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Servicing Impatient Tasks 
that have Uncertain Outcomes 

D. P. Gaver 

P. A. Jacobs 

Abstract 
Many service systems confront tasks of uncertain identity, with limited 

time for service; that is, the uncertain tasks have deadlines, or are 
behaviorally impatient. Examples occur in medical care (especially 
emergencies), telephone help systems, and in military operations. This 
paper presents modifications of the M/G/l system to illustrate the impact 
of the above features. Imperfect task classification is modeled, as is 
imperfect service and error-afflicted assessment: tasks can be processed, 

and reprocessed, either correctly or incorrectly depending upon 

classification, performance, and performance assessment skills. The 

impact of exponential deadlines, either behavioral or server-controlled, is 
represented using both a modification of the Takacs-Benes integro- 
differential equation, and a simple and accurate fixed-point approximation. 

1. Background 

Many service situations are characterized by currently unmodeled uncertainties at 

least as influential as those identified with the usual stochastic arrival and service 

processes. Additional and important uncertainty sources or components include the true 

identity or nature of the task, hence the "optimal", or at least satisfactory, mode of its 

service (in the light of resources available and the other tasks on hand or anticipated). 

Further complications occur if the task has a deadline: is impatient or perishable, i.e. has 

an unknown life or time available for useful service: e.g. telephone callers placed on hold 



(prone to hang up or abandon an attempt), medical emergency patients (who may die), 

mobile military targets (that tend to move, or possibly fire first), and many others. 

These questions naturally arise: once a service is performed, is it "complete", or 

should additional service work, possibly of a different kind, be performed? And what 

fraction of time-sensitive perishable or deadline-afflicted tasks actually finish service? 

Such issues arise because the initial classification of tasks is realistically uncertain, as is 

the degree of task accomplishment. Post-service assessment is, also realistically, error- 

prone, which can sometimes lead to premature release of an incompletely served task, 

with costly legacy, or to the needless expenditure of extra time and resources to 

"complete" a task already completed. We call the above generic uncertain service 

situations, and study several of their features. Important practical issues are to discover 

system performance sensitivities, such as which additional uncertainty-reduction 

capabilities are likely to be most cost-effective. 

As emphasized above, uncertain service situations arise in many contexts. Examples 

are medical emergencies, e.g. those that arise from terrorist attacks or natural hazards, 

such as hurricanes, floods, or earthquakes; forest-fire fighting; engineering and 

operational problems with new computer software and hardware; and in military 

operations, e.g. on the battlefield, where "service" means actual or potential destruction 

or deterrence of opponent assets or troops, but may also involve inadvertent server 

deception, fratricide, collateral damage, and injury to non-combatants. Avoidance of 

these latter limits service options. 

In this report the deadlines, or impatience, that characterize our tasks are described 

probabilistically: the server only knows the distribution of deadline elapse and task 

disappearance, not individual durations. There is a large literature on task scheduling in 

the face of hard, known, deadlines; cf. Liu and Layland (1973), Jiang, Lewis, and Colin 

(1996), and others. More recently, stochastic scheduling of queued tasks with deadlines 



that are subjected to particular queue disciplines are studied; cf. Lehoczky (1996, 1997a, 

1997b), and Doytchinov, Lehoczky and Shreve (1998). The latter problems come from 

situations for which it is natural to know the deadline; our examples are otherwise. 

Imperfect service (repair) has also been studied by Brown and Proschan (1983), but not in 

a congested setting. Quite possibly there is related work by others that is unknown to us. 

A specialized and more intricate deterministic version of our problem is described in 

Gaver and Jacobs (1999). Software illustrating that model is available from the authors. 

2. Analytical Setting 

The purpose of this paper is to explore and expose operating characteristics of a 

simplified totally stochastic version of the above setup. The mathematical-probability 

theory of a single-server queue, cf. Cox and Smith (1961), Kleinrock (1976), and many 

others, is adapted to study an uncertain service situation in which deterioration of task 

value also occurs (deadlines are missed, patients die, military targets move). 

Our basic model utilizes a first-in, first-out (FIFO) basic queue discipline for several 

reasons. Simplicity is first among these: understanding how to establish priorities in the 

face of the other uncertainties faced is difficult, and is postponed. Real-time maintenance 

of priority or other control is also time-consuming, so the time cost of control should be 

included; see the model of Appendix C for a start. Alternatively, one can view the present 

model as being that for a service system that experiences triaged traffic from an initial 

screener. Disciplines other than FIFO are ignored at this level. We do plan to attack the 

uncertain service problem in a more general control environment in future. 

3. Model Formulation 

A task of type j is classified as being of type k with probability cjk; to be interesting, 

CJJ<\, meaning that task misclassification may occur, perhaps with appreciable 

probability. A model input is the classification matrix c. The (possibly misclassified) task 



is then prosecuted with probability of success mJk; this probability depends on treatment 

choice; let mjk = 1 - mjk be the probability of failure. A model input is success probability 

matrix, m. Assessment (service outcome inspection) is next conducted; if the task has 

been completed/carried out successfully this fact is ascertained correctly (verified) with 

probability bJk; if the task has been completed successfully it is incorrectly reported as not 

complete, hence is a candidate for needless repetition with probability 1 - bjk = bjk. If the 

task is not completed successfully it is correctly reported as non-successful with 

probability b*jk, and incorrectly reported as successful with probability b]k =\-b)k. All of 

these parameters can be made functions of other variables: for example, patient condition 

such as age or auxiliary measures and symptoms in medical diagnosis, or such as range, 

atmospheric conditions, terrain, deception tactics in military command and control. We 

treat them as constants for the present. Thus further model inputs are the post-service 

assessment matrices b and b*. The actual time spent servicing the task, which depends 

upon the classified state, is subject to the decision maker's influence (e.g. it may be 

truncated); it too is a decision variable. 

