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ABSTRACT 

Computer processor speeds double every eighteen months according to 
Moore's law. This growth will reach a limit by the year 2020. Quantum 
computation is one proposed alternative to bypass this limitation. This thesis 

explores the topic of quantum computation. Specifically, we address what is a 
quantum computer, its various proposed implementations, its technological 

feasibility, and its military applications. Recent experiments have provided a 
proof of concept for quantum computation and some researchers believe that a 

working model could be developed within a reasonable time period. This success 
has caused a marked increase in the interest in quantum computers and their 
proposed potential. We attempt to separate fact from fiction to see what possible 
benefits the Department of Defense could obtain from it. 
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I.        INTRODUCTION 

Moore's law provides a rough estimation for the extrapolation of computer 

processor speeds over time. Moore's law states that "Computer processor speeds double 

every eighteen months". But there is a limit: Reference 1 asserts that with the current 

technology the physical limit for processor speeds will be reached in the year 2020. The 

current technology relies on placing more transistors in a smaller area on the 

microprocessor surface in order to increase computing speed (clock speed). 

Concomitantly there is a heat dissipation problem due to the increased number of 

transistors per unit area. Therefore by extrapolating the energy dissipation trend the 

current technology should reach the thermal noise limit for the atomic level around the 

year 2020 [Ref. 1]. At this point we will have entered the quantum realm. Additionally, 

there is an economic concern in that the cost of constructing "clean" rooms to produce 

semiconductors doubles every three years [Ref. 1, p. 11]. At this rate, the cost of 

producing a new semiconductor plant in 2020 will reach the trillion-dollar level. Clearly 

this would be prohibitive to business. What do we do then? Quantum computation is one 

of the areas being explored to answer this question. 

How does this pertain to us in the Department of Defense? The military mirrors 

society in many aspects, one of which is the ubiquitous use of computers. We in the 

military currently use computers for everything from administration to target guidance. 

The Joint Vision 2010 [Ref. 21] points out, "This era will be one of accelerating 

technological change. Critical advances will have enormous impact on all military 

forces. Successful adaptation of new and improved technologies may provide great 

increases in specific capabilities. Conversely, failure to understand and adapt could lead 



today's militaries into premature obsolescence and greatly increase the risks that such 

forces will be incapable of effective operations against forces with high technology." 

Therefore we must examine new areas of technology that could represent a significant 

benefit to our warfighting capability. Quantum information systems is an area of new 

technology that could provide that benefit and the potential payoff is enormous. The 

arena of information systems is one of the pillars of our warfighting ability and one of our 

greatest vulnerabilities. We depend upon the unfettered access to the electromagnetic 

spectrum, whether through electromagnetic waves or wires. However, DoD computer 

systems endure hundreds of "cyber" attacks every day. To continue our quest for the 

"high ground" we need to explore new technologies as they are being discovered. 

Applications for DoD cryptographers could include quantum cryptography, new 

ways to break and make codes, which with the explosion of the Internet could help better 

secure the safety of DoD computer systems. Additionally, quantum computers can offer 

a solution to these needs. Through "quantum parallelism" the Schor algorithm for 

quantum computation may be able to assist in breaking some of today's unbreakable 

codes or developing stronger ones. "Quantum parallelism" may allow us to build neural 

nets that can learn more quickly and may allow us to solve some of the more interesting 

computation problems known as NP-hard/complete. 

Imagine a radio intercept system that collects over the entire electromagnetic 

spectrum, simultaneously decrypting and providing real-time scanning for key words or 

phrases could be possible. Imagine a computer system that allows artificially intelligent 

systems to process exponentially faster because it can reason millions of ways in parallel. 

Cryptographic key exchanges could be 100% secure with the ability to detect 



eavesdroppers. The possibility of these conjectures was relegated to science fiction until 

recently due to limitations in computer speed and system "knowledge". 

Isaac Chuang's recent experiment using Nuclear Magnetic Resonance (NMR) 

techniques to apply Grover's Algorithm has generated increased interest in the realization 

of quantum computers. In the fall of 1997 when our group began preliminary research 

into quantum computers, a search of the Internet found maybe 20 sites pertaining to 

quantum computation. One year later there are over 1,800 sites. This shows the 

remarkable interest in the potential for quantum computing. Additionally, as noted in 

Ref. 2, quantum mechanics provides a better explanation of physical reality than classical 

mechanics and can therefore provide more information about the "complexity" or 

"knowledge" of the system [Ref. 8, p. 97]. 

However, this interest should be tempered with a sense of caution. The results of 

quantum mechanics are well documented experimentally, but academic understanding 

will not automatically yield an engineering success. There are several impediments to the 

construction of a quantum computer: decoherehce, size, economic factors etc. Therefore 

we must proceed toward the goal of constructing a quantum computer with those 

impediments in mind. 

This paper will explore quantum computing by explaining what a quantum 

computer is, why we should choose to build one, how we could implement one, and its 

limitations and advantages for military needs. 





II.  BACKGROUND 

In quantum mechanics, a system can be interpreted as existing in a superposition 

of states simultaneously, such as a bit of information being both a 1 and a 0 at the same 

time. This superposition of states is the key to the possible exponential increase offered 

by computing at the quantum level. Each of these states can separately perform 

calculations for the solution of a problem. However a theoretical impediment to quantum 

computing is the lack of a machine model. The Turing model of computation, developed 

by Alan Turing, appears inadequate to describe the computational processes occurring. 

In the Turing model, questions of how to implement the reading of the data tape and 

writing to the data tape are ignored, essential questions that cannot be ignored under 

quantum computing. Therefore, a new model must be developed to describe and 

formalize the process. This new model should be based on applied mathematics or 

physics in order to more accurately give insight into the quantum computational process. 

No longer can we think of data as just 1 's and O's, but as the probabilities of a 1 or 0, 

representing superposition of states. Additionally, the quantum computer can no longer 

be thought of as a tape head and an infinitely long tape. In accordance with quantum 

mechanics we must think of the tape as a system described by the state function *F(t) that 

evolves over time to perform the calculation. 

Classical computer systems perform computation by sending an electric signal 

through a circuit in conjunction with a timing signal. This signal is independent in that it 

does not require interaction with any other signal in order to perform its calculation. 

Calculations performed in this manner take place through space (the microprocessor) and 

time (the length of time required to traverse the circuit). A quantum computer system 



performs its calculations by controlling the memory evolution over time. Quantum 

computations must be prepared in an initial state, which would correspond to "input". 

This input is then transitioned to other quantum states by one of several methods (see 

table 2 in section III for a list of methods). Input to a general quantum computation is 

now more than just the concatenation of its bits, because each input bit can be 

"entangled" with its neighbor and each bit is in a superposition of states. Entanglement is 

"a property of correlated pairs of quantum systems"[Ref. 1, p. 180]. Two elements can be 

entangled if they are emitted by the same source at the same time as in the case of 

photons in an Einstein-Podolsky-Rosen (EPR) experiment. A good model of 

entanglement is a linear system of four blocks attached to each other by springs while the 

springs are in tension. A block in this system cannot be moved without influencing its 

neighbors. In this way calculations are dependent not only upon the evolution of the 

system in time, but the interaction of the input bits as they evolve over time. 

Classical computer systems have an understood and well-defined computational 

model known as the Turing model. This model was developed independently by four 

men, Alan Turing, Alonso Church, Kurt Gödel, and Emil Post, and is a mathematical 

model for the computing process. The Turing machine consists of an infinite "tape" in 

two directions with a "head" that is capable of reading and writing to the "tape". The 

tape is prepared such that data and a "program" (set of instructions) are resident on the 

"tape". The "program" or set of instructions is run on the machine using a finite-state 

machine model that allows it to read and write to the "tape" and then halt. The tape is 

pulled past the tape head to allow it to read and write to the tape. This model provided 

the insights necessary for the construction of the modern "universal computer" like the 



personal computer that sits on your desk at work, a machine just as capable of doing your 

word processing as it is at playing a video game. 

The Turing model is discrete and works well when we are working with a 

classical interpretation of physical reality. However, questions regarding how and when 

one reads and writes to the "tape" cannot be ignored with a quantum computer since if we 

"look" at the tape before the computation is finished we have altered the answer, 

according to quantum mechanical theory (Heisenberg uncertainty principle). Therefore, 

when we implement a quantum computer we can try to simulate it with a classical system 

or choose a physical system that can change over time in order to provide us with the 

desired calculation. The first case is impossible and the reasons are explained in reference 

2. However, with the second we must be careful in our selection of the physical system 

because not every physical system will provide a meaningful calculation or be 

"universal". An uninteresting physical system for calculation is a brick. If the brick is 

elevated off the ground and then dropped we could consider that a calculation of its 

trajectory; however, it is not scalable to our current technology standards and is not 

expandable to do other calculations. 

