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ABSTRACT 

Recent technological advances in the design and manufacturing of night vision 

multispectral sensors now allow spatially registered imagery provided by each of the 

sensors to be combined within a single fused image for display to an end user. The 

product is a multispectral false-colored rendering of the imaged scene. The use of false 

color in fused imagery may facilitate object recognition, providing contour information of 

the objects present in the scene, but incongruently colored fused imagery may be 

disruptive of perceptual performance. This study investigated if the use of false color 

imagery compared to natural color imagery was helpful or not in object recognition. 

Subjects' reaction times (RTs) and error rates were measured in a standard naming task. 

Stimuli consisted of photographs of food objects that had been manipulated in color 

(natural color, false color, natural grayscale, and false grayscale) and noise (three levels). 

The results of the experiment showed similar differences in RTs between color images 

(natural or false) and their grayscale counterparts at different levels of noise, indicating 

that both color conditions were similarly helpful in object recognition. These results give 

an indication that false color may be useful in multispectral sensors based on its 

facilitation of image segmentation with shape degraded images. 
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EXECUTIVE SUMMARY 

Current night vision devices (NVD's) used in military operations, such as night 

vision goggles (NVG) and forward looking infrared (FLIR) systems, were designed to 

allow operations in low visibility conditions. New military tactics require demanding 

capabilities that current NVD's are just partially able to accomplish. 

Infrared (IR) systems sense radiated energy detecting thermal differences between 

an object and its background. Image intensifier (I2) sensors amplify reflected moonlight 

and starlight taking advantage of nighttime illumination conditions. Because of this 

response to widely separated wavebands within the electromagnetic (EM) spectrum, each 

sensor suffers disadvantages that the other does not, which can change depending on the 

atmospheric and environmental conditions. But, nevertheless, both current sensing 

modalities seem to be complementary. Accordingly, fusing the imagery originated in 

these two complementary sensors into a single display may result in equal or better 

operator performance compared to the two single band sensor imagery alone. This 

technique is known as dual-band sensor fusion. 

Currently there is no field capacity to combine the best attributes of both sensors 

into a single fused image. Recent experimental advances in sensoring and data display 

have permitted good progress in real time image fusion and display of multispectral 

sensors in either monochrome or synthetic chromatic form. 

The image processing challenge is to generate an intuitively meaningful color 

image on a display for a human viewer. Algorithms to perform this function in an 

optimum manner are currently under development. Since neither sensor is in the visible 

waveband, the artificial color mappings produced by some fusion algorithms will 

xv 



generally produce false-color imagery whose chromatic characteristics do not correspond 

in any intuitive or obvious way to those of a scene viewed under natural photopic 

illumination. To the degree that human perception relies on stored knowledge of objects' 

chromatic characteristics, false color images may be disruptive of perceptual 

performance, making colored sensor fusion unhelpful in object recognition. 

The reason for using color in fused imagery is based on the assumption that color 

(natural or artificial) facilitates image segmentation, providing contour information about 

the individual objects present in that scene as a way to achieve target detection. Past 

psychophysical research has been equivocal in determining what utility, if any, sensor 

fusion has for human performance. Research in this field has been inconclusive due to 

differing experimental methodologies used in these studies. 

In order to measure the effectiveness of sensor fusion devices in enhancing the 

night capabilities of military operators over currently employed systems detailed 

exploration in the area of human factors was required. 

The objective of this thesis was to quantitatively assess the role of natural and 

artificial color in object recognition when shape information is degraded, investigating 

whether and how false color might be useful in multi-band fused imagery. Digital 

photographs of natural objects (fruits and vegetables) were presented as natural and false 

color images, together with their gray scale counterparts, degraded by different levels of 

noise, and compared these imges in a standard naming task, trying to emulate imagery 

generated by multispectral devices. Two precise measures of visual ability that are 

critical to the military, reaction time (RT) and rate of accuracy in target detection, were 

measured. 
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Natural color might facilitate object recognition in either or both of two ways; by 

facilitating scene segmentation and by allowing access to stored color knowledge. In the 

presence of false colored images, recognition might be disrupted, because the access to 

stored knowledge is denied and participants would rely just in color contrast as a way to 

reach object recognition through scene segmentation. It was hypothesized that shorter 

RTs and greater accuracy rates would occur within the natural color images across all 

levels of noise and the difference in RTs between natural color and false color images 

would be largest in the conditions with the greatest amount of noise. The longest RTs and 

greatest error rates were expected within the grayscale images, because participants 

would not be able either to accomplish scene segmentation or to access stored knowledge 

during the object recognition task. Intermediate results would be achieved by false color 

images, due to the possibility at least to fulfill scene segmentation, originated by the 

presence of color. 

As a result of the analysis conducted trying to assess the benefit of using color in 

object recognition, it can be concluded that both natural and false hue conditions resulted 

equally beneficial in the task accomplished during the experiment. There was no 

evidence of false color as a disruptive factor during this task, and both natural and false 

hue were similarly useful at different levels of image degradation. The reason for this 

conclusion is based on the assumption that participants conducted a bottom-up process 

during the object recognition task, making use of color (natural or false) to achieve image 

segmentation. 
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I. INTRODUCTION 

Current night vision devices (NVDs) used in military operations, such as night 

vision goggles (NVG) and forward looking infrared (FLIR) systems, were designed to 

allow operations in low-visibility conditions. New military tactics require demanding 

capabilities that current NVDs are just partially able to accomplish. Greater target 

discrimination from decoys and background clutter is needed, together with greater 

display resolution, adequate magnification properties, and larger fields of view (Krebs, 

Scribner, Miller, Ogawa & Schüler, 1998; Marine Corps CDC, 1995). By combining 

information from multiple single-band sources within a unitary display, researchers hope to 

overcome perceptual limitations inherent in the images provided by various electro-optical 

sensors singly (Sinai, McCarley, Krebs & Essock, 1999a). 

Infrared (IR) systems sense radiated energy detecting thermal differences between 

an object and its background. Image intensifier (I2) sensors amplify reflected moonlight 

and starlight by taking advantage of nighttime illumination conditions. Because of this 

response to widely separated wavebands within the electromagnetic (EM) spectrum, each 

sensor maintains and suffers disadvantages that the other does not, which can change 

depending on the atmospheric and environmental conditions (Sinai et al., 1999a). For 

example, resolution is better in I2 sensors, but contrast between heat-emitting objects and 

their surroundings can be better determined by IR sensors (Sinai et al., 1999a). 

Limitations in each of the sensing modalities can sometimes be disorienting by creating 



Visual illusions (Crowley, Rash & Stephens, 1992), while alternating between these 

modalities can be difficult, confusing and distracting (Rabin & Wiley, 1994). 

Nevertheless, both current sensing modalities seem to be complementary. Accordingly, 

fusing the imagery originated in these two complementary sensors into a single display 

may result in equal to or better operator performance compared to the two single-band 

sensor imagery alone. This technique, known as dual-band sensor fusion, could also 

provide scene information not present in either single band image alone by deriving 

emergent information based on the difference between the sensors (Sinai et al., 1999a). 

The contrast available in a fused image is often displayed as a monochrome or gray 

scale image (Therrien, Scrofani & Krebs, 1997; Peli, Peli, Ellis & Stahl, 1999). 

Techniques developed to introduce synthetic color to fused imagery (Scribner, Satyshur, 

Schüler & Kruer, 1996; Waxman, Gove, Seibert, Fay, Carrick, Racamato, Savoye, Burke, 

Reich, McGonagle & Craig, 1996; Scribner, Warren, Schüler, Satyshur & Kruer, 1998; 

Krebs, McCarley, Kozek, Miller, Sinai & Werblin, 1999a), attempting to provide additional 

information through color contrast, are examples of the emergent information originated 

by sensor fusion. 

For a human operator, the multiple sources of imagery need to be fused and 

displayed in a form that is easy and natural to interpret, improving the operator 

performance (Peli et al., 1999). Currently there is no field capacity to combine the best 

attributes of both sensors into a single fused image. Recent experimental advances in 

sensoring and data display have permitted good progress in real time image fusion and 



display of multispectral sensors in either monochrome or synthetic chromatic form 

(McDaniel, Scribner, Krebs, Warren, Ockman & McCarley, 1998). 

The need is for new image processing techniques to combine the multispectral 

images so that the resultant image will have more information content than any of the 

original images, as it has been demonstrated by several researchers (Scribner et al., 1998; 

Krebs et al., 1999a; Themen et al., 1997; Waxman, Aguilar, Fay, Ireland, Racamato, 

Ross, Carrick, Gaove, Seibert, Saboye, Reich, Burke, McGonagle & Craig, 1998). This 

requires studies in data formatting such as color-coding or object enhancements (e.g., 

towers hanging or power line for obstacle avoidance) (McDaniel et al., 1998). The image 

processing challenge is to generate an intuitively meaningful color image on a display for a 

human viewer that should improve the operator performance, facilitating discrimination of 

objects from backgrounds and situational awareness by means of scene segmentation. 

Past psychophysical research has been equivocal in determining what utility, if any, 

sensor fusion has for human performance. While some studies have found a significant 

advantage for fused imagery over single sensor imagery (Essock et al., 1999a; Toet, 

Ijspeert, Waxman & Aguilar, 1997; Waxman et al., 1996), others have not (Steele and 

Perconti, 1997; Krebs et al., 1998; Essock, Sinai, McCarley, DeFord & Srinivasan, 

1999b). These discrepant results can be attributed to the differences in fusion algorithms 

tested, and to the differences in the psychophysical tasks employed (Essock et al., 1999b). 

It is not so obvious that sensor fusion is going to be beneficial for perceptual performance 

(Sinai, McCarley & Krebs, 1999b). 



Since neither sensor is in the visible waveband, the artificial color mappings 

produced by some fusion algorithms will generally produce false-color imagery whose 

chromatic characteristics do not correspond in any intuitive or obvious way to those of a 

scene viewed under natural photopic illumination. To the degree that human perception 

relies on stored knowledge of objects' chromatic characteristics, false color images may be 

disruptive of perceptual performance (Sinai et al., 1999b), making colored sensor fusion 

unhelpful in object recognition. 

The reason for using color in fused imagery is based on the assumption that color 

(natural or artificial) facilitates image segmentation (Walls, 1942), providing contour 

information about the individual objects present in that scene as a way to achieve target 

detection. It should also be considered that the role of color in object recognition has not 

been determined clearly enough either. Past research in this field has been inconclusive 

due to differing experimental methodologies used in these studies. Several tasks and 

different types of stimuli were presented to the participants. Observers were required to 

recognize or identify natural or manufactured objects presented as colored or achromatic 

photographs, line drawings, artificially colored photographs, etc., using noise or blur as 

image degrading factors as a way to simulate poor resolution conditions (Wurm, Legge, 

Isenberg & Luebker, 1993; Ostergaard and Davidoff, 1985; Biederman and Ju, 1988; 

Joseph and Proffitt, 1996). 

In order to measure the effectiveness of sensor fusion devices in enhancing the 

night capabilities of military operators over currently employed systems, detailed 

exploration in the area of human factors is required. 



This thesis is focused on the human factors of sensor fusion; more specifically, 

human perception of natural and artificial color images similar to those produced by sensor 

fusion processes. The objective of this thesis is to quantitatively assess the role of natural 

and artificial color in object recognition when shape information is degraded, investigating 

whether and how false color might be useful in multi-band fused imagery. Digital 

photographs of natural objects (fruits and vegetables) were presented as natural and false 

color images, together with their gray scale counterparts, degraded by different levels of 

noise, and comparing them in a standard naming task, trying to emulate imagery generated 

by multispectral devices. Two precise measures of visual ability that are critical to the 

military, reaction time (RT) and rate of accuracy in target detection, were measured. 

