
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

REQUIREMENTS ANALYSIS AND DESIGN OF A
DISTRIBUTED ARCHITECTURE FOR THE

COMPUTER AIDED PROTOTYPING SYSTEM
(CAPS)

by

Gary L. Kreeger

September 1999

Thesis Advisor: Man-Tak Shing

Approved for public release; distribution is unlimited.

19991126 108

'"^saS

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1999

REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE: REQUIREMENTS ANALYSIS AND DESIGN OF A
DISTRIBUTED ARCHITECTURE FOR THE COMPUTER AIDED PROTOTYPING
SYSTEM (CAPS)

6. AUTHOR(S) Kreeger, Gary L.

FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT:
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE:

13. ABSTRACT (maximum 200 words)

The Computer Aided Prototyping System (CAPS) developed at the Naval Postgraduate School is a
powerful Computer Aided Software Engineering (CASE) tool for examining requirements and timing constraints
for hard real-time systems. However, it remains a stand-alone system. Even if it is running on machines in
multiple locations, there is no way to coordinate the efforts between the different locations. In today's software
development environment, that proves to be a significant disadvantage. Additionally, providing support for more
than just hard real-time software development would tremendously enhance CAPS.

Our analysis details the requirements needed to make a distributed CAPS feasible. A distributed CAPS
functioning over a network in a coordinated manner would be an invaluable asset to those developing software
today, especially in the Department of Defense (DOD). Our work also produced an initial design architecture
based on a three tiered client-server model and utilizing Java and the Common Object Request Broker
Architecture (CORBA). The Java/CORBA combination greatly simplifies deploying a distributed CAPS over any
heterogeneous network. Our preliminary implementation of CAPS with a NT client and a Solaris server
demonstrates the efficacy of this design.

14. SUBJECT
Software Engineering, Distributed Applications, Computer Aided Prototyping, CORBA

15. NUMBER OF
PAGES 183

16. PRICE CODE
17. SECURITY CLASSIFICA-

TION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

THIS PAGE INTENTIONALLY LEFT BLANK

11

_:7^

Approved for public release; distribution is unlimited.

REQUIREMENTS ANALYSIS AND DESIGN OF A DISTRIBUTED
ARCHITECTURE FOR THE COMPUTER ADDED PROTOTYPING

SYSTEM (CAPS)

Gary L. Kreeger
Commander, United States Navy

B.A., Austin College, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1999

Author:

Approved by: ^L,
Man-Tak Shing, Thesis Advisor

Uf^Q.
Chris Eagl«. Second Reader

fll-C
Dan Boger, Chair

Computer Science Department

in

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

The Computer Aided Prototyping System (CAPS) developed at the Naval

Postgraduate School is a powerful Computer Aided Software Engineering

(CASE) tool for examining requirements and timing constraints for hard real-time

systems. However, it remains a stand-alone system. Even if it is running on

machines in multiple locations, there is no way to coordinate the efforts between

the different locations. In today's software development environment, that proves

to be a significant disadvantage. Additionally, providing support for more than

just hard real-time software development would tremendously enhance CAPS.

Our analysis details the requirements needed to make a distributed CAPS

feasible. A distributed CAPS functioning over a network in a coordinated manner

would be an invaluable asset to those developing software today, especially in

the Department of Defense (DOD). Our work also produced an initial design

architecture based on a three tiered client-server model and utilizing Java and

the Common Object Request Broker Architecture (CORBA). The Java/CORBA

combination greatly simplifies deploying a distributed CAPS over any

heterogeneous network. Our preliminary implementation of CAPS with a NT

client and a Solaris server demonstrates the efficacy of this design.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1
B. THESIS OBJECTIVES 3

1. Requirements for a Distributed CAPS .4
2. Design Issues for a Distributed CAPS 5

II. BACKGROUND 9

A. WHY PROTOTYPE AT ALL? 9
1. The Waterfall Method 10
2. The Spiral Model 13
3. Summary of Prototyping Goals 15

B. THE EVOLUTION OF PROTOTYPING SYSTEMS 16
1. Automatic Code Generators 16
2. Requirements Specification Systems 17
3. Executable Specification Language 17
4. Megaprogramming Systems 18
5. Prototyping Languages 18
6. Computer Aided Software Engineering (CASE) Tools 19
7. Prototyping Systems Summary 20

C. CAPS DEVELOPMENT 21
D. PROTOTYPING RISKS 22
E. THE FUTURE 22

III. REQUIREMENTS ANALYSIS FOR DEPLOYING CAPS IN A
DISTRIBUTED ENVIRONMENT 25

A. CREATING A WELL DESIGNED SYSTEM 25
1. UML Overview 25

a. Visualizing 26
b. Specifying 26
c. Constructing 26
d. Documenting 27

2. Using UML to Redesign CAPS 27
B. METHODOLOGY SPECIFICS 28

1. System Functions 28
2. Use Cases 28
3. Conceptual Model 29

C. REQUIREMENTS ANALYSIS RESULTS 30
1. Functional Requirements 30
2. High-level Use Cases 35
3. Expanded Uses Cases 41
4. Conceptual Diagrams 42

vii

IV. ARCHITECTURAL DESIGN FOR CAPS IN A DISTRIBUTED
NETWORK 49

A. DEFINING THE CAPS CLIENT-SERVER ARCHITECTURE 49
1. A Three Tier Client-Server Design 50
2. Component Responsibilities 50

B. IMPLEMENTING THE CAPS CLIENT-SERVER ARCHITECTURE 51
1. The Selection of Java 52
2. The Selection of CORBA 52

a. CORBA Description 53
b. CORBA Advantages for a Distributed CAPS 57

V. A DISTRIBUTED CAPS PROOF OF CONCEPT IMPLEMENTATION 61

A. PRODUCT CHOICES FOR IMPLEMENTATION 61
B. IMPLENTATION DECISIONS 62

VI. CONCLUSIONS AND FUTURE WORK 67

APPENDIX A: EXPANDED USE CASES 71

APPENDIX B: CAPS SERVER IMPLEMENTATION SOURCE CODE 93

APPENDIX C: IDL-TO-JAVA COMPILER GENERATED SOURCE CODE.... 105

APPENDIX D: MODIFIED HSI SOURCE CODE 125

APPENDIX E: ACRONYMS 165

LIST OF REFERENCES 167

INITIAL DISTRIBUTION LIST 169

vm

LIST OF FIGURES

Figure 2.1 The Importance of Early Requirement Validation Figure 11

Figure 2.2 Types of Errors in Requirements 12

Figure 2.3 Spiral Model 14

Figure 3.1 Conceptual Diagram - Network Support 44

Figure 3.2 Conceptual Diagram - Reuse Support 45

Figure 3.3 Conceptual Diagram - Management Support 46

Figure 3.4 Conceptual Diagram - Execution 47

Figure 3.5 Conceptual Diagram - User Inputs 48

Figure 4.1 OMG Reference Model Architecture 54

Figure 4.2 CORBA ORB Architecture 55

IX

THIS PAGE INTENTIONALLY LEFT BLANK

x

LIST OF TABLES

Table 3.1 User Input Functions-Requirements Analysis 30

Table 3.2 User Input Functions-System Modeling/Specification 31

Table 3.3 User Input Functions-Prototype Development 31

Table 3.4 User Input Functions-Reuse 32

Table 3.5 System Administration 33

Table 3.6 Network Support 33

Table 3.7 Project Management 34

Table 3.8 Conceptual Diagram Components 42

XI

THIS PAGE INTENTIONALLY LEFT BLANK

Xll

ACKNOWLEDGEMENTS

I would like to sincerely thank Professor Man-Tak Shing and LCDR Chris

Eagle for all their great ideas and guidance and for always having time to talk. I'd

like thank Erik and Lamb for making me laugh when I always needed to. Last, I

want to give my deepest appreciation to Katie for her unyielding support which

made this thesis possible.

Xlll

I. INTRODUCTION

In recent years, more and more attention has been placed on developing better

methods for the production of software. This results from the fact that hardware has

simultaneously dropped in price dramatically and increased in performance while

software has continued to be plagued by cases of bug prone productions, incomplete

designs that don't function as desired and in some high profile incidents, software

projects that had to be abandoned as hopeless. Often the culprit in these cases is a

poor understanding of the user's requirements. This leads to incomplete or erroneous

functionality in a software system that, with traditional methods, remains undiscovered

until near the end of development when the user sees a working product for the first

time. At this point, it is difficult and very expensive to correct requirement deficiencies.

This situation led to the concept of prototyping software systems early in development

so that requirements could be validated in time to easily make changes before problems

became too deeply rooted. The first prototypes were largely coded manually. This

made timely analysis difficult. Today, technology has matured to the point that

automatic generation of prototypes is not only feasible but practical as well [CHAV95] .

As the software development process has become more and more distributed, a need

has arisen for distributed prototyping tools.

A. BACKGROUND

In the traditional waterfall method of software development, requirements

analysis and subsequent design were done before little, if any, actually coding was

done. This helped to preclude the analysis and design being unduly influenced by

implementation constraints or biases. However, the draw back was that once

promulgated, these decisions tended to be seen as set in stone. Even if they were

reviewed later in the development cycle, it was difficult to update them. The major

drawback though was that the customer only saw their requirements on paper. Possibly

they had some conceptual drawings of an interface, but clearly that was not interactive

at all. This led to customers who didn't get hands-on experience with their product until

some sort of alpha version was developed. At this point the project was nearing

completion and making fundamental changes, even simple ones, was very difficult. The

result was expensive software that did not perform as the customer actually wanted it to

and was probably delivered late. Clearly there had to be a better way to develop

software.

That better way is prototyping. The idea is simple but powerful. Take the

customer's requirements and create executable models to allow customers to clarify the

desired system functionality. The tremendous advantage of this was the customer had

a model not drawn on paper but one that could be interacted with on the computer. The

developer could use a prototype to help explain the system design to the customer.

Customer feedback was immediate and clarification of requirements by the customer

much clearer. Since the investment of time and effort to produce a prototype was

relatively small and it was early in the development process, changes that the customer

wanted were easily accommodated. However, the prototype was still largely a hand-

coded product. In order to reach its full potential, prototyping would have to become

even more timely.

Automation was the only way for prototyping, to become timelier. This necessity

led to the development of the Computer Aided Prototyping System (CAPS) at the Naval

Postgraduate School [LUQI88a,LUQI96]. The goal of CAPS is to improve the efficiency

and accuracy of evolutionary software development by providing tools that make it

possible for the developer to quickly and systematically construct and execute

prototypes [DAMP92]. Much effort has gone into achieving the goal of automating the

prototyping process and the results thus far are impressive. However, the biggest

drawback to wider use of CAPS is that it remains a local system. This makes it difficult,

if not impossible, to coordinate a large project with many designers. The reality of

software production today is that a team that is geographically dispersed will most likely

carry out the development of any particular system. Thus to unlock the full potential of

CAPS, it is necessary to implement it in a distributed, network environment.

B. THESIS OBJECTIVES

A significant amount of research has gone into developing CAPS. However,

today CAPS is implemented on a stand alone UNIX system. This arrangement has

served the research done to date quite well. To unlock the potential that exists in CAPS

though, it must become more versatile. This means making CAPS available to a wider

client base and this requires distributing it over a network. That could be simply a local

area network (U\N) but that would only be a half step. It should also be deployable

over a wide area network (WAN) since more and more collaborators on projects are

located over physically remote sites. Any discussion about a LAN or especially a WAN

must first acknowledge the certainty that the network will be heterogeneous. Thus

many of the assumptions made when CAPS was a stand-alone system will no longer be

valid.

Any architecture and subsequent implementation of CAPS on a network will have

to address many requirements. The high reliability required in a prototyping system

such as CAPS will be an even greater challenge in a distributed environment. Isolating

errors in a stand-alone system is relatively easy when compared to the same process in

a distributed environment. As the distributed environment grows, high availability

becomes more important. Since the network is sure to be heterogeneous, the

correctness of the system will depend on maintaining the consistency and integrity of

the data as it is passed throughout an environment that includes a variety of operating

systems, machine hardware and programming languages.

These are only a few of the more obvious obstacles to providing a distributed

implementation of CAPS. Some of the problems will have straightforward, readily

available answers. But due to the uniqueness of CAPS, many will not. Thus a

comprehensive requirements analysis is imperative if CAPS is to be successfully

deployed in a distributed environment.

1. Requirements for a Distributed CAPS

With CAPS operating on a stand-alone UNIX system, it is possible to make many

simplifying assumptions. Consequently, much of the current design will have to be

reexamined. However, distributing CAPS is more complicated than simply taking the

current system and putting it on a network. Before creating a design and architecture,

the requirements themselves must be reevaluated. It is possible, indeed almost certain,

that adapting CAPS to a distributed environment will alter many of the requirements that

led to the creation of CAPS. Below are characteristics that need to included in the

requirements analysis for distributing CAPS.

What will be the nature of the actual physical environment? The degree of

transparency must be decided. It is assumed that any distributed network will be

heterogeneous but that doesn't mean that it will necessarily support any hardware or

operating system that is connected to the network. Exactly what will be supported must

be determined. Will it be installed on a LAN, WAN or some other network design? The

amount of fault tolerance must be considered. System performance encompasses

several issues. What is the minimum system hardware requirement to be enforced?

The amount of latency that can be tolerated will affect the design and must be

determined. Is scalability important to a distributed CAPS? It may be possible to

decide that there are practical limits to the size of any useful implementation. As with

any distributed system, security becomes a much bigger concern. Certainly cost is a

consideration if you want to widely deploy any system, as is ease of use. Ease of use

will also include questions about the effectiveness of training. A key requirement will be

the constraints placed on what language reusable components can be written in. The

healthy population of the database of reusable components is critical to CAPS reaching

its full potential, thus the impediments to achieving that goal should be as few as

possible.

2. Design Issues for a Distributed CAPS

The nature of the distributed architecture will determine many of the design

specifics. What type of architecture is best for CAPS? The architecture can be

centralized, replicated throughout the network, or something in between. One of the

most fundamental design questions deals with how to handle components. This is

much more complicated and less straightforward than in an undistributed system. How

different components communicate with each other must be decided and will be

affected by where they are located. Closely associated with the question of

communication is what degree of mobility components will have and how they will be

synchronized. Components are not the only entities that must specify their behavior in

a distributed environment. Data itself is severely influenced by the architectural design.

What sort of access will users have to data in a distributed CAPS? It can be shared,

distributed or some form of shared-distributed [PROT96]. The details of how persistent

storage will operate must be consistent with the handling of data.

There is a collection of other design questions to be answered in addition to how

components and data will behave. The mechanism for creation and subsequent

destruction of process and threads must be specified. This must accommodate not only

a distributed environment but the possibility of multi-processor machines within the

network. With processes and data distributed throughout a network, provisions must be

made for handling distributed exceptions. At the management level, distributed CAPS

must provide for version control and merging of distributed data. The strategy for

dealing with both of these functions will be critical to successfully distributing CAPS. It

will be futile to take advantage of the improved productivity offered by distributing CAPS

if a coherent, correct prototype is not the ultimate product.

A final consideration throughout the design process will be how or whether to

reuse parts of the existing CAPS system. Clearly, some of it must be radically

reengineered to support operations in a distributed network. However, much of the

current system may be useable in a distributed environment. Deciding what to keep

unchanged and what to alter will be a constant balancing act. Any design must weigh

the performance improvement associated with any change to the existing system

against the cost of implementing that change.

THIS PAGE INTENTIONALLY LEFT BLANK

II. BACKGROUND

The history of software prototyping shares many similarities with the larger

subject of software engineering, and indeed with most emerging technologies. It has

been the source of great debate and confusion as software engineers sought to define

exactly what it was and how best to use it. Indeed, the debate and research continues

unabated into what exactly constitutes the best way to prototype and how to use it most

effectively. The one point that most software engineers agree upon is that the larger,

increasingly complex systems of today can be more efficiently produced with the aid of

prototypes. Thus, before looking too far into the future it would be valuable to take a

look at the past and how we got to where we are today in working with software

prototypes.

A. WHY PROTOTYPE AT ALL?

As computer languages came into existence, a rather simple method of

developing software emerged. It was simply code and fix. A programmer would sit

down and write a program, run it and then try to fix the things that didn't work. This

approach was sufficient for small, relatively uncomplicated programs. But just as

structured programming emerged to bring some cohesion to writing computer programs

and in turn was replaced by the object oriented paradigm, the code and fix method of

developing software systems was destined to fall by the way side. As systems became

more complicated and ever larger, one person was no longer able to do the amount of

work required. The amount of work was even more than small groups of software

engineers and programmers could handle. As more people became involved in the

process, it became clear that a better process was needed to create software systems.

This led to the waterfall model of software development.

1. The Waterfall Method

The waterfall model, defined by Royce [ROYC76] and refined by Boehm

[BOEH76], introduced some rigor and discipline to the development process. No longer

was code written in isolation from the bigger picture of what the system should actually

do and then tested to see where it didn't work. Instead, the process was partitioned into

well-defined development phases. Now there would be a comprehensive investigation

to determine the requirements of the system, followed by design, implementation and

finally testing before a system was released. In theory, this systematization of the

process of producing software systems would result in improved productivity and better

systems. To a large degree it succeeded in achieving the desired results. However, as

systems continued to swell in size and complexity, it became clear that there existed

some serious shortcomings with the waterfall method as well.

Foremost amongst these is the need to establish the requirements for the

systems at the beginning of the development process. This is true for several reasons.

Customers may not know exactly what they want the final system to really do or they

may not clearly define their needs to the developers. Also, requirements can change

due to alterations in the environment that the system will operate in, even while the

system is being developed. Also, during system development, requirements can

emerge that were overlooked or unanticipated initially. Whatever the reasons for

changing, incomplete or missing requirements, one thing was for certain. Inaccurate

requirements, left unchecked, propagated throughout the entire system and resulted in

software systems that were late, over budget and performed poorly. Sometimes entire

10

projects were abandoned as beyond salvaging, as it became clear that they would

never perform as expected. As seen in Figures 2.1 and 2.2, most of the problems

experienced by systems result from inadequacies with the requirements and the later

these deficiencies are corrected, the more expensive the fix becomes.

Time Spent in Each Phase Source of Errors

requirements
engineering

design
implementation

Relative Cost of Error Correction

Stage Relative Cost of Repair

Requirements
Design
Implementation
Unit Test
Acceptance
Maintenance

1
5

10
20
50

100

Figure 2.1 The Importance of Early Requirement Validation From [WOOD92]

11

50 49

40

30

20

10

%

31

13

5
2

incorrect
fact

omission inconsistency ambiguity misplaced
requirement

Figure 2.2 Types of Errors in Requirements From [WOOD92]

The dilemma confronted by software developers with the waterfall model is aptly

summed up in a report of the Defense Science Board Task Force on Military Software

[DSB87].

We believe that users cannot, with any amount of effort and wisdom,
accurately describe the operational requirements for a substantial
software system without testing by real operators in an operational
environment, and iteration on the specification. The systems built today
are just too complex for the mind of man to foresee all the ramifications
purely by the exercise of the analytic imagination.

12

This inability to completely anticipate all the requirements of system being developed

lead to the creation of the spiral model [BOEH86] for software engineering.

2. The Spiral Model

The spiral model, shown in Figure 2.3, moved the software development process

from being documentation driven to one that is risk driven. In other words, instead of

concentrating on completing the current phase in the development process before

moving on to the next phase, you start by identifying the areas with the highest risk and

as you develop a strategy for dealing with each one you then tackle the next lower area

of risk. In essence you have a series of mini-waterfall evolutions but the power of the

spiral method is that the requirements do not have to all be known before you start.

Instead, you are defining them as you "spiral" through iteration after iteration, solving

the hardest part of the system first and working your way to the areas of relatively less

risk. Prototyping certainly is not required to execute the spiral model of development

but it can dramatically improve the efficiency of the model. If the problem domain of the

system being developed is low risk and well understood, it is possible to use what

essentially amounts to a waterfall method of development. However, this is usually true

only in uninteresting or trivial systems. In most cases a system is being created for an

area that is not well understood, either by user or developers or maybe even both.

Especially in the Department of Defense, this is often the case since many of the

systems being developed are at the cutting edge of technology or beyond.

This is when the power of prototyping becomes clear. By allowing developers to

present a mock-up of a system early in development, it is possible to get user feedback

in a much more timely manner. This capability makes the spiral method of development

13

much more effective since developers can now produce prototypes throughout the

iterative development process and use the responses from the ultimate end user to

continually refine the requirements. Thus when a final product is delivered, it is much

more likely that the system will function as expected. This avoids a great deal of

maintenance effort and expense that normally goes into modifying a delivered system in

order to get it to do what the user really wanted in the first place.

Cumulative Cost

Determine Objectives,
Alternatives, Constraints

Progress Through Steps
Evaluate Alternatives;
Identify, Resolve Risks

Develop, Verify
Next Level
Product

Plan Next
Phase Integration

and Test

Acceptance Test

Figure 2.3 Spiral Model From [BOEH86]

14

This leads to consideration about what the ultimate role of the prototype is within

the development process. While there are many variations and differing names, there

are two basic purposes for prototypes, both within and outside the spiral model.

Prototypes can be either exploratory or implementation oriented. Exploratory, also

referred to as experimental or evaluative, prototypes are used to better understand

some specific requirement or limitation. The intention is that they will be used and

discarded after providing the required information and insight. Implementation

prototypes on the other hand will ultimately become the actual system being developed.

The biggest practical difference is simply how they are created. An exploratory

prototype which will be "thrown away" after being used does not have to concern itself

too much with things such as efficiency, robustness, readability, etc. It must only

function in a manner that allows the developers, and possibly the users, to better

understand the question under consideration. The implementation oriented prototype

must perform in such a manner that the code it produces is of production quality.

3. Summary of Prototyping Goals

No matter which approach to prototyping a development team uses, there are

some general goals for prototyping that pertain to any software system development

effort. Not every goal is necessarily applicable to every prototype, but they provide a

framework for how prototyping can improve any development effort.

• Help systems engineers, users and developers to better understand and

communicate about the environment and specific problem requirements and

to transfer design intent amongst themselves;

15

• Demonstrate what is actually feasible, a specific system behavior or some

element of the proposed system's performance;

• Use as a mechanism for getting the users involved earlier than in traditional

software development processes thus potentially creating a more useful

system; and

• Get a production version, of improved quality, completed in less time than

with traditional methods without prototyping.

B. THE EVOLUTION OF PROTOTYPING SYSTEMS

Exactly what constitutes a prototype and how you create one has been the

subject of much debate and research. While there will probably never be one definitive

prototype model that everyone accepts, it is illuminating to review a sampling of the

systems that have been fielded. Not every system evaluated meets the definition of a

prototype but they all have contributed to the evolution of prototyping systems.

1. Automatic Code Generators

One of the earliest attempts at improving the software development process was

the idea of having program source code automatically generated. Any productive and

useful prototyping system today will have to incorporate some automatic code

generation or it will be too cumbersome to be effective. The success of current

prototyping systems owes much to the work done on automatic code generation.

However, automatic code generation by itself as a stand-alone development method

has many shortcomings. Assuming that you are confident that the code being

generated is actually correct, there is the question of what it was derived from. Often,

automatic code generation amounts to not much more than instantiating a template

16

according to the user's specifications. The better code generation systems such as

Graphical Approach to Modeling and Building Interactively a Technical System

(GAMBITS) [POWE96] are still restricted to a fairly narrow domain. They start small

using rigid models and keep extending the systems being developed until a useful

system is produced. However, useful prototypes are not part of the process and it is still

up to the developers, users and system analysts to ensure that correct requirements are

implemented. Therefore they are limited outside their respective problem domain.

2. Requirements Specification Systems

The goal of a requirements specification system is to capture the complete

requirements for a system. Often poor communications result in missed, inaccurate or

incomplete requirements and thus the specifications on which implementation will

ultimately depend are flawed. A requirements specification system will not produce a

prototype but the research done in this area has improved current prototyping systems

as well as automatic code generating systems and executable specification languages.

3. Executable Specification Language

Executable specification languages, such as PAISLey [ZAVE91] and the Jackson

Development System (JSD) [ROLL91], represent the operational approach to software

development. The operational approach incorporates three phases into the

development process - modeling, specification and implementation. It closely

resembles the automatic code development paradigm and when done iteratively also

resembles the spiral method of development. The modeling though is not a mock-up or

prototype of some part of a system. Rather it is a model of the relationships that will

exist when the system "operates." Thus they suffer from the same shortcomings as

17.

automatic code generating systems. Namely, the difficult task of correctly specifying

requirements still exists and the system produced will be limited to a relatively narrow

problem domain such as a data intensive business application or database interactions.

The operational approach to software development is not adequate for the prototyping

of more general behavior.

4. Megaprogramming Systems

Megaprogramming is the attempt to develop systems from existing modules.

Two examples are the Common Prototyping Language (CPL), a Defense Advanced

Research Project Agency initiative that became Prototyping Technology (Prototech)

[KIMB92] and the earlier Rapid Prototyping to Investigate End-user Requirements

(RaPIER) [WELC86]. Megaprogramming is therefore a more sophisticated form of code

reuse. As such, it can be an effective way to better explore a relatively well

documented problem domain or one for which work is already underway. However, it is

limited as a tool for probing new requirements though. It is problematic to write the

code for the modules to be combined without first having a good understanding of the

domain and the requirements of the proposed system.

