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ABSTRACT 

The returns from shallowly buried targets measured using Ground Pen- 
etrating Radar (GPR) are typically obscured by a strong background signal 
comprised of the reflections from the air-soil interface. A Kaiman filter-based 
approach is proposed to estimate this background signal and to separate it 
from the target return. In the absence of the target the filter operates using 
a "quiescent state model" in which it computes the background estimate. A 
statistic based on measurement innovation is applied to detect the target posi- 
tion. Upon detection the state is augmented by a new component which allows 
for the change of the signal corresponding to the presence of the target return. 
The augmented state model is used until it is reverted to the quiescent model 
by another decision. 
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A Kaiman Filter-Based Approach to Target Detection and 
Target-Background Separation in Ground Penetrating 

Radar Data 

EXECUTIVE SUMMARY 

Ground Penetrating Radar (GPR) has shown promise for detecting landmines with 
minimal or no metal content. A problem related to this technology is that the returns 
from shallow buried objects can be obscured by the ground return. In the scope of its 
countermine project DSTO is investigating signal processing techniques for improving 
detection of shallow-buried targets within the ground return. 

This report describes a Kaiman filter-based approach to target detection and clutter 
suppression in near surface GPR data. The detection problem is posed as the one of 
detecting local anomalies in the soil dielectric half-space, where the soil properties are 
assumed to slowly change across the half-space as a function of distance. Background 
estimation, target detection and target-background separation are treated as mutually 
related processes and are performed within an integral Kaiman filter-based computational 
procedure. In the absence of the target the filter operates using a quiescent signal model 
in which it computes the background estimate. A statistic based on the measurement 
innovation obtained from the Kaiman filter is applied to detect the target position. Upon 
the detection the state is augmented by new components which allow for the change in 
the signal corresponding to the target return. 

This technique was tested using a number of targets measured in several soil environ- 
ments and proved to be superior to the standard background subtraction method. Further 
tests are required in order to determine the effectiveness of this technique in the environ- 
ments that contain a large number of false targets (clutter). Several extensions to the 
current method which are expected to provide an increase in the detection capability have 
been suggested. 
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Figures 

Thresholds e\, €2L, £2H 
an^ Xm a and the corresponding settings of the scaling 

factors <f)p(k). Function fx2  is a x2 probability density function 10 

(a) The original GPR data with the surrogate landmine ST-AP(l) (left) and 
the PVC cylinder (right) buried in dry sand at the depth of 1 cm; (b) the 
target-return component of the GPR signal estimated by the proposed algo- 
rithm. The positions of the targets are indicated  .    11 

Flow chart of the algorithm     12 

(a) A row from the data plot in Figure 2 (a) which represents the signal 
recorded at one depth and at consecutive spatial positions (solid line) and 
the corresponding background signal estimated using the proposed algorithm 
(dashed line); (b) the estimated target signal. The augmented state model was 
active at spatial positions as indicated     13 

Background-subtracted data in Figure 2 (a), where the background signal is 
estimated as the mean of the entire ensemble of GPR signals and subtracted 
from each signal in the ensemble     14 
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1    Introduction 

Impulse time-domain Ground Penetrating Radar (GPR) is capable of detecting buried 
targets with little or no metal content and, as such, has emerged as a promising tool for 
landmine detection. GPR radiates short-duration pulses of electromagnetic energy into the 
ground and records backscattered signatures composed of the reflections from the target 
dielectric surfaces {e.g., top and bottom of a mine plastic casing) and internal metallic 
components (e.g., firing pin). However, GPR signatures of shallowly buried targets such 
as landmines are normally obscured by a background signal (clutter) comprised of the 
reflections from the ground surface and the antenna crosstalk, which, is some cases, may 
impede detection. 

