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ABSTRACT 

Multiresolution Image Fusion of Thematic Mapper Imagery 

with Synthetic Aperture Radar Imagery 

by 

Theodore R. Meek, Master of Science 

Utah State University, 1999 

Major Professor: Dr. Doran J. Baker 
Department: Electrical and Computer Engineering 

This study was designed to demonstrate the feasibility of applying multiresolution 

image fusion techniques to synthetic aperture radar (SAR) and Landsat imagery. This 

was accomplished through the development and application of image fusion software to 

test images, for the purpose of comparing results, to show that information from more 

than three bands can be used to study surface and subsurface features in a single image. 

The test images were fused using six image fusion techniques that are the combinations 

from three types of image decomposition algorithms (ratio of low pass [RoLP] pyramids, 

gradient pyramids, and morphological pyramids) and two types of fusion algorithms 

(selection and hybrid selection and averaging). Based upon the composite images formed 

by fusing the test images, this study concludes that: small details in city areas make 

morphological pyramids ineffective, selection forms of fusion do not effectively combine 

the data, RoLP and gradient pyramids with hybrid fusion produce the best results, and 

optimum pyramid depth is dependent upon the size of detail in the images.     (122 pages) 
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CHAPTER I 

INTRODUCTION 

A.        Remote Sensing and Earth Images 

Remote sensing is the technique of using sensors located a considerable distance 

from the information source to obtain, process, and interpret data to obtain information 

and perspective about the source itself. Terrestrial remote sensing has become popular in 

the last two decades because it makes possible easy mapping, monitoring, and study of 

changes on or even beneath the Earth's surface. Images obtained from remote sensors 

have been used for the study of ice sheets [1, 2], locating villages in third world countries 

[3], locating gold, vegetation mapping, land use studies, geological mapping, watershed 

studies, urban planning, and much more [4, 5]. 

A widely used source of remotely sensed data is the Landsat satellite series. 

Landsat uses the optical and near infrared (IR) wavelengths. Low spatial resolution (83 

meters) multispectral scanner instrument images from the first Landsat satellite, Landsat- 

1, have been available since 1972 [6]. Although Landsat images are an excellent source 

of information, the images can be quite expensive. High spatial resolution (30 meters) 

images from Landsat-5's Thematic Mapper (TM) instrument can be obtained through 

Space Imaging EOS AT but cost thousands of dollars per scene. A less expensive source 

is the EROS Data Center that sells images over 10 years old for $200 to $400 per scene 

[6]. There have been five Landsat satellites successfully launched by the United States; 

Landsat-6 was lost, and Landsat-7 is scheduled for launch in April 1999. 
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Another source of remotely sensed data is synthetic aperture radar (SAR). SAR 

images of the Earth's surface have been available since the late 1970s. The first U.S. 

SAR satellite was Seasat, which was launched in 1978 to collect data on sea-surface 

winds, sea ice features, and ocean topography [4].   The Space Shuttle has flown three 

SAR instruments: SIR-A in 1982, SIR-B in 1985, and SIR-C in 1994. SAR has become 

increasingly popular in the 1990s, most likely because of new image processing 

techniques that incorporate accurate correction of acquisition errors such as 

foreshortening. Several countries have launched SAR satellites; these include the 

European Space Agency's ERS-1 and ERS-2 launched in 1991 and 1996, Japan's JERS-1 

launched in 1992, and Canada's Radarsat launched in 1995 [4]. 

SAR has a distinct advantage over passive sensors, such as the ones in Landsat 

satellites, in that SAR does not rely on solar illumination. In fact, SAR can gather data in 

both sunlit and dark regions as well as in regions covered by clouds, fog, or pollution. 

SAR can even penetrate several near-surface materials such as sand, foliage, and forest 

canopies [4, 7]. This capability makes SAR an excellent companion for study with 

optical sensors. 

B.        Viewing Techniques and Challenges 

Most remotely sensed data come in bands corresponding to the wavelength used 

to acquire the images. Typical Landsat TM images have seven bands, and SAR images 

can have several bands. In order to view a single band, there are two main options, 

representing the image as a grayscale image or as a pseudocolored image. 
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To view a single band using the grayscale option, each sensor sample, or pixel, 

will be assigned a value, usually between 0 and 255. If the sensor does not receive or 

store the samples on a 0 to 255 scale, the conversion is simple: The highest value in the 

range corresponds to 255; the lowest corresponds to 0, and all other values are 

interpolated and quantized to fit the 0 to 255 scale. Color pictures are made up of three 

grayscale images, a red image, a green image, and a blue image (RGB), commonly called 

RGB values. For example, the expression RGB = (1, 4, 2) would mean that the red pixels 

are band 1, green pixels are band 4, and blue pixels are band 2. In a grayscale image, it is 

often difficult to distinguish between pixels of similar value because they seem to blend 

together. Pseudocoloring is used because the human eye readily detects contrast in 

images [8, 9]. The pseudocoloring technique is to assign each pixel intensity a red, 

green, and blue corresponding color level. This scale helps viewers see large-scale 

changes across the image. The color level assigned to each pixel value can be arbitrary; 

however, the following is a common scale: Pixel intensity from 0 to 47 changes from 

black to violet; intensity from 48 to 79 changes from violet to blue; and additional 

increments of 47 go from blue to cyan to green to yellow to red to white [5]. White is 

still the most intense pixel, and black is the least intense. 

To view multiple bands, several techniques have been implemented. Nonetheless, 

each technique is based upon the same principle: Assign one band to each pixel color 

red, green, and blue. This limits the viewing of an image to three bands; however, it 

allows full color images of the data. Typical Landsat images are viewed with color 

combinations that show the bands of interest to the study; different bands show different 

properties on the Earth's surface. More details on what specific Landsat bands show will 
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be given in Chapter II. Other than a simple band being used to represent the color, ratios 

of bands have also been used. For example, red could be band 7 divided by band 4; green 

could be band 2 divided by band 1, and blue could be band 7 divided by band 3 [10]. 

SAR images with more than one band can also be viewed this way; for example, red 

could be band L, and green and blue could both be band C [5]. 

Composite images can be formed if proper image registration has been achieved. 

This usually requires extensive processing of the SAR images to correct for 

foreshortening. This is done by assigning bands from both sources to the red, green, and 

blue pixel values. An example would be to use two Landsat bands for red and green and 

a SAR band for blue. This technique has proven extremely useful in determining land 

usage; however, this technique is still limited because only three bands can be viewed 

simultaneously. 

C.        Multiresolution Image Fusion 

Combining two images to form a composite image is not unique to remote 

sensing. Several applications have use for image fusion, i.e., the merging of two images 

to create one. Image fusion can be used for computer vision, aiding pilots to land in 

inclement weather, compressing source image data, medical diagnosis through fusing CT 

and MR images, ease of viewing to reduce human operator work load, etc. [11, 12, 13] 

The simplest approach to image fusion is to set the composite pixel value equal to 

the average of the source values. This is not the optimal approach, however, because 

features that appear in one image and not the other are shown in the composite at a 

reduced contrast or are superimposed on features from the other image. 



The key to successful image fusion is to create a composite image that retains all 

useful information contained in the source images without introducing artifacts that can 

interfere with analysis and interpretation [11, 12]. Figure 1 represents the approach taken 

in current literature, a multiresolution pyramid [11-17]. In this approach, the source 

images are filtered and reduced repetitively, forming a pyramid. In the figure, Ao and Bo 

are the original source images to be fused; Ai and Bi are reduced- 

Composite Pyramid 

Pyramid A 

Ao 

A! 

Pyramid B 

A„n 
cn -di B„ 

Fig. 1. Data flow diagram for pyramid fusion process 
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filtered versions of Ao and Bo. Likewise, A2 and B2 are reduced-filtered images of Ai 

and Bi. This process will be explained in more detail in Chapter HI. Each level of the 

pyramid is then fused, using a fusion algorithm to create a composite pyramid. The 

fusion process can be either complex or simple. (Fusion processes are discussed in 

Chapter IV.) A composite image is generated from the composite pyramid, which will 

include all important information from the source images and no new artifacts. Figure 1 

is a data flow diagram of the multiresolution fusion process. The square boxes represent 

the levels of the pyramid, or images. The red circles represent functions that fuse the two 

incoming images into one composite outgoing image. Although no function appears 

between levels of the pyramids, it should be understood that, when constructing a 

pyramid from the source image, there is a function that filters and subsamples the current 

image to generate the higher level. The green boxes represent the composite pyramid; 

however, Co is not the final composite image. The final image is obtained by 

reconstructing the composite pyramid. 

D.        Study Approach 

Analysis of Landsat and SAR images is conventionally accomplished by 

assigning particular bands or ratios of bands to red, green, and blue pixels. By choosing 

specific bands or ratios of bands, analysis of particular properties can be made easier. In 

several cases it is possible to generate images from different bands that show the same 

properties. A popular way to analyze Landsat and SAR images of the same areas 

concurrently is done by overlaying bands from one source with bands of another source 
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after the images have been properly registered [1, 2, 3, 5, 7], for example, having red and 

green pixels represent two Landsat bands and blue pixels represent a SAR band. 

Current image fusion techniques can create a composite image that contains all of 

the important information in the source images without adding new artifacts to interfere 

with image analysis. Since a human observer cannot reliably integrate visual information 

by viewing multiple images separately and consecutively [17], image fusion makes it 

possible for the observer to view one image that contains all of the information contained 

in the source images. The present study includes programming the image fusion 

techniques described in current literature and applying them to Landsat and SAR images 

to diagnose the usability of each fusion technique as applied to remotely sensed imagery. 

The results and composite images are given in Chapter V. 

E.        Study Objectives 

The first objective of this study was to compare current image fusion techniques 

and diagnose their effectiveness in fusing SAR and Landsat imagery based upon the 

composite image results obtained through the fusion of real SAR and Landsat images and 

the time required to generate the composite image. This was accomplished by applying 

the fusion techniques to several test images, recording the time required for each 

technique to produce the composite image, and visually inspecting the image to observe 

composite image quality. 

The second objective was to combine test images by applying the fusion 

techniques to real SAR and Landsat image data to obtain useful information from more 

than three remote sensor bands. This was accomplished by creating test images designed 



8 

to show specific surface features and then fusing the test images to verify that the surface 

features have been successfully fused. 

The third objective of this study was to determine the optimum pyramid depth for 

the fusion of remotely sensed imagery. This was determined by examining the same set 

of test images fused over a range of pyramid depths. 



CHAPTER II 

LANDSAT AND SAR IMAGES 

A.        Landsat Image Characteristics 

The Landsat images used in this study were acquired by Landsat-4's TM sensor 

recorded on 25 September 1994 in path number 38, row number 31. The images were 

purchased/requested by the Rocky Mountain NASA Space Grant Consortium 

(RMNSGC) and have been used in previous studies by both David Oliver in 1996 [5] and 

BillPfaffinl997[18]. 

Landsat TM images do not have significant geometric distortions because the 

viewing angle of the sensors is nearly perpendicular to the Earth's surface. In TM 

images, each pixel is stored as an 8-bit number and represents either a 30x30 meter or 

120x120 meter terrestrial area. The Landsat satellite is in low Earth orbit with an altitude 

of 705 km and a 16 day, 233 orbit cycle. The TM sensor has seven bands; bandwidths, 

resolutions, and percents of transmission for the TM bands are listed in Table I.   The 

percent of transmission for each band is the minimum value of transmission within the 

corresponding bandwidths. Values of transmission were taken from [19]. 

Each of the seven bands was designed to maximize detecting and monitoring of 

different types of Earth resources [20]. Band 1 is in the visible spectrum corresponding 

to blue light; it penetrates water for bathymetric mapping along coastal areas and is used 

for soil/vegetation differentiation and for distinguishing forest types. Band 2 is also in 

the visible spectral region corresponding to green light; it is used to detect green 

reflectance from healthy vegetation. Band 3 is in the visible spectrum corresponding to 
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TABLE I 
LANDSAT TM BAND INFORMATION 

Band Bandwidth (jim) Resolution (m) % Transmission 

1 0.45-0.52 30 100 
2 0.53-0.61 30 95 
3 0.62-0.69 30 100 
4 0.78-0.91 30 84 
5 1.57-1.78 30 98 
6 10.42-11.66 120 88 
7 2.08-2.35 30 98 

red light; it is designed to detect chlorophyll absorption in vegetation. Band 4 is in the 

near-infrared and is used for detecting reflectance peaks in healthy green vegetation and 

for detecting water-land interfaces. Bands 5 and 7 respond in the near-infrared and are 

used for vegetation and soil moisture observations as well as for discriminating between 

rock and mineral types. Band 6 is selected for the atmospheric spectral window and is in 

the thermal-infrared spectrum, designed to assist in thermal mapping and in soil moisture 

and vegetation studies [5, 20]. 

B.        SAR Image Characteristics 

Synthetic aperture radar is based on technology that uses the motion of the sensor 

to synthesize an antenna aperture larger than the physical antenna [4]. This technique 

provides an enhanced spatial resolution imaging capability that is, to the first order, 

independent of sensor altitude. SAR functions by sending a microwave signal at the 

target and recording the returned signal. Being an active rather than a passive system, 

SAR has the advantage of being independent of solar illumination of the Earth's surface. 

SAR return signals are not inhibited when the Earth's surface is covered by clouds, fog, 



11 

haze, or smoke; in fact, SAR can even penetrate the Earth's surface to return information 

about subsurface features [7] or can penetrate forest canopies that obscure the ground [4]. 

For these reasons, SAR can produce radar terrain maps that show the presence of major 

subjacent features not shown in Landsat images at the same spatial resolution [7]. 

SAR images are produced from the signals reflected from the Earth's surface. 

The strength of the return signal is dependent upon both the surface characteristics and 

the radar system. Table II gives a list of parameters that affect the return signal. When 

the surface roughness is at the same scale as the radar wavelength, signal interference 

occurs resulting in a speckled image. The look angle can also cause problems, such as 

geometric distortion and the appearance of near range pixels being brighter than far range 

pixels, in the image [1]. 

There are numerous possible SAR wavelength bands; however, unlike the 

Landsat TM imagery, different SAR bands are identified by letters. The surface 

properties proposed for study should be used to determine the band used; different bands 

show different properties. When viewing single-band SAR images, a user can make use 

TABLE II 
PARAMETERS AFFECTING SAR RETURN SIGNALS  

Ground Parameters Radar System Parameters 

Terrain Slope and Texture Frequency, Wavelength 
Surface Roughness Radar Look Angle/Depression Angle 
Complex Dielectric Constant Antenna Look Direction 
Terrain Feature Orientation Polarization 
Shadowing Signal-to-Noise Ratio 
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of the same grayscale or pseudocoloring techniques discussed for TM images in Chapter 

I. For SAR images, the highest pixel values represent areas of saturated radar return; 

these areas would appear white in the coloring schemes mentioned. 

Images from the SIR-C SAR aboard STS-68 are used in this study. SIR-C 

operated at two frequencies, the C band at 5.3 GHz and the L band at 1.24 GHz. Each 

band has five images that correspond to different polarization modes. The five modes are 

designated as HH, HV, VH, VV, and total power. The first letter represents the 

transmitted signal, and the second letter represents the return signal; H designates 

horizontal polarization, and V stands for vertical polarization. Therefore, the VH image 

would be the data acquired from a vertically polarized transmitter and a horizontally 

polarized receiver. Total power images are the sum of the horizontal and vertical 

transmissions and the horizontal and vertical receptions. In this study, the L and C band 

total power images are used. These images, like the Landsat images, were acquired by 

the RMNSGC [5]. The SIR-C sensor look angle is 35 degrees off nadir. (Nadir is 

straight down.) Each pixel covers a 12.5 meter by 12.5 meter area. 

C.        Combined Image Characteristics 

The capability of SAR to operate in either light or dark all-weather environments, 

coupled with the fact that radar terrain maps made from SAR data show the presence of 

major subjacent features that are not detectable in Landsat pictures at the same scale, 

implies that SAR would be an excellent complement to Landsat images. However, the 

look angle of the SAR sensor results in large geometric distortions in the resulting image 

display. Due to these large geometric distortions, some previously integrated SAR and 
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Landsat studies concluded that SAR added little value because of scene registration 

problems. New SAR image processing techniques have been used to overcome this 

problem, and SAR images can now be registered to Landsat images with errors reduced 

to the order of one pixel [5]. Integrated Landsat and SAR images have been used to aid 

in geologic mapping [10, 21], the study of ice sheets [1], and for land use studies [5]. 

One article suggested that neither the Landsat TM nor the SIR-B SAR imagery alone 

could distinguish the land use patterns in Sudan, while an integrated SAR and Landsat 

approach was successful [3]. 

In the present study only images that have already been processed and registered 

are used. Correction of geometric distortions of the SAR images and SAR and Landsat 

image registration was performed by David Oliver as part of his thesis in 1996 [5]. 

Figure 2 and Figure 3 are the Landsat-4 and SAR images of Cache Valley used in this 

study. Figure 2 is composed of Landsat-4 TM bands 1, 4, and 2 corresponding to the red, 

green, and blue pixel values, respectively. Figure 3 is composed of the SAR L and C 

total power bands. The red pixels correspond to the L band, and the green and blue pixels 

correspond to the C band. Note that in the upper right-hand corner of Figure 3, the SAR 

image contains no data; this is due to the correction for geometric distortion. 

Corresponding subsections of the images in Figure 1 and in Figure 2 are fused, 

using the multiresolution techniques described in current literature. The usefulness of 

these fusion techniques as applied to remote sensed imagery will be assessed in Chapter 

V. Different band combinations can be used to show different surface/subsurface 

properties; in several cases, there are more than three bands that can be used to show the 

same features. To more effectively analyze multiple images, image fusion can be used. 
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Fig. 2. Landsat bands 1, 4, 2. 
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Fig. 3: SAR band C and band L 
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CHAPTER in 

MULTIRESOLUTION PYRAMIDS 

A.        Image Structure and Multiresolution 
Pyramids 

This study will use three techniques, described in this chapter, to represent an 

image over a range of scales. Other techniques are also presented here because they are 

necessary for understanding the three techniques used in the study. The techniques used 

to represent the images over a range of scales are called pyramids; the three of interest are 

RoLP, gradient, and morphological pyramids. 

A complete image description can be obtained by studying an image structure 

over a range of scales. When we zoom in on an image, we clearly see the substructure; 

however, we lose the clarity of the outlines. On the other hand, when we zoom out to 

look at the entire picture, the scene loses detail. It logically follows that relevant details 

of an image can be observed only within a certain range of spatial resolution. If we focus 

on the small details, we lose focus of the big picture; on the other hand, if we zoom out to 

see the whole picture, it is difficult to discern the small details. Figure 4 illustrates this 

point. When zoomed out, the canopy and intake of the F-15 can be easily discerned; 

however, when zoomed in on the area outlined by the white box in the next image, the 

exact position of the canopy and intake edges are not as easily seen. For this reason, it is 

desirable to represent an image over a range of scales, depending upon the structural 

content. 

A series of images progressively smaller in structural content can be created by 

repetitive application of a processing operator with a progressively increasing scale. This 
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Fig. 4. Demonstration of necessity for multiple resolutions. 

operator would eliminate details smaller than a certain size. This operator acts like a 

filter, just as sifting gravel through screens with different wire spacings filters gravel into 

different groups, dependent upon particle size. Repetitive application of this operator 

separates the image into scenes with different resolution of detail. By reducing the 

sample frequency and increasing the filter size, a hierarchical relation is generated. 

Reducing the sample frequency is the same as subsampling the image. A pyramid is a 

sequence of images in which each image is a filtered and subsampled copy of its 

predecessor [11]. The term "multiresolution pyramid" comes from the relationship where 

successive levels in a pyramid are reduced resolution copies of the input image [11-17]. 

The function that generates the next level of the pyramid could be called 

REDUCE since both the resolution and sample density are decreased. REDUCE would 

both filter and subsample the image. To create a pyramid starting with the source image 

asP0, 
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P* = REDUCE(P*.;) for k = l,2,...n, (1) 

where n is the number of levels in the pyramid. 

Pyramid reconstruction to recover an image from its pyramid will need an 

EXPAND function because each level differs in sample density. EXPAND is defined as 

follows: 

Pt; = EXPAND(Pt) for k = n -\,n-2,...0, (2) 

where n is the number of levels in the pyramid. Specific details of the EXPAND and 

REDUCE operators are dependent upon which types of pyramids are used. Techniques 

used to generate pyramids can be classified into two types: (1) linear and (2) 

morphological. Sections B, C, D, and E describe linear techniques, and Section F 

describes morphological techniques. 

B.        Gaussian and Laplacian Pyramids 

As given in section A, each image in a pyramid is a low-pass filtered and 

subsampled copy of the previous image. This is beneficial for our purposes because it 

defines the image features in a set of images with different spatial resolutions by filtering. 

The most common linear low-pass filter used for pyramid generation is convolution with 

a Gaussian kernel. Pyramids formed using this technique are commonly referred to as 

Gaussian pyramids [11, 12, 14, 16, 17]. 

