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ABSTRACT 

This thesis provides initial development of an interactive simulation for training 

Operational Logistics students in the management of Naval Operational Logistics. The 

model is designed with a modular architecture, enabling the flexibility to upgrade or 

modify selected components without altering the rest of the simulation. The simulation is 

implemented in the Java programming language, allowing the model to run on all major 

operating systems. The major components of the model include a discrete event 

simulation, a Graphical User Interface (GUI), and controller classes that connect the two. 

These controller classes pass user commands to the non-visual simulation for execution 

and information from the simulation to the GUI for display. Data required by the non- 

visual simulation is inputted from a separate database and configuration files. This 

feature allows the simulation to run different scenarios with distinct maps and graphics 

with no modification to the compiled computer code. The simulation and data structure 

developed in this thesis provide a solid foundation for further expansion into a fully 

featured interactive naval logistics training simulation. 
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THESIS DISCLAIMER 

The reader is cautioned that computer programs developed in this research may 

not have been exercised for all cases of interest. While every effort has been made, 

within the time available, to ensure that the programs are free of computational and logic 

errors, they cannot be considered validated. Any application of these programs without 

additional verification is at the risk of the user. 
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Executive Summary 

The modern carrier battle group is a dominant force for national policy makers. 

Its mere presence can exert strong pressure on potential adversaries. If the act of 

deterrence fails, it has the offensive power to quickly bring the fight to the enemy. 

However, without an effective operational logistics system supporting the battle group, it 

cannot sustain combat operations or remain in a theater for more than a few days. For the 

battle groups to be effective, it is important for naval officers to understand the logistics 

support system. 

Students of the Operational Logistics curriculum at the Naval Postgraduate School 

are required to take course which introduces the fundamentals of the naval logistics 

system. As a training aid, part of the course is spent playing an interactive computer war 

game called PROLOG. PROLOG'S single scenario models a notional battle group 

operating off the coast of a small, hostile nation, conducting medium intensity combat 

operations over the course of thirty days. As fuel and ordnance is consumed in the 

scenario, students use assigned logistics assets to keep the force supplied and operational. 

PROLOG contains very robust combat and logistics models with excellent training 

functionality. However, PROLOG was developed in the middle 1980's and will only run 

on a mainframe computer. The interface to the program is understandably dated, and 

saving a campaign in progress is frequently troublesome. The requirement for this thesis 

was prompted by these limitations. 

This thesis provides a generic foundation for an interactive simulation to replace 

PROLOG.    The simulation in this thesis is implemented in the Java programming 
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language. The use of Java enables the simulation to operate on the cheaper, more 

plentiful personal computer (PC) platform, or any other system with a Java Virtual 

Machine (JVM). The simulation is constructed with a modular design, allowing 

components to be modified or replaced with little or no change to the remaining elements. 

This gives the simulation greater flexibility and capability for expansion than its 

predecessor. 

The simulation consists of a non-visual simulation connected to a graphical user 

interface (GUI). The units modeled in the simulation consume fuel at realistic rates and 

are prevented from maneuvering without sufficient fuel. The simulation also models the 

curvature of the earth to provide realistic interaction between the units. User speed and 

movement commands are passed from the GUI to the units. As the units move in the 

non-visual simulation, the GUI displays them to the user using standard Naval Tactical 

Data System (NTDS) symbology. All data and parameters required by the simulation are 

provided from separate configuration files and a database. 

The data source used by the simulation is a key feature of this model. By using 

this design, the simulation is independent of the data. This enables the simulation to 

present different scenarios and maps to the user with no change to the simulation 

computer code. A scenario editor is also provided to allow the instructor to tailor 

scenarios to match the current state of the naval forces modeled. While this project is not 

yet fully implemented, this thesis provides a very expandable basis for a replacement war 

game. 
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I.        INTRODUCTION 

A.  BACKGROUND 

The modern carrier battle group is a dominant force for national policy makers. 

Its mere presence can exert strong pressure on potential adversaries. If the act of 

deterrence fails, it has the offensive power to quickly bring the fight to the enemy. 

However, without an effective operational logistics system supporting the battle group, it 

cannot sustain combat operations or remain in a theater for more than a few days. The 

carrier battle group and its required logistics support have gradually evolved over the 

course of this century to meet the changing threats to national interests around the world. 

Over the history of the United States Navy, there have been steady improvements 

to the ships it takes to sea and war. Sailing frigates gave way to vessels with combined 

sail and steam power. Once the reliability of the new propulsion system was established, 

steam powered ironclads became the fleet standard. During this evolution in propulsion, 

the smoothbore, muzzle loading cannons of the sailing fleet were replaced by rifled, 

breech loading guns. By the turn of the century the heavily armored dreadnought 

battleship was the pride of the fleet. This century has seen the revolutionary change from 

a fleet of battleships to the carrier battle group with high performance aircraft and gas 

turbine propelled escorts with precision guided munitions and long-range cruise missiles. 

The common thread throughout this history is the need for logistical support for 

the fleet.   Whether coal and shells for the turn of the century battleship fleet or JP-5 
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aviation fuel and Tomahawks for today's force, combat operations cannot be sustained 

without an effective logistic system. Operational logistic support has progressed along 

side the evolution of the fleet. The modern carrier battle group is supported by the 

combat logistics force (CLF), a fleet of purpose-built ships designed to replenish the force 

at sea. Without the CLF, a carrier battle group cannot sustain combat operations or 

remain in a theater for more than a few days. The operations of the CLF are a complex 

and vital component of naval operations. 

In order to successfully employ weapons and platforms of the modern fleet it is 

necessary to understand how the fleet is supported. The same technology which led to the 

development of the modern naval force has allowed advancements in training techniques. 

At the turn of the century, manual board games were the means of training and doctrine 

development. The rise of computers has enabled the manual wargame to be replaced with 

interactive simulations. To understand the issues for educating and training naval officers 

in operational logistics, it is important to understand how the modern CLF fleet and its 

operations have evolved. Therefore, before examining the impetus for this thesis, a brief 

history of naval logistics will be explored. 

For most of the United States' early history, the obligations of the Navy were 

largely confined to the continental shores. Since the beginning of this century the country 

gradually become an international power with interests around the globe. Much of the 

burden of these new overseas commitments has fallen to the Navy.    With forces 



increasingly deployed world-wide and no guarantee of a friendly port in the theater of 

operations, it became necessary to bring logistic support along with the fleet. 

During this time, rapid technological development further confounded the 

problem of supplying the Navy's ships. Coal, and later oil, had to be supplied, as well as 

shells for breach loaded guns. The problem of replenishment came to the forefront during 

the Spanish American War in 1898. The colliers dispatched to refuel the battleships 

blockading Cuba could not transfer at sea, necessitating the capture of Guantanamo Bay 

to provide a protected anchorage for re-supply. [Ref. 1: p 5] In addition to the time off 

station for refueling, combatants were also diverted from their primary mission to prevent 

the capture or destruction of the slow, vulnerable colliers. The experiences of this war 

were the catalyst that sparked the research for underway replenishment (UNREP) in the 

Navy. 

While a functional system of coaling at sea was developed in the years prior to 

World War I, it was never fully implemented in the U.S. Navy. The ungainly topside 

equipment and slow rate of transfer generated considerable resistance from the senior 

leadership that ultimately doomed this system. Furthermore, by 1914 most Navy vessels 

were converted to run on oil rather than coal. Interest in underway replenishment, 

however, did not wane. When the U.S. entered the war in 1917, most capital ships could 

reach Europe without refueling; the destroyers so badly needed to combat the German U- 

boat menace could not. To get these destroyers to the theater, an oiler, the USS Maumee 

(AO 2), was stationed 300 miles south of Greenland.  Her ingenious executive officer, 



Lieutenant Chester Nimitz, designed a procedure for underway refueling at five knots. In 

her three months on station, Maumee successfully refueled thirty-four destroyers. Nimitz' 

procedure would become standard throughout the fleet during the interwar years. [Ref. 1: 

pp. 6-8] 

Although the Navy had established procedures to refuel combatants and even 

carriers while underway by World War II, the closing months of the Pacific campaign 

revealed another serious deficiency in logistic support. The carrier forces attacking the 

Japanese islands were consuming all carried ordnance in only three to four days. When 

the ordnance was expended, the carriers required ten to twelve days to transit to the 

nearest U.S. bases, re-arm, and return to station. Under the direction of Admiral 

Raymond Spruance, commander of the Iwo Jima and Okinawa invasion force, a 

technique was devised to transfer ammunition underway by February 1945. Once this 

hurdle was cleared, underway replenishment groups of oilers, ammunition ships, and 

stores ships were stationed outside the range of Japanese kamikaze attacks. The depleted 

combatants would travel to the replenishment groups at night, spend the next day 

restocking, then transit back to resume the air strikes. This innovation allowed offensive 

forces to spend significantly more time attacking than replenishing. [Ref. 1: pp. 8-9] 

During the rapid drawdown of forces following the war there was little innovation 

in underway replenishment. As a result, the procedures used during the Korean conflict 

were essentially the same as the Pacific operations. The carriers were fitted with 

additional receiving stations, reducing the time required for re-arming.   However, the 



introduction of jet aircraft with four times the fuel consumption of piston aircraft made 

refueling a much more difficult problem. [Ref. 1: p 10] The modern underway 

replenishment fleet was born out of a 1957 conference called by the Chief of Naval 

Operations, ADM Arleigh Burke. [Ref. 1: pp. 12-13] ADM Burke recognized from his 

experiences in World War II that, "[a]U time spent in replenishing was time lost in 

combat." [Ref. 1: p 13] The centerpiece of CLF fleet would be the Fast Combat Support 

Ship (AOE). 