In general, there may be a number of attempts made to complete a task, and to 

confirm that completeness. Depending on the classification (c), the probability of success 

and task completion (m), and assessment (b, b*) skills of the service facility, the system 

will either provide good and timely service, or not live up to its promise. In various cases, 

the reason for performance degradation may well depend dominantly upon timely 

information available concerning the task and its accomplishment, and less on the actual 

or true probability of task prosecution success. In all real situations the required 

information and capabilities are only available at a cost. It is the purpose of this study to 

illustrate the nature of the various possible cost tradeoffs. The models proposed are a 

beginning, but ultimately a means to that end. 



4. Stochastic Model 

Arrivals appear at a service facility according to a Poisson (Ä) process. The 

probability that an arrival is oftypey is p} (j = 1,2,..., J) independently from task to task. 

Let Sk denote the processing time initially allotted to a task classified as of type k, an 

assigned service time. Note that this is not necessarily (or even frequently, in the present 

context) the time to successfully service an item of true typey, especially one different 

from typey. We use Sk to represent the time to carry out a particular process that it has 

been selected to apply, distinguishing this from the probability of process success, mjk, or 

mjk{Sk) if desired. As suggested, Sk may have a decision component, i.e. be subject to a 

decision maker's choice. 

4.1 Individual Server Occupancy Times (ISOT) 

Suppose a task of type j presents itself to a servicing facility. In what follows we 

characterize its continuous occupancy of the servicing facility, e.g. a diagnostic and 

treatment sojourn with a medical facility, or as the current target of a generic shooter in a 

military context. The task may actually complete long before the generalized server 

recognizes that fact; on the other hand, the generalized server (server plus reassessment 

asset) may act, and prematurely and incorrectly decide that the task is complete. Some 

"completed" tasks are thus released in misdiagnosed and dangerous condition, either to 

themselves (medicine) or others (military). Our models allow understanding of system 

tradeoffs that control the probability of such happenings. 

4.2 Random Reclassification after Each Assessment 

Suppose the system is arranged so that reclassification occurs independently and 

"with replacement" immediately after each assessment that declares an unsuccessful 

service attempt. If the assessment declares success a new task begins. This is just one 

simple option; see Appendix C, which proposes a decision rule that may reclassify if the 



task service is perceived to be incomplete; more sophisticated options are available at a 

price in time. Here is the corresponding model for the individual server occupancy time 

(ISOT) of a task of true/actual typey under random ^classification: 

for/', £=1,2,...,/ 

Sk with probability cjk[mJk(Sk)bjk+mjk(Sk)b*k], 

Sk + C'j       with probability cjkmjk (Sk )b*k; (4.1) 

Sk + Kj       with probability cjkmjk (Sk )bjk; 

Cj = 

Kj represents the random time until a completed task is so identified, the recognition time: 

'Sk with probability cjk -\-bJk 

Kj=\ _ (4.2) 
[Sk + Kj       with probability cjk • 1 • bJk 

Notice that the task accomplishment probability is allowed to depend explicitly on the 

allocated service time, £*, and that the ISOT can terminate with unrecognized incomplete 

task service, i.e. the task may be terminated although incompletely served. The random 

variables C'j and K) above are independent stochastic replicas of C} and Kj. 

4.3 Expectations 

Taking conditional expectations we obtain these expressions for mean ISOT: 

4^]=x^^]+Z^4^(5^K4^]+E^4^(^0]^[^l  (4.3) 

where 

4^]=Ec/^[^]+Zc/^4Ä'vl (4.4) 

which leads to the formula 

4C,]=Z^4^] 
1 + 2 cJkE[mjk (Sk )]bjk / 1 - £ cjkb]k 

M 

k J 

l-^c^M5*)]*)* 
(4.5) 



An expression for the second moment appears in Appendix A. It is very clear from (4.5) 

that degradation of performance can be associated with misclassification and faulty 

assessment. 

4.4 Task Queue 

Tasks appear at the service facility at Poisson rate A. Any task is, independently, of 

type j with probability p} (j = 1,2,..., J), but the type is only known with uncertainty, cjk. 

If tasks are treated according to the first-come, first-served discipline by a single server 

then the system is M/G/l with effective service times 

^[ci=Z^4c,] (4-6) 
j 

hence, traffic intensity 

p=AE[C]. (4.7) 

One measure of the system congestion is then the long-run expected number of enqueued 

tasks (ifp<\): 

4*H=    L
2(1_ )    • (4-8) 

This measure does not reflect the number of tasks that are terminated before service is 

complete. If a goal is to minimize weighted expected waiting time then prioritization in 

accordance with the index wJE[Cj[ is optimal. Here Wj is the desirability weight 

associated with completing class j; task groups are served in order of increasing index. 

This, however, takes no account of the influence of deadlines. When deadlines are an 

important feature of the problem then different measures of system effectiveness are 

needed. 



5. Successful Accomplishment Probability for Tasks with Deadlines 

In a variety of contexts the value of task service, or the probability of successful 

completion, decreases with the delay experienced. This is often true of medical diagnosis 

and treatment, particularly in emergencies, and in military targeting (the object targeted 

may move). Using adaptations of the M/G/l queuing model, cf. Cox and Smith (1961), 

we study tradeoffs among service capabilities in such situations. Queuing models in 

which an arriving customer is lost when it waits more than a fixed time in queue have 

been studied by Boots and Tijms (1999), and Whitt (1999). Note that server-imposed 

deadlines are a control device that may improve certain measures of system performance. 