Natural color might facilitate object recognition in either or both of two ways; by 

facilitating scene segmentation (Walls, 1942) and by allowing access to stored color 

knowledge (Joseph and Proffitt, 1996). In the presence of false colored images, 

recognition may be disrupted, because the access to stored knowledge is denied and 

participants will rely just in color contrast as a way to reach object recognition through 

scene segmentation. It is hypothesized that shorter RTs and greater accuracy rates will 

occur within the natural color images across all levels of noise and the difference in RTs 

between natural color and false color images will be largest in the conditions with the 

greatest amount of noise. Faster RTs are expected within the natural color images 

because participants will use color information to access stored knowledge of the object's 

chromatic features, and they will be able also to fulfill scene segmentation. Larger effects 

of natural color images are also expected in the conditions with higher levels of noise 



because here, since the objects' shape information is degraded, subjects may be expected 

to rely more heavily on color information to recognize the stimuli. The longest RTs and 

greatest error rates are expected within the gray scale images, because participants will not 

be able either to accomplish scene segmentation or to access stored knowledge during the 

object recognition task. Intermediate results will be achieved by false color images, due to 

the possibility at least to fulfill scene segmentation, originated by the presence of color. If 

color is used only for scene segmentation similar effects of natural color and false color 

images are expected, although they should be faster and more accurate than the effects 

originated by the gray scale images. 



H.       BACKGROUND 

A.       HISTORY 

The Vietnam War era witnessed the great expansion of the infrared industry. This 

industrial development was motivated by the inability of the U.S. forces to prevent North 

Vietnamese forces from conducting night operations (Schwarzkopf, 1992). 

Since the post-Vietnamese era, all military high value platforms possess NVDs. 

These systems, that use specific sensors and techniques necessary to acquire and engage 

opposing forces during low visibility or nighttime periods under adverse warfare 

environments, have been proven effective in all kind of combat operations (NVESD, 

1997). However, unanticipated problems have arisen while utilizing these devices. A 

human unaided perception of the surroundings at night is vastly different when observed 

with NVDs (Vargo, 1999). The user's lack of understanding of the night environment and 

its impact on the NVDs performance has caused the capabilities of these devices to be 

exceeded, resulting in numerous mishaps (Salvendy, 1997). Also, the increasing 

sophistication of military tactics and weapon systems require enhanced capabilities that 

current NVDs are not able to accomplish (Krebs et al., 1998). Multiband image fusion 

devices, currently under development, are supposed to solve several of the existing 

limitations of the infrared systems and to achieve the tasks required by modern nighttime 

warfare. In these new devices, the information provided by each of the sensors in the 

system is combined into a single fused image before being displayed to an end user. The 



resulting image is a multispectral false-colored rendering of the imaged scene. The 

expected advantage of fused images is not only choosing the most helpful effects of each 

of the fiisioned sensors, but also obtaining additional information based on the difference 

between the sensors. 

This study will investigate one of the unsolved problems of these new NVD's: the 

use of color in the resulting fused imagery. A generic presentation of how the human 

visual system (HVS) accomplishes the perception of color will provide a basic 

understanding of the problems related to adding color to multisensor fused systems. A 

general description and characteristics of single-band sensors currently in use are provided 

to aid in the comprehension of image fusion techniques and future multisensor devices. 

Previous research involving the role of color in object recognition is summarized, along 

with several studies that investigate and develop different techniques of color fusion. 

B.        PERCEPTION OF COLOR IN THE HUMAN VISUAL SYSTEM 

1.        Electromagnetic (EM) Spectrum 

The first characteristic of the night environment relevant to an understanding of 

night vision technology is the EM spectrum of the night sky and its relationship to the eye 

and to the NVD's. NVD's allow us to exploit a greater portion of the EM spectrum as 

compared to the human eye. This issue can be seen in Fig. 1. 



and to the NVD's. NVD's allow us to exploit a greater portion of the EM spectrum as 

compared to the human eye. This issue can be seen in Fig. 1. 

The NVG's, FLIR, and most night imaging devices, including the human eye, are 

sensitive to different wavelengths of the EM spectrum. These frequency bands are 

similar in nature and their relationship can be clearly expressed by their position in the 

EM spectrum, shown in Fig. 2. 

As it can be seen, the optical band covered by visible light is a relatively small 

portion of the entire spectrum. Visible and near IR light are considered to be reflected 

energy, while the thermal bands in the mid and far infrared are primarily radiated energy. 

2.        Human Visual System 

The human visual system (HVS) is sensitive to radiation whose wavelength is in 

the 0.4 to 0.7 micron range of the EM spectrum. When a combination of these radiations 

reach the human eye, neural processing of these signals will originate a psychological 

reaction called color vision. Visible radiation received by the HVS may come directly 

from a light source, but is usually reflected by object surfaces before reaching our eyes. 

Three primary perceptual dimensions of these radiations combine to define our 

psychological perception of color: hue (wavelength of the radiation), saturation (hue 

purity) and lightness (intensity of the light source). 

Hue is the reaction to wavelengths ranging from 0.4 microns (violet) to 0.7 

microns (red). As Newton demonstrated, white light really consists of a combination of 
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different colored lights. Each wavelength included in this range after being processed by 

the HVS, produces the perception of a specific color, as it is shown in Fig. 3. 

One way to organize colors, proposed by Newton in 1704, is in terms of a color 

wheel. The outside of the wheel represents monochromatic colors (those that can be 

produced by a single wavelength) plus non-spectral hues (those that cannot be described 

in terms of a single wavelength from the visual spectrum). Similar hues are located near 

one another. 

Li addition to hue, our experience of color is characterized by lightness and 

saturation. Objects vary in the amount of light they reflect from their surfaces. Lightness 

is the apparent reflectance of a color. It describes our psychological reaction to the 

physical characteristic, reflectance. Objects' lightness vary from very dark (black) to very 

light (white), with other shades of lightness in between (Matlin & Foley, 1997). 

Another characteristic of color is saturation, our psychological reaction to the 

physical characteristic, purity. Saturation measures the amount of white light added to a 

hue. A saturated hue, lying on the perimeter of the color wheel, no white light added, is 

perceived as a deep hue. An unsaturated hue will be closer to the center of the wheel and 

is perceived as a much lighter hue. Completely unsaturated colors are called achromatic 

or neutral, and they are perceived as white, shades of gray and black, depending on their 

amount of lightness. These colors are represented in the center of the color wheel, as it is 

shown in Fig. 4. 

The mixture of monochromatic hues produces the perception of the whole 

diversity of colors in the human visual spectrum. Hues can be mixed in two different 
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ways. Subtractive mixing involves a single source that passes through filters or falls in 

pigments. Parts of the spectrum are absorbed or subtracted, as it is represented in Fig. 5. 

Additive mixture is accomplished by adding or combining colored lights of different 

wavelengths, as it is represented in Fig. 6. The result of color mixing can be predicted by 

using the color wheel. A graphic explanation of this method is shown in Fig. 7. 

Color television is an example of additive mixtures. The screen consists of many 

tiny dots. When irradiated they glow blue, green or red. All different colors are produced 

by combination in our photoreceptors of the different lights generated in each screen dot 

when watched from an appropriated distance. A yellow patch is really composed of red 

and green dots (see Figure 4). 

Hue wavelengths are not evenly arranged around the periphery of the wheel. This 

distribution is necessary to place complementary hues on exactly opposite sides of the 

color wheel. Complementary hues are those whose additive mixtures make an 

achromatic color (shade of gray). 

By means of any of these two techniques, colored light reaches the human visual 

system (HVS), producing the perception of color. The way in which colored light 

produces the perception of color in the VHS is explained by two theories, each of them 

applied to different levels of the visual processing system. Trichromatic theory explains 

the way in which the input signal from the photoreceptors is combined (Neitz, Neitz & 

Jacobs, 1993). Opponent process theory explains how the information provided by the 

photoreceptors is interpreted by the neural system (DeValois & DeValois, 1975). 
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Figure 5: Subtractive mixtures for blue paint and yellow paint. 

(Matlin & Foley, 1997) 
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Figure 6: Additive mixtures for blue light and yellow light. (Matlin & Foley, 1997) 
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The Young-Helmholtz Trichromatic theory assumes that humans have three kinds 

of color receptors, each differentially sensitive to light from a different part of the visual 

spectrum. These receptors are called "cones" and they work best in well-lit 

environments, giving rise to the full range of colors (achromatic and chromatic). There is 

another kind of receptors in the human retina. These are the "rods," which work best in 

poorly lit environments where they give rise to the perception of achromatic colors. 

Visual perception research has established that the three kinds of cone pigments 

have different but overlapping absorption curves (De Valois and De Valois, 1975), each 

of them being maximally sensitive to a different wavelength as it is shown in Fig. 8. 

We will refer to these three kinds of cones as S (short wavelength), M (medium 

wavelength) and L (long wavelength) based on the wavelengths to which they are most 

sensitive. In this way, human visual receptors are able to distinguish the wavelength of 

an incoming signal, because it will activate one or several receptors in a unique pattern or 

distribution for each wavelength. 

Trichromatic theory by itself cannot explain all the color phenomena. Some 

mechanism beyond the receptor level must combine the information from the cones in a 

complex way. Several pieces of evidence point to the existence of separate mechanisms 

for red, yellow, green and blue. How do these four mechanisms arise from only three 

cone systems? Human sense of color must arise from additional processing of the input 

from the three-cone system. 

Opponent-process theory (De Valois & De Valois, 1975) covers this second level 

of visual processing system, beyond the photoreceptors. This process is implemented 
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Figure 8: Absorption curves for the three cone pigments. 
(Matlin & Foley, 1997) 
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by means of the neural connectors among photoreceptors and neurons in the human retina. 

De Valois & De Valois (1975) modeled all these possible connections showing how both 

chromatic and achromatic information could be conveyed through identical mechanisms 

and it also illustrates how four color channels could arise from three cone systems (Matlin 

& Foley, 1997). This theory, whose development is far beyond the scope of this thesis, is 

basic in the development of several fusion algorithms (Waxman, Fay, Gove, Seibert, 

Racamato, Carrick & Savoye, 1995). 

Another characteristic of color is color constancy. Because of color constancy, 

humans tend to see the hue of an object as staying the same despite changes in the 

wavelength of the light illuminating the object. Variations in illumination light may arise 

by changes in the intensity or in the composition of the illumination source. Absolute 

color constancy would be obtained if an object appeared to be the same color regardless 

of the type of illumination or the colors of nearby objects (Maloney, 1993). Our 

perception of color, then, is not dependent on the absolute wavelengths reaching our 

retinas, but on reflectance relationships among objects in our field of vision (Brou, 

Sciascis, Lindeln & Lettvyn, 1986). Color constancy is probably not maintained 

completely. So, human color perceptions are influenced to a degree by the nature of the 

illumination. This lack of consistency for the intensity of reflected light required the HVS 

to develop a variety of mechanisms to disentangle the contradictions of varying 

illumination and thereby to achieve nearly constant color perception based on distal 

surface reflectivity (Matlin & Foley, 1997). Based on this characteristic of the HVS, color 

constancy seldom breaks down to the extent that an observer would assign two different 
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color names to the same object just because of changes in illumination (Jameson & 

Hurvich, 1989). When an object is seen under different illumination conditions, it might 

look slightly different, but it will still be recognized as the same color. A major limitation 

to sensor fusion systems is that these mechanisms cannot be duplicated to achieve the 

same constant color perception. 

C.       CURRENT NIGHT VISION DEVICES 

Night vision devices (NVDs) enable exploitation of the night environment by the 

NVD user by processing EM bands outside the human visual spectrum. These devices do 

not allow perfect vision during nighttime operations, but they do enable humans to 

improve their performance in multiple tasks such as movement on foot or even night 

attacks using sophisticated weapon systems, both land based or airborne. 

Current military night operations are enabled through imaging in the visible-near 

infrared band (wavelengths of .57 to .9 microns) and in the thermal infrared band 

(wavelengths of 7 to 14 microns). Fig. 1 shows the portions of the EM spectrum covered 

by NVDs. Both types of NVD's are explained in more detail in the two next subsections. 
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1.        Image Intensifiers 

Image intensifiers (I2) process the visible and near-infrared spectrum and, much 

like the human visual system, depend almost entirely on reflected energy from scene 

illumination (MAWTS-i; 1995). They amplify reflected moonlight and starlight (primarily 

yellow through near infrared light, with wavelengths of 0.57 to 0.9 microns) and ambient 

light produced by artificial sources of illumination (visible light wavelength of 0.4 to 0.7 

microns). 

Visible and near-infrared imagery is currently provided by the third generation of I 

tubes. The five major components of an I2 tube are the objective lens, the photo cathode, 

the microchannel plate, the phosphor screen and the eyepiece lens. Radiant or reflected 

optical energy received at this device is focused, turned into electric energy, amplified and 

turned again into green -yellow light in the 0.56 microns range, matching the peak 

sensitivity of photopic human vision. Finally it is inverted and focused before reaching the 

operator eye. Image intensified imagery is usually displayed in night vision goggles 

(NVG's). 

