
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS
OPTIMAL SIZE OF JOB POOL FOR INITIATING A

SCHEDULING EVENT

by

James M. Breitinger

September 1999

Thesis Advisor:
Second Reader:

Taylor Kidd
Debra Hensgen

Approved for public release; distribution is unlimited.

19991129 005

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1999

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
OPTIMAL SIZE OF JOB POOL FOR INITIATING A SCHEDULING EVENT

5. FUNDING NUMBERS

6. AUTHOR(S)
Breitinger, James M.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
In today's military with its dwindling resources, making the best use of computers, particularly to support real-time
commercial off-the-shelf (COTS) applications, is becoming critical for success. Resource Management Systems (RMS)
strive to address this issue. The RMS's job scheduler is needed to ensure good quality of service (QoS) to all applications.
This research uses discrete event simulation experiments to investigate the cost tradeoff between improving system
performance through grouping incoming jobs to create better schedules, versus both (1) the time spent waiting for the
group to accumulate and (2) the additional cost of computing schedules involving more jobs. A MaxMin 0(MN2) greedy
scheduling algorithm attempting to minimize the total time in system was used in these experiments. We analyzed the
data generated from numerous experiments that used typical input parameters. As a result of this effort, we conclude that
job grouping should be used when the utilization factor for the system is near 1.0, or precisely when the mean arrival rate
is comparable to the total mean service rate of the processors. At this utilization rate, the group size should be equal to the
number of machines in the system. However, when the utilization factor is significantly different from 1.0, each job
should be scheduled as it arrives.
14. SUBJECT TERMS
Heterogeneous Computing, Resource Management System, JAVA, Modeling and Simulation,
Scheduling, Discrete Event Simulation, Quality of Service, RMS, QoS

15. NUMBER OF
PAGES

139

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI- CATION
OF ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited.

OPTIMAL SIZE OF JOB POOL FOR INITIATING A SCHEDULING EVENT

James M. Breitinger
Major, United States Marine Corps

B.S., The Pennsylvania State University, 1987
MBA, National University, 199 \

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1999

Author:

Approved by:

L-tf7,
James W. Breitinger

"k)J-0
Debra Hensgen, Second Reader

7Xt
Dan Boger, Act
Computer Science Department

in

IV

ABSTRACT

In today's military with its dwindling resources, making the best use of

computers, particularly to support real-time commercial off-the-shelf (COTS)

applications, is becoming critical for success. Resource Management Systems (RMS)

strive to address this issue. The RMS's job scheduler is needed to ensure good quality of

service (QoS) to all applications. This research uses discrete event simulation

experiments to investigate the cost tradeoff between improving system performance

through grouping incoming jobs to create better schedules, versus both (1) the time spent

waiting for the group to accumulate and (2) the additional cost of computing schedules

involving more jobs. A MaxMin 0(MN2) greedy scheduling algorithm attempting to

minimize the total time in system was used in these experiments. We analyzed the data

generated from numerous experiments that used typical input parameters. As a result of

this effort, we conclude that job grouping should be used when the utilization factor for

the system is near 1.0, or precisely when the mean arrival rate is comparable to the total

mean service rate of the processors. At this utilization rate, the group size should be

equal to the number of machines in the system. However, when the utilization factor is

significantly different from 1.0, each job should be scheduled as it arrives.

VI

TABLE OF CONTENTS

I. INTRODUCTION ...1

A. BACKGROUND 1
B. PROBLEM STATEMENT 3

C. GOAL.. - 4
D. THESIS ORGANIZATION 4

II. MANAGEMENT SYSTEM FOR HETEROGENEOUS NETWORKS 5

A. INTRODUCTION 5

B. PURPOSE 5

C. ARCHITECTURE 7
D. THESIS APPLICABILITY 9

E. SUMMARY 10

III. DISCRETE EVENT SIMULATION AND MONTE CARLO METHODS 11

A. INTRODUCTION 11
B. BACKGROUND 11
C. DISCRETE EVENT SIMULATION 16
D. MONTE CARLO METHOD 19
E. RANDOM VARIATES 22
F. QUEUEING THEORY 25
G. SUMMARY 29

IV. THE SIMULATION MODEL 31

A. INTRODUCTION 31
B. BACKGROUND 31
C. DETAILED PROBLEM DEFINITION 36
D. JAVA AND SILK 38
E. SUMMARY 39

V. EXPERIMENTS 41

A. INTRODUCTION 41
B. BACKGROUND 41
C. RESULTS 43
D. VALIDATION 47
E. SUMMARY 52

VI. ANALYSIS 53

A. INTRODUCTION 53
B. BACKGROUND 53
C. STATISTICAL TECHNIQUES 54

D. RESULTS 55
E. SUMMARY 58

vn

VII. CONCLUSIONS AND FUTURE WORK 59

A. CONCLUSION 59
B. FUTURE WORK 61

APPENDIX A: ACRONYMS AND SYMBOLS 63

APPENDIX B: SOURCE CODE FOR SIMULATION MODEL . 65

1. Source Code for class AssignContainer 65
2. Source Code for class ETCMatrix 66
3. Source Code for class InputFrame 70
4. Source Code for class Job 72
5. Source Code for class MSHN_Sched 74
6. Source Code for class QoSMatrix 75
7. Source Code for class SA 76
8. Source Code for class Simulation 80
9. Source Code for class MSHN_Sched 83

APPENDIX C: JAVA DOCUMENTATION FOR SIMULATION MODEL 85

l.MSHN_Sched API in HTML format 85
2. Class Index in HTML format 87
3. Class Hierarchy in HTML format 87
4. AssignContainer Class in HTML format 88
5. ETCMatrix Class in HTML format 91
6. InputFrame Class in HTML format 94
7. Job Class in HTML format 96
8. MSHN_Sched Class in HTML format 98
9. QoSMatrix Class in HTML format 100
10. SA Class in HTML format 102
11. Simulation Class in HTML format 104
12. StatManager Class in HTML format 108
13. Index of all Fields and Methods in HTML format 110

APPENDIX D: HOW TO RUN THE SIMULATION 117

LIST OF REFERENCES 121

INITIAL DISTRIBUTION LIST 123

Vlll

LIST OF FIGURES

Figure 1. MSHN's conceptual architecture, April 1999, from [HENS99] 7
Figure 2. Ways to study a system, from [LAW91] 12
Figure 3. Row of control for the next-event time advance approach, from [LAW91] 18
Figure 4. Flow diagram for Monte Carlo method 21
Figure 5. Gaussian distribution, mean 100, standard deviation 15, from [ARMS97] 23
Figure 6. Graphical representation of system model 32
Figure 7. Pseudocode for MaxMin algorithm, from [JANA96] 35
Figure 8. Aggregate queueing model, from [KIDD99] 37
Figure 9. Summary output for simulation experiment 44
Figure 10. Graphical results for M=15, x=67ms 45
Figure 11. Average runtime across machines vs. larger G or better algorithm 49
Figure 12. Dominant factor of system as G increases 50
Figure 13. Regression Plot for G < 19 51
Figure 14. Regression Plot for G > 17 51
Figure 15. Regression Plot for G as a function of utilization factor, p 57

IX

LIST OF TABLES

Table 1: M/M/l Queue, adapted from [JAIN91] 28
Table 2: Results for M=15, x=67ms 44
Table 3: Results from scheduling experiment 46
Table 4: Coefficients of equation (5) ■. 46
Table 5: Sample HiLo ETC matrix 47
Table 6: Data for various job interarrival times, T. 56
Table 7: Data for regression plot 56

XI

Xll

ACKNOWLEDGMENT

The author would first like to thank his supportive family: Linda, Dustin and

Haylee for their understanding and patience. Additionally, he thanks Dr. Taylor Kidd for

his support during the work in performing this investigation and Mr. Shoukat Ali, Purdue

University, for providing the information and algorithm concerning the generation of a

HiLo, inconsistent ETC matrix necessary to complete the research for this thesis. Finally,

thanks to the entire MSHN team. The sense of camaraderie and teamwork gave this

research meaning and made the process endurable.

xm

XIV

I. INTRODUCTION

This thesis investigates questions associated with obtaining the best Quality of

Service (QoS) achievable in a distributed, heterogeneous computing (HC) environment.

A necessary component within a HC environment is determining upon which resources to

place and at what time to execute each job in order to optimize the QoS that all jobs

obtain. In a typical environment, job requests arrive according to some random

distribution. Immediately assigning jobs to resources, as they arrive, does not always

result in the best performance in a heterogeneous environment (see [KIDD96]).

Therefore, this thesis strives to determine the optimal point, in time, at which to schedule

these jobs. Important considerations include whether this point is a function of the

number of jobs that have been pooled, a function of the amount of time that has passed,

or even a function of the resources that are currently available. The jobs can be

interactive, real-time or batch. The scope of this thesis is restricted to a heterogeneous

computing environment. This thesis presents a methodology, based upon discrete event

simulation, for finding the optimal point at which to schedule jobs entering a system. It

also demonstrates how this solution can be integrated into a heterogeneous computing

architecture, such as the Management System for Heterogeneous Networks (MSHN)1.

A. BACKGROUND

The DARPA QUORUM program seeks to develop a broad range of resource

management, networking, and data management technologies to support heterogeneous,

distributed, real-time applications. As part of the QUORUM program, NPS is designing

and implementing the Management System for Heterogeneous Networks (MSHN). This

project's goal is to provide an infrastructure to support the execution of concurrent,

dynamically changing C4I, radar processing and weapon control applications in an

environment consisting of multiple shared heterogeneous resources. MSHN must

account for dynamically changing priorities as well as resource availability. Two of the

many areas being researched for the MSHN system include examining scheduling

1 Pronounced "mission"

policies for heterogeneous environments and determining when to cause a job to adapt in

response to a changing situation.

In a networked environment, computing jobs are assigned by some mechanism to

a machine for execution. Currently, most networks rely on the user to perform this

assignment. One of the goals of MSHN is to efficiently and automatically determine the

"best" placement of jobs on machines in order to optimize the QoS achieved by the jobs.

QoS can have different meanings depending upon context and perspective. For

example, from a user's perspective, QoS may be measured in terms of quickness or

accuracy, while a (computer) application's perspective may be based upon quantities such

as cycles or frame rate. Additionally, an entire system such as MSHN generally

perceives QoS differently from either the user or the application. The QoS delivered by

MSHN needs to be measured in terms of balancing the dictates of the system against

satisfying the needs of the applications, which are in turn satisfying the needs of the

originating users. Optimizing the QoS achieved by applications involves both job

scheduling and resource management, each of which carries its own computational

overhead. As the degree of dependency grows between jobs, this computational

overhead becomes increasingly significant. The problem being studied in this thesis

centers on the group of jobs waiting to be scheduled. The focus of investigation for this

thesis research is how the overall system QoS changes as the size of the group of jobs

waiting to be scheduled changes.

There are two important issues relating to this focus. The first is the effectiveness

of the schedule produced. Many computer scheduling algorithms aim to utilize the

available resources in the most efficient manner, while still satisfying QoS requirements.

However, this research will not be examining the performance of scheduling heuristics or

algorithms as there has already been much research done in this area (see references

[ARMS98], [BRAU98] and [BRAU99]). The second is the performance of the

scheduling mechanism itself. The scheduling process requires overhead that utilizes

some resources, particularly if there are many dependencies between jobs. Additionally,

this time-consuming scheduling causes resources to lie idle awaiting the assignment of

jobs. Of course, good scheduling becomes most important when the system is being

heavily used. An effective resource management system must determine when to

compute a schedule and if it is advisable to accumulate additional requests before

scheduling. This thesis concentrates on these issues.

B. PROBLEM STATEMENT

The intent of MSHN is to provide middleware that extends the functionality of

individual operating systems (OSs) in an HC environment in such a way that the

extended OS provides the required and requested QoS. Good application scheduling is a

necessary component to achieving this goal. This research attempts to answer two

questions related to effective scheduling in a heterogeneous computing environment. The

first focuses on finding the optimal point at which to submit a group of jobs waiting to be

scheduled. Intuitively, the larger the number of jobs we can submit at any given time, the

better schedule we can produce. However, if we wait too long to collect those jobs, the

queued jobs will be delayed. Thus, the intent of this research is to determine the cost

tradeoff relationship between the potential performance improvement obtained from

submitting a larger pool of jobs to the scheduler, versus the potential performance loss

due to jobs that must wait for that particular pool size to collect. This relationship will be

used to determine the optimal size of the job pool, that is, the point at which to submit

jobs to the scheduler.

The second question is to determine whether there is a point beyond which the

relative benefit of submitting a group to the scheduler substantially decreases as the size

of the group increases. For instance, when given the situation where jobs are arriving at a

rate more rapid than the rate at which jobs are completed, the size of the group of jobs to

be submitted could become very large. In this case, the time to execute the scheduling

algorithm may become prohibitively long in comparison to the benefit achieved from the

resultant improved schedule. Once this point has been reached, it would be better to

simply schedule a smaller group of jobs, accept the lesser schedule, and forward the jobs

to the available resources.

The quantitative answers to these questions can then be used to help ensure

delivery of the requested QoS, and so support the QoS goals of jobs executing under

MSHN.

C. GOAL

It is beyond the scope of this thesis to answer both of the questions posed above

for all possible environments. However, as part of this thesis research, this author

developed a computer simulation framework that uses the Monte Carlo Method along

with Discrete Event Simulation (DES) that can later be used to answer these questions in

a more general sense. The framework permits the user to vary the input distributions that

are fed to the computer simulation of a heterogeneous computer resource system. The

resulting statistical output can then be analyzed to determine a solution to the problems

stated previously under many different conditions. Additionally, this thesis answers the

stated problems for a specific subset of input and using a scheduler whose goal is to

minimize the time at which the last job, in a series of jobs, completes. This research, in

contrast, is attempting to minimize the average time a job spends in the system. Finally,

the thesis research will demonstrate how the methodology and results of the experiment

can be generalized for any defined QoS measure.

D. THESIS ORGANIZATION

This thesis is organized as follows: Chapter II provides a brief overview of the

MSHN architecture and puts this research into perspective. Chapter III discusses

simulation models and methods. It introduces key concepts and provides background on

Discrete Event Simulation, Monte Carlo Methods, and Queueing Theory. Chapter IV

describes the specific simulation model built for this research and provides a brief

synopsis of the Silk programming environment using JAVA. Chapter V details the

experimental data obtained from the simulation and describes the results obtained from

those experiments. Chapter VI provides the statistical analysis of the data detailed in the

previous chapter, describes the techniques used in the analysis, and summarizes the

conclusions. The final chapter summarizes the conclusions of this thesis and describes

future work.

II. MANAGEMENT SYSTEM FOR HETEROGENEOUS NETWORKS

A. INTRODUCTION

The goal of this chapter is to summarize the high level goals and architecture of

the Management System for Heterogeneous Networks (MSHN) and, particularly to

explain how this thesis relates to that project. Section B explains the purpose of MSHN.

Section C describes the architecture of MSHN and how its components interact. A

description of how this thesis research fits into the overall goal of MSHN is provided in

Section D. Section E summarizes how this thesis will benefit the MSHN project. Those

already familiar with MSHN can safely skip sections B and C.

B. PURPOSE

Nearly as quickly as the computational power of personal computers has

increased, the price for those machines has decreased. Additionally, the performance of

the networks connecting computers has rapidly improved. These advancements, along

with decreasing operational budgets, have driven both governmental agencies and private

corporations to move away from large, central mainframe computer systems towards

satisfying their computational needs via more distributed systems. These distributed

systems consist of many individual computer resources connected by at least one

network. These networks can span great distances and include resources or machines of

varying types. There are essentially five major advantages provided by distributed

systems: resource sharing where hardware and software resources can be shared by

multiple computers; enhanced performance provided by the fact that many tasks can be

concurrently executed by different computers; improved reliability through the

replication of data providing fault tolerance; improved availability because some

elements of the system can fail without affecting the accessibility of the rest of the

system; and modular expandability where new hardware and software can be added

without affecting the rest of the system [SING94]. The increased use of distributed

computer systems has resulted in the need to develop methods and systems for effectively

managing large heterogeneous networks of computers in order to deliver good QoS

performance to all users. To respond to this requirement, a resource management system

(RMS) named MSHN is being developed as part of the Defense Advanced Research

Projects Agency's (DARPA's) QUORUM program. The goal of MSHN is to provide a

computing environment that delivers, "whenever possible, the required quality of service

(QoS) to individual processes that are contending for the same set of distributed,

heterogeneous resources." [HENS99] In other words, when given a set of jobs, MSHN

will automatically determine the "best" placement of jobs on resources in order to

optimize the required QoS as specified by the user.

MSHN evolved from SmartNet, which was a scheduling framework developed by

the Heterogeneous Computing Team at the US Naval Command, Control, and Ocean

Surveillance Center's (NCCOSC's) Research, Development, Test and Evaluation

(RTDE) Division in San Diego, California. SmartNet's design implemented scheduling

algorithms for minimizing the time at which the last job, of a set of computationally

intensive jobs, finished on a suite of heterogeneous computing resources. It also

provided the necessary information for these algorithms to make wise decisions

[KDDD96]. SmartNet treated the set of available compute resources as one virtual

heterogeneous machine (VHM), achieving superior performance by mapping applications

to resources based upon its knowledge of the VHM and the characteristics of the jobs it

executed. A more detailed description of SmartNet is available elsewhere (see references

[KIDD96], [JANA96], and [ARMS97]).

However, the expanded goal of MSHN differs from SmartNet in three major

ways. First, "MSHN needs to consider that the overhead of jobs sharing resources, such

as networks and file servers, can have significant impact upon mapping and scheduling

decisions." [HENS99] Second, MSHN needs to deliver good QoS simultaneously to

users who may be executing either Input/Output intensive, compute intensive or real-time

jobs. Lastly, MSHN must support idempotent applications that can produce results using

one of a variety of algorithms, or can exist in several different versions or forms. These

applications are called adaptive or adaptation-aware applications. [HENS99]

As an RMS, MSHN must be capable of providing the user with a location-

transparent view of its available set of heterogeneous resources, while providing

improved performance. To accomplish this, the MSHN RMS is not stand-alone software,

but an integrated system architecture incorporating a variety of distributed components

that strive to attain the maximum benefits from available resources. This architecture is

detailed in Section C.

