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ABSTRACT 

In today's military with its dwindling resources, making the best use of 

computers, particularly to support real-time commercial off-the-shelf (COTS) 

applications, is becoming critical for success. Resource Management Systems (RMS) 

strive to address this issue. The RMS's job scheduler is needed to ensure good quality of 

service (QoS) to all applications. This research uses discrete event simulation 

experiments to investigate the cost tradeoff between improving system performance 

through grouping incoming jobs to create better schedules, versus both (1) the time spent 

waiting for the group to accumulate and (2) the additional cost of computing schedules 

involving more jobs. A MaxMin 0(MN2) greedy scheduling algorithm attempting to 

minimize the total time in system was used in these experiments. We analyzed the data 

generated from numerous experiments that used typical input parameters. As a result of 

this effort, we conclude that job grouping should be used when the utilization factor for 

the system is near 1.0, or precisely when the mean arrival rate is comparable to the total 

mean service rate of the processors. At this utilization rate, the group size should be 

equal to the number of machines in the system. However, when the utilization factor is 

significantly different from 1.0, each job should be scheduled as it arrives. 
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I. INTRODUCTION 

This thesis investigates questions associated with obtaining the best Quality of 

Service (QoS) achievable in a distributed, heterogeneous computing (HC) environment. 

A necessary component within a HC environment is determining upon which resources to 

place and at what time to execute each job in order to optimize the QoS that all jobs 

obtain. In a typical environment, job requests arrive according to some random 

distribution. Immediately assigning jobs to resources, as they arrive, does not always 

result in the best performance in a heterogeneous environment (see [KIDD96]). 

Therefore, this thesis strives to determine the optimal point, in time, at which to schedule 

these jobs. Important considerations include whether this point is a function of the 

number of jobs that have been pooled, a function of the amount of time that has passed, 

or even a function of the resources that are currently available. The jobs can be 

interactive, real-time or batch. The scope of this thesis is restricted to a heterogeneous 

computing environment. This thesis presents a methodology, based upon discrete event 

simulation, for finding the optimal point at which to schedule jobs entering a system. It 

also demonstrates how this solution can be integrated into a heterogeneous computing 

architecture, such as the Management System for Heterogeneous Networks (MSHN)1. 

A. BACKGROUND 

The DARPA QUORUM program seeks to develop a broad range of resource 

management, networking, and data management technologies to support heterogeneous, 

distributed, real-time applications. As part of the QUORUM program, NPS is designing 

and implementing the Management System for Heterogeneous Networks (MSHN). This 

project's goal is to provide an infrastructure to support the execution of concurrent, 

dynamically changing C4I, radar processing and weapon control applications in an 

environment consisting of multiple shared heterogeneous resources. MSHN must 

account for dynamically changing priorities as well as resource availability. Two of the 

many areas being researched for the MSHN system include examining scheduling 

1 Pronounced "mission" 



policies for heterogeneous environments and determining when to cause a job to adapt in 

response to a changing situation. 

In a networked environment, computing jobs are assigned by some mechanism to 

a machine for execution. Currently, most networks rely on the user to perform this 

assignment. One of the goals of MSHN is to efficiently and automatically determine the 

"best" placement of jobs on machines in order to optimize the QoS achieved by the jobs. 

QoS can have different meanings depending upon context and perspective. For 

example, from a user's perspective, QoS may be measured in terms of quickness or 

accuracy, while a (computer) application's perspective may be based upon quantities such 

as cycles or frame rate. Additionally, an entire system such as MSHN generally 

perceives QoS differently from either the user or the application. The QoS delivered by 

MSHN needs to be measured in terms of balancing the dictates of the system against 

satisfying the needs of the applications, which are in turn satisfying the needs of the 

originating users. Optimizing the QoS achieved by applications involves both job 

scheduling and resource management, each of which carries its own computational 

overhead. As the degree of dependency grows between jobs, this computational 

overhead becomes increasingly significant. The problem being studied in this thesis 

centers on the group of jobs waiting to be scheduled. The focus of investigation for this 

thesis research is how the overall system QoS changes as the size of the group of jobs 

waiting to be scheduled changes. 

There are two important issues relating to this focus. The first is the effectiveness 

of the schedule produced. Many computer scheduling algorithms aim to utilize the 

available resources in the most efficient manner, while still satisfying QoS requirements. 

However, this research will not be examining the performance of scheduling heuristics or 

algorithms as there has already been much research done in this area (see references 

[ARMS98], [BRAU98] and [BRAU99]). The second is the performance of the 

scheduling mechanism itself. The scheduling process requires overhead that utilizes 

some resources, particularly if there are many dependencies between jobs. Additionally, 

this time-consuming scheduling causes resources to lie idle awaiting the assignment of 

jobs. Of course, good scheduling becomes most important when the system is being 

heavily used.    An effective resource management system must determine when to 



compute a schedule and if it is advisable to accumulate additional requests before 

scheduling. This thesis concentrates on these issues. 

B. PROBLEM STATEMENT 

The intent of MSHN is to provide middleware that extends the functionality of 

individual operating systems (OSs) in an HC environment in such a way that the 

extended OS provides the required and requested QoS. Good application scheduling is a 

necessary component to achieving this goal. This research attempts to answer two 

questions related to effective scheduling in a heterogeneous computing environment. The 

first focuses on finding the optimal point at which to submit a group of jobs waiting to be 

scheduled. Intuitively, the larger the number of jobs we can submit at any given time, the 

better schedule we can produce. However, if we wait too long to collect those jobs, the 

queued jobs will be delayed. Thus, the intent of this research is to determine the cost 

tradeoff relationship between the potential performance improvement obtained from 

submitting a larger pool of jobs to the scheduler, versus the potential performance loss 

due to jobs that must wait for that particular pool size to collect. This relationship will be 

used to determine the optimal size of the job pool, that is, the point at which to submit 

jobs to the scheduler. 

The second question is to determine whether there is a point beyond which the 

relative benefit of submitting a group to the scheduler substantially decreases as the size 

of the group increases. For instance, when given the situation where jobs are arriving at a 

rate more rapid than the rate at which jobs are completed, the size of the group of jobs to 

be submitted could become very large. In this case, the time to execute the scheduling 

algorithm may become prohibitively long in comparison to the benefit achieved from the 

resultant improved schedule. Once this point has been reached, it would be better to 

simply schedule a smaller group of jobs, accept the lesser schedule, and forward the jobs 

to the available resources. 

The quantitative answers to these questions can then be used to help ensure 

delivery of the requested QoS, and so support the QoS goals of jobs executing under 

MSHN. 



C. GOAL 

It is beyond the scope of this thesis to answer both of the questions posed above 

for all possible environments. However, as part of this thesis research, this author 

developed a computer simulation framework that uses the Monte Carlo Method along 

with Discrete Event Simulation (DES) that can later be used to answer these questions in 

a more general sense. The framework permits the user to vary the input distributions that 

are fed to the computer simulation of a heterogeneous computer resource system. The 

resulting statistical output can then be analyzed to determine a solution to the problems 

stated previously under many different conditions. Additionally, this thesis answers the 

stated problems for a specific subset of input and using a scheduler whose goal is to 

minimize the time at which the last job, in a series of jobs, completes. This research, in 

contrast, is attempting to minimize the average time a job spends in the system. Finally, 

the thesis research will demonstrate how the methodology and results of the experiment 

can be generalized for any defined QoS measure. 

D. THESIS ORGANIZATION 

This thesis is organized as follows: Chapter II provides a brief overview of the 

MSHN architecture and puts this research into perspective. Chapter III discusses 

simulation models and methods. It introduces key concepts and provides background on 

Discrete Event Simulation, Monte Carlo Methods, and Queueing Theory. Chapter IV 

describes the specific simulation model built for this research and provides a brief 

synopsis of the Silk programming environment using JAVA. Chapter V details the 

experimental data obtained from the simulation and describes the results obtained from 

those experiments. Chapter VI provides the statistical analysis of the data detailed in the 

previous chapter, describes the techniques used in the analysis, and summarizes the 

conclusions. The final chapter summarizes the conclusions of this thesis and describes 

future work. 



II.       MANAGEMENT SYSTEM FOR HETEROGENEOUS NETWORKS 

A. INTRODUCTION 

The goal of this chapter is to summarize the high level goals and architecture of 

the Management System for Heterogeneous Networks (MSHN) and, particularly to 

explain how this thesis relates to that project. Section B explains the purpose of MSHN. 

Section C describes the architecture of MSHN and how its components interact. A 

description of how this thesis research fits into the overall goal of MSHN is provided in 

Section D. Section E summarizes how this thesis will benefit the MSHN project. Those 

already familiar with MSHN can safely skip sections B and C. 

B. PURPOSE 

Nearly as quickly as the computational power of personal computers has 

increased, the price for those machines has decreased. Additionally, the performance of 

the networks connecting computers has rapidly improved. These advancements, along 

with decreasing operational budgets, have driven both governmental agencies and private 

corporations to move away from large, central mainframe computer systems towards 

satisfying their computational needs via more distributed systems. These distributed 

systems consist of many individual computer resources connected by at least one 

network. These networks can span great distances and include resources or machines of 

varying types. There are essentially five major advantages provided by distributed 

systems: resource sharing where hardware and software resources can be shared by 

multiple computers; enhanced performance provided by the fact that many tasks can be 

concurrently executed by different computers; improved reliability through the 

replication of data providing fault tolerance; improved availability because some 

elements of the system can fail without affecting the accessibility of the rest of the 

system; and modular expandability where new hardware and software can be added 

without affecting the rest of the system [SING94]. The increased use of distributed 

computer systems has resulted in the need to develop methods and systems for effectively 

managing large heterogeneous networks of computers in order to deliver good QoS 



performance to all users. To respond to this requirement, a resource management system 

(RMS) named MSHN is being developed as part of the Defense Advanced Research 

Projects Agency's (DARPA's) QUORUM program. The goal of MSHN is to provide a 

computing environment that delivers, "whenever possible, the required quality of service 

(QoS) to individual processes that are contending for the same set of distributed, 

heterogeneous resources." [HENS99] In other words, when given a set of jobs, MSHN 

will automatically determine the "best" placement of jobs on resources in order to 

optimize the required QoS as specified by the user. 

MSHN evolved from SmartNet, which was a scheduling framework developed by 

the Heterogeneous Computing Team at the US Naval Command, Control, and Ocean 

Surveillance Center's (NCCOSC's) Research, Development, Test and Evaluation 

(RTDE) Division in San Diego, California. SmartNet's design implemented scheduling 

algorithms for minimizing the time at which the last job, of a set of computationally 

intensive jobs, finished on a suite of heterogeneous computing resources. It also 

provided the necessary information for these algorithms to make wise decisions 

[KDDD96]. SmartNet treated the set of available compute resources as one virtual 

heterogeneous machine (VHM), achieving superior performance by mapping applications 

to resources based upon its knowledge of the VHM and the characteristics of the jobs it 

executed. A more detailed description of SmartNet is available elsewhere (see references 

[KIDD96], [JANA96], and [ARMS97]). 

However, the expanded goal of MSHN differs from SmartNet in three major 

ways. First, "MSHN needs to consider that the overhead of jobs sharing resources, such 

as networks and file servers, can have significant impact upon mapping and scheduling 

decisions." [HENS99] Second, MSHN needs to deliver good QoS simultaneously to 

users who may be executing either Input/Output intensive, compute intensive or real-time 

jobs. Lastly, MSHN must support idempotent applications that can produce results using 

one of a variety of algorithms, or can exist in several different versions or forms. These 

applications are called adaptive or adaptation-aware applications. [HENS99] 

As an RMS, MSHN must be capable of providing the user with a location- 

transparent view of its available set of heterogeneous resources, while providing 

improved performance. To accomplish this, the MSHN RMS is not stand-alone software, 



but an integrated system architecture incorporating a variety of distributed components 

that strive to attain the maximum benefits from available resources. This architecture is 

detailed in Section C. 

C. ARCHITECTURE 

Resource Status 
Server 

Query/ 
Response 

Resource 
Requirements  ^ 

Database Call 
Back 

Figure 1. MSHN's conceptual architecture, April 1999, from [HENS99]. 

The MSHN architecture is continually evolving. Hence, the following description 

is based upon the architecture design as of April 1999. While the final MSHN 

architecture may differ slightly from this description, the core components and concepts 

are not expected to change. Figure 1 shows the conceptual architecture for MSHN and 

demonstrates how these various components interact. 

The MSHN RMS consists of a client-server architecture that will be comprised of 

the following core components: 

• the Client Library (CL), 

• the Scheduling Advisor (SA), 

• the Resource Requirements Database (RRD), 



• the Resource Status Server (RSS), 

• the MSHN Daemon, and 

• the Application Emulator (AE). 

The following is an overview of the entire architecture and a high level description of 

each of the components. 

The entrance to the MSHN RMS is the Client Library. The CL permits MSHN to 

function without requiring the user to explicitly log into the MSHN RMS. It does this by 

transparently intercepting calls to system libraries and diverting those calls to the CL. By 

pre- and post-processing these system calls, the CL is capable of determining the 

resources used by an application, sending this data to the RRD, updating the RSS while 

the process continues to execute, and sending a request to the SA to determine where best 

to run the application in order to support the application's QoS requirements. More 

precisely, when the CL receives a request to launch a new application, it first checks the 

request against a list of applications managed by MSHN. If the request is on that list, the 

CL passes the request to the SA, otherwise, the requested application is simply passed to 

the local operating system. When the request is sent to the SA, it includes the QoS 

requirements defined by the user. 

It is then the SA's job to determine which set of resources the requested 

application should use. To make this determination, the SA consults the RRD, which 

maintains information about the resources that are required to execute any particular 

application. The SA also questions the RSS to obtain information concerning the current 

availability of resources. Using the information from these two sources and the 

optimization criteria derived from the user-requested QoS, the SA then decides where to 

execute the process and returns this information to the requesting CL. 

The CL then asks the Daemon located at the selected computer to execute the 

application. Whenever a computer is added to the system, a MSHN Daemon is started on 

that computer. The purpose of the Daemon is to receive requests from remote CL's and 

to start processes on the local computer on behalf of the remote CL. Daemons are also 

used to start specially designed AE's that are used to determine resource status 

information. Once applications have been started, the CL is also capable of updating the 



RSS and RRD with the current status of the resources and the requirements of the current 

process. Concurrently, the SA establishes callbacks with the CL, the RSS, and the RRD 

so that it can be notified in the event that either the status of the resources has 

significantly changed or the resource requirements have changed from what was initially 

reported. In either case, the CL is notified by the SA and requests Daemons on other 

remote machines to launch preferred versions of adaptive applications in accordance with 

the user's requested QoS. 

An additional component of MSHN is the Visualizer that permits examination of 

the current states of the other MSHN core components. The Visualizer captures 

significant events within and between the core components for both real-time and post- 

mortem analysis. More detailed information about MSHN can be found at 

www.mshn.org and in previously published references (see references [HENS99], 

[SCHN98] and [PORT99]). 

D. THESIS APPLICABILITY 

The results of this thesis research will be applied to the functionality of the SA 

within MSHN. The primary responsibility of the SA is to determine the best assignment 

of resources to a set of applications. To function, the SA depends upon the RRD and the 

RSS to identify an operating point that attempts to optimize a global measure2. It 

responds to assignment requests from the CL and when necessary requests application 

adaptations via the CL. Lastly, the S A sends status updates to the MSHN Visualizer. 

This research focuses upon identifying this optimal operating point's dependency 

upon the quality of the schedule produced. In other words, as the SA receives requests 

from the various MSHN CLs, should it schedule each request individually or should it 

wait until a certain number are received before beginning its processing. It was 

mentioned in Chapter I that when more information is available about the jobs to be 

scheduled, the better the resultant schedule will be.   Therefore, we must determine the 

2 Note that throughout the thesis we use the phrase "attempts to optimize" rather than "optimized" because 
the scheduling problem that is examined is known to be NP-complete and the number of jobs to be 
scheduled is typically too large to use an exponentially complex algorithm. 



best point at which to initiate the scheduling process with respect to the number of jobs 

submitted. 

E. SUMMARY 

This chapter described the MSHN resource management system currently under 

development. MSHN's purpose is to manage jobs, some of which may be adaptive, in a 

heterogeneous environment, with the goal of delivering good quality of service. 

Additionally, its architecture was outlined as a collection of core elements that, when 

interacting, provided the desired result. Lastly, a brief description was provided as to 

how this research will benefit MSHN in general, and the Scheduling Advisor in 

particular. The identification of the optimal point at which to conduct the scheduling 

process will improve the performance of the Scheduling Advisor and, hence, MSHN. 

The next chapter will introduce the concepts of simulation and queueing theory that will 

be used to outline the detailed problem definition and experimentation model in 

Chapter TV. 

10 



III.     DISCRETE EVENT SIMULATION AND MONTE CARLO METHODS 

A. INTRODUCTION 

This chapter explains what discrete event simulation is and discusses other related 

topics. Section B discusses simulation in general and explains why computer simulation 

has become such a useful tool. Section C describes discrete event simulation in detail. 

Section D provides insight into the Monte Carlo Method and how it is distinct from 

Monte Carlo Simulation. Section E explains the concept of random variates. A general 

introduction to queueing theory is presented in Section F. Section G provides a summary 

and concluding remarks. 

