
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

§o lee on ^ ÄSr'lSTudl^suooesflon. for reducing this burden, to Washington Headquarters Services, «'^"««X'l^^ ofam^W^hinoloS DC 205^3
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-0188), Washington, DC. 2USUJ.

1. AGENCY USE ONLY (Leave blank) REPORT DATE

25.Oct.99

REPORT TYPE AND DATES COVERED

THESIS
4. TITLE AND SUBTITLE
MULTIRESOLUTION IMAGE FUSION OF THEMATIC MAPPER IMAGERY
WITH SYNTHETIC APERTURE RADAR IMAGERY

6. AUTHOR(S)

2D LT MEEK THEODORE R

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

UTAH STATE UNIVERSITY

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

THE DEPARTMENT OF THE AIR FORCE
AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

11. SUPPLEMENTARY NOTES

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

FY99-339

12a. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

DISTRIBUTION STATEMENT A
Approved for Publicise

Distribution Unlimited
19991117 076

14. SUBJECT TERMS'

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19, SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

114
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

DTIC QUALITY INS5PECTBD 4
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

MULTIRESOLUTION IMAGE FUSION OF THEMATIC MAPPER IMAGERY WITH

SYNTHETIC APERTURE RADAR IMAGERY

by

Theodore R. Meek

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Electrical Engineering

~Dr. Doran J. Bake
Major Professor

Dr. Scott E. Budge
Committee Member

-iA-rr s
Dr. Cyjithia M. Furse
Committee Member

JdtnfryZ&f/u*
Dr. James P. Shaver

,[,Dean of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

1999

u

Copyright Theodore R. Meek 1999

All Rights Reserved

Ill

ABSTRACT

Multiresolution Image Fusion of Thematic Mapper Imagery

with Synthetic Aperture Radar Imagery

by

Theodore R. Meek, Master of Science

Utah State University, 1999

Major Professor: Dr. Doran J. Baker
Department: Electrical and Computer Engineering

This study was designed to demonstrate the feasibility of applying multiresolution

image fusion techniques to synthetic aperture radar (SAR) and Landsat imagery. This

was accomplished through the development and application of image fusion software to

test images, for the purpose of comparing results, to show that information from more

than three bands can be used to study surface and subsurface features in a single image.

The test images were fused using six image fusion techniques that are the combinations

from three types of image decomposition algorithms (ratio of low pass [RoLP] pyramids,

gradient pyramids, and morphological pyramids) and two types of fusion algorithms

(selection and hybrid selection and averaging). Based upon the composite images formed

by fusing the test images, this study concludes that: small details in city areas make

morphological pyramids ineffective, selection forms of fusion do not effectively combine

the data, RoLP and gradient pyramids with hybrid fusion produce the best results, and

optimum pyramid depth is dependent upon the size of detail in the images. (122 pages)

IV

ACKNOWLEDGMENTS

I would like to thank my committee members, Dr. Cynthia Furse and Dr. Scott

Budge, for their help and support as well as for the time spent in service to me as my

master's committee. Special thanks go to Dr. Doran Baker, my major professor, for his

help, support, time, and resources. I greatly appreciate the work my committee has done

on my behalf. I would also like to thank David Oliver and Bill Pfaff for their help in

obtaining test images.

I would also like to thank the Rocky Mountain NASA Space Grant Consortium

for the fellowship that allowed me to remain at Utah State University to earn a master's

degree. The office staff, Kim, Lindsey, Jesalee, and Kristine, also deserve great thanks

for all of the help they have given me. I would also like to thank the United States Air

Force Institute of Technology for selecting me as an AFIT student and Lieutenant

Colonel Johnny Hays and Major Victoria Rondeau (retired) for helping me remain at

Utah State University.

A very special thank you also goes to my wife, Jessica, for supporting me even

when times were hard and to our daughter, Sabrina, for providing me with the pleasant

diversions that help keep a student motivated. The greatest thanks go to my God to

whom I owe all of my success and rewards and knowledge.

Theodore R. Meek

CONTENTS

Page

ABSTRACT i

ACKNOWLEDGMENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

CHAPTER

I. INTRODUCTION 1

A. Remote Sensing and Earth Images 1
B. Viewing Techniques and Challenges 2
C. Multiresolution Image Fusion 4
D. Study Approach 6
E. Study Objectives 7

H. LANDSAT AND SAR IMAGES 9

A. Landsat Image Characteristics 9
B. SAR Image Characteristics 10
C. Combined Image Characteristics 12

HI. MULTIRESOLUTION PYRAMIDS 16

A. Image Structure and Multiresolution Pyramids 16
B. Gaussian and Laplacian Pyramids 18
C. Filter-Subtract-Decimate Laplacian Pyramids 22
D. Ratio of Low-Pass Pyramids 23
E. Gradient Pyramids 24
F. Mathematical Morphology Pyramids 25

IV. PYRAMID FUSION TECHNIQUES 31

A. Pyramid Fusion Overview 31
B. Selection and Averaging Fusion Techniques 32
C. Hybrid Averaging and Selection Fusion 33

VI

V. FUSED IMAGERY AND RESULTS 37

A. Fusion Approach 37
B. Fusing SAR and Landsat Images to Evaluate Fusion Functions 38
C. Fusing Hybrid SAR/Landsat Images 45
D. Composite Image Appearance and Quality 51

VI. CONCLUSIONS 59

A. Findings 59
B. Recommendations 61

REFERENCES 63

APPENDICES 67

A. Testing of Pyramids and Fusion Code 68
B. Image Quality Measures 72
C. Source Code 76

Vll

LIST OF TABLES

Table Page

I. LANDSAT TM BAND INFORMATION 10

H. PARAMETERS AFFECTING SAR RETURN SIGNALS 11

HI. LIST OF FIGURES IN CHAPTER V, SECTION B 39

IV. LIST OF FIGURES IN CHAPTER V, SECTION C 47

V. COMPUTATION TIMES FOR FUSION TECHNIQUES 59

VI. RESULTS FROM TESTING PYRAMID RECONSTRUCTION CODE ON
FIGURE 19 (a) 70

VII. RESULTS FROM TESTING PYRAMID RECONSTRUCTION CODE ON
FIGURE 19(b) 71

VIII. RESULTS FROM TESTING PYRAMID RECONSTRUCTION CODE ON
FIGURE 19(c) 71

DC QUALITY MEASURES FOR COMPOSITE IMAGES IN FIGURES 7
THRU 12 74

X. QUALITY MEASURES FOR COMPOSITE IMAGES IN FIGURES 14
AND 15 75

Vlll

LIST OF FIGURES

Figure Page

1. Data flow diagram for pyramid fusion process 5

2. Landsat bands 1, 4, 2 14

3. SAR band C and band L 15

4. Demonstration of necessity for multiple resolutions 17

5. Example of erosion and dilation operators using a 10x10 brick structuring 27

6. (a) Landsat and (b) SAR source images of the Mantua, Utah, area 40

7. Fusion of the Mantua, Utah, area source images, Figure 6 (a) and 6 (b), using a
gradient pyramid and (a) selection fusion, (b) hybrid fusion 41

8. Fusion of the Mantua, Utah, area source images, Figure 6 (a) and 6 (b), using a
RoLP pyramid and (a) selection fusion, (b) hybrid fusion 42

9. Fusion of the Mantua, Utah, area source images, Figure 6 (a) and 6 (b), using a
morphological pyramid and (a) selection fusion, (b) hybrid fusion 43

10. (a) Gradient pyramid with hybrid fusion enlarged for detail, (b) RoLP 46

11. (a) SAR band L and Landsat bands 4 and 2. (b) Landsat bands 3, 4 and 2 48

12. Fusion of source images in Figure 11 using a (a) Gradient pyramid 49

13. Enlarged subsections of Figures 11 (a) and 12 to show the change in contrast.... 50

14. Gradient pyramid hybrid fusion of the Mantua, Utah, area 53

15. RoLP pyramid hybrid fusion of the Mantua, Utah, area 54

16. Four times the difference between gradient composite images 56

17. Four times the difference between RoLP composite images 57

18. Test images used to verify pyramid code correctness 70

CHAPTER I

INTRODUCTION

A. Remote Sensing and Earth Images

Remote sensing is the technique of using sensors located a considerable distance

from the information source to obtain, process, and interpret data to obtain information

and perspective about the source itself. Terrestrial remote sensing has become popular in

the last two decades because it makes possible easy mapping, monitoring, and study of

changes on or even beneath the Earth's surface. Images obtained from remote sensors

have been used for the study of ice sheets [1, 2], locating villages in third world countries

[3], locating gold, vegetation mapping, land use studies, geological mapping, watershed

studies, urban planning, and much more [4, 5].

A widely used source of remotely sensed data is the Landsat satellite series.

Landsat uses the optical and near infrared (IR) wavelengths. Low spatial resolution (83

meters) multispectral scanner instrument images from the first Landsat satellite, Landsat-

1, have been available since 1972 [6]. Although Landsat images are an excellent source

of information, the images can be quite expensive. High spatial resolution (30 meters)

images from Landsat-5's Thematic Mapper (TM) instrument can be obtained through

Space Imaging EOS AT but cost thousands of dollars per scene. A less expensive source

is the EROS Data Center that sells images over 10 years old for $200 to $400 per scene

[6]. There have been five Landsat satellites successfully launched by the United States;

Landsat-6 was lost, and Landsat-7 is scheduled for launch in April 1999.

2

Another source of remotely sensed data is synthetic aperture radar (SAR). SAR

images of the Earth's surface have been available since the late 1970s. The first U.S.

SAR satellite was Seasat, which was launched in 1978 to collect data on sea-surface

winds, sea ice features, and ocean topography [4]. The Space Shuttle has flown three

SAR instruments: SIR-A in 1982, SIR-B in 1985, and SIR-C in 1994. SAR has become

increasingly popular in the 1990s, most likely because of new image processing

techniques that incorporate accurate correction of acquisition errors such as

foreshortening. Several countries have launched SAR satellites; these include the

European Space Agency's ERS-1 and ERS-2 launched in 1991 and 1996, Japan's JERS-1

launched in 1992, and Canada's Radarsat launched in 1995 [4].

SAR has a distinct advantage over passive sensors, such as the ones in Landsat

satellites, in that SAR does not rely on solar illumination. In fact, SAR can gather data in

both sunlit and dark regions as well as in regions covered by clouds, fog, or pollution.

SAR can even penetrate several near-surface materials such as sand, foliage, and forest

canopies [4, 7]. This capability makes SAR an excellent companion for study with

optical sensors.

B. Viewing Techniques and Challenges

Most remotely sensed data come in bands corresponding to the wavelength used

to acquire the images. Typical Landsat TM images have seven bands, and SAR images

can have several bands. In order to view a single band, there are two main options,

representing the image as a grayscale image or as a pseudocolored image.

3

To view a single band using the grayscale option, each sensor sample, or pixel,

will be assigned a value, usually between 0 and 255. If the sensor does not receive or

store the samples on a 0 to 255 scale, the conversion is simple: The highest value in the

range corresponds to 255; the lowest corresponds to 0, and all other values are

interpolated and quantized to fit the 0 to 255 scale. Color pictures are made up of three

grayscale images, a red image, a green image, and a blue image (RGB), commonly called

RGB values. For example, the expression RGB = (1, 4, 2) would mean that the red pixels

are band 1, green pixels are band 4, and blue pixels are band 2. In a grayscale image, it is

often difficult to distinguish between pixels of similar value because they seem to blend

together. Pseudocoloring is used because the human eye readily detects contrast in

images [8, 9]. The pseudocoloring technique is to assign each pixel intensity a red,

green, and blue corresponding color level. This scale helps viewers see large-scale

changes across the image. The color level assigned to each pixel value can be arbitrary;

however, the following is a common scale: Pixel intensity from 0 to 47 changes from

black to violet; intensity from 48 to 79 changes from violet to blue; and additional

increments of 47 go from blue to cyan to green to yellow to red to white [5]. White is

still the most intense pixel, and black is the least intense.

To view multiple bands, several techniques have been implemented. Nonetheless,

each technique is based upon the same principle: Assign one band to each pixel color

red, green, and blue. This limits the viewing of an image to three bands; however, it

allows full color images of the data. Typical Landsat images are viewed with color

combinations that show the bands of interest to the study; different bands show different

properties on the Earth's surface. More details on what specific Landsat bands show will

4

be given in Chapter II. Other than a simple band being used to represent the color, ratios

of bands have also been used. For example, red could be band 7 divided by band 4; green

could be band 2 divided by band 1, and blue could be band 7 divided by band 3 [10].

SAR images with more than one band can also be viewed this way; for example, red

could be band L, and green and blue could both be band C [5].

Composite images can be formed if proper image registration has been achieved.

This usually requires extensive processing of the SAR images to correct for

foreshortening. This is done by assigning bands from both sources to the red, green, and

blue pixel values. An example would be to use two Landsat bands for red and green and

a SAR band for blue. This technique has proven extremely useful in determining land

usage; however, this technique is still limited because only three bands can be viewed

simultaneously.

C. Multiresolution Image Fusion

Combining two images to form a composite image is not unique to remote

sensing. Several applications have use for image fusion, i.e., the merging of two images

to create one. Image fusion can be used for computer vision, aiding pilots to land in

inclement weather, compressing source image data, medical diagnosis through fusing CT

and MR images, ease of viewing to reduce human operator work load, etc. [11, 12, 13]

The simplest approach to image fusion is to set the composite pixel value equal to

the average of the source values. This is not the optimal approach, however, because

features that appear in one image and not the other are shown in the composite at a

reduced contrast or are superimposed on features from the other image.

The key to successful image fusion is to create a composite image that retains all

useful information contained in the source images without introducing artifacts that can

interfere with analysis and interpretation [11, 12]. Figure 1 represents the approach taken

in current literature, a multiresolution pyramid [11-17]. In this approach, the source

images are filtered and reduced repetitively, forming a pyramid. In the figure, Ao and Bo

are the original source images to be fused; Ai and Bi are reduced-

Composite Pyramid

Pyramid A

Ao

A!

Pyramid B

A„n
cn -di B„

Fig. 1. Data flow diagram for pyramid fusion process

6

filtered versions of Ao and Bo. Likewise, A2 and B2 are reduced-filtered images of Ai

and Bi. This process will be explained in more detail in Chapter HI. Each level of the

pyramid is then fused, using a fusion algorithm to create a composite pyramid. The

fusion process can be either complex or simple. (Fusion processes are discussed in

Chapter IV.) A composite image is generated from the composite pyramid, which will

include all important information from the source images and no new artifacts. Figure 1

is a data flow diagram of the multiresolution fusion process. The square boxes represent

the levels of the pyramid, or images. The red circles represent functions that fuse the two

incoming images into one composite outgoing image. Although no function appears

between levels of the pyramids, it should be understood that, when constructing a

pyramid from the source image, there is a function that filters and subsamples the current

image to generate the higher level. The green boxes represent the composite pyramid;

however, Co is not the final composite image. The final image is obtained by

reconstructing the composite pyramid.

D. Study Approach

Analysis of Landsat and SAR images is conventionally accomplished by

assigning particular bands or ratios of bands to red, green, and blue pixels. By choosing

specific bands or ratios of bands, analysis of particular properties can be made easier. In

several cases it is possible to generate images from different bands that show the same

properties. A popular way to analyze Landsat and SAR images of the same areas

concurrently is done by overlaying bands from one source with bands of another source

7

after the images have been properly registered [1, 2, 3, 5, 7], for example, having red and

green pixels represent two Landsat bands and blue pixels represent a SAR band.

Current image fusion techniques can create a composite image that contains all of

the important information in the source images without adding new artifacts to interfere

with image analysis. Since a human observer cannot reliably integrate visual information

by viewing multiple images separately and consecutively [17], image fusion makes it

possible for the observer to view one image that contains all of the information contained

in the source images. The present study includes programming the image fusion

techniques described in current literature and applying them to Landsat and SAR images

to diagnose the usability of each fusion technique as applied to remotely sensed imagery.

The results and composite images are given in Chapter V.

E. Study Objectives

The first objective of this study was to compare current image fusion techniques

and diagnose their effectiveness in fusing SAR and Landsat imagery based upon the

composite image results obtained through the fusion of real SAR and Landsat images and

the time required to generate the composite image. This was accomplished by applying

the fusion techniques to several test images, recording the time required for each

technique to produce the composite image, and visually inspecting the image to observe

composite image quality.

The second objective was to combine test images by applying the fusion

techniques to real SAR and Landsat image data to obtain useful information from more

than three remote sensor bands. This was accomplished by creating test images designed

8

to show specific surface features and then fusing the test images to verify that the surface

features have been successfully fused.

The third objective of this study was to determine the optimum pyramid depth for

the fusion of remotely sensed imagery. This was determined by examining the same set

of test images fused over a range of pyramid depths.

CHAPTER II

LANDSAT AND SAR IMAGES

A. Landsat Image Characteristics

The Landsat images used in this study were acquired by Landsat-4's TM sensor

recorded on 25 September 1994 in path number 38, row number 31. The images were

purchased/requested by the Rocky Mountain NASA Space Grant Consortium

(RMNSGC) and have been used in previous studies by both David Oliver in 1996 [5] and

BillPfaffinl997[18].

Landsat TM images do not have significant geometric distortions because the

viewing angle of the sensors is nearly perpendicular to the Earth's surface. In TM

images, each pixel is stored as an 8-bit number and represents either a 30x30 meter or

120x120 meter terrestrial area. The Landsat satellite is in low Earth orbit with an altitude

of 705 km and a 16 day, 233 orbit cycle. The TM sensor has seven bands; bandwidths,

resolutions, and percents of transmission for the TM bands are listed in Table I. The

percent of transmission for each band is the minimum value of transmission within the

corresponding bandwidths. Values of transmission were taken from [19].

Each of the seven bands was designed to maximize detecting and monitoring of

different types of Earth resources [20]. Band 1 is in the visible spectrum corresponding

to blue light; it penetrates water for bathymetric mapping along coastal areas and is used

for soil/vegetation differentiation and for distinguishing forest types. Band 2 is also in

the visible spectral region corresponding to green light; it is used to detect green

reflectance from healthy vegetation. Band 3 is in the visible spectrum corresponding to

10

TABLE I
LANDSAT TM BAND INFORMATION

Band Bandwidth (jim) Resolution (m) % Transmission

1 0.45-0.52 30 100
2 0.53-0.61 30 95
3 0.62-0.69 30 100
4 0.78-0.91 30 84
5 1.57-1.78 30 98
6 10.42-11.66 120 88
7 2.08-2.35 30 98

red light; it is designed to detect chlorophyll absorption in vegetation. Band 4 is in the

near-infrared and is used for detecting reflectance peaks in healthy green vegetation and

for detecting water-land interfaces. Bands 5 and 7 respond in the near-infrared and are

used for vegetation and soil moisture observations as well as for discriminating between

rock and mineral types. Band 6 is selected for the atmospheric spectral window and is in

the thermal-infrared spectrum, designed to assist in thermal mapping and in soil moisture

and vegetation studies [5, 20].

B. SAR Image Characteristics

Synthetic aperture radar is based on technology that uses the motion of the sensor

to synthesize an antenna aperture larger than the physical antenna [4]. This technique

provides an enhanced spatial resolution imaging capability that is, to the first order,

independent of sensor altitude. SAR functions by sending a microwave signal at the

target and recording the returned signal. Being an active rather than a passive system,

SAR has the advantage of being independent of solar illumination of the Earth's surface.

SAR return signals are not inhibited when the Earth's surface is covered by clouds, fog,

11

haze, or smoke; in fact, SAR can even penetrate the Earth's surface to return information

about subsurface features [7] or can penetrate forest canopies that obscure the ground [4].

For these reasons, SAR can produce radar terrain maps that show the presence of major

subjacent features not shown in Landsat images at the same spatial resolution [7].

SAR images are produced from the signals reflected from the Earth's surface.

The strength of the return signal is dependent upon both the surface characteristics and

the radar system. Table II gives a list of parameters that affect the return signal. When

the surface roughness is at the same scale as the radar wavelength, signal interference

occurs resulting in a speckled image. The look angle can also cause problems, such as

geometric distortion and the appearance of near range pixels being brighter than far range

pixels, in the image [1].