5. Prototyping Languages

As prototyping research gained momentum, it became clear to some that the

ideal prototyping system would have at its core a language specifically developed for

the task. Adapting existing languages invariably lead to shortcomings and

compromises in the functionality of the prototyping system. PROTEUS [MILL90] and

Durra [BARB91] were two attempts to develop a prototyping language. PROTEUS is

intended for prototyping parallel and distributed environments. It contains set

18

theoretical notation with a small set of mechanisms for controlling parallel execution. It

relies on a shared variable model of concurrency and focuses on regulating

synchronization and communication. Durra is a task description language for

developing distributed applications. It constructs a program by having the user specify

the distributed application structure and the resources allocated to each component.

The developer must still code each task and process but templates exist for creating the

necessary interfaces.

The limitations on languages such as PROTEUS and Durra are that they are

designed for relatively narrow domains and they cannot function without some sort of

support system. There is no user interface, such as a graphical user interface (GUI), to

aid developers. You cannot simply load them into your computer and start designing

prototypes. So while the idea of developing languages specifically for prototyping is

important for any viable prototyping system, it is still just one of several elements

needed.

6. Computer Aided Software Engineering (CASE) Tools

The natural result of all the research into different aspects of prototyping was the

creation of CASE tools that combined many of the disparate areas of research into one

synergistic mechanism for producing prototypes. CAPS and Proto [ACOS94] are two

such systems. Where CAPS focuses on applications in the hard real time problem

domain, Proto operates on distributed, parallel systems. Proto provides, as does

CAPS, a design environment for the system analyst using the System Specification and

Design Language (SSDL). The design environment includes execution support, a GUI

and software reuse in order to make it a comprehensive, efficient tool for developing

19

prototypes. This total integration of specialized prototyping language and tailored

support environment is necessary to unlock the full potential that prototyping offers to

software development.

There have been attempts to create prototyping systems without the overhead of

creating the specialized, integrated system described above. They attempt to model

prototypes using tools based on such things as Petri nets or relational databases.

However, these tools are cumbersome and ultimately limited in their application.

7. Prototyping Systems Summary

The above discussion of the history of prototyping systems is not comprehensive

but simply representative of the different areas of research that have contributed to the

considerable body of knowledge concerning software development with prototypes. As

with any technology, software development is an ever-changing entity. Currently, the

iterative approach of the spiral method of software development promises the best

chance of creating software systems that actually satisfy the requirements specified by

the user. The key to making it effective for anything except trivial systems is the ability

to rapidly produce prototypes to examine proposed system behavior. Many of the

research efforts involving prototyping have contributed to the field and then fallen into

disuse as their productiveness reached practical limits. CAPS has weathered the

turbulence that accompanies any emerging technology and today is not only alive but a

vital, leading research tool in creating prototypes for supporting software system

development.

20

C. CAPS DEVELOPMENT

As the importance of prototyping to determining system behavior during

development became clear, it also became obvious that to be effective prototypes

would have to be created quickly. The requirement for a means to rapidly prototype

leads to the seemingly obvious conclusion that a computer aided tool needed to be

fabricated for this effort to succeed. At the time, the most successful systems for

automatically generating code were focused in narrow problem domains and relied

upon templates or generic solutions. In order to achieve the type of powerful,

automated prototyping system envisioned, a computer language would have to be

design specifically for this purpose. That language was Prototype System Description

Language (PSDL) [LUQI88b]. The objective of PSDL was to mechanically create

documents that could be processed and executed at the specification level. In other

words, PSDL was designed to be an executable prototyping language at the

specification or design level.

As CAPS is built around PSDL, PSDL provides more than simply an executable

prototyping language. Queries to search the database repository of reusable software

components are based on PSDL. CAPS incorporates a GUI with which the system

designer can graphically represent the desired requirements. CAPS will transform this

graphical description into PSDL. Once in PSDL, the Ada components can be generated

and bound together. After compilation, CAPS provides the facilities for graphically

displaying the prototype. This allows system behavior to be evaluated and the

necessary changes made to requirements in a timely manner. Thus, CAPS supports an

iterative approach to software system development.

21

D. PROTOTYPING RISKS

It would be unfair and unrealistic to think that prototyping does not incur some

risks. It is certainly not the fabled silver bullet but simply a means for increasing the

efficiency and accuracy of the system development process. It is important to

understand the shortcomings of prototyping in order to take full advantage of its

tremendous potential. Some of the risks associated with prototyping are:

• overly enthusiastic developers who want to continually iterate and evolve a prototype

by adding additional functionality beyond that which was originally being

investigated;

• classification of a prototyping effort as rapid can lead managers to think that this

area can easily absorb budget cuts and shortcuts without affecting the product;

• the temptation to substitute a prototype that appears to work for a fully documented

and tested final product; and

• a misunderstanding about the purpose of prototyping in the development process by

users or customers can lead to acrimony with the development team and

compromise the close working relationship that produces the best results.

E. THE FUTURE

CAPS today is an energetic, productive research effort into the use of rapid

prototyping for software development. Its contributions are many and continue to

appear at an impressive rate. Distributing CAPS itself certainly will ensure its lasting

viability. Perhaps, however, even more is needed if CAPS is to remain at the leading

edge of this research field and eventually become a mature product widely used

throughout commercial software development. Focusing only on the domain of hard

22

real time applications is certainly becoming a limitation. The not too distant future,

actually beginning to appear already, will see the emergence of applications that

combine the requirements of hard real time constraints with concurrent operation across

distributed networks that are growing seemingly without bound. Failure to support such

applications risks being left on the sidelines or marginalized into some software

development niche.

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

III. REQUIREMENTS ANALYSIS FOR DEPLOYING CAPS IN A DISTRIBUTED
ENVIRONMENT

Fielding a sound, usable system doesn't occur by happenstance or even simply

hard work. It is the result of a great deal of careful analysis and planning long before

any implementation ever begins. If the requirements are not properly detailed, you can

easily end up with a system that does something very well but does not do what the

customer wanted. If the architecture is not precise, the development can spin out of

control during implementation as each ambiguity results in a workaround. These

workarounds and individual interpretations of what the designers meant compound on

each other until system cohesion begins to suffer. The goal of this chapter is to

fabricate the foundation of a clear and logical requirements analysis.

A. CREATING A WELL DESIGNED SYSTEM

The goal of any system design should be the production of a system that is

effective, efficient, robust and maintainable. Currently, the best way to achieve that goal

is through rigorously applying the techniques of object-oriented analysis and design.

Modeling is the underpinning that makes object-oriented analysis and design

successful. Through modeling, everyone involved in the development process, from

stakeholders to testers to managers, can come to a clear understanding and agreement

about how the system will ultimately perform. Today, the state of the practice for

modeling is the Unified Modeling Language (UML).

1. UML Overview

UML was designed to be as flexible as possible. In fact, it can be applied to

almost any process, not just software design. It is meant to simply be a tool in the

25

software engineers toolkit. However, it can be a very powerful tool. Utilized to its

fullest, UML can be integrated into a project from the outset while searching for the

complete requirements and used through designing the architecture, implementing the

desired system and finally testing the production code. It is a language that focuses on

the conceptual and physical nature of a system. Thus it can be used to build the

blueprints for a software system. Specifically, UML is designed for the visualizing,

specifying, constructing and documenting of software artifacts [BOOC99].

a. Visualizing

UML helps a system developer record and present to others the ideas

he/she has. This can be a tremendously powerful way of fostering communication

between the stakeholders, developers, project managers, users and any other

interested party.

b. Specifying

UML capitalizes on the improved communications by allowing the

developer, using his/her enhanced understanding of the system objectives, to build

models that are precise, unambiguous and complete.

c. Constructing

The developer can directly connect the models to various programming

languages. Thus, it is possible to generate programming source code in languages

such as Ada, C++ and Java.

26

d. Documenting

Many artifacts will be produced during a development cycle while using

UML. These can form the basis of a thorough, persistent documentation effort.

2. Using UML to Redesign CAPS

As stated before, UML is only a tool in the software design process. It is not a

set-in-stone, explicitly detailed process. Rather, it is up to the developer to decide how

to best employ UML. UML gives you the structural pieces for creating a solid design but

there are many ways to actually put the pieces together. The nature of UML though

lends itself to best supporting a spiral or incremental development approach.

We view this work as the beginning effort in redesigning CAPS for the future.

Our goal is to first establish the requirements for an improved, distributed CAPS. The

requirements are just a description of the needs and desires for what a system should

do when deployed. Although this is a simple idea, it is critically important. If the

requirements are not clearly and accurately defined, all that comes afterwards in the

development process can be easily compromised. We have chosen to work with the

UML model in this effort because we believe it can be easily extended in follow on

theses.

Our methodology in defining the requirements for the next CAPS will be to first

determine the necessary system functions and attributes. Next, we will promote a

better understanding of the processes involved with the application of use cases.

Finally, we will complete the analysis with a proposed conceptual diagram. We strongly

27

believe that this will be the key to a successful design and implementation phase in the

future.

B. METHODOLOGY SPECIFICS

The methodology we used for determining the requirements is detailed below.

1. System Functions

Simply stated, the system functions are what the system should actually do in the

real world. System attributes, on the other hand, are non-functional system qualities.

System functions can placed in one of two categories - evident or hidden. The user is

aware when evident functions are being performed. The performance of hidden

functions is not visible to the user. Often, underlying technical services, such as saving

information to a persistent storage mechanism, are hidden.

Constraints and details influence system attributes. These also fall into two

categories - must and want. In reality, if a constraint is truly real, it should be classified

as only must. Thus it is only attribute details that are characterized as must or want.

2. Use Cases

Simply put, use cases are a narrative description of domain processes that

highlight the interactions between the system being designed and external agents.

External agents can be such things as people, other systems, computers or processes.

According to the creators of the UML, a use case is a description of a set of sequence

actions that a system performs that yields an observable result to a particular actor. A

use case is used to structure the behavioral things in a model. [BOOC99]

Capturing the intended behavior of the system being designed is the goal of a

use case. This facilitates easier, more complete communication end users, domain

experts and developers. Use cases help draw attention to high risk areas sooner by

28

fostering clearer investigations of domain processes. Any discussion of implementation

should be avoided in use cases. The goal is to discuss what should be done, not how

to do it. However, use cases can be utilized to corroborate about a proposed

architecture. Two types of use case will be of interest in reengineering CAPS. First,

high-level use cases will demonstrate all the interactions between actors and the

system in very general terms. It provides a broad-brush overview of what the system

should accomplish. The more interesting or critical use cases will be further detailed in

expanded use cases. Finally, a use case diagram will link the narrative use cases to

the UML.

Use cases can help validate the rules of interactions between actors and actors

or actors and the system. Exploration of the variations on scenarios can result from use

case discussions. Often, nontrivial scenarios will have alternate paths of action

revealed during such discussions and possibly one of them will be an improvement on

the original idea. The crucial characteristic is work should always be accomplished. In

other words, something should be done that's of value to an actor.

Lastly, use cases can form the basis for developing test plans. As use cases

are modified, the changes needed in the test plan are clearly established. A use case

gives the test developer a straightforward, plain language narrative of what is supposed

to happen. As use cases can be easily extended and more detailed throughout the

development process, they make it possible to easily support a spiral or incremental

development methodology.

3. Conceptual Model

The conceptual model illustrates meaningful concepts, i.e. .objects, in a problem

domain. Decomposition by concepts supports object oriented analysis whereas

29

structural analysis is decomposition by processes or functions. Developing a

comprehensive set of objects is the key to successful object oriented analysis. A static

structures diagram expresses the conceptual model in UML. The concepts are

identified and their attributes delineated as well as their associations with other

concepts. There are no methods listed though. This construction serves to emphasize

the fact that concepts in the conceptual model are representing real world entities and

not software components. The concepts will be derived from the use cases and

functional requirements.

C. REQUIREMENTS ANALYSIS RESULTS

The results of the initial requirements analysis for reengineering CAPS are

detailed below.

1. Functional Requirements

The functional requirements for a reengineered CAPS are listed in Tables 3.1 -

3.7 grouped by various user inputs, system management, network support and project

management

Table 3.1 User Input Functions-Requirements Analysis

Ref# Function Function
Category

Attribute Details and
Constraints

Detail
Category

Rl.l Record stakeholder
comments

evident interface
metaphor

form driven text
format

must

R1.2 Record user comments evident interface
metaphor

form driven text
format

must

R1.3 Record requirements for
the system being
developed

evident interface
metaphor

form driven text
format

must

30

Table 3.2 User Input Functions-System Modeling/Specification

Ref# Function Function
Category

Attribute Details and
Constraints

Detail
Category

R1.4 Model hard real time
systems

evident interface
metaphor

graphical user
interface for flow
diagram and form
metaphor input for
hard real time
constraints

must

R1.5 Model distributed
systems

evident interface
metaphor

graphical user
interface for flow
diagram and form
metaphor input for
distributed system
constraints

must

R1.6 Model concurrent
systems

evident interface
metaphor

graphical user
interface for flow
diagram and form
metaphor input for
concurrent system
constraints

must

R1.7 Model any combination
of hard real time,
concurrent or distributed
system

evident interface
metaphor

graphical user
interface for flow
diagram and form
metaphor input for
hard real time,
concurrent and/or
distributed system
constraints

must

Table 3.3 User Input Functions-Prototype Development

Ref# Function Function
Category

Attribute Details and
Constraints

Detail
Category

R1.8 Translate PSDL code
into 3rd generation object
oriented language source
code

evident response time source code will be
generated in less than
2 minutes

want

R1.9 Edit prototype source
code

evident response time source code will be
available in less than
10 seconds

want

R1.10 Compile software
modules in a prototype

evident response time object code will be
generated in less than
2 minutes

want

Rl.ll Link compiled modules
in a prototype

evident response time linking will be
completed in less than
2 minutes

want

R1.12 Execute prototype evident platform prototype must be able
to execute on UNK
and
Windows95/98/NT

must

31

Table 3.3 User Input Functions-Prototype Development (continued)

R1.13 Statically check hard
real-time timing
constraints for system
prototype

evident response time complete timing
validation in less than
1 minute

want

R1.14 Dynamically check hard
real-time timing
constraints for system
prototype

evident fault tolerance identify violations of
timing constraints
while executing

must

R1.15 Dynamically report
network collisions for
distributed system •
prototype

evident fault tolerance identify details of
simulated network
collisions while
executing

must

R1.16 Dynamically record
synchronization details
for system prototype

evident fault tolerance identify details of
simulated network
timing while executing

must

R1.17 Save component to local
persistent storage

hidden response time save should execute in
less than 1 minute

want

R1.18 Save project to local
persistent storage

hidden response time save should execute in
less than 1 minute

want

R1.19 Commit component to
persistent storage

hidden response time commit should
execute in less than 1
minute

want

R1.20 Commit project to
persistent storage

hidden response time commit should
execute in less than 1
minute

want

Table 3.4 User Input Functions-Reuse

Ref# Function Function
Category

Attribute Details and
Constraints

Detail
Category

R1.21 Select software module
from reuse database

evident shared
component
access

provide matches in
less than 1 minutes

want

R1.22 Save software modules
to reuse database

hidden shared
component
access

provide Software
Librarian controls for
reuse database

must

R1.23 Delete software modules
from reuse database

hidden shared
component
access

provide Software
Librarian controls for
reuse database

must

32

Table 3.5 System Administration

Ref# Function Function
Category

Attribute Details and
Constraints

Detail
Category

R2.1 Allow Software
Librarian to add new
users to access list for
software component
database

hidden scalability allow enough users to
support very large
system development

must

R2.2 Allow Software
Librarian to delete new
users from access list for
software component
database

hidden scalability allow enough users to
support very large
system development

must

R2.3 Allow project manager
to grant file access to
specific users

hidden security only allow authorized
user to access a project

must

R2.4 Allow project manager
to revoke file access to
specific users

hidden security only allow authorized
user to access a project

must

R2.5 Recover from a local
system failure

hidden fault tolerance Restore system back to
a safe state after a
local failure

must

R2.6 Recover from a global
application failure

hidden fault tolerance Restore system back to
a safe state after
system wide
application failure

must

R2.7 Recover from a local
application failure

hidden fault tolerance Restore system back to
a safe state after a
local application
failure

must

Table 3.6 Network Support

Ref# Function Function
Category

Attribute Details and
Constraints

Detail
Category

R3.1 Transmit module to a
remote site

hidden shared
component
access

securely get work
from one site to
another site

must

R3.2 Download module from
a remote site

hidden shared
component
access

securely get work
from one site to
another site

must

R3.3 Detect errors in
transmission of modules

hidden fault tolerance ensure integrity of
modules moving over
network

must

R3.4 Generate alert for
detected errors in
transmission

hidden fault tolerance ensure integrity of
modules moving over
network

must

33

Table 3.6 Network Support (continued)

Restore system back to
a safe state after
system wide failure

R3.5 Recover from a global
system failure

hidden fault tolerance must

R3.6 Acknowledge error-free
transmission of module

Hidden fault tolerance ensure integrity of
modules moving over
network

must

Table 3.7 Project Management

Ref# Function Function
Category

Attribute Details and
Constraints

Detail
Category

R4.1 User must log in
securely in order to use
system

evident response time less than 10 seconds want

R4.2 Create new project evident response time less than 5 seconds want
R4.3 Load existing project evident response time less than 10 seconds want
R4.4 Record version for all

software artifacts
hidden ease of use system must track and

record order in which
artifacts entered

must

R4.5 Add component to
project

evident response time component should
included in project in
less than 1 minute

want

R4.6 Merge components from
different sources into
one component

evident ease of use system must
automatically merge
components, tracking
versions

must

R4.7 Merge components from
different sources into
one project

evident ease of use system must
automatically merge
components, tracking
versions

must

R4.8 Alert project manager to
conflicts during merge
operations

evident version control

response time

system must identify
version conflicts and
inform the project
manager

Project manager
should be alerted in
less than 2 minutes

must

want

34

2. High-level Use Cases

The high-level use case are detailed below.

Use Case: U1. Start-up

Actors: System Administrator

Type: primary

Overview: System Administrator logs onto host system and initiates CAPS.

Cross Reference: Functions: R2.5, R2.6, R2.7, R3.5

Use Case:
Actors:

Type:

Overview:

U2. Log in
User

primary

After CAPS is initiated, a user must log into CAPS in order to

determine what project and reuse database privileges the user

owns.

Cross Reference: Functions: R2.3, R4.1

Use Case:

Actors:

U3. Open project

User

Type: primary

Overview: After logging into CAPS, user can either open a new project or

select an existing project and open it, if he has the proper

authorization from the project manager.

Cross Reference: Functions: R2.3, R4.2, R4.3

35

Use Case:

Actors:

U4. Modify prototype

User

Type: primary

Overview: After opening a project, the user will be able to make changes to

the graphical interface of the control flow diagram or to the text

boxes associated with either objects or data streams in the

diagram. These changes will be automatically reflected in the

PSDL code. The user can record user comments, stakeholder

comments and requirements for the system being prototyped.

Additionally, the user can directly access the PSDL code and

change it manually.

Cross Reference: Functions: R1.1, R1.2, R1.3, R1.4, R1.5, R1.6, R1.7, R1.21, R4.4,

R4.5

Use Case:

Actors:

U5. Retrieve component from reuse database

User

Type: primary

Overview: The user accesses the reuse database and inputs search

parameters. CAPS responds with no match, unique match or a list

of possible matches. CAPS generates an alert if there is an error in

transmission and an acknowledgement if the transfer is successful.

Cross Reference: Functions: R1.21, R3.2, R3.4, R3.6

36

Use Case:

Actors:

U6. Save

User

Type: primary

Overview: User has opened a project or component and now saves it to local

persistent storage.

Cross Reference: Functions: R1.17, R1.18

Use Case:

Actors:

U7. Modify GUI for displaying prototype execution

User

Type: primary

Overview: User selects and then edits the files that provide functionality for

displaying prototype execution.

Cross Reference: Functions: R1.4, R1.5, R1.6, R1.7, R1.8, R1.9

Use Case:

Actors:

Type:

Overview:

U8. Generate executable prototype

User

primary

The user translates the prototype in order to create source code in

an implementation language from the PSDL and link it. The user

will then verify through CAPS that all static hard real time

constraints are met. The user will then compile the prototype

source code.

Cross Reference: Functions: R1.9, R1.10, R1.11

37

Use Case: U9. Execute the prototype

Actors: User

Type: primary

Overview: The user will execute the prototype. As the user test the prototype

functionality, CAPS will verify that all dynamic hard real time,

concurrency and network constraints are met. CAPS will allow the

user to record stakeholder and/or user comments.

Cross Reference: Functions: R1.1, R1.2, R1.3, R1.12, R1.13, R1.14, R1.15, R1.16

Use Case:

Actors:

Type:

Overview:

U10. Manage project changes

User, Project Manager

primary

User (possibly more than one) will submit module(s) to the Project

Manager for incorporation into the project prototype. The user may

elect to return the entire prototype after making changes to only

some of the modules. In this case the Project Manager must

identify which modules are changed or new. If the module does not

already exist in the project database, the Project Manager will

merge the submitted module(s) into one module, resolving any

conflicts. CAPS will assign and track a version number and insert

the module into the project database, making ties to all other

modules that may exist in the project database. If the module

38

Cross Reference:

previously existed in the project database, the Project Manager will

merge all submitted modules with the existing one, resolving any

conflicts. CAPS will update the version number. If an existing

module is submitted to the Project Manager, CAPS will verify that

all other modules that it depends on are the most up to date

version. CAPS will generate an alert if there is an error in

transmitting a module and an acknowledgement if there is no error.

Functions: R1.19, R1.20, R3.1, R3.3, R3.4, R3.6, R4.3, R4.4, R4.6,

R4.7, R4.8

Use Case:

Actors:

Type:

Overview:

Cross Reference:

U11. Manage reuse database changes

User, Software Librarian

primary

User submits a new module, or an existing one that was modified,

to the Software Librarian. When the Software Librarian accepts the

module for inclusion in the reuse database, a version control

number is assigned or updated as necessary and the module is

saved to the reuse library. If the module was an update of an

existing one, all users of the old version are alerted. The Software

Librarian can also delete modules.

Functions: R1.22, R1.23, R3.1, R3.3, R3.4, R3.6

39

Use Case: U12. Add user to project access

Actors: Project Manager

Type: secondary

Overview: The Project Manager grants a user access to a specific project.

Cross Reference: Functions:R2.3

Use Case: U13. Delete user from project access

Actors: Project Manager

Type: secondary

Overview: The Project Manager deletes a user's access to a specific project.

Cross Reference: Functions: R2.4

Use Case:

Actors:

Type:

Overview:

U14. Add user to the reuse database

Software Librarian

secondary

Upon receiving request, Software Librarian will add user to the

reuse database access list.

Cross Reference: Functions: R2.1

Use Case:

Actors:

Type:

U15. Delete user from the reuse database

Software Librarian

secondary

40

Overview: Upon receiving request, Software Librarian will delete user from the

reuse database access list.

Cross Reference: Functions: R2.2

Use Case:

Actors:

U16. Exit project

User

Type: primary

Overview: The user exits the current project. If unsaved data exist, CAPS will

ask the user if they want to save the data before exiting the project.

Cross Reference: Functions: R1.18. R1.20

Use Case: U17. Log off

Actors: User

Type: primary

Overview: User request to log off from the current session of CAPS. If

unsaved data exist, CAPS will ask the user if they want to save the

data before logging the user off CAPS and quitting the current

session of CAPS.

Cross Reference: Functions: R1.18, R1.20

3. Expanded Uses Cases

The expanded use cases are detailed in Appendix A. They are: U3. Open

project; U4. Modify prototype; U5. Retrieve component from reuse database; U7. Modify

GUI for displaying prototype execution; U8. Generate executable prototype;

41

U9. Execute the prototype; U10. Manage project changes; U11. Manage reuse

database changes.

4. Conceptual Diagrams

The list of components used in the conceptual diagrams is shown below in Table

3.8 and the detailed subsections are shown in figures 3.1 through 3.5. The complete

descriptions of the relations and concepts are included in the detailed views.

Table 3.8 Conceptual Diagram Components

Access List
Alert
CAPS
CAPS Graphical Interface
CAPS Menu
Comment
Compiler
Component
Constraint
Editor
Error
Executable Code
GUI Builder
Host System
List of Possible Matches
Network
Persistent Storage
Project
Project Database
Project Manager
Prototype
Prototype GUI
PSDL Code
PSDL Data Stream
PSDL Diagram
PSDL Object
Query
Remote Site
Requirement

42

Table 3.8 Conceptual Diagram Components (continued)

Reuse Library
Reuse Library Search
Scheduler
Search Parameters
Software Librarian
Source Code
Stakeholder
System being Designed
System Parameters
Text Box
Translator
User
Work Station

43

PERSISTENT
STORAGE

contains 1

resides on

CAPS
resides on

1

1
HOST

SYSTEM
supports REMOTE

SITE

connects to

detects

contains

connects to

results in displays

WORK
STATION

Figure 3.1 Conceptual Diagram - Network Support

44

searches

QUERY

contains

1

REUSE
LIBRARY

creates

produces

LIST OF
POSSIBLE
MATCHES

1

COMPONENT

manages

1

returns_results

1

REUSE
LIBRARY
SEARCH

SOFTWARE
LIBRARIAN

NAME
PASSWORD

directs

inputs_to

SEARCH
PARAMETERS

USER

NAME

enters

Figure 3.2 Conceptual Diagram - Reuse Support

45

SYSTEM
BEING

DESIGNED describes

models

PROJECT
MANAGER

NAME
PASSWORD

1

controls

manages

uses

ACCESS
LIST

controls uses

I 1
SOFTWARE
LIBRARIAN

NAME
PASSWORD

1
PROJECT

name

I 1
contains

1

CAPS

creates

SYSTEM
PARAMETERS

contains

1
PROTOTYPE

Figure 3.3 Conceptual Diagram - Management Support

46

REUSE
DATABASE

EXECUTABLE
CODE

1 runs

creates

part of 1

part_of 1

1

CAPS

uses

COMPILER

EDITOR

I 1
creates

h

TRANSLATOR

uses

1

PSDL
CODE

consist of

GUI BUILDER

creates
<

1

SOURCE
CODE

inputs_to

1

creates

1

PROTOTYPE
GUI

COMPONENT

NAME
PARAMETERS

part of

contains

PROJECT
DATABASE

NAME

1

displays

PROTOTYPE

NAME

1 describes

contains

1

verifies

l]
SCHEDULER

Figure 3.4 Conceptual Diagram - Execution

47

CAPS

inputs_to

1

EDITOR PSDL OBJECT

NAME
PARAMETERS

PSDL DATA
STREAM

TfXME
PARAMETERS

initializes

CAPS
MENU

OPTIONS

selects from

part_of

1

CAPS
GRAPHICAL
INTERFACE

used_by

USER

ID

inputs

accesses

1 inputs

inputs

1

COMMENTS

inputs

1

/ \ uses

/ \ inputs y\

REQUIREMENTS

inputs

inputs

STAKEHOLDER

ID
1 inputs

TEXTBOX

1

PROJECT
MANAGER

ID

inputs

CONSTRAINTS
uses

Figure 3.5 Conceptual Diagram - User Inputs

48

IV. ARCHITECTURAL DESIGN FOR CAPS IN A DISTRIBUTED NETWORK

The choices for how to design the architecture for a distributed CAPS fall along

an unbroken continuum. At one end you have dumb client machines and a super smart

server that does all the work and returns the results to the clients for display to the user.

