
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

AUTOMATING THE SIGN-OUT SHEET AS A PART OF
THE TACTICAL COMBAT TRAINING PROGRAM AS AN

INFORMATION SYSTEM FOR COMMANDING
PERSONNEL IN A NAVAL AIRSTATION

by

Enno F. Busch

September 1999

Thesis Advisor:
Second Reader:

C. Thomas Wu
Michael Capps

Approved for public release; distribution is unlimited.

WTC QUALITY INSPECTED 19991126 075

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1999

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE: AUTOMATING THE SIGN-OUT SHEET AS A PART OF THE
TACTICAL COMBAT TRAINING PROGRAM AS AN INFORMATION SYSTEM FOR
COMMANDING PERSONNEL IN A NAVAL AIRSTATION

6. AUTHOR(S)
Busch, Enno F.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT : Presently, the German Navy Airwings lacks the automated computer infrastructure required to process
administrative flying specific data in the squadrons and administer data from deployed aircrews on foreign airfields. Thus, flying
data are obsolete quickly, especially if aircrews are deployed, and administering personnel must create the forms. Owing to this
inefficiency, delays of several days can occur. In this thesis, a prototype of a database and a client-server application was designed
and developed showing the feasibility of implementing a system that transfers data quickly and securely over long distance and can
store the data accordingly.

With several technologies available to create and implement such a system, the goal was to employ currently available
components efficiently and economically. Thus, three-tier client-server implementations are introduced and compared, where the
RMI network protocol best provides a robust and efficient answer for the required needs. Java RMI enables the software developer
to create distributed Java-to-Java applications in which the methods of remote Java objects can be invoked from objects in other
Java Virtual Machines (JVM). RMI can be programmed to provide services to a database by establishing a listener process to
handle access requests. RMI uses the built-in Java security mechanisms, making the computer system safe when code is
downloaded. Every RMI-based system is portable to any JVM. The system incorporates the JDBC™ to establish a connection to a
database.
14. SUBJECT TERMS: Tactical Combat Training Program, RMI, Java, JVM, Servlets, Client-Server, JDBC™.

15. NUMBER OF
PAGES

118

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI-CATION
OF ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

AUTOMATING THE SIGN-OUT SHEET AS A PART OF THE TACTICAL
COMBAT TRAINING PROGRAM AS AN INFORMATION SYSTEM

FOR COMMANDING PERSONNEL IN A NAVAL AIRSTATION

Busch, Enno F.
Commander, German Navy

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1999

Author:

Approved by:

C. Thomas Wu, Thesis Advisor

o^J{

Michael Capps, Second Reader

Dan Boger, Chaißhan
Department of Computer Science

in

IV

ABSTRACT

Presently, the German Navy Airwings lacks the automated computer
infrastructure required to process administrative flying specific data in the squadrons and
administer data from deployed aircrews on foreign airfields. Thus, flying data are
obsolete quickly, especially if aircrews are deployed, and administering personnel must
create the forms. Owing to this inefficiency, delays of several days can occur. In this
thesis, a prototype of a database and a client-server application was designed and
developed showing the feasibility of implementing a system that transfers data quickly
and securely over long distance and can store the data accordingly.

With several technologies available to create and implement such a system, the
goal was to employ currently available components efficiently and economically. Thus,
three-tier client-server implementations are introduced and compared, where the RMI
network protocol best provides a robust and efficient answer for the required needs. Java
RMI enables the software developer to create distributed Java-to-Java applications in
which the methods of remote Java objects can be invoked from objects in other Java
Virtual Machines (JVM). RMI can be programmed to provide services to a database by
establishing a listener process to handle access requests. RMI uses the built-in Java
security mechanisms, making the computer system safe when code is downloaded. Every
RMI-based system is portable to any JVM. The system incorporates the JDBC™ to
establish a connection to a database.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1
B. CHALLENGE 2
C. THESIS ORGANIZATION 3

n. TACTICAL COMBAT TRAINING PROGRAM 5

IE. SYSTEM DESIGN CONSTRAINTS 7

A. GENERAL REQUIREMENTS 7
B. DISTRIBUTED SYSTEM 7

C. WORKSTATION MODEL 8
D. COMMUNICATION ARCHITECTURE 9

IV. RELATIONSHIP WITH PREVIOUS WORK.... 11

V. JAVA AND JDBC™ 15

A. INTRODUCTION 15

B. JAVA 17
C. JDBC™ 19

1. Importing the Java.sql.package 21
2. Loading and Registering the Driver 21
3. Establishing a Connection to a Database 21
4. Sending SQL Statements 22
5. Execution of a Statement 22
6. Retrieving the Result 22
7. Closing the Connection and Statement 23

VI. CONNECTIONS TO THE CLIENTS AND THE INTERNET 25

A. INTRODUCTION 25
B. CLIENT-SERVER MODELS 25

1. One-Tier Architecture 26
2. Two-Tier Architecture 27
3. Three-Tier Architecture 30

VH. DISCUSSION OF RMI AND SERVLETS 33

A. OVERVIEW 33
1. Remote Method Invocation 33
2. JavaServlets 34

B. REMOTE METHOD INVOCATION INTERFACE 35
1. Introduction to the Java Distributed Model 40
2. Architecture 41
3. Client Interfaces 48
4. Security 49

Vll

C. COMPARISON BETWEEN MULTI HER AND RMI POLICY 50
1. Similarities between Multi Tier and RMI Architecture 50
2. Difference between Multi Tier and RMI Architecture 50

D. JAVA SERVLETS 51
1. Introduction to the Servlets 51
2. Architecture 52
3. Comparison between Servlets and CGI 53
4. Information Flow within Servlets 53

Vm. SYSTEM DEVELOPMENT AND IMPLEMENTATION 57

A. OVERVIEW 57

B. DATABASE MS-ACCESS , 58
C. IMPLEMENTATION OF THE RMI NETWORK PROTOCOL 60

1. The User Application Class 62
2. The User Provider and User Resolver Class 63
3. The Data-Server Application Class 64
4. The CrewMember Class 64
5. The Resource Bundle Class 64

D. SYSTEM REQUIREMENTS AND COSTS 65
E. SYSTEM OPERATION 66

LX. CONCLUSION AND FUTURE RESEARCH 71

A. CONCLUSION 71
B. SECURITY 72
C. AREAS FOR FURTHER RESEARCH 74

APPENDIX A. SOURCE CODE USER 77

APPENDLX B. SOURCE CODE SERVER 87

LIST OF REFERENCES 103

INITIAL DISTRIBUTION LIST 105

vm

LIST OF FIGURES

Figure 5.1: RmiJdbc and ODBC Server Component 16

Figure 5.2: A Sample of JDBC™ Application 21

Figure 6.1: Two-Tier Client-Server Model 28

Figure 6.2: Three-Tier Client-Server Model 31

Figure 7.1: The RMI Architecture 39

Figure 7.2: Communication between Client and Server 42

Figure 7.3: Basic-Servlet HTTP-Information Flow 54

Figure 8.1: Development Steps 61

Figure 8.2: Class Listing for Prototype 62

Figure 8.3: StartUp Dialog ..67

Figure 8.4: Screenshot of the Sign-Out Sheet 68

Figure 8.5: Screenshot of the Sign-Out Sheet (Single Squadron) 69

Figure 9.1: List Selection 76

IX

ACKNOWLEDGEMENT

...to Nicole, Kim, Simon, and Fabian: Thank you for your patience and your
understanding and for reminding me from time to time, that there is something more
besides computers.

XI

Xll

I. INTRODUCTION

A. BACKGROUND

Presently, the German Navy Airwings lacks the automated computer

infrastructure required to process efficiently administrative flying specific data in its

squadrons and deployed airfields. This impedes the leadership's ability to obtain an

overall view of flying hours for aircrews and flying events. As a result, administrative

flying data are out-of-date very quickly, especially if aircrews are deployed to foreign

countries. In this case, special forms, called "sign-out sheets," are collected at the foreign

airfield, and administrative personnel must make up the surveys after gathering these

sign-out sheets. Sometimes, a delay of days or even several weeks occurs. Furthermore,

the lack of an adequate computerized support system results in redundant and imprecise

flight data storage and administration. This inefficient method wastes manpower and

time and also decreases accuracy.

Previous attempts to implement a more accurate system in an airwing only forced

each squadron to meet its own requirements crudely, by using a simple spreadsheet. A

standardized and satisfactory solution for the airwing was never found. Furthermore, it

was never possible to connect to the home base and send specific flying data to

administrative staff personnel. However, borrowing from these earlier attempts, I

designed and built a prototype of a database and a client/server application to show the

feasibility of implementing a system that can be used for transferring data quickly and

securely over long distance.

1

Due to downsizing and immense budget cuts, the German Navy is required to

save money wherever possible and must implement existing technical components that

are presently available and still usable. With these restrictions in mind, I used advanced

computer network technology to connect a database to the network. By implementing

existing Commercial-Off-The-Shelf (COTS) products with existing components, the

designed computer system will be economical and efficient. From this research a

prototype will be designed and built on an open network Client/Server environment. The

objective of this thesis is to provide access to a database at an airwing from the outside

via common modern technology. There are two reasons for building such a system:

• Commanding personnel in an airwing will have immediate access to the

number of missions, flying hours and flying events conducted. Survey results

will be immediately available for analysis and further use.

• The implementation of the system can reduce working hours by preventing

double entries of data from flying-crews and personnel who administer the

sign-out sheets. This in turn will reduce the possibility of human error.

B. CHALLENGE

The purpose of this thesis is to specify the requirements for implementing a part

of the Tactical Combat Training Program (TCTP) and to automate this part by designing

a database, and a Graphical User Interface (GUI), and after analyzing some alternatives,

to select the appropriate architecture in order to implement the necessary connections to

the squadrons and to foreign airfields via the Internet. The goal is to replace the current

manual efforts for aircrews and administrators and to create an automated system superior

to the "sign-out" sheets. To achieve this goal, special software, called Middleware, which

connects two otherwise separate programs will be implemented. The term Middleware is

used to explain a program that serves as a connection between two applications and

passes data between them. In a three-tier architecture, which is explained in Chapter VI,

Middleware engages the middle-tier.

C. THESIS ORGANIZATION

The remainder of this thesis is organized into the following .chapters:

• Chapter II: Tactical Combat Training Program. This chapter describes parts

of the Tactical Combat Training Program (TCTP) that are related to the thesis

and provides a brief introduction of the present workflow. The chapter also

shows the need to create an automated system.

• Chapter El: System Design Constraints. This chapter describes the

requirements for the planned implementation of the system, and explains the

design constraints for the future implementation provided as a guideline by the

present workflow in the squadrons.

• Chapter IV: Relationship with Previous Work. This chapter describes the

approaches of other theses and how similar problems were previously solved,

and why it was infeasible to build on these earlier approaches. This chapter

also shows technical constraints that lead to the approach demonstrated in this

thesis.

• Chapter V: Java and JDBC™ This chapter describes the advantages of the

JDBC™ database access from Java programs. JDBC™ is a trademark name

3

and not an acronym. However, quite often it is thought of as Java-DataBase-

Connectivity [SUND98]. This chapter also highlights the distinctive Java and

JDBC™ features for efficiently manipulating data.

• Chapter VI: Connections to the Clients and to the Internet This chapter

describes the different examples of the client-server architectures.

• Chapter VII: Discussion of RMI and Servlets This chapter provides an

overview of RMI and Java servlets and compares a Multi-Tier policy with

Remote-Method-Invocation (RMI) by examining and describing the

similarities and the differences of both architectures. First, the RMI

framework is discussed as far as architecture, client interfaces, and security are

concerned. Second, Java servlets are introduced and compared to the

predecessor, the Common Gateway Interface (GCI).

• Chapter VIH: System Development and Implementation This chapter

explains the reasons and the advantages of the system that led to the decision

for implementing a particular network protocol. It describes and explains the

stages of the development and the reasons for product implementation. It also

describes the implemented classes for the prototype and the operation of the

designed system.

• Chapter IX: Conclusion and Future Research This chapter briefly

summarizes the present situation regarding administering the sign-out sheet,

the benefits of implementing the component-based client-server solution RMI,

that uses the Internet, and recommends how to enhance the introduced

prototype in the near future.

4

II. TACTICAL COMBAT TRAINING PROGRAM

Headquarters and units must be able to accomplish their assigned mission in peace

time as well as during a crisis, a conflict, or during a war. In order to achieve a high

standard of readiness for action, continuous training must be enforced. Therefore, special

regulations for training and evaluation are established. The general requirements of the

Tactical Combat Training Program (TCTP) are stated in Air Forces Standard (AFS) and

include criteria and guidance for the aircrews' flying time and flying events. For flying

headquarters, like the Flotilla Naval Air Arm, and their associated units, the TCTP is the

basis for the annual planning of the distribution of flying sorties and the basis for

planning the distribution of tactical training events. For efficiency reasons, the flying

crews have to perform as many events as possible during one flying sortie.

The basis for the TCTP is the Air Forces Standard (AFS), which provides the

guidelines for achieving the TCTP planning. Aircrews have to fly a specific amount of

flying hours and have to fulfill a specific amount of events in order to keep their Combat

Ready or Limited Combat Ready status. Furthermore, all crew members must pass an

annual flying performance check to prove their skills and to maintain their flying rating.

Part of the TCTP is a particular form, the "sign out sheet." After each flight,

aircrews are required to fill out the "sign-out sheet" to record their flying time and to

administer their flying events for the mission. It is more necessary than ever that units be

capable of deploying to and operating from locations other than their main operating

installation or peacetime location. Despite the deployment of units from their home

location, they must also be able to establish and maintain a close contact and must be

capable to contribute important information across long distances in almost real time.

Hence, the instantaneous connection from a deployed operating base becomes significant

for transmitting information between the personnel in headquarters, an airstation and the

flying crews in foreign countries.

III. SYSTEM DESIGN CONSTRAINTS

A. GENERAL REQUIREMENTS

The accomplishment of this computer system should allow for immediate

notification of appropriate personnel and should also save time for administering the sign-

out sheets. The computer system uses common technology for data sources, but uses a

newer technology in the form of hardware connectivity to the outside world for fast

information update. The system is tailored to the needs and preferences of a Naval

Airwing and the system represents the information in an easily readable format. Usually,

these information systems were designed as mainframe computer-based systems with

access from several workstations. The intent was to offer key information for decision-

makers, who are not very familiar with the computer environment. Due to cost reduction

in the forces, developing and implementing a system that minimized costs was important.

Also a purchase of significant hardware had to be avoided. The computer system takes

advantage of the client-server technology so that each workstation in the squadrons and

deployed airfield has access to the stored information at the home base. Therefore, on

base, the system will operate over the traditional network system, and from foreign

airfields access to the home base server is established via the Internet.

B. DISTRIBUTED SYSTEM

The term distributed system is used to define a model for the interaction between

concurrently operating software processes. The computer system consists of several

deployed computers (clients) not sharing a common memory. The client processes send

requests to a server process, and the server responds to those requests. The

communication between the clients and the server processes is a cooperative exchange in

which the client is the proactive part and the server the reactive part. As such, both the

client and the server communicate by sending and receiving messages across a complex

network [SISH94]. In general, the client computers are single-user PCs, often notebooks,

or workstations and present a sophisticated, but a user-friendly interface to the personnel.