These are in effect a refusal to provide service; balking has traditionally been a task- 

initiated refusal; see Whitt (1999). Our models address refusals in general. 

5.1 The M/G/l Service System with Ignored Exponential Deadlines 

Express the delay sensitivity or deadline for tasks of type j arriving at the M/G/l 

system above as an exponential random variable with rate 0j. A well-known queuing 

theory result is that the long-run waiting time, W, in an M/G/l system has Laplace- 

Stieltjes transform 

\-p _    1-/7 
E[e-sW] = 

1-/7 
\-E e-scJ\    \-pS(s) (5.1) 

sE[C] 

where the role of service time is played here by the ISOT, C. For an arriving task of typey 

her probability of surviving the wait in queue without deadline elapse is e ' , 

conditional on W, so, unconditionally, the probability of initial wait-survival is 

1-/7 
E[e^w] = 

1-/7 
\-E[e^c\' 

(5.2) 



See Appendices B and C for expressions for E[e~sC]. In the present model all tasks are 

served to completion, regardless of deadline elapse. This may be more reasonable in 

some situations than others; it is changed in a subsequent model. 

By the memoryless/Markov exponential property the typey task survives a subsequent 

completion time, duration Dp that terminates with successful service with probability 

E\e~6jDj]; see Appendix B for the transform of the improper/dishonest random variable 

It follows that the long-run marginal probability that a random task completes service 

satisfactorily is 

j 

P(parameters) = ^pjfy-e>w\ fy-'1*'] 

-2> 

' 

\-p 

\-p 
\\-E[e-0<c]\ 

{ mc\ ) 

(5.3) 

■E[e-W] 

The above analytical expression may be evaluated numerically, and explored for 

parameter dependencies. The results of such investigations appear later. 

Note that the above model does not assume the capability of detecting "dead" or 

deadline-elapsed tasks in the queue or upon entering service. Under many conditions such 

could be refused or purged, thus increasing the chance of successful service for others. 

The above model results thus tend to be pessimistic or conservative from the server 

perspective, but not necessarily unrealistically so: additional capabilities may be needed, 

but unavailable, to monitor enqueued tasks for real-time viability. The next model 

addresses such capability by the server. 



5.2 The M/G/l System with Deadline-Sensitive Delay 

Consider the arrival of tasks with an exponential (0) deadline, and suppose that when 

the task reaches the end of the queue it (the probability) can be determined that the 

deadline will not elapse before reaching the server, given the virtual waiting time, W(t). 

With that probability, the task is accepted into the queue. We first propose the following 

heuristic analyses, but follow up with a more formal treatment in Appendix D. 

Approximation I 

Given the waiting time encountered on generic arrival, W, the effective service (ISOT) 

time is 

C# = 

So, marginally, 

0     with probability 1 - e ■ew 

C     with probability e -ew 

(refused admission, or balks) 

(admitted). 
(5.4) 

E[c#] = E[C}E[e-^] = E[C]¥{0), 

£[e-^] = (l-4e-^]) + 4e-Ä:]-4e-^]. 

(5.5,a) 

(5.5,b) 

Now model the above system as M/G/l with state-dependent (thinned Poisson) arrivals as 

follows: 

Wfy-"] = - \-AE[C*] 

I-AE[C*] 
n-E 

6>E 

-ecr 

c*} 

i-M<?) 

\-py^e) 
i-[i-^)+4g-^]^)]' 

6E\C\y/{6) 

\-[^{0)X\E[C\ 

(5.6) 

l-[y(6>)A]E[C] 
1-4^1 

0E[C\ 

10 



This expression asserts that the probability of successful (deadline unviolated) task arrival 

for service, y^6), is that of an M/G/l system whose arrivals are filtered by the same 

probability in the long run. In effect, each arrival flips a biased coin with success 

probability E[e~0ir] to be permitted to join the queue. The result differs somewhat from 

the solution of the forward Kolmogorov (Takacs-Benes) equation for the same assumed 

arrival-queue interaction; see Appendix D. 

The expression (5.6) is a quadratic in the desired probability, the solution of which is 

m= 1 2 2 (5.7) 

where 

, ,    l-4e-*l 

the transform of the service/completion time tail or survivor distribution. Of course the 

probability of successful transit to the server is unity when 0-> 0 (no degradation, or 

infinite deadline), regardless of the value of p< 1; if #-» oo then, since deadlines are now 

stringent, the only hope of initiating service is to arrive when there is no server activity, 

i.e. with probability 1/(1 +/?), irrespective of (positive) /»-value. Likewise, there are no 

restrictions on p in (5.7): a long queue generates many rejections, and thus does not 

remain long, or grow indefinitely. Numerically, the above simple expressions, (5.7) and 

(5.16), supply a lower bound that has been shown numerically to be a good 

approximation to the exact solution of a refusal model proposed in Appendix D. Note that 

the present approximation gives for the transform of virtual waiting time of non-refused 

tasks, W, the formula 

vm= i-Mfjc] 
l-Ays(0)E[C] 

\-E 

m 
e-*] 

c] 

(5.9) 

11 



where yJ^O) is given by (5.7). This can be modified to represent refusal during service, 

and to provide approximations to the long-run mean waiting time. No numerical 

discussion or comparisons are available at present, although comparison to results from 

(D.12) and (D.13) is of interest. These models can be compared to those of Whitt (1999). 

