
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
SPECIAL OPERATIONS MISSION PLANNING AND

ANALYSIS SUPPORT SYSTEM

by

Keith A. Hattes

June 1999

Thesis Advisor:
Second Reader:

Gordon H
Arnold H.

Bradley
Buss

Approved for public release; distribution is unlimited.

19991129 016

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

June 1999
3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

SPECIAL OPERATIONS MISSION PLANNING AND ANALYSIS SUPPORT SYSTEM
5. FUNDING NUMBERS

6. AUTHOR(S)

Hattes, Keith A.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

United States Special Operations Command, Attn: SORR-SC
7701 Tampa Point Blvd.
MacDill AFB, FL 33621

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a.DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b.DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Current mission preparation and analysis methods place an undue burden of effort on conventional and special operations forces
to effectively synchronize and execute their increasingly complex operational responsibilities in a rapidly changing global
environment. This thesis developed a tool for the United States Special Operations Command (USSOCOM) in support of their
Mission Planning, Analysis, Rehearsal, and Execution (MPARE) initiative to allow special operations forces commanders and staffs
to conduct mission planning and analysis in a distributed environment, and rapidly produce dynamic synchronization matrices and
scheduling products. Operations research methods provide the foundation for the analysis. The system developed in this thesis is
called the Special Operations Mission Planning and Analysis Support System (SOMPASS). SOMPASS is simple to learn and
operate, provides dynamic changes with little effort, and is universal in application. This system has the capability to execute on any
hardware platform, operate across any network connection, and expand easily to support additional users and requirements. This
thesis provides not only a demonstration of capabilities through a special operations oriented illustrative scenario, but also a working
product that can be adapted for use in mission planning and analysis by all units under USSOCOM.

14. SUBJECT TERMS

Mission Planning, Analysis, Synchronization, Critical Path Method, CPM, Special Operations,
MPARE, Java, Loosely Coupled Components

15. NUMBER OF PAGES

152
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239.18

11

Approved for public release; distribution is unlimited.

SPECIAL OPERATIONS MISSION PLANNING AND
ANALYSIS SUPPORT SYSTEM

Keith A. Hattes
Captain, United States Army

B.S., United States Military Academy, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
June 1999

Author:

Approved by:

fKM a
Keith A. Hattes

Richard E. Rosenthal, Chairman
Department of Operations Research

in

IV

ABSTRACT

Current mission preparation and analysis methods place an undue burden of effort

on conventional and special operations forces to effectively synchronize and execute their

increasingly complex operational responsibilities in a rapidly changing global

environment. This thesis developed a tool for the United States Special Operations

Command (USSOCOM) in support of their Mission Planning, Analysis, Rehearsal, and

Execution (MPARE) initiative to allow special operations forces commanders and staffs

to conduct mission planning and analysis in a distributed environment, and rapidly

produce dynamic synchronization matrices and scheduling products. Operations research

methods provide the foundation for the analysis. The system developed in this thesis is

called the Special Operations Mission Planning and Analysis Support System

(SOMPASS). SOMPASS is simple to learn and operate, provides dynamic changes with

little effort, and is universal in application. This system has the capability to execute on

any hardware platform, operate across any network connection, and expand easily to

support additional users and requirements. This thesis provides not only a demonstration

of capabilities through a special operations oriented illustrative scenario, but also a

working product that can be adapted for use in mission planning and analysis by all units

under USSOCOM.

DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and logic

errors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1
1. Military Operations 1
2. The Nature of Special Operations 3
3. Vision 4
4. Need 5
5. Current Systems 8
6. Mission Planning, Analysis, Rehearsal, and Execution (MPARE) 10
7. Operations Research Applications 12

B. PROBLEM 13

C. STATEMENT OF THESIS 15

II. THEORY AND FOUNDATIONS 17

A. NETWORK FLOWS AND GRAPHS 17

B. SOLUTION METHODS 18
1. Critical Path Method (CPM) 18
2. Program Evaluation and Review Technique (PERT) 19

C. TASK REPRESENTATIONS 20
1. Activity on Node (AON) 20
2. Activity on Arrow (AOA) 21

D. COMPONENTS 23
1. Characteristics 23
2. Loosely Coupled Component Architecture 24
3. König 26
4. Thistle 27

E. ALGORITHMS 29
1. Topological Sort 30
2. Longest Path 30
3. Critical Path Method 32

HI. SYSTEM DESIGN 35

A. REQUIREMENTS 35

Vll

B. CAPABILITIES 36
1. Platform Independent 36
2. Dynamic Loading and Viewing 38
3. Distributed 39
4. Thin Client 40
5. Extensible 41

C. MODEL 42
1. Network Representation 42
2. Tasks and Properties 43

D. ARCHITECTURE 45
1. Loosely Coupled Components 45
2. Graphical User Interface (GUI) 46
3. Model-View-Controller (MVC) "47

E. IMPLEMENTATION 48
1. Description 48
2. Operation .- 49
3. Products 55

IV. ILLUSTRATIVE SCENARIO 59

A. SITUATION 59

B. TASK ORGANIZATION 59

C. MISSIONDEVELOPMENT 60
1. Situation : 60
2. Mission 61
3. Concept of the Operation 62

D. MISSION TASKS, EVENTS, AND DEPENDENCE 62

E. IMPLEMENTATION 63

V. ANALYSIS .65

A. RESULTS 65

B. SENSrnVITY ANALYSIS 67

C. APPLICABILITY 70

vni

VI. THE NEXT LEVEL71

A. RESOURCE MANAGEMENT 71

B. PRECENDENCE NETWORKS - MULTIPLE DEPENDENCY 71

C. AUTOMATED DATA CALCULATION AND SELECTION 72

D. SIMULATION , 72

VII. CONCLUSION 73

APPENDIX A. CRITCAL PATH SOLVER 77

APPENDIX B. ILLUSTRATIVE SCENARIO ACTIVITY AND EVENT LIST 87

APPENDDC C. SYSTEM DEMONSTRATION 91

LIST OF REFERENCES 123

BIBLIOGRAPHY '. ■. 127

INITIAL DISTRIBUTION LIST 131

IX

LIST OF FIGURES

1. AON Activity 21
2. AON Network 21
3. AOA Activity with Events 22
4. AOA Network 23
5. Loosely Coupled Components Architecture 25
6. König Dijkstra Shortest Path Algorithm Output 27
7. Flora Map Display 28
8. Longest Path Linear Program 29
9. Topological Sort Algorithm 31
10. Longest Path Algorithm 33
11. Model-View-Controller Architecture 47
12. System Architecture 48
13. Critical Path Solver Control Panel 50
14. Blank Flora Map Display for Project Design 51
15. Detachable Graph Editing Tool Bar. 51
16. Node Property Editor 52
17. Graph Property Editor 52
18. Simple Network Example 53
19. Flora Symbol Info Display 54
20. Cycle Error Message 54
21. Simple Network Example with Critical Path Solution 55
22. Example Synchronization Matrix 56
23. Example Execution Checklist 57
24. JSOTF Location and Composition 60
25. Mission Area of Operations 61
26. Scheme of Maneuver: Actions on the Objective 63
27. Mission Network Representation 64
28. Zoom in to Actions on the Objective Tasks 64
29. Solved Mission Network 65
30. Mission Synchronization Matrix.. 66
31. Mission Execution Checklists 67
32. Initial Critical Path and Properties 68
33. Modification of a Task Property 69
34. Updated Critical Path and Properties 69
35. System Startup 91
36. Draw Nodes 93
37. Add Arcs 95
38. Load Graph 97
39. Solve Critical Path..... 99
40. Highlighted Critical Path with Node Symbol Info Display 101
41. Edit Graph Window 103

XI

42. Loading the Ulustrative Scenario 105
43. Display Zoom. 107
44. Create Synchronization Matrix and Execution Checklists 109
45. Illustrative Scenario Critical Path 111
46. Illustrative Scenario Synchronization Matrix 113
47. Illustrative Scenario Execution Checklists 115
48. Additional Node Properties 117
49. Edit Node Properties H9
50. Updated Critical Path and Properties 121

Xll

LIST OF TABLES

1. Java Supported Platforms and Operating Systems 37
2. Mission Task List 87

xm

XIV

LIST OF SYMBOLS, ACRONYMS AND/OR ABBREVIATIONS

AAF Army Airfield
AAR After Action Review
AO Area of Operations
AOA Activity on Arrow
AON Activity on Node
API Application Programmer Interface
BDA Battle Damage Assessment
BOS Battlefield Operating Systems
C4I Command, Control, Communications, Computers, and Intelligence
C4IFTW C4I For The Warrior
CINC Commander in Chief
COA Course(s) of Action
COE Common Operating Environment
CONOPS Concept of Operations
COP Common Operational Picture
CORBA Common Object Request Broker Architecture
COTS Commercial Off-The-Shelf
CPM Critical Path Method
CPU Central Processing Unit
CRD Capstone Requirements Document
DA Direct Action
DII Defense Information Infrastructure
DISA Defense Information Systems Agency
DISN Defense Information System Network
DMS Defense Message System
DoD Department of Defense
EDRE Emergency Deployment Readiness Exercise
EET Earliest Event Time
EFT Earliest Finishing Time
EST Earliest Starting Time
FM Field Manual
FOB Forward Operational Base
FOL Forward Operating Location
GCCS Global Command and Control System
GCSS Global Combat Support System
GUI Graphical User Interface
HLA High Level Architecture
HQ Headquarters
HLZ Helicopter Landing Zone, see also LZ
JSOTF Joint Special Operations Task Force
JTA Joint Technical Architecture

xv

JVM
LAN
LCC
LET
LFT
LST
LZ
MNS
MPARE
MVC
NGO
ODA
ODC
OOP
OOTW
OPORD
PERT
PZ
RGR
RMI
SBF
SF
SFG
SFODA
SFODC
SJPRNET
SO
SOAD
SOAR
SOC
SOCCE
SOF
SOMPASS
SOP
SOS
SOW
SR
TA
TACSOP
TF
TM
TRAC
TRADOC
USSOCOM

Java Virtual Machine
Local Area Network
Loosely Coupled Components
Latest Event Time
Latest Finishing Time
Latest Starting Time
Landing Zone, see also HLZ
Mission Needs Statement
Mission Planning, Analysis, Rehearsal, and Execution
Model-View-Controller
Non-Governmental Organization
(Special Forces) Operational Detachment Alpha, see also SFOD A
(Special Forces) Operational Detachment Charlie, see also SFOD C
Object-Oriented Programming
Operations Other Than War
Operations Order
Program Evaluation and Review Technique
Pickup Zone
Ranger
Remote Method Invocation
Support by Fire
Special Forces
Special Forces Group
Special Forces Operational Detachment Alpha, see also ODA
Special Forces Operational Detachment Charlie, see also ODC
Secret Internet Protocol Router Network
Special Operations
Special Operations Aviation Detachment
Special Operations Aviation Regiment
Special Operations Command
Special Operations Command and Control Element
Special Operations Forces
Special Operations Mission Planning and Analysis Support System
Standing Operating Procedures
Special Operations Squadron
Special Operations Wing
Special Reconnaissance
Target Analysis
Tactical Standing Operating Procedures
Task Force
Team
TRADOC Analysis Center
United States Army Training and Doctrine Command
United States Special Operations Command

xvi

EXECUTIVE SUMMARY

This thesis developed a tool for the United States Special Operations Command

(USSOCOM) in support of their Mission Planning, Analysis, Rehearsal, and Execution

(MPARE) initiative to allow special operations forces commanders and staffs to conduct

mission planning and analysis in a distributed environment. Operations research methods

provide the foundation for the analysis. The system developed in this thesis is called the

Special Operations Mission Planning and Analysis Support System (SOMPASS). This

system has the capability to execute on any hardware platform, operate across any

network connection, and expand easily to support additional users and requirements.

Many current military planning and support systems offer tools that employ

operations research techniques, but the rapid increase in complexity of military

operations since the end of the Cold War, along with advances in technology, have

rendered these systems either obsolete or insufficient. Commanders and staffs will

benefit from advances made using operations research techniques in all aspects of

military operations, including mission planning, decision support, and logistics

management.

Paramount among the choices for development of future technological systems is

a solution to address shortcomings in mission planning and analysis. Current military

mission preparation and analysis, for both conventional and special operations forces,

requires tremendous effort for detailed planning, resourcing, analysis, rehearsal, and

synchronized execution to produce the desired success. In an extensive effort to address

critical Special Operations mission challenges, USSOCOM began the MPARE initiative

xvii

in 1997. One of the critical components to the success of such a system is the ability to

synchronize these missions. Special Operations, as well as conventional military

operations, have unique requirements that demand special capabilities that are neither

provided by commercially available systems, nor available on the current generation of

limited functionality military planning systems.

SOMPASS focuses on leveraging the power of a highly flexible component

architecture to support the rapid development and construction of military planning and

analysis tools and systems that will operate seamlessly over extensible networks on

heterogeneous computing hardware and software systems. This system combines several

.newly developed components with previously developed components. A graphical user

interface component was built to tie together the critical path solver algorithm with the

graph design tools and present the system specific outputs: the mission synchronization

matrix and execution checklists. Together, these components provide a useful and

powerful mission planning and analysis support system that is dynamic, flexible, and

component based. The special operations scenario presented in this thesis is designed to

demonstrate the capabilities and applicability of SOMPASS.

SOMPASS has been designed to address the needs of USSOCOM by providing a

mission planning and analysis tool for Special Operations Forces commanders and staffs

to help reduce traditional mission planning preparation time and manual effort required to

produce operational support documents, including the mission synchronization matrix

and unit execution checklists, as well as enhance the capabilities for conducting analysis.

xvm

ACKNOWLEDGMENT

I would like to thank Professor Gordon H. Bradley for his outstanding guidance,

assistance, and support throughout my work on this difficult project. I would like to

thank Professor Arnold H. Buss for always bringing up new ideas to explore that

sometimes seemed to make things more complicated, but were for the better. I would

also like to thank LTC Charles Shaw for arranging my experience tour with USSOCOM

and providing insight into Special Operations, Army Operations Analysis, and the

plethora of acronyms that exist out there. I would like to thank the Loosely Coupled

Components group for providing a supportive environment for me to showcase my

research, and aid me in eliminating the numerous bugs in my system, as well as

enhancing other components to suit my needs; in particular, MAJ Jack Jackson of TRAC-

Monterey and CPT Norbert Schrepf of The German Army.

I also want to thank the officers and staff of USSOCOM, SORR; namely COL

Nolen Bivens and LTC Joel Parker who provided for and sponsored me on my

experience tour. LTC Parker was especially helpful in providing focus on what was

important, and continued his mentorship after moving here to support the school directly

as the new department Army LNO/Instructor. I can only hope that this research will be

of some benefit to them to assist our outstanding soldiers.

xix

XX

I. INTRODUCTION

Today, America's Armed Forces are the world standard for
military excellence and joint warfighting. We will further strengthen our
military capabilities by taking advantage of improved technology and the
vitality and innovation of our people to prepare our forces for the 21st

century. [Ref. 1: p. 34]
General John M. Shalikashvili
Former Chairman of the Joint Chiefs of Staff

A. BACKGROUND

1. Military Operations

Just as the world, its nations, and society evolved throughout history, the nature of

warfare has also evolved. Continuing advances in tactics, doctrine, weapons, and

technology compose a continuing cycle that progresses with each new step in its

component elements. Each of these advances, in turn, causes the nature of warfare and

the conduct of military operations to become more complex. As complexity increases,

the forces conducting these operations must be better prepared, trained, and equipped

than their predecessors in order to succeed. In his preeminent work, On War, Carl von

Clausewitz summarized the complex nature of military operations: "The conduct of war

resembles the working of an intricate machine with tremendous friction, so that

combinations which are easily planned on paper can be executed only with great effort."

[Ref. 2: p. 1-2]

Since the end of the Cold War, the United States faces an increasingly complex

and diverse set of challenges due to our role as the world's only remaining superpower

with worldwide presence and global power projection responsibilities. In this modern

era, technological advances in communications and the increased pace of world events

1

can produce crises that rapidly expand in unpredictable ways, thereby reducing the time

available to prepare and employ forces to defuse these critical situations. Thus, some of

the same technological advances that improve our military capabilities strain our forces

by increasing the difficulty and complexity of military operations and confound our

ability to react to and defuse these crises. [Ref. 2] In a military that operates by force-

projection, such as we do today, synchronization of operations is paramount [Ref. 3].

Successful planning can help offset these potential operational problems, though

time limitations will always have an overarching impact. Tactical and operational

planning must be a continuous process, frequently concurrent with ongoing operations,

which further complicates its completion. Successful planning requires an understanding

and appreciation of this simultaneous nature, and an ability to anticipate likely future

events to counter shortfalls or exploit successes. Detailed synchronization during the

planning and execution of the mission will promote successful achievement of the

mission objectives. Synchronization requires a clear commander's intent to convey to the

staff the idea for the sequence and flow of the operation that must then be developed in

the plan with coordination of movement, fires, and supporting activities. This is an

extremely complex process wherein coordination, collaboration, and rehearsal are keys to

success in providing "...the ability to focus resources and activities in time and space to

produce maximum relative combat power at the decisive point." [Ref. 3: p. Glossary-8]

A tool that assists the commander or staff in this synchronization process will

therefore greatly enhance their capabilities and the ability of their units to conduct

successful operations and achieve victory.

2. The Nature of Special Operations

As their name would indicate, Special Operations differ from conventional

military operations. Some of the key differences include the degree of risk involved, both

political and physical, as well as the means by which they achieve their objectives.

Specifically, "Special Operations are operations conducted by specially organized,

trained, and equipped military and paramilitary forces to achieve military, political,

economic, or informational objectives by unconventional military means in hostile,

denied, or politically sensitive areas." [Ref. 4: p. 1-1] Due to their unique and strategic

nature, they are often more directly affected by political-military considerations. Since

Special Operations can encompass all aspects of military operations and may be

conducted either independently or in conjunction with conventional operations, they are

inherently more complex and require more detailed planning than conventional military

operations. [Ref. 4]

Similarly, Special Operations Forces (SOF) fill a unique role in that they provide

the ability to carry out operations where conventional forces are neither well suited nor

even capable of success. SOF are specially trained, equipped, and organized units with

specialized, highly focused capabilities [Ref. 4]. The unique qualifications and

capabilities of SOF provide, to both national and theater level decision-makers, a greater

range of options and flexibility in responses through their rapid adaptability and strategic

advantage [Ref. 5].

Given the diversity and complexity of Special Operations, the need for tools to

assist SOF in the preparation and conduct of their missions is even more pronounced than

that of conventional military operations.

3. Vision

As the world environment continues to change and present more complex

challenges, our forces must also adapt to this changing environment to preserve our

ability to defend against current and emerging threats to our national security. This

includes not only our weapons, doctrine, and training, but also the tools we use to assist

in the accomplishment of our missions. Joint Vision 2010 [Ref. 1] provides a template

for the continuing development and advancement of our nation's warfighting capability

into the future by leveraging advances in information-age technology through the

development of four operational concepts: dominant maneuver, precision engagement,

full dimensional protection, and focused logistics. Technological superiority has been

crucial in our prior successes in combat, and will continue to be so in the foreseeable

future. Therefore, continuing advances in information and systems integration

technologies must be aggressively developed to provide decision-makers with accurate

and timely information to gain "dominant battlespace awareness." [Ref. 1]

The United States Special Operations Command (USSOCOM) also has a vision

for the future that expands on the concepts outlined in Joint Vision 2010 and applies them

to the nature of Special Operations and the role of Special Operations Forces. SOF

Vision 2020 [Ref. 6] ".. .provides a long-range strategy for SOF missions, force structure,

equipment, and capabilities into and beyond 2020." [Ref. 6: p. 1]. It outlines defining

characteristics that focus on quality, well-trained personnel with a superior technological

edge who provide military capabilities not available with conventional forces [Ref. 6].