We discuss now two seminal papers that form the foundation of study in this 

field, references 2 and 8. 

A. FEYNMAN'S APPROACH 

Feynman's paper [Ref. 2] is concerned about simulating physics with computers 

and trying to create a simulator for quantum mechanics. Therefore, he does not address 

the "universal quantum computer". Feynman describes the general attributes that are 

necessary for a computer to simulate physics correctly as ".. .that there is to be an exact 



Simulation, that the computer will do exactly the same as nature." The stipulation of an 

exact simulation is understood to be a fidelity measure of the system: We should expect 

the same results from the computer as from nature. Additionally, he points out that "The 

rule of simulation that I would like to have is that the number of computer elements 

required to simulate a large physical system is only to be proportional to the space-time 

volume of the physical system." He would consider simulation a failure if in order to 

simulate physics he would have to build a computer that would be excessively large. 

Also the number of elements should not increase exponentially with the given problem 

and should not take the lifetime of the universe to solve. 

Feynman then makes the point that computers imitate time rather than simulate it, 

with discrete state transitions. If a computer is to simulate quantum-mechanical 

processes, it must simulate probability. Discrete systems can accomplish this through 

various means, one of which is modeling it with Markov chains. A Markov chain is a 

way of modeling a stochastic process by assuming that the system can be in one of a 

finite number of states; the probability of being in a state is dependent only on the state 

that immediately preceded it in time and not any of the other states that it had to pass 

through to get to the current state. A Markov process would not produce the kind of 

fidelity that Feynman is referring to because the information in it is less than the 

information representible in a quantum one. Feynman uses the example of a system with 

R particles, where probabilities must be assigned for each particle's position x such that 

each particle has one of a finite set of positions xi, x2,.,., xR at time t. Then a k digit 

number can be assigned as the probability for the given particle at that position at that 

time. One problem with this model is that one must ignore the probability that some 



occurrences might happen, for example: "If the probability of something happening is 10" 

700, we say it isn't going to happen" [Ref. 2, p. 472]. The second problem is you would 

need a separate k-digit number for R particles in every configuration of the system and 

for all N points in space. The ability to store and simulate this much information is 

beyond the capability of classical computers currently; therefore, he concludes that a 

direct simulation is not feasible. However, the task may be handled by a system which 

imitates nature. The two choices that he presents are a probabilistic classical computer or 

a natural system that can simulate the computation. The answer he provides for utilizing 

a probabilistic classical computer is a definitive no because classical systems cannot 

replicate the true randomness found in nature. Therefore we should simply observe an 

imitative system and record the answer. Feynman does not offer a specific system or 

design for a universal quantum simulator; rather he states that "we should try to find out 

what kinds of quantum mechanical systems are mutually intersimulatable, and try to find 

a specific class, or a character of that class which will simulate everything".   Although 

Feynman's tone is somewhat doubting, he later wrote a follow-up paper [Ref. 9] to revise 

his initial thoughts here and expound on the ideas brought out in David Deutsch's paper. 

B.   DEUTSCH'S CONTRIBUTION 

In 1985, from a different perspective than Feynman, Deutsch approached 

quantum computing through the Turing or Church-Turing hypothesis [Ref. 8]: "The 

assumption that the intuitive notion of 'computable function' can be identified with the 

class of partial recursive functions..." [Ref. 10, p. 166]. Deutsch paraphrases this as: 

'"Every 'function which would naturally be regarded a computable' can be computed by 

the universal Turing machine" [Ref. 8, p. 99]. He refers to this as the weak form of the 



Church-Turing hypothesis, because the language does not reflect concepts that are easily 

definable for physical systems. So he restates the hypothesis as the Church-Turing 

principle: "Every finitely realizable physical system can be perfectly simulated by a 

universal model computing machine operating by finite means" where "a computing 

machine M is capable of perfectly simulating a physical system ■&, under a given labeling 

of their inputs and outputs, if there exists a program ftCd) for M that renders M 

computationally equivalent to ■& under that labeling. In other words, n(-&) converts M 

into a 'black box' functionally indistinguishable from •&." [Ref. 8, p. 99]. Computational 

equivalence is important to computer science because that is where we derive the 

"universal computer", a machine that can compute any function that a Turing machine 

can compute. Deutsch says that both a Turing machine and a quantum computer operate 

by finite means: "(i) only a finite subsystem (though not always the same one) is in 

motion during any one step, and (ii) the motion depends only on the state of a finite 

subsystem, and (iii) the rule that specifies the motion can be given finitely in the 

mathematical sense (for example as an integer)." [Ref. 8, p. 100]. He shows that there is 

no difference between a machine that alters the input state (classical computer method) in 

order to calculate/compute and one that alters its constitution to become a different 

machine computing a different function (quantum computer method). Thus Deutsch 

establishes a case for computational equivalence between a Turing machine and a 

universal quantum computer. 

Deutsch argues that it is not physical laws which inhibit us from "computing" 

certain functions, but the algorithms designed for the classical systems. Therefore, if we 

were to develop a universal quantum computer and the algorithms that utilize it then we 
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might expand our pool of "computable" functions. A "universal quantum computer" 

could simulate "ideal closed (zero temperature) systems, including ... quantum 

computers and quantum simulators, with arbitrarily high but not perfect accuracy." [Ref. 

8, p. 102]. So Deutsch claims that perfect accuracy is not required because he is 

investigating the quantum simulator not quantum computer. Deutsch provided the 

impetus to expand this area of research to its present state with this comment. 

C.   BELL'S THEOREM 

Quantum computers are only one area of research in quantum information 

systems. Other areas include quantum communication and quantum cryptography, which 

use Bell's inequality. 

When quantum theory was developed, several prominent scientists disagreed with 

a part of the theory known as quantum nonlocality. The problem is this: "Classical 

physics holds that any relationship existing between two or more particles must be 

mediated by a local force-attraction, repulsion, or at least some signal. Quantum 

mechanics predicts that two particles can be correlated instantaneously in the absence of 

any such force or signal..." [Ref. 11, p. 65]. Einstein together with Podolsky and Rosen 

(EPR) argued that a thought experiment developed by David Böhm to test the validity of 

quantum nonlocality proved it impossible. The thought experiment is formulated as two 

particles shot off from a common source toward opposite sides of a room. According to 

quantum mechanics the spins of the two protons, when measured, should be instantly 

correlated— that is, when the spin of particle A is found to be "up", the spin of particle B 

should be found to be "down", at exactly the same moment.   If the measurement of 

proton A can produce an instantaneous effect on a distant proton B, then it should be 

11 



possible to detect an intruder "wiretapping" a communication channel built from a stream 

of protons A. Spin is essentially a measurement of the angular momentum of a particle 

and is inherent in sub-atomic particles. Einstein saw this as a paradox because in order 

for B to "know" what A's spin was (under classical physics) a signal would have to travel 

between A and B instantaneously. This is not allowed under relativity (nothing can travel 

faster than the speed of light). Bell showed that there is no paradox because this cannot 

be explained by classical physics, only by the laws of quantum mechanics. Intuitively, we 

can say that the two spins are "entangled" to begin with and thus no information need be 

transmitted later between A and B. 

12 



III.      WHAT IS A QUANTUM COMPUTER? 

To understand what a quantum computer is, we will start with a common 

reference point: a personal computer. "Intuitively, a computing machine is any physical 

system whose dynamical evolution takes it from one set of 'input' states to one of a set of 

'output' states. The states are labelled in some canonical way, the machine is prepared in 

a state with a given input label and then, following some motion, the output state is 

measured." [Ref. 8, p. 97]. We can illustrate this idea in the figure below. 

Timel Black Box (computer) ^ime 2 
Input v      F      J Output 

Time 

Figure 1 
A. PROPERTIES OF QUANTUM COMPUTATION 

There exists a computational equivalency between this model and a quantum 

computer. In both cases the computation is considered to be generated by the time 

evolution of a computer memory from an initial to a final state. In a quantum computer it 

13 



is not the state of the memory but the probability of measuring a state that is propagated 

in time. However, this is only the beginning. To design a quantum computer we must 

add mechanisms to implement superposition, entanglement, logical/physical reversibility, 

coherency, time-independence and output interrogation. 

1.   Superposition 

In a classical computer one bit of information is stored as either a certain 1 or a 

certain 0. In quantum systems, on the other hand, one "qubit" of information will reside 

in a superposition of states as a 1 or 0 or both, before measurement. If we measure the 

system we collapse the wave function (^(t)) and the most likely answer to that point in 

time will be the result of our measurement. Before measurement, a qubit register n qubits 

long represents 2n states of information. This is a substantial increase over a classical 

system, and can be especially powerful if the qubits are correlated or "entangled". 