B. BACKGROUND 

The need to predict the operation of real-world processes or systems before 

implementing expensive projects has led many researchers to attempt to simulate these 

systems using computers. A later example will illustrate why simulation is so powerful. 

First, we need to describe the types of systems that can be analyzed using simulation 

techniques. Systems can take many forms, the most common being the following: 

• a physical entity such as an actual machine or an industrial facility, 

• a non-physical entity such as an environmental phenomenon or human 

interaction, and 

• a process of events involving both physical and non-physical entities such as 

an automobile manufacturing plant incorporating both machines and humans 

in the production process. 

Our example will be of the last type. 

Thus, a system is a collection of entities, such as people or machines, which act 

and interact collectively toward the accomplishment of some goal. The state of the 

system is the collection of variables needed to describe the system at a particular time 

[LAW91]. 

11 



As an example of a complex system, consider a communication and information 

system used by a large military organization in combat. This system involves both 

physical entities, such as its radios, telephones and computers, and the non-physical, 

human interaction based processes required for the system to operate. There are several 

methods available to study any system. Figure 2 maps the different ways that a system 

could be studied. 

Experiment 
with the 
System 

Experiment 
with a model 

of the System 

Physical 
model 

Mathematical 
model 

Analytical 
solution 

Simulation 

Figure 2. Ways to study a system, from [LAW91]. 

The most obvious method is to study the actual system. In our example, this 

would involve moving all of the radio, microwave, and satellite transmission equipment, 

the telephone switching units, computer devices, and related ancillary user equipment 

from a storage or "garrison" site to an operating or "field" site. Additionally, all of the 

personnel who normally use and operate the equipment would be required to abandon 

their garrison duties and move into the field to operate and test this information system. 

It should be obvious that this method is very time consuming and costly. It would 

involve: actually moving the people and equipment to a location; building, operating and 

12 



maintaining the system; altering the system as determined from the study; and finally 

returning the people and equipment to their initial state. Thus, experimenting with the 

actual system is frequently infeasible. For this reason, it is often necessary to build a 

model or representation of the system and study the model instead. 

A model of the system can be built either physically or mathematically. Physical 

models are rarely used for systems analysis due to their required complexity. For 

example, building a physical model of our information system would be nearly as 

infeasible as using the actual system. A high fidelity physical model of this system 

would involve reproducing each element of the system in a reduced size and then 

attempting to duplicate the human-machine interaction of the system. The difficulty in 

making such a model accurate is obvious and would render a study of the model as a 

surrogate to the actual system as costly, if not more so, than experimenting with the 

actual system. 

An alternative to a physical model is a mathematical model. Such a model 

represents a system in terms of logical and quantitative relationships that can be easily 

manipulated or altered to demonstrate how the model, and hence the system, reacts. In 

our communication example, the mean time between equipment failures could be 

mathematically modeled as a deterministic amount of time generated from a probability 

distribution. The size of communication messages and the length of time it takes to send 

a transmission from one point to another could be similarly modeled using an average 

determined from historical data. Overall, the cost of building and experimenting with a 

mathematical model can be an order of magnitude less than that of a physical model or of 

experimenting with the actual system. Additionally, the modeler can easily refine and 

modify the fidelity of various parts of the system model as the importance of various 

requirements change. 

Once the decision to use a mathematical model has been made, the designer must 

determine if an exact analytical solution can be found or if using a simulation method 

would be more appropriate. In cases where the model is simple enough, it may be 

possible to work with its quantities and relationships in such a fashion that a closed-form 

analytic solution can be found. However, the combined interrelationships of critical 

elements within mathematical models can become extraordinarily complex.    Once 

13 



systems and their corresponding mathematical models reach this level of complexity, 

there is little choice but to study the model using simulation. Said simply, simulation is 

numerically studying the model for the inputs in question with the goal of determining 

how these inputs affect the output measures. As an example, we consider modeling the 

complex information system described earlier. 

One part of the information system is the telephone switching unit. To model a 

single switch, we must mathematically represent items like the mean time between failure 

of the processor, the memory unit, and the generator supplying power to the switch. 

Also, rate of failure of the operator, arrival rate of requests, and down time due to 

maintenance must be modeled. It is obvious that there are numerous details that must be 

considered when modeling a single telephone switch, and there may be a total of fifteen 

switches in use, each of a different type. Additionally, the switch is only a very small 

part of the entire information system being studied. The complexity of modeling just one 

switch may be great in and of itself, but when these are combined with the rest of the 

system, it is apparent that a simple analytic solution is not possible. Further, additional 

complex pieces of the information system need to be included in the model such as 

battery consumption for the radios, fuel consumption for the field generators and the 

human factor relating to the users and operators. 

In every environment where people are working under stressful conditions, 

accidents and injuries occur. The rates of these incidents must be modeled. Consider a 

young satellite equipment operator who has had little sleep in the past 48 hours. The 

operator is assigned the task of erecting a new satellite antenna to replace one that is not 

functioning, and accidentally forgets to remove a retaining pin before engaging the 

hydraulic lift. This accident causes the lifting arm to shear, which causes the dish to fall 

and collapse. Additionally, the jarring motion of the accident causes the operator to fall 

from the equipment, thus breaking a leg. We see that such scenarios, when modeled with 

great fidelity, become mathematically very complex, eliminating the possibility of a 

closed-form solution. 

Simplification is an important aspect of modeling. Simplification is the process 

of reducing or removing complex elements from a model while only minimally reducing 

its accuracy or usefulness.   Taking the telephone switch example from above, if the 
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switch only fails once every three months and the average usage period is less than three 

months, then the modeler can assume that the failure rate is zero, thus simplifying the 

model. However, careful consideration must be taken when making simplifying 

assumptions. If the switch actually failed once every four hours, that factor would need 

to be included in the model. 

A simulation, usually conducted on a computer, also uses a mathematical model. 

In these cases, the computational power of the computer is used to simulate the complex 

mathematical quantities and relationships of the model. In these simulations, it is fairly 

easy to increase the fidelity of one aspect of the model while decreasing the fidelity of 

others. This aspect is important as various factors within the model increase and decrease 

in significance. For example, during one examination of the information system, the rate 

of failure and energy consumption of the telephone switch may be significant, while at 

another time it may be sufficient to only consider the number of calls completed per hour. 

This simplification would reduce the complexity of the model and may make it easier to 

evaluate. These changes to the model are often more easily made in a computer 

simulation model than in an analytical model. 

Given that we have a mathematical model that we wish to study using the 

simulation method, we must ascertain how to accomplish this task. To begin, the type of 

simulation must be determined from the classification factors below. 

• Static versus Dynamic Models. A static model is a depiction of a system at 

a particular instant in time, or a model where time is not a variable. The 

system state in a dynamic model changes over time making the model 

evolutionary. 

• Deterministic versus Stochastic (Probabilistic) Models. A model where 

the results can be predicted with certainty, given a particular set of inputs, is 

called deterministic. A stochastic model gives, for each execution, a different 

result for the same set of input parameters, or it contains probabilistic 

components that causes the output to be considered only an instantiation of a 

single case. Many repetitions are needed in order to obtain a statistically 

significant estimate of the true model characteristics. 
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• Continuous versus Discrete Models. A model where the system state is 

defined at all times is called a continuous model. If the system state is only 

defined for particular, finite points in time, then the model is discrete. 

The simulation designed for this thesis is discrete, dynamic, and stochastic in nature. 

This type of simulation is commonly termed a discrete event simulation. 

C. DISCRETE EVENT SIMULATION 

Discrete event simulation (DES) models a system as it evolves over time by 

representing instantaneous changes in the state variables at separate points in time. These 

points in time are the ones at which events occur where an event is defined as "an 

instantaneous occurrence that may change the state of the system." [LAW91] Events 

occur at different times and are stamped with the simulation time at which they occurred. 

The system state is defined by system specific state variables that change as the 

simulation progresses, and thus, describes the system's condition at any given point in 

time. Current events generate additional events to occur at some future point in time. 

These future events are stored in an "event queue" where they remain until the simulation 

clock advances to the time at which the events are to happen. Events in the event queue 

are normally stored in order according to the simulation time at which they are to occur. 

As a discrete event simulation progresses, events are removed from the event queue and 

processed. When events are removed, the simulation time is correspondingly advanced 

to the time stamped on the next current event. This progression of simulated time is one 

reason why simulation time and elapsed real-time are usually different in a discrete event 

simulation. 

Characteristically, DES models require three different types of variables: 

• System State: model/system dependent variables used to describe the system 

at particular points in time. 

• Simulation Clock: a global variable representing simulated time. 

• Statistical Counters: variables used to track repetitions of certain events and 

to store statistical data about system performance. 
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In DES models, the advancement of time can be a difficult concept to understand. 

There are generally two approaches for advancing simulated time: 

• Next-event time advance (event driven): time is advanced to the time of 

occurrence of the next future event, at which point the state of the system is 

updated to account for the occurrence of that event. Most major simulation 

tools and people coding in general purpose languages use this approach 

[LAW91]. 

• Fixed-increment time advance (unit time): time is advanced by fixed 

increments and checks are conducted to determine whether any events were 

scheduled to occur during the previous time interval. If events were 

scheduled to occur during this interval, these events are considered to occur at 

the end of the interval and statistical counters are updated accordingly. This 

approach is not commonly used in computer simulations [JAIN91]. 

Although simulation has been applied to many varied types of real-world systems, 

DES models all share common components and a universal structure [JAIN91]. The use 

of these common components promotes the coding, debugging, and future changing of a 

simulation model's computer program. While most simulation languages and tools 

provide many of these components, when using a general-purpose language to code a 

simulation, the modeler must develop them. The components are as follows: 

• Event list: a list, commonly implemented using a queue, of events and the 

times when they should occur. 

• Initialization routine: a subprogram that sets the initial system state, receives 

values from the user for input parameters, and sets the simulation time to zero. 

• Timing routine: a subprogram that determines the next event from the event 

list and advances the simulation clock to the time when that event is to occur. 

Often referred to as the event scheduler. 

• Event routine: each event is simulated by its corresponding routine that 

updates the system state variables and schedules other events. 

• Library routines: a set of subprograms that generate random observations 

from probability distributions. 
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• Report generator: output routines that compute results from the statistical 

counters and produce a report when the simulation is completed. 

• Main program: a subprogram that brings all of the routines together. It 

initializes the simulation, executes various iterations, and upon finalization, 

calls the report generator. 

The logical relationship among these components and the flow of control of a 

next-event time advance discrete model is illustrated in Figure 3. 

(start) 

Initialization routine 

1. Set simulation clock = 0 
2. Initialize system state and 

statistical counters 
3. Initialize event list 

Main program 

0. Invoke the initialization routine 

1. Invoke the timing routine 
2. Invoke event routine 

itine \ 
repeatedly 

Event routine i 

Timing routine 

1. Determine the next event 
type, say z 

2. Advance the simulation 
clock 

1. Update system state 
2. Update statistical counters 
3. Generate future events and 

add to event list 

Library routines 

Generate random 
variates 

Report generator 

1. Compute estimates of interest 
2. Write report 

[Stop) 

Figure 3. Flow of control for the next-event time advance approach, from [LAW91]. 

Once the type of simulation is determined, a choice must be made as to the method of 

experimentation. The method used for this thesis research is the Monte Carlo method, an 

approach that is often confused with Monte Carlo simulation. A detailed description of 

this approach and why it is often misnamed Monte Carlo simulation can be found in 

Section D. 
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D. MONTE CARLO METHOD 

First, we present a review of items presented previously. The very nature of a 

simulation is to provide statistical estimates of numerical data about the performance of a 

system being modeled. When simulation experiments are conducted over time, we have 

a stochastic simulation that includes sampling stochastic variates from a probability 

distribution. A stochastic simulation is a simulation involving a stochastic process, a 

process with a sequence of states whose development is determined by randomly 

occurring events. Because sampling from a particular distribution involves the use of 

random numbers, stochastic simulation is sometimes loosely referred to as Monte Carlo 

simulation. However, a more precise definition of Monte Carlo simulation is "a scheme 

employing random numbers, that is U(0,1) random variates, used to solve stochastic or 

deterministic problems where passage of time plays no substantive role." 3 [LAW91] 

It can also be stated that a Monte Carlo simulation is a static simulation (i.e., one 

without a time axis) used to model probabilistic events that do not change characteristics 

with time [JAIN91]. Thus, Monte Carlo simulation is useful when evaluating 

nonprobabilistic expressions with probabilistic methods. For example, consider 

evaluating the following integral: 

2 

H e   dx 
o 

One method to evaluate this integral is to generate uniformly distributed random 

numbers x and for each number compute a function y as follows: 

density function    /(*) = —     iff 0 < x < 2 

x ~ U(0,2) 

3 A.U(0,1) random variate is obtained from a random number generator that produces a variate U that is 
uniformly distributed between 0 and 1. 
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The expected value of y is then: 

E(y) 
2 

0 
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= \le 
0 
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= /•- 
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-x2f{x)dx 

-*z-dx 
2 

dx 

Thus, generating uniformly distributed random numbers x„ computing y,-, and then 

averaging can evaluate the integral. 

Je, ~ C/(0,2) 

n 

/ = E(y) = ~yy   y, 
n 4mU 

i=\ 

However, for our research, we are interested in the dynamic rather than static 

aspects of the Monte Carlo method. The above example demonstrates Monte Carlo 

simulation, but Monte Carlo methods can be used for a much broader range of 

experiments. 

Monte Carlo methods can be defined as "the branch of experimental mathematics 

concerned with random numbers where the approach is to observe random numbers, 

chosen to directly simulate the physical stochastic process of the problem, and to estimate 

the desired solution from the behavior of the generated random variates." [HAMM64] 

Thus, Monte Carlo methods can be used in any experiment where some input parameters 

are random variates and the desired output is a calculated estimate obtained by using 

statistical methods on the results of numerous trials of an experiment. The general flow 

of a simulation using Monte Carlo methods is shown in Figure 4. 

20 



Figure 4. Flow diagram for Monte Carlo method. 

Although references to Monte Carlo type experimentation can be found much 

earlier, the actual name and development of the process dates back to about 1944 where 

"Monte Carlo" was the code word for the secret work on the atomic bomb during World 

War II at Los Alamos. This work was conducted by von Neumann and Ulam and 

involved direct simulation of probabilistic problems concerned with random neutron 

diffusion in fissile material [RUBI81]. 

In conclusion, simulation is a technique for performing sampling experiments on 

a model of a system. When these experiments are conducted over time, we have a 

stochastic simulation involving sampling stochastic variates from a probability 

distribution. Because sampling from a distribution involves the use of random numbers, 

stochastic simulation is sometimes also erroneously referred to as Monte Carlo 

simulation. A more precise denotation for this type of simulation would be stochastic 

simulation using Monte Carlo methods. Therefore, this research uses discrete event 

simulation and the Monte Carlo method of experimentation. 
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E. RANDOM VARIATES 

The nature of discrete event simulation requires it to include the random elements 

of the modeled system through the integration of stochastic processes [ARMS97]. To 

illustrate, we again refer to the telephone switch example outlined previously in this 

chapter. While the process of automatically connecting telephone calls is normally a 

routine and consistent operation, there are still unavoidable random elements in the 

system. For example, consider the possibility of a processor failing in the system. 

During its operation, data on the mean time between failures for the telephone switch 

processor is collected. This data is then statistically analyzed, the mean and variance 

determined, and a probability distribution fitted to the processor failure rate. A failure of 

the processor can then be simulated as a random occurrence governed by the distribution 

fitted to the observed data. Consequently, this stochastic simulation could be used to 

demonstrate the effect of a switch with a given reliability on the overall performance of 

the larger communication network. 

An important aspect of the above simulation is the efficient arid correct 

production of random variates. A random variate is a random observation generated from 

a probability distribution [LAW91]. The Gaussian (Normal) distribution is a good 

example to use to explain the concept of random variates. Consider a set of 100,000 

random variates sampled from a Gaussian distribution with a mean of 100 and a standard 

deviation of 15. (See Figure 5). The x-axis values represent random variates with the 

frequency of those variates plotted along the v-axis. The Gaussian curve shows that there 

are more random variates near the mean and less as we move away from the mean. 

The technique used to generate random variates depends upon the particular 

distribution that we wish to sample, but every method relies upon a reliable source of 

independent, identically distributed (IID) random variates uniformly distributed over the 

interval (0,1) [LAW91]. For this reason, it is essential that a statistically reliable U(0,1) 

random number generator be available. Fortunately, most computer simulation tools 

today have such convenient and accurate random number generators. Additionally, most 

simulation tools also include convenient methods for generating random variates. 

However, if they do not, the approaches described next for generating variates can be 

used. 
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Figure 5. Gaussian distribution, mean 100, standard deviation 15, from [ARMS97]. 

• Inverse Transform. This method is used to generate random variates whose 

distribution function F is continuous and increasing when 0 < F(x) < 1. The 

algorithm for generating random variate X is then to generate U ~ U(0,1) and 

then return X = F ~\U). Since 0 < U < 1 and the range of F is [0,1], F"' will 

always be defined. [LAW91] 

• Composition. This technique applies when the distribution function F can 

best be expressed as a combination of other distribution functions. When F 

can be expressed as a convex combination of other distribution functions F\, 

F2,..., Fn it may be easier to sample from the individual Fj's than from the 

original F. The combination algorithm generates a positive random integer J 

such that P(J=j)= pj; for 7 = 1, 2, ..., n and then return X with distribution 

function Fj. 

