut-loop)},y_array(iadd_tf(n_scat_mut- 

loop)),num_nnl,scat_ft_models(:,:,ipop)); 
ireg=iadd_tf(n_scat_mut-loop); 

end 
if (loop==num_scat_tf)  % if stuck on scatterer, force a change 

inn_rnd=ceil(rand(l)*(num_scat_tf-l)); 
i f (inn_rnd==innl) 

innl=innl + 1; 
else 

innl=inn_rnd; 
end 
[ireg.temp] = 

find_region(scat_ft_models(innl,1,ipop),scat_ft_models(innl,2,ipop),x_array,y_array); 

end 

% use nearest neighbor 
scat_ft_models(innl(l),TF_INDEX,ipop)=1; 
scat_ft_models(innl,6:9,ipop)=0.5*ones(l,4) + randn(l,4); 

iscat_mut=iscat_mut + 1; 
scat_mut_array(iscat_mut)=innl; 
region_mut_array(iscat_mut)=ireg; 

end 
if (del_scat_flag) 

score_add_tf_array=''; 
score_move_array=''; 
tf_scat_flag=l; 
while (tf_scat_flag) % fix later, make smarter, not random 

del_scat = ceil(rand(l)*num_scat);   % randomly determined which scatterer to delete 
tf_scat_flag=scat_ft_models(del_scat,5,ipop); 

end 

[ireg,temp] = find_region(scat_ft_models(del_scat,1,ipop),... 
scat_ft_models(del_scat,2,ipop),x_array,y_array); 

iscat_mut=iscat_mut + 1; 
scat_mut_array(iscat_mut)=del_scat; 
region_mut_array(iscat_mut)=ireg; 

[temp,instd_diff_array]=sort(nstd_diff_array);  % determine which scatterer to add 
[temp,istd_ratio_array]=sort(std_ratio_array); 
for iregion=l:n_scat_mut  % large score better, limit search to number of mutations 

score_add_tf_array(iregion)=find(instd_diff_array==iregion) + 
find(istd_ratio_array==iregion); 

end 
[temp,iadd_tf]=sort(score_add_tf_array); % large score indicates add scatterer 
% fix, check to make sure not adding and deleting same tf scatterer 

[innl,temp]=find_nn(x_array(iadd_tf(n_scat_mut)),y_array(iadd_tf(n_scat_mut)) ,num_nnl,sca 

t_ft_models(:,:,ipop)); 
ireg=iadd_tf(n_scat_mut) ; 
loop=0; 
while (scat_ft_models(innl(1),TF_INDEX,ipop)==1  & n_scat_mut-loop-l >= 1)  %if 

already set, find another scatterer 
loop=loop + 1; 
[innl,temp]=find_nn(x_array(iadd_tf(n_scat_mut-loop)),y_array(iadd_tf(n_scat_mut- 

loop) ) ,num__nnl, scat_f t_models ( : , : , ipop) ) ; 
ireg=iadd_tf(n_scat_mut-loop); 

end 
% use nearest neighbor 

scat_ft_models(innl(l),1,ipop)=x_array(iadd_tf(n_scat_mut-loop)); 
scat_ft_models(innl(l),2,ipop)=y_array(iadd_tf(n_scat_mut-loop)); 

% keep RCS the same 
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end 

if (n_scat_move>=l) 
score_add_tf_array=' ' ,- 
score_move_array=''; 

[temp,instd_diff_array]=sort(nstd_diff_array);  % determine which scatterers to move 
[temp,istd_ratio_array]=sort(abs(std_ratio_array - mean(std_ratio_array))); 
n_scat_mut_iregion=n_scat_mut; 
for iregion=l:n_scat_mut  % large score better 

score_move_array(iregion)=find(instd_diff_array==iregion) + 
find(istd_ratio_array==iregion); 

end 

[temp,imove_array] =sort(score_move_array); 
forimove=l:n_scat_move 

[innl,temp]=find_nn(x_array(imove_array(imove)),y_array(imove_array(imove)),num nnl,sca 
t_ft_models(:,:,ipop)); 

iscat_mut=iscat_mut+l;  % allow for duplication in movement, no checking 
scat_mut_array(iscat_mut)=innl; 

region_mut_array(iscat_mut)=imove_array(imove); 
iele=ceil(rand(l)*2) ,-  % chose between x and y 
scat_ft_models(innl(l),iele, ipop) = . . . 

scat_ft_models(innl(l),iele,ipop) + rand(l)*SD_mut_xyz(iele) ; 
end 

end 

% adjust local RCS for each region 

for ireg=l:n_scat_mut 

if (~sum(find(region_mut_array==ireg))) % if region not mutated 
_ [innl,temp]=find_nn(x_array(ireg),y_array(ireg),num_nnl,scat_ft_models(:,:,ipop)); 
xf (-sum(find(scat_mut_array==innl))) % if scatter not mutated 

iscat_mut=iscat_mut + 1; 
scat_mut_array(iscat_mut)=innl; 
region_mut_array(iscat_mut)=ireg; 
scat_ft_models(innl,4,ipop)=... 