Additionally, Special Operations Forces: The Way Ahead [Ref. 5] expands on the

relevance of SOF and their unique abilities, as well as their need to ".. .examine every

advantage our technological genius can supply.. .selectively exploit those few required

for success... [and] leverage those critical technologies that give us a decided advantage."

[Ref. 5: p. 7]

A common thread throughout all of these documents is the importance of

information technologies and the critical role they play in the advancement and success

of our forces in future conflicts. The sooner we begin the development of these needed

systems, the sooner we will be able to leverage technology to our advantage. Although

we currently have many advanced systems in our inventory, technology has far outpaced

development and acquisition, and many commercially available systems are neither well

suited nor easily adaptable to military use. As the United States is not the only bastion of

technological advancement, we must make a concerted effort to foster developments to

ensure we do not fall behind the advances of any current or potential adversaries.

4. Need

Paramount among the choices for development of future technological systems is

a solution to address shortcomings in mission planning and analysis. Our increasing

reliance on superiority in command, control, communications, computers, and

intelligence (C4I) highlights the need for more than current systems can provide and

interim solutions will offer. All of the new operational concepts put forward in Joint

Vision 2010 will rely significantly on advanced C4I systems and capabilities. But in

particular, "Dominant maneuver will require forces that are adept at conducting sustained

and synchronized operations from dispersed locations." [Ref. 1: p. 20] The ability to

meet this mandate will depend on systems that offer extremely capable tools with

superior flexibility and interoperability.

Joint Vision 2010 addresses the need to exploit technological advances through

the development of a new framework where foundations are built on improved C4I

achieved through information superiority [Ref. 1]. Joint doctrine refines this vision by

presenting C4I For The Warrior (C4JPTW): "What the Warrior Needs: a fused, real time,

true representation of the battlespace — an ability to order, respond and coordinate

horizontally and vertically to the degree necessary to prosecute his mission in that

battlespace." [Ref. 7: p. 1-1]. Additionally, it defines the requirements and capabilities

for this global information infrastructure and system: "Warfighters must have C4 systems

that are interoperable, flexible, responsive, mobile, disciplined, survivable, and

sustainable." [Ref. 7: p. ix]

USSOCOM has also taken detailed steps in identifying needs in the area of

mission planning and decision support. They have developed a strategy that addresses

their special C4I needs and requirements by outlining a doctrine, architecture, and

investment strategy to support and improve SOF operational capability along with a plan

for implementation [Ref. 8].

Despite this recognized need for a superior technology system to assist

commanders, staffs, and their forces in all aspects of operations from mission planning to

execution, no satisfactory system has yet been developed or fielded. Quite the contrary,

most units, including conventional and special operations forces, use many of the same

techniques that have been in use since World War II and throughout the Cold War era.

To further elaborate the need for a solution to this problem, an explanation of the

current planning process is useful. Current military mission preparation and analysis, for

both conventional and special operations forces, requires tremendous effort for detailed

planning, resourcing, analysis, rehearsal, and synchronized execution to produce the

desired success. Units at all levels of command must coordinate their actions with those

above, below, and around them, to ensure the overall mission is successful. Commanders

and staffs must accomplish many interdependent tasks as they determine their courses of

action (COA) to accomplish missions during both the deliberate and compressed

planning sequences. This preparation includes having a thorough understanding of the

many requirements, as well as the ability to meld them into a workable plan that can be

easily understood and successfully implemented. Successfully preparing these mission

requirements sets the stage for the accomplishment of the mission, and is therefore a

critical precursor. Understandably, any means to enhance the abilities of a commander

and staff in preparation for or control of a mission can yield significant benefit toward

overall mission success.

Readily available commercial tools do not provide the needed capabilities,

flexibility, or adaptability required in supporting complex military operations, nor address

the specific requirements outlined in either Joint Vision 2010 or the USSOCOM

documents. Additionally, currently fielded military planning systems that are in use

today are also significantly lacking in flexibility, usually offer only limited static

solutions, and adhere to monolithic standards [Ref. 9]. Any possible solution must

therefore overcome current shortcomings and address the specific needs mentioned.

5. Current Systems

Many systems that address one, or several, of the requirements from above

currently exist, but at present, there is no single system capable of addressing all of these

requirements [Ref. 10]. In an effort to spearhead the development of new technologies to

support these warfighter requirements, the Department of Defense (DoD) created the

Defense Information Systems Agency (DISA) [Ref. 11]. Specifically, the mission of

DISA is "to plan, engineer, develop, test, manage programs, acquire, implement, operate,

and maintain information systems for C4I and mission support under all conditions of

peace and war." [Ref. 12]

DISA manages the Defense Information Infrastructure (DII), which is an attempt

to integrate all DoD communication networks, hardware, and software and construct a

common operating environment (COE) to support the information requirements of

warfighters. The DII is made up of four components: the Defense Information System

Network (DISN), the Defense Message System (DMS), the Global Command and

Control System (GCCS), and the Global Combat Support System (GCSS). [Ref. 12]

The DISN provides the hardware-based network infrastructure, as a

communications backbone, to support global, strategic, and tactical connectivity. It is

made up of the transmission paths and support structures, over which data may pass. The

Secret Internet Protocol Router Network (SIPRNET) is the secret layer of the DISN.

[Ref. 13]

The DMS is a recent improvement over previous systems that provides a more

flexible, commercial off-the-shelf (COTS) system for e-mail and multi-media messaging

services using the DISN. The DMS is an integrated suite of applications and not a

network, nor an information processing or planning tool. [Ref. 14]

Unlike the previous two components that are basically only support structures, the

GCCS is a mid-term implementation of the C4IFTW concept. It provides functionality to

address some of the outlined C4I requirements, including applications providing a COE,

and mission applications providing planning and assessment tools [Ref. 15]. However, as

an interim solution, it lacks significant strength in features and functionality that are

critical to the success of the C4IFTW vision. Additionally, it is a static system that is

fairly inflexible to enhancement or cross-platform/system connectivity, and will

undoubtedly have to be abandoned in its current form to allow future advances in

capabilities to be implemented in a follow-on system.

GCSS is another C4IFTW-based system that was developed to provide improved

combat service support to warfighters as envisioned in Joint Vision 2010's concept of

"focused logistics." It is also an interim solution, and as with GCCS, provides only

limited functionality at the present time and cannot currently be integrated with GCCS or

any other information support system. [Ref. 16]

These products from DIS A represent significant advances over the capabilities of

all previous systems, but still fall well short of the outlined requirements for a true

information system solution. The significant shortcomings of these current systems lie

primarily in connectivity, collaboration, timeliness, and functionality. Current

development and procurement practices also seem to contribute to limitations in

functionality based on contractor proprietary considerations, poor understanding of

required versus desired capabilities, and uncoordinated/unsynchronized development of

alternative or competing systems between the Service components who focus on different

features and schedules.

In addition to the DoD and each Service component, along with many of their

subordinate elements, USSOCOM, as a unified combatant command, is also dedicating

considerable effort to developing a C4I system that supports its unique requirements.

USSOCOM currently has several of its own interim solutions in use, principally

SOFPARS and SWAMPS, which they recognize are also proprietary, disjointed, and

inflexible, thereby placing limits on their usefulness for meeting the needs of mission

planning, coordination, and synchronization [Ref. 10].

6. Mission Planning, Analysis, Rehearsal, and Execution (MPARE)

In an extensive effort to address critical Special Operations mission challenges,

USSOCOM began the Mission Planning, Analysis, Rehearsal, and Execution (MPARE)

initiative in 1997. The goal of MPARE is to provide SOF commanders, staffs, and

operators a totally integrated "system of systems" with which they can efficiently plan,

analyze, rehearse, and execute the full spectrum of Special Operations missions. This

system will also provide communications services and collaborative capabilities between

elements both vertically and horizontally to facilitate information flow and

10

synchronization. It is intended to be ubiquitous, to support all operations in training and

combat environments, as well as handle routine administrative functions. The key

components of MPARE will enable SOF units to collaboratively plan missions from

geographically separate locations, analyze different COAs, preview and rehearse options,

and monitor execution in real-time. [Ref. 10]

Although still in the early developmental stage, MPARE is laying the groundwork

for an in-depth understanding of the true requirements for the C4I systems of the future

which will not only greatly benefit USSOCOM, but also the DoD and the Services who

have been trailing behind with their own systems. MPARE has passed Milestone 0, and

work is progressing on the Capstone Requirements Document (CRD) and component

Concept of Operations (CONOPS) documents [Refs. 10, 11]. The current and previous

Commanders in Chief (CINCs) of USSOCOM have made MPARE a high priority, and

such, a full-time team of military and civilian personnel, along with contractor support,

dedicated to MPARE development. As part of the requirement determination stage,

meetings with members of the MPARE team and key personnel from all of the Theater

Special Operations Commands (SOCs) provide invaluable input from the future users of

the system. These meetings have uncovered numerous common issues, many of which

are already planned for incorporation in MPARE, and others that have since been added

to provide improved functionality [Refs. 17,18, 19, 20]. Once completed, MPARE will

provide tremendous capabilities to SOF units, with many applications useful to

conventional forces, as well.

as

is

11

7. Operations Research Applications

The development of operations research was spearheaded by the Allied military

forces during World War II in an effort to solve the tremendously large strategic and

operational problems that resulted from conducting military operations on a global scale

[Ref. 21]. The United States continues to this day to expend significant effort and

resources to further advances and training in operations research in support of military

problems, having recognized its leverage early on, and throughout its incorporation into

many private-sector industries.

Many current military planning and support systems offer tools that employ

operations research techniques, but the rapid increase in complexity of military

operations since the end of the Cold War, along with advances in technology, have

rendered these systems either obsolete or insufficient. More powerful and flexible tools

for future systems and capabilities outlined in Joint Vision 2010 and USSOCOM

initiatives will continue to depend on operations research techniques, not only to facilitate

their development, but also for incorporation within these systems.

Commanders and staffs can benefit from advances made using operations

research techniques in all aspects of military operations, including mission planning,

decision support, and logistics management. These benefits underscore the relevance of

continued study in the area of operations research applications to military prohlerns;tö

stay ahead of our current and potential adversaries in a rapidly changing world.

12

B. PROBLEM

USSOCOM has outlined a need for a capable system to support the conduct of

Special Operations missions. One of the critical components to the success of such a

system is the ability to synchronize these missions. Current methods for addressing this

need fall far short of the requirement.

Once given a mission and set of goals and objectives, commanders and staffs have

to conduct extensive preliminary work during mission planning and analysis to determine

what must be done, who must do it, what is needed, and how it should be accomplished.

This itself is a significant challenge, usually compounded in difficulty by the common

constraint of extremely limited preparation time before mission execution. Components

of this process involve breaking down a mission into its specified, implied, and essential

tasks; identifying critical decision points, developing a concept of the operation and

COAs; wargaming the COAs; and producing the operations order (OPORD). To help

develop the best possible plans for success, commanders and staffs need to conduct

wargaming and analysis to determine if their plans are feasible and accomplish all

objectives as desired, and also to choose the best among the alternatives developed.

Then, they must develop a synchronization matrix that ties all units and required

resources to support the operation to an interdependent time schedule based on expected

mission status and probable enemy COAs. This process is very time-consuming and

prone to errors. Additionally, since one of the critical end products, the synchronization

matrix, is usually constructed by hand on a large sheet of paper or an overlay, any change

to an event, time, or status requires complete reconstruction. Due to the very complex

13

nature of military operations, and in particular, Special Operations, synchronization is

extremely difficult because numerous decisions, personnel, equipment, supplies, and

actions must come together at critical times and locations throughout the battlespace to

produce the desired effect of success in the assigned mission objectives. Clearly, the

current process does not support rapid or flexible planning, nor facilitate any sensitivity

analysis.

Many commercial software tools currently exist that perform functions similar to

synchronization planning; however, none of them are well suited to military operations.

These commercially available tools perform functions such as project management or

resource and event tracking, but none provide the required capabilities, flexibility, or

adaptability required in supporting complex military operations. In addition, most only

operate on single machines or small local area networks (LANs), and all gear their

functionality toward commercial applications. Consequently, military commanders and

staffs have shunned these commercially available tools and relied on their time-tested,

manual methods of planning, analysis, and synchronization.

Special Operations, as well as conventional military operations, have unique

requirements that demand special capabilities that are neither provided by commercially

available systems, nor available on the current generation of limited functionality military

planning systems. A tool that would support commanders and staffs in accomplishing the

complex task of synchronization planning and generate useful products in a rapid,

flexible, and distributed environment would become a key component in the MPARE

initiative.

14

C. STATEMENT OF THESIS

The purpose of this thesis is to develop a mission planning and analysis tool to

support Special Operations Forces commanders and staffs by identifying and presenting

critical mission events, relationships, and dependencies in a simple and understandable

format. Many of the technologies that support the needs of the mentioned desired future

systems are available now, but have not been combined into a working system. Most

efforts in development are attempting to produce a complete system with full

functionality to satisfy all needs when fielded. This approach requires intense and

coordinated effort, along with substantial time and funding. This thesis does not attempt

to put forward a complete solution; rather it presents a working technical demonstration

that can be incorporated into a larger system while still demonstrating specific desired

functionality.

This tool will assist special operations commanders and staffs to conduct mission

planning and analysis by operating in a collaborative and dynamic environment that

allows simple task and event entry and analysis. It will rapidly produce synchronization

matrices and scheduling products that are easily updated as changes occur during any

phase of the operation, and also allow mission sensitivity analysis through visual

depiction of impacts based on task, event requirement, or resource availability changes.

In addition to its functionality, this tool will also provide USSOCOM with one possible

direction for further development and possible incorporation into the MPARE system, as

well as demonstrate the power and importance of operations research tools to military

decision-makers.

15

This thesis consists of seven chapters and three appendices. Chapter II outlines

the operations research theory behind project management systems and the methodology

behind component design. Chapter III describes the actual software design that

implements the model formulation, its requirements, capabilities, architecture, and

functionality. Chapter IV presents a Special Operations scenario designed to be

unclassified, but representative enough to demonstrate the capabilities and applicability

of the system. Chapter V examines the results generated by the system when applied to

the illustrative scenario. Chapter VI describes what areas of the system might benefit

from additional research and examination. Chapter VII offers conclusions about both the

system and research conducted. Appendix A contains the code that implements the

algorithms outlined in Chapter II required for the Critical Path Method Solver and

showcases the structure of a software component. Appendix B contains the detailed list

of activities and events that compose the illustrative scenario put forward in Chapter IV.

Appendix C provides a walk-through of the system through the use of screen shots

captured during numerous system operations.

16

II. THEORY AND FOUNDATIONS

Network flows is a problem domain that spans a broad range of fields, including

applied mathematics, operations research, engineering, management, and computer

science [Ref. 22].

A. NETWORK FLOWS AND GRAPHS

Many optimization problems can best be solved by means of a network

representation. Networks can represent nearly any physical or conceptual system that has

interdependencies between its components. Graphs then represent these networks in a

very simple, yet powerful manner, allowing modeling and analysis techniques to be

applied to solve problems related to the underlying systems. The development of

efficient algorithms for some of these network and graph models allows them to be

solved with much more efficiency than with traditional linear optimization techniques.

Of particular interest is critical path analysis of networks for project management,

which can be readily applied to military operational planning, just as it has to many large-

scale complex engineering scheduling problems. Critical path analysis highlights the

complexities and relationships of activities or tasks that make up a project or mission, and

allows for detailed analysis, simple modification, and flexible evaluation to support

decision making. [Ref. 23] The critical path of a network is the chain of activities or

tasks that, if any are started later or their duration increases, the time to complete the

entire project will be prolonged. Float is the amount of spare time, or slack, that exists

between the earliest and latest times an activity can start or finish. All activities on the

17

critical path have zero float. Also note that float is the only means of identifying the

critical path. [Ref. 24]

B. SOLUTION METHODS

There are two extensively used critical path analysis project management

techniques that can be applied to military operational planning: the Critical Path Method

(CPM) and the Program Evaluation and Review Technique (PERT). There are many

similarities between the two methods, and both are principally concerned with planning,

scheduling, and control, which are key components to the success of all military

operations.

Both techniques help answer detailed questions about dependencies between tasks

and events in a project or mission, and can easily support comparative analysis when

faced with questions about scheduling or resource changes or disruptions. They both

support decision-making without requiring complex calculations or analysis by the user.

[Refs. 25, 26] Each technique has both advantages and disadvantages depending on the

type of mission or problem of interest; some of their differences are highlighted below.

1. Critical Path Method (CPM)

This method focuses on tradeoffs between resource costs and completion time in

large complex projects. CPM assumes the time required to complete individual tasks in a

project is known with certainty. This is an assumption that greatly simplifies the

underlying calculations while providing consistent results, but may not be as applicable

to a project where there are large or unknown variances in the execution or completion

times of component tasks that may severely affect completion times. [Ref. 25]

18

The system put forward in this research employs CPM for simplicity of use,

timeliness and consistency of results, and to reduce the reliance on assumptions by the

user that require more information about component tasks than may be available or '

verifiable.

2. Program Evaluation and Review Technique (PERT)

Although similar in purpose, PERT differs primarily from CPM in that it assumes

that task completion times are uncertain and independent of one another. PERT models

the uncertainty of task completions based on assumptions about the distribution and

likelihood of the time required to complete the component tasks. This technique requires

additional input from the user about these distributions that may not be intuitive or

readily available, but when exercised properly PERT can reveal interdependencies or

problem areas that would not have otherwise been discovered with a purely deterministic

approach. [Refs. 25, 26]

Understandably, the stochastic nature of PERT makes it much more complex and

harder to implement effectively as a user friendly application than CPM. This difficulty

has led PERT to be used more in research and development projects, while CPM is used

in many commercial enterprises including construction and industrial production. [Refs.

25,26]

Although military operations involve great uncertainty, assumptions about the

distributions or variance of random quantities, especially those related to the actions or

responses of enemy forces, is very difficult. Consequently, PERT may be more harmful

19

than helpful when doing military planning if improper assumptions are used in mission

formulation, rather than simply using a deterministic approach such as CPM.

C. TASK REPRESENTATIONS

All networks are composed of nodes and arcs. The visual representation of a

network is a graph where either a circle or square represents a node, and an arrow

represents an arc connecting two nodes.

In order to represent projects, or military missions as a network, the component

tasks, events, and dependencies must be represented in the network graph as activities

and events. Activities represent a part of the mission or plan such as a specific task that

requires dedication of resources and a period of time to complete. Events, on the other

hand, represent a particular instant in time at which a specific part of the plan (an

activity) will start or finish. [Ref. 23]

There are two typical conventions for representing the graph nodes and arcs as

events and activities. Each representation method has both advantages and

disadvantages.

1. Activity on Node (AON)

In the Activity on Node (AON) convention, nodes represent activities as well as

the start and finish events of an activity while arrows are used only as a means to

represent interdependence between activities [Ref. 24]. The AON convention is powerful

in its simplicity as all relevant information is contained within the nodes of the graph

without reliance on information in both the arcs and the nodes which requires more

detailed computations and tracking.

20

An example of an AON activity is shown in Figure 1 with many of its

characteristic fields including the earliest start time (EST), the latest start time (LST), a

description, the length or duration of the activity, and total time available to shift without

disrupting the current schedule (total float).

EST LST

Label, Description,
Resources, etc.

Duration
Total
Float

Figure 1. AON Activity [After Ref. 24]

The graph can be as detailed or as sparse as necessary to convey the required

information about the mission and its component tasks. An example of a simple AON

network is shown in Figure 2 indicating a project composed of two tasks where Activity

A must be completed before Activity B can begin.

Activity A
Dependency

Activity B

Figure 2. AON Network

The system put forward in this thesis uses the AON convention due to its

simplicity in construction and representation and ease of solving. AON is also used in

many commercially available project management systems.