Approximation II 

A refined version of the above accounts for the different experience of a new task that 

arrives to find the server busy (W> 0), as contrasted to one that arrives to find it idle 

(FF=0).Put 

y+(0) = E[e-m\W>o] (5.10) 

the marginal long-run rate of task acceptance given that the server is busy. From (5.1) 

E[e~'w\W>0] = 

(5.11) 

Approximate as follows (s = 0= 1/mean deadline) 

^ = {l-p^)—^m; (5.12) 

this asserts that the probability that an arriving task that encounters a busy period and 

reaches the service stage is that of an M/G/l system whose busy-period arrivals are 

filtered by the same probability. In other words, an auxiliary randomization (biased coin 

flip) adjusts for the imposition of the deadline, as before in Approximation I, but in a 

somewhat more refined manner. The solution of (5.11) is 

,.M_  2*4  (5,3) 
(i+pt(e))+^(\+pS(0)) -4pt{tf 

For such a {^.-filtered system the expected duration of a busy period, E[B], satisfies 

12 



E[B] = E[C]+py+{0)E[B] 
(5.14) 

= E[c]l(i-PV,+{e)). 

Consequently in the long run (by alternating renewal process results), 

w   ' r+E[B] \+P[\-^(0)\ (5-15) 

Now the probability that an arriving task is admitted (not refused, and eventually served) 

is 

y2{6>) = P{W = O} + (l-P{W = O})¥s+{0) 

1 (5-16) 

which differs from (5.7) owing to the more refined conditioning imposed. 

It will be seen that Approximation II improves on Approximation I in all cases 

considered. 

6. Numerical Exploration 

In this section we display graphs of the effects of the various capability parameters on 

long-run probability of successful service completion. 

For reference, the following parameters are varied 

• A; the Poisson arrival rate of tasks; 

• cJk; (j,k e[l, 2,.. J]): probability of initially classifying a task of type j as being 

typek; 

• mjk, or generally m^S^: probability of success of a service of task type j when 

prosecuted/served as type t, mjk= 1 - mjk is the probability of an unsuccessful 

outcome; 

• bJk: probability of successful/correct assessment as successful treatment of task of 

typej, given it has been successfully prosecuted/served as type kr, 1 - bJk= bjk is 

13 



probability of classifying successful treatment as unsuccessful. In the former case 

the task is discharged correctly as completed; in the latter case it is incorrectly 

re-served. 

• b)k: probability of successful/correct assessment as unsuccessful treatment of a 

task of type j, given unsuccessfully prosecuted/served as task type k. In this case 

the task is reclassified and served again. 

• There are two customer types in our present examples; their basic service times 

are constant (delta-function distributed) with means denoted slt s2: S{ = su S2 = s2 

with probability one. 

6.1 Discussion of the Figures 

In each case investigated, we display the probability of successfully completing 

service: reaching the server through the initial queue and subsequently being successfully 

served before deadline elapse. Three models are compared: ß0= the probability of 

successful completion of service with no task refusals (5.3); ßx = the probability of 

successful completion of service with task refusal depending on the virtual waiting time 

(D.ll); and fa — the probability of successful completion of service with task refusal 

depending on the virtual waiting time and allowed service time, (D.15) and (D.ll). We 

also illustrate the numerical quality of Approximation II in the graphs that follow, and 

compare Approximation I and II in the tables. 

14 



1.00 

Probability of successful task completion 
Probability of correct task completion assessment: b=0.5 b*=0.5 

cii=0.7 m11=0.7 m22=0.7 6=0.1 s1=.5 s2=1 

0.8 1 1.2 

X: Task arrival rate 

- Probability of successful completion of service with refusal depending on the 
virtual waiting time and allowed service time 

♦ - -Approximate probability of successful completion of service with refusal 
depending on the virtual waiting time and allowed service time 

-■— Probability of successful completion of service with refusal depending on the 
virtual waiting time 

»- -Approximate probability of successful completion of service with refusal 
depending on the virtual waiting time 

-*— Probability of successful completion of service for system with no refusal 

Figure 1 

15 



Table for Figure 1 
j 

approx. 
approx. prob, of 
prob, of prob, of success. 

prob, of receiving approx. success. compl. of 
approx. receiving service prob, of comple. of service 
prob, of service with prob, of success. service with 

prob, of receiving with refusal success. comple. of with refusal 
receiving service refusal depending comple. of service refusal depending 
service with depending on virtual service with depending on virtual prob, of 

with refusal on virtual waiting with refusal on virtual waiting success. 
refusal depending waiting time and refusal depending waiting time and comple. of 

depending on virtual time and allowed depending on virtual time and allowed service for 
task on virtual waiting allowed service on virtual waiting allowed service system 

arrival waiting time service time waiting time service time with no 
rate time Approx I/n time Approx I/II time Approx I/II time Approx I/II refusals 
0.2 0.96 0.96/0.96 0.97 0.97/0.97 0.57 0.57/0.57 0.58 0.58/0.58 0.57 
0.4 0.91 0.89/0.90 0.93 0.92/0.92 0.54 0.53/0.54 0.55 0.55/0.55 0.51 
0.6 0.83 0.79/0.81 0.86 0.84/0.85 0.49 0.47/0.48 0.51 0.50/0.51 0.31 
0.8 0.74 0.68/0.70 0.79 0.74/0.76 0.44 0.41/0.42 0.47 0.44/0.45 0.00 
1.0 0.64 0.58/0.60 0.70 0.64/0.66 0.38 0.35/0.36 0.41 0.38/0.39 0.00 
1.2 0.55 0.50/0.52 0.61 0.56/0.58 0.33 0.30/0.31 0.36 0.33/0.34 0.00 
1.4 0.48 0.44/0.46 0.53 0.49/0.51 0.28 0.26/0.27 0.32 0.29/0.30 0.00 
1.6 0.42 0.39/0.40 0.47 0.43/0.45 0.25 0.23/0.24 0.28 0.26/0.27 0.00 
1.8 0.37 0.35/0.36 0.41 0.39/0.40 0.22 0.21/0.22 0.25 0.23/0.24 0.00 
2.0 0.33 0.32/0.33 0.37 0.35/0.36 0.20 0.19/0.20 0.22 0.21/0.22 0.00 