The most common type of server activity is the database server, containing the Data-

Base-Management-System (DBMS) with its data. Currently, the most common type of

DBMS is the relational database. This server enables many clients to share the access to

the same database and enables a high-performance computer system to manage the

database. Furthermore, an important entity in the system is the network. Users,

applications, and resources are distributed according the requirements, and they are linked

by the Internet or other Wide-Area-Network (WAN).

C. WORKSTATION MODEL

The Workstation Model is one of the three categories for classifying distributed

systems [TARE85]. In this model, the computer system consists of several workstations

that are spatially distributed. Each person has his or her own workstation, the client

machine, on which the user's application is performed. The client machine is responsible

only for providing the GUI; all the processing work is done on a server machine. This

configuration ensures that the client is best suited for providing the user-interface and that

all applications, like the databases, can be easily maintained on the remote central-system.

In this way, the client can access the information stored on a database regardless of the

location of the database or the location of the user's computer. This is done through an

associated File-System. The primary benefit of this model is that new hardware can be

easily added without interrupting the operation while one is running the system. Also,

reliability and availability is improved because whenever a component of the system fails,

the rest of the computer system will not be affected [TANE97].

D. COMMUNICATION ARCHITECTURE

All computers in a distributed system are connected through a computer network.

The communication architecture is special software that supports the network of

distributed and independent client computers. The software contributes support for

distributed applications, such as remote computer access or data transfer through the

network. Nevertheless, each computer preserves a distinct client identity and preserves a

specific application that must be communicated to other computers by explicit references.

Moreover, each computer has its own operating system, and thus a heterogeneous mixture

of computers and operating systems is possible, as long as all the computers possess the

same architecture.

THIS PAGE INTENTIONALLY LEFT BLANK

10

IV. RELATIONSHIP WITH PREVIOUS WORK

Middleware that handles interactions between software applications, and the

operating system and the network services is not new. Middleware is the connecting

software that allows multiple processes running on one or more computers to interact

across a network. For instance, for years a client machine has been able to invoke a

method on a server object when both were on the same machine, or it could invoke a

method across the network using a variety of communication protocols. However, the

method of connecting a database to the clients via a server by using the RMI framework,

is rather unique in design and provides several advantages over other distributed

computing alternatives, such as Common-Object-Request-Broker-Architecture (CORBA)

or Caffeine.

CORBA is an open standard-based software solution for distributed computing.

The primary advantage of using CORBA is that clients and servers can communicate in

any programming language [AL99]. There is no need to predetermine the programming

language, the hardware platform, the operating system, or the degree of application

distribution, such as when the application runs locally or remotely. Certainly, this

increases the flexibility for application architectures, as well as simplifying and clarifying

the distributed computing environment, since the element roles are dynamic. This means

an object can either behave as a client, or it can present service to other participants in the

network, acting as a server. LT. Akbay and LT. Lewis' thesis outlined how to design and

build a distributed application by using CORBA [AL99].

11

The method of connecting a database with a client by using RMI is one method

that allows the software developer to produce distributed Java-to-Java applications, in

which the methods of remote Java objects can be called from other Java virtual machines

(JVM). Like CORBA, the RMI framework connects remote objects to each other,

sending objects and invoking methods regardless of what machine they are on. Presently,

RMI is usable for all-Java implementations, and CORBA is applicable for a mixture of

Java and other applications written in different languages. However, some industrial

work is under way to integrate CORBA and RMI into a single and coherent standard.

LT. Held and CDR. Mingo, NPS Monterey, examined the administration of an

Internet-based model of an airsafety survey [HM99]. This thesis describes the project

development through the research process and further describes the project design,

including the informational flow of data. Held and Mingo's thesis also includes Internet

technologies, such as Active Server Pages, HTML, Active X, CGI Scripts and Secure

Socket Layer. This comprehensive thesis additionally includes various important

technologies to build a distributed computer system, including an automated survey

analysis.

Fortunately, for the realization of a project to allow a connection to foreign

airfields and to allow, consequently, the automated data transmission across the Internet

and across a military installation, a simpler protocol is sufficient in order to achieve the

necessary requirements.

The RMI framework is a relatively simple protocol, but unlike the more complex

protocols, such as CORBA, it works only with Java objects. As such, RMI is the perfect

application framework that allows efficient interoperability between objects running on

12

different JVMs and provides even more advantages; therefore, I decided to design and to

create a Java-based client-server application for the predefined needs of the Naval

Airwing. As a future step, more sophisticated technologies, like applets and servlets,

should be designed and implemented in order to execute an applet by a Java-enabled Web

browser on the client computer, as well as to improve the system's performance and the

security.

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

V. JAVA AND JDBC™

A. INTRODUCTION

The JDBC™ API is an interface based on Open-Data-Base-Connectivity (ODBC).

The ODBC API is well-established and is the most widely distributed programming

interface that accesses a relational database. This system provides the ability to connect

to several databases on almost every platform. ODBC manages the access to the DBMS

by inserting a middlelayer between the application and the data-retrieval-system. The

purpose of the middlelayer is to convert the database queries into a syntax that the DBMS

understands. In order to accomplish this goal, the application and the DBMS must be

ODBC compliant. This means the application must be able to provide ODBC commands,

and the DBMS must be able to reply to these commands accordingly.

Yet, using ODBC directly from the Java language to access the database is not

feasible. The connection is best done by using the JDBC™ API in form of a JDBC™-

ODBC bridge. JDBC™ consists of a set of classes and interfaces written in Java that

make database access from a Java environment easy and powerful. ODBC and JDBC™,

both APIs, provide similar functionality, but they are very different in their

implementation.

The reason for implementing the JDBC™ is manifold. The most obvious

difference is that ODBC is written in the C language and uses pointers. Since Java does

not use pointers, transferring the code is extremely difficult. ODBC uses a C language

interface; hence, program calls from the Java language to the C language have various

15

drawbacks, such as security, robustness, and the automatic portability of programs.

Second, the design goals of the APIs are different. JDBC™ was designed to be very

compact and to act as a simple interface focusing on the execution of SQL statements and

retrieving the results. Contrarily, ODBC is much larger in scope and attempts to pack as

many features as possible in each driver. The ODBC API combines simple and complex

features. Therefore, the added functionality of ODBC is sometimes very useful, but can

make even simple tasks difficult and ineffective to perform. For a "pure Java"
t

implementation, a Java API such as JDBC™ is essential. When just using the ODBC

driver manager, all drivers have to be installed by hand on each client. But the JDBC™

driver is written in the Java language; therefore, the JDBC™ code can be automatically

installed and is automatically secured on all Java platforms. As a consequence, the

JDBC™ API is a Java interface to the basic SQL queries and concepts. JDBC™ builds

on ODBC and retains the basic architectural features of ODBC. Furthermore, JDBC™

continues to develop on the ODBC foundations and continues to reinforce the Java style.

A

l|

V
V Database

RmiJdbc-ODBC Server

RmiJdbc
Server

JDBC/ODBC
Bridge

0
D
B
C

Figure 5.1: RmiJdbc and ODBC Server Component

16

The next two sections introduce the Java language and the JDBC™ API in detail.

B. JAVA

Java is an object-oriented programming language used to create applications and

applets. Java applications are stand-alone programs, which do not require a Web

browser. Java applets add executable content to Web pages. Furthermore, Java applets

can employ animation, interaction and video imaging.

Java has numerous advantages over other object-oriented languages. The most

important Java features are [HCF97]:

• Portability: Java code is compiled into platform neutral byte-code and is able

to run on any O.S. that provides a Java interpreter. The Java compiler creates

the byte-code that is interpreted by the Java Virtual Machine (JVM) at run-

time. Therefore, any application or applet written in Java is platform

independent and any computer equipped with a Java capable Web browser can

run these Java programs.

• Object-Orientation: The Java language is a pure object-oriented language.

All primitive data types, like boolean, int, float, character, and double have

class wrappers. Wrapper classes make it possible to turn a primitive value

into an object so that the value can be passed to a generic class or method,

which requires an object reference.

• Security: The JVM was designed to maximize security. Java measures

provide trustworthy applets and ensure that applications are implemented

17

according to specified security rules. The implemented byte-code checker

makes sure that the code is correct (does nor forge pointers), does not violate

access restrictions, and uses objects only for what they are intended.

• Simplicity: The Java language syntax is similar to C++. In contrast to C++

Java supports garbage collection. Whenever an object is no longer being used,

Java automatically removes it from the memory. Hence, no memory

management is necessary.

• Threads: Java provides the ability to control several threads at the same time.

The ability to execute threads concurrently is required for animation programs

and networking.

• GUI Support: The Java programming language supports easy-to-create GUI

programs with many window components.

• Dynamic Incremental Loading and Linking: Java classes are linked

dynamically at load time. Thus, adding new methods and data fields to a class

does not require recompilation of client classes. Additionally, applications

can execute statements to look up fields and methods and then use them

accordingly.

• Internationalization: All Java programs are written in Unicode. This is a

16-bit character code that embodies the alphabets from the most widely used

languages around the world. Software developing personnel appreciate the

Java language for its ability to manipulate Unicode characters and to support

local time and dates.

18

• Network: The Java programming language is designed for network

communication, Web applets, and for client-server applications. Moreover, it

is ideal for remote access to databases, to programs and to methods.

Clearly, there are many reasons why Java is so popular and useful. Aside from the

above-mentioned items, the most important features of the Java language are

demonstrated in this thesis. In the next section, the JDBC™ application programming

interface (API) and how JDBC™ is related to the Java language, and how it is related to

the Structured Query Language (SQL) is introduced. Incidentally, JDBC™, neither an

acronym nor an abbreviation, is considered a legal trademark.

C. JDBC™

There are many different database models and standards for accessing data

retrieval systems. The Java Database Connectivity Standard is platform-independent and

database-independent for talking to an SQL data retrieval system. The JDBC™ API is

used for connecting Java to databases and performing transactions (SQL statements) with

the database. The JDBC™ consists of several classes and interfaces, all written in Java,

and has a standard API included that permits it to write database applications using pure

Java API. By using the JDBC™ API, the back-end database can be changed without

major modifications. Any program written with JDBC™ can transfer SQL statements to

different database architectures simultaneously. This enables administrative personnel to

continue using an old-fashioned database, as well as the modern and sophisticated

client/server computer systems.

19

The JDBC™ can perform the following steps to access a database:

1. Importing the Java.sql.package

2. Loading and registering the driver

3. Establishing a connection to a database

4. Sending SQL statements

5. Executing of a statement

6. Retrieving the results

7. Closing the connection and statement

Example Code:

1. import java.sql.*;
2. public class sqlprogram {
3. public static void main (String args[]) {
4. Statement stmt;
5. ResultSet rs;
6. try{
8. try{
9. Class.forName("sun.jdbc.odbcJdbcOdbcDriver");
10. }
11. catch (Exception e) {
12. System.out.println("\n Class Not Found");
13. }
14. Connection con = DriverManager.getConnection

("url","myLogin","myPasswd");
15. Statement stmt = con.createStatement();
16. rs = stmt.executeQueryO'select * from Events");
17. while (rs.next()) {
18. System.out.println(rs.getInt("department_id") + ","
19. System.out.println(rs.getString("dept_location") + ","
20. System.out.println(rs.getString("employee"));
21. }//end of while
22. }//end of outer try
23. catch (SQLException ex) {
24. System.out.println("\n SQL Exception "+ exception.getMessage());
25. }

20

26. stmt.close();
27. con.close();
28. }//end of main
29. }//end of class

Figure 5.2: A Sample of JDBC™ Application

The following describes the steps in detail:

1. Importing the Java.sql.package:

The JDBC™ API is a set of different classes and several interfaces. The name of

the package for these classes and interfaces isjava.sql and is imported at the beginning of

the class (Figure 4.2, line 1).

This import statement is necessary for any application that falls back on the

JDBC™ API and intends to use this API.

2. Loading and Registering the Driver:

Two different steps must be accomplished. First, the driver must be loaded and

second, the driver must be registered to itself. By using the code in Figure 4.2, line 9, an

instance of a driver is called and this performs the loading.

The Class.forNameO method takes the complete package name of the driver as an

argument. In order to get the actual name of the driver, the programmer has to refer to the

vendor's documentation.

3. Establishing a Connection to a Database:

Next, a connection to the database must be established by using the appropriate

DriverManager.getConnection() method. The method takes at least two arguments. The

first argument is a string that represents the URL of the database, and the second

21

argument is a set of login properties, like the user's name and the appropriate password.

The code in Figure 4.2, line 14 illustrates how this is accomplished.

4. Sending SQL Statements:

Next, a software developer must create an SQL statement object from a user-

interface to a database in order to execute the query. The statement to be executed is

provided to the appropriate method of the statement object. The code in Figure 4.2, line

15 illustrates the creation of a statement object.

This is one of three different types of statement objects. There are two other types

of statements available, the PreparedStatement and the CallableStatement. Both are

subclasses of the Statement class.

5. Execution of a Statement:

This step provides the actual execution of an SQL statement. This method

Statement.executeQueryQ is used to execute a simple query and to receive the result rs.

The code in Figure 4.2, line 16 illustrates the execution of a statement.

The method takes an SQL query string as an argument and returns the results of

the SQL query as a ResultSet object. The object contains the information data and the

methods for retrieving the data.

6. Retrieving the Results:

After the SQL statement execution, the next step is to retrieve the results. They

are stored in a ResultSet object. In order to retrieve data from the ResultSet into a Java

variable, one must invoke the ResultSet get-method. The get-method converts the data

into a Java type. The method takes the column index as an argument and returns the

value that is found in the current row of that column. When implementing the get-

22

method in a loop, one can step through the entire result set. The code in Figure 4.2, line

17-21 illustrates the retrieval of the result by using a loop.

7. Closing the Connection and Statement:

This is the final step of any database client-server application. All open

connections can cause severe security problems; therefore, it is recommended to close the

connection immediately after the last call. The code in Figure 4.2, lines 26 and 27

illustrates the closing part of the application.

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

VI. CONNECTIONS TO THE CLIENTS AND THE INTERNET

A. INTRODUCTION

The expression client-server was first adapted during the 1980s in conjunction

with computers connected to the network environment. Models of client-server were

accepted by users and developers in the late 1980s and were intended to improve the

usability, the flexibility, the interoperability, and the scalability of PC-based computers

compared to main-frame computers with time-sharing and centralized computing design.

A client is defined as a requester of a particular service, and a server is defined as a

provider of the ordered service. Nevertheless, a computer can act as a client and as a

server at the same time depending on the software configuration. In the following, there

are some common client-server architectures introduced and described that are both

popular and often used in network systems. For the prototype, a connection to the clients

is established via Java and JDBC™.

B. CLIENT-SERVER MODELS

In this chapter, different types of client-server computing are introduced. Brief

descriptions of one-tier, two-tier, and three-tier architectures are provided. In addition,

the Middleware concept is discussed.

Nowadays, most application programs have three major layers. The first layer is

the presentation layer, which provides the human/computer interaction-also called the

25

user interface. This presentation layer receives the input from the keyboard or other

devices and handles the output.