2. Activity on Arrow (AOA)

In the Activity on Arrow (AOA) convention, arcs represent activities while nodes

represent events [Ref. 24]. The need to maintain critical information on both arcs and

21

nodes in the AOA convention, in contrast to AON, makes AOA networks more complex

and their solutions more involved. In addition, since the dependencies of activities is

indicated by sequence of events, there may be times when artificial, or "dummy,"

activities need to be inserted in a graph to establish dependencies between events that

could not otherwise be represented in the AOA convention. This need for dummy

activities is a major drawback in the AOA convention, and has led to greater adoption of

the AON convention, such as in this research.

An example of an AOA activity with start and finish events is shown in Figure 3.

Also shown are many of the characteristic fields of both the activity and its events

including the earliest event time (EET), the latest event time (LET), the duration of the

activity, as well as associated labels.

Label

Duration

Figure 3. AOA Activity with Events [After Ref. 24]

An example of a simple AOA network is shown in Figure 4 indicating a project

consisting of two activities and three events with a dummy activity required to

demonstrate dependence of the completion of Activity A at Event 3 on the completion of

Activity B at Event 2. The requirement for dummy activities in AOA networks often

makes them much larger and more complex than their associated AON representation.

This further supports the use of the AON convention in this thesis to reduce the burden

on the user in designing the network representation of a military operation to be analyzed.

22

Figure 4. AOA Network

D. COMPONENTS

The idea of components as a software design methodology greatly simplifies the

design of a system by allowing independent development and expansion of capability

without restricting currently available or future functionality. This is a very powerful

paradigm that departs from traditional design and overcomes development limitations

that hinder many, if not all, of the current military planning and support systems, as well

as many similar-in-function commercially available systems.

1. Characteristics

Components are small software programs or objects that perform specific

functions designed to operate easily with other components and larger applications.

These components must have well-designed standardized interfaces so that they can

interact seamlessly with any other components or programs that also meet the same

interface requirements. [Refs. 11, 27, 28] The power of components, when implemented

properly, is their ability to perform their designed function without any knowledge of or

interest in the other components or applications that they interact with. This

23

independence eliminates "hard-wiring" which limits usefulness and functionality, as well

as prevents separation from a parent application and reuse elsewhere. Some examples are

a map display tool component and a network-solving algorithm component.

2. Loosely Coupled Component Architecture

A group of faculty and students at the Naval Postgraduate School, spearheaded by

Professors Gordon H. Bradley and Arnold H. Buss, have designed and begun

implementation of a logical extension and architectural interpretation of the component-

based methodology for software development called the Loosely Coupled Components

(LCC) Project. This project focuses on leveraging the power of a highly flexible

component architecture to support the rapid development and construction of military

planning and analysis tools and systems that will operate seamlessly over extensible

networks on heterogeneous computing hardware and software systems. [Ref. 29]

The architecture provides a framework for the independent design and creation of

military planning and execution components that can be combined rapidly and

inexpensively to fulfill wide-ranging operational needs and extended as necessary. The

research goal of the project group is to provide answers to the call for advanced military

planning and execution systems and capabilities outlined in such documents as Joint

Vision 2010 using developing COTS information technology. [Ref. 29]

A representation of the Loosely Coupled Components Architecture is shown in

Figure 5. The process of design and use of components is a continuous cycle conducted

as requirements arise. During planning for a mission, or as a crisis develops, military

analysts can pull together existing components such as maps, presentation tools, and

24

algorithms, and then develop and incorporate completely new and independent

components that might include additional models and tools in support of this new and

specific requirement. Then, when the next mission or crisis arrives, due to their flexible

design, the components that were created previously can be reused.

Solutions / (Analyze
Assemble

Model from
Components ^gonthmst^j

Figure 5. Loosely Coupled Components Architecture [After Ref. 30]

This architecture offers significant advantages over current and legacy military planning

and analysis tools that are static, monolithic, inflexible, and in many cases proprietary.

Although there are ongoing efforts to integrate legacy systems, the enhancements these

provide are insufficient to provide the interoperability, platform independence, and

flexibility required of desired systems, such as MPARE, that can be provided using the

Loosely Coupled Component Architecture. [Refs. 9, 29]

Several currently available components include tools for conducting discrete-

event simulations, map-based planning, and network and graph theory design and

analysis [Refs. 9,29]. There are many other components in development, including this

thesis research, that not only add additional independent capabilities, but leverage the

25

power of existing components by integrating several components to tackle more complex

problems.

The Java [Ref. 31] programming language was selected to implement the Loosely

Coupled Components Architecture because it offers many advantages over other

available languages. Java is an excellent object-oriented programming (OOP) language

that incorporates support for components and for embedded networking and internet

protocols that allow seamless incorporation of distributed and collaborative capabilities

that are essential to the next generation of military planning and execution systems. Java

also provides capabilities in platform independence and dynamic loading that

dramatically increase the capability and applicability of traditional computer systems to

support advanced functionality applications beyond anything currently available. [Refs.

9, 29]

3. König

König [Ref. 32] was developed by MAJ Leroy A. Jackson of the TRADOC

Analysis Center-Monterey (TRAC-Monterey) as an application programmer interface

(API) to provide a set of graph and network objects and algorithms to model and solve

problems in a loosely coupled component framework. König components offer

significant capabilities for real-time dynamic, distributed analysis due to their loosely

coupled design. König objects can represent complex network and graph structures with

numerous associated attributes that can be dynamically added or modified. Additionally,

the König API defines a component framework for implementation of network

algorithms that can be used to act on the network objects to conduct detailed analysis.

26

Several sample algorithms are implemented including Dijkstra's shortest path algorithm,

Kruskal's minimum spanning tree algorithm, and a maximum flow labeling algorithm.

[Ref. 33] An example of the output provided by the Dijkstra's shortest path algorithm on

a sample König graph is shown in Figure 6.

FSjDijkstra ESSES

fCrapfij Shortest Path jfaaphasTree

Graph

'::' ■IvilSiyiS"' | value
inducedFrom 1-604288481
order i20
rootNode 11
name. !graphi;883932...
size !15
isTree Itrue

TresVieW

Mode

keV- ! value
path jn.-6.-7.iii
distance 1221.0.
name JiT _
predecessor 17

£31
:^k

9C36
■■■

<? E37 W-
DO i§

<? 03 s
D-a
Dio
Pi 17 •^i

Ar-

Jker value
name
arc Length !57

Figure 6. König Dijkstra Shortest Path Algorithm Output

This thesis attempts to take advantage of many of the capabilities of König as a

design framework beyond the basic but powerful functionality provided.

4. Thistle

CPT Norbert Schrepf, a German Army officer, developed another set of loosely

coupled components collectively called Thistle [Ref. 34] in support of his thesis, a Visual

Planning Aid for Movement of Ground Forces in Operations Other Than War [Ref. 35].

The Message Center component of Thistle provides a fundamental distributed

communication capability for all loosely coupled components to share information in a

27

simple fashion. Thistle also provides a dynamic map and overlay display tool called

Flora that is extremely powerful for planning and monitoring military operations in

accordance with accepted doctrinal symbology. There are also several other extremely

useful tools that complement and leverage the power of other loosely coupled

components and provide a common display framework for not only mapping information,

but also any type of type of data that can presented in a visual manner. [Ref. 35] An

example of Flora used as a map display tool is shown in Figure 7.

Figure 7. Flora Map Display

28

As with König, this thesis attempts to leverage the power of already existing

loosely coupled components such as Thistle to provide even greater capabilities.

E. ALGORITHMS

Solving for the critical path in a network is essentially looking for the longest path

in both directions between the start and finish points of a project to determine where there

is no flexibility of movement, or slack, in either direction., The result of the forward pass

longest path solution from the start point to an event represents the earliest event time

(EET) ofthat event and the earliest start time (EST) for any activities originating at that

event. Similarly, the result of the backward pass longest path solution from the finish

point to an event represents the latest event time (LET) of that event and the latest finish

time (LFT) for any activities culminating at that event. [Refs. 22, 36, 37]

The longest path can be solved as a linear programming problem as shown in

Figure 8 [Ref. 22] using standard linear optimization techniques, or more efficiently

using the network algorithms described later.

Maximize: /,c'j ' Xij
UM.]**)

-1 i = s

Subject to:
{y:(y,i)eA} U-UJ)sA}

0

1

VieN-{s,t)

i-t

xij>0 V(i,/)eA

Define:

G(A,N) graph G composed of the set of arcs A and the set of nodes N

Xij binary use variable for arc (hi)
Cij duration of arc (i,j)

s the start node

t the finish node
Figure 8. Longest Path Linear Program

29

The two key network algorithms that are needed to solve for the critical path in a

project or mission are a topological sort algorithm and a longest path algorithm. The

functions of both algorithms can actually be combined into one dual-purpose algorithm

making an extremely efficient critical path solver that is used in this thesis.

1. Topological Sort

The topological sort algorithm is necessary in critical path analysis to verify that

the network is ordered properly from mission start to finish and that there are no cycles.

A cycle, where an activity would loop back to an already completed event, would only

occur due to a data entry or logic error. A cycle causes an infinite duration loop

preventing the mission from ever completing. The topological sort is a very efficient

algorithm that can be solved in linear time proportional to the number of arcs in the

network with worst case complexity of 0(IA I) [Ref. 36]. A representation of a simple

topological sort algorithm is shown in Figure 9 [Refs. 22, 36].

2. Longest Path

The longest path algorithm involves a very simple operation where each node in a

network is examined in topological order for the greatest distance between the node and

all of the nodes that occur before it, its predecessors, using a series of pair-wise

comparisons leading back to the start node. In each pair-wise comparison, the larger of

the current longest path associated with the node or the sum of a predecessor node's

longest path and the length of the arc connecting them will become the new longest path

for a particular node. As with the topological sort algorithm, the longest path in a

30

network can be solved in linear time proportional to the number of arcs in the network,

again with worst case complexity of 0{ IA I) [Ref. 36].

As mentioned previously, a topological sort algorithm can easily be combined

with a longest path algorithm to form a more efficient joint algorithm. This joint

algorithm is the preferred network solution method when a network has not previously

been topologically ordered. A representation of the joint topological sort and longest

path algorithm is shown in Figure 10 [Refs. 22, 36].

algorithm TopologicalSort;

data G(A,N), the graph G composed of the set of arcs A and the set of nodes N

begin
for Vi e N do indegree(i) <— 0;

for V(/, j) € A do indegree(j) <— indegree(j) +1;

LIST<-0;

next <r- 0;

for Vie //do
if indegreeii) = 0 then LIST <- LIST u {i};

while LIST*0 do

begin
select a node i" e LIST;

LIST <- L/Sr -{£};

next*—next+1;

orderij) <— «erf;

forV(f,;)eA(f)do
begin

indegree(j) <— indegree(j) -1;

if indegree(j) = 0 then L/5F <- L/ST u {;'};

end;

end;
if nex/ < n then G(A,N) contains a directed cycle

else G(A, N) is acyclic and LIST contains a topological ordering of nodes;

end;

Figure 9. Topological Sort Algorithm

31

3. Critical Path Method

The critical path of a project can be easily solved using a joint longest path and

topological sort algorithm on the forward pass through the network and a standard

longest path algorithm on the backward pass. The results of these operations on a

network representation of a military mission will provide all information necessary to

conduct synchronization planning and analysis.

32

algorithm LongestPath with TopologicalSort;

data G(A,N), the graph G composed of the set of arcs A and the set of nodes N

begin

for Vi e Ndo

begin

indegree(i) <— 0;

longestpath(i) <— —«>;

end;
for V(J, j) e A do indegree(j) <— indegree(j) +1;

L/Sr <- 0;

«ex? <— 0;

for Vie N do

begin

if indegree(j) = 0 then
begin

LIST <^ LIST v{i};

longestpath(i) <— 0;

end;
end;
while LIST*0 do
begin

select a node i e L/SJ;

LIST <r- LIST -{/};

n&tf <— wexr +1;

order(i) <— next;

for V(i,j)eA(i) do

begin
indegree(j) <— indegree(j) — l;

longestpath(j) <— max{longestpath(j),longestpath(i) + duration(i,j)}

if indegree(j) = 0 then L/ST <- L/ST u {./'};
end;

end;
if nexf < n then G(A,N) contains a directed cycle

else
begin

• G(A,N) is acyclic;

• L/57 contains a topological ordering of nodes;

• longestpathii) represents the longest path from the start node to node i;

end;
end;

Figure 10. Longest Path Algorithm

33

34

III. SYSTEM DESIGN

To a conscientious commander, time is the most vital factor in his
planning. By proper foresight and correct preliminary action, he knows he
can conserve the most precious elements he controls, the lives of his men.
So he thinks ahead as far as he can. He keeps his tactical plan simple. He
tries to eliminate as many variable factors as he is able. He has a firsthand
look at as much of the ground as circumstances render accessible to him.
He checks each task in the plan with the man to whom he intends to assign
it. Then — having secured in almost every instance his subordinates'
wholehearted acceptance of the contemplated mission and agreement on
its feasibility — only then does he issue an order. [Ref. 38: p. 1-1]

General Mäthew B. Ridgway
The Korean War

A. REQUIREMENTS

The Special Operations Mission Planning and Analysis System (SOMPASS) has

been designed to address the needs of USSOCOM and Special Operations Forces. This

and similar systems that embrace the goals of MPARE will be useful to the DoD and all

the Services due to their inherent "jointness." This is especially important for

USSOCOM because it must deal with all of these disparate players on a continuous basis.

The system is required to:

• Execute on any hardware platform used by SOF
• Provide on-the-fly incorporation of new programs and capabilities
• Operate across any network connection to all participants at all levels
• Execute quickly and efficiently on devices with limited memory and storage
• Expand easily to support additional users and processing requirements as

needed

While this system alone cannot answer all the needs of MPARE, it is designed to

be an integral component in a larger system that will provide military decision-makers

the tools to achieve the goals of Ridgway's conscientious commander.

35

B. CAPABILITIES

SOMPASS is designed to meet the requirements outlined above and provide not

only a demonstration of capabilities to foster further development, but also a working

product that can be used to solve current problems. As with all other loosely coupled

components, this system is written using the Java 2 programming language [Ref. 31]

developed by Sun Microsystems. Several requirements are achieved by implementing

the system in Java; others are achieved by using the Loosely Coupled Components design

methodology.

1. Platform Independent

Platform independence is achieved by using the Java programming language. A

significant capability of Java and an advantage over many other programming languages

is its inherent platform independence. Programs can be written and compiled once on

one computer platform and then be executed without modification on a number of other

computers and operating systems. Currently, Java programs execute on the computers

and operating systems listed in Table 1. Additionally, Sun Microsystems has made the

source code publicly available so that other developers may port it to additional operating

systems and platforms. [Refs. 39,40] This ability to operate on any hardware system

without modification, from the largest mainframe to the smallest handheld device, offers

incredible power and flexibility.

Java provides this portability by compiling programs into "byte code" that is not

processor specific. The byte code is interpreted by a program running called a Java

Virtual Machine (JVM) that executes on each host computer.

36

Operating System CPU Company

Windows NT/9x Intel Various
Solaris SPARC Sun Microsystems
AIX IBM
DG/UX 4.2 Intel Data General Corporation
DIGITAL OpenVMS Alpha Digital Equipment Corporation
DIGITAL Unix Alpha Digital Equipment Corporation
HP-UX Hewlett-Packard
IRIX Silicon Graphics
Linux Intel Blackdown.org
Linux MkLinux, P-Mac, PPC Tyler
MacOS Motorola Apple
NetWare Novell
OS/2 i386 IBM
OS/390, OS/400 IBM
SCO i386 SCO
UnixWare i386 SCO
VxWorks Wind River Systems
Windows NT Alpha Digital Equipment Corporation

ble 1. Java Supportec i Platforms and Opera! ing Systems [After Refs. 39,4

The JVM converts the byte codes into native instructions that are executed on the host

computer. Once a Java Virtual Machine is implemented for a particular processor and

operating system, it can then execute any compiled Java program. [Refs. 9, 29,41,42]

Sun Microsystems promotes the promise of the Java platform as "Write Once, Run

Anywhere" to highlight the reductions in effort required in fielding new software that

would otherwise have to be implemented separately on numerous platforms to provide

equivalent functionality [Ref. 43]. In addition to the ability to run programs on any

platform, a more recent capability was developed to provide a set of platform

independent graphical user interface (GUI) controls, collectively known as Swing, to

allow a common visual appearance across platforms [Ref. 44]. This common appearance

will promote ease of use and a reduction in training requirements since a person who is

accustomed to using a Swing-based application on one platform will not have to relearn

37

the functionality if he must use the same application on a different platform; the programs

will be identical in appearance.

USSOCOM and SOF units use different computer systems with different

processors, capabilities, and operating systems. In fact, these units have the most diverse

range of systems within the DoD due to their unique missions and requirements. As

such, they have the greatest challenge to interoperate and intercommunicate, not only

among themselves, but also with external agencies, forces, and nations. Programs written

in Java avoid this obstacle without any effort by the designer or user. [Refs. 9, 11,29]

This system, along with other components, offers the ability to provide cross-

platform functionality so that users working on a desktop computer at a home-station

location or at a forward operational base (FOB) can operate identically to an element

operating on a notebook computer or other small-scale computing device running the

same applications without modification or adaptation from a forward operating location

(FOL) or in a hostile environment. Users can become proficient at operating this system

in a training or administrative environment on a standard system, and then be able to put

that proficiency to task when they move to a smaller device for tactical deployments and

operations without the need for retraining.

2. Dynamic Loading and Viewing

Mission planning does not end with the onset of the execution phase. Continuous

monitoring, or "battle tracking," during all phases of an operation are critical to mission

success, thus a capability to react immediately to changing or unforeseen events is critical

to any military decision support system. Java provides another incredibly powerful

38

capability, called "dynamic loading," that supports this critical operational need. [Refs.

29,41] The loosely coupled component architecture used by this system builds on Java's

dynamic loading and execution to provide enhanced capabilities that offer real-time

updates to software and capability enhancements, even after the system has been started.

For example, a new algorithm or capability needed at a remote location can be written

and compiled elsewhere, sent to the unit in need across any available network connection,

and then incorporated into ongoing planning or analysis seamlessly to solve a problem

without any need to restart the system. [Ref. 29]

Additionally, the system put forward in this research can receive updated

information about units or items of interest and display those changes real-time, without

any action required by the user. This is extremely relevant when dealing with mission

areas such as intelligence, surveillance, and reconnaissance, as well as traditional battle

tracking. The Loosely Coupled Component design of the system allows for dynamic

viewing of information that can be coordinated with other components such as Thistle

and König. [Refs. 33, 35]

3. Distributed

Special Operations Forces usually operate in diverse and disparate environments;

the ability to have access to and share critical mission information from remote locations

offers a significant advantage over current isolated systems. Planning of these complex

operations can involve numerous forces, agencies, and activities whose actions and

efforts must be coordinated to achieve their objectives, yet are usually unable to

consolidate at a single location, thereby necessitating the system to operate in a

39

distributed manner. [Refs. 9, 11] The network-focused nature of Java allows for simple

sharing and distribution of data and programs required to operate this system. This

capability allows the system to inter-operate with different components and elements of

data that may be physically in different locations. Some resources may be on the local

system, while others might be accessed across a network connection from a system that is

on a different continent.

Java's distributed computing support functionality goes beyond merely providing

on-demand sending and receiving of data and components across networks. It also is

able to execute programs and functions on distant computers through remote method

invocation (RMI). Another technology, the Common Object Request Broker

Architecture (CORB A), is supported in Java to provide standards-based interoperability

and connectivity so that even non-Java programs and applications can work together in a

distributed manner. Together, Java's RMI and CORB A support offer tremendous

potential to enhance all loosely coupled components, including this system, with

distributed computing capabilities to enhance operational efficiency and effectiveness.