Parameters for Figure 1 

arrival rate of tasks, A = 0.2 (0.2) 2 

prob, of correct task class: cu = c22 = 0.7 

prob, of correctly classifying a complete task as complete: bu = b12 = b2: - b22 = 0.5 

prob, of correctly classifying an incomplete task as incomplete: bu = b\2 = b2l = b22 = 0.5 

prob, complete task oftypey that is correctly classified as typey: mu=m22 = 0.7 

prob, complete task of typey that is incorrectly classified as type k: ml2 = m2l = 0 

service time for task classified as type 1: J, = 0.5 

service time for task classified as type 2: s2 = 1 

prob, an arriving task is of type i: px =p2 = 0.5 

mean of the exponential deadline: (0)~l = 10.00 
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Discussion of Figure 1 

This demonstrates the anticipated decrease in the probability of receiving service 

(transiting queue before deadline elapse), and the probability of ultimate correct task 

completion as the arrival rate, A, increases. Notice that Approximation II, (5.16), 

relatively closely, but conservatively, tracks the exact solution of (D.ll), bounding the 

latter from below. Approximation I does nearly as well. The payoff from being able to 

recognize deadline elapse in service (and task ejection) is evident, but the dramatic effect 

is caused by the existence of a deadline-recognized queue admission capability: if 

deadlines are ignored then the queue quickly saturates and the success probability 

plummets. This happens despite the fact that the mean deadline, 10.0, is much greater 

than the mean ISOT ("service time"), 1.5, in this example. 

Next we study the effect of varying the classification parameters. 
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Parameters for Figures 2-4 

prob, of correct task class: cn = c22 = 0.1 (0.1) 1 

prob, of correctly classifying a complete task as complete: bu = bn = b2l = b22 = 0.9 

(Figures 2 and 3), 0.3 (Figure 4) 

prob, of correctly classifying an incomplete task as incomplete: bu = b[2 = b*u = b*22 = 0.3 

(Figure 3), 0.9 (Figures 2 and 4) 

prob, complete task of typey that is correctly classified as typey: mn = m22 = 0.7 

prob, complete task of typey that is incorrectly classified as type k: mn = m-n = 0 

service time for task classified as type 1: ^ = 0.5 

service time for task classified as type 2: s2 = 1 

arrival rate of tasks, A = 0.6 

prob, an arriving task is of type i: /?, =p2 — 0.5 

mean of the exponential deadline: (0)~l = 10 

Table for Figure 2 

approx. 
approx. prob, of 
prob, of prob, of success. 

prob, of receiving approx. success. compl. of 
approx. receiving service prob, of comple. of service 
prob, of service with prob, of success. service with 

prob, of receiving with refusal success. comple. of with refusal 
receiving service refusal depending comple. of service refusal depending 
service with depending on virtual service with depending on virtual prob, of 

with refusal on virtual waiting with refusal on virtual waiting success. 
refusal depending waiting time and refusal depending waiting time and comple. of 

depending on virtual time and allowed depending on virtual time and allowed service for 
prob, of on virtual waiting allowed service on virtual waiting allowed service system 
correct waiting time service time waiting time service time with no 

task class. time Approx I/II time Approx I/II time Approx I/II time Approx I/II refusals 

0.1 0.35 0.31/0.34 0.50 0.44/0.47 0.10 0.09/0.10 0.15 0.13/0.14 0.00 
0.2 0.48 0.42/0.45 0.60 0.53/0.56 0.22 0.19/0.21 0.28 0.25/0.26 0.00 
0.3 0.58 0.52/0.55 0.68 0.62/0.65 0.33 0.30/0.32 0.39 0.35/0.37 0.00 
0.4 0.67 0.61/0.64 0.75 0.69/0.72 0.44 0.40/0.42 0.49 0.45/0.47 0.00 
0.5 0.74 0.69/0.71 0.80 0.75/0.77 0.53 0.49/0.51 0.57 0.54/0.55 0.00 
0.6 0.80 0.75/0.77 0.84 0.80/0.82 0.60 0.57/0.59 0.63 0.61/0.62 0.09 
0.7 0.84 0.81/0.82 0.87 0.85/0.86 0.67 0.64/0.65 0.69 0.67/0.68 0.46 

0.8 0.87 0.85/0.86 0.89 0.88/0.89 0.72 0.70/0.71 0.74 0.72/0.73 0.62 
0.9 0.90 0.88/0.89 0.91 0.90/0.91 0.76 0.74/0.75 0.77 0.76/0.77 0.70 