Superposition is a necessary but not sufficient condition in and of itself to derive the 

benefits of quantum computation. We can perform a calculation with data that has been 

placed in a known superposed state. However, this is performance of a classical 

calculation with a quantum system, because once the calculation is complete and we 

measure the result we only get the single value ofthat qubit at that time rather than the 

average of all the values that that qubit had been. 

2.   Entanglement 

An additional requirement for quantum computation is correlation or 

"entanglement" of the qubits. "Entanglement allows one to encode data into non-trivial 

multi-particle superpositions of some preselected basis states" [Ref. 23, p.l]. Stated 

another way, entanglement provides the additional condition necessary for quantum 

14 



computation because it is the interaction of the qubits through time and superposition that 

provides the "quantum parallelism". Quantum parallelism allows us to perform 

calculations on the 2n states simultaneously. When we measure a superposed and 

entangled quantum system we get one set of the values that the qubit(s) had been after the 

calculation. Obtaining more than two entangled particles is very difficult, however. 

3.   Logical/Physical Reversibility 

The condition of logical reversibility refers to an observer's ability to infer the 

input from a given output. A stipulation of maintaining a quantum system is that it be 

physically reversible, which requires that the wave function not be collapsed due to the 

physical process (qubits passing through a quantum gate). Physical reversibility is 

required because the fundamental behavior of nature is time-reversible. Time order is 

impaired by measurement, which also increases entropy and looses information. If a 

quantum calculation is to proceed without the loss of information, the calculation must be 

carried out in a physically reversible system. Physical reversibility also says that when a 

quantum element (qubit) undergoes a physical interaction, that interaction cannot change 

the time-independence or coherence (a concept explained shortly) of the quantum 

element. The only exception to the condition of reversibility in a quantum computation is 

the final step (when we read out our answer). A way of ensuring this is to make quantum 

gates and quantum circuits logically reversible. The table below illustrates a logically 

reversible controlled XOR exclusive-or. 

15 



Table 1 

Input #1 Input # 2 Output #1 
(Answer) 

Output #2 
(control bit) 

0 0 o 0 

0 1 1 1 

1 0 1 0 

1 1 0 1 

As we can see from the table if the inputs are the same then the "answer" is 0, if the 

inputs are different then the "answer" is 1. Thus we can infer input 1 from output 1 and 

output 2 through another XOR operation: (output 1 XOR output 2 = input 1). Output 2 is 

the control bit for the operation and is the same as the input 2; therefore we have 

retrieved the input from the output and the operation is logically reversible. The Toffoli 

gate is an example of a quantum gate that performs a similar type of calculation; however 

it has three inputs and three outputs. 

The extent to which a system must be reversible has not been fully explored. It is 

possible that quantum error correction can compensate for irreversibility. Classical error 

correction uses extra bits incorporated into a signal to determine bitwise parity deviations 

from the original signal. Similarly, quantum error correction could use extra qubits to 

determine errors in a set of qubits. Notwithstanding, it is doubtful whether quantum error 

correction can compensate for both losses due to coherency and losses that would 

naturally occur due to qubit interactions with quantum gates. 

16 



4. Coherency 

Coherency losses are the major problem for a practical quantum computer. 

Coherency is the absence of a coupling between a quantum system and its environment. 

"Decoherence is more insidious. Rather than a gross bit flip, decoherence is a coupling 

between two initially isolated quantum systems (the qubits and its environment) that 

tends to randomize the relative phases of the possible states of the memory register." 

[Ref. 1, p.215]. Solving decoherence means to effectively isolate the quantum system 

from its environment. This coupling causes a quantum-mechanical effect to lose its 

quantum properties and become a macroscopic event. Some techniques currently 

employed to reduce decoherence include thermal isolation (low temperatures from 

cryogenic cooling or other methods), electromagnetic isolation, and radiation shielding 

(from cosmic rays and other interference). Perfect coherence is not an attainable goal 

because we can never fully isolate a given system from all effects; therefore we try to 

limit those effects during a given time period in a given space. 

5. Time-Independence 

Time independence means that the calculating elements do not change over time. 

In a classical system a computational element can perform different operations at 

different times because the calculation steps are transitions between distinct system 

states. However, within a quantum calculation we cannot be so definite. For example, 

can a quantum gate be an XOR gate at time tj then at time tj a NOT gate? We think not. 

The reason is that we cannot be sure at what time the qubit leaves the gate, so we cannot 

"know" when to change the gate to something else. We cannot be sure when the qubit 

"leaves" the gate because it is in a quantum-mechanical state and has a probability of 

17 



being everywhere at anytime within the system. If quantum gate arrays are required to be 

time-independent, we cannot use switchable circuits to perform quantum calculations. 

6.   Output Interrogation 

Once the quantum calculation has been performed, we are left with an answer that 

resides in a superimposed and entangled state. We could directly measure this state. 

That measurement would yield one of all possible answers of the calculation and does not 

utilize the full potential of quantum computing. Instead, a major benefit of quantum 

computing is its ability to extract some overall property of the calculation (average, 

frequency etc.)[Ref. 24]. To extract this property we must have an output interrogator. 

This interrogator allows us to sample the quantum answer in a time-independent manner. 

This permits us to preserve the quantum nature of the answer and extract the overall 

property that we are interested in. We can then display the result from the output 

interrogator in histogram form for us to interpret. 

B. A GENERAL QUANTUM COMPUTER MODEL 

The following figure represents a model for a quantum computer which calculates 

the following function. £ ^f(x, y, a, b, c) 

Equation 1 

where x and y are variables and a, b, and c are constants. Classically this would require 

(2m -l)(2n -1) calculations. A quantum computer would require only one. Here is how 

this calculation is done. 
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Figure 2 
A common source emits entangled particles that are then put into a superposed state. At 

the "entangled state input" position, quantities x and y have been transformed into qubits 

and have (2m -1) and (2n -1) possible values respectively. We can perform a calculation 

with these qubits with some quantum circuit. Let us say that we calculate f(x, y, a, b, c). 

Then the circuit performs the calculation on all the superposed states at the same time by 

transforming the wave function ^(t) into another wave function T'(t) while preserving 

logical/physical reversibility, coherency and time independence. The completed 

calculation is shifted to the "entangled answer" register. We now interrogate this answer 

according to what overall property of the function we are looking for (average, frequency 

etc.). In the case above we need a summation and the output interrogator is constructed 
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for that purpose. The output of the interrogator is the overall property of the function we 

want to calculate and is displayed in histogram form. In an ideal machine only one 

answer will appear. In practice the histogram is generated instead of a single answer 

because noise and other calculation errors will broaden the single answer peak. 
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IV.      REALIZATIONS 

A.   QUANTUM GATE MODEL 

Digital computers process information by routing bits (signals or voltages) through 

switches or gates. These gates can be thought of as rudimentary logical operations. 

Typical gates are the AND, OR, NOT, NAND, NOR and XOR (exclusive-or). 

A- 

A- 
B 

A- 

A+B 

■A 

A+B 

(A+B)AB 

Figure 3 
By interconnecting these gates, their operations can be strung together to form more 

complex operations such as addition and multiplication. It is the bit/signal/voltage that is 

routed through the gate. 

Conversely, in a quantum system the gate is passed through the data, and it is the 

interaction between the bits (qubits) that is important. Additionally, the number of inputs 

21 



must be equal the number of outputs for a quantum gate because otherwise information 

would be irreversibly destroyed and the input cannot be inferred from the output. Two 

proposed exceptions are the FANOUT and ERASE gates pictured below. 

FANOUT 

0 A 

A A 

ERASE 

B 0 

C C 

Figure 4 

Here both the FANOUT and ERASE have the number of inputs equal to the number of 

outputs, but one input for the FANOUT is a constant and one output for the ERASE is 

constant. It is thought that the FANOUT gate cannot be constructed because it would 

require the copying of the information contained in the quantum state which is not 

possible. The ERASE gate on the other hand is possible because destruction of 

information occurs naturally as a result of decoherence and other effects. 
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The following figure illustrates a Toffoli quantum gate, one of the universal gates 

proposed for a quantum computer. 

A 

B 
C 

A 

B 0 (AC) 

Figure 5 
As the qubits pass from left to right into the gate along "quantum wires" the gate 

performs an elementary logical operation on the qubits. Qubits A and C pass through the 

gate unchanged, while B is an XOR of qubits A and C. The gate is configured with three 

inputs and three outputs because Toffoli originally reasoned that a workspace 

(scratchpad) bit was required when the gate calculation was done. Reference 22 provides 

a strong argument that this workspace bit is not required and the controlled-XOR 

discussed in chapter III is sufficient. 