C. ARCHITECTURE

Resource Status
Server

Query/
Response

Resource
Requirements ^

Database Call
Back

Figure 1. MSHN's conceptual architecture, April 1999, from [HENS99].

The MSHN architecture is continually evolving. Hence, the following description

is based upon the architecture design as of April 1999. While the final MSHN

architecture may differ slightly from this description, the core components and concepts

are not expected to change. Figure 1 shows the conceptual architecture for MSHN and

demonstrates how these various components interact.

The MSHN RMS consists of a client-server architecture that will be comprised of

the following core components:

• the Client Library (CL),

• the Scheduling Advisor (SA),

• the Resource Requirements Database (RRD),

• the Resource Status Server (RSS),

• the MSHN Daemon, and

• the Application Emulator (AE).

The following is an overview of the entire architecture and a high level description of

each of the components.

The entrance to the MSHN RMS is the Client Library. The CL permits MSHN to

function without requiring the user to explicitly log into the MSHN RMS. It does this by

transparently intercepting calls to system libraries and diverting those calls to the CL. By

pre- and post-processing these system calls, the CL is capable of determining the

resources used by an application, sending this data to the RRD, updating the RSS while

the process continues to execute, and sending a request to the SA to determine where best

to run the application in order to support the application's QoS requirements. More

precisely, when the CL receives a request to launch a new application, it first checks the

request against a list of applications managed by MSHN. If the request is on that list, the

CL passes the request to the SA, otherwise, the requested application is simply passed to

the local operating system. When the request is sent to the SA, it includes the QoS

requirements defined by the user.

It is then the SA's job to determine which set of resources the requested

application should use. To make this determination, the SA consults the RRD, which

maintains information about the resources that are required to execute any particular

application. The SA also questions the RSS to obtain information concerning the current

availability of resources. Using the information from these two sources and the

optimization criteria derived from the user-requested QoS, the SA then decides where to

execute the process and returns this information to the requesting CL.

The CL then asks the Daemon located at the selected computer to execute the

application. Whenever a computer is added to the system, a MSHN Daemon is started on

that computer. The purpose of the Daemon is to receive requests from remote CL's and

to start processes on the local computer on behalf of the remote CL. Daemons are also

used to start specially designed AE's that are used to determine resource status

information. Once applications have been started, the CL is also capable of updating the

RSS and RRD with the current status of the resources and the requirements of the current

process. Concurrently, the SA establishes callbacks with the CL, the RSS, and the RRD

so that it can be notified in the event that either the status of the resources has

significantly changed or the resource requirements have changed from what was initially

reported. In either case, the CL is notified by the SA and requests Daemons on other

remote machines to launch preferred versions of adaptive applications in accordance with

the user's requested QoS.

An additional component of MSHN is the Visualizer that permits examination of

the current states of the other MSHN core components. The Visualizer captures

significant events within and between the core components for both real-time and post-

mortem analysis. More detailed information about MSHN can be found at

www.mshn.org and in previously published references (see references [HENS99],

[SCHN98] and [PORT99]).

D. THESIS APPLICABILITY

The results of this thesis research will be applied to the functionality of the SA

within MSHN. The primary responsibility of the SA is to determine the best assignment

of resources to a set of applications. To function, the SA depends upon the RRD and the

RSS to identify an operating point that attempts to optimize a global measure2. It

responds to assignment requests from the CL and when necessary requests application

adaptations via the CL. Lastly, the S A sends status updates to the MSHN Visualizer.

This research focuses upon identifying this optimal operating point's dependency

upon the quality of the schedule produced. In other words, as the SA receives requests

from the various MSHN CLs, should it schedule each request individually or should it

wait until a certain number are received before beginning its processing. It was

mentioned in Chapter I that when more information is available about the jobs to be

scheduled, the better the resultant schedule will be. Therefore, we must determine the

2 Note that throughout the thesis we use the phrase "attempts to optimize" rather than "optimized" because
the scheduling problem that is examined is known to be NP-complete and the number of jobs to be
scheduled is typically too large to use an exponentially complex algorithm.

best point at which to initiate the scheduling process with respect to the number of jobs

submitted.

E. SUMMARY

This chapter described the MSHN resource management system currently under

development. MSHN's purpose is to manage jobs, some of which may be adaptive, in a

heterogeneous environment, with the goal of delivering good quality of service.

Additionally, its architecture was outlined as a collection of core elements that, when

interacting, provided the desired result. Lastly, a brief description was provided as to

how this research will benefit MSHN in general, and the Scheduling Advisor in

particular. The identification of the optimal point at which to conduct the scheduling

process will improve the performance of the Scheduling Advisor and, hence, MSHN.

The next chapter will introduce the concepts of simulation and queueing theory that will

be used to outline the detailed problem definition and experimentation model in

Chapter TV.

10

III. DISCRETE EVENT SIMULATION AND MONTE CARLO METHODS

A. INTRODUCTION

This chapter explains what discrete event simulation is and discusses other related

topics. Section B discusses simulation in general and explains why computer simulation

has become such a useful tool. Section C describes discrete event simulation in detail.

Section D provides insight into the Monte Carlo Method and how it is distinct from

Monte Carlo Simulation. Section E explains the concept of random variates. A general

introduction to queueing theory is presented in Section F. Section G provides a summary

and concluding remarks.

B. BACKGROUND

The need to predict the operation of real-world processes or systems before

implementing expensive projects has led many researchers to attempt to simulate these

systems using computers. A later example will illustrate why simulation is so powerful.

First, we need to describe the types of systems that can be analyzed using simulation

techniques. Systems can take many forms, the most common being the following:

• a physical entity such as an actual machine or an industrial facility,

• a non-physical entity such as an environmental phenomenon or human

interaction, and

• a process of events involving both physical and non-physical entities such as

an automobile manufacturing plant incorporating both machines and humans

in the production process.

Our example will be of the last type.

Thus, a system is a collection of entities, such as people or machines, which act

and interact collectively toward the accomplishment of some goal. The state of the

system is the collection of variables needed to describe the system at a particular time

[LAW91].

11

As an example of a complex system, consider a communication and information

system used by a large military organization in combat. This system involves both

physical entities, such as its radios, telephones and computers, and the non-physical,

human interaction based processes required for the system to operate. There are several

methods available to study any system. Figure 2 maps the different ways that a system

could be studied.

Experiment
with the
System

Experiment
with a model

of the System

Physical
model

Mathematical
model

Analytical
solution

Simulation

Figure 2. Ways to study a system, from [LAW91].

The most obvious method is to study the actual system. In our example, this

would involve moving all of the radio, microwave, and satellite transmission equipment,

the telephone switching units, computer devices, and related ancillary user equipment

from a storage or "garrison" site to an operating or "field" site. Additionally, all of the

personnel who normally use and operate the equipment would be required to abandon

their garrison duties and move into the field to operate and test this information system.

It should be obvious that this method is very time consuming and costly. It would

involve: actually moving the people and equipment to a location; building, operating and

12

maintaining the system; altering the system as determined from the study; and finally

returning the people and equipment to their initial state. Thus, experimenting with the

actual system is frequently infeasible. For this reason, it is often necessary to build a

model or representation of the system and study the model instead.

A model of the system can be built either physically or mathematically. Physical

models are rarely used for systems analysis due to their required complexity. For

example, building a physical model of our information system would be nearly as

infeasible as using the actual system. A high fidelity physical model of this system

would involve reproducing each element of the system in a reduced size and then

attempting to duplicate the human-machine interaction of the system. The difficulty in

making such a model accurate is obvious and would render a study of the model as a

surrogate to the actual system as costly, if not more so, than experimenting with the

actual system.

An alternative to a physical model is a mathematical model. Such a model

represents a system in terms of logical and quantitative relationships that can be easily

manipulated or altered to demonstrate how the model, and hence the system, reacts. In

our communication example, the mean time between equipment failures could be

mathematically modeled as a deterministic amount of time generated from a probability

distribution. The size of communication messages and the length of time it takes to send

a transmission from one point to another could be similarly modeled using an average

determined from historical data. Overall, the cost of building and experimenting with a

mathematical model can be an order of magnitude less than that of a physical model or of

experimenting with the actual system. Additionally, the modeler can easily refine and

modify the fidelity of various parts of the system model as the importance of various

requirements change.

Once the decision to use a mathematical model has been made, the designer must

determine if an exact analytical solution can be found or if using a simulation method

would be more appropriate. In cases where the model is simple enough, it may be

possible to work with its quantities and relationships in such a fashion that a closed-form

analytic solution can be found. However, the combined interrelationships of critical

elements within mathematical models can become extraordinarily complex. Once

13

systems and their corresponding mathematical models reach this level of complexity,

there is little choice but to study the model using simulation. Said simply, simulation is

numerically studying the model for the inputs in question with the goal of determining

how these inputs affect the output measures. As an example, we consider modeling the

complex information system described earlier.

One part of the information system is the telephone switching unit. To model a

single switch, we must mathematically represent items like the mean time between failure

of the processor, the memory unit, and the generator supplying power to the switch.

Also, rate of failure of the operator, arrival rate of requests, and down time due to

maintenance must be modeled. It is obvious that there are numerous details that must be

considered when modeling a single telephone switch, and there may be a total of fifteen

switches in use, each of a different type. Additionally, the switch is only a very small

part of the entire information system being studied. The complexity of modeling just one

switch may be great in and of itself, but when these are combined with the rest of the

system, it is apparent that a simple analytic solution is not possible. Further, additional

complex pieces of the information system need to be included in the model such as

battery consumption for the radios, fuel consumption for the field generators and the

human factor relating to the users and operators.

In every environment where people are working under stressful conditions,

accidents and injuries occur. The rates of these incidents must be modeled. Consider a

young satellite equipment operator who has had little sleep in the past 48 hours. The

operator is assigned the task of erecting a new satellite antenna to replace one that is not

functioning, and accidentally forgets to remove a retaining pin before engaging the

hydraulic lift. This accident causes the lifting arm to shear, which causes the dish to fall

and collapse. Additionally, the jarring motion of the accident causes the operator to fall

from the equipment, thus breaking a leg. We see that such scenarios, when modeled with

great fidelity, become mathematically very complex, eliminating the possibility of a

closed-form solution.

Simplification is an important aspect of modeling. Simplification is the process

of reducing or removing complex elements from a model while only minimally reducing

its accuracy or usefulness. Taking the telephone switch example from above, if the

14

switch only fails once every three months and the average usage period is less than three

months, then the modeler can assume that the failure rate is zero, thus simplifying the

model. However, careful consideration must be taken when making simplifying

assumptions. If the switch actually failed once every four hours, that factor would need

to be included in the model.

A simulation, usually conducted on a computer, also uses a mathematical model.

In these cases, the computational power of the computer is used to simulate the complex

mathematical quantities and relationships of the model. In these simulations, it is fairly

easy to increase the fidelity of one aspect of the model while decreasing the fidelity of

others. This aspect is important as various factors within the model increase and decrease

in significance. For example, during one examination of the information system, the rate

of failure and energy consumption of the telephone switch may be significant, while at

another time it may be sufficient to only consider the number of calls completed per hour.

This simplification would reduce the complexity of the model and may make it easier to

evaluate. These changes to the model are often more easily made in a computer

simulation model than in an analytical model.

Given that we have a mathematical model that we wish to study using the

simulation method, we must ascertain how to accomplish this task. To begin, the type of

simulation must be determined from the classification factors below.

• Static versus Dynamic Models. A static model is a depiction of a system at

a particular instant in time, or a model where time is not a variable. The

system state in a dynamic model changes over time making the model

evolutionary.

• Deterministic versus Stochastic (Probabilistic) Models. A model where

the results can be predicted with certainty, given a particular set of inputs, is

called deterministic. A stochastic model gives, for each execution, a different

result for the same set of input parameters, or it contains probabilistic

components that causes the output to be considered only an instantiation of a

single case. Many repetitions are needed in order to obtain a statistically

significant estimate of the true model characteristics.

15

• Continuous versus Discrete Models. A model where the system state is

defined at all times is called a continuous model. If the system state is only

defined for particular, finite points in time, then the model is discrete.

The simulation designed for this thesis is discrete, dynamic, and stochastic in nature.

This type of simulation is commonly termed a discrete event simulation.

C. DISCRETE EVENT SIMULATION

Discrete event simulation (DES) models a system as it evolves over time by

representing instantaneous changes in the state variables at separate points in time. These

points in time are the ones at which events occur where an event is defined as "an

instantaneous occurrence that may change the state of the system." [LAW91] Events

occur at different times and are stamped with the simulation time at which they occurred.

The system state is defined by system specific state variables that change as the

simulation progresses, and thus, describes the system's condition at any given point in

time. Current events generate additional events to occur at some future point in time.

These future events are stored in an "event queue" where they remain until the simulation

clock advances to the time at which the events are to happen. Events in the event queue

are normally stored in order according to the simulation time at which they are to occur.

As a discrete event simulation progresses, events are removed from the event queue and

processed. When events are removed, the simulation time is correspondingly advanced

to the time stamped on the next current event. This progression of simulated time is one

reason why simulation time and elapsed real-time are usually different in a discrete event

simulation.

Characteristically, DES models require three different types of variables:

• System State: model/system dependent variables used to describe the system

at particular points in time.

• Simulation Clock: a global variable representing simulated time.

• Statistical Counters: variables used to track repetitions of certain events and

to store statistical data about system performance.

16

In DES models, the advancement of time can be a difficult concept to understand.

There are generally two approaches for advancing simulated time:

• Next-event time advance (event driven): time is advanced to the time of

occurrence of the next future event, at which point the state of the system is

updated to account for the occurrence of that event. Most major simulation

tools and people coding in general purpose languages use this approach

[LAW91].

• Fixed-increment time advance (unit time): time is advanced by fixed

increments and checks are conducted to determine whether any events were

scheduled to occur during the previous time interval. If events were

scheduled to occur during this interval, these events are considered to occur at

the end of the interval and statistical counters are updated accordingly. This

approach is not commonly used in computer simulations [JAIN91].

Although simulation has been applied to many varied types of real-world systems,

DES models all share common components and a universal structure [JAIN91]. The use

of these common components promotes the coding, debugging, and future changing of a

simulation model's computer program. While most simulation languages and tools

provide many of these components, when using a general-purpose language to code a

simulation, the modeler must develop them. The components are as follows:

• Event list: a list, commonly implemented using a queue, of events and the

times when they should occur.

• Initialization routine: a subprogram that sets the initial system state, receives

values from the user for input parameters, and sets the simulation time to zero.

• Timing routine: a subprogram that determines the next event from the event

list and advances the simulation clock to the time when that event is to occur.

Often referred to as the event scheduler.

• Event routine: each event is simulated by its corresponding routine that

updates the system state variables and schedules other events.

• Library routines: a set of subprograms that generate random observations

from probability distributions.

17

• Report generator: output routines that compute results from the statistical

counters and produce a report when the simulation is completed.

• Main program: a subprogram that brings all of the routines together. It

initializes the simulation, executes various iterations, and upon finalization,

calls the report generator.

The logical relationship among these components and the flow of control of a

next-event time advance discrete model is illustrated in Figure 3.

(start)

Initialization routine

1. Set simulation clock = 0
2. Initialize system state and

statistical counters
3. Initialize event list

Main program

0. Invoke the initialization routine

1. Invoke the timing routine
2. Invoke event routine

itine \
repeatedly

Event routine i

Timing routine

1. Determine the next event
type, say z

2. Advance the simulation
clock

1. Update system state
2. Update statistical counters
3. Generate future events and

add to event list

Library routines

Generate random
variates

Report generator

1. Compute estimates of interest
2. Write report

[Stop)

Figure 3. Flow of control for the next-event time advance approach, from [LAW91].

Once the type of simulation is determined, a choice must be made as to the method of

experimentation. The method used for this thesis research is the Monte Carlo method, an

approach that is often confused with Monte Carlo simulation. A detailed description of

this approach and why it is often misnamed Monte Carlo simulation can be found in

Section D.

18

D. MONTE CARLO METHOD

First, we present a review of items presented previously. The very nature of a

simulation is to provide statistical estimates of numerical data about the performance of a

system being modeled. When simulation experiments are conducted over time, we have

a stochastic simulation that includes sampling stochastic variates from a probability

distribution. A stochastic simulation is a simulation involving a stochastic process, a

process with a sequence of states whose development is determined by randomly

occurring events. Because sampling from a particular distribution involves the use of

random numbers, stochastic simulation is sometimes loosely referred to as Monte Carlo

simulation. However, a more precise definition of Monte Carlo simulation is "a scheme

employing random numbers, that is U(0,1) random variates, used to solve stochastic or

deterministic problems where passage of time plays no substantive role." 3 [LAW91]

It can also be stated that a Monte Carlo simulation is a static simulation (i.e., one

without a time axis) used to model probabilistic events that do not change characteristics

with time [JAIN91]. Thus, Monte Carlo simulation is useful when evaluating

nonprobabilistic expressions with probabilistic methods. For example, consider

evaluating the following integral:

2

H e dx
o

One method to evaluate this integral is to generate uniformly distributed random

numbers x and for each number compute a function y as follows:

density function /(*) = — iff 0 < x < 2

x ~ U(0,2)

3 A.U(0,1) random variate is obtained from a random number generator that produces a variate U that is
uniformly distributed between 0 and 1.

19

The expected value of y is then:

E(y)
2

0
2

= \le
0
2

= /•-
0

= /

-x2f{x)dx

-*z-dx
2

dx

Thus, generating uniformly distributed random numbers x„ computing y,-, and then

averaging can evaluate the integral.