1.0 0.91 0.90/0.91 0.93 0.92/0.92 0.79 0.78/0.79 0.79 0.80/0.80 0.76 
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Table for Figure 3 
i 

approx. 
i approx. prob, of 

prob, of prob, of success. 
prbb. of receiving approx. success. compl. of 

approx. receiving service prob, of comple. of service 
prob, of service with prob, of success. service with 

prob, of receiving with refusal success. comple. of with refusal 
receiving service refusal depending comple. of service refusal depending 
service with depending on virtual service with depending on virtual prob, of 

with refusal on virtual waiting with refusal on virtual waiting success. 
refusal depending waiting time and refusal depending waiting time and comple. of 

depending on virtual time and allowed depending on virtual time and allowed service for 
prob, of on virtual waiting allowed service on virtual waiting allowed service system 
correct waiting time service time waiting 'time service time with no 

task class. time  • Approx I/II time Approx I/II time Approx I/II time Approx I/II refusals 
0.1 0.93 0.91/0.92 0.94 0.93/0.93 0.08 0.08/0.08 0.08 0.08/0.08 0.08 
0.2 0.93 0.92/0.92 0.94 0.93/0.94 0.16 0.16/0.16 0.16 0.16/0.16 0.15 
0.3 0.93 0.93/0.93 0.94 0.94/0.94 0.23 0.23/0.23 0.24 0.23/0.23 0.23 
0.4 0.94 0.93/0.93 0.95 0.94/0.94 0.30 0.30/0.30 0.31 0.31/0.31 0.30 
0.5 0.94 0.93/0.94 0.95 0.94/0.95 0.37 0.37/0.37 0.38 0.37/0.37 0.37 
0.6 0.94 0.94/0.94 0.95 0.95/0.95 0.44 0.44/0.44 0.44 0.44/0.44 0.43 
0.7 0.95 0.94/0.94 0.95 0.95/0.95 0.50 0.50/0.50 0.50 0.50/0.50 0.49 
0.8 0.95 0.94/0.95 0.95 0.95/0.95 0.56 0.56/0.56 0.57 0.56/0.56 0.55 
0.9     1 0.95 0.95/0.95' 0.96 0.95/0.95 0.62 0.62/0.62 0.62 0.62/0.62 0.61 
1.0 0.95 0.95/0.95 0.96 0.95/0.961 0.68 0.67/0.67 0.68 0.68/0.68 0.67 

Discussion of Figures 2-4 

These figures illustrate the possible dependence of successfully joining the queue, and 

successful task completion on the value of cu = c22 = c: the probability of correctly 

classifying the task type (for fixed arrival rate, A, and other parameters). Apparently there 

is strong dependence: advantage accrues to systems with task refusals. Accepting all tasks 

can send the system into saturation for small values of cn = c22 = c; it only approaches the 

task refusal systems if c closely approaches unity (current task type classification is 

nearly perfect). The size of the advantage depends on the ability to correctly assess task 

completion. If the probability of assessing an incomplete task as incomplete is small (b* = 

0.3), then many tasks are thrown out of service before they are complete. Thus, the traffic 

intensity is less than 1 for the system with no refusal and the probability of successful 

task completion is about the same as for a system with task refusal. If the probability of 
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assessing a complete job as complete is small (b = 0.3), the additional (non-productive) 

service on already complete tasks, can saturate the system with no refusals; it also 

increases the probability a task will be refused in a system with refusal. Thus, increasing 

the probability of correct task classification can have less effect if b* is small. 

In the next case we explore the effect of quality of post-service assessment. 
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Parameters for Figures 5-7 

prob, of correctly assessing a complete task as complete: bxx = bx2 = b2X = b22 = 0.1 (0.1) 1 

(Figure 5), bxx = b12 = b2X = b22 = 0.9 (Figure 6), bu = bx2 = b21 = b22 = 0.1 (Figure 7) 

prob, of correct task class: cn = c22 = 0.7 

prob, of correctly assessing an incomplete task as incomplete: bxx = b\2 = b*2x = b22 = 0.9 

(Figure5),   b{x = Ki = tix = b\2 =   0.1   (0.1)   1   (Figure6),   ^,=^2=^*.=^=   0.7 

(Figure 7) 

prob, complete task of typey that is correctly classified as typey: mn = m22 = 0.7 

prob, complete task of typey' that is incorrectly classified as type k: mn = m2l = 0 

service time for task classified as type 1: J, = 0.5 

service time for task classified as type 2: s2 = 1 

arrival rate of tasks, A = 0.6 (Figures 5-6), A = 0.8 (Figure 7) 

prob, an arriving task is of type i:px =p2 = 0.5 

mean of the exponential deadline: {Of1 = 10 (Figures 5-6), 0= (0.1 (0.2) (1.9)) (Figure 7) 

Discussion of Figures 5-6 

Increasing the probability of correctly assessing an incomplete task as incomplete 

by = b* results in increases in the probability of correct task completion for those systems 

with refusals. However, for the system, with no refusals, increasing by = b* results in 

larger service times and thus decreases the probability of successful task completion. 

Increasing the probability of correctly assessing a complete task as complete, by = b 

results in increases in the probability of correct task completion for those systems with 

and without customer refusals. For b < 0.7, the system with no refusals is saturated and 

the probability of correct task completion is 0. 
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Discussion of Figure 7 

Figure 7 displays the probability of successful service completion as a function of the 

deadline rate, 9. In Figure 7 the probability of correctly assessing a complete job as 

complete is small; b = by =0.1. Note that for the case of task refusal depending on both 

the virtual waiting time and the allowed time in service, there is an optimum 6. Reason: 

the small probability of assessing a complete task as being complete is creating much 

unproductive work for the server. A #that is too small can result in a task remaining in 

service when it is complete. A #that is too large results in too many tasks being turned 

away. 