The ratio of the brightness of the image at the output of the eyepiece lens over the 

luminance of the light entering the objective lens is called the gain of the I2 tube. The 

variants of the Gen m NVG's currently used have a gain of 25,000, a substantial 

advantage for the unaided human eye in the night environment (MAWTS-1,1995). 

Illumination, expressed in lumens per square meter (lm/m2) or lux, measures the 

amount of visual energy that exists in a specific location. Lunar illumination is the primary 
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energy source for natural illumination in the night sky (MAWTS-1,1995). Additionally, 

stellar phenomena and starlight provide certain amount of illumination. Figure 9 shows 

how moonless night sky illumination almost matches the peak sensitivity of NVGs. 

Two other contributors of illumination are the sun and artificial sources. The 

setting sun at zero degrees below the horizon is too bright for NVG operations, however, 

approximately one half hour after sunset, when the sun has lowered to seven degrees 

below the horizon, it may provide useable illumination until it has set past twelve degrees. 

Artificial lighting such as street lights or radio tower warning lights can also provide 

significant illumination, but large concentrations of artificial illuminators can wash out the 

NVG image. 
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Figure 9: Moonless night spectral composition (MAWTS-1,1995) 
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The atmosphere is the most important environmental factor controlling the 

performance of the NVGs. The atmosphere can attenuate the light, reducing the level of 

energy reaching the NVGs. This attenuation can occur by absorption or scattering mainly 

due to the fact that attenuation by refraction is almost negligible. NVGs operate by 

intensifying light energy between 625 to 960 nanometers. Any attenuation, either before 

or after it strikes the terrain, will effectively reduce the usable light available to the NVG 

and thus affect the resulting image. Attenuation is caused by impact of light particles 

with particles larger than one micron in length such as water vapor, dust, snow, and other 

natural or man-made obscurants. The effect of these particles will depend very much on 

their size and density, but all of them will affect distance estimation and depth perception 

reducing significantly the usefulness of these devices and even making them almost 

useless during adverse atmospheric conditions (MAWTS-1, 1995). 

2.        Thermal Infrared Devices 

The thermal infrared devices, supported by several kinds of forward-looking 

infrared (FLIR) imaging devices, convert invisible thermal energy from the far infrared 

spectrum into a visible image. FLIR's generally process emissions from two infrared 

bands, rnidwave (3 to 5 microns) and long wave (8 to 12 microns). Infrared energy 

(thermal energy) within these bandwidths is emitted by all objects with a temperature 

above absolute zero (-273 degrees Celsius). 
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Natural thermal energy is produced when objects that have previously absorbed 

thermal energy from IR sources, such as the sun or warm air currents, start radiating this 

energy. Another source of thermal energy is from man-made objects such as the heat 

radiated as a result of the friction from moving parts in mechanical devices (MAWTS-1, 

1995). It is important to note that most man-made objects emit in the 8 to 12 micron 

band, hence the military interest in LWIR sensors (Sampson, 1996). 

In order to measure the thermal energy radiated by an object we define emissivity 

(E) as the ratio of an object's ability to emit thermal energy at a certain temperature over 

that of a black body at the same temperature. "Blackbody" is defined as the perfect 

absorber of thermal energy and therefore also a perfect emitter, with an efficiency of unity 

(MAWTS-1,1995). Other factors impacting emissivity are material composition, ambient 

temperature and the object's temperature and geometry. Most natural objects have a high 

emissivity and therefore a majority of their thermal signature is from self-emission. 

Conversely, objects with low emissivity have a corresponding high reflectivity and 

therefore reflect thermal energy of their surroundings. 

Thermal energy emitted by an object, whether it is internally generated or reflected 

by another source, determines its thermal signature. It is primarily the difference among 

thermal signatures of objects that defines the thermal scene (Sampson, 1996). An 

important measure of performance of a FLIR is "delta T" or the temperature difference of 

an object and its background (MAWTS-1,1995). The cyclic heating and cooling of the 

terrain causes the diurnal cycle of temperature differences between objects of different 

thermal mass and inertia. 
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Figure 10 shows the diurnal cycle of temperature differences for an armored 

vehicle and the background terrain. From the graph one can visualize the negative 

thermal contrast (object cooler than background) of the armored vehicle on a clear sunny 

day and the positive thermal contrast (object warmer than background) of the armored 

vehicle at night. Because of the positive thermal contrast, FLIR's will be able to detect 

targets against the background during night periods. 

20-r 

GRASS/TREE LEAVES 

AIR 
TEMPERATURE 

10    11    12    13    14    15    16    17    18    19   20    21    22 

Figure 10: Diurnal cycle example (MAWTS-1,1995) 

Attenuation of thermal energy after it leaves its source can occur by absorption or 

scattering. Atmospheric vapor or humidity is the most significant absorber of thermal 

energy. In very hot and humid climates, the high amount of absorption may literally 
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render the FLIR useless (MAWTS-1,1995). Molecular scattering occurs when thermal 

energy particles strike other particles present in the atmosphere, as nitrogen, oxygen, 

water vapor and carbon dioxide. Because of these strikes, thermal energy can be scattered 

in different directions making it difficult to reach the IR sensor (MAWTS-1,1995). 

FLIR systems are complex and their detailed composition is far beyond the scope 

of this thesis. The basic elements of this device are the infrared sensor, the signal 

processor and the display unit. The detector array is composed of semiconductive 

material, which turns 8 to 12 microns heat energy into analog electrical output to the 

signal processor. The signal processor provides the special signal functions required to 

stabilize and enhance the analog output from the detector array. The signal from the 

processor is transformed to an image through the use of a cathode ray tube (CRT) and 

displayed on a "heads down display" (HDD), cockpit "heads up display" (HUD) or 

"helmet mounted display" (HMD) (MAWTS-1,1995). Current FLIR technology is 

centered on the first generation (Gen I) FLIR thermal imaging device. The U.S. Army 

began integration of second generation FLIR's into new and existing weapon systems to 

maximize U.S. forces advantage on the battlefield (NVESD, 1997). IR imagery is 

displayed using a variety of forward looking infrared (FLIR) imaging devices (both 

scanners and IR focal plane arrays) displayed on monochrome phosphor monitors, the 

cockpit heads-up display, or combiner optics. 
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D.       MULTISPECTRAL IMAGE FUSION DEVICES 

The two sensing modalities currently used for night vision purposes (I2 and IR) 

have been improved due to increases in sensor detection ranges and display resolution, but 

they still have their own limitations. I2 devices need reflected light for detection and IR 

devices must be able to detect thermal contrasts among the objects in the scene (Vargo, 

99). Recent advances in signal processing have permitted the possibility of combining the 

best attributes of the emissive radiation sensed by the thermal sensor and the reflected 

radiation sensed by the image intensifier sensor into a single "fused" image (Steele and 

Perconti, 1997). 

Long wave IR and I2 sensors are good candidates for image fusion. The thermal 

contrast between relatively high emissivity objects and the background is a good indicator 

of potential targets, obstacles and waypoints. The inability to see details in areas that have 

relatively poor thermal contrast, caused by low emissivity differences, might be greatly 

compensated for by fusing with an I2 sensor. Given the proper illumination conditions, the 

"visible" contrast can provide very useful cues that are independent of thermal conditions. 

I2 sensors might also aid in producing a natural representation of the scene due to the 

proximity of this wave band to that of the visible (0.4 to 0.7 microns) waveband (Steele 

and Perconti, 1997). 

Recent technological advances in the production of multi-spectral sensors now 

allows I2 and IR imagery to be mapped to a high speed processor where it can be fused 

and displayed to an end user (McDaniel et al., 1998). Some advantages of combining 
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multiple spectral imagery into a single display might be: (a) reduced cost, space, 

computational processing and weight requirements form combined resources, (b) reduced 

operator workload by limiting the need to alternate between the two sensors, (c) improved 

object search, detection and recognition. 

Numerous fusion techniques have been developed during the last years that 

produce both monochromatic and color imagery (Toet, van Ruyven & Valeton, 1989; 

Scribner, Satyshur & Kruer, 1993; Palmer, Ryan, Tinkler & Creswick, 1993; Toet & 

Walraven, 1996;Therrien et al., 1997; Waxman, Gove, Fay, Racamato, Carrick, Seibert & 

Savoye, 1997). All these techniques may differ on the algorithm approach but they all 

have the same objective: improving the image quality for the observer (Krebs, Scribner, 

McCarley, Ogawa & Sinai, 1999b). 

A typical color fusion process transforms the dual monochrome bands generated at 

the I2 and IR sensors onto display variables such as the red-green-blue (RGB) channels 

(based on human trichromatic vision theory) and opponent color processing (Waxman et 

al., 1997). This approach takes advantage of the observer's color vision system to 

introduce additional dimensionality for interpretation through color contrast. The use of 

color in image fusion was frequently advocated under the argument that color contrast can 

provide improved detection performance when added to luminance contrast (Peli et al., 

1999). 

If the final result of a fusion process is presented in a monochromatic format, the 

whole capability of the HVS is not being optimally used. Objects viewed by low-light and 

infrared sensors will generally have the same spatial characteristics, but they will have 
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completely different contrast levels. By displaying these variations as color differences, as 

a result of sensor fusion techniques, target-background contrast should be improved and 

the dynamic range of the scene should be increased (Krebs et al., 1998). 

There is a very important distinction between a color scene observed by the 

unaided eye through the HVS and a processed color fused image. The color mapping 

process is affected by the specific information provided by the two sensors. Since neither 

sensor is in the visible waveband, the color algorithms used may not produce imagery that 

matches the colors seen by the HVS (Steele and Perconti, 1997). 

It is difficult to assume how beneficial multisensored colored images are going to 

be for human performance. Some experimental evidence indicates that object recognition 

depends on stored color knowledge of object's chromatic characteristics (Joseph & 

Proffitt, 1986), therefore, incongruency of false color images may be disruptive of 

perceptual performance, and could even produce worse performance compared to single- 

band imagery alone (Sinai et al., 1999a), although overall evidence is equivocal as to what 

role color plays in object recognition. 

Another major limitation to sensor fusion systems is that HVS mechanisms cannot 

be duplicated to achieve color constancy, as it was previously stated in the HVS section. 

Therefore, varying illumination conditions will originate different chromatic 

representations of the same object. As it was stated above, past psychophysical research 

has been inconclusive in determining what is the role of color in human visual system and 

therefore, in deterrnining what utility if any color sensor fusion has for human 
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performance. A review of the literature might clarify which is the current situation in this 

field that has intrigued vision researchers for many years. 

E.        REVIEW OF THE LITERATURE 

It is likely that color vision evolved in response to the changes of human behavior, 

during the process of adaptation to the natural environment. In Polyak's view, color 

vision evolved to facilitate food gathering, involving search and recognition of natural 

objects (Polyak, 1957). Color might facilitate these tasks by means of scene segmentation. 

Walls suggested that color promotes the perception of contour (Walls, 1942). Color 

differences, like luminance differences, can be used to segment images into regions 

containing information about individual objects and provide more reliable information 

about object shape, because shadows also produce luminance contours (De Valois & 

Switkes, 1983). 

Color may also serve another perceptual function apart from scene segmentation: 

object recognition. Although virtually no object can be recognized on the basis of its 

color alone, the colors of some objects are less arbitrary than others, therefore objects 

with higher color diagnosticity, could be recognized in a faster way (Biederman & Ju, 

1988). 

Object recognition can be achieved by means of two different processes, both 

separately or in a combined way. During a bottom-up process, color is used to define the 
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contour or shape of the objects present in a scene. Once the shape of the object is defined, 

human memory recognizes the object based on that contour. This is normally the case of 

objects with low color diagnosticity. On the other hand, during a top-down process, color 

is used to access memory in a direct way, and allows subjects to distinguish an object. 

among others of similar shape, just based on its color. This is the case of objects with high 

color diagnosticity. 

Assuming that scene segmentation is a bottom-up process, it should not depend on 

our knowledge of the colors of things. Diagnosticity, on the other hand, relies on 

memory. It might improve object recognition by restricting the set of possible alternatives 

(Wurm et al., 1993). 