B. EXAMPLES OF QUANTUM GATES 

With these specifications in mind, can any implementations provide us with a 

quantum gate? Here is an example [Ref. 13]. 
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Microwave 

Figure 6 

The figure is of a quantum electrodynamic (QED) cavity. Sources A and B supply 

two-state particles that are qubits. The qubits are encoded by spin, meaning that a spin 

"up" particle is a 1 and a spin "down" is a 0. A particle is passed from A through the 

cavity while it is in resonance established by short pulses of laser energy (the laser is not 

part of the diagram). This transfers the particle's state "information" to the cavity (the 

exact process is QED-specific). A particle from B is then passed from R to R"1 through 

the cavity; the particle's state is changed to the exclusive-or of its initial state. R, R"1 and 

Rz(0) are Ramsey zones. The Ramsey zones act as a sensor to let us know when the qubit 

has left the gate. Ramsey zones "sense" atomic oscillations and are named for Norman F. 
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Ramsey. This implementation meets the requirements of logical/physical reversibility, 

coherence and time independence. Entanglement would be achieved by correlating 

multiple cavities. Physical reversibility follows because if we take particle B and run it 

backwards through the gate we can change its state back to what it was. Logical 

reversibility follows because if we perform the XOR of A and B we will get what B was 

originally. Coherence is satisfied within the area of the gate if the gate is cooled 

sufficiently to exclude thermal variations and is properly shielded from outside sources of 

radiation (the cavity provides a degree of isolation). However, the loss of coherence 

between gates could be a problem. Time independence is met because the gate itself does 

not change with time and the system has been sufficiently shielded from external 

influences. 

Several quantum-mechanical apparati have been proposed as possible 

implementations as quantum gates that do not completely meet the requirements for a 

quantum gate, as for instance: 
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Stimulating Laser 
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Figure 7 

Here a flow of two-state particles, similar to the previous example, are passed through a 

QED cavity. When the stimulating laser is activated, the cavity resonance will flip the 

spin of the particle. The claim is if we know the spin of the particle before it goes into 

the cavity and the cavity is in resonance, then the output particle will have opposite spin 

to that of the input particle; this simulates an XOR gate. This model does comply with 

the stipulations of logical/physical reversibility, coherence and time independence. 

However, when we turn on the laser we are choosing which particles we flip the spin on. 

Then it cannot be a quantum process; if we know the spin that means we have somehow 
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measured it. Additionally, how would you chain these apparati together to do a 

meaningful quantum calculation? You cannot, because you won't know when to turn on 

the other stimulating lasers to activate the other cavities. If you did, it would not be a 

quantum process. 

Not every developed "quantum device" could be a gate for a quantum computer. For 

example, a new quantum transistor developed at Sandia National Laboratories utilizes a 

quantum phenomenon of "tunneling" to achieve much faster transistors [Ref. 14]. This 

transistor called a DELTT (Double Electron Tunneling Transistor) has its switches closed 

all the time. The electrons pass to the other side of the switch by tunneling when their 

energy is great enough but still less than the potential energy required to surmount the 

open switch. According to classical mechanics a ball in a gravitational potential (say a 

bowl) cannot escape the confines of the bowl unless sufficient energy is imparted to it to 

have it roll over the lip of the bowl. However, in quantum mechanics there is a finite 

probability that the ball can "tunnel" through the side of the bowl and emerge on the 

other side with far less energy than is required to roll it out. Products in the commercial 

market exploit this phenomenon, like Charge-Coupled Device (CCD) cameras. Although 

this circuit element is a quantum device it could not be utilized as a quantum computer 

gate because it does not allow for reversibility: absorption destroys the quantum 

mechanical information about the particle. 

C. QUANTUM WIRES 

The last section has shown how difficult it is to build quantum devices which do not 

simply mimic a logic gate but which actually can be used as a building block for quantum 

computers. Once this problem is solved the gates need to be connected with quantum 
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wires. What constitutes a quantum wire varies with the implementation. However, they 

need to preserve the three conditions stipulated for quantum gates. One proposed 

implementation of quantum wires is a ballistic approach, which would shoot qubit 

particles between gates to achieve interconnection. This approach assumes a fairly high 

degree of shielding from the environment to prevent decoherence between quantum 

gates. Another approach is quantum teleportation. Quantum teleportation would 

"transport" a qubit from one gate and materialize it in or at the next gate. Quantum 

teleportation is explained later. As with quantum computation, a major hurdle in 

connecting quantum gates is decoherence; other problems include timing and stray 

particle interactions. Experimental confirmation of quantum wire implementations would 

provide a major step toward the realization of a quantum computer. 

D.   I/O PROBLEM 

Another major hurdle that must be cleared before any quantum computer can be 

built is the I/O problem: How do you entangle more than two qubits at a time for input, 

how do you read the answer when the calculation is done, and how do you know when it 

is done? 

Entanglement of more than two qubits at a time is very hard [Ref. 27]. We must 

find a source that emits three or more photons at a time when it transitions from a high 

energy state to a low energy state, and currently there are no known natural sources that 

do this. The second part of the I/O problem is:   If you have classical data that has been 

successfully transformed into qubits and you pass these qubits through a quantum-gate 

array, then how will you know when the calculation is complete? You cannot measure it 

because you will collapse the wave function and fix it in a state that may or may not be 
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the answer you are looking for. A solution has been proposed which we will look at 

shortly. The third part of the I/O problem was considered in our general quantum 

computer model in Chapter III. The output interrogator must preserve the reversibility, 

coherence and time independence so we can extract the overall property in which we are 

interested, to harness the full quantum advantage. 

Feynman proposed, as a solution to the second problem, that a cursor qubit be created 

to sample the data qubits. This cursor bit would travel from qubit-to-qubit to track the 

calculation. This cursor qubit could then be sampled without disturbing the original 

calculation, which allows a monitoring of a quantum process by proxy. However, there 

are several problems with this implementation. How can we entangle more than three 

qubits at a time? We can't. Let us suppose that we could entangle multiple particles 

simultaneously. If we measure the cursor qubit then we are measuring the system that is 

entangled; therefore we collapse the wave function and influence the calculation in a 

destructive manner. Let us now suppose that we isolate the cursor qubit from the system 

so when we measure it the wave function will not collapse. If we isolate the cursor qubit, 

it has no "knowledge" of the calculating system and cannot tell us when it is done. This 

clearly requires further work. 

E. CHUANG'S PROOF OF CONCEPT 

1998 saw the first experimental proof of concept for a quantum computer 

[Refs. 16, 17 ]. Prior to this it was theorized that the quantum coherence problem was too 

hard to solve and would prevent development of a quantum computer in the near term. 

The approach used Nuclear Magnetic Resonance (NMR) techniques on a solution of 

chloroform to perform a database search known as the Deutsch-Jozsa algorithm. The 
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Deutsch-Jozsa algorithm seeks to determine if a function is constant or balanced (having 

half the time a value of 0 and half the time a value of 1) in a shorter time than could be 

processed sequentially. To solve the problem for a function $ having a domain (input) 

covering N symbols, we must compute the function § for N symbols to determine if <j) is 

constant or balanced. On a classical sequential machine this requires N steps. A parallel 

classical computer could do those N steps simultaneously, provided it has N 

microprocessors. This is the worst case for both a deterministic (classical) machine and a 

classical stochastic machine [Ref. 24, p. 556]. A quantum computer on the other hand, 

will be able to harness quantum parallelism and accomplish this task in 1-2 steps by 

exploiting the orthogonal property of the superposed answer. When the quantum 

computation is finished and the answer is interrogated to be a 0, the function can be 

inferred to be constant because the answer is orthogonal to the original wave function 

(the inner product of two orthogonal vectors is 0).   If the answer is interrogated to be a 1, 

then the function is balanced. 

Although this experiment was not the most interesting application of quantum 

computing, it does provide a basis for future work. NMR/chloroform computing does not 

make for a practical computation machine because a large magnetic source (NMR) would 

have to be located close to a digital computer to provide the user interface, and 

chloroform is somewhat volatile with its state having to be checked frequently. 

Additionally, large computations would require 10 or more qubits and NMR computing 

does not provide the signal strength to distinguish between so many individual spins with 

a chloroform solution. 
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F.  SUMMARY OF IMPLEMENTATION APPROACHES 

The following table was compiled from references 1, 3 and 16. Each 

implementation provides its own model of quantum computation. The likelihood of 

success represents my judgement based on group discussions and literature readings (i.e., 

references, Internet etc.). Many implementations are variations on a theme (Optical 

Lattice, NMR etc.). 