On the other end of the spectrum you have a set up that resembles most Local Area

Networks (LAN) where the server simply provides a service, such as file downloads,

and the client machines do all the work. The first is highly centralized and the second

highly decentralized. We believe that the most optimum solution is a client-server

architecture that falls in-between the extremes of this continuum. The rapid growth in

the amount of bandwidth available on all kinds of networks, including the Internet, make

sophisticated client-server architectures very feasible.

A. DEFINING THE CAPS CLIENT-SERVER ARCHITECTURE

Any design must take advantage of the increasing power of today's desktop

personal computers (PC). By moving a significant load from the server to the client

machines, you can dramatically improve scalability by reducing the amount of work the

server must do and the quantity of data it must send to client machines. However, the

implementation of this client-server architecture should not be limited to just one type of

PC. Indeed, client machines do not necessarily have to even be a PC. They could, for

instance, be a UNIX workstation. This diversity reflects the reality of most networks

today. They are becoming more and more heterogeneous. The internet is the ultimate

example of this heterogeneity but by no means the only example. The Heterogeneous

Systems Integrator (HSI), which contains a PSDL graphical editor, written by llker

Duranlioglu [DURA99] provides an important first step in creating a powerful CAPS

49

client that any truly successful distributed CAPS design will require. The HSI is an all

Java implementation.

1. A Three Tier Client-Server Design

A robust three tier design is the preferred way to implement a distributed CAPS

in the client-server model. The three tier design offers several advantages over the

older two tier model. First, it more closely resembles the object oriented paradigm

practiced today. You can encapsulate the functionality of the client-server design easily

in a three tiered model and as long as the interfaces between each tier remain

unchanged, you can update the separate parts independently. The three tiers in a

distributed CAPS are the client side, represented by the HSI, the communication server

that communicates with multiple clients over a network and the 'back end' programs that

do the actual work requested by the clients on the computational server. Additionally,

by carefully allocating responsibilities in the design you can noticeably improve

performance and latency by ensuring good load balancing. Thus, no particular node

becomes a bottleneck.

2. Component Responsibilities

One of the first questions to resolve in designing a distributed system, is who will

be responsible for maintaining state information. This can be quite complicated and

introduce large inefficiencies if it is done at one central location, i.e., on the server side

of the network. Thus, we decided that the best approach was for each client to maintain

their own state information. Fortunately, this does not introduce very much additional

complexity to the HSI already written. The HSI already manages threads that are

created by opening prototypes and editors. It is a relatively simple matter for the HSI to

include state information whenever it invokes services from the server. This allows the

50

server to focus on facilitating requests from various clients. If the server

asynchronously passes client requests off to 'back end' for processing, then it can

continue to efficiently service clients. While the local clients manage their own states,

one centrally located repository greatly simplifies configuration management and

version control. Local clients can open prototypes from either local memory or from the

server side. They can also save to either location. However, the project manager

controls centrally what changes get into the master copy of a prototype. Thus when

various clients submit changes to a prototype, they are saved into the user's centrally

located folder and the project manager decides when and how to access them. This

arrangement allows the project manager to easily maintain control over the merging

process and the resulting configuration and versioning decisions. Users can only read

the master prototype, and only when the project manager permits it.

B. IMPLEMENTING THE CAPS CLIENT-SERVER ARCHITECTURE

There are many ways in which a distributed CAPS could be implemented. The

first decision is what language, or languages, to use. The original CAPS is written

largely in Ada, C and C++. Given the realities of writing distributed applications, among

other considerations, we decided that Java would be a superior language with which to

implement a distributed CAPS. Choosing an implementation language is only part of

the total implementation decision. The other part is determining how the

communications will actually take place in a distributed system. For this, we decided

that the Object Management Group's (OMG) Common Object Request Broker

Architecture (CORBA) offered the best possible solution. Our reasons for these

selections are detailed below.

51

1. The Selection of Java

There are many reasons why Java is the language of choice when implementing a

distributed application. First, the ease of migrating Java across different machines and

operating systems is an enormous advantage. As discussed previously, it almost a

certainty that any distributed system deployed will by necessity be heterogeneous.

Every major type of computer and operating system today has a Java Virtual Machine

(JVM) written for it. This allows Java byte code written on one type of machine to

execute on any machine that has a JVM. This was shown to work while implementing

our proof of concept demonstration. Byte code that was created in a Windows NT PC

environment was copied to a Sun Solaris Unix machine and successfully executed

without any alterations. This type of portability will greatly simplify implementing a

distributed CAPS. Secondly, Java was created as language to operate on the Internet

and World Wide Web (WWW). Thus it possesses many built-in capabilities that

facilitate network operations. Additionally, Java has facilities for things such as multi-

threading, garbage collection and error management designed into the language that

appreciably reduce the difficulty of designing an application. Lastly, as will be

discussed, Java is a natural fit with CORBA and the two are quickly merging in the

world of network applications.

2. The Selection of CORBA

CORBA provides many advantages over other competing middleware solutions. A

review of CORBA will facilitate a discussion of these advantages.

52

a. CORBA Description

As previously discussed, it is assumed that a distributed CAPS must

perform in a heterogeneous environment. While heterogeneity in itself is not negative

and may, in fact, be viewed as an asset to be leveraged, it does present challenges to

us as software developers desiring to implement an application in a heterogeneous

networked system. Heterogeneity creates the need for middleware that can enable the

sharing of objects, functions and types without causing extensive software re-work for

developers, or complex work-arounds for users.

The Object Management Group (OMG) was formed in 1989 to develop,

adopt, and promote standards for the development and deployment of applications in

distributed heterogeneous environments. Since that time, the OMG has grown to be the

largest software consortium in the world, and has developed the Object Management

Architecture (OMA). The OMA consists of an Object Model and a Reference Model.

The Object Model defines how objects can be described, and the Reference Model,

shown in Figure 4.1, deals with interactions between those objects. In the Object

Model, clients issue requests for services to objects (much like a remote procedure call

(RPC)). The implementations of these objects are hidden from the client. A key

component of the Reference Model is the Object Request Broker (ORB), which

facilitates communication between clients and objects. CORBA is the specification

developed by the OMG that details the interfaces and characteristics of the ORB. In

CORBA the terms "client" and "server" are not rigidly defined roles. The CAPS server

could handle the request from client machines and in turn become a client itself when it

invokes requests on some 'back end' implementation.

53

APPLICATION
INTERFACES

A A A

DOMAIN
INTERFACES

COMMON
FACILITIES

A A t
OBJECT REQUEST BROKER

i
OBJECT

SERVICES

Figure 4.1 OMG Reference Model Architecture From [SCHM99]

In CORBA, an application consists of one or more objects that may reside

on the same or different platforms. An object provides service(s) that can be

"requested" by a client. Clients obtain services from an object by making "requests" that

consist of an operation, the name of the object that will respond, zero or more

parameters, and an optional request context. The object may or may not return results

to a client, and will return an exception if an abnormal condition occurs. Object

implementations may be written in a variety of languages and may exist in a variety of

forms. Essentially, CORBA allows components to discover each other and interoperate

on an object bus. However, CORBA does much more than just create a simple object

bus, as shown in Figure 4.2. It also provides an extensive set of services for such

things as creating and deleting objects, accessing them by name, putting them in

persistent storage, externalizing their states and forming ad hoc relationships between

objects. Thus you can design an ordinary object and then give it the specific

54

characteristics needed for a distributed application by using CORBA's multiple

inheritance. [ORFA98]

INTERFACE
REPOSITORY

IDL
COMPILER

IMPLEMENTATION
REPOSITORY

CLIENT operationO OBJECT
(SERVANT)

—, „AKCJ1 ; out ares + return value yi—,—-—, —,—r.

i.J' X /\ I»L \
1 I mrl f ^ SKELETON *""■ (^"^

DE ORB v A A OBJECT
STUBS ™r™r^™- ^mimTn

ORB
INTERFACE

(") STANDARD INTERFACE \\ (~^\ STANDARD LANGUAGE MAPPING

HP ORB-SPECIFIC INTERFACE (^) STANDARD PROTOCOL

Figure 4.2 CORBA ORB Architecture From [SCHM99]

Methods can be invoked statically or dynamically. In Static Invocation, a

client's request is made via interface definition language (IDL) "stubs" on the client side,

and the response is handled by IDL "skeletons" on the object side. The stubs and

skeletons interface with the CORBA ORB. In Static Invocation, the IDL Client Stub

converts data from the client's local data representation (type) to the Common Data

Representation (CDR), which is platform and language independent. On the object's

platform, the Object Skeleton executes the reverse operation. In Dynamic Invocation,

requests are made via Dynamic Invocation Interface. With Dynamic Invocation the

developer is afforded more flexibility. In Dynamic Invocation, the Dynamic Skeleton

55

Interface (DSI) may take the place of the Static Invocation Object Skeleton to

accomplish data conversion at run time.

CORBA supports two types of (method) invocation semantics:

synchronous invocation and asynchronous invocation. Synchronous invocation is

blocking. The client will invoke the method and block until it receives a response from

the server (object implementation). Asynchronous invocation is non-blocking. The client

will invoke a method, continue its computation, and collect results as they arrive. With

non-blocking primitives, the SEND primitive returns control to the requesting program as

soon as the message is copied from the user buffer to the kernel buffer. The

corresponding object that executes the RECEIVE primitive signals its intention to

receive a message, provides a buffer into which the message will be copied and

continues to execute. [POPE98]

Through the IDL stubs, a client can use RPC-style semantics

(synchronous), or by using Dynamic Invocation Interface (Dll) a client can use

SEND/RECEIVE semantics. Using Dll allows a client to directly access the underlying

request mechanisms provided by the ORB. Applications use Dll to dynamically issue

requests to objects without requiring IDL stubs to be linked in. The Dll allows clients to

make non-blocking "deferred synchronous" (separate SEND and RECEIVE operations)

and one way (SEND only) calls. [POPE98]

Many industry leaders, including IBM, Novell, BorlandA/isigenic, SunSoft,

Netscape, Oracle and JavaSoft just to name a few, have recognized the importance of

CORBA middleware in realizing the potential of heterogeneous, distributed

systems[ORFA98]. In fact, CORBA is now part of the Defense Information

56

Infrastructure Common Operating Environment (DM COE) standard web browser, and is

finding increasing use in Department of Defense applications. The utility of CORBA

lies in its ability to integrate diverse applications across a variety of networks and

network protocols. CORBA's language independent IDL's allow objects to be used from

a variety of programming languages, including COBOL, C, C++, Ada, Smalltalk, Perl

and Java. CORBA-based applications are independent of network protocols so they

may be run in a distributed system over a diverse network. These attributes ensure

CORBA's tremendous usefulness in a heterogeneous environment.

b. CORBA Advantages for a Distributed CAPS

CORBA certainly is not the only solution for implementing an application in

a distributed environment. The other prominent options include legacy solutions that

predate the ORB concept such as Java sockets, Common Gateway Interface (CGI)

scripts with Hypertext Transfer Protocol (HTTP) and Java Servlets. Non-CORBA ORBs

are JavaSoft's Remote Method Invocations (RMI) and Microsoft's Distributed

Component Object Model (DCOM). As for simple performance metrics, the fastest

implementation for operating over a network is a socket using a buffered data stream.

However, as we'll discuss below, this is not a realistic choice for implementing a

distributed CAPS. The three ORBs, CORBA, DCOM and RMI, are very close in

performance and as a group are a little less than twice as slow as a socket. Servlets

are well over an order of magnitude slower than a socket and the CGI/HTTP

combination is well over two orders of magnitude slower. [ORFA98]

The three legacy solutions all suffer from the fact that they operate at very

low levels of abstractions. Sockets in particular are a relatively primitive model.

57

Sockets are 'close to the wire' in the sense that they are the lowest level of abstraction

available. This accounts for their efficient performance but it also makes them difficult

to program. The other solutions build upon sockets as a transport mechanism while

shielding users from having to deal with the details of socket programming. CGI scripts

over HTTP is the current predominant model for three tiered applications over the

internet. HTTP provides simpler semantics on top of sockets which CGI scripts use to

communicate between clients, servers and 'back end' resources. However, besides

being incredibly slow, other disadvantages include a lack of typed parameter support

and object reference persistence, a relatively low level of abstraction and poor

scalability. A Servlet is a small piece of Java code loaded onto a server. It operates

much as CGI but it overcomes some of the worst performance degradations by

remaining in memory between request and by staying connected to 'back end'

resources. As with CGI though, the lack of typed interfaces result in a proliferation of

interfaces as the number of methods grows and each method must be prepared to

marshal and unmarshal multiple data types.

RMI and DCOM share many of the advantages of CORBA for developing

distributed applications. There are however, some significant drawbacks to both. RMI

and DCOM both lack the comprehensive services and facilities that are available for

CORBA. These include a Naming Service, Event Service, Property Service,

Relationship Service, Lifecycle Service, Security Service and a continually growing host

of CORBA facilities such as mobile agents, data interchange, workflow, firewalls and

business object frameworks. The ultimate goal of CORBA facilities is to provide an IDL

interface for virtually every networked service. RMI is an all Java implementation, which

58

could potentially become a problem at some point in the future. It is also proprietary

and thus doesn't interact with other ORBs. The extremely proprietary nature of DCOM

is certainly it's biggest disadvantage. Microsoft only produces Window versions of

DCOM and in addition, it must run in their JVM. There are some third party attempts at

porting it to other platforms, but so far these have met with limited success. Even if

successfully ported, there exist deficiencies in the design of DCOM which make it

inferior to CORBA. It does not follow the object oriented model since it precludes

inheritance. There are work-arounds but they can be cumbersome. Also, object

references are not persistent and due to the limitations of working only on Window

platforms, it is not scalable.

In light of the discussion, it becomes clear that CORBA addresses many

of the issues we initially identified as pertinent to developing a distributed CAPS. With

CORBA, the type of network becomes irrelevant to the operation of a distributed CAPS.

Indeed, the proof of concept implementation done for this work started on a single PC

and then migrated seamlessly to first an all PC environment and then to one where the

client resided on a PC and the server on a Sun Solaris Unix. The next step, to operate

over the internet, would be just as smooth a transition. Clearly, the heterogeneous

nature of any large network becomes immaterial given the fact that every important

language has an IDL mapping and every major type of operating system supports

CORBA. The fact that no special hardware is required is also a plus. CORBA's

extensive support for exceptions and the ability to implement user defined exceptions

provide for greatly improve fault tolerance. Despite the intuitive feeling that the

overhead of CORBA must be significant, it is actually shown to be quite acceptable.

59

With the introduction of real-time CORBA this year, latency should become even less of

an issue. Lastly, the CORBA services and facilities provide extensive support for

current and future growth.

60

V. A DISTRIBUTED CAPS PROOF OF CONCEPT IMPLEMENTATION

The primary objective in the initial implementation was to demonstrate the

efficacy of a distributed CAPS design using Java and CORBA. The first step in this

process was completed with the HSI which was written in Java and included a PSDL

editor. There was, however, little other functionality built into the initial HSI. Our goal

was to create an implementation where the HSI would run on a PC and remotely invoke

methods on a CAPS server located on a Sun Solaris Unix machine. The mechanism for

these invocations would be CORBA. Since this was a proof of concept implementation,

only selected functionality was demonstrated in order to prove the effectiveness of the

Java/CORBA combination before attempting large scale development.

A. PRODUCT CHOICES FOR IMPLEMENTATION

There are many possible environments for developing Java code and currently

there are three major suppliers of CORBA/Java ORBs. In selecting an environment for

developing Java code, the continuum runs from using the Java Developer Kit (JDK)

supplied by JavaSoft and a text editor which are a very minimalist approach to full

feature, comprehensive integrated development environments (IDE). Java IDEs are

offered by a host of vendors. We decided to use the newest version of the JavaSoft

JDK, 1.2.2. There were several reasons for this. First, the JDK is supplied free of

charge. Secondly, in keeping with the walk before running philosophy, choosing the

JDK gave us a simpler, more straightforward design environment. It allowed us to

concentrate on creating a distributed CAPS without the distraction of all the bells and

whistles that accompany the more feature laden IDEs. The documentation with the JDK

61

is also very comprehensive. As will be discussed below, the JDK has one additional

advantage - a built-in Java ORB that is fully CORBA compliant.

The three Java ORBs available today are JavaSoft's JAVA IDL, lona's OrbixWeb

3.0 and BorlandA/isigenic's VisiBroker for Java 3.1. Much of the same reasoning for

selecting JavaSoft's JDK for writing the Java code went into the selection of using

JavaSoft's Java IDL for the ORB in our implementation. While far from a full feature

ORB (it lacks such things as a non-volatile Naming Service and many of the add-on

services) it is fully CORBA compliant. In our case, the simpler ORB was more a benefit

than a disadvantage. As a distributed CAPS moves from the research stage to a

production release, the work done can be easily migrated to a more full feature ORB.

Also, it is very likely that JavaSoft will continue to improve the Java IDL and such a

migration may not even be necessary. Java IDL is already built into the JDK

environment. We did discover that some bugs exist in versions of JDK before 1.2.2

which prevented the Java IDL from operating properly. The IDL to Java compiler

worked correctly but using a version earlier than 1.2.2 resulted in exceptions when

attempting to connect to the ORB.

B. IMPLANTATION DECISIONS

The HSI, as implemented by [DURA99], provided the GUI by which a user could

create a prototype with the graphical editor and generate the corresponding PSDL code.

It could open from and save to a local memory location or the user's allocated memory

storage location on a network. The entire process was one controlled by the current

instantiation of the HSI created by the user. In order to demonstrate the viability of a

distributed CAPS operating in a client-server paradigm, we had to separate out some of

62

the functionality into distinct client and server processes. Additionally, we wanted to

incorporate some of the tasks from the original stand-alone CAPS into our client-server

designed one. The IDL file and the two files that implement the server are listed in

Appendix B. The files generated by the IDL-to-Java compiler are listed in Appendix C.

The HSI files that were modified to implement the remote calls to the server are listed in

Appendix D. All three appendixes include both source files and the corresponding

Javadoc generated documentation.

First, we decided that the user should be able to open an existing prototype from

either the local memory or from prototypes stored on the server side of the network.

The user was also given the ability to save files on the server side as well as in his/her

own memory space as before. This remote save was implemented as the commit

function of the HSI. We decided to incorporate execution of the translate function on

the server side in order to further extend the work began in [DURA99]. When a user

selects the translate function during a HSI session, the current prototype file is

transferred to the server where the translate is actually invoked. The Ada files

generated are stored on the server in the user's directory and a message notifying the

user of a successful translate is sent to the HSI. Likewise, the user is notified after a

prototype's PSDL file is successfully saved to the server side when the user invokes the

commit function from the HSI. On the server side, when the translate function is

invoked, a shell script is called which performs the actual translating. This is not a true

three tier design but as the primary objective was to test the communication between

the HSI and a remotely located server, it was acceptable. As this research matures, it

may be that ultimately the server communicates with the 'back end' implementation

63

doing the actual work over a second CORBA object bus. In essence, the server would

become the client in a client-server relationship with the 'back end' implementation.

The interfaces of the methods needed to implement this initial design were

described in CORBA IDL and compiled using the IDL-to-Java compiler in JDK 1.2.2.

When invoking the IDL-to-Java compiler, the command line argument -fno-cpp is used

in order to disable the C++ preprocessor that is defaulted enabled. This preprocessing

is not needed and prevented the IDL-to-Java from performing properly in the lab. The

result were 15 Java files which represented all the classes required to implement the

interfaces described in the initial IDL description. The corresponding .class files were

created by the JDK 1.2.2 Java compiler. The files were responsible for the actual

operation of the CORBA object bus by marshalling and unmarshalling data being

passed over the network between the client HSI and the server side. Additionally, they

provide stub and skeleton implementations containing all the necessary information for

proper communications with the ORB. They simply had to be extended and the

desired functionality added, e.g. saving or translating a file, and they were ready to be

compiled into .class files by the Java compiler.

Since this was a proof of concept demonstration, robustness, ease of use and

efficiency were not primary considerations. Minimal error checking, such as ensuring

that a prototype was opened in the HSI before invoking the translate function on the

server, was incorporated. However, other than the built in mechanisms such as type

checking, not much work was done in this area. Given the effectiveness of Java

exceptions and the ease of creating user defined exceptions in CORBA, this will not be

an impediment to future work. Likewise, three pieces of information are currently

64

entered on the command line when starting the HSI or the server. On starting the HSI,

PROTOTYPEHOME and CAPSUser tell the system where the prototype PSDL files are

located and who the current user is. In the event that PROTOTYPEHOME is not

entered, the system will look in the user's home directory as a default. Again, the default

is to the home directory of who ever starts the CAPS server. These could easily be

incorporated into the respective GUIs in future work.

The sequence of events that brings the entire system on line are quite

straightforward. First, on the machine that is hosting the server, start the naming

service. Second, in another process, e.g., a separate DOS window, start the server

implementation. Third, start the HSI on another machine (it can be started on the same

machine in a third process). For all three, you must include the desired communication

port. It must be the same for three processes. Additionally, for the client HSI you must

include the internet location of the host running the server. More advanced

implementations can eliminate these requirements. The following are examples of the

actual semantics needed. To invoke the naming service, use "tnameserv

-ORBInitialPort 1050." For the server, use "Java

DCAPSJavaHome=$CAPSHOME\.caps CapsServer -ORBInitialPort 1050". Lastly, for

the HSI use "Java -PROTOTYPEHOME=\jdk2\.caps - DCAPSUser=kreeger caps.Caps -

ORBInitialHost 131.120.8.58 -ORBInitialPort 1050".

65

THIS PAGE INTENTIONALLY LEFT BLANK

66

VI. CONCLUSIONS AND FUTURE WORK

Our initial tests are very encouraging. We were able to easily integrate the

existing Java HSI running on a Windows NT machine into a client-server arrangement

with the server running on a Sun Solaris Unix machine. We successfully created

prototypes in the graphical editor of the HSI and saved the resulting PSDL files both to

the HSI's memory and transferred it over the network, where the server stored in its

memory. We successfully opened PSDL files from both locations and displayed them in

the graphical editor. Additionally, we sent PSDL files over the network to the server

where they were translated and the corresponding Ada files generated. Thus, there

appears to be little doubt about the ability of the current CAPS to be implemented in a

client-server design that functions over any size network, including ultimately the

Internet. The machinery that makes this not only possible, but even a reasonable effort,

is CORBA. CORBA makes it feasible to convert the current CAPS to a client-server

architecture while preserving much of the existing codebase. It is straightforward to

instantiate a CAPS object on the server and then send a reference object to the CAPS

object to any client. The users on the client side interact with the HSI's extremely

intuitive interface and whenever they need CAPS functionality, such as translate, the

HSI simply invokes the method on the CAPS object reference that was received from

the server. Thus much of the more complicated code that has been developed for the

stand-alone CAPS can continue to be used. To this code, the origins of the request are

irrelevant. As long as the proper parameters are passed in, the expected result will be

produced and where the result is ultimately sent doesn't matter. This arrangement

67

allows the HSI to manage the user inputs to a prototype design locally. This is a very

efficient manner for this type of operations. The more heavy duty, less frequently

invoked functionality can reside on the server side of the network. The additional

benefit of this design is that as more effective means of executing these services are

implemented or additional requirements are discovered, it is a much simpler matter to

update the single copy of the code located on the server side compared to trying to

update code on a variety of different client machines across an entire network. As long

as the interfaces remain unchanged, any alterations in one tier of the architecture will

remain transparent to the other tiers.

As for the future, much remains to be done in order to fully realize the potential of

a distributed CAPS. The work done thus far has clearly shown the potential that exists.

However, to become a practical system for creating and managing prototyping for large

software projects, a distributed CAPS must be fully functional and much more robust

than at present. The next logical phase of this research should focus on two parallel

tracks.