The second layer, the application layer, deals with the application or business

logic that provides the character of the application program. For example, the application

logic provides the difference between an order entry system and an inventory control

system. Frequently, it is called business logic because the program contains the business

rules that describe the workflow in an enterprise.

The third layer, the service layer, provides general service for the other layers, like

file service, print service, communication service, and the service for a database.

The number of tiers in a client-server application is determined by how tightly the

three program layers are integrated.

1. One-Tier Architecture

A one-tier application is an application in which the three program layers are

tightly connected. In this case, the presentation layer has especially detailed knowledge

of the database structure. The application layer is often interwoven with both the

presentation layer and the service layer. All three of these layers, in addition to the

database engine, run on the same computer system.

One-tier applications are easy to design and easy to write. Furthermore, one can

create a multi-user one-tier application by running the application on various computers

and letting them share the database system. The database can be stored either on one of

the computers (peer-to-peer solution) or on a file server. Multi-user one-tier solutions are

feasible until the number of users becomes large. The problem here is that the entire

database work is performed in each client. All information including indexes and data

26

records needed to resolve the query to the database must be transmitted over the network.

This reduces the performance because for some queries, a significant amount of data has

to be examined, in some cases the entire database.

The solution for the above mentioned performance problems with multiuser one-

tier programs is two-tier client-server architecture.

2. Two-Tier Architecture

The two-tier client-server architecture is written similarly to a one-tier application,

with the exception that the database service, the engine, no longer runs with the client.

Instead, it runs on the server computer that contains the database service itself. There are

some methods required to communicate between the application logic layer and the

database service. Two-tier applications are more complex to write.

In a two-tier system, the client is defined as the first tier and the server is defined

as a second tier. In a JDBC™ environment, the database application is treated as a client

and the DBMS is treated as a server. The client communicates directly with the server

without any help from any other server. The following Figure 6.1 illustrates the two-tier

model:

27

Application

JDBC Driver

Network Interface

Client

Network

Network Interface

Server

Figure 6.1: Two-Tier Client-Server Model

In a two-tier application, the most common query method is the structured query

language (SQL), a query language that encapsulates complex database queries in

relatively compact sentences. The SQL statement is sent via the appropriate driver to the

database server, which performs the work locally on that computer and returns only the

relevant results of the query to the client. The JDBC™ driver is responsible for

presenting the query to the database in a manner acceptable to the database.

28

In a two-tier model only the database services are separated from the application.

The presentation and the business logic layers remain very entangled, and both layers

continue to have profound and solid knowledge of the database [SIPL98]. While two-tier

models offer a great deal of flexibility and simplicity in management, they also have a

few disadvantages.

The advantages of a two-tier model are

• A two-tier access model is relatively easy to implement compared to a higher

three-tier model.

• The two-tier model keeps the connection between client and server open.

Therefore, the overhead associated with establishing a connection is

eliminated.

• The two-tier implementation is faster compared to a three-tier model

implementation.

The disadvantages of a two-tier model are

• Most of the available drivers require that native libraries be loaded on the

client computer.

• Local configurations must be maintained for native code if the driver requires

this.

• Applets can only open connections to the server from which they were

downloaded.

29

3. Three-Tier Architecture

The three-tier architecture emerged to overcome the limitations and the

disadvantages of the two-tier architecture. In the three-tier architecture, a middle element

was added between the user-system-interface-client environment and the database

management server environment. This model has the advantage of allowing the user to

separate the database server from the Web server. The client requests for the database are

directed through a proxy server, which results in a more secure environment for the

database. The middle tier can perform queuing, application execution, and database

staging.

The three-tier client-server architecture has been shown to improve the

performance for groups with a large number of users and also improves flexibility when

compared to the two-tier architecture. In this model, the driver translates the requests into

a network protocol and then makes a request through the proxy server. The proxy server

itself makes database requests on behalf of the client and next passes the results back to

the client after they have been processed by the appropriate database system. Flexibility

in partitioning can be as simple as moving application code modules onto various

computers in a three-tier architecture.

30

The following Figure 6.2 illustrates the three-tier model:

Client Server

Application (Database >*

JDBC Driver A
v

Network Interface Network Interface
n A

u
Network A

v
A i V Network B

v V

Network Interface Network Interface
k

r

JDBC Driver M W
Database Libraries ^ W

Proxy Server

Figure 6.2: Three-Tier Client-Server Model

The following are the advantages of a three-tier model [SIPL98]:

• The clients need not load native libraries locally.

• All drivers can be managed centrally.

• The database system does not have to reside on the same server as the Web

server.

• The database server does not have to be directly visible to the Internet.

31

However the three-tier technology also has some disadvantages:

• The client to server connection does not provide a permanent database

connection.

• A separate proxy server may be required.

• An increased network traffic can occur if a separate proxy server is

implemented.

In addition to the different client-server design considerations, one must

remember how the JDBC™ driver fits into the architectural concept of a client-server

application. These drivers can be thought of as a translator between the Java application

and the native language of the database. Different driver types are available for different

applications. For details about different JDBC™ drivers, different JDBC™ driver

categories, and different JDBC™ driver implementations see [HCF97] in Chapter DC.

32

VII. DISCUSSION OF RMI AND SERVLETS

A. OVERVIEW

This chapter describes the different approaches to using objects in a remote

manner. The first section describes how to use Java objects from a different virtual

machine by using Remote-Method-Invocation (RMI) that is a distributed object

technology. RMI resolves the issues surrounding data marshalling by using serialization.

It allows the user to read and to write objects in a remote appearance without necessarily

being aware that these objects are remote.

The second section describes the Java Servlets that can be thought of a server-side

translation of applets. Servlets are a small piece of Java code that is loaded by a Web

server, which is used to satisfy client requests. They are persistent, and platform

independent. They also incorporate advanced properties like security-related issues,

database access, and integration with Java applets.

1. Remote Method Invocation

In a multi-tier JDBC™ application, several difficulties arise in developing a

robust and efficient network protocol that can be used to pass data back and forth between

the server and the client. These difficulties can be avoided by the use of the RMI

framework. Java RMI enables the software developer to create distributed Java-to-Java

applications. RMI can be used to transmit objects transparently from one server to

another server. It can be programmed to provide service as a proxy server to a database

system by setting up a listener process to handle all access requests from the clients.

33

When access requests are received, RMI can invoke a set of methods that make the

request to the database on behalf of the client. The important advantage of using RMI to

accomplish this is that RMI is part of Java, and not a vendor-specific implementation.

2. Java Servlets

A different architecture that establishes a connection from the client via a server to

a database is the implementation of servlets. Servlets are modules that extend request and

response style servers. Servlets are to Web servers what applets are to Web browsers.

Unlike applets, servlets do not provide any GUI. Servlets can be embedded on many

different server architectures because of the servlet API. The API has no information

about the server and assumes nothing about the server's environment or the server-used

protocol. Presently, the most widely used server is the HyperText Transfer Protocol

(HTTP) server. Servlets are an effective replacement for Common Gateway Interface

(CGI) scripts [HM99] because they provide a way to create documents that are easier to

write and faster to run.

The other benefits of using servlets are that they allow collaboration between

people of conferences or forwarding a request. A servlet can also handle multiple

requests concurrently and can synchronize these requests, and in addition a servlet can

advance requests to other servers and servlets in order to balance work load among

servers working on the same content. The following sections describe these different

architectures in detail.

34

B. REMOTE METHOD INVOCATION INTERFACE

Remote Method Invocation (RMI) Interface lets the software developer create

distributed Java-to-Java applications in which the methods of remote Java objects can be

invoked from objects in other Java virtual machines. A Java program can make a call on

a remote object once it obtains a reference to the remote object, either by looking up the

remote object in the bootstrap-naming-service provided by RMI or by receiving the

reference as an argument or a return value. A client can call a remote object in a server,

and that server can also be a client of other remote objects. RMI uses Java's object

serialization to arrange parameters in the right order and does not truncate types.

For basic communication mechanisms, Java supports sockets that are flexible and

sufficient for general communication. But sockets require the client and the server to

connect in application level protocols in order to encode and decode messages for

exchange. This design is burdensome and can induce errors.

In contrast, Remote Procedure Calls (RPC), which do not work with sockets

directly, instead provide the developer with an illusion of calling a local procedure. RPCs

do not translate well into a distributed object system where the communication between

the program level objects residing in different address spaces is needed. At this point, to

match the semantics of any object, RMI is needed by any distributed object system. Any

invocation on a remote object is supported and controlled by a local object called a stub.

The RMI framework has a variety of advantages over traditional RPC systems.

RMI is totally focused on Java, with connectivity to existing systems using Java's native

interface (JNI).

35

The following lists the primary benefits of RMI [ARMS98]:

• RMI is Object Oriented: RMI can pass objects as arguments and return

values. It is possible to sent objects directly over the connection without an

extra code for the client. The user can pass complex types as an argument (for

example: hashtable objects).

• RMI is Safe and Secure: RMI uses the built-in Java security mechanisms,

which allow the computer system to be safe when the user downloads

executable code. Java handles security via the SecurityManager object, which

delivers a judgment on all security sensitive actions, like opening files or

establishing a connection to a network. RMI uses this standard Java

mechanism and requires that the security manager is installed before any

method on the server is invoked. RMI provides a very restrictive security

manager type, permitting only connections to the originating host. Also no

file access is allowed. This prevents downloaded implementations from

reading and writing data from the computer system or connecting to other

systems behind an isolated network.

• RMI is Easy to Write and Easy to Use: RMI makes it easy to write the

Remote Java Server code and the Java Client code. A remote interface is an

actual Java interface. A server has approximately three lines of code to

declare itself. This simplicity makes it easy to write the server code for large

scale distributed applications and allows one to bring up prototypes for testing

and evaluation rapidly. Finally, because programs using the RMI framework

are easy to write, they are easy to maintain.

36

• RMI Write Once and Run Anywhere: RMI can handle the "write once; run

anywhere" approach. Every RMI-based system is totally portable to any Java

Virtual Machine. The same applies to an RMI/JDBC™ system.

• Distributed Garbage Collection: RMI uses the Java garbage collection

feature to collect any objects that are no longer referenced in the network. The

distributed garbage collection can define server objects as needed, knowing

they will be collected and removed when they no longer need to be accessed

by any client.

• RMI allows Parallel Computing: RMI supports multi-threading. This

permits the server to exploit the Java threads for more effective concurrent

processing of the client requests.

• Java Distributed Computing Solution: RMI is an element of the core Java

platform starting with JDK 1.1. It is available on any JDK 1.1 Java Virtual

Machine. All RMI systems use the same public protocol; therefore, all Java

systems can communicate with each other directly. As a consequence, only a

little "protocol-translation-overhead" exists.

• Connections to Existing Systems: RMI communicates with other systems via

Java's native interface (JNI). JNI supplies a platform independent method for

calling routines written in other programming languages. By using both RMI

and JNI, the developer can write the code for the client in Java and can still

use an existing server implementation. In addition, when the developer works

with RMI and JNI in order to connect to an existing server, rewriting any

element of the server in Java and still getting the full advantages of Java in the

37

new code is possible. Also, Java RMI will work together with Internet Inter-

ORB Protocol (HOP) [AL99], the transport protocol that is a part of the

Object-Management-Group-Common-Object-Request-Broker-Architecture

(CORBA) for distributed computing. A transport protocol is a set of message

formats that allows information to be passed across the network from one

computer system to another computer system. Hereby, Java RMI supports its

own protocol and will support other protocols including HOP. Finally, RMI

communicates with existing relational databases by using JDBC™ without

changing existing non-Java source code used by the database.

38

Server

Client B

Figure 7.1: The RMI Architecture

39

1. Introduction to the Java Distributed Model

The Java distributed model is almost the same as the Java object model. Any

reference to a remote object can be sent as an argument, or it can be received as a result in

any method invocation. This is possible for a local and remote invocation. A remote

object can be cast to a remote interface. This is supported by the implementation of the

Java syntax for casting. On the other hand, there are some differences between the Java

distributed object model and the Java object model. Any clients of remote objects work

with remote interfaces only. They never work with the implementation classes of the

interfaces. All remote objects are passed by reference instead of creating and copying the

actual remote implementation. Finally, the semantics for some methods that are defined

by the class Object are specialized for remote objects.

The interfaces and the classes responsible for specifying the remote behavior of

the RMI framework model are all defined in the java.rmi and the java.rmi.server

packages. The methods in a remote interface are defined as follows. First, each method

must declare a java.rmi.RemoteException in its throws clause, and second, the remote

object passed as an argument or return value must be declared as a remote interface

instead of the implementation class.

With Java implementation, parameter passing in RMI is always possible. An

argument to or a return value from a remote object can be any Java type, which is

serializable. For example, Java primitive types, remote Java objects, and also non-remote

Java objects that use the java.io.Serializable interface are included.

40

2. Architecture

a) Introduction

The RMI framework architecture is designed to establish a solid base-

structure for distributed object-orientated computing. The architecture is planned and

developed to allow for future implementations of server and various computers, so

software and hardware can be added in a congruous manner. For example, if a server is

exported, a special reference type is defined. Usually, servers are exported as a

UnicastRemoteObject, which means they are point-to-point unreplicated servers. Other

types of servers are defined as MulticastRemoteObject, a reference semantic approved for

replicated service.

b) Overview

The RMI framework system contains three different layers: (1) the stub

and skeleton layer, (2) the remote reference layer, and (3) the transport layer. Each layer

is totally independent of the next layer; furthermore, one layer can be replaced by an

alternate implementation, without influencing the other layers in the system. The first

layer is responsible for the connection of client-side-stubs, also called proxies, to server

side skeletons and vice versa. The second layer is responsible for the remote reference

behavior, like the invocation to a single object or the invocation to a replicated object that

requires communication with several locations, and the third layer is responsible for

setting up and managing a connection and is responsible for tracking the object. The

41

application layer—hosting the client and the server—is implemented on top of the RMI

framework system. The communication between the client and server works as follows:

Application

RMI System

@ Ö
V

Skeletons
iz.

Stubs

Remote Reference Layer

Transport Layer

Figure 7.2: Communication between Client and Server

c) The Stub and Skeleton Layer

A skeleton is a server-side element, which contains a method that sends off

calls to the actual remote object implementation. Skeletons are responsible for (1)

unmarshalling arguments from the marshal stream, (2) establishing the up-call to the

actual remote object implementation, and (3) arranging the return value of the call or an

exception back onto the marshal stream in the right order.

A stub is the client-side proxy for the remote object. The primary task of

the stub is to implement all interfaces, which are supported by the remote object

implementation. Stubs are also responsible for four other important functions: First, they

establish calls to the remote object. This is done by calling the remote reference layer.

42

Second, they are responsible for arranging the arguments onto the marshalling stream.

Third, they are responsible for notifying the remote reference layer that the call should be

invoked, and finally, they are responsible for notifying the remote reference layer that the

call is complete.

The Skeleton/Stub layer connects the application layer and the RMI

framework system. The Skeleton/Stub layer transmits data to the remote reference layer

by abstraction of marshal streams. These streams instruct a special mechanism (object

serialization) to allow Java objects to be transmitted between address spaces. These

objects are usually passed by copy, unless they are remote objects. In this case, they are

passed by reference.