As the target and the ground returns have similar spectral characteristics standard 
radar clutter suppression techniques can not be used for their separation [5]. A simple 
alternative is to apply background subtraction whereby the background signal is estimated 
as the mean of the unprocessed ensemble of GPR signals using either all signals in the 
ensemble or a spatial moving average filter to obtain a locally adaptive background esti- 
mate [4], [5]. This estimate is next subtracted from the unprocessed GPR signals in the 
ensemble. The resulting data is usually utilised to locate the position of a possible target 
which may be followed by target recognition algorithms [2]. We note that the techniques 
described in [4] and [5] do not take into account the target position and can use target 
return signals to compute background estimate, which, in some cases, may modify the 
distribution of the target signatures after the subtraction. By contrast, in this report 
background estimation, target detection and target-background separation are treated as 
mutually interrelated processes and are performed within an integral Kaiman filter-based 
computational procedure. A Kaiman filter approach, motivated by the variable state di- 
mension (VSD) method described in [1], is utilized to estimate the background signal and 
to separate it from the target signal. In the absence of the target the filter operates using a 
quiescent state model in which it computes the background estimate. The target is defined 
as a local anomaly in the soil dielectric and is detected as an abrupt departure from the 
estimated background signal. A statistic based on the measurement innovation obtained 
by the Kaiman filter is applied to detect the target position. Upon detection the state is 
augmented by new components which allow for the change of the signal corresponding to 
the target return. The augmented state model is used until it is reverted to the quiescent 
model by another decision. 

It is assumed that the background signal is a slowly changing function of the spatial 
position. The magnitude of this signal at one particular depth, and for incrementally 
updated spatial positions, is modelled using a random walk model. Based on this model, 
the noisy measurements of the background signal are represented using a state space form 
and Kaiman filter is applied to obtain the recursive state estimates. In particular, a set 
of Kaiman filters is run on horizontal strips of GPR data which are adjacent in depth. At 
the spatial positions where the target is detected the state is augmented by the new state 
component modelled as stochastic bias. This component is used to compute the estimate 
of the unknown target signal which is assumed to be superimposed onto the background 
signal at the position of the target. 

The report is organized as follows.   Section 2 describes the Kaiman filter-based ap- 
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proach.to background estimation and target-background separation. Section 3 then presents 
our approach to target detection using measurement innovation and Section 4 explains the 
technique that enables adaptation of the algorithm to slow changes of the environment. 
The experimental results are presented in Section 5. 

2    Background Estimation and 
Target-Background Separation Using Kaiman 

Filter 

In the process of acquiring GPR signatures the transmit and receive antennas are 
moved over the ground surface at approximately constant velocity v and height h so as to 
cross the buried target. The received backscattered signals (or traces) u(n, k) are collected 
in fixed time intervals Atc where n = 0,..., N - 1 denotes the signal time samples and 
k = 0,1,..., corresponds to the position of the receive antenna, vkAtc. Using the additive 
signal model we can write: 

u{n,k) = st(n,k)+sb(n,k)+w(n,k),     n = 0,... ,N - 1 (1) 

where st(n,k) is the target signal, sb(n,k) is the background signal (superscript t stands 
for "target" and b denotes "background"), and w(n,k) is additive noise. If the signal 
u(n, k) is measured over the area with no target present s'(n, k) = 0, n = 0,..., N — 1. 

Two-dimensional GPR plots are obtained by stacking the traces u(n, k) measured at 
consecutive spatial positions. The horizontal axes of a plot corresponds to the antenna 
position and the vertical axis denotes time duration of the backscattered signal (equiv- 
alently, proportional to the depth). The plots are composed of sections of traces that 
contain target signal and those measured over the areas with no target present, which 
constitute the background signals and the goal is to detect target and segment the data 
into the target and the no-target areas. To enable efficient processing, GPR plots are di- 
vided into non-overlapping horizontal strips which correspond to the layers of the ground 
that are approximately constant in depth. Each strip is processed separately as explained 
bellow. 

We define the measurement vector as up(fc) = [u(pm,k),u(pm + l,k),...,u((p+ l)m- 
1, k)]T, where p = 0,1,..., P - 1, and P = [N/m] ([z] represents the largest integer < z). 
That is, up(k) equals the section of length m of the received GPR signal u(n, k) which starts 
from the pm-th signal sample and up(k), k = 0,1,..., is a horizontal strip of GPR data 
of width m positioned at pm. Following the random walk model for the background-only 
signals, we define the quiescent state using the following linear difference state equation: 

s{(*) = s$(fc-l) + vlp(*) (2) 

for p = 0,1,..., P - 1, where sb
p(k) = [sb{pm, k), sb(pm + 1, k),..., sb((p + \)m - 1, fc)]T. 