[Refs. 9, 11]

4. Thin Client

Another advantage of this system is that it can operate as a thin client. The idea

behind thin client applications is to allow clients running applications and using services

to be extremely small while the bulk of the computational requirements and data

processing activities occur on a powerful supporting server [Ref. 45]. Since in many

military and most Special Operations environments the computing devices are much

40

smaller and less powerful than the platforms available to planners in a home-station

environment, an application must be small enough so that it can run efficiently on these

smaller field devices while providing the same capabilities and availability of information

to the user. Each user need only load the elements of the application that are relevant to

support the mission at hand, thereby further reducing memory and storage requirements

while always retaining the flexibility to retrieve additional elements and capabilities

should the situation or mission change. This is a capability that is impossible to achieve

with existing applications. [Refs. 9,11,29]

5. Extensible

Other services and government agencies, forces of other nations, and non-

governmental organizations (NGOs) often play key roles in special operations missions,

most notably operations other than war (OOTW). SOMPASS is designed to support

these complex command and control chains by offering extensibility provided by its

loosely coupled component architecture. This capability allows for great flexibility in

response and support for growth in complexity and scale. Other components may be

designed and integrated with this system as needed, or all may operate independently,

whatever the situation dictates. In addition, the components are specifically designed to

be reusable without modification and adaptable to different situations that require similar

capabilities. As mentioned before, components can be accessed over available networks

and incorporated on the fly, allowing for tremendous power in handling problems that

arise during any phase of an operation. This system can support a large number of clients

that may grow or shrink during an operation, depending on the phase, each with their

41

own needs, yet all provided with the view and analysis of available information

supporting their specific requirements. Many current systems do not offer this flexibility

of support, thereby reducing their usefulness and restricting the potential capabilities of

their users. By being extensible, this system also has the capability to integrate many

participants that cannot currently receive and update mission information due to

hardware, communications, and other restrictions. [Refs. 9,11,29]

C. MODEL

"The essence of the operations research activity lies in the construction and use of

models." [Ref. 21: p. 4] Models are just simplified representations of real systems that

provide the means to solve complex problems [Ref. 21]. The system put forward in this

thesis uses the theory and foundations put forward in Chapter II to implement a usable

product that can assist commanders and staffs in planning, analysis, and decision-making

by providing a set of tools that allow the construction of models of military operations as

networks and applying solution algorithms and display components to simplify the

complex task of mission synchronization.

1. Network Representation

A military operation is represented in this system as a network contained within a

König graph object. The graph is composed of numerous nodes and arcs that are entered

by planners to represent the different elements of the operation from inception to

completion along with the dependencies that define the relationships between the

elements. König has no notion of a visual representation of a graph so SOMPASS

contains tools that convert the nodes and arcs of a graph into representations of the nodes

42

and arcs that are understood by and can be displayed on a Flora map display component

to allow a view of the network and simplify manipulation and modification of its

elements.

This system uses an AON representation for simplicity and ease of use to both

eliminate the need for incorporating dummy activities in the network and reduce the

computational requirements since all attributed associated with events and activities are

contained within the nodes. Additionally, a CPM approach, rather than PERT, is used to

solve a graph for its critical path and develop the synchronization matrix and execution

checklists. CPM does not rely on complex probabilistic distribution assumptions. PERT

requires the user to provide probability distributions that might yield erroneous or

misleading results if improper parameters for the distributions are used.

Since the system is dynamic and distributed, changes in the military operation that

occur at any time can easily be made to the graph, its nodes and arcs, or the properties

associated with them, either automatically, or by any user from any location that is

connected to the system. Then all participants and monitors will automatically receive

and incorporate these changes in their systems without any additional effort.

2. Tasks and Properties

After receiving a mission, commanders and their staffs have many responsibilities

during the planning process, regardless of whether it will be the deliberate or compressed

planning sequence. Some of these responsibilities include breaking down a mission into

its specified, implied, and essential tasks; identifying critical decision points, developing

a concept of the operation and CO As; wargaming the CO As; and producing the OPORD.

43

In this system, an operation is broken down into its component elements: the tasks

that participating units must accomplish, and the events that identify the phases and states

of progress. These tasks and events come from the planning process and must then be

input into the system. Each task that must be accomplished by a unit in support of the

mission is translated to an activity of the model that is represented as a node on the graph

since this system uses an AON representation. These nodes must also contain

information that represents the beginning and end events of each activity.

Each node on the graph has many important pieces of information that must be

associated with it in order to be useful in identifying it as well as solving for the critical

path of the operation and presenting the results in a useful manner. König provides a

means to easily store, modify, and reference these critical elements of information with a

graph and its nodes and arcs through the use of object property references. These

properties associated with each element of a König graph can be dynamically added,

modified, queried, and removed as needed providing very powerful capabilities for graph

manipulation. [Ref. 33] Some examples of mission activity properties are the name of

the responsible unit, an associated location, time required to complete the task, equipment

involved, and whether the activity is on the critical path of the operation. As stated

before, the nodes of an AON graph must also contain the events that begin and end each

activity and this information can also be stored as properties of the nodes.

The arcs in a graph on these AON networks serve only to connect the nodes of

events and activities to show dependency for activity completion and may be assigned a

property by the system as to whether an arc is on the critical path. By nature of König,

44

the arcs may also be assigned other dynamic properties, but this system is only concerned

with arcs for precedence. Properties may also be added to the graph itself, and several

are added by the system to provide information such as the total duration of the mission.

This system takes full advantage of the power in König to maintain dynamic

property attributes. This system introduces a set of tools that allow the user to easily add,

edit, view, or delete these properties in a graphical manner.

D. ARCHITECTURE

In order to develop a useful and powerful mission planning and analysis support

system, there must be an underlying architecture that is well designed and structured.

This system provides that necessary architecture by building to and incorporating the

loosely coupled component methodology and providing a simple and user-friendly

graphical user interface. In addition, this system also subscribes to and takes advantage

of another powerful methodology that is implemented in Swing, the Model-View-

Controller (MVC) architecture.

1. Loosely Coupled Components

This system is composed of several newly developed loosely coupled components

and incorporates existing components. One of the new components provided is the CPM

solver algorithm and supporting functions. Since it was designed around the loosely

coupled component architecture, it can be used in conjunction with this system, used in

several previous planning system tools, or used in tools that may be developed in the

future. It can be used with bther König algorithm components, or it can be used alone.

45

Another component developed for this system is a set of visual graph design and

editing tools that work together with other loosely coupled component sets, namely

König and Thistle, to rapidly build and manipulate the operational networks required for

conducting critical path analysis. These tools can also be used outside this system for

other generic or specific tasks involving the construction or modification of networks in a

visual manner in other loosely coupled systems.

Also, a graphical user interface component was built to tie together the critical

path solver algorithm with the graph design tools and present the system specific outputs:

the mission synchronization matrix and execution checklists. Together, these

components provide a useful and powerful mission planning and analysis support system

that is dynamic, flexible, and component based.

2. Graphical User Interface (GUI)

The GUI developed for this system was designed to be simple and user-friendly

so that it could be easily learned and accepted by users of all experience levels and

backgrounds. In this manner, simplicity would speed up familiarity so that users will

accept it as a useful tool. The GUI of any application is usually the most difficult

component to develop successfully, and it is the most critical for acceptance. If data

entry is cumbersome or confusing, errors will be common and user frustration will be

high, leading to reduced productivity or avoidance. Similarly, if information is presented

poorly, then the value ofthat information is degraded since it cannot be easily understood

or acted upon. Military personnel are extremely demanding of their equipment and use it

under greatly varying adverse conditions, much more so than their civilian counterparts.

46

Consequently, any military planning or execution system must provide a superior

interface, as well as useful tools to be accepted and adopted. This system attempts to

provide such an interface.

3. Model-View-Controller (MVC)

The Model-View-Controller architecture makes interactive systems more loosely

coupled and provides for greater scalability and easier maintenance or adjustment. Each

of the elements can be modified independently later without requiring changes to any of

the others. [Refs. 44,46] A representation of the interactions involved in the MVC

architecture can be seen in Figure 11.

Figure 11. Model-View-Controller Architecture

The model contains the underlying data and performs all computations and adjustments

as necessary. The view displays the appropriate representation of the data from the

model. And the controller responds to all user actions and notifies the model and view

when changes occur. The controller and view also work tightly together so that the user

47

can see changes from the actions directed by the controller that do not get sent to the

model, such as object selection and manipulation. [Ref. 46] Swing implements the MVC

architecture in its graphical display and control components to also take advantage of its

tremendous power and flexibility [Ref. 44].

The MVC architecture is also used in this system to offer greater flexibility and

control over operation and interaction. In this system, the König graph of a mission and

critical path solver operate as elements of the model, Flora acts as the view, and the

mouse, keyboard, or network act as the controller. All components communicate through

the Thistle Message Center to receive and post their updates providing a very dynamic

structure. Figure 12 highlights the loosely coupled component architecture as well as the

MVC design incorporated in this system.

E

Figure 12. System Architecture

IMPLEMENTATION

1. Description

The system presented in this research is designed to provide SOF commanders

and staffs a tool that will assist them in mission planning and analysis by reducing the

48

time and effort required to produce operational support documents including the mission

synchronization matrix and unit execution checklists. Additionally, it will allow dynamic

adjustment and updates to facilitate wargaming and sensitivity analysis of CO As as well

as highlight potential bottlenecks during the rehearsal and execution phases if linked to

real-time operational data.

This system is written entirely in Java due to the many advantages and features

detailed previously. This system also takes advantage of the powerful graphical display

and control components of Java's Swing for its GUI to ensure a standard cross-platform

appearance and provide functionality not available with other languages or design tools.

The actual Java code for the majority of components put forward in this system is

not included in this thesis report, but is available from the Operations Research

Department at the Naval Postgraduate School or the author. However, the code for the

implementation of the critical path solver algorithm that was presented in Chapter JJ is

provided in Appendix A to give the reader an idea of how a loosely coupled component is

structured, and how an algorithm is translated from pseudo-code to an executable

program. The code for this component also provides the reader with a view of the power

of the König API to solve network flow and graph theory problems.

2. Operation

This system is designed to be user-friendly and simple to operate so that it will be

accepted and used for mission planning and analysis by operational units. To that end,

highlighting views of the tools available will present a simple introduction to the system

and its operation. Additionally, a notional illustrative scenario of a special operations

49

mission is presented in Chapter IV, and used in an operational demonstration of the

system to provide the reader with a view of system functionality and capability. To

further aid the reader and potential users, a series of screen shots taken during program

execution involving the illustrative scenario, along with detailed explanations, is included

in Appendix C to provide a "walk-through" format user manual of the system. Several

views of system components showing a simple example network will introduce the reader

to what will be seen later in the more complex and detailed presentation.

When the main program is launched, several components are executed to allow

use of the system. The Critical Path Solver control panel starts with an empty project as

shown in Figure 13 and a blank Flora map display object is presented for use as a project

design and display board as shown in Figure 14.

^Critical Path Solver

jae fü^ÜL.-. ^W'tey Analysis Reports Help

BEES

PVr.' /r~£^*
UHP" ifeg I I

Edit Properties: iisäea^iKT

; Motte: Select Element; "^MöiöHfflfei

WM- ;ÄF; Ä-Mtf v Retiwve O-Ä

Figure 13. Critical Path Solver Control Panel

The Message Center is also activated in the background to handle system and network

communications, but it cannot be seen.

50

raFLORA 5.0 Beta [cpm]

Project Map Overlay Tools Help

Ü+i£
: Overlay from Critical Path Solver j J

am
papI&äleläJMOtlOOOOitocation 'X=30oe00 -.^-SDOOOO"

Figure 14. Blank Flora Map Display for Project Design

The graph editing tool bar is detachable, as shown in Figure 15, which makes editing the

project graph easier since it contains all necessary display editing tool controls and can be

displayed alongside the Flora display without interfering with editing operations.

FlCritical Path Flora Support Tool Bar

&Stöisi:"f-

mmE&\
Select Element: _i j.

f'-i? NodP Arc: i. -1
 j L

Setecl Action:

®tm ©Remove G,Move

Figure 15. Detachable Graph Editing Tool Bar

There are also several components used for editing the properties associated with

activities, or nodes, as well as the overall project graph. Examples of these editing

51

Windows are shown in Figure 16 and Figure 17, respectively. These components provide

a convenient way to display information about a task or the mission that may be changing

due to remote or automated inputs, or allow direct manipulation of properties by the user.

□ Ed,! Model BEE3I
S3 Properties
9 S Restricted

P nodelD
9 E3 Editable

PlateFinish

: P dispiayNams

P FloraCoordir

8
if§:

,0?-Ma5f-99 20:05

Q TaskOrganiz

; P duration

: Q jo.ngName TT, ;

*l»reM»:Ul>
.r..r..;.VT^..:..V-

Add] | Remove gone

Figure 16. Node Property Editor

FjEdit Graph

13 Properties
9 ^Restricted

■ P directed
|- Q order

•:■ P CrificalPathS
*■■ P size

■■■■ P name
9 C3 Editable

P jProiecföjart'

P lateFinish

P earlyStart

« ^:l>

87-fjSav-9SZ{K05

llflöäp, Remove sOone;,

Figure 17. Graph Property Editor

Nodes are represented on the Flora map display as circles with unique reference

numbers next to them, and arcs are displayed as arrows from the predecessor node to the

subsequent node such as in the simple example network shown in Figure 18. In addition

to the property display and editing components of Critical Path Solver, Flora provides a

built-in capability to select a visible element and display some properties associated with

it.

52

ga FLORA 5.0 Beta [cpm]

Project Map Overlay Tools Help

M^W
• Overlay from Critical Path Solver - Simple Network Example

■.*!

1 I

_J
jfMap Scale' 1:10000000 j Location »=SB0O00 y=SQ80OP

Figure 18. Simple Network Example

When Flora is operating as a map display tool such as in Figure 7 found in Chapter II,

this feature is used to display unit or equipment icons, but when used with the Critical

Path Solver, Flora can display some of the properties of nodes on a graph as shown in the

example node in Figure 19. This feature may be useful when editing is not required. As

implemented in Flora, this display method does not automatically update the display to

reflect any changes in node properties. This can be done with the node property editor

tool.

53

(Rg Symbol Info

S: 07-May-99 20:05
E:07-May-99 20:05

Start
1

Start

Float: 0.0
Duration: 0.0
Battalion

-;*=20Ö0Ö0 y=5Ö0Ö0Ü

mtf

Figure 19. Flora Symbol Info Display

If a cycle is found when attempting to solve for the critical path of a project, a

warning message such as in Figure 20 is displayed, and if possible to determine, the

offending node is highlighted in red so that the user can take action to correct the error.

Ha Cycle Found

Graph contains'a cjrctefromNödelO

A'

Figure 20. Cycle Error Message

If there are no cycles in the project graph, the computed critical path is then highlighted

in blue, and appropriate properties are added to the graph, nodes, and arcs, and all project

participants are updated automatically of the changes through the Message Center. The

blue critical path highlighting is clearly visible in the on-screen display, but is difficult to

discern in the black and white representation shown in Figure 21. A representation of a

solved network in color can be found in Appendix C.

54

At any time during system operation, the current project and all of its associated

elements can be saved for later action or modification, or a new project can be started,

providing great flexibility to users.

Kl FLORA 5.0 Beta (cpm)

Project Map (fcerlay Tools Help

I Overlay from Critical Path Solver"- Simple Network Example ; ^

in -12
päpScalejjftlOOßpOOqiiibcatiop S:s*%:;SO00p0Äy=:5ÖOOOt):

Figure 21. Simple Network Example with Critical Path Solution

3. Products

After successfully solving for the project critical path, the principal features of

this system can be exercised — they produce the mission synchronization matrix and unit

execution checklists.

55

The synchronization matrix produced by this system presents a time sequenced,

unit-hierarchical view of the mission similar to one that would be produced manually

during the mission planning sequence. The synchronization matrix produced by this

system is more valuable than those constructed manually because of its interactive and

dynamic properties. The left column displays all units involved in the mission, from the

controlling headquarters at the top, down through all subordinate elements under their

respective parent units. Across the top heading is a listing of critical times in the mission

from start to completion. In the body of the matrix are the mission tasks and events

associated with their responsible unit and the required times of action or completion. All

tasks that are on the critical path of the operation have asterisks ("*") before their names

in order to highlight their importance to the viewer. The highlighting helps convey this

critical element of information to people who will not see the critical path on the network

graph view. An example view of a synchronization matrix is shown in Figure 22.

El-jSynchronization Matrix for Simple Network Example

Urol"
!□ TaskOrganizalion
J9~Ci Battalion

jsMMM^M^MtMsiS^M

9 Q Bravo Company
rSiartlStam i-Stai1[Endl

fl#Mavgsaä2Qai j^imsäi^&itäp^lcyäs ?G74lä&2<ltiäS
Eon

mjt&ssiottttlßt-M&te

[Activity K [S-:

D 2d Platoon
1 9 E3 Charlie Company

:Actmt(AJStartl

1 9 Ölst Platoon
Ü 2d Squall

[TTHHC
r—■- -—-

.9 E3 Alpha Company
_J2jdPlatoon__

JiUtMty B [Start]
Activtty-A [End], ,„ ; Activity J "Activity J Activity.) [End]
'Activity B. j^MyB |end]

J!*^2.@S!S™ii!ÄtEF™!L: ^Activity D *ActivityD End]

iAcBvityCIStart] I Activity C iActivityC
^Activity H [Start] 'Activity H

[Ac^CJEndJ

I Activity G [Start) ! Activity G [E

mm^m^i^^mim^i^mmm^m^mm^^^mag»m&^m^mi^^m. ±L>
Figure 22. Example Synchronization Matrix

Unit listings on the left edge can be collapsed to hide their subordinate elements so that a

user can easily view the information he is concerned with for a particular unit, or group

of units of interest. The table can also be scrolled to view information that is contained in

56

the matrix but not currently visible due to screen size limitations on whatever system it is

being viewed.

The execution checklists produced by this system are presented as selectable by a

unit tab across the top so that only the checklist for the unit of interest is visible to avoid

clutter or confusion. The checklist is shown as a vertical timeline from earliest at the top

to latest at the bottom with the time of action or completion shown in the left column, and

the required task or event to the right. As with the synchronization matrix, tasks that are

on the critical path of the operation are highlighted with an asterisk ("*"). The execution

checklist table is also scrollable to allow viewing information not in the present window

view. An example view of a unit execution checklist is shown in Figure 23.

Fy Execution Checklist for Simple Network Example mmm

sj3ate;jflfftesOrociK>:- 1S2MI
07-May;99 20:05
Ö7-Mäy-9!J~20:05"

*Start [Start]
^"tart"[Btcii

07-May-99 20:21
07rMay-99 20:25
07-May-99 20:35
07-May-99 20:36
07-May-99 20:40
07-May-99 20:43
07-Mayr99 20:55

Activity« [Start]
Activity K [End]

07-M3V-99.20:56 iTinish[Start]
07-May-99 20:56 ^Finish[End]

Figure 23. Example Execution Checklist

As mentioned previously, there are more detailed use and capability examples and

system function explanations in Appendix C, along with color figures to aid in

visualization.

57

58

IV. ILLUSTRATIVE SCENARIO

This special operations scenario is designed to demonstrate the capabilities and

applicability of the mission planning and analysis system put forward in this thesis. This

scenario is not based on any known actual previous or planned operations or exercises; it

is entirely notional and designed to be unclassified.

A. SITUATION

This scenario is based on the conduct of a special operations emergency

deployment readiness exercise (EDRE) involving a Joint Special Operations Task Force

(JSOTF) in an area of operations (AO) in the vicinity of Fort Benning, in Columbus,

Georgia. The JSOTF has been formed for the exercise and is headquartered at Hunter

Army Airfield (AAF) in Savannah, Georgia. All participating elements are either

stationed at or operating from a FOB at Hunter AAF for the duration of the exercise.