There is disagreement, however, as to whether or not color is actually used to 

facilitate object recognition (Wurm et al., 1993). This disagreement can be attributed to 

several causes including differences in psychophysical tasks employed, differences in 

luminance characteristics across the color conditions, the use of different levels of shape 

degradation, and differences in types of objects used as stimuli and color formats 

employed. 

Three tasks have typically been used to determine the role of color in object 

recognition. These tasks are classification, verification and naming. In a classification 

task, participants are shown pictures or words that refer to a specific predesignated 

category (Price & Humphreys, 1989). In a verification task, a target name is presented to 

the participants and they must answer whether a subsequently presented stimulus matches 

the target or not (Ostergaard & Davidoff, 1985; Biederman & Ju, 1988; Joseph & Proffitt, 

29 



1996). During naming tasks, participants must verbally identify the object shown in each 

stimulus (Ostergaard & Davidoff, 1985; Biederman & Ju, 1988; Price & Humphreys, 

1989; Wurm et al., 1993). 

Discrepancies in the results of previous research studies were analyzed by their 

own authors. Price & Humphreys (1989) stated that surface information may affect object 

naming more strongly than classification, and that the effects of naming may be most 

pronounced on objects that require most differentiation, because extra time is then 

required to differentiate any given object from its structurally related competitors. Joseph 

& Proffitt (1996) argued that their results differed from those of other studies for many of 

the same reasons that Price & Humphreys's results differed. Because the objects they 

used in their verification tasks generally came from structurally similar categories (animals, 

fruits, vegetables, and flowers), that were also natural categories, it was not surprising to 

find an effect of surface color in their verification task. 

Other aspects that may originate discrepant results in color research will be 

considered in more detail in this section while accomplishing the literature review. 

Markoff (1972) measured reaction times (RTs) for subjects to decide which of 

three targets (tank, jeep or soldier) was present in a black-and-white or color slide. The 

targets were hidden in real-world backgrounds. He blurred the slides to evaluate the 

interaction of spatial resolution and color. He found that RTs were shorter (and error 

rates lower) for the color slides, and the advantage of color over black-and -white 

performance increased with great blur. These results indicate that color is helpful in a 

search task and that color may be more helpful when shape information is degraded. 
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Ostergaard and Davidoff (1985) investigated the role of color in the recognition 

and naming of everyday objects. Their study was based on the idea that color is unhelpful 

in shape processing, due to the considerable evidence for the separate processing of color 

and shape shown by anatomical and physiological research. Observations in monkeys 

indicate that the primate visual system consists of several separate and independent 

subdivisions that analyze different aspects of the same retinal image as color, depth, 

movement, and orientation. Human perceptual experiments are remarkably consistent 

with these predictions (Livingstone & Hubel, 1988). Therefore, they tried to find out at 

which stage of the object recognition process color and shape information combined, 

given that we are aware at the end of this process if objects are incongruently colored 

(Perlmutter, 1980). This means that color is not a part of the pictorial coding of objects, 

i.e., it is not necessary in order to describe the psychological description of the object, but 

rather it is stored as part of a set of attributes as depth, movement or orientation 

(Seymour, 1979). They hypothesized that any benefit from having color vision should be 

obtained from a later stage than identification (Ostergaard and Davidoff, 1985). 

The first experiment considered the role of color in object naming, because if color 

affects the processing of objects at any stage from early registration to the availability of 

the object name, this should be reflected in the object naming latencies. Twenty-four 

common fruits and vegetables were photographed on black-and-white and color film. 

Each participant was shown the complete series of pictures and was required to name the 

objects depicted in those pictures. Colored pictures produced significantly faster response 

latencies than black-and-white pictures. Therefore, the authors concluded that color 

31 



information is beneficial in object naming, although it was not clear whether those results 

occurred because color simply provides a separate cue for discriminating stimulus items, 

as part of a bottom-up process. 

In the second experiment they tried to solve this problem by only using items of 

identical color and thereby removing the possibility of using color to discriminate between 

alternatives: They compared object naming directly to object verification with three types 

of stimuli: items depicted in their natural color (always red), achromatic versions, and 

items depicted in an inappropriate color (always blue). This final condition was included 

to determine whether an inappropriate color would be interfering or merely have the same 

effect as no color. In the naming task, participants were required to name the depicted 

objects as quick as possible without making errors. In the verification task participants 

were required to respond positively when the target item was presented. Before each 

block of trials, the participants were informed what color the stimuli would be and they 

were shown the three alternative items. Color effect reached significance in the naming 

task, but it failed to reach significance in the object verification task. The naming 

advantage found for red pictures of objects could not be attributed to the stimulus 

characteristics of the colors used, so they concluded that it should be due to the 

meaningful conjunction of color and shape. They also concluded that there was no 

detrimental effect of wrong color compared to achromatic input (Ostergaard and 

Davidoff, 1985). 

The third experiment was run to verify the generality of the results of the previous 

one. In Experiment 2, the stimuli were blocked according to color type. In this 
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experiment, correctly colored, inappropriate colored and achromatic stimuli were 

presented at random. Again, the participants accomplished naming and verification tasks. 

Positive responses during the verification task were significantly faster than negative 

responses. All other factors and interactions failed to reach significance. Item color was 

found to be significant in the naming task. Paired comparisons revealed that correctly 

colored pictures were named significantly faster than either achromatic or inappropriately 

colored versions. There was no significant difference between achromatic and 

inappropriate versions. Thus, the major result of Experiment 2 was confirmed. 

These results show that color facilitates object naming but not object recognition. 

They found faster object naming for color than black-and-white pictures, and they believed 

this could be explained by assuming that objects are listed in semantic representation as a 

collection of physical attributes. One of these attributes is color, and they postulated that 

this attribute could be accessed directly by the physical color input. Another important 

conclusion of this study was that although correct color produced facilitation of object 

naming, inappropriate color did not cause significant inhibition in either Experiment 2 or 3. 

Beiderman and Ju (1988) investigated the role of color in object recognition, 

comparing the latency at which objects could be named or verified when they were shown 

either as line drawings or color photographs. The empirical issue of this study was to 

determine if the presence of surface attributes of an object, such as color, facilitates the 

psychological representation ofthat object, over what can be simply derived by depiction 

of the object's edges. Color diagnosticity among objects was also investigated trying to 

determine whether color and brightness were providing a contribution to recognition 
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independent of the main effect of photo versus drawings. For some kinds of objects, color 

is diagnostic of the object's identity. For other kinds, normally man-made objects, color is 

not diagnostic. If color was contributing to object recognition, then it should be found 

that the former kinds of objects should benefit more than the non-diagnostic objects by 

their depiction as color photographs rather than as line drawings. 

It was expected that participants' reaction times and error rates for the naming 

task would be smaller for color stimuli. In the verification task, each presentation was 

shown in one of three different exposure times followed by a mask. The exposure times 

were 50, 65 and 100 milliseconds in duration. In this task participants could anticipate the 

surface characteristics of almost all of the targets, and for the diagnostic objects, the color 

as well. Therefore, if participants were using the color to access an object mental 

representation, then objects photographed in color or those that were diagnostic should be 

recognized faster relative to the naming tasks. It was also assumed that longer exposure 

duration and slightly dimmer projector intensity would favor colored photography 

(Biederman and Ju, 1988). 

The results of the experiments did not match the authors's assumptions. Over the 

five experiments, mean RTs and error rates for naming or verifying line drawings were 

virtually identical to those for color slides. Even objects with diagnostic colors did not 

enjoy any advantage when presented as color slides during the verification task. They 

found a mean advantage favorable for the line drawings and also favorable for the objects 

with no diagnostic color. The conclusion for these studies was that a simple line drawing 

could be identified about as quickly and as accurately as a colored photographic image of 
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that same object. Color diagnosticity did not facilitate object recognition. These results 

support the premise that the access to a mental representation of an object can be 

accomplished with an edge-based representation of a few simple components. Color plays 

only a secondary role in recognition when edges can be readily extracted (Biederman and 

Ju, 1988). 

In contrast to Biederman's results, some authors speculated that surface 

characteristics should facilitate recognition. Following this line, Price and Humphreys 

(1989) examined the effects of color congruency and photographic detail on the naming 

and classification of objects from structurally similar and structurally dissimilar categories. 

Color congruency was also assessed by contrasting performance with correctly colored 

line drawings of objects, black-and-white outline drawings and line drawings assigned very 

incongruent colors. 

To clarify all these effects, the authors conducted a series of experiments in which 

participants performed naming, subordinate (only with stimuli from structurally similar 

categories) and superordinate classification tasks. Color, when present, was part of the 

surface description of objects in Experiments 1 and 2. The influence of color in 

participants' performance as part of the object's surface description was examined in 

Experiment 3 by testing the effects of colored backgrounds on object naming (Price and 

Humphreys, 1989). 

Price and Humphreys hypothesized that object color and surface details would be 

beneficial for discriminating between categorical members, because these objects require 

greater differentiation to separate the target object from competitors of the same category 
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during a naming task. Their findings supported this hypothesis and revealed that the 

influence of surface color in object recognition is not only reserved for naming tasks. 

Classification of objects can also benefit from the use of congruent surface color when 

shape information is not sufficient for discriminating among category members. The 

implication of Price and Humphreys's findings is that effects of surface color are not 

necessarily reserved for the later, name-retrieval stages of processing (Joseph and Proffitt, 

1996). 

Joseph and Proffitt (1996) conducted a series of experiments to determine the 

influence of color as a surface feature, i.e., its role during a bottom-up process, versus its 

influence accessing stored knowledge during a top-down process, in order to achieve 

object recognition. They defined stored color knowledge as semantic information about 

the prototypical colors of objects, such as the knowledge that apples are typically red. 

They considered that the role of stored knowledge of color in object recognition 

had not been examined deeply enough in previous studies. They also considered that the 

findings in the literature, concerning the role of color in object recognition, have yielded 

mixed results. They argued that for surface color to be a useful cue for recognition, the 

participant must decide if the surface color is appropriate for an object. Therefore, they 

would have to access an object's semantic description for this check process to occur and 

compare it with the surface color present in the image. This study investigated whether 

the decision that the stimulus matches the target or not, depends more on the activation of 

stored knowledge or on the processing of surface color. 
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Joseph and Proffitt conducted three experiments to investigate the roles of surface 

color and stored color knowledge in object recognition. Pictures of natural objects were 

used as stimuli because most of natural objects have prototypical colors as opposed to 

man-made objects in which color is quite more arbitrary. In this way they could measure 

the influence of color, when participants were presented natural objects showing 

completely different colors from those stored in their memories. According to the results 

of the first experiment, congruent surface color made recognition easier than did 

incongruent color, with a verification task. Congruently or incongruently colored line 

drawings of common natural objects were presented briefly, masked, then followed by a 

label. An object is considered congruently colored when it is showing the most 

prototypical color, that is the one that the vast majority of people have stored in memory 

as related to that specific object. These results appeared to conflict with Biederman and 

Ju's (1988) findings, but the authors argued that the reason for this discrepancy might be 

the different natures of the stimulus sets. Thus, use of surface color as a cue for 

recognition is more beneficial for objects from natural categories (Joseph and Proffitt, 

1996). 

Results from the second and third experiments confirmed their hypothesis. They 

concluded that the processing of shape information was more influential than any source 

of color information in object recognition, but when response interference could not be 

attributed to shape information, i.e., when both stimulus and target had similar shape, 

stored color knowledge was an overriding factor relative to surface color. They also 

found that the activation of stored color knowledge did not depend on the presence of 
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surface color, because even the identification of uncolored pictures was affected by stored 

color knowledge. They examined the effect of stored color knowledge by observing RTs 

and error interference when semantic associations of color were present or absent. For 

example, an uncolored picture of an apple might have been followed by the label cherry or 

by the label blueberry. More interference should occur with the label cherry because 

apples and cherries share a prototypical color. Apples and blueberries are different in 

prototypical color and, therefore, interference should be less (Joseph and Proffitt, 1996). 

Wurm, Legge, Isenberg, and Luebker (1993) investigated the role of color in 

object recognition trying to find out if color facilitates recognition in images with low 

spatial resolution. Previous studies have concluded (Markoff, 1972, Ostergaard and 

Davidoff, 1985, Biederman and Ju, 1988) that color improves object recognition more, 

when spatial resolution is low (blur or noise) or when shape information is less specific 

(fruits and vegetables vs. man-made objects). The major purpose of this research was to 

examine the hypothesis that color and shape information interact in object recognition, 

that is, color facilitates object recognition more when spatial resolution is low. 