The corresponding measurement equation is then 

up(k) = sb
p(k) + wp(A0, P = 0,1,..., P - 1. (3) 
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In the case where the target return is present in the received signal the state space 
representation is defined as: 

sj(fc)    =   sj(fc-l) (4) 

sP(k)   =   sp(k-l)+bp(k) (5) 

bp(fc)   =   bp(fc-l)+v2p(fc) (6) 

for p = 0,1,..., P — 1. The state is augmented with the vector sp(fc) = ^{pm, k), st(pm + 
1, k),..., s'((p + l)m — 1, k)]T and a random bias bp(A;) which is used to account for the 
changes corresponding to the target signal. The background is kept constant and equal 
to the value estimated prior to target detection (see Eq. (3)). For the above augmented 
state the measurement equation is defined as: 

up(k) = sb
p(k) + s* (fc) + Wp(fc), p = 0,1,..., P - 1. (7) 

We note that \\p{k) in (2) and v2p(A;) in (6) are the process noise vectors and wp(&) in (3) 
and (7) is the measurement noise vector, for p = 0,1,..., P—1. They are all m-dimensional 
vectors whose components are independent identically distributed (iid) Gaussian random 
variables. Also, in the background-only regime the target signal s'(n = 0,..., N — 1, k) is 
zero so that 

s{(fc) = [0]mxi for p = 0,l,...,P-l. (8) 

Based on the equations (l)-(2) and (3)-(6), a set of P Kaiman filters is used to com- 
pute the background and the target signal estimates from the noisy observations. In the 
quiescent phase the p-th state vector xip = [s*] is recursively estimated as 

xip(fc) = Aixip(fc - 1) + kip(fc)(up(fc) - HiAixip(fc - 1)) (9) 

where Ai = I and Hi = I, and I is an identity matrix with m elements on the main 
diagonal. The update equations in this case, for p = 0,1,..., P — 1, are 

Pip(*|*-1)   =   AiPi„(* - l)Af + Qlp(k) (10) 

kip(fc)   =   Pip(fc|fc - l)Hf (HiPip(fc|fc - ljH?1 4-Rp)-1 (11) 

Pip(*)    =    (I-klp(fc)Hi)Plp(A;|*-l) (12) 

where kip(fe) is a Kaiman gain vector, Pip(k\k - 1) is an a priory error covariance ma- 
trix with the dimensions m x m, Pip(k) is the updated error covariance matrix with 
the same dimensions, Qip(&) is the process noise covariance matrix and Up = o\j I is 
the measurement noise covariance matrix. The error covariance matrix is initialized to 
Plp(0) = [0]mXm and the process noise covariance matrix to Qip(0) = (cr^lp)

2I, where 
(<7°x )2 is the initial estimate of the variance of the process noise sequence in (1). 

When the target signal is present, the augmented state vector is 

*2P = [ [sP]T, [s'f, [bp]T (13) 

and its updated estimate is 

x2p(fc) = A2x2p(A; - 1) + k2p(fc)(up(fc) - H2A2x2p(fc - 1)) (14) 
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where 
I    0 0 ' 
0    I I 
0   0 I 

and Ho [no] (15) 

Similarly as above, gain and the covariance matrix updates for p = 0,1,... ,P - 1, are 

obtained as 

P2p{k\k-1)    =   A2P2p(fc - 1)A^ + Q2p 

M&)   =   P2P(k\k-l)Hl(H2P2p(k\k-l)Hl + Kpr
1 

P2p(k)    =    (I - k2p(fc)H2)P2p(/# - 1). 

The process noise covariance matrix Q2p is a 3m x 3m matrix defined as 

Q.2p = 

(16) 

(17) 

(18) 

0 0 0 
0 0 0 
0 0 <,I. 

(19) 

The augmented state is initialized at the spatial position k = k0 by setting the bias to 

zero and the error covariance matrix P2p(&o) to 

P2P(fo) = 
Pip(*o-l)   0   0 

0 0   0 
0 0   0 

(20) 

3    Target Detection 

While operating in the quiescent state the algorithm uses a x2 test based on the 
measurement prediction error or innovation vp(k), to detect the position of a possible 
target. In particular, it is expected that the presence of the target return manifests itself 
as a "large" innovation. Under the hypothesis H0 it is assumed that the GPR trace 
u{n = 0,..., N - 1, it) contains only the ground return sb(n = 0,..., N - 1, k) plus noise. 
The alternative hypothesis Hi is that the target signal s*(n = 0,... ,JV - 1, k) is also 
present. For each of the P trace sections of length m, p = 0,1,..., P -1, the measurement 
prediction error vp(k) is computed as 

vp(k) = up(k) - up{k\k - 1) (21) 

where 
up(k\k - 1) = HiAiXip(fc - 1) (22) 

is the measurement prediction. The measurement prediction covariance matrix is updated 

as 
Sp(fc) = K{Plp(k\k - l)Hf + Rp 

and used to compute the normalized innovation squared (NIS) 

ep{k) = up(k)TSp(k)-lvp(k). 