To create a Gaussian pyramid from an image I, assume G/t is the kth level of the 

pyramid. The bottom level of the pyramid, Go, equals I; and 

Gt=[w*Gt-/]i2 for&>0, (3) 
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where [...]i2 denotes subsampling by two (The resultant image has .5 the x and y 

dimensions of the source image.), * is the convolution operator, and w is the Gaussian 

kernel. All of the elements of w must sum to equal 1; and, for simplicity, w is defined as 

separable, where w = w * w . Convolution with the w matrix, as defined below, yields a 

Gaussian-similar curve; with w defined, w can be derived. The w matrix defined in [12] 

is 

14     6     4 1 

4   16   25   16 4 

w=   6   25   36   25 6 

4   16   25   16 4 

14     6     4 1 

which yields a w matrix defined as 

l256J (4) 

w = 

1 2    1 

2 4   2 

1    2   1 

(— [12]. (5) 

It should be noted that this value for w was used because of its Gaussian-like properties; 

however, w can be defined differently as long as it meets the criteria mentioned above. 

Low-pass filtering and subsampling can be combined into a single function fitting 

the description of the REDUCE operator defined in the previous section. The REDUCE 

operator can be implemented as a function where each pixel in the new image is set to the 

weighted average of the corresponding area of pixels in the previous image. This process 

is much simpler than the previous process of convolution and subsampling (one-quarter 

the number of operations), yet it yields the same result. This is because the value 

returned by the weighted average is the same as the value returned by convolution. 
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From the weighted average method, the kth level of the pyramid is defined on a pixel by 

pixel basis as 

2 

Pk(i,j)= ^w(m,n)Pk-i(2i + m,2j + n)     fork>0. (6) 
m,n=-2 

The weighting function w(m,n) is separable, 

w(m,n) = w'(m)w'(n). 

The function w' is normalized, 

2 

I 
m=-2 

^'(m)=l, (7) 

and is symmetric, 

w'(i) = w'(-i) for i = 0,1,2. (8) 

All of these constraints are satisfied when w' is defined as follows [11]: 

w'(0)=a; (9) 

M;,(l) = vi;'(-l) = l/4; (10) 
w'(2) = w'(-2) = l/4-a/2. (11) 

The value of a used in this study was 0.4 because of its Gaussian-like properties 

[11, 12, 14]. The reader should note that w and w are matrices used in convolution, 

whereas w and w' are functions used in the weighted average. 

Taking the difference between two levels in a Gaussian pyramid results in a band- 

pass filtered image. In order to take the difference between the two levels, however, the 

level of lower resolution must be expanded to the same size as the image at the higher 

resolution. If this is done for every level of a Gaussian pyramid, a Laplacian pyramid is 

created. Let L* be the kth level of the Laplacian pyramid, defined as 

L. = G*-4w*[G* + /]T2, (12) 
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using the convolution notation, where [.. .]t2 indicates upsampling by two [12]. When 

upsampling, rows and columns of zeros are added between the existing rows and 

columns. Convolution with w interpolates values for the columns and rows of zeros. 

The Laplacian pyramid can also be defined using the weighted average method as 

L = Gk - EXPAND(G* + 0 [ 11,14]. (13) 

For linearly filtered pyramids, EXPAND can be defined as 

P*0\7) = 4-  £ vKm,n)P*-i^,^ I (14) 
m,n=-2 V / 

where only integer coordinates contribute to the sum. It is noted that in the Laplacian 

pyramid L« = G«, namely, the top level of the Laplacian pyramid, is the same image as 

the top level of the Gaussian pyramid. 

The pyramid algorithm reduces the filter band limit by an octave from level to 

level. The Laplacian pyramids are the equivalent of a band-pass filter with a bandwidth 

equal to the span between octaves. Filtering an image has the effect of blurring. This is 

because sharp edges are composed of high-frequency components, and the low-pass filter 

attenuates the high spatial frequencies in the image. Images higher in the pyramid 

structure have fewer high-frequency components than images in the lower part of the 

pyramid. Therefore, when expanded to the size of an image lower in the pyramid, the 

image higher in the pyramid appears blurry. 

Reconstructing an image from its Laplacian pyramid is straightforward. The 

original image is recovered by expanding the highest level of the pyramid and adding that 

to the next highest level repeatedly, until no levels are left. This is mathematically 

expressed as 
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Gn=L (15) 

and G*=Lt + EXPAND(G* + /) for k =n-l,n-2,...0. (16) 

This yields an exact reconstruction of the source image, Go = Go. 

C.        Filter-Subtract-Decimate 
Laplacian Pyramids 

A level of the filter-subtract-decimate (FSD) Laplacian pyramid is defined as the 

difference between the Gaussian level and the filtered copy of the Gaussian level prior to 

subsampling for the next Gaussian level. For this reason, the REDUCE function as 

defined will not work with FSD Laplacian pyramids because REDUCE filters and 

subsamples at the same time. Let L* be the kth level of the FSD Laplacian pyramid, 

which is mathematically defined as 

Lt=G*-w*G*=[l-w]*Gt, (17) 

where 1 is a matrix of the same dimensions of w where all values are zero except for the 

center value, which is one. In the case of a 3-by-3 matrix, 

"0   0   0" 

1= 0   1   0 . (18) 

"0 0 0" 

0 1 0 

0 0 0 

Inspection of the process of forming the image in the Laplacian pyramid, L*, 

reveals that the Gaussian image, Gt»is sequentially convolved with w, subsampled, 

upsampled, convolved with w again, and then subtracted from itself. Refer to equations 3 

and 12. However, if the resampling steps are skipped, the results are only slightly 

different. We can, therefore, say that 
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L* = G*-4W*[[W*G*]12]T2«G*-W*W*GA 

= [l-w*w]*G* (19) 

= [l + w]*[l-w]*G*. 

Hence, the FSD Laplacian pyramid can be converted to a Laplacian pyramid through the 

following conversion: 

Lt»[l + w]*Lt. (20) 

Pyramid reconstruction to obtain the original image follows by converting the 

FSD Laplacian pyramid into a Laplacian pyramid and then reconstructing the Laplacian 

pyramid [12]. Note that this reconstruction is not an exact replica of the original. 

D.        Ratio of Low-Pass Pyramids 

The ratio of low-pass (RoLP) pyramid gets its name from the relationship that 

exists between successive levels of the pyramid. RoLP pyramids are very similar to 

Laplacian pyramids; instead of taking the difference between levels of a Gaussian 

pyramid, the RoLP pyramid takes the ratio between levels of a Gaussian pyramid. The 

RoLP pyramid, Rt, is mathematically defined as 

R* = —  for k=n-l,n-2,...0 (21) 
EXPAND(Gt + /) 

and R»=Gn. (22) 

Every level in the RoLP pyramid is the ratio of two successive levels in the Gaussian 

pyramid. 

Let Go be the image reconstructed from the RoLP pyramid. The reconstruction 

process is the inverse of the construction process. 

G„ = R», (23) 



and G* = Rt EXPAND(G* + /)     for k = n -1,n - 2....0. 
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(24) 

The reconstruction process for RoLP pyramids is exact, or in other words, Go = Go. 

There is also a contrast-enhanced RoLP pyramid described in [17] that was not used in 

this study. 

E.        Gradient Pyramids 

The term "gradient pyramid" is a misnomer, because a gradient pyramid is 

actually a collection of four pyramids. Let D*m represent the kth level and mth orientation 

gradient pyramid image for an image I. Dim is obtained from convolving Gt with a 

gradient filter dm, also called an "oriented second derivative filter." 

D*m = dm*[G* + w*Gt], (25) 

where 

d/ = [l   -l]; 

and 

0 -i i 
d? = 

1     0 V2J 

[-1] 
di = 

1 
j 

r-i oi 1 
d4 = 

0 i VT 

(26) 

(27) 

(28) 

(29) 

Reconstruction of an image from a gradient pyramid requires Laplacian and FSD 

Laplacian pyramids as intermediate steps. Each gradient pyramid level Dim is converted 

to a corresponding second derivative pyramid or oriented Laplacian level L*m. 

L/Cm = dm * Dfon. 
8 

(30) 
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An FSD Laplacian pyramid, Lt, is then formed by summing the oriented Laplacian 

pyramids. 

L* = £L*m. (31) 
m=l 

Reconstruction is then completed by following the same steps required to reconstruct an 

FSD Laplacian pyramid [12] as described in Section C of this chapter. Since the FSD 

Laplacian pyramid is used, composite image reconstruction is approximate, or Go» Go. 

F.        Mathematical Morphology Pyramids 

Mathematical morphology is the examination of the geometric structure of an 

image by probing its microstructure with certain elementary forms called structuring 

elements [15]. Linear filters alter the object intensities and, therefore, estimate the 

location of contours. Morphological filters, on the other hand, remove details without 

adding grayscale bias and, therefore, are nicely suited to shape extraction. This section 

contains a brief summary of mathematical morphology and its operations. For more 

information on any of the topics in this section, the reader is referred to [11, 15, 22, 23]. 

Mathematical morphology is based upon set operations. When used with images, 

the first set is considered to be the image; the second set is the structuring element. The 

sets are representative of shapes that are manifest in the image. Selection of the 

structuring element is an important part of morphological operations. The smaller the 

structuring element, the smaller the details that are filtered or modified. When generating 

a pyramid by successively increasing the size of the structuring element or by reducing 

the image size, successively larger image details are filtered out, once again leading to the 
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multiple resolutions. Also, when reconstructing the image, the positional accuracy 

cannot be better than the radius of the structuring element. 

The building blocks of morphology are the dilation and erosion operators. 

Dilation is a transform that combines two sets using vector addition of set elements. If A 

and B are sets, the dilation of A by B is the set of all possible vector sums of pairs of 

elements, one from A and one from B. Dilation is denoted by the © symbol and is 

mathematically defined as 

A©B={ceEN|c = a + bforsomeae AandbeB}, (32) 

where A and B are the sets in Euclidean N-space (EN) with elements a and b, 

respectively. The complexity of image dilation and erosion is similar to that of 

convolution. To easily conceptualize dilation, picture a straight line; after dilation, this 

line becomes wider. 

Erosion is the morphological dual of dilation. The erosion transform combines 

two sets using the vector subtraction of set elements. If A and B are sets in Euclidean N- 

space, erosion of A by B is the set of all elements x for which x + be A for every b e B. 

Erosion is denoted by the 0 symbol and is mathematically defined as 

A0B={xeEN|x + be A for every b e B}, (33) 

where A and B are the sets in Euclidean N-space with elements a and b, respectively. 

Once again, for easy conceptualization, picture a thick line; everywhere the line is thick 

enough to contain the structuring element, it becomes thinner. If this line is dilated and 

then eroded, it would appear unchanged because everywhere dilation made it wider, 

erosion made it thinner. 
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Conceptually, an erosion shrinks image features, and a dilation expands image 

features. Figure 5 shows the erosion and dilation of a box. Note how the box walls look 

thinner after dilation and thicker after erosion; if this seems the opposite of the expected 

result, reconsider the expected result focusing on white areas as the boxes. Knowing that 

morphology is based on set theory, consider the color black the empty set. The black 

walls are areas where no information exists. (Pixel intensity = 0 for red, green, and blue 

pixels.) Now consider that the color white is the full set; this would be areas containing 

all three colors: red, green, and blue. Where blue is seen, only blue is present; where red 

is seen, only red is present; and in areas where a pinkish-purple color is seen (only in 

Figure 5 (b)), both red and blue are present. 

The source image has four areas of concern: the black box around the outside 

where no pixels have values greater than zero; the white area between the black and blue 

boxes where red, green, and blue all have pixel values greater than zero; the blue area 

Fig. 5. Example of erosion and dilation operators using a 10x10 brick structuring 
element, (a) Source image, (b) Source image after dilation. 

(c) Source image after erosion. 
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where only blue pixels have values greater than zero; and the red area where only the red 

pixels have values greater than zero. 

After dilation, the white walls become thicker, making the black walls thinner. 

Likewise, both the red walls and the blue walls expand, causing a new area where both 

red and blue values exist simultaneously without green. Although the blue and red box 

appear smaller in size, they have actually grown; we do not see their growth because, in 

the areas where they have grown, other pixel values exist so we either see white or else 

the combination of blue and red, which is the pinkish-purple color in Figure 5 (b). 

When erosion occurs, the white walls become thinner, making the black walls 

bigger. When the color boxes are viewed, it is easy to see, by looking at the size of the 

red box, that erosion makes the boxes smaller. The black box around the red box in 

Figure 5 (c) is an area where both the red box and the blue box have been eroded and no 

image data are left, hence the empty set, or black. For more information about the 

erosion and dilation of a set or the properties associated with erosion and dilation, refer to 

[22, 23]. 

The steps for creating a morphological pyramid are the same as creating a 

Gaussian pyramid. To generate the next pyramid level, the current image is filtered and 

subsampled. 

Morphological filters are sequences of morphological operations that have special 

properties with respect to the shapes in the image. Morphological filters are idempotent 

and increasing. Idempotent means that successive applications of the filter leave the 

result unchanged after the first time the filter has been applied, similar to the application 

of a linear band-pass filter to a signal. Increasing means that the operations maintain 
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inclusion relationships on the images they transform [15]; or if set A is a subset of set B, 

then A filtered by F is a subset of B filtered by F. 

The simplest morphological filters are the opening and closing transformations. 

An opening is an erosion followed by a dilation and is denoted by the o symbol. A 

closing is a dilation followed by an erosion and is denoted by the • symbol. 

Mathematically, opening and closing are defined as follows: 

Aof=(f0A)eA; (34) 
A»f=(f0A)0A, (35) 

where A is the image and f is the structuring element. These filters are also low-pass 

because they attenuate high-frequency fluctuations between the set and its complement. 

Openings and closings are considered dual operators because what one does to the 

foreground, the other does to the background. To ensure that the foreground and 

background of an image are treated the same, openings and closings usually follow one 

another. Morphological filters are most often a combination of openings and closings or 

closings and openings. For this study, we will use F to represent a closing-opening filter: 

F = (A«f)of. (36) 

With morphological filters defined, we can describe the generation of 

morphological pyramids in a manner similar to the generation of Gaussian pyramids. Let 

I represent the original image. The base of the pyramid, Mo, needs to be a 

morphologically filtered copy of I; the filter used to generate Mo will determine what 

filters are to be used for pyramid reconstruction. We will again define the REDUCE 

function, which will, in this case, morphologically filter the image and then subsample. 
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To generate the next level in the pyramid, REDUCE will be applied the current level. Let 

Mo be the base of the pyramid, and 

Mt = REDUCE(Mt - /) for 1 < k < n, (37) 

where n is the depth of the pyramid and REDUCE is F(M - /) 11. From here, a 

difference pyramid similar to the linear Laplacian pyramid can be constructed where 

Ifc, = M, (38) 

and 

D* = M*-EXPAND(M + /) for k = n-l,#i-2,...0. (39) 

Here, EXPAND is defined as upsampling followed by a closing. REDUCE and 

EXPAND can use any filter; however, the user must ensure that the filters used in the 

EXPAND function complement the filters used in the REDUCE function [22, 23]. If the 

initial filtering of the source image I is a closing, then a minimal reconstruction should be 

performed; and the EXPAND function should use the closing filter. On the other hand, if 

the initial filtering of the source image I is an opening, then a maximal reconstruction 

should be performed; and the EXPAND function should use the dilation filter. 

Pyramid reconstruction is once again straightforward. The reconstructed image, 

Mo, can be obtained by setting 

M, = D„ (40) 

and 

Mt = D* + EXPAND(M +1) for k = n -\,n -2....0. (41) 

M» is an exact reconstruction of the pyramid if no other pyramid processing has occurred 

to either the morphological pyramid or the difference pyramid. 
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CHAPTER IV 

PYRAMID FUSION TECHNIQUES 

A.        Pyramid Fusion Overview 

This study will use three of the pyramid techniques described in the previous 

chapter to combine or fuse two source images into a single composite image. In order to 

do this, we must define a way to fuse two pyramids into a single pyramid. This chapter 

will introduce the fusion techniques described in current literature that were used in this 

study. 

Pyramids are simply a convenient way to represent an image over a range of 

spatial resolutions. By combining the images at each level of the pyramid, the composite 

image, formed by pyramid reconstruction, will have consistency over all resolutions. 

When fusing two pyramids, each of the levels of the pyramids is fused into a 

composite level, resulting in a composite pyramid. Refer to Figure 1. Once the 

composite pyramid is formed, the fused image of the source images is generated, 

employing the pyramid reconstruction techniques associated with the technique used to 

generate the source pyramids. For example, if Laplacian pyramids A and B were 

generated from two source images, the composite image resulting from the fusion of 

pyramids A and B would be reconstructed from the composite pyramid C, using the 

techniques described in Chapter III to reconstruct an image from its Laplacian pyramid. 

Each level of the composite pyramid is defined as 

Gt = FUSE(A*,B*) for it = n, n -1,n - 2,...0, (42) 
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and n is the number of levels in the pyramid. FUSE is a function that converts the two 

images into the composite, using a fusion algorithm. 

B.        Selection and Averaging Fusion Techniques 

When combining two images, the untrained, intuitive approach might be to 

average the pixels from the source images to obtain the value for the corresponding pixel 

in the composite image. This approach is undesirable because features that appear in one 

image and not the other will show up in the composite at a reduced contrast or will 

appear superimposed on features from the other image, much like when camera film is 

double exposed. To avoid the fusion problems by averaging, the composite image can be 

obtained by selecting pixels from either of the source images. 

The simplest pixel selection technique for RoLP pyramids is to use the local area 

contrast to determine which pixel to select. The contrast of a given pixel is defined as the 

ratio of the difference in pixel intensity to area intensity to the area intensity, or as 

follows: 

Co^>o-.j)=L(i-f:L,fJ)=^H-i. (43) 
Lb(l,J) Lb(l,j) 

where L is the luminance at (i, j), or simply the pixel intensity, and Lb is the background 

luminance for that area. Note that the ratio of L to L& is the value in the RoLP pyramid; 

hence, to get the contrast for a certain pixel value, simply subtract one from the RoLP 

value. 

The human eye detects contrast very well. When taking advantage of this fact, 

pixels of maximum contrast are selected from each source image to form the composite. 

The logic behind this method is that by selecting details of maximum contrast, the fused 
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image will provide better details for human analysis. The contrast version of the FUSE 

function is implemented on a pixel-by-pixel basis, as follows: 

C(i,y) = 
A(i, j),   when (|A(f, j) -1| > |B(i, j) -1| 

B(i,j),   otherwise 
\  [11,16,17].  (44) 

However, another reference implemented the contrast fusion in a slightly different way, 

as follows: 

C(/,y) = 
A(i,j),   when(|A(/,;)|>|B(/,7)| 

B(i,j),   otherwise 
[13]. (45) 

It is interesting that it was implemented this way because, without subtracting one from 

the RoLP pyramid value, it is not based on the area contrast anymore. 

C.        Hybrid Averaging and Selection Fusion 

The problem with contrast fusion is that it is susceptible to noise. Noisy images 

are typically of higher contrast. Using a contrast image fusion technique would, 

therefore, result in a composite image with more noise. The combination of both 

selection and averaging to generate a composite image was proposed by [12]. For this 

method to work, a metric is necessary to indicate when to use selection and when to use 

averaging; this metric is called "match." When the match measure is a value that 

corresponds to using selection, it is necessary to know from which image to select. This 

requires a saliency measure. When the two images are distinctly different, the composite 

image should select the most salient component. However, when the two images are 

similar, the composite image should contain the mean of the two source images. This 

technique makes it possible to reduce noise without double exposure artifacts [12]. 
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A good measure of pattern salience is pixel intensity. To obtain the salience for a 

given sample, the individual pixel intensity can be used. Alternatively, the average pixel 

intensity of a small area near the sample can be used. The mean pixel intensity can be 

mathematically defined as a weighted average over an area, p, using S*(i, j) as the 

saliency measure of the pixel at (i,j) for the image k, as follows: 

m 

&(i,7)=  £p(f,/)P*0" + /'../ + .//), (46) 
i'J'=-m 

where m can range from 0, which would be the individual sample, to 2, which would 

include the 5x5 area surrounding the sample. The value of p(i', /) is weight of the 

sample within the area or neighborhood p; samples closer to the (/, j) position have higher 

weight values. The function p serves the same purpose here as does the function w' in 

Chapter III, Section B. The value returned by P*(i + i', j + /) returns the pixel value 

inside the image at location (i, j), offset by i' and/; it can simply thought of as P* being 

the matrix indexed by (i+V, j+j'). 

Relative pixel intensity between the two images can be used as a measure of 

match. Alternatively, correlation is well-suited as a measure of match. We can 

mathematically define the match of image A to B, MAB , within the area p, as the 

normalized correlation between image A and B, or 

2 f^p(i'j')A(.i + i',j + j')B(i + i',j + j') 
M»J»(I\./) = -^= , [12] (47) 

SA(i,j) + SB(i,j) 

where m can range from 0 to 2, depending upon the desired area of p (0 for an individual 

point, 2 for a 5x5 matrix). The values returned for match are between -1 and 1. Values 
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close to zero indicate low correlation, and values close to -1 or 1 indicate high 

correlation. 

Each level of the pyramid can now be fused by testing the match metric between 

the two images at the given level. If the match metric is low at a given position, then the 

sample from the source image with the highest salience is copied to the composite image. 

If the match metric is high, the pixels from the source images are averaged and copied to 

the composite image. This combination technique can be implemented as a weighted 

mean in which the weights depend upon the match and saliency measures. The function 

FUSE, as described above, can then be described as follows: 

C(i, j) = vw(i\ y)A(i, j) + WB(i, ./)B(i\ j), (48) 

where WA and WB are the assigned weights to the source images A and 8, respectively; 

and WA + Wä = 1. 

There are two common ways to implement the weighting functions WA and WB . 