In their two main experiments, participants were presented full-color and gray- 

scale images of twenty-one different food items and vegetables. They chose to use food 

objects because they have a wide range of colors and shapes, so they were representative 

of natural objects. These objects may provide a favorable domain for revealing a role of 

color, given that color vision probably evolved in response to functional interaction with 

natural objects (Polyak, 1957). 
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The authors considered luminance as a factor that could have led to disagreement 

among the results of earlier studies examining the role of color in object recognition. 

Luminance characteristics varied across the color conditions in several of previous studies. 

In Markoff(1972) and Ostergaard & Davidoff (1985) studies, the distributions of 

luminance were not matched in the color and black-and-white slides. Biederman and Ju 

(1988) compared line drawings with color photographs. Visual analysis of the color 

photographs may have been disadvantageous, because of greater difficulty in edge 

extraction compared with line drawings (Wurm et al., 1996). To avoid this problem, 

Wurm and colleagues employed only gray-scale images matched pixel by pixel in 

luminance with the color images. 

Wurm, Legge, Isenberg and Luebker (1993) were also interested in examining if 

color and shape information interact in object recognition, such that color facilitates 

recognition more when spatial resolution is low. Psychophysical and computational 

studies show that chromatic contrast sensitivity is confined to a lower spatial frequency 

range than luminance contrast sensitivity (Kelly, 1983; Mullen, 1985; Derrico & 

Buchsbaum, 1991). These studies support the authors' hypothesis about interaction 

between color and blur, assuming that chromatic contrast (color differences) can facilitate 

recognition when high-frequency information is removed by a shape degrading factor as 

blur. 

In one experiment of Wurm and his colleagues' study, both full-color and gray 

scale images were presented in two resolutions, blurred and unblurred, during a naming 

task. RTs were shorter in the full-color unblurred condition and longest in the gray scale 
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blurred condition. They concluded that color does improve recognition of food objects 

whether measured as accuracy or RT, but they did not find the hypothesized interaction 

between color and spatial resolution. Two additional experiments were conducted to 

examine the origins of this effect. They investigated if shape prototypicality or color 

diagnosticity facilitated object recognition. They found that participants were faster at 

recognizing images judged to be highly prototypical (where the object is shown from its 

most common point of view), but that less prototypical images benefit more from color, 

that is, show a greater reduction in RT. These findings are consistent with Biederman and 

Ju (1988) view that primary access to object recognition uses structural (geometrical) 

representation of objects and this representation is in part generated by the presence of 

color. The results of Experiment 5 suggested that participants' explicit knowledge about 

food color (diagnosticity) does not account for the advantage of color in real-time object 

recognition. 

The authors questioned how color and shape could act additively and non- 

interactively in object recognition. They argued that perhaps color contributes to an early 

stage of contour extraction and scene segmentation (De Valois and Switkes, 1983; Walls, 

1942). That role is likely to rely on low spatial frequencies and hence, be relatively 

insensitive to blur. Thus, they concluded that although color does improve object 

recognition, the mechanism is probably sensory, rather than cognitive in origin. 

Otherwise, it would be related to people's knowledge of the colors of things, but this 

would not match with the results of their color-diagnosticity experiment (Wurm et al., 

1993). 
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Several of these experiments concluded that shape is the basic element in object 

recognition (Ostergaard and Davidoff, 1985; Biederman and Ju, 1988; Wurm et al., 1993; 

Joseph and Proffitt, 1996) and that color plays a secondary role, facilitating object naming 

as a final step in object identification (Ostergaard and Davidoff, 1985; Wurm et al., 1993). 

But when object shape is degraded, color may play a more important role facilitating 

object recognition by scene segmentation (Biederman and Ju, 19880). 

The discrepancy that exists among the researchers related to the role of color in 

object recognition, has originated a similar question about the use of color in 

multisensored fusion, in which artificially colored images are supposed to improve human 

performance in target detection and situational awareness. Part of the discrepancy of 

these latter studies may be originated by the different fusion algorithms used or by the 

wide variety of psychophysical tasks employed to measure behavior (Sinai et al., 1999b), 

as can be seen in the following summarized experiments. 

Waxman, Gove, Seibert, et al. (1996) conducted an experiment trying to evaluate 

human perception during a visual search task. The detection of embedded small low- 

contrast targets in natural night scenes, was measured in terms of reaction time, and 

accuracy. Visible, infrared, color fused, and two forms of fused gray scale images, were 

shown to the participants, whose task was to determine whether the hidden target was on 

the right half or the left half of the screen. Although the report of this study does not 

show any statistics supporting the results, RTs during the detection task were fastest when 

color fused imagery was used, across various levels of target contrast. 
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Toet, Ijspeert, Waxman and Aguilar (1997) investigated if the increased amount of 

detail in the fused images can yield an improved observer performance in a task that 

requires situational awareness. Fused images were obtained from low visible and thermal 

signals, using two different fusion methodologies. The stimuli presented to the 

participants were in six different chromatic formats: Fused color images generated by two 

fusion algorithms, gray level images representing the luminance component of the fused 

color images, and gray level images representing the signals of the low-visible and the 

infrared cameras. The task required the detection and localization of a person in the 

displayed scene, relative to some characteristic details that provide the spatial context. 

Visual and thermal contrasts were low, since stimuli were collected just before and 

after sunrise. Visual contrast was low due to low luminance of the sky. Thermal contrast 

was also low due to the similar temperature of the objects in the scene. The authors 

hypothesized that the fusion of images registered in these conditions would result in 

images that represented both the context (background) and the details with a large thermal 

contrast (like people) in a single composite image. The results showed that participants 

could indeed determine the location of a person in a scene with a significantly higher 

accuracy when they performed with fused images, compared to the other chromatic 

formats. The two color fusion algorithms yielded the best overall performance, producing 

error rates of 1.5% and 1.9%, while the corresponding gray scale fused images, 

respectively, produced error rates of 4.5% and 4.9%. The error rate for the thermal 

images was 8%, and for the visual images was 20%. The authors concluded that color 

contrast in fused imagery does help in target detection. 
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The objective of the study conducted by Steele and Perconti (1997) was to 

determine whether color fusion processes, were of benefit to helicopter pilots in the 

performance of night helicopter flights. Specifically, the authors investigated whether 

adding synthetic color to night vision multisensor (visible near infrared and long wave 

infrared) fused imagery, aided pilots in interpreting spatial relationships and improving 

situational awareness. The study consisted of a part task simulation, with three task 

groups: object recognition and identification, horizon perception and geometric 

perspective tasks. Object recognition and identification tasks are those tasks that required 

the participant to either determine if a specific object was present, locate a specific object 

and determine its position in the field of vision, and provide detail information about an 

object. Horizon perception tasks are those tasks that required the participant to determine 

whether or not the perceived horizon was level. Geometric perspective tasks required the 

participant to identify the shape or orientation of an object using monocular depth 

perception cues. 

Images were presented in five different chromatic formats: I2 monochrome, FLIR 

monochrome, a gray scale fusion algorithm and two different color fusion algorithms. 

Each task group yielded different results for the three general types of visual tasks used, 

although in general fusion based formats resulted in better participant performance. The 

authors concluded that the benefits of integrating synthetic color to fused imagery are 

dependent on the color algorithm used, the visual task performed, and scene content. In 

the object recognition task, both the FLIR and the gray scale fusion formats resulted in 

significantly faster RTs. In the horizon perception tasks no significant differences were 
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found among response times and accuracy. In geometric perspective tasks the gray scale 

fusion algorithm produced significantly faster RTs than the FLIR alone. There were no 

significant differences among the other formats. The two color fusion algorithms 

examined in this study represent two very different approaches. Therefore, it is not 

surprising to find these two algorithms on opposing ends on some of the data plots of this 

study (Steele and Perconti, 1997). 

The purpose of the study conducted by Krebs et al. (1998) was to modify the 

existing F/A-18 targeting FLIR system by adding a dual-band color sensor to improve 

target contrast and standoff ranges. The authors argued that objects viewed by low-light 

and infrared sensors would have dramatically different contrast levels between each 

system. Therefore, displaying these variations as color differences should improve target- 

background contrast and increase the dynamic range of the scene. When searching for a 

target, color should help by giving better context to the scene, as a result of the higher 

contrast among objects in the scene (scene segmentation), thus allowing for more efficient 

pilot orientation and target detection. 

This experiment used eight nighttime video sequences collected from an early 

prototype fusion sensor system developed by Texas Instruments and the Night Vision and 

Electronic Sensors Directorate (NVESD). Each of the sequences was presented in five 

different image formats: low light visible imagery, infrared imagery, gray scale fused 

imagery and two different color fused imageries. It was hypothesized that these images 

should be maximally optimized for target discrimination. A standard visual search task 

was used to assess whether pilots' situational awareness was improved by using sensor- 
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fused imagery. Participants responded faster to the infrared target compared to one of the 

color fused target, while the other color fused target showed no significant difference. 

These results generally agree with Steele and Perconti's (1997) study that used the same 

videotaped sequences. The authors concluded that color fusion did not improve pilots' 

situational awareness. Pilots reported that the color fused scene appeared unnatural due 

to the choice of colors. However, pilots did report that color fused objects were easier to 

discriminate than IR or I2 objects, because of the color contrast that facilitates 

discrimination from the background noise. Therefore, color fusion may be more 

appropriate for targeting applications compared to navigation and pilotage applications. 

The study conducted by Sinai, McCarley, Krebs and Essock (1999b) compared 

performance on two different tasks, an object recognition task and a situational awareness 

task. The authors hypothesized that performance on these two very different tasks would 

be differently affected both by the single sensor imagery and by the fused imagery. They 

hypothesized that performance on the detection/recognition task should be better for the 

IR imagery, because IR images usually have higher contrast than the I2 image. Likewise, 

they hypothesized that performance should be slightly better for the I2 imagery compared 

to the IR imagery for the situational awareness task, because IR imagery has lower 

resolution than the I2 imagery. The authors also argued that the fused imagery would 

result in performance at least as good as the better of the two single band sensors. 

Stimuli were images collected using long-wave IR sensor and I2 low-light sensor. 

Six image formats were tested: single band IR and low-light formats, two color-fused 

formats and two achromatic fused formats, with each of the fused formats using IR 
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imagery of white-hot polarity or black-hot polarity respectively. Two experiments were 

conducted. The first required participants to detect a target (person, vehicle or neither) 

against naturalistic backgrounds. The second measured participants' situational awareness 

by asking them to decide whether the scene was inverted or not. 

Significant differences were found between the white-hot color fused error rates 

and the white-hot gray scale fused error rates for both tasks. Thus, the false-color of the 

fusion algorithm improved performance for this format and for both tasks. The only 

difference between the two formats was the addition of color. In the other fused format 

tested, however, color not only did not improve performance but even actually hindered 

performance by increasing error rates in both tasks. The results of this study showed great 

evidence for the benefits that color-fused imagery can produce in human performance, but 

also demonstrated how drastically results may vary according to tasks or algorithms used 

in the research (Sinai et al., 1999b). 

In sum, several of these experiments concluded that color fusion facilitates target 

detection (Waxman et al., 1996) and situational awareness (Toet et al., 1997; Sinai et al., 

1999b), one concluded that just targeting applications but not situational awareness may 

benefit from a color fusion scene (Krebs et al., 1998) while Steele & Perconti (1997) 

argued that the benefits color fusion depends on the color algorithm used, the visual task 

performed and scene content. 

Summarizing the plausible benefits generated by the use of colored imagery, there 

is certain evidence that color may play an important role in object recognition when shape 

is degraded, both by means of scene segmentation in a bottom-up process, and by 
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accessing stored knowledge in a top-down process, if colored imagery is congruent. For 

these same reasons, the use of color in fused imagery, where most of the times the 

contours of the objects will not be sharply defined, seems to be useful too in object 

recognition at least achieving a bottom-up process in which color contrast can facilitate 

contour definition, although there exists the possibility that color incongruency may 

originate disruptive effects, as it was shown in the reviewed literature. Therefore, it seems 

to be enough support to move forward in the research regarding the role of natural color 

and false color in object recognition. 