(23) 

(24) 
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Under the hypothesis HQ the variables ep(k), p = 0,1,..., P — 1, are x2 distributed with 
m degrees of freedom. Each of the P trace sections is, then, tested separately using the 
X2 test with the significance level a, so that 

Pr(ep(k) > xl,a) = ex. (25) 

In the case when HQ is rejected for at least KQ of the total of P sections, the hypothesis HQ 

for the whole trace is rejected and the alternative hypothesis Hi is accepted. To make the 
final decision that the target is present, and to change to the augmented state model, the 
hypothesis HQ needs to be rejected for at least K\ consecutively measured GPR traces. 
After the target detection is declared at the spatial position k, the spatial position at 
which the augmented state is initialized, ko, and which is assumed to correspond to the 
target onset, is determined as fco = k — Ki — KT. Here, KQ, K\ and KT are suitably chosen 
constants. If KT — 0, ko equals to the spatial position where detection first occurred. If 
we set KT > 0 we assume that the target started before it was first detected. 

It is desirable that the augmented state model stays active until the end of the section 
of GPR traces that contains the target return is detected, when the algorithm should 
switch back to the quiescent state model. However, the above target detection technique 
determines the beginning of the target section in the data and a similar approach cannot 
be devised to define the end of this segment as easily. One solution is to run the proposed 
algorithm over the target in two opposite directions in order to define the position and the 
width of the target segment. For simplicity, in this report we apply the algorithm in one 
direction only and assume that the width of the target segment is constant and known in 
advance. This assumption is reasonable when the size of the target and the velocity of the 
antenna are known. 

Though here we used NIS for the detection statistic, we note that the detection statistic 
can also be computed as a moving sum of NIS over the sliding window of length s, 

j=k-s+l 

The variable ep(k) is x2 distributed with sm degrees of freedom. The detection statistic 
defined as in (26) is suitable for noisier backgrounds. 

4    Background Adaptation 

The GPR background signal is measured as the average over a volume of the ground 
and its statistics can be assumed to have slow spatial variation. To enable our algorithm 
to adapt to such variations we use an approach motivated by the continuous noise level 
(CNL) adjustment technique presented in Bar-Shalom and Li [1]. In particular, the process 
noise covariance matrix, Qip(k), that characterizes the background is finely tuned at each 
spatial position k by multiplying it by a scaling factor <f>p(k), 

■Qip(k) = <f>P(k)QiP(k ~ I)- (27) 

This is done for each p = 0,1,..., P — 1 separately. At each spatial position k the value 
of the scaling factor (f>p(k) is determined by comparing NIS ep(k) to a set of thresholds. 
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These thresholds, denoted as ei, e2h and e2in are defined so as to satisfy the following 

equations 

Pr{ep{k) < a)   =   1 - ifc (28) 

Pr{ep{k) < e2J   =   1 - %L (29) 

Pr(ep(A;) < e2„)   =   1 - T?2„ (30) 

where -q\ > T\2L > T)2H > a and Pr(-) is x2 distribution with m degrees of freedom. Ideally, 
under the background-only assumption, we wish to define the process noise covariance 
matrix Q\p{k) so that ei < ep(k) < e2l, in which case the scaling factor is set to <f>p(k) = 1. 
If ep(k) < ei, the process noise level is too high and needs to be lowered. We then set 
4>p(k) = fa, where fa < 1. Otherwise, if e2z, < ep(k) < e2lI, the process noise covariance 
matrix is increased by setting the scaling factor to <j)p{k) = fa, where fa > 1. In the case 
when e2ll < ep(k) < xL,a we are not sure weather our background-only assumption is 
still valid so the process noise level is left unaltered, and <f>p{k) = 1. The same is done for 
ep(fc) > Xm,a- The constants fa and fa are chosen to be close to 1 and, i.e., fa = 0.98 
and fa = 1.02. The decision procedure for setting the value of the scaling factors fa{k) at 
each spatial position k for which the algorithm operates using the quiescent state model 
and for p = 0,1,..., P - 1, is summarized as follows (see also Figure 1): 