Je, ~ C/(0,2)

n

/ = E(y) = ~yy y,
n 4mU

i=\

However, for our research, we are interested in the dynamic rather than static

aspects of the Monte Carlo method. The above example demonstrates Monte Carlo

simulation, but Monte Carlo methods can be used for a much broader range of

experiments.

Monte Carlo methods can be defined as "the branch of experimental mathematics

concerned with random numbers where the approach is to observe random numbers,

chosen to directly simulate the physical stochastic process of the problem, and to estimate

the desired solution from the behavior of the generated random variates." [HAMM64]

Thus, Monte Carlo methods can be used in any experiment where some input parameters

are random variates and the desired output is a calculated estimate obtained by using

statistical methods on the results of numerous trials of an experiment. The general flow

of a simulation using Monte Carlo methods is shown in Figure 4.

20

Figure 4. Flow diagram for Monte Carlo method.

Although references to Monte Carlo type experimentation can be found much

earlier, the actual name and development of the process dates back to about 1944 where

"Monte Carlo" was the code word for the secret work on the atomic bomb during World

War II at Los Alamos. This work was conducted by von Neumann and Ulam and

involved direct simulation of probabilistic problems concerned with random neutron

diffusion in fissile material [RUBI81].

In conclusion, simulation is a technique for performing sampling experiments on

a model of a system. When these experiments are conducted over time, we have a

stochastic simulation involving sampling stochastic variates from a probability

distribution. Because sampling from a distribution involves the use of random numbers,

stochastic simulation is sometimes also erroneously referred to as Monte Carlo

simulation. A more precise denotation for this type of simulation would be stochastic

simulation using Monte Carlo methods. Therefore, this research uses discrete event

simulation and the Monte Carlo method of experimentation.

21

E. RANDOM VARIATES

The nature of discrete event simulation requires it to include the random elements

of the modeled system through the integration of stochastic processes [ARMS97]. To

illustrate, we again refer to the telephone switch example outlined previously in this

chapter. While the process of automatically connecting telephone calls is normally a

routine and consistent operation, there are still unavoidable random elements in the

system. For example, consider the possibility of a processor failing in the system.

During its operation, data on the mean time between failures for the telephone switch

processor is collected. This data is then statistically analyzed, the mean and variance

determined, and a probability distribution fitted to the processor failure rate. A failure of

the processor can then be simulated as a random occurrence governed by the distribution

fitted to the observed data. Consequently, this stochastic simulation could be used to

demonstrate the effect of a switch with a given reliability on the overall performance of

the larger communication network.

An important aspect of the above simulation is the efficient arid correct

production of random variates. A random variate is a random observation generated from

a probability distribution [LAW91]. The Gaussian (Normal) distribution is a good

example to use to explain the concept of random variates. Consider a set of 100,000

random variates sampled from a Gaussian distribution with a mean of 100 and a standard

deviation of 15. (See Figure 5). The x-axis values represent random variates with the

frequency of those variates plotted along the v-axis. The Gaussian curve shows that there

are more random variates near the mean and less as we move away from the mean.

The technique used to generate random variates depends upon the particular

distribution that we wish to sample, but every method relies upon a reliable source of

independent, identically distributed (IID) random variates uniformly distributed over the

interval (0,1) [LAW91]. For this reason, it is essential that a statistically reliable U(0,1)

random number generator be available. Fortunately, most computer simulation tools

today have such convenient and accurate random number generators. Additionally, most

simulation tools also include convenient methods for generating random variates.

However, if they do not, the approaches described next for generating variates can be

used.

22

14000

12000

10000

>. 8000 o

"• 6000 -

Gaussian, mean 100, stnd dev 15

4000

2000

20 40

 1

"histo-normaP

Most random variates occur near the mean

Fewer random variates occur near upperand lower limits

80 100 120
Random Variates

160 180

Figure 5. Gaussian distribution, mean 100, standard deviation 15, from [ARMS97].

• Inverse Transform. This method is used to generate random variates whose

distribution function F is continuous and increasing when 0 < F(x) < 1. The

algorithm for generating random variate X is then to generate U ~ U(0,1) and

then return X = F ~\U). Since 0 < U < 1 and the range of F is [0,1], F"' will

always be defined. [LAW91]

• Composition. This technique applies when the distribution function F can

best be expressed as a combination of other distribution functions. When F

can be expressed as a convex combination of other distribution functions F\,

F2,..., Fn it may be easier to sample from the individual Fj's than from the

original F. The combination algorithm generates a positive random integer J

such that P(J=j)= pj; for 7 = 1, 2, ..., n and then return X with distribution

function Fj.

• Convolution. This method is best when the desired random variable X can be

expressed as a sum of other IID random variables that can be more readily

23

generated than the direct generation of X. This method is fundamentally

different from the method of composition because in composition we assume

that the distribution function of X is a (weighted) sum of other distribution

functions, whereas the assumption behind convolution is that the random

variable X can be represented as a sum of other random variables. The

algorithm for generating the random variate X is quite intuitive because we

first generate the independent, identically distributed variables Y\, Y2,...,Ym

each with distribution function G and then return X = Y\ + Y2 + ... + Ym.

[LAW91]

• Acceptance-Rejection. This technique is less direct in its approach than the

aforementioned methods and is useful when the direct methods fail or are too

costly. This approach requires a function t that majorizes4 the density

function /. The general algorithm involves generating a random variate Y

having density r (hopefully easily and quickly), and generating U ~ U(0,1),

independent of Y . If U ^^§y, return X = Y. Otherwise it generates a new

value and tests it similarly.

The appropriate method to use is dependent upon the distribution from which we

desire to draw the random variate. The ease and reliability with which random variates

can be generated for that distribution must also be considered. (The reliability is based

upon the fact that the algorithm used should produce random variates statistically

equivalent to the desired distribution.) [LAW91]

For distributions of known types, most simulation tool kits provide readily

available, efficient, and accurate random variate generators. However, when necessary,

the inverse transform method is the easiest to implement [ARMS97]. This method is

easiest because the random variates are generated from the inverse of the distribution

function F, provided the inverse function F ~x is defined. For example, the Gaussian

distribution function cannot be inverted because a closed form version for F _1 does not

exist. While there are other numerical methods available when F ~l has no closed form,

4 t(x)>f(x) for all*.

24

the inverse transform method may not be the most computationally efficient. For the

cases when the distribution function can be expressed as a sum of other distribution

functions or the random variate is a sum of other random variates, then the composition

or convolution methods should be used, respectively. Finally, if no other more efficient

method can be found and a majorizing function exists, the acceptance-rejection method

should be used.

F. QUEUEING THEORY

The amount of information and literature on queueing theory is immense. This

section presents a very general synopsis of queueing theory. This topic is important

because "queueing theory is a key analytical modeling technique used for computer

systems performance analysis." [JAIN91] To aid in the understanding of queueing

theory, this section provides a basic knowledge of queueing notation and some

background on single-queue systems. For systems with multiple queues, as in this thesis,

simulation is often required. Queueing theory assists in determining the time that jobs

spend in various queues throughout a system. These times can then be combined to

predict the system response time, which is the total time that a job spends in the system.

To begin, we introduce queueing notation. It is based upon a shorthand called the

Kendall notation, and has the form A/S/m/B/K/SD where the letters correspond to the

following parameters:

• A: interarrival time distribution - The times between job arrivals are often

assumed to be a sequence of IID random variables. The most common arrival

process has exponentially distributed interarrival times, and is often referred

to as the Poisson arrival process.

• S: service time distribution - The time each job spends at a resource is

called the service time. The service times are also usually assumed to be IID

random variables. For simple queueing models, the exponential distribution is

commonly used.

• m: number of servers - Identical servers are commonly grouped together and

considered part of the same queueing system. When the servers are not all

25

identical, they are grouped into disjoint sets, each set containing identical

servers, with individual queues serving each group.

• B: system capacity (number of buffers) - The system capacity is the

maximum number of jobs that can be serviced by the system. This number is

usually finite and includes both those waiting for service and those already in

the system.

• K: population size - The total number of jobs that could ever possibly enter

the system is called the population size. This number is usually finite.

• SD: service discipline - Service discipline is the order in which jobs are

served. The most common discipline is First Come First Served (FCFS).

Additionally, the service and interarrival time distributions are ordinarily referred to by a

one-letter symbol. The most common symbols are:

• M - Exponential5

• Ek - Erlang with parameter k

• Hk - Hyperexponential with parameter k

• D - Deterministic

• G - General

A deterministic distribution implies that the times are constant and there is no variance,

while a general distribution means that the results are valid for all distributions because

the distribution is not designated. [JAIN 91]

There are several important variables used for analysis that are common to all

single queueing systems. These variables are:

• T = the time between successive arrivals, or interarrival time.

• X = the mean arrival rate, commonly A. = 1/E[T].

• s = the service time per job.

• (1 = the mean service rate per server, commonly 1/E[J].

• n = the number of jobs in the system.

• nq = the number of jobs waiting for service.

• ns = the number of jobs receiving service.

' The letter M is used to indicate the Markov, or memoryless, property of the exponential distribution.

26

• r = the total time in the system or response time.

• w = waiting time or the time between arrival time and the instance that service

begins.

Except for X and u,, the above variables are random variables. [JAIN91]

A vital theorem used in queueing theory is Little's Law. This law relates the

number of jobs in the system to the mean response time as follows:

Mean number in the system = arrival rate Xmean response time

As long as the number of jobs entering the system is equal to those completing service,

this law applies. In other words, no new jobs can be created within the system and no

jobs can be lost forever by the system. This law may be applied to the system as a whole

or to individual parts of the system.

To conclude this section, Table 1 is provided as a synopsis of how to analyze a

standard, single-server, system represented by the common M/M/l queue.

27

1. Parameters:
X = arrival rate in jobs per unit time
(X = service rate in jobs per unit time

2. Traffic intensity: p = X/(X
3. Stability condition: Traffic intensity p must be less than 1.
4. Probability of zero jobs in the system: p0= 1 - p
5. Probability of n jobs in the system: p„ = (1 - p)p", n = 0, 1,..
6. Mean number of jobs in the system: E[n] = p/(l-p)
7. Variance of number of jobs in the system: Var[n] = p/(l-p)"
8. Probability of & jobs in the queue:

[lP •
1(1-PX

2 *=o
P(n*=*)='»-p)p-*>o

9. Mean number of jobs in the queue: E[nq] = p2/(l-p)
10. Variance of number of jobs in the queue:

Var[«J = p2(l+p-p2)/(l-p)2

11. Cumulative distribution function of the response time:
F(r) = \-errtl-p)

12. Mean response time: E[r] = (l/(x)/(l-p)

1/jU2

13. Variance of the response time: Var[r] =
(1-P)2

14. <j-Percentile of the response time: £[r]ln[100/(100 - q)]
15. 90-Percentile of the response time: 23E[r]
16. Cumulative distribution function of waiting time:

F(w) = l-pe-fM(l-p)

1/ju
17. Mean waiting time: E[w] = p

\-p
18. Variance of the waiting time: Var[w] = (2-p)p/[(i2(l-p)2]
19. g-Percentile of the waiting time:

(E[w] ^
max 0,^-^ln[100p/(100-^)]

P

(E[w]
20. 90-Percentile of the waiting time: max 0, ln[10p]

I P
21. Probability of finding n or more jobs in the system: p"

Table 1: M/M/l Queue, adapted from [JAIN91].

28

G. SUMMARY

This chapter has explained simulation in general through the use of a military

communication and information system example. This example was then expanded to

outline discrete event simulation. Next, the Monte Carlo method of experimentation was

introduced. A brief explanation of random variates was then provided, again using our

example. Finally, the last section introduced the concepts of queueing theory. The next

chapter will discuss the simulation model used to conduct the research for this thesis.

The structure of this model will highlight the important concepts summarized above.

29

30

IV. THE SIMULATION MODEL

A. INTRODUCTION

This chapter describes the research problem this thesis attempts to answer and

explains how the simulation model was built. Section B discusses the model in general

and lists the assumptions that were made. Detailed descriptions of the problems outlined

in Chapter I are provided in Section C. Section D provides insight into the Silk modeling

software and why the JAVA programming language is used. Section E contains a

summary and concluding remarks.

B. BACKGROUND

As outlined in Chapter I, we are researching two important problems that, when

solved, can be used to enhance the performance of the scheduling mechanism of a

resource management system (RMS). The first problem is to find the optimal point at

which to schedule a group of jobs waiting to enter the heterogeneous computing system.

The second problem is to then ascertain whether there is a point beyond which the

relative benefit of group scheduling substantially decreases as the group size increases.

The kinds of systems for which these problems are important are both varied and

complex. For this reason, this thesis makes various simplifying assumptions to reduce

the model's complexity while preserving its substance.

The system being studied can be represented as a sequence of queues and servers

used to schedule jobs over an array of heterogeneous computational resources. (See

Figure 6.) The system begins by collecting jobs as they arrive until both a predefined

group of jobs has been collected and the scheduling server is free to compute the next

schedule. The group of jobs is then dequeued and processed by the scheduling server.

Upon completion of the scheduler, the jobs are released as a group to their assigned

machines for processing. However, prior to being serviced by their assigned machine,

31

these jobs may be held in an admission queue if the assigned machine is too busy6. Thus,

the overall system is a single-queue, single-server component feeding into an array of

additional single-queue, single-server components.

^SA

Scheduling
Advisor Machines

Figure 6. Graphical representation of system model.

In this model there are a total of M+l queueing systems divided into two types.

The first type is located on the left side of the figure and represents the Scheduling

Advisor (SA) as described in Chapter II. The remaining M queueing systems belong to

the various machines upon which the jobs will be executed. These are called the machine

queueing systems and are referred to as M, where i is the unique index of the machine.

Each machine queueing system consists of an admission queue (QAI) that holds jobs until

the machine is free, and the server, which is the machine itself. [KIDD99]

To begin, we need to define what is a schedule. In this research, a schedule is an

assignment of jobs to available machines such that a job runs on exactly one machine and

a machine can run no more than one job at the same time. In other words, in this

simplified model7 the machines are not multitasking. The type of scheduling done by

6 Typically MSHN will not use these queues unless the machine is so overburdened that the OS will reject
any new process requests. However, modeling the ready and waiting queues maintained by the OS are
beyond the scope of this thesis (see Chapter VII).

7 Again, this model differs substantially from the environment where MSHN will run. However, this
model must be clearly understood and validated before more sophisticated models are analyzed.

32

this system is non-preemptive. With non-preemptive scheduling, once a job has begun

execution, it cannot be interrupted. Lastly, rescheduling is not considered. Rescheduling

means that if a job has been assigned to a machine but has not begun execution (i.e., it is

waiting in the admission queue), it could be removed from the admission queue, placed

back in the SA queue, and rescheduled at the next scheduling event. For this research,

once a job has been assigned, it remains in the admission queue until it is executed on its

assigned machine.

The QoS metric used in assessing the goodness of a schedule in this model is the

average time in the system per job. This metric was chosen because it is readily

available, easily manipulated, and can be easily expanded to incorporate other metrics

such as priority or security.

The schedules are built using an Expected Time to Compute (ETC) matrix.

E7C(j,m) is the expected time for job j to complete execution on machine m assuming

that there are no other jobs using any of the machines. In the ETC matrix, the numbers

across a row are the execution times of the corresponding job on the different machines.

Based upon the variations between corresponding rows and columns, the ETC matrix can

be classified into one of four heterogeneity classes. The variation across a row of the

matrix is referred to as the machine heterogeneity, while the variation down a column is

the task heterogeneity [ARMS97]. Based upon a classification of high versus low

heterogeneity, the four classes proposed by [ARMS97] for ETC categories are: (1) high

task and high machine heterogeneity (HiHi), (2) high task and low machine heterogeneity

(HiLo), (3) low task and high machine heterogeneity (LoHi), and (4) low task and low

machine heterogeneity (LoLo). The ETC matrix can be further classified into two

additional classes, consistent and inconsistent. For a consistent ETC matrix, if one job

has a lower execution time on machine mx than on machine my, then the same is true for

all jobs [ARMS97]. Consequently, any ETC matrix that is not consistent is inconsistent.

For this model, inconsistent ETC matrices are used because they are likely to arise in a

typical environment [MAHE99]. A HiLo ETC matrix is used in the model because it

most closely represents the realistic environment depicted in the military scenario

outlined in Chapter V.

33

For measurement and comparison between differing schedules, a schedule's

expected completion time is defined as the time at which the last job is expected to

complete when all the jobs are executed according to the defined schedule (that was

based upon the values in the ETC matrix). Thus, an optimal schedule is defined as the

one with the smallest completion time. Lastly, the schedules are constructed assuming

that the jobs are independent of each other. In other words, each job executes without

needing information from any other job or from the outside environment.

A scheduling algorithm is needed to create a job schedule using an ETC matrix.

The problem of finding an optimal schedule where the finishing time is as small as

possible for large data sets is known to be NP-complete8 [IBAR77]. Thus, a common

choice is to instead use a heuristic greedy algorithm. Greedy algorithms make locally

optimal choices in the hope that these choices will result in a close to optimal solution.

The specific algorithm used in this model is a MaxMin algorithm that has complexity

0(MJ2) where M is the number of machines available and J is the number of jobs to be

scheduled. This algorithm does not guarantee an optimal solution, but often gives a near-

optimal solution. Figure 7 gives simple pseudocode for the MaxMin algorithm.

8 NP-complete means that it is unlikely that a polynomial time-bounded algorithm exists for this problem.

34

procedure MaxMin;

Input: The ETC matrix, list of jobs submitted to be scheduled.
Output: The schedule that gives an assignment of jobs to machines that attempts to minimize the total

completion time.

begin

1. Initialize.
Matrix soonestDone <- matrix ETC;
Row Vector accumulatedtimes <- 0;
Mark all jobs as unchosen;

2. While there is still a job that is unchosen do
begin

Find the minimum of all rows in soonestDone;
Find the maximum minimum of the values found above. Let the row index of

The minimum bejobChosen and column index be machineChosen.
Assign jobChosen to machineChosen.
Store assignment {jobChosen, machineChosen);
Update accumulatedTimes:

accumulatedTimes[machineChosen] += ETC[jobChosen] [machineChosen];
Remove the TOW jobChosen from soonestDone and ETC.
Update soonestDone:

Set each row of soonestDone 4- Corresponding row of ETC + accumulatedTimes, added entry
wise.