One way is to select some threshold, a, for the match metric. We can set WA and WB to 1 

and 0 or 0 and 1, respectively, when the match is below a, or we can set WA and WB to .5 

and .5 when the match is above a. This would be mathematically written as 

if a < threshold 

WA = .5 and WB = .5, 
(49) 

else if SA > SB 

WA = 1 and WB = 0, else WA = 0 and WB = 1. 

This technique would require extensive testing to ascertain an appropriate a for each type 

of image used and does not allow for a gradual change from selection to averaging. 
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Another common way to implement the weight functions is to assign the weight 

value based on a linear transition between 1 and 0 as follows: If MAB < a, then wmm = 0 

and wmax = 1; otherwise, 

1    \(\-MAB\ 
Wmin —  

2    2 v !-«  j 

(50) 

and Wmax = 1 — Wmin . (51) 

WA = Wmax and Wfi = Wmin if SA > SB,  else   WA = Wmin and WB = Wmax .       (52) 

Here, the larger weight is assigned to the source image with the higher saliency value. 

This latter approach allows a gradual change from selection to averaging and was the 

method used in this study because it offers the benefits of both selection and averaging 

over a range of match values rather than simply selecting one method or the other. This 

is the same method used in [12]. 
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CHAPTER V 

FUSED IMAGERY AND RESULTS 

A.        Fusion Approach 

In this study, six multiresolution image fusion functions are applied using the 

pyramid and fusion techniques described in Chapters III and IV to demonstrate the 

feasibility of image fusion in remote sensing imagery. The first three functions have 

been described in the current literature.   The other three functions are combinations of 

pyramids and fusion techniques that have not been described in current literature. 

Appendix C contains computer programs used to implement the six combinations for 

multiresolution image fusion.   For simplicity, the images presented in this chapter are 

only selected subimages of the images presented in Chapter II. 

Three of the basic pyramid types described in Chapter in for image 

decomposition are employed in this study. The pyramids used in the fusion functions are 

the RoLP, gradient, and morphological pyramids. (The other pyramids in Chapter HI 

were discussed because understanding them is necessary in order to understand the three 

pyramids that were used.) These three pyramid techniques can be combined with the two 

fusion techniques in six possible ways. The three combinations described in the current 

literature are: (1) using a RoLP pyramid for image decomposition with contrast fusion for 

image merging [11, 16]; (2) using a gradient pyramid for image decomposition with 

hybrid averaging and selection fusion for image merging [12]; and (3) using a 

morphological pyramid for image decomposition with contrast fusion for image merging 

[13]. The three not discussed in current literature are: (1) using a RoLP pyramid for 
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image decomposition with hybrid averaging and selection fusion for image merging; (2) 

using a gradient pyramid for image decomposition with contrast fusion for image 

merging; and (3) using a morphological pyramid for image decomposition with hybrid 

averaging and selection fusion for image merging. 

In previous studies, composite Landsat and SAR images have been created by 

assigning specific bands, or ratios of bands, to specific pixel colors. Images that have 

pixels representing both SAR and Landsat data will be called "hybrid SAR and Landsat 

images" or simply "hybrid images." Hybrid images can be very useful, as presented in 

[5]; however, they limit the number of bands that can be viewed to three. By applying 

multiresolution fusion functions to source images, it is the purpose of this study to make 

it possible to effectively view images that contain information from more than three 

spectral bands. 

The remainder of this thesis presents the results and conclusions of applying the 

six fusion functions to test images. Fusion of remotely sensed data can take on several 

forms. In the following, Section B presents the results of fusing SAR images with 

Landsat images to obtain information about the fusion functions. Section C discusses 

fusion of hybrid images to obtain useful information as well as hybrid image fusion 

applications. Finally, in Section D, the factors relevant to composite image quality are 

considered. 

B.        Fusing SAR and Landsat Images to 
Evaluate Fusion Functions 

In this section, fusing imagery of the Mantua, Utah, area is reported. This set of 

imagery is used because it contains mountainous and agricultural areas as well as urban 
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areas. A list of the figures and parameters used in this section is given in Table III. The 

first source image, Figure 6 (a), was obtained from the Landsat-4 satellite on 25 

September 1994; the RGB pixel values are from bands 4, 2, and 1, respectively. The 

second source image, Figure 6 (b), was obtained from the SIR-C SAR instrument flown 

on STS-68 on 2 October 1994; the RGB pixel values are from bands L, C, and C, 

respectively. 

The results presented in Figures 7, 8, and 9 demonstrate that the gradient and 

RoLP pyramids with the hybrid fusion technique, Figures 7 (b) and 8 (b), provide the 

composite images with the most well integrated fusion of source image features. The 

TABLE III 
LIST OF FIGURES IN CHAPTER V, SECTION B 

Figure Area Description 

6(a) Mantua 
6(b) Mantua 
7(a) Mantua 

7(b) Mantua 

8(a) Mantua 

8(b) Mantua 

9(a) Mantua 

9(b) Mantua 

10(a) Mantua 
10(b) Mantua 

Landsat imagery of Mantua, bands = (4, 2, 1). 
SAR imagery of Mantua, bands = (L, C, C). 
Selection fusion of 6 (a) and 6 (b) using a four level 
Gradient pyramid with a Gaussian kernel of a = 0.4. 
Hybrid fusion of 6 (a) and 6 (b) using a four level 
Gradient pyramid with a Gaussian kernel of a = 0.4 
and a match threshold of a = 0.1. 
Selection fusion of 6 (a) and 6 (b) using a four level 
RoLP pyramid with a Gaussian kernel of a = 0.4. 
Hybrid fusion of 6 (a) and 6 (b) using a four level 
RoLP pyramid with a Gaussian kernel of a = 0.4 
and a match threshold of a = 0.1. 
Selection fusion of 6 (a) and 6 (b) using a four level 
Morphological pyramid with a 2x2 brick as a 
structuring element. 
Hybrid fusion of 6 (a) and 6 (b) using a four level 
Morphological pyramid with a match threshold of 
a = 0.1 and a 2x2 brick as a structuring element. 
Subsection of Figure 7 (b) enlarged for detail. 
Subsection of Figure 8 (b) enlarged for detail.  
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Fig. 6. (a) Landsat and (b) SAR source images of the Mantua, Utah, area. 
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Fig. 7. Fusion of the Mantua, Utah, area source images, Figure 6 (a) and 6 (b), using a 
gradient pyramid and (a) selection fusion, (b) hybrid fusion. 
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(a) 

Fig. 8. Fusion of the Mantua, Utah, area source images, Figure 6 (a) and 6 (b), using a 
RoLP pyramid and (a) selection fusion, (b) hybrid fusion. 
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Fig. 9. Fusion of the Mantua, Utah, area source images, Figure 6 (a) and 6 (b), using a 
morphological pyramid and (a) selection fusion, (b) hybrid fusion. 
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visual results of the fusion techniques using morphological pyramids, Figure 9, show that 

the morphological pyramids do not work well for remote sensor imagery. The low 

quality of the composite images that used morphological filters is due to the small 

resolution of the visual elements; for example, roads are only one or two pixels wide. In 

this case, using a 2x2 or a 3x3 structuring element for the morphological filters does not 

allow reconstruction of such small detail. The image detail cannot be reconstructed with 

a resolution higher than that of the structuring element. Hence, the composite image does 

not contain the important, small details from the source images because the details are 

smaller than the structuring element. A smaller structuring element is not feasible 

because using a structuring element on the order of one pixel does not filter the image at 

all. Morphological filters work well for high-resolution images where image 

substructures are large in comparison with the structuring element. However, with these 

images the entire city is blurred. 

Results obtained using the selection technique for image fusion are unacceptable 

in this study because they select details from only one image or another. In the 

composite images, cities and mountains end up being represented by the SAR 

information, and agricultural areas are represented by the Landsat images. This is 

because Landsat images have the highest return values from agricultural areas, and SAR 

images have the highest return values in cities and mountains. Since the areas of 

saturated return correspond to the highest pixel values and the contrast selection 

technique is based upon ratios of pixel intensity, selection fusion leads to composite 
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images that have the SAR information in city areas and Landsat information in the 

agricultural areas. 

Figure 10 is an enlarged subsection of the two fused images that yielded the best 

result, namely, RoLP and gradient pyramids with hybrid fusion, Figures 7 (b) and 8 (b). 

Notice that the detail in the lower left-hand corner of the RoLP image appears blurry as 

compared with the same area in the gradient composite image. 

C.        Fusing Hybrid SAR/Landsat Images 

In the previous section, SAR and Landsat images were fused to obtain 

information about how the fusion functions work for remotely sensed imagery. Fusion 

applications, however, are more likely to use hybrid images. Hybrid images have the 

advantage of using multiple sensors to obtain single source images. The benefit of 

having the different bands of TM sensors and SAR sensors is that each band shows a 

particular feature of the surface. When these features are understood, source images can 

be formed to show specific information about a given surface area. In this section, the 

fusion techniques are applied to a sets of source images used to show the applicability of 

fusion of hybrid SAR and Landsat images. A list of the figures used in this section is 

given in Table IV. 

For the first set of composite images, a source image designed to show urban, 

suburban, and agricultural areas is combined with another source image designed to show 

health of vegetation. For the first image, we want to use a band that reflects vegetation 

and a band that reflects anthropological structures; this will demonstrate the distinct 

difference between urban and agricultural areas. Landsat band 2 is in the visible 
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Fig. 10. (a) Gradient pyramid with hybrid fusion enlarged for detail, (b) RoLP pyramid 
with hybrid fusion enlarged for detail. 
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TABLE IV 
 LIST OF FIGURES IN CHAPTER V, SECTION C 

Figure Area Description 

11 (a) Logan SAR band L and Landsat bands 4 and 2. 
11 (b) Logan Landsat bands 3, 4, and 2. 
12 (a) Logan Hybrid fusion of 11 (a) and 11 (b) using a four level 

Gradient pyramid with a Gaussian kernel of a = 0.4. 
12 (b) Logan Hybrid fusion of 11 (a) and 11 (b) using a four level 

RoLP pyramid.  

spectrum and returns a peak value for vegetation. Landsat band 4 is in the near infrared 

spectrum and shows healthy vegetation and land/water interfaces. Both SAR bands C 

and L reflect well from artificial structures and would work well for this image; however, 

band L has a higher return from artificial structures than band C, and band C reflects 

from vegetation. For the first image, we use Landsat bands 2 and 4 and SAR band L. 

The second source image is designed to show health of vegetation, so both Landsat bands 

2 and 4 are again used. The third band of the second source image is one that has a low 

return in vegetated areas; Landsat band 3 is in the visible-light spectrum that corresponds 

to chlorophyll absorption. 

Figure 11 shows the two hybrid source images. The first image emphasizes land 

use categories and land/water boundaries, and the second shows health of vegetation and 

land/water boundaries. Figure 12 shows the result of fusing the source images using 

RoLP and gradient pyramids with hybrid fusion. It is concluded that the fusion of the 

source images is successful because the information represented by Landsat bands 2 and 
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Fig. 11. (a) SAR band L and Landsat bands 4 and 2. (b) Landsat bands 3, 4, and 2. 
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Fig. 12. Fusion of source images in Figure 11 using a (a) Gradient pyramid with hybrid 
fusion, (b) RoLP pyramid with hybrid fusion. 
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4, which show health of vegetation and water/land boundaries, remains virtually 

unchanged, whereas the composite images make viewing the vegetation in the city easier 

without changing the ease of viewing the land use information. This is because the pixels 

represented by the color red are now the data represented by the fusion between the SAR 

L band and the Landsat band 3. This does not increase the amount of green present in the 

image; it only makes it easier for a human analyst to observe because of the way we 

perceive contrast. The reason for this is described by Weber's Law [9]. By decreasing 

the amount of red in the local area, it decreases the amount of contrast between the green 

and red pixels; hence, the vegetation (green) is more easily observed by a human analyst 

because the red is reduced. If we were to simply reduce the intensity of the red pixels, 

the contrast between green and red in the city would be still be easily observed; however, 

in areas where the red pixels are the only source, the contrast would also be reduced. The 

use of fusion allows varying the amount of change in contrast for a given area based on 

the correlation between the two source images. Figure 13 demonstrates the change in 

contrast by viewing enlarged subsections of Figures 11 (a), 12 (a), and 12 (b) 

(a) (b) (c) 

Fig. 13. Enlarged subsections of Figures 11 (a) and 12 to show the change in contrast. 
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respectively; the enlarged subsections in Figure 13 are: (a) the hybrid image, (b) the fused 

images using gradient pyramids, and (c) the fused images using RoLP pyramids. 

To most observers it appears that Figure 13 (c) has the most green and Figure 13 

(a) has the least with Figure 13 (b) somewhere in between. However, all three images 

have the same amount of green in them. The green pixel values did not change; only the 

red pixel values changed. By decreasing the intensity of the red pixel values, the green is 

more easily noticed; hence, people see more green in the images (b) and (c) of Figure 13. 

The same effect could be observed over small areas by simply decreasing the intensity of 

the red pixels in the image; however, fusion allows the amount of change in the pixel 

intensity to vary dependent upon the correlation of the two images. Fusion is beneficial 

because the change in the red pixel intensities is not constant over the whole image. The 

fusion algorithm decides how much and where to change the red pixel intensities. 

D.        Composite Image Appearance and Quality 

The composite image appearance depends upon several factors. In this study, 

Landsat and SAR images were converted into bitmaps for fusion. This preserved the 

pixel data. In order for the REDUCE and EXPAND functions to work properly, the input 

image size needs to be equal to a power of two, plus one. For example, the two sizes 

used in this study were 257x257 and 513x513. This works because 257 = 28 + 1 and 513 

= 29 + 1. If a source image is passed to the function that generates a pyramid, the image 

needs to have x and y sizes that are a power of two, plus one. If the dimensions of the 

source image do not meet this criterion, the image needs to be resized. When resizing 
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occurs, pixel values must be interpolated; and the data used are no longer exact. 

Therefore, the data in the composite image are not exact. 

Another consideration in the composite image appearance is the storage format 

used. If an image is stored as a JPEG file, the true pixel values are not saved; 

quantization is necessary for the compression of the file. Once again, because the data 

used in the source images are not exact, the data contained in the composite image are not 

exact. It is necessary for the user to decide what accuracy of pixel values is necessary for 

image analysis and take the necessary precautions when fusing the images. 

When using multiresolution image fusion, the number of levels in the pyramids 

contributes to the quality of the composite image. For example, when the source images 

are decomposed into pyramids six levels deep, large image features will fuse better than 

if pyramids only two levels deep were used. The depth of a pyramid is an important 

parameter. If the depth is too deep, processing time is wasted. On the other hand, if the 

pyramid is not deep enough, the larger image subfeatures will not blend well. If it is 

known that the remote sensing imagery for a desired study has surface/subsurface 

features of a very small scale, the pyramid depth does not need to be as deep; a depth of 

two would work fine. In relation to the overall size of the source images used here, the 

features in the city are very small, while the features in the mountains are quite a bit 

larger. It is important to note that the pyramid depth must accommodate the fusion of the 

largest subfeature in the source images; this is what will determine the necessary pyramid 

depth. Figure 14 shows images created by fusing two images using gradient pyramids of 

different depths. Figure 15 shows the same thing using RoLP pyramids; the depths used 

range from one to six. 
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Fig. 14. Gradient pyramid hybrid fusion of the Mantua, Utah, area source images, Figure 
9 (a) and 9 (b), using pyramids of varying depths (a) depth = 1 

(b) depth = 2 (c) depth = 3 (d) depth = 4 (e) depth = 5 (f) depth = 6. 
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Fig. 15. RoLP pyramid hybrid fusion of the Mantua, Utah, area source images, Figure 9 
(a) and 9 (b), using pyramids of varying depths (a) depth = 1 

(b) depth = 2 (c) depth = 3 (d) depth = 4 (e) depth = 5 (f) depth = 6. 
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Comparing the images (in Figure 14 for gradient pyramids or Figure 15 for RoLP 

pyramids) with each other, it can be seen that, after a pyramid depth of two, the added 

pyramid levels do not visually add much detail to the composite image. The most 

noticeable change, upon visual inspection, is in the color of the mountains. To more 

clearly see the change that results from increasing the pyramid depth from level to level, 

Figure 16 shows the difference in gradient images, and Figure 17 shows the difference in 

RoLP images. (The difference of each pixel value has been multiplied by a factor of 4 to 

more clearly see the changes.) 

By comparing the images in Figure 16 with the images in Figure 14 for gradient 

pyramids (or Figure 17 with Figure 15 for RoLP images), it is noticed that the difference 

from level to level is, indeed, in the mountainous regions of the image. The difference in 

the mountains was expected because the image features in the mountains are much larger 

than the image features in the city. By inspecting the resultant images, it can be observed 

that the detail in the composite images for the city areas did not change noticeably for any 

of the pyramid depths used after a depth of two. For any set of images, the optimum 

pyramid depth depends upon the size of the details considered for analysis. The larger 

the details in the source images, the deeper the pyramid depth needs to be for satisfactory 

fusion. If the pyramids were skipped all together (a pyramid of depth =1), the composite 

image has a higher level of detail missing as opposed to using a depth of two. 

This study also used a subjective measure of image quality as described by [24]. The 

quality of each image has been assigned a value between 0 and 9. An image with a 

quality measure (QM) of 1 would be able to locate only large terrain features such as rail 

yards, airstrips, or possibly very large aircraft at an airstrip. An image with a QM of 8, 
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Fig. 16. Four times the difference between gradient composite images of successively 
increasing pyramid depths, (a) Fig. 14 (b) - Fig. 14 (a), (b) Fig. 14 (b) - Fig. 14 (c). (c) 

Fig. 14 (d) - Fig. 14 (c). (d) Fig. 14 (e) - Fig. 14 (d). (e) Fig. 14 (f) - Fig. 14 (e). 
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Fig. 17. Four times the difference between RoLP composite images of successively 
increasing pyramid depths, (a) Fig. 15 (b) - Fig. 15 (a), (b) Fig. 15 (b) - Fig. 15 (c). (c) 

Fig. 15 (d) - Fig. 15 (c). (d) Fig. 15 (e) - Fig. 15 (d). (e) Fig. 15 (f) - Fig. 15 (e). 
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on the other hand, would be able to detect types of aircraft at an airstrip or the number of 

boxcars at a rail yard. The image quality was obtained from the power spectral density of 

the image luminance. The image luminance is acquired by transforming from the RGB 

coordinate system to the XYZ coordinate system, where Y is the image luminance. 

(Appendix B contains the transform equations and the image QMs for the composite 

images in this study.) This quality measure indicated that image quality decreased as the 

pyramid depth increased. It also indicated that the composite morphological images had 

higher quality than the RoLP and gradient composite images, which is not the case, as 

can be visually verified. It is, therefore, concluded that the quality measure as described 

in [24] does not work well for fused imagery of remotely sensed data. 
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CHAPTER VI 

CONCLUSIONS 

A.        Findings 

The findings from this study are verified by the fused images generated from SAR 

and TM data of the same terrestrial scenes. It has been shown that there is a more 

effective way to view composite SAR and Landsat images than by simply viewing three 

bands at one time. The cost of the more effective composite image is computation time. 

Table V is a summary of processor time for the various fusion techniques that were 

studied. 

The fastest fusion techniques use morphological filters; however, as the 

composite images indicate, morphological filters do not work well for these types of 

remotely sensed data because of the small-scale of image subfeatures in comparison with 

the structuring element. 

TABLE V 
 COMPUTATION TIMES FOR FUSION TECHNIQUES  

Technique Size (Pixels) Time (Seconds) 

116.2 
130.1 
260.2 
631.2 
1142.6 
 1823.4 

Computational time on a Pentium 266 MHz processor with 64 MB of RAM. 
For an image size of 257x257, all computational times should be quartered. 

Morphological-Selection 513x513 
RoLP-Selection 513x513 
Morphological-Hybrid 513x513 
RoLP-Hybrid 513x513 
Gradient-Selection 513x513 
Gradient-Hybrid 513x513 
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Fusion techniques using RoLP pyramids are the second fastest. The composite 

images formed from RoLP techniques are beneficial in that they present the data from 

both source images in the composite scene better than do the simple hybrid images used 

in previous studies. Compared with techniques that use gradient pyramids, however, the 

composite images from RoLP pyramids tend to appear blurry. This appearance Of being 

blurry, however, is an artifact of the reduced contrast in the composite image. The 

quality remains approximately constant between the gradient and RoLP composite 

images (given equal pyramid depths). 

Gradient pyramids yielded composite images in approximately equal quality to, or 

slightly better than, the RoLP pyramids (gradient composites do not appear as blurry); 

however, the computation time for gradient pyramids is about four times that of the RoLP 

pyramids. The gradient pyramid is actually a combination of four pyramids. When exact 

analysis of imagery is necessary, the gradient pyramid may be the best choice; however, 

for most applications, the RoLP pyramid with hybrid fusion will work just as well. 

It was found in this study that the selection approach to image fusion is 

undesirable. Because the selection technique chooses only one band or another to 

represent, it does not fuse them. Although the selection technique is almost twice as fast 

as the hybrid selection and averaging technique, the hybrid approach yields a composite 

image with better detail. A result of this study, therefore, is the suggestion that, for 

general fusion applications, a RoLP pyramid with hybrid selection and averaging fusion 

should be used. If small details are a concern and time is not a constraint, the gradient 

pyramid with hybrid fusion may yield a slightly better result. 
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This study has demonstrated that the optimum pyramid depth depends upon the 

largest important subfeature in the image. If the features of concern are small in detail, 

like the cities in the case of satellite data, a pyramid depth of two will produce the same 

result as a pyramid depth of six. On the other hand, if the features in the image are large, 

like mountains, a much deeper pyramid is necessary. 