Stub and skeleton classes are determined at run time and are dynamically

loaded when needed.

d) The Remote Reference Layer

Next, the Remote Reference Layer is responsible for the lower-level

transportation interface. Beside this, the layer is responsible for getting the specific

remote reference protocol done. The protocol is independent from the client stubs and

the server skeletons. The remote reference layer consists of two components, the client-

side component, and the server-side component.

The first component provides specific information about the remote server

and also communicates with the server-side component via the transport layer. A special

remote reference semantic is used during each method invocation. The second

component is responsible for implementing the remote reference semantics to the

43

skeleton before it is delivered. Lastly, the Remote Reference Layer is connected to the

transport layer and provides the data for transportation.

e) The Transport Layer

Lastly, the Transport Layer of the RMI system sets up, manages, and

monitors the connection. It also listens for incoming calls and sets up the connection.

Finally, it maintains a table of all remote objects which populate the address space. The

remote object reference contains an endpoint and an object identifier. After this, a

transportation can use the endpoint for setting up a connection to the address space in

which the remote object resides. On the other side is the server, which receives the object

identifier and checks for the target of the remote call.

The transport layer contains four abstractions:

1. The endpoint used to determine an address space or a Java Virtual

Machine.

2. The channel to establish a connection between two address spaces. The

channel is responsible for the connection management of the local address

space and the remote address space.

3. The connection itself for transporting data by performing the input and the

output.

4. The transport that manages the channels between two addresses spaces. It

is also responsible for accepting all calls on incoming connections to the

address location, for setting up a connection object for the call, and is

responsible for dispatching the calls to the upper layers in the system.

44

The transport determines what the representation of the endpoint is; hence,

several implementations may exist. All the RMI framework transport interfaces are

available to a Virtual Machine implementation, but not directly to the application.

f) The Java Garbage Collection

For the distributed system having an automatic feature for deletion of

those remote objects which the client no longer requires is desirable. RMI uses a

reference counting garbage collection procedure and controls and counts the live

references within the Java Virtual Machine. Whenever a live reference occupies the

system, the reference counter will increment by one and when live references are found

unreferenced in the Virtual Machine, they are withdrawn, the counter is decremented, and

the server is notified. As long as a local reference to a remote object exists, the object

cannot be garbage collected and can be returned to the clients.

However, there is a disadvantage to garbage collection. The premature

collection of objects can happen because the transport layer may believe that the client

has crashed. Hence, remote references are unable to guarantee referential integrity, which

means in some cases, remote references may not point to an existing object. This

erroneous reference will create a remote exception and has to be handled in an

application.

g) The Dynamic Class Loading

The remote procedure call (RPC) and the RMI framework system perform

class loading differently. The RPC system recognizes the procedure by generating the

45

client-stub code and linking the code into a client before an RPC can occur. This code

can be linked either statically into the client, or it can link the code at run time by using

the appropriate dynamic linking with libraries. These libraries are available either locally

or are available over the network file system.

On the other hand, RMI does generalize the above-mentioned technique.

RMI uses a special mechanism that loads the required classes at run time. The following

classes are required:

• The classes for the remote objects and the interfaces

• The stub and skeleton classes which serve as proxies for the remote

objects

• All other classes that are used directly by an RMI application, like

parameters to RMI, or return values from RMI

Furthermore, the dynamic class loading instructs two other mechanisms:

• The object serialization system to transmit all classes over the network.

• The security manager that checks all classes which are loaded into the

system

In order to create transient applications, having the technical possibility to

store and retrieve Java objects for future use is important. The typical way to handle the

objects is by representing the state of the objects in a serialized form. This particular

form must be able to reconstruct the object or objects. The task of the serializeable form

is to identify and to verify Java classes from which the object's contents were saved.

Furthermore, restoring the contents to a new instance must be feasible. The stream itself

46

contains sufficient information to restore the fields in the stream to a compatible version

of the class. All stored objects refer to other objects. In order to maintain the relationship

between objects, all objects must be stored and retrieved at the same time. As a result,

whenever an object is stored, all objects having a relationship to that particular object

must be stored as well. The goals for serializing Java objects are listed as follows:

• Have a simple extensible mechanism

• Maintain the Java object type and safety properties in the serialized

form

• Allow the object to define its external format

• Require per class implementation only for customization

• Be extensible to support persistence of Java objects

• Be extensible to support the marshalling and unmarshalling, as needed

for the remote objects

All classes loaded from the local classpath are considered trustworthy and

are not restricted in their behavior by the security manager. The security manager must

check all classes imported over the network. The Java program starts the security

manager early in order to check and to manage all following program steps. The security

manager also provides insurance so that all loaded classes adhere to the standard safety

rules that Java provides. Good examples are applets that are loaded from a trustworthy

server. These applets do not try to use or to manipulate any sensitive methods. This is

the primary advantage of applets. They are always subject to restrictions provided by the

47

AppletSecurity class. The security manager is responsible for providing classes only from

the applet server.

3. Client Interfaces

The RMI framework provides various types of interfaces when writing an

application or an applet. First, in the Java programming language, a remote object is an

instance of a class implementing a remote interface. The remote interface is used to

declare every method the programmer would like to call remotely. These remote

interfaces have the following characteristics:

• The remote interface must be defined as public; otherwise the client will

receive an error when the program attempts to load an implementation of the

interface.

• The remote interface extends the java.rmi.Remote interface.

• All methods must declare java.rmi.RemoteException in the throws extension.

This declaration has to be done in addition to any other application specific

exception.

• The data type of any remote object, which is passed as an argument, or a

return type must be declared as a remote interface type, not as an

implementation class.

Example: Package java.rmi;

Public interface Remote {}

48

A second type of class provided by RMI is the RemoteException class, a subclass

of java.rmi.RemoteException. This allows an interface to deal with several types of

remote exceptions and to distinguish local exceptions. It can be constructed with a

throwable (nested exception). Usually, the nested (Exception ex) is the underlying I/O

exception that takes place during an RMI call.

Example: public RemoteException (String name, Throwable ex);

Lastly, the Naming class permits remote objects to be retrieved and defined by

using the uniform resource locator (URL) syntax. The URL itself contains the protocol,

the host, the port, and the name fields. The protocol is specified as an RMI.

Example: rmi: //Java. sun.com:2001/root

4. Security

In order to achieve and maintain security, a Security/Manager object has to be

established for security check methods. Any security breach detected by the security

checks induces a SecurityException error and an associated warning directive to inform

the user.

The security manager must be initiated as the first action of a Java program;

hence, it can control the following steps of the program. The security manager ensures

that loaded classes adhere to the standard Java safety features. For example, it ensures

that classes are loaded from a trusted source, and also ensures that they do not attempt to

access sensitive functions. All applications must either define their own security manager

or use the restrictive RMISecurityManager. When an application defines its own security

49

manager, classes are loaded by using the default Class.forName mechanism. Therefore, a

server might define its own policies by using the security manager and class loader, and

the RMI framework system thereby operates in those policies [WANG98].

C. COMPARISON BETWEEN MULTI-TIER AND RMI POLICY

This section describes the difference between the multi-tier policy and the RMI

policy and why the RMI policy is preferred.

1. Similarities between Multi-Tier and RMI Architecture

The procedure for a dynamically configurable information system starts as

follows: A client machine displays a GUI to the user who works on the report away from

the server machine. All clients communicate with the server by using the RMI

framework. The server stores the reports in a database using JDBC™, which is the Java

specific relational database package. Up to this point, the procedure resembles a multi-

tier system, as described in the previous section.

2. Difference between Multi-Tier and RMI Architecture

The important difference between a multi-tier system and a system using RMI is

the ability of RMI to download behavior. Behavior is defined as class implementation.

RMI knows how to move behavior from a client to a server and how the client retrieves

information from the server. For example, one can define a particular interface for a

report (sign-out sheet for Naval Airwing) that represents a special policy. This report can

easily be downloaded by the client from the server. Whenever the policy changes, the

application on the server starts returning the different implementation of that policy.

50

Therefore, the constraints will be checked on the client-side, which provides a

faster feedback to the user and far less load on the server. Also, an installation of updated

software is not required. The benefit of this procedure is that changing policies requires a

software developer to write new software only once and then implement the software on

the server. This provides a maximum of flexibility and saves time. The intention of this

policy is always dynamic and has the following advantages compared to any static

approach [JAVAS99]:

• Client machines do not have to be halted when software is updated while the

computer system is running.

• The procedure allows dynamic constraints because not only object

implementations are passed between clients and server, but also data.

• All users are instantly informed about any errors.

D. JAVA SERVLETS

1. Introduction to the Servlets

The Internet has recently spawned the invention of several new technologies in

client-server computing. One of those new developments was the computer language

Java. This also serves as a complete client-server solution where applications are

automatically downloaded to the client machine and are executed. Much effort has been

concentrated on the client-side development of applets and GUI components. Applets on

the client side are an important element of the client-server architecture, yet the server

side of the architecture is equally important. Servlets can be considered a server-side

51

applet. They are loaded and executed by a Web server in the same way applets are loaded

and executed by a Web browser.

2. Architecture

Servlets are Web elements that create dynamic content. They are platform

independent Java classes compiled to an architecture-neutral byte-code that can be loaded

dynamically. Java servlets are controlled and managed by a servlet container. The

container is either installed on the Web server or set up as an add-on element to a Web

server via the server's API. The container, in alliance with the Web server, furnishes the

network service. Furthermore, the container controls the servlets through their lifecycle.

The servlet's lifecycle characterizes how a servlet is loaded and initialized, how it obtains

queries and responds to queries, and how it is withdrawn from service. Servlet containers

have to support HTTP as a protocol for queries and replies. A client program which

could be an application, capable of creating a connection across a network can access a

Web server and can make an HTTP request. This request is processed by the container

running inside the host Web server. Finally, this server calls the servlet. Java servlets are

a mechanism for elongating the functionality of servers. The previously mentioned Java

characteristic "write once, run anywhere" can be realized on the server as well. Servlets

can extend the Web server's functionality in the same manner CGI scripts do. Yet,

servlets are clearly much less resource intensive than CGI scripts. In the following

section, detailed information about CGI scripts is provided.

52

3. Comparison between Servlets and CGI

In their basic form, servlets are a powerful replacement for CGI scripts. CGI

scripts are typically written in Perl and are usually tied to a particular server platform.

Servlets have some benefits over CGI scripts [HM99]:

• Servlets are persistent. They are loaded only once by the Web server and can

maintain services, like a database connection, between several queries.

• Servlets provide a better performance since they have to be loaded just once.

• Servlets are platform independent because they are written in Java language.

• Servlets are extensible because they are written in Java, and Java is a robust

and object-orientated language, easily extended and adopted to the application.

• Servlets are secure, for the only way to invoke them is through the Web

server. This point establishes a high level of security.

4. Information Flow within Servlets

A servlet has a lifecycle that characterizes how it is loaded and initialized, how it

obtains queries and responds to them, and how it is withdrawn from service. Every Java

servlet has to implement the javax.servlet.Servlet interface in order to be run in the servlet

engine. This servlet engine is a customized extension to the Web server. The servlet

engine creates arid loads the servlet. This procedure happens when the engine starts or

when the engine needs the servlet in order to answer a query. The servlet engine can load

the servlet from either the remote file system, the local file system, or from any file on the

network. Next, the servlet engine has to initialize the servlet. At this time, the servlet can

read persistent data, can initialize the JDBC™ database connection, or can establish a

reference to other resources.

53

After the servlet initialization, the servlet is ready to receive any queries from the

client. Every client request is represented by a servlet request object. The response that

the servlet sends back to the client is represented by a client response object. When the

client makes a request, the engine passes the client-request-object and the servlet-

response-object to the servlet. They are passed as parameters to the service method

defined by the service interface.

These servlets can accept a query from the client machine, which processes the

request and returns the result. The following list describes the basic information flow:

1. The client machine performs a request via HTTP.

2. The Web server receives the request and provides it to the servlet.

3. The servlet receives the HTTP query and performs some processing.

4. The servlet responses back to the Web server.

5. The Web server forwards the response back to the client.

Request

Response

Browser

Servlet

Server

Figure 7.3: Basic Servlet HTTP-Information Flow

54

One of the important advantages of servlets compared to other systems is that

security issues do not apply since servlets are executed on a server. The Web server does

not communicate directly with the servlet; instead the servlet is loaded and executed by

the Web server. Additionally, if the server is implemented behind a firewall, the servlet

is consequently secure as well.

As a result, the basic requirement for running servlets is a Web server that

provides and supports the servlet API. A servlet is a Java object that corresponds to a

specific interface. These interfaces are defined by the Java server architecture. Servlets

are loaded and invoked by services, and a service can use multiple servlets. With

servlets, extending the functionality of a server is done easily in two ways. This is

feasible either with internal servlets—provided by the server—or it is feasible with user-

written servlets that operate as add-ons.

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

VIII. SYSTEM DEVELOPMENT AND IMPLEMENTATION

A. OVERVIEW

In the previous chapters, especially chapter VE., different design approaches were

discussed, cataloging, as well, the advantages and disadvantages of each design issue.

After carefully evaluating and considering each approach, the decision for RMI as an

appropriate design for implementing and creating a prototype was made without doubt.

The RMI framework protocol provides the best solution for the previously mentioned

requirements and the current circumstances at the Naval Airwings. The RMI framework

protocol enables any Java object to communicate with other Java objects across a network

or the Internet, and it provides nearly the same performance as CORBA or the Microsoft

Distributed Computing Environment (DCE). Let us review some of the primary

advantages of RMI as detailed in Chapter IV and Chapter VE, pages 34 to 37:

RMI is Object Oriented

RMI is safe and Secure

RMI is Easy to Write and Easy to Use

RMI Write Once and Run Anywhere

RMI posses Distributed Garbage Collection

RMI allows Parallel Computing

RMI provides Java Distributed Computing Solution

RMI allows Connections to Existing Systems

57

Besides these significant benefits, RMI also makes use of the common advantages

of the Java language. Moreover, a primary advantage of developing the RMI-based

software applications is that learning the CORBA's Interface Definition Language (IDL)

is not necessary for the software developer. Hence, the IDL need not be considered.

The RMI framework limits the software development to a pure Java-to-Java

application, but includes the benefit of the Java security mechanism when one downloads

software over the Internet. Finally, another important financial advantage of RMI is that

the software is free of any charge, for it is included as a standard component in the Java

Development Kit (JDK).

This chapter describes the database that contains details about the sign-out sheet

and information regarding the design of the RMI framework implementation and its

operation. The chapter also examines the stages and the decisions made during the

system development. This chapter further considers the selection of the MS-Access

database product and the intentions for that particular implementation. Following this,

the more comprehensive part of the client-server implementation is presented.

B. DATABASE MS-ACCESS

The administrators in the Naval Airwing are still using the "paper and pen"

method to record and administer the sign-out sheets. To be sure, a database stored on a

computer system is much more flexible and more reliable than a simple paper list.

According to the personnel of "Naval Airwing 2," some COTS products for

database implementation are currently available. The database system MS-Access is

obtainable and also suitable for managing the data elements and records of the sign-out

58

sheet. Further, at the Naval Airstations 2 and 3 "Graf Zeppelin," no administrators nor

software developers are present. Consequently, some personnel with only limited

knowledge of software installation and software alteration has to service the computer

program and the computer system.