The concept of the AOE was based on a captured German oiler, the 

Dithmarsehen, that was also equipped with holds for ammunition and stores. [Ref. 1: p 

11] This configuration reduced the time combatants spent off station, since they were 

able to replenish all commodities in one replenishment. The Standard Tensioned 

Replenishment Alongside Method (STREAM) equipment was designed concurrent with 

the planning of the AOE. The STREAM equipment enabled faster, safer transfer of cargo 

in more adverse weather conditions. [Ref. 1: pp. 17-18] The U.S. design also called for 

the AOE to be fast enough to stay with the battle group as a station ship. Rather than the 

World War II model of underway replenishment groups, the logistics ship would travel 

with the force to replenish them as required. [Ref. 1: p 57] Although the original plan 

called for one AOE for each deployed battle group, the Navy has never had a sufficient 

number of AOE's to make this possible. 

In the absence of an AOE, a combination of a fleet oiler (AO) and an ammunition 

ship (AE) may fill the station ship role. [Ref. 1: pp. 57-58] Although the AO's and AE's 



currently in the fleet are "purposely-built" single commodity station ships, the preferred 

function of these ships is to act as shuttle ships. When the station ship (or ships') 

supplies are expended, the station ships themselves are replenished by shuttle ships. The 

shuttle ships are AO's and AE's not acting as station ships, operating from advanced 

logistics support bases (ALSB) or less capable forward logistic sites (FLS). [Ref. 1: p 55] 

Both ALSB's and FLS's contain stockpiles of materiel delivered from the U.S. by 

efficient merchant tankers and container ships for pickup by shuttle ships. The ALSB 

differs from the FLS in that it also has the capability for "[s]hip and aircraft repair and 

maintenance, medical, personnel staging and administrative operating control centers...,". 

[Ref. I:p55] 

The global landscape has seen rapid change in the past decade. During the Cold 

War, the Navy was faced with a single powerful opponent. Any expected combat with 

that opponent would be decisive, open-ocean battles. The threats of the post Cold War 

world are less powerful, but far less localized. To deal with these new opponents, the 

missions of the Navy have shifted to the coastal regions of the world. No matter what the 

composition of the fleet is or its theater of operations, the requirement for logistic support 

will survive. 

B.       PROBLEM STATEMENT 

While most naval officers are familiar with history and concepts outlined above, 

few have direct, staff level experience in coordinating the replenishment of battle group 

assets.   All Operations Logistics students at the Naval Postgraduate School (NPS) are 



required to take Introduction to Naval Logistics (OA 3610), a course designed to present 

the fundamentals of the naval operational logistics system. Obviously, it is impractical to 

give these students direct exposure to all facets of operational logistics management. The 

use of interactive wargames and simulations has the potential to provide cost effective, 

but meaningful insight to this complicated problem. 

Currently, OA 3610 uses a program called PROLOG to introduce logistics 

management of fuel, spare parts, and ammunition requirements. While assigned as a 

student, LCDR Mark Mitchell originally developed PROLOG in 1982 as a manual war 

game. When he returned as a faculty member in 1985, he programmed a version of the 

game in FORTRAN for play as an interactive simulation on a mainframe computer. [Ref. 

2: p ii] Subsequently, five students completed theses improving the functionality of the 

basic program. [Ref. 2: p ii] These theses included air strikes, air, surface, and sub- 

surface threat forces, player responses to these threat forces, aircraft readiness, and 

surface combat. The last development of the current version of PROLOG was completed 

in September 1988. [Ref. 2: p ii] 

PROLOG presents a single battle scenario consisting of a middle 1980's notional 

battle group operating off the coast of "Etas Orango," a small nation embroiled in an 

attempted coup. Within this single scenario, PROLOG contains very robust combat and 

logistics models. As a training tool, the functionality provided by PROLOG is still quite 

good. However, ten years of advancements in hardware and software, have diminished 

the training value of the model.    Saving and restoring a campaign in progress is 



problematic, a significant limitation since students require about ten to fifteen hours of 

game play to complete the thirty day scenario. The graphics and menus of the user 

interface are also understandably dated. The single greatest limitation of PROLOG is the 

inability to update its scenario to reflect modern naval forces and missions. 

C.       PURPOSE 

The limitations of PROLOG noted above generated the requirement for this 

thesis, which develops a new simulation model, the Naval Logistics Simulator 

(NAVLOGS). The goal of NAVLOGS is to provide an educational tool that gives 

logistics students an introduction to managing fuel and ordnance at the battle group level. 

NAVLOGS seeks to preserve the basic functionality of PROLOG, but with more modern 

graphical user interface and greater flexibility and capability for expansion than the 

original. Other potential benefits include the ability to distribute the war game over a 

network of computers or even the Internet, or exporting it to other institutions. 

NAVLOGS' design avoids the problems associated with the monolithic 

PROLOG. By utilizing a modular architecture, NAVLOGS can easily add different 

scenarios or update the modeled units without completely re-writing the simulation. To 

support the easy addition of new scenarios or units, all data required by the simulation are 

provided from external configuration files and a database. With this design, a new 

scenario or more modern units can be added by supplying updated initialization files and 

a new database. No change is required to the compiled computer code. While PROLOG 

executes only on outdated mainframe computers, NAVLOGS is designed to run on either 
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Workstations or personal computers, which are cheaper and more plentiful. Finally, this 

thesis adds a "curved earth" model to discrete event simulation methodology that takes 

into account the curvature of the earth in mediating the interaction of targets and sensors. 

Concurrently with this thesis, Lieutenant John Sterba is developing a module to 

add a simulation of a Marine Amphibious Readiness Group (ARG) conducting ground 

operations on the hostile shore. [Ref. 3] When fully implemented, these two theses will 

use a common interface to present future students with the logistic decisions that a 

commander faces when supporting a traditional Navy battle group in conjunction with 

ashore power projection. The underlying simulation uses an efficient discrete event 

model, rather than the often-used time-stepped model. 

D.       THESIS OUTLINE 

This thesis develops a basic movement and environment model, along with a 

means of data storage and retrieval to support the model. While not yet completely 

operational, when connected with the work of Lieutenant Sterba, NAVLOGS will provide 

a solid foundation for a fully featured replacement for PROLOG. The remainder of this 

thesis is organized as follows: Chapter II provides a description of the model; Chapter JJJ 

details the input of data to the model, as well as the output from the model; finally, 

Chapter IV provides a summary and recommendations for further expansion. 
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n.       MODEL METHODOLOGY 

Before reading this chapter, the reader may wish to refer to Appendix A, Object 

Oriented Programming and Java. 

A.       NAVLOGS OVERVIEW 

The model consists of four major components: a non-visual discrete event 

simulation, a graphical user interface (GUI), and controller classes that connect the two. 

Parameters required to create the entities in the simulation are provided from 

configuration files and an independent database, described in the Chapter HI. The 

simulation is implemented in the Java programming language making the model platform 

independent. Currently, the Navy (and the Naval Postgraduate School) uses a mix of 

Windows and UNIX computers. Should this composition change in the future, 

NAVLOGS will still be able to execute, since it runs on any platform with a Java Virtual 

Machine (JVM). 

The discrete event simulation logic is independent of the operational and logistic 

parameters of the assigned units. These parameters are supplied by an interface to the 

database when the units are initially created. By separating the simulation from its data, 

any moveable unit can be modeled by customizing the database to reflect the desired unit 

with only minor modifications to the simulation. Once a campaign is in progress, the 

current state of the simulation can be saved to the database at any time, enabling easy 

resumption of the campaign.   The user interface is constructed with the Java Swing 
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library to provide the familiar and ubiquitous Windows style environment without 

restricting the model to only operate in this environment. Having built the simulation in 

such manner, it is open to future expansion, such as a joint or coalition scenario with 

allies or new ship or aircraft platform configurations. These modifications can be 

accomplished by simply adding to the database with the specifications applicable to the 

added units andwriting a small extension to the basic classes for those units. 