A simple rule to follow would be to use a pyramid depth of two if the image 

features desired for fusion are on the order of one to two pixels. For most applications, a 

pyramid depth of three would work fine. If the image features are very large, on the 

order of hundreds of pixels, a pyramid depth of six would be appropriate. Rarely would a 

pyramid depth of greater than five or six be needed. Based upon the results from figures 

16 and 17, a pyramid depth of at least two should be used in all fusion applications 

because the amount of detail added when changing from a pyramid of depth one to a 

pyramid of depth two is sufficiently large. 

B.        Recommendations 

Future research related to the topic of this study is needed in several areas. First, 

an optimum alpha value (the threshold that is used to regulate averaging and selection of 

composite pixel values) for the match and saliency measure could be established through 

research. New approaches need to be developed to speed up the gradient filters, thus 

greatly benefiting the software already developed. Also, blind source separation [25] can 

be explored as a means to image fusion. Another area of research is to find more suitable 

structuring elements for morphological filters. Structuring elements that would make 

possible the retention of small-scale image features in the composite image are needed. 
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Another area of a study could be the comparison between using the wavelet 

transform or using pyramids for multiresolution representation of images. Another type 

of pyramid/fusion combination that could be tried is a ratio between levels of a 

morphologically filtered pyramid with both fusion types. The final suggestion I have for 

further research is to develop another way to objectively measure image quality without 

knowing the image source. Such a metric would be a valuable tool for the field of image 

processing and analysis in general. Further research in these areas could greatly benefit 

the field of image processing as well as the analysis of remote sensing imagery. 
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Appendix A: Testing of Pyramids and Fusion Code 
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Knowing that, theoretically, the RoLP pyramid should have an exact 

reconstruction and that morphological and gradient pyramids should have approximate 

reconstructions, the following tests were performed: First, a small test image of 17x17 

pixels was created; then the pyramid routines were applied; and, at each stage of the 

image decomposition and reconstruction, the values were verified by hand calculations. 

The second test was to take three larger test images, shown in Figure 18, create a 

pyramid, and then recover the image by using the pyramid reconstruction techniques. 

Finally, the reconstructed image was subtracted from the original image; and the average 

and standard deviation of pixel differences was calculated. These values are given for the 

test images in Figure 18 in Tables VI, VII, and VIII.   The second test was run with 

pyramids of depth = 6 and pyramids of depth = 4. For an exact reconstruction, the 

average pixel difference would be zero; and the standard deviation would also be zero. 

The testing showed that the RoLP pyramid was exact in most cases. The one exception 

was for a six level pyramid for image 18 (b) in the red band; in which case it was still 

very near zero. See Table VII. The morpological pyramids had the largest errors, and 

the errors were independent of pyramid depth. The errors in morphological pyramids are 

due to the fact that detail smaller than the structuring element cannot be exactly 

reconstructed. Gradient pyramids had a moderate margin of error for pyramid 

reconstruction; these errors are due to the approximation shown in equations (19) and 

(20). In general, the deeper the pyramid the larger the error in reconstructing the image. 



(a) (b) (c) 

Fig. 18. Test images used to verify pyramid code correctness. 

TABLE VI 
RESULTS FROM TESTING PYRAMID 

RECONSTRUCTION CODE ON FIGURE 19 (a) 

Pyramid Type Pyramid Depth Pixels Color Average Error Standard Deviation 

Morph 6 Red 1.312237 2.981582 
Morph 6 Green 2.045051 4.711925 
Morph 6 Blue 0.810453 1.817184 
RoLP 6 Red 0.000000 0.000000 
RoLP 6 Green 0.000000 0.000000 
RoLP 6 Blue 0.000000 0.000000 
Gradient 6 Red 4.902764 2.869346 
Gradient 6 Green 5.615083 5.245300 
Gradient 6 Blue 4.639384 1.951420 
Morph 4 Red 1.312237 2.981582 
Morph 4 Green 2.045051 4.711925 
Morph 4 Blue 0.810453 1.817184 
RoLP 4 Red 0.000000 0.000000 
RoLP 4 Green 0.000000 0.000000 
RoLP 4 Blue 0.000000 0.000000 
Gradient 4 Red 3.059642 1.689473 
Gradient 4 Green 3.289907 2.882259 
Gradient 4 Blue 2.969148 1.107655 



71 

TABLE VII 
RESULTS FROM TESTING PYRAMID 

RECONSTRUCTION CODE ON FIGURE 19 (b) 

Pyramid Type Pyramid Depth Pixels Color Average Error Standard Deviation 

Morph 6 Red 6.048186 16.756359 
Morph 6 Green 2.045051 4.711925 
Morph 6 Blue 0.810453 1.817184 
RoLP 6 Red 0.000418 0.051939 
RoLP 6 Green 0.000000 0.000000 
RoLP 6 Blue 0.000000 0.000000 
Gradient 6 Red 4.250710 4.461939 
Gradient 6 Green 5.615083 5.245300 
Gradient 6 Blue 4.639384 1.951420 
Morph 4 Red 6.048186 16.756359 
Morph 4 Green 2.045051 4.711925 
Morph 4 Blue 0.810453 1.817184 
RoLP 4 Red 0.000418 0.051939 
RoLP 4 Green 0.000000 0.000000 
RoLP 4 Blue 0.000000 0.000000 
Gradient 4 Red 2.729921 2.905167 
Gradient 4 Green 3.289907 2.882259 
Gradient 4 Blue 2.969148 1.107655 

TABLE VIII 
RESULTS FROM TESTING PYRAMID 

RECONSTRUCTION CODE ON FIGURE 19 (c) 

Pyramid Type Pyramid Depth Pixels Color Average Error Standard Deviation 

Morph 6 Red 1.887326 5.636188 
Morph 6 Green 1.660585 4.812446 
Morph 6 Blue 1.723327 4.875687 
RoLP 6 Red 0.000000 0.000000 
RoLP 6 Green 0.000000 0.000000 
RoLP 6 Blue 0.000000 0.000000 
Gradient 6 Red 5.413866 6.271135 
Gradient 6 Green 4.584484 3.704715 
Gradient 6 Blue 4.457820 3.544401 
Morph 4 Red 1.887326 5.636188 
Morph 4 Green 1.660585 4.812446 
Morph 4 Blue 1.723327 4.875687 
RoLP 4 Red 0.000000 0.000000 
RoLP 4 Green 0.000000 0.000000 
RoLP 4 Blue 0.000000 0.000000 
Gradient 4 Red 3.306019 3.456579 
Gradient 4 Green 3.044988 2.178596 
Gradient 4 Blue 3.016866 2.076221 
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Appendix B: Image Quality Measures 
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The image quality measures used in this study were calculated from the power 

spectrum of the image as described in [24]. The power spectrum was taken on the image 

luminance, which was calculated by transforming from the RGB coordinates to the XYZ 

coordinates through the following transform: 

X = 0.490*R + 0.310*G + 0.200*B; 
Y = 0.177*R + 0.813*G + 0.011*B; 
Z = 0.000*R + 0.010*G + 0.990*B; 

where Y is the image luminance. 

The quality measure was found as follows: 

QM = 1.93*log(/ßM) + 8.77, 

where 

1        180°       03 

/ÖM=-^£   £5(Ö1)W(p)A2(rp)P(p,ö)[24]. 
8=180° p=0.01 

Here, P(p,&) is the Discrete Fourier Transform or the Fast Fourier Transform. S(dl) is 

the scale of the image at an angle ofö, from the sensor. W(p) is the classic Wiener filter 

as described in [24]; and A(Tp) is a model of the human visual system (HVS), also 

described in [24]. 

The quality measures (QMs) were taken by dividing images into quadrants of size 

128x128. An image of original size 513x513 would be divided into quadrants and then 

subdivided again into subquadrants. Quadrants start with number one in the upper right- 

hand corner of the image and then proceed counterclockwise to the lower right-hand 

corner, which is quadrant four. Table DC and X list the QMs for the composite images 

created in the study. The QMs from this study indicate that a quantitative measure of 

image quality that models the HVS exactly still needs to be developed. This quality 
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measure did, however, provide a means to measure small differences in image quality 

and trends in changes based upon varying inputs such as pyramid depth. 

TABLE IX 
QUALITY MEASURES FOR COMPOSITE IMAGES IN FIGURES 7 THRU 12 

Figure Quadrant S_Q1 S_Q2 S_Q3 S_Q4 

7(a) 1 5.743940 6.299867 5.955395 5.798092 
7(a) 2 5.774915 6.010545 6.144174 6.240824 
7(a) 3 6.031102 6.109628 5.829595 6.149844 
7(a) 4 5.537493 4.949940 5.178320 6.203316 
7(b) 1 5.731352 5.888458 5.774751 5.797175 
7(b) 2 5.455630 5.956551 5.839167 6.143242 
7(b) 3 5.871299 5.776086 6.154200 6.210767 
7(b) 4 5.686476 5.879713 5.157750 6.044588 
8(a) 1 6.216465 6.068850 6.105093 5.860565 
8(a) 2 2.987027 5.877355 5.704545 6.401773 
8(a) 3 6.054478 6.100063 6.158357 6.205588 i 

8(a) 4 3.824745 4.298860 5.471602 6.395981 
8(b) 1 5.683046 6.041419 5.824888 5.818359 
8(b) 2 5.043132 5.987381 5.779756 6.235353 
8(b) 3 5.879769 5.643103 6.231497 6.232010 
8(b) 4 5.597918 5.909996 5.156698 6.147477 
9(a) 1 5.542208 6.417702 5.934047 5.910607 
9(a) 2 6.183458 5.925222 4.363320 6.441932 
9(a) 3 6.170932 6.095793 6.064970 6.194372 
9(a) 4 4.960927 5.389463 5.162599 6.263077 
9(b) 1 5.757378 6.148040 5.833893 5.915841 
9(b) 2 6.171905 6.070212 5.708892 6.401994 
9(b) 3 5.996606 5.932110 6.246206 6.177732 
9(b) 4 4.377702 5.238811 5.299767 6.259186 
11(a) 1 4.182329 6.433823 6.187418 6.323740 
11(a) 2 5.828491 5.019885 5.546538 5.774281 
11(a) 3 5.602613 6.041763 5.954587 4.099891 
11(a) 4 6.281577 6.463826 5.614375 5.843056 
1Kb) 1 4.182329 6.433823 6.187418 6.323740 
11(b) 2 5.828491 5.019885 5.546538 5.774281 
1Kb) 3 5.602613 6.041763 5.954587 4.099891 
1Kb) 4 6.281577 6.463826 5.614375 5.843056 
12(a) 1 4.971820 6.396582 6.191291 6.352974 
12(a) 2 5.787445 4.995888 5.494674 5.742789 
12(a) 3 5.592110 5.999828 5.919660 4.059719 
12(a) 4 6.216224 6.469916 5.645947 5.817126 
12(b) 1 4.170645 6.430707 6.190845 6.319584 
12(b) 2 5.826273 5.018929 5.545628 5.773333 
12(b) 3 5.604957 6.040998 5.953582 4.104306 
12(b) 4 6.282585 6.463218 5.615763 5.842026 

HereS _Q1 stands for subquadrant 1, S_Q2 stands for subquadrant 2, S_Q3 stands for 
subquadrant 3, and S_Q4 stands for subquadrant 4. 
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TABLE X 

QUALITY MEASURES FOR COMPOSITE IMAGES IN FIGURES 14 AND 15 

Figure Quadrant S_Q1 S_Q2 S_Q3 S_Q4 

14(a) 1 5.907000 6.105254 5.954466 5.892723 
14(a) 2 6.134328 6.087080 6.248683 6.403800 
14(a) 3 6.060922 5.777319 6.310244 6.218068 
14(a) 4 5.394370 5.815682 5.238525 6.211088 
14(b) 1 5.909584 6.089230 5.919499 5.878862 
14(b) 2 6.041452 6.063083 6.129162 6.358926 
14(b) 3 6.009208 5.737093 6.263228 6.211189 
14(b) 4 5.493500 5.796942 5.213909 6.161926 
14(c) 1 5.860167 6.027700 5.870211 5.852189 
14(c) 2 5.782127 6.023773 5.988911 6.284763 
14(c) 3 5.948137 5.751993 6.220279 6.218034 
14(c) 4 5.596609 5.785432 5.199620 6.111913 
14(d) 1 5.731352 5.888458 5.774751 5.797175 
14(d) 2 5.455630 5.956551 5.839167 6.143242 
14(d) 3 5.871299 5.776086 6.154200 6.210767 
14(d) 4 5.686476 5.879713 5.157750 6.044588 
14(e) 1 5.449706 5.570606 5.653515 5.714482 
14(e) 2 5.736781 5.890406 5.472869 5.945735 
14(e) 3 5.797911 5.752635 6.020828 6.168142 
14(e) 4 5.714855 6.015885 5.034786 5.996046 
14(f) 1 5.155452 5.912589 5.555240 5.590639 
14(f) 2 6.083034 5.791876 4.703432 5.677327 
14(f) 3 5.674115 5.736203 5.816588 6.045265 
14(f) 4 5.674343 6.074334 4.679347 5.855797 
15(a) 1 5.907000 6.105254 5.954466 5.892723 
15(a) 2 6.134328 6.087080 6.248683 6.403800 
15(a) 3 6.060922 5.777319 6.310244 6.218068 
15(a) 4 5.394370 5.815682 5.238525 6.211088 
15(b) 1 5.894845 6.126315 5.929002 5.887159 
15(b) 2 5.856588 6.067307 6.129728 6.374213 
15(b) 3 6.004285 5.757083 6.264523 6.222906 
15(b) 4 5.463844 5.787212 5.208783 6.179084 
15(c) 1 5.840663 6.041954 5.889577 5.861843 
15(c) 2 5.188877 6.028841 5.963924 6.309322 
15(c) 3 5.939251 5.734792 6.252913 6.221472 
15(c) 4 5.520334 5.778367 5.183959 6.152245 
15(d) 1 5.683046 6.041419 5.824888 5.818359 
15(d) 2 5.043132 5.987381 5.779756 6.235353 
15(d) 3 5.879769 5.643103 6.231497 6.232010 
15(d) 4 5.597918 5.909996 5.156698 6.147477 
15(e) 1 5.313802 5.692202 5.792126 5.804777 
15(e) 2 5.652391 5.971659 5.431761 6.216579 
15(e) 3 5.864790 5.557136 6.161402 6.245972 
15(e) 4 5.673966 6.072573 5.161863 6.130646 
15(f) 1 4.772618 5.091612 5.772559 5.813745 
15(f) 2 6.126851 5.980894 4.989271 6.207485 
15(f) 3 5.839331 5.599754 6.058500 6.202442 
15(f) 4 5.702899 6.123158 5.102581 6.125611 

HereS _Q1 stands for subquadrant 1, S_Q2 stands for subquadrant 2, S_Q3 stands for 
subquadrant 3, and S_Q4 stands for i subquadrant 4. 
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Appendix C: Source Code 
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/*********************************** fuse_n.cpp ********************************/ 
/* This file contains the code for fusing the images. It contains both */ 
/* the fusion functions for selection and hybrid selection and averaging. */ 
/* It also contains the six fusion functions used to fuse RoLP, gradient, */ 
/*  and morphological pyramids with the two fusion techniques. */ 
/*******************************************************************************/ 
#ifndef FUSE 
tdefine FUSE 

tinclude "thesis.h" 
#include 'files.cpp" 
tinclude "convolve_n.cpp" 
tinclude "gradient_n.cpp" 
t inelüde "morph_n.cpp" 
tinclude "rolp_n.cpp" 

/*******************************************************************************/ 
/* Image Fusion Techniques */ 

/* Fuses two images selecting between the two source pixels the pixel with 
the highest intensity; also called contrast fusion.  */ 

image * selection(image *il, image *i2) 
{ 
image *newpic; 
int xnew, ynew, x, y, index; 
if(il == NULL || i2 == NULL) return(NULL); 
if(il->xsize == i2->xsize && il->ysize == i2->ysize)  { 
xnew = il->xsize; 
ynew = i2->ysize; 
newpic = (image *)malloc(sizeof(image)); 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
for(x = 0; x < xnew; x++)  { 

for(y = 0; y < ynew; y++)  { 
index = y*xnew + x; 
if( (il->pixel[index][0] - 1) > (i2->pixel[index][0] - 1))  { 
newpic->pixel[index][0] = il->pixel[index][0]; 

} 
else  { 
newpic->pixel[index][0] = i2->pixel[index][0]; 

} 
if( (il->pixel[index][1] - 1) > (i2->pixel[index][1] - 1))  { 
newpic->pixel[index][1] = il->pixel[index][1]; 

} 
else  { 
newpic->pixel[index][1] = i2->pixel[index][1]; 

} 
if( (il->pixel[index][2] - 1) > (i2->pixel[index][2] - 1))  { 
newpic->pixel[index][2] = il->pixel[index][2]; 

} 
else  { 

newpic->pixel[index][2] = i2->pixel[index][2]; 
} 

} 
} 
newpic->xsize = xnew; 
newpic->ysize = ynew; 
return(newpic); 

} 
else return(NULL); 

} 

/* This function is used for the match and saliency measures for hybrid 
selection and averaging fusion.  This function returns the weighted 
average of the product of a 3-by-3 area surrounding the pixel in the 
(i, j) position for a given pixel color.  */ 

double sample_p(image * picl, image * pic2, int i, int j, int color) 
{ 

//The images must be the same x and y dimentions 
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int m, n, index, tx, ty; 
double tsum = 0.0; 
for(m = -2; m < 3; m++)  { 

for(n = -2; n < 3; n++)  { 
tx = i + m; 
if(tx < 0 || tx >= picl->xsize || tx >= pic2->xsize)   continue; 

ty = 3   + n; 
if(ty < 0 || ty >= picl->ysize ty >= pic2->ysize)   continue; 

index = ty*picl->xsize + tx; 
tsum += w_g(m,n) * picl->pixel[index][color] * pic2->pixel[index][color]; 

} 
return(tsum); 

} 

/* The salience function returns a corresponding map the same dimentions of the 
image which is used to determine which pixel to use for selection, or which 
one has a higher weight for averaging.  */ 

image * salience(image *g) 
{ 
image *newpic; 
int x, y, index; 

newpic = (image *)malloc(sizeof(image)); 
newpic->pixel = (Pixel *)malloc(g->xsize*g->ysize*sizeof(Pixel)); 
newpic->xsize = g->xsize; 
newpic->ysize = g->ysize; 
for(y = 0; y < g->ysize; y++)  { 
for(x = 0; x < g->xsize; x++)  { 

index = y*g->xsize + x; 
newpic->pixel[index][0] = sample_p(g, g, x, y, 0) 
newpic->pixel[index][1] = sample_p(g, g, x, y, 1) 
newpic->pixel[index][2] = sample_p(g, g, x, y, 2) 

} 
} 
return(newpic); 

} 

/* This function reuturns a measure of match to by which to compare the two 
images.  If the two images match, averaging is used, if they don't match 
within the weighted average is used where the one with the higher 
saliency has the higher weight.  */ 

image * match(image *a, image *b, image *sa, image *sb) 

{ 
image *newpic; 
int x, y, index; 

newpic = (image *)malloc(sizeof(image)); 
newpic->pixel = (Pixel *)malloc(a->xsize*a->ysize*sizeof(Pixel)); 
newpic->xsize = a->xsize; 
newpic->ysize = a->ysize; 
for(y = 0; y < a->ysize; y++)  { 

for(x = 0; x < a->xsize; x++)  { 
index = y*a->xsize + x; 

abs(2*sample_p(a, b, 
(sa->pixel[index][0] 
abs(2*sample_p(a, b, 
(sa->pixel[index][1] 
abs(2*sample_p(a, b, 
(sa->pixel[index][2] 

newpic->pixel[index][0] 

newpic->pixel[index][1] 

newpic->pixel[index][2] 

x, y, 0)/ 
+ sb->pixel[index][0])) 
x, y, 1)/ 
+ sb->pixel[index][1])) 
x, y, 2)/ 
+ sb->pixel[index][2])) 

} 
} 
return(newpic); 

/* Fuses two images by using both selection and averaging.  If the two pixels 
correspond to the same type of subfeature averageing is used, otherwise 
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selection is used.  Alpha is a measure of how close the two pixels must 
match to use selection or averaging.  */ 

image * hybrid_selection_average(image *a, image *b, double alpha) 

{ 
image *sa, *sb, *m, *newpic; 
double wmin, wmax, wa, wb; 
int x, y, index, c; 

NULL) return(NULL); 

sb); 

if (a == NULL | | b == 
sa = salience(a); 
sb = salience(b); 
m = match(a, b, sa, 
newpic = (image *)malloc(sizeof(image)) ; 
newpic->pixel = (Pixel *)malloc(a->xsize*a->ysize*sizeof(Pixel)) ; 
newpic->xsize = a->xsize; 
newpic->ysize = a->ysize; 
forty = 0; y < a->ysize; y++)  { 

for(x = 0; x < a->xsize; x++)  { 
index = y*a->xsize + x; 
for(c = 0; c < 3; c++)  { 
wmin = .5 - .5*(1 - m->pixel[index][c])/(1 - alpha); 
wmax = 1 - wmin; 
if(sa->pixel[index][c] > sb->pixel[index][c])  { 
wa = wmax; wb = wmin; 

} else  { 
wa = wmin; wb wmax; 