There are numerous possible SAR wavelength bands; however, unlike the

Landsat TM imagery, different SAR bands are identified by letters. The surface

properties proposed for study should be used to determine the band used; different bands

show different properties. When viewing single-band SAR images, a user can make use

TABLE II
PARAMETERS AFFECTING SAR RETURN SIGNALS

Ground Parameters Radar System Parameters

Terrain Slope and Texture Frequency, Wavelength
Surface Roughness Radar Look Angle/Depression Angle
Complex Dielectric Constant Antenna Look Direction
Terrain Feature Orientation Polarization
Shadowing Signal-to-Noise Ratio

12

of the same grayscale or pseudocoloring techniques discussed for TM images in Chapter

I. For SAR images, the highest pixel values represent areas of saturated radar return;

these areas would appear white in the coloring schemes mentioned.

Images from the SIR-C SAR aboard STS-68 are used in this study. SIR-C

operated at two frequencies, the C band at 5.3 GHz and the L band at 1.24 GHz. Each

band has five images that correspond to different polarization modes. The five modes are

designated as HH, HV, VH, VV, and total power. The first letter represents the

transmitted signal, and the second letter represents the return signal; H designates

horizontal polarization, and V stands for vertical polarization. Therefore, the VH image

would be the data acquired from a vertically polarized transmitter and a horizontally

polarized receiver. Total power images are the sum of the horizontal and vertical

transmissions and the horizontal and vertical receptions. In this study, the L and C band

total power images are used. These images, like the Landsat images, were acquired by

the RMNSGC [5]. The SIR-C sensor look angle is 35 degrees off nadir. (Nadir is

straight down.) Each pixel covers a 12.5 meter by 12.5 meter area.

C. Combined Image Characteristics

The capability of SAR to operate in either light or dark all-weather environments,

coupled with the fact that radar terrain maps made from SAR data show the presence of

major subjacent features that are not detectable in Landsat pictures at the same scale,

implies that SAR would be an excellent complement to Landsat images. However, the

look angle of the SAR sensor results in large geometric distortions in the resulting image

display. Due to these large geometric distortions, some previously integrated SAR and

13

Landsat studies concluded that SAR added little value because of scene registration

problems. New SAR image processing techniques have been used to overcome this

problem, and SAR images can now be registered to Landsat images with errors reduced

to the order of one pixel [5]. Integrated Landsat and SAR images have been used to aid

in geologic mapping [10, 21], the study of ice sheets [1], and for land use studies [5].

One article suggested that neither the Landsat TM nor the SIR-B SAR imagery alone

could distinguish the land use patterns in Sudan, while an integrated SAR and Landsat

approach was successful [3].

In the present study only images that have already been processed and registered

are used. Correction of geometric distortions of the SAR images and SAR and Landsat

image registration was performed by David Oliver as part of his thesis in 1996 [5].

Figure 2 and Figure 3 are the Landsat-4 and SAR images of Cache Valley used in this

study. Figure 2 is composed of Landsat-4 TM bands 1, 4, and 2 corresponding to the red,

green, and blue pixel values, respectively. Figure 3 is composed of the SAR L and C

total power bands. The red pixels correspond to the L band, and the green and blue pixels

correspond to the C band. Note that in the upper right-hand corner of Figure 3, the SAR

image contains no data; this is due to the correction for geometric distortion.

Corresponding subsections of the images in Figure 1 and in Figure 2 are fused,

using the multiresolution techniques described in current literature. The usefulness of

these fusion techniques as applied to remote sensed imagery will be assessed in Chapter

V. Different band combinations can be used to show different surface/subsurface

properties; in several cases, there are more than three bands that can be used to show the

same features. To more effectively analyze multiple images, image fusion can be used.

14

Fig. 2. Landsat bands 1, 4, 2.

15

Fig. 3: SAR band C and band L

16

CHAPTER in

MULTIRESOLUTION PYRAMIDS

A. Image Structure and Multiresolution
Pyramids

This study will use three techniques, described in this chapter, to represent an

image over a range of scales. Other techniques are also presented here because they are

necessary for understanding the three techniques used in the study. The techniques used

to represent the images over a range of scales are called pyramids; the three of interest are

RoLP, gradient, and morphological pyramids.

A complete image description can be obtained by studying an image structure

over a range of scales. When we zoom in on an image, we clearly see the substructure;

however, we lose the clarity of the outlines. On the other hand, when we zoom out to

look at the entire picture, the scene loses detail. It logically follows that relevant details

of an image can be observed only within a certain range of spatial resolution. If we focus

on the small details, we lose focus of the big picture; on the other hand, if we zoom out to

see the whole picture, it is difficult to discern the small details. Figure 4 illustrates this

point. When zoomed out, the canopy and intake of the F-15 can be easily discerned;

however, when zoomed in on the area outlined by the white box in the next image, the

exact position of the canopy and intake edges are not as easily seen. For this reason, it is

desirable to represent an image over a range of scales, depending upon the structural

content.

A series of images progressively smaller in structural content can be created by

repetitive application of a processing operator with a progressively increasing scale. This

17

Fig. 4. Demonstration of necessity for multiple resolutions.

operator would eliminate details smaller than a certain size. This operator acts like a

filter, just as sifting gravel through screens with different wire spacings filters gravel into

different groups, dependent upon particle size. Repetitive application of this operator

separates the image into scenes with different resolution of detail. By reducing the

sample frequency and increasing the filter size, a hierarchical relation is generated.

Reducing the sample frequency is the same as subsampling the image. A pyramid is a

sequence of images in which each image is a filtered and subsampled copy of its

predecessor [11]. The term "multiresolution pyramid" comes from the relationship where

successive levels in a pyramid are reduced resolution copies of the input image [11-17].

The function that generates the next level of the pyramid could be called

REDUCE since both the resolution and sample density are decreased. REDUCE would

both filter and subsample the image. To create a pyramid starting with the source image

asP0,

18

P* = REDUCE(P*.;) for k = l,2,...n, (1)

where n is the number of levels in the pyramid.

Pyramid reconstruction to recover an image from its pyramid will need an

EXPAND function because each level differs in sample density. EXPAND is defined as

follows:

Pt; = EXPAND(Pt) for k = n -\,n-2,...0, (2)

where n is the number of levels in the pyramid. Specific details of the EXPAND and

REDUCE operators are dependent upon which types of pyramids are used. Techniques

used to generate pyramids can be classified into two types: (1) linear and (2)

morphological. Sections B, C, D, and E describe linear techniques, and Section F

describes morphological techniques.

B. Gaussian and Laplacian Pyramids

As given in section A, each image in a pyramid is a low-pass filtered and

subsampled copy of the previous image. This is beneficial for our purposes because it

defines the image features in a set of images with different spatial resolutions by filtering.

The most common linear low-pass filter used for pyramid generation is convolution with

a Gaussian kernel. Pyramids formed using this technique are commonly referred to as

Gaussian pyramids [11, 12, 14, 16, 17].

To create a Gaussian pyramid from an image I, assume G/t is the kth level of the

pyramid. The bottom level of the pyramid, Go, equals I; and

Gt=[w*Gt-/]i2 for&>0, (3)

19

where [...]i2 denotes subsampling by two (The resultant image has .5 the x and y

dimensions of the source image.), * is the convolution operator, and w is the Gaussian

kernel. All of the elements of w must sum to equal 1; and, for simplicity, w is defined as

separable, where w = w * w . Convolution with the w matrix, as defined below, yields a

Gaussian-similar curve; with w defined, w can be derived. The w matrix defined in [12]

is

14 6 4 1

4 16 25 16 4

w= 6 25 36 25 6

4 16 25 16 4

14 6 4 1

which yields a w matrix defined as

l256J (4)

w =

1 2 1

2 4 2

1 2 1

(— [12]. (5)

It should be noted that this value for w was used because of its Gaussian-like properties;

however, w can be defined differently as long as it meets the criteria mentioned above.

Low-pass filtering and subsampling can be combined into a single function fitting

the description of the REDUCE operator defined in the previous section. The REDUCE

operator can be implemented as a function where each pixel in the new image is set to the

weighted average of the corresponding area of pixels in the previous image. This process

is much simpler than the previous process of convolution and subsampling (one-quarter

the number of operations), yet it yields the same result. This is because the value

returned by the weighted average is the same as the value returned by convolution.

20

From the weighted average method, the kth level of the pyramid is defined on a pixel by

pixel basis as

2

Pk(i,j)= ^w(m,n)Pk-i(2i + m,2j + n) fork>0. (6)
m,n=-2

The weighting function w(m,n) is separable,

w(m,n) = w'(m)w'(n).

The function w' is normalized,

2

I
m=-2

^'(m)=l, (7)

and is symmetric,

w'(i) = w'(-i) for i = 0,1,2. (8)

All of these constraints are satisfied when w' is defined as follows [11]:

w'(0)=a; (9)

M;,(l) = vi;'(-l) = l/4; (10)
w'(2) = w'(-2) = l/4-a/2. (11)

The value of a used in this study was 0.4 because of its Gaussian-like properties

[11, 12, 14]. The reader should note that w and w are matrices used in convolution,

whereas w and w' are functions used in the weighted average.

Taking the difference between two levels in a Gaussian pyramid results in a band-

pass filtered image. In order to take the difference between the two levels, however, the

level of lower resolution must be expanded to the same size as the image at the higher

resolution. If this is done for every level of a Gaussian pyramid, a Laplacian pyramid is

created. Let L* be the kth level of the Laplacian pyramid, defined as

L. = G*-4w*[G* + /]T2, (12)

21

using the convolution notation, where [.. .]t2 indicates upsampling by two [12]. When

upsampling, rows and columns of zeros are added between the existing rows and

columns. Convolution with w interpolates values for the columns and rows of zeros.

The Laplacian pyramid can also be defined using the weighted average method as

L = Gk - EXPAND(G* + 0 [11,14]. (13)

For linearly filtered pyramids, EXPAND can be defined as

P*0\7) = 4- £ vKm,n)P*-i^,^ I (14)
m,n=-2 V /

where only integer coordinates contribute to the sum. It is noted that in the Laplacian

pyramid L« = G«, namely, the top level of the Laplacian pyramid, is the same image as

the top level of the Gaussian pyramid.

The pyramid algorithm reduces the filter band limit by an octave from level to

level. The Laplacian pyramids are the equivalent of a band-pass filter with a bandwidth

equal to the span between octaves. Filtering an image has the effect of blurring. This is

because sharp edges are composed of high-frequency components, and the low-pass filter

attenuates the high spatial frequencies in the image. Images higher in the pyramid

structure have fewer high-frequency components than images in the lower part of the

pyramid. Therefore, when expanded to the size of an image lower in the pyramid, the

image higher in the pyramid appears blurry.

Reconstructing an image from its Laplacian pyramid is straightforward. The

original image is recovered by expanding the highest level of the pyramid and adding that

to the next highest level repeatedly, until no levels are left. This is mathematically

expressed as

22

Gn=L (15)

and G*=Lt + EXPAND(G* + /) for k =n-l,n-2,...0. (16)

This yields an exact reconstruction of the source image, Go = Go.

C. Filter-Subtract-Decimate
Laplacian Pyramids

A level of the filter-subtract-decimate (FSD) Laplacian pyramid is defined as the

difference between the Gaussian level and the filtered copy of the Gaussian level prior to

subsampling for the next Gaussian level. For this reason, the REDUCE function as

defined will not work with FSD Laplacian pyramids because REDUCE filters and

subsamples at the same time. Let L* be the kth level of the FSD Laplacian pyramid,

which is mathematically defined as

Lt=G*-w*G*=[l-w]*Gt, (17)

where 1 is a matrix of the same dimensions of w where all values are zero except for the

center value, which is one. In the case of a 3-by-3 matrix,

"0 0 0"

1= 0 1 0 . (18)

"0 0 0"

0 1 0

0 0 0

Inspection of the process of forming the image in the Laplacian pyramid, L*,

reveals that the Gaussian image, Gt»is sequentially convolved with w, subsampled,

upsampled, convolved with w again, and then subtracted from itself. Refer to equations 3

and 12. However, if the resampling steps are skipped, the results are only slightly

different. We can, therefore, say that

23

L* = G*-4W*[[W*G*]12]T2«G*-W*W*GA

= [l-w*w]*G* (19)

= [l + w]*[l-w]*G*.

Hence, the FSD Laplacian pyramid can be converted to a Laplacian pyramid through the

following conversion:

Lt»[l + w]*Lt. (20)

Pyramid reconstruction to obtain the original image follows by converting the

FSD Laplacian pyramid into a Laplacian pyramid and then reconstructing the Laplacian

pyramid [12]. Note that this reconstruction is not an exact replica of the original.

D. Ratio of Low-Pass Pyramids

The ratio of low-pass (RoLP) pyramid gets its name from the relationship that

exists between successive levels of the pyramid. RoLP pyramids are very similar to

Laplacian pyramids; instead of taking the difference between levels of a Gaussian

pyramid, the RoLP pyramid takes the ratio between levels of a Gaussian pyramid. The

RoLP pyramid, Rt, is mathematically defined as

R* = — for k=n-l,n-2,...0 (21)
EXPAND(Gt + /)

and R»=Gn. (22)

Every level in the RoLP pyramid is the ratio of two successive levels in the Gaussian

pyramid.

Let Go be the image reconstructed from the RoLP pyramid. The reconstruction

process is the inverse of the construction process.

G„ = R», (23)

and G* = Rt EXPAND(G* + /) for k = n -1,n - 2....0.

24

(24)

The reconstruction process for RoLP pyramids is exact, or in other words, Go = Go.

There is also a contrast-enhanced RoLP pyramid described in [17] that was not used in

this study.

E. Gradient Pyramids

The term "gradient pyramid" is a misnomer, because a gradient pyramid is

actually a collection of four pyramids. Let D*m represent the kth level and mth orientation

gradient pyramid image for an image I. Dim is obtained from convolving Gt with a

gradient filter dm, also called an "oriented second derivative filter."

D*m = dm*[G* + w*Gt], (25)

where

d/ = [l -l];

and

0 -i i
d? =

1 0 V2J

[-1]
di =

1
j

r-i oi 1
d4 =

0 i VT

(26)

(27)

(28)

(29)

Reconstruction of an image from a gradient pyramid requires Laplacian and FSD

Laplacian pyramids as intermediate steps. Each gradient pyramid level Dim is converted

to a corresponding second derivative pyramid or oriented Laplacian level L*m.

L/Cm = dm * Dfon.
8

(30)

25

An FSD Laplacian pyramid, Lt, is then formed by summing the oriented Laplacian

pyramids.

L* = £L*m. (31)
m=l

Reconstruction is then completed by following the same steps required to reconstruct an

FSD Laplacian pyramid [12] as described in Section C of this chapter. Since the FSD

Laplacian pyramid is used, composite image reconstruction is approximate, or Go» Go.

F. Mathematical Morphology Pyramids

Mathematical morphology is the examination of the geometric structure of an

image by probing its microstructure with certain elementary forms called structuring

elements [15]. Linear filters alter the object intensities and, therefore, estimate the

location of contours. Morphological filters, on the other hand, remove details without

adding grayscale bias and, therefore, are nicely suited to shape extraction. This section

contains a brief summary of mathematical morphology and its operations. For more

information on any of the topics in this section, the reader is referred to [11, 15, 22, 23].

Mathematical morphology is based upon set operations. When used with images,

the first set is considered to be the image; the second set is the structuring element. The

sets are representative of shapes that are manifest in the image. Selection of the

structuring element is an important part of morphological operations. The smaller the

structuring element, the smaller the details that are filtered or modified. When generating

a pyramid by successively increasing the size of the structuring element or by reducing

the image size, successively larger image details are filtered out, once again leading to the

26

multiple resolutions. Also, when reconstructing the image, the positional accuracy

cannot be better than the radius of the structuring element.

The building blocks of morphology are the dilation and erosion operators.

Dilation is a transform that combines two sets using vector addition of set elements. If A

and B are sets, the dilation of A by B is the set of all possible vector sums of pairs of

elements, one from A and one from B. Dilation is denoted by the © symbol and is

mathematically defined as

A©B={ceEN|c = a + bforsomeae AandbeB}, (32)

where A and B are the sets in Euclidean N-space (EN) with elements a and b,

respectively. The complexity of image dilation and erosion is similar to that of

convolution. To easily conceptualize dilation, picture a straight line; after dilation, this

line becomes wider.

Erosion is the morphological dual of dilation. The erosion transform combines

two sets using the vector subtraction of set elements. If A and B are sets in Euclidean N-

space, erosion of A by B is the set of all elements x for which x + be A for every b e B.

Erosion is denoted by the 0 symbol and is mathematically defined as

A0B={xeEN|x + be A for every b e B}, (33)

where A and B are the sets in Euclidean N-space with elements a and b, respectively.

Once again, for easy conceptualization, picture a thick line; everywhere the line is thick

enough to contain the structuring element, it becomes thinner. If this line is dilated and

then eroded, it would appear unchanged because everywhere dilation made it wider,

erosion made it thinner.

27

Conceptually, an erosion shrinks image features, and a dilation expands image

features. Figure 5 shows the erosion and dilation of a box. Note how the box walls look

thinner after dilation and thicker after erosion; if this seems the opposite of the expected

result, reconsider the expected result focusing on white areas as the boxes. Knowing that

morphology is based on set theory, consider the color black the empty set. The black

walls are areas where no information exists. (Pixel intensity = 0 for red, green, and blue

pixels.) Now consider that the color white is the full set; this would be areas containing

all three colors: red, green, and blue. Where blue is seen, only blue is present; where red

is seen, only red is present; and in areas where a pinkish-purple color is seen (only in

Figure 5 (b)), both red and blue are present.

The source image has four areas of concern: the black box around the outside

where no pixels have values greater than zero; the white area between the black and blue

boxes where red, green, and blue all have pixel values greater than zero; the blue area

Fig. 5. Example of erosion and dilation operators using a 10x10 brick structuring
element, (a) Source image, (b) Source image after dilation.

(c) Source image after erosion.

28

where only blue pixels have values greater than zero; and the red area where only the red

pixels have values greater than zero.

After dilation, the white walls become thicker, making the black walls thinner.

Likewise, both the red walls and the blue walls expand, causing a new area where both

red and blue values exist simultaneously without green. Although the blue and red box

appear smaller in size, they have actually grown; we do not see their growth because, in

the areas where they have grown, other pixel values exist so we either see white or else

the combination of blue and red, which is the pinkish-purple color in Figure 5 (b).

When erosion occurs, the white walls become thinner, making the black walls

bigger. When the color boxes are viewed, it is easy to see, by looking at the size of the

red box, that erosion makes the boxes smaller. The black box around the red box in

Figure 5 (c) is an area where both the red box and the blue box have been eroded and no

image data are left, hence the empty set, or black. For more information about the

erosion and dilation of a set or the properties associated with erosion and dilation, refer to

[22, 23].

The steps for creating a morphological pyramid are the same as creating a

Gaussian pyramid. To generate the next pyramid level, the current image is filtered and

subsampled.

Morphological filters are sequences of morphological operations that have special

properties with respect to the shapes in the image. Morphological filters are idempotent

and increasing. Idempotent means that successive applications of the filter leave the

result unchanged after the first time the filter has been applied, similar to the application

of a linear band-pass filter to a signal. Increasing means that the operations maintain

29

inclusion relationships on the images they transform [15]; or if set A is a subset of set B,

then A filtered by F is a subset of B filtered by F.

The simplest morphological filters are the opening and closing transformations.

An opening is an erosion followed by a dilation and is denoted by the o symbol. A

closing is a dilation followed by an erosion and is denoted by the • symbol.

Mathematically, opening and closing are defined as follows:

Aof=(f0A)eA; (34)
A»f=(f0A)0A, (35)

where A is the image and f is the structuring element. These filters are also low-pass

because they attenuate high-frequency fluctuations between the set and its complement.

Openings and closings are considered dual operators because what one does to the

foreground, the other does to the background. To ensure that the foreground and

background of an image are treated the same, openings and closings usually follow one

another. Morphological filters are most often a combination of openings and closings or

closings and openings. For this study, we will use F to represent a closing-opening filter:

F = (A«f)of. (36)

With morphological filters defined, we can describe the generation of

morphological pyramids in a manner similar to the generation of Gaussian pyramids. Let

I represent the original image. The base of the pyramid, Mo, needs to be a

morphologically filtered copy of I; the filter used to generate Mo will determine what

filters are to be used for pyramid reconstruction. We will again define the REDUCE

function, which will, in this case, morphologically filter the image and then subsample.