On the HSI the effort should concentrate on implementing the rest of the existing

functionality for the current CAPS and on engineering production quality robustness into

the HSI. The implementations of the commit and translate functions in this work provide

an example of how to invoke from the HSI existing CAPS methods on a CAPS server

and return the results to the HSI. Incorporating additional methods into the IDL

interface definition and recompiling it are straightforward processes. This will produce

the files necessary to implement the additional methods on the server side and the HSI.

The second part of the effort for improving the HSI is easily done concurrently with the

68

first part. As additional methods are included into the HSI, every effort should be made

to ensure production quality robustness. The ease of creating user defined exceptions

in both Java and CORBA simplify this effort tremendously.

In parallel with the HSI work, there remain tasks to be completed on the CAPS

software. First, while comprehensive theoretical work has been done on every aspect

of CAPS, there remains functionality that either needs to be completed or enhanced.

This is especially true in regards to the reusable database. Finishing this work in

conjunction with the HSI work provides the opportunity to tightly coordinate efforts.

Secondly, the CAPS method implementations should be separated out from the CAPS

server. This would allow the CAPS server to be as efficient as possible and easily scale

to a larger number of users. Furthermore, by isolating the actual method of

implementations from the CAPS server, they can be modified and updated more easily.

In conclusion, the endeavor to deploy a distributed CAPS is both feasible and

necessary. The emergence of the Java/CORBA technology supplies the means by

which migrating CAPS from an isolated system to a fully functional distributed system

becomes not just possible, but quite manageable. That is fortunate timing, for if CAPS

is to continue to be a driving force in software engineering research it must adapt to the

new realities of a networked world.

69

THIS PAGE INTENTIONALLY LEFT BLANK

70

APPENDIX A: EXPANDED USE CASES

Selected used cases are detailed below in expanded format:

Use Case: U3. Open project

Actors: User

Type: primary and essential

Purpose: Allow user to open a project

Overview: After logging into CAPS, user can select an existing project and

open it, if he has the proper authorization from the project manager.

If the user has project manager privileges, they can open a new

project.

Cross Reference: Functions: R2.3, R4.2, R4.3

Use Cases: User must have completed the Start-up and Log in use

cases

Section: Main

Typical Course of Action

Actor Action System Response

1. This use case begins after the user

has successfully started and logged

into CAPS

2. The user chooses to open a new or

existing prototype

71

a. If the user chooses a new

prototype, see section Open New

Prototype

b. If the user chooses an existing

prototype, see section Open Existing

Prototype

Section: Open New Prototype

Typical Course of Action

Actor Action System Response

1. The user selects the new prototype 2. The system verifies the user has

option project manager level privileges.

4. The user inputs new prototype 3. The system prompts the user for

information new prototype information

5. A new prototype is created

Section: Open Existing Prototype

Typical Course of Action

Actor Action System Response

1. The user selects the open existing 2. System presents the user with a list

prototype option of existing prototypes within a file

structure that can be navigated

3. The user highlights the desired 4. The selected prototype is loaded at

prototype and selects to open it the users workstation

72

Use Case:

Actors:

U4. Modify prototype

User

Type: primary and essential

Purpose: Allow user to modify a prototype

Overview: After opening a prototype, the user will be able to make changes to

the graphical interface of the control flow diagram or to the text

boxes associated with either objects or data streams in the

diagram. These changes will be automatically reflected in the

PSDL code. The user can record user comments, stakeholder

comments and requirements for the system being prototyped.

Additionally, the user can directly access the PSDL code and

change it manually.

Cross Reference: Functions: R1.1, R1.2, R1.3, R1.4, R1.5, R1.6, R1.7, R1.21, R4.4,

R4.5

Use Cases: User must have completed the Start-up, Log in and

Open Project use cases

Section: Main

Typical Course of Action

Actor Action

1. This use case starts after the user

has opened a prototype

System Response

73

2. The user can make changes

graphically or textually to the control

flow diagram or may edit the actual

PSDL code

a. If user makes graphical changes,

see section Graphical Changes

b. If user makes textual changes, see

section Textual Changes

c. If the user edits the PSDL code,

see section Edit PSDL Code

Section: Graphical Changes

Typical Course of Action

Actor Action System Response

1. User selects graphical input from the 2. The changes made by the user are

menu of inputs, such as circle or line, displayed in the diagram and the PSDL

or selects an existing graphical code in main memory is generated

representation within the control flow and/or modified

diagram and manipulates it within the

diagram

74

Section: Textual Changes

Typical Course of Action

Actor Action System Response

1. The user chooses an existing 2. The text box for the graphical object

graphical object from the control flow selected is displayed

diagram and selects to add textual

input to it 4. The text box is no longer displayed,

3. The user makes the desired the changes are accepted, the PSDL

changes to the textual input box and code is generated and/or modified in

confirms done when the input is main memory and if applicable the

completed diagram presentation is modified

Section: Edit PSDL Code

Typical Course of Action

Actor Action System Response

1 The user selects the option to directly 2. The PSDL code for the prototype is

edit the PSDL code from a CAPS menu displayed within a text editor

3. The user makes changes to the 4. The PSDL code is modified in main

PSDL code and selects save or closes memory

the editor when done 5. The modified PSDL code is

validated for correctness before the

user can exit the text editor

75

Use Case:

Actors:

U5. Retrieve component from reuse database

User

Type: primary and essential

Purpose: To retrieve reusable components from library

Overview: The user accesses the reuse database and inputs search

parameters. CAPS responds with no match, unique match or a list

of possible matches. CAPS generates an alert if there is an error in

transmission and an acknowledgement if the transfer is successful.

Cross Reference: Functions: R1.21, R3.2, R3.4, R3.6

Use Cases: User must have completed the Start-up, Log in and

Open Project use cases

Section: Main

Typical Course of Action

Actor Action System Response

1. The user selects option from CAPS 2. An input box is displayed for the user

menu to retrieve component from to input the desired parameters of the

reusable component library component to be returned

3. The user inputs the desired 4. The parameters are sent to the

component parameters and selects reuse component library, possible over

retrieve a network to a remote site

5. The parameters are accepted, a

query formulated and the reuse

component library searched

76

7. The user selects the desired 6. The user is informed that there was

component, if one available a match, multiple possible matches or

no match

8. A copy of the selected component is

returned to the user

9. The user is notified that the transfer

was successful

Alternate Courses

• Line 9. If the transfer is unsuccessful, the user is notified. The type of error is

displayed, if known

Use Case: U7. Modify GUI for displaying prototype execution

Actors: User

Type: primary and essential

Purpose: To modify the GUI generated to display prototype functionality

Overview: User selects and then edits the files that provide functionality for

displaying prototype execution

Cross Reference: Functions: R1.4, R1.5, R1.6, R1.7, R1.8, R1.9

Use Cases: User must have completed the Start-up, Log in and

Open Project use cases and have completed the Generate

Executable Prototype use case sometime previously (not

necessarily the same session)

77

Section: Main

Typical Course of Action

Actor Action

1. This use case starts after the user

has opened a prototype

2. The user can make changes to the

source code to affect prototype

functionality or to the prototype

graphical interface

a. If user makes functionality

changes, see section Functional

Changes

b. If user makes graphical interface

changes, see section Interface

Changes

System Response

Section: Functional Changes

Typical Course of Action

Actor Action System Response

1. The user selects the edit source file 2. A list of normal programming source

option from a CAPS menu files (e.g. Ada or Java) within the

current prototype is displayed

78

3. The user selects the source file to 4. The selected file is opened in a text

edit editor

5. The user makes changes to the file

6. The user saves the file

8. The user quits the file

9. The user quits the editor

1. The file is written to persistent

storage

10. The user is queried about saving

any unsaved changes, which will be

saved to persistent storage and the

editor is closed

Section: Interface Changes

Typical Course of Action

Actor Action

1. The user selects the edit interface

option from a CAPS menu

3. The user makes the desired

System Response

2. A GUI builder is invoked with the

current prototype GUI opened

changes to the prototype GUI

4. The user selects the generate code 5. Source code for the prototype GUI,

option from the GUI builder

6. The user saves the file(s)

8. The user quits the GUI builder

which is controlled by the CAPS

generated control source code, is

automatically generated

7. The file(s) is written to persistent

storage

79

Use Case: U8. Generate Executable Prototype

Actors: User

Type: primary and essential

Purpose: Prepare a prototype for execution

Overview: The user translates the prototype in order to create source code in

an implementation language from the PSDL and link it. The user

will then verify through CAPS that all static hard real time

constraints are met. The user will then compile the prototype

source code.

Cross Reference: Functions: R1.9, R1.10, R1.11

Use Cases: User must have completed the Start-up, Log in and

Open Project use cases

Section: Main

Typical Course of Action

Actor Action System Response

1. The user selects the translate option 2. PSDL code for prototype is used to

from a CAPS menu generate 3rd generation object oriented

language source code

3. The user selects the schedule option 4. All static hard real time constraints

from a CAPS menu are verified as met

5. The user selects the compile option 6. All source files are compiled and

from a CAPS menu executable files created

80

Alternate Courses

• Line 4. Some static hard real time constraint is missed. CAPS generates an alert for

the user.

Use Case:

Actors:

U9. Execute the prototype

User

Type: primary and essential

Purpose: Execute the prototype and perform analysis of system constraints

Overview: The user will execute the prototype. As the user test the prototype

functionality, CAPS will verify that all dynamic hard real time,

concurrency and network constraints are met. CAPS will allow the

user to record stakeholder and/or user comments.

Cross Reference: Functions: R1.1, R1.2, R1.3, R1.12, R1.13, R1.14, R1.15, R1.16

Use Cases: User must have completed the Start-up, Log in and

Open Project use cases and have completed the Generate

Executable Prototype use case sometime previously (if not

immediately after generating the executable prototype, you may

execute a prototype that doesn't have the most recent changes)

81

Section: Main

Typical Course of Action

Actor Action System Response

1. The user selects the execute option 2. The prototype GUI interface is

from a CAPS menu generated and execution of the system

being designed begins

3. The user test the functionality of the 4. Dynamic hard real time constraints

designed system with manual inputs or are verified met

scripted tests 5. If the designed system is multi-

threaded, concurrency constraints are

verified met

6. If the designed system is distributed,

7. The user selects the record network constraints are verified met

comments option from a CAPS menu 8. A menu is displayed that allows the

choice of selecting user or stakeholder

comment inputs

9. The comments are entered and the 10. The comments are saved to

comment entry box deselected persistent storage and become part of

the project record

Alternate Courses

• Line 4. Dynamic hard real time constraints are not met. CAPS generates an alert for

the user.

82

• Line 5. Concurrency constraints are not met. CAPS generates an alert for the user.

• Line 6. Network constraints are not met. CAPS generates an alert for the user.

Use Case:

Actors:

Type:

Purpose:

Overview:

U10. Manage project changes

User, Project Manager

primary and essential

Allow Project Manager to control configuration and version control

for a project

User (possibly more than one) will submit module(s) to the Project

Manager for incorporation into the project prototype. The user may

elect to return the entire prototype after making changes to only

some of the modules. In this case the Project Manager must

identify which modules are changed or new. If the module does not

already exist in the project database, the Project Manager will

merge the submitted module(s) into one module, resolving any

conflicts. CAPS will assign and track a version number and insert

the module into the project database, making ties to all other

modules that may exist in the project database. If the module

previously existed in the project database, the Project Manager will

merge all submitted modules with the existing one, resolving any

conflicts. CAPS will update the version number. If an existing

module is submitted to the Project Manager, CAPS will verify that

all other modules that it depends on are the most up to date

83

version. CAPS will generate an alert if there is an error in

transmitting a module and an acknowledgement if there is no error.

Cross Reference: Functions: R1.19, R1.20, R3.1, R3.3, R3.4, R3.6, R4.3, R4.4, R4.6,

R4.7, R4.8

Use Cases: Project Manager must have completed the Start-up,

Log in and Open Project use cases

Section: Main

Typical Course of Action

Actor Action System Response

1. This use case begins with the 2. All modules submitted for a project

Project Manager selecting the option that are pending action are displayed

from a CAPS menu to review modules

that have been submitted for the

current project

3. Project Manager determines module

update state:

a. If a single module not previously in

the project is submitted, see section

Single New Module

b. If multiple versions of a module not

previously in the project are submitted,

see section Multiple New Modules

84

c. If a single module previously in the

project is submitted, see section Single

Old Module

d. If multiple versions of a module

previously in the project are submitted,

see section Multiple Old Modules

Alternate Courses

• Line 2. If there was an error in receiving any module, the Project Manager is alerted

Section: Single New Module

Typical Course of Action

Actor Action System Response

1. The Project Manager selects the 2. The module is displayed in a text

option to view the new module from a format

CAPS menu

3. If the Project Manager decides to 4. The Project Manager is asked where

include the module in the project, she to save the file and exactly which

selects the add option from a CAPS project to include it in

menu

5. The Project Manager specifies the 6. The module is saved and included

location to save to and the project into as directed

which the module is to be included

85

7. The module will be assigned a

version number automatically

8. The module will be registered with

the project automatically

Section: Multiple New Modules

Typical Course of Action

Actor Action System Response

1. The Project Manager selects the 2. The modules are displayed in a text

option to view the new modules from a format as selected

CAPS menu

3. If the Project Manager decides to 4. The Project Manager is asked which

include the modules in the project, he modules to merge

selects the merge option from a CAPS

menu

6. The Project Manager specifies the 5. After merging the modules into a

location to save to and the project into single prototype, the Project Manager

which the module is to be included is asked where to save the file and

exactly which project to include it in

7. The module is saved and included

as directed

8. The module will be assigned a

version number automatically

86

9. The module will be registered with

the project automatically

Alternate Courses

• Line 5. If the modules cannot be successfully merged automatically, the Project

Manager is sent an alert along with information about the conflict(s)

Section: Single Old Module

Typical Course of Action

Actor Action System Response

1. The Project Manager selects the 2. The module is displayed in a text

option to view the new module from a format

CAPS menu

3. If the Project Manager decides to 4. The Project Manager is asked to

replace the existing module in the specify the modules to merge

project, she selects the merge option

from a CAPS menu

6. The Project Manager specifies the 5. After merging the modules into a

location to save to and the project into single prototype, the Project Manager

which the module is to be included is asked where to save the file and

exactly which project to include it in

7. The module is saved and included

as directed

87

8. The module will be assigned an

updated version number automatically

Alternate Courses

• Line 3. The Project Manager can elected to simply replace the existing module with

the new one

• Line 5. If the modules cannot be successfully merged automatically, the Project

Manager is sent an alert along with information about the conflict(s)

Section: Multiple Old Modules

Typical Course of Action

Actor Action System Response

1. The Project Manager selects the 2. The modules are displayed in a text

option to view the new modules from a format as selected

CAPS menu

3. If the Project Manager decides to 4. The Project Manager is asked to

include the modules in the project, he specify the new modules to merge into

selects the merge option from a CAPS a single module

menu 5. After merging the modules into a

single module, the Project Manager is

asked which existing module to merge

with the single new module

88

7. The Project Manager specifies the 6. After merging the modules into a

location to save to and the project into single prototype, the Project Manager

which the module is to be included is asked where to save the file and

exactly which project to include it in

8. The module is saved and included

as directed

9. The module will be assigned an

updated version number automatically

Alternate Courses

• Line 4. The Project Manager may elect to merge the new modules and the existing

module at the same time

• Line 5. If the modules cannot be successfully merged automatically, the Project

Manager is sent an alert along with information about the conflict(s)

• Line 6. If the modules cannot be successfully merged automatically, the Project

Manager is sent an alert along with information about the conflict(s)

Use Case: U11. Manage reuse database changes

Actors: User, Software Librarian

Type: primary and essential

Purpose: Allow Software Librarian to control configuration and version control

for the reuse database

89

Overview: User submits a new module, or an existing one that was modified,

to the Software Librarian. When the Software Librarian accepts the

module for inclusion in the reuse database, a version control

number is assigned or updated as necessary and the module is

saved to the reuse library. If the module was an update of an

existing one, all users of the old version are alerted. The Software

Librarian can also delete modules.

Cross Reference: Functions: R1.22, R1.23, R3.1, R3.3, R3.4, R3.6

Use Cases: Software Librarian must have completed the Start-up

and Log in use cases

Section: Main

Typical Course of Action

Actor Action System Response

1. This use case begins with the 2. All modules submitted for inclusion

Software Librarian selecting the option that are pending action are displayed

from a CAPS menu to review modules

that have been submitted for inclusion

in the reuse database

3. The Software Librarian selects the 4. The module is displayed in a text

option to view the a module on the list format

from a CAPS menu

90

5. After review, the Software Librarian

selects the add option from CAPS

menu.

6. The Software Librarian chooses to

add the module as a new one or to

replace an existing module with the

new one:

a. If the module is added as a

completely new one, see section Add

New Module

b. If the module is replacing an

existing module, see section Replace

Existing Module

Section: Add New Module

Typical Course of Action

Actor Action System Response

1. The Software Librarian elects to add 2. The module is added to the reuse

the submitted module as a new module database and a version control number

is assigned

91

Section: Replace Existing Module

Typical Course of Action

Actor Action System Response

1. The Software Librarian elects to 2. The new module replaces the

replace an existing module with the existing one in the reuse database

submitted module 3. The version control number is

updated

4. Users of the old version are alerted

that there are changes to the module

they checked out

92

APPENDIX B: CAPS SERVER IMPLEMENTATION SOURCE CODE

This appendix contains the IDL file that describes the methods defined in order to

implement a distributed CAPS server. It also contains the source files and Javadoc

generated documentation for the CAPS server.

; The Interface Description Language (IDL) for a Distributed CAPS

* @author Gary Kreeger
* @version 1.0
*/

module DistributedCaps
{

interface DistCaps
{

exception cantWriteFile {};
exception cantReadFile {};

typedef sequence<octet> prototype_file;
typedef sequence<string> prototypelist;

string translate (in prototype_file psdl_file, in string name,
in string version, in string user) raises (cantWriteFile);

prototype_list get_proto_list (in string user);

protorype_file open_proto (in string name, in string user) raises (cantReadFile);

string commit (in prototype_file psdlfile, in string name,
in string version, in string user) raises (cantWriteFile);

};
};

/**
* The DistributedCaps Server main program. It instantiates a DisCapsImpl
* object, starts the orb and registers the object with the orb.

* @author Gary Kreeger
* @version 1.0
*/

93

import DistributedCaps.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;

public class CapsServer
{ static public void main(String[] args)

try
{
// Initialize the ORB
ORB orb = ORB.init(args, null);

// Create the Caps object
DistCapsImpl caps = new DistCapsImpl();
orb.connect (caps);

//get the root naming context
org.omg.CORBA.Object objRef = orb.resolve_initial_references ("NameService");
NamingContext ncRef = NamingContextHelper.narrow (objRef);

// bind the Object Reference in Naming
NameComponent nc = new NameComponent ("DistCaps", " ");
NameComponent path[] = {nc};
ncRef.rebind (path, caps);

//wait for invocations from client
java.lang.Object sync = new java.lang.Object();
synchronized (sync)
{

sync.wait();
}

}
catch (Exception e)

{
System.err.println ("Error: " + e);
e.printStackTrace (System.out);

}
}//end CapsServer

/**
* The Implementation for the distributed CAPS object.
*

* @author Gary Kreeger
* @version 1.0
*/

import DistributedCaps.*;
import java.io.*;
import java.io.File;
import java.util. Vector;
import javax.swing.filechooser.FileSystem View;

public class DistCapsImpl extends DistCapsImplBase

94

{
/**

* the constructor for a distributed CAPS object
*/

DistCapsImplO
{

superO;
System.out.println ("Caps Object Created");

}

/**

* Translate function for creating Ada files from a PSDL file

* @param psdl_file The PSDL file to be translated
* @param name The name of the PSDL file
* @param version The version number of the PSDL file being translated
* @param user The name of the user at the client session
*

* @return A string to confirm the file was transfered and translated

* @throws DistributedCaps.DistCapsPackage.cantWriteFile
*/

public String translate (byte[] psdl_file, String name, String version, String user)
throws DistributedCaps.DistCapsPackage.cantWriteFile

{
boolean tempBool = true;
String protoHome;
//MTS 8/25/99
// added local variable userHome
String userHome ="";

try
{

String CapsServerFiles = System.getProperty("CAPSJavaHome");
if (CapsServerFiles — null) // CAPSJavaHome not set on command line
{

//default to the home directory
FilehomeDir = FileSystemView.getFileSystemView OgetHomeDirectory ();
protoHome = new String (homeDir + File.separator + user +

File.separator + ".caps");

//MTS 8/25/99
// added code to initialize userHome
userHome = (homeDir + File.separator + user);

File protoDir = new File (protoHome);
if (IprotoDir.exists 0)
{

protoDir .mkdir 0;
}

}
else
{

protoHome = new String (CapsServerFiles + File.separator + user +

95

File.separator + ".caps");

//MTS 8/25/99
// added code to initialize userHome
userHome = (CapsServerFiles + File.separator + user);

File protoDir = new File (protoHome);
if (IprotoDir.exists 0)
{

protoDir.mkdir ();
}

}•

//ensure the file is created, read the byte array into a FileOutputStream
//and then read the FileOutputStream into the file
String proto = name;
File PSDLJDemo = new File (protoHome + File.separator + name +

File.separator + version + File.separator + proto + ".psdl");
tempBool = PSDL_Demo.createNewFile();
FileOutputStream fos = new FileOutputStream (PSDLJDemo);
fos.write (psdl_file);
fos.closeO;

}
catch (Exception e)
{

throw new DistributedCaps.DistCapsPackage.cantWriteFileO;
}

//MTS 8/25/99
// replace protoHome with userHome in the following call to translate.script
// String command = "translate.script" + protoHome + " " + name + "" + version;

String command = "translate.script " + userHome + " " + name + " " + version;

try
{

Runtime run = Runtime.getRuntimeO;
run.exec(command);

}
catch (IOException ex)
{

System.outprintln (ex);
}

return "\nThe PSDL file was successfully transferred to the server\n";
}//end Translate

/**
* Get the list of prototypes available remotely
*
* @param user The name of the user at the client session
*
* @return An array of prototype names that may be selected for opening
*/

public String [] get_proto_list(String user)

96

{
String [] protolist;
String CapsServerFiles = System.getProperry("CAPSJavaHome");
String protoHome;
File protoDir;

if (CapsServerFiles == null) // CAPSJavaHome not set on command line
{

File homeDir = FileSystemView.getFileSystemView O-getHomeDirectory ();
protoHome = new String (homeDir + File, separator + user +

File.separator + ".caps");
protoDir = new File (protoHome);
if (IprotoDir.exists ())
{

protoDir.mkdir 0;
}

}
else
{

protoHome = new String (CapsServerFiles + File.separator + user +
File.separator + ".caps");

protoDir = new File (protoHome);
if (IprotoDir.exists ())
{

protoDir.mkdir 0;
}

}

// vector to hold prototype names
Vector prototypeNames = new Vector (0,2);
// array to hold list of existing files
File [] dirs = protoDir.listFiles 0;

if (dirs.length = 0) // no files exist
{

return protolist = new String [0];
}
else
{

for (int ix = 0; ix < dirs.length; ix++)
{

String protoName = "";
protoName = dirs [ix].getName ();
File subDirs [] = dirs [ix].listFiles 0;
for (int jx = 0; jx < subDirs.length; jx++)
{

prototypeNames.addElement(protoName.concat
(File.separator + subDirs [jx].getName 0));

}
}

//get the vector into an object array and then convert it to a string array
Object [] temp_proto_list = prototypeNames.toArray 0;
protolist = new String [temp_proto_list.length];

for (int ix = 0; ix < temp_proto_list.length; ix++)

97

{
protolistfix] = String.valueOf (temp_proto_list[ix]);

}

return protolist;
}

}//end get_proto_list

/**
* Open the selected prototype
*
* @param name The name of the prototype opened
* @param user The name of the user at the client session
*
* @return A byte array holding the selected prototype PSDL file

* @throws DistributedCaps.DistCapsPackage.cantReadFile
*/

public byte[] open_proto (String name, String user)
throws DistributedCaps.DistCapsPackage.cantReadFile

{
try
{

byte[] proto_file;
String CapsServerFiles = System.getProperty("CAPSJavaHome");
String protoHome;
File protoDir;

if (CapsServerFiles = null) // CAPSJavaHome not set on command line
{

File homeDir = FileSystemView.getFileSystemView ().getHomeDirectory ();
protoHome = new String (homeDir + File.separator + user +

File.separator + ".caps");
protoDir = new File (protoHome);
if (IprotoDir.exists 0)
{

protoDir.mkdir 0;
}

}
else
{

protoHome = new String (CapsServerFiles + File.separator + user +
File.separator + ".caps");

protoDir = new File (protoHome);
if (IprotoDir.exists 0)
{

protoDir.mkdir ();
}

}

if (name = null)
{

return proto_file = new byte[0];
}

98

else
{

// create file object with which to manipulate the selected file
File selectedDir = new File (protoHome + File, separator + name);
File file = new File (selectedDir.getAbsolutePath () + File.separator +

selectedDir.getParentFile 0-getName 0 + ".psdl");
if (Ifile.exists 0)
{

return protojile = new byte[0];
}
else
{

//read the opened file into a FilelnputStream and then read the
//FilelnputStream in the byte array to be returned
FilelnputStream in = new FilelnputStream (file);
proto_file = new byte[in.available()];
in.read (proto_file);
return proto_file;

}
}

}
catch (Exception e)
{

throw new DistributedCaps.DistCapsPackage.cantReadFileO;
}

}//end open_proto

/**

* Save a prototype's PSDL file on a local client to the remote server
*

* @param psdl_file The PSDL file to be translated
* @param name The name of the PSDL file
* @param version The version number of the PSDL file being translated
* @param user The name of the user at the client session
*

@return A string to confirm the file was transfered *
*

* @throws DistributedCaps.DistCapsPackage.cantWriteFile
*/

public String commit (byte[] psdl_file, String name, String version, String user)
throws DistributedCaps.DistCapsPackage.cantWriteFile

{
boolean tempBool = true;
String protoHome ="";
String proto = name;
String completePath = "";

try
{

String CapsServerFiles = System.getProperty("CAPSJavaHome");
if (CapsServerFiles = null) // CAPSJavaHome not set on command line
{

99

File homeDir = FileSystemView.getFileSystemView ().getHomeDirectory ();

protoHome = (homeDir + File.separator + user +
File.separator + ".caps");

File protoDir = new File (protoHome);
if (IprotoDir.exists 0)
{

protoDir .mkdir ();
}

}
else
{

protoHome = (CapsServerFiles + File.separator + user +
File.separator + ".caps");

File protoDir = new File (protoHome);
if (IprotoDir.exists ())
{

tempBool = protoDir.mkdirs 0;
}

}

completePath = (protoHome + File.separator + name + File.separator + version);
File completeDirs = new File (completePath);
if (IcompleteDirs.exists 0) // ensure the correct directory exist to save to
{

tempBool = completeDirs.mkdirsO;
}

//ensure the file is created, read the byte array into a FileOutputStream
//and then read the FileOutputStream into the file
File PSDL_Demo = new File (completePath + File.separator + proto + ".psdl");
tempBool = PSDL_Demo.createNewFile();
FileOutputStream fos = new FileOutputStream (PSDLDemo);
fos.write (psdl_file);
fos.close();

}

catch (Exception e)
{

System.out.println (e);
throw new DistributedCaps.DistCapsPackage.cantWriteFileO;

}

return "\nThe PSDL file was successfully transferred to the server\n";

}
}//end commit

100

I Tree Deprecated Index Help
PREV CLASS NEXT CLASS

SUMMARY: INNER I FIELD I CONSTR | METHOD
FRAMES NO FRAMES
DETAIL: FIELD I CONSTR | METHOD

Class CapsServer
j ava.lang.Obj ect

I
+--CapsServer

public class CapsServer
extends java.lang.Object

The DistributedCaps Server main program. It instantiates a DisCapsImpl object, starts the orb and registers
the object with the orb.