F.        HYPOTHESIS 

In an effort to continue in this field of research, avoiding some of the deficiencies 

detected in the past and summarizing several of different techniques used in previous 

studies, this thesis will conduct a human performance experiment by measuring reaction 

times and error rates during a standard object naming task, trying to examine how natural 

and artificial color facilitates object recognition when objects' shape information is 

degraded. Naming was chosen as the psychophysical task for this experiment for two 

reasons. First, it provides a way to check the accurate and positive identification of the 

object presented in each stimulus to the participant. Also, because if color affects the 

processing of objects at any stage from early registration to the availability of the object 
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name, this should be reflected in the object naming latencies (Ostergaard and Davidoff, 

1985). 

Digital photographs of natural objects (fruits and vegetables) were used. Common 

food objects also provide a favorable domain for studying the interaction of color and 

shape due to their natural although limited variation of both attributes within a category 

(Wurm et al., 1993). The familiarity and non-arbitrary colors of these objects might 

encourage participants to use color for recognition, perhaps especially in those cases when 

shape is no so helpful due to its similarity among several stimuli. 

The effect of natural and artificial color was examined by comparing natural and 

false color imagery with their gray scale counterparts as a control for luminance. Since 

colored images and their gray scale equivalents were matched in luminance, any advantage 

measured in the colored imagery should have been originated by the presence of color. 

Gaussian monochromatic noise was used as an image-degrading factor. The aim 

of using noise was to achieve some type of image degradation in order to examine how 

recognition might be affected under the degraded viewing conditions that occur with night 

vision devices. 

It was hypothesized that if stored color knowledge affects object recognition, 

shorter RTs and smaller error rates would occur within the natural color images across all 

levels of noise, and that the difference in RTs and error rates between natural color and 

false color images would be largest in the conditions with the greatest amount of noise. 

Faster RTs and smaller error rates were expected within the natural color images because 

participants would be able to use color information to access stored knowledge of the 
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participants would be able to use color information to access stored knowledge of the 

objects' chromatic features. Larger effects of natural color images were also expected in 

the conditions with higher levels of noise because here, since the objects' shape 

information was degraded, subjects might be encouraged to rely more heavily on color 

information to recognize the stimuli. The longest RTs and greatest error rates were 

expected within the gray scale images, because participants would not be able either to 

accomplish scene segmentation or to access stored knowledge during the object 

recognition task. Intermediate results would be achieved by false color images, because 

participants, although they were not able to access stored knowledge of color, at least they 

would be able to achieve scene segmentation and speed up recognition, compared to gray 

scale images. The four stated hypotheses are summarized below: 

• Shorter RTs and smaller error rates were expected within natural color stimuli 

across all levels of noise. 

• Differences in RTs and error rates between natural color and false color stimuli, 

were expected largest for greatest levels of noise. 

• Longest RTs and greatest error rates were expected within the grayscale images. 

• Intermediate results were expected for false color images. 

These will be the Alternative Hypotheses for the statistical tests. The Null 

Hypotheses will be that there are no differences. 
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m.      EXPERIMENT 

A.       METHODS 

1. Participants 

Thirteen students (eleven male and two female) from various military services and 

job specialties, undergoing academic studies at the Naval Postgraduate School, and 

ranging in age from 28 to 38, voluntarily participated. Participants who volunteered for 

this study might not represent a broad spectrum of the population but their 

psychophysical characteristics were very similar to those of potential NVDs operators. 

All participants were screened for normal color vision with the Pseudo-isochromatic 

Plates and had at least 20/20 corrected vision. Participants were naive to the purpose of 

the experiment. All participants were native English speakers. All participants granted 

informed consent prior to participation. 

2. Apparatus 

The experimental workstation consisted of a 200 MHz Pentium personal 

computer equipped with a Texas Instrument TMS-340 Video Board and the 

corresponding TTGA Interface to Vision Research Graphics software. The stimuli were 
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MF-8521 High Resolution color monitor (21" X 20" viewable area) equipped with an 

anti-reflect, non-glare, P-22 short persistence CRT. Pixel size was .26" horizontal and 

.28" vertical. Resolution was 800 X 600 square pixels and the frame rate was 98.7 Hz. 

Luminance of the monitor was linearized by means of an eight-bit color look-up table 

(LUT) for the red, blue and green guns. Moderate ambient luminance was maintained 

during the test. Viewing distance was approximately 100 cm and the participants were 

free to move their heads. 

3.        Stimuli 

Experimental stimuli were digital images of twenty-three fruits and vegetables 

whose names appear in Table 1. Images were photographed by the experimenter with a 

Kodak digital camera, Model DC50. Objects were photographed in the early afternoon 

under natural daylight against a background of white paper. Each object was 

photographed from four different viewpoints, all of them judged to be canonical by the 

experimenter. Viewing distance was varied in order to make all objects occupy 

approximately the same area within the photograph. From the initial set of twenty-three 

objects photographed, the nineteen objects judged by the experimenter to be the most 

common and easy to name were selected for use in the experimental trials. The four 

remaining objects were reserved for use in the practice trials. 

Images were then manipulated using commercially available image processing 

software (Adobe Photoshop 4.0). Images were first cropped to a rectangle 600 X 500 
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STIMULUS OBJECTS 

APPLE AVOCADO(*) BANANA 

BEANS BROCOLI CABBAGE 

CARROT COCONUT CORN 

CUCUMBER GARLIC(*) GRAPES 

LEMON MUSHROOM ONION 

ORANGE(*) PEAS PEAR 

PEPPER POTATO RADISH 

TOMATO ZUCCHINI^) 

(*) Object used for practice trials only. 

Table 1: Object names. 

pixel size, subtending 11.4° X 10.2° of visual angle from a viewing distance of 100 cm, 

and then rendered in each of four different color formats: natural hue chromatic, natural 

hue achromatic, false hue chromatic and false hue achromatic. False hue images were 

obtained by replacing the color of each pixel in a natural hue image with its 

complementary color. Complementary colors are a pair of colors which when mixed 

additively, appear as white. Along a color wheel, complements are any two colors 

separated by 180 degrees, that is, any two colors at opposite ends of a single diameter. For 

consistency, all images of natural hue were reassigned a value of+180 degrees in order to 

get their false color counterparts. The value of+180 degrees was chosen arbitrarily and is 

of no theoretical significance. Natural hue achromatic and false hue achromatic images 
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chromatic natural hue and false hue images, respectively, to gray scale. Gray scale images 

matched their chromatic counterparts in pixel-by-pixel luminance. The purpose of these 

gray scale images was to provide a control for any changes in luminance that accompanied 

manipulations of color within chromatic images. 

Once the four sets of stimuli were obtained, degraded images were produced by 

addition of achromatic gaussian noise to undegraded images. Noise was added by 

increasing or decreasing the intensity of each pixel within an image by a value draw 

pseudo-randomly from a Gaussian distribution with a mean of 0. The standard deviation 

(SD) of this distribution determined the level of degradation. Three levels of noise were 

used. At the first level images were not degraded (SD of noise distribution = 0). At the 

second and third levels, images were degraded with values drawn from Gaussian 

distributions with SDs of 50 and 100 units respectively. Color formats and degradation 

levels were crossed factorially. 

Mean luminance of each image in the experimental set of stimuli was calculated. 

The mean value and standard deviation of the luminance values for each color format and 

level of noise was computed. These results are shown in Table 2. As it is shown in Table 

2, average luminance for all color formats is almost a constant for each level of noise, 

although values of individual images changed more drastically. Pixel values of less than 

zero or greater than 255 were set to values of zero and 255, respectively, when noise was 

added. Therefore, mean pixel values decreased slightly as noise increases, tending toward 

a value of 128 (50 cd/m2). The mean luminance for each chromatic format is almost 

constant too, (Natural hue chromatic =58.15 cd/m2, false hue chromatic = 57.92 cd/m2, 
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cd/m , natural hue monochromatic = 58.08 cd/m2, false hue monochromatic = 58.12 

cd/m ). Therefore, differences in RTs between color images and their gray scale 

counterparts cannot be attributed to differences in luminance. 

COLOR FORMAT 

Natural Hue 
Chromatic 

False Hue 
Chromatic 

Natural Hue 
Monochro- 
matic 

False Hue 
Monochro- 
matic 

NOISE 
LEVEL 

0 
58.84 58.61 58.85 58.83 

9.31 8.63 9.20 8.43 

1 
58.69 58.45 58.60 58.63 

8.88 8.82 8.81 8.07 

2 
56.89 56.70 56.79 56.89 

7.08 6.56 7.13 6.35 

Table 2: Mean values and standard deviations of luminance for each color 
format and level of noise in cd/m2. 

4. Procedure 

Each of nineteen objects was presented at random in twelve different formats, and 

from two different points of view selected at random from among the four available 

views of each object. A total of 456 (19X12X2) stimuli were presented to each 

participant as experimental trials, and fifteen stimuli were presented for practice 

purposes. 

55 



Each subject was thoroughly briefed on the background and procedures of the 

experiment and was given the opportunity to ask questions. Prior to testing, participants 

read a list of the nineteen food categories in the experimental trials and the four categories 

in the practice trials. They were told that their task was to name as rapidly and accurately 

as possible the object presented in each stimulus. They were also told that the objects 

would fill the viewing window on the screen (i.e., there would be no scale information) 

and that items could appear alone, or in groups of items of the same type (beans, grapes, 

peas and radishes). 

Participants were tested one at a time. They were seated in front of the monitor at 

distance of 100 cm. The experimenter was seated in front of a different monitor in the 

same room, from which he could not see the stimulus images and remained unaware of the 

format in which each image was presented. There was a warning tone to alert the 

observer that the trial was going to start followed by a pause of 500 msec before the 

image was presented on the screen. Each image remained on the screen until the observer 

responded. Upon hearing the observer's response, the experimenter immediately pressed 

a key to stop the timer and one more key to record the accuracy of the response (1 for 

"true", 2 for "false"), based on the correct response that appeared on the experimenter's 

monitor. No feedback was provided following any response. The subsequent trial 

followed after an intertrial interval (ITI) of approximately 1,000 msec. A uniform gray 

patch of the same size as the food images was shown on the screen during ITI's. The 

experimenter allowed participants to relax for a short period of time after each group of 

40 images. Each participant completed two experimental sessions, with each session 
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composing a block of 228 trials. Within a block, participants observed each of the 

nineteen objects, once in each of the twelve image formats (19 X 12). The point of view, 

from which each object was viewed, was chosen randomly. The entire experiment lasted 

approximately 50 minutes (25 minutes for each session). 

Each subject was given a block of 15 practice trials prior to the first session of the 

experiment. All the participants held both sessions on the same day. The practice trials 

were presented in the same format as the experiment stimuli. Upon completion, 

participants were offered a brief pause to ask any question. The actual experiment then 

started. Reaction time and accuracy were recorded for each trial. 

5.        Experimental Design 

The experimental design for this study was a2X2X3X2 within-subjects 

factorial design. Factors included color (chromatic or achromatic), hue (natural or false), 

level of noise (0,50,100), and block (Sessions 1 or 2). Sex was not considered as a factor 

for this experiment. Each of the 12 cells contained 38 observations per participant (19 

objects X 2 replications) for a total of 456 data points per participant. Reaction times for 

incorrect responses, and all data from the 15 practice trials were excluded from data 

analysis. Previous calculations determined that the number of participants (13) was 

sufficient in order to achieve statistical power greater than 0.8 under all hypotheses. 
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B.       DEVELOPMENT OF THE STATISTICAL MODEL 

As with any psychophysical experiment, inconsistencies occur between various 

participants' RTs and error rates under different experimental conditions. These 

differences arise in part due to variances in individual participants, image conditions and 

manipulation. To account for these differences, the following model is proposed: 

RTijkimn (or Error rates) = Parti + Colorj + Huek + Noisei + Block,,, + error,, 

Where Parti represents the ith participant of the experiment; 

Colorj represents the color of the image (chromatic or achromatic); 

Huek represents the hue condition of the image (natural or false); 

Noisei represents the level of achromatic Gaussian noise (0,50,100): 

Blocks represents each of the two sessions of the experiment (SI or S2); 

errorm represents unaccounted variations within the model. 

C.       RESULTS AND DISCUSSION 

Mean RTs and error rates for all twelve combinations of color conditions and 

levels of noise, averaged across participants, are shown in Table 3 and Table 4. These 

same results are also represented graphically in Fig. 11 and Fig. 12. 