30

To generate the next level in the pyramid, REDUCE will be applied the current level. Let

Mo be the base of the pyramid, and

Mt = REDUCE(Mt - /) for 1 < k < n, (37)

where n is the depth of the pyramid and REDUCE is F(M - /) 11. From here, a

difference pyramid similar to the linear Laplacian pyramid can be constructed where

Ifc, = M, (38)

and

D* = M*-EXPAND(M + /) for k = n-l,#i-2,...0. (39)

Here, EXPAND is defined as upsampling followed by a closing. REDUCE and

EXPAND can use any filter; however, the user must ensure that the filters used in the

EXPAND function complement the filters used in the REDUCE function [22, 23]. If the

initial filtering of the source image I is a closing, then a minimal reconstruction should be

performed; and the EXPAND function should use the closing filter. On the other hand, if

the initial filtering of the source image I is an opening, then a maximal reconstruction

should be performed; and the EXPAND function should use the dilation filter.

Pyramid reconstruction is once again straightforward. The reconstructed image,

Mo, can be obtained by setting

M, = D„ (40)

and

Mt = D* + EXPAND(M +1) for k = n -\,n -2....0. (41)

M» is an exact reconstruction of the pyramid if no other pyramid processing has occurred

to either the morphological pyramid or the difference pyramid.

31

CHAPTER IV

PYRAMID FUSION TECHNIQUES

A. Pyramid Fusion Overview

This study will use three of the pyramid techniques described in the previous

chapter to combine or fuse two source images into a single composite image. In order to

do this, we must define a way to fuse two pyramids into a single pyramid. This chapter

will introduce the fusion techniques described in current literature that were used in this

study.

Pyramids are simply a convenient way to represent an image over a range of

spatial resolutions. By combining the images at each level of the pyramid, the composite

image, formed by pyramid reconstruction, will have consistency over all resolutions.

When fusing two pyramids, each of the levels of the pyramids is fused into a

composite level, resulting in a composite pyramid. Refer to Figure 1. Once the

composite pyramid is formed, the fused image of the source images is generated,

employing the pyramid reconstruction techniques associated with the technique used to

generate the source pyramids. For example, if Laplacian pyramids A and B were

generated from two source images, the composite image resulting from the fusion of

pyramids A and B would be reconstructed from the composite pyramid C, using the

techniques described in Chapter III to reconstruct an image from its Laplacian pyramid.

Each level of the composite pyramid is defined as

Gt = FUSE(A*,B*) for it = n, n -1,n - 2,...0, (42)

32

and n is the number of levels in the pyramid. FUSE is a function that converts the two

images into the composite, using a fusion algorithm.

B. Selection and Averaging Fusion Techniques

When combining two images, the untrained, intuitive approach might be to

average the pixels from the source images to obtain the value for the corresponding pixel

in the composite image. This approach is undesirable because features that appear in one

image and not the other will show up in the composite at a reduced contrast or will

appear superimposed on features from the other image, much like when camera film is

double exposed. To avoid the fusion problems by averaging, the composite image can be

obtained by selecting pixels from either of the source images.

The simplest pixel selection technique for RoLP pyramids is to use the local area

contrast to determine which pixel to select. The contrast of a given pixel is defined as the

ratio of the difference in pixel intensity to area intensity to the area intensity, or as

follows:

Co^>o-.j)=L(i-f:L,fJ)=^H-i. (43)
Lb(l,J) Lb(l,j)

where L is the luminance at (i, j), or simply the pixel intensity, and Lb is the background

luminance for that area. Note that the ratio of L to L& is the value in the RoLP pyramid;

hence, to get the contrast for a certain pixel value, simply subtract one from the RoLP

value.

The human eye detects contrast very well. When taking advantage of this fact,

pixels of maximum contrast are selected from each source image to form the composite.

The logic behind this method is that by selecting details of maximum contrast, the fused

33

image will provide better details for human analysis. The contrast version of the FUSE

function is implemented on a pixel-by-pixel basis, as follows:

C(i,y) =
A(i, j), when (|A(f, j) -1| > |B(i, j) -1|

B(i,j), otherwise
\ [11,16,17]. (44)

However, another reference implemented the contrast fusion in a slightly different way,

as follows:

C(/,y) =
A(i,j), when(|A(/,;)|>|B(/,7)|

B(i,j), otherwise
[13]. (45)

It is interesting that it was implemented this way because, without subtracting one from

the RoLP pyramid value, it is not based on the area contrast anymore.

C. Hybrid Averaging and Selection Fusion

The problem with contrast fusion is that it is susceptible to noise. Noisy images

are typically of higher contrast. Using a contrast image fusion technique would,

therefore, result in a composite image with more noise. The combination of both

selection and averaging to generate a composite image was proposed by [12]. For this

method to work, a metric is necessary to indicate when to use selection and when to use

averaging; this metric is called "match." When the match measure is a value that

corresponds to using selection, it is necessary to know from which image to select. This

requires a saliency measure. When the two images are distinctly different, the composite

image should select the most salient component. However, when the two images are

similar, the composite image should contain the mean of the two source images. This

technique makes it possible to reduce noise without double exposure artifacts [12].

34

A good measure of pattern salience is pixel intensity. To obtain the salience for a

given sample, the individual pixel intensity can be used. Alternatively, the average pixel

intensity of a small area near the sample can be used. The mean pixel intensity can be

mathematically defined as a weighted average over an area, p, using S*(i, j) as the

saliency measure of the pixel at (i,j) for the image k, as follows:

m

&(i,7)= £p(f,/)P*0" + /'../ + .//), (46)
i'J'=-m

where m can range from 0, which would be the individual sample, to 2, which would

include the 5x5 area surrounding the sample. The value of p(i', /) is weight of the

sample within the area or neighborhood p; samples closer to the (/, j) position have higher

weight values. The function p serves the same purpose here as does the function w' in

Chapter III, Section B. The value returned by P*(i + i', j + /) returns the pixel value

inside the image at location (i, j), offset by i' and/; it can simply thought of as P* being

the matrix indexed by (i+V, j+j').

Relative pixel intensity between the two images can be used as a measure of

match. Alternatively, correlation is well-suited as a measure of match. We can

mathematically define the match of image A to B, MAB , within the area p, as the

normalized correlation between image A and B, or

2 f^p(i'j')A(.i + i',j + j')B(i + i',j + j')
M»J»(I\./) = -^= , [12] (47)

SA(i,j) + SB(i,j)

where m can range from 0 to 2, depending upon the desired area of p (0 for an individual

point, 2 for a 5x5 matrix). The values returned for match are between -1 and 1. Values

35

close to zero indicate low correlation, and values close to -1 or 1 indicate high

correlation.

Each level of the pyramid can now be fused by testing the match metric between

the two images at the given level. If the match metric is low at a given position, then the

sample from the source image with the highest salience is copied to the composite image.

If the match metric is high, the pixels from the source images are averaged and copied to

the composite image. This combination technique can be implemented as a weighted

mean in which the weights depend upon the match and saliency measures. The function

FUSE, as described above, can then be described as follows:

C(i, j) = vw(i\ y)A(i, j) + WB(i, ./)B(i\ j), (48)

where WA and WB are the assigned weights to the source images A and 8, respectively;

and WA + Wä = 1.

There are two common ways to implement the weighting functions WA and WB .

One way is to select some threshold, a, for the match metric. We can set WA and WB to 1

and 0 or 0 and 1, respectively, when the match is below a, or we can set WA and WB to .5

and .5 when the match is above a. This would be mathematically written as

if a < threshold

WA = .5 and WB = .5,
(49)

else if SA > SB

WA = 1 and WB = 0, else WA = 0 and WB = 1.

This technique would require extensive testing to ascertain an appropriate a for each type

of image used and does not allow for a gradual change from selection to averaging.

36

Another common way to implement the weight functions is to assign the weight

value based on a linear transition between 1 and 0 as follows: If MAB < a, then wmm = 0

and wmax = 1; otherwise,

1 \(\-MAB\
Wmin —

2 2 v !-« j

(50)

and Wmax = 1 — Wmin . (51)

WA = Wmax and Wfi = Wmin if SA > SB, else WA = Wmin and WB = Wmax . (52)

Here, the larger weight is assigned to the source image with the higher saliency value.

This latter approach allows a gradual change from selection to averaging and was the

method used in this study because it offers the benefits of both selection and averaging

over a range of match values rather than simply selecting one method or the other. This

is the same method used in [12].

37

CHAPTER V

FUSED IMAGERY AND RESULTS

A. Fusion Approach

In this study, six multiresolution image fusion functions are applied using the

pyramid and fusion techniques described in Chapters III and IV to demonstrate the

feasibility of image fusion in remote sensing imagery. The first three functions have

been described in the current literature. The other three functions are combinations of

pyramids and fusion techniques that have not been described in current literature.

Appendix C contains computer programs used to implement the six combinations for

multiresolution image fusion. For simplicity, the images presented in this chapter are

only selected subimages of the images presented in Chapter II.

Three of the basic pyramid types described in Chapter in for image

decomposition are employed in this study. The pyramids used in the fusion functions are

the RoLP, gradient, and morphological pyramids. (The other pyramids in Chapter HI

were discussed because understanding them is necessary in order to understand the three

pyramids that were used.) These three pyramid techniques can be combined with the two

fusion techniques in six possible ways. The three combinations described in the current

literature are: (1) using a RoLP pyramid for image decomposition with contrast fusion for

image merging [11, 16]; (2) using a gradient pyramid for image decomposition with

hybrid averaging and selection fusion for image merging [12]; and (3) using a

morphological pyramid for image decomposition with contrast fusion for image merging

[13]. The three not discussed in current literature are: (1) using a RoLP pyramid for

38

image decomposition with hybrid averaging and selection fusion for image merging; (2)

using a gradient pyramid for image decomposition with contrast fusion for image

merging; and (3) using a morphological pyramid for image decomposition with hybrid

averaging and selection fusion for image merging.

In previous studies, composite Landsat and SAR images have been created by

assigning specific bands, or ratios of bands, to specific pixel colors. Images that have

pixels representing both SAR and Landsat data will be called "hybrid SAR and Landsat

images" or simply "hybrid images." Hybrid images can be very useful, as presented in

[5]; however, they limit the number of bands that can be viewed to three. By applying

multiresolution fusion functions to source images, it is the purpose of this study to make

it possible to effectively view images that contain information from more than three

spectral bands.

The remainder of this thesis presents the results and conclusions of applying the

six fusion functions to test images. Fusion of remotely sensed data can take on several

forms. In the following, Section B presents the results of fusing SAR images with

Landsat images to obtain information about the fusion functions. Section C discusses

fusion of hybrid images to obtain useful information as well as hybrid image fusion

applications. Finally, in Section D, the factors relevant to composite image quality are

considered.

B. Fusing SAR and Landsat Images to
Evaluate Fusion Functions

In this section, fusing imagery of the Mantua, Utah, area is reported. This set of

imagery is used because it contains mountainous and agricultural areas as well as urban

39

areas. A list of the figures and parameters used in this section is given in Table III. The

first source image, Figure 6 (a), was obtained from the Landsat-4 satellite on 25

September 1994; the RGB pixel values are from bands 4, 2, and 1, respectively. The

second source image, Figure 6 (b), was obtained from the SIR-C SAR instrument flown

on STS-68 on 2 October 1994; the RGB pixel values are from bands L, C, and C,

respectively.

The results presented in Figures 7, 8, and 9 demonstrate that the gradient and

RoLP pyramids with the hybrid fusion technique, Figures 7 (b) and 8 (b), provide the

composite images with the most well integrated fusion of source image features. The

TABLE III
LIST OF FIGURES IN CHAPTER V, SECTION B

Figure Area Description

6(a) Mantua
6(b) Mantua
7(a) Mantua

7(b) Mantua

8(a) Mantua

8(b) Mantua

9(a) Mantua

9(b) Mantua

10(a) Mantua
10(b) Mantua

Landsat imagery of Mantua, bands = (4, 2, 1).
SAR imagery of Mantua, bands = (L, C, C).
Selection fusion of 6 (a) and 6 (b) using a four level
Gradient pyramid with a Gaussian kernel of a = 0.4.
Hybrid fusion of 6 (a) and 6 (b) using a four level
Gradient pyramid with a Gaussian kernel of a = 0.4
and a match threshold of a = 0.1.
Selection fusion of 6 (a) and 6 (b) using a four level
RoLP pyramid with a Gaussian kernel of a = 0.4.
Hybrid fusion of 6 (a) and 6 (b) using a four level
RoLP pyramid with a Gaussian kernel of a = 0.4
and a match threshold of a = 0.1.
Selection fusion of 6 (a) and 6 (b) using a four level
Morphological pyramid with a 2x2 brick as a
structuring element.
Hybrid fusion of 6 (a) and 6 (b) using a four level
Morphological pyramid with a match threshold of
a = 0.1 and a 2x2 brick as a structuring element.
Subsection of Figure 7 (b) enlarged for detail.
Subsection of Figure 8 (b) enlarged for detail.

40

„ •;•, - --v •.-*-■ ■ ■ »#^

«#T, ..K;*.f*

f

. -.jf

' *r

:-.J-*"-_'--'r-" . ■" -
,r: ?:*__„? ■, .-- — . .._ |

Fig. 6. (a) Landsat and (b) SAR source images of the Mantua, Utah, area.

41

Fig. 7. Fusion of the Mantua, Utah, area source images, Figure 6 (a) and 6 (b), using a
gradient pyramid and (a) selection fusion, (b) hybrid fusion.

42

(a)

Fig. 8. Fusion of the Mantua, Utah, area source images, Figure 6 (a) and 6 (b), using a
RoLP pyramid and (a) selection fusion, (b) hybrid fusion.

43

Fig. 9. Fusion of the Mantua, Utah, area source images, Figure 6 (a) and 6 (b), using a
morphological pyramid and (a) selection fusion, (b) hybrid fusion.

44

visual results of the fusion techniques using morphological pyramids, Figure 9, show that

the morphological pyramids do not work well for remote sensor imagery. The low

quality of the composite images that used morphological filters is due to the small

resolution of the visual elements; for example, roads are only one or two pixels wide. In

this case, using a 2x2 or a 3x3 structuring element for the morphological filters does not

allow reconstruction of such small detail. The image detail cannot be reconstructed with

a resolution higher than that of the structuring element. Hence, the composite image does

not contain the important, small details from the source images because the details are

smaller than the structuring element. A smaller structuring element is not feasible

because using a structuring element on the order of one pixel does not filter the image at

all. Morphological filters work well for high-resolution images where image

substructures are large in comparison with the structuring element. However, with these

images the entire city is blurred.

Results obtained using the selection technique for image fusion are unacceptable

in this study because they select details from only one image or another. In the

composite images, cities and mountains end up being represented by the SAR

information, and agricultural areas are represented by the Landsat images. This is

because Landsat images have the highest return values from agricultural areas, and SAR

images have the highest return values in cities and mountains. Since the areas of

saturated return correspond to the highest pixel values and the contrast selection

technique is based upon ratios of pixel intensity, selection fusion leads to composite

45

images that have the SAR information in city areas and Landsat information in the

agricultural areas.

Figure 10 is an enlarged subsection of the two fused images that yielded the best

result, namely, RoLP and gradient pyramids with hybrid fusion, Figures 7 (b) and 8 (b).

Notice that the detail in the lower left-hand corner of the RoLP image appears blurry as

compared with the same area in the gradient composite image.

C. Fusing Hybrid SAR/Landsat Images

In the previous section, SAR and Landsat images were fused to obtain

information about how the fusion functions work for remotely sensed imagery. Fusion

applications, however, are more likely to use hybrid images. Hybrid images have the

advantage of using multiple sensors to obtain single source images. The benefit of

having the different bands of TM sensors and SAR sensors is that each band shows a

particular feature of the surface. When these features are understood, source images can

be formed to show specific information about a given surface area. In this section, the

fusion techniques are applied to a sets of source images used to show the applicability of

fusion of hybrid SAR and Landsat images. A list of the figures used in this section is

given in Table IV.

For the first set of composite images, a source image designed to show urban,

suburban, and agricultural areas is combined with another source image designed to show

health of vegetation. For the first image, we want to use a band that reflects vegetation

and a band that reflects anthropological structures; this will demonstrate the distinct

difference between urban and agricultural areas. Landsat band 2 is in the visible

46

Fig. 10. (a) Gradient pyramid with hybrid fusion enlarged for detail, (b) RoLP pyramid
with hybrid fusion enlarged for detail.

47

TABLE IV
 LIST OF FIGURES IN CHAPTER V, SECTION C

Figure Area Description

11 (a) Logan SAR band L and Landsat bands 4 and 2.
11 (b) Logan Landsat bands 3, 4, and 2.
12 (a) Logan Hybrid fusion of 11 (a) and 11 (b) using a four level

Gradient pyramid with a Gaussian kernel of a = 0.4.
12 (b) Logan Hybrid fusion of 11 (a) and 11 (b) using a four level

RoLP pyramid.

spectrum and returns a peak value for vegetation. Landsat band 4 is in the near infrared

spectrum and shows healthy vegetation and land/water interfaces. Both SAR bands C

and L reflect well from artificial structures and would work well for this image; however,

band L has a higher return from artificial structures than band C, and band C reflects

from vegetation. For the first image, we use Landsat bands 2 and 4 and SAR band L.

The second source image is designed to show health of vegetation, so both Landsat bands

2 and 4 are again used. The third band of the second source image is one that has a low

return in vegetated areas; Landsat band 3 is in the visible-light spectrum that corresponds

to chlorophyll absorption.

Figure 11 shows the two hybrid source images. The first image emphasizes land

use categories and land/water boundaries, and the second shows health of vegetation and

land/water boundaries. Figure 12 shows the result of fusing the source images using

RoLP and gradient pyramids with hybrid fusion. It is concluded that the fusion of the

source images is successful because the information represented by Landsat bands 2 and

48

Fig. 11. (a) SAR band L and Landsat bands 4 and 2. (b) Landsat bands 3, 4, and 2.

49

Fig. 12. Fusion of source images in Figure 11 using a (a) Gradient pyramid with hybrid
fusion, (b) RoLP pyramid with hybrid fusion.

50

4, which show health of vegetation and water/land boundaries, remains virtually

unchanged, whereas the composite images make viewing the vegetation in the city easier

without changing the ease of viewing the land use information. This is because the pixels

represented by the color red are now the data represented by the fusion between the SAR

L band and the Landsat band 3. This does not increase the amount of green present in the

image; it only makes it easier for a human analyst to observe because of the way we

perceive contrast. The reason for this is described by Weber's Law [9]. By decreasing

the amount of red in the local area, it decreases the amount of contrast between the green

and red pixels; hence, the vegetation (green) is more easily observed by a human analyst

because the red is reduced. If we were to simply reduce the intensity of the red pixels,

the contrast between green and red in the city would be still be easily observed; however,

in areas where the red pixels are the only source, the contrast would also be reduced. The

use of fusion allows varying the amount of change in contrast for a given area based on

the correlation between the two source images. Figure 13 demonstrates the change in

contrast by viewing enlarged subsections of Figures 11 (a), 12 (a), and 12 (b)

(a) (b) (c)

Fig. 13. Enlarged subsections of Figures 11 (a) and 12 to show the change in contrast.

51

respectively; the enlarged subsections in Figure 13 are: (a) the hybrid image, (b) the fused

images using gradient pyramids, and (c) the fused images using RoLP pyramids.

To most observers it appears that Figure 13 (c) has the most green and Figure 13

(a) has the least with Figure 13 (b) somewhere in between. However, all three images

have the same amount of green in them. The green pixel values did not change; only the

red pixel values changed. By decreasing the intensity of the red pixel values, the green is

more easily noticed; hence, people see more green in the images (b) and (c) of Figure 13.

The same effect could be observed over small areas by simply decreasing the intensity of

the red pixels in the image; however, fusion allows the amount of change in the pixel

intensity to vary dependent upon the correlation of the two images. Fusion is beneficial

because the change in the red pixel intensities is not constant over the whole image. The

fusion algorithm decides how much and where to change the red pixel intensities.

D. Composite Image Appearance and Quality

The composite image appearance depends upon several factors. In this study,

Landsat and SAR images were converted into bitmaps for fusion. This preserved the

pixel data. In order for the REDUCE and EXPAND functions to work properly, the input

image size needs to be equal to a power of two, plus one. For example, the two sizes

used in this study were 257x257 and 513x513. This works because 257 = 28 + 1 and 513

= 29 + 1. If a source image is passed to the function that generates a pyramid, the image

needs to have x and y sizes that are a power of two, plus one. If the dimensions of the

source image do not meet this criterion, the image needs to be resized. When resizing

52

occurs, pixel values must be interpolated; and the data used are no longer exact.