Constructor Summary
CapsServer()

Method Summary
static void main(java.lang.String[] args)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

CapsServer

public CapsServer()

Method Detail

mam

public static void main(java.lang.String[] args)

101

Tree Deprecated Index Help
PREV CLASS NEXT CLASS

SUMMARY: INNER | FIELD | CONSTR | METHOD

FRAMES NO FRAMES
DETAIL: FIELD | CONSTR I METHOD

Class DistCapsImpl
j ava.lang.Obj ect

I
+—org.omg.CORBA.portable.Obj ectlmpl

I
+—org.omg.CORBA.Dynamiclmplementation

I
+—DistributedCaps._DistCapsImplBase

I
+--DistCapsImpl

public class DistCapsImpl
extends DistributedCaps._DistCapsImplBase

The Implementation for the distributed CAPS object.

See Also:
Serialized Form

Method Summary
j ava.lang.String

Java.lang.String[]

bytet]

j ava.lang.String

£ommit(byte[] psdl_file, Java.lang.String name,
java.lang.String version, Java.lang.String user)

Save a prototype's PSDL file on a local client to the remote server

get proto list(java.lang.String user)
Get the list of prototypes available remotely

open proto(java.lang.String name, java.lang.String user)

Open the selected prototype

translate(byte[] psdl_file, java.lang.String name,
java.lang.String version, java.lang.String user)

Translate function for creating ADA files from a PSDL file

Methods inherited from class DistributedCaps.JDistCapsImplBase
ids, invoke

102

Methods inherited from class org.omg.CORBA.portable.Objectlmpl
_create_request, _create_request, _duplicate, _get_delegate, _get_domain_managers,
_get_interface_def, _get_policy, _hash, _invoke, _is_a, _is_equivalent, _is_local,
_non_existent, _orb, _release, _releaseReply, _request, _request,
_servant_postinvoke, _servant_preinvoke, _set_delegate, _set_policy_override,
equals, hashCode, toString

Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait

Method Detail

translate

public Java.lang.String translate(byte[] psdl_file,
java.lang.String name,
java.lang.String version,
java.lang.String user)

throws DistributedCaps.DistCapsPackage.cantWriteFile

Translate function for creating ADA files from a PSDL file
Overrides:

translate in class DistributedCaps._DistCapsImplBase
Parameters:

psdi_f ile - The PSDL file to be translated
name - The name of the PSDL file
version - The version number of the PSDL file being translated
user - The name of the user at the client session

Returns:
A string to confirm the file was transferee! and translated

Throws:
DistributedCaps.DistCapsPackage.cantWriteFile-

get_proto_list

public java.lang.String[] get_proto_list(java.lang.String user]

Get the list of prototypes available remotely
Overrides:

, get_proto_list in class DistributedCaps._DistCapsImplBase
Parameters:

user - The name of the user at the client session
Returns:

An array of prototype names that may be selected for opening

103

open_proto

public byte[] open_proto(Java.lang.String name,
Java.lang.String user)

throws DistributedCaps.DistCapsPackage.cantReadFile

Open the selected prototype
Overrides:

open_proto in class DistributedCaps._DistCapsImplBase
Parameters:

name - The name of the prototype opened
user - The name of the user at the client session

Returns:
A byte array holding the selected prototype PSDL file

Throws:
DistributedCaps.DistCapsPackage.cantReadFile -

commit

public Java.lang.String commit(byte[] psdl_file,
Java.lang.String name,
Java.lang.String version,
Java.lang.String user)

throws DistributedCaps.DistCapsPackage.cantWriteFile

Save a prototype's PSDL file on a local client to the remote server
Overrides:

commit in class DistributedCaps._DistCapsImplBase
Parameters:

psdl_f ile - The PSDL file to be translated
name - The name of the PSDL file
version - The version number of the PSDL file being translated
user - The name of the user at the client session

Returns:
A string to confirm the file was transfered

Throws:
DistributedCaps.DistCapsPackage.cantWriteFile -

| Tree Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

104

APPENDIX C: IDL-TO-JAVA COMPILER GENERATED SOURCE CODE

This appendix contains the source files and corresponding Javadoc generated

documentation for the files created by the IDL-to-Java compiler when creating the

distributed CAPS server.

/*
* File: ./DISTRIBUTEDCAPS/DISTCAPSJAVA
* From: DISTCAPS.IDL
* Date: Wed Aug 18 20:38:43 1999
* By: idltojava Java IDL 1.2 Aug 18 1998 16:25:34
*/

package DistributedCaps;
public interface DistCaps

extends org.omg.CORBA.Object, org.omg.CORBA.portable.IDLEntity {
String translate(byte[] psdl_file, String name, String version, String user)

throws DistributedCaps.DistCapsPackage.cantWriteFile;
String[] get_proto_list(String user);
byte[] open_proto(String name, String user)

throws DistributedCaps.DistCapsPackage.cantReadFile;
String commit(byte[] psdl_file, String name, String version, String user)

throws DistributedCaps.DistCapsPackage.cantWriteFile;
}

/*
* File: ./DISTRIBUTEDCAPS/_DISTCAPSIMPLBASE.JAVA
* From: DISTCAPS.IDL
* Date: Wed Aug 18 20:38:43 1999
* By: idltojava Java IDL 1.2 Aug 18 1998 16:25:34
*/

package DistributedCaps;
public abstract class _DistCapsImplBase extends org.omg.CORBA.DynamicImplementation implements
DistributedCaps.DistCaps {

// Constructor
public DistCapsImplBaseO {

superO;
}
// Type strings for this class and its superclases
private static final String _type_ids[] = {

"IDL:DistributedCaps/DistCaps: 1.0"
};

public StringQ _ids() { return (Stringf]) _type_ids.clone(); }

private static java.util.Dictionary jnethods = new java.util.Hashtable();
static {

105

_methods.put("translate", new java.lang.lnteger(0));
_methods.put("get_proto_list", new java.lang.Integer(1));
_methods.put("open_proto", new java.lang.Integer(2));
_methods.put("commit", new java.lang.Integer(3));
}

// DSI Dispatch call
public void invoke(org.omg.CORBA.ServerRequest r) {

switch (((java.lang.Integer) _methods.get(r.op_name())).intValueO) {
case 0: // DistributedCaps.DistCaps.translate

{
org.omg.CORBA.NVList list = _orb().create_list(0);
org.omg.CORBA.Any _psdl_file = _orb().create_anyO;
_psdl_file.type(DistributedCaps.DistCapsPackage.prototvpe_fileHelper.type());
_list.add_value("psdl_file", _psdl_file, org.omg.CORBA.ARG_IN.value);
org.omg.CORBA.Any _name = _orbO-create_any();
_name.type(org.omg.CORBA.ORB.init0.get_primitive_tc(org.omg.CORBA.TCKind.tk_string));
_list.add_value("name", _name, org.omg.CORBA.ARG_IN.value);
org.omg.CORBA.Any _version = _orb().create_any();

_version.type(org.omg.CORBA.ORB.init0.get_primitive_tc
(org.omg.CORBA.TCKind.tk_string));

_list.add_yalue("version", version, org.omg.CORBA.ARGIN.value);
org.omg.CORBA.Any _user = _orbO-create_anyO;
_user.type(org.omg.CORBA.ORB.init0.get_primitive_tc(org.omg.CORBA.TCKind.tk_string));
_list.add_value("user", _user, org.omg.CORBA.ARG_IN.value);
r.params(_list);
byte[] psdl_file;
psdl_file = DistributedCaps.DistCapsPackage.prototype_fileHelper.extract(_psdl_file);
String name;
name = _name.extract_string();
String version;
version = _version.extract_string();
String user;
user = _user.extract_stringO;
String result;
try{

 result = this.translate(psdl_file, name, version, user);
}
catch (DistributedCaps.DistCapsPackage.cantWriteFile eO) {

org.omg.CORBA.Any _except = _orb().create_anyO;
DistributedCaps.DistCapsPackage.cantWriteFileHelper.insert(_except, eO);
r.except(_except);
return;

}
org.omg.CORBA.Any result = _orb().create_anyO;
 result.insert_string(result);
r.result(result);
}
break;

case 1: // DistributedCaps.DistCaps.get_proto_list
{
org.omg.CORBA.NVList _list = _orb().create_list(0);
org.omg.CORBA.Any _user = _orb().create_any();
_user.type(org.omg.CORBA.ORB.init0.get_primitive_tc(org.omg.CORBA.TCKind.tk_string));
_list.add_yalue("user", _user, org.omg.CORBA.ARGIN.value);
r.params(_list);
String user;

106

user = _user.extract_stringO;
String[] result;
 result = this.get_proto_list(user);
org.omg.CORBA.Any result = _orb().create_any();
DistributedCaps.DistCapsPackage.prototype_listHelper.insert(result, result);
r.result(result);
}
break;

case 2: // DistributedCaps.DistCaps.open_proto
{
org.omg.CORBA.NVList _list = _orb().create_list(0);
org.omg.CORBA.Any _name = _orb().create_any();
_name.type(org.omg.CORBA.ORB.init0.get_primitive_tc(org.omg.CORBA.TCKind.tk_string));
_list.add_value("name", name, org.omg.CORBA.ARG_IN.value);
org.omg.CORBA.Any _user = _orb()xreate_anyO;
_user.type(org.omg.CORBA.ORB.mit().getj)rimitiveJc(org.omg.CORBA.TCKind.tk_srring));
_list.add_value("user", _user, org.omg.CORBA.ARG_IN.value);
r.params(_list);
String name;
name = _name.extract_string();
String user;
user = _user.extract_string();
byte[] result;
try{

 result = this.open_proto(name, user);
}
catch (DistributedCaps.DistCapsPackage.cantReadFile eO) {

org.omg.CORBA.Any _except = _orb().create_any();
DistributedCaps.DistCapsPackage.cantReadFileHelper.insert(_except, eO);
r.except(_except);
return;

}
org.omg.CORBA.Any result = _orb().create_any();
DistributedCaps.DistCapsPackage.prototype_fileHelper.insert(result, result);
r.result(result);
}
break;

case 3: // DistributedCaps.DistCaps.commit
{
org.omg.CORBA.NVList _list = _orb().create_list(0);
org.omg.CORBA.Any _psdl file = _orbO-create_anyO;
_psdl_file.type(DistributedCaps.DistCapsPackage.prototype_fileHelper.type());
_list.add_value("psdl_file"5_psdl_file,org.omg.CORBA.ARG_IN. value);
org.omg.CORBA.Any _name = _orbO-create_anyO;
_name.type(org.omg.CORBA.ORB.mit0.getj)rimitive_tc(org.omg.CORBA.TCKind.tk_string));
_list.add_value("name", _name, org.omg.CORBA.ARGIN. value);
org.omg.CORBA.Any _version = _orb().create_any();
_version.type(org.omg.CORBA.ORB.initOget_primitive_tc

(org.omg.CORBA.TCKind.tk_string));
_list.add_value("version", version, org.omg.CORBA.ARG_IN.value);
org.omg.CORBA.Any _user = _orbO-create_any();
_user.type(org.omg.CORBA.ORB.mit0.getjinnitiveJc(org.omg.CORBA.TCKmd.tk_string));
_list.add_value("user", _user, org.omg.CORBA.ARG_IN.value);
r.params(_list);
byte[] psdl_file;
psdl_file = DistributedCaps.DistCapsPackage.prototype_fileHelper.extract(_psdl_file);

107

String name;
name = _name.extract_stringO;
String version;
version = _version.extract_string();
String user;
user = _user.extract_string();
String result;
try{

 result = this.commit(psdl_file, name, version, user);

}
catch (DistributedCaps.DistCapsPackage.cantWriteFile eO) {

org.omg.CORBA.Any except = _orb().create_anyO;
DistributedCaps.DistCapsPackage.cantWriteFileHelper.insert(_except, eO);
r.except(_except);
return;

}
org.omg.CORBA.Any result = _orbO-create_any();
 result.insert_string(result);
r.result(result);
}
break;

default:
throw new org.omg.CORBA.BAD_OPERATION(0,

org.omg.CORBA.CompletionStatus.COMPLETEDMAYBE);
}

}
}

/*
* File: ./DISTRIBUTEDCAPS/_DISTCAPSSTUB.JAVA
* From: DISTCAPS.IDL
* Date: Wed Aug 18 20:38:43 1999
* By: idltojava Java IDL 1.2 Aug 18 1998 16:25:34
*/

package DistributedCaps;
public class _DistCapsStub

extends org.omg.CORBA.portable.Objectlmpl
implements DistributedCaps.DistCaps {

public _DistCapsStub(org.omg.CORBA.portable.Delegate d) {
superO;
_set_delegate(d);

}

private static final String _type_ids[] = {
"IDL:DistributedCaps/DistCaps: 1.0"

};

public String[] _ids0 { return (String[]) _type_ids.clone();}

// IDL operations
// Implementation of: :DistributedCaps: :DistCaps: :translate
public String translate(byte[] psdl_file, String name, String version, String user)

throws DistributedCaps.DistCapsPackage.cantWriteFile {

108

org.omg.CORBA.Request r = _request("translate");
r.set_retori_type(org.omg.CORBA.ORB.init0.getjrimitive_tc(org.omg.CORBA.TCKind.tk_string));
org.omg.CORBA.Any _psdl_file = r.add_in_arg();
DistributedCaps.DistCapsPackage.prototype_fileHelper.insert(_psdl_file, psdl_file);
org.omg.CORBA.Any _name = r.add_in_arg();
_name.insert_string(name);
org.omg.CORBA.Any _version = r.add_in_arg();
_version.insert_string(version);
org.omg.CORBA.Any user = r.add_in_arg();
_user.insert_string(user);
r.exceptions().add(DistributedCaps.DistCapsPackage.cantWriteFileHelper.type());
r.invokeO;
java.lang.Exception ex = r.envO-exception();
if (ex instanceof org.omg.CORBA.UnknownUserException) {

org.omg.CORBA.UnknownUserException userEx = (org.omg.CORBA.UnknownUserException) ex;
if(^userEx.except.typeO-equals(DistributedCaps.DistCapsPackage.cantWriteFileHelper.type())) {

throw DistributedCaps.DistCapsPackage.cantWriteFileHelper.extract(userEx.except);
}

}
String result;
 result = r.return_value0.extract_stringO;
return result;

}
// Implementation of ::DistributedCaps::DistCaps::get_proto_list
public Stringf] get_proto_list(String user)

{
org.omg.CORBA.Request r = _request("get_proto_list");
r.set_return_type(DistributedCaps.DistCapsPackage.prototype_listHelper.typeO);
org.omg.CORBA.Any _user = r.add_in_arg();
_user.insert_string(user);
r.invoke();
Stringf] result;
 result = DistributedCaps.DistCapsPackage.prototype_listHelper.extract(r.return_value());
return result;

}
// Implementation of ::DistributedCaps::DistCaps::open_proto
public byte[] open_proto(String name, String user)

throws DistributedCaps.DistCapsPackage.cantReadFile {
org.omg.CORBA.Request r = _request("open_proto");
r.set_return_type(DistributedCaps.DistCapsPackage.prototype_fileHelper.type());
org.omg.CORBA.Any name = r.add_in_argO;
_name.insert_string(name);
org.omg.CORBA.Any _user = r.add_in_arg();
_user.insert_string(user);
r.exceptionsOadd(DistributedCaps.DistCapsPackage.cantReadFileHelper.typeO);
r.invokeO;
java.lang.Exception ex = r.envO-exceptionO;
if(ex instanceof org.omg.CORBA.UnknownUserException) {

org.omg.CORBA.UnknownUserException ^userEx = (org.omg.CORBA.UnknownUserException) ex;
if (userEx.except.type0.equals(DistributedCaps.PistCapsPackage.cantReadFileHelper.typeO)) {

throw DistributedCaps.DistCapsPackage.cantReadFileHelper.extract(__userEx.except);
}

}
bytef] ^result;
 result = DistributedCaps.DistCapsPackage.prototype_fileHelper.extract(r.return_valueO);
return ^result;

109

}
// Implementation of ::DistributedCaps::DistCaps::commit
public String commit(byte[] psdl_file, String name, String version, String user)

throws DistributedCaps.DistCapsPackage.cantWriteFile {
org.omg.CORBA.Request r = _request("commit");
r.set_rerum_type(org.omg.CORBA.ORB.init0getjrimitive_tc(org.omg.CORBA.TCKind.tk_string));
org.omg.CORBA.Any _psdl_file = r.addinargO;
DistributedCaps.DistCapsPackage.prototype_fileHelper.insert(_psdl_file, psdl_file);
org.omg.CORBA.Any name = r.addinargO;
_name.insert_string(name);
org.omg.CORBA.Any _version = r.add_in_argO;
_version.insert_string(version);
org.omg.CORBA.Any _user = r.add_in_arg();
_user.insert_string(user);
r.exceptionsO.add(DistributedCaps.DistCapsPackage.cantWriteFileHelper.typeO);
r.invokeO;
java.lang.Exception ex = r.env().exception();
if(ex instanceof org.omg.CORBA.UnknownUserException) {

org.omg.CORBA.UnknownUserException userEx = (org.omg.CORBA.UnknownUserException) ex;
if(^userEx.except.type().equaIs(DistributedCaps.DistCapsPackage.cantWriteFileHelper.type())) {

throw DistributedCaps.DistCapsPackage.cantWriteFileHelper.extract(userEx.except);
}

}
String result;
 result = r.return_value0.extract_stringO;
return result;

}

};

/*
* File: ./DISTRIBUTEDCAPS/DISTCAPSHELPER.JAVA
* From: DISTCAPS.IDL
* Date: Wed Aug 18 20:38:43 1999
* By: idltojava Java IDL 1.2 Aug 18 1998 16:25:34
*/

package DistributedCaps;
public class DistCapsHelper {

// It is useless to have instances of this class
private DistCapsHelperO { }

public static void write(org.omg.CORBA.portable.OutputStream out, DistributedCaps.DistCaps that) {
out.write_Object(that);

}
public static DistributedCaps.DistCaps read(org.omg.CORBA.portable.InputStream in) {

return DistributedCaps.DistCapsHelper.narrow(in.readObjectO);
}

public static DistributedCaps.DistCaps extract(org.omg.CORBA.Any a) {
org.omg.CORBA.portable.InputStream in = a.create_input_stream();
return read(in);

}
public static void insert(org.omg.CORBA.Any a, DistributedCaps.DistCaps that) {

org.omg.CORBA.portable.OutputStream out = a.create_output_stream();
write(out, that);

110

a.read_value(out.create_input_stream(), type());
}
private static org.omg.CORBA.TypeCode _tc;
synchronized public static org.omg.CORBA.TypeCode type() {

if(_tc = null)
_tc = org.omg.CORBA.ORB.init().create_interface_tc(id(), "DistCaps");

return _tc;
}
public static String id() {

return "IDL:DistributedCaps/DistCaps: 1.0";
}
public static DistributedCaps.DistCaps narrow(org.omg.CORBA.Object that)

throws org.omg.CORBA.BAD_PARAM {
if(that = null)

return null;
if (that instanceof DistributedCaps-DistCaps)

return (DistributedCaps.DistCaps) that;
if (!that._is_a(id())) {

throw new org.omg.CORBA.BAD_PARAM();
}

org.omg.CORBA.portable.Delegate dup = ((org.omg.CORBA.portable.ObjectImpl)that).^et_delegateO;
DistributedCaps.DistCaps result = new DistributedCaps._DistCapsStub(dup);
return result;

}
}

/*
* File: ./DISTRIBUTEDCAPS/DISTCAPSHOLDERJAVA
* From: DISTCAPS.IDL
* Date: Wed Aug 18 20:38:43 1999
* By: idltojava Java IDL 1.2 Aug 18 1998 16:25:34
*/

package DistributedCaps;
public final class DistCapsHolder

implements org.omg.CORB A.portable.Streamable {
// instance variable
public DistributedCaps.DistCaps value;
// constructors
public DistCapsHolder() {

this(null);
}
public DistCapsHolder(DistributedCaps.DistCaps arg) {

value = arg;
}

public void _write(org.omg.CORBA.portable.OutputStream out) {
DistributedCaps.DistCapsHelper.write(out, value);

}

public void _read(org.omg.CORBA.portable.InputStream in) {
value = DistributedCaps.DistCapsHelper.read(in);

}

public org.omg.CORBA.TypeCode _type() {

111

return DistributedCaps.DistCapsHelper.typeO;
}

}

112

[Tree Deprecated Index Help
PREV CLASS NEXT CLASS

SUMMARY: INNER | FIELD | CONSTR | METHOD
FRAMES NO FRAMES
DETAIL: FIELD I CONSTR I METHOD

DistributedCaps

Interface DistCaps

All Known Implementing Classes:
DistCapsImplBase, DistCapsStub

public interface DistCaps
extends org.omg.CORBA.Object, org.omg.CORBA.portable.IDLEntity

Method Summary
j ava.lang.String commit(byte[] psdl_file, Java.lang.String name,

java.lang.String version, Java.lang.String user)

j ava.lang.String[] get proto list(java.lang.String user)

byte[] open proto(java.lang.String name, java.lang.String user)

java.lang.String translate(byte[] psdl_file, java.lang.String name,

java.lang.String version, java.lang.String user)

Methods inherited from interface org.omg.CORBA.Object
create_request, _create_request, _duplicate, _get_domain_rnanagers,
get_interface_def, _get_policy, _hash, _is_a, _is_equivalent, _non_existent,
release, _request, _set_policy_override

Method Detail

translate

public java.lang.String translate(byte[] psdl_file,
java.lang.String name,
java.lang.String version,
java.lang.String user)

throws DistributedCaps.DistCapsPackage.cantWriteFile

113

get_proto_list

public Java.lang.String[] get_proto_list(Java.lang.String user)

open_proto

public byte[] open_proto(Java.lang.String name,
Java.lang.String user)

throws DistributedCaps.DistCapsPackage.cantReadFile

commit

public java.lang.String commit(byte[] psdl_file,
java.lang.String name,
java.lang.String version,
java.lang.String user)

throws DistributedCaps.DistCapsPackage.cantWriteFile

| Tree Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

114

Tree Deprecated Index Help
PREV CLASS NEXT CLASS

SUMMARY: INNER | FIELD | CONSTR | METHOD
FRAMES NO FRAMES
DETAIL: FIELD I CONSTR I METHOD

DistributedCaps

Class DistCapsImplBase
java.lang.Object

I
+—org.omg.CORBA.portable.Obj ectImpl

I
+—org.omg.CORBA.Dynamiclmplementation

I
+—DistributedCaps._DistCapsImplBase

public abstract class _DistCapsImplBase
extends org.omg.CORBA.DynamicImplementation
implements DistCaps

See Also:
Serialized Form

Constructor Summary
DistCapsImplBase()

Method Summary
j ava.lang.String[] ids()

void invoke(org.omg.CORBA.ServerRequest r)

Methods inherited from class org.omg.CORBA.portable.ObjectImpl
_create_request, _create_request, _duplicate, _get_delegate, _get_domain_managers,
_get_interface_def, _get_policy, _hash, _invoke, _is_a, _is_equivalent, _is_local,
_non_existent, _orb, _release, _releaseReply, _request, _request,
_servant_postinvoke, _servant_preinvoke, _set_delegate, _set_policy_override,
equals, hashCode, toString

Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait

115

Constructor Detail

DistCapsImplBase

public _DistCapsImplBase()

Method Detail

_ids

public Java.lang.String[] _ids()

Overrides:
ids in class org.omg.CORBA.portabie.Objectlmpl

invoke

public void invoke(org.omg.CORBA.ServerRequest r)

Overrides:
invoke in class org.omg.CORBA.DynamicImplementation

| Tree Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR I METHOD DETAIL: FIELD | CONSTR | METHOD

116

I Tree Deprecated Index Help
PREV CLASS NEXT CLASS

SUMMARY: INNER I FIELD I CONSTR I METHOD
FRAMES NO FRAMES
DETAIL: FIELD I CONSTR I METHOD

DistributedCaps

Class DistCapsStub
j ava.lang.Obj ect

I
+—org.omg.CORBA.portable.Obj ectlmpl

!
+—DistributedCaps._DistCapsStub

public class _DistCapsStub
extends org.omg.CORBA.portable.Objectlmpl
implements DistCaps

See Also:
Serialized Form

Constructor Summary
DistCapsStub(org.omg.CORBA.portable.Delegate d)

Method Summary
j ava.lang.String[] ids()

j ava.lang.String commit(byte[] psdl file, lava.lanq.String name.
Java.lang.String version, Java.lang.String user)

j ava.lang.String[] get proto list(Java.lang.String user)

byte[] open proto(Java.lang.String name, lava.lang.String user)

Java.lang.String translate(byte[] psdl file, lava.lang.String name.
Java.lang.String version, Java.lang.String user)

117

Methods inherited from class org.omg.CORBA.portable.Objectlmpl
_create_request, _create_request, _duplicate, _get_delegate,
_get_domain_managers, _get_interface_def, _get_policy, _hash, _invoke, _is_a,
_is_equivalent, _is_local, _non_existent, _orb, _release, _releaseReply,
_request, _request, _servant_postinvoke, _servant_preinvoke, _set_delegate,
_set_policy_override, equals, hashCode, toString

Methods inherited from class java.Iang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait

Constructor Detail

_DistCapsStub

public DistCapsStub(org.omg.CORBA.portable.Delegate d)

Method Detail

_ids

public java.lang.String[] _ids()

Overrides:
_ids in class org.omg.CORBA.portable.Objectlmpl

translate

public Java.lang.String translate(byte[] psdl_file,
Java.lang.String name,
Java.lang.String version,
Java.lang.String user)

throws DistributedCaps.DistCapsPackage.cantWriteFile

Specified by:
translate in interface DistCaps

get_proto_list

public java.lang.String[] get_proto_list(Java.lang.String user)

Specified by:
getjproto_list in interface Di^Caps

118

open_proto

public byte[] open_proto(Java.lang.String name,
Java.lang.String user)

throws DistributedCaps.DistCapsPackage.cantReadFile

Specified by:
open proto in interface DistCaps

commit

public Java.lang.String commit(byte[] psdl_file,
Java.lang.String name,
Java.lang.String version,
Java.lang.String user)

throws DistributedCaps.DistCapsPackage.cantWriteFile

Specified by:
commit in interface DistCaps

[Tree Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD I CONSTR I METHOD

119

[Tree Deprecated Index Help
PREV CLASS NEXT CLASS

SUMMARY: INNER | FIELD | CONSTR | METHOD
FRAMES NO FRAMES
DETAIL: FIELD I CONSTR I METHOD

DistributedCaps

Class DistCapsHelper

j ava.lang.Obj ect
I
+--DistributedCaps.DistCapsHelper

public class DistCapsHelper
extends java.lang.Object

Method Summary
static DistCacs extract(org.omg.CORBA.Any a)

static java.lang.String id()

static void insert(org.omg.CORBA.Any a, DistCaps that)

static DistCacs narrow(org.omg.CORBA.Obj ect that)

static DistCaps read(org.omg.CORBA.portable.InputStream in)

static org.omg.CORBA.TypeCode type ()

s
static void write(org.omg.CORBA.portable.OutputStream out, j

CistCaos that) j

i

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Method Detail

write

120

public static void write(org.omg.CORBA.portable.OutputStream out,
DistCaps that)

read

public static DistCaps read(org.omg.CORBA.portable.InputStream in)

extract

public static DistCaps extract(org.omg.CORBA.Any a)

insert

public static void insert(org.omg.CORBA.Any a,
DistCaps that)

type

public static org.omg.CORBA.TypeCode type()

id

public static Java.lang.String id()

narrow

public static DistCaps narrow(org.omg.CORBA.Object that)
throws org.omg.CORBA.BAD_PARAM

| Tree Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER [FIELD I CONSTR I METHOD DETAIL: FIELD I CONSTR I METHOD

121

Tree Deprecated Index Help
PREV CLASS NEXT CLASS

SUMMARY: INNER I FIELD I CONSTR 1 METHOD

DistributedCaps

Class DistCapsHolder
j ava.lang.Obj ect

I
+—DistributedCaps.DistCapsHolder

FRAMES NO FRAMES
DETAIL: FIELD I CONSTR I METHOD

public final class DistCapsHolder
extends java.lang.Object
implements org.omg.CORBA.portable.Streamable

Field Summary
DistCaPs value

Constructor Summary
DistCapsHolder()

DistCapsHolder(DistCaps arg)

Method Summary
void

org.omg.CORBA.TypeCode

void

read(org.omg.CORBA.portable.Inputstream in)

type()

write(org.omg.CORBA.portable.OutputStream out)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

122

Field Detail

value

public DistCaps value

Constructor Detail

DistCapsHolder

public DistCapsHolder()

DistCapsHolder

public DistCapsHolder(Dis-Cc .arg)

Method Detail

_write

public void _write(org.omg.CORBA.portable.OutputStream out;

Specified by:
_write in interface org.omg.CORBA.portable.Streamable

read

public void _read(org.omg.CORBA.portable.InputStream in)

Specified by:
_read in interface org.omg.CORBA.portable.Streamable

_type

public org.omg.CORBA.TypeCode _type()

Specified by:
Jype in interface org.omg.CORBA.portable.Streamable

I Tree Deprecated Index Help
PREV CLASS NEXT CLASS

SUMMARY: INNER I FIELD I CONSTR I METHOD
FRAMES NO FRAMES
DETAIL: FIELD I CONSTR I METHOD

123

THIS PAGE INTENTIONALLY LEFT BLANK

124

APPENDIX D: MODIFIED HSI SOURCE CODE

This appendix contains the HSI source files that were modified from [DURA99]

and the corresponding Javadoc generated documentation. Changes from the original

source code are bolded.

/**

* The main CAPS window.
*

* ©author Ilker DURANLIOGLU, modified by Gary Kreeger
*@versionl.l
*/

package caps.CAPSMain;

import java.awt.*;
import j avax. swing. *;
import java.io.File;
import caps.Builder.PsdlBuilder;
import caps.Psdl. Vertex;
import caps.PsdLDataTypes;
import caps.GraphEditor.Editor;
import java.awt.event. *;
import java.util. Vector;
import java.util.Enumeration;
import DistributedCaps.*;

public class CAPSMainWindow extends JFrame {

/**
* The width of the frame.
*/

private final int WIDTH = 400;

/**
* The height of the frame.
*/

private final int HEIGHT = 150;

/**

* The File that contains the PSDL prototype.
*/

private File prototype;

125

* The object reference to the CAPS server.
*/

private DistCaps capsRef;

* The Vector that holds references to the open prototypes
*/

private static Vector openPrototypes;

//THE FOLLOWING ATTRIBUTES WERE SUGGESTED BY PROFESSOR SHING

/**

* The private attribute for holding protoName.
*/

private static String protoName;

The private attribute for holding protoVersion.
*/

private static String proto Version;

/**

* The private attribute for holding capsUser.
*/

private static String capsUser;

/**
* The constructor for this class.
*
* @param objRef The reference to the CAPS object on the server
*/

public CAPSMainWindow (DistCaps objRef)
{

super ("HSI Designer Mode"); // The title of the frame.

prototype = null;

capsRef=objRef; //reference to server object

capsUser = System.getProperty("CAPSUser"); // session user

openPrototypes = new Vector (0, 2);

126

initialize ();

}

/**

* Initializes the CAPS main window.
*/

public void initialize ()
{

setDefaultCloseOperation(WindowConstants.DO_NOTHING_ON_CLOSE);
addWindowListener (new ExitCAPSMain (this));

//Places the frame in the upper-right comer of the screen

Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
setLocation(screenSize.width - (WIDTH + WIDTH / 2), HEIGHT / 2);

setResizable (false);

setJMenuBar (new CAPSMainMenuBar (this));

JPanel panel = new JPanel ();

JLabel capsLabel = new JLabel ("Heterogeneous System Integrator");
capsLabel.setFont (new Font ("Courier", FontBOLD, 17));
JLabel imageLabel = new JLabel (new Imagelcon ("caps/Images/caps.gif));

panel.add (Box.createHorizontalStrut (5));
panel.add (imageLabel);
panel.add (BoxxreateHorizontalStrut (5));
panel.add (capsLabel);
panel.add (Box.createHorizontalStrut (5));

getContentPane ().add (panel);

pack ();

setVisible (true);
}

/**
* Sets the prototype file to the argument.
*

* @param f The File that contains the PSDL prototype.
*/

public void setPrototype (File f)
{

prototype = f;
}

127

/**

* Sets the label to the string message passed in.

* @param msg The message to be displayed.
*/

public void setLabel (String msg)
{

JOptionPane.showMessageDialog (this, msg, "Information Message",
JOptionPane.INFORMATION_MESSAGE);

}

* Retrieves the curent prototype file.
*
* @return the File that contains the PSDL prototype.
*/

public File getPrototype 0
{

return prototype;
}

/**

* Retrieves the curent reference to the caps server.
*
* @return the reference to the caps server object.
*/

public DistCaps getCapsRef 0
{

return capsRef;
}

* Returns the vector that holds the open prototype files.
*
* @return the vector that contains the open prototype files.
*/

public Vector getOpenPrototypes 0
{

return openPrototypes;
}

/**

* Sets the prototype name to the argument

* @param name The string that contains the prototype's name
*/

public void setProtoName (String name)

128

{
protoName = name;

}

/**

* Sets the prototype version to the argument
*
* @param version The string that contains the prototype's version
*/

public void setProtoVersion (String version)
{

proto Version = version;
}

* Gets the prototype name

*/
public String getProtoName 0
{

return protoName;
}

* Gets the prototype version
*
*/

public String getProtoVersion 0
{

return proto Version;
}

/**

* Gets the capsUser
*
*/

public String getCapsUser 0
{

return capsUser;
}

/**

* Opens the graphics editor to edit a prototype.
*/.

public void editPrototype 0
{

if (prototype = null) { // No prototype is selected to open
JOptionPane.showMessageDialog (this, "No prototype is selected to edit.",

129

"Error Message", JOptionPane.ERROR_MESSAGE);
}
else if (ÜsPrototypeChanged 0) { // Attempt to edit the same prototype.

JOptionPane.showMessageDialog (this, new String ("Prototype " + prototype.getName () +
" is already open."))
"Error Message", JOptionPane.ERROR_MESSAGE);

}
else {

PsdlBuilder.disableJracing 0; // Disable debug messages
Vertex root = null;
root = PsdlBuilder.buildPrototype (prototype);
if (root == null) {

root = new Vertex (0, 0, null, false); // If this is a new prototype
String name = prototype.getName (); // Prototype name is the same as
rootsetLabel (name.substring (0, name.length 0 - 5)); // the file name

}
DataTypes types = new DataTypes ();
types.buildTypes (prototype);
Editor e = new Editor (prototype, root, types);
new Thread (e).start ();
openPrototypes.addElement (e);

}
}

/**
* Checks whether or not the current prototype file is already used by
* a PSDL Editor.
*
* @return true if selected prototype is not already open
*
*/

public boolean isPrototypeChanged 0
{

for (Enumeration enum = openPrototypes.elements (); enum.hasMoreElements ();) {
Editor e = (Editor) enum.nextElement 0;
if (prototype.equals (e.getPrototypeFile ()))

return false;
}
return true;

}

* Removes one element from the openPrototypes vector.

* @param e the editor that is going to be removed from the vector.
*/

public static void removeEditor (Editor e)
{

openPrototypes.removeElement (e);
}

130

* Checks if the status of any of the open prototypes is 'saveRequired'.
* Prompts the user to save the prototype.
*

* @return true if none of the prototypes need saving.
*/

public boolean isOpenPrototypeSaved 0
{

boolean flag = true;
Editor e;
label:
for (Enumeration enum = openPrototypes.elements 0;enum.hasMoreElements ();) {

e = (Editor) enum.nextElement 0;
if(e.isSaveRequiredO) {

int ix = JOptionPane.showConfirmDialog (this, new String ("Save changes to the prototype " +
e.getRoot ().getLabel () + "?"));

if (ix == JOptionPane.CANCEL_OPTION) {
flag = false;
break label;

}
else if (be = JOptionPane.YESOPTION)

e.savePrototype ();
}

}
return flag;

}

} // End of the class CAPSMainWindow

/**
* This class holds the 'Exec Support' menu items.
*
*
*
* @version 1.1
*/

©author Ilker DURANLIOGLU, modified by Gary Kreeger

package caps.CAPSMain;

import javax.swing. JMenu;
import javax.swing.JMenuItem;
import java.awt.event. ActionEvent;
import java.awt.event.ActionListener;
import java.awt.*;
import java.io.IOException;
import javax.swing.*;
import java.io.*;
import DistributedCaps.*;

public class ExecSupportMenu extends JMenu implements ActionListener {

/**

* Initiates the 'Translate' event
*/

private JMenuItem translateMenuItem = new JMenuItem ("Translate");

131

/**
* Initiates the 'Schedule' event
*/

private JMenuItem scheduleMenuItem = new JMenuItem ("Schedule");

/**
* Initiates the 'Compile' event
*/

private JMenuItem compileMenuItem = new JMenuItem ("Compile");

/**

* Initiates the 'Execute' event
*/

private JMenuItem executeMenuItem = new JMenuItem ("Execute");

/**
* The main window which owns this menu.
*/

protected CAPSMain Window ownerWindow;

/**

* Constructor for this class.

* @param owner CAPSMain Window that owns the menu
*/

public ExecSuppoftMenu (CAPSMainWindow owner)
{

super ("Exec Support");

ownerWindow = owner;

add (translateMenuItem);
add (scheduleMenuItem);
add (compileMenuItem);
add (executeMenuItem);

//Register the action listeners

translateMenuItem.addActionListener(this);
scheduleMenuItem.addActionListener(this);
compileMenuItem.addActionListener(this);
executeMenuItem.addActionListener (this);

} // end of ExecSupportMenu constructor

/**
* Action event handler for the menu events.
*

* @param e The action event that is created by selecting a menu item
*/

public void actionPerformed(ActionEvent e)
{

132

if (cgetSource 0 = transIateMenuItem) {

if (ownerWindow.getPrototypeO — null) // No prototype is selected to open
{

JOptionPane.showMessageDialog(ownerWindow,
"No prototype is selected to edit", "Error Message", JOptionPane.ERROR_MESSAGE);

}
else
{

try
{

File proto = ownerWindow.getPrototypeO;

FilelnputStream in = new FilelnputStream (proto);
byte[] fileBuf = new byte[in.available()];
in.read (fileBuf);

DistCaps capsRef = ownerWindow.getCapsRefO;

String returnMsg = capsRef.translate(fileBuf, ownerWindow.getProtoNameO,
ownerWindow.getProtoVersionO, ownerWindow.getCapsUserO);

ownerWindow.setLabel (returnMsg);
System.outprintln (returnMsg);

}
catch (Exception el)
{

System.err.println ("Error: " + el);
el.printStackTrace (System.out);

}

}
}
else if (e.getSource 0 = scheduleMenuItem) {

System.out.println ("Schedule has not been implemented yet");
}
else if (e.getSource 0 = compileMenuItem) {

System.out.println ("Compile has not been implemented yet");
}
else if (e.getSource 0 = executeMenuItem) {

System.out.println ("Executing telnet");
try{

Runtime run = Runtime.getRuntime 0;
run.exec ("telnet.exe");

} catch (IOException ex) {
System.out.println (ex);

}
}

}// end of actionPerformed

} // End of the class ExecSupportMenu

133

/**
* This class holds the 'Prototype' menu items.
*
* ©author Ilker DURANLIOGLU, modified by Gary Kreeger

* @version 1.1
*/

package caps.CAPSMain;

import javax.swing. *;
import javax.swing.filechooser.FileSystem View;
import java.awt.*;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.File;
import java.io.*;
import j ava.util. Vector;
import DistributedCaps.*;

public class PrototypeMenu extends JMenu implements ActionListener {

/**
* Initiates the 'New' event
*/

private JMenuItem newMenuItem = new JMenuItem ("New");

/**
* Initiates the 'Open' event
*/

private JMenuItem openMenuItem = new JMenuItem ("Open");

/**
* Initiates the 'Commit Work' event
*/

private JMenuItem commitWorkMenuItem = new JMenuItem ("Commit Work");

/**
* Initiates the 'Retrieve From DDB' event
*/

private JMenuItem retrieveMenuItem = new JMenuItem ("Retrieve From DDB");

/**
* Initiates the 'Quit' event
*/

private JMenuItem quitMenuItem = new JMenuItem ("Quit");

134

/**

* The main window which owns this menu.
*/

protected CAPSMainWindow ownerWindow;

* Constructor for this class.
*

* @param owner The main window which has created this menu.
*/

public ProtorypeMenu (CAPSMainWindow owner)
{

super ("Prototype");

ownerWindow = owner;

add (newMenuItem);
add (openMenuItem);
add (commitWorkMenuItem);
add (retrieveMenuItem);
add (quitMenuItem);

//Register the action listeners

newMenuItem.addActionListener(this);
openMenuItem.addActionListener(this);
commitWorkMenuItem.addActionListener(this);
retrieveMenuItem.addActionListener(this);
quitMenuItem.addActionListener(this);

} // end ProtorypeMenu constructor

/**

* Action event handler for the menu events.
*

* @param e The action event that is created by selecting a menu item from this menu
*/

public void actionPerformed(ActionEvent e)
{

if (e.getSource 0 — newMenuItem) {
processNewMenuItem 0;

}
else if (e.getSource () = openMenuItem) {

processOpenMenuItem ();
}
else if (e.getSource 0 — commitWorkMenuItem) {

processCommitWorkMenuItemO;
}
else if (e.getSource 0 = retrieveMenuItem) {

System.out.println ("Retrieve has not yet been implemented");

135

}
else if (e.getSource 0 — quitMenuItem) {

// Exit the program if all of the prototypes are saved,
if (ownerWindow.isOpenPrototypeSaved 0)

System.exit (0);
}

} //end of actionPerformed

/**

* Handles the event which is caused by selecting the "New' menu item.
*/

public void processNewMenuItem 0
{

// The system property for the home prototype directory.
String protoHome = System.getProperty ("PROTOTYPEHOME");
File protoDir;
if (protoHome = null) { // If it is not set as a command line argument

File homeDir = FileSystemView.getFileSystemView O-getHomeDirectory ();
protoHome = new String (homeDir + File.separator + ".caps");
protoDir = new File (protoHome);
if (IprotoDir.exists ())

protoDir.mkdir 0;
}
else {

protoDir = new File (protoHome);
if (IprotoDir.exists ())

protoDir.mkdir ();
}

String proto = JOptionPane.showInputDialog (ownerWindow,
"Enter Prototype Name : ", "New", JOptionPane.PLAIN_MESSAGE);

if(proto = null)
return;

String version = JOptionPane.showInputDialog (ownerWindow,
"Prototype Version Information : ","New", JOptionPane.PLAIN_MESSAGE);

{
String name = proto;

File file = new File (protoHome + File.separator + proto + File.separator + version +
File.separator + name + ".psdl");

if(file.exists()){
int selected = JOptionPane.showConfirmDialog (ownerWindow, "Selected prototype file already exists.\n" +

"Do you want to overwrite it ?");
if (selected = JOptionPane.YES_OPTION) {

try{
file.delete 0;
file.createNewFile 0;

} catch (java.io.IOException ex) {
System.out.println (ex);

}
ownerWindow.setPrototype (file);

}
}

136

else {
try {

File dir = file.getParentFile O-getParentFile 0;
dir.mkdir 0;
File vers = file.getParentFile ();
vers.mkdir 0;
file.createNewFile 0;

} catch (java.io.IOException ex) {
System.outprintln (ex);

}
ownerWindow.setPrototype (file);
ownerWindow.setProtoName (proto);
ownerWindow.setProtoVersion (version);

}
}

} // end of processNewMenuItem

Handles the event which is caused by selecting the 'Open' menu item.
*/

public void processOpenMenuItem 0
{

Objectf] possibleValues = { "Local", "Remote"};
String selectedValue = (String) JOptionPane.showInputDialog(null,

"Please choose the prototype source", "Input",
JOptionPane.INFORMATION_MESSAGE, null, possibleValues, possibleValuesfO]);

if (selectedValue = "Local")
{

String protoHome = System.getProperty ("PROTOTYPEHOME");
File protoDir;
if (protoHome = null) // If it is not set as a command line argument
{

File homeDir = FileSystemView.getFileSystemView O-getHomeDirectory ();
protoHome = new String (homeDir + File.separator + ".caps");
protoDir = new File (protoHome);
if (IprotoDir.exists 0)
{

protoDir .mkdir ();
}

}
else
{

protoDir = new File (protoHome);
if (IprotoDir.exists 0)

protoDir.mkdir 0;
}

Vector protorypeNames = new Vector (0,2);
File [] dirs = protoDir.listFiles ();
String protoName = "";

if(dirs.length = 0)
{

137

JOptionPane.showMessageDialog (ownerWindow, "No prototype is is found to open",
"Error Message", JOptionPane.ERROR_MESSAGE);

}
else
{

for (int ix = 0; ix < dirs.length; ix++)

{
protoName = dirs [ix].getName 0;
File subDirs [] = dirs [ix].listFiles 0;
for (int jx = 0; jx < subDirs.length; jx++)

{
prototypeNames.addElement(protoName.concat

(File.separator + subDirs [jx].getName ()));
}

}
}

Object [] protos = prototypeNames.toArray ();
String selected = (String) JOptionPane.showInputDialog (ownerWindow, "Select a protoype :",

"Open", JOptionPane.INFORMATION_MESSAGE, null, protos, protos [0]);

if (selected !=null)
{

File selectedDir = new File (protoHome + File.separator + selected);
File file = new File (selectedDir.getAbsolutePath () + File.separator +

selectedDir.getParentFile ().getName () + ".psdl");
if (Ifile.exists 0)
{

JOptionPane.showMessageDialog (ownerWindow,
"The selected prototype file cannot be opened",
"Error Message", JOptionPane.ERROR_MESSAGE);

}
ownerWindow.setPrototype (file);
ownerWindow.setProtoName (selectedDir.getParentFile 0-getName ());
ownerWindow.setProto Version (selectedDir.getName ());

}
}
else // open prototype from remote source
{

DistCaps capsRef = ownerWindow.getCapsRefO;

//get the list of available prototypes
String [] protojist = capsRef.get_proto_list(ownerWindow.getCapsUser());

byte[] proto_file;
String selected = (String) JOptionPancshowInputDialog (ownerWindow,

"Select a protoype : ", "Open",
JOptionPane.INFORMATION_MESSAGE,null,
protojist, proto_list [0]);

try
{

//open the selected file from the remote server
proto_file = capsRef.open_proto (selected, ownerWindow.getCapsUserO);

if (proto_file = null)

138

{
JOptionPane.showMessageDialog(ownerWindow,

"The selected prototype file cannot be opened",
"Error Message", JOptionPane.ERROR_MESSAGE);

}
else
{

try //convert the selected file from a byte array back to a file
{

String protoHome = System.getProperty ("PROTOTYPEHOME");
File protoDir;
if (protoHome = null) // If it is not set as a command line argument
{

File homeDir = FileSystemView.getFileSystemView O-getHomeDirectory 0;
protoHome = new String (homeDir + File.separator + ".caps");
protoDir = new File (protoHome);
if (IprotoDir.exists 0)
{

protoDir.mkdirs 0;
}

}
else
{

protoDir = new File (protoHome);
if (IprotoDir.exists 0)
{

protoDir.mkdirs 0;
}

}

File selectedDir = new File (protoHome + File.separator + selected);
if (IselectedDir.exists 0)
{

selectedDir.mkdirs 0;
}
else
{

ownerWindow.setLabel ("The remote file will overwrite an existing local one");
}

File file = new File (selectedDir.getAbsolutePath 0 + Filcseparator +
selectedDir.getParentFile 0-getName 0 + ".psdl");

boolean tempBoolean = fiIe.createNewFile();

FileOutputStream fos = new FileOutputStream (file);
fos. write (proto_file);
fosxloseO;
ownerWindow.setPrototype (file);
ownerWindow.setProtoName (selectedDir.getParentFile 0-getName 0);
ownerWindow.setProtoVersion (selectedDir.getName 0);

}
catch (Exception e)
{

JOptionPane.showMessageDialog (ownerWindow,
"The selected prototype file was retrieved but cannot be opened",
"Error Message", JOptionPane.ERROR_MESSAGE);

139

System.out.println (e);
}

}
}
catch (DistributedCaps.DistCapsPackage.cantReadFile e2)
{

JOptionPane.showMessageDialog(ownerWindow,
"The selected prototype file cannot be opened",
"Error Message", JOptionPane.ERROR_MESSAGE);

System.out.println (e2);
}

}
}//End of processOpenMenuItem

/**

* Handles the event which is caused by selecting the 'Commit' menu item.
*/

public void processCommitWorkMenuItem 0
{

setCursor (new Cursor(Cursor.WAIT_CURSOR));
File proto = ownerWindow.getPrototypeO;
String protoName = ownerWindow.getProtoNameO;

if (protoName = null) // No prototype is selected to open
{

JOptionPane.showMessageDialog(ownerWindow,
"No prototype is selected.", "Error Message", JOptionPane.ERROR_MESSAGE);

}
else
{

if (ownerWindow.isOpenPrototypeSaved 0)
{

try //convert the file to a byte array for transfer to the server
{

FilelnputStream in = new FilelnputStream (proto);
byte[] fileBuf = new byte[in.available()];
in.read (fileBuf);

DistCaps capsRef = ownerWindow.getCapsRefO;

String returnMsg = capsRef.commit(fileBuf, protoName,
ownerWindow.getProtoVersionO, ownerWindow.getCapsUserO);

ownerWindow.setLabel (returnMsg);
System.outprintln (returnMsg);

}
catch (Exception el)
{

System-err.println ("Error: " + el);
el.printStackTrace (System.out);

}
}
else

140

{
ownerWindow.setLabel ("You must save the prototype before committing it");

}

setCursor (new Cursor(Cursor.DEFAULT_CURSOR));

} //end of processCommitWorkMenuItem

} // End of the class PrototypeMenu

141

[Tree Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

caps.CAPSMain

Class CAPSMainWindow
j ava.lang.Obj ect

I
+ — j ava.awt.Component

I
+—j ava.awt.Container

+--java.awt.Window
I
+—j ava.awt.Frame

I
+—j avax.swing.JFrame

+—caps. CAPSMain. CAPSMainWindow

public class CAPSMainWindow
extends javax.swing.JFrame

The main CAPS window.