B. TASK ORGANIZATION

The JSOTF is composed of the following forces:

• JSOTF Headquarters (HQ)
• 75th Ranger Regiment HQ
• 1st Battalion, 75th Ranger Regiment
• 3d Battalion, 3d Special Forces Group (SFG)

• 1 x Special Operations Command and Control Element (SOCCE)
• 1 x Special Forces Operational Detachment Charlie (SFOD C/ODC)
• 1 x Special Forces Operational Detachments Alpha (SFOD A/ODA)

• 3d Battalion, 160th Special Operations Aviation Regiment (SOAR)
• 2 x Special Operations Aviation Detachments (SOAD)

• 4th Special Operations Squadron (SOS), 16th Special Operations Wing (SOW)
• 2 x AC-130U Spooky JJ Gunships

• 20th SOS, 16th SOW
• 4 x MH-53J Pave Low IJJ Helicopters

59

The following map in Figure 24 shows the location and composition of forces in

the JSOTF.

rapLORA 5.0 Beta |cpm|

QliiäillilÄ

C. MISSIONDEVELOPMENT

1. Situation

A suspected critical enemy facility has been identified by national intelligence

assets and must be destroyed. The site is located in an urban environment in the vicinity

of several light and motorized enemy units. The enemy units are expected to reinforce

the security personnel at the facility to defend the site if it is believed to be in danger.

60

The following map in Figure 25 shows the mission AO with the objective

highlighted in red.

KjFLORA 5.0 Beta [cpml

'W^iSW^Säm^m^^Sm^»^
BEI ES

Figure 25. Mission Area of Operations
2. Mission

The JSOTF will conduct special reconnaissance (SR) on the suspected facility to

verify its purpose and identify defensive capabilities. If the objective is validated as an

appropriate target, the JSOTF will conduct a raid to destroy the facility and collect

evidence from the site to return for further analysis.

61

3. Concept of the Operation

An SFOD A team from 3-3 SFG will be lifted from Hunter AAF by a SOAD from

3-160 SOAR consisting of 2 x MH-60Ls and inserted into the AO to conduct SR in the

vicinity of the objective, including target analysis (TA), and report back their findings to

the JSOTF. If the objective is verified, a second SOAD, also from 3-160 SOAR,

consisting of 10 x MH-47Ds and 10 x MH-60Ls will lift Task Force (TF) Ranger (RGR),

composed of 1-75 Ranger, from Hunter AAF and insert them into the AO onto four of six

potential helicopter landing zones (HLZs). The operation will be supported from the air

by elements of the 20th SOS consisting of 4 x MH-53Js and elements of the 4th SOS

consisting of 2 x AC-130Us. In the strike phase, the ODA will provide additional target

acquisition intelligence. TF Ranger will destroy the objective, recover and collect any

available intelligence information regarding the facility, and be extracted back to Hunter

AAF. The map in Figure 26 shows the desired operational state for the conduct of

actions on the objective during the strike phase. The ODA will extract separately after

conducting battle damage assessment (BDA) of the objective and post-strike

reconnaissance of the AO, and also return to Hunter AAF. After all units have returned

to Hunter AAF, the JSOTF will conduct a debriefing and after action review (AAR) and

then conclude the exercise.

D. MISSION TASKS, EVENTS, AND DEPENDENCE

The mission outlined in this illustrative scenario must be broken down into its

component tasks and events in order to demonstrate the system capabilities and

suitability. A list of the mission tasks and events, along with their associated properties

62

and assigned units is located in Table 2 in Appendix B. This list is not exhaustive, but

sufficient to demonstrate functionality without need for classification, and serves as the

foundation for the project network to be entered into this system for analysis.

5J2l~LORA 5 0 Beta |cpro|

mmsmmsmm^^m^^^^m Sassy :--:-■--

Figure 26. Scheme of Maneuver: Actions on the Objective

E. IMPLEMENTATION

The network of the illustrative scenario built with SOMPASS consisted of 23 unit

elements and headquarters, 94 nodes representing the mission tasks found in Appendix B,

and 186 arcs depicting the dependencies between the tasks. A view of the graph of the

mission network is shown in Figure 27.

63

! Profiä Map Oorlay Tools

■ Overlay from Critic

»ill
all

Figure 27. Mission Network Representation

For greater visibility and perspective, a zoom-in view of the major tasks associated with

conduct of actions on the objective is shown in Figure 28.

^FLURA5 0Hcla[cpm)

Figure 28. Zoom in to Actions on the Objective Tasks

64

ANALYSIS

In the end, the product of effective synchronization is maximum
use of every resource to make the greatest contribution to success.

FM 100-5, Operations [Ref. 3: p. 2-9]

A. RESULTS

SOMPASS solved for and highlighted the critical path on the illustrative scenario

network, and produced the synchronization matrix and execution checklists all within

five seconds. A view of the solved network, which on the screen highlights the critical

path in blue, is shown in Figure 29 as a black and white rendition.

IS53 FLORA 50 Beta Icprn] HHE3I
Project Map (tortay Tools Help

|| m* a- -'x F;..>:-W>,; =•' -r.

67 |
m g}

1 BQ_ijJ

2 0 verlay from Critical Path Solver - JSOTF EDRE

pllll
liltl i» jBfJtfi '^^ttrr^l/'l T « a / so Jt

8 Q^ jf \ sCrf\w
/P?s« ^ yv^ v\\V

72_

3 odsu\ \jfc L\ |llt SUNK

1 Xrß

* w

i

- V

^t»-£>

Sw J v\\ \ 9 _iWÄ»l&^^,^WPc=:- \ 5rfi
fjr t*

—* * <J£-*5Äj e « f(

Jill

"♦1 1 ^yW:--^-//;v*\

Mas Stale 'l: 17500000! Location

Figure 29. Solved Mission Network

There are several regions of the network where simultaneous parallel tasks are being

conducted by multiple units, such as during receipt of the warning order and initial

65

mission planning. The concurrence of these tasks, in conjunction with their dependence,

leads to a solution with multiple critical paths that is clearly apparent to a user viewing

the solved network on a screen.

A representative view of the resulting synchronization matrix for the illustrative

scenario is shown in Figure 30.

-■«nit. 1 29-Apf-9912:16 i 29-Äor-9912:16 ! 28-Aor-9913:16 I 30-Apr-9913:16 I 30-/^917:16'! B2-Mäy9917:l6i■ 02-Üa#-991 rtäf biüs
D TaskOrgan'ization !' ! 1

9 □ JSOTF ;*Stand Up JSO... •'Stand Up JSO... Issue Warning !*lssue OPORD :*lssueÖPORD
•Receive Wami...:

'Await Execute... :*Awart Execute... :*Awai^
V l_l /5 Kanger

13 TF Ranger
> *RecelveWarni...

9 •Conduct Initial ...''Conduct initial... 'Complete Mis... ''Complete Mis... .'ConductRehe *Cont
9 EJTM Blocker I

Pi Blocker 4 i
f_OTMSupportWest! ; |

_. JjBJpcter2 ■

9 ÖTM Support East
CfBlocker i • ■ - - t ■• L ■ • 4 i

9 L3TM Assault i i
Qalocker 3 <

© fT 3-1 fin SOAR ..—■ L. '■

TsOAD Buffalo 'ConductRehe.. i*ConductRehe... I'Cont
3 SÖAD Sparrow I Conduct Rehea... .'Conduct Rehea... jCondn

9 □ 3-3 SFG "Receive Warm... •Receive Wami i ! i
f ?Ö SOCCE r

JODC 'Conduct Initial ''Conduct Initial.. Complete Mlssi... Complete Missi...:
JODÄ 'Conduct Initial I'Conduct Initial Complete Misst Complete Missi iConductRehea . Condi

9 LD16SOW •Receive Wami... •Receive Wami ''Conduct Initial ... Complete MISSI Complete Missi '
9 El 2~rJ sos

Q Stalker i ConductRehea. iConductRehea. ,Condii
[£13 4 SOS : • i
I M Sentry ! Final ^Mission P.. ;Flnaiüission P...
izmamifs&Mmimma __. — : : : j>

Figure 30. Mission Synchronization Matrix

It is also possible to view the multiple critical paths in this operation by looking at several

of the early columns in this synchronization matrix where several units have asterisks,

indicating critical path tasks, occurring during the same time periods.

A representative view of the resulting unit execution checklists for the illustrative

scenario is shown in Figure 31. The tab and time region shown in Figure 31 highlights

Team Assault, the unit conducting the actual assault on the objective. As should be

expected, the execution of the raid is an event on the critical path for this operation, since

it is the main effort for the mission, and is indicated by asterisks before the event name.

66

ÜH NjExecution Checklist for JSOTF EDRE

haälker j 2ffSOSj-Sientry>! 4.SOS] 16 SOW j JSOTF j TaskOrgänlzation

SOAD Buffalo SOAD Sparrow 3-160 SOAK ODC ODA , SOCCE 3 3SFG

TM Support East! f Btockef 3 ;; TMAssauitf /TFRartger ' j 75Ranger-

I Blocker4 rL TMBtocicer {'"'BlöckerZ ! TMSupportVtestj Blacker 1;

' Date Time öroup •Activity
i

08-May-99 02:16

w -
-
■;.

~P
-■

'$■

\ Q8-May-99 02:21 Move to Attack Position [Start]
) Q8-May-99 02:21 Move to Attack Position
I 08-May-99 02:24 Move to Attack Position
S 08-May-99 02:25 Move to Attack Position [End], Occup
\ Ö8-May-99:02:26 Occupy Attack Position
j 08-May-99 02:27 Occupy Attack Position
\ 08-May-99 02:28 Occupy Attack Position [End]
| 08 May-99 02:29
j 08-May-99 02:29
! 08-May-99 02:30:

! 08-May-99 02:30 "Conduct Raid [Start]
] 08-May-99 02:41 ■"Conduct Raid
I 08-May;99'{l2:41 *ConductRaid
i 08-May-99:03:00 ■"ConductRaid [End], Move to PZ [St...
l 08-May-99 03:00 Move to PZ

08-May-99 03:01 Move to PZ
| OÖ-May-99.Ö3:Ö2 Move to PZ
j 08-May-99 03:05 Move to PZ

Figure 31. Mission Execution Checklists

B. SENSITIVITY ANALYSIS

An extremely powerful feature of SOMPASS is the ability to dynamically change

properties associated with tasks, thereby allowing real-time sensitivity analysis or status

updates. An example that demonstrates this ability involves two tasks in the operation:

Node 70 - ODA Conducts BDA Post-strike Recon, and Node 82 - TF Ranger Conducts

Pickup Zone (PZ) Operations. Figure 32 shows the initial solution of the mission

network with the symbol displays for the two nodes in question. Node 70 is currently on

the critical path, while Node 82 is not. Note that Node 82 is currently projected to last 8

minutes, with a calculated total float time of 7 minutes. This float time means that PZ

operations could last as long as 15 minutes without affecting the critical path or total

67

duration of the mission, while any time longer than 15 minutes would delay completion

of the entire operation.

Protect Map Ouertay Tools Help

• Overlay from Critical Path Solver - JSOTF EDRE

Ifatt

/

Figure 32. Initial Critical Path and Properties

Since conducting battalion-level PZ operations at night in a hostile environment is a very

difficult and complex operation, it is conceivable that it may take longer than the

currently projected time of 8 minutes.

If a planner wanted to analyze what changes in the operation would occur if the

projected time to conduct PZ operations were to take as long as 16 minutes, rather than

the current projection, he need only change the property value for the duration ofthat

task, and resolve. Any changes in the critical path will be immediately displayed, and a

new synchronization matrix and set of execution checklists will be generated. In this

example, Figure 33 shows a change of the duration property for Node 82 from 8 minutes

68

to 16 minutes, and Figure 34 shows the resulting updated critical path and symbol

displays for Nodes 70 and 82.

F1 Edit Node 82

■23 Properties
9 E3 Restricted

Q nodeiD
9 Ö Editable

QlateFinish

QdtsplayNami

Q FloraCoordlr

Q TaskOrganiz:

Qir&raribnj

QstartDate

Q KmgName

mam-.-*«*

V
SS*:

i$m :\\ sfleiwwer ioonä:

3 Properties y|*
9 E3 Restricted m i

■■■ Q nodeiD
9 E3 Editable

: Q lateFiSsh

QdisplayNamÄ

Q FloraCoordi*

: Q TaskOrganiz

; Qlafttjgri!
1 D StartDate

Q JpngName %t

M Tiw

\

mm 'SRemewe" v v j*gDo«w

Figure 33. Modification of a Task Property

prated Map CWertay

I^S^srlglpr^WpojüjiratUir) ■

Figure 34. Updated Critical Path and Properties

In this instance, because there were only 7 minutes of float time available during PZ

operations, a change of 8 minutes caused this task to displace BDA and post-strike recon

69

from the critical path and also extend the duration of the mission by one minute. Note

also in Figure 34 that Node 70 now reflects one minute of slack time available since it is

no longer on the critical path.

The speed at which these types of comparisons can be conducted greatly

facilitates "what-if?" and course-of-action analysis that would otherwise take

considerably longer. The capability also exists to receive real-time updates on task status

over a network from involved units during the execution phase of an operation that would

allow real-time analysis of the situation and highlight any potential choke points or

delays.

C. APPLICABILITY

SOMPASS has the potential to offer increased mission planning efficiency and

rapid analysis capabilities, both in training and operational environments. As mentioned

above, it could also be integrated into such areas as rehearsal and execution battle

tracking for real-time status monitoring. The highlighting of critical path events on the

synchronization matrix and unit execution checklists also offers potential benefit to

commanders to indicate where they may want to be located to best lead and direct an

operation at its critical junctures.

In this thesis, only the participating units have been presented as the primary key

associated with mission tasks, as the battlefield operating system (BOS) for maneuver,

but many other areas could be represented just as easily to support operational needs or

requirements. Some possibilities include all other battlefield operating system (BOS)

components, decision points, and other key activities or time-phased events.

70

VI. THE NEXT LEVEL

This thesis presents a working system that can be used to assist in mission

planning and analysis, but many additional capabilities could be developed and

incorporated to further enhance its capabilities. Some possible avenues for development

are described below.

A. RESOURCE MANAGEMENT

In operations that are logistically restrictive, or involve combat service support

units or elements, the ability to examine scarce resource allocation and distribution would

be useful. Features such as consumption and resupply monitoring, resource leveling

algorithms, and trend analysis graphing would complement current features.

B. PRECENDENCE NETWORKS -MULTIPLEDEPENDENCY

SOMPASS currently supports normal finish-to-start single dependency

networking, but some complex operations may involve more intricate relationships

between activities and events. The ability to support more complex relationships

between activities would allow more types of operations to be modeled and solved to

provide additional user functionality.

A complex network involving non-standard or multiple dependencies is referred

to as a 'precedence network.' The variations of precedence networks include a start-to-

start dependency, also known as 'lag-start,' a finish-to-finish dependency, also known as

'lag-finish,' a start-to-finish dependency, or any combination of several dependencies.

[Ref. 24]

71

C. AUTOMATED DATA CALCULATION AND SELECTION

Additional automated features would also provide additional functionality to

users. For example, if geo-referenced locations were entered in conjunction with a unit

and task, as well as a means of travel, an estimate for the travel time required could be

determined automatically and provided as the initial duration ofthat task. Additionally, a

set of selection or optimization routines might be developed and incorporated to select

the best mode of travel, routes of transit, and resource requirements necessary for

completion of a task. These determinations and requirements could then be forwarded

across a network to the unit(s) that would support the mission, and added into their

operational plan and network representation.

D. SIMULATION

Incorporation of independent or integrated simulations that might be used to

model courses of action, engagement outcomes, threat activities, or other mission

affecting factors could provide additional inputs or properties to represented operations

and elements in SOMPASS to improve support to users. SOMPASS might also be used

to display operational status of simulations or simulated operations to provide alternative

views to conventional simulation outputs.

72

VII. CONCLUSION

This thesis provides a mission planning and analysis tool, the Special Operations

Mission Planning and Analysis Support System (SOMPASS), for Special Operations

Forces commanders and staffs to help reduce traditional mission planning preparation

time and manual effort requirements, as well as enhance the capabilities for conducting

analysis. While all services have strong interest in developing and acquiring new systems

to leverage advances in information-age technology, USSOCOM, with its diverse

composition of forces and nature of operations and environments, has many unique

requirements that must be specifically addressed in order to provide systems that will be

useful for their needs. These unique requirements are highlighted by the CINC,

USSOCOM, in Special Operations Forces, The Way Ahead [Ref. 5], and embedded in

the framework for their strategy for success: Mission Planning, Analysis, Rehearsal, and

Execution (MPARE). SOMPASS is a system that was specifically designed to address

the needs and requirements of USSOCOM, thereby providing a direction for further

development and possible incorporation into the MPARE program.

SOMPASS uses an operations research approach and incorporates currently

available advanced technologies to provide a powerful system to aid in mission planning

and analysis. This system helps to reduce mission preparation time and effort by

automating some of the requisite tasks involved, thereby giving commanders and staffs

more time to focus on other aspects of mission preparation and execution. SOMPASS

allows for dynamic property associations and rapid recalculation capabilities so that

73

many possible variations or contingencies may be examined for their effects on mission

success before deciding on a final plan. This provides improved course of action (COA)

analysis. Additionally, the dynamic and distributed capabilities of the system allow for

multiple users to coordinate their efforts and share information to increase efficiency.

The automated production of synchronization matrices and execution checklists

provides an extremely powerful capability to simplify mission synchronization which is a

critical element to mission success. Their dynamic nature allows great flexibility for

changes with minimal effort, either for analysis purposes or as the situation changes.

These products can be distributed and updated over a network to all concerned elements

in real-time. This eliminates the confusion generated by current hard-copy products that

may be outdated by events and eliminates the need to reassemble staffs to distribute and

discuss the latest changes. By highlighting the critical path tasks of an operation,

commanders also have a means to identify potential decisive points so they may better

determine where to best lead and direct the situation during key phases of an operation.

Due to its dynamic nature, SOMPASS can be used to support all operational

phases of a mission, not just the planning phase. Real-time situation updates provided

over a network, or entered during an operation will be rapidly incorporated to show any

changes or effects on the current plan to allow steps to be taken to address the changing

situation. This capability offers great flexibility in planning and response that could not

be accomplished with traditional tools or methods.

SOMPASS is also simple to learn and use. Little training is required for

proficiency beyond the description provided in this thesis and the walk-through of the

74

system provided in Appendix C. Users need not know anything about operations

research or CPM to operate the system; they only need to know what tasks must be

accomplished, and what order to complete them. Due to the distributed nature of the

system, missions can be entered and built by many users simultaneously and combined

together, thus allowing each unit to focus only on their area of responsibility while being

provided the entire operation. Similarly, the workload can be shared within the same unit

so as not to excessively burden one individual.

This thesis provides a system that can offer great benefits to USSOCOM and

provide the groundwork for further development in support of MPARE. The design and

system architecture of SOMPASS also allows for continued growth and enhancement

without the need for total replacement and retraining, thereby meeting the needs of the

Special Operations Forces today, and offering potential benefits to all of our Armed

Forces in the future.

75

76

APPENDIX A. CRITCAL PATH SOLVER

Below is the Java code used to implement a loosely coupled component algorithm

that can perform a topological sort on and solve for the critical path of a König graph.

package mil.navy.nps.cpm;

import java.io.FilelnputStream;
import Java.util.Iterator;
import javax.swing.JTabbedPane;
import mil.army.trac.konig.Arc-
import mil.army.trac.konig.ArcSet;
import mil.army.trac.konig.Graph;
import mi1.army.trac.konig.GraphFrame;
import mil. army. trac. konig. GraphPane,l;
import mil.army.trac.konig.Node;
import mil.army.trac.konig.NodeSet;

/**
* Critical Path Method solver algorithm.
* <p>
* This class includes static methods required to compute the Critical Path as well
* as several other network convenience functions.
* <p>
*
* ©version 1.0.0, 31 May 1999

* ©author Keith A. Hattes
**/

public class CriticalPath {

// class constants

/.*
* The default property name for the inDegree of a Node.

**/
public static final String IN_DEGREE = "inDegree";

'**
* The default property name for the outDegree of a Node.