} 
newpic->pixel[index][c] = wa*a->pixel[index][c] + wb*b->pixel[index][c]; 

return(newpic); 
} 

/* Fuse Gradient Pyramid with hybrid fusion */ 

/* This function fuses two gradient pyramids using hybrid fusion  */ 
image * fuse_gradient_hybrid_pyramid(Pyramid_Gradient *A, Pyramid_Gradient *B, double 
alpha) 
{ 
Pyramid_Gradient *C; 
image *comp; 

C = (Pyramid_Gradient *)malloc(sizeof(Pyramid_Gradient)); 
C->d4 = (Pyramid *)malloc(sizeof(Pyramid)) 
C->d3 = (Pyramid *)malloc(sizeof(Pyramid)) 
C->d2 = (Pyramid *)malloc(sizeof(Pyramid)) 
C->dl = (Pyramid *)malloc(sizeof(Pyramid)) 
C->g = (Pyramid *)malloc(sizeof(Pyramid)); 

printf("\nFusing Gradient 4. "); 
C->d4->I5 = NULL; 
C->d4->I4 = hybrid_selection_average(A->d4->I4, B->d4->I4, alpha); 
C->d4->I3 = hybrid_selection_average(A->d4->I3, B->d4->I3, alpha); 
C->d4->I2 = hybrid_selection_average(A->d4->I2, B->d4->I2, alpha); 
C->d4->Il = hybrid_selection_average(A->d4->Il, B->d4->Il, alpha); 
C->d4->I0 = hybrid_selection_average(A->d4->I0, B->d4->I0, alpha); 
printf("...Done\n"); 

printf("\nFusing Gradient 3. '); 
C->d3->I5 = NULL; 
C->d3->I4 = hybrid_selection_average(A->d3->I4, B->d3->I4, alpha); 
C->d3->I3 = hybrid_selection_average(A->d3->I3, B->d3->I3, alpha); 
C->d3->I2 = hybrid_selection_average(A->d3->I2, B->d3->I2, alpha); 
C->d3->Il = hybrid_selection_average(A->d3->Il, B->d3->Il, alpha); 
C->d3->I0 = hybrid_selection_average(A->d3->I0, B->d3->I0, alpha); 
printf("...Done\n"); 
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printf("\nFusing Gradient 2. '); 
C->d2->I5 = NULL; 
C->d2->I4 = hybrid_selection_average(A->d2->I4, B->d2->I4, alpha), 
C->d2->I3 = hybrid_selection_average(A->d2->I3, B->d2->I3, alpha), 
C->d2->I2 = hybrid_selection_average(A->d2->I2, B->d2->I2, alpha); 
C->d2->Il = hybrid_selection_average(A->d2->Il, B->d2->Il, alpha), 
C->d2->I0 = hybrid_selection_average(A->d2->I0, B->d2->I0, alpha), 
printf(' .Done\n"); 

printf("\nFusing Gradient 1. . ."); 
C->dl->I5 = NULL; 
C->dl->I4 = hybrid_selection_average(A->dl->I4, B->dl->I4, alpha); 
C->dl->I3 = hybrid_selection_average(A->dl->I3, B->dl->I3, alpha); 
C->dl->I2 = hybrid_selection_average(A->dl->I2, B->dl->I2, alpha); 
C->dl->Il = hybrid_selection_average(A->dl->Il, B->dl->Il, alpha); 
C->dl->I0 = hybrid_selection_average(A->dl->IO, B->dl->I0, alpha); 
printf("...Done\n"); 

printf("\nFusing Gradient 0 . .. "); 
C->g->I5 = hybrid_selection_average(A->g->I5, B->g->I5, alpha); 
C->g->I4 = NULL 
C->g->I3 = NULL 
C->g->I2 = NULL 
C->g->Il = NULL 
C->g->I0 = NULL 
printf(" . .Done1 m") 

printf("\nConstructing Composite Pyramid..."); 
comp = construct_gradient(C); 
free_Pyramid_Gradient(C); 
printf("...Done\n"); 

return(comp); 
} 

/* This function fuses two images by constructing gradient pyramids and 
then fusing the pyramids using hybrid fusion.  */ 

image * fuse_gradient_hybrid(image *il, image *i2, double alpha) 
{ 
image *c; 
Pyramid_Gradient *A, *B; 
A = (Pyramid_Gradient *)malloc(sizeof(Pyramid_Gradient)); 
B = (Pyramid_Gradient *)malloc(sizeof(Pyramid_Gradient)); 

printf("\nCreating Pyramid A..."); 
A = gen_pyramid_gradient(il); 
printf("...Done\n"); 
printf("\nCreating Pyramid B..."); 
B = gen_pyramid_gradient(i2); 
printf("...Done\n"); 

c = fuse_gradient_hybrid_pyramid(A, B, alpha); 

free_Pyramid_Gradient(A); 
free_Pyramid_Gradient(B); 

return(c); 
} 

/••a****************************************************************************/ 

/* Fuse RoLp Pyramid with selection fusion */ 
/a******************************************************************************/ 

/* This function fuses two RoLP pyramids using selection fusion  */ 
image * fuse_RoLP_selection_pyramid(Pyramid *A, Pyramid *B) 
{ 
Pyramid *C; 
image *comp; 
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C = (Pyramid *)malloc(sizeof(Pyramid)); 

C->I5 = selection(A->I5, B->I5) 
C->I4 = selection(A->I4, B->I4) 
C->I3 = selection(A->I3, B->I3) 
C->I2 = selection(A->I2, B->I2) 
C->I1 = selection(A->I1, B->I1) 
C->I0 = selection(A->I0, B->I0) 

comp = construct_RoLP(C); 
free_pyramid(C); 

return(comp); 
} 

/* This function fuses two images by constructing RoLP pyramids and then 
fusing the pyramids using selection fusion.  */ 

image * fuse_RoLP_selection(image *il, image *i2) 

{ 
image *c; 
Pyramid *A, *B; 
A = (Pyramid *)malloc(sizeof(Pyramid)); 
B = (Pyramid *)malloc(sizeof(Pyramid)); 

A = gen_pyramid_RoLP(il); 
B = gen_pyramid_RoLP(i2); 

c = fuse_RoLP_selection_pyramid(A, B); 

free_pyramid(A); 
free_pyramid(B); 

return(c); 
} 

/* Fuse Morph Pyramid with selection fusion */ 
/*******************************************************************************/ 
/* This function fuses two morphological pyramids using selection fusion  */ 
image * fuse_morph_selection_pyramid(Pyramid *A, Pyramid *B) 

{ 
Pyramid *C; 
image *comp; 

C = (Pyramid *)malloc(sizeof(Pyramid)); 

C->I5 = selection(A->I5, B->I5) 
C->I4 = selection(A->I4, B->I4) 
C->I3 = selection(A->I3, B->I3) 
C->I2 = selection(A->I2, B->I2) 
C->I1 = selection(A->I1, B->I1) 
C->I0 = selection(A->I0, B->I0) 

comp = construct_morph(C); 
free_pyramid(C); 

return(comp); 
} 

/* This function fuses two images by constructing morphological pyramids and 
then fusing the pyramids using selection fusion.  */ 

image * fuse_morph_selection(image *il, image *i2) 

{ 
image *c; 
Pyramid *A, *B; 
A = (Pyramid *)malloc(sizeof(Pyramid)); 
B = (Pyramid *)malloc(sizeof(Pyramid)); 

init_sK() ; 
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A = gen_pyramid_morph(il); 
B = gen_pyramid_morph(i2); 

c = fuse_morph_selection_pyramid(A, B); 

free_pyramid(A); 
free_pyramid(B); 

return(c); 
} 

/* Fuse Morph Pyramid with hybrid fusion */ 
/*******************************************************************************/ 
/* This function fuses two morphological pyramids using hybrid fusion  */ 
image * fuse_morph_hybrid_pyramid(Pyramid *A, Pyramid *B, double alpha) 

{ 
Pyramid *C; 
image *comp; 

C = (Pyramid *)malloc(sizeof(Pyramid)); 

C->I5 = hybrid_selection_average(A->I5, B->I5, alpha); 
C->I4 = hybrid_selection_average(A->I4, B->I4, alpha); 
C->I3 = hybrid_selection_average(A->I3, B->I3, alpha); 
C->I2 = hybrid_selection_average(A->I2, B->I2, alpha); 
C->I1 = hybrid_selection_average(A->Il, B->I1, alpha); 
C->I0 = hybrid_selection_average(A->IO, B->I0, alpha); 

comp = construct_morph(C); 
free_pyramid(C) ; 

return(comp) ; 
} 

/* This function fuses two images by constructing morphological pyramids and 
then fusing the pyramids using hybrid fusion.  */ 

image * fuse_morph_hybrid(image *il, image *i2, double alpha) 
{ 
image *c; 
Pyramid *A, *B; 
A = (Pyramid *)malloc(sizeof(Pyramid)); 
B = (Pyramid *)malloc(sizeof(Pyramid)); 

init_sK(); 
A = gen_pyramid_morph(il); 
B = gen_pyramid_morph(i2); 

c = fuse_morph_hybrid_pyramid(A, B, alpha); 

free_pyramid(A); 
free_pyramid(B); 

return(c); 
} 

/•fr*****************************************************************************/ 

/* Fuse RoLp Pyramid with hybrid fusion */ 
/*******************************************************************************/ 
/* This function fuses two RoLP pyramids using hybrid fusion  */ 
image * fuse_RoLP_hybrid_pyramid(Pyramid *A, Pyramid *B, double alpha) 

{ 
Pyramid *C; 
image *comp; 

C = (Pyramid *)malloc(sizeof(Pyramid)); 

C->I5 = hybrid_selection_average(A->I5, B->I5, alpha); 
C->I4 = hybrid_selection_average(A->I4, B->I4, alpha); 
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C->I3 = hybrid_selection_average(A->I3, B->I3, alpha); 
C->I2 = hybrid_selection_average(A->I2, B->I2, alpha); 
C->I1 = hybrid_selection_average(A->Il, B->I1, alpha); 
C->IO = hybrid_selection_average(A->IO, B->IO, alpha); 

comp = construct_RoLP(C); 
free_pyramid(C); 

return(comp); 
} 

/* This function fuses two images by constructing RoLP pyramids and 
then fusing the pyramids using hybrid fusion.  */ 

image * fuse_RoLP_hybrid(image *il, image *i2, double alpha) 

{ 
image *c; 
Pyramid *A, *B; 
A = (Pyramid *)malloc(sizeof(Pyramid)); 
B = (Pyramid *)malloc(sizeof(Pyramid)); 

A = gen_pyramid_RoLP(il); 
B = gen_pyramid_RoLP(i2); 

c = fuse_RoLP_hybrid_pyramid(A, B, alpha); 

free_pyramid(A); 
free_pyramid(B); 

return(c); 
} 

/* Fuse Gradient Pyramid with hybrid fusion */ 
/a******************************************************************************/ 

/* This function fuses two gradient pyramids using selection fusion  */ 
image * fuse_gradient_selection_pyramid(Pyramid_Gradient *A, Pyramid_Gradient *B) 

{ 
Pyramid_Gradient *C; 
image *comp; 

C = (Pyramid_Gradient *)malloc(sizeof(Pyramid_Gradient)); 
C->d4 = (Pyramid *)malloc(sizeof(Pyramid)); 
C->d3 = (Pyramid *)malloc(sizeof(Pyramid)); 
C->d2 = (Pyramid *)malloc(sizeof(Pyramid)); 
C->dl = (Pyramid *)malloc(sizeof(Pyramid)); 
C->g = (Pyramid *)malloc(sizeof(Pyramid)); 

C->d4->I5 = NULL; 
C->d4->I4 
C->d4->I3 
C->d4->I2 
C->d4->Il 

selection(A->d4->I4, 
selection(A->d4->I3, 
selection(A->d4->I2, 
selection(A->d4->Il, 

B->d4->I4) 
B->d4->I3) 
B->d4->I2) 
B->d4->Il) 

C->d4->I0 = selection(A->d4->I0, B->d4->I0) 

C->d3->I5 = NULL; 
C->d3->I4 = selection(A->d3->I4, B->d3->I4) 
C->d3->I3 = selection(A->d3->I3, B->d3->I3) 
C->d3->I2 = selection(A->d3->I2, B->d3->I2) 
C->d3->Il = selection(A->d3->Il, B->d3->Il) 
C->d3->I0 = selection(A->d3->10, B->d3->I0) 

C->d2->I5 = NULL; 
C->d2->I4 = selection(A->d2->14, B->d2->I4) 
C->d2->I3 = selection(A->d2->I3, B->d2->I3) 
C->d2->I2 = selection(A->d2->I2, B->d2->I2) 
C->d2->Il = selection(A->d2->Il, B->d2->Il) 
C->d2->I0 = selection(A->d2->I0, B->d2->I0) 

C->dl->I5 NULL; 
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C->dl->I4 = selection(A->dl->I4, B->dl->I4) 
C->dl->I3 = selection(A->dl->I3, B->dl->I3) 
C->dl->I2 = selection(A->dl->I2, B->dl->I2) 
C->dl->Il = selection(A->dl->Il, B->dl->Il) 
C->dl->I0 = selection(A->dl->I0, B->dl->I0) 

C->g->I5 = selection(A->g->I5, B->g->I5); 
C->g->I4 = NULL; 
C->g->I3 = NOLL 
C->g->I2 = NULL 
C->g->Il = NULL 
C->g->I0 = NULL 

comp = construct_gradient(C); 
free_Pyramid_Gradient(C); 

return(comp); 
} 

/* This function fuses two images by constructing gradient pyramids and 
then fusing the pyramids using selection fusion.  */ 

image * fuse_gradient_selection(image *il, image *i2) 
{ 
image *c; 
Pyramid_Gradient *A, *B; 
A = (Pyramid_Gradient *)malloc(sizeof(Pyramid_Gradient)); 
B = (Pyramid_Gradient *)malloc(sizeof(Pyramid_Gradient)); 

printf("\nCreating Pyramid A.. . ") ; 
A = gen_pyramid_gradient(il); 
printf("...Done\n"); 
printf("\nCreating Pyramid B..."); 
B = gen_pyramid_gradient(i2); 
printf("...Done\n"); 

c = fuse_gradient_selection_pyramid(A, B); 

free_Pyramid_Gradient(A); 
free_Pyramid_Gradient(B); 

return(c); 
} 

tendif 
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/************************************ image_p.cpp ******************************/ 
/* This file contains the code used for image processing routines such as */ 
/*  image addition, subtraction, multiplication, division, etc. */ 
/*******************************************************************************/ 
tifndef IMAGE 
»define IMAGE 

ttinclude "thesis.h" 
tinclude "files.cpp" 

/* Type Definitions  */ 
typedef struct Pyramid { 

image *I0, *I1, *I2, *I3, *I4, *I5; 
} Pyramid; 

/* Image Processing */ 
image * reduce(image *g); 
image * expand(image *g); 
image * subtract(image *il, image *i2); 
image * add(image *il, image *i2); 
image * max_comp(image *il, image *i2); 
image * divide(image *il, image *i2) ; 
image * multiply(image *il, image *i2); 
void free_pyramid(Pyramid *p); 

/*******************************************************************************/ 
/* IMAGE PROCESSING STUFF */ 
/*******************************************************************************/ 
/* The Gaussian kernel, w.  */ 
double w(int m, int n) 
{ 
double wm, wn, answer; 
if(m == 0) wm = A_REDUCE; 
else if (abs(m) == 1) wm = 0.25; 
else wm = 0.25 - A_REDUCE/2; 

if(n == 0) wn = A_REDUCE; 
else if (abs(n) == 1) wn = 0.25; 
else wn = 0.25 - A_REDUCE/2; 

answer = wm*wn; 
return(answer); 

} 

/* Returns a single sample located at (i, j) for the REDUCED image of pic 
color is the indicator for red, green, or blue pixels.  */ 

int reducepixel(image * pic, int i, int j, int color) 
{ 
int m, n, index, tx, ty; 
double tsum = 0.0; 
for(m = -2; m < 3; m++)  { 

for(n = -2; n < 3; n++)  { 
tx = 2*i + m; 
if(tx < 0) tx = -tx; 
if(tx >= pic->xsize)   tx = 2*pic->xsize - tx - 1; 

ty = 2*j + n; 
if(ty < 0) ty = -ty; 
if(ty >= pic->ysize)   ty = 2*pic->ysize - ty - 1; 

index = ty*pic->xsize + tx; 
tsum += w(m,n) * pic->pixel[index][color]; 

} 
} 
return((int)tsum); 

} 

/* Filters and subsamples the image g to get the next level in the 
Gaussian pyramid.  */ 
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image * reduce(image *g) 
{ 
image *newpic; 
int mew, ynew, x, y, index; 
newpic = (image *)malloc(sizeof(image)); 
xnew = (g->xsize - l)/2 + 1; 
ynew = (g->ysize - l)/2 + 1; 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel 
for(x = 0; x < xnew; x++)  { 

forty = 0; y < ynew; y++)  { 
index = y*xnew + x; 
newpic->pixel[index][0] 
newpic->pixel[index][1] 
newpic->pixel[index][2] 

} 
} 
newpic->xsize = xnew; 
newpic->ysize = ynew; 
return(newpic); 

} 

reducepixel(g, x, y, 
reducepixel(g, x, y, 
reducepixel(g, x, y. 

/* Returns a single sample located at (i, j) for the EXPANDED image of pic 
color is the indicator for red, green, or blue pixels.  */ 

double expandpixel(image * pic, int i, int j, int color) 
{ 
int m, n, index, tx, ty; 
double tsum = 0.0; 
for(m = -2; m < 3; m++)  { 

for(n = -2; n < 3; n++)  { 
if( ((i-m)%2 == 0) && ((j-n)%2 == 0) )  { 

tx = (i-m)/2; 
if(tx < 0) tx = -tx; 
if(tx >= pic->xsize)   tx = 2*pic->xsize - tx - 1; 

ty = (j - n)/2; 
if(ty < 0) ty = -ty; 
if(ty >= pic->ysize) ty 2*pic->ysize - ty 

index = ty*pic->xsize + tx; 
tsum += w(m,n) * pic->pixel[index][color]; 

} 

} 

} 
return(4*tsum); 

/* Upsamples and interpolates the image g to get a lower resolution image 
of the previoius level in the pyramid*/ 

image * expand(image *g) 
{ 
image * newp i c; 
int xnew, ynew, x, y, index; 
newpic = (image *)malloc(sizeof(image)); 
xnew = (g->xsize - 1)*2 + 1; 
ynew = (g->ysize - 1)*2 + 1; 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
for(x = 0; x < xnew; x++)  { 

for(y = 0; y < ynew; y++)  { 
index = y*xnew + x; 
newpic->pixel[index][0] 
newpic->pixel[index][1] 
newpic->pixel[index][2] 

} 
} 
newpic->xsize = xnew; 
newpic->ysize = ynew; 
return(newpic); 

expandpixel(g, 
expandpixel(g, 
expandpixel(g, 

x,  y. 0) 
x,  y, 1) 
x,  y, 2) 
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/* This function returns the absolut value of the difference between 
image il and image i2.  */ 

image * subtract(image *il, image *i2) 
{ 
image *newpic; 
int xnew, ynew, x, y, index; 
if(il->xsize == i2->xsize && il->ysize == i2->ysize)  { 
xnew = il->xsize; 
ynew = i2->ysize; 
newpic = (image *)malloc(sizeof(image)); 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
for(x = 0; x < xnew; x++)  { 

for(y = 0; y < ynew; y++)  { 
index = y*xnew + x; 
newpic->pixel[index][0] 
newpic->pixel[index][1] 
newpic->pixel[index][2] 

} 
} 
newpic->xsize = 
newpic->ysize = 
return(newpic); 

abs(il->pixel[index][0] 
abs(il->pixel[index][1] 
abs(il->pixel[index][2] 

i2->pixel[index][0]) 
i2->pixel[index][1]) 
i2->pixel[index][2]) 

xnew; 
ynew; 

} 
else return(NULL); 

} 

/* This function returns the difference between image il and image i2.  */ 
image * subtract_sign(image *il, image *i2) 
{ 
image *newpic; 
int xnew, ynew, x, y, index; 
if(il->xsize == i2->xsize && il->ysize == i2->ysize)  { 
xnew = il->xsize; 
ynew = i2->ysize; 
newpic = (image *)malloc(sizeof(image)); 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
for(x = 0; x < xnew; x++)  { 

for(y = 0; y < ynew; y++)  { 
index = y*xnew + x; 
newpic->pixel[index][0] = il->pixel[index][0] 
newpic->pixel[index][1] = il->pixel[index][1] 

il->pixel[index][2] newpic->pixel[index][2] 

i2->pixel[index][0]; 
i2->pixel [index] [1] ,- 
i2->pixel[index][2]; 

} 
} 
newpic->xsize 
newpic->ysize 
return(newpic) 

xnew; 
ynew; 

} 
else return(NULL); 

} 

/* This function returns the sum of image il and image i2. 
image * add_sign(image *il, image *i2) 
{ 
image *newp ic; 
int xnew, ynew, x, y, index; 
if(il->xsize == i2->xsize && il->ysize == i2->ysize)  { 
xnew = il->xsize; 
ynew = i2->ysize; 
newpic = (image *)malloc(sizeof(image)); 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
for(y = 0; y < ynew; y++)  { 

for(x = 0; x < xnew; x++)  { 
index = y*xnew + x; 
newpic->pixel[index][0] = il->pixel[index][0] + 
newpic->pixel[index][1] = il->pixel[index][1] + 
newpic->pixel[index][2] = il->pixel[index][2] + 