See Also:
Serialized Form

Inner classes inherited from class javax.swing.JFrame
javax.swing.JFrame.AccessibleJFrame

Inner classes inherited from class java.awt.Component
j ava.awt.Component.AWTTreeLock

142

Field Summary
private

DistributedCaps.DistCaps capsRef
The object reference to the CAPS server.

private
static java.lang.String capsUser

The private attribute for holding capsUser.
private. int HEIGHT

The height of the frame.
private

static java.util.Vector openPrototypes
The Vector that holds references to the open prototypes

private
static java.lang.String protoName

The private attribute for holding protoName.
private java.io.File prototype

The File that contains the PSDL prototype.
private

static java.lang.String pro toVers ion
The private attribute for holding protoVersion.

private int WIDTH

The width of the frame.

Fields inherited from class javax.swing.JFrame
accessibleContext, defaultCloseOperation, rootPane, rootPaneCheckingEnabled

Fields inherited from class java.awt.Frame
base, CROSSHAIR_CURSOR, DEFAULT_CURSOR, E_RESIZE_CURSOR, frameSerializedDataVersion,
HAND_CURSOR, icon, ICONIFIED, mbManagement, menuBar, MOVE_CURSOR, N_RESIZE_CURSOR,
nameCounter, NE_RESIZE_CURSOR, NORMAL, NW_RESIZE_CURSOR, ownedWindows, resizable,
S_RESIZE_CURSOR, SE_RESIZE_CURSOR, serialVersionUID, state, SW_RESIZE_CURSOR,
TEXT CURSOR, title, W RESIZE CURSOR, WAIT CURSOR, weakThis

Fields inherited from class java.awt. Window
active, base, focusMgr, inputContext, nameCounter, OPENED, ownedWindowList,
serialVersionUID, state, warningString, weakThis, windowListener,
windowSerializedDataVersion

Fields inherited from class java.awtContainer

component, containerListener, containerSerializedDataVersion, dispatcher, layoutMgr,
maxSize, ncomponents, serialVersionUID

143

Fields inherited from class java.awt.Component
actionListenerK, adjustmentListenerK, appContext, assert, background,
BOTTOM ALIGNMENT, CENTER_ALIGNMENT, changeSupport, componentListener, ^
componentListenerK, componentOrientation, componentSerializedDataVersion,
containerListenerK, cursor, dropTarget, enabled, eventMask, focusListener,
focusListenerK, font, foreground, hasFocus, height, incRate, inputMethodListener,
inputMethodListenerK, islnc, isPacked, itemListenerK, keyListener, keyListenerK,
LEFT ALIGNMENT, locale, LOCK, minSize, mouseListener, mouseListenerK,
mouseMotionListener, mouseMotionListenerK, name, nameExplicitlySet, newEventsOnly,
ownedWindowK, parent, peer, peerFont, popups, prefSize, RIGHT_ALIGNMENT,
serialVersionUID, textListenerK, TOP_ALIGNMENT, valid, visible, width,
windowListenerK, x, y _

Constructor Summary
CAPSMainWindow(DistributedCaps.DistCaps objRef)

The constructor for this class.

Method Summary
void

DistributedCaps.DistCaps

java.lang.String

java.util.Vector

java.lang.String

editPrototype()
Opens the graphics editor to edit a prototype.

getCapsRef()
Retrieves the curent reference to the caps server.

qetCapsUser()

Gets the capsUser

getOpenPrototypes()
Returns the vector that holds the open prototype files.

qetProtoName()
Gets the prototype name

java.io.File

java.lang.String

void

boolean

getPrototype()
Retrieves the curent prototype file.

qetProtoVersion()

Gets the prototype version

initialize()
Initializes the CAPS main window.

isQpenPrototypeSaved()
Checks if the status of any of the open prototypes is 'saveRequired'.

boolean

static void

void

void

isPrototypeChanged()
Checks whether or not the current prototype file is already used by a

PSDL Editor.

removeEditor(caps.GraphEditor.Editor e)
Removes one element from the openPrototypes vector.

setLabel(java.lang.String msg)

Sets the label to the string message passed in.

setProtoName(java.lang.String name)

144

Sets tne prototype name to trie argument
void setPrototype(java.io.File f)

Sets the prototype file to the argument.
void setProtoVersion(j ava.lang.String version)

Sets the prototype version to the argument

Methods inherited from class javax.swing.JFrame
addlmpl, createRootPane, createRootPaneException, framelnit, getAccessibleContext,
getContentPane, getDefaultCloseOperation, getGlassPane, getJMenuBar, getLayeredPane,
getRootPane, isRootPaneCheckingEnabled, paramString, processKeyEvent,
processWindowEvent, remove, setContentPane, setDefaultCloseOperation, setGlassPane,
setJMenuBar, setLayeredPane, setLayout, setRootPane, setRootPaneCheckingEnabled,
update

Methods inherited from class java.awt.Frame

, addNotify, addToFrameList, constructComponentName, finalize, getCursorType,
getFrames, getlconlmage, getMenuBar, getState, getTitle, initlDs, isResizable,
postProcessKeyEvent, readObject, remove, removeFromFrameList, removeNotify,
setCursor, setlconlmage, setMenuBar, setResizable, setState, setTitle, writeObject

Methods inherited from class java.awt.Window

addOwnedWindow, addWindowListener, applyResourceBundle, applyResourceBundle,
connectOwnedWindow, dispatchEventlmpl, dispose, eventEnabled, getFocusOwner,
getlnputContext, getLocale, getOwnedWindows, getOwner, getToolkit, getWarningString,
hide, isActive, isShowing, nextFocus, ownedlnit, pack, postEvent, postWindowEvent,
preProcessKeyEvent, processEvent, removeOwnedWindow, removeWindowListener,
setCursor, setFocusOwner, setWarningString, show, toBack, toFront, transferFocus

Methods inherited from class java.awt.Container
add, add, add, add, add, addContainerListener, applyOrientation, countComponents,
deliverEvent, dispatchEventToSelf, doLayout, findComponentAt, findComponentAt,
getAlignmentX, getAlignmentY, getComponent, getComponentAt, getComponentAt,
getComponentCount, getComponents_NoClientCode, getComponents, getCursorTarget,
getlnsets, getLayout, getMaximumSize, getMinimumSize, getMouseEventTarget,
getPreferredSize, getWindow, insets, invalidate, invalidateTree, isAncestorOf,
layout, lightweightPrint, list, list, locate, minimumSize, paint, paintComponents,
postsOldMouseEvents, preferredSize, print, printComponents, printOneComponent,
processContainerEvent, proxyEnableEvents, proxyRequestFocus, remove, removeAll,
removeContainerListener, setFont, updateCursor, validate, validateTree

145

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener, addlnputMethodListener,
addKeyListener, addMouseListener, addMouseMotionListener, addPropertyChangeListener,
addPropertyChangeListener, arelnputMethodsEnabled, bounds, checklmage, checklmage,
coalesceEvents, contains, contains, createlmage, createlmage, disable,
disableEvents, dispatchEvent, enable, enable, enableEvents, enablelnputMethods,
firePropertyChange, getBackground, getBounds, getBounds, getColorModel,
getComponentOrientation, getCursor, getDropTarget, getFont_NoClientCode, getFont,
getFontMetrics, getForeground, getGraphics, getHeight, getlnputMethodRequests,
getlntrinsicCursor, getLocation, getLocation, getLocationOnScreen, getName,
getNativeContainer, getParent_NoClientCode, getParent, getPeer, getSize, getSize,
getToolkitlmpl, getTreeLock, getWidth, getWindowForObject, getX, getY, gotFocus,
handleEvent, hasFocus, imageUpdate, inside, isDisplayable, isDoubleBuffered,
isEnabled, isEnabledlmpl, isFocusTraversable, isLightweight, isOpaque, isValid,
isVisible, keyDown, keyUp, list, list, list, location, lostFocus, mouseDown,
mouseDrag, mouseEnter, mouseExit, mouseMove, mouseUp, move, nextFocus, paintAll,
preparelmage, preparelmage, printAll, processComponentEvent, processFocusEvent,
processInputMethodEvent, processMouseEvent, processMouseMotionEvent,
removeComponentListener, removeFocusListener, removelnputMethodListener,
removeKeyListener, removeMouseListener, removeMouseMotionListener,
removePropertyChangeListener, removePropertyChangeListener, repaint, repaint,
repaint, repaint, requestFocus, reshape, resize, resize, setBackground, setBounds,
setBounds, setComponentOrientation, setDropTarget, setEnabled, setForeground,
setLocale, setLocation, setLocation, setName, setSize, setSize, setVisible, show,
size, toString, transferFocus

Methods inherited from class java.lang.Object

clone, equals, getClass, hashCode, notify, notifyAll, registerNatives, wait, wait,
wait

Field Detaü

WIDTH

private final int WIDTH

The width of the frame.

HEIGHT

private final int HEIGHT

The height of the frame.

prototype

private Java.io.File prototype

The File that contains the PSDL prototype.

146

capsRef

private DistributedCaps.DistCaps capsRef

The object reference to the CAPS server.

protoName

private static Java.lang.String protoName

The private attribute for holding protoName.

protoVersion

private static Java.lang.String protoVersion

The private attribute for holding protoVersion.

capsUser

private static Java.lang.String capsUser

The private attribute for holding capsUser.

openPrototypes

private static java.util.Vector openPrototypes

The Vector that holds references to the open prototypes

Constructor Detail

CAPSMain Window

public CAPSMainWindow(DistributedCaps.DistCaps objRef)

The constructor for this class.
Parameters:

objRef - The reference to the CAPS object on the server

147

Method Detail

initialize

public void initialize;)

Initializes the CAPS main window.

setPrototype

public void setPrototype(Java.io.File f)

Sets the prototype file to the argument.
Parameters:

f - The File that contains the PSDL prototype.

setLabel

public void setLabel(Java.lang.String msg)

Sets the label to the string message passed in.
Parameters:

msg - The message to be displayed.

getPrototype

public Java.io.File getPrototype()

Retrieves the curent prototype file.
Returns:

the File that contains the PSDL prototype.

getCapsRef

public DistributedCaps.DistCaps getCapsRef()

Retrieves the curent reference to the caps server.
Returns:

the reference to the caps server object.

getOpenPrototypes

148

public java.util.Vector getOpenPrototypes()

Returns the vector that holds the open prototype files.
Returns:

the vector that contains the open prototype files.

setProtoName

public void setProtoName(Java.lang.String name)

Sets the prototype name to the argument
Parameters:

name - The string that contains the prototype's name

setProtoVersion

public void setProtoVersion(Java,lang.String version)

Sets the prototype version to the argument
Parameters:

version - The string that contains the prototype's version

i

getProtoName

public Java.lang.String getProtoName()

Gets the prototype name

getProtoVersion

public Java.lang.String getProtoVersion()

Gets the prototype version

getCapsUser

public Java.lang.String getCapsUser()

Gets the capsUser

149

editPrototype

public void editPrototype()

Opens the graphics editor to edit a prototype.

isPrototypeChanged

public boolean isPrototypeChanged()

Checks whether or not the current prototype file is already used by a PSDL Editor.
Returns:

true if selected prototype is not already open

removeEditor

public static void removeEditor(caps.GraphEditor.Editor e)

Removes one element from the openPrototypes vector.
Parameters:

e - the editor that is going to be removed from the vector.

isOpenPrototypeSaved

public boolean isOpenPrototypeSaved()

Checks if the status of any of the open prototypes is 'saveRequired'. Prompts the user to save the
prototype.
Returns:

true if none of the prototypes need saving.

I Tree Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

150

I Tree Deprecated Index Help
PREV CLASS NEXT CLASS

SUMMARY: INNER I FIELD I CONSTR I METHOD
FRAMES NO FRAMES
DETAIL: FIELD | CONSTR | METHOD

caps.CAPSMain

Class ExecSupportMenu
j ava.lang.Obj ect

I
+—java.awt.Component

I
+—Java.awt.Container

I
+—j avax.swing.JComponent

I
+—javax.swing.AbstractButton

I
+—j avax.swing.JMenuItem

I
+—javax.swing.JMenu

I
+—caps.CAPSMain.ExecSupportMenu

public class ExecSupportMenu
extends javax.swing. JMenu
implements java.awt.event.ActionListener

This class holds the 'Exec Support' menu items.

See Also:
Serialized Form

Inner classes inherited from class javax.swing.JMenu
j avax.swing.JMenu.AccessibleJMenu, j avax.swing.JMenu.MenuChangeLis tener,
javax.swing.JMenu.WinListener

Inner classes inherited from class javax.swing.JMenuItem
javax.swing.JMenuItem.AccessibleJMenuItem

Inner classes inherited from class javax.swing.AbstractButton
javax.swing.AbstractButton.AccessibleAbstractButton,
Ijavax.swing.AbstractButton.ButtonChangeListener

151

Inner classes inherited from class javax.swing.JComponent
javax.swing.JComponent.AccessibleJComponent, javax.swing.JComponent.IntVector,
javax.swing.JComponent.KeyboardBinding, javax.swing.JComponent.Keyboardstäte

Inner classes inherited from class java.awtComponent
Java.awt.Component.AWTTreeLock

Field Summary
private javax.swing.JMenuItem compi1eMenuItem

Initiates the 'Compile' event
private javax.swing.JMenuItem executeMenuItem

Initiates the 'Execute' event
protected

caps.CAPSMain.CAPSMainWindow ownerWindow

this menu. The main window which owns
private javax.swing.JMenuItem scheduleMenuItem

Initiates the 'Schedule' event
private javax.swing.JMenuItem translateMenuItem

Initiates the 'Translate' event

Fields inherited from class javax.swingJMenu
delay, listenerRegistry, menuChangeListener, menuEvent, popupListener, popupMenu,
uiClassID

Fields inherited from class javax.swing.JMenuItem
accelerator, uiClassID

Fields inherited from class javax.swing.AbstractButton
actionListener, BORDER_PAINTED_CHANGED_PROPERTY, changeEvent, changeListener,
CONTENT_AREA_FILLED_CHANGED_PROPERTY, contentAreaFilled, defaultlcon, defaultMargin,
DISABLED ICON_CHANGED_PROPERTY, DISABLED_SELECTED_ICON_CHANGED_PROPERTY,
disabledlcon, disabledSelectedlcon, FOCUS_PAINTED_CHANGED_PROPERTY,
HORIZONTAL_ALIGNMENT_CHANGED_PROPERTY, HORIZONTAL_TEXT_POSITION_CHANGED_PROPERTY,
horizontalAlignment, horizontalTextPosition, ICON_CHANGED_PROPERTY, itemListener,
margin, MARGIN_CHANGED_PROPERTY, MNEMONIC_CHANGED_PROPERTY, model,
MODEL CHANGED_PROPERTY, paintBorder, paintFocus, PRESSED_ICON_CHANGED_PROPERTY,
pressedlcon, ROLLOVER_ENABLED_CHANGED_PROPERTY, ROLLOVER_ICON_CHANGED_PROPERTY,
ROLLOVER_SELECTED_ICON_CHANGED_PROPERTY, rolloverEnabled, rolloverlcon,
rolloverSelectedlcon, SELECTED_ICON_CHANGED_PROPERTY, selectedlcon, text,
TEXT_CHANGED_PROPERTY, VERTICAL_ALIGNMENT_CHANGED_PROPERTY,
VERTICAL TEXT_POSITION_CHANGED_PROPERTY, verticalAlignment, verticalTextPosition

152

Fields inherited from class javax.swing.JComponent
_bounds, accessibleContext, alignmentX, alignmentY, ANCESTOR_USING_BUFFER,
ancestorNotifier, autoscroller, border, changeSupport, clientProperties, flags,
HAS_FOCUS, IS_DOUBLE_BUFFERED, IS_OPAQUE, IS_PAINTING_TILE, KEYBOARD_BINDINGS_KEY,
listenerList, maximumSize, minimumSize, NEXT_FOCUS, paintlmmediatelyClip,
paintingChild, preferredSize, readObjectCallbacks, REQUEST_FOCUS_DISABLED, tmpRect,
TOOL_TIP_TEXT_KEY, ui, uiClassID, UNDEFINED_CONDITION, vetoableChangeSupport,
WHEN ANCESTOR OF FOCUSED COMPONENT, WHEN FOCUSED, WHEN IN FOCUSED WINDOW

Fields inherited from class java.awt.Container
component, containerListener, containerSerializedDataVersion, dispatcher, layoutMgr,
maxSize, ncomponents, serialVersionUID

Fields inherited from class java.awt.Component
actionListenerK, adjustmentListenerK, appContext, assert, background,
BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, changeSupport, componentListener,
componentListenerK, componentOrientation, componentSerializedDataversion,
containerListenerK, cursor, dropTarget, enabled, eventMask, focusListener,
focusListenerK, font, foreground, hasFocus, height, incRate, inputMethodListener,
inputMethodListenerK, islnc, isPacked, itemListenerK, keyListener, keyListenerK,
LEFT_ALIGNMENT, locale, LOCK, minSize, mouseListener, mouseListenerK,
mouseMotionListener, mouseMotionListenerK, name, nameExplicitlySet, newEventsOnly,
ownedWindowK, parent, peer, peerFont, popups, prefSize, RIGHT_ALIGNMENT,
serialVersionUID, textListenerK, TOP_ALIGNMENT, valid, visible, width,
windowListenerK, x, y

Constructor Summary
ExecSupportMenu(caps.CAPSMain.CAPSMainWindow owner)

Constructor for this class.

Method Summary
void actionPerformed(java.awt.event.ActionEvent e)

Action event handler for the menu events.

Methods inherited from class javax.swing.JMenu

, add, add, add, add, addMenuListener, addSeparator, buildMenuElementArray,
clearListenerRegistry, createActionChangeListener, createMenuChangeListener,
createWinListener, doClick, ensurePopupMenuCreated, fireMenuCanceled,
fireMenuDeselected, fireMenuSelected, getAccessibleContext, getComponent, getDelay,
getltem, getltemCount, getMenuComponent, getMenuComponentCount, getMenuComponents,
getPopupMenu, getPopupMenuOrigin, getSubElements, getUIClassID, insert, insert,
insert, insertSeparator, isMenuComponent, isPopupMenuVisible, isSelected, isTearOff,
isTopLevelMenu, menuSelectionChanged, paramString, processKeyEvent,
registerMenuItemForAction, remove, remove, remove, removeAll, removeMenuListener,
setAccelerator, setDelay, setMenuLocation, setModel, setPopupMenuVisible,
setSelected, translateToPopupMenu, translateToPopupMenu,
unregisterMenuItemForAction, updateUI, writeObject

153

Methods inherited from class javax.swing.JMenuItem
addMenuDragMouseListener, addMenuKeyListener, alwaysOnTop, fireMenuDragMouseDragged,
fireMenuDragMouseEntered, fireMenuDragMouseExited, fireMenuDragMouseReleased,
fireMenuKeyPressed, fireMenuKeyReleased, fireMenuKeyTyped, getAccelerator, init,
isArmed, processKeyEvent, processMenuDragMouseEvent, processMenuKeyEvent,
processMouseEvent, readObject, removeMenuDragMouseListener, removeMenuKeyListener,
setArmed, setEnabled, setUI

Methods inherited from class javax.swing.AbstractButton

addActionListener, addChangeListener, addltemListener, checkHorizontalKey,
checkVerticalKey, createActionListener, createChangeListener, createltemListener,
doClick, fireActionPerformed, fireltemStateChanged, fireStateChanged,
getActionCommand, getDisabledlcon, getDisabledSelectedlcon, getHorizontalAlignment,
getHorizontalTextPosition, getlcon, getLabel, getMargin, getMnemonic, getModel,
getPressedlcon, getRolloverlcon, getRolloverSelectedlcon, getSelectedlcon,
getSelectedObjects, getText, getUI, getVerticalAlignment, getVerticalTextPosition,
isBorderPainted, isContentAreaFilled, isFocusPainted, isRolloverEnabled,
paintBorder, removeActionListener, removeChangeListener, removeltemListener,
setActionCommand, setBorderPainted, setContentAreaFilled, setDisabledlcon,
setDisabledSelectedlcon, setFocusPainted, setHorizontalAlignment,
setHorizontalTextPosition, setlcon, setLabel, setMargin, setMnemonic, setMnemonic,
setPressedlcon, setRolloverEnabled, setRolloverlcon, setRolloverSelectedlcon,
setSelectedlcon, setText, setUI, setVerticalAlignment, setVerticalTextPosition

Methods inherited from class javax.swing.JComponent

_paintlmmediately, addAncestorListener, addNotify, addPropertyChangeListener,
addPropertyChangeListener, addVetoableChangeListener, adjustPaintFlags,
bindingForKeyStroke, checklfChildObscuredBySibling, computeVisibleRect,
computeVisibleRect, contains, creat-ToolTip, enableSerialization,
firePropertyChange, firePropertyChange, firePropertyChange, firePropertyChange,
firePropertyChange, firePropertyChange, firePropertyChange, firePropertyChange,
firePropertyChange, fireVetoableChange, getActionForKeyStroke, getAlignmentX,
getAlignmentY, getAutoscrolls, getBorder, getBounds, getClientProperties,
getClientProperty, getComponentGraphics, getConditionForKeyStroke,
getDebugGraphicsOptions, getFlag, getGraphics, getHeight, getlnsets, getlnsets,
getLocation, getMaximumSize, getMinimumSize, getNextFocusableComponent,
getPreferredSize, getRegisteredKeyStrokes, getRootPane, getSize, getToolTipLocation,
getToolTipText, getToolTipText, getTopLevelAncestor, getVisibleRect, getwidth, getX,
getY, grabFocus, hasFocus, isDoubleBuffered, isFocusCycleRoot, isFocusTraversable,
isLightweightComponent, isManagingFocus, isOpaque, isOptimizedDrawingEnabled,
isPaintingTile, isRequestFocusEnabled, isValidateRoot, keyboardBindings, paint,
paintChildren, paintComponent, paintlmmediately, paintlmmediately, paintWithBuffer,
processComponentKeyEvent, processFocusEvent, processKeyBinding, processKeyBindings,
processKeyBindingsForAHComponents, processMouseMotionEvent, putClientProperty,
rectangleIsObscured, rectanglelsObscuredBySibling, registerKeyboardAction,
registerKeyboardAction, registerWithKeyboardManager, removeAncestorListener,
removeNotify, removePropertyChangeListener, removePropertyChangeListener,
removeVetoableChangeListener, repaint, repaint, requestDefaultFocus, requestFocus,
resetKeyboardActions, reshape, revalidate, scrollRectToVisible, setAlignmentX,
setAlignmentY, setAutoscrolls, setBackground, setBprder, setDebugGraphicsOptions,
setDoubleBuffered, setFlag, setFont, setForeground, setMaximumSize, setMinimumSize,
setNextFocusableComponent, setOpaque, setPaintingChild, setPreferredSize,
setRequestFocusEnabled, setToolTipText, setUI, setVisible, shouldDebugGraphics,
superProcessMouseMotionEvent, unregisterKeyboardAction,
unregisterWithKeyboardManager, update

154

Methods inherited from class java.awt.Container
add, add, add, add, addContainerListener, addlmpl, applyOrientation,
countComponents, deliverEvent, dispatchEventlmpl, dispatchEventToSelf, doLayout,
eventEnabled, findComponentAt, findComponentAt, getComponent, getComponentAt,
getComponentAt, getComponentCount, getComponents_NoClientCode, getComponents,
getCursorTarget, getLayout, getMouseEventTarget, getWindow, initlDs, insets,
invalidate, invalidateTree, isAncestorOf, layout, lightweightPrint, list, list,
locate, minimumSize, nextFocus, paintComponents, postProcessKeyEvent,
postsOldMouseEvents, preferredSize, preProcessKeyEvent, print, printComponents,
printOneComponent, processContainerEvent, processEvent, proxyEnableEvents,
proxyRequestFocus, removeContainerListener, setCursor, setFocusOwner, setLayout,
transferFocus, updateCursor, validate, validateTree

Methods inherited from class java.awtComponent
action, add, addComponentListener, addFocusListener, addlnputMethodListener,
addKeyListener, addMouseListener, addMouseMotionListener, arelnputMethodsEnabled,
bounds, checklmage, checklmage, coalesceEvents, constructComponentName, contains,
createlmage, createlmage, disable, disableEvents, dispatchEvent, enable, enable,
enableEvents, enablelnputMethods, getBackground, getBounds, getColorModel,
getComponentOrientation, getCursor, getDropTarget, getFont_NoClientCode, getFont,
getFontMetrics, getForeground, getlnputContext, getlnputMethodRequests,
getlntrinsicCursor, getLocale, getLocation, getLocationOnScreen, getName,
getNativeContainer, getParent_NoClientCode, getParent, getPeer, getSize, getToolkit,
getToolkitlmpl, getTreeLock, getWindowForObject, gotFocus, handleEvent, hide,
imageUpdate, inside, isDisplayable, isEnabled, isEnabledlmpl, isLightweight,
isShowing, isValid, isVisible, keyDown, keyUp, list, list, list, location,
lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove, mouseUp, move,
nextFocus, paintAll, postEvent, preparelmage, preparelmage, printAll,
processComponentEvent, processInputMethodEvent, processMouseEvent, remove,
removeComponentListener, removeFocusListener, removelnputMethodListener,
removeKeyListener, removeMouseListener, removeMouseMotionListener, repaint, repaint,
repaint, resize, resize, setBounds, setBounds, setComponentOrientation,
setDropTarget, setLocale, setLocation, setLocation, setName, setSize, setSize, show,
show, size, toString, transferFocus

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, registerNatives,
wait, wait, wait

Field Detail

translateMenuItem

private javax.swing.JMenuItem translateMenuItem

Initiates the 'Translate' event

scheduleMenuItem

private javax.swing.JMenuItem scheduleMenuItem

155

Initiates the 'Schedule' event

com pileMenuItem

private javax.swing.JMenuItem compileMenuItem

Initiates the 'Compile' event

executeMenuItem

private javax.swing.JMenuItem executeMenuItem

Initiates the 'Execute' event

ownerWindow

protected caps.CAPSMain.CAPSMainWindow ownerWindow

The main window which owns this menu.