• Convolution. This method is best when the desired random variable X can be 

expressed as a sum of other IID random variables that can be more readily 

23 



generated than the direct generation of X. This method is fundamentally 

different from the method of composition because in composition we assume 

that the distribution function of X is a (weighted) sum of other distribution 

functions, whereas the assumption behind convolution is that the random 

variable X can be represented as a sum of other random variables. The 

algorithm for generating the random variate X is quite intuitive because we 

first generate the independent, identically distributed variables Y\, Y2,...,Ym 

each with distribution function G and then return X = Y\ + Y2 + ... + Ym. 

[LAW91] 

• Acceptance-Rejection. This technique is less direct in its approach than the 

aforementioned methods and is useful when the direct methods fail or are too 

costly. This approach requires a function t that majorizes4 the density 

function /. The general algorithm involves generating a random variate Y 

having density r (hopefully easily and quickly), and generating U ~ U(0,1), 

independent of Y .  If U ^^§y, return X = Y.  Otherwise it generates a new 

value and tests it similarly. 

The appropriate method to use is dependent upon the distribution from which we 

desire to draw the random variate. The ease and reliability with which random variates 

can be generated for that distribution must also be considered. (The reliability is based 

upon the fact that the algorithm used should produce random variates statistically 

equivalent to the desired distribution.) [LAW91] 

For distributions of known types, most simulation tool kits provide readily 

available, efficient, and accurate random variate generators. However, when necessary, 

the inverse transform method is the easiest to implement [ARMS97]. This method is 

easiest because the random variates are generated from the inverse of the distribution 

function F, provided the inverse function F ~x is defined. For example, the Gaussian 

distribution function cannot be inverted because a closed form version for F _1 does not 

exist. While there are other numerical methods available when F ~l has no closed form, 

4 t(x)>f(x) for all*. 
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the inverse transform method may not be the most computationally efficient. For the 

cases when the distribution function can be expressed as a sum of other distribution 

functions or the random variate is a sum of other random variates, then the composition 

or convolution methods should be used, respectively. Finally, if no other more efficient 

method can be found and a majorizing function exists, the acceptance-rejection method 

should be used. 

F. QUEUEING THEORY 

The amount of information and literature on queueing theory is immense. This 

section presents a very general synopsis of queueing theory. This topic is important 

because "queueing theory is a key analytical modeling technique used for computer 

systems performance analysis." [JAIN91] To aid in the understanding of queueing 

theory, this section provides a basic knowledge of queueing notation and some 

background on single-queue systems. For systems with multiple queues, as in this thesis, 

simulation is often required. Queueing theory assists in determining the time that jobs 

spend in various queues throughout a system. These times can then be combined to 

predict the system response time, which is the total time that a job spends in the system. 

To begin, we introduce queueing notation. It is based upon a shorthand called the 

Kendall notation, and has the form A/S/m/B/K/SD where the letters correspond to the 

following parameters: 

• A: interarrival time distribution - The times between job arrivals are often 

assumed to be a sequence of IID random variables. The most common arrival 

process has exponentially distributed interarrival times, and is often referred 

to as the Poisson arrival process. 

• S: service time distribution - The time each job spends at a resource is 

called the service time. The service times are also usually assumed to be IID 

random variables. For simple queueing models, the exponential distribution is 

commonly used. 

• m: number of servers - Identical servers are commonly grouped together and 

considered part of the same queueing system.  When the servers are not all 
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identical, they are grouped into disjoint sets, each set containing identical 

servers, with individual queues serving each group. 

• B: system capacity (number of buffers) - The system capacity is the 

maximum number of jobs that can be serviced by the system. This number is 

usually finite and includes both those waiting for service and those already in 

the system. 

• K: population size - The total number of jobs that could ever possibly enter 

the system is called the population size. This number is usually finite. 

• SD: service discipline - Service discipline is the order in which jobs are 

served. The most common discipline is First Come First Served (FCFS). 

Additionally, the service and interarrival time distributions are ordinarily referred to by a 

one-letter symbol. The most common symbols are: 

• M - Exponential5 

• Ek - Erlang with parameter k 

• Hk - Hyperexponential with parameter k 

• D - Deterministic 

• G - General 

A deterministic distribution implies that the times are constant and there is no variance, 

while a general distribution means that the results are valid for all distributions because 

the distribution is not designated. [JAIN 91] 

There are several important variables used for analysis that are common to all 

single queueing systems. These variables are: 

• T = the time between successive arrivals, or interarrival time. 

• X = the mean arrival rate, commonly A. = 1/E[T]. 

• s = the service time per job. 

• (1 = the mean service rate per server, commonly 1/E[J]. 

• n = the number of jobs in the system. 

• nq = the number of jobs waiting for service. 

• ns = the number of jobs receiving service. 

' The letter M is used to indicate the Markov, or memoryless, property of the exponential distribution. 
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• r = the total time in the system or response time. 

• w = waiting time or the time between arrival time and the instance that service 

begins. 

Except for X and u,, the above variables are random variables. [JAIN91] 

A vital theorem used in queueing theory is Little's Law.   This law relates the 

number of jobs in the system to the mean response time as follows: 

Mean number in the system = arrival rate Xmean response time 

As long as the number of jobs entering the system is equal to those completing service, 

this law applies.  In other words, no new jobs can be created within the system and no 

jobs can be lost forever by the system. This law may be applied to the system as a whole 

or to individual parts of the system. 

To conclude this section, Table 1 is provided as a synopsis of how to analyze a 

standard, single-server, system represented by the common M/M/l queue. 
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1. Parameters: 
X = arrival rate in jobs per unit time 
(X = service rate in jobs per unit time 

2. Traffic intensity: p = X/(X 
3. Stability condition: Traffic intensity p must be less than 1. 
4. Probability of zero jobs in the system: p0= 1 - p 
5. Probability of n jobs in the system: p„ = (1 - p)p", n = 0, 1,.. 
6. Mean number of jobs in the system: E[n] = p/(l-p) 
7. Variance of number of jobs in the system: Var[n] = p/(l-p)" 
8. Probability of & jobs in the queue: 

[lP • 
1(1-PX 

2 *=o 
P(n*=*)='»-p)p-*>o 

9. Mean number of jobs in the queue: E[nq] = p2/(l-p) 
10. Variance of number of jobs in the queue: 

Var[«J = p2(l+p-p2)/(l-p)2 

11. Cumulative distribution function of the response time: 
F(r) = \-errtl-p) 

12. Mean response time: E[r] = (l/(x)/(l-p) 

1/jU2 

13. Variance of the response time: Var[r] =  
(1-P)2 

14. <j-Percentile of the response time: £[r]ln[100/(100 - q)] 
15. 90-Percentile of the response time: 23E[r] 
16. Cumulative distribution function of waiting time: 

F(w) = l-pe-fM(l-p) 

1/ju 
17. Mean waiting time: E[w] = p  

\-p 
18. Variance of the waiting time: Var[w] = (2-p)p/[(i2(l-p)2] 
19. g-Percentile of the waiting time: 

(    E[w] ^ 
max 0,^-^ln[100p/(100-^)] 

P 

(   E[w] 
20. 90-Percentile of the waiting time: max 0, ln[10p] 

I       P 
21. Probability of finding n or more jobs in the system: p" 

Table 1: M/M/l Queue, adapted from [JAIN91]. 
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G. SUMMARY 

This chapter has explained simulation in general through the use of a military 

communication and information system example. This example was then expanded to 

outline discrete event simulation. Next, the Monte Carlo method of experimentation was 

introduced. A brief explanation of random variates was then provided, again using our 

example. Finally, the last section introduced the concepts of queueing theory. The next 

chapter will discuss the simulation model used to conduct the research for this thesis. 

The structure of this model will highlight the important concepts summarized above. 
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IV.      THE SIMULATION MODEL 

A. INTRODUCTION 

This chapter describes the research problem this thesis attempts to answer and 

explains how the simulation model was built. Section B discusses the model in general 

and lists the assumptions that were made. Detailed descriptions of the problems outlined 

in Chapter I are provided in Section C. Section D provides insight into the Silk modeling 

software and why the JAVA programming language is used. Section E contains a 

summary and concluding remarks. 

B. BACKGROUND 

As outlined in Chapter I, we are researching two important problems that, when 

solved, can be used to enhance the performance of the scheduling mechanism of a 

resource management system (RMS). The first problem is to find the optimal point at 

which to schedule a group of jobs waiting to enter the heterogeneous computing system. 

The second problem is to then ascertain whether there is a point beyond which the 

relative benefit of group scheduling substantially decreases as the group size increases. 

The kinds of systems for which these problems are important are both varied and 

complex. For this reason, this thesis makes various simplifying assumptions to reduce 

the model's complexity while preserving its substance. 

The system being studied can be represented as a sequence of queues and servers 

used to schedule jobs over an array of heterogeneous computational resources. (See 

Figure 6.) The system begins by collecting jobs as they arrive until both a predefined 

group of jobs has been collected and the scheduling server is free to compute the next 

schedule. The group of jobs is then dequeued and processed by the scheduling server. 

Upon completion of the scheduler, the jobs are released as a group to their assigned 

machines for processing.   However, prior to being serviced by their assigned machine, 
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these jobs may be held in an admission queue if the assigned machine is too busy6. Thus, 

the overall system is a single-queue, single-server component feeding into an array of 

additional single-queue, single-server components. 

^SA 

Scheduling 
Advisor Machines 

Figure 6. Graphical representation of system model. 

In this model there are a total of M+l queueing systems divided into two types. 

The first type is located on the left side of the figure and represents the Scheduling 

Advisor (SA) as described in Chapter II. The remaining M queueing systems belong to 

the various machines upon which the jobs will be executed. These are called the machine 

queueing systems and are referred to as M, where i is the unique index of the machine. 

Each machine queueing system consists of an admission queue (QAI) that holds jobs until 

the machine is free, and the server, which is the machine itself. [KIDD99] 

To begin, we need to define what is a schedule. In this research, a schedule is an 

assignment of jobs to available machines such that a job runs on exactly one machine and 

a machine can run no more than one job at the same time. In other words, in this 

simplified model7 the machines are not multitasking.   The type of scheduling done by 

6 Typically MSHN will not use these queues unless the machine is so overburdened that the OS will reject 
any new process requests. However, modeling the ready and waiting queues maintained by the OS are 
beyond the scope of this thesis (see Chapter VII). 

7 Again, this model differs substantially from the environment where MSHN will run. However, this 
model must be clearly understood and validated before more sophisticated models are analyzed. 
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this system is non-preemptive. With non-preemptive scheduling, once a job has begun 

execution, it cannot be interrupted. Lastly, rescheduling is not considered. Rescheduling 

means that if a job has been assigned to a machine but has not begun execution (i.e., it is 

waiting in the admission queue), it could be removed from the admission queue, placed 

back in the SA queue, and rescheduled at the next scheduling event. For this research, 

once a job has been assigned, it remains in the admission queue until it is executed on its 

assigned machine. 

The QoS metric used in assessing the goodness of a schedule in this model is the 

average time in the system per job. This metric was chosen because it is readily 

available, easily manipulated, and can be easily expanded to incorporate other metrics 

such as priority or security. 

The schedules are built using an Expected Time to Compute (ETC) matrix. 

E7C(j,m) is the expected time for job j to complete execution on machine m assuming 

that there are no other jobs using any of the machines. In the ETC matrix, the numbers 

across a row are the execution times of the corresponding job on the different machines. 

Based upon the variations between corresponding rows and columns, the ETC matrix can 

be classified into one of four heterogeneity classes. The variation across a row of the 

matrix is referred to as the machine heterogeneity, while the variation down a column is 

the task heterogeneity [ARMS97]. Based upon a classification of high versus low 

heterogeneity, the four classes proposed by [ARMS97] for ETC categories are: (1) high 

task and high machine heterogeneity (HiHi), (2) high task and low machine heterogeneity 

(HiLo), (3) low task and high machine heterogeneity (LoHi), and (4) low task and low 

machine heterogeneity (LoLo). The ETC matrix can be further classified into two 

additional classes, consistent and inconsistent. For a consistent ETC matrix, if one job 

has a lower execution time on machine mx than on machine my, then the same is true for 

all jobs [ARMS97]. Consequently, any ETC matrix that is not consistent is inconsistent. 

For this model, inconsistent ETC matrices are used because they are likely to arise in a 

typical environment [MAHE99]. A HiLo ETC matrix is used in the model because it 

most closely represents the realistic environment depicted in the military scenario 

outlined in Chapter V. 
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For measurement and comparison between differing schedules, a schedule's 

expected completion time is defined as the time at which the last job is expected to 

complete when all the jobs are executed according to the defined schedule (that was 

based upon the values in the ETC matrix). Thus, an optimal schedule is defined as the 

one with the smallest completion time. Lastly, the schedules are constructed assuming 

that the jobs are independent of each other. In other words, each job executes without 

needing information from any other job or from the outside environment. 

A scheduling algorithm is needed to create a job schedule using an ETC matrix. 

The problem of finding an optimal schedule where the finishing time is as small as 

possible for large data sets is known to be NP-complete8 [IBAR77]. Thus, a common 

choice is to instead use a heuristic greedy algorithm. Greedy algorithms make locally 

optimal choices in the hope that these choices will result in a close to optimal solution. 

The specific algorithm used in this model is a MaxMin algorithm that has complexity 

0(MJ2) where M is the number of machines available and J is the number of jobs to be 

scheduled. This algorithm does not guarantee an optimal solution, but often gives a near- 

optimal solution. Figure 7 gives simple pseudocode for the MaxMin algorithm. 

8 NP-complete means that it is unlikely that a polynomial time-bounded algorithm exists for this problem. 
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procedure MaxMin; 

Input: The ETC matrix, list of jobs submitted to be scheduled. 
Output: The schedule that gives an assignment of jobs to machines that attempts to minimize the total 

completion time. 

begin 

1. Initialize. 
Matrix soonestDone <- matrix ETC; 
Row Vector accumulatedtimes <- 0; 
Mark all jobs as unchosen; 

2. While there is still a job that is unchosen do 
begin 

Find the minimum of all rows in soonestDone; 
Find the maximum minimum of the values found above. Let the row index of 

The minimum bejobChosen and column index be machineChosen. 
Assign jobChosen to machineChosen. 
Store assignment {jobChosen, machineChosen); 
Update accumulatedTimes: 

accumulatedTimes[machineChosen] += ETC[jobChosen] [machineChosen]; 
Remove the TOW jobChosen from soonestDone and ETC. 
Update soonestDone: 

Set each row of soonestDone 4- Corresponding row of ETC + accumulatedTimes, added entry 
wise. 

Mark the job jobChosen as chosen. 
end. 

3. Output all of the assignments (job, machine). 

end. 

Figure 7. Pseudocode for MaxMin algorithm, from [JANA96]. 

In MaxMin, the ETC matrix is scanned and the minimum value from each row is 

recorded. Next, the maximum value from the recorded minimums is chosen and that 

(job, machine) pair is recorded as a schedule assignment. Then, the values in the chosen 

machine column of the ETC matrix are updated to indicate the new completion time 

values and the remaining jobs (rows) are scanned and scheduled accordingly. MaxMin 

iterates as many times as there are jobs, and in each iteration a (job, machine) pair is 

chosen so that the selected pair contributes to reducing the time required to execute the 

resultant schedule. Finally, all selected pairs are output as the assignment schedule. 

The scheduling system of Figure 6 is simulated using a discrete event simulator 

such as that described in Chapter III. The job arrivals are modeled using a Poisson 

random process with the mean interarrival time set by the user.  The simulator contains 
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an ETC matrix generator that creates a HiLo, inconsistent matrix as described previously 

using both the size of a group of jobs and the number of machines input by the user.9 

Using a MaxMin heuristic, a schedule is then created from the ETC matrix, the real time 

to compute the schedule is recorded and the jobs are assigned to their respective 

machines in accordance with the generated schedule. The amount of real time used to 

create the schedule is then used to advance the simulation time for the scheduler. The 

jobs may then wait in a FIFO admission queue for their machine until that machine is 

available to process them. Because the actual execution time of a job can be different 

from the value given by the ETC matrix, the simulated execution time for each job is 

modeled by sampling a Gamma probability density function with mean equal to the 

ETC's expected execution time of the job. The amount of simulated time that each job 

spends in the system is recorded for later analysis. 

C. DETAILED PROBLEM DEFINITION 

From the terminology established in Chapter III and the problem description of 

the previous section, we can now precisely describe the system model. From previous 

descriptions, the SA queueing system can be classified as a type M/D[G3/1 queueing 

system because the arrivals are exponentially distributed and the time spent in the 

scheduler is deterministic and based upon the number of jobs in a group and the number 

of machines in the system. The superscript "[G]" indicates that the SA is servicing a 

group of jobs. Each system of the array of machine queueing systems on the right side of 

Figure 6 can be similarly classified as G/Ek/1 because the arrival distribution at each 

admission queue cannot be definitely determined and the service time is modeled using a 

Gamma distribution. 