(abs(scat_ft_models(innl,4,ipop)^2 + mean_diff_array(ireg) + rand(l)*0 05))A0 5- 
end "       ' 

end 
end 

if (sum(scat_ft_models(:,5,ipop)')==D  % make sure two tf scatterers 
xcheck=ceil(rand(l)*num_scat) ; 
while (scat_ft_models(icheck,5,ipop)==l) 

icheck=ceil(rand(l)*num_scat) ; 
end 

scat_ft_models(icheck,TF_INDEX, ipop)=1; 

scat_ft_models(icheck,6:9,ipop)=0.5*ones(l,4) + randn(l,4); 
end 

% evaluate fitness functions 

isar_sim=gen_isar_ft(carrier,freq_step,num_az,num_freq,ang_inc,scat ft models(:,:,ipop))• 
% generate image 

isar_sim_filt_m2 = filter2(fir2coef,abs(isar_sim) .A2); 
isar_diff=(isar_truth_filt_m2-isar_sim_filt_m2); 
loss_array_mut(ipop)=sum(sum(abs(isar_diff))); 

end %ipop 

[temp,ifitness_mut]=sort(loss_array_mut); 
loss_min_mut=loss_array_mut(ifitness_mut(l)); 
loss_case_array(icases)=loss_array_mut(ifitness_mut(l) ) ,- 

if (1)  % plot image 

intermediate_model=scat_ft_models(:,:,ifitness_mut(1)); 

isar final=gen_isar_ft(carrier,freg_step,num_az,num_freg,ang_inc,scat_ft_models(:,:,ifitness 
mut(1))); % generate image — 
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image_m2=(abs(isar_final(dr_start:dr_end,cr_start:cr_end))).A2; 
image_dBsm =  10.*logl0(image_m2)'; 
figure 
imagesc(x_axis,y_axis,image_dBsm,[min_im max_im]) 

colorbar('vert') 
title("Intermediate ISAR image far-field, exact, time/frequency dependent') 

xlabel("down range (m)') 
ylabel('cross range (m) ' ) 

end 

temp_ft_models=scat_ft_models; 
sort_models=scat_ft_models; 

N_CROSS_REGIONS=3; % used to random generate regions for crossover 
nIcrossover=ceil(2*rand(l)); % number of scatterers to crossover 
CROSS_POWER_POP=1.5; % weight crossover to better fitness values, larger values 

better 

% reorder model from best to worst, count elete twice 
for ipop=l:N_elete 

scat_ft_models(: , : , ipop)=temp_ft_models(:,:,ifitness_mut(ipop)); 

end 

for ipop=l:(NPOP-N_elete) 
scat_ft_models(:,:,ipop+N_elete)=temp_ft_models(:,:,ifitness_mut(ipop)); 

end 
for ipop=l:NPOP 

sort_models(:,:,ipop)=temp_ft_models(: , :,ifitness_mut(ipop)); 

end 

for ipop=l+N_elete:NPOP     % ipop is selection for crossover 
ipop_new=ceil((rand(l)"CROSS_POWER_POP)*(NPOP-1));  % weighted crossover 

if (ipop-N_elete==ipop_new) 
ipop_new=ipop_new+l; 

end 

isar_sim=gen_isar_ft(carrier,freq_step,num_az,num_freq,ang_inc,scat_ft_models(: , :, ipop) ) ; 

% generate image 
isar_sim_filt_m2=filter2(fir2coef,abs(isar_sim). ~2); 
isar_abs_diffl=abs((isar_truth_filt_m2-isar_sim_filt_m2)) ; 
iroi=ceil(rand(l)*N_CROSS_REGIONS); 
process.num_scat=iroi; 
[idr_array,icr_array,w_array,rcs_array]=find_peaks(isar_abs_diff,process); % sorted by best 

match to template 
x=((idr_array(iroi))-num_freq/2 -1)*drange_len_far/(num_freq); 
y=((icr_array(iroi))-num_az/2 -1.)*crange_len_far/(num_az); 
[inn_new,temp]=find_nn(x,y,n_crossover,sort_models(:,:,ipop_new)); 
[innl,temp]=find_nn(x,y,n_crossover,scat_ft_models(:,:,ipop)); 

new_tf=0; 
innl_tf=0; 
for icross=l:n_crossover % count tf 

new_tf= new_tf + sort_models(inn_new(icross),TF_INDEX,ipop_new); 
innl_tf=innl_tf + scat_ft_models(innl(icross),TF_INDEX,ipop); 

end 
if (innl_tf==new_tf)  % maintain same number of time frequency scatterers 

for icross=l:n_crossover 
scat_ft_models(innl(icross),:,ipop)=sort_models(inn_new(icross),:,ipop_new) ; 

end 
end 

end 
end % n_cases 

%model_after=scat_ft_models(:,:,ifitness_mut(1) ) 

for ipop=l:NPOP 
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isar_sim=gen_isar_ft(carrier,freq_Step,num_az,num_freq,ang_inc,scat ft models(:,:,ipop)); % generate image ~~ ~ 

isar_sim_filt_m2=filter2(fir2coef,abs(isar_sim).A2); 
isar_dif f= (isar_truth_f ilt_m2-.isar_sim_f ilt_m2 ) ; 
loss_array(ipop)=sum(sum(abs(isar_diff))); 

end 

[temp,iloss]=sort(loss_array) 

final_scat_model=scat_ft_models(:,:,iloss(1)) 
loss_case_array(n_cases+l)=loss_array(iloss(l)); 

if (1)  % plot final image 

iSar_final=gen_iSar_ft(carrier,freq_step,num_az,num_freq,ang_inc,scat ft models(:,:,iloss(1))) ; % generate image 

image_m2=(abs(isar_final(dr_start:dr_end,cr_start:cr_end))).-2; 
image_dBsm = 10.*logl0(image_m2)'; 
figure 

imagesc(x_axis,y_axis,image_dBsm,[min_im max_im]) 
colorbar(-vert') 

titlet-Final ISAR image far-field, exact, time/frequency dependent') 
xlabelt'down range (m)') 
ylabelt-cross range (m)') 

end 

if (1) % plot fitness function 
figure 
plot t-loss_case_array) 
title(-Final results') 
xlabel(-number of iterations') 
ylabel('Fitness function') 

end 
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