Therefore, the data in the composite image are not exact.

Another consideration in the composite image appearance is the storage format

used. If an image is stored as a JPEG file, the true pixel values are not saved;

quantization is necessary for the compression of the file. Once again, because the data

used in the source images are not exact, the data contained in the composite image are not

exact. It is necessary for the user to decide what accuracy of pixel values is necessary for

image analysis and take the necessary precautions when fusing the images.

When using multiresolution image fusion, the number of levels in the pyramids

contributes to the quality of the composite image. For example, when the source images

are decomposed into pyramids six levels deep, large image features will fuse better than

if pyramids only two levels deep were used. The depth of a pyramid is an important

parameter. If the depth is too deep, processing time is wasted. On the other hand, if the

pyramid is not deep enough, the larger image subfeatures will not blend well. If it is

known that the remote sensing imagery for a desired study has surface/subsurface

features of a very small scale, the pyramid depth does not need to be as deep; a depth of

two would work fine. In relation to the overall size of the source images used here, the

features in the city are very small, while the features in the mountains are quite a bit

larger. It is important to note that the pyramid depth must accommodate the fusion of the

largest subfeature in the source images; this is what will determine the necessary pyramid

depth. Figure 14 shows images created by fusing two images using gradient pyramids of

different depths. Figure 15 shows the same thing using RoLP pyramids; the depths used

range from one to six.

53

Fig. 14. Gradient pyramid hybrid fusion of the Mantua, Utah, area source images, Figure
9 (a) and 9 (b), using pyramids of varying depths (a) depth = 1

(b) depth = 2 (c) depth = 3 (d) depth = 4 (e) depth = 5 (f) depth = 6.

54

Fig. 15. RoLP pyramid hybrid fusion of the Mantua, Utah, area source images, Figure 9
(a) and 9 (b), using pyramids of varying depths (a) depth = 1

(b) depth = 2 (c) depth = 3 (d) depth = 4 (e) depth = 5 (f) depth = 6.

55

Comparing the images (in Figure 14 for gradient pyramids or Figure 15 for RoLP

pyramids) with each other, it can be seen that, after a pyramid depth of two, the added

pyramid levels do not visually add much detail to the composite image. The most

noticeable change, upon visual inspection, is in the color of the mountains. To more

clearly see the change that results from increasing the pyramid depth from level to level,

Figure 16 shows the difference in gradient images, and Figure 17 shows the difference in

RoLP images. (The difference of each pixel value has been multiplied by a factor of 4 to

more clearly see the changes.)

By comparing the images in Figure 16 with the images in Figure 14 for gradient

pyramids (or Figure 17 with Figure 15 for RoLP images), it is noticed that the difference

from level to level is, indeed, in the mountainous regions of the image. The difference in

the mountains was expected because the image features in the mountains are much larger

than the image features in the city. By inspecting the resultant images, it can be observed

that the detail in the composite images for the city areas did not change noticeably for any

of the pyramid depths used after a depth of two. For any set of images, the optimum

pyramid depth depends upon the size of the details considered for analysis. The larger

the details in the source images, the deeper the pyramid depth needs to be for satisfactory

fusion. If the pyramids were skipped all together (a pyramid of depth =1), the composite

image has a higher level of detail missing as opposed to using a depth of two.

This study also used a subjective measure of image quality as described by [24]. The

quality of each image has been assigned a value between 0 and 9. An image with a

quality measure (QM) of 1 would be able to locate only large terrain features such as rail

yards, airstrips, or possibly very large aircraft at an airstrip. An image with a QM of 8,

56

Fig. 16. Four times the difference between gradient composite images of successively
increasing pyramid depths, (a) Fig. 14 (b) - Fig. 14 (a), (b) Fig. 14 (b) - Fig. 14 (c). (c)

Fig. 14 (d) - Fig. 14 (c). (d) Fig. 14 (e) - Fig. 14 (d). (e) Fig. 14 (f) - Fig. 14 (e).

57

Fig. 17. Four times the difference between RoLP composite images of successively
increasing pyramid depths, (a) Fig. 15 (b) - Fig. 15 (a), (b) Fig. 15 (b) - Fig. 15 (c). (c)

Fig. 15 (d) - Fig. 15 (c). (d) Fig. 15 (e) - Fig. 15 (d). (e) Fig. 15 (f) - Fig. 15 (e).

58

on the other hand, would be able to detect types of aircraft at an airstrip or the number of

boxcars at a rail yard. The image quality was obtained from the power spectral density of

the image luminance. The image luminance is acquired by transforming from the RGB

coordinate system to the XYZ coordinate system, where Y is the image luminance.

(Appendix B contains the transform equations and the image QMs for the composite

images in this study.) This quality measure indicated that image quality decreased as the

pyramid depth increased. It also indicated that the composite morphological images had

higher quality than the RoLP and gradient composite images, which is not the case, as

can be visually verified. It is, therefore, concluded that the quality measure as described

in [24] does not work well for fused imagery of remotely sensed data.

59

CHAPTER VI

CONCLUSIONS

A. Findings

The findings from this study are verified by the fused images generated from SAR

and TM data of the same terrestrial scenes. It has been shown that there is a more

effective way to view composite SAR and Landsat images than by simply viewing three

bands at one time. The cost of the more effective composite image is computation time.

Table V is a summary of processor time for the various fusion techniques that were

studied.

The fastest fusion techniques use morphological filters; however, as the

composite images indicate, morphological filters do not work well for these types of

remotely sensed data because of the small-scale of image subfeatures in comparison with

the structuring element.

TABLE V
 COMPUTATION TIMES FOR FUSION TECHNIQUES

Technique Size (Pixels) Time (Seconds)

116.2
130.1
260.2
631.2
1142.6
 1823.4

Computational time on a Pentium 266 MHz processor with 64 MB of RAM.
For an image size of 257x257, all computational times should be quartered.

Morphological-Selection 513x513
RoLP-Selection 513x513
Morphological-Hybrid 513x513
RoLP-Hybrid 513x513
Gradient-Selection 513x513
Gradient-Hybrid 513x513

60

Fusion techniques using RoLP pyramids are the second fastest. The composite

images formed from RoLP techniques are beneficial in that they present the data from

both source images in the composite scene better than do the simple hybrid images used

in previous studies. Compared with techniques that use gradient pyramids, however, the

composite images from RoLP pyramids tend to appear blurry. This appearance Of being

blurry, however, is an artifact of the reduced contrast in the composite image. The

quality remains approximately constant between the gradient and RoLP composite

images (given equal pyramid depths).

Gradient pyramids yielded composite images in approximately equal quality to, or

slightly better than, the RoLP pyramids (gradient composites do not appear as blurry);

however, the computation time for gradient pyramids is about four times that of the RoLP

pyramids. The gradient pyramid is actually a combination of four pyramids. When exact

analysis of imagery is necessary, the gradient pyramid may be the best choice; however,

for most applications, the RoLP pyramid with hybrid fusion will work just as well.

It was found in this study that the selection approach to image fusion is

undesirable. Because the selection technique chooses only one band or another to

represent, it does not fuse them. Although the selection technique is almost twice as fast

as the hybrid selection and averaging technique, the hybrid approach yields a composite

image with better detail. A result of this study, therefore, is the suggestion that, for

general fusion applications, a RoLP pyramid with hybrid selection and averaging fusion

should be used. If small details are a concern and time is not a constraint, the gradient

pyramid with hybrid fusion may yield a slightly better result.

61

This study has demonstrated that the optimum pyramid depth depends upon the

largest important subfeature in the image. If the features of concern are small in detail,

like the cities in the case of satellite data, a pyramid depth of two will produce the same

result as a pyramid depth of six. On the other hand, if the features in the image are large,

like mountains, a much deeper pyramid is necessary.

A simple rule to follow would be to use a pyramid depth of two if the image

features desired for fusion are on the order of one to two pixels. For most applications, a

pyramid depth of three would work fine. If the image features are very large, on the

order of hundreds of pixels, a pyramid depth of six would be appropriate. Rarely would a

pyramid depth of greater than five or six be needed. Based upon the results from figures

16 and 17, a pyramid depth of at least two should be used in all fusion applications

because the amount of detail added when changing from a pyramid of depth one to a

pyramid of depth two is sufficiently large.

B. Recommendations

Future research related to the topic of this study is needed in several areas. First,

an optimum alpha value (the threshold that is used to regulate averaging and selection of

composite pixel values) for the match and saliency measure could be established through

research. New approaches need to be developed to speed up the gradient filters, thus

greatly benefiting the software already developed. Also, blind source separation [25] can

be explored as a means to image fusion. Another area of research is to find more suitable

structuring elements for morphological filters. Structuring elements that would make

possible the retention of small-scale image features in the composite image are needed.

62

Another area of a study could be the comparison between using the wavelet

transform or using pyramids for multiresolution representation of images. Another type

of pyramid/fusion combination that could be tried is a ratio between levels of a

morphologically filtered pyramid with both fusion types. The final suggestion I have for

further research is to develop another way to objectively measure image quality without

knowing the image source. Such a metric would be a valuable tool for the field of image

processing and analysis in general. Further research in these areas could greatly benefit

the field of image processing as well as the analysis of remote sensing imagery.

63

REFERENCES

[1] P. L. Voraberger and R. A. Bindschadler, "Multi-spectral analysis of ice sheets using

co-registered SAR and TM imagery," Int. J. Remote Sensing, vol. 13, pp. 637-645,

Mar. 1992.

[2] R. Bindschalder and P. Vornberger, "Interpretation of SAR imagery of the

Greenland ice sheet using coregistered TM imagery," Remote Sens. Environ., vol.

42, pp. 167-175, Dec. 1992.

[3] B. N. Haack and E. T. Slonecker, "Merged spaceborne radar and thematic mapper

digital data for locating villages in Sudan," Photogrammetric Engineering & Remote

Sensing, vol. 60, pp. 1253-1257, Oct. 1994

[4] B. Chapman, "Using RADAR data: science and applications," 1998, available on

the World Wide Web at URL: http://southport.ipl.nasa.gov/scienceapps/.

[5] D. Oliver, "Image processing for integration ofLandsat Thematic Mapper imagery

with SIR-C synthetic aperture radar imagery." M.S. thesis, Utah State University,

Logan, UT. 1996.

[6] Anonymous, "Satellite imaging exploring the earth from space: obtaining Landsat

images," 1998, available on the World Wide Web at URL: http://members.aol.com

/landsatcd/index.html.

[7] S. I. A. Rahman and K. J. Dalsted, "Using SIR-A and Landsat data to study the

potential of the southwestern desert of Egypt for agricultural expansion," in Proc. of

the 23rd Int. Symp. on Remote Sensing of Environment, 1990, pp. 949-958.

64

[8] T. A. Wilson, S. K. Rogers, and M. Kabrisky, "Perceptual based image fusion for

hyperspectral data," 1994, available on the World Wide Web at URL:

http://www.afit.mil/Schools/EN/ENG/LABS/PatternRec/publications/IEEE95/IEEE

95.html

[9] A K. Jain, Fundementals of Digital Image Processing. Englewood Cliffs, NJ:

Prentice-Hall, 1989.

[10] G. Huadong, L. Qizhong, and F. Xiuyin, "Detection of gold-bearing alteration zones

using Landsat TM and airborne SAR in north Xinjiang region," in Proc. of the 23 rd

Int. Symp. on Remote Sensing of Environment, 1990, pp. 639-647.

[11] A Toet, "Hierarchical image fusion," Machine Vision and Applications, vol. 3, no.

1, pp. 1-11, 1990.

[12] P. J. Burt and R. J. Kolczynski, "Enhanced image capture through fusion," 1993

IEEE 4th International Conf. on Computer Vision, vol. 4, pp. 173-182, Feb. 1993.

[13] S. Marshall, G. K. Matsopoulos, and J.N.H Brunt, "Multiresolution morphological

fusion of MR and CT images of the human brain," in Mathematical Morphology and

Its Applications to Image Processing, J. Serra & P. Soille, Eds., Dordrecht,

Netherlands: Kluwer Academic Publishers, 1994, pp. 317-324.

[14] P. J. Burt and E. H. Adelson, "The laplacian pyramid as a compact image code,"

IEEE Trans, on Comm., vol. 31, no. 4, pp. 532-540, 1983.

[15] A Toet., "A morphological pyramid image decomposition," Pattern Recognition

Utters, vol. 9, no. 4, pp. 255-261, 1989.

[16] A Toet, L. J. van Ruyven, and J. M. Valeton, "Merging thermal and visual images

by a contrast pyramid," Optical Engineering, vol. 28, no. 7, pp. 789-792, 1989.

65

[17] A. Toet, "Multiscale contrast enhancement with applications to image fusion,"

Optical Engineering, vol. 31, no. 5, pp. 1026-1031, 1992.

[18] W. Pfaff, "Multispectral change detection and interpretation using selective

principal components and the tasseled cap transformation." M.S. thesis, Utah State

University, Logan, UT. 1998.

[19] W. L. Wolf, and G. J. Zissis, The Infrared Handbook. Ann Arbor, MI:

Environmental Research Institute of Michigan, 1993.

[20] Anonymous, "Landsat Thematic Mapper: data characteristics," 1998, available on

the World Wide Web at URL: http://edcwww.cr.usgs.gov/ghs/hyper/guide

/landsat tm.

[21] B. N. Koopmans and G. Forero R., "Airborne SAR and Landsat MSS as

complementary information source for geological hazard mapping," ISPRS J. of

Photogrammetry and Remote Sensing, vol. 48, pp. 28-37, Dec. 1993.

[22] R. M. Haralick, R. Stanley, and X. Zhuang, "Image analysis using mathematical

morphology," IEEE Trans. On Pattern Analysis and Machine Intellegence, vol. 9,

no. 1, pp. 532-549, 1987.

[23] R. M. Haralick, X. Zhuang, C. Lin, and J. S. J. Lee, "The digital morphological

sampling theorem," IEEE Trans, on Acoustics, Speech, and Signal Processing, vol.

37, no. 12, pp. 2067-2089, 1989.

[24] N. B. Nill, and B. H. Bouzas, "Objective image quality measure derived from digital

image power spectra," Optical Engineering, vol. 31, no. 4, pp. 813-825, 1992.

66

[25] A. J. Bell, and T. J. Sejnowski, "An information-maximization approach to blind

source separation and blind deconvolution," Neural Comp., vol. 7, pp. 1129-1159,

Feb. 1995.

67

APPENDICES

68

Appendix A: Testing of Pyramids and Fusion Code

69
Knowing that, theoretically, the RoLP pyramid should have an exact

reconstruction and that morphological and gradient pyramids should have approximate

reconstructions, the following tests were performed: First, a small test image of 17x17

pixels was created; then the pyramid routines were applied; and, at each stage of the

image decomposition and reconstruction, the values were verified by hand calculations.

The second test was to take three larger test images, shown in Figure 18, create a

pyramid, and then recover the image by using the pyramid reconstruction techniques.

Finally, the reconstructed image was subtracted from the original image; and the average

and standard deviation of pixel differences was calculated. These values are given for the

test images in Figure 18 in Tables VI, VII, and VIII. The second test was run with

pyramids of depth = 6 and pyramids of depth = 4. For an exact reconstruction, the

average pixel difference would be zero; and the standard deviation would also be zero.

The testing showed that the RoLP pyramid was exact in most cases. The one exception

was for a six level pyramid for image 18 (b) in the red band; in which case it was still

very near zero. See Table VII. The morpological pyramids had the largest errors, and

the errors were independent of pyramid depth. The errors in morphological pyramids are

due to the fact that detail smaller than the structuring element cannot be exactly

reconstructed. Gradient pyramids had a moderate margin of error for pyramid

reconstruction; these errors are due to the approximation shown in equations (19) and

(20). In general, the deeper the pyramid the larger the error in reconstructing the image.

(a) (b) (c)

Fig. 18. Test images used to verify pyramid code correctness.

TABLE VI
RESULTS FROM TESTING PYRAMID

RECONSTRUCTION CODE ON FIGURE 19 (a)

Pyramid Type Pyramid Depth Pixels Color Average Error Standard Deviation

Morph 6 Red 1.312237 2.981582
Morph 6 Green 2.045051 4.711925
Morph 6 Blue 0.810453 1.817184
RoLP 6 Red 0.000000 0.000000
RoLP 6 Green 0.000000 0.000000
RoLP 6 Blue 0.000000 0.000000
Gradient 6 Red 4.902764 2.869346
Gradient 6 Green 5.615083 5.245300
Gradient 6 Blue 4.639384 1.951420
Morph 4 Red 1.312237 2.981582
Morph 4 Green 2.045051 4.711925
Morph 4 Blue 0.810453 1.817184
RoLP 4 Red 0.000000 0.000000
RoLP 4 Green 0.000000 0.000000
RoLP 4 Blue 0.000000 0.000000
Gradient 4 Red 3.059642 1.689473
Gradient 4 Green 3.289907 2.882259
Gradient 4 Blue 2.969148 1.107655

71

TABLE VII
RESULTS FROM TESTING PYRAMID

RECONSTRUCTION CODE ON FIGURE 19 (b)

Pyramid Type Pyramid Depth Pixels Color Average Error Standard Deviation

Morph 6 Red 6.048186 16.756359
Morph 6 Green 2.045051 4.711925
Morph 6 Blue 0.810453 1.817184
RoLP 6 Red 0.000418 0.051939
RoLP 6 Green 0.000000 0.000000
RoLP 6 Blue 0.000000 0.000000
Gradient 6 Red 4.250710 4.461939
Gradient 6 Green 5.615083 5.245300
Gradient 6 Blue 4.639384 1.951420
Morph 4 Red 6.048186 16.756359
Morph 4 Green 2.045051 4.711925
Morph 4 Blue 0.810453 1.817184
RoLP 4 Red 0.000418 0.051939
RoLP 4 Green 0.000000 0.000000
RoLP 4 Blue 0.000000 0.000000
Gradient 4 Red 2.729921 2.905167
Gradient 4 Green 3.289907 2.882259
Gradient 4 Blue 2.969148 1.107655

TABLE VIII
RESULTS FROM TESTING PYRAMID

RECONSTRUCTION CODE ON FIGURE 19 (c)

Pyramid Type Pyramid Depth Pixels Color Average Error Standard Deviation

Morph 6 Red 1.887326 5.636188
Morph 6 Green 1.660585 4.812446
Morph 6 Blue 1.723327 4.875687
RoLP 6 Red 0.000000 0.000000
RoLP 6 Green 0.000000 0.000000
RoLP 6 Blue 0.000000 0.000000
Gradient 6 Red 5.413866 6.271135
Gradient 6 Green 4.584484 3.704715
Gradient 6 Blue 4.457820 3.544401
Morph 4 Red 1.887326 5.636188
Morph 4 Green 1.660585 4.812446
Morph 4 Blue 1.723327 4.875687
RoLP 4 Red 0.000000 0.000000
RoLP 4 Green 0.000000 0.000000
RoLP 4 Blue 0.000000 0.000000
Gradient 4 Red 3.306019 3.456579
Gradient 4 Green 3.044988 2.178596
Gradient 4 Blue 3.016866 2.076221

72

Appendix B: Image Quality Measures

73
The image quality measures used in this study were calculated from the power

spectrum of the image as described in [24]. The power spectrum was taken on the image

luminance, which was calculated by transforming from the RGB coordinates to the XYZ

coordinates through the following transform:

X = 0.490*R + 0.310*G + 0.200*B;
Y = 0.177*R + 0.813*G + 0.011*B;
Z = 0.000*R + 0.010*G + 0.990*B;

where Y is the image luminance.

The quality measure was found as follows:

QM = 1.93*log(/ßM) + 8.77,

where

1 180° 03

/ÖM=-^£ £5(Ö1)W(p)A2(rp)P(p,ö)[24].
8=180° p=0.01

Here, P(p,&) is the Discrete Fourier Transform or the Fast Fourier Transform. S(dl) is

the scale of the image at an angle ofö, from the sensor. W(p) is the classic Wiener filter

as described in [24]; and A(Tp) is a model of the human visual system (HVS), also

described in [24].