step 1: set    p = 0 (31) 

step 2: if ep{k) < ex set fa(k) = fa goto step 3 

if €2t < eP(k) < e2H set fa(k) = fa goto step 3 

if ei < ep(k) < e2h or ep(k) > xlt,a set fa{k) = 1 

step 3: if p < P set p = p + 1 goto step 2 (32) 

5    Simulation Results and Discussion 

The Kaiman filter-based technique described in Sections 2-4 has been tested using 
several minelike targets buried in different soils. The targets were surrogate anti-personnel 
landmines, modelled after a number of anti-personnel blast mines with non-metallic casings 
[7], and poly-vinyl chloride (PVC) and stainless steel cylinders of different sizes. The 
surrogate landmines are made of a plastic pipe filled with paraffin wax and small metal 
parts. The data was collected by means of an FR-127-MCSB impulse GPR developed by 
CSIRO [6]. The system used a bistatic bow-tie antenna to transmit pulses with 1.4 GHz 
center frequency and the bandwidth of 1.0 GHz, and collected 127 soundings composed 
of 512 samples of 12 bit accuracy per second. The length of each trace was 12 ns. To 
compensate for the ground attenuation and signal spreading the data was taken using the 
dynamic gain slope of 20 dB. In the process of measurement the antenna was suspended 
from a track along which it was driven by a stepper motor at constant velocity. More 
information about the measurement process and conditions can be found in [3]. 

The proposed technique worked well and was found promising for detecting weak tar- 
gets. One such example is shown in Figure 2. Figure 2 (a) shows the original GPR 
plot that contains two targets, the surrogate landmine ST-AP(l) [7] and a PVC cylinder, 
buried in dry sand at the depth of approximately 1 cm.  The dimensions of the targets 
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axe: ST-AP(l): diameter 5.2 cm and height 4.2 cm; PVC cylinder: diameter of 10 cm and 
height 5 cm. The target-return component of the GPR signal estimated by the proposed 
algorithm is shown in Figure 2 (b). 

Since the individual GPR traces were oversampled in the process of measurement, 
each of them was decimated by factor 2 prior to the processing. The parameters of the 
algorithm used to obtain the results in Figure 2 were: the width of the horizontal strips 
of GPR data processed by one Kaiman filter m = 32 and the number of such horizontal 
strips P = 8. The significance level for the x2 test was a = 10~5. Other parameters used 
in the detection procedure were K0 = 1, K\ = 5 and KT = 5, and for the background 
adaptation r?i = 0.99, r)2L = 0.4, r]2H = 5a. For all P = 8 trace sections the variances of the 
components of the measurement noise vectors wp were identical and equal to aw which was 
estimated off line, similarly as the variances of the components of the process noise vectors 
in (6). Since the intention was to detect shallowly buried targets, the target detection 
using x2 hypothesis testing was performed only for the top 6 horizontal data strips where 
the specular return from the targets was expected to be maximum. The more accurate 
detection results were obtained for the larger values of the parameter m. The drawback 
was that the computational complexity increased with the size of the matrices used in 
the algorithm. In our experiments m = 32 has been found to enable very accurate target 
detection with the acceptable computational complexity. The program is implemented 
using Matlab Numeric Computation and Visualisation Software and is listed in Appendix 
A. The flow chart of the algorithm is shown in Figure 3. 

Figure 4 (a) shows a row from the data in Figure 2 (a), which represents the signal 
recorded at one particular depth and at consecutive spatial positions (solid line). The 
corresponding background signal estimated using the Kaiman filter-based approach is also 
shown (dashed line). Figure 4 (b) shows the estimated target signal. The augmented state 
model was activated over the sections of the signal between the vertical lines, as indicated 
in the figure. It can be seen that the background follows the received signal at the spatial 
positions where the target signal is zero, that is, when the quiescent state model is used. 
At the spatial positions where the target signal is present, i.e., when the augmented state 
model is active, the background signal stays at the level estimated before the detection. 