} 

i2->pixel[index][0]; 
i2->pixel[index][1]; 
i2->pixel[index][2]; 
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} 
newpic->xsize = xnew; 
newpic->ysize = ynew; 
return(newpic); 

} 
else return(NULL); 

} 

/* This function frees the memory used by a pyramid.  */ 
void free_pyramid(Pyramid *p) 
{ 
if(p != NULL)  { 

free_image(p->10); 
free_image(p->Il) 
free_image(p->12) 
free_image(p->13) 
free_image(p->14) 
free_image(p->15) 
free(p); 
p = NULL; 

return; 

/* This function returns the ratio of image il and image i2.  */ 
image * divide(image *il, image *i2) 
{ 
image *newpic; 
int xnew, ynew, x, y, index; 
if(il->xsize == i2->xsize && il->ysize == i2->ysize)  { 
xnew = il->xsize; 
ynew = i2->ysize; 
newpic = (image *)malloc(sizeof(image)); 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
for(x = 0; x < xnew; x++)  { 

for(y = 0; y < ynew; y++)  { 
index = y*xnew + x; 
if(i2->pixel[index][0] != 0)  { 
newpic->pixel[index][0] = (il->pixel[index][0] / i2->pixel[index][0]); 

} 
else  { 
newpic->pixel[index][0] = 1; 

} 
if(i2->pixel[index][1] !=0)  { 
newpic->pixel[index][1] = (il->pixel[index][1] / i2->pixel[index][1]); 

} 
else  { 
newpic->pixel[index][1] = 1; 

} 
if(i2->pixel[index][2] !=0)  { 
newpic->pixel[index][2] = (il->pixel[index][2] / i2->pixel[index][2]); 

} 
else  { 
newpic->pixel[index][2] = 1; 

} 
} 

} 
newpic->xsize = xnew; 
newpic->ysize = ynew; 
return(newpic); 

} 
else return(NULL); 

} 

/* This function returns the product of image il and image i2.  */ 
image * multiply(image *il, image *i2) 
{ 
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{ 

(il->pixel[index][0] 
(il->pixel[index][1] 
(il->pixel[index][2] 

i2->pixel[index][0]) ; 
i2->pixel[index][1]) ; 
i2->pixel[index][2]): 

image *newpic; 
int xnew, ynew, x, y, index; 
if(il->xsize == i2->xsize && il->ysize == i2->ysize 
xnew = il->xsize; 
ynew = i2->ysize; 
newpic = (image *)malloc(sizeof(image)); 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel 
for(x = 0; x < xnew; x++)  { 

for(y = 0; y < ynew; y++)  { 
index = y*xnew + x; 
newpic->pixel[index][0] 
newpic->pixel[index][1] 
newpic->pixel[index][2] 

} 
} 
newpic->xsize = xnew; 
newpic->ysize = ynew; 
return(newpic); 

} 
else return(NULL); 

} 

/* This function creates an image structure from the bands of other images. 
il, i2, and i3 are the images used, and cl, c2, and c3 are the bands that 
will form the new red, green, and blue bands.  */ 

image * spec_bands(image *il, int cl, image *i2, int c2, image *i3, int c3) 

{ 
image *newpic; 
int xnew, ynew, x, y, index; 
if(il->xsize == i2->xsize && il->ysize == i2->ysize && 

i2->xsize == i3->xsize && i2->ysize == i3->ysize)  { 
xnew = il->xsize; 
ynew = i2->ysize; 
newpic = (image *)malloc(sizeof(image)); 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
for(x = 0; x < xnew; x++)  { 

for(y = 0; y < ynew; y++)  { 
index = y*xnew + x; 
newpic->pixel[index][0] 
newpic->pixel[index][1] 
newpic->pixel[index][2] 

} 
} 
newpic->xsize = xnew; 
newpic->ysize = ynew; 
return(newpic); 

} 
else return(NULL); 

il->pixel[index][cl]; 
i2->pixel[index][c2]; 
i3->pixel[index][c3]; 

} 

/* This function creates a ppm file from the bands of other ppm files. 
The new image contains the red band of nl, the green band of n2, and 
the blue band of n3.  */ 

void mergebands(char * out, char * nl, char * n2, char * n3) 

{ 
int xsize, ysize, x, y; 
FILE * infilel, *infile2, *infile3, *outfile; 
int red, green, blue, tl, t2; 
initfile(&infilel, nl, fcxsize, Sysize); 
initfile(&infile2, n2, fcxsize, fcysize); 
initfile(&infile3, n3, &xsize, &ysize); 
outfile = fopen(out, "w"); 
fprintf(outfile, "P3\n# Created by Ted MeekAn"); 
fprintf(outfile, "%d %d %d\n", xsize, ysize, 255); 
for(y = 0; y < ysize; y++)  { 

for(x = 0; x < xsize; x++)  { 
fscanf (infilel,   "%d%d%d",   Sired,   &tl,   &t2); 
fscanf (infile2, "%d%d%d*, &tl, &green, Set2); 
fscanf(infile3, "%d%d%d", &tl, &t2, &blue); 
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fprintf(outfile, "%d %d %d ", red, green, blue); 

} 
} 
fclose(infilel); 
fclose(infile2); 
fclose(infile3); 
fclose(outfile); 

} 

/* This function returns the product of image il and the constand c.  */ 
image * multiply_const(image *il, double c) 
{ 
image *newpic; 
int xnew, ynew, x, y, index; 
xnew = il->xsize; 
ynew = il->ysize; 
newpic = (image *)malloc(sizeof(image)); 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
for(x = 0; x < xnew; x++)  { 

for(y = 0; y < ynew; y++)  { 
index = y*xnew + x; 
newpic->pixel[index] [0] = (il->pixel[index][0] * c) ; 
newpic->pixel[index][1] = (il->pixel[index][1] * c); 
newpic->pixel[index][2] = (il->pixel[index][2] * c); 
for(int i = 0; i < 3; i++)  { 

if(newpic->pixel[index][i] > 255) newpic->pixel[index][i] = 255; 

} 
} 

} 
newpic->xsize = xnew; 
newpic->ysize = ynew; 
return(newpic); 

} 

#endif 
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/********************************** gaussian_n.cpp *****************************/ 
/* This file contains the code for generating a Gaussian pyramid for a given */ 
/*   image.  The pyramid depth is six levels. */ 
/*******************************************************************************/ 
#ifndef GAUSSIAN 
tdefine GAUSSIAN 

#include "thesis.h" 
iinclude "files.cpp" 
#include "image_p.cpp" 

/**********************************************************************************/ 
/* Gaussian */ 

/* This functin generates a six level Gaussian pyramid for the given image */ 
Pyramid * gen_pyramid_gaussian(image *g) 
{ 
Pyramid *p; 

p = (Pyramid *)malloc(sizeof(Pyramid)); 

p->10 = resize(g, 5); 
p->Il = reduce(p->10); 
p->12 = reduce(p->Il); 
p->13 = reduce(p->12); 
p->14 = reduce(p->13); 
p->15 = reduce(p->14); 

return(p); 
} 

tendif 
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/********************************** leplace_n.cpp ******************************/ 
/* This file contains the code for generating a Leplacian pyramid for a */ 
/*  given image.  The pyramid depth is six levels. */ 
/••••A**************************************************************************/ 

#ifndef LEPLACE 
#define LEPLACE 

#include "thesis.h" 
#include "gaussian_n.cpp" 

/* Type Definitions  */ 

/* Image Processing */ 
Pyramid * gen_pyramid_leplace(image *g); 
image * construct_leplace(Pyramid *p); 

/**********************************************************************************/ 
/* Leplace */ 

Pyramid * gen_pyramid_leplace(image *i) 
{ 
Pyramid *g, *p; 
image * temp; 

p = (Pyramid *)malloc(sizeof(Pyramid)); 
g = gen__pyramid_gaussian(i) ; 

p->15 = copy_image(g->I5); 
temp = expand(g->15); 
p->14 = subtract_sign(g->14, temp); 
free_image(temp); 
temp = expand(g->14); 
p->13 = subtract_sign(g->13, temp); 
free_image(temp); 
temp = expand(g->13); 
p->12 = subtract_sign(g->12, temp); 
free_image(temp); 
temp = expand(g->12); 
p->Il = subtract_sign(g->Il, temp); 
free_image(temp); 
temp = expand(g->Il); 
p->10 = subtract_sign(g->10, temp); 
free_image(temp); 

return(p); 

image * construct_leplace(Pyramid *L) 
{ 
image *temp, *i; 
Pyramid *p; 

p = (Pyramid *)malloc(sizeof(Pyramid)) ; 

temp = expand(L->I5) 
temp = expand(p->14) 
temp = expand(p->13) 
temp = expand(p->12) 
temp = expand(p->Il) 

i = copy_image(p->10); 

p->14 = add_sign(temp, L->I4) 
p->13 = add_sign(temp, L->I3) 
p->12 = add_sign(temp, L->I2) 
p->Il = add_sign(temp, L->I1) 
p->10  =  add_sign(temp,   L->I0) 

free(temp) ; 
free(temp); 
free(temp); 
free(temp); 
free(temp); 

return(i); 

#endif 
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/*********************************** RoLP_n.cpp *********************************/ 
/*  This file contains the code for generating a RoLP pyramid for a given    */ 
/*   image.  The pyramid depth is six levels. */ 
/*******************************************************************************/ 
tifndef ROLP 
#define ROLP 
tinclude "gaussian_n.cpp" 

Pyramid * gen_pyramid_RoLP(image *g) ; 
image * construct_RoLP(Pyramid *p); 
image * max_RoLP(image *il, image *i2); 

/**********************************************************************************/ 
/* RoLP */ 

/* This functin generates a six level RoLP pyramid for the given image */ 
Pyramid * gen_pyramid_RoLP(image *i) 
{ 
Pyramid *p, *g; 
image * temp ; 

p = (Pyramid *)malloc(sizeof(Pyramid)); 
g = gen_pyramid_gaussian(i); 

p->15 = copy_image(g->I5); 
temp = expand(g->15) 
temp = expand(g->14) 
temp = expand(g->13) 
temp = expand(g->12) 
temp = expand(g->Il) 
return(p); 

} 

p->14 = divide(g->14, temp); free_image(temp); 
p->13 = divide(g->13, temp); free_image(temp); 
p->12 = divide(g->12, temp); free_image(temp); 
p->Il = divide(g->Il, temp); free_image(temp); 
p->10 = divide(g->10, temp); free_image(temp); 

/*  This function returns the source image from a RoLP pyramid.  */ 
image * construct_RoLP(Pyramid *r) 
{ 
image *temp, *i; 
Pyramid *p; 

p = (Pyramid *)malloc(sizeof(Pyramid)); 
i = (image *)malloc(sizeof(image)); 

if(r->15 != NULL)  { 
p->15 = copy_image(r->I5); 
temp = expand(p->15); 
p->14 = multiply(r->14, temp); 
free(temp); 

} 
else  { 
p->14 = copy_image(r->I4); 

} 

temp = expand(p->14); 
p->13 = multiply(r->13, temp); 
free(temp); 
temp = expand(p->13); 
p->12 = multiply(r->12, temp); 
free(temp); 
temp = expand(p->12); 
p->Il = multiply(r->Il, temp); 
free(temp); 
temp = expand(p->Il); 
p->10 = multiply(r->10, temp); 
i = multiply(r->10, temp); 
free(temp); 
return(i); 

} 

#endif 
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/*********************************** gradient_n.cpp ****************************/ 
/* This file contains the code for generating a gradient pyramid for a given */ 
/* image. The pyramid depth is six levels. The gradient pyramid is */ 
/* actually four pyramids so a new structure is also defined and used. */ 
/*******************************************************************************/ 
#ifndef GRADIENT 
»define GRADIENT 

»include "thesis.h" 
»include "convolve_n.cpp" 
»include "gaussian_n.cpp" 

/* Type Definitions  */ 
typedef struct Pyramid_Gradient { 
Pyramid *g, *dl, *d2, *d3, *d4; 

} Pyramid_Gradient; 

/* Image Processing */ 
void free_Pyramid_Gradient(Pyramid_Gradient *p) ; 
Pyramid_Gradient * gen_pyramid_gradient(image *g) ; 
image * construct_gradient(Pyramid_Gradient *p); 

/**********************************************************************************/ 
/* Gradient */ 
/A*********************************************************************************/ 

/* This function frees the memory used for a gradient pyramid.  */ 
void free_Pyramid_Gradient(Pyramid_Gradient *p) 
{ 
if(p != NULL)  { 

free_pyramid(p->g); 
free_pyramid(p->dl); 
free_pyramid(p->d2) 
free_pyramid(p->d3) 
free_pyramid(p->d4) 
free(p); 
p = NULL; 

} 
return; 

} 

/* This function generates the four seperate pyramids which for the gradient pyramid. */ 
void gen_gradient(image *g, image **gl, image **g2, image **g3, image **g4) 

{ 
image * temp, *temp2; 

temp = conv_w_g_dot_image(g); 
temp2 = add_sign(temp, g); 
free_image(temp); 
(*gl) = conv_dl_image(temp2, 1) 
(*g2) = conv_d2_image(temp2, 1) 
(*g3) = conv_d3_image(temp2, 1) 
(*g4) = conv_d4_image(temp2, 1) 
free_image(temp2); 

return; 
} 

/* This function generates the gradient pyramid for a given image. 
Pyramid_Gradient * gen_pyramid_gradient(image *i) 
{ 
Pyramid_Gradient *p; 

p = (Pyramid_Gradient *)malloc(sizeof(Pyramid_Gradient)); 
p->dl = (Pyramid *)malloc(sizeof(Pyramid)), 
p->d2 = (Pyramid *)malloc(sizeof(Pyramid)); 
p->d3 = (Pyramid *)malloc(sizeof(Pyramid)); 
p->d4 = (Pyramid *)malloc(sizeof(Pyramid)] 
p->g = (Pyramid *)malloc(sizeof(Pyramid)); 
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&p->dl->Il, 
&p->dl->12, 
&p->dl->13, 
&p->dl->14, 
&p->dl->15. 

&p->d2->10, 
&p->d2->Il, 
&p->d2->12, 
&p->d2->13, 
&p->d2->14, 
&p->d2->15, 

&p->d3->10, 
&p->d3->Il, 
&p->d3->12, 
&p->d3->13, 
&p->d3->14, 
&p->d3->15. 

p->g = gen_pyramid_gaussian(i) ; 
gen_gradient(p->g->10, &p->dl->10 
gen_gradient(p->g->Il, 
gen_gradient(p->g->12, 
gen_gradient(p->g->13, 
gen_gradient(p->g->14, 
gen_gradient(p->g->15, 
return(p); 

} 
/* This function returns the source image from a gradient pyramid 
image * construct_gradient(Pyramid_Gradient *p) 

{ 
image *g3, *g2, *gl, *g0, *g4; 
image *13, *12, *11, *10, *14; 
image *lxl, *lx2, *lx3, *lx4; 
image *lfl, *lf2, *lf3, *lfO, *lf4; 

&p->d4->10) 
&p->d4->Il) 
&p->d4->12) 
&p->d4->13) 
&p->d4->14) 
&p->d4->15) 

lxl = gen_gradient_FSD_dl(p->dl->I4) 
1x2 = gen_gradient_FSD_d2(p->d2->I4) 
1x3 = gen_gradient_FSD_d3(p->d3->14) 
1x4 = gen_gradient_FSD_d4(p->d4->14) 
If4 = addlltol4(lxl, 1x2, 1x3, 1x4); 
free_image(lxl);  free_image(1x2);  free_image(1x3); free_image(1x4); 

lxl = gen_gradient_FSD_dl(p->dl->I3) . 
1x2 = gen_gradient_FSD_d2(p->d2->I3); 
1x3 = gen_gradient_FSD_d3(p->d3->13) 
1x4 = gen_gradient_FSD_d4(p->d4->13) 
lf3 = addlltol4(lxl, 1x2, 1x3, 1x4); 
free_image(lxl);  free_image(1x2);  free_image(1x3); free_image(1x4) 

lxl = gen_gradient_FSD_dl(p->dl->I2) 
1x2 = gen_gradient_FSD_d2(p->d2->I2) , 
1x3 = gen_gradient_FSD_d3(p->d3->I2), 
1x4 = gen_gradient_FSD_d4(p->d4->I2) , 
lf2 = addlltol4(lxl, 1x2, 1x3, 1x4); 
free_image(lxl) ;  free_image(1x2);  free_image(1x3); 

lxl = gen_gradient_FSD_dl(p->dl->Il) 
1x2 = gen_gradient_FSD_d2(p->d2->Il) i 
1x3 = gen_gradi ent_FSD_d3(p->d3->Il) 
1x4 = gen_gradient_FSD_d4(p->d4->Il) 
lfl = addlltol4(lxl, 1x2, 1x3, 1x4); 
free_image(lxl);  free_image(1x2);  free_image(1x31 

free_image(1x4) 

free_image(1x4); 

lxl = gen_gradient_FSD_dl(p->dl->IO) 
1x2 = gen_gradient_FSD_d2(p->d2->I0) 
1x3 = gen_gradient_FSD_d3(p->d3->10) 
1x4 = gen_gradient_FSD_d4(p->d4->I0) 
lfO = addlltol4(lxl, 1x2, 1x3, 1x4); 
free_image(lxl);  free_image(1x2);  free_image(1x3);  free_image(1x4); 

14 = FSD_to_RE(lf4) 
13 = FSD_to_RE(lf3) 
12 = FSD_to_RE(lf2) 
11 = FSD_tO_RE(lfl) 
10 = FSD_to_RE(lfO) 

g4 = add_sign(14, 
g3 = add_sign(13, 
g2 = add_sign(12, 
gl = add_sign(ll, expand_g(g2) 
gO = add_sign(10, expand_g(gl) 

expand_g(p->g->15)); 
expand_g(g4)); 
expand_g(g3)); 

free_image(gl); 
free_image(13); 
return(gO); 

} 
#endif 

free_image(g2) , 
free_image(12) 

free_image(g3); 
free_image(11); 

free_image(g4); 
free_image(10); 
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/**************************•******* morph_n.cpp ********************************/ 
/* This file contains the code for generating a morphological pyramid for a */ 
/*  given image.  The pyramid depth is six levels. */ 
/*******************************************************************************/ 
iifndef MORPH 
#define MORPH 

tinclude "thesis.h" 
#include "files.cpp" 
# ine lüde " image_jp. cpp" 

/* Type Definitions  */ 
typedef struct Struct_Elem { 

int xsize, ysize, xcen, ycen; 
Pixel *pixel; 

} Struct_Elem; 

/* Image Processing */ 
Pyramid * gen_pyramid_morph(image *g); 
image * construct_morph(Pyramid *p); 
image * expand_m(image *g); 
image * reduce_m(image *g); 

/* Global Variables */ 
Struct_Elem K; 

/A******************************************************************************/ 

/* STRUCTURING ELEMENT STUFF */ 
/*******************************************************************************/ 
/* Defines the structuring element as a 3-by-3 brick.  */ 
void init_K() 
{ 
K.xsize = 3;  K.ysize = 3; 
K.ycen = 1;  K.xcen = 1; 
K.pixel = (Pixel *)malloc(K.xsize*K.ysize*sizeof(Pixel)); 
K.pixelfO][0]   =   1;     K.pixel[1][0]   =   1; K.pixel[2][0]   =   1 
K.pixel[3][0]   =   1;     K.pixel[4][0]   =   1; K.pixel[5][0]   =   1 
K.pixel[6][0]   =   1;     K.pixel[7][0]   =   1; K.pixel[8][0]   =   1 

K.pixelfO][1] = 1; K.pixel[1][1] = 1; K.pixel[2][1] = 1 
K.pixel[3][1] = 1; K.pixel[4][1] = 1; K.pixel[5][1] = 1 
K.pixel[6][1]   =   1;     K.pixel[7][1]   =   1;     K.pixel[8][1]   =   1 

K.pixelfO][2] =  1; K.pixel[1][2] = 1; K.pixel[2][2] =  1 
K.pixel[3][2] =  1; K.pixel[4][2] = 1; K.pixel[5][2] =  1 
K.pixel[6][2] =   1; K.pixel[7][2] = 1; K.pixel[8][2] =1 

} 

/* Defines the structuring element as a 2-by-2 brick.  */ 
void init_sK() 
{ 
K.xsize = 2;  K.ysize = 2; 
K.ycen = 1;  K.xcen = 1; 
K.pixel = (Pixel *)malloc(K.xsize*K.ysize*sizeof(Pixel)); 
K.pixeltO][0]   =1;     K.pixel[1][0]   =  1; 
K.pixel[2][0]   =   1;     K.pixel[3][0]   =   1; 

K.pixel[0][1]   =   1;     K.pixel[1][1]   =   1; 
K.pixel[2][1]   =   1;     K.pixel[3][1]   =   1; 

K.pixelfO][2]   =  1;     K.pixel[1][2]   =  1; 
K.pixel[2][2]   =   1;     K.pixel[3][2]   =   1; 

} 

/*  Defines the structuring element as a 10-by-10 brick.  */ 
void init_bigK() 
{ 
int index; 
K.xsize = 10;  K.ysize = 10; 
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K.ycen =  5;     K.xcen =  5; 
K.pixel = (Pixel *)malloc(K.xsize*K.ysize*sizeof(Pixel)); 
for(int i = 0; i < K.xsize; i++)  { 

for(int j = 0; j < K.ysize; j++)  { 
index = j*K.xsize + i; 
K.pixel[index][0] = 1;  K.pixel[index][1] = 1;  K.pixel[index][2] = 1; 