Table 2 

Implementations Interest 
(#of 

Articles) 

Problems Likelihood of 
Success 
(MO) 

Nuclear Magnetic 
Resonance (NMR) 

20 

1. Scalability 
2. Limited number of qubits due to 

medium 
3. Volatility of computing solution 
4. Coherence times decrease for 

solutions of larger molecules 

5 

Ion Trap 

24 

1. Scalability 
2. Decoherence due to thermal 

coupling 
3. Speed limited to vibrational mode 

ofions 
4. Limited number of qubits due to 

heating and coherence problems 

4 

Quantum Cavity 
(QED) 

6 

1. Spontaneous emission of atoms 
from the excited state (one form 
of decoherence) 

2. Trapping and localization of 
atoms within cavities 

3. Maintaining coherence between 
multiple cavities 

7 

Optical 

» 

2 

1. Lack of interaction between 
photons (quantum interference) 

2. Limited number of qubits (can 
only produce two entangled 
photons currently) 

3. No nonlinear photon gates 
operating at the two-photon level 

8 

Optical Lattices 1. Scalability 
2. Spontaneous emission within the 
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14 lattice (one form of decoherence) 
3. Inability to affect only one 

photon/atom with laser energy 
4. Scattering of laser energy 
5. Thermal insulation 

8 

Silicon-Based Nuclear 
Spin 

(condensed matter 
formofNMR). 2 

1. Nanoscale fabrication 
2. Limitation of probability of error 

for each operation 
3. Placing phosphorus atoms in a 

array in a semiconductor crystal 
4. Development of defect-free 

semiconductor 
5. Decoherence rate of phosphorus 

qubits 

6 

Quantum Dot 

11 

1. Scalability (quantum dot size not 
scalable smaller than current 
technology) 

2. Decoherence times 
3. Coherent optical control of 

quantum-dot states 
4. Thermal insulation/isolation 

6 

Josephson Junction 

9 

1. Nanoscale fabrication 
2. High-precision timing control 
3. Residual two-qubit interactions 
4. Decoherence times 
5. Thermal insulation/isolation 

4 

SQUID 

(another form of 
Josephson Junction) 

12 

1. Inability to entangle multiple 
qubits 

2. No demonstrated logic gates 
3. Thermal insulation/isolation 

(operating temperature) 
4. Junction quality (limit number of 

impurities) 
5. Suppression of competing modes 
6. Magnetic coupling of flux qubits 

to magnetic impurities 
7. Small junction capacitances 
8. Fabrication technology 

3 

Neutral Atom 
(extension of Optical 

Lattice) 

1 

1. Low number of neutral atoms in 
the lattice (limited number of 
qubits) 

2. No method for addressing and 
reading out of qubits 

3. Must implement quantum error 
correction methods 

4. Investigate atomic collision 

3 
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effects (separations of atoms are 
small collisions most likely cause 
decoherence) 

Bose Condensate 
(in an optical lattice) 

4 

1. Thermal insulation/isolation 
(operating temperature) 

2. Not enough experimental 
evidence to support model 

3. Single particle theory, multiple 
particle experiment 

2 

Ion-trap implementation confines identical ions in a laser-cooled radio-frequency trap 

such that the ions reside in a one-dimensional lattice in a harmonic oscillation. Quantum- 

gate interactions are induced by stimulating the ions with a coherent pulse of laser energy 

to affect the center-of-mass mode of the collective quantum system. This one- 

dimensional lattice models a quantum register. 

The cavity QED implementation utilizes the quantized mode of a high-finesse 

optical or microwave cavity to change the electronic states of atoms or photons. The 

cavity mode is stimulated into resonance or out of resonance by short pulses of laser 

energy. 

Optical implementations of quantum computers are either linear or nonlinear. 

The linear optical implementation is a two-path state system that relies on a photon's 

propensity to take one of two possible paths upon exiting a beam-splitter. Gates are 

implemented by linear optical methods: beam splitters, mirrors, polarizers, wave plates 

etc. In a nonlinear optical implementation, gates are implemented by photonic qubits 

shifting the phase of others. 

Implementations utilizing optical lattices are a condensed-matter variation of the 

optical method. Atoms are trapped in a lattice structure by lasers that perform cooling 
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and trapping. Here the atoms are bound together by light instead of a chemical bond like 

solids. 

Silicon-based nuclear spin implementations are semiconductor-based NMR 

techniques that dope a silicon wafer with phosphorus. Metal electrode gates overlying 

the phosphorus-doped wafer perform logic-gate operations by affecting the shape of the 

dopant wave function. 

Quantum-dot implementations use the two spin states of a single electron 

quantum dot. Logic gates are implemented by several means: reducing the gating voltage 

for the tunneling barrier to allow electrons to hop from dot to dot, influencing electron 

spin with another electron spin, influencing charge orbital degrees of freedom, and 

control of quantum-dot states by optical excitation. 

A Josephson junction is a special switch that is composed of two superconductors 

sandwiching an insulating material. This switch has the property that current will flow 

without the application of a voltage potential. Current flow is produced by electron 

tunneling across a small insulating barrier [Ref. 26]. The two charge states of the 

superconducting island surrounding the junction would constitute a qubit. Logic gate 

operations are implemented by sequences of voltages across the junctions to vary the 

charge state. SQUID (Superconducting Quantum Interference Device) is a variation of 

the Josephson junction implementation where the presence of a quantized flux acts as the 

qubit to implement a two-state system. 

Neutral-atom quantum computers are a variation of the optical lattice, where 

neutral atoms form the lattice and their electric dipoles function as qubits. Logic gates 
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are implemented by forcing two neutral atoms to the same potential to generate a dipole- 

dipole interaction. 

A Bose-Einstein condensate (BEC) occurs when bosons (atoms with integer spin) 

are cooled to near absolute zero temperature and begin to act as one atom [Ref. 25]. 

Placing these condensate atoms in an optical lattice and moving optical-trap potentials so 

bosons move in between lattice sites would be an implementation of a BEC quantum 

computer. 
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V.       A QUANTUM COMPUTER SIMULATOR 

To analyze the possibilities of quantum computers we have three choices: Build 

analytical models, simulate those models, or measure actual systems. The last choice is 

not yet possible because there are no permanent working models. Analytical models can 

only tell us so much about the behavior. Therefore we are left with simulation to study 

quantum computation. Any simulation of a quantum computer should incorporate the 

elements discussed in Chapter III: superposition, entanglement, logical/physical 

reversibility, time independence and output interrogation. Reference 2 addressed the 

problem of simulating quantum effects on a discrete classical computer. It is hard to 

simulate quantum effects; we can, however, reproduce an approximation on a 

deterministic machine. Reference 18 provides a C++ version of a quantum-computer 

simulator that is programmed to run on a parallel machine (a machine with more than one 

microprocessor). This program provided the basis for a simulation we wrote. However, 

there is no one-to-one correspondence between reference 18 code and our simulator. 

Java® was chosen as the programming language for the simulator. Java is more 

platform-independent than C++ and can be embedded in HTML Web pages, thus 

allowing more access to those curious about quantum computation. The Java program 

turned out to be less verbose than the C++ version in reference 18. Due to Java's strong 

typing, many functions that would have to be defined as class functions in C++ were 

simply written as member functions in Java (this saves the programmer from defining the 

functions) or were provided as part of the library accompanying the language. A 

quantum-computer simulator should simulate the workings of a quantum computer 

faithfully enough that we can make predictions of how an actual quantum computer 
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would behave and how we might be able to program it. A quantum computer should set 

up some input qubits into superposed and entangled states. These qubits should then pass 

through a series of quantum logic gates that must obey the precepts set forth in Chapter 

III. These logic gates should perform a kind of calculation on the qubits. After the 

calculation is done we should interrogate the values of the qubits and interpret our 

answer. This simulator implements portions of the model discussed in Chapter III, and is 

displayed schematically below. 
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4. 

5. 
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C'lk 
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Talk        » 
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Figure 8 

The simulator program is divided into 6 files/classes: Testl, Userinterface, Matrix, 

Complex, Initialize and Evaluation. Appendix A contains the source code. 
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Qubit superposition is realized in a literal way, by loading a data structure with 

2n possible values that the user input could be. These values are extracted from the data 

structure randomly, converted to binary, and the binary representation placed in a one 

dimensional array of size n. In a quantum system all values would take part in the 

calculation simultaneously; however because of the sequential nature of classical 

microprocessors, multiple random drawings from a data structure are implemented to 

simulate the quantum nature of the calculation. Qubit entanglement is not implemented. 