For comparison, Figure 5 shows the data in Figure 2 (a) processed by background 
subtraction, where the background signal b(n) is estimated as the mean of the entire data 
ensemble in Figure 2 (a) (i.e., b(n) = YJk=Q Uk(n), n = 0,l,...,N, and M is the overall 
number of traces in the ensemble) and subtracted from each trace in the ensemble. In 
Figure 5 it can be seen that, using this approach, not all clutter has been removed from 
the data. 

6    Conclusions and Future Work 

The signatures of shallowly buried targets measured using Ground Penetrating Radar 
are usually obscured by the return from the air-soil interface. In this report a Kaiman 
filter-based approach has been used to obtain the estimate of this background signal and 
to separate it from the target return. In the absence of the target the filter operates 
using a quiescent state model in which it computes the background estimate. When the 
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target is detected, new state components are added to allow for the change of the signal 
corresponding to the target return. The augmented state model is used until it reverts to 
the quiescent model by another decision. 

The magnitude of the background signal at one particular depth, and for incrementally 
updated spatial positions, was modelled as a random walk. The noisy measurements of 
the background signal were represented using a state space form and a set of Kaiman 
filters was used to obtain the recursive state estimation. At the spatial positions where a 
target was detected the new state component modelled as the stochastic bias was added. 
This component was used to compute the estimate of the unknown target signal. 

To detect the changes in the signal that are related to the presence of the target a 
statistic based on the measurement innovation is used in conjunction with an appropriate 
statistical hypothesis testing procedure. 

The proposed algorithm was tested using the data containing several minelike targets 
and have shown promise for processing GPR data with weak shallow target responses. 

The future work will involve using a more elaborate Multiple Model (MM) Kaiman 
filter approach [1]. The assumption of the MM method is that the signal obeys either of the 
two possible models (i.e., either the target return is present in the signal or not, similarly 
as described in this report). It computes the probability that each of the models is active at 
one particular spatial position using a Bayesian approach and can incorporate Markovian 
assumption. It is expected that more accurate estimation of both the background and 
the target signal can be obtained using this method. It will also include extending the 
approach presented in [4]. 
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Figure 1: Thresholds e\, e2l/, t%H and %m,a and the corresponding settings of the scaling 
factors (f>p(k). Function /^ is a x2 probability density function. 
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Figure 2: (a) The original GPR data with the surrogate landmine ST-AP(l) (left) and 
the PVC cylinder (right) buried in dry sand at the depth of 1 cm; (b) the target-return 
component of the GPR signal estimated by the proposed algorithm. The positions of the 
targets are indicated. 
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Figure 3: Flow chart of the algorithm. 
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Figure 4-' (a) A row from the data plot in Figure 2 (a) which represents the signal recorded 
at one depth and at consecutive spatial positions (solid line) and the corresponding back- 
ground signal estimated using the proposed algorithm (dashed line); (b) the estimated target 
signal. The augmented state model was active at spatial positions as indicated. 
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Figure 5: Background-subtracted data in Figure 2 (a), where the background signal is 
estimated as the mean of the entire ensemble of GPR signals and subtracted from each 
signal in the ensemble. 
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Appendix A 

Program Listing 

************************************************************************** 

Function:  [M,Ml,Bl]=smooth_rw8(D,dim); 

This function applies Kaiman filtering based on the variable 
state dimension method as expalined in thie report. 

Input:    D two-dimensional plot of GPR data 
dim - width of data strips processed by one Kaman filter 

Output:    M - estimated background signal 
Ml - estimated target signal 
Bl - estimated bias 

Author:    Dragana Carevic 
Surveillance Systems Division, DSTO 

Date:     18/11/1998 

************************************************************************** 

function [M,Ml,Bl]=smooth_rw8(D,dim); 

7, Filter out the low-pass component of the signal 
qmf=MakeONFilter('Coiflet',1); 
[X,Y]=size(D);N=4;k=l; step=4; 
'/,disp([' Step = ',num2str(step)]); 

for i = l:step:Y-step+l 
d=D(:,i); 
d=decimate(d,2,'fir'); 
7,d = DownDyadLo(d',qmf)'; 
wave_coef = FWT_PO(d,N,qmf); 
wave_coef (1:(2~N)) = zeros(size(wave_coef (1:(2~N)))); 
dfilt(:,k)= IWT_PO(wave_coef,N,qmf); 
k=k+l; 

end; 
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numChsqAverage = 1; 
chisqPrev = zeros(1,numChsqAverage); 
anythingDetected = 0; numLess = 0; 