The quality measures (QMs) were taken by dividing images into quadrants of size

128x128. An image of original size 513x513 would be divided into quadrants and then

subdivided again into subquadrants. Quadrants start with number one in the upper right-

hand corner of the image and then proceed counterclockwise to the lower right-hand

corner, which is quadrant four. Table DC and X list the QMs for the composite images

created in the study. The QMs from this study indicate that a quantitative measure of

image quality that models the HVS exactly still needs to be developed. This quality

74
measure did, however, provide a means to measure small differences in image quality

and trends in changes based upon varying inputs such as pyramid depth.

TABLE IX
QUALITY MEASURES FOR COMPOSITE IMAGES IN FIGURES 7 THRU 12

Figure Quadrant S_Q1 S_Q2 S_Q3 S_Q4

7(a) 1 5.743940 6.299867 5.955395 5.798092
7(a) 2 5.774915 6.010545 6.144174 6.240824
7(a) 3 6.031102 6.109628 5.829595 6.149844
7(a) 4 5.537493 4.949940 5.178320 6.203316
7(b) 1 5.731352 5.888458 5.774751 5.797175
7(b) 2 5.455630 5.956551 5.839167 6.143242
7(b) 3 5.871299 5.776086 6.154200 6.210767
7(b) 4 5.686476 5.879713 5.157750 6.044588
8(a) 1 6.216465 6.068850 6.105093 5.860565
8(a) 2 2.987027 5.877355 5.704545 6.401773
8(a) 3 6.054478 6.100063 6.158357 6.205588 i

8(a) 4 3.824745 4.298860 5.471602 6.395981
8(b) 1 5.683046 6.041419 5.824888 5.818359
8(b) 2 5.043132 5.987381 5.779756 6.235353
8(b) 3 5.879769 5.643103 6.231497 6.232010
8(b) 4 5.597918 5.909996 5.156698 6.147477
9(a) 1 5.542208 6.417702 5.934047 5.910607
9(a) 2 6.183458 5.925222 4.363320 6.441932
9(a) 3 6.170932 6.095793 6.064970 6.194372
9(a) 4 4.960927 5.389463 5.162599 6.263077
9(b) 1 5.757378 6.148040 5.833893 5.915841
9(b) 2 6.171905 6.070212 5.708892 6.401994
9(b) 3 5.996606 5.932110 6.246206 6.177732
9(b) 4 4.377702 5.238811 5.299767 6.259186
11(a) 1 4.182329 6.433823 6.187418 6.323740
11(a) 2 5.828491 5.019885 5.546538 5.774281
11(a) 3 5.602613 6.041763 5.954587 4.099891
11(a) 4 6.281577 6.463826 5.614375 5.843056
1Kb) 1 4.182329 6.433823 6.187418 6.323740
11(b) 2 5.828491 5.019885 5.546538 5.774281
1Kb) 3 5.602613 6.041763 5.954587 4.099891
1Kb) 4 6.281577 6.463826 5.614375 5.843056
12(a) 1 4.971820 6.396582 6.191291 6.352974
12(a) 2 5.787445 4.995888 5.494674 5.742789
12(a) 3 5.592110 5.999828 5.919660 4.059719
12(a) 4 6.216224 6.469916 5.645947 5.817126
12(b) 1 4.170645 6.430707 6.190845 6.319584
12(b) 2 5.826273 5.018929 5.545628 5.773333
12(b) 3 5.604957 6.040998 5.953582 4.104306
12(b) 4 6.282585 6.463218 5.615763 5.842026

HereS _Q1 stands for subquadrant 1, S_Q2 stands for subquadrant 2, S_Q3 stands for
subquadrant 3, and S_Q4 stands for subquadrant 4.

75
TABLE X

QUALITY MEASURES FOR COMPOSITE IMAGES IN FIGURES 14 AND 15

Figure Quadrant S_Q1 S_Q2 S_Q3 S_Q4

14(a) 1 5.907000 6.105254 5.954466 5.892723
14(a) 2 6.134328 6.087080 6.248683 6.403800
14(a) 3 6.060922 5.777319 6.310244 6.218068
14(a) 4 5.394370 5.815682 5.238525 6.211088
14(b) 1 5.909584 6.089230 5.919499 5.878862
14(b) 2 6.041452 6.063083 6.129162 6.358926
14(b) 3 6.009208 5.737093 6.263228 6.211189
14(b) 4 5.493500 5.796942 5.213909 6.161926
14(c) 1 5.860167 6.027700 5.870211 5.852189
14(c) 2 5.782127 6.023773 5.988911 6.284763
14(c) 3 5.948137 5.751993 6.220279 6.218034
14(c) 4 5.596609 5.785432 5.199620 6.111913
14(d) 1 5.731352 5.888458 5.774751 5.797175
14(d) 2 5.455630 5.956551 5.839167 6.143242
14(d) 3 5.871299 5.776086 6.154200 6.210767
14(d) 4 5.686476 5.879713 5.157750 6.044588
14(e) 1 5.449706 5.570606 5.653515 5.714482
14(e) 2 5.736781 5.890406 5.472869 5.945735
14(e) 3 5.797911 5.752635 6.020828 6.168142
14(e) 4 5.714855 6.015885 5.034786 5.996046
14(f) 1 5.155452 5.912589 5.555240 5.590639
14(f) 2 6.083034 5.791876 4.703432 5.677327
14(f) 3 5.674115 5.736203 5.816588 6.045265
14(f) 4 5.674343 6.074334 4.679347 5.855797
15(a) 1 5.907000 6.105254 5.954466 5.892723
15(a) 2 6.134328 6.087080 6.248683 6.403800
15(a) 3 6.060922 5.777319 6.310244 6.218068
15(a) 4 5.394370 5.815682 5.238525 6.211088
15(b) 1 5.894845 6.126315 5.929002 5.887159
15(b) 2 5.856588 6.067307 6.129728 6.374213
15(b) 3 6.004285 5.757083 6.264523 6.222906
15(b) 4 5.463844 5.787212 5.208783 6.179084
15(c) 1 5.840663 6.041954 5.889577 5.861843
15(c) 2 5.188877 6.028841 5.963924 6.309322
15(c) 3 5.939251 5.734792 6.252913 6.221472
15(c) 4 5.520334 5.778367 5.183959 6.152245
15(d) 1 5.683046 6.041419 5.824888 5.818359
15(d) 2 5.043132 5.987381 5.779756 6.235353
15(d) 3 5.879769 5.643103 6.231497 6.232010
15(d) 4 5.597918 5.909996 5.156698 6.147477
15(e) 1 5.313802 5.692202 5.792126 5.804777
15(e) 2 5.652391 5.971659 5.431761 6.216579
15(e) 3 5.864790 5.557136 6.161402 6.245972
15(e) 4 5.673966 6.072573 5.161863 6.130646
15(f) 1 4.772618 5.091612 5.772559 5.813745
15(f) 2 6.126851 5.980894 4.989271 6.207485
15(f) 3 5.839331 5.599754 6.058500 6.202442
15(f) 4 5.702899 6.123158 5.102581 6.125611

HereS _Q1 stands for subquadrant 1, S_Q2 stands for subquadrant 2, S_Q3 stands for
subquadrant 3, and S_Q4 stands for i subquadrant 4.

76

Appendix C: Source Code

77
/*********************************** fuse_n.cpp ********************************/
/* This file contains the code for fusing the images. It contains both */
/* the fusion functions for selection and hybrid selection and averaging. */
/* It also contains the six fusion functions used to fuse RoLP, gradient, */
/* and morphological pyramids with the two fusion techniques. */
/***/
#ifndef FUSE
tdefine FUSE

tinclude "thesis.h"
#include 'files.cpp"
tinclude "convolve_n.cpp"
tinclude "gradient_n.cpp"
t inelüde "morph_n.cpp"
tinclude "rolp_n.cpp"

/***/
/* Image Fusion Techniques */

/* Fuses two images selecting between the two source pixels the pixel with
the highest intensity; also called contrast fusion. */

image * selection(image *il, image *i2)
{
image *newpic;
int xnew, ynew, x, y, index;
if(il == NULL || i2 == NULL) return(NULL);
if(il->xsize == i2->xsize && il->ysize == i2->ysize) {
xnew = il->xsize;
ynew = i2->ysize;
newpic = (image *)malloc(sizeof(image));
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
for(x = 0; x < xnew; x++) {

for(y = 0; y < ynew; y++) {
index = y*xnew + x;
if((il->pixel[index][0] - 1) > (i2->pixel[index][0] - 1)) {
newpic->pixel[index][0] = il->pixel[index][0];

}
else {
newpic->pixel[index][0] = i2->pixel[index][0];

}
if((il->pixel[index][1] - 1) > (i2->pixel[index][1] - 1)) {
newpic->pixel[index][1] = il->pixel[index][1];

}
else {
newpic->pixel[index][1] = i2->pixel[index][1];

}
if((il->pixel[index][2] - 1) > (i2->pixel[index][2] - 1)) {
newpic->pixel[index][2] = il->pixel[index][2];

}
else {

newpic->pixel[index][2] = i2->pixel[index][2];
}

}
}
newpic->xsize = xnew;
newpic->ysize = ynew;
return(newpic);

}
else return(NULL);

}

/* This function is used for the match and saliency measures for hybrid
selection and averaging fusion. This function returns the weighted
average of the product of a 3-by-3 area surrounding the pixel in the
(i, j) position for a given pixel color. */

double sample_p(image * picl, image * pic2, int i, int j, int color)
{

//The images must be the same x and y dimentions

78
int m, n, index, tx, ty;
double tsum = 0.0;
for(m = -2; m < 3; m++) {

for(n = -2; n < 3; n++) {
tx = i + m;
if(tx < 0 || tx >= picl->xsize || tx >= pic2->xsize) continue;

ty = 3 + n;
if(ty < 0 || ty >= picl->ysize ty >= pic2->ysize) continue;

index = ty*picl->xsize + tx;
tsum += w_g(m,n) * picl->pixel[index][color] * pic2->pixel[index][color];

}
return(tsum);

}

/* The salience function returns a corresponding map the same dimentions of the
image which is used to determine which pixel to use for selection, or which
one has a higher weight for averaging. */

image * salience(image *g)
{
image *newpic;
int x, y, index;

newpic = (image *)malloc(sizeof(image));
newpic->pixel = (Pixel *)malloc(g->xsize*g->ysize*sizeof(Pixel));
newpic->xsize = g->xsize;
newpic->ysize = g->ysize;
for(y = 0; y < g->ysize; y++) {
for(x = 0; x < g->xsize; x++) {

index = y*g->xsize + x;
newpic->pixel[index][0] = sample_p(g, g, x, y, 0)
newpic->pixel[index][1] = sample_p(g, g, x, y, 1)
newpic->pixel[index][2] = sample_p(g, g, x, y, 2)

}
}
return(newpic);

}

/* This function reuturns a measure of match to by which to compare the two
images. If the two images match, averaging is used, if they don't match
within the weighted average is used where the one with the higher
saliency has the higher weight. */

image * match(image *a, image *b, image *sa, image *sb)

{
image *newpic;
int x, y, index;

newpic = (image *)malloc(sizeof(image));
newpic->pixel = (Pixel *)malloc(a->xsize*a->ysize*sizeof(Pixel));
newpic->xsize = a->xsize;
newpic->ysize = a->ysize;
for(y = 0; y < a->ysize; y++) {

for(x = 0; x < a->xsize; x++) {
index = y*a->xsize + x;

abs(2*sample_p(a, b,
(sa->pixel[index][0]
abs(2*sample_p(a, b,
(sa->pixel[index][1]
abs(2*sample_p(a, b,
(sa->pixel[index][2]

newpic->pixel[index][0]

newpic->pixel[index][1]

newpic->pixel[index][2]

x, y, 0)/
+ sb->pixel[index][0]))
x, y, 1)/
+ sb->pixel[index][1]))
x, y, 2)/
+ sb->pixel[index][2]))

}
}
return(newpic);

/* Fuses two images by using both selection and averaging. If the two pixels
correspond to the same type of subfeature averageing is used, otherwise

79
selection is used. Alpha is a measure of how close the two pixels must
match to use selection or averaging. */

image * hybrid_selection_average(image *a, image *b, double alpha)

{
image *sa, *sb, *m, *newpic;
double wmin, wmax, wa, wb;
int x, y, index, c;

NULL) return(NULL);

sb);

if (a == NULL | | b ==
sa = salience(a);
sb = salience(b);
m = match(a, b, sa,
newpic = (image *)malloc(sizeof(image)) ;
newpic->pixel = (Pixel *)malloc(a->xsize*a->ysize*sizeof(Pixel)) ;
newpic->xsize = a->xsize;
newpic->ysize = a->ysize;
forty = 0; y < a->ysize; y++) {

for(x = 0; x < a->xsize; x++) {
index = y*a->xsize + x;
for(c = 0; c < 3; c++) {
wmin = .5 - .5*(1 - m->pixel[index][c])/(1 - alpha);
wmax = 1 - wmin;
if(sa->pixel[index][c] > sb->pixel[index][c]) {
wa = wmax; wb = wmin;

} else {
wa = wmin; wb wmax;

}
newpic->pixel[index][c] = wa*a->pixel[index][c] + wb*b->pixel[index][c];

return(newpic);
}

/* Fuse Gradient Pyramid with hybrid fusion */

/* This function fuses two gradient pyramids using hybrid fusion */
image * fuse_gradient_hybrid_pyramid(Pyramid_Gradient *A, Pyramid_Gradient *B, double
alpha)
{
Pyramid_Gradient *C;
image *comp;

C = (Pyramid_Gradient *)malloc(sizeof(Pyramid_Gradient));
C->d4 = (Pyramid *)malloc(sizeof(Pyramid))
C->d3 = (Pyramid *)malloc(sizeof(Pyramid))
C->d2 = (Pyramid *)malloc(sizeof(Pyramid))
C->dl = (Pyramid *)malloc(sizeof(Pyramid))
C->g = (Pyramid *)malloc(sizeof(Pyramid));

printf("\nFusing Gradient 4. ");
C->d4->I5 = NULL;
C->d4->I4 = hybrid_selection_average(A->d4->I4, B->d4->I4, alpha);
C->d4->I3 = hybrid_selection_average(A->d4->I3, B->d4->I3, alpha);
C->d4->I2 = hybrid_selection_average(A->d4->I2, B->d4->I2, alpha);
C->d4->Il = hybrid_selection_average(A->d4->Il, B->d4->Il, alpha);
C->d4->I0 = hybrid_selection_average(A->d4->I0, B->d4->I0, alpha);
printf("...Done\n");

printf("\nFusing Gradient 3. ');
C->d3->I5 = NULL;
C->d3->I4 = hybrid_selection_average(A->d3->I4, B->d3->I4, alpha);
C->d3->I3 = hybrid_selection_average(A->d3->I3, B->d3->I3, alpha);
C->d3->I2 = hybrid_selection_average(A->d3->I2, B->d3->I2, alpha);
C->d3->Il = hybrid_selection_average(A->d3->Il, B->d3->Il, alpha);
C->d3->I0 = hybrid_selection_average(A->d3->I0, B->d3->I0, alpha);
printf("...Done\n");

80

printf("\nFusing Gradient 2. ');
C->d2->I5 = NULL;
C->d2->I4 = hybrid_selection_average(A->d2->I4, B->d2->I4, alpha),
C->d2->I3 = hybrid_selection_average(A->d2->I3, B->d2->I3, alpha),
C->d2->I2 = hybrid_selection_average(A->d2->I2, B->d2->I2, alpha);
C->d2->Il = hybrid_selection_average(A->d2->Il, B->d2->Il, alpha),
C->d2->I0 = hybrid_selection_average(A->d2->I0, B->d2->I0, alpha),
printf(' .Done\n");

printf("\nFusing Gradient 1. . .");
C->dl->I5 = NULL;
C->dl->I4 = hybrid_selection_average(A->dl->I4, B->dl->I4, alpha);
C->dl->I3 = hybrid_selection_average(A->dl->I3, B->dl->I3, alpha);
C->dl->I2 = hybrid_selection_average(A->dl->I2, B->dl->I2, alpha);
C->dl->Il = hybrid_selection_average(A->dl->Il, B->dl->Il, alpha);
C->dl->I0 = hybrid_selection_average(A->dl->IO, B->dl->I0, alpha);
printf("...Done\n");

printf("\nFusing Gradient 0 . .. ");
C->g->I5 = hybrid_selection_average(A->g->I5, B->g->I5, alpha);
C->g->I4 = NULL
C->g->I3 = NULL
C->g->I2 = NULL
C->g->Il = NULL
C->g->I0 = NULL
printf(" . .Done1 m")

printf("\nConstructing Composite Pyramid...");
comp = construct_gradient(C);
free_Pyramid_Gradient(C);
printf("...Done\n");

return(comp);
}

/* This function fuses two images by constructing gradient pyramids and
then fusing the pyramids using hybrid fusion. */

image * fuse_gradient_hybrid(image *il, image *i2, double alpha)
{
image *c;
Pyramid_Gradient *A, *B;
A = (Pyramid_Gradient *)malloc(sizeof(Pyramid_Gradient));
B = (Pyramid_Gradient *)malloc(sizeof(Pyramid_Gradient));

printf("\nCreating Pyramid A...");
A = gen_pyramid_gradient(il);
printf("...Done\n");
printf("\nCreating Pyramid B...");
B = gen_pyramid_gradient(i2);
printf("...Done\n");

c = fuse_gradient_hybrid_pyramid(A, B, alpha);

free_Pyramid_Gradient(A);
free_Pyramid_Gradient(B);

return(c);
}

/••a**/

/* Fuse RoLp Pyramid with selection fusion */
/a**/

/* This function fuses two RoLP pyramids using selection fusion */
image * fuse_RoLP_selection_pyramid(Pyramid *A, Pyramid *B)
{
Pyramid *C;
image *comp;

81
C = (Pyramid *)malloc(sizeof(Pyramid));

C->I5 = selection(A->I5, B->I5)
C->I4 = selection(A->I4, B->I4)
C->I3 = selection(A->I3, B->I3)
C->I2 = selection(A->I2, B->I2)
C->I1 = selection(A->I1, B->I1)
C->I0 = selection(A->I0, B->I0)

comp = construct_RoLP(C);
free_pyramid(C);

return(comp);
}

/* This function fuses two images by constructing RoLP pyramids and then
fusing the pyramids using selection fusion. */

image * fuse_RoLP_selection(image *il, image *i2)

{
image *c;
Pyramid *A, *B;
A = (Pyramid *)malloc(sizeof(Pyramid));
B = (Pyramid *)malloc(sizeof(Pyramid));

A = gen_pyramid_RoLP(il);
B = gen_pyramid_RoLP(i2);

c = fuse_RoLP_selection_pyramid(A, B);

free_pyramid(A);
free_pyramid(B);

return(c);
}

/* Fuse Morph Pyramid with selection fusion */
/***/
/* This function fuses two morphological pyramids using selection fusion */
image * fuse_morph_selection_pyramid(Pyramid *A, Pyramid *B)

{
Pyramid *C;
image *comp;

C = (Pyramid *)malloc(sizeof(Pyramid));

C->I5 = selection(A->I5, B->I5)
C->I4 = selection(A->I4, B->I4)
C->I3 = selection(A->I3, B->I3)
C->I2 = selection(A->I2, B->I2)
C->I1 = selection(A->I1, B->I1)
C->I0 = selection(A->I0, B->I0)

comp = construct_morph(C);
free_pyramid(C);

return(comp);
}

/* This function fuses two images by constructing morphological pyramids and
then fusing the pyramids using selection fusion. */

image * fuse_morph_selection(image *il, image *i2)

{
image *c;
Pyramid *A, *B;
A = (Pyramid *)malloc(sizeof(Pyramid));
B = (Pyramid *)malloc(sizeof(Pyramid));

init_sK() ;

82
A = gen_pyramid_morph(il);
B = gen_pyramid_morph(i2);

c = fuse_morph_selection_pyramid(A, B);

free_pyramid(A);
free_pyramid(B);

return(c);
}

/* Fuse Morph Pyramid with hybrid fusion */
/***/
/* This function fuses two morphological pyramids using hybrid fusion */
image * fuse_morph_hybrid_pyramid(Pyramid *A, Pyramid *B, double alpha)

{
Pyramid *C;
image *comp;

C = (Pyramid *)malloc(sizeof(Pyramid));