From the above classifications, we can now make specific assumptions about the 

behavior of these systems in order to obtain a theoretical approximation for the systems' 

behavior. A significant simplifying assumption is that the runtimes of each job on any of 

the machines is identical. From this assumption, we can then aggregate the machine 

queueing systems into a single aggregate system for analysis.   Of particular note is the 

9 This procedure is equivalent to selecting a group from a very large population of jobs. 
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fact that this one aggregate queueing system does not actually reproduce the behavior of 

the original parallel system, but instead provides a limiting "best" case. This simplifying 

assumption results in the system shown in Figure 8. 

V5A 

ISA 

MSA 

SA 
Scheduling 

Advisor Machines 
—h  

Figure 8. Aggregate queueing model, from [KIDD99]. 

From this assumption, we can begin to formulate the equations for an 

approximation to the expected average amount of time spent by a job in the simulated 

system. From the beginning, since a group of jobs is collected in QSA before being 

submitted to the SA, the wait time spent collecting a group of size G is computed by 

equation (1). 

G      Gt 
WQs* = 

'SA 

2ASA        2 
(1) 

Once the group of jobs is submitted to the SA, the time spent by the SA to determine a 

schedule is simply sSA or \lßSA. If we define the average execution time for a job on a 

machine as s, then the average rate of jobs being executed by a machine is expressed as 

1/5 or fi. Hence, the total service rate for M machines is Mß. Since an entire group of 

jobs is submitted from the SA to QA, the average amount of time a job spends in QA can 

be computed from equation (2). 

G       Gs 
WQA=- (2) 

2Mp    2M 

Similarly, the time required for M to execute a single job on average is simply l/M/i or 

sM. If we add all of the previous intervals together, we can use equation (3) to compute 

an initial estimate for system response time, or the average total time spent by a job in the 

simulated system. 

G        1        G        1      Gz 
- + + + SA 

2
^SA     MSA     2M/1     Mß        2 

+ SSA + 
Gs      s 

■ + ■ 
2M    M 

(3) 
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It is important to note here the simplifications inherent in this estimate. Equation (3) does 

not consider the complexities of the actual expressions for sSA or s/M. For example, 

considering the mean service time for the SA, which is dependent upon G, M, and the 

algorithm used to schedule, we can see that VpSA will be 0(MG2). This assumption is 

based upon the fact that the scheduler uses a Greedy algorithm with complexity 0(MJ ). 

Therefore, equation (3) can be rewritten as equation (4). 

c C 1 
 + (adG

2M+a,GM+a2G + a,M+a0)+ +  (4) 
2ÄSA 2Mß    Mju 

Using  equation   (4)   as   a   starting  point   and   including   the   results   from   some 

experimentation with the simulation, the  a{  coefficients can be determined.    The 

complexities introduced as a result of grouping jobs may demonstrate that the above 

equation is too simplistic and that the assumptions made reduce the granularity of the 

problem to a level where the above equation is actually a poor estimate. However, 

through the development of this equation, we have begun the analysis as to how changes 

in G will affect the average time that a job spends in the system. Additionally, we can 

learn from these equations how large G must become before the relative benefit of 

improvements in the schedule will be overcome by the time spent waiting for the jobs in 

the group to collect. [KJDD99] 

D. JAVA AND SILK 

Once the form of the model was decided, and we had determined that, because of 

the model's complexity, simulation was needed, the next step was to choose a 

programming language for the simulation. Primarily we desired an object-oriented, 

powerful language with multithreading and an easy reuse capability. When Sun 

Microsystems introduced JAVA in 1995, they described it as "a simple, object-oriented, 

distributed, interpreted, robust, secure, architecture neutral, portable, high-performance, 

multithreaded, and dynamic language" [FLAN97]. Because JAVA is an object-oriented 

programming language with robust reuse capabilities, it was an easy choice as the 

language for this project. Due to a desire for ease of development, finding a simulation 

tool based on the JAVA language was the next step.  Our motive for finding a discrete 
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event simulation tool was to be able to work within an environment where event 

scheduling, thread handling and random variate generation were provided and therefore 

wouldn't have to be developed. A search of the Internet revealed the Silk simulation 

tool. 

Silk is simply a collection of JAVA classes for discrete event simulation. These 

classes include an entity simulation engine using the multithreaded power of JAVA and a 

set of process-oriented modeling methods for object-oriented simulation design. The 

combination of Silk and JAVA provide an integrated simulation and programming 

environment for building reusable modeling components. Additionally, JAVA'S inherent 

support for multithreaded execution and Silk's incorporated event scheduler produce the 

essential ingredient for representing the concurrent flow of entities in process simulation 

models. Lastly, because Silk is simply an extension of JAVA, the full flexibility of the 

JAVA programming language is available allowing the user to create more complex 

models by creating customized extensions to the Silk classes. Additional information 

about the Silk simulation tool can be found at www.threadtec.com. [KJLG98] 

E. SUMMARY 

This chapter has described this research's simulation model. It explained the 

simplifying assumptions used to build the simulation model and described the simulation 

steps. Next, the research problem was described in detail. Finally, the last section 

explained why JAVA was chosen as the programming language for the model and why 

the Silk modeling software was also chosen. The next chapter explains how experiments 

were conducted using the simulation model described in this chapter. 
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V.       EXPERIMENTS 

A. INTRODUCTION 

This chapter details the experiments conducted using the simulation model. 

Section B provides a military scenario where a system requiring answers to the questions 

posed may be employed. The experiments were performed using this scenario. The data 

resulting from the experiments are presented in Section C. Section D outlines the 

validation of the simulation model and the experiment. A summary is provided in 

Section E. 

B. BACKGROUND 

In an effort to provide realism both to the experiment and for the use of a 

Resource Management System (RMS) in a heterogeneous environment, we developed a 

military scenario embodying the parameters expected in a practical application. The 

following parameters are needed for this simulation experiment: 

• M - the number of machines in the system available for processing jobs, 

• T   -the mean time between successive job arrivals (in milliseconds), 

• 5    - the mean duration expected for a job to execute on a machine (in 

milliseconds), and 

• G  - the size of a group of jobs to be scheduled. 

With these parameters in mind, the scenario is based on a US Marine infantry battalion 

(Bn) that is ready to begin the combat portion of an exercise. The Bn headquarters (HQ) 

has a networked system of 16 computers, one of which is the resource scheduler. This 

system of computers consists of Wintel 486 machines, older Wintel Pentium machines 

and Sun SPARC machines. The overall processing power of all these machines is 

considered to be approximately the same, and the types of jobs submitted to the system 

are very diverse10. Thus, the resultant networked system consists of 15 heterogeneous 

computers available to process many different types of jobs.   The majority of jobs 

10 For these reasons, a HiLo Expected Time to Compute (ETC) matrix, as defined in Chapter IV, is used to 
represent the computing environment for this scenario. 
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processed within the Bn are not complex and it is assumed that on the average a job can 

be completed within one second (1000 ms), regardless of the type of processor used. It is 

also assumed that just prior to entering a combat exercise, the level of computational 

activity for the Bn rises dramatically and that the mean interarrival time for jobs to the 

RMS is between 50 and 100 ms during this time.11 

Before outlining the methods for the experiment, we must first describe the 

platform used to conduct the simulation. The simulation experiments were all executed 

on a Silicon Graphics (SGI) Challenge-L multiprocessor machine named caesar. Caesar 

has four 200MHz MIPS R4400 processors using the IRIX64 operating system, version 

6.2, with JAVA version 3.1.1 (Sun 1.1.6). Caesar was accessed remotely from an Intel 

Pentium U, 400MHz, single processor machine using the Windows NT Workstation 4.0 

operating system.12 

Using the parameters from the above scenario, the first major decision was the 

choosing of a job interarrival time that would provide experimentally significant results. 

Although this system involves both multiple queues and servers, we borrowed a stability 

condition relationship from single queue, single server systems. A system is said to be 

unstable if the average number of jobs in the system during any reasonable interval grows 

continuously. Thus, for stability, the mean arrival rate should be less than the mean 

service rate (i.e., A. < MfJ) or equivalently the traffic intensity, X/Mju, must be less than 1 

[JAIN91]. Therefore, although our system is more complex than a single queue, single 

server system, we chose an interarrival time of 67ms satisfying this general stability 

condition.13 

11 This range of interarrival times was chosen to satisfy the stability condition for the system. The 
significance of this range will be outlined later and in Chapter VI. 

12 The Intel Pentium II machine was not used to conduct the experiment because the required millisecond 
time resolution was not available. The Java Virtual Machine (JVM) and Windows NT have a compatibility 
problem that only permits 10ms resolution. Similarly, there is a thread "suspend/resume" compatibility 
problem between the JVM and Sun Solaris that causes a multithreaded JAVA program to "hang." 
Therefore, the experiments were conducted on the SGI platform because millisecond resolution was 
provided and the program did not "hang." 

13 For this experiment, M=\5, /z=0.001 and X=0.0149. Thus, TJM/i = 0.0149/0.015 = 0.993 < 1. 
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With this initial parameter set, we next established the methodology. The general 

experiment was controlled using time. Over an interval of 110 simulated seconds, the 

amount of time each job spent in the system was recorded. These results were 

normalized giving the average time spent in the system per job. In order to capture 

results from a system already in operation (i.e., in a steady state), statistics were not 

recorded until after 10 seconds of simulation time had elapsed. The initial 10 seconds 

permitted the simulation to reach a steady operating condition so that the skewed data 

from the simulation's "start-up" was avoided. Experimentation and analysis verified the 

steady state condition. Because we were interested in how the size of the group of jobs, 

G, affected the Quality of Service (QoS) measure, namely the average time in the system 

per job for this research, we ran the experiment 30 times for each choice of G. The 

results of these 30 runs were then averaged to find the overall mean time spent in the 

system per job for each value of G. 

An additional experiment included running the simulation with different inputs 

for both the number of jobs and machines, and then recording the amount of time taken 

for the scheduler to compute a schedule. The data from these experiments were used to 

calculate the coefficients for equation (4) in Chapter IV. The next section provides the 

results of the experiments conducted using the scenario introduced at the beginning of 

this chapter. 

C. RESULTS 

To briefly review what has been discussed thus far, this research studies the affect 

of grouping jobs prior to scheduling upon the average time that a job spends in a 

heterogeneous computing environment managed by an RMS. The experiment is 

conducted using a computer simulation model of the system. The simulation is coded in 

the JAVA programming language using the Silk simulation building tool. The 

parameters for the experiment are established using a military scenario involving an 

infantry battalion just prior to a combat exercise. For each value of G (the size of a group 

of jobs) the simulation is run 30 times and the mean interval that a job spends in the 

system is calculated. Figure 9 illustrates the output received from each run of the 

experiment. 
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The results of the experiment using the scenario's parameters (M - 15, x = 67ms, 

s = 1000ms) are provided in Table 2 and graphically shown in Figure 10. From these 

results, it is apparent that there is a positive and definite benefit gained when jobs are 

scheduled in groups (from the additional information available to the scheduler). In fact, 

for this scenario and set of parameters, the optimal point to initiate a scheduling event is 

when the first of either of two events occurs: when the SA queue reaches a length of 17 

or after 1139 milliseconds (67ms X 17 jobs) have transpired. 

I Summary Output - Academic Version Bis] ES 
Command 

ijRun number 1 over at time    110000. 0000000 
A 

llElapsed time    0:0:9.46 

jjObservational Variables: 

ildentifier                              Average 
Jvait time for SA          475.3740954 
JGroup Size                        15.0000000 
prime to Schedule              1.5100000 
JTime in System            2007.8534033 

Standard 
Deviation 

342.8623653 
0.0000000 
3.6139321 

998.2576062 

Minimum 
0.0000000 

15.0000000 
0.0000000 

287.1010577 

Maximum 
1740.2124657 

15.0000000 
11.0000000 

6591.5468721 

Final 
0.0000000 

15.0000000 
0.0000000 

1255.8674864 

Count         S 
1500         ij 

100 
100          | 

1513       :|: : 

hume Dependent Variables: 

Ildentifier                            Average 
ISA Utilization                0.0015100 
ISA Queue Length              7.1163988 

Standard 
Deviation 
0.0388294 
4.4239312 

Hinimum 
0.0000000 
0.0000000 

Maximum 
1.0000000 

15.0000000 

Final 
0.0000000 
7.0000000 

Time Period £j 
100000.0000000 
looooo.ooooooojd! 

Figure 9. Summary output for simulation experiment. 

Group Size Avq Time/Job 
1 3196 
3 2899 
5 2623 
7 2502 
9 2421 

11 2178 
13 2104 
15 1885 
17 1872 
19 1971 
21 2065 
23 2112 
25 2243 

Group Size Avq Time/Job 
27 2368 
29 2534 
31 2682 
33 2828 
35 2954 
37 3108 
39 3216 
41 3346 
43 3500 
45 3640 
47 3773 
49 4061 
51 4152 

Table 2: Results for M=15, x=67ms. 
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Figure 10. Graphical results for M=15, x=67ms. 

The data in Figure 10 also demonstrates the significance of the 67ms interarrival 

rate. The data infers that with this mean job interarrival rate the system can optimally 

handle a "group" interarrival rate of 1139ms (67ms X 17 jobs) to the scheduler. The 

intuitive implication of this data is that group sizes below 17 cause either an inefficient 

schedule to be created or a system bottleneck within the array of processing machines 

admission queues. Additionally, group sizes above 17 do not provide a scheduling 

benefit greater than the amount of time taken to gather a group. Further analysis of these 

results requires additional experimentation and data collection. This topic is explored 

further in Chapter VI. 
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G M SSA(Time to Schedule) 

100 100 275 
50 100 65 
10 100 3 

100 10 79 
50 10 21 

Table 3: Results from scheduling experiment. 

The results from the second experiment are provided in Table 3. In this 

experiment, the simulation was run for the values of G and M shown in the table; the 

mean time to compute a schedule was recorded. Recalling the term for the response time 

of the SA in equation (4) of Chapter IV, the formula for just the scheduler in terms of G 

and M can be written as equation (5). 

sSA = a4G
2M + a3GM + a2G + axM + a0 (5) 

Using the data from Table 3 and substituting into equation (5), the solution to the 

resultant system of five equations with five unknowns reveals the coefficients for 

equation (5) in Table 4. Because the platform where the experiment was performed 

(caesar) did not provide enough time resolution, equation (5) was evaluated for larger 

values of G and M, resulting in less accurate sSA values for small G and M. Even so, at 

those smaller values sSA is two orders of magnitude smaller than the overall result and as 

such was not significant to this research. Of particular note is the fact that this solution is 

only valid for the platform on which the experiment was run and the scheduling 

algorithm that was used. Thus, this particular solution to calculate the estimated response 

time of the scheduler is only valid for simulation experiments conducted using a greedy 

scheduling algorithm executed on the SGI machine named caesar mentioned 

previously14. 

an ai a7 a? a4 

-25 49/180 37/45 -187/18000 53/180000 

Table 4: Coefficients of equation (5). 

With the results from the simulation experiment presented, the next section 

compares the experimental results to the theoretical, expected results. 

14 This analysis was done because the simulated time for the scheduler was advanced according to real 
time as outlined in Section B of Chapter IV. 
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D. VALIDATION 

In order to validate the simulation model, we used two primary techniques. The 

first technique involved using hand calculations to determine expected results and 

comparing the experimental results against those predictions. This technique was used to 

validate the ETC matrix generator and the MaxMin Greedy scheduler. The second 

method involved comparing the results from the simulation against expected theoretical 

results. This technique was used to validate the results of the simulation experiment as a 

whole with the aim of determining whether the mean response time per job from the 

simulation were comparable to theoretical expectations. 

First, we verified the ETC matrix generation routine. Using a mean job execution 

time of 100ms, a job heterogeneity factor of 0.5, and a machine heterogeneity factor of 

0.1, the matrix in Table 5 was generated. Inspection of this matrix confirms the operation 

of the generation routine in this one example. The heterogeneity down the rows is high, 

while the heterogeneity across the columns low. Thus, a HiLo, inconsistent matrix was 

created. 

Mo M, M2 M3 M4 M5 M6 M7 M8 M9 

JOB #0 133 136 157 179 130 139 120 136 131 162 
JOB #1 176 219 178 221 222 181 197 192 175 218 
JOB #2 29 37 35 35 25 35 34 29 26 32 
JOB #3 21 19 19 27 20 21 22 21 21 20 
JOB #4 35 32 36 30 34 29 34 31 35 40 
JOB #5 124 134 129 114 116 132 114 117 128 120 
JOB #6 94 103 88 108 104 99 96 115 92 99 
JOB #7 178 194 210 172 182 181 159 163 169 186 
JOB #8 135 126 129 126 138 119 132 141 112 107 
JOB #9 71 75 71 75 62 76 61 78 77 83 

Table 5: Sample HiLo ETC matrix. 

Once the matrix generator was verified, we validated the MaxMin scheduling 

routine. This task was done by generating a series of matrices and sending them to the 

scheduler. The results from the scheduler were recorded and corroborated against hand 

calculated schedules created using the algorithm presented in Figure 7. The two sets of 

schedules matched, confirming the MaxMin scheduling procedure. 
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To validate the overall operation of the simulation, we must apply reasoning and 

determine whether the results achieved from the experiment are similar to theoretically 

expected results. Two very significant simplifying assumptions were made about our 

system in Section C of Chapter IV. The first was that the response time of the entire 

system was simply a summation of the response time of the SA portion on the left of 

Figure 6 and the machine portion of the system on the right. The second was that the 

response time of the machine portion of the system could be simply represented by 1/M// 

or s/M. 