Mark the job jobChosen as chosen.
end.

3. Output all of the assignments (job, machine).

end.

Figure 7. Pseudocode for MaxMin algorithm, from [JANA96].

In MaxMin, the ETC matrix is scanned and the minimum value from each row is

recorded. Next, the maximum value from the recorded minimums is chosen and that

(job, machine) pair is recorded as a schedule assignment. Then, the values in the chosen

machine column of the ETC matrix are updated to indicate the new completion time

values and the remaining jobs (rows) are scanned and scheduled accordingly. MaxMin

iterates as many times as there are jobs, and in each iteration a (job, machine) pair is

chosen so that the selected pair contributes to reducing the time required to execute the

resultant schedule. Finally, all selected pairs are output as the assignment schedule.

The scheduling system of Figure 6 is simulated using a discrete event simulator

such as that described in Chapter III. The job arrivals are modeled using a Poisson

random process with the mean interarrival time set by the user. The simulator contains

35

an ETC matrix generator that creates a HiLo, inconsistent matrix as described previously

using both the size of a group of jobs and the number of machines input by the user.9

Using a MaxMin heuristic, a schedule is then created from the ETC matrix, the real time

to compute the schedule is recorded and the jobs are assigned to their respective

machines in accordance with the generated schedule. The amount of real time used to

create the schedule is then used to advance the simulation time for the scheduler. The

jobs may then wait in a FIFO admission queue for their machine until that machine is

available to process them. Because the actual execution time of a job can be different

from the value given by the ETC matrix, the simulated execution time for each job is

modeled by sampling a Gamma probability density function with mean equal to the

ETC's expected execution time of the job. The amount of simulated time that each job

spends in the system is recorded for later analysis.

C. DETAILED PROBLEM DEFINITION

From the terminology established in Chapter III and the problem description of

the previous section, we can now precisely describe the system model. From previous

descriptions, the SA queueing system can be classified as a type M/D[G3/1 queueing

system because the arrivals are exponentially distributed and the time spent in the

scheduler is deterministic and based upon the number of jobs in a group and the number

of machines in the system. The superscript "[G]" indicates that the SA is servicing a

group of jobs. Each system of the array of machine queueing systems on the right side of

Figure 6 can be similarly classified as G/Ek/1 because the arrival distribution at each

admission queue cannot be definitely determined and the service time is modeled using a

Gamma distribution.

From the above classifications, we can now make specific assumptions about the

behavior of these systems in order to obtain a theoretical approximation for the systems'

behavior. A significant simplifying assumption is that the runtimes of each job on any of

the machines is identical. From this assumption, we can then aggregate the machine

queueing systems into a single aggregate system for analysis. Of particular note is the

9 This procedure is equivalent to selecting a group from a very large population of jobs.

36

fact that this one aggregate queueing system does not actually reproduce the behavior of

the original parallel system, but instead provides a limiting "best" case. This simplifying

assumption results in the system shown in Figure 8.

V5A

ISA

MSA

SA
Scheduling

Advisor Machines
—h

Figure 8. Aggregate queueing model, from [KIDD99].

From this assumption, we can begin to formulate the equations for an

approximation to the expected average amount of time spent by a job in the simulated

system. From the beginning, since a group of jobs is collected in QSA before being

submitted to the SA, the wait time spent collecting a group of size G is computed by

equation (1).

G Gt
WQs* =

'SA

2ASA 2
(1)

Once the group of jobs is submitted to the SA, the time spent by the SA to determine a

schedule is simply sSA or \lßSA. If we define the average execution time for a job on a

machine as s, then the average rate of jobs being executed by a machine is expressed as

1/5 or fi. Hence, the total service rate for M machines is Mß. Since an entire group of

jobs is submitted from the SA to QA, the average amount of time a job spends in QA can

be computed from equation (2).

G Gs
WQA=- (2)

2Mp 2M

Similarly, the time required for M to execute a single job on average is simply l/M/i or

sM. If we add all of the previous intervals together, we can use equation (3) to compute

an initial estimate for system response time, or the average total time spent by a job in the

simulated system.

G 1 G 1 Gz
- + + + SA

2
^SA MSA 2M/1 Mß 2

+ SSA +
Gs s

■ + ■
2M M

(3)

37

It is important to note here the simplifications inherent in this estimate. Equation (3) does

not consider the complexities of the actual expressions for sSA or s/M. For example,

considering the mean service time for the SA, which is dependent upon G, M, and the

algorithm used to schedule, we can see that VpSA will be 0(MG2). This assumption is

based upon the fact that the scheduler uses a Greedy algorithm with complexity 0(MJ).

Therefore, equation (3) can be rewritten as equation (4).

c C 1
 + (adG

2M+a,GM+a2G + a,M+a0)+ + (4)
2ÄSA 2Mß Mju

Using equation (4) as a starting point and including the results from some

experimentation with the simulation, the a{ coefficients can be determined. The

complexities introduced as a result of grouping jobs may demonstrate that the above

equation is too simplistic and that the assumptions made reduce the granularity of the

problem to a level where the above equation is actually a poor estimate. However,

through the development of this equation, we have begun the analysis as to how changes

in G will affect the average time that a job spends in the system. Additionally, we can

learn from these equations how large G must become before the relative benefit of

improvements in the schedule will be overcome by the time spent waiting for the jobs in

the group to collect. [KJDD99]

D. JAVA AND SILK

Once the form of the model was decided, and we had determined that, because of

the model's complexity, simulation was needed, the next step was to choose a

programming language for the simulation. Primarily we desired an object-oriented,

powerful language with multithreading and an easy reuse capability. When Sun

Microsystems introduced JAVA in 1995, they described it as "a simple, object-oriented,

distributed, interpreted, robust, secure, architecture neutral, portable, high-performance,

multithreaded, and dynamic language" [FLAN97]. Because JAVA is an object-oriented

programming language with robust reuse capabilities, it was an easy choice as the

language for this project. Due to a desire for ease of development, finding a simulation

tool based on the JAVA language was the next step. Our motive for finding a discrete

38

event simulation tool was to be able to work within an environment where event

scheduling, thread handling and random variate generation were provided and therefore

wouldn't have to be developed. A search of the Internet revealed the Silk simulation

tool.

Silk is simply a collection of JAVA classes for discrete event simulation. These

classes include an entity simulation engine using the multithreaded power of JAVA and a

set of process-oriented modeling methods for object-oriented simulation design. The

combination of Silk and JAVA provide an integrated simulation and programming

environment for building reusable modeling components. Additionally, JAVA'S inherent

support for multithreaded execution and Silk's incorporated event scheduler produce the

essential ingredient for representing the concurrent flow of entities in process simulation

models. Lastly, because Silk is simply an extension of JAVA, the full flexibility of the

JAVA programming language is available allowing the user to create more complex

models by creating customized extensions to the Silk classes. Additional information

about the Silk simulation tool can be found at www.threadtec.com. [KJLG98]

E. SUMMARY

This chapter has described this research's simulation model. It explained the

simplifying assumptions used to build the simulation model and described the simulation

steps. Next, the research problem was described in detail. Finally, the last section

explained why JAVA was chosen as the programming language for the model and why

the Silk modeling software was also chosen. The next chapter explains how experiments

were conducted using the simulation model described in this chapter.

39

40

V. EXPERIMENTS

A. INTRODUCTION

This chapter details the experiments conducted using the simulation model.

Section B provides a military scenario where a system requiring answers to the questions

posed may be employed. The experiments were performed using this scenario. The data

resulting from the experiments are presented in Section C. Section D outlines the

validation of the simulation model and the experiment. A summary is provided in

Section E.

B. BACKGROUND

In an effort to provide realism both to the experiment and for the use of a

Resource Management System (RMS) in a heterogeneous environment, we developed a

military scenario embodying the parameters expected in a practical application. The

following parameters are needed for this simulation experiment:

• M - the number of machines in the system available for processing jobs,

• T -the mean time between successive job arrivals (in milliseconds),

• 5 - the mean duration expected for a job to execute on a machine (in

milliseconds), and

• G - the size of a group of jobs to be scheduled.

With these parameters in mind, the scenario is based on a US Marine infantry battalion

(Bn) that is ready to begin the combat portion of an exercise. The Bn headquarters (HQ)

has a networked system of 16 computers, one of which is the resource scheduler. This

system of computers consists of Wintel 486 machines, older Wintel Pentium machines

and Sun SPARC machines. The overall processing power of all these machines is

considered to be approximately the same, and the types of jobs submitted to the system

are very diverse10. Thus, the resultant networked system consists of 15 heterogeneous

computers available to process many different types of jobs. The majority of jobs

10 For these reasons, a HiLo Expected Time to Compute (ETC) matrix, as defined in Chapter IV, is used to
represent the computing environment for this scenario.

41

processed within the Bn are not complex and it is assumed that on the average a job can

be completed within one second (1000 ms), regardless of the type of processor used. It is

also assumed that just prior to entering a combat exercise, the level of computational

activity for the Bn rises dramatically and that the mean interarrival time for jobs to the

RMS is between 50 and 100 ms during this time.11

Before outlining the methods for the experiment, we must first describe the

platform used to conduct the simulation. The simulation experiments were all executed

on a Silicon Graphics (SGI) Challenge-L multiprocessor machine named caesar. Caesar

has four 200MHz MIPS R4400 processors using the IRIX64 operating system, version

6.2, with JAVA version 3.1.1 (Sun 1.1.6). Caesar was accessed remotely from an Intel

Pentium U, 400MHz, single processor machine using the Windows NT Workstation 4.0

operating system.12

Using the parameters from the above scenario, the first major decision was the

choosing of a job interarrival time that would provide experimentally significant results.

Although this system involves both multiple queues and servers, we borrowed a stability

condition relationship from single queue, single server systems. A system is said to be

unstable if the average number of jobs in the system during any reasonable interval grows

continuously. Thus, for stability, the mean arrival rate should be less than the mean

service rate (i.e., A. < MfJ) or equivalently the traffic intensity, X/Mju, must be less than 1

[JAIN91]. Therefore, although our system is more complex than a single queue, single

server system, we chose an interarrival time of 67ms satisfying this general stability

condition.13

11 This range of interarrival times was chosen to satisfy the stability condition for the system. The
significance of this range will be outlined later and in Chapter VI.

12 The Intel Pentium II machine was not used to conduct the experiment because the required millisecond
time resolution was not available. The Java Virtual Machine (JVM) and Windows NT have a compatibility
problem that only permits 10ms resolution. Similarly, there is a thread "suspend/resume" compatibility
problem between the JVM and Sun Solaris that causes a multithreaded JAVA program to "hang."
Therefore, the experiments were conducted on the SGI platform because millisecond resolution was
provided and the program did not "hang."

13 For this experiment, M=\5, /z=0.001 and X=0.0149. Thus, TJM/i = 0.0149/0.015 = 0.993 < 1.

42

With this initial parameter set, we next established the methodology. The general

experiment was controlled using time. Over an interval of 110 simulated seconds, the

amount of time each job spent in the system was recorded. These results were

normalized giving the average time spent in the system per job. In order to capture

results from a system already in operation (i.e., in a steady state), statistics were not

recorded until after 10 seconds of simulation time had elapsed. The initial 10 seconds

permitted the simulation to reach a steady operating condition so that the skewed data

from the simulation's "start-up" was avoided. Experimentation and analysis verified the

steady state condition. Because we were interested in how the size of the group of jobs,

G, affected the Quality of Service (QoS) measure, namely the average time in the system

per job for this research, we ran the experiment 30 times for each choice of G. The

results of these 30 runs were then averaged to find the overall mean time spent in the

system per job for each value of G.

An additional experiment included running the simulation with different inputs

for both the number of jobs and machines, and then recording the amount of time taken

for the scheduler to compute a schedule. The data from these experiments were used to

calculate the coefficients for equation (4) in Chapter IV. The next section provides the

results of the experiments conducted using the scenario introduced at the beginning of

this chapter.

C. RESULTS

To briefly review what has been discussed thus far, this research studies the affect

of grouping jobs prior to scheduling upon the average time that a job spends in a

heterogeneous computing environment managed by an RMS. The experiment is

conducted using a computer simulation model of the system. The simulation is coded in

the JAVA programming language using the Silk simulation building tool. The

parameters for the experiment are established using a military scenario involving an

infantry battalion just prior to a combat exercise. For each value of G (the size of a group

of jobs) the simulation is run 30 times and the mean interval that a job spends in the

system is calculated. Figure 9 illustrates the output received from each run of the

experiment.

43

The results of the experiment using the scenario's parameters (M - 15, x = 67ms,

s = 1000ms) are provided in Table 2 and graphically shown in Figure 10. From these

results, it is apparent that there is a positive and definite benefit gained when jobs are

scheduled in groups (from the additional information available to the scheduler). In fact,

for this scenario and set of parameters, the optimal point to initiate a scheduling event is

when the first of either of two events occurs: when the SA queue reaches a length of 17

or after 1139 milliseconds (67ms X 17 jobs) have transpired.

I Summary Output - Academic Version Bis] ES
Command

ijRun number 1 over at time 110000. 0000000
A

llElapsed time 0:0:9.46

jjObservational Variables:

ildentifier Average
Jvait time for SA 475.3740954
JGroup Size 15.0000000
prime to Schedule 1.5100000
JTime in System 2007.8534033

Standard
Deviation

342.8623653
0.0000000
3.6139321

998.2576062

Minimum
0.0000000

15.0000000
0.0000000

287.1010577

Maximum
1740.2124657

15.0000000
11.0000000

6591.5468721

Final
0.0000000

15.0000000
0.0000000

1255.8674864

Count S
1500 ij

100
100 |

1513 :|: :

hume Dependent Variables:

Ildentifier Average
ISA Utilization 0.0015100
ISA Queue Length 7.1163988

Standard
Deviation
0.0388294
4.4239312

Hinimum
0.0000000
0.0000000

Maximum
1.0000000

15.0000000

Final
0.0000000
7.0000000

Time Period £j
100000.0000000
looooo.ooooooojd!

Figure 9. Summary output for simulation experiment.

Group Size Avq Time/Job
1 3196
3 2899
5 2623
7 2502
9 2421

11 2178
13 2104
15 1885
17 1872
19 1971
21 2065
23 2112
25 2243

Group Size Avq Time/Job
27 2368
29 2534
31 2682
33 2828
35 2954
37 3108
39 3216
41 3346
43 3500
45 3640
47 3773
49 4061
51 4152

Table 2: Results for M=15, x=67ms.

44

4500
4300

e 4100
I 3900
% 3700
ft 3500
c 3300
- 3100
c 2900
j! 2700
c 2500
g 2300
g 2100

1900
1700
1500

13 5 7 9 1113 15 17 19 2123 25 27 29 3133 35 37 39 4143 45 47 49 51

Group Size

Figure 10. Graphical results for M=15, x=67ms.

The data in Figure 10 also demonstrates the significance of the 67ms interarrival

rate. The data infers that with this mean job interarrival rate the system can optimally

handle a "group" interarrival rate of 1139ms (67ms X 17 jobs) to the scheduler. The

intuitive implication of this data is that group sizes below 17 cause either an inefficient

schedule to be created or a system bottleneck within the array of processing machines

admission queues. Additionally, group sizes above 17 do not provide a scheduling

benefit greater than the amount of time taken to gather a group. Further analysis of these

results requires additional experimentation and data collection. This topic is explored

further in Chapter VI.

45

G M SSA(Time to Schedule)

100 100 275
50 100 65
10 100 3

100 10 79
50 10 21

Table 3: Results from scheduling experiment.

The results from the second experiment are provided in Table 3. In this

experiment, the simulation was run for the values of G and M shown in the table; the

mean time to compute a schedule was recorded. Recalling the term for the response time

of the SA in equation (4) of Chapter IV, the formula for just the scheduler in terms of G

and M can be written as equation (5).

sSA = a4G
2M + a3GM + a2G + axM + a0 (5)

Using the data from Table 3 and substituting into equation (5), the solution to the

resultant system of five equations with five unknowns reveals the coefficients for

equation (5) in Table 4. Because the platform where the experiment was performed

(caesar) did not provide enough time resolution, equation (5) was evaluated for larger

values of G and M, resulting in less accurate sSA values for small G and M. Even so, at

those smaller values sSA is two orders of magnitude smaller than the overall result and as

such was not significant to this research. Of particular note is the fact that this solution is

only valid for the platform on which the experiment was run and the scheduling

algorithm that was used. Thus, this particular solution to calculate the estimated response

time of the scheduler is only valid for simulation experiments conducted using a greedy

scheduling algorithm executed on the SGI machine named caesar mentioned

previously14.

an ai a7 a? a4

-25 49/180 37/45 -187/18000 53/180000

Table 4: Coefficients of equation (5).

With the results from the simulation experiment presented, the next section

compares the experimental results to the theoretical, expected results.

14 This analysis was done because the simulated time for the scheduler was advanced according to real
time as outlined in Section B of Chapter IV.

46

D. VALIDATION

In order to validate the simulation model, we used two primary techniques. The

first technique involved using hand calculations to determine expected results and

comparing the experimental results against those predictions. This technique was used to

validate the ETC matrix generator and the MaxMin Greedy scheduler. The second

method involved comparing the results from the simulation against expected theoretical

results. This technique was used to validate the results of the simulation experiment as a

whole with the aim of determining whether the mean response time per job from the

simulation were comparable to theoretical expectations.

First, we verified the ETC matrix generation routine. Using a mean job execution

time of 100ms, a job heterogeneity factor of 0.5, and a machine heterogeneity factor of

0.1, the matrix in Table 5 was generated. Inspection of this matrix confirms the operation

of the generation routine in this one example. The heterogeneity down the rows is high,

while the heterogeneity across the columns low. Thus, a HiLo, inconsistent matrix was

created.