C->I5 = hybrid_selection_average(A->I5, B->I5, alpha);
C->I4 = hybrid_selection_average(A->I4, B->I4, alpha);
C->I3 = hybrid_selection_average(A->I3, B->I3, alpha);
C->I2 = hybrid_selection_average(A->I2, B->I2, alpha);
C->I1 = hybrid_selection_average(A->Il, B->I1, alpha);
C->I0 = hybrid_selection_average(A->IO, B->I0, alpha);

comp = construct_morph(C);
free_pyramid(C) ;

return(comp) ;
}

/* This function fuses two images by constructing morphological pyramids and
then fusing the pyramids using hybrid fusion. */

image * fuse_morph_hybrid(image *il, image *i2, double alpha)
{
image *c;
Pyramid *A, *B;
A = (Pyramid *)malloc(sizeof(Pyramid));
B = (Pyramid *)malloc(sizeof(Pyramid));

init_sK();
A = gen_pyramid_morph(il);
B = gen_pyramid_morph(i2);

c = fuse_morph_hybrid_pyramid(A, B, alpha);

free_pyramid(A);
free_pyramid(B);

return(c);
}

/•fr***/

/* Fuse RoLp Pyramid with hybrid fusion */
/***/
/* This function fuses two RoLP pyramids using hybrid fusion */
image * fuse_RoLP_hybrid_pyramid(Pyramid *A, Pyramid *B, double alpha)

{
Pyramid *C;
image *comp;

C = (Pyramid *)malloc(sizeof(Pyramid));

C->I5 = hybrid_selection_average(A->I5, B->I5, alpha);
C->I4 = hybrid_selection_average(A->I4, B->I4, alpha);

83
C->I3 = hybrid_selection_average(A->I3, B->I3, alpha);
C->I2 = hybrid_selection_average(A->I2, B->I2, alpha);
C->I1 = hybrid_selection_average(A->Il, B->I1, alpha);
C->IO = hybrid_selection_average(A->IO, B->IO, alpha);

comp = construct_RoLP(C);
free_pyramid(C);

return(comp);
}

/* This function fuses two images by constructing RoLP pyramids and
then fusing the pyramids using hybrid fusion. */

image * fuse_RoLP_hybrid(image *il, image *i2, double alpha)

{
image *c;
Pyramid *A, *B;
A = (Pyramid *)malloc(sizeof(Pyramid));
B = (Pyramid *)malloc(sizeof(Pyramid));

A = gen_pyramid_RoLP(il);
B = gen_pyramid_RoLP(i2);

c = fuse_RoLP_hybrid_pyramid(A, B, alpha);

free_pyramid(A);
free_pyramid(B);

return(c);
}

/* Fuse Gradient Pyramid with hybrid fusion */
/a**/

/* This function fuses two gradient pyramids using selection fusion */
image * fuse_gradient_selection_pyramid(Pyramid_Gradient *A, Pyramid_Gradient *B)

{
Pyramid_Gradient *C;
image *comp;

C = (Pyramid_Gradient *)malloc(sizeof(Pyramid_Gradient));
C->d4 = (Pyramid *)malloc(sizeof(Pyramid));
C->d3 = (Pyramid *)malloc(sizeof(Pyramid));
C->d2 = (Pyramid *)malloc(sizeof(Pyramid));
C->dl = (Pyramid *)malloc(sizeof(Pyramid));
C->g = (Pyramid *)malloc(sizeof(Pyramid));

C->d4->I5 = NULL;
C->d4->I4
C->d4->I3
C->d4->I2
C->d4->Il

selection(A->d4->I4,
selection(A->d4->I3,
selection(A->d4->I2,
selection(A->d4->Il,

B->d4->I4)
B->d4->I3)
B->d4->I2)
B->d4->Il)

C->d4->I0 = selection(A->d4->I0, B->d4->I0)

C->d3->I5 = NULL;
C->d3->I4 = selection(A->d3->I4, B->d3->I4)
C->d3->I3 = selection(A->d3->I3, B->d3->I3)
C->d3->I2 = selection(A->d3->I2, B->d3->I2)
C->d3->Il = selection(A->d3->Il, B->d3->Il)
C->d3->I0 = selection(A->d3->10, B->d3->I0)

C->d2->I5 = NULL;
C->d2->I4 = selection(A->d2->14, B->d2->I4)
C->d2->I3 = selection(A->d2->I3, B->d2->I3)
C->d2->I2 = selection(A->d2->I2, B->d2->I2)
C->d2->Il = selection(A->d2->Il, B->d2->Il)
C->d2->I0 = selection(A->d2->I0, B->d2->I0)

C->dl->I5 NULL;

84
C->dl->I4 = selection(A->dl->I4, B->dl->I4)
C->dl->I3 = selection(A->dl->I3, B->dl->I3)
C->dl->I2 = selection(A->dl->I2, B->dl->I2)
C->dl->Il = selection(A->dl->Il, B->dl->Il)
C->dl->I0 = selection(A->dl->I0, B->dl->I0)

C->g->I5 = selection(A->g->I5, B->g->I5);
C->g->I4 = NULL;
C->g->I3 = NOLL
C->g->I2 = NULL
C->g->Il = NULL
C->g->I0 = NULL

comp = construct_gradient(C);
free_Pyramid_Gradient(C);

return(comp);
}

/* This function fuses two images by constructing gradient pyramids and
then fusing the pyramids using selection fusion. */

image * fuse_gradient_selection(image *il, image *i2)
{
image *c;
Pyramid_Gradient *A, *B;
A = (Pyramid_Gradient *)malloc(sizeof(Pyramid_Gradient));
B = (Pyramid_Gradient *)malloc(sizeof(Pyramid_Gradient));

printf("\nCreating Pyramid A.. . ") ;
A = gen_pyramid_gradient(il);
printf("...Done\n");
printf("\nCreating Pyramid B...");
B = gen_pyramid_gradient(i2);
printf("...Done\n");

c = fuse_gradient_selection_pyramid(A, B);

free_Pyramid_Gradient(A);
free_Pyramid_Gradient(B);

return(c);
}

tendif

85
/************************************ image_p.cpp ******************************/
/* This file contains the code used for image processing routines such as */
/* image addition, subtraction, multiplication, division, etc. */
/***/
tifndef IMAGE
»define IMAGE

ttinclude "thesis.h"
tinclude "files.cpp"

/* Type Definitions */
typedef struct Pyramid {

image *I0, *I1, *I2, *I3, *I4, *I5;
} Pyramid;

/* Image Processing */
image * reduce(image *g);
image * expand(image *g);
image * subtract(image *il, image *i2);
image * add(image *il, image *i2);
image * max_comp(image *il, image *i2);
image * divide(image *il, image *i2) ;
image * multiply(image *il, image *i2);
void free_pyramid(Pyramid *p);

/***/
/* IMAGE PROCESSING STUFF */
/***/
/* The Gaussian kernel, w. */
double w(int m, int n)
{
double wm, wn, answer;
if(m == 0) wm = A_REDUCE;
else if (abs(m) == 1) wm = 0.25;
else wm = 0.25 - A_REDUCE/2;

if(n == 0) wn = A_REDUCE;
else if (abs(n) == 1) wn = 0.25;
else wn = 0.25 - A_REDUCE/2;

answer = wm*wn;
return(answer);

}

/* Returns a single sample located at (i, j) for the REDUCED image of pic
color is the indicator for red, green, or blue pixels. */

int reducepixel(image * pic, int i, int j, int color)
{
int m, n, index, tx, ty;
double tsum = 0.0;
for(m = -2; m < 3; m++) {

for(n = -2; n < 3; n++) {
tx = 2*i + m;
if(tx < 0) tx = -tx;
if(tx >= pic->xsize) tx = 2*pic->xsize - tx - 1;

ty = 2*j + n;
if(ty < 0) ty = -ty;
if(ty >= pic->ysize) ty = 2*pic->ysize - ty - 1;

index = ty*pic->xsize + tx;
tsum += w(m,n) * pic->pixel[index][color];

}
}
return((int)tsum);

}

/* Filters and subsamples the image g to get the next level in the
Gaussian pyramid. */

86
image * reduce(image *g)
{
image *newpic;
int mew, ynew, x, y, index;
newpic = (image *)malloc(sizeof(image));
xnew = (g->xsize - l)/2 + 1;
ynew = (g->ysize - l)/2 + 1;
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel
for(x = 0; x < xnew; x++) {

forty = 0; y < ynew; y++) {
index = y*xnew + x;
newpic->pixel[index][0]
newpic->pixel[index][1]
newpic->pixel[index][2]

}
}
newpic->xsize = xnew;
newpic->ysize = ynew;
return(newpic);

}

reducepixel(g, x, y,
reducepixel(g, x, y,
reducepixel(g, x, y.

/* Returns a single sample located at (i, j) for the EXPANDED image of pic
color is the indicator for red, green, or blue pixels. */

double expandpixel(image * pic, int i, int j, int color)
{
int m, n, index, tx, ty;
double tsum = 0.0;
for(m = -2; m < 3; m++) {

for(n = -2; n < 3; n++) {
if(((i-m)%2 == 0) && ((j-n)%2 == 0)) {

tx = (i-m)/2;
if(tx < 0) tx = -tx;
if(tx >= pic->xsize) tx = 2*pic->xsize - tx - 1;

ty = (j - n)/2;
if(ty < 0) ty = -ty;
if(ty >= pic->ysize) ty 2*pic->ysize - ty

index = ty*pic->xsize + tx;
tsum += w(m,n) * pic->pixel[index][color];

}

}

}
return(4*tsum);

/* Upsamples and interpolates the image g to get a lower resolution image
of the previoius level in the pyramid*/

image * expand(image *g)
{
image * newp i c;
int xnew, ynew, x, y, index;
newpic = (image *)malloc(sizeof(image));
xnew = (g->xsize - 1)*2 + 1;
ynew = (g->ysize - 1)*2 + 1;
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
for(x = 0; x < xnew; x++) {

for(y = 0; y < ynew; y++) {
index = y*xnew + x;
newpic->pixel[index][0]
newpic->pixel[index][1]
newpic->pixel[index][2]

}
}
newpic->xsize = xnew;
newpic->ysize = ynew;
return(newpic);

expandpixel(g,
expandpixel(g,
expandpixel(g,

x, y. 0)
x, y, 1)
x, y, 2)

87

/* This function returns the absolut value of the difference between
image il and image i2. */

image * subtract(image *il, image *i2)
{
image *newpic;
int xnew, ynew, x, y, index;
if(il->xsize == i2->xsize && il->ysize == i2->ysize) {
xnew = il->xsize;
ynew = i2->ysize;
newpic = (image *)malloc(sizeof(image));
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
for(x = 0; x < xnew; x++) {

for(y = 0; y < ynew; y++) {
index = y*xnew + x;
newpic->pixel[index][0]
newpic->pixel[index][1]
newpic->pixel[index][2]

}
}
newpic->xsize =
newpic->ysize =
return(newpic);

abs(il->pixel[index][0]
abs(il->pixel[index][1]
abs(il->pixel[index][2]

i2->pixel[index][0])
i2->pixel[index][1])
i2->pixel[index][2])

xnew;
ynew;

}
else return(NULL);

}

/* This function returns the difference between image il and image i2. */
image * subtract_sign(image *il, image *i2)
{
image *newpic;
int xnew, ynew, x, y, index;
if(il->xsize == i2->xsize && il->ysize == i2->ysize) {
xnew = il->xsize;
ynew = i2->ysize;
newpic = (image *)malloc(sizeof(image));
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
for(x = 0; x < xnew; x++) {

for(y = 0; y < ynew; y++) {
index = y*xnew + x;
newpic->pixel[index][0] = il->pixel[index][0]
newpic->pixel[index][1] = il->pixel[index][1]

il->pixel[index][2] newpic->pixel[index][2]

i2->pixel[index][0];
i2->pixel [index] [1] ,-
i2->pixel[index][2];

}
}
newpic->xsize
newpic->ysize
return(newpic)

xnew;
ynew;

}
else return(NULL);

}

/* This function returns the sum of image il and image i2.
image * add_sign(image *il, image *i2)
{
image *newp ic;
int xnew, ynew, x, y, index;
if(il->xsize == i2->xsize && il->ysize == i2->ysize) {
xnew = il->xsize;
ynew = i2->ysize;
newpic = (image *)malloc(sizeof(image));
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
for(y = 0; y < ynew; y++) {

for(x = 0; x < xnew; x++) {
index = y*xnew + x;
newpic->pixel[index][0] = il->pixel[index][0] +
newpic->pixel[index][1] = il->pixel[index][1] +
newpic->pixel[index][2] = il->pixel[index][2] +

}

i2->pixel[index][0];
i2->pixel[index][1];
i2->pixel[index][2];

88
}
newpic->xsize = xnew;
newpic->ysize = ynew;
return(newpic);

}
else return(NULL);

}

/* This function frees the memory used by a pyramid. */
void free_pyramid(Pyramid *p)
{
if(p != NULL) {

free_image(p->10);
free_image(p->Il)
free_image(p->12)
free_image(p->13)
free_image(p->14)
free_image(p->15)
free(p);
p = NULL;

return;

/* This function returns the ratio of image il and image i2. */
image * divide(image *il, image *i2)
{
image *newpic;
int xnew, ynew, x, y, index;
if(il->xsize == i2->xsize && il->ysize == i2->ysize) {
xnew = il->xsize;
ynew = i2->ysize;
newpic = (image *)malloc(sizeof(image));
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
for(x = 0; x < xnew; x++) {

for(y = 0; y < ynew; y++) {
index = y*xnew + x;
if(i2->pixel[index][0] != 0) {
newpic->pixel[index][0] = (il->pixel[index][0] / i2->pixel[index][0]);

}
else {
newpic->pixel[index][0] = 1;

}
if(i2->pixel[index][1] !=0) {
newpic->pixel[index][1] = (il->pixel[index][1] / i2->pixel[index][1]);

}
else {
newpic->pixel[index][1] = 1;

}
if(i2->pixel[index][2] !=0) {
newpic->pixel[index][2] = (il->pixel[index][2] / i2->pixel[index][2]);

}
else {
newpic->pixel[index][2] = 1;

}
}

}
newpic->xsize = xnew;
newpic->ysize = ynew;
return(newpic);

}
else return(NULL);

}

/* This function returns the product of image il and image i2. */
image * multiply(image *il, image *i2)
{

89

{

(il->pixel[index][0]
(il->pixel[index][1]
(il->pixel[index][2]

i2->pixel[index][0]) ;
i2->pixel[index][1]) ;
i2->pixel[index][2]):

image *newpic;
int xnew, ynew, x, y, index;
if(il->xsize == i2->xsize && il->ysize == i2->ysize
xnew = il->xsize;
ynew = i2->ysize;
newpic = (image *)malloc(sizeof(image));
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel
for(x = 0; x < xnew; x++) {

for(y = 0; y < ynew; y++) {
index = y*xnew + x;
newpic->pixel[index][0]
newpic->pixel[index][1]
newpic->pixel[index][2]

}
}
newpic->xsize = xnew;
newpic->ysize = ynew;
return(newpic);

}
else return(NULL);

}

/* This function creates an image structure from the bands of other images.
il, i2, and i3 are the images used, and cl, c2, and c3 are the bands that
will form the new red, green, and blue bands. */

image * spec_bands(image *il, int cl, image *i2, int c2, image *i3, int c3)

{
image *newpic;
int xnew, ynew, x, y, index;
if(il->xsize == i2->xsize && il->ysize == i2->ysize &&

i2->xsize == i3->xsize && i2->ysize == i3->ysize) {
xnew = il->xsize;
ynew = i2->ysize;
newpic = (image *)malloc(sizeof(image));
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
for(x = 0; x < xnew; x++) {

for(y = 0; y < ynew; y++) {
index = y*xnew + x;
newpic->pixel[index][0]
newpic->pixel[index][1]
newpic->pixel[index][2]

}
}
newpic->xsize = xnew;
newpic->ysize = ynew;
return(newpic);

}
else return(NULL);

il->pixel[index][cl];
i2->pixel[index][c2];
i3->pixel[index][c3];

}

/* This function creates a ppm file from the bands of other ppm files.
The new image contains the red band of nl, the green band of n2, and
the blue band of n3. */

void mergebands(char * out, char * nl, char * n2, char * n3)

{
int xsize, ysize, x, y;
FILE * infilel, *infile2, *infile3, *outfile;
int red, green, blue, tl, t2;
initfile(&infilel, nl, fcxsize, Sysize);
initfile(&infile2, n2, fcxsize, fcysize);
initfile(&infile3, n3, &xsize, &ysize);
outfile = fopen(out, "w");
fprintf(outfile, "P3\n# Created by Ted MeekAn");
fprintf(outfile, "%d %d %d\n", xsize, ysize, 255);
for(y = 0; y < ysize; y++) {

for(x = 0; x < xsize; x++) {
fscanf (infilel, "%d%d%d", Sired, &tl, &t2);
fscanf (infile2, "%d%d%d*, &tl, &green, Set2);
fscanf(infile3, "%d%d%d", &tl, &t2, &blue);

90
fprintf(outfile, "%d %d %d ", red, green, blue);

}
}
fclose(infilel);
fclose(infile2);
fclose(infile3);
fclose(outfile);

}

/* This function returns the product of image il and the constand c. */
image * multiply_const(image *il, double c)
{
image *newpic;
int xnew, ynew, x, y, index;
xnew = il->xsize;
ynew = il->ysize;
newpic = (image *)malloc(sizeof(image));
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
for(x = 0; x < xnew; x++) {

for(y = 0; y < ynew; y++) {
index = y*xnew + x;
newpic->pixel[index] [0] = (il->pixel[index][0] * c) ;
newpic->pixel[index][1] = (il->pixel[index][1] * c);
newpic->pixel[index][2] = (il->pixel[index][2] * c);
for(int i = 0; i < 3; i++) {

if(newpic->pixel[index][i] > 255) newpic->pixel[index][i] = 255;

}
}

}
newpic->xsize = xnew;
newpic->ysize = ynew;
return(newpic);

}

#endif

91
/********************************** gaussian_n.cpp *****************************/
/* This file contains the code for generating a Gaussian pyramid for a given */
/* image. The pyramid depth is six levels. */
/***/
#ifndef GAUSSIAN
tdefine GAUSSIAN

#include "thesis.h"
iinclude "files.cpp"
#include "image_p.cpp"

/**/
/* Gaussian */

/* This functin generates a six level Gaussian pyramid for the given image */
Pyramid * gen_pyramid_gaussian(image *g)
{
Pyramid *p;

p = (Pyramid *)malloc(sizeof(Pyramid));

p->10 = resize(g, 5);
p->Il = reduce(p->10);
p->12 = reduce(p->Il);
p->13 = reduce(p->12);
p->14 = reduce(p->13);
p->15 = reduce(p->14);

return(p);
}

tendif

92
/********************************** leplace_n.cpp ******************************/
/* This file contains the code for generating a Leplacian pyramid for a */
/* given image. The pyramid depth is six levels. */
/••••A**/

#ifndef LEPLACE
#define LEPLACE

#include "thesis.h"
#include "gaussian_n.cpp"

/* Type Definitions */

/* Image Processing */
Pyramid * gen_pyramid_leplace(image *g);
image * construct_leplace(Pyramid *p);

/**/
/* Leplace */

Pyramid * gen_pyramid_leplace(image *i)
{
Pyramid *g, *p;
image * temp;

p = (Pyramid *)malloc(sizeof(Pyramid));
g = gen__pyramid_gaussian(i) ;

p->15 = copy_image(g->I5);
temp = expand(g->15);
p->14 = subtract_sign(g->14, temp);
free_image(temp);
temp = expand(g->14);
p->13 = subtract_sign(g->13, temp);
free_image(temp);
temp = expand(g->13);
p->12 = subtract_sign(g->12, temp);
free_image(temp);
temp = expand(g->12);
p->Il = subtract_sign(g->Il, temp);
free_image(temp);
temp = expand(g->Il);
p->10 = subtract_sign(g->10, temp);
free_image(temp);

return(p);

image * construct_leplace(Pyramid *L)
{
image *temp, *i;
Pyramid *p;

p = (Pyramid *)malloc(sizeof(Pyramid)) ;

temp = expand(L->I5)
temp = expand(p->14)
temp = expand(p->13)
temp = expand(p->12)
temp = expand(p->Il)

i = copy_image(p->10);

p->14 = add_sign(temp, L->I4)
p->13 = add_sign(temp, L->I3)
p->12 = add_sign(temp, L->I2)
p->Il = add_sign(temp, L->I1)
p->10 = add_sign(temp, L->I0)

free(temp) ;
free(temp);
free(temp);
free(temp);
free(temp);

return(i);