The first simplification is actually only valid for a system where jobs are 

scheduled individually as they arrive. In this case, a job would arrive, be serviced by the 

scheduling server when available, be forwarded to the admission queue of its assigned 

machine and ultimately be processed in FIFO order. For this situation, the summation of 

the various queue wait times and service times of the servers would be valid. However, 

the act of grouping the jobs and submitting them collectively to the scheduler, but then 

assigning them individually to machines introduces complexities to the system that 

preclude a simple summation of individual response times. The state of the system 

relative to the size of the group of jobs becomes a significant factor. Therefore, a more 

appropriate method of analysis is to consider the SA portion and the machine portion of 

the system separately and determining the relationship between them when jobs are 

grouped. 

Before considering the relationship between the two sections of the system, the 

actual form of the equation for the response time of the machine portion of the system 

must be found. In [IBAR77], Ibarra and Kim derive a lower bound for the service rate of 

a set of heterogeneous machines, namely the sum of the minimum runtimes of each job 

taken across all machines divided by the number of machines, M. Therefore, in a 

simplified form, s/M can be considered the lower bound for the service time per job for 

the array of machines. Additionally, we assume that sophisticated RMSs use schedulers 

that perform better, or at least as well, when more information is available (i.e., a larger G 

is used). Therefore, the service time across the array of machines is also dependent upon 

the scheduling algorithm and G, the size of the group scheduled. Typically, as G 

becomes larger, more information is available, and a better schedule can be produced 
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[KIDD99]. Combining all of these derivations and assumptions, we can theorize that the 

service rate per job for the array of machines is greater when G is 1 and approaches a 

lower bound asymptotically as G gets larger. Thus, as depicted in Figure 11, the 

expected form of this term is exponential in nature and decreases asymptotically to the 

lower bound as G gets larger. 

0 

Asymptotic convergence 
*/ to optimal 

optimal 

1 
G or algorithm 

Figure 11. Average runtime across machines vs. larger G or better algorithm. 

Since the form of the simplified equation for the service time of the machine array 

has been determined, we now infer how job grouping increases the complexity of the 

relationship between the SA and the machine parts of the system. Because the results 

from our experiment show that G should remain relatively small, we find the effect of the 

service time for the scheduler is essentially zero in comparison to the other terms, and so, 

can be ignored. Therefore, the response time for the SA system is approximately equal to 

the wait time in the SA queue and while G is small, this queueing time is insignificant. 

(It is generally two orders of magnitude smaller than the total time spent in the system.) 

During this situation, the dominant factor of the system must then be the service time 

across the machine queue system on the right of Figure 6. As G increases, the mean 

response time for the entire system will continue to decrease nearly exponentially (to the 

localized minimum) until the point when the wait time in the SA queue surpasses the 

relative benefit achieved from having a better schedule. At this point, the dominant 

factor in the system becomes the wait time in the S A queue instead of the service time of 

the latter machine part of the overall system.   Once this point is reached, the mean 
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response time of the overall system is expected to increase linearly from the localized 

minimum as the size of G increases (and hence the wait time in the SA queue increases). 

(See Figure 12). In summary, the response time relationship between the SA system and 

the machine queue system is not a simple summation, but is rather exponentially 

decreasing while G increases until a local minimum is reached, at which point the 

relationship becomes linearly increasing as G continues to increase. 

Wait time in SA 
queue is dominant 

Mean Time in System per Job 

Figure 12. Dominant factor of system as G increases. 

To test the validity of the model, the theoretical predictions are compared to the 

experimental results. Using the results from the experiment, a best-fit regression analysis 

was done for the data where G ranged between 1 and 17. "The regression plot showed that 

an exponential regression is the best fit to the data. (See Figure 13.) A second best-fit 

regression analysis for the data where G ranged between 17 and 51 was performed. This 

regression plot showed that a linear regression is the best fit to the data. (See Figure 14.) 

The value G = 17 was used to divide the two graphs because it was the local minimum in 

Figure 10. Therefore, because the experimental results correspond to the theoretical 

expectations detailed previously, we have confidence that the model is accurately 

simulating the real system. 
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Figure 13. Regression Plot for G < 19. 

4500 
4300 
4100 

E 3900 i 
3 3700 
t 3500 
w 3300 i 
.£ 3100 
© 2900 
.§ 2700 

2500 
2300 
2100 
1900 
1700 
1500 

O) 

Linear Regression Plot 

r = 69.5G + 542.5 

15 20 25 30 35 40 45 50 55 

Group Size 

Figure 14. Regression Plot for G > 17. 
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E. SUMMARY 

This chapter described the experiments conducted using the simulation model. It 

explained the scenarios behind the experiments, which provide the necessary parameters 

for the investigation. Next, the data resulting from the experiment was presented. The 

last section explained the validation procedures and a theoretical analysis of the predicted 

system output. The next chapter will explain the additional analysis required to formulate 

the cost tradeoff relationship between the potential performance improvement obtained 

from having a larger pool of jobs to schedule, and the potential performance loss 

resulting from having to wait for that particular pool size. 
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VI.      ANALYSIS 

A. INTRODUCTION 

The previous chapters provided background for the research conducted in this 

thesis. In this chapter, the optimal point at which to initiate a scheduling event for an 

RMS scheduling mechanism is found. This optimal point can be delineated by the size of 

a group of collected jobs (G), or by a maximum time threshold if the designated size of 

the group has not been reached. Using the military scenario described previously, 

additional experimentation needed to solve the cost tradeoff problem presented in 

Chapter I is highlighted in Section B. Section C describes the statistical techniques used 

throughout this research. The results are featured in Section D. The final section will 

summarize the highlights of this chapter and provide any concluding remarks. 

B. BACKGROUND 

The experimental results obtained in Chapter V were useful in determining the 

validity of the model and in showing that changing the group size does affect the average 

time a job spends in the system. However, additional experimentation is needed to 

demonstrate how, and under what conditions, the group size influences the performance 

of the system. From such results, a cost tradeoff relationship can be determined. 

Preliminary experiments revealed that the effect of grouping varied, depending 

upon the job interarrival times (i.e., arrival rate) to the system. This observation led to 

the use of an important state descriptor for the system called the utilization factor. The 

utilization factor is defined as the quantity p = Ä/M/I and is a measure of how heavily 

the resources of a queueing system are utilized [LAW91]. Continuing to use the same 

service rate, M/n, from the scenario described in Chapter V, the utilization factor is 

changed by altering the job arrival rates, A. In the initial experiment, a utilization factor 

of 0.99515 was used as a reasonable state to start the investigation. We found that in this 

state, the average time that a job spent in the system could be minimized by changing the 

^ The value of 1.0 was desired but from the variables used in the scenario, 0.995 was achieved. 
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size of the group of jobs collected prior to scheduling. In fact, the optimal group size for 

our scenario was 17. Using p=l as a starting point, the next step was to incrementally 

reduce the utilization factor by increasing the job interarrival times while repeating the 

initial experiment to find how changing the group size would influence the average time a 

job spent in the system. The same procedure was done for an increasing utilization 

factor. (See Table 6). The data from these experiments is then used to complete the cost 

tradeoff analysis for the system. 

C. STATISTICAL TECHNIQUES 

Before presenting the results of the final experiments, this section provides an 

explanation of the statistical techniques used throughout this thesis. The two primary 

techniques used are (1) determining a sample mean, and (2) curve fitting. 

For a given population, the mean or expected value of the random variable X is 

denoted by either E(X) or (1 and is defined as: 

ß = E{X) = YW = \xf(x)dx 

where summation is used for discrete variables and integration used for continuous. 

However, this research uses the sample mean, which is an estimate for the population 

mean. The sample mean, X in), is found by taking the sum of all observations, x-t, and 

dividing this sum by the number of observations, n, in the sample. 
n 

X: 

n 

Thus, to find the mean time that a job spent in the system, the sum of all the observed 

times was divided by the number of runs of the experiment (in our case n = 30). 

The second statistical technique is that of curve fitting. Curve fitting is the 

process of finding equations of approximating curves that best fit sets of data given a 

certain metric. For this research, both linear and nonlinear curve fitting are used. The 

process of curve fitting starts with plotting corresponding values of the variables of 

interest onto a rectangular coordinate system.   This graph is called a scatter diagram. 
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Often, it is possible to visualize a curve that approximates the data. If the data appear to 

be well approximated by a straight line, then a good estimate for the data is that the 

variables have a linear relationship. If the data appear to be better approximated by a 

curved line, then a curvilinear relationship may be a good estimate. This research 

includes data that is related in a linear sense (see Figure 13), an exponential sense (see 

Figure 14), and in a quadratic sense (see Figure 15). The Microsoft Excel and Minitab 

programs are used for curve fitting in this thesis. A primary reason for curve fitting is 

regression analysis. Regression analysis allows a random variable to be predicted as a 

function of another variable. The estimated variable is called the response variable and 

the variable used to predict the response is the predictor variable or the factor. The 

overall goodness of a regression is measured by R , the coefficient of determination. 

This coefficient is the fraction of the variation that is explained by the regression. 

Overall, the higher the value of R2, the better the regression and "goodness of fit" for the 

curve fitting the data. For additional information about regression models see [JAIN91]. 

D. RESULTS 

The results from this portion of the thesis generalize the results found in Chapter 

IV, and used many more experiments involving differing values for the job interarrival 

time, T. The point of these experiments was to find the value of G where the average 

time spent in the system is minimized. For each (-z;G)-pair, the simulation was run 30 

times and the mean time spent in the system per job calculated. This step was repeated 

until a local minimum time is found for the selected interarrival time. The corresponding 

value of G was then recorded. The results from these experiments are found in Table 2. 

From this data and the data in Table 6, the equivalent utilization factors are calculated 

using the parameters from the original military scenario and the different job interarrival 

rates. The utilization factors are paired with their corresponding group sizes in Table 7. 

The data from Table 7 is plotted in Figure 15 on a scatter diagram along with the "best- 

fitting" curve for the data. Using regression analysis, the equation for the relationship 

between the utilization factor and group size is given by equation (6). 

G = -104p2+208p-86 (6) 
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x =50. D = 1.33 
Group Size Mean time 

3 9067 
4 9102 
5 8958 
6 9041 
7 8985 
8 8993 
10 9077 
15 9309 

T = 89, 0 = 0.75 
Group Size Mean time 

1 1691 
5 1650 
8 1564 
10 1547 
11 1533 
12 1544 
15 1592 
20 1911 

x = 53. 0=1.25 
Group Size Mean time 

10 6835 
12 6751 
13 6584 
14 6303 
15 6538 
17 6787 
20 7310 

T=100, 0 = 0.67 
Group Size Mean time 

1 1479 
3 1493 
5 1483 
6 1454 
7 1447 
8 1455 
10 1495 
15 1628 

Table 6: Data for various job interarrival times, t. 

Utilization Factor 

(P) 

Group Size 
(G) 

0.67 7 

0.75 11 

0.995(1) 17 

1.25 14 

1.33 5 

Table 7: Data for regression plot. 
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Figure 15. Regression Plot for G as a function of utilization factor, p. 

Using equation (6) and setting G=l, the utilization range where grouping jobs will 

minimize the average time a job spends in the system is 0.597 < p < 1.403. Solving 

equation (6) will provide the group size, G, that results in the minimal time that a single 

job will spend in the system on average. For the Quality of Service (QoS) measure used 

in the experiments (i.e., the time a job spends in the system), this result also means that if 

the utilization factor for the system is outside of the above range, grouping jobs does not 

provide any better performance then does scheduling jobs individually as they arrive. For 

example, using the military scenario given in Chapter IV and a known job arrival rate, X, 

the utilization factor can be determined and the best group size found. 

Thus, the cost tradeoff relationship existing between the potential performance 

improvement obtained from having a larger grouping of jobs to schedule, and the 

potential performance loss resulting from waiting for that particular group size to collect 

is given by equation (6). This equation provides the optimal size of the group of jobs 

given the current utilization factor for the system. The utilization factor is also the metric 

to use to determine when the relative benefit of group scheduling substantially decreases 

as group size increases. For instance, given the scenario provided in this research (HiLo 

inconsistent ETC matrix with mean service time =  1000ms, MaxMin scheduling 
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algorithm, x = 67, and 15 machines), the group of jobs to be scheduled should never be 

permitted to get any larger than 17 because the amount of time spent collecting a group of 

that size surpasses the benefit achieved from the improved schedule. Of particular note is 

the fact that job grouping has the most impact upon minimizing the time a job spends in 

the system when the utilization factor is near 1.0. As the utilization factor gets further 

from 1.0, job grouping has progressively less effect until the system reaches a point 

where grouping is actually detrimental to system performance. 

E. SUMMARY 

This chapter has presented information about the experiments performed, 

calculations completed and methods used to determine the relationship between our 

system's schedule effectiveness and group size. We defined the utilization factor of the 

system and how this ratio describes the state of the system based upon the job arrival rate, 

machine service rate, and the number of machines. The statistical techniques used to 

analyze the data collected from the simulation were also presented. Lastly, we found that 

the optimal group size to collect for jobs being submitted for scheduling is quadratically 

dependent upon the system's utilization factor. 
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VII.    CONCLUSIONS AND FUTURE WORK 

This thesis accomplished the three main objectives presented in Chapter I. First, 

Chapter IV described the simulation model built to estimate the solution to our complex 

analytical problem. This simulation model uses Monte Carlo methods and discrete event 

simulation. The material provided in the Appendices supplements this description. 

Second, attempting to minimize the time that a job is in the system as the quality of 

service (QoS) and a specific scenario, Chapter VI presented a solution to the problems 

outlined in the first chapter. Finally, this chapter explains how the methodology and 

results of the experiment can be generalized for any scalar QoS measure. Additionally, 

this chapter will describe suggested follow-on work. 

A. CONCLUSION 

Any computer resource management system (RMS), including the Management 

System for Heterogeneous Networks (MSHN), requires a resource scheduling 

mechanism. This scheduler must be able to accept arriving resource requests and map 

them to resources in a manner that attempts to optimize some quality of service (QoS) 

measure. This thesis presented, in Chapter IV, a simulation model of a resource 

scheduler that uses a greedy heuristic to minimize the time a job spends in the system. 

This model was then used to determine the effect that grouping arriving jobs had on the 

optimization criteria. From experiments using this model, we found a relationship 

between the state of the system, defined by the utilization factor, and the size of a group 

of jobs submitted to the scheduler. Using G and p to represent the group size and 

utilization factor, respectively, the relationship we found for a scenario where t= 67, M = 

15, s = 1000ms, and the ETC matrix is HiLo (inconsistent), is represented by the 

equation, G = -104p2 + 208/? - 86. From this equation, we also found that job grouping 

only provides a benefit in terms of our QoS measure when the utilization factor is in the 

range, 0.597 < p < 1.403. Within this range, the average amount of time that a job spends 

in the system decreases exponentially as the scheduler group size increases until reaching 

a minimum dependent upon the utilization factor. Once this local minimum is reached, 

the time begins to rise linearly (asymptotically) as the group size continues to increase. 
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When the utilization factor is outside this range, the response time of the system 

continuously increases as the group size is increased. From the theoretical background 

presented in Chapter IV, these results indicate that as the group size increases from an 

initial value of one, the QoS measure is most affected by the throughput across the 

machines in the system, which is a result of the quality of the schedule. Once the 

minimal point is reached, increasing the group size simply causes a delay in the queue 

feeding the scheduler (namely, the amount of time it takes to collect the group of jobs). 

In turn, this delay simply causes the overall response time of the system to linearly 

increase. Hence, for any given utilization factor, the respective value of G found from 

our relationship equation is the point where the wait time required to collect a larger 

group surpasses the relative benefit achieved from the resulting improved schedule. 

Armstrong, in [ARMS97], found that greedy scheduling algorithms performed 

comparably to more simple algorithms, such as that for Opportunistic Load Balancing 

(OLB), when in a HiLo (inconsistent) heterogeneity domain and the goal was to finish all 

jobs in the least amount of time. Thus, the added overhead resulting from using the 

MaxMin greedy scheduling algorithm is not warranted for the category of heterogeneity 

in our scenario. However, the positive results we attained when grouping jobs in a HiLo 

type of scenario indicates that our results will be more significant in a scenario where the 

performance of the scheduling algorithm is improved. For example, Armstrong found 

that greedy scheduling algorithms performed significantly better than OLB in a LoHi 

(inconsistent) heterogeneity domain. The results of this thesis imply that the relative 

benefit of grouping jobs will be more prominent in a LoHi domain, i.e., when the 

scheduling algorithm is better matched to the heterogeneity space as outlined in 

[ARMS97]. The actual results for this matching is a topic for future work. 

Although the simulation experiments used an Expected Time to Compute (ETC) 

matrix and the minimum time a job spends in the system as the QoS optimization criteria, 

the experiments are not limited to their use. Because all the methods and algorithms in 

the model use scalar values as decision criteria, the techniques demonstrated in this thesis 

can be generalized to use any scalar QoS metric. The object-oriented nature of the 

simulation model allows for easy extension of the base JAVA classes and the substitution 

of different QoS measures and optimization criteria in the scheduling heuristics.   The 
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backbone of the simulation only requires a matrix of scalar values to optimize in order to 

create a mapping of jobs to machines. Thus, the values in the matrix could be from any 

scalar valued QoS metric, and the scheduler could be changed to use any algorithm 

operating on the matrix. For this reason, only minor changes are needed to use the 

simulation model built for this thesis to test the effect of grouping resource requests on 

any RMS using a similar structure and on any defined, scalar QoS metric. 