**/
public static final String OUT_DEGREE = "outDegree";

/**
* The default property name for the results of a topological sort, or acyclic
* ordering, of Nodes.

**/
public static final String TOPOLOGICAL_ORDER = "topologicalOrder" ;

/**
* The default property name for the Earliest Start Time (EST) of a Node.

**/
public static final String EARLY_START = "earlyStart" ;

/**
* The default property name for the Latest Start Time (LST) of a Node.

**/
public static final String LATE_START = "lateStart";

/**
* The default property name for the Earliest Finish Time (EFT) of a Node.

**/
public static final String EARLY_FINISH = "earlyFinish";

/.*
* The default property name for the Latest Finish Time (LFT) of a Node.

**/
public static final String LATE_FINISH = "lateFinish";

77

/**
* The default property name for the Float Time of a Node.

**/
public static final String TOTAL_FLOAT = "totalFloat";

/**
* The default property name for whether an Arc or Node is on the Critical Path.

**/
public static final String ON_CRITICAL_PATH = "onCriticalPath";

/**
* The default property name for the total duration of a project!

** /
public static final String PROJECT_DURATION = "projectDuration";

/**
* The default property name for the duration of an event.

**/
public static final String DURATION = "duration";

/**
* The default property name for the must start by time of an event.

**/
public static final String REQUIRED_START = "requiredStart";

/**
* The default property name for the must finish by time of an event.

public static final String REQUIRED_FINISH = "requiredFinish" ,-

// class methods

/**
* Calculates the inDegree and OutDegree of all Nodes in a Graph and stores the
* results as Node properties.
*
* Sparam aGraph the <CODE>Graph</CODE> on which to compute the degree.
* Sparam inDegreeKey the property reference key to store the inDegree result.
* @param outDegreeKey the property reference key to store the outDegree result.

**/
public static void setDegree(Graph aGraph, String inDegreeKey, String outDegreeKey) {

NodeSet nodes = aGraph.getNodeSetO ;
ArcSet arcs = aGraph.getArcSet();
Node aNode;
Arc anArc;
int inDegree;
int outDegree ;
for(Iterator i = nodes.iterator(); i.hasNext();) {

aNode = (Node) i.nextO;
aNode.putProperty(inDegreeKey, new Integer(0));
aNode.putProperty(outDegreeKey, new Integer(0));

}
for(Iterator i = arcs.iterator(); i.hasNext();) {

anArc = (Arc) i.nextO;
aNode = (Node) anArc. getToNode (),-
inDegree = ((Number) aNode.getProperty(inDegreeKey)).intValueO + 1;
aNode.putProperty(IN_DEGREE, new Integer(inDegree));
aNode = (Node) anArc.getFromNode();
outDegree = ((Number) aNode.getProperty(outDegreeKey)) .intValueO + 1;
aNode.putProperty(outDegreeKey, new Integer(outDegree));

}
)

/**
* Calculates the inDegree and OutDegree of all Nodes in a Graph and stores the
* results as Node properties in the default property reference keys.

* Oparam aGraph the <C0DE>Graph</C0DE> on which to compute the degree.
*V
public static void setDegree(Graph aGraph) {

setDegree(aGraph, IN_DEGREE, OUTDEGREE);
}

/**
* Calculates the inDegree of each Node in a Graph and stores the result as a Node
* property.

78

* Sparam aGraph the <CODE>Graph</CODE> on which to compute the degree.
* Sparam inDegreeKey the property reference key to store the inDegree result.

**/
public static void setInDegree(Graph aGraph, String inDegreeKey) {

NodeSet nodes = aGraph.getNodeSet();
ArcSet arcs = aGraph.getArcSet();
Node aNode;
Arc anArc;
int inDegree;
for (Iterator i = nodes. iterator (),- i.hasNext ();) {

aNode = (Node) i.nextO;
aNode.putProperty(inDegreeKey, new Integer(0));

}
fordterator i = arcs. iterator (); i. hasNext ();) {

anArc = (Arc) i.nextO;
aNode = (Node) anArc.getToNode{);
inDegree = ((Number) aNode. getProperty(inDegreeKey)) .intValueO + 1;
aNode.putProperty(IN_DEGREE, new Integer(inDegree)) ;

}
} - ■

/**
* Calculates the inDegree of each Node in a Graph and stores the result as a Node
* property in the default property reference key.
*
* Sparam aGraph the <CODE>Graph</CODE> on which to compute the degree.

**/
public static void setlnDegree(Graph aGraph) {

setlnDegree(aGraph, IN_DEGREE),-
)

/**
* Calculates the outDegree of each Node in a Graph and stores the result as a Node
* property.
*
* Sparam aGraph the <CODE>Graph</C0DE>.on which to compute the degree.
* @param outDegreeKey the property reference key to store the outDegree result.

**/
public static void setOutDegree(Graph aGraph, String outDegreeKey) {

NodeSet nodes = aGraph.getNodeSet();
ArcSet arcs = aGraph.getArcSet();
Node aNode;
Arc anArc;
int outDegree;
fordterator i = nodes. iterator (); i.hasNext();) {

aNode = (Node) i.nextO ;
aNode.putProperty(outDegreeKey, new Integer(O));

}
fordterator i = arcs.iterator (); i.hasNextO ;) {

anArc = (Arc) i.nextO;
aNode = (Node) anArc.getFromNode0;
outDegree = ((Number) aNode. getProperty (outDegreeKey)) .intValueO + 1;
aNode.putProperty(outDegreeKey, new Integer(outDegree));

}
}

/**
* Calculates the outDegree of each Node in a Graph and stores the result as a Node
* property in the default property reference key.
*
* Sparam aGraph the <CODE>Graph</CODE> on which to compute the degree.

**/
public static void setOutDegree(Graph aGraph) {

setOutDegree (aGraph, OUT_DEGREE) ;
)

/ **
* Returns the inDegree of a Node in a Graph. If it does not already exist, it
».calculates the inDegree for the entire Graph first.
*
* Sparam aNode the <CODE>Node</CODE> of interest.
* Sparam aGraph the parent <CODE>Graph</CODE>.
* Sparam inDegreeKey the property reference key to query.
*
* Sreturn the inDegree of the Node.

** /
public static int getlnDegree(Node aNode, Graph aGraph, String inDegreeKey) {

79

int inDegree;
Object obj = aNode.getProperty(inDegreeKey, null);
if(obj == null) {

setlnDegree(aGraph, inDegreeKey);
inDegree = ((Number) aNode.getProperty(inDegreeKey)).intValueO ;

eise {
inDegree = ((Number) obj).intValue();

}
return inDegree;

}

/**
* Returns the inDegree of a Node in a Graph. If it does not already exist, it
* calculates the inDegree for the entire Graph first and stores the result in the
* default property reference key.

* Sparam aNode the <CODE>Node</CODE> of interest.
* Sparam aGraph the parent <CODE>Graph</CODE>.

* Sreturn the inDegree of the Node.
**/
public static int getlnDegree(Node aNode, Graph aGraph) {

return getlnDegree(aNode, aGraph, IN_DEGREE);
}

/**
* Returns the outDegree of a Node in a Graph. If it does not already exist, it
* calculates the outDegree for the entire Graph first. *
* Sparam aNode the <CODE>Node</CODE> of interest.
* Sparam aGraph the parent <CODE>Graph</CODE>.
* @param outDegreeKey the property reference key to query.

* Sreturn the outDegree of the Node.
**/
public static int getOutDegree(Node aNode, Graph aGraph, String outDegreeKey) {

int outDegree;
Object obj = aNode.getProperty(outDegreeKey, null);
if (obj == null) '{

setOutDegree(aGraph, outDegreeKey);
outDegree = ((Number) aNode.getProperty(outDegreeKey)).intValue();

else {
outDegree = ((Number) ob j). intValue (),-

}
return outDegree;

}

/**
* Returns the outDegree of a Node in a Graph. If it does not already exist, it
* calculates the outDegree for the entire Graph first and stores the result in the
* default property reference key. *
* Sparam aNode the <CODE>Node</CODE> of interest.
* eparam aGraph the parent <CODE>Graph</CODE>.

* Sreturn the outDegree of the Node.
**/
public static int getOutDegree(Node aNode, Graph aGraph) {

return getOutDegree(aNode, aGraph, OUT_DEGREE);
'}

/**
* Returns a <CODE>NodeSet</CODE> of the Forward Star of a Node in a Graph.

* Sparam aNode the <CODE>Node</C0DE> of interest.
* Sparam aGraph the parent <CODE>Graph</CODE>.

* Sreturn the Forward Star of the Node.
**/
public static NodeSet getForwardStar(Node aNode, Graph aGraph) {

NodeSet forwardstar = new NodeSet();
ArcSet arcs = aGraph.getArcSet();
Arc anArc;
for(Iterator i = arcs.iterator!); i.hasNext();) {

anArc = (Arc) i.nextl);

80

iff ((Node) anArc. getFroinNode ()) == aNode) {
forwardStar.add(anArc.getToNode()) ;

}
}
return forwardStar;

/**
* Returns a <CODE>NodeSet</CODE> of the Reverse Star of a Node in a Graph.
*
* dparam aNode the <CODE>Node</CODE> of interest.
* Sparam aGraph the parent <CODE>Graph</CODE>.
*
* ^return the Reverse Star of the Node.

** /
public static NodeSet getReverseStar(Node aNode, Graph aGraph) {

NodeSet reverseStar = new NodeSet();
ArcSet arcs = aGraph.getArcSet0;
Arc anArc;
for(Iterator i = arcs.iterator(); i.hasNext();) {

anArc = (Arc) i.nextO;
if(((Node) anArc.getToNode()) == aNode) {

reverseStar. add (anArc. getFroinNode ()) ;
}

}
return reverseStar;

)

* Conducts a topological sort of a Graph, and sets the acyclic ordering property
* value of each Node in the Graph with its acyclic number.
*
* Sparam aGraph the <CODE>Graph</C0DE> to conduct the topological ordering on.
* @param inDegreeKey the property reference key containing the inDegree of Nodes.
* Oparam topologicalOrderKey the property reference key to store the topological
* order sequence number of each Node.
*
* @return a shallow copy of the Graph's <CODE>NodeSet</CODE> sorted by the
* <CODE>TopologicalComparator</CODE>.

* @exception <CODE>CycleException</CODE> if the Graph contains a cycle.
** /
public static NodeSet topologicalSort(Graph aGraph, String inDegreeKey,

String topologicalOrderKey) throws CycleException {
Queue hold = new Queue();
String tempDegree = "tempDegree";
NodeSet nodes = aGraph.getNodeSet();
int counter =0;
int temp;
NodeSet star;
Node aNode = null;
Node nextNode = null;
Node cycleNode;
setlnDegree(aGraph, inDegreeKey);
for(Iterator i = nodes.iterator0; i.hasNext();) {

aNode = (Node) i.nextO;
aNode.putPropertyltopologicalOrderKey, new Integer(0));
temp = ((Number) aNode.getProperty(inDegreeKey)) .intValueO ;
aNode.putProperty(tempDegree, new Integer(temp));
if(temp == 0) {

hold.push(aNode);
}

}
while(Ihold.isEmptyO) {

aNode = (Node) hold.pop O;
aNode.putProperty (topologicalOrderKey, new Integer (++counter)),-
star =• getForwardStar(aNode, aGraph);
for(Iterator i = star.iterator(); i.hasNext();) {

nextNode = (Node) i.nextO;
temp = ((Number) nextNode.getProperty(tempDegree)).intValueO;
nextNode.putProperty(tempDegree, new Integer!—temp));
if(temp == 0) {

hold.push(nextNode);
}

}
}

81

if(counter < nodes, sized) {
cycleNode = nextNode;
fordterator i = nodes, iterator (); i. hasNext () ;) {

aNode = (Node) i.nextO;
aNode.removePropertyftempDegree);
aNode.removeProperty(topologicalOrderKey) ;

}

throw new CycleExcept ion (cycleNode, aGraph. töStringO + " contains a cycle ")•
}
else {

NodeSet orderedNodes = new NodeSet(new TopologicalComparator()) ;
fordterator i = nodes. iterator (); i.hasNextO ;) (

aNode = (Node) i.nextO;
aNode.removeProperty(tempDegree) ,-

}
orderedNodes.addAll(nodes);
return orderedNodes;

)
}

/**
* Conducts a topological sort of a Graph using the default inDegree property
* reference key and sets the default acyclic ordering property value of each Node
* in the Graph with its acyclic number.

* Sparam aGraph the <CODE>Graph</CODE> to conduct the topological ordering on.

* Sretum a shallow copy of the Graph's <CODE>NodeSet</CODE> sorted by the
* <CODE>TopologicalComparator</CODE>. *
* Sexception <CODE>CycleException</CODE> if the Graph contains a cycle.

**/
public static NodeSet topologicalSort(Graph aGraph) throws CycleException {

return topologicalSort (aGraph, IN_DEGREE, TOPOLOGICAL_ORDER) :
}

/**
* Conducts a forward pass and topological sort of a Graph, and sets all associated
* properties specified for use in critical path determination. ' *
* Sparam aGraph the <CODE>Graph</CODE> to conduct the forward pass on.
* Sparam durationKey the property reference key containing the length of the event.
* Sparam inDegreeKey the property reference key containing the inDegree of Nodes.
* Sparam topologicalOrderKey the property reference key to store the topological
* order sequence number of each Node.
* Sparam earlyStartKey the property reference key to store the event Earliest Start
* Time.
* Sparam earlyFinishKey the property reference key to store the event Earliest Finish
* Time.
* Sparam lateFinishKey the property reference key to store the Latest Finish Time of
* the last event for synchronization with <CODE>backwardPass()</CODE>.
* Sparam requiredStartKey the property reference key that has the must start by time
* for an event.
* Sparam requiredFinishKey the property reference key that has the must finish by time
* for an event. *
* Sexception <CODE>CycleException</CODE> if the Graph contains a cycle.

**/
protected static void forwardPass(Graph aGraph, String durationKey, String inDegreeKey,

String topologicalOrderKey, String earlyStartKey, String earlyFinishKey,
String lateFinishKey, String requiredStartKey, String requiredFinishKey)
throws CycleException {
Queue hold = new Queue();
String tempDegree = "tempDegree";
NodeSet nodes = aGraph.getNodeSet();
int counter =0;
int temp;
double start;
double theDuration;
double finish;
double max;
NodeSet star;
Node aNode = null;
Node nextNode = null;
Node cycleNode;
fordterator i = nodes. iterator (); i. hasNext (>;) {

aNode a (Node) i.next();

82

aNode.putProperty(topologicalOrderKey, new Integer(0));
temp = ((Number) aNode.getProperty(inDegreeKey)) .intValueO ;
aNode.putProperty(tempDegree, hew Integer(temp));
if(temp == 0) {

hold.push(aNode) ,-
if (aNode.getProperty(recjuiredStartKey) == null) {

start =0.0;
)
else {

start = ((Number) aNode.getProperty(requiredStartKey)).doubleValue0 ;

)

theDuration = ((Number) aNode.getProperty(durationKey,
new Double(0.0))).doubleValue();

aNode.putPropertylearlyStartKey, new Double(start)>;
aNode.putProperty(earlyFinishKey, new Double(start + theDuration));

}
}
whileUhold.isEmptyO) {

aNode = (Node) hold.popO;
aNode.putPropertyftopologicalOrderKey, new Integer (++counter)),-
finish = ((Number) aNode.getProperty(earlyFinishKey,
new Double(0.0))).doubleValue();

star = getForwardStar(aNode, aGraph) ,-
for(Iterator i = star.iterator(); i.hasNext();) {

nextNode = (Node) i. next (),-
temp = ((Integer) nextNode. getProperty(tempDegree)) .intValueO ;
nextNode.putProperty(tempDegree, new Integer(—temp));
start = ((Number) nextNode.getProperty(earlyStartKey,
new Double(0.0))).doubleValue();

theDuration = ((Number) nextNode.getProperty(durationKey,
new Double(0.0))).doubleValue();

max = Math.max(finish, start);
nextNode.putProperty(earlyStartKey, new Double(max));
nextNode.putProperty (earlyFinishKey, new Double (max + theDuration));
if(temp == 0) {

hold.push(nextNode);
) .

}
}
if(counter < nodes.size()) {

cycleNode = nextNode;
for(Iterator i = nodes.iterator(); i.hasNext();) {

aNode = (Node) i.nextO;
aNode.removeProperty(tempDegree);
aNode.removeProperty(topologicalOrderKey);

)
throw new CycleExceptionfcycleNode, aGraph.toString() + " contains a cycle.");

} .
else {

aNode = aGraph.getNode(topologicalOrderKey, new Integer(nodes.size()));
aNode. putProperty (lateFinishKey, aNode. getProperty (earlyFinishKey)) ;
fordterator i = nodes.iterator(); i.hasNext();) {

aNode - (Node) i.nextO;
aNode.removeProperty(tempDegree);

}
}

Conducts a backward pass on a Graph, and sets all associated properties specified
for use in critical path determination.

Sparam aGraph the <CODE>Graph</C0DE> to conduct the forward pass on.
gparam durationKey the property reference key containing the length of the event.
Sparam topologicalOrderKey the property reference key containing the topological

order sequence number of each Node.
Sparam earlyStartKey the property reference key containing the event Earliest Start

Time.
Sparam lateStartKey the property reference key to store the event Latest Start Time.
Sparam lateFinishKey the property reference key to store the event Latest Finish

Time.
Sparam totalFloatKey the property reference key to store the event Float Time.
Sparam onCriticalPathKey the property reference key to set if an event is on the

critical path.

83

protected static void backwardPass(Graph aGraph, String durationKey,
String topologicalOrderKey, String earlyStartKey, String lateStartKey,
String lateFinishKey, String totalFloatKey, String onCriticalPathKey) {
NodeSet nodes = new NodeSett

new TopologicalComparator(ComparatorDirection.DESCENDING, topologicalOrderKey)) ;
nodes.addAll(aGraph.getNodeSet());
double start; t

double theDuration;
double finish;

. double min;
double totalFloat;
double tolerance = 1.0e-6;
NodeSet star,-
Node aNode;
Node priorNode,-
£or(Iterator i = nodes.iterator(); i.hasNext();) (

aNode = (Node) i.nextO;
finish = ((Number) aNode.getPropertydateFinishKey,
new Double(Double.MAX_VALUE))).doubleValue() ;

theDuration = ((Number) aNode.getProperty(durationKey,
new Double(0.0))).doubleValue();

start = finish - theDuration;
aNode.putPropertyflateStartKey, new Double(start));
star = getReverseStar(aNode, aGraph);
for(Iterator j = star.iterator0; j.hasNext();) {

priorNode = (Node) j.nextO;
finish = ((Number) priorNode.getPropertydateFinishKey,
new Double(Double.MAX_VALÜE))).doubleValue(>;

theDuration = ((Number) priorNode.getProperty(durationKey,
new Double(O.O))).doubleValue0;

min = Math.min(start, finish);
priorNode.putProperty(lateFinishKey, new Double (min)) ;
priorNode.putPropertytlateStartKey, new Double(min - theDuration));

}
}
fordterator i = nodes.iterator (); i.hasNext();) {

aNode = (Node) i.nextO;
start = ((Number) aNode. getProperty(ear lyStartKey)) .doubleValue () ;
finish = ((Number) aNode.getProperty(lateStartKey)).doubleValue();
totalFloat = finish - start;
aNode.putPropertyltotalFloatKey, new Double (totalFloat)) ;
if((totalFloat < tolerance) && (totalFloat > -tolerance)) {

aNode.putProperty(onCriticalPathKey, new Boolean(true)) ;
}

}
}

/**
* Conducts all operations necessary to determine the critical path of a Graph, and
* sets all associated properties specified for use in critical path determination.
* Returns an <CODE>ArcSet</CODE> containing all of the Arcs on the critical path.