#endif

93
/*********************************** RoLP_n.cpp *********************************/
/* This file contains the code for generating a RoLP pyramid for a given */
/* image. The pyramid depth is six levels. */
/***/
tifndef ROLP
#define ROLP
tinclude "gaussian_n.cpp"

Pyramid * gen_pyramid_RoLP(image *g) ;
image * construct_RoLP(Pyramid *p);
image * max_RoLP(image *il, image *i2);

/**/
/* RoLP */

/* This functin generates a six level RoLP pyramid for the given image */
Pyramid * gen_pyramid_RoLP(image *i)
{
Pyramid *p, *g;
image * temp ;

p = (Pyramid *)malloc(sizeof(Pyramid));
g = gen_pyramid_gaussian(i);

p->15 = copy_image(g->I5);
temp = expand(g->15)
temp = expand(g->14)
temp = expand(g->13)
temp = expand(g->12)
temp = expand(g->Il)
return(p);

}

p->14 = divide(g->14, temp); free_image(temp);
p->13 = divide(g->13, temp); free_image(temp);
p->12 = divide(g->12, temp); free_image(temp);
p->Il = divide(g->Il, temp); free_image(temp);
p->10 = divide(g->10, temp); free_image(temp);

/* This function returns the source image from a RoLP pyramid. */
image * construct_RoLP(Pyramid *r)
{
image *temp, *i;
Pyramid *p;

p = (Pyramid *)malloc(sizeof(Pyramid));
i = (image *)malloc(sizeof(image));

if(r->15 != NULL) {
p->15 = copy_image(r->I5);
temp = expand(p->15);
p->14 = multiply(r->14, temp);
free(temp);

}
else {
p->14 = copy_image(r->I4);

}

temp = expand(p->14);
p->13 = multiply(r->13, temp);
free(temp);
temp = expand(p->13);
p->12 = multiply(r->12, temp);
free(temp);
temp = expand(p->12);
p->Il = multiply(r->Il, temp);
free(temp);
temp = expand(p->Il);
p->10 = multiply(r->10, temp);
i = multiply(r->10, temp);
free(temp);
return(i);

}

#endif

94
/*********************************** gradient_n.cpp ****************************/
/* This file contains the code for generating a gradient pyramid for a given */
/* image. The pyramid depth is six levels. The gradient pyramid is */
/* actually four pyramids so a new structure is also defined and used. */
/***/
#ifndef GRADIENT
»define GRADIENT

»include "thesis.h"
»include "convolve_n.cpp"
»include "gaussian_n.cpp"

/* Type Definitions */
typedef struct Pyramid_Gradient {
Pyramid *g, *dl, *d2, *d3, *d4;

} Pyramid_Gradient;

/* Image Processing */
void free_Pyramid_Gradient(Pyramid_Gradient *p) ;
Pyramid_Gradient * gen_pyramid_gradient(image *g) ;
image * construct_gradient(Pyramid_Gradient *p);

/**/
/* Gradient */
/A***/

/* This function frees the memory used for a gradient pyramid. */
void free_Pyramid_Gradient(Pyramid_Gradient *p)
{
if(p != NULL) {

free_pyramid(p->g);
free_pyramid(p->dl);
free_pyramid(p->d2)
free_pyramid(p->d3)
free_pyramid(p->d4)
free(p);
p = NULL;

}
return;

}

/* This function generates the four seperate pyramids which for the gradient pyramid. */
void gen_gradient(image *g, image **gl, image **g2, image **g3, image **g4)

{
image * temp, *temp2;

temp = conv_w_g_dot_image(g);
temp2 = add_sign(temp, g);
free_image(temp);
(*gl) = conv_dl_image(temp2, 1)
(*g2) = conv_d2_image(temp2, 1)
(*g3) = conv_d3_image(temp2, 1)
(*g4) = conv_d4_image(temp2, 1)
free_image(temp2);

return;
}

/* This function generates the gradient pyramid for a given image.
Pyramid_Gradient * gen_pyramid_gradient(image *i)
{
Pyramid_Gradient *p;

p = (Pyramid_Gradient *)malloc(sizeof(Pyramid_Gradient));
p->dl = (Pyramid *)malloc(sizeof(Pyramid)),
p->d2 = (Pyramid *)malloc(sizeof(Pyramid));
p->d3 = (Pyramid *)malloc(sizeof(Pyramid));
p->d4 = (Pyramid *)malloc(sizeof(Pyramid)]
p->g = (Pyramid *)malloc(sizeof(Pyramid));

95

&p->dl->Il,
&p->dl->12,
&p->dl->13,
&p->dl->14,
&p->dl->15.

&p->d2->10,
&p->d2->Il,
&p->d2->12,
&p->d2->13,
&p->d2->14,
&p->d2->15,

&p->d3->10,
&p->d3->Il,
&p->d3->12,
&p->d3->13,
&p->d3->14,
&p->d3->15.

p->g = gen_pyramid_gaussian(i) ;
gen_gradient(p->g->10, &p->dl->10
gen_gradient(p->g->Il,
gen_gradient(p->g->12,
gen_gradient(p->g->13,
gen_gradient(p->g->14,
gen_gradient(p->g->15,
return(p);

}
/* This function returns the source image from a gradient pyramid
image * construct_gradient(Pyramid_Gradient *p)

{
image *g3, *g2, *gl, *g0, *g4;
image *13, *12, *11, *10, *14;
image *lxl, *lx2, *lx3, *lx4;
image *lfl, *lf2, *lf3, *lfO, *lf4;

&p->d4->10)
&p->d4->Il)
&p->d4->12)
&p->d4->13)
&p->d4->14)
&p->d4->15)

lxl = gen_gradient_FSD_dl(p->dl->I4)
1x2 = gen_gradient_FSD_d2(p->d2->I4)
1x3 = gen_gradient_FSD_d3(p->d3->14)
1x4 = gen_gradient_FSD_d4(p->d4->14)
If4 = addlltol4(lxl, 1x2, 1x3, 1x4);
free_image(lxl); free_image(1x2); free_image(1x3); free_image(1x4);

lxl = gen_gradient_FSD_dl(p->dl->I3) .
1x2 = gen_gradient_FSD_d2(p->d2->I3);
1x3 = gen_gradient_FSD_d3(p->d3->13)
1x4 = gen_gradient_FSD_d4(p->d4->13)
lf3 = addlltol4(lxl, 1x2, 1x3, 1x4);
free_image(lxl); free_image(1x2); free_image(1x3); free_image(1x4)

lxl = gen_gradient_FSD_dl(p->dl->I2)
1x2 = gen_gradient_FSD_d2(p->d2->I2) ,
1x3 = gen_gradient_FSD_d3(p->d3->I2),
1x4 = gen_gradient_FSD_d4(p->d4->I2) ,
lf2 = addlltol4(lxl, 1x2, 1x3, 1x4);
free_image(lxl) ; free_image(1x2); free_image(1x3);

lxl = gen_gradient_FSD_dl(p->dl->Il)
1x2 = gen_gradient_FSD_d2(p->d2->Il) i
1x3 = gen_gradi ent_FSD_d3(p->d3->Il)
1x4 = gen_gradient_FSD_d4(p->d4->Il)
lfl = addlltol4(lxl, 1x2, 1x3, 1x4);
free_image(lxl); free_image(1x2); free_image(1x31

free_image(1x4)

free_image(1x4);

lxl = gen_gradient_FSD_dl(p->dl->IO)
1x2 = gen_gradient_FSD_d2(p->d2->I0)
1x3 = gen_gradient_FSD_d3(p->d3->10)
1x4 = gen_gradient_FSD_d4(p->d4->I0)
lfO = addlltol4(lxl, 1x2, 1x3, 1x4);
free_image(lxl); free_image(1x2); free_image(1x3); free_image(1x4);

14 = FSD_to_RE(lf4)
13 = FSD_to_RE(lf3)
12 = FSD_to_RE(lf2)
11 = FSD_tO_RE(lfl)
10 = FSD_to_RE(lfO)

g4 = add_sign(14,
g3 = add_sign(13,
g2 = add_sign(12,
gl = add_sign(ll, expand_g(g2)
gO = add_sign(10, expand_g(gl)

expand_g(p->g->15));
expand_g(g4));
expand_g(g3));

free_image(gl);
free_image(13);
return(gO);

}
#endif

free_image(g2) ,
free_image(12)

free_image(g3);
free_image(11);

free_image(g4);
free_image(10);

96
/**************************•******* morph_n.cpp ********************************/
/* This file contains the code for generating a morphological pyramid for a */
/* given image. The pyramid depth is six levels. */
/***/
iifndef MORPH
#define MORPH

tinclude "thesis.h"
#include "files.cpp"
ine lüde " image_jp. cpp"

/* Type Definitions */
typedef struct Struct_Elem {

int xsize, ysize, xcen, ycen;
Pixel *pixel;

} Struct_Elem;

/* Image Processing */
Pyramid * gen_pyramid_morph(image *g);
image * construct_morph(Pyramid *p);
image * expand_m(image *g);
image * reduce_m(image *g);

/* Global Variables */
Struct_Elem K;

/A**/

/* STRUCTURING ELEMENT STUFF */
/***/
/* Defines the structuring element as a 3-by-3 brick. */
void init_K()
{
K.xsize = 3; K.ysize = 3;
K.ycen = 1; K.xcen = 1;
K.pixel = (Pixel *)malloc(K.xsize*K.ysize*sizeof(Pixel));
K.pixelfO][0] = 1; K.pixel[1][0] = 1; K.pixel[2][0] = 1
K.pixel[3][0] = 1; K.pixel[4][0] = 1; K.pixel[5][0] = 1
K.pixel[6][0] = 1; K.pixel[7][0] = 1; K.pixel[8][0] = 1

K.pixelfO][1] = 1; K.pixel[1][1] = 1; K.pixel[2][1] = 1
K.pixel[3][1] = 1; K.pixel[4][1] = 1; K.pixel[5][1] = 1
K.pixel[6][1] = 1; K.pixel[7][1] = 1; K.pixel[8][1] = 1

K.pixelfO][2] = 1; K.pixel[1][2] = 1; K.pixel[2][2] = 1
K.pixel[3][2] = 1; K.pixel[4][2] = 1; K.pixel[5][2] = 1
K.pixel[6][2] = 1; K.pixel[7][2] = 1; K.pixel[8][2] =1

}

/* Defines the structuring element as a 2-by-2 brick. */
void init_sK()
{
K.xsize = 2; K.ysize = 2;
K.ycen = 1; K.xcen = 1;
K.pixel = (Pixel *)malloc(K.xsize*K.ysize*sizeof(Pixel));
K.pixeltO][0] =1; K.pixel[1][0] = 1;
K.pixel[2][0] = 1; K.pixel[3][0] = 1;

K.pixel[0][1] = 1; K.pixel[1][1] = 1;
K.pixel[2][1] = 1; K.pixel[3][1] = 1;

K.pixelfO][2] = 1; K.pixel[1][2] = 1;
K.pixel[2][2] = 1; K.pixel[3][2] = 1;

}

/* Defines the structuring element as a 10-by-10 brick. */
void init_bigK()
{
int index;
K.xsize = 10; K.ysize = 10;

97
K.ycen = 5; K.xcen = 5;
K.pixel = (Pixel *)malloc(K.xsize*K.ysize*sizeof(Pixel));
for(int i = 0; i < K.xsize; i++) {

for(int j = 0; j < K.ysize; j++) {
index = j*K.xsize + i;
K.pixel[index][0] = 1; K.pixel[index][1] = 1; K.pixel[index][2] = 1;

}
}

}

/* IMAGE PROCESSING STUFF */

/* Returns a single pixel value at the (i, j) location for an image being
dilated. */

double sample_dilate(image * f, Struct_Elem *k, int i, int j, int c)

{
int x, y, kx, ky, m, n;
double sum, max = -1.0;

for(m = 0; m < k->xsize; m++) {
for(n = 0; n < k->ysize; n++) {
kx = m - k->xcen;
ky = n - k->ycen;
x = i - kx;
y = i - ky;
if(x < 0 || y < 0 || x >= f->xsize || y >= f->ysize) continue;
sum = f->pixel[y*f->xsize + x][c] + k->pixel[n*k->xsize + m][c] ;
if(sum > max) max = sum;

}
}

return(max);
}

/* Dilates the image f by the structuring element K. */
image * dilate(image *f, Struct_Elem *k)
{
image *newpic;
int x, y, index;
newpic = (image *)malloc(sizeof(image));
newpic->xsize = f->xsize;
newpic->ysize = f->ysize;
newpic->pixel = (Pixel *)malloc(newpic->xsize*newpic->ysize*sizeof(Pixel));
for(y = 0; y < newpic->ysize; y++) {

for(x = 0; x < newpic->xsize; x++) {
index = y*newpic->xsize + x;
newpic->pixel[index][0] = sample_dilate(f, k, x, y, 0);
newpic->pixel[index][1] = sample_dilate(f, k, x, y, 1);
newpic->pixel[index][2] = sample_dilate(f, k, x, y, 2);

}
}
return(newpic);

}

/* Returns a single pixel value at the (i, j) location for an image being
eroded. */

double samp1e_erode(image * f, Struct_Elem *k, int i, int j, int c)

{
int x, y, m, n, kx, ky;
double sum, min = 1000000;

for(m = 0; m < k->xsize; m++) {
for(n = 0; n < k->ysize; n++) {
kx = m - k->xcen;
ky = n - k->ycen;
x = i + kx;
y = j + ky;
if(x < 0 || y < 0 || x >= f->xsize || y >= f->ysize) continue;

98
sum = f->pixel[y*f->xsize + x][c] - k->pixel[n*k->xsize + m][c] ;
if(sum < min) min = sum;

}
}
return(min);

}

/* Erodes the image f by the structuring element K. */
image * erode(image *f, Struct_Elem *k)

{
image *newpic;
int x, y, index;
newpic = (image *)malloc(sizeof(image));
newpic->xsize = f->xsize;
newpic->ysize = f->ysize;
newpic->pixel = (Pixel *)malloc(newpic->xsize*newpic->ysize*sizeof(Pixel)
for(y = 0; y < newpic->ysize; y++) {

for(x = 0; x < newpic->xsize; x++) {
index = y*newpic->xsize + x;
newpic->pixel[index][0] = sample_erode(f, k, x, y, 0)
newpic->pixel[index][1] = sample_erode(f, k, x, y, 1)
newpic->pixel[index][2] = sample_erode(f, k, x, y, 2)

}
}
return(newpic);

}

/* FILTERS */

/* Returns the image f after the application of the opening morphological
filter that uses the structuring element K. */

image * open(image *f)
{
image *temp, *temp2;
temp = erode(f, &K);
temp2 = dilate(temp, &K);
free_image(temp);
return(temp2);

}

/* Returns the image f after the application of the closing morphological
filter that uses the structuring element K. */

image * close(image *f)
{
image *temp, *temp2;
temp = dilate(f, &K); // savefileftemp, *g3rod.ppm");
temp2 = erode(temp, &K); // savefile(temp2, "g3rode.ppm");
free_image(temp);
return(temp2);

}

/* Returns the image f after the application of both the closing and opening
morphological filters. */

image * FCO(image *f)
{
image *temp, *temp2;
temp = close(f); // savefile(temp, "g3ec_b.ppm");
temp2 = open(temp); // savefile(temp2, "g3eo_b.ppm");
free_image(temp);
return (temp2) ;

}

/* Returns the image f after the application of both the opening and closing
morphological filters. */

image * FOC(image *f)
{
image *temp, *temp2;
temp = open(f); // savefile(temp, "g3o_b.ppm");

99
temp2 = close(temp) ,- // savefile (temp2, "g3oc_b.ppm") ;
free_image(temp);
return(temp2);

}

/* Returns the image f after an expand operation and closing filter. */
image * C_expand(image *f)
{
image *temp, *temp2;
temp = expand_m(f);
temp2 = close(temp);
free_image(temp);
return(temp2);

}

/* Returns the image f after an expand operation and dilation. */
image * D_expand(image *f)
{
image *temp, *temp2;
temp = expand_m(f);
temp2 = dilate(temp, &K);
free_image(temp);
return(temp2);

}

/* Returns the image f after an expand operation and a closeing
then opening filter. */

image * FCO_expand(image *f)
{
image *temp, *temp2;
temp = expand_m(f);
temp2 = FCO(temp);
free_image(temp);
return(temp2);

}

/* Returns the image f after an expand operation and an opening
then closeing filter. */

image * FOC_expand(image *f)
{
image *temp, *temp2;
temp = FOC(f); // savefile(temp, "g3foc.ppm");
temp2 = expand_m(temp); // savefile(temp2, "g3foce.ppm");
free_image(temp);
return(temp2);

} ■

/* Generates the next higher level of a morphological pyramid. */
image *PC(image *f)
{
image *temp, *temp2;
temp = reduce_m (f) ;
temp2 = FCO(temp);
free_image(temp);
return(temp2);

}

/* Used for pyramid reconstruction to generate the level below the
current level. */

image *PRC(image *f, image *g)
{
image *temp, *temp2;
temp = C_expand(f);
temp2 = subtract_sign(g, temp);
free_image(temp);
return(temp2);

}

100
/* RESIZING ROUTINES */

/* Subsamples the image. */
image * reduce_m (image *g)
{
image * newp i c;
int xnew, ynew, x, y, index, i2;
newpic = (image *)malloc(sizeof(image));
xnew = (g->xsize - l)/2 + 1;
ynew = (g->ysize - l)/2 + 1;
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
for(x = 0; x < xnew; x++) {

for(y = 0; y < ynew; y++) {
index = y*xnew + x;
i2 = y*2*g->xsize + x*2;
newpic->pixel[index][0] = g->pixel[i2][0];
newpic->pixel[index][1] = g->pixel[i2] [1] ;
newpic->pixel[index][2] = g->pixel[i2][2];

}
}
newpic->xsize = xnew;
newpic->ysize = ynew;
return(newpic);

}

/* Upsamples the image. */
image * expand_m(image *g)
{
image *newpic;
int xnew, ynew, x, y, index, i2;
newpic = (image *)malloc(sizeof(image));
xnew = (g->xsize - 1)*2 + 1;
ynew = (g->ysize - 1)*2 + 1;
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
for(x = 0; x < xnew; x++) {

for(y = 0; y < ynew; y++) {
index = y*xnew + x;
if(x%2 == 0 && y%2 ==0) {

i2 = y*g->xsize/2 + x/2;
newpic->pixel[index][0] = g->pixel[i2][0];
newpic->pixel[index][1] = g->pixel[i2][1] ;
newpic->pixel[index][2] = g->pixel[12][2];

}
else {
newpic->pixel[index][0] = 0;
newpic->pixel[index][1] = 0;
newpic->pixel[index][2] = 0;

}
}

}
newpic->xsize = xnew;
newpic->ysize = ynew;
return(newpic);

}

/* Morph */

/* This functin generates a six level morphological pyramid for the given image */
Pyramid * gen_pyramid_morph(image *g)
{
Pyramid *p;
image * temp, *i0, *il, *i2, *i3, *i4, *i5;

p = (Pyramid *)malloc(sizeof(Pyramid));

//A regular resize instead of resize_nn may be appropriate.
// resize_nn keeps the edges of the box from bluring.
temp = resize_nn(g, 5); iO = close(temp); free_image(temp);

101
il = PC(iO)
i2 = PC(il)
i3 = PC(i2)
i4 = PC(i3)
i5 = PC(i4)

//
//
//
//
//

savefile(il,
savefile(i2,
savefile(i3,
savefile(i4,
savefile(i5.

■gl.ppm")
"g2.ppm")
"g3.ppm")
"g4.ppm")
"g5.ppm")

p->15
p->14
p->13
p->12
p->Il
p->10

i5;
PRC{i5,
PRC(i4,
PRC(i3,
PRC(i2,
PRC(il,

free_image(i4)
free_image(il)

14)
13)
12)
ID
10)

II
II
II
II
II

free_image(i3)
free_image(iO)

savefile(p->14,
savefile(p->13,
savefile(p->12,
savefile(p->Il,
savefile(p->10,

"14.ppm");
"13.ppm");
"pi2.ppm")
"11.ppm");
"10.ppm");

free_image(i2);

return(p);
}

/* This function returns the source image from a morphological pyramid,
image * construct_morph(Pyramid *p)

image
image

g5e =
i4 =
g4e :
i3 =
g3e :
12 =
g2e :
il =
gle :
iO =
free,
free.