B. FUTURE WORK 

This thesis provides numerous related opportunities for future work. First, the 

above results are only valid for the scenario provided in Chapter IV. Additional 

experimentation using new parameters is needed to determine if any universal 

conclusions can be made about the relationships presented here. For example, our 

simulation could be used to determine whether the range for the utilization factor is 

consistent across different scenarios or whether the range is dependent upon the 

individual parameters of the system (i.e., interarrival rate, number of machines and 

service rate)? The time to compute a schedule was negligible in this research. Yet to be 

analyzed is how the relationships change when the number of machines and jobs are very 

large and the time to compute a schedule is comparable to the time to service a job. This 

research then leads to the need for more study into how different scheduling algorithms 

affect the relationships presented here. Additionally, the effect of operating in different 

matrix heterogeneity categories needs to be further researched. Adding rescheduling to 

the simulation and analyzing the related costs and benefits also remains a consideration. 

Refining the simulation to more finely model the operating system ready and waiting 

queues would be beneficial. Finally, when the final QoS metric is defined for a particular 

environment in which MSHN will be used, the simulation could be altered to incorporate 

this metric, and any associated scheduling heuristics, to determine the cost tradeoff 

relationship for grouping jobs in that environment. 
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APPENDIX A: ACRONYMS AND SYMBOLS 

AE Application Emulator 
C2 Command and Control 
C4I Command, Control, Communications, Computers, and Intelligence 
CPU Central Processing Unit 
DARPA Defense Advanced Research Projects Agency 
DES Discrete Event Simulation 
DoD Department of Defense 
ETC Expected Time for Completion 
G Group Size 
HC Heterogeneous Computing 
I/O Input and/or Output 
IDE Integrated Development Environment 
IE) Independent, Identically Distributed 
J Number of Jobs 
JVM JAVA Virtual Machine 
M Number of machines 
MB Megabyte 
Mb/s megabit/sec 
MHz Megahertz 
ms millisecond 
MSHN Management System for Heterogeneous Networks 
NCCOSC Naval Command, Control, and Ocean Surveillance Center 
NFS Network File System 
NPS Naval Postgraduate School 
OLB Opportunistic Load Balancing 
OS Operating System 
QoS Quality of Service 
r System Response Time 
RMS Resource Management System 
RRD Resource Requirements Database 
RSS Resource Status Server 
s Resource Service Time 
SA Scheduling Advisor 
U(0,1) A variate U that is uniformly distributed between 0 and 1. 
VHM Virtual Heterogeneous Machine 
X Job Arrival Rate 

M- Resource Service Rate 

P Utilization Factor 
T Job Interarrival Time 
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APPENDIX B: SOURCE CODE FOR SIMULATION MODEL 

1.  Source Code for class AssignContainer 

I /*****+************+******** *************************************************** 

// AssignContainer Class - MSHN_Sched 
// 
// Major James Breitingerr USMC and Dr. Taylor Kidd 
// Naval Postgraduate School 1999 
// http://www.mshn.org 
M***************************************************** *^*******^**^****^ 

/** 

* AssignContainer Class holds the data for job assignments determined from 
* the scheduler which can later be written to the job as it leaves the scheduler 
* 

* ©author Major James Breitinger. USMC 
7 

public class AssignContainer { 

/** 

* Holds the machine assignment 
*/ 
public int machine; 

/** 

■* Holds the etc determined from the ETC matrix 
*/ 

public int etc; 

/** 

* Holds the tobeScheduled flag 
*/ 
public boolean flag; 

/** 

* Default Constructor for AssignContainer 
V 
public AssignContainer () 
{ 

machine = 0; 
etc = 0; 
flag = true; 

} 
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* Double int constructor and flag value for AssignContainer 
* 

* ©param m machine number for assignment 
* ©param e etc value from ETC Matrix and schedule 
* ©param f flag value (true - needs to be scheduled, false - scheduled) 

*/ 

public AssignContainer (int m, int e, boolean f) 

{ 
machine = m; 
etc = e; 
flag = f; 

} 

* convert the AssignContainer into a string representation 
*/ 

public String toString() 

return ("Machine assigned: "+machine+" ETC value: "+etc+" Flag: "+flag); 
} 

} 

2.  Source Code for class ETCMatrix 

//    ETCMatrix Class - MSHN_SILK 
// 
//   Major James Breitinger, USMC and Dr. Taylor Kidd 
//    Naval Postgraduate School 1999 
//    http://www.mshn.org 
//******************************************************************************/ 

import com.threadtec.silk.random.*; 
import java.util.Random; 
import java.io.*; 
import java.lang.Math; 
import Simulation; 

// ETCMatrix class derived from superclass QoSMatrix 

* ETCMatrix Class builds an Expected Time to Compute matrix to be used for 
* scheduling by the SA Resource. Can also display matrix and write to a file 
* (these lines of code are commented out by default). 
* 

* ©author Major James Breitinger, USMC. 
Standard ETC adapted from code by LT Mike Niedert, USN. 
HiLo ETC adapted from code by Mr. Shoukat Ali, Purdue University. 
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7 
public final class ETCMatrix extends QoSMatrix { 

/** 

* file for Matrix output 
7 

private FileOutputStream output; 

* writer for Matrix output 
7 

private BufferedWriter out; 

/** 

* Constructor for class ETCMatrix 
* 

* ©param rows number of rows in matrix 
* @param columns number of columns in matrix 
* @param seed seed value for random number generator 
7 

public ETCMatrix (int rows, int columns) 
{ 

super(rows, columns); 
} 

* Constructor for class ETCMatrix 
* 

* ©param rows number of rows in matrix 
* @param columns number of columns in matrix 
* ©param seed seed value for random number generator 
* ©param file file name for matrix output 
7 

public ETCMatrix (int rows, int columns, String file) 
{ 

super(rows, columns); 
try{ 

// Create a file object and an input stream object for the file 
output = new FileOutputStream(file); 
out = new BufferedWriter(new OutputStreamWriter(output)); 

} 
catch(IOException e) // File write exception 
{ 

System.err.println(" Error writing to file" + e); 
System.exit(l); //End the program 

} 
} 
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//GENERATE THE ETC MATRIX 

* Generates a matrix of random integers between 1 and 100 
7 

public intrjQ generate() 
{ 

RandomStream ranETC = new RandomStream(); 
int ETCQQ = new int[getJobs()][getMachines()]; 

for(int job = 0; job < getJobs(); job++) { 
for(int machine = 0; machine < getMachines(); machine++) { 

ETC[job][machine] = (int)(ranETC.random()*100 + 1); 
} 

} 
return ETC; 

}//END METHOD "generateETC" 

// Generate a HiLo matrix 

/** 
* Generates an inconsistent HiLo matrix 
7 ■ 

public intrjrj generateHil_o() 
{ 

double mean      = 100.0; // mean ETC value along column 
double job_het   = 0.5;   // heterogeneity between jobs 
double mach_het  = 0.1;   // heterogeneity between machines 
double j_alpha   = 1.0/(job_het*job_het); 
double j_beta    = mean/j_alpha; 
double j_std_dev = Math.sqrtü_alpha*(j_beta*j_beta)); 

Gamma gamJobMeanTime = new Gamma(mean,j_std_dev); 
double m_alpha        = 1.0/(mach_het*mach_het); 
double m_beta[]       = new double[Simulation.batchSize]; 
double jobMeanQ      = new doublefSimulation.batchSize]; 
double m_std_dev[]    = new doublefSimulation.batchSize]; 

for (int i = 0; i < Simulation.batchSize; i++) { 
jobMean[i]  = gamJobMeanTime.sample(); 
m_beta[i]   = jobMean[i]/m_alpha; 
m_std_dev[i] = Math.sqrt(m_alpha*(m_beta[i]*m_beta[i])); 

} 

int ETCöt] = new int[getJobs()][getMachines()]; 
for(int job = 0; job < getJobs(); job++) { 

/*System.out.println("Job #"+job+" Mean: "+(int)jobMeanfjob]+" Std Dev :" 
+(int)m_std_dev[job]);7 // for debugging 
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Gamma gamETC   = new GammaGobMean[job],m_std_dev[job]); 
for(int machine = 0; machine < getMachines(); machine++) { 

ETC[job][machine] = (int)gamETC.sample(); 
} 

} 
return ETC; 

}//END METHOD "generateHiLo" 

* Displays the ETC Matrix 
7 

public void display(int matrix[][]) 
{ 

System.out.printf'        "); 
for(int column = 0; column < getMachines(); column++) 
{ 

System.out.print("MACHINE #"+column+"   "); 
} 
System.out.println(); 
for(int row = 0; row < getJobs(); row++) 
{ 

System.out.print("JOB #"+row+"   "); 
for(int column = 0; column < getMachines(); column++) 
{ 

System.out.print(matrix[row][column]+" "); 
} 
System .out.println(); 

} 
System.out.println(); 

}// end display 

* Writes the ETC matrix to a file which is declared by user in 
* Simulation Class 
*/ 

public void write(int matrixQ[]) 
{ 

try 
{ 

out.write("        "); 
for(int column = 0; column < getMachines(); column++) 
{ 

out.write("MACHINE #"+column+"   "); 
} 
out.newLine(); 
for(int row = 0; row < getJobs(); row++) 
{ 

out.write("JOB #"+row+"   "); 
for(int column = 0; column < getMachines(); column++) 
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{ 
out.write(matrix[row][column]+" "); 

} 
out.newLine(); 

} 
out.newLine(); 
out.close(); 
output.close(); 

} 
catch(IOException e) // File write exception 
{ 

System.err.println(" Error writing to file" + e ); 
System.exit(1); // End the program 

} 
} 

} 

3.  Source Code for class InputFrame 

// InputFrame Class - MSHN_SILK 
// 
// Major James Breitinger, USMC and Dr. Taylor Kidd 
// Naval Postgraduate School 1999 
// http://www.mshn.org 
V/dt******************************************************* 

import java.awt.*; 
import java.awt.event.*; 

* A basic implementation of the Frame class 
* 

* ©author Major James Breitinger. USMC 
*/ 

public class InputFrame extends Frame implements ActionListener { 

private Label promptl = new Label(" Enter integer task batch size here:"); 
private TextField inputl = newTextField("10"); 
private Label prompt2 = 

new Label(" Enter integer number of machines here:"); 
private TextField input2 = new TextField("10"); 
private Label prompt3 = 

new Label (" Enter a float task interarrival time here:"); 
private TextField input3 = newTextField("6.0"); 
private Button submit = new Button("Submit"); 
private Panel one = new Panel(); 
private Panel two = new Panel(); 
private Panel three = new Panel(); 
private Panel topPanel = new PanelQ; 
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} 

private Panel four = new Panel(); 

/** 

* InputFrame constructor 
7 

public InputFrameO { 

super( "Input Simulation Parameters"); 
setBackground(Color.lightGray); 
setResizable( false); 
setLocation(150,250); 

one.setLayout(new Gridl_ayout(1,2)); 
one.add(promptl); 
one.add(inputl);- 

two.setLayout(new GridLayout(1,2)); 
two.add(prompt2); 
two.add(input2); 

three.setLayout(new GridLayout(1,2)); 
three.add(prompt3); 
three.add(input3); 

four.add(submit, BorderLayout.CENTER); 

topPanel.setl_ayout(new GridLayout(3,1)); 
topPanel.add(one); 
topPanel.add(two); 
topPanel.add(three); 

add(topPanel, BorderLayout.CENTER); 
add(four,BorderLayout.SOUTH); 

submit.addActionListener( this); 
pack(); 
setVisible( true); 

} 

public void actionPerformed (ActionEvent e) { 

Simulation.batchSize = Integer.parselnt(input1 .getText()); 
Simulation.numMachines = Integer.parselnt(input2.getfext()); 
Job.arrive = (Double.valueOf(input3.getText())).doubleValue(); 

dispose(); 

} 
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4.  Source Code for class Job 

// Job Class - MSHN_SILK 
// 
// Major James Breitinger, USMC and Dr. Taylor Kidd 
// Naval Postgraduate School 1999 
// http://www.mshn.org 
//* 

import com.threadtec.silk.*; 
import com.threadtec.silk.random.*; 
import com.threadtec.silk.statistics.*; 
import com.threadtec.silk.util.*; 

/** 

* Job Class drives the job entity thread as it traverses through the simulation 
* 

* ©author Major James Breitinger, USMC 
*/ 
public class Job extends Entity { 

* arrival time for each job 
7 
static Exponential expJoblnterArrivalTime = new Exponential(arrive); 

* holds arrival time of job for recording time in Queue 
7 

double attArvTime; 

r* 
* attribute of job for processing after scheduled 
7 
int machineAssign = 0; 

* expected time to execute from ETC matrix 
7 
double executeTime = 30.0; 

* Job Class process method used to model Entity behavior. 
7 
public void process () { 

// create next job arrival and assign arrival time to attribute 
create ( expJoblnterArrivalTime.sample()); 
attArvTime = time; 
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// wait for SA preload batching (Active SA resource entity will remove job from 
queue 
queue( queSA); 

// halt processing until activate method called from Active SA resource 
halt(); 

obsTimeWaitForSA.record( time - attArvTime ); 

// wait for SA cycle (Active SA resource entity will remove job from queue 
queue( queBatch); 

// halt processing until activate method called from Active SA resource 
halt(); 

/* 
System.out.println("This jobs assignment is: "+machineAssign 

+" for: "+executeTime); //for debugging 
7 

//wait for Machine cycle 
queue( queProcessorfmachineAssign]); 

//double attArvTimeProc = time; 

while ( condition( resProcessor[machineAssign].getAvailability() == 0 )); 

//obsTimeWaitForProcessor[machineAssign].record(time-attArvTimeProc); 

seize( resProcessorfmachineAssign]); // decrease availability 
dequeue( queProcessorfmachineAssign]); // remove Customer from queue 

// time delay: service time 
delay ( new Gamma(executeTime, 5.0).sample());   // delay for service 
release (resProcessorfmachineAssign]); // increase availability 
obsTimelnSystem.record(time - attArvTime); // record time in system 

// recycle object 
dispose(); 

} 
} 
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5.  Source Code for class MSHNjSched 

11******************************************************************************/ 

// MSHN_Sched Class - MSHN_SILK 
// 
// Major James Breitinger, USMC and Dr. Taylor Kidd 
// Naval Postgraduate School 1999 
//    http://www.mshn.org 
ii************************************************************************ 

import com.threadtec.silk.Silk; 
import com.sun.java.swing.JApplet; 

Every Silk project requires this distinguished class which 
instantiates a new <code>Silk</code> object for an application or applet. 