Mo M, M2 M3 M4 M5 M6 M7 M8 M9

JOB #0 133 136 157 179 130 139 120 136 131 162
JOB #1 176 219 178 221 222 181 197 192 175 218
JOB #2 29 37 35 35 25 35 34 29 26 32
JOB #3 21 19 19 27 20 21 22 21 21 20
JOB #4 35 32 36 30 34 29 34 31 35 40
JOB #5 124 134 129 114 116 132 114 117 128 120
JOB #6 94 103 88 108 104 99 96 115 92 99
JOB #7 178 194 210 172 182 181 159 163 169 186
JOB #8 135 126 129 126 138 119 132 141 112 107
JOB #9 71 75 71 75 62 76 61 78 77 83

Table 5: Sample HiLo ETC matrix.

Once the matrix generator was verified, we validated the MaxMin scheduling

routine. This task was done by generating a series of matrices and sending them to the

scheduler. The results from the scheduler were recorded and corroborated against hand

calculated schedules created using the algorithm presented in Figure 7. The two sets of

schedules matched, confirming the MaxMin scheduling procedure.

47

To validate the overall operation of the simulation, we must apply reasoning and

determine whether the results achieved from the experiment are similar to theoretically

expected results. Two very significant simplifying assumptions were made about our

system in Section C of Chapter IV. The first was that the response time of the entire

system was simply a summation of the response time of the SA portion on the left of

Figure 6 and the machine portion of the system on the right. The second was that the

response time of the machine portion of the system could be simply represented by 1/M//

or s/M.

The first simplification is actually only valid for a system where jobs are

scheduled individually as they arrive. In this case, a job would arrive, be serviced by the

scheduling server when available, be forwarded to the admission queue of its assigned

machine and ultimately be processed in FIFO order. For this situation, the summation of

the various queue wait times and service times of the servers would be valid. However,

the act of grouping the jobs and submitting them collectively to the scheduler, but then

assigning them individually to machines introduces complexities to the system that

preclude a simple summation of individual response times. The state of the system

relative to the size of the group of jobs becomes a significant factor. Therefore, a more

appropriate method of analysis is to consider the SA portion and the machine portion of

the system separately and determining the relationship between them when jobs are

grouped.

Before considering the relationship between the two sections of the system, the

actual form of the equation for the response time of the machine portion of the system

must be found. In [IBAR77], Ibarra and Kim derive a lower bound for the service rate of

a set of heterogeneous machines, namely the sum of the minimum runtimes of each job

taken across all machines divided by the number of machines, M. Therefore, in a

simplified form, s/M can be considered the lower bound for the service time per job for

the array of machines. Additionally, we assume that sophisticated RMSs use schedulers

that perform better, or at least as well, when more information is available (i.e., a larger G

is used). Therefore, the service time across the array of machines is also dependent upon

the scheduling algorithm and G, the size of the group scheduled. Typically, as G

becomes larger, more information is available, and a better schedule can be produced

48

[KIDD99]. Combining all of these derivations and assumptions, we can theorize that the

service rate per job for the array of machines is greater when G is 1 and approaches a

lower bound asymptotically as G gets larger. Thus, as depicted in Figure 11, the

expected form of this term is exponential in nature and decreases asymptotically to the

lower bound as G gets larger.

0

Asymptotic convergence
*/ to optimal

optimal

1
G or algorithm

Figure 11. Average runtime across machines vs. larger G or better algorithm.

Since the form of the simplified equation for the service time of the machine array

has been determined, we now infer how job grouping increases the complexity of the

relationship between the SA and the machine parts of the system. Because the results

from our experiment show that G should remain relatively small, we find the effect of the

service time for the scheduler is essentially zero in comparison to the other terms, and so,

can be ignored. Therefore, the response time for the SA system is approximately equal to

the wait time in the SA queue and while G is small, this queueing time is insignificant.

(It is generally two orders of magnitude smaller than the total time spent in the system.)

During this situation, the dominant factor of the system must then be the service time

across the machine queue system on the right of Figure 6. As G increases, the mean

response time for the entire system will continue to decrease nearly exponentially (to the

localized minimum) until the point when the wait time in the SA queue surpasses the

relative benefit achieved from having a better schedule. At this point, the dominant

factor in the system becomes the wait time in the S A queue instead of the service time of

the latter machine part of the overall system. Once this point is reached, the mean

49

response time of the overall system is expected to increase linearly from the localized

minimum as the size of G increases (and hence the wait time in the SA queue increases).

(See Figure 12). In summary, the response time relationship between the SA system and

the machine queue system is not a simple summation, but is rather exponentially

decreasing while G increases until a local minimum is reached, at which point the

relationship becomes linearly increasing as G continues to increase.

Wait time in SA
queue is dominant

Mean Time in System per Job

Figure 12. Dominant factor of system as G increases.

To test the validity of the model, the theoretical predictions are compared to the

experimental results. Using the results from the experiment, a best-fit regression analysis

was done for the data where G ranged between 1 and 17. "The regression plot showed that

an exponential regression is the best fit to the data. (See Figure 13.) A second best-fit

regression analysis for the data where G ranged between 17 and 51 was performed. This

regression plot showed that a linear regression is the best fit to the data. (See Figure 14.)

The value G = 17 was used to divide the two graphs because it was the local minimum in

Figure 10. Therefore, because the experimental results correspond to the theoretical

expectations detailed previously, we have confidence that the model is accurately

simulating the real system.

50

Exponential Regression Plot

3300
_ 3150
| 3000
| 2850
>> 2700
c 2550
•" 2400 -
2 2250-
s 2100 -I
o> 1950
3 1800 -

1650 -
1500

r = 3204.9e -0.033G

9 13

Group Size

17 21

Figure 13. Regression Plot for G < 19.

4500
4300
4100

E 3900 i
3 3700
t 3500
w 3300 i
.£ 3100
© 2900
.§ 2700

2500
2300
2100
1900
1700
1500

O)

Linear Regression Plot

r = 69.5G + 542.5

15 20 25 30 35 40 45 50 55

Group Size

Figure 14. Regression Plot for G > 17.

51

E. SUMMARY

This chapter described the experiments conducted using the simulation model. It

explained the scenarios behind the experiments, which provide the necessary parameters

for the investigation. Next, the data resulting from the experiment was presented. The

last section explained the validation procedures and a theoretical analysis of the predicted

system output. The next chapter will explain the additional analysis required to formulate

the cost tradeoff relationship between the potential performance improvement obtained

from having a larger pool of jobs to schedule, and the potential performance loss

resulting from having to wait for that particular pool size.

52

VI. ANALYSIS

A. INTRODUCTION

The previous chapters provided background for the research conducted in this

thesis. In this chapter, the optimal point at which to initiate a scheduling event for an

RMS scheduling mechanism is found. This optimal point can be delineated by the size of

a group of collected jobs (G), or by a maximum time threshold if the designated size of

the group has not been reached. Using the military scenario described previously,

additional experimentation needed to solve the cost tradeoff problem presented in

Chapter I is highlighted in Section B. Section C describes the statistical techniques used

throughout this research. The results are featured in Section D. The final section will

summarize the highlights of this chapter and provide any concluding remarks.

B. BACKGROUND

The experimental results obtained in Chapter V were useful in determining the

validity of the model and in showing that changing the group size does affect the average

time a job spends in the system. However, additional experimentation is needed to

demonstrate how, and under what conditions, the group size influences the performance

of the system. From such results, a cost tradeoff relationship can be determined.

Preliminary experiments revealed that the effect of grouping varied, depending

upon the job interarrival times (i.e., arrival rate) to the system. This observation led to

the use of an important state descriptor for the system called the utilization factor. The

utilization factor is defined as the quantity p = Ä/M/I and is a measure of how heavily

the resources of a queueing system are utilized [LAW91]. Continuing to use the same

service rate, M/n, from the scenario described in Chapter V, the utilization factor is

changed by altering the job arrival rates, A. In the initial experiment, a utilization factor

of 0.99515 was used as a reasonable state to start the investigation. We found that in this

state, the average time that a job spent in the system could be minimized by changing the

^ The value of 1.0 was desired but from the variables used in the scenario, 0.995 was achieved.

53

size of the group of jobs collected prior to scheduling. In fact, the optimal group size for

our scenario was 17. Using p=l as a starting point, the next step was to incrementally

reduce the utilization factor by increasing the job interarrival times while repeating the

initial experiment to find how changing the group size would influence the average time a

job spent in the system. The same procedure was done for an increasing utilization

factor. (See Table 6). The data from these experiments is then used to complete the cost

tradeoff analysis for the system.

C. STATISTICAL TECHNIQUES

Before presenting the results of the final experiments, this section provides an

explanation of the statistical techniques used throughout this thesis. The two primary

techniques used are (1) determining a sample mean, and (2) curve fitting.

For a given population, the mean or expected value of the random variable X is

denoted by either E(X) or (1 and is defined as:

ß = E{X) = YW = \xf(x)dx

where summation is used for discrete variables and integration used for continuous.

However, this research uses the sample mean, which is an estimate for the population

mean. The sample mean, X in), is found by taking the sum of all observations, x-t, and

dividing this sum by the number of observations, n, in the sample.
n

X:

n

Thus, to find the mean time that a job spent in the system, the sum of all the observed

times was divided by the number of runs of the experiment (in our case n = 30).

The second statistical technique is that of curve fitting. Curve fitting is the

process of finding equations of approximating curves that best fit sets of data given a

certain metric. For this research, both linear and nonlinear curve fitting are used. The

process of curve fitting starts with plotting corresponding values of the variables of

interest onto a rectangular coordinate system. This graph is called a scatter diagram.

54

Often, it is possible to visualize a curve that approximates the data. If the data appear to

be well approximated by a straight line, then a good estimate for the data is that the

variables have a linear relationship. If the data appear to be better approximated by a

curved line, then a curvilinear relationship may be a good estimate. This research

includes data that is related in a linear sense (see Figure 13), an exponential sense (see

Figure 14), and in a quadratic sense (see Figure 15). The Microsoft Excel and Minitab

programs are used for curve fitting in this thesis. A primary reason for curve fitting is

regression analysis. Regression analysis allows a random variable to be predicted as a

function of another variable. The estimated variable is called the response variable and

the variable used to predict the response is the predictor variable or the factor. The

overall goodness of a regression is measured by R , the coefficient of determination.

This coefficient is the fraction of the variation that is explained by the regression.

Overall, the higher the value of R2, the better the regression and "goodness of fit" for the

curve fitting the data. For additional information about regression models see [JAIN91].

D. RESULTS

The results from this portion of the thesis generalize the results found in Chapter

IV, and used many more experiments involving differing values for the job interarrival

time, T. The point of these experiments was to find the value of G where the average

time spent in the system is minimized. For each (-z;G)-pair, the simulation was run 30

times and the mean time spent in the system per job calculated. This step was repeated

until a local minimum time is found for the selected interarrival time. The corresponding

value of G was then recorded. The results from these experiments are found in Table 2.

From this data and the data in Table 6, the equivalent utilization factors are calculated

using the parameters from the original military scenario and the different job interarrival

rates. The utilization factors are paired with their corresponding group sizes in Table 7.

The data from Table 7 is plotted in Figure 15 on a scatter diagram along with the "best-

fitting" curve for the data. Using regression analysis, the equation for the relationship

between the utilization factor and group size is given by equation (6).

G = -104p2+208p-86 (6)

55

x =50. D = 1.33
Group Size Mean time

3 9067
4 9102
5 8958
6 9041
7 8985
8 8993
10 9077
15 9309

T = 89, 0 = 0.75
Group Size Mean time

1 1691
5 1650
8 1564
10 1547
11 1533
12 1544
15 1592
20 1911

x = 53. 0=1.25
Group Size Mean time

10 6835
12 6751
13 6584
14 6303
15 6538
17 6787
20 7310

T=100, 0 = 0.67
Group Size Mean time

1 1479
3 1493
5 1483
6 1454
7 1447
8 1455
10 1495
15 1628

Table 6: Data for various job interarrival times, t.

Utilization Factor

(P)

Group Size
(G)

0.67 7

0.75 11

0.995(1) 17

1.25 14

1.33 5

Table 7: Data for regression plot.

56

Quadratic Regression Plot
G = -104p

2 + 208p-86

19

17

15 1

» 13
N

55 11 i
Q.
3
O

O

0.5 0.7 0.9 1.1

Utilization Factor

1.3 1.5

Figure 15. Regression Plot for G as a function of utilization factor, p.

Using equation (6) and setting G=l, the utilization range where grouping jobs will

minimize the average time a job spends in the system is 0.597 < p < 1.403. Solving

equation (6) will provide the group size, G, that results in the minimal time that a single

job will spend in the system on average. For the Quality of Service (QoS) measure used

in the experiments (i.e., the time a job spends in the system), this result also means that if

the utilization factor for the system is outside of the above range, grouping jobs does not

provide any better performance then does scheduling jobs individually as they arrive. For

example, using the military scenario given in Chapter IV and a known job arrival rate, X,

the utilization factor can be determined and the best group size found.

Thus, the cost tradeoff relationship existing between the potential performance

improvement obtained from having a larger grouping of jobs to schedule, and the

potential performance loss resulting from waiting for that particular group size to collect

is given by equation (6). This equation provides the optimal size of the group of jobs

given the current utilization factor for the system. The utilization factor is also the metric

to use to determine when the relative benefit of group scheduling substantially decreases

as group size increases. For instance, given the scenario provided in this research (HiLo

inconsistent ETC matrix with mean service time = 1000ms, MaxMin scheduling

57

algorithm, x = 67, and 15 machines), the group of jobs to be scheduled should never be

permitted to get any larger than 17 because the amount of time spent collecting a group of

that size surpasses the benefit achieved from the improved schedule. Of particular note is

the fact that job grouping has the most impact upon minimizing the time a job spends in

the system when the utilization factor is near 1.0. As the utilization factor gets further

from 1.0, job grouping has progressively less effect until the system reaches a point

where grouping is actually detrimental to system performance.

E. SUMMARY

This chapter has presented information about the experiments performed,

calculations completed and methods used to determine the relationship between our

system's schedule effectiveness and group size. We defined the utilization factor of the

system and how this ratio describes the state of the system based upon the job arrival rate,

machine service rate, and the number of machines. The statistical techniques used to

analyze the data collected from the simulation were also presented. Lastly, we found that

the optimal group size to collect for jobs being submitted for scheduling is quadratically

dependent upon the system's utilization factor.

58

VII. CONCLUSIONS AND FUTURE WORK

This thesis accomplished the three main objectives presented in Chapter I. First,

Chapter IV described the simulation model built to estimate the solution to our complex

analytical problem. This simulation model uses Monte Carlo methods and discrete event

simulation. The material provided in the Appendices supplements this description.

Second, attempting to minimize the time that a job is in the system as the quality of

service (QoS) and a specific scenario, Chapter VI presented a solution to the problems

outlined in the first chapter. Finally, this chapter explains how the methodology and

results of the experiment can be generalized for any scalar QoS measure. Additionally,

this chapter will describe suggested follow-on work.

A. CONCLUSION

Any computer resource management system (RMS), including the Management

System for Heterogeneous Networks (MSHN), requires a resource scheduling

mechanism. This scheduler must be able to accept arriving resource requests and map

them to resources in a manner that attempts to optimize some quality of service (QoS)

measure. This thesis presented, in Chapter IV, a simulation model of a resource

scheduler that uses a greedy heuristic to minimize the time a job spends in the system.

This model was then used to determine the effect that grouping arriving jobs had on the

optimization criteria. From experiments using this model, we found a relationship

between the state of the system, defined by the utilization factor, and the size of a group

of jobs submitted to the scheduler. Using G and p to represent the group size and

utilization factor, respectively, the relationship we found for a scenario where t= 67, M =

15, s = 1000ms, and the ETC matrix is HiLo (inconsistent), is represented by the

equation, G = -104p2 + 208/? - 86. From this equation, we also found that job grouping

only provides a benefit in terms of our QoS measure when the utilization factor is in the

range, 0.597 < p < 1.403. Within this range, the average amount of time that a job spends

in the system decreases exponentially as the scheduler group size increases until reaching

a minimum dependent upon the utilization factor. Once this local minimum is reached,

the time begins to rise linearly (asymptotically) as the group size continues to increase.

59

When the utilization factor is outside this range, the response time of the system

continuously increases as the group size is increased. From the theoretical background

presented in Chapter IV, these results indicate that as the group size increases from an

initial value of one, the QoS measure is most affected by the throughput across the

machines in the system, which is a result of the quality of the schedule. Once the

minimal point is reached, increasing the group size simply causes a delay in the queue

feeding the scheduler (namely, the amount of time it takes to collect the group of jobs).

In turn, this delay simply causes the overall response time of the system to linearly

increase. Hence, for any given utilization factor, the respective value of G found from

our relationship equation is the point where the wait time required to collect a larger

group surpasses the relative benefit achieved from the resulting improved schedule.

Armstrong, in [ARMS97], found that greedy scheduling algorithms performed

comparably to more simple algorithms, such as that for Opportunistic Load Balancing

(OLB), when in a HiLo (inconsistent) heterogeneity domain and the goal was to finish all

jobs in the least amount of time. Thus, the added overhead resulting from using the

MaxMin greedy scheduling algorithm is not warranted for the category of heterogeneity

in our scenario. However, the positive results we attained when grouping jobs in a HiLo

type of scenario indicates that our results will be more significant in a scenario where the

performance of the scheduling algorithm is improved. For example, Armstrong found

that greedy scheduling algorithms performed significantly better than OLB in a LoHi

(inconsistent) heterogeneity domain. The results of this thesis imply that the relative

benefit of grouping jobs will be more prominent in a LoHi domain, i.e., when the

scheduling algorithm is better matched to the heterogeneity space as outlined in

[ARMS97]. The actual results for this matching is a topic for future work.

