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INTRODUCTION 

Benet Laboratories has the responsibility for safe fatigue life (durability) testing of 
cannon system components. This safe service life evaluation is accomplished by conducting 
constant amplitude fatigue testing in a laboratory setting. One such cannon component that 
requires testing is the gun tube. After each tube has received the required number of live fire 
rounds necessary to generate initial crack damage at the bore surface as a result of propellant 
temperature, chemistry, and other contributors (also known as heat-check cracking), it is brought 
to the laboratory for final hydraulic fatigue testing. International Test Operating Procedure 
ITOP-3-2-829 (ref 1) dictates armament durability testing and requires that a minimum of six 
tubes be tested to failure to establish a Final Safe Fatigue Life (FSFL). This report describes the 
testing conducted in determining the FSFL of the 155-mm XM776 cannon tube. Because the 
XM776 cannon tube closely approximates the geometric and mechanical features of the 155-mm 
M284 cannon tube, only two XM776 tubes were tested. Then the data were combined with prior 
M284 data to establish an FSFL for the XM776 cannon tube. 

TEST SPECIMEN DESCRIPTION 

A sample size of two prototype 155-mm M776 gun tubes was hydraulically fatigue tested 
to failure at Benet Laboratories to assist in determining the FSFL for the weapon. The subject 
tubes were serial numbers (S/N) 001 and 003. The two tubes were manufactured by Watervliet 
Arsenal and sent to Yuma Proving Ground for initial test firing before being returned to Benet 
Laboratories for hydraulic fatigue testing. The loading history for each tube is listed in Table 1. 

Upon arrival at Benet, a number of test samples were taken from the tubes to verify if 
enough live fire rounds had been applied. A minimum number of live fire rounds are necessary 
to generate the required pretest crack damage at the bore surface. With enough conditioning, 
ample crack depth can be generated where further crack growth becomes a stress-dominated 
phenomenon easily replicated in a laboratory setting. Additional exposure to the firing 
environment (heat, propellant gases and by-products, etc.) does not provide further contribution 
to crack growth at this point. It is important to understand that ample prefatigue conditioning is 
essential for laboratory cycling to be an effective method in determining safe fatigue life. It is 
from the small cracks generated during prefatigue conditioning that inside diameter failures 
typically originate. 

Figure 1 illustrates a macroscopic view of a typical bore surface after sufficient live fire 
rounds have been applied for the commencement of laboratory cycling. The heat-checking, or 
"dry lake bed" appearance, is apparent. Figure 2 is a transverse section of Figure 1 showing the 
uniform array of heat checks and the fatigue cracks that grow from heat checks. The heat 
checking in this photograph ranges from 0.010-inch to 0.020-inch. Figure 3 is a high 
magnification micrograph of Figure 2. Once again, a fatigue crack emanating from a heat-check 
location is apparent. Finally, Figure 4 shows how a heat-check crack has initiated a fatigue crack 
that has penetrated through the chromium plate and into the base metal causing chromium loss 
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and substrate melting. With acceptable bore damage developed during prelaboratory live firing 
laboratory fatigue testing has proven to be equivalent to test firing in propagating this initial' 
damage to failure. 

Test specimens were chosen from each tube based on the highest internal pressure as 
well as geometric configurations that pose any fatigue concern. As a result, two specimens from 
each tube were tested. The first, or breech end, specimen from each tube was comprised of the 
first 52 inches of that tube. The second, or keyway, specimen from each tube was 34 50 inches 
in length and was cut from the 64.50-inch location (as measured from the rear face of the tube) 
forward. This section was chosen because of a longitudinal notch configuration cut on the 
outside diameter of the barrel. Figure 5 illustrates the cutting plan for the tube and clearly shows 
where the test specimens were taken. The breech end test specimen and the keyway test 
specimen are detailed in Figures 6 and 7, respectively. Mechanical property and chemical 
composition data were gathered, in addition to cycles-to-failure data described below 
Mechanical and fracture properties were evaluated in the tubes adjacent to the fatigue specimen 
to validate material conformity. Table 2 lists the tensile test results, while Table 3 lists the 
fracture toughness and Charpy energy test results. Table 4 provides the residual stress state for 
the tubes tested, and Table 5 lists the chemical composition of the two tubes. 

Once the test specimens were cut to length, sealing pockets were machined into each end 
to accommodate an aluminum/polymer sealing assembly during testing. 

TEST PROCEDURE AND EQUIPMENT 

Constant amplitude fatigue testing was conducted on each test section. The breech end 
specimens were cyclically pressurized from a minimum pressure of 4,800 psi to a peak pressure 
of 58,800 psi (stress ratio, R = 0.082). The notched keyway sections were tested from a 
minimum pressure of 4,800 psi to a peak pressure of 49,240 psi (stress ratio, R = 0.097). These 
peak pressures are also known as the extreme service condition pressures (ESCP) (ref 1) They 
represent the highest pressure developed in these sections of the gun tube while firing the top 
zone charge under the most severe conditions for which the system is designed The full 
definition of ESCP is listed in the NATO Standardization Agreement (STANAG 4110) (ref 2) 
All tests were conducted in the open-ended condition. 