*/ 

public class MSHN_Sched extends JApplet { 

Silk mshnSilk; // Declare a variable mshnSilk of class Silk 

/** This method is the starting point of execution when 
the program is run as an application. */ 

public static void main (String args[]) { 
MSHN_Sched applicationSilk = new MSHN_Sched(); 
applicationSilk.start(); 

} 

/** When run as an applet, the browser calls this method 
when this class is first instantiated. */ 

public void init() { 
Silk.setApplet( this);   // mark program as an applet 

} 

/** When run as an applet, this method is called each time 
the page containing the applet is revisited. */ 

public void start () { 
System.out.println ("XnExecuting MSHN Schedule Simulation..An"); 
mshnSilk = new Silk(); 
mshnSilk.begin(); 

} 

/** When run as an applet, this method is called each time the 
page containing the applet is exited. */ 

public void stop () { 
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com.threadtec.silk.util.CleanUp.purgeAIIO; 
mshnSilk = null; 

} 

6.  Source Code for class QoSMatrix 

//   QoSMatrix abstract Class - MSHN_SILK 
// 
// Major James Breitinger, USMC and Dr. Taylor Kidd 
// Naval Postgraduate School 1999 
// http://www.mshn.org 

* QoSMatrix Class is abstract for other specific matrix classes to extend and 
* inherit from 
7 

public abstract class QoSMatrix { 

/** 

* the number of rows in the QoS matrix signifying the number of jobs 
V 
private int rows; 

/** 

* the number of columns in the QoS matrix signifying the number of machines 
*/ 

private int columns; 

/** 

* Constructor for QoSMatrix 
* 

* ©pararn jobs number of rows in matrix 
* @param machines number of columns in matrix 
*/ 

public QoSMatrix (int jobs, int machines) 
{ 

rows = jobs; 
columns = machines; 

} 
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* Returns the number of jobs 
*/ 
public int getJobs() 
{ 

return rows; 
} 

* Returns number of machines 
*/ 
public int getMachines() 
{ 

return columns; 
} 

/** 

* Abstract method that must be implemented for each derived class 
* of QoSMatrix from which objects are instantiated. 
* 

* ©return double subscripted array of int's representing matrix 
7 

abstract int[][] generate(); 

7.  Source Code for class SA 

//    SA Class - MSHN_SILK 
// 
//   Major James Breitinger, USMC and Dr. Taylor Kidd 
//   Naval Postgraduate School 1999 
// ' http://www.mshn.org 

import com.threadtec.silk.*; 
import com.threadtec.silk.random.*; 

r* 
* SA Class is an active resource that handles the scheduling process 
* 

* ©author Major James Breitinger, USMC 
*/ 
public class SA extends Entity { 

AssignContainer schedf] = new AssignContainer[batchSize]; 
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* Job Class entities being scheduled 
*/ 

static Job entJob = null; 

double attArrivalTime; 

* SA Class process method used to model Entity behavior. 
7 

public void process () { 

while (true) 
{ 

// build ETC Matrix for this batch 
ETCMatrix hiloMatrix = new ETCMatrix(batchSize,numMachines); 
//ETCMatrix hiloMatrix = new ETCMatrix(batchSize,numMachines,"matrices.dat"); 
int ETC[][] = hiloMatrix.generateHiLo(); 
//hiloMatrix.write(ETC);  // for debugging 
//hiloMatrix.display(ETC); //for debugging 

// start SA operation when SA queue exceeds specified batch size 
while( condition (queSA.getl_ength() < batchSize)); 

//*** delay to load SA 
seize( resSA); 

// record batchsize for this cycle 
obsBatchSize.record(batchSize); 

// *** remove jobs from SA queue 
for( int i = 0; i < batchSize; i++) { 

entJob = (Job)queSA.remove(1); 
entJob.activate(); 

} 

attArrivalTime = time; 

// *** delay for SA cycle to calculate schedule 

System.gc(); 
delay(maxminSchedule(sched,ETC)); 

obsTimetoSched.record(time - attArrivalTime); 

// *** remove jobs from SA (restart process for Job) 
for( int i = 0; i < batchSize; i++) { 

entJob = (Job)queBatch.remove(l); 
entJob.machineAssign = sched[i].machine; 
entJob.executeTime = (double)(sched[i].etc); 
entJob.activate(); 

} 
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//System.out.println("SA is done!"); //for debugging 

// *** start next cycle 
release( resSA); 

} 
} 

* Schedules each job to a machine based upon the min value in 
* the given matrix for each job 
* 
* ©return array of <code>AssignContainers</code> representing job assignments 
7 

public double minSchedule(AssignContainer[] sched, int[JD matrix) 

{ 
double tempTime = (double)System.currentTimeMillis(); 

for( int j = 0; j < matrix.length; j++) { 
int etc = matrix[j][0]; 
int machine = 0; 
for (int m = 1; m < matrix[j].length; m++) { 

if (matrix[j][m] < etc) { 
etc = matrix[j][m]; 
machine = m; 

} 
} 
sched[j] = new AssignContainer(machine, etc, false); 

} 

double temptime2 = (double)System.currentTimeMillis(); 
double CPUtime = (temptime2 - tempTime); 
return (double)CPUtime; 

} // end minSchedule 

* Schedules each job to a machine based upon the min value in each row of 
* the given matrix for each job and then assigns the maximum of those minimums 
* This algorithm in a greedy MAXMIN algorithm 
* 

* ©return array of <code>AssignContainers</code> representing job assignments 
7 

public double maxminSchedule(AssignContainerQ sched, int[][] matrix) 

AssignContainer intermediate!] = new AssignContainer[matrix.length]; 
int[][] temp = new int[matrix.length][matrix[0].length]; 
int etc = 0; 
int machine = 0; 
int assign = 0; 

double tempTime = (double)System.currentTimeMillis(); 
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// copy the matrix for revision 
for( int a = 0; a < matrix.length; a++) {// iterate throught the rows 

for( int b = 0; b < matrix[a].length; b++) {// iterate through the columns 
temp[a][b] = matrix[a][b]; 

} 
} 

// build default sched[] array 
for(int k = 0; k < matrix.length; k++) { 

sched[k] = new AssignContainer(); 
} 

// begin scheduling 
for( int s = 0; s < matrix.length; s++) {// do this for each job to be assigned 

for( int j = 0; j < matrix.length; j++) {// iterate through the rows 
if(sched[j].flag) {// only do tasks not scheduled 

etc = temp[j][0]; 
machine = 0; 
for (int m = 1; m < matrix[j].length; m++) {//iterate through the columns 

if (temp[j][m] < etc) { // find the min value for the row 
etc = temp[j][m]; 
machine = m; 

} 
} 
intermediate!]] = new AssignContainer(machine, etc, true); 

} 
} 

// iterate through the intermediate and find the max 
etc = 0; 
for(int i = 0; i < intermediate.length; i++) { 

if(sched[i].flag && intermediate[i].etc > etc) { 
etc = intermediate[i].etc; 
machine = intermediate[i].machine; 
assign = i; 

} 
} 
sched[assign] = new AssignContainer(machine,matrix[assign][machine],false); 

// revise the matrix with the new values from the assignment 
for (int k = 0; k < matrix.length; k++) { 

temp[k][machine] = temp[k][machine] + etc; 
} 

} 

double temptime2 = (double)System.currentTimeMillis(); 
double CPUtime = (temptime2 - tempTime); 

//System.out.printlnfThe time to schedule was: "+CPUtime+"ms"); //for debugging 
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return (double)CPUtime; 
} // end maxminSchedule 

} 

8.  Source Code for class Simulation 

/y**************************************** 

// Simulation Class - MSHN_Sched 
// 
// Major James Breitinger, USMC and Dr. Taylor Kidd 
// Naval Postgraduate School 1999 
// http://www.mshn.org 
//******************************************************************************/ 

// 
// Entity Objects 
//   Job 
//   SA 
// 
// Resource Objects 
//   SA - Scheduling Advisor (Active Resource) 
//    Processors[] - array of machines 
// 
II******* This class references classes included in the following files ********/ 

import com.threadtec.silk.*; 
import com.threadtec.silk.gui.*; 
import com.threadtec.silk.random.*; 
import com.threadtec.silk.statistics.*; 
import Java, io.*; 

/** 

* Simulation Class starts the simulation, loads the Control Console, and declares 
* the global variables needed in the simulation 
* 

* ©author Major James Breitinger, USMC 
7 

public class Simulation extends Silk { 

II *** Declarations performed here are global to all Entity classes 

* The size of the pool of jobs to be scheduled 
*/ 

public static int batchSize       =10; 

/** 

* The number of Machines in the heterogeneous environment where the pool 
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* of jobs are to be scheduled 
7 
public static int numMachines     =15; 

/** 
* The mean interarrival time for jobs arriving at the system 
7 

public static double        arrive =67.0; 

* The container for the pool of jobs waiting to be scheduled 
7 
public static Queue queBatch        = new Queue("Batch Container"); 

* The Queue holding the arriving jobs waiting to be scheduled 
7 
public static Queue queSA = new Queue("SA Queue"); 

/** 

* The array of queues holding jobs waiting to be processed on their assigned 
* machines 
7 

public static Queue queProcessorfJ; 

* The Scheduling Advisor resource needed to represent the scheduler 
7 
public static Resource       resSA = new Resource("SA"); 

* The array of machines for the jobs to be processed 
7 
public static Resource      resProcessor[]; 

// Observational Statistics 
public static Observational obsTimeWaitForSA = new Observational("Wait time for 

SA"), 
obsBatchSize    = new Observational("Batch Size"), 
obsTimetoSched  = new ObservationalfTime to Schedule"), 
obsTimelnSystem = new Observational("Time in System"); 
//obsTimeWaitForProcessorfl; 

public static TimeDependent tdSAUtil        = new 
TimeDependent(resSA.numBusy,"SA Utilization"), 

tdSAQueueLength = new TimeDependent(queSA.Iength,"SA 
Queue Length"); 

//public static TimeDependent tdMachUtil[], 
// tdMachQueueLengthQ; 
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I** 

* initializes variables needed for the simulation 

public void init () { 

queProcessor     = new QueuefnumMachines]; 
resProcessor     = new ResourcefnumMachines]; 
//obsTimeWaitForProcessor = new ObservationalfnumMachines]; 
//tdMachUtil       = new TimeDependent[numMachines]; 
//tdMachQueueLength = newTimeDependent[numMachines]; 

for(int i = 0; i < numMachines; i++) { 
queProcessor[i] = new Queue("Queue " + i); 
resProcessor[i] = new Resource("Resource " + i); 
//obsTimeWaitForProcessor[i] = new Observational("Wait time for Processor #"+i); 
//tdMachUtil[i]   = new TimeDependent 
//  (resProcessor[i].numBusy,"Processor #"+i+" Utilization"); 
//tdMachQueueLength[i] = new TimeDependent 
//  (queProcessor[i].length,"Processor #"+!+" Queue Length"); 

} 

SA entSA; 
Job entFirstJob; 
StatManager entStatManager; 

entFirstJob = (Job)newEntity( Job.class);     // create first instance of Job object 
entFirstJob.start( 0.0); // schedule initial arrival 

entSA = (SA)newEntity( SA.class); // create instance of SA object 
entSA.start( 0.0); 

entStatManager = (StatManager)newEntity( StatManager.class); 
entStatManager.start( 10000.0); 

} 

* Starts the simulation and initializes input frame 
7 
public void run () { 

setReplications( 30 ); 
setRunl_ength( 110000); 

InputFrame ijf = new lnputFrame(); 

setControlConsole( true); 

} 

} 
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9.  Source Code for class MSHN_Sched 

// StatManager Class - MSHN_SILK 
// 
// Major James Breitinger, USMC and Dr. Taylor Kidd 
// Naval Postgraduate School 1999 
// http://www.mshn.org 

import com.threadtec.silk.*; 
import com.threadtec.silk.statistics.*; 

r 
* StatManager Class resets the Simulation Statistics to allow the 
* Simulation to populate itself for realistic testing of a fully operating 
* system without "startup" latency 
* 

* ©author Major James Breitinger, USMC 
*/ 

public class StatManager extends Entity { 

/** 

* StatManager Class process method used for Entity behavior. 
7 

public void process () 
{ 

reSetStats(); 
dispose(); 

} 
} 
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APPENDIX C: JAVA DOCUMENTATION FOR SIMULATION MODEL 

1. MSHN.Sched API in HTML format 

MSHN Sched API 

MSHN_Sched Application Programming 
Interface 

User's Guide 
How the API Is Organized 
There are two levels to the API: 

• All Classes (within a package) 
• This Class (selected class). 

Level 1 - All Classes 
This level provides links to the classes and interfaces in a given package. There are three catogories in the 
listing: 

• Interfaces 
• Classes 
• Exceptions 

Level 2 - This Class/Interface 
This level begins with an index, followed by the detailed API. There are three categories at the class level. 

• Variables 
• Constructors 
• Methods 

A category is omitted when a class has no applicable entries. 
Within these categories there is additional color coding as follows: 

• Instance Variables 

• Static Variables 

• Constructors 

• Instance Methods 

• Static Methods 

How to Locate Items 
• To Browse A Class 

• Select a class from the list of All Classes. This list is the home page for the the 
MSHN_Sched API. 

• To Locate a Class 
• Use the searchable index tool. 
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• Select the class from the alphabetical index. 
• To Browse a Class 

• Use the Next/Previous anchors to browse alphabetically. 
• Or, traverse the links within the class. 

• To Locate a Method 
• Use the searchable index tool. 
• Or, scroll through the alphabetical class index to locate a method. 

A Closer Look at the Class-Level API 
Take a look at class MSHN_Sched. The navigational anchors are at the top. This is followed by the fully 
qualified class name and a representation of its position in the class hierarchy. 
The next entries are links to the superclass and the interfaces, if any. This is followed by a description of 

the class, taken from the class comment. Notice how the programmer has embedded some code samples 
using html tags. 
The author also chose to include a See Also entry to another class. Following the class-level entries for See 

Also, Version, and Author, the index begins. 

The Index 
Each class/interface begins with an index of its variables, constructors and methods, sorted alphabetically. 
The entry consists of the declaration and short description. The description is the first sentence of the doc 
comment for that item. The index entries are linked to their corresponding entries in the application 
programming inteface which immediately follows. 

The Detailed API 
The index is followed by the complete API for each entry. Within the three categories: Variables, 
Constructors, and Methods, the entries are presented in the order they appear in the source. This is done to 
preserve the logical groupings established by the programmer. 

Where Are All the Links in the API? 
• There are links in the class type of every method and variable definition. 
• At the top of each class/interface there is a drawing of the tree structure down to the current 

class/interface, in which each superclass is a link. 
• Every method contains a list of exceptions that it may throw. These are linked to the appropriate 

class. 
• The superclass and interface references at the beginning of the class are links. 
• Every See Also is a link. 
• When a method overrides a method in the superclass, the API has the entry "Overrides: foo in 

class bar." Both foo (the method name) and bar (the class name) are links. 
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2. Class Index in HTML format 

API User's Guide Class Hierarchy Index 

Class I tide* 
AssignContainer 
ETCMatrix 
InputFrame 
Job 
MSHN Sched 
QoSMatrix 
SA 
Simulation 
StatManager 

3. Class Hierarchy in HTML format 

All Classes  Index 

Class Hierarchy 
class java.lang.Object 

• class AssignContainer 
• class java.awt.Component (implements java.awt.image.ImageObserver, 

java.awt.MenuContainer, java.io.Serializable) 
• class java.awt.Container 

• class java.awt.Panel 
• class java.applet.Applet 

• class com.sun.java.swing.JApplet (implements 
com.sun.java.accessibility.Accessible, 
com.sun.java.swing.RootPaneContainer) 

•     class MSHN Sched 
• class java.awt.Window 

• class java.awt.Frame (implements java.awt.MenuContainer) 
• class InputFrame (implements 

java.awt.event.ActionListener) 
• class QoSMatrix 

• class ETCMatrix 
• class com.threadtec.silk.Silk (implements java.lang.Runnable) 

• class Simulation 
• class com.threadtec.silk.Entity 

• class Job 
• class SA 
• class StatManager 
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4. AssignContainer Class in HTML format 

Class AssignContainer 
j ava.lang.Obj ec t 

I 
+ AssignContainer 

public class AssignContainer 

extends Object AssignContainer Class holds the data for job assignments determined 
from the scheduler which can later be written to the job as it leaves the scheduler 

Author: 

Major James Breitinger, USMC 

Yariable Index. 
• etc 

Holds the etc determined from the ETC matrix 

• flag 

Holds the tobeScheduled flag 

• machine 

Holds the machine assignment 

Constructor Index. 
• AssignContainerQ 

Default Constructor for AssignContainer 

• AssignContainer(int, int, boolean) 

Double int constructor and flag value for AssignContainer 
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MePkod fa de*. 
toStringO 

convert the AssignContainer into a string representation 

yartables 
• machine 

public int machine 

Holds the machine assignment 
• etc 

public  int  etc 

Holds the etc determined from the ETC matrix 
• flag 

public boolean  flag 

Holds the tobeScheduled flag 

CotfsPnicPors 
• AssignContainer 

public AssignContainer() 

Default Constructor for AssignContainer 
• AssignContainer 

public AssignContainer(int m, 
int e, 
boolean f) 

Double int constructor and flag value for AssignContainer 

Parameters: 

m - machine number for assignment 

e - etc value from ETC Matrix and schedule 

f - flag value (true - needs to be scheduled, false - scheduled) 
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MePkodg 
•     toString 

public String toString() 

convert the AssignContainer into a string representation 

Overrides: 

toString in class Object 
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5. ETCMatrix Class in HTML format 

Class ETCMatrix 
j ava.lang.Obj ect 

-QoSMatrix 
I 
+. ETCMatrix 

public final class ETCMatrix 

extends QoSMatrix ETCMatrix Class builds an Expected Time to Compute matrix to be 
used for scheduling by the SA Resource. Can also display matrix and write to a file (these 
lines of code are commented out by default). 

Author: 

Major James Breitinger, USMC. 

Standard ETC adapted from code by LT Mike Niedert, USN. 

HiLo ETC adapted from code by Mr. Shoukat Ali, Purdue University. 

Constructor Index. 
• ETCMatrix(int, int) 

Constructor for class ETCMatrix 

• ETCMatrixfint int, String) 

Constructor for class ETCMatrix 

MePtod fade*. 
• disjplav(int[][]) 

Displays the ETC Matrix 

• generateQ 

Generates a matrix of random integers between 1 and 100 
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generateHJLoQ 

Generates an inconsistent HiLo matrix 

write(intnri) 

Writes the ETC matrix to a file which is declared by user in Simulation Class 

Cof/spruepors 
• ETCMatrix 

public ETCMatrix(int rows, 
int columns) 

Constructor for class ETCMatrix 

Parameters: 

rows - number of rows in matrix 

columns - number of columns in matrix 

seed - seed value for random number generator 

• ETCMatrix 

public ETCMatrix(int rows, 
int columns, 
String file) 

Constructor for class ETCMatrix 

Parameters: 

rows - number of rows in matrix 

columns - number of columns in matrix 

seed - seed value for random number generator 

file - file name for matrix output 

MePkodg 
»     generate 

public int[][] generate() 

Generates a matrix of random integers between 1 and 100 
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Overrides: 

generate in class OoSMatrix 
• generateHiLo 

public  int[][]   generateHiLo() 

Generates an inconsistent HiLo matrix 

• display 

public void display(int matrix[][]) 

Displays the ETC Matrix 
• write 

public void write(int matrix[][]) 

Writes the ETC matrix to a file which is declared by user in Simulation Class 
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6. InputFrame Class in HTML format 

Class InputFrame 
j ava.lang.Obj ect 

I   . 
+ java.awt.Component 

I 
+ java.awt.Container 

+ j ava. awt. Window 
I 
+ j ava. awt. Frame 

I 
+ InputFrame 

public class InputFrame 

extends Frame 

implements ActionListener A basic implementation of the Frame class 

Author: 

Major James Breitinger, USMC 

Constructor lüde* 
• InputFrameQ 

InputFrame constructor 

Method IrtdeK 
• actionPerformed(ActionEvent) 

CofisPruePors 
• InputFrame 

public  InputFrame() 

InputFrame constructor 
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Methods 
•     actionPerformed 

public void actionPerformed(ActionEvent e) 
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7. Job Class in HTML format 

Class Job 
j ava.lang.Obj ect 

I 
+ com.threadtec.silk.Silk 

I 
+ Simulation 

+ com.threadtec.silk.Entity 
I 
+ Job 

public class Job 

extends Entity Job Class drives the job entity thread as it traverses through the simulation 

Author: 

Major James Breitinger, USMC 

YdriaMe Index, 
arrive 

default mean arrival rate is 6.0 time units 

Co»sPmePor /tide* 
• JobO 

MePffod Ifide^ 
• processQ 

yariakhs 
Job Class process method used to model Entity behavior. 