Although the simulation experiments used an Expected Time to Compute (ETC)

matrix and the minimum time a job spends in the system as the QoS optimization criteria,

the experiments are not limited to their use. Because all the methods and algorithms in

the model use scalar values as decision criteria, the techniques demonstrated in this thesis

can be generalized to use any scalar QoS metric. The object-oriented nature of the

simulation model allows for easy extension of the base JAVA classes and the substitution

of different QoS measures and optimization criteria in the scheduling heuristics. The

60

backbone of the simulation only requires a matrix of scalar values to optimize in order to

create a mapping of jobs to machines. Thus, the values in the matrix could be from any

scalar valued QoS metric, and the scheduler could be changed to use any algorithm

operating on the matrix. For this reason, only minor changes are needed to use the

simulation model built for this thesis to test the effect of grouping resource requests on

any RMS using a similar structure and on any defined, scalar QoS metric.

B. FUTURE WORK

This thesis provides numerous related opportunities for future work. First, the

above results are only valid for the scenario provided in Chapter IV. Additional

experimentation using new parameters is needed to determine if any universal

conclusions can be made about the relationships presented here. For example, our

simulation could be used to determine whether the range for the utilization factor is

consistent across different scenarios or whether the range is dependent upon the

individual parameters of the system (i.e., interarrival rate, number of machines and

service rate)? The time to compute a schedule was negligible in this research. Yet to be

analyzed is how the relationships change when the number of machines and jobs are very

large and the time to compute a schedule is comparable to the time to service a job. This

research then leads to the need for more study into how different scheduling algorithms

affect the relationships presented here. Additionally, the effect of operating in different

matrix heterogeneity categories needs to be further researched. Adding rescheduling to

the simulation and analyzing the related costs and benefits also remains a consideration.

Refining the simulation to more finely model the operating system ready and waiting

queues would be beneficial. Finally, when the final QoS metric is defined for a particular

environment in which MSHN will be used, the simulation could be altered to incorporate

this metric, and any associated scheduling heuristics, to determine the cost tradeoff

relationship for grouping jobs in that environment.

61

62

APPENDIX A: ACRONYMS AND SYMBOLS

AE Application Emulator
C2 Command and Control
C4I Command, Control, Communications, Computers, and Intelligence
CPU Central Processing Unit
DARPA Defense Advanced Research Projects Agency
DES Discrete Event Simulation
DoD Department of Defense
ETC Expected Time for Completion
G Group Size
HC Heterogeneous Computing
I/O Input and/or Output
IDE Integrated Development Environment
IE) Independent, Identically Distributed
J Number of Jobs
JVM JAVA Virtual Machine
M Number of machines
MB Megabyte
Mb/s megabit/sec
MHz Megahertz
ms millisecond
MSHN Management System for Heterogeneous Networks
NCCOSC Naval Command, Control, and Ocean Surveillance Center
NFS Network File System
NPS Naval Postgraduate School
OLB Opportunistic Load Balancing
OS Operating System
QoS Quality of Service
r System Response Time
RMS Resource Management System
RRD Resource Requirements Database
RSS Resource Status Server
s Resource Service Time
SA Scheduling Advisor
U(0,1) A variate U that is uniformly distributed between 0 and 1.
VHM Virtual Heterogeneous Machine
X Job Arrival Rate

M- Resource Service Rate

P Utilization Factor
T Job Interarrival Time

63

64

APPENDIX B: SOURCE CODE FOR SIMULATION MODEL

1. Source Code for class AssignContainer

I /*****+************+******** ***

// AssignContainer Class - MSHN_Sched
//
// Major James Breitingerr USMC and Dr. Taylor Kidd
// Naval Postgraduate School 1999
// http://www.mshn.org
M*** *^*******^**^****^

/**

* AssignContainer Class holds the data for job assignments determined from
* the scheduler which can later be written to the job as it leaves the scheduler
*

* ©author Major James Breitinger. USMC
7

public class AssignContainer {

/**

* Holds the machine assignment
*/
public int machine;

/**

■* Holds the etc determined from the ETC matrix
*/

public int etc;

/**

* Holds the tobeScheduled flag
*/
public boolean flag;

/**

* Default Constructor for AssignContainer
V
public AssignContainer ()
{

machine = 0;
etc = 0;
flag = true;

}

65

* Double int constructor and flag value for AssignContainer
*

* ©param m machine number for assignment
* ©param e etc value from ETC Matrix and schedule
* ©param f flag value (true - needs to be scheduled, false - scheduled)

*/

public AssignContainer (int m, int e, boolean f)

{
machine = m;
etc = e;
flag = f;

}

* convert the AssignContainer into a string representation
*/

public String toString()

return ("Machine assigned: "+machine+" ETC value: "+etc+" Flag: "+flag);
}

}

2. Source Code for class ETCMatrix

// ETCMatrix Class - MSHN_SILK
//
// Major James Breitinger, USMC and Dr. Taylor Kidd
// Naval Postgraduate School 1999
// http://www.mshn.org
//**/

import com.threadtec.silk.random.*;
import java.util.Random;
import java.io.*;
import java.lang.Math;
import Simulation;

// ETCMatrix class derived from superclass QoSMatrix

* ETCMatrix Class builds an Expected Time to Compute matrix to be used for
* scheduling by the SA Resource. Can also display matrix and write to a file
* (these lines of code are commented out by default).
*

* ©author Major James Breitinger, USMC.
Standard ETC adapted from code by LT Mike Niedert, USN.
HiLo ETC adapted from code by Mr. Shoukat Ali, Purdue University.

66

7
public final class ETCMatrix extends QoSMatrix {

/**

* file for Matrix output
7

private FileOutputStream output;

* writer for Matrix output
7

private BufferedWriter out;

/**

* Constructor for class ETCMatrix
*

* ©param rows number of rows in matrix
* @param columns number of columns in matrix
* @param seed seed value for random number generator
7

public ETCMatrix (int rows, int columns)
{

super(rows, columns);
}

* Constructor for class ETCMatrix
*

* ©param rows number of rows in matrix
* @param columns number of columns in matrix
* ©param seed seed value for random number generator
* ©param file file name for matrix output
7

public ETCMatrix (int rows, int columns, String file)
{

super(rows, columns);
try{

// Create a file object and an input stream object for the file
output = new FileOutputStream(file);
out = new BufferedWriter(new OutputStreamWriter(output));

}
catch(IOException e) // File write exception
{

System.err.println(" Error writing to file" + e);
System.exit(l); //End the program

}
}

67

//GENERATE THE ETC MATRIX

* Generates a matrix of random integers between 1 and 100
7

public intrjQ generate()
{

RandomStream ranETC = new RandomStream();
int ETCQQ = new int[getJobs()][getMachines()];

for(int job = 0; job < getJobs(); job++) {
for(int machine = 0; machine < getMachines(); machine++) {

ETC[job][machine] = (int)(ranETC.random()*100 + 1);
}

}
return ETC;

}//END METHOD "generateETC"

// Generate a HiLo matrix

/**
* Generates an inconsistent HiLo matrix
7 ■

public intrjrj generateHil_o()
{

double mean = 100.0; // mean ETC value along column
double job_het = 0.5; // heterogeneity between jobs
double mach_het = 0.1; // heterogeneity between machines
double j_alpha = 1.0/(job_het*job_het);
double j_beta = mean/j_alpha;
double j_std_dev = Math.sqrtü_alpha*(j_beta*j_beta));

Gamma gamJobMeanTime = new Gamma(mean,j_std_dev);
double m_alpha = 1.0/(mach_het*mach_het);
double m_beta[] = new double[Simulation.batchSize];
double jobMeanQ = new doublefSimulation.batchSize];
double m_std_dev[] = new doublefSimulation.batchSize];

for (int i = 0; i < Simulation.batchSize; i++) {
jobMean[i] = gamJobMeanTime.sample();
m_beta[i] = jobMean[i]/m_alpha;
m_std_dev[i] = Math.sqrt(m_alpha*(m_beta[i]*m_beta[i]));

}

int ETCöt] = new int[getJobs()][getMachines()];
for(int job = 0; job < getJobs(); job++) {

/*System.out.println("Job #"+job+" Mean: "+(int)jobMeanfjob]+" Std Dev :"
+(int)m_std_dev[job]);7 // for debugging

68

Gamma gamETC = new GammaGobMean[job],m_std_dev[job]);
for(int machine = 0; machine < getMachines(); machine++) {

ETC[job][machine] = (int)gamETC.sample();
}

}
return ETC;

}//END METHOD "generateHiLo"

* Displays the ETC Matrix
7

public void display(int matrix[][])
{

System.out.printf' ");
for(int column = 0; column < getMachines(); column++)
{

System.out.print("MACHINE #"+column+" ");
}
System.out.println();
for(int row = 0; row < getJobs(); row++)
{

System.out.print("JOB #"+row+" ");
for(int column = 0; column < getMachines(); column++)
{

System.out.print(matrix[row][column]+" ");
}
System .out.println();

}
System.out.println();

}// end display

* Writes the ETC matrix to a file which is declared by user in
* Simulation Class
*/

public void write(int matrixQ[])
{

try
{

out.write(" ");
for(int column = 0; column < getMachines(); column++)
{

out.write("MACHINE #"+column+" ");
}
out.newLine();
for(int row = 0; row < getJobs(); row++)
{

out.write("JOB #"+row+" ");
for(int column = 0; column < getMachines(); column++)

69

{
out.write(matrix[row][column]+" ");

}
out.newLine();

}
out.newLine();
out.close();
output.close();

}
catch(IOException e) // File write exception
{

System.err.println(" Error writing to file" + e);
System.exit(1); // End the program

}
}

}

3. Source Code for class InputFrame

// InputFrame Class - MSHN_SILK
//
// Major James Breitinger, USMC and Dr. Taylor Kidd
// Naval Postgraduate School 1999
// http://www.mshn.org
V/dt***

import java.awt.*;
import java.awt.event.*;

* A basic implementation of the Frame class
*

* ©author Major James Breitinger. USMC
*/

public class InputFrame extends Frame implements ActionListener {

private Label promptl = new Label(" Enter integer task batch size here:");
private TextField inputl = newTextField("10");
private Label prompt2 =

new Label(" Enter integer number of machines here:");
private TextField input2 = new TextField("10");
private Label prompt3 =

new Label (" Enter a float task interarrival time here:");
private TextField input3 = newTextField("6.0");
private Button submit = new Button("Submit");
private Panel one = new Panel();
private Panel two = new Panel();
private Panel three = new Panel();
private Panel topPanel = new PanelQ;

70

}

private Panel four = new Panel();

/**

* InputFrame constructor
7

public InputFrameO {

super("Input Simulation Parameters");
setBackground(Color.lightGray);
setResizable(false);
setLocation(150,250);

one.setLayout(new Gridl_ayout(1,2));
one.add(promptl);
one.add(inputl);-

two.setLayout(new GridLayout(1,2));
two.add(prompt2);
two.add(input2);

three.setLayout(new GridLayout(1,2));
three.add(prompt3);
three.add(input3);

four.add(submit, BorderLayout.CENTER);

topPanel.setl_ayout(new GridLayout(3,1));
topPanel.add(one);
topPanel.add(two);
topPanel.add(three);

add(topPanel, BorderLayout.CENTER);
add(four,BorderLayout.SOUTH);

submit.addActionListener(this);
pack();
setVisible(true);

}

public void actionPerformed (ActionEvent e) {

Simulation.batchSize = Integer.parselnt(input1 .getText());
Simulation.numMachines = Integer.parselnt(input2.getfext());
Job.arrive = (Double.valueOf(input3.getText())).doubleValue();

dispose();

}

71

4. Source Code for class Job

// Job Class - MSHN_SILK
//
// Major James Breitinger, USMC and Dr. Taylor Kidd
// Naval Postgraduate School 1999
// http://www.mshn.org
//*

import com.threadtec.silk.*;
import com.threadtec.silk.random.*;
import com.threadtec.silk.statistics.*;
import com.threadtec.silk.util.*;

/**

* Job Class drives the job entity thread as it traverses through the simulation
*

* ©author Major James Breitinger, USMC
*/
public class Job extends Entity {

* arrival time for each job
7
static Exponential expJoblnterArrivalTime = new Exponential(arrive);

* holds arrival time of job for recording time in Queue
7

double attArvTime;

r*
* attribute of job for processing after scheduled
7
int machineAssign = 0;

* expected time to execute from ETC matrix
7
double executeTime = 30.0;

* Job Class process method used to model Entity behavior.
7
public void process () {

// create next job arrival and assign arrival time to attribute
create (expJoblnterArrivalTime.sample());
attArvTime = time;

72

// wait for SA preload batching (Active SA resource entity will remove job from
queue
queue(queSA);

// halt processing until activate method called from Active SA resource
halt();

obsTimeWaitForSA.record(time - attArvTime);

// wait for SA cycle (Active SA resource entity will remove job from queue
queue(queBatch);

// halt processing until activate method called from Active SA resource
halt();

/*
System.out.println("This jobs assignment is: "+machineAssign

+" for: "+executeTime); //for debugging
7

//wait for Machine cycle
queue(queProcessorfmachineAssign]);

//double attArvTimeProc = time;

while (condition(resProcessor[machineAssign].getAvailability() == 0));

//obsTimeWaitForProcessor[machineAssign].record(time-attArvTimeProc);

seize(resProcessorfmachineAssign]); // decrease availability
dequeue(queProcessorfmachineAssign]); // remove Customer from queue

// time delay: service time
delay (new Gamma(executeTime, 5.0).sample()); // delay for service
release (resProcessorfmachineAssign]); // increase availability
obsTimelnSystem.record(time - attArvTime); // record time in system

// recycle object
dispose();

}
}

73

5. Source Code for class MSHNjSched

11**/

// MSHN_Sched Class - MSHN_SILK
//
// Major James Breitinger, USMC and Dr. Taylor Kidd
// Naval Postgraduate School 1999
// http://www.mshn.org
ii**

import com.threadtec.silk.Silk;
import com.sun.java.swing.JApplet;

Every Silk project requires this distinguished class which
instantiates a new <code>Silk</code> object for an application or applet.

*/

public class MSHN_Sched extends JApplet {

Silk mshnSilk; // Declare a variable mshnSilk of class Silk

/** This method is the starting point of execution when
the program is run as an application. */

public static void main (String args[]) {
MSHN_Sched applicationSilk = new MSHN_Sched();
applicationSilk.start();

}

/** When run as an applet, the browser calls this method
when this class is first instantiated. */

public void init() {
Silk.setApplet(this); // mark program as an applet

}

/** When run as an applet, this method is called each time
the page containing the applet is revisited. */

public void start () {
System.out.println ("XnExecuting MSHN Schedule Simulation..An");
mshnSilk = new Silk();
mshnSilk.begin();

}

/** When run as an applet, this method is called each time the
page containing the applet is exited. */

public void stop () {

74

com.threadtec.silk.util.CleanUp.purgeAIIO;
mshnSilk = null;

}

6. Source Code for class QoSMatrix

// QoSMatrix abstract Class - MSHN_SILK
//
// Major James Breitinger, USMC and Dr. Taylor Kidd
// Naval Postgraduate School 1999
// http://www.mshn.org

* QoSMatrix Class is abstract for other specific matrix classes to extend and
* inherit from
7

public abstract class QoSMatrix {

/**

* the number of rows in the QoS matrix signifying the number of jobs
V
private int rows;

/**

* the number of columns in the QoS matrix signifying the number of machines
*/

private int columns;

/**

* Constructor for QoSMatrix
*

* ©pararn jobs number of rows in matrix
* @param machines number of columns in matrix
*/

public QoSMatrix (int jobs, int machines)
{

rows = jobs;
columns = machines;

}

75

* Returns the number of jobs
*/
public int getJobs()
{

return rows;
}

* Returns number of machines
*/
public int getMachines()
{

return columns;
}

/**

* Abstract method that must be implemented for each derived class
* of QoSMatrix from which objects are instantiated.
*

* ©return double subscripted array of int's representing matrix
7

abstract int[][] generate();

7. Source Code for class SA

// SA Class - MSHN_SILK
//
// Major James Breitinger, USMC and Dr. Taylor Kidd
// Naval Postgraduate School 1999
// ' http://www.mshn.org

import com.threadtec.silk.*;
import com.threadtec.silk.random.*;

r*
* SA Class is an active resource that handles the scheduling process
*

* ©author Major James Breitinger, USMC
*/
public class SA extends Entity {

AssignContainer schedf] = new AssignContainer[batchSize];

76

* Job Class entities being scheduled
*/

static Job entJob = null;

double attArrivalTime;

* SA Class process method used to model Entity behavior.
7

public void process () {

while (true)
{

// build ETC Matrix for this batch
ETCMatrix hiloMatrix = new ETCMatrix(batchSize,numMachines);
//ETCMatrix hiloMatrix = new ETCMatrix(batchSize,numMachines,"matrices.dat");
int ETC[][] = hiloMatrix.generateHiLo();
//hiloMatrix.write(ETC); // for debugging
//hiloMatrix.display(ETC); //for debugging

// start SA operation when SA queue exceeds specified batch size
while(condition (queSA.getl_ength() < batchSize));

//*** delay to load SA
seize(resSA);

// record batchsize for this cycle
obsBatchSize.record(batchSize);

// *** remove jobs from SA queue
for(int i = 0; i < batchSize; i++) {

entJob = (Job)queSA.remove(1);
entJob.activate();

}

attArrivalTime = time;

// *** delay for SA cycle to calculate schedule

System.gc();
delay(maxminSchedule(sched,ETC));

obsTimetoSched.record(time - attArrivalTime);

// *** remove jobs from SA (restart process for Job)
for(int i = 0; i < batchSize; i++) {

entJob = (Job)queBatch.remove(l);
entJob.machineAssign = sched[i].machine;
entJob.executeTime = (double)(sched[i].etc);
entJob.activate();