Figure 11 illustrates how RTs increased for all four color formats when noise 

increased. Natural color (NC) RTs were the shortest at each level of noise compared to 
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COLOR CONDITION 

Natural hue 
Chromatic 

Natural hue 
achromatic 

False hue 
chromatic 

False hue 
achromatic 

NOISE 
LEVEL 

0 
910.10 914.58 968.15 951.09 

11.09 9.76 12.92 15.11 

1 
940.12 971.01 975.93 1005.88 

13.71 12.95 13.86 16.54 

2 
1015.23 1091.01 1064.08 1146.12 

17.26 17.21 18.31 23.73 

Table 3: Mean reaction times and standard errors (msec) for each level of noise and 
color condition. 

COLOR CONDniON 

Natural hue 
Chromatic 

Natural hue 
achromatic 

False hue 
chromatic 

False hue 
Achromatic 

NOISE 
LEVEL 

0 
0.40 1.21 0.61 2.23 

0.28 0.44 0.34 0.66 

1 
1.62 3.04 3.24 4.05 

0.57 0.78 0.72 0.84 

2 
3.04 8.12 8.30 10.53 

0.88 1.37 1.28 1.49 

Table 4: Mean error rates and standard errors (%) for each level of noise and color 
condition. 
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Figure 11: Mean reaction times (msec) for each level of noise and color 
condition, with one SEM error bars. 

Figure 12: Mean error rates (%) for each level of noise and color condition, with one 
SEM error bars. 
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the other color formats, as was predicted by the first hypothesis. The differences in RTs 

between NC and FC conditions, however, did not increase as the level of noise increased, 

in opposition to the statement that was made in the second hypothesis. These differences 

were almost constant across all levels of noise, although RTs for NC images were always 

shorter than FC RTs at the same level of noise. 

At level of noise 0, RTs were shortest for natural hue formats (NC and NG), and 

longest for artificial hue conditions (FC and FG). As the levels of noise increased, RTs for 

the achromatic conditions (NG and FG), became slower compared to the chromatic 

conditions (NC and FC). The difference in RTs between chromatic and achromatic stimuli 

increased as noise increased, reaching the longest RTs at the highest level of noise as it 

was stated in the third hypothesis. Also, although FC condition had the longest RT at 

level of noise 0, as noise increased its performance improved and it showed the second 

best result at level of noise 2, as it was stated in the fourth hypothesis. 

There was a great similarity between RTs and error rates results. Figure 12 

illustrates how NC error rates were smaller for each level of noise compared to the other 

color formats, as it was stated in the first hypothesis. At level of noise 0, error rates were 

very similar for NC and NG formats. FC error rates were almost the same as NC error 

rates, although for levels of noise 1 and 2, FC error rates were more similar to the 

achromatic formats (NG and FG), and its differences with NC stimuli increased as the 

level of noise increased, as was predicted by the second hypothesis. 
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Both figures show larger RTs and error rates for the achromatic conditions and 

intermediate results for the FC conditions in each level of noise, as was predicted by the 

third and fourth hypotheses. 

Using the same results of the experiment, this study conducted the measurement of 

the advantage of using natural color versus false color, for different levels of noise. 

Because changes of hue also entailed changes of luminance within stimulus images, a 

direct comparison of RTs to NC and FC images cannot indicate effects of natural 

chromatic information. In order to assess the benefit of the use of color, therefore, Tables 

5 and 6 express the differences in RTs and ERs, between achromatic and chromatic 

natural conditions (NG-NC) and between achromatic and chromatic artificial conditions 

(FG-FC) at each level of noise. These values will be referred to as natural color benefit 

and false color benefit. If there was any benefit originated by the use of color, chromatic 

conditions should have obtained better results than their gray scale counterparts and this 

advantage should have increased with increasing levels of noise. Were the benefits of 

color rendering the exclusive result of facilitated image segmentation, furthermore, then 

effects of natural and false color should have been similar across all levels of noise. 

Conversely, was natural color useful in accessing the stored information necessary for 

naming stimulus items, natural color benefit should have exceeded the benefits of false 

color, particularly at high levels of image noise where information about the stimulus 

items' shapes was most severely degraded. Also, these differences are shown in Fig. 13 

and Fig. 14. 
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Figure 13 shows almost no advantage at level of noise 1 for natural conditions and 

a small, although non-significant, disadvantage for artificial conditions. As noise 

increases, color benefits increase too, with the largest advantage for the largest level of 

noise and very similar advantages both for natural and for artificial conditions. The use 

of either natural or artificial color seems to be similarly helpful regarding RTs in a 

recognition task, although NC RTs are always faster than their FC counterparts. 

Natural Artificial 

Level 0 4.48 -17.06 

Level 1 30.89 29.95 

Level 2 75.78 82.04 

Table 5: Mean reaction time differences (msec) for each level of noise and 
hue. 

Level 0 

Level 1 

Level 2 

Natural 

0.81 

1.42 

5.08 

Table 6: Mean error rate differences (%) for each level of noise and hue, 

Artificial 

1.62 

0.81 

2.23 
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■Artificial 

Noise 

Figure 13: Mean reaction times color advantage (msec) for each level of noise and 
hue. 

Figure 14 illustrates how for natural conditions, color benefit for error rates 

increased with the level of noise, but artificial conditions did not show a similar increase 

of benefit in error rates when the level of noise increased, although these differences were 
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Figure 14: Mean error rates color advantage (%) for each level of noise and hue. 
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non-significant. Nevertheless, there always existed certain benefit in accuracy for each 

level of noise and each color condition. 

To determine the appropriate statistical method to be used in the analysis of the 

results of this experiment, normality tests were conducted, using histograms and normal 

QQ-plot of residuals as diagnostic plots. These tests showed that the data failed to follow 

the properties of normality. In order to satisfy the assumption of normality, power 

transformations were applied to the RT and error rates data. RTs on trials on which 

participants responded incorrectly were treated as missing values. Repeated measures 

analyses of variance (ANOVAs) were performed on the transformed data, both for RTs 

and for error rates with a significance level of 0.01. Although the analyses were 

performed on 1/RT and squared root of ER, the terms RT and error rates are used for 

convenience throughout this study. Mean RTs in milliseconds (msec) and mean error 

rates in percent for each of the participants were calculated from individual performances 

for each condition. When RT and error rates means are reported in the text, these are 

untransformed data. 

The analysis, with participants as a random variable, was a 2X2X3X2 repeated 

measures ANOVA, with the independent variables Hue (natural, false), Color (chromatic, 

achromatic), Noise (0, 50, 100), and Block (1,2). The first three independent variables 

were repeated within subjects. The same ANOVA that was used for RTs was also used 

for error rates analysis. 

The a priori hypotheses and some interesting interactions can be explored using 

univariate analysis on RT and error rates separately. ANOVA on the dependent variable 
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RT, showed significant main effects for: Color: F(l,5674) = 20.7366, p < 0.01; Hue: 

F(l,5674) = 36.0931, p < 0.01; and Noise: F(2,5674) = 141.0512, p. < 0.01. Participants 

responded significantly faster when images were chromatic rather than achromatic, when 

hue was natural rather than artificial and when images were less degraded by Gaussian 

noise. Mean RT for chromatic images was 978.94 msec (Std. Dev. 122.4 msec) and for 

achromatic images was 1013.28 msec (Std. Dev. 131.1 msec). Mean RT for natural 

images was 973.68 msec (Std dev 120.6 msec) and for artificial images was 1018.54 msec 

(Std. Dev. 131.1 msec). Mean RTs for the three different levels of noise were: Level 0: 

935.98 msec (Std. Dev. 105.4 msec), Level 1: 973.24 msec (Std. Dev. 106.4 msec), and 

Level 2: 1079.11 msec (Std. Dev. 124.8 msec). The ANOVA results and the above values 

clearly support a significant difference in mean RTs across color, hue and noise conditions. 

Similar results were obtained for the dependent variable ER. ANOVA showed 

also significant main effects for: Color: F(l,285) = 17.5616, p < 0.01; Hue: F(l,285) = 

16.9579, p < 0.01; and Noise: F(2,285) = 54.6472, p < 0.01. Mean error rates for 

chromatic images was 2.87 (Std. Dev. 3.58) and for monochromatic images was 4.86 (Std. 

Dev. 4.89). Mean error rates for natural images was 2.91 (Std dev 3.76) and for artificial 

images was 4.82 (Std. Dev. 4.77). Mean error rates for the three different levels of noise 

were: Level 0: 1.11 (Std. Dev. 1.76), Level 1: 2.99 (Std. Dev. 2.71), and Level 2: 7.50 

(Std. Dev. 5.11). The ANOVA results and the above values clearly support a significant 

difference in mean error rates across color, hue and noise conditions. Participants were not 

only faster but also more accurate when chromatic, natural and non-degraded images were 

shown to them. 
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Once the significance of the main effects was tested, the factorial interactions were 

analyzed. The next set of figures was constructed to assist in analyzing factorial 

interactions for both dependent variables. Figure 15 and Figurel6 illustrate the Hue by 

Color interaction. The lines joining mean RTs and error rates for the same Color level are 

roughly parallel across the two levels of Hue. Apparently, there is no interaction between 

these two factors at the 1% significance level. ANOVA yields these results: Dependent 

variable RT F(l,5674) = 4.5517, p_= 0.0329; dependent variable ER: F(l,285) = 1.1320, p 

= 0.2882, confirming the assumption derived from the graph inspection. 

The non-significance of this interaction for both dependent variables shows that 

although participants were faster and more accurate with chromatic images compared to 

their achromatic counterparts, these differences in RTs and error rates were similar for 

both natural and false hue. It seems that the advantage of NC images over NG images 

(derived from the presence of color) is similar to the advantage of FC over FG images. 

These results suggest that false color is not interfering with recognition; otherwise the 

difference between natural conditions (NG -NC) compared to the difference between 

artificial conditions (FG-FC) should have been significant. 

Figure 17 and Figure 18 illustrate the Noise by Color interaction. Figure 17 shows 

how as the level of noise increases, the differences in RTs for each level of noise increase 

too, with faster RTs and greater accuracy for the chromatic images. Apparently there is 

interaction between these two factors for the dependent variable RT. ANOVA yields these 

results: Dependent variable RT F(2,5674) = 9.4622, p_< 0.01; dependent variable ER: 

F(2,285) = 1.4343, p = 0.2399, therefore just the interaction for RT is significant. 
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yields these results: Dependent variable RT F(2,5674) = 9.4622, p_< 0.01; dependent 

variable ER: F(2,285) = 1.4343, E = 0.2399, therefore just the interaction for RT is 

significant. 

RTs 

N 

Hue 

Figure 15: Mean reaction times (msec) for hue and color conditions. 

Figure 16: Mean error rates (%) for hue and color conditions. 
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Figure 17: Mean reaction times (msec) for noise and color conditions. 

Figure 18: Mean error rates (%) for noise and color conditions. 

69 



The significance of this interaction for the dependent variable RT shows that participants 

were not only faster with chromatic images compared to their achromatic counterparts but 

also that the difference between chromatic and achromatic stimuli increased as the levels 

of noise increased. These results suggest that color is playing a role in object recognition 

speeding the identification of the stimuli when their shape is degraded and that the more 

degraded the objects are, the more helpful color is. As noted above, the absence of an 

interaction between level of hue (natural or false) and level of color (chromatic or 

achromatic) indicates that this effect is the result of facilitated image segmentation. 

Figure 19 and Figure 20 illustrate the Noise by Hue interaction. Figure 19 shows 

how the lines that represent mean RTs both for natural and false images across the three 

levels of noise, remain parallel to each other. Apparently there is no interaction between 
v 

these two factors for the variable RT.Figure 20 shows how these lines slightly diverge for 

increasing levels of noise, indicating a possible interaction between these two factors for 

the dependent variable ER. ANOVA yields these results: Dependent variable RT 

F(2,5674) = 0.3262, p_= 0.7217; dependent variable ER: F(2,285) = 2.7447, p = 0.0659, 

indicating no significance of the hue by noise interaction for any of the dependent variables 

RT or ER. The non-significance of this interaction for both dependent variables RT and 

error rates shows that although participants were faster and more accurate with natural 

hue images than with their artificial counterparts, the difference between these two 

formats did not increase with increasing levels of noise. These results suggest that false 

color is not interfering with recognition as the level of noise increases, in a similar way as 

it was shown for the Hue and Color interaction. 
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Figure 19: Mean reaction times (msec) for noise and hue conditions. 
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Figure 20: Mean error rates (%) for noise and hue conditions 
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Factorial three-way interaction for both dependent measures resulted non- 

significant according to ANOVA results: dependent variable RT: F(2,5674) = 0.1944, p = 

0.8233; dependent variable ER: F(2,285) = 1.2618, p = 0.2847. Based on these results, 

the second a priori null hypothesis (no interaction of NC and FC conditions) cannot be 

rejected. The non-significance of this interaction shows that the difference between 

natural hue images and their gray scale counterparts (NG-NC) and between false hue 

images and their respective achromatic counterparts (FG-FC) does not change 

significantly when the levels of noise change. These results suggest that both the 

beneficial effects of natural color and false color remain similar for increasing levels of 

noise. 