NAVLOGS uses a discrete event simulation to drive the model rather than a time- 

step simulation. In a time-step simulation, the state of the system is updated at fixed time 

intervals, whether anything in the model has changed during that time interval or not. 

System processing time is needlessly wasted if the time interval is too small. If the time 

interval is too large, many events can occur in a single time step and must be adjudicated 

in a completely arbitrary manner. In contrast, the discrete event model only requires 

processing time to update the system state when events affecting the simulation occur. 

This discrete event paradigm was chosen since it captures the system state more 

accurately and more effectively. The simulation will now be addressed in greater depth. 

B.       MODEL DESIGN 

1.        Model Architecture 

The components of NAVLOGS interact as shown in Figure 1. This structure, 

known as a "model-view-controller" design, separates the simulation model from the user 

interface. The design offers a great degree of flexibility for future enhancements and 

expansion. Since none of these components are rigidly tied together, any of them can be 
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easily replaced with little change to the others. For example, a new GUI can be 

constructed to improve interaction with the user without building a new non-visual 

simulation. Likewise, if more sophisticated models of the various units were desired, 

they can be readily incorporated into the simulation with no modification of the GUI 

required. The model-view-controller design is a key element to the extensibility of 

NAVLOGS. 

User Interface 
(View) 

Controller 
Classes 

Discrete Event 
Simulation Database 

(Input/Output) 
▼>.». 

■>      User Commands 
-+■      Simulation State Information 

Figure 1. Model - View - Controller Architecture. The user interface is separated from 
the simulation by the controller classes. This allows either to be replaced or modified 
without changing the other. The data required by the simulation is stored and retrieved 
from a separate database. 

The heart of the model is the discrete event simulation based on the Simkit 

package initially developed by Kirk Stork in [Ref. 4] and expanded by Professor Arnold 

Buss. The simulation is connected to the user interface via the controller classes. These 

controller classes pass information from the discrete event model, which is fundamentally 

non-visual, to the interface for display. Information is passed into the simulation from the 

database, to provide the necessary parameters to the model. Data from the model is also 

written back to the database for storage. 
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2.        Class Organization 

The modeled units used in the non-visual simulation are all Java objects sub- 

classed from Simkit BasicMover objects, as depicted in Figure 2. These objects maintain 

the state variables that define each unit's parameters, location, and movement 

characteristics at any given time in the "simulation. These objects are further responsible 

for ensuring that infeasible values for these parameters are not assigned. They are 

extended from the BasicMover class to form a foundation class providing basic 

functionality for each type of platform. For example, the foundation class for all the ship 

objects is the class Ship, which provides the functionality common to all ships in the 

simulation. Examples of this basic functionality include methods to access and change 

state variables such as current F76 level and maximum speed. Other foundation classes 

include Aircraft, GroundVehicle, and Amphibious Vehicle. 
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SimEntityBase 
Class 

" 
Mover 

Interface 
—» BasicMover 

Class 

" 
Vehicle 
Interface 

—» Ship 
Class 

i ' r i 
VLSShooter 

Class 
Carrier 
Class 

CLF 
Class 

implements 

-*■    extends 

Simkit 

NAVLOGS 

Figure 2. Sample Class Hierarchy Diagram.  This diagram demonstrates the inheritance 
relationship of the Ship foundation class and its extended platform classes with Simkit. 

A common feature of each foundation class is the implementation of the Vehicle 

interface, which requires the addition of two methods for data input and output. An 

example of the relationship of this implementation to the foundation classes is shown 

above in Figure 2. The first method, called getProperties (), returns a Java 

Properties object with key-value pairs of all dynamic state variables. The second method, 

called get Name (), returns a unique name for each specific unit to identify its records 

in the database. These pieces of information are used in building Structure Query 

Language (SQL) statements to update the unit's information in the database.    The 
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Properties object is also used by the GUI to present the current state of that unit to the 

user. 

To maximize flexibility, specialization for specific platform types is contained in 

platform classes which sub-class the foundation classes. Examples of platform classes 

extended from the Ship class include Vertical Launching System (VLS) equipped escorts, 

Combat Logistics Force (CLF) ships, and aircraft carriers. These extended classes 

include only the additional functionality required to model the particular platform type 

desired, since they inherit all of the parameters and functionality of the Ship class. The 

class hierarchy diagram in Figure 2 shows the relationship of these platform classes to 

their foundation class, Ship. The computer code for the Ship and VLS Shooter classes 

and the Vehicle Interface can be found in Appendix B. 

Because the platform classes inherit all the functionality of their foundation class, 

they are quite small since unnecessary replication of identical computer code has been 

avoided. This design yields another important advantage. If a function of a foundation 

class needs to be altered or a new function added, the modification only needs to be 

performed once. If each platform class explicitly included all the methods of its 

foundation class, modifying any function would have to be performed multiple times. 

Not only would this be needlessly repetitive, erratic behavior in the platform classes is 

possible if each modification is not identically performed. 

Placing the specialized functionality for specific platform types in the smaller 

platform classes provides for easier expansion, as well as avoiding needless overhead. A 
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CLF ship does not need to keep track of its Tomahawk missiles, nor does a VLS escort 

need to maintain the state of its tactical aircraft inventory. Should the next generation of 

escorts make a radical change to weapon delivery, such as a purely hypothetical 

Horizontal Launching System ("HLS"), the model needs only to add another sub-class to 

the Ship class. With the new functions required for this weapon system added in the sub- 

class and a small change to the database (detailed below), these new "HLS" escorts can 

be easily integrated alongside existing units. 

As outlined above, the Ship class provides the minimum functionality required to 

model a surface ship. Since logistics is the focus of this thesis, the state variables which 

track fuels and ammunition are critical. However, the Ship base class does not contain 

any variables for aircraft fuel or ordnance. The responsibility for ordnance is left for the 

sub-classes since weapon types and delivery systems vary considerably among platforms. 

Platform classes are also responsible for aviation fuel (JP-5), since its use also varies 

significantly between different types of ships. For example, with at most two helicopters, 

JP-5 is not a significant driver of logistics for the escort platforms, whereas an aircraft 

carrier consumes enormous quantities of JP-5 with even moderate flight operations. At 

the other extreme, jet fuel is merely cargo to the CLF platforms. 

One of the most important functions of the Ship class is to maintain the current 

level of propulsion fuel. NAVLOGS uses the fuel consumption rates given in Schrady, 

Smyth, and Vassian [Ref. 5]. This work gives predictions for fuel consumption rates as a 
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function of ship speed for twenty-two classes of Navy ships. The predictions use a 

common function for all ship classes shown in (1). [Ref. 5: p 18] 

Kgals/hour = b0+bl*e^(speed/m9) (1) 

Each individual platform has unique values of b0, bi, and b2 to yield its specific 

consumption rate. The propulsion fuel load is not continuously updated. Instead, each 

Ship maintains a time variable of when fuel level was last computed. 

Unlike some dedicated combat models, units in this simulation simply cannot 

move without fuel. Each time speed or destination is changed, the fuel used since the last 

update is calculated and removed from the current level. When a Ship object is given a 

command to move or change speed, before the order is executed, a check is made to 

ensure that sufficient fuel remains to reach the destination. If the ship has sufficient fuel 

to travel to its destination, the appropriate events are scheduled (see Section 3, below). If 

not, the user is presented (via a dialog box) that there is not enough fuel, and the unit is 

stopped. 

3.        Movement Control 

As described in the previous section, the Ship objects in the simulation maintain 

the parameters that describe their state at any given time. The task of actually moving 

them from point to point in the simulation is the job of a MoverManager class. The 

MoverManagers use the listener pattern of Simkit to track the units. When a 

MoverManager is instantiated, it registers itself as a listener of a Simkit mover. The 

Mover multicasts its events, such as beginning or ending a movement, to all registered 
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listeners. When the MoverManager "hears" the events of the Mover, it can issue 

appropriate commands to that Mover when they occur, as depicted in Figure 3. The 

listener pattern between the MoverManagers and Movers allows an existing manager to 

be used with any mover and likewise for new managers to be developed for existing 

Movers. 

Issues 
Commands 

"Hears" 
Status 

updates 

Figure 3. Generic MoverManager Listener Pattern. A Simkit Mover object is assigned to 
a MoverManager. The MoverManager is registered as a listener of the Mover, and can 
issue commands when the Mover multicasts its event occurrences. 