7. Summary 

A stochastic model has been introduced that allows initial discussion of the general 

problem of uncertain impatient service. The influence of the various processes that may 

affect such service has been numerically explored in special cases; it can be seen that the 

ability to adapt to long queues (by refusing admission) as in Section 5.2 and Appendix D, 

can improve overall performance. In fact, if deadlines did not exist they might well be 

imposed in order to improve overall long-run system performance. Likewise, 

improvement of performance by improving either pre-service classification, and/or post- 

service assessment can be quantitatively traced and choices made. Degradation of either 

of the latter capabilities can substantially degrade overall system performance, as 

measured by the probability of successful complete task processing (before deadline 

elapse). 

The present paper scratches the surface of an important and largely neglected service 

system design and control problem. It is planned to pursue other ramifications, such as 

non-stationary phenomena (via fluid approximations) and adaptive control (dynamic 

priorities) in subsequent work. 
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APPENDIX A 

Second Moment of ISOT 

Squaring and taking conditional expectations leads to an expression for the second 

moment of completion time (needed for calculating long-run expected system occupancy 

when tasks are queued). We express the formula in terms of the expressions for the mean 

E[Cj\, (4.4), and the mean and second moment of recognition time K/. 

4<^] =  I^4**2]+l^ElSjfn^S^ElCj] 

where 

and 

k k ) 

( 
l-^cJkE[mJk(Sk)]bjk 

E[Kj] = ZcjkE[Sk] + \l-YcJkbJk 
k \      k j 

(A.2) 

E\KJ]=\YcA^]+2lZcJ^s^bAKj] * i-Ec**4      (A-3> 
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APPENDIXE 
Model with Unobservable Exponential Deadlines 

The Laplace-Stieltjes transform (LST) of the "completion" time can be calculated by 

taking conditional expectations in (4.1). The result is 

l-Y,cJkE[e-^mjk(Sk)]b;k 

(B.l) 

with 

Note that the above can be interpreted as the probability that a sojourn at the server, 

including repeats, ends before the termination of an independent exponential random 

variable with mean \I9. 

To obtain the probability that a task service has been satisfactorily completed at 

sojourn completion and that sojourn ends before the termination of the independent 

exponential random variable with mean 1/0, define 

Sk with probability cjkmjk (Sk); 
Dj=\ Sk + D'j    with probability cjkmjk (Sk)bjk. 

This is simply (4.1) with a term omitted. It is seen that 

(B.3) 

E{e-°>] = £c/*4e"*M5*)] W1 -Xc^e-^rä^)^] 
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APPENDIX C 

A Model with the Option to Reclassify 

Unobservable Deadlines 

In this appendix we present results for a model in which a server may opt to reclassify 

the task type if it perceives that the task is not complete. There is a time penalty A for 

reclassification. Let or be the probability that the server decides to reclassify the task after 

a task service which is perceived not to have completed the task. 

Sk with probability [mjk (Sk )bjk + mjk (Sk )bjk ]; 

Sk + Cjk with probability mjk (Sk )b]k (1 - a); 

Cjk = \Sk + C'j + A with probability mjk(Sk)b*jka; (C.l) 

Sk + Kjk with probability mjk (Sk )bjk (1 - a); 

Sk + Kj with probability mjk (Sk )bjk a; 

Cjk represents the service time of a task of type7 that has been classified as a type k. Cj 

represents the service time of a task of type j. KJk represents the random time until a 

completed task of type j that has been classified as a type k is so identified. Kj represents 

the random time until a completed task of typey' is so identified, the recognition time: 

Sk with probability bJk 

Kjk =\sk+ K'jk     with probability bJk (I-a) (C.2) 

Sk + Kj + A with probability bjka 

Cj = Cjk with probability cjk, k = 1,..., J 

Kj = Kjk with probability c jk, k = 1,..., J 

Notice that the task accomplishment probability is allowed to depend explicitly on the 

allocated service time, Sk, and that the "completion" time can terminate with 

unrecognized incomplete task service, i.e. incompletely. The random variables Cj ,C'Jk 

JK'j, and K'Jk above are independent stochastic replicas of Cj Cjk Kj and Kjk, as usual. 
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The expectations required are now calculated. 

E[e -., ^h+4f*K'~*W~J] bjka 

l-E[e-^]bJka 

Thus 

E[e-a:'} = YucjkE[e-^] 
k 

Y,cjkfjk{K) 
k 

\-Y,Cjkajk(K) 
k 

where 

fin     E[e~mk]bjk 
;AK)-l-E[e-«>]bJk(l-a) 

a  (r)    l{e-«>}E[e-*}bjka 
aAK)-l-E[e-^]bjk(l-aY 

Similiarly 

n^n    NJk(C) + gjk(C)E[e^] 
[        ]~             D,(C) 

where 

Njk(C) = E[e-^[mJk(Sk)bjk+mjk(Sk)b;k]] 

+E[e-<s>]E[e-*]E[e-eKj]bjka 

+E[e-«s>mjk(Sk)]E[e-"c* ]mjkbjk{\ - a). 