} 
} 

} 

/* IMAGE PROCESSING STUFF */ 

/*  Returns a single pixel value at the (i, j) location for an image being 
dilated.  */ 

double sample_dilate(image * f, Struct_Elem *k, int i, int j, int c) 

{ 
int x, y, kx, ky, m, n; 
double sum, max = -1.0; 

for(m = 0; m < k->xsize; m++)  { 
for(n = 0; n < k->ysize; n++)  { 
kx = m - k->xcen; 
ky = n - k->ycen; 
x = i - kx; 
y = i   -  ky; 
if(x < 0 || y < 0 || x >= f->xsize || y >= f->ysize) continue; 
sum = f->pixel[y*f->xsize + x][c] + k->pixel[n*k->xsize + m][c] ; 
if(sum > max)  max = sum; 

} 
} 

return(max); 
} 

/* Dilates the image f by the structuring element K.  */ 
image * dilate(image *f, Struct_Elem *k) 
{ 
image *newpic; 
int x, y, index; 
newpic = (image *)malloc(sizeof(image)); 
newpic->xsize = f->xsize; 
newpic->ysize = f->ysize; 
newpic->pixel = (Pixel *)malloc(newpic->xsize*newpic->ysize*sizeof(Pixel)); 
for(y = 0; y < newpic->ysize; y++)  { 

for(x = 0; x < newpic->xsize; x++)  { 
index = y*newpic->xsize + x; 
newpic->pixel[index][0] = sample_dilate(f, k, x, y, 0); 
newpic->pixel[index][1] = sample_dilate(f, k, x, y, 1); 
newpic->pixel[index][2] = sample_dilate(f, k, x, y, 2); 

} 
} 
return(newpic); 

} 

/*  Returns a single pixel value at the (i, j) location for an image being 
eroded.  */ 

double samp1e_erode(image * f, Struct_Elem *k, int i, int j, int c) 

{ 
int x, y, m, n, kx, ky; 
double sum, min = 1000000; 

for(m = 0; m < k->xsize; m++)  { 
for(n = 0; n < k->ysize; n++)  { 
kx = m - k->xcen; 
ky = n - k->ycen; 
x = i + kx; 
y = j + ky; 
if(x < 0 || y < 0 || x >= f->xsize || y >= f->ysize) continue; 
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sum = f->pixel[y*f->xsize + x][c] - k->pixel[n*k->xsize + m][c] ; 
if(sum < min)  min = sum; 

} 
} 
return(min); 

} 

/* Erodes the image f by the structuring element K.  */ 
image * erode(image *f, Struct_Elem *k) 

{ 
image *newpic; 
int x, y, index; 
newpic = (image *)malloc(sizeof(image)); 
newpic->xsize = f->xsize; 
newpic->ysize = f->ysize; 
newpic->pixel = (Pixel *)malloc(newpic->xsize*newpic->ysize*sizeof(Pixel) 
for(y = 0; y < newpic->ysize; y++)  { 

for(x = 0; x < newpic->xsize; x++)  { 
index = y*newpic->xsize + x; 
newpic->pixel[index][0] = sample_erode(f, k, x, y, 0) 
newpic->pixel[index][1] = sample_erode(f, k, x, y, 1) 
newpic->pixel[index][2] = sample_erode(f, k, x, y, 2) 

} 
} 
return(newpic); 

} 

/* FILTERS */ 

/* Returns the image f after the application of the opening morphological 
filter that uses the structuring element K.  */ 

image * open(image *f) 
{ 
image *temp, *temp2; 
temp = erode(f, &K); 
temp2 = dilate(temp, &K); 
free_image(temp); 
return(temp2); 

} 

/* Returns the image f after the application of the closing morphological 
filter that uses the structuring element K.  */ 

image * close(image *f) 
{ 
image *temp, *temp2; 
temp = dilate(f, &K);    //  savefileftemp, *g3rod.ppm"); 
temp2 = erode(temp, &K); //  savefile(temp2, "g3rode.ppm"); 
free_image(temp); 
return(temp2); 

} 

/* Returns the image f after the application of both the closing and opening 
morphological filters.  */ 

image * FCO(image *f) 
{ 
image *temp, *temp2; 
temp = close(f);    //  savefile(temp, "g3ec_b.ppm"); 
temp2 = open(temp); //  savefile(temp2, "g3eo_b.ppm"); 
free_image(temp); 
return (temp2) ; 

} 

/* Returns the image f after the application of both the opening and closing 
morphological filters.  */ 

image * FOC(image *f) 
{ 
image *temp, *temp2; 
temp = open(f);      //  savefile(temp, "g3o_b.ppm"); 
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temp2 = close(temp) ,-  //  savefile (temp2, "g3oc_b.ppm") ; 
free_image(temp); 
return(temp2); 

} 

/*  Returns the image f after an expand operation and closing filter.  */ 
image * C_expand(image *f) 
{ 
image *temp, *temp2; 
temp = expand_m(f); 
temp2 = close(temp); 
free_image(temp); 
return(temp2); 

} 

/*  Returns the image f after an expand operation and dilation.  */ 
image * D_expand(image *f) 
{ 
image *temp, *temp2; 
temp = expand_m(f); 
temp2 = dilate(temp, &K); 
free_image(temp); 
return(temp2); 

} 

/* Returns the image f after an expand operation and a closeing 
then opening filter.  */ 

image * FCO_expand(image *f) 
{ 
image *temp, *temp2; 
temp = expand_m(f); 
temp2 = FCO(temp); 
free_image(temp); 
return(temp2); 

} 

/* Returns the image f after an expand operation and an opening 
then closeing filter.  */ 

image * FOC_expand(image *f) 
{ 
image *temp, *temp2; 
temp = FOC(f); //  savefile(temp, "g3foc.ppm"); 
temp2 = expand_m(temp); //  savefile(temp2, "g3foce.ppm"); 
free_image(temp); 
return(temp2); 

} ■ 

/* Generates the next higher level of a morphological pyramid.  */ 
image *PC(image *f) 
{ 
image *temp, *temp2; 
temp = reduce_m (f) ; 
temp2 = FCO(temp); 
free_image(temp); 
return(temp2); 

} 

/* Used for pyramid reconstruction to generate the level below the 
current level.  */ 

image *PRC(image *f, image *g) 
{ 
image *temp, *temp2; 
temp = C_expand(f); 
temp2 = subtract_sign(g, temp); 
free_image(temp); 
return(temp2); 

} 
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/* RESIZING ROUTINES */ 

/* Subsamples the image.  */ 
image * reduce_m (image *g) 
{ 
image * newp i c; 
int xnew, ynew, x, y, index, i2; 
newpic = (image *)malloc(sizeof(image)); 
xnew = (g->xsize - l)/2 + 1; 
ynew = (g->ysize - l)/2 + 1; 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
for(x = 0; x < xnew; x++)  { 

for(y = 0; y < ynew; y++)  { 
index = y*xnew + x; 
i2 = y*2*g->xsize + x*2; 
newpic->pixel[index][0] = g->pixel[i2][0]; 
newpic->pixel[index][1] = g->pixel[i2] [1] ; 
newpic->pixel[index][2] = g->pixel[i2][2]; 

} 
} 
newpic->xsize = xnew; 
newpic->ysize = ynew; 
return(newpic); 

} 

/* Upsamples the image.  */ 
image * expand_m(image *g) 
{ 
image *newpic; 
int xnew, ynew, x, y, index, i2; 
newpic = (image *)malloc(sizeof(image)); 
xnew = (g->xsize - 1)*2 + 1; 
ynew = (g->ysize - 1)*2 + 1; 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
for(x = 0; x < xnew; x++)  { 

for(y = 0; y < ynew; y++)  { 
index = y*xnew + x; 
if(x%2 == 0 && y%2 ==0)  { 

i2 = y*g->xsize/2 + x/2; 
newpic->pixel[index][0] = g->pixel[i2][0]; 
newpic->pixel[index][1] = g->pixel[i2][1] ; 
newpic->pixel[index][2] = g->pixel[12][2]; 

} 
else  { 
newpic->pixel[index][0] = 0; 
newpic->pixel[index][1] = 0; 
newpic->pixel[index][2] = 0; 

} 
} 

} 
newpic->xsize = xnew; 
newpic->ysize = ynew; 
return(newpic); 

} 

/* Morph */ 

/* This functin generates a six level morphological pyramid for the given image */ 
Pyramid * gen_pyramid_morph(image *g) 
{ 
Pyramid *p; 
image * temp, *i0, *il, *i2, *i3, *i4, *i5; 

p = (Pyramid *)malloc(sizeof(Pyramid)); 

//A regular resize instead of resize_nn may be appropriate. 
// resize_nn keeps the edges of the box from bluring. 
temp = resize_nn(g, 5);  iO = close(temp);  free_image(temp); 
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il = PC(iO) 
i2 = PC(il) 
i3 = PC(i2) 
i4 = PC(i3) 
i5 = PC(i4) 

// 
// 
// 
// 
// 

savefile(il, 
savefile(i2, 
savefile(i3, 
savefile(i4, 
savefile(i5. 

■gl.ppm") 
"g2.ppm") 
"g3.ppm") 
"g4.ppm") 
"g5.ppm") 

p->15 
p->14 
p->13 
p->12 
p->Il 
p->10 

i5; 
PRC{i5, 
PRC(i4, 
PRC(i3, 
PRC(i2, 
PRC(il, 

free_image(i4) 
free_image(il) 

14) 
13) 
12) 
ID 
10) 

II 
II 
II 
II 
II 

free_image(i3) 
free_image(iO) 

savefile(p->14, 
savefile(p->13, 
savefile(p->12, 
savefile(p->Il, 
savefile(p->10, 

"14.ppm"); 
"13.ppm"); 
"pi2.ppm") 
"11.ppm"); 
"10.ppm"); 

free_image(i2); 

return(p); 
} 

/* This function returns the source image from a morphological pyramid, 
image * construct_morph(Pyramid *p) 

image 
image 

g5e = 
i4 = 
g4e : 
i3 = 
g3e : 
12 = 
g2e : 
il = 
gle : 
iO = 
free, 
free. 

*g4e, *g3e, *g2e, *gle, *g5e; 
*i0, *il, *i2, *i3, *i4; 

= C_expand(p->15); 
add_sign(g5e, p->14); 

: C_expand(i4);     // 
add_sign(g4e, p->13); 

: C_expand(i3); 
add_sign(g3e, p->12); 

= C_expand(i2); 
add_sign(g2e, p->Il); 

= C_expand(i1); 
add_sign(gle, p->10); 
.image (gle) 
.image (i3) ; 

//  savefile(g4e, "g4ec.ppm"); 
//  savefile(i3, 'i3c.ppm"); 
savefile(g4e, "g4ec.ppm"); 

// 
// 
// 
// 
// 
// 
// 

savefile(i3, 
savefile(g3e, 
savefile(i2, 
savefile(g2e, 
savefile(il, 
savefile(gle, 

"i3c.ppm"); 
"g3ec.ppm"); 

"i2n.ppm"); 
"g2en.ppm"); 

"iln.ppm"); 
"glen.ppm"); 

free_image(g2e); 
free_image(i2); 

savefile(iO, "iOn.ppm"); 
free_image(g3 e);  free_image(g4e) ; 
free_image(il); 

return(iO); 

#endif 



102 
/********************************* convolve.cpp ********************************/ 
/* This file contains the code for implementing convolution for pyramid */ 
/*   filtering.  It also contains code necessary to support the gradient      */ 
/*  pyramid */ 
/*******************************************************************************/ 
#ifndef CONVOLVE 
#define CONVOLVE 

tinclude "thesis.h" 
tinclude "files.cpp" 
# inelüde "image_p.cpp" 

#define sqrt2 1.41421356237 
»define sqrt2inv .707106781188 
#define eighth .125 

/* Image Processing */ 
image * reduce_g(image *g); 
image * expand_g(image *g); 

/A******************************************************************************/ 

/* GAUSSIAN KERNEL FUNCTIONS */ 
/*******************************************************************************/ 
/* Gaussian kernal */ 
double w_g(int m, int n) 
{ 
double wm, wn, answer; 
if(m == 0) wm = 6; 
else if (abs(m) == 1) wm = 4 
else wm = 1 

if(n ==0) wn = 6 
else if (abs(n) == 1) wn = 4 
else wn = 1 

answer = wm*wn/256; 
return(answer); 

} 

/* Seperated function of Gaussian kernal */ 
double w_g_dot(int m, int n) 
{ 
double wm, wn, answer; 
if(m == 0) wm = 2; 
else wm = 1; 

if(n == 0) wn = 2; 
else wn = 1; 

answer = wm*wn/16; 
return(answer); 

} 

/a******************************************************************************/ 

/* CONVOLUTION ROUTINES */ 
/••••••a************************************************************************/ 

/* Returns a single sample located at (i, j) for a given color (red, green, or 
blue pixels) for the convolution of image with w_dot.  */ 

double sample_w_g_dot(image * pic, int i, int j, int color) 
{ 
int m, n, index, tx, ty; 
double tsum = 0.0; 
for(m = -1; m < 2; m++)  { 

for(n = -1; n < 2; n++)  { 
tx = i + m; 
if(tx < 0) tx = -tx; 
if(tx >= pic->xsize)   tx = 2*pic->xsize - tx - 1; 
ty = j + n; 
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if(ty < 0) ty = -ty; 
if(ty >= pic->ysize)   ty = 2*pic->ysize - ty - 1; 
index = ty*pic->xsize + tx; 
tsum += w_g_dot(m,n) * pic->pixel[index][color]; 

} 
} 
return (tsum) ; 

} 

/* Returns a single sample located at (i, j) for a given color (red, green, or 
blue pixels) for the convolution of image with w the gaussian kernel.  */ 

double sample_w_g(image * pic, int i, int j, int color) 

{ 
int m, n, index, tx, ty; 
double tsum =0.0; 
for(m = -2; m < 3; m++)  { 

for(n = -2; n < 3; n++)  { 
tx = i + m; 
if(tx < 0) tx = -tx; 
if(tx >= pic->xsize)   tx = 2*pic->xsize - tx - 1; 

ty = j + n; 
if(ty < 0) ty = -ty; 
if(ty >= pic->ysize)   ty = 2*pic->ysize - ty - 1; 

index = ty*pic->xsize + tx; 
tsum += w_g(m,n) * pic->pixel[index][color]; 

} 
} 
return(tsum); 

} 

/* Returns a single sample located at (i, j) for a given color (red, 
green, or blue pixels) for the convolution of image with oriented 
derivative filter dl.  */ 

double sample_dl(image * pic, int i, int j, int color, double mult) 
{ 

int index; 

if(i >= 0 && i <= pic->xsize)  { 
index = j*pic->xsize + i; 
if(i == 0) return(pic->pixel[index][color])*mult/3.5; 
else if(i == pic->xsize)  return(-(pic->pixel[index-1][color])*mult/3.5); 
else return((pic->pixel[index][color] - pic->pixel[index-1][color])*mult); 

} 
else 

return(-lllOOO) ; 
} 

/* Returns a single sample located at (i, j) for a given color (red, 
green, or blue pixels) for the convolution of image with oriented 
derivative filter d2.  */ 

double sample_d2(image * pic, int i, int j, int color, double mult) 
{ 
double a, b; 

if(i >= 0 && i <= pic->xsize)  { 
if(i > 0 && i <= pic->xsize && j < pic->ysize)  { 

a = pic->pixel[j*pic->xsize + i - 1][color]; 
} 
else a = 0; 
if(j > 0 && j <= pic->ysize && i < pic->xsize)  { 
b = pic->pixel[(j-1)*pic->xsize + i][color]; 

} 
else b = 0; 
if(a ==0 || b == 0) 
return((b - a)*sqrt2inv*mult/3.5); 

else 
return((b - a)*sqrt2inv*mult); 
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} 
else 

return(-lllOOO); 
} 

/* Returns a single sample located at (i, j) for a given color (red, 
green, or blue pixels) for the convolution of image with oriented 
derivative filter d3.  */ 

double sample_d3(image * pic, int i, int j, int color, double mult) 

{ 
double a, b; 

if(j >= 0 && j <= pic->ysize)  { 
if(j < pic->ysize) 

a = pic->pixel[j*pic->xsize + i][color]; 
else a = 0; 
if(j > 0) 
b = pic->pixel[(j-1)*pic->xsize + i][color]; 

else b = 0; 
if(a ==0 || b == 0) 
return((b - a)*mult/3.5); 

else 
return((b - a)*mult); 

} 
else 

return(-lllOOO); 
} 

/* Returns a single sample located at (i, j) for a given color (red, 
green, or blue pixels) for the convolution of image with oriented 
derivative filter d4.  */ 

double sample_d4(image * pic, int i, int j, int color, double mult) 

{ 
double a, b; 

if(j >= 0 && j <= pic->xsize)  { 
if(j < pic->ysize && i < pic->xsize)  { 

a = pic->pixel[j*pic->xsize + i][color]; 
} 
else a = 0; 
if(j > 0 && i > 0)  { 
b = pic->pixel[(j-1)*pic->xsize + (i - 1)][color]; 

} 
else b = 0; 
if(a == 0 || b == 0) 
return((b - a)*sqrt2inv*mult/3.5); 

else 
return((b - a)*sqrt2inv*mult); 

} 
else 

return(-111000); 
} 

/* Convolves the image g with the Gaussian kernel w */ 
image * conv_w_g_image(image *g) 
{ 
image * newp i c; 
int xnew, ynew, x, y, index; 
newpic = (image *)malloc(sizeof(image)); 
xnew = g->xsize; 
ynew = g->ysize; 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
for(x = 0; x < xnew; x++)  { 

for(y = 0; y < ynew; y++)  { 
index = y*xnew + x; 
newpic->pixel[index][0] = sample_w_g(g, x, y, 0), 
newpic->pixel[index][1] = sample_w_g(g, x, y, 1); 
newpic->pixel[index][2] = sample_w_g(g, x, y, 2); 

} 
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} 
newpic->xsize = xnew; 
newpic->ysize = ynew; 
return(newpic); 

/* Convolves the image g with the seperated Gaussian kernel w_dot */ 
image * conv_w_g_dot_image(image *g) 

image * newp i c; 
int xnew, ynew, x, y, index; 
newpic = (image *)malloc(sizeof(image)); 
xnew = g->xsize; 
ynew = g->ysize; 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
for(y = 0; y < ynew; y++)  { 

for(x = 0; x < xnew; x++)  { 
index = y*xnew + x; 
newpic->pixel[index][0] 
newpic->pixel[index][1] 
newpic->pixel[index][2] 

} 
} 
newpic->xsize = 
newpic->ysize = 
return(newpic); 

sample_w_g_dot(g, x, y, 0) 
sample_w_g_dot(g, x, y, 1) 
sample_w_g_dot(g, x, y, 2) 

xnew; 
ynew; 

} 

/* Convolves the image g with the first derivative filter dl timesed 
by a multiplier mult */ 

image * conv_dl_image(image *g, double mult) 
{ 
image *newpic; 
int x, y, index; 
newpic = (image *)malloc (sizeof (image) ) ,- 
newpic->xsize = g->xsize+l; 
newpic->ysize = g->ysize; 
newpic->pixel = (Pixel *)malloc(newpic->xsize*newpic->ysize*sizeof(Pixel)); 
for(y = 0; y < newpic->ysize; y++)  { 

for(x = 0; x < newpic->xsize; x++)  { 
index = y*newpic->xsize + x; 

sample_dl(g, x, y, 0, mult); 
sample_dl(g, x, y, 1, mult); 
sample_dl(g, x, y, 2, mult); 

newpic->pixel[index][0] 
newpic->pixel[index][1] 
newpic->pixel[index][2] 

} 
} 
return(newpic); 

} 

/* Convolves the image g with the first derivative filter d2 timesed 
by a multiplier mult */ 

image * conv_d2_image(image *g, double mult) 
{ 
image *newpic; 
int x, y, index; 
newpic = (image *)malloc(sizeof(image)); 
newpic->xsize = g->xsize+l; 
newpic->ysize = g->ysize+l; 
newpic->pixel = (Pixel *)malloc(newpic->xsize*newpic->ysize*sizeof(Pixel)] 
for(y = 0; y < newpic->ysize; y++)  { 

for(x = 0; x < newpic->xsize; x++)  { 
index = y*newpic->xsize + x; 

sample_d2(g, x, y, 0, mult) 
sample_d2(g, x, y, 1, mult) 
sample_d2(g, x, y, 2, mult) 

newpic->pixel[index][0] 
newpic->pixel[index][1] 
newpic->pixel[index][2] 

} 
} 
return(newpic); 
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/* Convolves the image g with the first derivative filter d3 timesed 
by a multiplier mult */ 

image * conv_d3_image(image *g, double mult) 
{ 
image *newpic; 
int x, y, index; 
newpic = (image *)malloc(sizeof(image)); 
newpic->xsize = g->xsize; 
newpic->ysize = g->ysize+l; 
newpic->pixel = (Pixel *)malloc(newpic->xsize*newpic->ysize*sizeof(Pixel) 
for(y = 0; y < newpic->ysize; y++)  { 

for(x = 0; x < newpic->xsize; x++)  { 
index = y*newpic->xsize + x; 
newpic->pixel[index][0] = sample_d3(g, x, y, 0, mult); 
newpic->pixel[index][1] = sample_d3(g, x, y, 1, mult); 
newpic->pixel[index][2] = sample_d3(g, x, y, 2, mult), 