In NAVLOGS, the UserCommandedMoverManager class is responsible for 

controlling the movement of Ships shown in Figure 4. Each of these managers is 

assigned a single Ship, with an initial destination and speed. When the simulation is 

started, the manager issues a command to its Ship to move to this destination at the 

ordered speed. The manager then listens for the Ship to reach the destination. When this 

occurs, the manager presents a dialog box to the user, requesting a new destination and 

speed. After user supplies a valid position, the process is started again. 
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Issues 
Commands 

UserCommanded 
MoverManager 

Ship 

"Hears" 
Status 

updates 

Figure 4. UserCommandedMoverManager Listener Pattern. A Ship object is assigned to 
a UserCommandedMoverManager that is registered as a listener of that Ship instance. 
When the UserCommandedMoverManager "hears" the Ship's EndMove event, it informs 
the user (via a dialog box) of the Ship's current position and requests a new destination 
and speed. 

With the discrete event model of this simulation, there are only two events of 

interest in the course of moving a unit from a starting point to a destination. Assuming 

movement at a constant speed with no acceleration or deceleration considered, the unit 

starts moving at some time in the simulation. It arrives at the destination after an elapsed 

time equal to the distance divided by its speed. In Simkit, this elapsed time is computed 

and the destination arrival event is scheduled as soon as the unit starts moving. This 

sequence is shown below in Figure 5. As an example, consider a unit which must travel 

one hundred nautical miles at a speed of ten knots. If a time-stepped simulation were set 

to update only every hour, this movement would require the unit to be updated ten times. 
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moveTo() 

stop() 

Figure 5. Movement Event Graph. When the moveTo () method is executed for a 
Mover, Simkit calculates the time required to reach the destination, and schedules an 
EndMove event with this time delay. The EndMove event can be preempted with the 
Mover's stop () method. 

This simple uniform motion is sufficient for most purposes. However, if a more 

sophisticated movement model is required, the discrete event methodology is easily 

modified to accommodate more complex motion. 

4.        Environmental Considerations 

The primary focus of NAVLOGS is operational logistics; it is not intended to be a 

high-resolution combat simulation. However, since the targeted users of the simulation 

are predominately junior naval officers, a certain degree of realism is desired. A "cookie 

cutter" sensor and a flat earth model govern the basic interaction of targets and sensors 

provided by Simkit. The "cookie cutter" sensor is a circular area with radius equal to the 

maximum range of the sensor. As soon as a target is within the maximum range of the 

sensor, it is detected instantly. This type of sensor coupled with the flat earth model 

yields an undesired behavior for the purposes of this model. As an example, an air search 

radar may have a maximum range of hundreds of nautical miles, but it physically cannot 

detect a surface contact at that range due to the curvature of the earth.   The reference 
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implementation in Simkit will allow this detection to occur. To circumvent these types of 

phenomenona and provide the desired degree of realism, NAVLOGS implements two 

improvements to Simkit's implementation. Figure 6, below, illustrates the geometry of 

the detection sequence described next. 

Sensor     —i 

Legend 

(All dimensions are measured in nautical miles) 

hm = height of the line of sight at maximum range 

hs = height of the sensor 

ht = height of the target 

rd = detection range of the target 

rm = maximum range of the sensor 

rs = sensor horizon range 

R = Radius of the earth 

Target Flight 
Path 

Figure 6. Detection Sequence Diagram.    This diagram demonstrates the geometry 
governing the interaction of a target and sensor as the target enters the range of the sensor. 
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First, as a target enters the maximum range of a sensor in the default 

implementation of Simkit, an EnterRange event is generated. This EnterRange event then 

immediately schedules a Detection event. NAVLOGS provides the CurvatureMediator 

class to delay the Detection event for a more realistic appearance. In adjudicating the 

behavior of sensors and targets, this class takes into account the curvature of the earth to 

prevent unrealistic detections like the example above. 

Each friendly, neutral, and enemy unit in NAVLOGS has a height or altitude 

parameter. When the EnterRange event occurs, the CurvatureMediator computes sensor's 

horizon range, rs, as shown in (2) using the radius of the earth, R, and the sensor's height, 

hs, and subtracts this from the maximum range, rm. 

rs=J(R + hs)
2-R2 (2) 

This is then used to compute the height of the line of sight at the maximum range, hm, as 

shown in (3) and then compares this to the target's height, ht, shown above in Figure 6. 

K=J(rm-rs)
2+R2-R (3) 

If ht is greater than hm, then a Detection event is scheduled with no delay, since the target 

should be visible to the sensor. If the target's height or altitude is below the line of sight, 

further computations are required to determine when the Detection event should occur. 

The event graph in Figure 7 shows this progression. 
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Figure 7. Target Detection Event Graph. When a target enters the range of a sensor, its 
height, ht, is compared with the height of the line of sight, hm, at that range. If ht is greater 
than hm, a Detection event is scheduled with no delay. Otherwise, the event is scheduled 
with a time delay equal to the distance the target must travel until ht is equal to height of 
the line of sight divided by the relative speed of the target toward the sensor. 

Once the CurvatureMediator determines that the target is not immediately 

detectable, it calculates the maximum theoretical detection range of the target, rd, using 

(4). 

rd = J(R + hf-R2+J(R + hs)
2-R7 

(4) 

This is the distance from the height of the line of sight at the sensor to the height of the 

line of sight equal to the target's altitude. This range is subtracted from the maximum 

range to determine the distance the target must travel before it is no longer shielded by the 

curvature of the earth. The Detection event is then scheduled after a time delay equal to 

this distance divided by the relative speed of the target toward the sensor. Although 

simple, this approach enables the sensor target interactions in the model to capture the 

earth's curvature. 

The second enhancement to the basic Simkit implementation seeks to model the 

fact that the theoretical maximum range of an electromagnetic sensor is rarely achieved. 
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A variety of environmental factors such as target aspect and airborne contaminants can 

affect the actual range at which a target is detected. Each EnterRange event described 

above is accompanied by a corresponding ExitRange event. Likewise, each Detection has 

a similar Undetection. In order to include environmental variability, the Detection time 

determined by the CurvatureMediator is further delayed by a random exponentially 

distributed time. The Undetection is then scheduled by drawing another random time and 

subtracting it from the actual time the target will exit the sensor's range or be shadowed 

by the earth. This modification simply prevents targets from automatically being detected 

as soon as they enter the maximum range of the sensor. 

These two improvements to the default implementation of Simkit demonstrate the 

power of modular design. To achieve these improvements, only two new classes were 

written that simply add the desired behavior. Objects created from these classes were 

able to interact with all existing Simkit objects. Thus, the new functionality required no 

modification to the existing version of Simkit. 

5.        Simulation Animation 

While the discrete event paradigm described above is desirable from a modeling 

perspective, the interactive nature of NAVLOGS requires a smoothly animated 

presentation to the user. As a result of the modular design of this thesis, it is possible for 

the underlying non-visual model to run as a discrete event simulation while the user's 

view of that model appears to be time-stepped. The GUI is registered as a listener to a 

PingThread2 object as shown in Figure 8.    The PingThread2 class just "pings" at 
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periodic, fixed time intervals. The length of the time interval can be adjusted to speed or 

slow the pace of the presentation. When the GUI hears these pings, it gets a reference to 

all units still operating in the simulation. After obtaining a reference to the units, the GUI 

then loops over each one, obtains its current location, and paints it on the screen using 

standard Naval Tactical Data System (NTDS) symbology. 

Mover PingThread2 

Visual Display getCurrentLocationO 

+>   "Listened to" Event 

■►   Retrieves Property 

Figure 8. Animation Event Graph. The GUI is registered as a listener of the PingThread2 
which "pings" at a fixed time interval, At. When the GUI "hears" the pings, it retrieves 
the current location of all Movers still in the simulation and updates their icons on the 
screen. 

Each icon is a small image file that is contained in a Hashtable within the GUI. 

There is no hard-coded connection between a unit and the NTDS symbol that is painted 
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on the screen. Hence, the icons could be easily changed without re-compiling any classes 

of the model. Each unit in the simulation maintains a state variable of its current 

classification, similar to the way contacts are maintained in a real, tactical environment. 

Examples of these classifications include friendly, neutral, unknown assumed enemy, and 

others. Each contact is further classified as a surface, sub-surface, air, or missile target. 