Experiment data analysis showed that RTs for color stimuli were faster compared 

to gray scale images and that this effect increased when the level of noise increased. These 

results suggest that both natural color and false color conditions might be beneficial in 

object recognition. The advantage of using natural color seems to be similar to the 

advantage that is obtained when artificial color is used. Therefore false color does not 

seem to be disruptive in recognition tasks. Both natural and false color stimuli are similarly 

helpful at different levels of noise, such that even for high degradation levels false color 

remains non-disruptive in object recognition. All these results also suggest that participants 

are not using color to recognize the objects in a top-down process. They are just fulfilling 

a bottom-up process using color for image segmentation, without any effect of the level of 

color (natural or false) or of the level of noise. If they were using stored knowledge of 
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color to recognize objects, the advantage of using natural color should be larger than the 

advantage obtained from the use of false color, and this is not the case. 

It should be recalled that FC images were obtained by means of hue manipulation 

of the original NC images. The significant difference of performance by the participants at 

level of noise 0, when dealing with these images, could have been originated by two kinds 

of reasons: i) false color is disruptive in object naming tasks, based on incongruency with 

the stored knowledge of color; ii) changes in luminance with respect to the NC images, 

originated during hue manipulation. All achromatic stimuli, both with natural or false hue, 

were obtained from their chromatic counterparts without introducing any change in 

luminance during the transformation. Luminance of NC stimuli is the same as the luminance 

of NG stimuli. For the same reason, luminance of FC stimuli is the same as the luminance 

of the FG stimuli. Therefore, differences in responses between NG and NC stimuli or 

between FG and FC stimuli, are due just to changes in color. Also, ANOVA results for 

hue, color and noise effects showed that false color was not disruptive during the naming 

task conducted in this experiment. Thus, differences in responses between NC and FC 

images are due just to changes in luminance. 

NG images achieve better performances than their FG counterparts for all different 

levels of noise and for dependent variable RT. The results of these two chromatic 

conditions were expected to be similar. In this case, these different results cannot be 

explained based on differences in color, given that both conditions are achromatic. These 

diverging results should have been originated then by changes in luminance, possibly 

introduced when hue was manipulated, based on the similar value of the differences with 
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their chromatic counterparts (NG-NC vs. FG-FC), both for RTs and error rates, and based 

also on the fact that gray scale images were obtained from manipulation of their respective 

chromatic counterparts, just eliminating color. Therefore, differences between NC and FC 

stimuli for RTs are due just to changes in luminance. 

There is a possibility that could explain how these manipulations in hue could 

affect the luminance of the image. Measures of luminance for NC and FC stimuli showed 

that luminance for some images increased and for others decreased when the change of 

hue was conducted. Although the mean luminance of all the images for each format did 

not change (at level of noise 0 mean luminance for NC images was 150.06; Sdev 14.86 

and for FC was 149.46; Sdev 13.79), changes in luminance could have affected each 

image in a different way, with luminance increasing in some places of the image and 

decreasing in others. This could have left mean luminance for each whole image 

unchanged but would have changed the contrast within the images. Poorer contrast in the 

vicinity of the object's contour could have made object recognition more difficult to 

achieve. 

Paired comparisons using Tukey's method were conducted at each level of noise, 

and for both dependent variables RT and error rates, among the different color conditions. 

These results are represented graphically in Table 7. Underlined pairs are non-significant. 

The numeric results of these comparisons can be seen in Tables 8 and 9. These tables 

show how, at each level of noise, participants were faster and more accurate with NC 

stimuli than with any other condition. 
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Based on these results the first null hypothesis can be rejected. Differences in 

RTs between NC and FC stimuli resulted significant at level of noise 0 but there were 

non-significant at other levels of noise and the difference between them did not increase 

as the levels of noise increased so, the second null hypothesis cannot be rejected. The 

third and fourth null hypotheses can be rejected based on the facts that gray scale images 

achieved the longest RTs and greatest error rates at each level of noise, and the FC 

images achieved intermediate results, as it was hypothesized. For the dependent variable 

error rates, just NC stimuli resulted significantly different from FG stimuli at level of 

noise 0, and level of noise 2. 

Noise Level 0 

RTs Paired Comparisons 

NC NG FG FC 

Noise Level 1 

Noise Level 2 

Noise Level 1 

Noise Level 2 

NC NG FC 

NC FC NG 

ERs Paired Comparisons 

Noise Level 0 NC FC NG 

NC NG FC 

NC NG FC 

FG 

FG 

FG 

FG 

FG 

Table 7: Tukey's Method Paired Comparisons. 
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Noise level 0 FC FG NG NC 
FC X 0.000019 0.000061 (SIG) 0.000066 (SIG) 
FG 0.000019 X 0.000042 (SIG) 0.000047 (SIG) 
NG 0.000061 (SIG) 0.000042 (SIG) X 0.000005 
NC 0.000066 (SIG) 0.000047 (SIG) 0.000005 X 
W=0.000041 
Noise level 1 FG FC NG NC 
FG X 0.000031 0.000036 0.000070 (SIG) 
FC 0.000031 X 0.000005 0.000039 
NG 0.000036 0.000005 X 0.000034 
NC 0.000070  (SIG) 0.000039 0.000034 X 
W=0.000043 
Noise level 2 FG NG FC NC 
FG X 0.000044 0.000067 (SIG) 0.000112 (SIG) 
NG 0.000044 X 0.000023 0.000068 (SIG) 
FC 0.000067 (SIG) 0.000023 X 0.000045 
NC 0.000112 (SIG) 0.000068 (SIG) 0.000045 X 
W=0.000048 

Table 8: Mean reaction times paired comparisons for each level of noise and color 
format (Transformed data). 

Noise level 0 FG NG FC NC 
FG X 0.390 0.713 0.856 (SIG) 
NG 0.390 X 0.323 0.466 
FC 0.713 0.323 X 0.143 
NC 0.856 (SIG) 0.466 0.143 X 
W=0.829 
Noise level 1 FG FC NG NC 
FG X 0.212 0.269 0.739 
FC 0.212 X 0.057 0.527 
NG 0.269 0.057 X 0.470 
NC 0.739 0.527 0.470 X 
W=1.134 
Noise level 2 FG FC NG NC 
FG X 0.363 0.394 1.501 (SIG) 
FC 0.363 X 0.031 1.138 
NG 0.394 0.031 X 1.107 
NC 1.501 (SIG) 1.138 1.107 X 
W=1.290 

Table 9: Mean error rates paired comparisons for each level of noise and color 
format (Transformed data). 
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In order to investigate a possible learning effect caused by the use of the first 

session of the experiment as training for the second one, the independent variable Block 

was included in the model, with two levels, Sessions 1 and 2, looking for a significant 

difference between the results of both sessions. A greater learning effect for the FC 

conditions could have obscured the assumed detrimental effects of FC in object 

recognition by decreasing RTs and error rates during the second session. This effect could 

be based on the knowledge achieved by the participants during the first session of the 

experiment. Main effect of Block and interactions with Hue and Color were therefore 

analyzed for both RTs and error rates. ANOVA yielded these results: significant main 

effect for Block, on the dependent variable RT: F(l,5674) = 67.9391, p_< 0.01; and on 

the dependent variable ER: F(l,285) = 15.3184, p < 0.01. None of the interactions were 

significant for any of the dependent variables. These were the results for the interactions: 

Hue by Block interaction for RT: F(l,5674) = 0.6212, p= 0.4306; for error rate F(l,285) 

= 0.00263, p= 0.9591. Color by Block interaction for RT: F(l,5674) = 0.0653, p = 

0.7983; for error rate F(l,285) = 0.5874, p =0.4441. These results suggest that 

participant responses were faster and more accurate during the second session, possibly 

caused by a learning effect during the first session of the experiment. But they were not 

significantly faster at any specific color condition, therefore a greater learning effect, not 

just for FC but for any other particular color condition, could not be proven. Learning 

effect was similar for every color condition. 

77 



THIS PAGE INTENTIONALLY LEFT BLANK 

78 



IV.      CONCLUSIONS 

This experiment examined the role of natural and false color in an object 

recognition task, with degraded and non-degraded images, focusing on improving night 

vision devices that employ the new technology of color fusion displays. 

Four hypotheses were stated in the introduction that summarized several 

assumptions based on previous research about the role of color in object recognition. The 

experimental design was employed to explore dependent measures as reaction time and 

accuracy in object recognition, critical factors when accomplishing military missions in 

which night vision devices are involved. 

The results and discussion presented in the previous chapter supported rejecting 

all but the second null hypothesis. First, third and fourth null hypotheses were rejected, 

based on data analysis that showed how natural color images achieved the best 

performance at every level of image degradation; achromatic images achieved longest 

RTs and largest error rates, and false color stimuli reached an intermediate level of 

performance between these two groups of stimuli. There was a failure to reject that 

differences in RTs between natural color images and their false color counterparts 

increased for increasing levels of image degradation. These results are summarized in 

Table 10. 

Data analysis suggest that differences in performance between natural and false 

hue stimuli were due to differences in luminance and not to chromatic differences in such 
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Null Hypothesis Result Conclusion 

No differences in RTs or ERs 
between natural color stimuli 
and other color formats, across 
all levels of noise 

Reject Null 
Hypothesis 

Shorter RTs and smaller ERs 
within natural color stimuli 
across all levels of noise 

No increasing differences in RTs 
or ERs between natural color 
and false color stimuli for 
increasing levels of noise 

NOT reject 
Null 
Hypothesis 

(Null hypothesis) 

No differences in RTs or ERs 
between chromatic and 
achromatic stimuli across all 
levels of noise 

Reject Null 
Hypothesis 

Longest RTs and greatest ERs 
within the achromatic stimuli 
across all levels of noise 

No differences in RTs or ERs 
between natural hue and false 
hue stimuli across all levels of 
noise. 

Reject Null 
Hypothesis 

Intermediate results for false 
hue stimuli across all levels of 
noise. 

Table 10: Summary of the results. 

a way that if two images (NC and FC conditions) were matched for luminance, it should 

be inconsequential whether the hues were natural or false. 

As a result of the analysis conducted trying to assess the benefit of using color in 

object recognition, it can be concluded that both natural and false hue conditions resulted 

equally beneficial in the task accomplished during the experiment. There was no 

evidence of false color as a disruptive factor during this task, and both natural and false 

hue were similarly useful at different levels of image degradation. Thus, results indicate 

that participants conducted a bottom-up process during the object recognition task, 

making use of color (natural or false) only to achieve image segmentation. These 

findings are consistent with Wurm & Legge (1993), and Biederman & Ju (1988) views 

that primary access to object recognition uses structural (geometrical) representation of 

80 



representation is in part generated by the presence of color. Participants did not use color 

to access stored knowledge of the object's psychological representation. If participants 

were taking advantage of natural color to achieve object recognition, the benefit of natural 

color should have been larger than the benefit of false color, because they would be able to 

fulfill a top-down and bottom-up recognition processes simultaneously. 

More research must still be done in the field of human nighttime visual 

performance, based on the fact already stated that the benefits of integrating synthetic 

color to fused imagery is dependent on the color algorithm used, the visual task 

performed, and scene content (Steele & Perconti, 1997). Future research should study the 

benefits of using false color in each of these scenarios. 

The results of this study give an indication that false color may be useful in future 

color fusion devices based on its facilitation of image segmentation with shape degraded 

images. Although this study was far from covering all different scenarios that may appear 

during a nighttime military operation, it shows as plausible to consider the use of synthetic 

color in the development of new military night vision devices. 
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