Further, 

Djk(C) = l-E[e-es*mjk(Sk)]bJka 

and 

(C.3) 

(C.4) 

(C.5) 

(C.6) 

(C.7) 

(C.8) 
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gjk{C) = E[e-*'mJk{Sk)]E[e-*]b)ka. (C.9) 

Thus, 

^CßfßiC) 
(CIO) 

where 

f(C) = ^ß{ (C.ll) 

and 

M  J   ^     Dfi(C) 

After appropriate weighting by pp the probability that an arrival is of type j, the needed 

moments and transforms can be calculated as was done previously. 
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APPENDIX D 
Forward Kolmogorov (Takacs-Benes) Equations with Exponential Balking 

Suppose that tasks arrive at a service facility according to a Poisson process with rate 

A. Service times are independent and identically distributed. Let W(t) be the total virtual 

work in the system at time t. Each task has a deadline which is exponentially distributed 

with mean 1/0. if the waiting time or virtual work present when the task arrives exceeds 

the deadline the task does not enter the system. This approximates the situation in which 

tasks whose deadlines have elapsed when they reach the server are not served. With some 

modification it addresses the situation in which a deadline elapses during service. 

D.l Statistically Identified Deadlines and Service to Completion 

Let the distribution function of W(f) be 

Fw{x;t;0) = P{W{t)<x} 

and express this as 

X 

Fw(x;t;0) = po(t;0) + jp(z;t;0)dz, 
0 

where 

po(t;0) = P{W(t) = O}. 

Since, given W{i), the task joins the queue with probability e~m(^, the probability its 

deadline does not expire while in queue, one can write 

p(x;t + At; 0) = p(x + At;t; 0)[l - Ae'{x+M)eAt] 

+p0 (t; 0)b(x)AAt + AAt f e^p{y\ t; 0)b(x- y)dy + o(At) 
JO 

where b is the density function of the positive service time C. Also, 

po(t + At;0) = po(t;0)[l -AAt]+p(O,t;0)At{\ -AAt) + o{ At). (D.lb) 

(D.la) 
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Taking limits as At -» 0 results in 

4-Po(t;6>) = -Apo{t;0)+p{Q,f,0), (D.2) 
at 

and also 

^-p{x;t; 0) = ^-p(x;t; 0)-p(x;t; 0)Ae~ei + Ap0(t; 0)b{x) 
dt dx (D.3) 

+A\Xe-*p(y;t;0)b(x-y)dy 
JO 

If t -»oo, then a steady-state density satisfies 

O = —p(x;0)-p(x;0)Ae-äc +p0b(x)A + A\X e-*p(y)b(x-y)dy, (D.4a) 
ox J0 

0 = -Ap0+p(0). (D.4b) 

Laplace transform to obtain 

p' (s; 0) = f+ e~sxp(x; 0)dx and b* (s) = J°° e-
sxb{x)dx. 

Thus, (D.4a) implies 

sp(s;0) = [p(O;0) + Ap*(s + 0,0)][l-b*(s)] (D.5) 

Let 

= /?o(0)+/M); 

then 

(D.6) 

^ *)=po(0)+pr(s+0,0)3{s) (D.7) 

where 

Since p<0; $ = 1 =po + p^(0, 0), 
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pQ=l-py(0,0) = l- xfyrm]ftC\. (D.9) 

which motivates the heuristic approximation (actually lower bound) of Section 5.2. 

Iterative solution to the equation (D.7) 

Since 

it follows that, putting s = 0, and defining 

and 

y/{20) = y/{20, 0) = [1 -py{0)]+py{3&, 0)S{20). 

Substituting the expression for 1^2.0) into that for y^0) results in 

y,{0) = [1 -py(0)]+p[[l - p¥{0)\+p^0,0)S{20,0)}S{0) 

= 1+pS{0) - pp{0)[l+pS{0)]+p2 p(30,0)S{20)S{0). 

Continuing in this manner results in the equation 

yAß) = A(0,0)+...+A{n;0)- p^{0)[A{0,0)+...+A{n; 0)] 

+py/{{n + \)0,0)A{n\0). 

where 

A(0,0) = 1 

A(n; 0) = pnS{n 0)3({n -1)0) x... x S{0). 

For 0> 0, A(n;0) -» 0. Thus the probability that an arriving task joins and survives the 

queue before deadline elapse is 

^Aik-,0) 

¥<0) = -^ • (D-ll) 
l+p£A(k;0) 

*=0 

(D.lOa) 

(D.lOb) 
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It is clear that the infinite sums converge exponentially rapidly for 6> 0, and that this is 

true for any /»-value. 

Further, for s * 6 

K^)=[i-M^)]Za*;*) (D.12) 
i=0 

where 

k-\ 

C{k;s) = pkY[ö{s + i0),   k>\ (D.13) 
(=0 

and 

C(0;s) = l. 

D.2 Services Subject to Exponential Deadline 

If a task deadline's elapse is detectable during service and the task then removed, then 

the distribution of service time, C, must be replaced by that of CT = min(C, deadline), the 

allowed service time. Consequently the service times that contribute to the virtual 

waiting time are, thanks to the exponential deadline assumption, iid with mean 

E[CT] = ^ (D.14) 
o 

and tail-transform now 

These replace E[C] in p, and %s) in the previous solution, (D. 11). 

D.3 Class-Specific Deadlines 

A natural generalization of the above is to allow independent Poisson arrivals from / 

task classes, the _/* rate being Aj with service time density bj and exponential deadline 

parameter 6y Arguments analogous to those in Appendix D enable us to show that 
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v,{s-0)=po{0)+Y,Pjrj{s)y(s+ej;e) (D.i6) 
j 

where 

where p} = AjE[CJ], and 

po(0) = l-T?Pjy(0j;0). (D.18) 
J 

It can be seen that 

Po{0)>—4^-7^-- (D-19) 
1 + M     1 + /? 

The  equation  (D.16)  can  be  solved  in  closed  form  (a  series)  by  successive 

substitution/iteration, but this step is omitted. 
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