* Sparam aGraph the <CODE>Graph</CODE> to conduct the forward pass on.
* Sparam durationKey the property reference key containing the length of the event.
* Sparam projectDurationKey the property reference key to store the total duration
* of the project in the Graph.
* Sparam inDegreeKey the property reference key containing the inDegree of Nodes.
* Sparam topologicalOrderKey the property reference key to store the topological order
* sequence number of each Node.
* Sparam earlyStartKey the property reference key to store the event Earliest Start
* Time.
* Sparam lateStartKey the property reference key to store the event Latest Start Time.
* Sparam earlyFinishKey the property reference key to store the event Earliest Finish
* Time.
* Sparam lateFinishKey the property reference key to store the event Latest Finish
* Time.
* Sparam totalFloatKey the property reference key to store the event Float Time.
* Sparam requiredStartKey the property reference key that has the must start by time
* for an event.
* Sparam requiredFinishKey the property reference key that has the must finish by time
* for an event.
* Sparam onCriticalPathKey the property reference key to set if an event
* (Node or Arc) is on the critical path.
* Sparam setDegree the flag to determine if calculation of Degrees needs to be
* conducted.
*
* Sreturn all Arcs on the critical path.

84

* @exception <CODE>CycleException</CODE> if the Graph contains a cycle.
**/
public static ArcSet getCriticalPath(Graph aGraph, String durationKey,

String projectDurationKey, String inDegreeKey, String outDegreeKey,
String topologicalOrderKey, String earlyStartKey, String lateStartKey,
String earlyFinishKey, String lateFinishKey, String totalFloatKey,
String requiredStartKey, String requiredFinishKey, String onCriticalPathKey,
boolean setDegree) throws CycleException {
double start = Double. MAX_VALUE;
double finish = Double. MIN_VALUE;
double compare;
NodeSet nodes = aGraph.getNodeSet();
Node aNode;
ArcSet arcs = aGraph.getArcSet();
ArcSet theCriticalPath = new ArcSet{);
Arc anArc;
boolean fromNode;
boolean toNode;
aGraph.reraoveProperty(earlyStartKey);
aGraph.removeProperty(lateFinishKey);
aGraph.removeProperty(projectDurationKey);
fordterator i = nodes. iterator (),- i.hasNext();) {

aNode = (Node) i.nextO;
aNode.removeProperty(inDegreeKey);
aNode.removeProperty(outDegreeKey);
aNode.removeProperty(topologicalOrderKey);
aNode.removeProperty(earlyStartKey);
aNode.removeProperty(lateStartKey);
aNode.removeProperty)earlyFihishKey);
aNode.removeProperty(lateFinishKey);
aNode.removeProperty(totalFloatKey);
aNode.removeProperty(onCriticalPathKey);

}
fordterator i = arcs.iterator(); i.hasNext ();) {

anArc = (Arc) i.nextO;
anArc.removeProperty(onCriticalPathKey);

}
if(setDegree) {

setDegree(aGraph, inDegreeKey, outDegreeKey);
}
forwardPass(aGraph, durationKey, inDegreeKey, topologicalOrderKey, earlyStartKey,

earlyFinishKey, lateFinishKey, reguiredStartKey, requiredFinishKey) ,-
backwardPass(aGraph, durationKey, topologicalOrderKey, earlyStartKey, lateStartKey,

lateFinishKey, totalFloatKey, onCriticalPathKey) ;
fordterator i = nodes.iterator(); i.hasNext();) {

aNode = (Node) i.nextO;
compare = ((Number) aNode.getProperty(earlyStartKey,
new Double (Double.MAX_VALUE))) . doubleValue () ;

if(compare < start) { start = compare; }
compare = ((Number) aNode.getProperty(lateFinishKey,
new Double(Double.MIN_VALUE))).doubleValue ();

if(compare > finish) { finish = compare; }
}
aGraph.putProperty(projectDurationKey, new Double(finish - start));
aGraph.putProperty(earlyStartKey, new Double(start));
aGraph.putPropertydateFinishKey, new Double(finish));
fordterator i = arcs, iterator (); i. hasNext (),-) {

anArc = (Arc) i.nextO;
aNode = (Node) anArc.getFromNode();
fromNode = ((Boolean) aNode.getProperty(onCriticalPathKey,
new Boolean(false))).booleanValue();

aNode = (Node) anArc.getToNode();
toNode = ((Boolean) aNode.getProperty(onCriticalPathKey,
new Boolean(false))).booleanValue();

if(fromNode && toNode) {
anArc.putProperty(onCriticalPathKey, new Boolean(true));
theCriticalPath.add(anArc);

)
}
return theCriticalPath;

Conducts all operations necessary to determine the critical path of a Graph, and
sets all associated default properties for use in critical path determination.
Returns an <CODE>ArcSet</CODE> containing all of the Arcs on the critical path.

85

* Sparam aGraph the <CODE>Graph</CODE> to conduct the forward pass on.

* ©return all Arcs on the critical path. *
* @exception <CODE>CycleException</CODE> if the Graph contains a cycle

**/
public static ArcSet getCriticalPath(Graph aGraph)

throws CycleException {

return getCriticalPath (aGraph, DURATION, PROJECTJDURATION, IN_DEGREE, OUT_DEGREE,
TOP0L0GICAL_0RDER, EARLY_START, LATE_START, EARLY_FINISH, LATE_FINISH,
TOTAL_FLOAT, null, null, ON_CRITICAL_PATH, true);

>

// main method

/**
* A simple test case that displays a GraphPanel with properties and critical path
* results.

**/
public static void main(String[] args) {

Graph aGraph = new Graph();
String graphName = "test";
if(args.length > 0) {

graphName = args[0];
}
try {

aGraph = new Graph(graphName + ".graph");
aGraph.inputNodes(new FilelnputStream(graphName + ".nodes"))-

} . . -
catch(Exception e) {

System.err.println(e + " has File errors.");
System.exit(0) ;

}
try {

getCriticalPath(aGraph);
}
catch(CycleException e) {

System.out.println(e);
System.out.printlnf"Cycle Node: " + e.getCycleNodeO) ;
System.exit(0);

}
JTabbedPane aPane = new JTabbedPane() ;
aPane. addTab (graphName, new GraphPanel (aGraph));
GraphFrame aFrame = new GraphFrame(graphName);
aFrame.getContentPaneO .add(aPane) ;
aFrame.setvisible(true);

}

86

APPENDIX B. ILLUSTRATIVE SCENARIO ACTIVITY AND EVENT LIST

Table 2 contains a list of the mission tasks and their properties associated with the

illustrative scenario.

Task# Task Description Unit Responsible
Duration
HHWM Succeeding Tasks

1 Stand Up JSOTF JSOTF 00:00 2,3,4,5,6

2 Issue Warning Order JSOTF 01:00 7

3 Receive Warning Order JSOTF/75 Ranger 01:00 8

4 Receive Warning Order JSOTF/3-160SOAR 01:00 9

5 Receive Warning Order JSOTF/3-3 SFG 01:00 10,11

6 Receive Warning Order JSOTF/16 SOW 01:00 12

7 Issue OPORD JSOTF 04:00 13,14,15,16,17,23

8 Conduct Initial Mission
Planning

JSOTF/75 Ranger/TF Ranger 24:00 7,14

9 Conduct Initial Mission
Planning

JSOTF/3-160SOAR 24:00 7,13

10 Conduct Initial Mission
Planning

JSOTF/3-3 SFG/SOCCE/ODC 24:00 7,15

11 Conduct Initial Mission
Planning

JSOTF/3-3 SFG/SOCCE/ODA 24:00 7,16

12 Conduct Initial Mission
Planning

JSOTF/16 SOW 24:00 7,17

13 Complete Mission
Planning

JSOTF/3-160SOAR 48:00 19,21,22,90

14 Complete Mission
Planning

JSOTF/75 Ranger/TF Ranger 48:00 18,19,22

15 Complete Mission
Planning

JSOTF/3-3 SFG/SOCCE/ODC 48:00 89

16 Complete Mission
Planning

JSOTF/3-3 SFG/SOCCE/ODA .48:00 20,21

17 Complete Mission
Planning

JSOTF/16SOW 48:00 22,27

18 Conduct Rehearsals JSOTF/75 Ranger/TF Ranger 48:00 24,25

19 Conduct Rehearsals JSOTF/3-160 SOAR/SOAD Buffalo 48:00 24,25

20 Conduct Rehearsals JSOTF/3-3 SFG/SOCCE/ODA 24:00 28,29

21 Conduct Rehearsals JSOTF/3-160 SOAR/SOAD Sparrow 24:00 28,29

22 Conduct Rehearsals JSOTF/16 SOW/20 SOS/Stalker 24:00 26

23 Await Execute Order JSOTF 96:00 30

24 Final Mission Prep JSOTF/3-160 SOAR/SOAD Buffalo 00:00 31,38,39

25 Final Mission Prep JSOTF/75 Ranger/TF Ranger 00:00 38,39,41

26 Final Mission Prep JSOTF/16 SOW/20 SOS/Stalker 00:00 41

27 Final Mission Prep JSOTF/16 SOW/4 SOS/Sentry 00:00 40

28 Final Mission Prep JSOTF/3-160 SOAR/SOAD Sparrow 00:00 31,32

29 Final Mission Prep JSOTF/3-3 SFG/SOCCE/ODA 00:00 31,32

30 Issue Execute Order JSOTF 00:00 31,32,37,38,39

Table 2. Mission Task List

87

Task* Task Description Unit Responsible
Duration
HH:MM Succeedinq Tasks I

31 Conduct Air Insertion JSOTF/3-3 SFG/SOCCE/ODA 02:30 33 |
32 Conduct Air Insertion JSOTF/3-160 SOAR/SOAD Sparrow 02:30 33,35
33 Conduct Infiltration JSOTF/3-3 SFG/SOCCE/ODA 04:00 34
34 Conduct SR/TA JSOTF/3-3 SFG/SOCCE/ODA 72:00 36 |
35 Return to Base JSOTF/3-160 SOAR/SOAD Sparrow 02:30 42 |
36 Validate Target JSOTF/3-3 SFG/SOCCE/ODA 00:00 37,47
37 Issue Strike Order JSOTF 00:00 38,39,40,41,42,92
38 Conduct Air Insertion JSOTF/75 Ranger/TF Ranger 02:30 43,44,46
39 Conduct Air Insertion JSOTF/3-160 SOAR/SOAD Buffalo 02:30 43,44,46
40 Conduct Air Movement JSOTF/16 SOW/4 SOS/Sentry 01:05 45
41 Support Air Insertion JSOTF/16 SOW/4 SOS/Stalker 02:30 45,46
42 Await Extraction Launch JSOTF/3-160 SOAR/SOAD Sparrow 00:00 69
43 Conduct LZ Operations JSOTF/75 Ranger/TF Ranger 00:05 44,47,49,50,51,52,53,54

,55,56
44 Move to Loiter Location JSOTF/3-160 SOAR/SOAD Buffalo 00:20 48
45 Provide Strike Air Support JSOTF/16 SOW/4 SOS/Sentry 00:00 84
46 Provide Strike Air Support JSOTF/16 SOW/4 SOS/Stalker 00:00 85
47 Conduct Target Acquisition JSOTF/3-3 SFG/SOCCE/ODA 00:00 70
48 Await Extraction Link-up JSOTF/3-160 SOAR/SOAD Buffalo 00:00 67
49 Move to Blocking Position JSOTF/75 Ranger/TF Ranger/TM Blocker 00:04 58
50 Move to Blocking Position JSOTF/75 Ranger/TF Ranger/TM

Blocker/Blocker 4
00:04 59

51 Move to SBF Position JSOTF/75 Ranger/TF Ranger/TM Support
West

00:05 60

52 Move to Blocking Position JSOTF/75 Ranger/TF Ranger/TM Support
West/Blocker2

00:05 61

53 Move to SBF Position JSOTF/75 Ranger/TF Ranger/TM Support
East

00:04 62

54 Move to Blocking Position JSOTF/75 Ranger/TF Ranger/TM Support
East/Blocker 1

00:03 63

55 Move to Attack Position JSOTF/75 Ranger/TF Ranger/TM Assault 00:04 64
56 Move to Blocking Position JSOTF/75 Ranger/TF Ranger/TM

Assault/Blocker 3
00:03 57

57 Establish Blocking Position JSOTF/75 Ranger/TF Ranger/TM
Assault/Blocker 3

00:02 65,66,80

58 Establish Blocking Position JSOTF/75 Ranger/TF Ranger/TM Blocker 00:04 65,66,73
59 Establish Blocking Position JSOTF/75 Ranger/TF Ranger/TM

Blocker/Blocker 4
00:02 65,66,74

60 Occupy SBF Position JSOTF/75 Ranger/TF Ranger/TM Support
West

00:04 65

61 Establish Blocking Position JSOTF/75 Ranger/TF Ranger/TM Support
West/Blocker2

00:02 65

62 Occupy SBF Position JSOTF/75 Ranger/TF Ranger/TM Support
East

00:04 66

63 Establish Blocking Position JSOTF/75 Ranger/TF Ranger/TM Support
East/Blocker 1

00:02 65,66,78

64 Occupy Attack Position JSOTF/75 Ranger/TF Ranger/TM Assault 00:03 68
65 nitiate SBF JSOTF/75 Ranger/TF Ranger/TM Support

West
00:00 67,68,72

Table 2 (continued)

88

Task* Task Description Unit Responsible
Duration
HH:MM Succeeding Tasks

66 Initiate SBF JSOTF/75 Ranger/TF Ranger/TM Support
East

00:00 67,68,71

67 Move to Extraction Site JSOTF/3-160 SOAR/SCAD Buffalo 00:20 81,82

68 Conduct Raid JSOTF/75 Ranger/TF Ranger/TM Assault 00:30 70,71,72,79

69 Move to Extraction Site JSOTF/3-160 SOAR/SOAD Sparrow 02:30 87,94

70 Conduct BDA Post-strike
Recon

JSOTF/3-3 SFG/SOCCE/ODA 00:15 86

71 Complete SBF JSOTF/75 Ranger/TF Ranger/TM Support
East

00:00 73,74,75,76,77,78,80

72 Complete SBF JSOTF/75 Ranger/TF Ranger/TM Support
West

00:00 73,74,75,76,77,78,80

73 Move to PZ JSOTF/75 Ranger/TF Ranger/TM Blocker 00:08 82

74 Move to PZ JSOTF/75 Ranger/TF Ranger/TM
Blocker/Blocker 4

00:06 82

75 Move to PZ JSOTF/75 Ranger/TF Ranger/TM Support
West

00:09 82

76 Move to PZ JSOTF/75 Ranger/TF Ranger/TM Support
West/Blocker 2

00:07 82

77 Move to PZ JSOTF/75 Ranger/TF Ranger/TM Support
East

00:08 82

78 Move to PZ JSOTF/75 Ranger/TF Ranger/TM Support
East/Blocker 1

00:05 82

79 Move to PZ JSOTF/75 Ranger/TF Ranger/TM Assault 00:10 82

80 Move to PZ JSOTF/75 Ranger/TF Ranger/TM
Assault/Blocker 3

00:02 82

81 Conduct Air Extraction JSOTF/3-160 SOAR/SOAD Buffalo 02:30 90

82 Conduct PZ Operations JSOTF/75 Ranger/TF Ranger 00:08 81,83,84,85

83 Conduct Air Extraction JSOTF/75 Ranger/TF Ranger 02:30 88

84 Conduct Air Movement JSOTF/16 SOW/4 SOS/Sentry 01:05 91

85 Support Air Extraction JSOTF/16 SOW/4 SOS/Stalker 02:30 91

86 Conduct Exfiltration JSOTF/3-3 SFG/SOCCE/ODA 00:10 87,94

87 Conduct Air Extraction JSOTF/3-3 SFG/SOCCE/ODA 02:30 89

88 Conduct Debrief/AAR JSOTF/75 Ranger 01:30 92

89 Conduct Debrief/AAR JSOTF/3-3 SFG 01:30 92

90 Conduct Debrief/AAR . JSOTF/3-160 SOAR 01:30 92

91 Conduct Debrief/AAR JSOTF/16 SOW 01:30 92

92 Conduct AAR JSOTF 01:30 93

93 Stand Down JSOTF JSOTF 00:00 -
94 Conduct Air Extraction JSOTF/3-160 SOAR/SOAD Sparrow 02:30 90

Table 2 (continued)

89

90

APPENDIX C. SYSTEM DEMONSTRATION

A walk-through of many of the functions of SOMPASS using screen shots with

descriptions is provided to assist users in learning how to use the system.

MCiiticalPalhSolvei ITEET

.
•mm 83&ÄJ» D^aw.,*am»aH ^^.prdperilesrl ^^|

ite^ai^iiaoflogffio!}3agM§^
Figure 35. System Startup

The Critical Path Solver control panel and a blank Flora display will appear when
SOMPASS is first run.

91

92

PäFLORA 5.0 Beta lepm]

j Prioiecl Map Owriay ' ■ ,1

,F1Critical Path Solvei fcrlillrü u£

: I, . : •' ■ • , f:':., ••- ■■■-■—;.'-V ,

>'Reports.-" ; ''.• ^»ieipM^P*?
«ü*

JHiw .
övarlay from critical Path Solver

l,-,,V;j-i,v^:,jligBJ.:t -:fT_J,-^-^

ie:-^srSelectElernem: ~^i;r Select Action: :::-;.^:^£v^

I $& ^maaaaa^^mis^^^^^^^^^^f^^^^^

Figure 36. Draw Nodes
By using the Mode selector on the Critical Path Solver and the Edit button in Flora, the
user can draw on the blank display to add, remove, or move nodes wherever a mouse
click occurs. Confirmation is requested before a node is removed.

93

94

LjCiilical Path Solvei

Figure 37. Add Arcs
Arcs can also be added or removed by clicking with the mouse on the starting node and
then the ending node. Arcs cannot be moved because they will automatically move
whenever the nodes they are associated with are moved. Arcs will also be removed
automatically when either the start or end node is removed.

95

96

;jraFLORA 5.0 Beta [cpm]

Project Map itoerlay

[_] Critical Path Solver

^iH ftp! . ^Analysis
• ^NewcO»-'- ''

ilJiB
Reports Help

It 20
Overlay from Critical Path Solver

m
HI

Edit Properties:

Select Action:

<seiect>.V

^AddjQ iWnoyei QMm«;

iff
?va^BS<s FlLoad Graph

Kf ä.V *3L.S Lbokiti: [~3 cpm package m' \W^&

rlay

project

J3QTF_EDRE.graph

JsmKKk
■HVMRH

n§i§
Ü

Filename: '

Files of type:

example.graph SQpeii^

König Graph (.graph) Cancel

%A^^^^^!^^^|^^^^ä^^P^^^^^[|^^P^^^
aaäBMOTSi iE»»isssj»Ki^;^^Sia^^ffie

Map Scale 1:100000001 Location'

Figure 38. Load Graph
An already existing graph can be loaded to continue editing or perform other actions.
The current graph can also be saved in a similar fashion using the Save As menu option.

97

98

TlCcitical Path Solvei RI°iE

Figure 39. Solve Critical Path
Selecting the Critical Path option from the Analysis menu can solve the critical path for a
graph. As mentioned in Chapter III, if a cycle is found, an error will be displayed, and
the user must remove the erroneous arc that created the cycle before the critical path can
be solved.

99

100

[SaFLORA 5.0 Beta [cpm]

Project Map gwriay. loote' HdP

BiPES

Figure 40. Highlighted Critical Path with Node Symbol Info Display
The critical path of the graph is highlighted in blue to alert the user to the nodes and
dependencies that are crucial to the completion of the operation. Additional information
about a node can be obtained by double clicking on it with the mouse. If Flora is in the
Point mode then a Symbol Info window will appear; if Flora is in the Edit mode, an Edit
Node window will appear to allow display, changing, adding, or deleting of node
properties.