These classifications can change over time as more information about a contact is 

gathered. A low, slow flying helicopter provides a useful example of this. With a low 

altitude and slow speed, this helicopter may initially be designated as a neutral surface 

contact. If it then speeds up considerably or climbs, it will be re-designated as a neutral 

air contact. Finally, if intelligence is received that it is in the vicinity of a hostile 

installation or a friendly asset visually identifies it, it may be classified as an unknown 

assumed enemy air or even enemy air contact. Since the symbology is not rigidly fixed to 

each unit, it is possible for the symbol corresponding to each of these classifications to be 

shown to the user as the classification is updated. A sample screen showing an example 

of these symbols is shown in Figure 11 and Figure 12 in Chapter DDL 

C.       BASIC SCENARIO DESCRIPTION 

Like PROLOG, NAVLOGS will be equipped with an initial basic scenario. 

However, as previously noted, NAVLOGS will be flexible enough to enable easy 

reconfiguration through the use of the scenario editor developed by [Ref. 3]. The 

intended basic scenario consists of a notional battle group together with an Amphibious 
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Readiness Group (ARG). The ARG is supporting a Marine element operating ashore. A 

short discussion of the carrier battle group scenario follows. 

The notional battle group is composed of a Kitty Hawk class carrier, two 

Ticoderoga class cruisers, two destroyers, one each from the Arleigh Burke and Spruance 

classes, and a Supply class fast combat support ship. The choice of a non-nuclear carrier 

is made to provide a greater requirement for F-76 fuel, increasing the strain on the 

logistics system. The available logistics assets will be further stressed with all VLS 

equipped escorts. Any missile re-supply for the escorts must be conducted in the forward 

logistics site (FLS), since there is no capability for underway replenishment of VLS 

launchers. A shuttle fleet consisting of a Cimarron class oiler and a Kilauea class 

ammunition ship operating from a forward logistics base are provided to re-supply the 

Supply class ship operating with the battle group. 

Opposition to the user's battle group and ARG will be provided from computer 

controlled enemy air, surface, and sub-surface units. These units will interact with the 

friendly platforms in the non-visual model, driving controlling inputs from the user. Staff 

updates will prompt the user to conduct air strikes and engage enemy combat units as 

they are detected. As the user conducts these operations, fuel and ammunition resources 

for friendly surface and air units will be consumed at realistic rates as discussed in 

Section HB.2, requiring the user to replenish these commodities with assigned logistic 

assets. The main purpose of the combat model is to provide consumption of fuel and 

ammunition, forcing the student to make realistic decisions to keep the force supplied. 
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In PROLOG, a student's performance is based on the accrual of points for 

damaging enemy units and targets, with corresponding point losses for damage to friendly 

units. When fully implemented, NAVLOGS will incorporate this performance system in 

addition to points based on the time averaged fuel and ammunition levels of assigned 

units. These criteria reflect the emphasis of NAVLOGS on operational logistics 

management, rather than combat operations. 

The scenario editor developed by Lieutenant Sterba will allow the instructor to 

tailor the scenario to match improved weapons and platforms in the fleet. The scenario 

editor will also enable the instructor to effortlessly make modest changes in the scenario. 

[Ref. 3] NAVLOGS can therefore be tailored to meet the needs and goals of the logistics 

course. Since the composition of the fleet, the weapons it employs, and the missions it 

performs will undoubtedly change in the future, the scenario editor will further allow the 

simulation to remain current by modifying it without requiring a complete re-write. This 

basic scenario is a simple default example. Unlike PROLOG, additional scenarios in 

other parts of the world with completely different units can easily be loaded with no 

change to the computer code. The specifics of how a scenario is loaded into the 

simulation and saved once in progress will be addressed next in the following chapter. 
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III.  DATA STORAGE AND RETRIEVAL 

A. OVERVIEW 

Data are input to the model through the use of two configuration files and an 

independent database. The configuration files are similar to the ".ini" files used by many 

applications in the Windows operating system. One file contains basic setup information 

about the graphical user interface (GUI), while the other holds information required to 

connect to the database. The implementation in this thesis connects to a Microsoft 

Access database through the Java JDBC-ODBC (Java Database Connectivity - Object 

Database Connectivity) bridge driver to store and retrieve the unit parameters for the 

model. The model will, however, operate without modification with any database that 

supports the structured query language (SQL) and has a platform Java Database 

Connectivity (JDBC) driver. The configuration files and database interface will next be 

examined in detail. 

B. CONFIGURATION FILES DESCRIPTION 

The initialization file consists of blocks of related information with a block title 

contained in braces (e.g. [Title]). Each block consists of parameter names on the left side 

of an equals sign and the corresponding value for the parameters on the right, (e.g. 

parameterl = value). A sample versions of NAVLOGS' GUI configuration file may be 

found in Figure 9. The initialization file for the GUI contains three blocks of 

information.   The first contains the parameters required for the initial display of the 
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window, including the title, location, and size.   The paths to the graphics files for the 

scenario map and the symbology for the units are contained in the next block. The final 

block of this file lists the data controlling the speed of the animation. 

[Window] 
name = Naval Logistics Simulator 
x = 0 
y = 0 
width = 800 
height = 600 
symbolHeight = 17 
symbolWidth = 17 

[Icons] 
map = pictures/Bosnial.jpg 
FriendlySurface = pictures/FriendlySurface.gif 
EnemySurface = pictures/EnemySurface.gif 

[PingThread] 
deltaT = 0.01 
millisPerSimTime = 100 
pinging = true 

Figure 9. Sample NAVLOGS' GUI Configuration File. The first block contains 
information required to initially display the window. The second contains paths the 
graphics files for the map and unit icons. The final block contains the parameters 
controlling the speed of animation. 

The file containing the database connection information is organized into two 

blocks, as shown in Figure 10. The first contains the name of the driver Java will use to 

connect to the database and the name and location of the database. The specifics of this 

connection will be examined in further detail in the next section. The second block of 

this file consists of the names of individual units in a given scenario and the names of the 

platform classes used to create those units. The unit names and the platform class names 

are used to create the initial SQL statements used to retrieve the saved parameters for 
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each unit and to locate a unit's record in the database for update. The advantage of using 

this input method for initialization information is that significant changes in the behavior 

and appearance of the simulation can be made without re-compiling any of the model 

computer code. As an example, in the two sample screens shown below in Figure 11 and 

Figure 12, the only difference is the name of the map file in the GUI initialization file. 

[Database Info] 
driverName = sun.jdbc.odbc.JdbcOdbcDriver 
url = jdbc:odbc:navlogsData 

[Units] 
DDG-53 = VLSShooter 
CG-65 = VLSShooter 
CG-70 = VLSShooter 
DD-973 = VLSShooter 

Figure 10. Sample NAVLOGS Configuration File. The two blocks in this file contain the 
database connection information and unit identification data. 

Kanal tegisties Simulator 

File        Sim Control 

Figure 11. Sample Model Screen. This screen shot shows the GUI using the Bosnial map 
file in the initialization file. 
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Figure 12. Sample Model Screen.    This screen shot shows the GUI with the same 
simulation as Figure 11 and the Bosnia2 map file in the initialization file. 

C.       DATABASE DESCRIPTION 

1.        Database Communication 

There are two ways a Java application can communicate with a database, as 

illustrated in Figure 13. Each mechanism uses the Java Database Connectivity (JDBC) 

application-programming interface (API) to communicate with the JDBC driver manager. 

The JDBC driver manager then can communicate with the database through a vendor or 

third party supplied JDBC driver, as shown on the right side of Figure 13. All 

commercially available databases like Oracle, Sybase, and many others have pure Java 

JDBC drivers available.    Also, most freely-available database applications such as 
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Postgres, mSQL, and MySQL, likewise have JDBC drivers. Therefore, NAVLOGS can 

be easily configured to get data from most any database available. In the second 

communication path, shown on the left side of Figure 13, the JDBC-ODBC bridge 

connects to the database through the ODBC driver of the operating system. 

This second method, required to connect to the Microsoft Access database used by 

this thesis, requires some system setup before a connection can be made. The system 

where the database file actually resides must have the 32 bit ODBC component installed. 

Next, an ODBC data source must be configured. The user specifies a data source name 

as shown in dialog box in Figure 14. This is the database name used in the initialization 

file to point the simulation to the database. Finally, under the Database section of the 

dialog, the user selects the database file containing the scenario information. 

Java Application 

JDBC Driver Manager 

JDBC/ODBC 
Bridge 

ODBC 
Driver 

Pure Java 
JDBC Driver 

JDBC API 

JDBC Driver 
API 

Database 

Database 

Figure 13. Possible Application to Database Communication Paths From Ref. 6: p 190. 
The path on the left is used to connect to an ODBC database; the right path demonstrates 
communication with any database having pure Java JDBC driver. 
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ODBC Microsoft Access 97 Setup 

Data Source Name: (IEEWBBBIEB 
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Options» 

Figure 14. ODBC Data Source Configuration Dialog Box. The user first supplies a data 
source name and, optionally, a description. After selecting the database file and pushing 
the "OK" button, that database is available as an ODBC data source on the system. 