•     arrive 

public static double arrive 

default mean arrival rate is 6.0 time units 
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CoftsPniePors 
• Job 

Methods 
public Job() 

• process 

public void process() 

Job Class process method used to model Entity behavior. 

Overrides: 

process in class Entity 
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8. MSHNJSched Class in HTML format 

Class MSHNJSched 
j ava.lang.Obj ect 

I 
+ j ava.awt.Component 

I 
+ java.awt.Container 

I 
+ java. awt. Panel 

+ java.applet.Applet 
I 
+ com.sun.java.swing.JApplet 

I 
+ MSHN Sched 

public class MSHNJSched 

extends JApplet Every Silk project requires this distinguished class which instantiates a 
new silk object for an application or applet. 

Constructor IndeK 
• MSHN SchedO 

MePtod IffdeK 
• initQ 

When run as an applet, the browser calls this method when this class is first 
instantiated. 

• main(String[]) 

This method is the starting point of execution when the program is run as an 
application. 

• startQ 

When run as an applet, this method is called each time the page containing the applet 
is revisited. 
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stopQ 

When ran as an applet, this method is called each time the page containing the applet 
is exited. 

Coftspruepors 
•     MSHN_Sched 

public MSHN_Sched() 

MePkods 
• mam 

public static void main(String args[]) 

This method is the starting point of execution when the program is run as an 
application. 

• init 

public void init() 

When run as an applet, the browser calls this method when this class is first 
instantiated. 

Overrides: 

init in class Applet 

• start 

public void start() 

When run as an applet, this method is called each time the page containing the applet 
is revisited. 

Overrides: 

start in class Applet 

• stop 

public void stop() 

When run as an applet, this method is called each time the page containing the applet 
is exited. 

Overrides: 

stop in class Applet 
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9. QoSMatrix Class in HTML format 

Class QoSMatrix 
j ava.lang.Obj ect 

I 
+ QoSMatrix 

public abstract class QoSMatrix 

extends Object QoSMatrix Class is abstract for other specific matrix classes to extend 
and inherit from 

Constructor Index. 
• OoSMatrix(int, int) 

Constructor for QoSMatrix 

Method Index. 
• getlobsQ 

Returns the number of jobs 

• getMachinesQ 

Returns number of machines 

Constructors 
• QoSMatrix 

public QoSMatrix(int jobs, 
int machines) 

Constructor for QoSMatrix 

Parameters: 

jobs - number of rows in matrix 

machines - number of columns in matrix 
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Methods 
• getjobs 

public  int getJobs() 

Returns the number of jobs 
• getMachines 

public  int getMachines() 

Returns number of machines 
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10. SA Class in HTML format 

Class SA 
j ava.lang.Obj ect 

I 
+ com.threadtec.silk.Silk 

I 
+ Simulation 

+ com.threadtec.silk.Entity 
I 
+ SA 

public class SA 

extends Entity SA Class is an active resource that handles the scheduling process 

Author: 

Major James Breitinger, USMC 

Constructor I tide* 
• SAO 

Method IrtdeK 
• maxminSchedule(AssignContainer[], int[][]) 

Schedules each job to a machine based upon the min value in each row of the given 
matrix for each job and then assigns the maximum of those minimums This algorithm 
in a greedy MAXMIN algorithm 

• minSchedule(AssignContainer[], int[][]) 

Schedules each job to a machine based upon the min value in the given matrix for 
eachjob 

• processQ 

SA Class process method used to model Entity behavior. 
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CofisPmcPors 
• SA 

public  SA() 

Methods 
• process 

public void process() 

S A Class process method used to model Entity behavior. 

Overrides: 

process in class Entity 

• minSchedule 

public double minSchedule(AssignContainer schedf], 
int matrix[][]) 

Schedules each job to a machine based upon the min value in the given matrix for 
eachjob 

Returns: 

array of Assigncontainers representing job assignments 

• maxminSchedule 

public double maxminSchedule(AssignContainer schedf], 
int matrix[][]) 

Schedules each job to a machine based upon the min value in each row of the given 
matrix for each job and then assigns the maximum of those minimums This algorithm 
in a greedy MAXMIN algorithm 

Returns: 

array of Assigncontainers representing job assignments 
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11. Simulation Class in HTML format 

Class Simulation 
j ava.lang.Object 

I 
+ com.threadtec.silk.Silk 

I 
+ Simulation 

public class Simulation 

extends Silk Simulation Class starts the simulation, loads the Control Console, and 
declares the global variables needed in the simulation 

Author: 

Major James Breitinger, USMC 

yariaMe lade* 

• batchSize 

The size of the pool of jobs to be scheduled 

• numMachines 

The number of Machines in the heterogeneous environment where the pool of jobs 
are to be scheduled 

• obsBatchSize 

• obsTimelnSvstem 

• obsTimetoSched 

• obsTimeWaitForSA 

• queBatch 

The container for the pool of jobs waiting to be scheduled 

• queProcessor 

The array of queues holding jobs waiting to be processed on their assigned machines 
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• queSA 

The Queue holding the arriving jobs waiting to be scheduled 

• resProcessor 

The array of machines for the jobs to be processed 

• resSA 

The Scheduling Advisor resource needed to represent the scheduler 

• tdSAOueueLength 

• tdSAUtil 

ConsPr/icPor IrtdeK 
• SimulationQ 

MePfiod Index 
• initO 

Initializes variables needed for the simulation 

• runQ 

Starts the simulation and initializes input frame 

yariahles 
• batchSize 

public static int batchSize 

The size of the pool of jobs to be scheduled 

• numMachines 

public static int numMachines 

The number of Machines in the heterogeneous environment where the pool of jobs 
are to be scheduled 

• queBatch 

public  static  Queue queBatch 

The container for the pool of jobs waiting to be scheduled 
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• queSA 

public static Queue queSA 

The Queue holding the arriving jobs waiting to be scheduled 
• queProcessor 

public  static Queue  queProcessor[] 

The array of queues holding jobs waiting to be processed on their assigned machines 

• resSA 

public static Resource resSA 

The Scheduling Advisor resource needed to represent the scheduler 

• resProcessor 

public static Resource resProcessor[] 

The array of machines for the jobs to be processed 
• obsTimeWaitForSA 

public static Observational obsTimeWaitForSA 

• obsBatchSize 

public static Observational obsBatchSize 

• obsTimetoSched 

public static Observational obsTimetoSched 

• obsTimelnSystem 

public static Observational obsTimelnSystem 

• tdSAUtil 

public static TimeDependent tdSAUtil 

• tdSAQueueLength 

public static TimeDependent tdSAQueueLength 

CoifsPruePors 
•     Simulation 

public Simulation() 
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Methods 
• init 

public void init() 

Initializes variables needed for the simulation 

Overrides: 

init in class Silk 
• run 

public void run() 

Starts the simulation and initializes input frame 

Overrides: 

run in class Silk 
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12. StatManager Class in HTML format 

Class StatManager 
j ava.lang.Object 

I 
+ com.threadtec.silk.Silk 

. I 
+ Simulation 

+ com.threadtec.silk.Entity 
I 
+ StatManager 

public class StatManager 

extends Entity StatManager Class resets the Simulation Statistics to allow the Simulation 
to populate itself for realistic testing of a fully operating system without "startup" latency 

Author: 

Major James Breitinger, USMC 

CoffsPfMCpor /tfdeK 
• StatManagerQ 

Method Itfdg* 

• processQ 

StatManager Class process method used for Entity behavior. 

Cotfspruepors 
• StatManager 

public  StatManager() 
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Methods 
•     process 

public void process() 

StatManager Class process method used for Entity behavior. 

Overrides: 

process in class Entity 
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13. Index of all Fields and Methods in HTML format 

All Classes     Class Hierarchy 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 

Index of all Fields and Methods 
A 
actionPerformed(ActionEvent). Method in class InputFrame 

arrive. Static variable in class Job 

default mean arrival rate is 6.0 time units 

AssignContainerQ. Constructor for class AssignContainer 

Default Constructor for AssignContainer 

AssignContainer(int, int, boolean). Constructor for class AssignContainer 

Double int constructor and flag value for AssignContainer 

B 
batchSize. Static variable in class Simulation 

The size of the pool of jobs to be scheduled 

D 
display(intnri). Method in class ETCMatrix 

Displays the ETC Matrix 

E 
etc. Variable in class AssignContainer 

Holds the etc determined from the ETC matrix 
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ETCMatrixfint int). Constructor for class ETCMatrix 

Constructor for class ETCMatrix 

ETCMatrix(int, int, String). Constructor for class ETCMatrix 

Constructor for class ETCMatrix 

F 
flag. Variable in class AssignContainer 

Holds the tobeScheduled flag 

G 
generateQ. Method in class ETCMatrix 

Generates a matrix of random integers between 1 and 100 

generateHiLoQ. Method in class ETCMatrix 

Generates an inconsistent HiLo matrix 

getTobsQ. Method in class QoSMatrix 

Returns the number of jobs 

getMachinesQ. Method in class QoSMatrix 

Returns number of machines 

I 
initO. Method in class MSHN Sched 

When run as an applet, the browser calls this method when this class is first 
instantiated. 

initO. Method in class Simulation 

Initializes variables needed for the simulation 

InputFrameQ. Constructor for class InputFrame 

InputFrame constructor 
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J 
JobQ. Constructor for class Job 

M 
machine. Variable in class AssignContainer 

Holds the machine assignment 

main(String[]). Static method in class MSHN Sched 

This method is the starting point of execution when the program is run as an 
application. 

maxminSchedule(AssignContainern, int[][]). Method in class SA 

Schedules each job to a machine based upon the min value in each row of the given 
matrix for each job and then assigns the maximum of those minimums This algorithm 
in a greedy MAXMIN algorithm 

minScheduIe(AssignContainern, int[][]). Method in class SA 

Schedules each job to a machine based upon the min value in the given matrix for 
eachjob 

MSHN SchedQ. Constructor for class MSHN Sched 

N 
numMachines. Static variable in class Simulation 

The number of Machines in the heterogeneous environment where the pool of jobs 
are to be scheduled 

o 
obsBatchSize. Static variable in class Simulation 
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obsTimelnSvstem. Static variable in class Simulation 

obsTimetoSched. Static variable in class Simulation 

obsTimeWaitForSA. Static variable in class Simulation 

P 
processQ. Method in class Job 

Job Class process method used to model Entity behavior. 

processQ. Method in class SA 

S A Class process method used to model Entity behavior. 

processQ. Method in class StatManager 

StatManager Class process method used for Entity behavior. 

Q 
QoSMatrixQnt, int). Constructor for class QoSMatrix 

Constructor for QoSMatrix 

queBatch. Static variable in class Simulation 

The container for the pool of jobs waiting to be scheduled 

queProcessor. Static variable in class Simulation 

The array of queues holding jobs waiting to be processed on their assigned machines 

queSA. Static variable in class Simulation 

The Queue holding the arriving jobs waiting to be scheduled 
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R 
resProcessor. Static variable in class Simulation 

The array of machines for the jobs to be processed 

resSA. Static variable in class Simulation 

The Scheduling Advisor resource needed to represent the scheduler 

runQ. Method in class Simulation 

Starts the simulation and initializes input frame 

s 
SAO. Constructor for class SA 

SimulationQ. Constructor for class Simulation 

startO. Method in class MSHN Sched 

When run as an applet, this method is called each time the page containing the applet 
is revisited. 

StatManagerQ. Constructor for class StatManager 

stopQ. Method in class MSHN Sched 

When run as an applet, this method is called each time the page containing the applet 
is exited. 

T 
tdSAQueueLength. Static variable in class Simulation 

tdSAUtil. Static variable in class Simulation 
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toStringQ. Method in class AssignContainer 

convert the AssignContainer into a string representation 

w 
writeCintfin). Method in class ETCMatrix 

Writes the ETC matrix to a file which is declared by user in Simulation Class 
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APPENDIX D: HOW TO RUN THE SIMULATION 

In order to run the simulation, your environment must first be set properly. 

Because the Silk simulation tool is designed for JAVA 1.1.8 and earlier, the primary 

reason for setting the environment is to have the JAVA CLASSPATH point to where the 

Silk, jar and swingalll03 .jar files are located. I recommend both of these 

files be located in a directory called SILK. If an Integrated Development Environment 

(IDE) is used to modify the simulation classes, then the CLASSPATH can be set from 

within the environment tool and the simulation run from within the IDE. The KAWA 

3.22 development tool for Windows was used to write and compile the JAVA classes for 

this thesis. 

Silk can also be configured to work across a network through the use of a web 

browser. This involves the additional configuration of the browser. Unless the 

simulation is at some point changed to include JAVA Swing animation, I do not 

recommend using a browser. However, additional information on this topic can be found 

at http://www.threadtec.com/demos.html. 

The simulation can be started from either an IDE or from a command prompt. 

You launch the program from within the directory where the simulation "CLASS" files 

are located by typing j ava MSHN_Sched. For example, on my machine at NPS, I 

would type D: \thesis\mshn_silk\ java MSHN_Sched. 

Because Windows NT does not provide resolution down to the millisecond, I ran 

the simulation on caesar, our Silicon Graphics Challenge L. Setting the environment on 

this machine was slightly different than above. Before running the simulation, first copy 

the simulation CLASS files to a directory on caesar and then copy the Silk, jar and 

swingall 103 .jar files to a directory named Silk. Then alter the . login file in 

the "HOME" directory by adding the following lines: 

setenv JAVA_HOME /usr/java 
setenv CLASSPATH .:$HOME/Silk/Silk.jar:$HOME/Silk/swingalll03.jar 

Once completed, the program is started the same as under a Windows system described 

above. 

The first screen to appear as the simulation starts is the Silk academic use license. 

Select "ACCEPT" and this screen disappears. 
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»; Academic Use License i'iQ 
Academic Use License 

To proceed, you must agree to all terms of this license; 

Basic Silk 1.2 
Academic Use License 
ThreadTec, Inc. 

ON-LINE END USER BINÄR? CODE ACADEMIC USE LICENSE AGREEMENT 
Copyright and Trademark Information. 

(c) 1998 ThreadTec, Inc. All rights reserved. Protected by copyright 
and 
licenses restricting use, copying, distribution and decompilation. Sj 
Ik is a 
trademark of ThreadTec,   Inc.   in the United States and other countries 

LICENSE TO USE  THE SOFTWARE: 
JÖU AGREE  TO  BE  BOUND  B? THE FOLLOWING TERMS  AND  CONDITIONS: 

eftccept Decline 

Next the Silk logo appears and vanishes after a few seconds. 

I***-   -/   '   -        ,»%*- — : —— 
version L2 

ThreadTec. Inc. Copyright'^ ?i 997-98 

The next screens to appear are the Input screen and the Control Console. 
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a]  input Simulation Parameters 

I Enter integer task batch size here: | 10 

i Enter integer number of machines here:   j 15 

Enter a float task interarrival time here:     67.0 

Submit! 

iUUUHimiiiiHiMimlim 

The input screen is used to input the system parameters for the simulation. The "Submit" 
button must be clicked prior to starting the simulation from the control console. 

\ command     view      Look&feel 

Cönt&tfMohsofe o 
M 

10000.C P.0QOÖOQOH 

Altering the number in the first window of the control console changes the amount of 

simulation time for the run and the number of runs completed can be altered by changing 

the second window. The simulation is started by either selecting RUN from the 

COMMAND drop-down menu or by clicking the right-facing arrow on the console. 

When the run is complete, the statistical results are automatically displayed in the 

Summary Output window. Altering the variables to be watched in the simulation model 

code changes the types of data recorded in the summary output. Refer to the Silk 

documentation to make these changes. In order to record the results from the Summary 

Output screen, you must first cut-and-paste the data to a text file. 

Because the simulation is built entirely from JAVA code, a knowledge of JAVA 

programming, the Silk documentation included with the Silk tool, and the documentation 

in APPENDIX B are all that is necessary to alter the objects in or output from the 

simulation. 
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