Detection = 0; Thres = -5; 
detected=0; detectedRequired=5; 
LookAhead = 60; 7, distance to be looked at in detection 
Num = ceil(LookAhead/step) - 1; 
NumDetectedTraces = 0; NumBkgTraces = 0; 

PrevDetection = 1; 

v=40*step; '/. std of the measurement noise (cov matrix R) 
w0=20*step; '/. std of the process noise (for the background) (cov matrix Q) 

[XF,YF]=size(dfilt); 

m = fix(XF/dim); 7. number of strips to be processed 
Z = zeros (dim, dim); '/, zero matrix of size dim x dim 
II = eye (dim); 7. identity matrix of size dim x dim 

H = eye(dim); 
A = eye(dim); 
R = v.~2*eye(dim); 7. measurement covariance matrix dim*dim 

for i = l:m 
Q(i,:,:) = w0.~2*eye(dim); 7. process covariance matrix dim*dim 

P(i,:,:) = zeros(dim,dim);7.eye(dim)*5000~2; 
7, initialize error covariance matrices for m strips 
7, of dimensions m x dim x dim 

K(i,:,:) = zeros(dim,dim); 
7, initialize gain matrix for m strips m x dim x dim 

end; 

M(:,i) = dfilt(:,l); 
7, initialize vectors M(:,i) to values defined in dfilt(:,l) 
7, M corresponds to the background 

M1(1:XF,1) = zeros(XF,l); 
7, initialize vectors Ml(:,i) to zero 
7, Ml corresponds to the signal 

B1(1:XF,1) = zeros(XF.l); 
7, initialize vector Bl(:,l) to zero. 
7, Bl corresponds to the signal 

j = 2; 
while j < YF-1 

PrevDetectionInThisTrace=0; 
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disp([' Trace = ',num2str(j)]); 
disp([' NumDetectedTraces = ',num2str(NumDetectedTraces)]); 
disp([' NumBkgTraces = ',num2str(NumBkgTraces)]); 
disp([' PrevDetection = ',num2str(PrevDetection)]); 
disp(C PrevDetectionlnThisTrace = ',num2str(PrevDetectionInThisTrace)3); 

if Detection == 0 

NumBkgTraces = NumBkgTraces +1; 
if NumBkgTraces > 200/step 

PrevDetection=0; 
end; 

for i = l:m      */, for the m-th strip at column j 

s=CM(dim*(i-l)+l:dim*i,j-l),],; 
7. this is previous state vector 
*/. based on which we are making 
'I,  current state prediction 

'/. PREDICTION 
sp = A*s; '/,  this is current state prediction 
PP(:,:)-P(i,:,:); QQ (:,:) = Q(i,:,:); 
PP=A*PP*A'+ QQ; */, prediction error covariance matrix 
mp = H*sp; */, measurement prediction 
S = H*PP*H'+R; '/, measurement prediction covariance matrix 

•/. CHI SQUARED TEST FOR TARGET DETECTION 
for 1 = 1:1 

error = dfilt(dim*(i-l)+l:dim*i,j+l) - mp; 
'/, measurement prediction error 

chisq = error'*inv(S)*error; 
for wtq=l:numChsqAverage-l 
chisqPrev(wtq)=chisqPrev(wtq+l); 

end; 
chisqPrev(numChsqAverage)=chisq; 
chisq=sum(chisqPrev); 

y, chi-square variable of dim degrees of freedom 
*/, mean previously computed numChsqAverage values 

Prob(i,j)=l-chi2cdf(chisq,dim*numChsqAverage) ; 
•/,disp(['Meras. innovation : Prob = ' ,num2str((Prob(i, j)))]); 

if j>fix(200/step) ft (Prob(i.j)) <= 10~Thres & i< m/2 ft ... 
PrevDetection == 0 ft PrevDetectionlnThisTrace == 0 
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disp(CDETECTION at strip = ',num2str(i)]); 
disp(['Prob =  ',num2str((Prob(i,j)))]); 

if detected "= 0 & detectedTrace(detected) == j 
break; 

end; 

anythingDetected = 1; 
PrevDetectionlnThisTrace = 1; 