Historically, three methods of sealing closure support can be used during the fatigue 
testing of cannon tubes, namely, the mandrel support method, load-frame support method or a 
hybrid mandrel-press support method. The subject tests were conducted using the load-frame 
support method. This approach uses full cross-section end closures equipped with 
aluminum/polymer sealing assemblies at each end of the test specimen. In turn, the sealing 
assemblies were held in place during pressurization by placing the entire test assembly into a 
large press. The large press prevented the sealing assemblies from exiting the tube section during 
pressurization. These sealing assemblies consisted of a rubber O-ring, a Buna N (90 durometer) 
back-up ring, and an aluminum wedge ring in each sealing pocket. The rubber O-ring served as 



the initial low-pressure seal and, as the internal pressure was increased, forced the wedge ring 
against the sealing pocket of the tube. The combination of a well-machined sealing pocket and a 
snug-fitting wedge ring did not allow the rubber O-ring to extrude past the sealing closure, thus 
producing an acceptable high-pressure seal. High-pressure fluid was pumped into the test 
specimen through a small porthole in the upper closure. Figure 8 is a photograph of the test setup 
including the forward XM776 test section. 

A pressure intensifier plumbed to the test specimen pressurized the test fluid within the 
specimen. This intensifier is a hydraulic actuator with an upper and lower piston head. The 20- 
inch diameter lower piston is acted upon by standard hydraulic oil pressurized to 3,000 psi. The 
reduction to the smaller 3-inch diameter upper piston causes intensification in pressure based on 
the ratio of areas. With respect to fluid compressibility and specimen volume, pressures as high 
as 120,000 psi can be obtained. The intensifier is capable of displacing approximately 92 cubic 
inches per stroke although much less displacement was required for our test. The high-pressure 
fluid used during this test was low viscosity synthetic oil capable of sustaining pressure of 
approximately 135,000 psi without solidifying. A Precise Corporation pressure transducer 
connected to a digital indicator monitored pressure. The transducer has an accuracy of ±0.5 
percent at 100 Ksi. A bulk modulus-operated automatic controller controlled pressure. A 
specimen-mounted strain gauge was also in place to record strain throughout the test. 

Inspections were conducted prior to and during testing by employing nondestructive 
testing techniques to measure crack growth, as well as material defects and flaws. Cracks 
growing from the bore were measured by ultrasonic inspection. A level II certified inspector 
using Krautkramer USIP-11 flaw detectors and 5 to 15 MHz probes carried out this inspection. 
Cracks growing from the outside surface of the tube were identified using magnetic particle 
inspection. Upon failure each specimen was cut, split, and photographed to reveal the fracture 
surface. 

RESULTS 

Table 6 lists results from the two-sample fatigue life test. As the table demonstrates, the 
weakest portion of the tubes consisted of the breech end specimens with failure cracks emanating 
from the bore in the charge-notch region of both tubes. Tube S/N 003 failed in a ductile mode 
with steady crack growth, while Tube S/N 001 experienced an unexpected running crack 
emanating from the charge notch and continuing to the breech face of the tube. There was no 
material fragmentation associated with any of the failures. The keyway sections failed from a 
through-wall crack emanating from the bore and growing to the outside diameter surface at a 
location approximately 92 inches from the rear face of both tubes. 

Figures 9 and 10 show failure locations of the two breech end test sections. Figures 11 
and 12 show an enlarged view of the breech end test sections and the failure location. The 
fracture surface for each breech end test section is shown in Figures 13 and 14. Figures 15 and 
16 illustrate the two keyway test sections with the failure location noted.   Figures 17 and 18 



illustrate an enlarged view of the keyway test sections with the failure location noted    The 
fracture surface for each keyway test section is shown in Figures 19 and 20. 

It is noteworthy to mention that the -40°F Charpy impact energy and the fracture 
toughness values for these tubes are at the lower end of the acceptable range. These values do 
not correlate with any accuracy to the upper-shelf correlation of Barsom and Rolfe (ref 3) since 
this correlation is based on different types of steel. These low Charpy and fracture toughness 
values are considered to cause the unstable, running crack failure mode of tube S/N 001. 