MS-Access is a powerful and robust 32-bit relational database management

system (RDBMS) for creating desktop and client-server applications that run under

Windows 95/98 and Windows NT 4.0. The MS-Access database is relatively easy to use

with comprehensive wizards designed for inexperienced database users. The database

program allows the user:

• To store almost limitless amounts of information

• To organize the information clearly

• To retrieve results based on SQL selection criteria specified by the user

MS-Access is specifically designed for creating multi-user applications where

database files are shared on networks; also, it incorporates a sophisticated security system

to prevent unauthorized persons from viewing or altering the databases. In addition, MS-

Access supports a database structure capable of combining all related data tables and their

indexes, forms, and reports [MICR97].

In order to create the database labeled, MFG 3, the sign-out sheet presently used

at the Naval Airwings was adopted. This form contains all the information regarding

flying times and flying events that the crewmember must fill out after returning from their

mission.

The database is divided into several tables in order to increase the performance

during the query and updating process. Because this was a completely new technology,

59

there were no available specifications for the database design from any higher command.

Hence, the database and the relational tables were designed solely according to the needs

of the Naval Airwing and its personnel. As a guideline, I adopted the existing sign-out

sheet and considered the observations and recommendations of aircrews and

administrators. Beyond this, I created databases for various other administrative tasks in

a squadron and then built databases for administering bombing results of aircrews, leave

and holidays for the squadron personnel, and academic training for the personnel. Using

separate databases increased security options because different user groups could be

created, allowing the administrator to instantiate the groups into smaller and more

manageable units. This is also supported by the Windows NT operating system.

C. IMPLEMENTATION OF THE RMI NETWORK PROTOCOL

This section will introduce the various classes and methods needed to create the

user interface and the underlying program for accessing the database and establishing the

database-server-application and the remote connection. To begin, the database-access-

component for client use had to be adapted. Therefore, creating a framework for RMI

was necessary. The framework consisted of several components. All components are

discussed in detail below.

Initially, to create a software application, first an analytic layout has to be made,

then permanently updated, and thereafter followed. In general, a description of the

problem and the requirements are needed, as well as a description of how the software

application can solve these problems and meet the requirements. This procedure is best

done by using the Object-Oriented Analysis and Design techniques. So in summary, the

60

important point of the above mentioned design technique is to consider a problem and to

select the appropriate solution from the viewpoint of objects, as demonstrated in the

following Figure 8.1. For more detailed information about development of software

products and their methodology, the reader should refer to [BR0095]. The three basic

steps for any design and implementation are as follows [LARM97]:

1. The analysis phase, where the evaluation of the problem takes place

2. The design phase, where the logical solution is developed

3. The construction phase, where the actual coding is performed

K

Analysis -► Design -> Construction

i

r

i

r

i

r
Evaluation Log.Solution Coding

Figure 8.1: Development Steps

As the result of the problem analysis, seven classes with specific responsibilities

were identified and were defined for coding and subsequence implementation, as shown

in Figure 8.2 on page 62.

61

Classes Descriptions

StartupDialog Provides initial dialog with the user. Queries for name,

password and database.

UserApp Instantiates the RMI User-Application

UserFrame Provides the connection to the DB and the frame for the

application. Also creates the GUI for the User Dialog.

UserProvider Implements the information provider. DataServerApp is

checked for service on the host specified by the HostName

properties.

UserResolver Implements the information resolver.

DataServerApp Instantiates the RMI server.

DataServerFrame Displays the frame and GUI for the DataServerApp.

DataServerApp_Skel Compiler generated Skeleton class

DataServerApp_Stub Compiler generated Stub class

CrewmemberApi Defines the methods to use remotely.

ResourceBoundle Administers messages as key/value pairs and provides

appropriate information.

Figure 8.2: Class Listing for Prototype

1. The User Application Class

The first component that had to be developed was the user application, along with

the user frame. The user-application-class consists of the UserApp method that

constructs the application, instantiates the interface and calls the UserFrame method.

Subsequently, the pack method is called. This method initiates the general layout

management of the dialog and also sets the initial size appropriately. Next, the method

62

validates the frame with the preset size, and if validated, UserApp makes the frame

visible. Also, the main method resides in this UserApp method.

The UserFrame class is responsible for constructing the GUI front-end to the

UserApp method. It initializes all the components within a jblnit method and calls the

database by using the appropriate setConnection method. The setConnection method

includes the jdbc:odbc:driver to the database, the database name, the user name, and the

hidden password, if selected.

2. The User Provider and User Resolver Class

After the implementation of the UserApp method and its frame, I created a

UserProvider class that looks up the DataServerApp service on the host machine that is

specified by the HostName characteristic and properties. The method provideData

actually fetches the data and stores the contents into the dataSet for processing. Finally,

the getHostName method is used to locate the DataServerApp serv ce by using the RMI.

The default call for the host is the local machine.

Next, the UserResolver class is created and implemented. First, the

DataServerApp method is called to look up the appropriate service. The resolveData

method deduces the changes of the data and stores them in the DataSet instance. In the

following, the remote method call resolveCrewmemberChanges is instantiated and is

accomplished. In the following program step, the program checks for any resolution

errors and handles these errors accordingly. The program loops through all noted errors

and resets a status bit to "not resolved" for each row that initiated an error. Then the

program starts again, halts at the first reported error, and lets the provider decline that

63

error. Finally, the getHostName method is used to locate the DataServerApp service by

using the RMI. The default call for the host is the local machine.

3. The Data-Server Application Class

The data-server application consists of a variety of several classes. First, the

DataServerApp class acting as an RMI server was created. The class contains a main

method in which the DataServerApp is instantiated and a bindToNamingService is called.

In this method, the RMI requires the actual name of the host. Whenever another service

has already been registered to the RMI with the name DataServerApp, an error is thrown

and handled by the program appropriately.

4. The CrewMember Class

The CrewMember class contains and defines all the methods I intend to remote.

The CrewMember class will define all the methods available to die clients. With the

RMI, remote objects are not actually downloaded from the server to the client, but rather

only references, called handles, are downloaded to the client machine. If the objects are

executed, they perform their tasks on the server instead of on the client machine.

Consequently, all results and return values from the server are first serialized and then

returned to the client.

5. The Resource Bundle Class

At this point, all necessary messages for the various classes and methods in a

single resource class were defined. Java provides a special class called Resource Bundle

for administering messages as key/value pairs. At run-time, the program uses the

get.Bundle method to retrieve all necessary data and predefined information to load the

appropriate ResourceBundle class. The ResourceBundle class contains all the annotations

64

the different classes use, each associated with a key, which serves as the message name.

The primary advantage of using this method is all information is gathered in one single

class, and if one annotation has to be changed, it can be done in this class and

subsequently passed to all the different locations in the code [FLAN97].

D. SYSTEM REQUIREMENTS AND COSTS

Before the application program is deployed on any portable computer system, the

user should ensure that the system (notebook) meets the following minimum

requirements for the installation and the subsequent processing of the program. The

system was designed and developed on an Intel computer system running a Pentium CPU

with 400 MHz and 128 MB of memory (RAM) which was sufficient for coding and

testing. Further tests on a notebook with 300 MHz and 64 MB RAM were performed but

showed a reduction of performance in response time. Receiving the results of the queries

and displaying them on the screen was rather slow. When sending several queries from

different locations across the Internet to the server, a lack in response time is expected

and has to be evaluated after a comprehensive field-testing.

A server with the approriate hardware performance and the software connecting

the server to the Internet, as well as the software for the database, are available at sites

where the system will be deployed. Hence, the required cost for procurement of hardware

is minimized, yet labor costs and additional costs for the Java compiler are to be

expected.

65

E. SYSTEM OPERATION

After installing the application on the server and on the client computer, the

system must be configured by the user. The user must run the RMI registry before the

data server program can be started. The RMI registry is a simple server-side name server

that allows remote clients to get a reference to a remote object. The name server is

typically used to locate the first remote object the RMI client has to talk to. The next

steps include starting the data server program and the user application program. After

starting the user application program, a dialog between the user and the system is initiated

and a StartUp window appears. The user must authenticate himself or herself and must

select the required database. Next the user has access to the database and can change data

values and send them to the server at the home base for final storage. A Screenshot of the

StartUp window is shown in the following Figure 8.3 on page 67.

The shown GUIs are limited to the main functions for demonstration purposes

only. The main goal of the thesis is realizing the connection to the home base and

transmitting the data from a remote site; although, sophisticated GUIs are not the focus of

this thesis, they should be improved following intensive field testing and further feedback

from the user. An improvement of the GUI can be considered as one of the items for

future work.

66

Start»» £>&8HJ Mfta 2 assja:

Welcome to Naval Airwing 2

:)K «36AM

Figure 8.3: StartUp Dialog

When the user selects the MFG 3 database, the system downloads the appropriate

data for the sign-out sheet. The system provides information according to the selected

CrewNumber. Information can be limited by providing the appropriate range in

Crewnumbers, for example, for the first for squadron selection CrewNo 150-200, or by

selecting the three-digit name (lut) abbreviation. The later case just shows the single user

data for updating. A Screenshot of the sign-out sheet with complete data is shown in

Figure 8.4 on the following page.

67

neflieqerqeschwadei 2 " "' HBOI
: " ' ■ . • ' * • -

v«ku-, 1. ;v!u.*ium f«-?no

:-, - , **- - ' .
I'OC | w„ Crew I MFG2 3'gn-Out Sheet

Setechon

if m 300 ' K*x«i*(e;.2.SqMKiw» ■m-'m

C- Cw«: FhrWrmiViMKrti, WUSß SofttMg • rp? iOFP.'AHCS *HO 8H S6M 9 tRMB , LLfSEMlDlSEA«« sä**jiä& HMpn
ip mal! 100:34:45 ;3:55 2:20 22 11 2 :3 !4 0 M0 2 2 1 :8

lii nol ! 10118:35 |1:25 0:30 1 h 2 3 14 0 16 0 0 0 12

3 erm: 102:42:35 17:50 2:40 35 '1 2 3 !4 0 125 6 2 1 :5

ran 105:1620 :5:10 1:05 13 1 2 3 4 0 110 0 3 0 is

e
■7

nws: 10631:45 ;0:30 0:55 28 1 2 3 4 1 22 2 3 0 ;6

Ha : 151.5:55 12:45 4 1 2 3 10 0 1 0 0 0 !0

SOQ: 15214:20 [3:25 0:15 11 1 !2 3 12 1 5 0 3 0 :2

e
9'

SMS

com; 15329:45 :6:20 0:40 20 1 :2 3 :6 0 15 0 0 1 !4

hlrt 154-25 30 5 55 0:55 17 1 !3 3 :5 6 15 2 1 0 7

bor: 155:36:45 ;145 0:45 16 !1 11 3 12 0 16 0 0 0 [5

Hi?
wkni 156:28:35 2:00 0:25 20 11 :1 3 8 3 11 0 5 0 :4

Bus 250 34 00 0015 0:55 4 :'l :1 0 10 0 0 0 Ö 0 :0

win: 25111:55 10:20 4 li -i 0 ;o 0 0 0 0 0 :o

Sho: 252-37:20 17:45 3:35 31 !1 .5 0 7 0 :23 3 1 0 ;7

gei 1 253T5« 15 :i6:io 7:00 38 !i :3 3 ho 1 !20 3 7 0 16

16 lut i 254:57:35 !12:00 3:45 :42 M :7 :1 111 0 I30 |2 5 JO [7

Yl imr | 35 32 20 13 50 e 40 29 1 6 iL»w.-4~. 5 12 3 |3 2 1

* M1',SSJS<1 ••*•&. _;«KI ■■ - ... 1*

M*»w + -v'X
^WanfcsS ChS83BI) Sran» ttiat a» sawsd cad not be restore*}

^^M^HIBHBiHWHHRiPlillitaHjH i^^^B^^^B^S^p^^^p^^88^^^^^^S|i^8Sii8IBiiiBi

Figure 8.4: Screenshot of the Sign-Out Sheet

A Screenshot of the sign-out sheet with filtered data, i. e. the first Squadron only,

is shown in Figure 8.5.

The home-base administrator can navigate through the sign-out sheets according

to the needs for any changes. The administrator can also insert rows for creating new

crewmembers, can delete rows when necessary, and can even filter crewmembers for

special events or flying times.

68

I..H.I..JI...I.UIJJIJ.IM..JHI i-lolxl

]~3 Um «Hut», 1.Sqt»*nn 1V-7flU

I200 I Baxualue, iS«a»*<Ki Ä0 300

MFG2 Sign-Out Sheet

C« CrnwNo Ftcnj Tim*«»ieiii(Wshi ä^jÄBiti 1«; &=P.*HC.SV«WSEHS Ü*Nlä U/SrJkUS SEA'1NLAND1?riLAN^i;NR"-H1tl
Jjlie 151:5:55 !2 45 4 2 :3 io io h |o ■ io !o lo id
jtjsol I 15214:20 ^3 25 ;0:15 11 2 i3 i2 .1 -5 JD :3 iO \l i;
.3 icon 153!29:45 :6:20 fejftl 20 2 i3 Is io MS lö io :i ~4 T:
Aim: 154125:30 iS:55 !0:55 17 3 i3 15 10 il5 |2 |1 iO i7 ii
.«Ibor 155:36:45 :1.45 ;0:45 16 1 i3 12 jO :16 JO . io :0 S5 il
Siili ! 156:28:35 2:00 0:25 20 11 1 :3 ;8 :3 ill 10 i5 io' ?4 i!

iiMqM^me®m8Mb®tämmzga • ■■ ~ • .- - ■ |?

M •< ► M ♦ — ^ K « 3 2

Figure 8.5: Screenshot of the Sign-Out Sheet (Single Squadron)

Initially, all changed information is saved and stored only on the local machine.

The administrators, like the deployed crewmembers, have the opportunity to review their

changes before they return the modified data to the server on base. Subsequentially, all

data is stored in the database and can be used for further evaluation by commanding

personnel.

69

THIS PAGE INTENTIONALLY LEFT BLANK

70

IX. CONCLUSION AND FUTURE RESEARCH

A. CONCLUSION

With the beginning of increased flying activity in foreign NATO countries and the

continuous rise of unit deployment to allied airfields, the personnel at the Naval airbases

require an ever-increasing demand for information about their personnel and aircraft.

Presently, the Naval airwings, as well as other units are undergoing considerable cuts in

financial resources, personnel, and also materials. This permanently changing nature of

the airwings has forced the station commander and the staff to handle an increased

amount of information with far less personnel. Likewise, providing this essential

information is ever more important. Therefore, adapting and relying on newer distributed

client-server technologies for an immediate information update and exchange is

reasonable. Fortunately, there are numerous designs and architectures available, from

which a software developer can choose, depending on the requirements of an

organization.