2.        Database Structure 

In the current version, the database consists of four different types of tables. Each 

base class is provided with a table to store the static setup information about the available 

platforms. There is a table with range information for the various sensors. The final two 

table varieties store the dynamic properties for the sub-classes and the MoverManagers. 

The database, working in concert with the initialization files, make the simulation 

independent of the data so that the same simulation computer code can run different 

scenarios with no modification or re-compilation. 

The tables used for the base classes are intended to be used by the scenario editor 

to provide a listing of the available platform types that can be assigned to a given 
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scenario. A sample portion of a table for the Ship class is shown in Table 1. The scenario 

editor would read in the hullNumber column and use it to populate a menu of available 

Ships. The user selects a Ship and places it on the screen. The remaining information, 

along with the unit's position, is used to write a table for the extended classes to be 

accessed by the simulation. The sensor table is cross-referenced by these tables to 

provide maximum range information for each different sensor. 

java 
Class 

hull 
Number 

surface 
Radar 

air 
Radar 

max 
Speed 

F-76 
Capacity 

bO bl b2 

VLSShooter CG-47 SPS-67 SPY-1 32 597.0 -1429.04 2215.39 37.48 

Carrier CV-63 SPS-55 SPS-48 32 2197.2 -8937.6 10865.9 32.67 

CLF AOE-6 SPS-67 26 3740.4 12117.2 -12232.3 -25.79 

Amphib LHD-1 SPS-67 SPS-48 22 1850.0 -700.81 2039.41 78.21 

VLSShooter DD-963 SPS-55 SPS-40 33 492.0 -1812.92 3097.97 27.07 

Table 1. Partial Foundation Class Database Table Showing Sample Static Parameter 
Values 

Each sub-class has its own table, where the name of the table is the Java class 

name required to create a unit of that type. This name is also contained in the 

initialization file for each individual unit. This structure allows the constructed SQL 

statement to locate a unit's record in the database. Within the table, the columns are the 

different state parameters required for a unit of that type. The rows of the table are 

records for individual units of that type. A small sample is shown in Table 2. The 

javaClass entry in the table is used to identify what type of object will be instantiated. 
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NAVLOGS then uses an advanced Java feature called reflection to instantiate the objects 

and populate the instance variables. 

javaClass name xCoord yCoord currentF76 vlsCells sm2s 

VLSShooter CG-65 84.32 107.68 507.31 122 54 

VLSShooter CG-70 98.46 99.63 474.34 122 60 

VLSShooter DD-973 124.33 119.91 447.71 61 0 

VLSShooter DDG-53 102.41 77.35 389.85 90 40 

Table 2. Partial Platform Class Showing Sample Dynamic Parameter Values 

To add a new type of platform, the model requires only the new sub-class detailed 

in Chapter II and a new table added to the existing database named for the new extension. 

Finally, any units of this type to be added to an existing scenario need to be added to the 

units block of the initialization file with their names and the new class name. The final 

table type holds the MoverManager information.  Table 3 shows a representation of the 

information for the units shown in Table 2. 

name destX destY current 
Speed 

CG-65 100.0 10.0 15.0 

CG-70 110.0 5.0 15.0 

DD-973 90.0 5.0 15.0 

DDG-53 100.0 0.0 15.0 

Table 3. Sample MoverManager Table with Example Values 
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3.        Data Access 

The task of reading data from the database and updating the dynamic tables is the 

responsibility of the DBInterface class. This class provides a number of methods 

allowing it to read in unit records and create the objects of the simulation, as well as 

updating the units' information in the database when the user saves a scenario in progress. 

This class has no direct knowledge of either the simulation or the database until it is 

created. When the simulation is started, a DBInterface is created and given the database 

connection information from the initialization file. The individual unit names and the 

names of their sub-classes are placed in a Java Properties object. A reference to the 

newly created DBInterface is then passed to the GUI when it is created. 

Once the GUI has a reference to the DBInterface, the GUI calls the loadUnits() 

method of DBInterface. This method loops over each unit in the Properties object 

described above and looks for a table in the database matching the sub-class name 

associated with that unit. If the search is successful, the unit's information is retrieved 

and used to instantiate that unit, and the unit is added to a Java Vector object. After the 

loop is completed, the Vector of units is returned to the GUI for display. 

A similar method is used to update the status of the units in the simulation. The 

updateUnits() method of DBInterface accepts a Vector of units from the GUI. The 

method loops over the Vector, determines the sub-class and name of each unit, then looks 

in the database for a corresponding entry. If an entry is found, the method retrieves the 
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Properties object from the unit with the current values of its state variables, constructs an 

SQL statement with the updated information, and updates the record in the database. 

The use of an independent database together with the configuration files greatly 

enhances the flexibility of the simulation. The parameters, which provide the desired 

behavior of the units in the simulation, can be easily changed to model other units with no 

change required to the computer code. Likewise, the composition of the forces in the 

simulation can also be quickly changed. This gives the simulation the power to run 

multiple scenarios or alter existing scenarios with little difficulty. 
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IV.      SUMMARY AND RECOMMENDATIONS 

A.       THESIS RESULTS 

Building an interactive logistics wargame to support the entire vision of 

NAVLOGS is a tremendous undertaking, far beyond the scope of a single master's thesis. 

While this thesis has not brought the project to the desired end state, it has provided a 

solid foundation on which further development can be built. The use of the Java 

programming language, modular design, and use of a separate database and configuration 

files enable this foundation to operate on many operating systems and even multiple 

computers. 

The discrete event simulation is scalable, and expanded functionality can be added 

without extensive modification to the existing model. The simulation provides basic 

ships that move in an environment that captures the curvature of the earth. These ships 

consume fuel at accurate rates for their respective classes. More importantly, since the 

primary aim of this project is modeling naval operational logistics, the model's logic 

keeps ships from moving without sufficient fuel. The modular architecture enables the 

underlying model to operate as a discrete event simulation, while the presentation to the 

user appears to be a smoother looking, time-stepped model. 

Through the use of a separate database and simple configuration files, the 

simulation is independent of its required data and parameters. This feature enables the 

simulation to run multiple scenarios with distinct units assigned and different maps or 
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symbology without re-compilation of the computer code. The use of JDBC drivers in 

conjunction with a network-accessible database can ultimately support a logistics 

wargame running on a local area network, or even the Internet. There are several areas 

for future work on this project in order to bring NAVLOGS to its full design concept. 

B.       RECOMMENDATIONS FOR FURTHER DEVELOPMENT 

1. Simulation Modifications 

The single most important work needed in the simulation is the addition of a 

combat model between the two sides. Currently, the friendly units are maneuvered by the 

user as described in Chapter II, while the enemy units simply follow a preset path. As 

they move in the simulation, units from the two sides detect one another, although the 

combat portion is not yet implemented. The next step will be to develop a combat model 

with realistic means of depleting ammunition, thus generating requirements for 

replenishment. A second key improvement to the current version of the simulation is the 

need to model both land and sea. In his thesis research, Lieutenant John Sterba has 

developed the necessary methods and algorithms to model this, but this necessary 

behavior has yet to be integrated with this thesis' work. 

2. Data Storage and Retrieval 

The configuration setup required to connect the Microsoft Access database 

outlined in the previous chapter can be made more convenient for the user. Within the 

current setup, the instructor is required to configure each different scenario's database in 

the Windows operating system.   Using this type of database also fixes the database to 
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only one machine. By using a database application with a pure Java JDBC driver, the 

database file can be located anywhere. For example, the database could be located on a 

server over a network or the Internet. The only change required to access this new 

database would be to update the initialization file with the driver name, the URL to the 

database, and any logon information like user name or password. Since the DBInterface 

class has been written in a completely generic manner, it will still read and write correctly 

to any database to which it can connect. 

To demonstrate this, the tables from the Microsoft Access database were imported 

into a database application called MySQL running on the Linux operating system. By 

changing the initialization files to point to a pure Java JDBC driver for MySQL, the 

current version of NAVLOGS was run without any other modification 

3.        Scenario Editor 

The scenario editor developed by Lieutenant Sterba allows the instructor to add 

any map to a scenario and add the coastlines to prevent ships from moving on land and 

conversely, land vehicles from driving in the sea. The editor also allows units to be 

assigned on the map from a menu. Currently, the menu containing the various units is 

read from a text file. Integration of Lieutenant Sterba's scenario editor with the classes 

developed in this thesis is another important step in the process to fully implement 

NAVLOGS. To integrate the scenario editor into this thesis, it needs only to add the 

necessary methods to the DBInterface class to populate the units menu from the database, 
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read the static setup information for the assigned unit, and write that information with the 

position back to the appropriate table in the database. 
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APPENDIX A. OBJECT ORIENTED PROGRAMMING AND JAVA 

This appendix provides a basic introduction to the fundamentals of Object 

Oriented Programming (OOP) and Java. If the reader desires more in depth coverage of 

the subject, many excellent references, such as [Ref. 7], are available. 