} 
} 
return(newpic); 

} 

/* Convolves the image g with the first derivative filter d4 timesed 
by a multiplier mult */ 

image * conv_d4_image(image *g, double mult) 
{ 
image * newp i c; 
int x, y, index; 
newpic = (image *)malloc(sizeof(image)); 
newpic->xsize = g->xsize+l; 
newpic->ysize = g->ysize+l; 
newpic->pixel = (Pixel *)malloc(newpic->xsize*newpic->ysize*sizeof(Pixel)); 
for(y = 0; y < newpic->ysize; y++)  { 

for(x = 0; x < newpic->xsize; x++)  { 
index = y*newpic->xsize + x; 
newpic->pixel[index][0] = sample_d4(g, x, y, 0, mult); 
newpic->pixel[index][1] = sample_d4(g, x, y, 1, mult); 
newpic->pixel[index][2] = sample_d4(g, x, y, 2, mult); 

} 
} 
return(newpic); 

} 

/*******************************************************************************/ 

/* RESIZING ROUTINES */ 
/A******************************************************************************/ 

/* Returns a single sample located at (i, j) for the REDUCED image of pic 
color is the indicator for red, green, or blue pixels.  */ 

double reducepixel_g(image * pic, int i, int j, int color) 
{ 
int m, n, index, tx, ty; 
double tsum = 0.0; 
for(m = -2; m < 3; m++)  { 

for(n = -2; n < 3; n++)  { 
tx = 2*i + m; 
if(tx < 0 || tx >= pic->xsize)   continue; 

ty = 2*j + n; 
if(ty < 0 || ty >= pic->ysize)   continue; 

index = ty*pic->xsize + tx; 
tsum += w_g(m,n) * pic->pixel[index][color]; 

} 
} 
return(tsum); 

} 

/* Filters and subsamples the image g to get the next level in the 
gradient pyramid */ 
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image * reduce_g(image *g) 
{ 
image *newpic; 
int xnew, ynew, x, y, index; 
newpic = (image *)malloc(sizeof(image)); 
xnew = (g->xsize - l)/2 + 1; 
ynew = (g->ysize - l)/2 + 1; 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
for(x = 0; x < xnew; x++)  { 

for(y = 0; y < ynew; y++)  { 
index = y*xnew + x; 
newpic->pixel[index][0] 
newpic->pixel[index][1] 
newpic->pixel[index][2] 

} 
} 
newpic->xsize = 
newpic->ysize = 
return(newpic); 

(int)reducepixel_g(g, x, y, 0) 
(int)reducepixel_g(g, x, y, 1) 
(int)reducepixel_g(g, x, y, 2) 

xnew; 
ynew; 

} 

/* Returns a single sample located at (i, j) for the EXPANDED image of pic 
color is the indicator for red, green, or blue pixels.  */ 

double expandpixel_g(image * pic, int i, int j, int color) 
{ 
int m, n, index, tx, ty; 
double tsum = 0.0; 
for(m = -2; m < 3; m++)  { 

for(n = -2; n < 3; n++)  { 
if( ((i-m)%2 == 

tx = (i-m)/2; 
if(tx < 0 II 

0) && ((j-n)%2 

tx >= pic->xsize) 

)  { 

continue; 

ty = (j - n)/2; 
if(ty < 0 || ty >= pic->ysize) continue; 

index = ty*pic->xsize + tx; 
tsum += w_g(m,n) * pic->pixel[index][color]; 

} 
return(4*tsum); 

} 

/* Upsamples and interpolates the image g to get a lower resolution image 
of the previoius level in the pyramid*/ 

image * expand_g(image *g) 
{ 
image *newpic; 
int xnew, ynew, x, y, index; 
newpic = (image *)malloc(sizeof(image)); 
xnew = (g->xsize - 1)*2 + 1; 
ynew = (g->ysize - 1)*2 + 1; 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
for(x = 0; x < xnew; x++)  { 

for(y = 0; y < ynew; y++) 
index = y*xnew + x; 
newpic->pixel[index][0] 
newpic->pixel[index][1] 
newpic->pixel[index][2] 

} 

{ 

(int)expandpixel_g(g, 
(int)expandpixel_g(g, 
(int)expandpixel_g(g, 

X, y. 0) 
x, y, i) 
x. y. 2) 

} 
newpic 
newpic 
return(newpic 

>xsize 
>ysize 

xnew; 
ynew; 

/* Adds the images of the four different gradient pyramids associated 
with dl, d2, d3, and d4.  It returns the FSD leplacian pyramid. */ 
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image *addlltol4(image *11, image *12, image *13, image *14) 
{ 
image *newpic; 
int xnew, ynew, x, y, index; 
int xtemp, ytemp; 
xnew = 13->xsize; 
ynew = ll->ysize; 
newpic = (image *)malloc(sizeof(image)); 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
xtemp = xnew + 2; 
for(y = 0; y < ynew; y++)  { 

x++)  { for(x = 0; x < xnew; 
index = y*xnew + x; 
ytemp = y + 1; 
newpic->pixel[index][0] 

newpic->pixel[index][1] 

newpic->pixel[index][2] = 

} 
} 
newpic->xsize = 
newpic->ysize = 
return(newpic); 

ll->pixel[y   *xtemp 
12->pixel[ytemp*xtemp 
13->pixel[ytemp*(xnew) 
14->pixel[ytemp*xtemp 
ll->pixel[y   *xtemp 
12->pixel[ytemp*xtemp 
13->pixel[ytemp*(xnew) 
14->pixel[ytemp*xtemp 
ll->pixel[y   *xtemp 
12->pixel[ytemp*xtemp 
13->pixel[ytemp*(xnew) 
14->pixel[ytemp*xtemp 

+ x + 1] [0] + 
+ x + 1][0] + 
+ x   ][0] + 
+ x + 1] [0] ; 
+ x + 1] [1] + 
+ x + 1] [1] + 
+ X     ] [1] + 
+ X + 1] [1] ; 
+ x + 1][2] + 
+ x + 1][2] + 
+ x    ][2] + 
+ x + 1][2] ; 

xnew; 
ynew; 

} 

/**********************************************************************************/ 
/* FSD Conversions */ 
/**********************************************************************************/ 
/* Converts the dl gradient image into the dl FSD Leplacian image.  */ 
image *gen_gradient_FSD_dl(image *d) 
{ 
image * temp; 
int x, y, index; 

temp = (image *)malloc(sizeof(image)); 
temp->xsize = d->xsize+l; 
temp->ysize = d->ysize; 
temp->pixel = (Pixel *)malloc(temp->xsize*temp->ysize*sizeof(Pixel)); 
for(x = 0; x < temp->xsize; x++)  { 

for(y = 0; y < temp->ysize; y++)  { 
index = y*temp->xsize + x; 

sample_dl(d, x, y, 0, -eighth) 
sample_dl(d, x, y, 1, -eighth) 
sample_dl(d, x, y, 2, -eighth) 

temp->pixel[index][0] 
temp->pixel[index][1] 
temp->pixel[index][2] 

} 
} 
return(temp); 

} 

/* Converts the d2 gradient image into the d2 FSD Leplacian image.  */ 
image *gen_gradient_FSD_d2(image *g) 
{ 
image * temp ; 
int x, y, index; 

temp = (image *)malloc(sizeof(image)); 
temp->xsize = g->xsize + 1; 
temp->ysize = g->ysize + 1; 
temp->pixel = (Pixel *)malloc(temp->xsize*temp->ysize*sizeof(Pixel)); 
for(x = 0; x < temp->xsize; x++)  { 

for(y = 0; y < temp->ysize; y++)  { 
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index = y*temp->xsize + x; 
temp->pixel[index][0] 
temp->pixel[index][1] 
temp->pixel[index][2] 

sample_d2(g, x, y, 0, -eighth); 
sample_d2(g, x, y, 1, -eighth); 
sample_d2(g, x, y, 2, -eighth); 

} 
return(temp); 

} 

/* Converts the d3 gradient image into the d3 FSD Leplacian image.  */ 
image *gen_gradient_FSD_d3(image *g) 

{ 
image * temp; 
int x, y, index; 

temp = (image *)malloc(sizeof(image)); 
temp->xsize = g->xsize; 
temp->ysize = g->ysize + 1; 
temp->pixel = (Pixel *)malloc(temp->xsize*temp->ysize*sizeof(Pixel)); 
for(x = 0; x < temp->xsize; x++)  { 

for(y = 0; y < temp->ysize; y++)  { 
index = y*temp->xsize + x; 

sample_d3(g, x, y, 0, -eighth) 
sample_d3(g, x, y, 1, -eighth) 
sample_d3(g, x, y, 2, -eighth) 

temp->pixel[index][0] 
temp->pixel[index][1] 
temp->pixel[index][2] 

} 
} 
return(temp); 

} 

/* Converts the d4 gradient image into the d4 FSD Leplacian image. 
image *gen_gradient_FSD_d4(image *g) 
{ 
image * temp ; 
int x, y, index; 

temp = (image *)malloc(sizeof(image)); 
temp->xsize = g->xsize + 1; 
temp->ysize = g->ysize + 1; 
temp->pixel = (Pixel *)malloc(temp->xsize*temp->ysize* 
for(x = 0; x < temp->xsize; x++)  { 

for(y = 0; y < temp->ysize; y++)  { 
index = y*temp->xsize + x; 
temp->pixel[index][0] 
temp->pixel[index][1] 
temp->pixel[index][2] 

sizeof(Pixel)) ; 

sample_d4(g,   x,   y,   0, -eighth) 
sample_d4(g,   x,   y,   1, -eighth) 
sample_d4(g,   x,   y,   2, -eighth) 

} 
return(temp); 

} 

/* Converts the FSD Leplacian image into a Leplacian image. 
image * FSD_to_RE(image *g) 
{ 
image *temp, *t2; 

t2 = conv_w_g_image(g) ; 
temp = add_sign(g, t2) ; 
free_image(t2) ; 

return(temp) ; 

#endif 
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int ynew. int x. int y. DPoint color),- 
int ynew. int x. int y, DPoint color); 

/********************************** files.cpp **********************************/ 
/* This file contains the code for reading an image file, and storing the */ 
/* pixel information into an image structure. The loadfile routine is set */ 
/* for portable bitmaps, but can be implemented for any image storage type. */ 
/* Image memory routines are also set up, as well as routines to resize the */ 
/*   image and copy the image.  (used for portable bitmaps only) */ 
/*******************************************************************************/ 
#ifndef FILES_CPP 
tdefine FILES_CPP 

tinclude ■thesis.h" 

/* This is the type of a pixel 0 is red, 1 is green, and index 2 is blue */ 
typedef double   Pixel[3]; 

/* This is the structure to store an image as a two dimentional array of pixels */ 
typedef struct image { 

int xsize, ysize; 
Pixel *pixel; 

} image ,- 

/* Functions which are defined later */ 
void free_image(image * il) ; 
void initfile(FILE **infile, char * s, int *xs, int *ys); 
void loadfile(image *filestruct, char * name); 
void interpolate_pixel_nn(image * g, int xnew 
void interpolate_pixel_bi(image * g, int xnew 
image * resize(image *il, int n); 
image * copy_image(image *i) ; 

/* Function definitions */ 
/* this function copies the image passed in to another image */ 
/* basically it allocates memory and copies the contents of the image i and 

returns a pointer to the new image */ 
image * copy_image(image * i) 
{ 
int index, x, y; 
image *d; 
d = (image *)malloc(sizeof(image)); 
d->pixel = (Pixel *)malloc(i->xsize*i->ysize*sizeof(Pixel)); 

d->xsize = i->xsize; 
d->ysize = i->ysize; 

for(y = 0; y < i->ysize; y++)  { 
for(x = 0; x < i->xsize; x++)  { 

index = y*i->xsize + x; 
d->pixel[index][0] = (double)i->pixel[index][0] 
d->pixel[index][1] = (double)i->pixel[index][1] 
d->pixel[index][2] = (double)i->pixel[index][2] 

} 
} 
return(d); 

} 

/* This frees the memory used to store the image */ 
void free_image(image * il) 
{ 
if(il != NULL)  { 

if(il->pixel != NULL)  { 
free(il->pixel); 

} 
free(il); 

} 
il = NULL; 
return; 

} 

/* reads the header of a ppm file and returns the x and y dimentions in xs and ys */ 
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void initfile(FILE **infile, char * s, int *xs, int *ys) 
{ 

unsigned char dummystring[256]; 
unsigned char final; 

int xsize, ysize, dummy; 

(*infile) = fopen(s, "r"); 
if (!(*infile)) 

return; 

fscanf((*infile), "%s",dummystring); 
fscanf((*infile), "%c",&final); 

while(final != '\n') 
fscanf((*infile), "%c",&final); 

fscanf((*infile), "%c",&final); 
while(final != '\n') 

fscanf((*infile), "%c",&final); 
fscanf((*infile), "%d%d%d%c",&xsize, fcysize, &dummy, fcfinal), 

while(final != '\n') 
fscanf((*infile), "%c",&final); 

(*xs) = xsize; 
(*ys) = ysize; 

} 

/* this function loads a file into the image pointer filestruct 
name is a string which is the name of the file to be read in. 
the image must be saved as a ppm to be read using this function */ 

void loadfile(image *filestruct, char * name) 
{ 
int xsize, ysize, x, y, index; 
FILE * infile; 
int red, green, blue; 
initfile(&infile, name, &xsize, fcysize); 
filestruct->pixel = (Pixel *)malloc(xsize*ysize*sizeof(Pixel)); 
for(y = 0; y < ysize; y++)  { 

for(x = 0; x < xsize; x++)  { 
fscanf(infile, "%d%d%d", &red, &green, Sblue); 
index = y*xsize + x; 
filestruct->pixel[index][0] = red; 
filestruct->pixel[index][1] = green; 
filestruct->pixel[index][2] = blue; 

} 
} 
filestruct->xsize = xsize; 
filestruct->ysize = ysize; 
fclose(infile); 

} 

/* This function copies the contents of the image to a ppm file with the name of 
the string passed in */ 

void savefile(image *filestruct, char * name) 
{ 
int numcol = 255, x, y, xsize, ysize, index; 
FILE * outfile; 
outfile = fopen(name,"w"); 
if (outfile == NULL) 

return; 
xsize = filestruct->xsize; 
ysize = filestruct->ysize; 
fprintf(outfile, "P3\n# Created by Ted Meek\n'); 
fprintf(outfile, "%d %d %d\n", xsize, ysize, numcol); 
forty = 0; y < ysize; y++)  { 

for(x = 0; x < xsize; x++)  { 
index = y*xsize + x; 

fprintf(outfile, "%d %d %d ", (int)abs(filestruct->pixel[index][0]), 
(int)abs(filestruct->pixel[index][1]), 
(int)abs(filestruct->pixel[index][2])); 
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} 
fclose(outfile) ; 

} 

/* This function copies the contents of the image to a ppm file with the name of 
the string passed in.  It is a grayscale of either the red, blue, or green image. 
To save red, color = 0, green color = 1, and blue color = 2*1 

void savefile_onecolor(image *filestruct, char * name, int color) 

{ 
int numcol = 255, x, y, xsize, ysize, index; 
int red, green, blue; 
FILE * outfile; 
outfile = fopen(name,"w"); 
if (outfile == NULL) 

return; 
xsize = filestruct->xsize; 
ysize = filestruct->ysize; 
fprintf(outfile, "P3\n# Created by Ted Meek\n"); 
fprintf(outfile, "%d %d %d\n", xsize, ysize, numcol); 
for(y = 0; y < ysize; y++)  { 

for(x = 0; x < xsize; x++)  { 
index = y*xsize + x; 
red = (int)filestruct->pixel[index][color]; 
green = (int)filestruct->pixel[index][color]; 
blue = (int)filestruct->pixel[index][color]; 
fprintf(outfile, "%d %d %d ", red, green, blue); 

} 
} 
fclose(outfile); 

/* This resizes the image to the closest, next-smallest power of 2 dimention. 
If n = 5, it will resize to 2*5, otherwise it will use 2*4. 
This is necessary for creating a pyramid to represent the image which is 
at least 4 levels deep.  Bilinear interpolation is used.  */ 

image * resize(image *il, int n) 
{ 
image *newpic; 
int xnew, ynew, preMc, preMr, index, N, x, y; 
DPoint color; 
if(n == 5) N = 32; else N = 16; 

preMc = (int)floor((double)il->xsize/N); 
preMr = (int)floor((double)il->ysize/N); 
xnew = preMc*N + 1; 
ynew = preMr*N + 1; 

newpic = (image *)malloc(sizeof(image)); 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
newpic->xsize = xnew; 
newpic->ysize = ynew; 

forty = 0; y < ynew; y++)  { 
for(x = 0; x < xnew; x++)  { 

index = y*xnew + x; 
interpolate_pixel_bi(il, xnew, ynew, x, y, color); 
newpic->pixel[index][0] = color[0]; 
newpic->pixel[index][1] = color[1]; 
newpic->pixel[index][2] = color[2]; 

} 
} 
return(newpic); 

} 

/* This resizes the image to the closest, next-smallest power of 2 dimention. 
If n = 5, it will resize to 2*5, otherwise it will use 2*4. 
This is necessary for creating a pyramid to represent the image which is 
at least 4 levels deep.  Nearest Neighbor interpolation is used.  */ 
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image * resize_nn(image *il, int n) 

{ 
image *newpic; 
int xnew, ynew, preMc, preMr, index, N, x, y; 
DPoint color; 
if(n == 5) N = 32; else N = 16; 

preMc = (int)floor((double)il->xsize/N); 
preMr = (int)floor((double)il->ysize/N); 
xnew = preMc*N + 1; 
ynew = preMr*N + 1; 

newpic = (image *)malloc(sizeof(image)); 
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 
newpic->xsize = xnew; 
newpic->ysize = ynew; 

for(y = 0; y < ynew; y++)  { 
for(x = 0; x < xnew; x++)  { 

index = y*xnew + x; 
interpolate_pixel_nn(il, xnew, ynew, x, y, color); 
newpic->pixel[index][0] = color[0]; 
newpic->pixel[index][1] = color[1]; 
newpic->pixel[index][2] = color[2]; 

} 
} 
return(newpic); 

} 

/* This resizes the image to a defined x and y size; defined by xnew 
and ynew.  Bilinear interpolation is used.  */ 

void resize_define(image *il, int xnew, int ynew) 

{ 
Pixel *pic; 
int index, x, y; 
DPoint color; 

pic = (Pixel *)malloc(xnew*ynew*sizeof(Pixel)); 

for(y = 0; y < ynew; y++)  { 
for(x = 0; x < xnew; x++)  { 

index = y*xnew + x; 
interpolate_pixel_bi(il, xnew, ynew, x, y, color); 
pic[index][0] = color[0]; 
pic[index][1] = color[l]; 
pic[index][2] = color[2]; 

} 
} 
free(il->pixel); 
il->pixel = pic; 
il->xsize = xnew; 
il->ysize = ynew; 
return; 

} 

/»Nearest neighbor interpolation */ 
void interpolate_pixel_nn(image * g, int xnew, int ynew, int x, int y, DPoint color) 

{ 
int fx, fy, index; 
double xval, yval; 

xval = (double)(x*g->xsize)/(double)xnew; 
yval = (double)(y*g->ysize)/(double)ynew; 

fx = (int)round(xval); 
fy = (int)round(yval); 
index = fy*g->xsize + fx; 

color[0] = g->pixel[index][0]; 
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color[l] = g->pixel[index][1]; 
color[2] = g->pixel[index][2]; 
return; 

} 

/♦bilinear interpolation */ 
void interpolate_pixel_bi(image 

{ 
double il, i2, i3, i4; 
int fx, fy, ex, cy; 
double xval, yval, si, s2, s3, 

int xnew, int ynew, int x, int y, DPoint color) 

s4, error .0000000001; 

xval = (x*g->xsize)/xnew; 
yval = (y*g->ysize)/ynew; 

fx = (int)floor(xval+error); 
ex = (int)ceil(xval); 
if(fx == ex && ex != (g->xsize 
fy = (int)floor(yval+error); 
cy = (int)ceil(yval); 
if(fy == cy && cy != (g->ysize 

si = (xval - fx)/2; 
s2 = 0.5 - si; 
s3 = (yval - fy)/2; 
s4 = 0.5 - s3; 

cx++; 

-1)) cy++; 

il = g->pixel[fy*g->xsize + 
i2 = g->pixel[fy*g->xsize + 
i3 = g->pixel[cy*g->xsize + 
i4 = g->pixel[cy*g->xsize + 
color[0] = (sl*il + s2*i2 + 
il = g->pixel[fy*g->xsize + 
i2 = g->pixel[fy*g->xsize + 
i3 = g->pixel[cy*g->xsize + 
i4 = g->pixel[cy*g->xsize + 
color[l] = (sl*il + s2*i2 + 

fx][0]; 
ex][0]; 
fx][0]; 
ex][0]i 
s3*i3 + s4*i4); 
fx] [1]; 
ex][1]; 
fx] [l]i 
ex][1]; 
s3*i3 + s4*i4)j 

il = g->pixel[fy*g->xsize + fx][2]; 
i2 = g->pixel[fy*g->xsize + ex][2]; 
i3 = g->pixel[cy*g->xsize + fx][2]j 
i4 = g->pixel[cy*g->xsize + ex][2]; 
color[2] = (sl*il + s2*i2 + s3*i3 + s4*i4)j 
return; 

#endif 