This process starts with the Testl driver program calling Userinterface to collect the user 

input values. Testl then calls Initialize to implement the superposition. Also, before 

calculation can begin, the simulator must initialize the quantum gate that will be used for 

calculation. 

A Fredkin gate is used by the simulator to perform a quantum calculation. A gate 

data structure is set up as an N x N matrix where N is the number of elements in the one- 

dimensional array. The matrix representation for the gate is presented in reference 18 

and is implemented with real and imaginary components which simulate the real and 

imaginary portions of the wave function ^(t). Actual gate operation is simulated by the 

Evaluation class, which performs a matrix multiplication. Testl performs a looped 

calculation which corresponds to incrementally stepping through all the possible values 

of the qubits. Currently the loop does 100 iterations maximum.   Random possible values 

are withdrawn from the data structure, converted to binary, and calculated with the gate 

matrix. 

When the calculation is complete, the answer is a one-dimensional mixed (real 

and complex) array that is parsed by Testl. Testl acts as the output interrogator, directly 
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interpreting the results from the answer array. This is done by setting up a histogram 

array that is the same size as the answer array and parsing through the answer array until 

a nonzero element is encountered; whereupon the corresponding element in the 

histogram array is incremented by 1. For instance the output might look like "01010101" 

which is 85 in base 10. 

The argument could be made that as the qubit values are withdrawn from the data 

structure and converted, they should be placed in an indeterminate state (by giving them a 

real and complex component) as they would in nature. However, this would add 

complexity to the matrix multiplication. 

Because this simulation was kept as simple as possible, it does not provide 

essential services for the user and the fidelity required to study quantum computation. 

No useful calculation is performed by this simulation; it should be viewed as a proof of 

concept for implementation by a platform-independent language (Java). Entanglement is 

not implemented because it is a uniquely quantum effect. Entanglement might be 

implemented if an algorithm could be found to simulate the interaction amongst the 

qubits. Additionally, a GUI (Graphical User Interface), more selection of gates, and an 

ability to build a quantum circuits could be implemented. Hard-coding of the maximum 

number of iterations should be replaced by a fidelity selected by the user (high fidelity = 

1,000 iterations, medium fidelity = 500, etc.). 
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VI.      CAPABILITIES OF QUANTUM COMPUTERS 

Quantum computers appear to be able to accomplish everything that a classical 

discrete computer can [Ref. 19]. Reference 19 shows that a quantum system can be used 

to emulate any Turing machine. Therefore, since Turing machines are universal and can 

do any conceivable computation, then a quantum system can too. But a quantum 

computer may not always perform as efficiently as a classical discrete computer. One 

reason is that Amdahl's Law says we can only increase processing speed by speeding up 

the slowest portion of a computation, and many sequential computations would work 

better on classical computers than on quantum computers. A second reason is that 

quantum systems are not ideal for all parallel problems since they are advantageous only 

for problems with low I/O costs and many solution constraints. 

A. QUANTUM ALGORITHMS 

Algorithms specifically designed for quantum computation are starting to appear. 

Two important ones are the Schor and Grover algorithms. The Schor algorithm provides 

a way to find the prime factorization of a large integer in polynomial time. The success of 

the Schor is based upon "modular periodicity, coupled with the power of the Fourier 

Transform for exposing periodicity" [Ref. 15, p. 18]. The Schor algorithm works by 

finding the periodicity of the input integer, which corresponds to the prime factor(s) of 

the input integer. Graver's algorithm provides a fast database search method which seeks 

to limit the number of accesses to a database. Graver's algorithm seeks to find an 

element XQ from a database that contains many x by realizing the shortest path through the 

complex plane [Ref. 28]. The search uses parallel states of a quantum system to search 
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through all possible answers at once. Successful search paths reinforce one another while 

unsuccessful ones interfere randomly. 

B.    NP-HARD/COMPLETE PROBLEMS 

Quantum computers may be good for solving NP-Hard/Complete problems. 

Roughly speaking, an NP-Hard/Complete problem is one where an answer is obtainable, 

but the time required to get the answer is prohibitively long. The class of these problems 

that are now efficiently solvable by current computing methods is rather small. P 

represents the class of problems that are solvable in effort that is a polynomial function of 

input size. Complexity class P problems are run on classical computers everyday and 

include sorting a list, searching a database, and most arithmetic operations. The class of 

NP-Hard/Complete problems do not have efficient algorithms to implement them, and 

take effort that is an exponential function of the input size. An example is the Knapsack 

•problem which involves trying to pack items into a knapsack such that the sum of the 

items equals the capacity of the knapsack. Reference 15 suggests that quantum 

computers may be adept at solving such problems by checking all possible subsets in 

parallel. Something similar is done in the Schor algorithm which takes a large integer 

and finds all its prime factors by looking for periodicities. 

However, several limitations need to be overcome before more general quantum 

algorithms can be considered. One is the lack of branching ability in a quantum system; 

one-way branching can check for a certain condition before proceeding with a 

program/algorithm. This is not possible in a quantum algorithm because it violates 

reversibility. Other limitations such as limited entangled states restrict the development 

of practical quantum algorithms. 
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C. QUATUM TELEPORTATION AND COMMUNICATION 

By utilizing the quantum effect of nonlocality, qubit information can be 

transported from one quantum gate to another ("teleported") without losses due to 

decoherence or stray particle interactions. By utilizing quantum effects such as 

polarization, spin etc., it may be possible to encode information so you could always 

know if someone read it. This is quantum cryptography. Quantum communication uses 

similar quantum effects to provide communications across various media. 

D. TECHNOLOGICAL FEASIBILITY 

The following table summarizes the major area of quantum information systems. 

Table 3 

Quantum Interest Problems Prob. Of 
Technology (# of Articles) Success 

(1-10) 
subjective 

1. Scalability 
2. Thermal isolation/insulation 
3. Decoherence 
4. Nanoscale fabrication 
5. Single particle theory, multi- 

particle experiment 
Computers 242 6. 

7. 

8. 

Connection of multiple gates 
(quantum wires) 
Implementation of'branching' 
(if... then) 
Multi-particle entanglement 

8 

1. Decisionmaker and public 
acceptance of action at a 
distance 

2. Decoherence 
Teleportation 25 3. Limited amount of information 

that can be teleported 
7 
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Cryptography 82 

1. Decoherence 
2. Multi-particle entanglement 

sources 
3. Used for key distribution only 

(limited amount of information 
that can be transferred) 

9 

Communication 34 

1. Decoherence 
2. Multi-particle entanglement 

sources 
3. Distance over which signals can 

be sent (30 Km) 
4. Limited bandwidth 

4 
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VII.     POSSIBLE MILITARY APPLICATIONS 

When considering military applications for quantum computing, we should 

consider computing problems in the military that current computers cannot solve or take 

too long to solve. Additional restrictions would include non-portability of the platform 

the quantum computer is mounted on and a consideration of Amdahl's Law; Tc = Ts + 

Tp/N (Tc = total computation time, Ts = total serial computation time and Tp/N = total 

parallel computation time divided by the number of microprocessors). 

Mobile applications of quantum computing are not possible in the near or mid- 

term. First, the required amount of shielding from the environment would prohibit 

deployment of the system to a harsh and unforgiving environment (i.e., desert, tropical 

jungle, etc.), which is where most military deployments take place. Second, the current 

and projected size of the systems will prohibit deployment in relatively small craft (i.e., 

tank, aircraft, etc.). Third, quantum computing is insufficiently reliable (real-time 

systems must have redundancy built-in because human life is at stake), and requires 

specialized repair staff (and education) and costly repair parts. 

Given this restriction, military computing applications that might benefit from 

quantum computing are: 

-Intelligence 
-Cryptography 

-Increased Security 
-Breaking Codes 
-Secure Distribution of Data 

-Photo Analysis 
-Data Fusion 
-Scan of EM Spectrum 

-Artificial Intelligence 
-Acquisitions 

-Modeling and simulation 
-Game Theory 
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-Quantum Strategies 

A. INTELLIGENCE 

1.   Cryptography 

Reference 5 provides an experimental implementation of teleportation of secure 

information. An advantage of this method is that the information can be transmitted 

independent of the media used. This is due to a property of quantum mechanics known 

as non-locality. Two entangled photons A and B are created from the same source; we 

could destroy photon A and reconstitute its information from B by transferring it to 

another photon C. The amount of information that can be transferred is limited because it 

requires the entanglement of multiple particles, which is hard to do [Ref. 27]. 

Public-key encryption is popular and in wide use. The Schor algorithm on a 

quantum computer would allow a user to break the keys generated by a public-key 

scheme faster. This has obvious utility to the intelligence community. 