An object-oriented language such as Java differs from procedural programming 

languages such as Pascal. A procedural language consists of data structures together with 

algorithms that manipulate the data. In OOP, the primary data structure is the object. 

Each object is defined by a class, which is "...a container for the data and methods 

(functions) that make up part or all of an application." [Ref. 7: p 52] Thus, in OOP, the 

data and algorithms are bound together in the objects. An OOP can be compared with the 

parts of the modern personal computer (PC). Just as the PC is assembled from many 

replaceable components that have certain functionality, an OOP program is assembled 

from collections of objects. [Ref. 7: pp. 104-5] 

In Java the properties of an object are contained in its instance variables.  These 

variables may be numbers, strings of text, or even other objects.   Taken together the 

values of these variables describe the state of the object at any given time. The instance 

variables of an object are hidden from other objects to prevent inadvertent or malicious 

modification by declaring them to be "private".   Other objects can gain access to the 

private instance variables of an object only through its methods. This powerful feature of 

OOP is known as encapsulation. [Ref. 7: pl07] 

Formally, encapsulation is nothing more than combining data and 
behavior in one package and hiding the implementation of the data from 
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the user of the object.... Encapsulation is the way to give the object its 
"black box" behavior, which is the key to reuse and reliability. Since this 
means an object may totally change how it stores its data but, as long as it 
continues to use the same methods to manipulate the data, no other object 
will know or care. [Ref. 7: p 107] 

The two most common types of methods are the accessor and mutator, often-called 

"getters" and "setters".   As the name implies getters retrieve the values of instance 

variables, and setters modify them. 

A second important feature of OOP is the notion of inheritance. Simply put, this 

means that a class can build upon or extend another class. The class that is extended is 

commonly called the superclass or parent class, while the extending class is most often 

referred to as the sub-class or child class [Ref 7: p 156]. The child class "...initially has 

all the properties and methods of its parent." [Ref. 7: p 106] Like any other class, though, 

a child must access the private instance variables of its parent through the parent's 

methods.  The child may override any or all methods of its parent to easily modify its 

behavior. This leads to the principle of polymorphism. This principle is explained in the 

following quotation. 

When you send a message that asks a subclass to apply a method 
using certain parameters, here is what happens: 
- The subclass checks whether or not it has a method with that name and 
with exactly the same parameters. If so, it uses it. 

If not, 

- Java moves to the parent class and looks there for a method with that 
name and those parameters. If so, it calls that method 
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Since Java can continue moving up the inheritance chain, parent classes 
are checked until the chain of inheritance stops or until Java finds a 
matching method. [Ref. 7: p 162] 

An object is created or instantiated from a class using the new keyword. The new 

object is said to be an instance of that class.   Several events occur when an object is 

instantiated in Java. System memory is set aside for the new object, and a special method 

is executed.   The constructor method of the object receives any initial values of the 

instance variables and assigns them. It also conducts any required additional setup for the 

object, such as registering the object with other objects in the application.  A powerful 

feature of Java over other programming languages is the garbage collector.   When an 

object is no longer required by the application, the garbage collector reclaims the memory 

that was used by that object and makes it available to the system again. 
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APPENDIX B. SAMPLE Computer CODE 
/** 

* navlogs.smd.Vehicle Interface 
* 
* ©author Anthony Troxell 

** / 

package navlogs.smd; 

import java.util.*; 
import simkit.*; 
import simkit.smd.*; 

public interface Vehicle extends Mover { 

//instance methods 

/ ** 
* A required override, since the SimEntityBase method appends a 
* serial.  Without the base name the units database record will not 
* be found when attempting to update. 

** / 
public String getName(); 

/** • 
* Required for a NAVLOGS unit to build the SQL update statements to 
* save its current state. 

** / 
public Properties getProperties(); 
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* navlogs.smd.Ship Class 
* 
* A generic class for surface ship units. 
* 
* ©author Anthony Troxell 

** / 

package navlogs.smd; 

import java.util.*; 
import j avax.swing.*; 
import navlogs.utility.*; 
import simkit.*; 
import simkit.smd.*; 

public class Ship extends BasicMover implements Vehicle{ 

// instance variables 

private boolean uSA = true; 
private boolean unrepStatus; 
private boolean zigStatus; 
/** 
* The three "b" variables are used to determine fuel consumption 
* rates for various speeds in the following formula: 
* Kgals/hour = bO + bl * exp( b2 * ( speed / 100 ) ~ 3 ) 

** / 
private double bO; 
private double bl; 
private double b2; 
private double currentF76; 
private double maxF76; 
private double maxSpeed; 
private double timeLastFuelUpdate; 
private Imagelcon symbol; 
private Properties stateVars; 
private String name; 

// constructor methods 

public Ship(Properties prop){ 
super(getBasicMoverlnfo(prop)); 
stateVars = (Properties) prop.cloneO; 
try{ 

uSA = Utility.bool(stateVars.get("uSA")); 
unrepStatus = Utility.bool(stateVars.get("unrepStatus")) 
zigStatus = Utility.bool(stateVars.get("zigStatus")); 
bO = Utility.doub(stateVars.get("b0")) 
bl = Utility.doub(stateVars.get("bl")) 
b2 = Utility.doub(stateVars.get("b2")) 
currentF76 = Utility.doub(stateVars.get("currentF76* 
maxF76 = Utility.doub(stateVars.get("maxF76")); 
maxSpeed = Utility.doub(stateVars.get("maxSpeed")); 
timeLastFuelUpdate = 
Utility.doub(stateVars.get("timeLastFuelUpdate")); 

name = stateVars.get("name").toString(); 
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* None of the "b" variables or the unit name are 
* subject to change after instantiation so they are 
* removed from the Properties. 

** / 

stateVars.remove("bO") 
stateVars.remove("bl") 
stateVars.remove("b2") 
stateVars.remove("name"); 

} 
catch(NullPointerException e){System.out.println(e + 
": Invalid Properties object to create Ship."); 

} 
} 
protected static String getBasicMoverlnfo(Properties prop){ 

StringBuffer buf = new StringBuffer(); 
bu f.append(prop.get("name") + " "); 
buf.append(prop.get("xCoord") + " "); 
buf.append(prop.get("yCoord")+ " "); 
buf.append(prop.get("maxSpeed")); 
return buf.toString() ; 

} 

// instance methods 

public void addCurrentF76(double newF76){ 
if(currentF76 + newF76 <= maxF76 && currentF76 + newF76 >= 0){ 

currentF76 += newF76; 
} 
else if(currentF76 + newF76 < 0){ 

currentF76 = 0; 
} 
else{ 

currentF76 = newF76; 
} 

} 
/** 

* This method first removes the fuel used since the last update, 
* updates the time of last update to the current simTime, then 
* returns the amount of fuel remaining. 

** / 

public double getCurrentF76(){ 
double timeElapsed = Schedule.simTime() - timeLastFuelUpdate; 
this.addCurrentF76(-(timeElapsed * getFuelUseRate())); 
timeLastFuelUpdate = Schedule.simTime(); 
return currentF76; 

} 
public boolean isUNREP(){ 

return unrepStatus; 
} 
public boolean isUSA(){ 

return uSA; 
} 
/** 

* Used by the getCurrentF76 and setSpeed methods to calculate the 
* rate of fuel use since the fuel level update. 
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** / 

private double getFuelUseRate(){ 
return (bO + bl * Math.exp(b2 * (Math.pow(this.getSpeed() / 100, 
3)))) / 1000; 

} 
/** 
* Used by the moveTo method to calculate the rate of fuel use for 
* the intended move. 
* @param atSpeed the speed of the next movement 

** / 
private double getFuelUseRate(double atSpeed){ 

return (bO + bl * Math.exp(b2 * (Math.pow(atSpeed / 100, 3)))) / 
1000; 

} 
public double getMaxF76(){ 

return maxF76; 
} 
public double getMaxSpeed(){ 

return maxSpeed; 
} 
/** 
* Implements Vehicle. 

** / 
public String getName() { 

return name; 
} 
/** 
* All state variables which can be changed over the course of the 
* simulation are updated in the stateVars Properties object and a 
* copy of the Properties object is returned to build the update SQL 
* statement. 
* 
* Implements Vehicle. 