101

102

Figure 41. Edit Graph Window
Graph properties can be edited by selecting Graph from the Edit Properties list on the
Critical Path Solver. Nodes can also be selected for editing this way in addition to double
clicking on them in the Flora display. Restricted properties of either the graph or nodes
cannot be edited or deleted, as they are crucial to the proper operation of SOMPASS.

103

104

Figure 42. Loading the Illustrative Scenario
New projects and graphs can be loaded over a current one, but all unsaved information
will be lost. Here the network for the illustrative scenario is loaded.

105

106

[Overlay from Critical Path Solver-J30TF EDRE |

Figure 43. Display Zoom
The Flora display can be zoomed in to allow closer inspection of areas of the graph, or
zoomed out to fit larger networks. Zooming can be accomplished by clicking the right
mouse button in the Flora Point mode (as displayed) or Edit mode, using the option in the
Map menu bar, or in the Flora Zoom mode by left-clicking to zoom in or right-clicking to
zoom out.

107

108

jH Critical Path Solve» HHE3

fY~ ' ■'•'■OASE '■LJFfi ivSi.' ' *' • '"fr ■ AVi/'jjjBPMHfvW**'-

S&WSssä*!
»^liP^läi

IM» Seals 1:17

mm

«111
Figure 44. Create Synchronization Matrix and Execution Checklists

Selecting the Synchronization Matrix option from the Reports menu creates the
synchronization matrix and execution checklists. The critical path will be solved at this
time also, so it is not necessary manually solve the critical path first. The
synchronization matrix and execution checklists will open in their own windows, and any
previously existing ones will be replaced.

109

110

SjRORA5 0Beta[cpio]

Protect to» Outlay Tools Help :_ ,

Overtw from Critical Path Solve EDRE SBäSSSilläi
——t— -^---•■■■■ :■■■: ■:-^.?'0mWM$i

MM k:. ,,y,'i'-^H.My^V*'H?v",-h-7rtT^r/j-itf>,-r

fsaassEs

SaBaa
3ÄSS9WI

Figure 45. Illustrative Scenario Critical Path
Note the parallel critical paths highlighted in blue. Parallel critical paths occur when
concurrent activities have the same duration and have the same predecessor and successor
tasks.

Ill

112

|[~]S)inchrani2alion Matiix loi JSOTF EDRE ÖBBJ
fc-..: ' '.". .■Unit"''.',"-' -■■-■:.."''■■ ;29-Apr-9912:16" 'WffiStFiTW "2FÄSr'S9T-SH8". .30-Apr-99T3:16 r3Ö-Ä6r-9917:16 02-Mav-9917M6 02-I

E3 TaskOrganlzatlon
-Aw 9 E3 JSOTF •Stand Up JSO... -Stand Up JSO... Issue Warning... -Issue OPORO... -Issue OPORD... -Await Execute...

9 0 75 Ranger TOcejreWamL, -Receive Warnl...

9 E3TF Ranger -Conduct Initial... -Conduct Initial... -Complete Mis... -Complete Mis... ♦Coi

9 £3 TM Blocker

D Blocker 4

9 ESTMSupportW

n Blocker 2
9 0 TM Support E

n Blocker 1 I
9 E3TM Assault

D Blocker 3
-Complete Mis...

9 Ö 3-160 SOAR ♦Receive Warnl... -Receive Warnl... -Conduct Initial... -Complete Mis...

"^ SOAD Buffalo -Conduct Rehe... -COI

J SOAD Sparrow Conduct Rehea... Con

9 O 3-3 SFO -Receive Warnl... -Receive Warnl...

9 S SOCCE
^ODC -Conduct Initial... -Conduct Initial... Complete Missi... Complete Missi...

10DA -Conduct Initial... -Conduct Initial... Complete MIssl... Complete Missi... Con

9 E316SOW -Receive Waml... -Receive Warnl... -Conduct Initial... Complete Mlssi... Complete MIssl...

9 is! 20 sos
|_5 8talker Conduct Rehea... Con

9 E3 4 sos
D Sentry Final Mission P... Fina

::-,-.,■:-..'--::,', ". ;- .: <:W,,* v. :,•:' ■;■,-■■:.:■.-• -*..-v--/-',:'-. ^--..'-:.->-|*

Figure 46. Illustrative Scenario Synchronization Matrix
Tasks on the critical path are preceded by an asterisk ("*") to highlight their importance.
Task organization is apparent from the left column by level of indentation from higher
level units.

113

114

SFlExecution Checklist for JSOTF EDRE

fc^'f ™,l Z\T£ z@m. i^mim 'mm .fS^I
ftllJ^^B^S^MfctilAMHatM TM Assault l|

II, ... _,,_,. / -,..,--■_...._.. -' ,:,,.,_,,_._._,:. " -.-.- ^..,..,,.„-.,v-j_w "-'':-v,L „-.,.;,- ■-

; ■"-■; ."^r:t)atiBfflmexÖroiip';>"'■ '-f y,' ■" M' ■""$'" ^ Activity'-
'Jk. 08-May-99 02:21 Move to Attack Position

08-May-99 02:24 Move to Attack Position
08-May-99 02:25 Move to Attack Position [End], Occup...
08-May-99 02:26 Occupy Attack Position
08-May-99 02:27 Occupy Attack Position
08-May-99 02:28 Occupy Attack Position [End]
08-May-99 02:29
08-May-99 02:29
08-May-99 02:30 BM 1

08-May-99 02:30 •Conduct Raid [Start]
08-May-99 02:41 *ConductRaid
08-May-99 02:41 •Conduct Raid
08-May-99 03:00 «Conduct Raid [End], Move to PZ [St...
08-May-99 03:00 Move to PZ
08-May-99 03:01 Move to PZ
08-May-99 03:02 Move to PZ
08-May-99 03:05 Move to PZ
08-May-99 03:06 Move to PZ
08-May-99 03:07 Move to PZ

-■-,■- V,-r- -;—- ■. -'

Figure 47. Illustrative Scenario Execution Checklists
As with the synchronization matrix, tasks on the critical path are preceded by an asterisk
("*"). Units are selected by clicking on their respective tabs.

115

116

n Critical Path Solver HEB
Overlay. Analysis, ,r "Reports iHlfc

Mod SaveAs ;|ectElement: -=-■

Qii
•Edit Properties:

II * Save Properties

Save Properties Äs

<setect> ■»•

Select Action:

iiuv '>C^l^riwiv#;t0-romte;:

SSSKii

FjLoad Node Properties

pLbok'ih:

If map
| If overlay
gl project

[3 cpm package . > .; ;.' -^itfy«•-,_, E^1 -|#

PpS_ÖTF_E'DREChang_e^ode'8-2.nodes

Q JSOTF_EDRE.nodes

Q example.nodes

rae'name^ < W'JS0TF-EDRE ChanSe Node 82.nodes

■l3l^rjftvjJKi|

IP™?;

.Open

:(Jiodes). §Cahcel,:

Figure 48. Additional Node Properties
Properties associated with nodes in a graph can be loaded or saved independently to add
additional properties or overwrite current values. This provides additional flexibility in
working with graphs, especially when multiple users are contributing to a project at
different times and in different locations.

117

118

;Fj Critical Path Solver BE El

^^^^SR^y >/5 sW*SSSHTf&' JZ\$%_$

0Edil Node 82

?**£

P»

Remove:

fTf^lS

sew!!?»*'*
S«P^fifc'-v'

Jllilf
WgiS»:,'
'^ll;'}':

f^^FS]
Done .* - • V *. ■ ■ ;

Figure 49. Edit Node Properties
Node properties can be edited, added, or deleted by selection from the edit list or double
clicking in the Flora Edit mode. Here, the new duration for Task 82, PZ Operations, is
now visible after loading in the updates node properties file for the illustrative scenario.

119

120

Figure 50. Updated Critical Path and Properties
The new mission critical path is highlighted in blue after changing the duration of one
task beyond its available float time. The Symbol Info display reflects the updated
properties and is also in blue to indicate that this node is on the critical path.

121

122

LIST OF REFERENCES

1. Chairman of the Joint Chiefs of Staff, Joint Vision 2010: America's Military:
Preparing for Tomorrow, Chairman of the Joint Chiefs of Staff, 1996.

2. Joint Pub 1, Joint Warfare of the Armed Forces of the United States, Joint Staff,
10 January 1995.

3. Army Field Manual No. (FM) 100-5, Operations, Headquarters, Department of the
Army, 14 June 1993.

4. Joint Pub 3-05, Doctrine for Joint Special Operations, Joint Staff, 17 April 1998.

5. Commander in Chief, United States Special Operations Command, Special
Operations Forces: The Way Ahead, Commander in Chief, USSOCOM, 1998.

6. Commander in Chief, United States Special Operations Command, SOF Vision 2020,
Commander in Chief, USSOCOM, 1996.

7. Joint Pub 6-0, Doctrine for Command, Control, Communications, and Computer (C4)
Systems Support to Joint Operations, Joint Staff, 30 May 1995.

8. USSOCOM C4I Strategy Into the 21st Century, USSOCOM SOJ6-PI, March 1996.

9. Bradley, G.H. and Buss, A.H., "Dynamic, Distributed, Platform Independent OR/MS
Applications — A Network Perspective," INFORMS Journal on Computing, v. 10,
n. 4, Fall 1998.

10. Special Operations Forces (SOF) Mission Planning, Analysis, Rehearsal, and
Execution (MPARE): Theater Special Operations Command Requirements: SOF
Mission Planning [Draft], USSOCOM SOIO-C4I-MO, January 1999.

11. Bilyeu, A.L., Concept for a Special Operations Planning and Analysis System,
Master's Thesis, Naval Postgraduate School, Monterey, California, June 1998.

12. Defense Information Systems Agency, "DISA Mission and Mandate."
[http://www.disa.mil/missman.html]. 11 January 1999.

13. Defense Information Systems Agency, "Mission Needs Statement (MNS) for Defense
Information System Network (DISN)." [http://www.disa.mil/DISN/docs/mns.html].
1 October 1996.

14. Defense Information Systems Agency, "Defense Message System (DMS)."
[http://www.disa.mil/D2/dms/index2.html]. 1 March 1999.

123

15. Defense Information Systems Agency, "C4I For The Warrior Brochure."
[http://spider.osfl.disa.mil/fbsbook/fbsbook.html].

16. Defense Information Systems Agency, "GCSS Executive Summary."
[http://www.disa.mil/gcss/execsum.htm]. 30 July 1998.

17. Memorandum, S0I0-C4I-M0, USSOCOM, Subject: SOCCENT/SOCACOM
MPARE Requirements Inputs, 26 October 1998.

18. Memorandum, SOIO-C4I-MO, USSOCOM, Subject: SOCCENT Mission Planning
Requirements, 28 October 1998.

19. Memorandum, S0I0-C4I-M0, USSOCOM, Subject: Trip Report, MPARE SOC
Requirements Coordination with SOCACOM, 11 November 1998.

20. Memorandum, S0I0-C4I-M0, USSOCOM, Subject: Trip Report, MPARE SOC
Requirements Coordination with SOCPAC, 30 November 1998.

21. Ravindran, A., Phillips, D.T., .and Solberg, J.J., Operations Research: Principles and
Practice, 2d ed., John Wiley & Sons, 1987.

22. Ahuja, R.K., Magnanti, T.L., and Orlin, J.B., Network Flows: Theory, Algorithms,
and Applications, Prentice-Hall, 1993.

23. Morris, L.N., Critical Path Construction and Analysis, Pergamon Press, 1967.

24. Lockyer, K.G. and Gordon, J., Critical Path Analysis and other Project Network
Techniques, 5th ed., Pitman Publishing, 1991.

25. Wiest, J.D. and Levy, F.K., A Management Guide to PERT/CPM, Prentice-Hall
1969.

26. Kerzner, H, Project Management: A Systems Approach to Planning, Scheduling and
Controlling, 3d ed., Van Nostrand Reinhold, 1989.

27. PC Webopaedia, "component."
[http://webopaedia.intemet.eom/TERM/c/component.html]. 14 May 1998.

28. PC Webopaedia, "component software."
[http://webopaedia.intemet.eom/TERM/c/component_software.html]. 18 September
1997.

29. Bradley, G.H., Buss, A.H., and Shaw, C.H., "An Architecture for Dynamic Planning
and Execution Using Loosely Coupled Components," NPS Research, v. 8, n. 3, Naval
Postgraduate School, Monterey, California, October 1998.

124

30. Loosely Coupled Components: Demonstration of MPARE Functionality
[Presentation], 1999.

31. Java 2 [Computer programming language], Sun Microsystems, 1998.

32. Jackson, L.A., König [Computer software], 1999.

33. Jackson, L.A., König User Guide (Beta 1.2), 26 March 1999.

34. Schrepf, N.J., Thistle [Computer software], 1999.

35. Schrepf, NJ., Visual Planning Aid for Movement of Ground Forces in Operations
Other Than War, Master's Thesis, Naval Postgraduate School, Monterey, California,
March 1999.

36. Wood, K., OA4202, Network Flows and Graphs [Class notes], Naval Postgraduate
School, Monterey, California, Summer 1998.

37. Winston, W.L., Operations Research: Applications and Algorithms, 2d ed., PWS-
Kent, 1991.

38. Joint Pub 5-0, Doctrine for Planning Joint Operations, Joint Staff, 13 April 1995.

39. Sun Microsystems, "Java Platform Ports."
[http://java.sun.com/cgi-bin/java-ports.cgi].

40. Sun Microsystems, "Java 2 Datasheet."
[http://java.sun.com/marketing/collateral/jdkl.2_ds.html].

41. Winston, P.H. and Narasimhan, S., On to Java, Addison-Wesley, 1996.

42. Horstmann, C.S. and Cornell, G., Core Java 1.1, v. 1-2, Sun Microsystems Press,
1997-1998.

43. Curtin, M., "Write Once, Run Anywhere: Why it Matters."
[http://java.sun.com/features/1998/01/wora.html]. 19 May 1999.

44. Topley, K., Core Java Foundation Classes, Prentice-Hall, 1998.

45. PC Webopaedia, "thin client."
[http://webopaedia.mtemet.eom/TERM/t/thin_client.html]. 18 May 1998.

46. Landay, J., CS160, User Interface Design, Prototyping, and Evaluation [Class notes],
University of California, Berkeley, California, Fall 1998.
[http://bmrc.berkeley.edu/courseware/cs 160/fall98/lectures/model-view-
controller/index.htm].

125

126

BIBLIOGRAPHY

Air Force Doctrine Document (AFDD) 35, Special Operations, Headquarters,
Department of the Air Force, 16 January 1995.

Amtzen, A., Software Components for Air Defense Planning, Master's Thesis, Naval
Postgraduate School, Monterey, California, September 1998.

Armed Forces Staff College, Joint Planning Orientation Course [Course notes], National
Defense University, 1998.

Army Field Manual No. (FM) 7-30, The Infantry Brigade, Headquarters, Department of
the Army, 3 October 1995.

Army Field Manual No. (FM) 7-85, Ranger Unit Operations, Headquarters, Department
of the Army, 9 June 1987.

Army Field Manual No. (FM) 31-20, Doctrine for Special Forces Operations,
Headquarters, Department of the Army, 20 April 1990.

Army Field Manual No. (FM) 31-20-5, Special Reconnaissance Tactics, Techniques, and
Procedures for Special Forces, Headquarters, Department of the Army, 23 March
1993.

Army Field Manual No. (FM) 101-5, Staff Organization and Operations, Headquarters,
Department of the Army, 31 May 1997.

Bazaraa, M.S., Jarvis, J.J., and Sherali, H.D., Linear Programming and Network Flows,
2d ed., John Wiley & Sons, 1990.

Byous, J., "The Network Vehicle: A Smart Way to Go."
[http://java.sun.com/features/1997/nov/javacar.html]. 6 April 1999.

Chairman of the Joint Chiefs of Staff Manual (CJCSM) 3500.05, Joint Task Force
Headquarters Master Training Guide, Joint Staff, 15 April 1997.

Collins, J.M., Special Operations Forces: An Assessment, National Defense University
Press, 1994.

Courtois, T., Java Networking and Communications, Prentice-Hall, 1998.

Commander's Battle Staff Handbook, U.S. Army Research Institute, Fort Benning, GA,
1 November 1992.

127

Federal Electric Corporation, A Programmed Introduction to PERT, John Wiley & Sons
1963.

Folkes, S. and Stubenvoll, S., Accelerated Systems Development, Prentice-Hall, 1992.

Geary, D.M., Graphic Java 2: Mastering the JFC, v. 2, 3d ed., Sun Microsystems Press,
1999.

Ginzberg, M.J., Reitman, W., and Stohr, E.A., Eds., Decision Support Systems, North-
Holland, 1982.

Joint Pub 1-02, Department of Defense Dictionary of Military and Associated Terms,
Joint Staff, 23 March 1994 [as amended through 7 December 1998]. '

Joint Pub 3-0, Doctrine for Joint Operations, Joint Staff, 1 February 1995.

Joint Pub 3-05.3, Joint Special Operations Operational Procedures, Joint Staff,
25 August 1993.

Joint Pub 3-05.5, Joint Special Operations Targeting and Mission Planning Procedures,
Joint Staff, 10 August 1993.

Joint Pub 5-00.2, Joint Task Force Planning Guidance and Procedures, Joint Staff,
13 January 1999.

Joint Pub 6-02, Joint Doctrine for Employment of Operational/Tactical Command,
Control, Communications, and Computer Systems, Joint Staff, 1 October 1996.

Joint Special Operations Task Force (JSOTF) Headquarters Standing Operating
Procedures (SOP), Headquarters, Special Operations Command, Atlantic Command
(SOCACOM), 1 August 1998.

Linstone, H.A., Multiple Perspectives for Decision Making: Bridging the Gap between
Analysis and Action, Norm-Holland, 1984.

Martino, R.L, Project Management, MDI Publications, 1968.

McRaven, W.H., SPEC OPS — Case Studies in Special Operations Warfare: Theory and
Practice, Presidio Press, 1995.

Meredith, D.D., Wong, K.W., Woodhead, R.W., and Wortman, R.H., Design & Planning
of Engineering Systems, 2d ed., Prentice-Hall, 1985.

Sanders, N., Stop Wasting Time: Computer-Aided Planning and Control, Prentice-Hall,
1991.

128

Special Operations Forces Reference Manual [CD-ROM], USSOCOM SOOP-P/T,
January 1998.

Swanson, L.A. and Pazer, H.L., PERTSIM: Text and Simulation, International Textbook,
1969.

Tactical Standing Operating Procedures (TACSOP), Headquarters, 2d Battalion,
504th Parachute Infantry Regiment, 9 January 1994.

United States Special Operations Forces Posture Statement, Office of the Assistant
Secretary of Defense (Special Operations/Low-Intensity Conflict), 1998.

USSOCOM Publication 1, USSOCOM SOJ3,25 January 1996.

Wysocki, R.K., Beck, R., Jr., and Crane, D.B., Effective Project Management, John
Wiley & Sons, 1995.

129

130

INITIAL DISTRIBUTION LIST

Defense Technical Information Center.
8725 John J. Kingman Rd., STE 0944
Fort Belvoir, Virginia 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Professor Gordon H. Bradley, Code OR/Bz 10
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943-5000

4. Professor Arnold H. Buss, Code OR/Bu 5
Department of Operations-Research
Naval Postgraduate School
Monterey, California 93943-5000

LTC Joel R. Parker, Code OR/Jp
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943-5000

MAJ Leroy A. Jackson
TRADOC Analysis Center - Monterey
Naval Postgraduate School, P.O. Box 8692
Monterey, California 93943-0692

United States Special Operations Command
Atta: SORR-SC
7701 Tampa Point Blvd.
MacDill AFB, Florida 33621

8. COL(P) Stanley A. McChrystal
Commander, 75th Ranger Regiment
Attn: AORG-RGR, Bldg. 2834
Fort Bennihg, Georgia 31905

9. CPT Keith A. Hattes
453 Fairview Ct.
Hartland, Wisconsin 53029-1501

131