2. Photo Analysis 

Image processing algorithms typically look for repeating or periodic patterns in a 

photograph. This is very computationally intensive for a classical discrete system and 

current algorithms produce good results with certain pictures but not with others. 

Quantum systems may be more adept at solving this particular problem because they 

excel at finding the "periodicity" in functions. Images could be searched for known 

shapes (e.g., tank, aircraft), which are worthy of an analyst's scrutiny. 

3. Data Fusion 

All commanders desire a more comprehensive picture of the battlefield. 

Intelligence sections are tasked with assimilating a vast amount of data into a coherent 
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picture of the battlefield for the commander. This assimilation is a process whereby the 

intelligence officer reviews the combat information and sorts out what is and is not valid 

based on his or her experience. A quantum system could assist by sorting and sifting 

through the raw data looking for predetermined themes and concepts. A system utilizing 

Grover's algorithm could do this. This would reduce the man-hours spent looking 

through the raw data. 

4. Scan of Electromagnetic Spectrum 

Some intelligence systems scan for electromagnetic signals and determine bearing 

to the signal, signal strength, and what the signal might be from (e.g., commercial TV, 

radio). These systems are limited in how many and what types of signals can be 

intercepted. A quantum system with a high degree of parallelism might be able to 

process the data much faster, permitting analysis of multiple signals from multiple 

sources or spread-spectrum signals. 

5. Secure Distribution of Data 

Quantum communications (see Reference 1) could allow the secure exchange of 

information with one hundred percent assurance as guaranteed by Bell's inequality. If a 

source were to emit two entangled photons going in opposite directions and one photon 

is directed down an optical-fiber cable, then if an eavesdropper were to tap into the line, 

you would instantly know it. This is because the eavesdropper would have to absorb the 

original photon and could never reproduce the statistical nature of the original particle. 

Any reemitted photons would stand out against the naturally occurring error and loss rate 

associated with network communications. However, the impediments to this are listed in 

the last chapter. The most troubling impediment is the requirement that the photons be 
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entangled. Currently only two entangled photons can be produced from a single source 

and this would therefore limit practical application to secure key exchanges. Some 

researchers believe that other ways can be found to produce a higher bandwidth. 

B. ARTIFICIAL INTELLIGENCE 

Artificially intelligent quantum systems could be used by commanders as decision 

aids. They could assimilate the vast amounts of data that need to be considered and 

produce reasonable courses of action. A quantum system could allow a commander to 

vary parameters more broadly than they can today to see how different decisions would 

affect his or her command. With an artificially intelligent quantum system, personality 

traits of opponent commanders could be programmed into scenarios or general tactics of 

an opponent in a wargame. A quantum system could also be used as a training aid. 

Quantum parallelism could make it possible to speed up renditions of virtual 

environments and increase their possible realism. 

C. ACQUISITIONS 

Quantum systems could provide the same type of decision aid to program 

managers and program executive officers that it could provide to commanders. 

Quantum systems provide the potential to increase the fidelity of models and simulation 

through quantum parallelism and the knowledge inherent in them. With a quantum 

system we can encode more information about the problem due to superposition and 

entanglement. This increased information could permit more fidelity and allow modeling 

of more complex systems (like explosions) than current classical computers. 
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D. GAME THEORY 

Game Theory is being used to study how groups of people interact [Ref. 7, p. 

636]. Since this field is focussed on probability of outcome, it should mesh well with a 

quantum computation. In reference 6 the authors argue that since game theory is 

probability-based, it could exploit a superposition of possible outcomes that would be 

allowed by quantum mechanics. A popular game-theoretic model of the "Prisoner's 

Dilemma" is used to illustrate their point. Two prisoners are held in separate rooms so 

that they cannot communicate. The table below illustrates the advantages for each 

prisoner with the rows designating the benefits for prisoner #1 and the columns 

designating the benefits for prisoner #2 where the object is to maximize the score (based 

on a scale of 1-10, 10 being the maximum). For example, row 2 column 1 (10,0) 

represents prisoner #1 maximizing his score by confessing while prisoner #2 does not. 

Table 4 

Prisoner 2 
Does not Confess 

Prisoner 2 
Confess 

Prisoner 1 
Does not Confess 

5,5 0,10 

Prisoner 1 
Confess 

10,0 1»1 

The best strategy when viewed by each prisoner alone is to "double cross" your 

partner. However, if they both do this it earns both of them a jail sentence and none of 

the money from the crime. So it is better to not double-cross. From a quantum 

mechanical perspective, we can avail ourselves of the superposition of states and remove 

the case of the Dilemma [Ref. 6]. This is done by assigning the classical strategies two 

base vectors |A> and |B>, performing unitary transformations on them and realizing an 
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this solution is incomplete because there is no correlation to an actual realizable result. 

With more study meaningful methods could be developed to provide insight into and help 

in solving decision problems and dilemmas with a quantum approach. 
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VIII.   CONCLUSION 

There is great potential offered in quantum computation, although a paucity of 

algorithmic support at this time. By investigating it we gain insight into computation in 

general, and this may allow us other advances that are not yet realized. A quantum 

computer ought to be built soon. This will force direct investigation of troubling areas 

such as decoherence, scalability etc. Even a negative result would have significant 

scientific meaning. A few promising implementations could be funded with the purpose 

of developing a working prototype within the next ten years. However, the diverse 

funding advocated in reference 15 should be avoided. We also need to build a dictionary 

of common terms; computer scientists and physicists use terms with different meanings 

to each group. 

Quantum cryptography was rated with the highest probability of success in 

Chapter VI because security is of high concern to business and governments. This is 

evidenced by the interest in the Schor algorithm. However, several hurdles need to be 

cleared before any serious implementation can occur. 

Although quantum teleportation sounds far-fetched, it has been experimentally 

verified. However, wide implementations of this technology for communication are not 

likely because the maximum number of particles that we can currently entangle is two. 

This limits how much information that can be transmitted at one time. However, it could 

provide the answer to the "quantum wires" question: By teleporting qubits between gates, 

one could avoid decoherence and stray interactions. This topic requires further 

investigation. 
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Quantum communication currently faces stiff competition from current methods. 

The bandwidths proposed are very small and would only serve as a means of key 

exchange. Therefore problems such as multi-particle entanglement must be solved to 

make it practical. 
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APPENDIX A 

// 
// Author:        JackMades 
// 
// Program:    Quantum Computer Simulator 
// 
// Date: 4 November 1998 
//Compiler:     JDK 1.1.7 
// Description:   This program will simulate a quantum computer. 
// This will comprise the kernel portion of the quantum computer. 
// 
// Assumptions: Probabilities will be 1 based (i.e. that random 
// numbers > .5 represent a 1 and those < .5 will represent a 0). 
// That pseudo random numbers generated by the computer represent 
// the probability value associated with the wave function for the 
// particle representing the qubit. 
// 

public class Testl { 

public static void main (String args[]){ 

int numqubits = 0;   // number of qubits that user is working with 
int initvalue = 0;  // initial value that user wants to look for 
int temp = 0; 
int count = 0; 
int result = 0; 

Object newlnt; 

String str = new String(); 

Initialize init = new Initialize(); 

Userinterface Uinter = new Userlnterface(); 

Uinter.Greeting(); 

numqubits = Uinter. GetQubits(); 

Evaluation eval = new EvaluationQ; 
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init. initarray(numqubits); 

initvalue = Uinter.GetInitialValue(); 

System.out.println("\n\n Numqubits is " + numqubits); 

init. initvector(numqubits); 

init. initGatearray(numqubits); 

int HistArray[] = new int[numqubits]; 

int temp Array [] = new int [numqubits]; 

init.toBinary(initvalue, numqubits); 

eval.MatrixMultiply(init.qubitarray, init.Gatearray, 
numqubits); 

while (temp != 100) { 

count = (int)(Math.random() * ((numqubits-1) * 10)); 
newlnt = init.qubitvalues.elementAt(count); 

str = newInt.toStringO; 

try{ 
result = Integer.parselnt(str); 
System.out.println("Next number in vector is " + result + "\n"); 

} 
catch (Exception e){ 

System.out.println("ParseInt failed in Testl main \n"); 
} 
init.toBinary(result, numqubits); 
eval.MatrixMultiply(init.qubitarray, init.Gatearray, 

numqubits); 
for (int iy = 0; iy < numqubits; iy++){ 

if (eval.GetArray(iy) != 0 ) { 
HistArrayfiy] += 1; 

} 
} 
temp++; 