In this thesis, I focused on the design and the implementation of the component-

based client-server solution that uses the Internet for the communication. This client-

server protocol grants a strong and continuous platform for object-oriented-distributed-

computing. By using the RMI framework, one can expand the capabilities of the Java

language and obtain all the benefits; namely, low maintenance costs, and a secure

environment. RMI provides an independent platform to the user, capable of expanding

Java into any part of the system in an incremental manner so that the user can add servers

71

and clients whenever required. These characteristics were a major factor for choosing the

RMI framework technology for the development and the implementation. Units like the

Naval Airwing can expand or abridge the system according to their needs and can

maintain the system with personnel lacking comprehensive knowledge of computer

science. Also the costs are relatively low, as the system was designed and implemented

with available COTS products. Consequently, the thesis has proven that connecting a

deployed unit to the homebase across the Internet by using the RMI protocol for

information retrieval and information update is not only possible but also highly effective

and economical.

B. SECURITY

Most of the computer systems connected to the Internet are vulnerable to various

attacks. They can compromise the confidentiality, the integrity, and the availability of

information. As a first step toward eliminating such dangers, solution technologies

include the implementation of the Java-Security-Manager on the software side and the

implementation of access controls, strong authentication, and a firewall on the hardware

side. As a second step, advanced technologies include data-encryption, the reference

monitor concept, and secure protocols.

Before one starts to implement any security tasks, defining the security

requirements for the system is essential. For any military data-transmission, the security

class should be at least "Confidential"; therefore, a secure channel between the client and

the server should be established. The RMI framework provides a socket factory capable

of establishing sockets of any type, including encrypted sockets. The

72

java.rmi.server.RMISocketFactory class installs a default socket factory, a valuable

resource provider for the client and the server sockets. This factory provides a firewall-

tunneling mechanism, operating as follows [Java99a]:

• The client socket automatically attempts an HTTP connection to the host that

cannot be connected by a direct socket.

• The server socket automatically checks if the new connection is ah HTTP

POST request. If it is an HTTP request, the server returns a socket that

exposes only the body of the request and produces the output as an HTTP

response.

With the introduction of the JDK 1.2, software developers can specify requirements on

the services provided for the server's sockets. These requirements have to be described

by the software developer and can also include data-encryption. When installed, Java

handles the security issue by a Security-Manager-Object. The Security-Object protects

predefined operations and enforces access controls over these operations. After the

Security-Manager is installed, it cannot be removed or replaced by third parties.

Also the RMI framework provides a mechanism for clients protected by a firewall

to communicate with a remote server across the Internet. However, crossing the client's

firewall slows down the communication with the server; for this reason, the RMI

framework uses a fast and sophisticated communication technique. This technique

communicates directly with the server's port by using sockets, and is instantiated by the

UnicastRemoteObject on the first call of the client to contact the server.

73

C. AREAS FOR FURTHER RESEARCH

As in every design and implementation phase, continuously researching and

experimenting with the current technologies was necessary. When I look back upon

various design decisions, there might have been a different and more efficient way to

code and implement the software elements into the system. Since computer-technology is

developing rapidly, expanding the current implementation in several areas in the near

future will be necessary. At this point a program revision should be performed in the

following areas:

1. Streamline the Program Code: The code for the project was written by

using one of the available Rapid-Application-Development (RAD) tools for

the Java programming language, namely the JBUILDER product. This tool is

extremely powerful, providing a great deal of programming support for

applications, and it has many customizable features, which are highly

advantageous to a software developer. The installation was straightforward;

the software automatically generated the appropriate classpath and setup.

While these products, such as JBUILDER, are efficiently and technically

reliable and supports the users during their software development, they also

have some disadvantages compared to a pure Java software implementation,

such as SUN's JDKl.x.x. coding environment. A great amount of additional

code is generated when using the visual drag-and-drop component for creating

a GUI. This produces larger class-files and a code unrefined for network

implementation. A good practice would be to examine and to revise the code

74

in order to reduce the size of the class files. The intent of this time-consuming

procedure would be to reduce the time for data downloading across the

Internet and to improve the performance of the system.

2. The Field Test of the System: Without doubt, the true success of every

system depends on the field test with real data. At that time, the developer can

definitely evaluate the efficency of the system and survey the personnel's

reactions to the system. Unfortunately, field testing and evaluating this system

was beyond the scope of this thesis, but should be performed as a follow-on

step, in conjunction with enhancing the code and the below mentioned

implementation of a Pick-List.

3. Extend the System and Implement Servlets: Future upgrades of the system

should include the integration of servlets. Servlets are loaded and executed by

a Web server, and because they are executed on a server, security hazards are

highly minimized. As previously demonstrated and explained, the Web

browser does not communicate directly with a servlet; moreover, the servlet is

invoked from the outside world only through the Web server. This provides a

high standard of security, which can be further improved by protecting the

Web server behind a secure firewall so that the connected servlet is secured as

well. As a consequence, because servlets inherit the limitations provided by

the Java security model, malicious hackers and intruders cannot exploit the

government programs for their benefit.

4. Create an Interactive Window (List Selection) for Data Input: In the

present design, the user is forced to update and to add data directly onto the

75

appropriate form. In order to improve the dialog between the user and the

system, it would be beneficial to have a Pick-list, allowing the user to select

the desired event by double-clicking the desired event with the mouse and the

system would, in turn, add the event to the previously shown value on the

sign-out sheet automatically. This would improve the user acceptance by

speeding up the workflow and further reducing the possibility of user induced

input errors.

MJMmiWMl

flying Tim* \
Sortie 6
IFP7
AHC8
AHC8N
SEM 9
RU 10
;EA110

SEA11N
LAND 12D
LAND12N

H13
TFR14
=SM15
ECM16
IRCM17
TANK 18
REC B7B 19D

list m

Sortie 6
3 EA11D "
3EA11N
3HH13
rANK18

Figure 9.1: List Selection

76

APPENDIX A. SOURCE CODE USER
//
//
// File: UserApp / dbSwing
// Name: Enno F. Busch
// Date: 09-04-1999
// Company: Bundeswehr (German Navy)
// Description: This class is used to instantiate the RMI user
// application. It is the basis for the userFrame
// class. It validates frames that have the preset size.
//

package Marine;

public class UserApp {
boolean packFrame = false;

public UserApp() {

UserFrame frame = new UserFrame();
if (packFrame) {

frame.pack();
}
else {

frame.validate();
}

frame.setVisible(true) ;
}//end of public UserApp.

/*
* This method is used as a main method.
*/

public static void main(String[] args) {
new UserApp();

}//end of main method.

}//end of public class UserApp

77

// ^
// —
// File: UserFrame / dbSwing
// Name: Enno F. Busch
// Date: 09-14-1999
// Company: Bundeswehr (German Navy)
// Description: This class is used to instantiate the RMI user
// application.
// This class is the basis for the userFrame class.
// It validates frames that have the preset size.
//

package Marine;

import j ava.awt.*;
import j ava.awt.event.*;
import j ava.util.*;
import com.borland.dbswing.*;
import com.borland.dx.dataset.*;
import com.borland.dx.text.VariantFormatter;
import j ava.beans.*;
import j avax.swing.* ;

public class UserFrame extends DecoratedFrame {

ResourceBundle res = Res.getBundle("Marine.Res");
XYLayout xYLayout2 = new XYLayout();
BevelPanel bevelPanell = new BevelPanel();
com.borland.dx.dataset.TableDataSet tableDataSetl =

new com.borland.dx.dataset.TableDataSet();

UserProvider clientProviderl = new UserProvider();
UserResolver clientResolverl = new UserResolver();
StatusBar statusBar = new StatusBar();
BorderLayout borderLayoutl = new BorderLayout();
Database databasel = new Database();
QueryDataSet queryDataSetl = new QueryDataSet();
JdbNavToolBar jdbNavToolBarl = new JdbNavToolBar();
JdbStatusLabel jdbStatusLabell = new JdbStatusLabel();
TableScrollPane tableScrollPanel = new TableScrollPane();
JdbTable jdbTablel = new JdbTableO;
ParameterRow parameterRowl = new ParameterRow();
Column columnl = new Column();
Column column2 = new Column();
JdbTextField jdbTextFieldl = new JdbTextField();
JdbTextField jdbTextField2 = new JdbTextField();
JdbLabel jdbLabell = new JdbLabel();
JdbLabel jdbLabel2 = new JdbLabel();
JLabel jLabell = new JLabel();
StartupDialog startupDialog = new StartupDialog();
DBPasswordPrompter dBPasswordPrompterl = new DBPasswordPrompter();
JdbTextField jdbTextField3 = new JdbTextField();
JdbTextField jdbTextField4 = new JdbTextField();
JButton jButtonl = new JButtonO;
Variant v = new Variant();
String columnName = "Crew";
String columnValue = "mol";
VariantFormatter formatter;

78

/*
* This method is used to construct the frame for UserApp.
*/

public UserFrame() {
try {
jblnitO;

}
catch(Exception e) {

e.printStackTrace();
}

}

/*
* This method is used to initialize the componets.
*/

private void jblnitO throws Exception {

this.setLayout(borderLayoutl);
this.setBackground(SystemColor.controlHighlight);
this.setFont (new java.awt .Font ("Dialog", 0, 16)),-
this.setSize(new Dimension(1019, 742));
this.setTitle(res.getString("RS_ClientTitle"));
bevelPanel1.setLayout(xYLayout2);

//startupDialog.setVisible(true);

databasel.setConnection(new
com.borland.dx.sql.dataset.ConnectionDescriptor("j dbc:odbc:
MFG3", "Busch", "Busch", true,
"sun.j dbc.odbc.JdbcOdbcDriver"));

databasel.openConnection();

queryDataSetl.setSort(new
com.borland.dx.dataset.SortDescriptor("", new String[]
{"CrewNo"}, new boolean[] {false, }, false, false, null));

queryDataSetl.setQuery(new
com.borland.dx.sql.dataset.QueryDescriptor(databasel,
"select * from tablel, table2 WHERE
tablel.Crew=table2.CrewK AND CrewNo " +

">= :low_no and CrewNo <= :high_no", parameterRowl, true,
Load.ASYNCHRONOUS));

queryDataSetl.addRowFilterListener(new
com.borland.dx.dataset.RowFilterListener() {

public void filterRow(ReadRow readRow, RowFilterResponse
rowFilterResponse) throws DataSetException {

queryDataSetl_filterRow(readRow, rowFilterResponse);
}

});
jdbStatusLabell.setText("jdbStatusLabell"),-
j dbTablel.setDataSet(queryDataSetl);
columnl.setColumnName("low_no") ;
columnl.setDataType(com.borland.dx.dataset.Variant.INT);
columnl.setDefault("4") ;
columnl.setServerColumnName("NewColumnl");
columnl.setSqlType(0) ;

79

column2 . setColumnName ("high_no") ;
coluinn2 . setDataType(com.borland.dx.dataset .Variant. INT) ;
column2.setDefault("4") ;
column2.setServerColumnName("NewColumn2");
column2.setSqlType(0) ;
tableDataSetl.setProvider(clientProviderl);
tableDataSetl.setResolver(clientResolverl);
//column definition
parameterRowl. setColumns (new Column[] {columnl, column2}),-

//first textfield
jdbTextFieldl.setText("Min");
jdbTextFieldl.addKeyListener(new java.awt.event.KeyAdapter() {

public void keyPressed(KeyEvent e) {
jdbTextFieldl_keyPressed(e);

}
});

//second textfield
jdbTextField2.setText("Max");
jdbTextField2.addKeyListener(new java.awt.event.KeyAdapter() {

public void keyPressed(KeyEvent e) {
jdbTextField2_keyPressed(e);

}
}) ;

jdbLabell.setText("Min value, 1. Squadron 150 - 200");
jdbLabel2.setText("Max value, 2. Squadron 250 - 300");
jdbNavToolBarl.setToolTipText("Warning! Changed Events that are

saved can not be restored!");

bevelPanell.setBevelOuter(BevelPanel.LOWERED);
bevelPanell.setSoft(true);
bevelPanell.setToolTipText("");
jLabell.setBackground(Color.gray);
jLabell.setFont(new java.awt.Font("Dialog", 0, 26));
jLabell.setText("MFG 2 Sign-Out Sheet");
dBPasswordPrompterl.setFrame(this);
dBPasswordPrompterl.setPassword("busch");
dBPasswordPrompterl.setUserName("busch");
jdbTextField3.setText("Crew");
jdbTextField4.setText(" ");
jButtonl.setText("Selection");
jButtonl.addActionListener(new

java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {
jButtonl_actionPerformed(e);

}
});
this.add(statusBar, BorderLayout.NORTH);
this.add(bevelPanell, BorderLayout.CENTER);
bevelPanell.add(tableScrollPanel, new XYConstraints(19, 92,
936, 489));

80

bevelPanell.add(jdbNavToolBarl, new XYConstraints(18, 601, 707,
42));

bevelPanell.add(jdbLabell, new XYConstraints(253, 14, 207, 26));
bevelPanell.add(jdbLabel2, new XYConstraints(253, 54, 205, 26));
bevelPanell.add(jdbTextFieldl, new XYConstraints(133, 12, 76,

24));
bevelPanel1.add(jdbTextField2, new XYConstraints(133, 53, 76,

24));
bevelPanell.add(jdbTextField3, new XYConstraints(476, 12, 76,

25));
bevelPanell.add(jdbTextField4, new XYConstraints(476, 53, 76,

25));
bevelPanell.add(jButtonl, new XYConstraints(580, 31, 107, 33));
bevelPanell.add(jLabell, new XYConstraints(692, 8, 287, 46));
tableScrollPanel.getViewport().add(jdbTablel, null);
this.add(jdbStatusLabell, BorderLayout.SOUTH);

}

/*
* This method is used to process the first user-input from the

textfieldl and
* to refresh the dataset.
*/

void jdbTextFieldl_keyPressed(KeyEvent e) {
if (e.getKeyCodeO == KeyEvent.VK_ENTER) {

try {
parameterRowl.setlnt("low_no", Integer.parselnt

(j dbTextFieldl.getText()));
queryDataSetl.refresh();

}
catch (Exception ex) {

ex.printStackTrace();
}

}//end of if
}//end of jdbTextFieldl_keyPressed

/*
* This method is used to process the second user-input from the

textfield2 and
* to refresh the dataset.
*/

void jdbTextField2_keyPressed(KeyEvent e) {
if (e.getKeyCodeO == Key Event. VK_ENTER) {

try {
parameterRowl.setlnt("high_no", Integer.parselnt

(jdbTextField2.getText()));
queryDataSetl.refresh();
System.out .println("Save") ,-

}
catch (Exception ex) {

ex.printStackTrace();
}

}//end of if
}//end of jdbTextField2_keyPressed

void gueryDataSetl_filterRow(ReadRow readRow, RowFilterResponse
rowFilterResponse) throws DataSetException {

81

try {
if (formatter == null || columnName == null | j columnValue

== null ||
columnName.length() ==0 | columnValue.length() ==

0)

rowFilterResponse.addO ;
else {

readRow.getVariant(columnName, v);
String s = formatter.format(v);

if (columnValue.equals(s))
rowFilterResponse.add();

else
rowFilterResponse.ignore();

}
}
catch (Exception e) {

System.err.printlnf"Filter failed");
}

}

void jButtonl_actionPerformed(ActionEvent e) {
try {

columnName = jdbTextField3.getText();
columnValue = jdbTextField4.getText();
Column column = queryDataSetl.getColumn(columnName);
formatter = column.getFormatter();

queryDataSetl.refilter();
}
catch (Exception ex) {

System.err.println("Filter failed");
}

}//end of jButtonl_actionPerformed
}//end of class User frame

82

//
//
// File:
// Name:
// Date:
// Company:

//
//-

StartupDialog /dbSwing
Enno F. Busch
09-15-1999
Bundeswehr (German Navy)

// Description: This class is used to instantiate the RMI user
application.

package Marine;

import j ava.awt.*;
import j ava.awt.event.*;
import com.borland.jbcl.control.*;
import com.borland.jbcl.layout.*;

public class StartupDialog extends DecoratedFrame {
XYLayout xYLayout2 = new XYLayout();
BevelPanel bevelPanell = new Beve1Panel();
StatusBar statusBar = new StatusBar();
BorderLayout borderLayoutl = new BorderLayout();
TextField textFieldl = new TextField();
TextField textField2 = new TextField();
TextField textField3 = new TextField();
Button buttonl = new ButtonO;
Button button2 = new Button();
Label labell = new Label()
Label label2 = new Label()
Label label3 = new Label()
Label label4 = new Label()

//Construct the frame
public StartupDialog() {

try {
jblnitO ;

}
catch(Exception e) {

e.printStackTrace();
}

}

//Component initialization
private void jblnitO throws Exception

this.setLayout(borderLayoutl);
this.setSize(new Dimension(896, 563))
this.setTitle("Startup Frame MFG 2");
bevelPanell.setLayout(xYLayout2);

buttonl.setName("buttonl");
buttonl.setLabel("Enter") ;
button2.setLabel("Cancel") ;
labell.setText("Enter Your Name"),-
label2 . setText (" Enter your Password") ;
label3.setText("Enter Database");
label4.setFont(new java.awt.Font("Dialog"
label4.setText("Welcome to Naval Airwing

20))

83

this.add(statusBar, BorderLayout.SOUTH);
this.add(bevelPanel1, BorderLayout.NORTH);
bevelPanell.add(buttonl, new XYConstraints(211, 306, 105, 25));
bevelPanell.add(button2, new XYConstraints(336, 306, 105, 25));
bevelPanell.add(textFieldl, new XYConstraints(58, 81, 127, 28));
bevelPanell.add(textField2, new XYConstraints(58, 131, 127, 28));
bevelPanell.add(textField3, new XYConstraints(58, 181, 127, 28));
bevelPanell.add(labell, new XYConstraints(209, 86, 126, 28));
bevelPanell.add(label2, new XYConstraints(209, 132, 126, 28));
bevelPanell.add(label3, new XYConstraints(209, 183, 126, 28));
bevelPanell.add(label4, new XYConstraints(98, 28, 269, 36));

}

void buttonl_actionPerformed(ActionEvent e) {
dispose();

}
}

84

//
//
// File: Res.Java /dbSwing
// Name: Enno F. Busch
// Date: 09-10-1999
// Company: Bundeswehr (German Navy)
// Description: This class contains locale-specified objects. The
// program loads all needed information from this
// bundle, which is appropriate for the current user.
//

package Marine;

public class Res extends java.util.ListResourceBundle {

static final Object[][] contents = new String!][]{
{ "RS_ServerTitle", "Marinefliegergeschwader 2 Server" },
{ "RS_CloseServer", "Shut Server Down" },
{ "RS_Hos tname", "Hos tname" },
{ "RS_NoRegistry", "Connection problem. Make sure to run

rmiregistry from the \r\n jbuilderWjavaWbin " +
"directory first." },

{ "RS_Requests", "Handled Client Requests:" },
{ "RS_Error", "Error" },
{ "RS_AlreadyRegistered", "Another server is already registered,

Do you want to override that " +
"server?" },

{ "RS_ClientTitle", "Marinefliegergeschwader 2" },
{ "RS_NoServer", "No Data server avaliable, run DataServerApp

first." },
{ "RS_NoConnect", "CouldnVt connect to DataServerApp on host "

}};

public Object[][] getContents() {

return contents;
}

}//end of Resource class

85

THIS PAGE INTENTIONALLY LEFT BLANK

86

APPENDIX B. SOURCE CODE SERVER
// _
//
// File: DataServerApp / dbSwing
// Name: Enno F. Busch
// Date: 09-014-1999
// Company: Bundeswehr (German Navy)
// Description: This class is used to instantiate the RMI server.
//
//

package Marine;

import com.borland.jbcl.util.*;
import com.borland.jbcl.control.*;
import com.borland.jbcl.model.*;
import j ava.rmi.*;
import java.net.InetAddress;
import j ava.rmi.server.UnicastRemoteObj ect;
import Java.util.*;

public class DataServerApp extends UnicastRemoteObject implements
CrewmemberApi {

ResourceBundle res = Res.getBundle("Marine.Res") ;

/*
* This method is used as a constructor that displays the server's

frame.
*/

public DataServerApp() throws RemoteException {
frame = new DataServerFrame(this);
frame. pack () ,- • '
frame.setVisible(true);

}

/*
* This main-method is used to construct an instance variable and

calls the
* bindToNaming Service.
*/

public static void main(String[] args) {

DataServerApp dataServerApp = null;
try {
dataServerApp = new DataServerApp();
dataServerApp.bindToNamingService();

}
catch (Exception ex) {
DataSetModel.handleException(ex, true);
System.exit(1);

}
}

87

/*
* This method is used to handle the bindToNamingService. RMI

requires the actual hostName in the URL.
*/

void bindToNamingService() throws Exception {
InetAddress addr = InetAddress.getLocalHost() ;
String localHost = addr.getHostName();
serviceURL = "//" + localHost + "/DataServerApp";
try {
Naming.bind(serviceURL, this);
frame.textControl2.setText(res.getString("RS_Hostname")+":

"+localHost);
}
catch (java.rmi.AlreadyBoundException ex) {
MessageDialog dig = new MessageDialog(frame,
res.getString("RS_Error"), res.getString("RS_AlreadyRegistered"),

ButtonDialog.YES_NO);
dig.setVisible(true);
if (dlg.getResultO == ButtonDialog.YES) {

Naming.rebind(serviceURL, this);
}

}
catch (java.rmi.ConnectException ex) {
ExceptionChain chain = new ExceptionChainO;
chain.append(ex);
throw new DataSetException(DataSetException.GENERIC_ERROR,

res.getString("RS_NoRegistry"), chain);
}

}

/*
* This method is used to unbind the service from the RMI. It is

called as a
* result of closing the frame from UserFrame.Java.
*/ ■

void closing() {
try {
Naming.unbind(serviceURL);

}
catch (Exception ex) {
}

}

// Constants for the database connection properties.
final String url = "jdbc:odbc:MFG3";
final String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
final String username = "Busch";
final String password = " " ;
final String queryText = "select * from tablel, table2 ";

public DataSetData provideCrewmemberData() throws RemoteException,
DataSetException {

frame.incrementUsage() ;
Database db = new Database();
QueryDataSet qds = new QueryDataSet();

88

try {
db.setConnection(new ConnectionDescriptor(url, username,

password, false, driver));
//db.openConnection();
qds.setQuery(new QueryDescriptor(db, queryText, null, true,

Load.ALL));
qds.open() ;
DataSetData data = DataSetData.extractDataSet(qds);
return data;

}
finally {
qds.close();
db.closeConnection();

}
}

/*
* This method is used to resolve the Crewmember changes. It also

provides the
* implementation of the Crewmember interface.
* First, the MetaData are called; hence, the MaxRows are specified

to 0.
* Second, the QueryDataSet is filled with data.
* Third, all errors are returned as another DataSet instance.
*/

public DataSetData resolveCrewmemberChanges(DataSetData changes)
throws RemoteException, DataSetException {

frame.incrementUsage();
Database db = new Database();
QueryDataSet qds = new QueryDataSet () ,-
QueryResolver qr = new QueryResolver();
ResolverHelp rh = new ResolverHelp () ,-
try {
db.setConnection(new ConnectionDescriptor(url, username,

password, false, driver));
qds.setQuery(new QueryDescriptor(db, queryText, null, true,

Load.ALL));
qr.setDatabase(db);
qr.addResolverListener(rh);
qds.setResolver(qr);
qds.setMaxRows(0) ;
qds.open();
changes.loadDataSet(qds);
qds.saveChanges();
return rh.getErrors();

}
catch (java.util.TooManyListenersException ex) {

throw new DataSetException(ex.getMessage());
}
finally {

qds.close();
db.closeConnection();

}
}

// Keep the service URL for the closing method,
private String serviceURL;

89

// Keep the frame around for various messages,
private DataServerFrame frame;

}

/*
* This class is used as a resolver for errors. It is told to ignore

all errors.
* All data changes that does not cause any problems are saved and

tranferred to
* the database. Errors are logged by this class and stored into a

dataset and
* returned to the User Application.
*/

class ResolverHelp extends ResolverAdapter {

/* •
* This method is used to implement "insertError" into

ResolverListener.
*/

public void insertError(DataSet dataSet, ReadWriteRow row,
DataSetException ex, ErrorResponse response) throws

DataSetException {
handleError(dataSet, ex, response);

}

/*
*This method is used to implement "deleteError" into

ResolverListener.
*/

public void deleteError(DataSet dataSet, ReadWriteRow row,
DataSetException ex, ErrorResponse response) throws

DataSetException {
handleError(dataSet, ex, response);

}

/*
* This method is used to implement "updateError" into

ResolverListener.
*/

public void updateError(DataSet dataSet, ReadWriteRow row, ReadRow'
oldRow, ReadWriteRow updRow, DataSetException ex, ErrorResponse

response) throws DataSetException {
handleError(dataSet, ex, response);

}

/*
* This method is used to return a DataSetData with the accumulated

errors.
*/

DataSetData getErrors() throws DataSetException {
return errorDataSet == null ? null :

DataSetData.extractDataSet(errorDataSet),-
}

/*
* This method is used to handle errors. Errors are logged into the

90

* Error DataSet. The method loggs for each error the internal row in
the

* dataset inside the UserApp, which causes the problem. The
information is

* stored by the DataSetDat.extractDataSetChanges method.
*/

private void handleError(DataSet dataSet, DataSetException ex,
ErrorResponse response) throws DataSetException {

createErrorDataSet() ;
errorDataSet.insertRow(false);
errorDataSet.setLong(internalRow,dataSet.getLong(internalRow));
errorDataSet.setObject (exception, ex) ,-
errorDataSet.post();
response.ignore();

}

/*
* This method is used to create a dataSet and to collect the errors.
*/

private void createErrorDataSet() throws DataSetException {
if (errorDataSet != null)

return;

errorDataSet = new TableDataSet();
errorDataSet.setColumns(new Column[]{new

Column(internalRow,internalRow,Variant.LONG),
new

Column (exception,exception,Variant.OBJECT),
});

errorDataSet.open() ;
}

TableDataSet errorDataSet;
static final String internalRow = "INTERNALROW";
static final String exception = "EXCEPTION",-

}

91

//
// .

// File: DataServerFrame / dbSwing
// Name: Enno F. Busch
// Date: 09-09-1999
// Company: Bundeswehr (German Navy)
// Description: This class is used to display the frame for the
// DataServerApp.
//
// , _

package Marine;

import j ava.awt.*;
import j ava.awt.event.*;
import com.borland.jbcl.layout.*;
import com.borland.jbcl.control.*;
import j ava.util.*;

public class DataServerFrame extends DecoratedFrame {

ResourceBundle res = Res.getBundle("Marine.Res");
com.borland.jbcl.control.ButtonControl buttonControll = new

com.borland.jbcl.control.ButtonControl();
com.borland.jbcl.control.TextControl textControll = new

com.borland.jbcl.control.TextControl();
com.borland.jbcl.control.TextControl textControl3 = new

com.borland.jbcl.control.TextControl();
java.awt.GridBagLayout gridBagLayoutl = new Java.awt.GridBagLayout()

public DataServerFrame(DataServerApp app) {
this.app = app;
try {
jblnitO;

}
catch (Exception e) {

e .printStackTrace () ,-
}

}
private void jblnitO throws Exception{

this.setResizable(false);
this.setSize(new Dimension(514, 429));
this.setTitle(res.getString("RS_ServerTitle"));
this.addWindowListener(new java.awt.event.WindowAdapter() {
public void windowClosing(WindowEvent e) {

this_windowClosing(e);
}

});
buttonControll.setBackground(Color.green);
buttonControll.setFont(new java.awt.Font("Dialog", 1, 22));
buttonControll.setForeground(Color.red);
buttonControll.setLabel(res.getString("RS_CloseServer"));
buttonControll.addActionListener(new

java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {

buttonControll_actionPerformed(e);
}

92

});
textControll.setBackground(SystemColor.controlShadow);
textControll.setEdgeColor(Color.red) ;
textControll.setFont(new java.awt.Font("Dialog", 1, 22));
textControll.setText(res.getString("RS_Requests"));

textControl3.setAlignment(com.borland.dx.text.Alignment.CENTER |
com.borland.dx.text.Alignment.MIDDLE);

textControl3.setFont(new java.awt.Font("Dialog", 1, 38));
textControl3.setText("0");
this.setLayout(gridBagLayoutl);

this.add(buttonControll, new GridBagConstraints(0, 3, 3, 1,
0.0, 0.0

,GridBagConstraints.CENTER, GridBagConstraints.NONE, new
Insets(20, 20, 20, 20), 53, 45));

this.add(textControl3, new GridBagConstraints(0, 2, 3, 1, 1.0, 1.0
»GridBagConstraints.CENTER, GridBagConstraints.BOTH, new

Insets(0, 20, 0, 20), 0, 0));
this.add(textControl2, new GridBagConstraints(0, 0, 3, 1, 1.0, 1.0

»GridBagConstraints.CENTER, GridBagConstraints.BOTH, new
Insets(20, 20, 5, 20), 0, 0)) ,-

this.add(textControll, new GridBagConstraints(0,•1, 3, 1, 1.0, 1.0
,GridBagConstraints.NORTHEAST, GridBagConstraints.BOTH, new

Insets(15, 40, 5, 0), 0, 0));
}

void incrementUsage() {
textControl3.setText(Integer.toString(++usage));

}

void buttonControll_actionPerformed(ActionEvent e) {
app.closing();
System.exit(1);

}

void this_windowClosing(WindowEvent e) {
app.closing();

}.

private DataServerApp app;
private int usage = 0 ,-
com.borland.jbcl.control.TextControl textControl2 = new

com.borland.jbcl.control.TextControl();
}

93

//
//
// File: DataServerApp_Skel
// Name: Enno F. Busch
// Date: 09-11-1999
// Company: Bundeswehr (German Navy)
// Description: This skel class is instantiated by rmi. After compile
// contents may change without any notice.
//
package Marine;

public final class DataServerApp_Skel
implements j ava.rmi.server.Skeleton

{
private static final Java.rmi.server.Operation[] operations = {
new j ava.rmi.server.Operation("com.borland.dx.dataset.DataSetData

provideCrewmemberData()"),
new j ava.rmi.server.Operation("com.borland.dx.dataset.DataSetData
resolveCrewmemberChanges(com.borland.dx.dataset.DataSetData)")