FINAL SAFE FATIGUE LIFE DETERMINATION 

The overall fatigue life of each tube is the sum of the laboratory fatigue cycles and anv 
rounds fired at ESCP conditions (Table 6).   Rounds fired below ESCP conditions are not 

I™ ™ ?e FSFL calculations- The rroP Prides the procedures used in establishing the 
FSFL. When determining the mechanical final safe fatigue life (as opposed to wear life), the 
HOP requires the use of a two-parameter lognormal distribution method (ref 4) Statistical 
procedures for the lognormal distribution are derived from procedures for the normal 
distribution. In particular, if we have laboratory fatigue failures *,,..., *„, then the mean and the 
standard deviation of the logarithms are calculated as follows: 

yi = In xtfor i = 1,..., N 

mean, m = (1/N) x (yi + ... + yN) 

standard deviation, s = [(1/N -1) x [(yi - mf + ... + (yN - mf]]m 

With the mean and the standard deviation of the logarithms known, the FSFL can be 
calculated using the following formula: 

mechanical safe service life = exp[m - Ks] 

!her!^iS a tolerance factor <ref 4) dependent only on confidence, reliability, and sample size, 
lne nOP suggests tolerance factors based on 90 percent confidence and 0.999 reliability 
Because the XM776 cannon tube closely approximates the geometric and mechanical features of 

itT ^ Cann°n mbe' °nly tW0 XM776 mbes were tested and the data combined with 
prior M284 data to establish a fatigue life for the XM776 cannon tube. The Special Projects 
Branch of Benet Laboratories has the responsibility for making the service life calculation and 
considers the XM776 data to be basically of the same statistical population as the M284 data 
with the exception of the "mu" parameter (per Appendix C of ITOP 3-2-829) Even so it can be 
sad with 90percent confidence that the fatigue life for the XM776 cannon tube is no less than 
3W effective full charges This satisfies the XM776 design requirement of exceeding the 

vw TT ™™'65° effeCtlVe m ChargeS (M203A1 charSe)- Determination of the exact 

A TOP Cann0n tobe WU1 inVOlVe ±G teSting °f f°Ur additional mbes a* re<luired by 
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TABLES 

Table 1. Pretest Loading Histories 

Zone M230/3 3W 7 7W 8S Proof No. of 
Records 

Total 
Rounds 

Total 
EFC* 

S/N001 0 3 0 12 424 1 72 512 498 
S/N 003 23 0 3 33 489 1 0 549 500 

* Effective Full Charg es ■-* 

Table 2. Tensile Test Results 

Tube 
S/N 

0.2% Yield 
Strength 

(Ksi) 

0.1% Yield 
Strength 

(Ksi) 

Ultimate 
Strength 

(Ksi) 

Elongation 

(%) 

Elastic 
Modulus 
(Mpsi) 

Reduction 
in Area 

(%) 

001 178.6 176.4 190.1 12.8 29.3 37.5 
003 177.2 174.7 188.7 12.3 29.3 34.5 

Table 3. Fracture Toughness and Charpy Energy Test Results 

Tube 
S/N 

Fracture Toughness 

Kii (RT*) (KsiVin.) 
-40°F Charpy Energy 

(ft-lbs) 

001 117,117,120 15,15,18 

003 108,112,124 15,16,16 
* Room Temperature 



Table 4. Residual Stress Test Results 

Tube 
S/N 

Measured Overstrain 
(%) 

001 73.3 

003 75.8 

Table 5. Chemical Composition Test Results 
(Weight Percent) 

Tube 

S/N 

Ni Cr Mo V Mn Si Cu P S c 

001 1.759 0.856 0.435 0.117 0.537 0.227 0.096 0.007 0.004 0.320 

003 1.810 0.879 0.430 0.120 0.564 0.252 0.102 0.007 0.009 0.339 

Table 6. Laboratory Fatigue Test Results 

Tube 
S/N 

Test 

Section 

ESCP 

Rounds 

Laboratory 

Cycles 

Total Cycles- 

to-Failure 

Failure 

Location 

001 Breech End 450 7,648 8,098 Charge Notch 

Keyway 450 18,030 18,480 92"RFT @ 6:00 

003 Breech End 443 7,194 7,637 Charge Notch 

Keyway 443 17,457 17,900 92"RFT@6:00 



Figure 1. Magnified view of heat checking on the bore surface of a rifled 155- mm cannon tube. 

Figure 2. Transverse view of heat-check damage and resulting fatigue cracking. 



Figure 3. Penetration of cracks through chromium plating and into tube substrate. 

Figure 4. Continued fatigue crack growth plus substrate melting and chromium loss. 
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Figure 8. Typical fatigue test setup. 

Figure 9. XM776 S/N 001 breech end failure site. 
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Figure 10. XM776 S/N 003 breech end failure site. 

Figure 11. XM776 S/N 001 breech end failure site (enlarged view). 
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Figure 12. XM776 S/N 003 breech end failure site (enlarged view). 
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Figure 13. XM776 S/N 001 breech end fracture surface. 
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Figure 14. XM776 S/N 003 breech end fracture surface. 

Figure 15. XM776 S/N 001 keyway failure site. 
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Figure 16. XM776 S/N 003 keyway failure site. 

Figure 17. XM776 S/N 001 keyway failure site (enlarged view). 
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Figure 18. XM776 S/N 003 keyway failure site (enlarged view). 

Figure 19. XM776 S/N 001 keyway fracture surface. 
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Figure 20. XM776 S/N 003 keyway fracture surface. 
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