}

77

//System.out.println("SA is done!"); //for debugging

// *** start next cycle
release(resSA);

}
}

* Schedules each job to a machine based upon the min value in
* the given matrix for each job
*
* ©return array of <code>AssignContainers</code> representing job assignments
7

public double minSchedule(AssignContainer[] sched, int[JD matrix)

{
double tempTime = (double)System.currentTimeMillis();

for(int j = 0; j < matrix.length; j++) {
int etc = matrix[j][0];
int machine = 0;
for (int m = 1; m < matrix[j].length; m++) {

if (matrix[j][m] < etc) {
etc = matrix[j][m];
machine = m;

}
}
sched[j] = new AssignContainer(machine, etc, false);

}

double temptime2 = (double)System.currentTimeMillis();
double CPUtime = (temptime2 - tempTime);
return (double)CPUtime;

} // end minSchedule

* Schedules each job to a machine based upon the min value in each row of
* the given matrix for each job and then assigns the maximum of those minimums
* This algorithm in a greedy MAXMIN algorithm
*

* ©return array of <code>AssignContainers</code> representing job assignments
7

public double maxminSchedule(AssignContainerQ sched, int[][] matrix)

AssignContainer intermediate!] = new AssignContainer[matrix.length];
int[][] temp = new int[matrix.length][matrix[0].length];
int etc = 0;
int machine = 0;
int assign = 0;

double tempTime = (double)System.currentTimeMillis();

78

// copy the matrix for revision
for(int a = 0; a < matrix.length; a++) {// iterate throught the rows

for(int b = 0; b < matrix[a].length; b++) {// iterate through the columns
temp[a][b] = matrix[a][b];

}
}

// build default sched[] array
for(int k = 0; k < matrix.length; k++) {

sched[k] = new AssignContainer();
}

// begin scheduling
for(int s = 0; s < matrix.length; s++) {// do this for each job to be assigned

for(int j = 0; j < matrix.length; j++) {// iterate through the rows
if(sched[j].flag) {// only do tasks not scheduled

etc = temp[j][0];
machine = 0;
for (int m = 1; m < matrix[j].length; m++) {//iterate through the columns

if (temp[j][m] < etc) { // find the min value for the row
etc = temp[j][m];
machine = m;

}
}
intermediate!]] = new AssignContainer(machine, etc, true);

}
}

// iterate through the intermediate and find the max
etc = 0;
for(int i = 0; i < intermediate.length; i++) {

if(sched[i].flag && intermediate[i].etc > etc) {
etc = intermediate[i].etc;
machine = intermediate[i].machine;
assign = i;

}
}
sched[assign] = new AssignContainer(machine,matrix[assign][machine],false);

// revise the matrix with the new values from the assignment
for (int k = 0; k < matrix.length; k++) {

temp[k][machine] = temp[k][machine] + etc;
}

}

double temptime2 = (double)System.currentTimeMillis();
double CPUtime = (temptime2 - tempTime);

//System.out.printlnfThe time to schedule was: "+CPUtime+"ms"); //for debugging

79

return (double)CPUtime;
} // end maxminSchedule

}

8. Source Code for class Simulation

/y**

// Simulation Class - MSHN_Sched
//
// Major James Breitinger, USMC and Dr. Taylor Kidd
// Naval Postgraduate School 1999
// http://www.mshn.org
//**/

//
// Entity Objects
// Job
// SA
//
// Resource Objects
// SA - Scheduling Advisor (Active Resource)
// Processors[] - array of machines
//
II******* This class references classes included in the following files ********/

import com.threadtec.silk.*;
import com.threadtec.silk.gui.*;
import com.threadtec.silk.random.*;
import com.threadtec.silk.statistics.*;
import Java, io.*;

/**

* Simulation Class starts the simulation, loads the Control Console, and declares
* the global variables needed in the simulation
*

* ©author Major James Breitinger, USMC
7

public class Simulation extends Silk {

II *** Declarations performed here are global to all Entity classes

* The size of the pool of jobs to be scheduled
*/

public static int batchSize =10;

/**

* The number of Machines in the heterogeneous environment where the pool

80

* of jobs are to be scheduled
7
public static int numMachines =15;

/**
* The mean interarrival time for jobs arriving at the system
7

public static double arrive =67.0;

* The container for the pool of jobs waiting to be scheduled
7
public static Queue queBatch = new Queue("Batch Container");

* The Queue holding the arriving jobs waiting to be scheduled
7
public static Queue queSA = new Queue("SA Queue");

/**

* The array of queues holding jobs waiting to be processed on their assigned
* machines
7

public static Queue queProcessorfJ;

* The Scheduling Advisor resource needed to represent the scheduler
7
public static Resource resSA = new Resource("SA");

* The array of machines for the jobs to be processed
7
public static Resource resProcessor[];

// Observational Statistics
public static Observational obsTimeWaitForSA = new Observational("Wait time for

SA"),
obsBatchSize = new Observational("Batch Size"),
obsTimetoSched = new ObservationalfTime to Schedule"),
obsTimelnSystem = new Observational("Time in System");
//obsTimeWaitForProcessorfl;

public static TimeDependent tdSAUtil = new
TimeDependent(resSA.numBusy,"SA Utilization"),

tdSAQueueLength = new TimeDependent(queSA.Iength,"SA
Queue Length");

//public static TimeDependent tdMachUtil[],
// tdMachQueueLengthQ;

81

I**

* initializes variables needed for the simulation

public void init () {

queProcessor = new QueuefnumMachines];
resProcessor = new ResourcefnumMachines];
//obsTimeWaitForProcessor = new ObservationalfnumMachines];
//tdMachUtil = new TimeDependent[numMachines];
//tdMachQueueLength = newTimeDependent[numMachines];

for(int i = 0; i < numMachines; i++) {
queProcessor[i] = new Queue("Queue " + i);
resProcessor[i] = new Resource("Resource " + i);
//obsTimeWaitForProcessor[i] = new Observational("Wait time for Processor #"+i);
//tdMachUtil[i] = new TimeDependent
// (resProcessor[i].numBusy,"Processor #"+i+" Utilization");
//tdMachQueueLength[i] = new TimeDependent
// (queProcessor[i].length,"Processor #"+!+" Queue Length");

}

SA entSA;
Job entFirstJob;
StatManager entStatManager;

entFirstJob = (Job)newEntity(Job.class); // create first instance of Job object
entFirstJob.start(0.0); // schedule initial arrival

entSA = (SA)newEntity(SA.class); // create instance of SA object
entSA.start(0.0);

entStatManager = (StatManager)newEntity(StatManager.class);
entStatManager.start(10000.0);

}

* Starts the simulation and initializes input frame
7
public void run () {

setReplications(30);
setRunl_ength(110000);

InputFrame ijf = new lnputFrame();

setControlConsole(true);

}

}

82

9. Source Code for class MSHN_Sched

// StatManager Class - MSHN_SILK
//
// Major James Breitinger, USMC and Dr. Taylor Kidd
// Naval Postgraduate School 1999
// http://www.mshn.org

import com.threadtec.silk.*;
import com.threadtec.silk.statistics.*;

r
* StatManager Class resets the Simulation Statistics to allow the
* Simulation to populate itself for realistic testing of a fully operating
* system without "startup" latency
*

* ©author Major James Breitinger, USMC
*/

public class StatManager extends Entity {

/**

* StatManager Class process method used for Entity behavior.
7

public void process ()
{

reSetStats();
dispose();

}
}

83

84

APPENDIX C: JAVA DOCUMENTATION FOR SIMULATION MODEL

1. MSHN.Sched API in HTML format

MSHN Sched API

MSHN_Sched Application Programming
Interface

User's Guide
How the API Is Organized
There are two levels to the API:

• All Classes (within a package)
• This Class (selected class).

Level 1 - All Classes
This level provides links to the classes and interfaces in a given package. There are three catogories in the
listing:

• Interfaces
• Classes
• Exceptions

Level 2 - This Class/Interface
This level begins with an index, followed by the detailed API. There are three categories at the class level.

• Variables
• Constructors
• Methods

A category is omitted when a class has no applicable entries.
Within these categories there is additional color coding as follows:

• Instance Variables

• Static Variables

• Constructors

• Instance Methods

• Static Methods

How to Locate Items
• To Browse A Class

• Select a class from the list of All Classes. This list is the home page for the the
MSHN_Sched API.

• To Locate a Class
• Use the searchable index tool.

85

• Select the class from the alphabetical index.
• To Browse a Class

• Use the Next/Previous anchors to browse alphabetically.
• Or, traverse the links within the class.

• To Locate a Method
• Use the searchable index tool.
• Or, scroll through the alphabetical class index to locate a method.

A Closer Look at the Class-Level API
Take a look at class MSHN_Sched. The navigational anchors are at the top. This is followed by the fully
qualified class name and a representation of its position in the class hierarchy.
The next entries are links to the superclass and the interfaces, if any. This is followed by a description of

the class, taken from the class comment. Notice how the programmer has embedded some code samples
using html tags.
The author also chose to include a See Also entry to another class. Following the class-level entries for See

Also, Version, and Author, the index begins.

The Index
Each class/interface begins with an index of its variables, constructors and methods, sorted alphabetically.
The entry consists of the declaration and short description. The description is the first sentence of the doc
comment for that item. The index entries are linked to their corresponding entries in the application
programming inteface which immediately follows.

The Detailed API
The index is followed by the complete API for each entry. Within the three categories: Variables,
Constructors, and Methods, the entries are presented in the order they appear in the source. This is done to
preserve the logical groupings established by the programmer.

Where Are All the Links in the API?
• There are links in the class type of every method and variable definition.
• At the top of each class/interface there is a drawing of the tree structure down to the current

class/interface, in which each superclass is a link.
• Every method contains a list of exceptions that it may throw. These are linked to the appropriate

class.
• The superclass and interface references at the beginning of the class are links.
• Every See Also is a link.
• When a method overrides a method in the superclass, the API has the entry "Overrides: foo in

class bar." Both foo (the method name) and bar (the class name) are links.

86

2. Class Index in HTML format

API User's Guide Class Hierarchy Index

Class I tide*
AssignContainer
ETCMatrix
InputFrame
Job
MSHN Sched
QoSMatrix
SA
Simulation
StatManager

3. Class Hierarchy in HTML format

All Classes Index

Class Hierarchy
class java.lang.Object

• class AssignContainer
• class java.awt.Component (implements java.awt.image.ImageObserver,

java.awt.MenuContainer, java.io.Serializable)
• class java.awt.Container

• class java.awt.Panel
• class java.applet.Applet

• class com.sun.java.swing.JApplet (implements
com.sun.java.accessibility.Accessible,
com.sun.java.swing.RootPaneContainer)

• class MSHN Sched
• class java.awt.Window

• class java.awt.Frame (implements java.awt.MenuContainer)
• class InputFrame (implements

java.awt.event.ActionListener)
• class QoSMatrix

• class ETCMatrix
• class com.threadtec.silk.Silk (implements java.lang.Runnable)

• class Simulation
• class com.threadtec.silk.Entity

• class Job
• class SA
• class StatManager

87

4. AssignContainer Class in HTML format

Class AssignContainer
j ava.lang.Obj ec t

I
+ AssignContainer

public class AssignContainer

extends Object AssignContainer Class holds the data for job assignments determined
from the scheduler which can later be written to the job as it leaves the scheduler

Author:

Major James Breitinger, USMC

Yariable Index.
• etc

Holds the etc determined from the ETC matrix

• flag

Holds the tobeScheduled flag

• machine

Holds the machine assignment

Constructor Index.
• AssignContainerQ

Default Constructor for AssignContainer

• AssignContainer(int, int, boolean)

Double int constructor and flag value for AssignContainer

88

MePkod fa de*.
toStringO

convert the AssignContainer into a string representation

yartables
• machine

public int machine

Holds the machine assignment
• etc

public int etc

Holds the etc determined from the ETC matrix
• flag

public boolean flag

Holds the tobeScheduled flag

CotfsPnicPors
• AssignContainer

public AssignContainer()

Default Constructor for AssignContainer
• AssignContainer

public AssignContainer(int m,
int e,
boolean f)

Double int constructor and flag value for AssignContainer

Parameters:

m - machine number for assignment

e - etc value from ETC Matrix and schedule

f - flag value (true - needs to be scheduled, false - scheduled)

89

MePkodg
• toString

public String toString()

convert the AssignContainer into a string representation

Overrides:

toString in class Object

90

5. ETCMatrix Class in HTML format

Class ETCMatrix
j ava.lang.Obj ect

-QoSMatrix
I
+. ETCMatrix

public final class ETCMatrix

extends QoSMatrix ETCMatrix Class builds an Expected Time to Compute matrix to be
used for scheduling by the SA Resource. Can also display matrix and write to a file (these
lines of code are commented out by default).

Author:

Major James Breitinger, USMC.

Standard ETC adapted from code by LT Mike Niedert, USN.

HiLo ETC adapted from code by Mr. Shoukat Ali, Purdue University.

Constructor Index.
• ETCMatrix(int, int)

Constructor for class ETCMatrix

• ETCMatrixfint int, String)

Constructor for class ETCMatrix

MePtod fade*.
• disjplav(int[][])

Displays the ETC Matrix

• generateQ

Generates a matrix of random integers between 1 and 100

91

generateHJLoQ

Generates an inconsistent HiLo matrix

write(intnri)

Writes the ETC matrix to a file which is declared by user in Simulation Class

Cof/spruepors
• ETCMatrix

public ETCMatrix(int rows,
int columns)

Constructor for class ETCMatrix

Parameters:

rows - number of rows in matrix

columns - number of columns in matrix

seed - seed value for random number generator

• ETCMatrix

public ETCMatrix(int rows,
int columns,
String file)

Constructor for class ETCMatrix

Parameters:

rows - number of rows in matrix

columns - number of columns in matrix

seed - seed value for random number generator

file - file name for matrix output

MePkodg
» generate

public int[][] generate()

Generates a matrix of random integers between 1 and 100

92

Overrides:

generate in class OoSMatrix
• generateHiLo

public int[][] generateHiLo()

Generates an inconsistent HiLo matrix

• display

public void display(int matrix[][])

Displays the ETC Matrix
• write

public void write(int matrix[][])

Writes the ETC matrix to a file which is declared by user in Simulation Class

93

6. InputFrame Class in HTML format

Class InputFrame
j ava.lang.Obj ect

I .
+ java.awt.Component

I
+ java.awt.Container

+ j ava. awt. Window
I
+ j ava. awt. Frame

I
+ InputFrame

public class InputFrame

extends Frame

implements ActionListener A basic implementation of the Frame class

Author:

Major James Breitinger, USMC

Constructor lüde*
• InputFrameQ

InputFrame constructor

Method IrtdeK
• actionPerformed(ActionEvent)

CofisPruePors
• InputFrame

public InputFrame()

InputFrame constructor

94

Methods
• actionPerformed

public void actionPerformed(ActionEvent e)

95

7. Job Class in HTML format

Class Job
j ava.lang.Obj ect

I
+ com.threadtec.silk.Silk

I
+ Simulation

+ com.threadtec.silk.Entity
I
+ Job

public class Job

extends Entity Job Class drives the job entity thread as it traverses through the simulation

Author:

Major James Breitinger, USMC

YdriaMe Index,
arrive

default mean arrival rate is 6.0 time units

Co»sPmePor /tide*
• JobO

MePffod Ifide^
• processQ

yariakhs
Job Class process method used to model Entity behavior.

• arrive

public static double arrive

default mean arrival rate is 6.0 time units

96

CoftsPniePors
• Job

Methods
public Job()

• process

public void process()

Job Class process method used to model Entity behavior.

Overrides:

process in class Entity

97

8. MSHNJSched Class in HTML format

Class MSHNJSched
j ava.lang.Obj ect

I
+ j ava.awt.Component

I
+ java.awt.Container

I
+ java. awt. Panel

+ java.applet.Applet
I
+ com.sun.java.swing.JApplet

I
+ MSHN Sched

public class MSHNJSched

extends JApplet Every Silk project requires this distinguished class which instantiates a
new silk object for an application or applet.

Constructor IndeK
• MSHN SchedO

MePtod IffdeK
• initQ

When run as an applet, the browser calls this method when this class is first
instantiated.

• main(String[])

This method is the starting point of execution when the program is run as an
application.

• startQ

When run as an applet, this method is called each time the page containing the applet
is revisited.

98

stopQ

When ran as an applet, this method is called each time the page containing the applet
is exited.

Coftspruepors
• MSHN_Sched

public MSHN_Sched()

MePkods
• mam

public static void main(String args[])

This method is the starting point of execution when the program is run as an
application.

• init

public void init()

When run as an applet, the browser calls this method when this class is first
instantiated.

Overrides:

init in class Applet

• start

public void start()

When run as an applet, this method is called each time the page containing the applet
is revisited.

Overrides:

start in class Applet

• stop

public void stop()

When run as an applet, this method is called each time the page containing the applet
is exited.

Overrides:

stop in class Applet

99

1

9. QoSMatrix Class in HTML format

Class QoSMatrix
j ava.lang.Obj ect

I
+ QoSMatrix

public abstract class QoSMatrix

extends Object QoSMatrix Class is abstract for other specific matrix classes to extend
and inherit from

Constructor Index.
• OoSMatrix(int, int)

Constructor for QoSMatrix

Method Index.
• getlobsQ

Returns the number of jobs

• getMachinesQ

Returns number of machines

Constructors
• QoSMatrix

public QoSMatrix(int jobs,
int machines)

Constructor for QoSMatrix

Parameters:

jobs - number of rows in matrix

machines - number of columns in matrix

100

Methods
• getjobs

public int getJobs()

Returns the number of jobs
• getMachines

public int getMachines()

Returns number of machines

101

10. SA Class in HTML format

Class SA
j ava.lang.Obj ect

I
+ com.threadtec.silk.Silk

I
+ Simulation

+ com.threadtec.silk.Entity
I
+ SA

public class SA

extends Entity SA Class is an active resource that handles the scheduling process

Author:

Major James Breitinger, USMC

Constructor I tide*
• SAO

Method IrtdeK
• maxminSchedule(AssignContainer[], int[][])

Schedules each job to a machine based upon the min value in each row of the given
matrix for each job and then assigns the maximum of those minimums This algorithm
in a greedy MAXMIN algorithm

• minSchedule(AssignContainer[], int[][])

Schedules each job to a machine based upon the min value in the given matrix for
eachjob

• processQ

SA Class process method used to model Entity behavior.