if detected==0 
'/, if this is first detected trace 
*/, initialize new detection 

detectedTrace(i)=j; 

detected = 1; 

else 7, check if there are previous consecutive traces 

if detectedTrace(detected)+1 ~= j 
'/, if not, reset variable detected to zero 

detected = 1; 
detectedTrace(l)=j; 7. initialize new detection 

else 7. if the traces are consequtive increment 
7, variable detected and check if there is 
7, detectedRequired number of them 

detected = detected +1; 
detectedTrace(detected)=j; 

end; 
end; 

if detected == detectedRequired 
Detection =1; 
DetectionTrace=j-i; 
j=j-(detectedRequired+9+2*numChsqAverage); 

end; 

disp(['detected = ',num2str(detected)]); 

7, If detection occur switch to other (compund) model 
7, In particular break out of this loop and use j-l-th 
7, estimate as the initial value for the new model 

break; 
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end; 
end; 

if Detection == 1 break; end; 

•/. MEASUREMENT UPDATE 
K = PP*H'/(H*PP*H'+R); 

s = sp + K*(dfilt(dim*(i-l)+l:dim*i,j) " H*sp); 
*/, update state vector 

P(i,:,:) = PP - K*H*PP; 
7, update error covariance matrix for i-th strip 

M(dim*(i-l)+l:dim*i,j)=s(l:dim); 
'/, move current m vector to matrix M(:,i) 

Ml(dim*(i-l)+l:dim*i,j)=zeros(dim,l); 
Bl(dim*(i-l)+l:dim*i,j)=zeros(dim,l); 

'/,  since no detection occured, Bl and Ml are zero 

'/. BACKGROUND ADAPTATION 
if min(Prob(i,j)) > 0.99 & anythingDetected == 0 

QQ = 0.98 *QQ; 
end; 

if min(Prob(i,j)) < 0.4 ft anythingDetected == 0 & ... 

min(Prob(i,j)) >  5*10~Thres 

numLess = numLess +1; 
if numLess >= 1 

qq = 1.02 * qq; 
end; 

else numLess =0; 
Q(i,:,:)-QQ; 

end; 

anythingDetected = 0; 

if Detection == 0 

j-j+i ; 
end; 
end '/,  if Detection == 0 

if Detection == 1 

if PrevDetection == 0 

*/, Initialisation of parameters for compond model 
wl = (70/5)*step; 
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III = eye(3*dim); 
I = eye(dim); 
HI = [I I Z] ; 
Al = [I Z Z; Z I I; Z Z 13; 
Ql = [Z Z Z;Z Z Z; Z Z wl"2*I]; 

*/, Initialise new values for PI and Kl 
7, Use old values P and K for the background 

for i = 1 :m 

PP(:,:)-P(i,:,0; 
Pl(i,:,:) = [PP Z Z;Z Z Z;Z Z Z]; 

end; 
PrevDetection = 1; 

end; 7. if PrevDetection == 0 

NumDetectedTraces = NumDetectedTraces +1; 

for i = l:m 

si = [M(dim*(i-l)+l:dim*i,j-l)' Ml(dim*(i-i)+l:dim*i,j-1)' ... 
Bl(dim*(i-l)+l:dim*i,j-1)']'; 

'/. PREDICTION STEP 
spl = Al*si; 

PPl(:,:)-Pl(i,:,:);' 
PP1 = A1*PP1*A1'+Q1; 

7, MEASUREMENT UPDATE 
Kl = PP1*H1'/(H1*PP1*H1'+R); 

si = spl + Kl*(dfilt(dim*(i-l)+l:dim*i,j) " Hl*spl); 
7. update state vector 

Pl(i,:,:) = PP1 - K1*H1*PP1; 
'/, update error covariance matrix for the i-th strip 

M(dim*(i-l)+l:dim*i,j) = si(1:dim); 
Ml(dim*(i-l)+l:dim*i,j) = sl(dim+l:2*dim); 
Bl(dim*(i-l)+l:dim*i,j) = sl(2*dim+l:3*dim); 

end; 7. for i=l:m 

ProbO.j^ProM^O); 

j-j+i; 

if NumDetectedTraces > 300/step 

detected  = 0; 
Detection = 0; 
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NumBkgTraces = 0; 
NumDetectedTraces =0; 

end; 
end; 7, if Detection == 1 

end; 
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