} 
for (int iy = 0; iy < numqubits; iy++) { 

System.out.println(HistArray[iy]); 
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// 
// Author:        Jack Mades 
// 
// Program:    Userinterface 
// 
//Date: 4 November 1998 
//Compiler:    JDK 1.1.7 
// 

import java.io.*; 

public class Userinterface { 

BufferedReader br; 

public void Userlnterface(){ 
} 

public void Greeting(){ 
System.out.println("Welcome to the NPS Quantum Computer Simulator!\n\n"); 

} 

public int GetQubits(){ 

int numqubits = 0; 
String initlnt; 
br = new BufferedReader(new InputStreamReader(System.in)); 
System.out.println("How many qubits do you want to work with ? \n"); 
try{ 

initlnt = br.readLine(); 
numqubits = Integer.parselnt(initlnt); 
System.out.println("Processing for " + numqubits + " begun..."); 

} catch (Exception e) { 
System.out.println(e); 

} 

return numqubits; 
} 

public int GetInitialValue(){ 

int initvalue = 0; 
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br = new BufferedReader(new InputStreamReader(System.in)); 
System.out.println("Please enter the initial value for processing. \n"); 
try{ 

String initlnt = br.readLine(); 
initvalue = Integer.parselnt(initlnt); 
System.out.println("Initial value of" + initvalue + " received."); 

} catch (Exception e) { 
System.out.println(e); 

} 

return initvalue; 
} 

} 
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11 %. ^^^^He^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^Hc^^^^^^^^^^^^^^c^^^^^*^^^^3!1:3^^ 

// 
// Author:       JackMades 
// 
// Program:    Evaluation 
// 
// Date: 4 November 1998 
// Compiler:    JDK 1.1.7 
// Description: 
// 

import java.util. Vector; 

public class Evaluation { 

Complex zerocomp = new Complex(); 
Complex icompl = new Complex(); 
Complex icomp2 = new Complex(); 

Object outputVector[]; 

int count Array []; 

public void Evaluation() { 
} 

public void MatrixMultiply(int initarray[], Object GateArray[][], 
int matsize) { 

int rcomp = 1; 
int imgcmp = 1; 
inticmp = -l; 

Complex Gatecomp = new Complex(); 
Complex Incomp = new Complex(); 

//Create the output vector of the Matrix Multiplications 
outputVector = new Object[matsize]; 

//Create the complex vector of the qubits 
Object compvec[] = new Objectfmatsize]; 

icompl.setComplex(rcomp, imgcmp); 
icomp2.setComplex(rcomp, icmp); 
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for (int zy = 0; zy < matsize; zy++){ 
if (initarrayfzy] == 0){ 

compvecfzy] = zerocomp; 
}else { 

compvec[zy] = icompl; 
} 

} 

for (int ix = 0; ix < matsize; ix++) { 
for (int iy = 0; iy < matsize; iy++) { 

Gatecomp = (Complex)GateArray[ix][iy]; 
if( Gatecomp == zerocomp){ 

outputVector[iy] = zerocomp; 
} 
else if( compvec[iy] == zerocomp) { 

outputVectorfiy] = zerocomp; 
} 
else { 

Incomp = (Complex)compvec[iy]; 
outputVectorfiy] = Incomp.multiply(Gatecomp); 

} 
} 

} 

CountOutput( outputVector, matsize); 
} 

public void CountOutput( Object Output[], int size ) { 

countArray = new intfsize]; 
Complex tmpcomp = new Complex(); 

for (int zx = 0; zx < size; zx++ ) { 
tmpcomp = (Complex)(Output[zxj); 
if (tmpcomp == zerocomp) { 

countArray[zx] = 0; 
} 
else { 

countArrayfzx] = 1; 
} 

} 
} 
public int GetArray( int index ) { 

return countArray[index]; 
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} 

// 
// Author:       Jack Mades 
// 
// Program:      Initialize 
// 
// Date: 4 November 1998 
// Compiler:    JDK 1.1.7 
// Description: 
// 

import java.util. Vector; 
import java.sql.Time; 

public class Initialize { 

public Vector qubitvalues; 
public int qubitarrayf]; 
Complex zerocomp = new Complex(); 
Complex icompl = new Complex(); 
Complex icomp2 = new ComplexQ; 

//Create the gate array to move the qubits through 
Object Gatearray[][]; 

public void Initialize^) { 
} 

public void initarray(int numqubits){ 

double value; 

qubitarray = new int[numqubits]; 

System.out.println("Qubit Array Initialized !\n"); 

Toffoli2Gate numlgate = new Toffoli2Gate(); 
} 

public Double initQubitvalue(){ 
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Double vqbit = new Double(Math.random()); 

return vqbit; 
} 

public void initvector (int numqubits){ 

Time currtime = new Time(O); 
int size = (int)(Math.pow(2,numqubits)); 

System.out.println("Size is   " + size); 

qubitvalues = new Vector(size); 

for (int ix = 0; ix < size; ix++) { 
Integer vecint = new Integer(ix); 
qubitvalues. addElement(vecint); 

} 
System.out.println("Vector initialized !"); 

} 

public void initGatearray(int matsize){ 

Gatearray = new Object[matsize][matsize]; 

int rcomp = 1; 
int imgcmp = 1; 
inticmp = -l; 

icompl .setComplex(rcomp, imgcmp); 
icomp2.setComplex(rcomp, icmp); 

//Initialize the gate values 
for (int ix = 0; ix < matsize; ix++) { 

for (int iy = 0; iy < matsize; iy++) { 
if( ix == iy){ 

Gatearray [ix][iy] = icompl; 
} 
elseif(iy==(ix+l)){ 

Gatearray [ix][iy] = icomp2; 
} 
else if( ix = (iy+l)){ 

Gatearray [ix] [iy] = icomp2; 
}    . 
else { 

Gatearray [ix][iy] = zerocomp; 
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} 
} 

} 

} 
public int toBinary (int convert, int size) { 

int result = 0; 
String str = new String(); 
char tmpchar; 
Integer newlnt = new Integer(O); 

str = newInt.toBinaryString(convert); 

System.out.println("This is the binary string " + str); 

int max = str.length(); 
int diff = size - max; 
System.out.println("Diff is " + diff); 
System.out.println("Max is " + max); 

if(diff!=0){ 
for (int zy = 0; zy < diff; zy++ ) { 

qubitarray[zy] =0; 
} 
for (int ix = diff; ix < (max + diff); ix++) { 

tmpchar = (str.charAt(ix - diff)); 
if (tmpchar = T) { 

qubitarrayfix] = 1; 
} else if (tmpchar =='0') { 

qubitarrayfix] = 0; 
} 

} 
} else { 

for (int ix = 0; ix < max; ix++) { 
tmpchar = (str.charAt(ix)); 
if (tmpchar =T){ 

qubitarray[ix] = 1; 
} else if (tmpchar =='0') { 

qubitarrayfix] = 0; 
} 

} 
} 

return result? 
} 

} 
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// 
// Author:       Unknown 
// 
// Program:     Complex 
// 
// Date: 4 November 1998 
//Compiler:    JDK 1.1.7 
// Description: 
// 
//•PT**r*P*PT"'n"P*t*'pT* *P *P *l* *I* T* f* *P *P *P *i* *p *p *t* T* *p *I* *p *p *l* *p *F *r T* f T* 3|C 5JC 3|C 3|C 3|C 3JC 3(* 3fC *(* *P *|* *p *p * V ^F *F T^ T^ V ^r "r V T^ f 3|C 3|C 5jC ^C 5|C 3p 5JC 

public class Complex { 

public float real; 
public float img; 

public void Complex() { 
real = 0; 
img = 0; 

} 

public void setComplex (int realComp, int reallmg){ 
real = realComp; 
img = reallmg; 

} 

public Complex add (Complex i) { 
Complex comp = new Complex(); 

comp.real = real + i.real; 
comp.img = img + i.img; 

return comp; 
} 

public Complex subtract (Complex i) { 
Complex comp = new Complex(); 

comp.real = real - i.real; 
comp.img = img - i.img; 

return comp; 
} 

public Complex multiply (Complex i) { 
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Complex comp = new Complex(); 

comp.real = real * i.real - img * i.img; 
comp.img = real * i.img + img * i.real; 

return comp; 
} 

public int MagSquared (Complex i) { 
int result = -1; 

return result; 
} 

} 
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//**************************************************************** 

// 
// Author:        JackMades 
// 
// Program:    Matrix 
// 
// Date: 4 November 1998 
//Compiler:   JDK 1.1.7 
// Description: 
// 
//******************************************************************** 

public class Matrix { 

public void Matrix () { 

} 

public void makeMatrix (int dim) { 
Object array [][] = new Object[dim][dim]; 

} 

} 
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