102

CofisPmcPors
• SA

public SA()

Methods
• process

public void process()

S A Class process method used to model Entity behavior.

Overrides:

process in class Entity

• minSchedule

public double minSchedule(AssignContainer schedf],
int matrix[][])

Schedules each job to a machine based upon the min value in the given matrix for
eachjob

Returns:

array of Assigncontainers representing job assignments

• maxminSchedule

public double maxminSchedule(AssignContainer schedf],
int matrix[][])

Schedules each job to a machine based upon the min value in each row of the given
matrix for each job and then assigns the maximum of those minimums This algorithm
in a greedy MAXMIN algorithm

Returns:

array of Assigncontainers representing job assignments

103

11. Simulation Class in HTML format

Class Simulation
j ava.lang.Object

I
+ com.threadtec.silk.Silk

I
+ Simulation

public class Simulation

extends Silk Simulation Class starts the simulation, loads the Control Console, and
declares the global variables needed in the simulation

Author:

Major James Breitinger, USMC

yariaMe lade*

• batchSize

The size of the pool of jobs to be scheduled

• numMachines

The number of Machines in the heterogeneous environment where the pool of jobs
are to be scheduled

• obsBatchSize

• obsTimelnSvstem

• obsTimetoSched

• obsTimeWaitForSA

• queBatch

The container for the pool of jobs waiting to be scheduled

• queProcessor

The array of queues holding jobs waiting to be processed on their assigned machines

104

• queSA

The Queue holding the arriving jobs waiting to be scheduled

• resProcessor

The array of machines for the jobs to be processed

• resSA

The Scheduling Advisor resource needed to represent the scheduler

• tdSAOueueLength

• tdSAUtil

ConsPr/icPor IrtdeK
• SimulationQ

MePfiod Index
• initO

Initializes variables needed for the simulation

• runQ

Starts the simulation and initializes input frame

yariahles
• batchSize

public static int batchSize

The size of the pool of jobs to be scheduled

• numMachines

public static int numMachines

The number of Machines in the heterogeneous environment where the pool of jobs
are to be scheduled

• queBatch

public static Queue queBatch

The container for the pool of jobs waiting to be scheduled

105

• queSA

public static Queue queSA

The Queue holding the arriving jobs waiting to be scheduled
• queProcessor

public static Queue queProcessor[]

The array of queues holding jobs waiting to be processed on their assigned machines

• resSA

public static Resource resSA

The Scheduling Advisor resource needed to represent the scheduler

• resProcessor

public static Resource resProcessor[]

The array of machines for the jobs to be processed
• obsTimeWaitForSA

public static Observational obsTimeWaitForSA

• obsBatchSize

public static Observational obsBatchSize

• obsTimetoSched

public static Observational obsTimetoSched

• obsTimelnSystem

public static Observational obsTimelnSystem

• tdSAUtil

public static TimeDependent tdSAUtil

• tdSAQueueLength

public static TimeDependent tdSAQueueLength

CoifsPruePors
• Simulation

public Simulation()

106

Methods
• init

public void init()

Initializes variables needed for the simulation

Overrides:

init in class Silk
• run

public void run()

Starts the simulation and initializes input frame

Overrides:

run in class Silk

107

12. StatManager Class in HTML format

Class StatManager
j ava.lang.Object

I
+ com.threadtec.silk.Silk

. I
+ Simulation

+ com.threadtec.silk.Entity
I
+ StatManager

public class StatManager

extends Entity StatManager Class resets the Simulation Statistics to allow the Simulation
to populate itself for realistic testing of a fully operating system without "startup" latency

Author:

Major James Breitinger, USMC

CoffsPfMCpor /tfdeK
• StatManagerQ

Method Itfdg*

• processQ

StatManager Class process method used for Entity behavior.

Cotfspruepors
• StatManager

public StatManager()

108

Methods
• process

public void process()

StatManager Class process method used for Entity behavior.

Overrides:

process in class Entity

109

13. Index of all Fields and Methods in HTML format

All Classes Class Hierarchy

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Index of all Fields and Methods
A
actionPerformed(ActionEvent). Method in class InputFrame

arrive. Static variable in class Job

default mean arrival rate is 6.0 time units

AssignContainerQ. Constructor for class AssignContainer

Default Constructor for AssignContainer

AssignContainer(int, int, boolean). Constructor for class AssignContainer

Double int constructor and flag value for AssignContainer

B
batchSize. Static variable in class Simulation

The size of the pool of jobs to be scheduled

D
display(intnri). Method in class ETCMatrix

Displays the ETC Matrix

E
etc. Variable in class AssignContainer

Holds the etc determined from the ETC matrix

110

ETCMatrixfint int). Constructor for class ETCMatrix

Constructor for class ETCMatrix

ETCMatrix(int, int, String). Constructor for class ETCMatrix

Constructor for class ETCMatrix

F
flag. Variable in class AssignContainer

Holds the tobeScheduled flag

G
generateQ. Method in class ETCMatrix

Generates a matrix of random integers between 1 and 100

generateHiLoQ. Method in class ETCMatrix

Generates an inconsistent HiLo matrix

getTobsQ. Method in class QoSMatrix

Returns the number of jobs

getMachinesQ. Method in class QoSMatrix

Returns number of machines

I
initO. Method in class MSHN Sched

When run as an applet, the browser calls this method when this class is first
instantiated.

initO. Method in class Simulation

Initializes variables needed for the simulation

InputFrameQ. Constructor for class InputFrame

InputFrame constructor

111

J
JobQ. Constructor for class Job

M
machine. Variable in class AssignContainer

Holds the machine assignment

main(String[]). Static method in class MSHN Sched

This method is the starting point of execution when the program is run as an
application.

maxminSchedule(AssignContainern, int[][]). Method in class SA

Schedules each job to a machine based upon the min value in each row of the given
matrix for each job and then assigns the maximum of those minimums This algorithm
in a greedy MAXMIN algorithm

minScheduIe(AssignContainern, int[][]). Method in class SA

Schedules each job to a machine based upon the min value in the given matrix for
eachjob

MSHN SchedQ. Constructor for class MSHN Sched

N
numMachines. Static variable in class Simulation

The number of Machines in the heterogeneous environment where the pool of jobs
are to be scheduled

o
obsBatchSize. Static variable in class Simulation

112

obsTimelnSvstem. Static variable in class Simulation

obsTimetoSched. Static variable in class Simulation

obsTimeWaitForSA. Static variable in class Simulation

P
processQ. Method in class Job

Job Class process method used to model Entity behavior.

processQ. Method in class SA

S A Class process method used to model Entity behavior.

processQ. Method in class StatManager

StatManager Class process method used for Entity behavior.

Q
QoSMatrixQnt, int). Constructor for class QoSMatrix

Constructor for QoSMatrix

queBatch. Static variable in class Simulation

The container for the pool of jobs waiting to be scheduled

queProcessor. Static variable in class Simulation

The array of queues holding jobs waiting to be processed on their assigned machines

queSA. Static variable in class Simulation

The Queue holding the arriving jobs waiting to be scheduled

113

R
resProcessor. Static variable in class Simulation

The array of machines for the jobs to be processed

resSA. Static variable in class Simulation

The Scheduling Advisor resource needed to represent the scheduler

runQ. Method in class Simulation

Starts the simulation and initializes input frame

s
SAO. Constructor for class SA

SimulationQ. Constructor for class Simulation

startO. Method in class MSHN Sched

When run as an applet, this method is called each time the page containing the applet
is revisited.

StatManagerQ. Constructor for class StatManager

stopQ. Method in class MSHN Sched

When run as an applet, this method is called each time the page containing the applet
is exited.

T
tdSAQueueLength. Static variable in class Simulation

tdSAUtil. Static variable in class Simulation

114

toStringQ. Method in class AssignContainer

convert the AssignContainer into a string representation

w
writeCintfin). Method in class ETCMatrix

Writes the ETC matrix to a file which is declared by user in Simulation Class

115

116

APPENDIX D: HOW TO RUN THE SIMULATION

In order to run the simulation, your environment must first be set properly.

Because the Silk simulation tool is designed for JAVA 1.1.8 and earlier, the primary

reason for setting the environment is to have the JAVA CLASSPATH point to where the

Silk, jar and swingalll03 .jar files are located. I recommend both of these

files be located in a directory called SILK. If an Integrated Development Environment

(IDE) is used to modify the simulation classes, then the CLASSPATH can be set from

within the environment tool and the simulation run from within the IDE. The KAWA

3.22 development tool for Windows was used to write and compile the JAVA classes for

this thesis.

Silk can also be configured to work across a network through the use of a web

browser. This involves the additional configuration of the browser. Unless the

simulation is at some point changed to include JAVA Swing animation, I do not

recommend using a browser. However, additional information on this topic can be found

at http://www.threadtec.com/demos.html.

The simulation can be started from either an IDE or from a command prompt.

You launch the program from within the directory where the simulation "CLASS" files

are located by typing j ava MSHN_Sched. For example, on my machine at NPS, I

would type D: \thesis\mshn_silk\ java MSHN_Sched.

Because Windows NT does not provide resolution down to the millisecond, I ran

the simulation on caesar, our Silicon Graphics Challenge L. Setting the environment on

this machine was slightly different than above. Before running the simulation, first copy

the simulation CLASS files to a directory on caesar and then copy the Silk, jar and

swingall 103 .jar files to a directory named Silk. Then alter the . login file in

the "HOME" directory by adding the following lines:

setenv JAVA_HOME /usr/java
setenv CLASSPATH .:$HOME/Silk/Silk.jar:$HOME/Silk/swingalll03.jar

Once completed, the program is started the same as under a Windows system described

above.

The first screen to appear as the simulation starts is the Silk academic use license.

Select "ACCEPT" and this screen disappears.

117

»; Academic Use License i'iQ
Academic Use License

To proceed, you must agree to all terms of this license;

Basic Silk 1.2
Academic Use License
ThreadTec, Inc.

ON-LINE END USER BINÄR? CODE ACADEMIC USE LICENSE AGREEMENT
Copyright and Trademark Information.

(c) 1998 ThreadTec, Inc. All rights reserved. Protected by copyright
and
licenses restricting use, copying, distribution and decompilation. Sj
Ik is a
trademark of ThreadTec, Inc. in the United States and other countries

LICENSE TO USE THE SOFTWARE:
JÖU AGREE TO BE BOUND B? THE FOLLOWING TERMS AND CONDITIONS:

eftccept Decline

Next the Silk logo appears and vanishes after a few seconds.

I***- -/ ' - ,»%*- — : ——
version L2

ThreadTec. Inc. Copyright'^ ?i 997-98

The next screens to appear are the Input screen and the Control Console.

118

a] input Simulation Parameters

I Enter integer task batch size here: | 10

i Enter integer number of machines here: j 15

Enter a float task interarrival time here: 67.0

Submit!

iUUUHimiiiiHiMimlim

The input screen is used to input the system parameters for the simulation. The "Submit"
button must be clicked prior to starting the simulation from the control console.

\ command view Look&feel

Cönt&tfMohsofe o
M

10000.C P.0QOÖOQOH

Altering the number in the first window of the control console changes the amount of

simulation time for the run and the number of runs completed can be altered by changing

the second window. The simulation is started by either selecting RUN from the

COMMAND drop-down menu or by clicking the right-facing arrow on the console.

When the run is complete, the statistical results are automatically displayed in the

Summary Output window. Altering the variables to be watched in the simulation model

code changes the types of data recorded in the summary output. Refer to the Silk

documentation to make these changes. In order to record the results from the Summary

Output screen, you must first cut-and-paste the data to a text file.

Because the simulation is built entirely from JAVA code, a knowledge of JAVA

programming, the Silk documentation included with the Silk tool, and the documentation

in APPENDIX B are all that is necessary to alter the objects in or output from the

simulation.

119

120

LIST OF REFERENCES

[ARMS97] Armstrong, Robert K."Investigation of Effect of Different Run-Time
Distributions on SmartNet Performance." Master's Thesis. Naval
Postgraduate School, Monterey, California, September 1997.

[ARMS98] Armstrong, Robert, Debra Hensgen, and Taylor Kidd, "The Relative
Performance of Various Mapping Algorithms is independent of Sizable
Variances in Runtime Predictions." Proceedings HCW'98, March 1998.

[BRAU98] Braun, Tracy D., Muthucumaru Maheswaran, Howard Jay Siegel, Noah
Beck, Ladislau Boloni, Albert Reuther, James Robertson, Mitchell
Theys, and Bin Yao. "A Taxonomy for Describing Matching and
Scheduling Heuristics for Mixed-Machine Heterogeneous Computing
Systems." Workshop on Advances in Parallel and Distributed Systems,
October 10,1998.

[BRAU99] Braun, Tracy D., Howard Jay Siegel, Noah Beck, Ladislau Boloni,
Muthucumaru Maheswaran, Albert Reuther, James Robertson, Mitchell
Theys, Bin Yao, Debra Hensgen, and Richard F. Freund. "A
Comparison Study of Static Mapping Heuristics for a Class ofMeta-
tasks on Heterogeneous Computing Systems," Proceedings HCW'99,
April 1999.

[FLAN97] Flanagan, David. JAVA in a Nutshell, 2nd Edition. Sebastopol, CA:
O'Reilly, 1997.

[HAMM64] Hammersley, J.M. and D.C. Handscomb. Monte Carlo Methods.
London: Chapman & Hall, 1964.

[HENS99] Hensgen, D., T. Kidd, D. St. John, M. Schnaidt, H. J. Siegel, T. Braun,
J. Kim, S. Ali, C. Irvine, T. Levin V. Prasanna, P. Bhat, R. Freund, and
M. Godfrey. "An Overview ofMSHN: The Management System for
Heterogeneous Networks," 8th IEEE Workshop on Heterogeneous
Computing Systems (HCW'99), San Juan, Puerto Rico, pp. 184-198,
April 1999.

[IBAR77] Ibarra, Oscar H. and Chul E. Kim. "Heuristic Algorithms for Scheduling
Independent Tasks on Nonidentical Processors." Journal of the ACM,
24, No. 2, April 1977,280-289.

[JAIN91] Jain, Raj. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and
Modeling. New York: Wiley, 1991.

121

[JANA96] Janakiraman, Mathrabootham. "Simulation Results for Heuristic
Algorithms for Scheduling Precedence-Related Tasks in Heterogeneous
Environments." Master's Thesis. University of Cincinnati, 1996.

[KIDD96] Kidd, Taylor, Debbie Hensgen, Richard Freund, and Lantz Moore,
"SmartNet: A Scheduling Framework for Heterogeneous Computing"
2nd IEEE International Symposium on Parallel Architectures,
Algorithms, and Networks (I-SPAN '96), sponsored by the IEEE
Computer Society, Beijing, China, June 1996, pp.514-521.

[KJDD99] Kidd, Taylor W. "Personal Notes," Unpublished, 1999.

[KELG98] Kilgore, Richard and Kevin Healy. "Introduction to Silk and JAVA-
based Simulation"
[http://www.threadtec.com/papers/paper2/paper2.html]. 1998.

[LAW91] Law, Averill M. and W.David Kelton. Simulation Modeling and
Analysis. 2nd Edition. New York: McGraw-Hill, 1991.

[MAHE99] Maheswaran, Muthucumaru, Shoukat Ali, Howard Jay Siegel, Debra
Hensgen, and Richard F. Freund, "Dynamic Matching and Scheduling of
a Class of Independent Tasks onto Heterogeneous Computing Systems,"
Proceedings of the 8th JJEEE Workshop on Heterogeneous Computing
Systems CHCW'99), San Juan, Puerto Rico, pp. 30-44, April 1999.

[PORT99] Porter, N. W. "The Need for Adaptive and Adaptation-Aware C4I
Models in a Distributed Heterogeneous Computing Environment,"
Master's Thesis. Naval Postgraduate School, Monterey, California, June
1999.

[RUBI81] Rubinstein, Reuven Y. Simulation and the Monte Carlo Method. New
York: Wiley, 1981.

[SCHN98] Schnaidt, Matthew C. "Design, Implementation, and Testing ofMSHN's
Application Resource Monitoring Library," Master's Thesis. Naval
Postgraduate School, Monterey, California, December 1998.

[SING94] Singhal, Mukesh and Niranjan G. Shivaratri. Advanced Concepts in
Operating Systems. New York: McGraw-Hill, 1994.

122

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Road, Ste 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Director, Training and Education 1
MCCDC, Code C46
1019 Elliot Road
Quantico, VA 22134-5027

4. . Director, Marine Corps Research Center 2
MCCDC, Code C40RC
2040 Broadway Street
Quantico, VA 22134-5107

5. Director, Studies and Analysis Division 1
MCCDC, Code C45
3300 Russell Road
Quantico, VA 22134-5130

6. Marine Corps Representative 1
Naval Postgraduate School
Code 037, Bldg. 234, HA-220
699 Dyer Road
Monterey, CA 93940

7. Marine Corps Tactical Systems Support Activity 1
Technical Advisory Branch
Attn: Maj J. C. Cummiskey
Box 555171
Camp Pendleton, CA 92055-5080

8. Chairman,Code CS 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93940-5000

123

Dr. Taylor Kidd
Computer Science Department, Code CS/Kt
Naval Postgraduate School
Monterey, California 93943-5100

10. Dr. DebraHensgen
Computer Science Department, Code CS/Hd
Naval Postgraduate School
Monterey, California 93943-5100

11. Major James M. Breitinger
1481 Riverwood Lane
Phoenixville, PA 19460

124