};

private static final long interfaceHash = -8746639934740811853L;

public Java.rmi.server.Operation[] getOperations() {
return (j ava.rmi.server.Operation[]) operations.clone();

}

public void dispatch(Java.rmi.Remote obj,
java.rmi.server.RemoteCall call, int opnum, long hash)

throws java.lang.Exception

{
if (opnum < 0) {

if (hash == -528199836271043772L) {
opnum = 0;

} else if (hash == 7264815700894346221L) {
opnum = 1;

} else {
throw new java.rmi .UnmarshalException("invalid method

hash");

}
} else {

if (hash != interfaceHash)
throw new

java.rmi.server.SkeletonMismatchException("interface hash
mismatch");
}

Marine.DataServerApp server = (Marine.DataServerApp) obj;
switch (opnum) {

case 0: // provideCrewmemberData()
{

call.releaselnputStreamO ,-
com.borland.dx.dataset.DataSetData $result =

server.provideCrewmemberData();
try {
java.io.ObjectOutput out = call.getResultStream(true);
out.writeObject($result);

94

} catch (java.io.IOException e) {
throw new java.rmi.MarshalException("error marshalling
return", e);

}
break ,-

case 1: // resolveCrewmemberChanges(DataSetData)
{

com.borland.dx.dataset.DataSetData $param_DataSetData_l;
try {

java.io.Objectlnput in = call.getlnputstream() ,-
$param_DataSetData_l = (com.borland.dx.dataset.DataSetData)
in.readObj ect();

} catch (java.io.IOException e) {
throw new Java.rmi.UnmarshalException("error unmarshalling
arguments", e);

} catch (Java.lang.ClassNotFoundException e) {
throw new java.rmi.UnmarshalException("error unmarshalling
arguments", e);

} finally {
call.releaselnputStreamf);

}
com.borland.dx.dataset.DataSetData $result =

server.resolveCrewmemberChanges($param_DataSetData_l);
try {

java.io.ObjectOutput out = call.getResultStream(true);
out.writeObject($result) ;

} catch (java.io.IOException e) {
throw new java.rmi.MarshalException("error marshalling
return", e);

}
break;

}

default:
throw new java.rmi.UnmarshalException("invalid method

number");
}

}

95

//
//

// File: DataServerApp_Stub
// Name: Enno F. Busch
// Date: 09-09-1999
// Company: Bundeswehr (German Navy)
// Description: This stub class is instantiated by rmi. After compile
// contents may change without any notice.
//
// _

package Marine;

public final class DataServerApp_Stub
extends j ava.rmi.server.RemoteStub

implements Marine.CrewmemberApi, j ava.rmi.Remote
{

private static final java.rmi.server.Operation[] operations = {
new j ava.rmi.server.Operation("com.borland.dx.dataset.DataSetData

provideCrewmemberData() ") ,
new Java.rmi.server.Operation("com.borland.dx.dataset.DataSetData

resolveCrewmemberChanges(com.borland.dx.dataset.DataSetData)")
};

private static final long interfaceHash = -8746639934740811853L;

private static final long serialVersionUID = 2;

private static boolean useNewInvoke;
private static Java.lang.reflect.Method

$method_provideCrewmemberData_0;
private static Java.lang.reflect.Method

$method_resolveCrewmemberChanges_l;

static {
try {

Java.rmi.server.RemoteRef.class.getMethod("invoke",
new java.lang.Class[] {

Java.rmi.Remote.class,
java.lang.reflect.Method.class,
java.lang.Object[].class,
long.class

});
useNewInvoke = true;
$method_provideCrewmemberData_0 =

Marine.CrewmemberApi.class.getMethod("provideCrewmemberData", new
java.lang.Class[] {});

$method_resolveCrewmemberChanges_l =
Marine.CrewmemberApi.class.getMethod("resolveCrewmemberChanges",
new java.lang.Class[]
{com.borland.dx.dataset.DataSetData.class});
} catch (java.lang.NoSuchMethodException e) {

useNewInvoke = false;
}

}

96

/*
* This methods is used to provide the constructors.
*/

public DataServerApp_Stub() {
super();

}
public DataServerApp_Stub(java.rmi.server.RemoteRef ref) {

super(ref);
}

// methods from remote interfaces

// implementation of provideCrewmemberData()
public com.borland.dx.dataset.DataSetData provideCrewmemberData()

throws com.borland.dx.dataset.DataSetException,
java.rmi.RemoteException

{
try {

if (useNewInvoke) {
Object $result = ref.invoke(this,

$method_provideCrewmemberData_0, null, -528199836271043772L);
return ((com.borland.dx.dataset.DataSetData) $result);

} else {
java.rmi.server.RemoteCall call =

ref.newCall((java.rmi.server.RemoteObject) this, operations, 0,
interfaceHash);

ref.invoke(call);
com.borland.dx.dataset.DataSetData $result;
try {

java.io.Objectlnput in = call.getlnputstream();
$result = (com.borland.dx.dataset.DataSetData)

in.readObject();
} catch (java.io.IOException e) {

throw new java.rmi.UnmarshalException("error
unmarshalling return", e);

} catch (java.lang.ClassNotFoundException e) {
throw new java.rmi.UnmarshalException("error

unmarshalling return", e);
} finally {

ref.done(call);
}
return $result;

}
} catch (java.lang.RuntimeException e) {

throw e;
} catch (java.rmi.RemoteException e) {

throw e;
} catch (com.borland.dx.dataset.DataSetException e) {

throw e;
} catch (java.lang.Exception e) {

throw new java.rmi.UnexpectedException("undeclared checked
exception", e);
}

}

97

// implementation of resolveCrewmemberChanges(DataSetData)
public com.borland.dx.dataset.DataSetData

resolveCrewmemberChanges(com.borland.dx.dataset.DataSetData
$param_DataSetData_l)
throws com.borland.dx.dataset.DataSetException,
j ava.rmi.RemoteException

{
try {

if (useNewInvoke) {
Object $result = ref.invoke(this,

$method_resolveCrewmemberChanges_l, new Java.lang.Object[]
{$param_DataSetData_l}, 7264815700894346221L);

return ((com.borland.dx.dataset.DataSetData) $result);
} else {
java.rmi.server.RemoteCall call =

ref.newCall((Java.rmi.server.RemoteObject) this, operations, 1,
interfaceHash);

try {
java.io.ObjectOutput out = call.getOutputStream();
out.writeObject($param_DataSetData_l);

} catch (java.io.IOException e) {
throw new java.rmi.MarshalException("error marshalling

arguments", e);
}
ref.invoke(call);
com.borland.dx.dataset.DataSetData $result;
try {

java.io.Objectlnput in = call.getInputStream();
$result = (com.borland.dx.dataset.DataSetData)

in.readObj ect();
} catch (java.io.IOException e) {

throw new java.rmi.UnmarshalException("error
unmarshalling return", e);

} catch ('java.lang.ClassNotFoundException e) {
throw new j ava.rmi.UnmarshalException("error

unmarshalling return", e);
} finally {

ref.done(call);
}
return $result;

}
} catch (java.lang.RuntimeException e) {

throw e;
} catch (java.rmi.RemoteException e) {

throw e;
} catch (com.borland.dx.dataset.DataSetException e) {

throw e;
} catch (java.lang.Exception e) {

throw new java.rmi.UnexpectedException("undeclared checked
exception", e);
}

98

// _
//

// File: UserResolver / dbSwing
// Name: Enno F. Busch
// Date: 09-11-1999
// Company: Bundeswehr (German Navy)
// Description: This class is used as an implementation of a
// resolver. The program look up the DataServerApp program
// on the host that is specified by the hostName property.
// In a second step any changes are extracted in a DataSet
// instance.
// In a third step a remote call is initiated, and if any
// errors are encountered, they are handled accordingly.
//
//

package Marine;

import java.rmi.*;
import java.util.*;

class UserResolver extends Resolver {

ResourceBundle res = Res.getBundle("Marine.Res");

public void resolveData(DataSet dataSet) throws DataSetException {
try {

String serverName = "//" + hostName + "/DataServerApp";
EmployeeApi server = (EmployeeApi)Naming.lookup(serverName);
ProviderHelp.startResolution(dataSet.getStorageDataSet(), true);

DataSetData changes = DataSetData.extractDataSetChanges(dataSet);
DataSetData errors = server.resolveEmployeeChanges(changes);
if (errors != null)

handleErrors(dataSet,errors);
dataSet.resetPendingStatus(true);

}
catch (DataSetException ex) {

dataSet.resetPendingStatus(false);
throw ex;

}
catch (NotBoundException ex) {

dataSet.resetPendingStatus(false);
throw new DataSetException(res.getString("RS_NoServer"));

}
catch (Exception ex) {

dataSet.resetPendingStatus(false);
String error = ex.getMessage();
if (error == null)
error = res.getString("RS_NoConnect") + hostName;
throw new DataSetException (error) ,-

}
finally {
ProviderHelp.endResolution(dataSet.getStorageDataSet());

}
}

99

/*
* This method handles the errors. It loops through all the errors
* reported, and resets the status bits to not resolved for each row
* that caused an error. Then we go to the first reported error, and
* let the provider fail with that error.
*/

private void handleErrors(DataSet dataSet, DataSetData errors)
throws DataSetException

{
TableDataSet errorDataSet = new TableDataSet();
errors.loadDataSet(errorDataSet);
long internalRow;
errorDataSet.first();
do {

internalRow = errorDataSet .getLong(O) ,-
dataSet.resetPendingStatus(internalRow,false);

} while (errorDataSet.next());

dataSet.resetPendingStatus(true);

errorDataSet.first();
internalRow = errorDataSet.getLong(0);
dataSet.goToInternalRow(internalRow);
DataSetException ex = (DataSetException) errorDataSet .getObject (1) ,-
throw ex;

}

/*
* This method is used to locate the "DataServerApp"
* service through RMI. By default the program looks at the local
* machine.
*/

public String getHostName() {
return hostName;

}

public void setHostName(String hostName) {
this.hos tName = hos tName;

}

private String hostName = "localhost";
}

100

//
//

// File: UserProvider / dbSwing
// Name: Enno F. Busch
// Date: 09-11-1999
// Company: Bundeswehr (German Navy)
// Description: This class is used as an implementation of a provider.
// The program looks up the DataServerApp program
// on the host that is specified by the hostName property.
// In a second step the program performs a remote call to
// provideCrewmemberData and laoads the DataSet with data.
// _

package Marine;

import j ava.rmi.*;
import java.util.*;

class UserProvider extends Provider {

ResourceBundle res = Res.getBundle("Marine.Res") ;

public void provideData(StorageDataSet dataSet, boolean toOpen)
throws DataSetException {

try {
String serverName = "//" + hostName + "/DataServerApp";
CrewmemberApi server = (CrewmemberApi)Naming.lookup(serverName);
DataSetData data = server.provideCrewmemberData();
dataSet.empty();
data.loadDataSet(dataSet);

}
catch (NotBoundException ex) {

throw new DataSetException(res.getString("RS_NoServer"));
}
catch (DataSetException ex) {

throw ex;
}
catch (Exception ex) {

String error = ex.getMessage();
if (error == null)

error = res.getString("RS_NoConnect")+hostName;
throw new DataSetException(error);

}
}

/*
* This method is used to locate the "DataServerApp" service through
* RMI. By default it looks to the local machine.
*/

public String getHostName() {
return hostName;

}

public void setHostName(String hostName) {
thi s.hostName = hos tName;

}
private String hostName = "localhost";

}

101

//
//

// File: CrewmemberApi /dbSwing
// Name: Enno F. Busch
// Date: 08-14-1999
// Company: Bundeswehr (German Navy)
// Description: This method is used to define the methods to be used
// remotely.
//

package Marine;

import com.borland.dx.dataset.DataSetData;
import com.borland.dx.dataset.DataSetException;
import java.rmi.Remote;
import Java.rmi.RemoteException;

/*
* This method is used to define the methods to be used remotely.
*/

public interface CrewmemberApi extends Remote {

DataSetData provideCrewmemberData() throws RemoteException,
DataSetException;

DataSetData resolveCrewmemberChanges(DataSetData changes) throws
RemoteException, DataSetException;

}//end of CrewmemberApi

102

LIST OF REFERENCES

[AL99] Akbay, M., Lewis, S., Design and Implementation of an Enterprise

Information System Utilizing a Component Based Three Tier Client-Server

Database System, Thesis, NPS Monterey, CA, March 1999.

[ARMS98] Armstrong, Eric, Jbuilder2 Bible, IDG Books Worldwide, Inc., 1998.

[BR0095] Brooks, Frederick, The Mythical Man-Month, Addison Wesley Longman,

Inc., 1995.

[FLAN97] Flanagan, David, JAVA IN A NUTSHELL, A Desktop Quick Reference,

O'Reilly & Associates, Inc., 1997.

[HCF97] Hamilton, Graham and Cattell, Rick and Fisher, Maydene, JDBC

Database Access with Java, A Tutorial and Annotated Reference, The Java

Series, Addison Wesley Longman, Inc., 1997.

[HM99] Held, J., Mingo, F., Automating the Aviation Command Safety Assessment

Survey as an Enterprise Information System, Thesis, NPS Monterey, CA,

March 1999.

[JAVA99] The Source for Java Technology, http: / /www. i ava. sun. com

[JAVA99a] The Source for Java Technology, http://java.sun.com/products

[LARM97] Larman, Craig, Applying UML and Patterns, An Introduction to Object-

Oriented Analysis and Design, Prentice-Hall, Inc., 1997.

[MICR97] Microsoft Press, Microsoft Access 97, At a Glance, Visual Reference,

Microsoft Press, 1997.

103

[SIPL98] Siple, Matthew, The Complete Guide to JAVA Database Programming,

Computing McGraw-Hill, 1998.

[SISH94] Singhal, Mukesh and Shivaratri, Niranjan, Advanced Concepts in

Operating Systems, McGraw-Hill Series in Computer Science, McGraw-

Hill, Inc. 1994.

[SUND98] Sunderraman, Rajshekhar, Oracle Programming, A PRIMER, Addison-

Wesley Longman, Inc. 1998.

[TANE97] Tanenbaum, A. and Woodhull, A., Operating Systems: Design and

Implementation, Upper Saddle River, NJ: Prentice Hall, 1997.

[TARE85] Tanenbaum, A. and vanRenesse, R., Distributed Operating System,

Computing Surveys ACM, vol. 17, no.4, Dec. 1985, pp. 419-470.

[WANG98] Wang, Paul S., JAVA with Object-Oriented Programming and World Wide

Web Applications, PWS Publishing, 1998.

104

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., Ste 0944
Fort Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Commanding Officer 1
KdoMFueSys
Wibbelhofstr. 3
26384 Wilhelmshaven, Germany

4. Chairman, Code CS 1
Naval Postgraduate School
Monterey, CA 93943-5101

5. Dr. C. Thomas Wu, Code CS/Wu 1
Naval Postgraduate School
Monterey, CA 93943-5100

6. Michael Capps, Code CS/Ca 1
Naval Postgraduate School
Monterey ,CA 93943-5100

7. CDR (GNY) Enno F. Busch.... 2
KdoMFueSys, Gruppe II
Wibbelhofstr. 3
26384 Wilhelmshaven, Germany

105