Constructor Detail

ExecSupportMenu

public ExecSupportMenu(caps.CAPSMain.CAPSMainWindow owner)

Constructor for this class.
Parameters:

owner - CAPSMainWindow that owns the menu

Method Detail

actionPerformed

public void actionPerformed(Java.awt.event.ActionEvent e)

Action event handler for the menu events.
Specified by:

actionPerformed in interface java.awt.event.ActionListener
Parameters:

e - The action event that is created by selecting a menu item

156

Tree Deprecated Index He!
PREV CLASS NEXT CLASS

SUMMARY: INNER I FIELD I CONSTR I METHOD
FRAMES NO FRAMES
DETAIL: FIELD | CONSTR | METHOD

caps.CAPSMain

Class PrototypeMenu
j ava.lang.Obj ect

I
+ — j ava.awt.Component

I
+—j ava.awt.Container

+—javax.swing.JComponent
I
+—javax.swing.AbstractButton

I
+—j avax.swing.JMenuItem

+—j avax.swing.JMenu
I
+—caps. CAPSMain. PrototypeMenu

public class PrototypeMenu
extends javax.swing.JMenu
implements java.awt.event.ActionListener

This class holds the 'Prototype' menu items.

See Also:
Serialized Form

Inner classes inherited from class javax.swing.JMenu
javax.swing.JMenu.AccessibleJMenu, javax.swing.JMenu.MenuChangeListener,
j avax.swing.JMenu.WinListener

Inner classes inherited from class javax.swing.JMenuItem
j avax.swing.JMenuItem.AccessibleJMenuItem

Inner classes inherited from class javax.swing.AbstractButton
javax.swing.AbstractButton. AccessibleAbstractButton,
javax.swing.AbstractButton.ButtonChangeListener

157

Inner classes inherited from class javax.swing.JComponent
javax.swing.JComponent.AccessibleJComponent, javax.swing.JComponent.IntVector,
javax.swing.JComponent.KeyboardBinding, javax.swing.JComponent.Keyboardstäte

Inner classes inherited from class java.awtComponent
j ava.awt.Component.AWTTreeLock

Field Summary
private javax.swing.JMenuItem commitWorkMenuItem

Initiates the 'Commit Work' event
private javax.swing.JMenuItem newMenuItern

Initiates the 'New' event
private javax.swing.JMenuItem openMenuItern

Initiates the 'Open' event
protected

caps.CAPSMain.CAPSMainWindow ownerWindow

The main window which owns this menu.
private javax.swing.JMenuItem qu i tMenuItern

Initiates the 'Quit' event
private javax.swing.JMenuItem retrieveMenuItern

Initiates the 'Retrieve From DDB' event

Fields inherited from class javax.swingJMenu
delay, listenerRegistry, menuChangeListener, menuEvent, popupListener, popupMenu,
uiClassID

Fields inherited from class javax.swing.JMenuItem
accelerator, uiClassID

Fields inherited from class javax.swing.AbstractButton
actionListener, BORDER_PAINTED_CHANGED_PROPERTY, changeEvent, changeListener,
CONTENT_AREA_FILLED_CHANGED_PROPERTY, contentAreaFilled, defaultlcon, defaultMargin,
DISABLED_ICON_CHANGED_PROPERTY, DISABLED_SELECTED_ICON_CHANGED_PROPERTY,
disabledlcon, disabledSelectedlcon, FOCUS_PAINTED_CHANGED_PROPERTY,
HORIZONTAL_ALIGNMENT_CHANGED_PROPERTY, HORIZONTAL_TEXT_POSITION_CHANGED_PROPERTY,
horizontalAlignment, horizontalTextPosition, ICON_CHANGED_PROPERTY, itemListener,.
margin, MARGIN_CHANGED_PROPERTY, MNEMONIC_CHANGED_PROPERTY, model,
MODEL_CHANGED_PROPERTY, paintBorder, paintFocus, PRESSED_ICON_CHANGED_PROPERTY,
pressedlcon, ROLLOVER_ENABLED_CHANGED_PROPERTY, ROLLOVER_ICON_CHANGED_PROPERTY,
ROLLOVER_SELECTED_ICON_CHANGED_PR0PERTY, rolloverEnabled, rolloverIcon,
rolloverSelectedlcon, SELECTED_ICON_CHANGED_PROPERTY, selectedlcon, text,
TEXT_CHANGED_PROPERTY, VERTICAL_ALIGNMENT_CHANGED_PROPERTY,
VERTICAL TEXT POSITION CHANGED PROPERTY, verticalAlignment, verticalTextPosition

158

Fields inherited from class javax.swing.JComponent
Joounds, accessibleContext, alignmentX, alignmentY, ANCESTOR_USING_BUFFER,
ancestorNotifier, autoscroller, border, changeSupport, clientProperties, flags,
HAS_FOCUS, IS_DOÜBLE_BÜFFERED, IS_OPAQUE, IS_PAINTING_TIL£, KEYBOARD_BINDINGS_KEY,
listenerList, maximumSize, minimumSize, NEXT_FOCUS, paintlmmediatelyClip,
paintingChild, preferredSize, readObjectCallbacks, REQUEST_FOCUS_DISABLED, tmpRect,
TOOL_TIP_TEXT_KEY, ui, uiClassID, UNDEFINED_CONDITION, vetoableChangeSupport,
WHEN_ANCESTOR_OF_FOCUSED_COMPONENT, WHEN FOCUSED, WHEN IN FOCUSED WINDOW

Fields inherited from class java.awtContainer
component, containerListener, containerSerializedDataVersion, dispatcher, layoutMgr,
maxSize, ncomponents, serialVersionUID

Fields inherited from class java.awt.Component
actionListenerK, adjustmentListenerK, appContext, assert, background,
BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, changeSupport, componentListener,
componentListenerK, componentOrientation, componentSerializedDataversion,
containerListenerK, cursor, dropTarget, enabled, eventMask, focusListener,
focusListenerK, font, foreground, hasFocus, height, incRate, inputMethodListener,
inputMethodListenerK, islnc, isPacked, itemListenerK, keyListener, keyListenerK,
LEFT_ALIGNMENT, locale, LOCK, minSize, mouseListener, mouseListenerK,
mouseMotionListener, mouseMotionListenerK, name, nameExplicitlySet, newEventsOnly,
ownedWindowK, parent, peer, peerFont, popups, prefSize, RIGHT_ALIGNMENT,
serialVersionUID, textListenerK, TOP_ALIGNMENT, valid, visible, width,
windowListenerK, x, y

Constructor Summary
PrototypeMenu(caps.CAPSMain.CAPSMainWindow owner)

Constructor for this class.

Method Summary
void actionPerformed(j ava.awt.event.ActionEvent e)

Action event handler for the menu events.
void processConuaitWorkMenuItem()

Handles the event which is caused by selecting the 'Commit' menu item.
void processNewMenuItem()

Handles the event which is caused by selecting the 'New' menu item.
void processOpenMenuItem()

Handles the event which is caused by selecting the 'Open' menu item.

159

Methods inherited from class javax.swing.JMenu

, add, add, add, add, addMenuListener, addSeparator, buildMenuElementArray,
clearListenerRegistry, createActionChangeListener, createMenuChangeListener,
createWinListener, doClick, ensurePopupMenuCreated, fireMenuCanceled,
fireMenuDeselected, fireMenuSelected, getAccessibleContext, getComponent, getDelay,
getltem, getltemCount, getMenuComponent, getMenuComponentCount, getMenuComponents,
getPopupMenu, getPopuoMenuOrigin, getSubElements, getUIClassID, insert, insert,
insert, insertSeparator, isMenuComponent, isPopupMenuVisible, isSelected, isTearOff,
isTopLevelMenu, menuSelectionChanged, paramString, processKeyEvent,
registerMenuItemForAction, remove, remove, remove, removeAll, removeMenuListener,
setAccelerator, setDelay, setMenuLocation, setModel, setPopupMenuVisible,
setSelected, translateToPopupMenu, translateToPopupMenu,
unregisterMenuItemForAction, updateUI, writeObject

Methods inherited from class javax.swing.JMenuItem

addMenuDragMouseListener, addMenuKeyListener, alwaysOnTop, fireMenuDragMouseDragged,
fireMenuDragMouseEntered, fireMenuDragMouseExited, fireMenuDragMouseReleased,
fireMenuKeyPressed, fireMenuKeyReleased, fireMenuKeyTyped, getAccelerator, mit,
isArmed, processKeyEvent, processMenuDragMouseEvent, processMenuKeyEvent,
processMouseEvent, readObject, removeMenuDragMouseListener, removeMenuKeyListener,
setArmed, setEnabled, setUI ^

Methods inherited from class javax.swing.AbstractButton

addActionListener, addChangeListener, addltemListener, checkHorizontalKey,
checkVerticalKey, createActionListener, createChangeListener, createltemListener,
doClick, fireActionPerformed, fireltemStateChanged, fireStateChanged,
qetActionCommand, getDisabledlcon, getDisabledSelectedlcon, getHorizontalAlxgnment,
getHorizontalTextPosition, getlcon, getLabel, getMargin, getMnemonic, getModel,
qetPressedlcon, getRolloverlcon, getRolloverSelectedlcon, getSelectedlcon, _ _
getSelectedObjects, getText, getUI, getVerticalAlignment, getVerticalTextPosition,
isBorderPainted, isContentAreaFilled, isFocusPainted, isRolloverEnabled,
paintBorder, removeActionListener, removeChangeListener, removeltemListener,
setActionCommand, setBorderPainted, setContentAreaFilled, setDisabledlcon,
setDisabledSelectedlcon, setFocusPainted, setHorizontalAlignment,
setHorizontalTextPosition, setlcon, setLabel, setMargin, setMnemonic, setMnemomc,
setPressedlcon, setRolloverEnabled, setRolloverlcon, setRolloverSelectedlcon,
setSelectedlcon, setText, setUI, setVerticalAlignment, setVerticalTextPosition

160

Methods inherited from class javax.swing.JComponent
_paintlmmediately, addAncestorListener, addNotify, addPropertyChangeListener,
addPropertyChangeListener, addVetoableChangeListener, adjustPaintFlags,
bindingForKeyStroke, checklfChildObscuredBySibling, computeVisibleRect,
computeVisibleRect, contains, createToolTip, enableSerialization,
firePropertyChange, firePropertyChange, firePropertyChange, firePropertyChange,
firePropertyChange, firePropertyChange, firePropertyChange, firePropertyChange,
firePropertyChange, fireVetoableChange, getActionForKeyStroke, getAlignmentX,
getAlignmentY, getAutoscrolls, getBorder, getBounds, getClientProperties,
getClientProperty, getComponentGraphics, getConditionForKeyStroke,
getDebugGraphicsOptions, getFlag, getGraphics, getHeight, getlnsets, getlnsets,
getLocation, getMaximumSize, getMinimumSize, getNextFocusableComponent,
getPreferredSize, getRegisteredKeyStrokes, getRootPane, getSize, getToolTipLocation,
getToolTipText, getToolTipText, getTopLevelAncestor, getVisibleRect, getWidth, getX,
getY, grabFocus, hasFocus, isDoubleBuffered, isFocusCycleRoot, isFocusTraversable,
isLightweightComponent, isManagingFocus, isOpaque, isOptimizedDrawingEnabled,
isPaintingTile, isRequestFocusEnabled, isValidateRoot, keyboardBindings, paint,
paintChildren, paintComponent, paintlmmediately, paintlmmediately, paintWithBuffer,
processComponentKeyEvent, processFocusEvent, processKeyBinding, processKeyBindings,
processKeyBindingsForAHComponents, processMouseMotionEvent, putClientProperty,
rectanglelsObscured, rectanglelsObscuredBySibling, registerKeyboardAction,
registerKeyboardAction, registerWithKeyboardManager, removeAncestorListener,
removeNotify, removePropertyChangeListener, removePropertyChangeListener,
removeVetoableChangeListener, repaint, repaint, requestDefaultFocus, requestFocus,
resetKeyboardActions, reshape, revalidate, scrollRectToVisible, setAlignmentX,
setAlignmentY, setAutoscrolls, setBackground, setBorder, setDebugGraphicsOptions,
setDoubleBuffered, setFlag, setFont, setForeground, setMaximumSize, setMinimumSize,
setNextFocusableComponent, setOpaque, setPaintingChild, setPreferredSize,
setRequestFocusEnabled, setToolTipText, setUI, setVisible, shouldDebugGraphics,
superProcessMouseMotionEvent, unregisterKeyboardAction,
unregisterWithKeyboardManager, update

Methods inherited from class java.awt.Container
add, add, add, add, addContainerListener, addlmpl, applyOrientation,
countComponents, deliverEvent, dispatchEventlmpl, dispatchEventToSelf, doLayout,
eventEnabled, findComponentAt, findComponentAt, getComponent, getComponentAt,
getComponentAt, getComponentCount, getComponents_NoClientCode, getComponents,
getCursorTarget, getLayout, getMouseEventTarget, getWindow, initlDs, insets,
invalidate, invalidateTree, .isAncestorOf, layout, lightweightPrint, list, list,
locate, minimumSize, nextFocus, paintComponents, postProcessKeyEvent,
postsOldMouseEvents, preferredSize, preProcessKeyEvent, print, printComponents,
printOneComponent, processContainerEvent, processEvent, proxyEnableEvents,
proxyRequestFocus, removeContainerListener, setCursor, setFocusOwner, setLayout,
transferFocus, updateCursor, validate, validateTree

161

Methods inherited from class java.awt.Component
action, add, addComponentListener, addFocusListener, addlnputMethodListener,
addKeyListener, addMouseListener, addMouseMotionListener, arelnputMethodsEnabled,
bounds, checklmage, checklmage, coalesceEvents, constructComponentName, contains,
createlmage, createlmage, disable, disableEvents, dispatchEvent, enable, enable,
enableEvents, enablelnputMethods, getBackground, getBounds, getColorModel,
getComponentOrientation, getCursor, getDropTarget, getFont_NoClientCode, getFont,
getFontMetrics, getForeground, getlnputContext, getlnputMethodRequests,
getlntrinsicCursor, getLocale, getLocation, getLocationOnScreen, getName,
getNativeContainer, getParent_NoClientCode, getParent, getPeer, getSize, getToolkit,
getToolkitlmpl, getTreeLock, getWindowForObject, gotFocus, handleEvent, hide,
imageUpdate, inside, isDisplayable, isEnabled, isEnabledlmpl, isLightweight,
isShowing, isValid, isVisible, keyDown, keyUp, list, list, list, location,
lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove, mouseUp, move,
nextFocus, paintAll, postEvent, preparelmage, preparelmage, printAll,
processComponentEvent, processInputMethodEvent, processMouseEvent, remove,
removeComponentListener, removeFocusListener, removelnputMethodListener,
removeKeyListener, removeMouseListener, removeMouseMotionListener, repaint, repaint,
repaint, resize, resize, setBounds, setBounds, setComponentOrientation,
setDropTarget, setLocale, setLocation, setLocation, setName, setSize, setSize, show,
show, size, toString, transferFocus

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, registerNatives,
wait, wait, wait

Field Detail

newMenuItem

private javax.swing.JMenuItem newMenuItem

Initiates the "New' event

openMenuItem

private javax.swing.JMenuItem openMenuItem

Initiates the 'Open' event

commitWorkMenuItem

private javax.swing.JMenuItem commitWorkMenuItem

Initiates the 'Commit Work' event

162

retrieveMenuItem

private javax.swing.JMenuItem retrieveMenuItem

Initiates the 'Retrieve From DDB' event

quitMenuItem

private javax.swing.JMenuItem quitMenuItem

Initiates the 'Quit' event

ownerWindow

protected caps.CAPSMain.CAPSMainWindow ownerWindow

The main window which owns this menu.

Constructor Detail

PrototypeMenu

public PrototypeMenu(caps.CAPSMain.CAPSMainWindow owner)

Constructor for this class.
Parameters:

owner - The main window which has created this menu.

Method Detail

actionPerformed

public void actionPerformed(Java.awt.event.ActionEvent e)

Action event handler for the menu events.
Specified by:

actionPerformed in interface java.awt.event.ActionListener
Parameters:

e - The action event that is created by selecting a menu item from this menu

processNewMenuItem

public void processNewMenuItem()

163

Handles the event which is caused by selecting the 'New' menu item.

processOpenMenuItem

public void processOpenMenuItem()

Handles the event which is caused by selecting the 'Open' menu item.

processCommitWorkMenuItem

public void processCommitWorkMenuItem()

Handles the event which is caused by selecting the 'Commit' menu item.

| Tree Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

164

APPENDIX E: ACRONYMS

CAPS
CASE
CDR
CGI
CORBA
CPL
DCOM
Dll
DM COE
DOD
DSI
GAMBITS

GUI
HIS
HTTP
IDE
IDL
JDK
JDS
JVM
LAN
OMA
OMG
ORB
PC
PROTOTECH
PSDL
RaPIER
RMI
RPC
SSDL
UML
WAN
WWW

Computer Aided Prototyping System
Computer Aided Software Engineering
Common Data Representation
Common Gateway Interface
Common Object Request Broker Architecture
Common Prototyping Language
Distributed Component Object Model
Dynamic Invocation Interface
Defense Information Infrastructure Common Operating Environment
Department of Defense
Dynamic Skeleton Interface
Graphical Approach to Modeling and Building Interactively a
Technical System
graphical user interface
Heterogeneous Systems Integrator
Hypertext Transfer Protocol
integrated development environments
Interface Definition Language
Java Developer Kit
Jackson Development System
Java Virtual Machine
local area network
Object Management Architecture
Object Management Group
Object Request Broker
personal computer
Prototyping Technology
Prototype System Design Language
Rapid Prototyping to Investigate End-user Requirements
Remote Method Invocations
remote procedure call
System Specification and Design Language
Unified Modeling Language
wide area network
World Wide Web

165

THIS PAGE INTENTIONALLY LEFT BLANK

166

LIST OF REFERENCES

ACOS94

BARB91

BOEH76

BOEH86

BOOC99

CHAV95

DAMP92

DSB87

DURA99

KIMB92

LUQI88a

LUQI88b

LUQI96

International Software Systems Incorporated, Report 5581, Proto
Code Generation Techniques, final report, by Ramon Acosta, pp.
1-27, May 1994
Carnegie-Mellon University Software Engineering Institute,
Report CMU/SEI-91-TR-21, Durra: An Integrated Approach to
Software Specification, Modeling, and Rapid Prototyping, by
Mario Barbacci, Dennis Doubleday, Charles Weinstock and
Randal Lichota, pp. 1-15, September 1991
B.W. Boehm, "Software Engineering," IEEE Transactions on
Computers, v.C-25, no. 12, pp. 1226-1241, 1976
B.W. Boehm, "A Spiral Model of Software Development and
Enhancement," ACM SIGSOFT Software Engineering Notes, v.
11, no. 8, pp. 14-24, 1986
Booch, G., Rumbough, J., and Jacobson, I., The Unified Modeling
Language Guide, 1sfed., Addison Wesley Longman, Inc., 1999
ILLGEN Simulation Technologies Incorporated, Report IST95-R-
085, The Commercialization of a Rapid Prototyping Tool for
Simulating Command and Control Applications, by Steven
Chavin, Valdis Berzins, and Larry Dworkin, p.4, 29 June 1995
Naval Postgraduate School Computer Science Department,
Report NPS-CS-92-014, A Model for Merging Software
Prototypes, by David Dampier, pp. 1-4, 23 September 1992
U.S. Department of Defense, Office of the Undersecretary of
Defense for Acquisition, Report of the Defense Science Board
Task Force on Military Software, p. 34, Government Printing
Office, Washington, D.C., 1987
Duranlioglu, llker, Implementation of a Portable PSDL Editor for
the Heterogenenous Systems Integrator, Master's Thesis, Naval
Postgraduate School, Monterey, California, March 1999
Honeywell Systems and Research Center, Report CS-C92-002,
Honeywell ProtoTech. Phase 1, by John Kimball, Tim King, Aaron
Larson, Chris Miller and Jon Ward, pp.3-9, June 1992
Luqi and M. Ketabchi," A Computer-Aided Prototyping System",
IEEE Software, pp. 66-72, March 1988
Luqi, V. Berzins, and R. Yeh, "A Prototyping Language for Real-
Time Software", IEEE Transactions on Software Engineering, v.
14, no. 10, pp. 1409-1423, October 1988
Luqi, "System Engineering and Computer Aided Prototyping",
Journal of Systems Integration, special issue on Computer Aided
Prototyping, v. 6, no. 1, pp. 15-17, 1996

167

MILL90 North Carolina University at Chapel Hill Computer Science
Department, Report TR90-041, Prototyping Parallel and
Distributed Programs in Proteus, by Peter Mills, Lars Nyland, Jan
Prins, John Reif, and Robert Wagner, pp. 1-5, October 1990

ORFA98 Orfali,R. and Harkey, D., Client/Server Programming with Java
and CORBA, 2nd ed., John Wiley& Sons, Inc., 1998

POPE98 Pope, Alan, The CORBA Reference Guide, 1st ed., Addison
Wesley Longman, Inc., 1998

POWE96 Powell, D., "GAMBITS- From Requirements Capture to C++ Code
Generation," IEE Colloquium on Jackson System Development
(JSD) - The Original Object Oriented Method, no. 1996/20, pp.1-
3, 1996

PROT96 Jelica Protic, Milo Tomasevic, and Veljko Milutinovic, "Distributed
Shared Memory: Concepts and Systems," IEEE Parallel and
Distrubted Technology, v. 4, no. 2, pp. 63-77, 1996

ROLL91 Rollo, A.L., "Jackson System Development", IEE Colloquium on
Introduction to Software Design Methodologies, pp.301-313,1991

ROYC76 W.W. Royce, "Managing the Development of Large Software
Systems," Proceedings in WESCON, 1976

SCHM99 Schmidt, Dave, "Overview of CORBA,"
[http://www.cs.wustl.edu/~schmidt/corba-overview.html], August
1999

WOOD92 Carnegie-Mellon University Software Engineering Institute,
Report CMU/SEI-92-TR-13, A Classification and Bibliography of
Software Prototyping, by David Wood and Kyo Kang, pp. 1-14,
October 1992

WELC86 International Software Systems Incorporated, Report TR-
T101/85/0640-5, Rapid Prototyping System, by Terry Welch, pp.
1-50, 15 December 1986

ZAVE91 Pamela Zave, "An Insider's Evaluation of PAISLey," IEEE
Transactions on Software Engineering, v. 17, no. 3, pp. 212-225,
March 1991

168

INITIAL DISTRIBUTION LIST

Defense Technical Information Center..
8725 John J. Kingman Road, Ste 0944
Ft. Belvoir, Virginia 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 DyerRd.
Monterey, California 93943-5101

Dr Dan Boger, Chairman, Code CS.
Computer Science Department
Naval Postgraduate School
Monterey, CA 93940-5000

Dr Man-Tak Shing
Computer Science Department, Code CS/Sh
Naval Postgraduate School
Monterey, California 93943-5100

DrLuqi
Computer Science Department, Code CS/Lq
Naval Postgraduate School
Monterey, California 93943-5100

CDR Gary Kreeger
1011 Leahy Road
Monterey, CA 93940

LCDR Chris Eagle
Computer Science Department, Code CS/Ce
Naval Postgraduate School
Monterey, CA 93943-5100

169