** / 
public Properties getProperties(){ 

stateVars.put("uSA", String.valueOf(uSA)); 
stateVars.put("unrepStatus", String.valueOf(unrepStatus)); 
stateVars.put("zigStatus", String.valueOf(zigStatus)); 
stateVars.put("currentF76", String.valueOf(currentF76)); 
stateVars.put("maxF76", String.valueOf(maxF76)); 
stateVars.put("maxSpeed", String.valueOf(maxSpeed)); 
stateVars.put("timeLastFuelUpdate", 
String.valueOf(timeLastFuelUpdate)); 

stateVars.put("xCoord", 
String.valueOf(this.getCurrentLocation().getXCoord())); 

stateVars.put("yCoord", 
String.valueOf(this.getCurrentLocation().getYCoord())); 

return (Properties) stateVars.clone(); 
} 
public Imagelcon getSymbol(){ 

return symbol; 
} 
public double getTimeLastFuelUpdate(){ 

return timeLastFuelUpdate; 
} 
public boolean getZigZag(){ 
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return zigStatus; 
} 

/** 

* Order the BasicMover to begin moving to the given destination at 
* the maximum speed. 
* @param destination The current destination of the Ship. 

** / 

public void moveTo(Coordinate newDestination) { 
this.moveTo(newDestination, maxSpeed); 

} 
/** 

* Order the BasicMover to begin moving to the given destination at 
* the given speed (or the maximum speed, whichever is smaller). 
* This method overrides the moveTo method of BasicMover to check if 
* there is sufficient fuel for the Ship to travel to the 
* destination. 
* @param destination The current destination of the Ship. 
* @param atSpeed The speed at which the BasicMover is to travel or 
* maxSpeed, whichever is smaller). 

* */ 

public void moveTo(Coordinate newDestination, double atSpeed) { 
double time = newDestination.distanceFrom( 
this.getCurrentLocation()) / atSpeed; 

if(time * this.getFuelUseRate(atSpeed) < this.getCurrentF76()){ 
setDestination(newDestination); 
setSpeed(atSpeed); 
waitDelayCStartMove", 0.0, this); 

} 
else{ 

JOptionPane.showMessageDialog((JFrame)null, "Insufficient fuel 
to " + "reach " + newDestination, "Low Fuel Warning " + 
this.getName(), JOptionPane.WARNING_MESSAGE); 

} 
} 
public void setlsUNREP(boolean isUNREP){ 

unrepStatus = isUNREP; 
} 
/** 

* This method allows for a reduction in max fuel due to battle 
* damage. 

** / 

public void setMaxF76(double newMaxF76){ 
maxF76 = newMaxF76; 

} 
/** 

* This method allows for a reduction in max speed due to battle 
* damage. 

** / 

public void setMaxSpeed(double speed){ 
maxSpeed = speed; 
if(this.getSpeed() > maxSpeed){ 

super.setSpeed(maxSpeed); 
} 

} 
/** 

* This method first removes the fuel used since the last update, 
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* updates the time of last update to the current simTime, then sets 
* the unit's speed. 
* @param newSpeed the new speed of movement 

** / 
public void setSpeed(double newSpeed){ 

double timeElapsed = Schedule.simTime() - timeLastFuelUpdate; 
this.addCurrentF76(-(timeElapsed * getFuelUseRate())); 
timeLastFuelUpdate = Schedule.simTime(); 
super.setSpeed(Math.min(newSpeed, maxSpeed)); 

} 
public void setSymbol(Imagelcon symbol){ 

this.symbol = symbol; 
} 
public void setZigZag(boolean zigZag){ 

zigStatus = zigZag; 
} 
public String toString(){ 

StringBuffer buf = new StringBuffer() ; 
buf. append (super. toStringO + "\n"); 
if(isVerbose()){ 
//  These lines are for troubleshooting. 

buf.append("Current F76: " + currentF76 + "\n"); 
buf.append("Max F76: " + maxF76 + "\n"); 
buf.append("Last Fuel Update: " + timeLastFuelUpdate + '\n'); 
buf.append("b vals: " + bO + " " + bl + " " + b2 + "\n"); 
buf.append("ZigZag: " + zigStatus + "\n"); 
buf-append("USA: " + uSA + "\n"); 
buf.append("unrep Status: " + unrepStatus + "\n"); 

} 
return buf.toString(); 

} 
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* navlogs.smd.VLSShooter Class 
* 

* Extends the Ship class to model VLS Launcher equipped missile 
* escorts. 
* 

* ©author Anthony Troxell 

package navlogs.smd; 

import java.util.*; 
import navlogs.utility.*; 
import simkit.*; 
import simkit.smd.*; 

public class VLSShooter extends Ship{// implements Vehicle{ 

// instance variables 

private int sm2s; 
private int thawks; 
private int vlsCells; 
private Properties stateVars; 

// constructor methods 

public VLSShooter(Properties prop){ 
super(getShipInfo(prop)); 
sm2s = Utility.intg(prop.get("sm2s")); 
thawks = Utility.intg(prop.get("thawks")); 
vlsCells = Utility.intg(prop.get("vlsCells")); 
stateVars = new Properties(); 

} 
protected static Properties getShipInfo(Properties prop){ 

Properties shipProp = (Properties) prop.cloneO; 
shipProp.remove("vlsCells"); 
shipProp.remove("sm2 s"); 
shipProp.remove("thawks"); 
return shipProp; 

} 

// instance methods 

public Properties getProperties(){ 
stateVars = super.getProperties(); 
stateVars.put("sm2s", String.valueOf(sm2s)); 
stateVars.put("thawks", String.valueOf(thawks)); 
stateVars.put("vlsCells", String.valueOf(vlsCells)); 
return (Properties) stateVars.clone () ,- 

} 
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public String toString(){ 
StringBuffer buf = new StringBuffer(); 
buf.append(super.toString()); 
if (isVerboseO ) { 

// these lines are for troubleshooting 
buf.append("VLS-Cells: " + vlsCells + "\n"); 
buf.append("SM-2's: " + sm2s ■+ "\n"); 
buf.append("Tomahawks: " + thawks + "\n"); 

} 
return buf.toString(); 

} 

56 



LIST OF REFERENCES 

1. Miller, Marvin O., ed., Underway Replenishment of Naval Ships, Underway 
Replenishment Department, Port Hueneme Division Naval Surface Warfare Center, 
Port Hueneme, CA, 1992. 

2. Mitchell, Mark L., PRO-LOG Player's Manual, Operations Research Department, 
Naval Postgraduate School, Monterey, CA, 1988. 

3. Sterba, John, Operational Maneuver from the Sea Logistics Training Aid, Masters 
Thesis, Operations Research Department, Naval Postgraduate School, Monterey, CA, 
1999. 

4. Stork, Kirk A., Sensors in Object Oriented Discrete Event Simulation, Masters 
Thesis, Operations Research Department, Naval Postgraduate School, Monterey, CA, 
1996. 

5. Schrady, David A., Gordon K. Smyth, and Robert B. Vassian, Predicting Ship Fuel 
Consumption: Update, Operations Research Department, Naval Postgraduate School, 
Monterey, CA, 1996. 

6. Horstmann, Cay S. and Cornell, Gary, Core Java 1.1, Volume II, Advanced Features, 
Sun Microsystems Press, Mountain View, CA, 1998. 

7. Horstmann, Cay S. and Cornell, Gary, Core Java 1.1, Volume I, Fundamentals, Sun 
Microsystems Press, Mountain View, CA, 1997. 

57 



THIS PAGE INTENTIONALLY LEFT BLANK 

58 



INITIAL DISTRIBUTION LIST 

1.   Defense Technical Information Center. 
8725 John J. Kingman Rd., STE 0944 
Fort Belvoir, VA 22060-6218 

Dudley Knox Library  
Naval Postgraduate School 
411 Dyer Rd. 
Monterey, CA 93943-5101 

Defense Logistic Studies Information Exchange. 
U.S. Army Logistics Management Center 
Fort Lee, VA 23801-6043 

Deputy Chief of Naval Operations (Logistics). 
Attn: CDR Carolyn Kresek, N421C 
2000 Navy Pentagon 
Washington, DC 20350-2000 

5.   Professor David Schrady, Code OR/So. 
Department of Operations Research 
Naval Postgraduate School 
Monterey, CA 93943-5000 

Professor Arnold Buss, Code OR/Bu. 
Department of Operations Research 
Naval Postgraduate School 
Monterey, CA 93943-5000 

CDR Kevin Maher, Code OR/Mk  
Department of Operations Research 
Naval Postgraduate School 
Monterey, CA 93943-5000 

LT Anthony Troxell.. 
818TharpSt,#106 
Arlington, TX 76010 

59 