*g4e, *g3e, *g2e, *gle, *g5e;
*i0, *il, *i2, *i3, *i4;

= C_expand(p->15);
add_sign(g5e, p->14);

: C_expand(i4); //
add_sign(g4e, p->13);

: C_expand(i3);
add_sign(g3e, p->12);

= C_expand(i2);
add_sign(g2e, p->Il);

= C_expand(i1);
add_sign(gle, p->10);
.image (gle)
.image (i3) ;

// savefile(g4e, "g4ec.ppm");
// savefile(i3, 'i3c.ppm");
savefile(g4e, "g4ec.ppm");

//
//
//
//
//
//
//

savefile(i3,
savefile(g3e,
savefile(i2,
savefile(g2e,
savefile(il,
savefile(gle,

"i3c.ppm");
"g3ec.ppm");

"i2n.ppm");
"g2en.ppm");

"iln.ppm");
"glen.ppm");

free_image(g2e);
free_image(i2);

savefile(iO, "iOn.ppm");
free_image(g3 e); free_image(g4e) ;
free_image(il);

return(iO);

#endif

102
/********************************* convolve.cpp ********************************/
/* This file contains the code for implementing convolution for pyramid */
/* filtering. It also contains code necessary to support the gradient */
/* pyramid */
/***/
#ifndef CONVOLVE
#define CONVOLVE

tinclude "thesis.h"
tinclude "files.cpp"
inelüde "image_p.cpp"

#define sqrt2 1.41421356237
»define sqrt2inv .707106781188
#define eighth .125

/* Image Processing */
image * reduce_g(image *g);
image * expand_g(image *g);

/A**/

/* GAUSSIAN KERNEL FUNCTIONS */
/***/
/* Gaussian kernal */
double w_g(int m, int n)
{
double wm, wn, answer;
if(m == 0) wm = 6;
else if (abs(m) == 1) wm = 4
else wm = 1

if(n ==0) wn = 6
else if (abs(n) == 1) wn = 4
else wn = 1

answer = wm*wn/256;
return(answer);

}

/* Seperated function of Gaussian kernal */
double w_g_dot(int m, int n)
{
double wm, wn, answer;
if(m == 0) wm = 2;
else wm = 1;

if(n == 0) wn = 2;
else wn = 1;

answer = wm*wn/16;
return(answer);

}

/a**/

/* CONVOLUTION ROUTINES */
/••••••a**/

/* Returns a single sample located at (i, j) for a given color (red, green, or
blue pixels) for the convolution of image with w_dot. */

double sample_w_g_dot(image * pic, int i, int j, int color)
{
int m, n, index, tx, ty;
double tsum = 0.0;
for(m = -1; m < 2; m++) {

for(n = -1; n < 2; n++) {
tx = i + m;
if(tx < 0) tx = -tx;
if(tx >= pic->xsize) tx = 2*pic->xsize - tx - 1;
ty = j + n;

103
if(ty < 0) ty = -ty;
if(ty >= pic->ysize) ty = 2*pic->ysize - ty - 1;
index = ty*pic->xsize + tx;
tsum += w_g_dot(m,n) * pic->pixel[index][color];

}
}
return (tsum) ;

}

/* Returns a single sample located at (i, j) for a given color (red, green, or
blue pixels) for the convolution of image with w the gaussian kernel. */

double sample_w_g(image * pic, int i, int j, int color)

{
int m, n, index, tx, ty;
double tsum =0.0;
for(m = -2; m < 3; m++) {

for(n = -2; n < 3; n++) {
tx = i + m;
if(tx < 0) tx = -tx;
if(tx >= pic->xsize) tx = 2*pic->xsize - tx - 1;

ty = j + n;
if(ty < 0) ty = -ty;
if(ty >= pic->ysize) ty = 2*pic->ysize - ty - 1;

index = ty*pic->xsize + tx;
tsum += w_g(m,n) * pic->pixel[index][color];

}
}
return(tsum);

}

/* Returns a single sample located at (i, j) for a given color (red,
green, or blue pixels) for the convolution of image with oriented
derivative filter dl. */

double sample_dl(image * pic, int i, int j, int color, double mult)
{

int index;

if(i >= 0 && i <= pic->xsize) {
index = j*pic->xsize + i;
if(i == 0) return(pic->pixel[index][color])*mult/3.5;
else if(i == pic->xsize) return(-(pic->pixel[index-1][color])*mult/3.5);
else return((pic->pixel[index][color] - pic->pixel[index-1][color])*mult);

}
else

return(-lllOOO) ;
}

/* Returns a single sample located at (i, j) for a given color (red,
green, or blue pixels) for the convolution of image with oriented
derivative filter d2. */

double sample_d2(image * pic, int i, int j, int color, double mult)
{
double a, b;

if(i >= 0 && i <= pic->xsize) {
if(i > 0 && i <= pic->xsize && j < pic->ysize) {

a = pic->pixel[j*pic->xsize + i - 1][color];
}
else a = 0;
if(j > 0 && j <= pic->ysize && i < pic->xsize) {
b = pic->pixel[(j-1)*pic->xsize + i][color];

}
else b = 0;
if(a ==0 || b == 0)
return((b - a)*sqrt2inv*mult/3.5);

else
return((b - a)*sqrt2inv*mult);

104
}
else

return(-lllOOO);
}

/* Returns a single sample located at (i, j) for a given color (red,
green, or blue pixels) for the convolution of image with oriented
derivative filter d3. */

double sample_d3(image * pic, int i, int j, int color, double mult)

{
double a, b;

if(j >= 0 && j <= pic->ysize) {
if(j < pic->ysize)

a = pic->pixel[j*pic->xsize + i][color];
else a = 0;
if(j > 0)
b = pic->pixel[(j-1)*pic->xsize + i][color];

else b = 0;
if(a ==0 || b == 0)
return((b - a)*mult/3.5);

else
return((b - a)*mult);

}
else

return(-lllOOO);
}

/* Returns a single sample located at (i, j) for a given color (red,
green, or blue pixels) for the convolution of image with oriented
derivative filter d4. */

double sample_d4(image * pic, int i, int j, int color, double mult)

{
double a, b;

if(j >= 0 && j <= pic->xsize) {
if(j < pic->ysize && i < pic->xsize) {

a = pic->pixel[j*pic->xsize + i][color];
}
else a = 0;
if(j > 0 && i > 0) {
b = pic->pixel[(j-1)*pic->xsize + (i - 1)][color];

}
else b = 0;
if(a == 0 || b == 0)
return((b - a)*sqrt2inv*mult/3.5);

else
return((b - a)*sqrt2inv*mult);

}
else

return(-111000);
}

/* Convolves the image g with the Gaussian kernel w */
image * conv_w_g_image(image *g)
{
image * newp i c;
int xnew, ynew, x, y, index;
newpic = (image *)malloc(sizeof(image));
xnew = g->xsize;
ynew = g->ysize;
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
for(x = 0; x < xnew; x++) {

for(y = 0; y < ynew; y++) {
index = y*xnew + x;
newpic->pixel[index][0] = sample_w_g(g, x, y, 0),
newpic->pixel[index][1] = sample_w_g(g, x, y, 1);
newpic->pixel[index][2] = sample_w_g(g, x, y, 2);

}

105
}
newpic->xsize = xnew;
newpic->ysize = ynew;
return(newpic);

/* Convolves the image g with the seperated Gaussian kernel w_dot */
image * conv_w_g_dot_image(image *g)

image * newp i c;
int xnew, ynew, x, y, index;
newpic = (image *)malloc(sizeof(image));
xnew = g->xsize;
ynew = g->ysize;
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
for(y = 0; y < ynew; y++) {

for(x = 0; x < xnew; x++) {
index = y*xnew + x;
newpic->pixel[index][0]
newpic->pixel[index][1]
newpic->pixel[index][2]

}
}
newpic->xsize =
newpic->ysize =
return(newpic);

sample_w_g_dot(g, x, y, 0)
sample_w_g_dot(g, x, y, 1)
sample_w_g_dot(g, x, y, 2)

xnew;
ynew;

}

/* Convolves the image g with the first derivative filter dl timesed
by a multiplier mult */

image * conv_dl_image(image *g, double mult)
{
image *newpic;
int x, y, index;
newpic = (image *)malloc (sizeof (image)) ,-
newpic->xsize = g->xsize+l;
newpic->ysize = g->ysize;
newpic->pixel = (Pixel *)malloc(newpic->xsize*newpic->ysize*sizeof(Pixel));
for(y = 0; y < newpic->ysize; y++) {

for(x = 0; x < newpic->xsize; x++) {
index = y*newpic->xsize + x;

sample_dl(g, x, y, 0, mult);
sample_dl(g, x, y, 1, mult);
sample_dl(g, x, y, 2, mult);

newpic->pixel[index][0]
newpic->pixel[index][1]
newpic->pixel[index][2]

}
}
return(newpic);

}

/* Convolves the image g with the first derivative filter d2 timesed
by a multiplier mult */

image * conv_d2_image(image *g, double mult)
{
image *newpic;
int x, y, index;
newpic = (image *)malloc(sizeof(image));
newpic->xsize = g->xsize+l;
newpic->ysize = g->ysize+l;
newpic->pixel = (Pixel *)malloc(newpic->xsize*newpic->ysize*sizeof(Pixel)]
for(y = 0; y < newpic->ysize; y++) {

for(x = 0; x < newpic->xsize; x++) {
index = y*newpic->xsize + x;

sample_d2(g, x, y, 0, mult)
sample_d2(g, x, y, 1, mult)
sample_d2(g, x, y, 2, mult)

newpic->pixel[index][0]
newpic->pixel[index][1]
newpic->pixel[index][2]

}
}
return(newpic);

106

/* Convolves the image g with the first derivative filter d3 timesed
by a multiplier mult */

image * conv_d3_image(image *g, double mult)
{
image *newpic;
int x, y, index;
newpic = (image *)malloc(sizeof(image));
newpic->xsize = g->xsize;
newpic->ysize = g->ysize+l;
newpic->pixel = (Pixel *)malloc(newpic->xsize*newpic->ysize*sizeof(Pixel)
for(y = 0; y < newpic->ysize; y++) {

for(x = 0; x < newpic->xsize; x++) {
index = y*newpic->xsize + x;
newpic->pixel[index][0] = sample_d3(g, x, y, 0, mult);
newpic->pixel[index][1] = sample_d3(g, x, y, 1, mult);
newpic->pixel[index][2] = sample_d3(g, x, y, 2, mult),

}
}
return(newpic);

}

/* Convolves the image g with the first derivative filter d4 timesed
by a multiplier mult */

image * conv_d4_image(image *g, double mult)
{
image * newp i c;
int x, y, index;
newpic = (image *)malloc(sizeof(image));
newpic->xsize = g->xsize+l;
newpic->ysize = g->ysize+l;
newpic->pixel = (Pixel *)malloc(newpic->xsize*newpic->ysize*sizeof(Pixel));
for(y = 0; y < newpic->ysize; y++) {

for(x = 0; x < newpic->xsize; x++) {
index = y*newpic->xsize + x;
newpic->pixel[index][0] = sample_d4(g, x, y, 0, mult);
newpic->pixel[index][1] = sample_d4(g, x, y, 1, mult);
newpic->pixel[index][2] = sample_d4(g, x, y, 2, mult);

}
}
return(newpic);

}

/***/

/* RESIZING ROUTINES */
/A**/

/* Returns a single sample located at (i, j) for the REDUCED image of pic
color is the indicator for red, green, or blue pixels. */

double reducepixel_g(image * pic, int i, int j, int color)
{
int m, n, index, tx, ty;
double tsum = 0.0;
for(m = -2; m < 3; m++) {

for(n = -2; n < 3; n++) {
tx = 2*i + m;
if(tx < 0 || tx >= pic->xsize) continue;

ty = 2*j + n;
if(ty < 0 || ty >= pic->ysize) continue;

index = ty*pic->xsize + tx;
tsum += w_g(m,n) * pic->pixel[index][color];

}
}
return(tsum);

}

/* Filters and subsamples the image g to get the next level in the
gradient pyramid */

107
image * reduce_g(image *g)
{
image *newpic;
int xnew, ynew, x, y, index;
newpic = (image *)malloc(sizeof(image));
xnew = (g->xsize - l)/2 + 1;
ynew = (g->ysize - l)/2 + 1;
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
for(x = 0; x < xnew; x++) {

for(y = 0; y < ynew; y++) {
index = y*xnew + x;
newpic->pixel[index][0]
newpic->pixel[index][1]
newpic->pixel[index][2]

}
}
newpic->xsize =
newpic->ysize =
return(newpic);

(int)reducepixel_g(g, x, y, 0)
(int)reducepixel_g(g, x, y, 1)
(int)reducepixel_g(g, x, y, 2)

xnew;
ynew;

}

/* Returns a single sample located at (i, j) for the EXPANDED image of pic
color is the indicator for red, green, or blue pixels. */

double expandpixel_g(image * pic, int i, int j, int color)
{
int m, n, index, tx, ty;
double tsum = 0.0;
for(m = -2; m < 3; m++) {

for(n = -2; n < 3; n++) {
if(((i-m)%2 ==

tx = (i-m)/2;
if(tx < 0 II

0) && ((j-n)%2

tx >= pic->xsize)

) {

continue;

ty = (j - n)/2;
if(ty < 0 || ty >= pic->ysize) continue;

index = ty*pic->xsize + tx;
tsum += w_g(m,n) * pic->pixel[index][color];

}
return(4*tsum);

}

/* Upsamples and interpolates the image g to get a lower resolution image
of the previoius level in the pyramid*/

image * expand_g(image *g)
{
image *newpic;
int xnew, ynew, x, y, index;
newpic = (image *)malloc(sizeof(image));
xnew = (g->xsize - 1)*2 + 1;
ynew = (g->ysize - 1)*2 + 1;
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
for(x = 0; x < xnew; x++) {

for(y = 0; y < ynew; y++)
index = y*xnew + x;
newpic->pixel[index][0]
newpic->pixel[index][1]
newpic->pixel[index][2]

}

{

(int)expandpixel_g(g,
(int)expandpixel_g(g,
(int)expandpixel_g(g,

X, y. 0)
x, y, i)
x. y. 2)

}
newpic
newpic
return(newpic

>xsize
>ysize

xnew;
ynew;

/* Adds the images of the four different gradient pyramids associated
with dl, d2, d3, and d4. It returns the FSD leplacian pyramid. */

108
image *addlltol4(image *11, image *12, image *13, image *14)
{
image *newpic;
int xnew, ynew, x, y, index;
int xtemp, ytemp;
xnew = 13->xsize;
ynew = ll->ysize;
newpic = (image *)malloc(sizeof(image));
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
xtemp = xnew + 2;
for(y = 0; y < ynew; y++) {

x++) { for(x = 0; x < xnew;
index = y*xnew + x;
ytemp = y + 1;
newpic->pixel[index][0]

newpic->pixel[index][1]

newpic->pixel[index][2] =

}
}
newpic->xsize =
newpic->ysize =
return(newpic);

ll->pixel[y *xtemp
12->pixel[ytemp*xtemp
13->pixel[ytemp*(xnew)
14->pixel[ytemp*xtemp
ll->pixel[y *xtemp
12->pixel[ytemp*xtemp
13->pixel[ytemp*(xnew)
14->pixel[ytemp*xtemp
ll->pixel[y *xtemp
12->pixel[ytemp*xtemp
13->pixel[ytemp*(xnew)
14->pixel[ytemp*xtemp

+ x + 1] [0] +
+ x + 1][0] +
+ x][0] +
+ x + 1] [0] ;
+ x + 1] [1] +
+ x + 1] [1] +
+ X] [1] +
+ X + 1] [1] ;
+ x + 1][2] +
+ x + 1][2] +
+ x][2] +
+ x + 1][2] ;

xnew;
ynew;

}

/**/
/* FSD Conversions */
/**/
/* Converts the dl gradient image into the dl FSD Leplacian image. */
image *gen_gradient_FSD_dl(image *d)
{
image * temp;
int x, y, index;

temp = (image *)malloc(sizeof(image));
temp->xsize = d->xsize+l;
temp->ysize = d->ysize;
temp->pixel = (Pixel *)malloc(temp->xsize*temp->ysize*sizeof(Pixel));
for(x = 0; x < temp->xsize; x++) {

for(y = 0; y < temp->ysize; y++) {
index = y*temp->xsize + x;

sample_dl(d, x, y, 0, -eighth)
sample_dl(d, x, y, 1, -eighth)
sample_dl(d, x, y, 2, -eighth)

temp->pixel[index][0]
temp->pixel[index][1]
temp->pixel[index][2]

}
}
return(temp);

}

/* Converts the d2 gradient image into the d2 FSD Leplacian image. */
image *gen_gradient_FSD_d2(image *g)
{
image * temp ;
int x, y, index;

temp = (image *)malloc(sizeof(image));
temp->xsize = g->xsize + 1;
temp->ysize = g->ysize + 1;
temp->pixel = (Pixel *)malloc(temp->xsize*temp->ysize*sizeof(Pixel));
for(x = 0; x < temp->xsize; x++) {

for(y = 0; y < temp->ysize; y++) {

109
index = y*temp->xsize + x;
temp->pixel[index][0]
temp->pixel[index][1]
temp->pixel[index][2]

sample_d2(g, x, y, 0, -eighth);
sample_d2(g, x, y, 1, -eighth);
sample_d2(g, x, y, 2, -eighth);

}
return(temp);

}

/* Converts the d3 gradient image into the d3 FSD Leplacian image. */
image *gen_gradient_FSD_d3(image *g)

{
image * temp;
int x, y, index;

temp = (image *)malloc(sizeof(image));
temp->xsize = g->xsize;
temp->ysize = g->ysize + 1;
temp->pixel = (Pixel *)malloc(temp->xsize*temp->ysize*sizeof(Pixel));
for(x = 0; x < temp->xsize; x++) {

for(y = 0; y < temp->ysize; y++) {
index = y*temp->xsize + x;

sample_d3(g, x, y, 0, -eighth)
sample_d3(g, x, y, 1, -eighth)
sample_d3(g, x, y, 2, -eighth)

temp->pixel[index][0]
temp->pixel[index][1]
temp->pixel[index][2]

}
}
return(temp);

}

/* Converts the d4 gradient image into the d4 FSD Leplacian image.
image *gen_gradient_FSD_d4(image *g)
{
image * temp ;
int x, y, index;

temp = (image *)malloc(sizeof(image));
temp->xsize = g->xsize + 1;
temp->ysize = g->ysize + 1;
temp->pixel = (Pixel *)malloc(temp->xsize*temp->ysize*
for(x = 0; x < temp->xsize; x++) {

for(y = 0; y < temp->ysize; y++) {
index = y*temp->xsize + x;
temp->pixel[index][0]
temp->pixel[index][1]
temp->pixel[index][2]

sizeof(Pixel)) ;

sample_d4(g, x, y, 0, -eighth)
sample_d4(g, x, y, 1, -eighth)
sample_d4(g, x, y, 2, -eighth)

}
return(temp);

}

/* Converts the FSD Leplacian image into a Leplacian image.
image * FSD_to_RE(image *g)
{
image *temp, *t2;

t2 = conv_w_g_image(g) ;
temp = add_sign(g, t2) ;
free_image(t2) ;

return(temp) ;

#endif

110

int ynew. int x. int y. DPoint color),-
int ynew. int x. int y, DPoint color);

/********************************** files.cpp **********************************/
/* This file contains the code for reading an image file, and storing the */
/* pixel information into an image structure. The loadfile routine is set */
/* for portable bitmaps, but can be implemented for any image storage type. */
/* Image memory routines are also set up, as well as routines to resize the */
/* image and copy the image. (used for portable bitmaps only) */
/***/
#ifndef FILES_CPP
tdefine FILES_CPP

tinclude ■thesis.h"

/* This is the type of a pixel 0 is red, 1 is green, and index 2 is blue */
typedef double Pixel[3];

/* This is the structure to store an image as a two dimentional array of pixels */
typedef struct image {

int xsize, ysize;
Pixel *pixel;

} image ,-

/* Functions which are defined later */
void free_image(image * il) ;
void initfile(FILE **infile, char * s, int *xs, int *ys);
void loadfile(image *filestruct, char * name);
void interpolate_pixel_nn(image * g, int xnew
void interpolate_pixel_bi(image * g, int xnew
image * resize(image *il, int n);
image * copy_image(image *i) ;

/* Function definitions */
/* this function copies the image passed in to another image */
/* basically it allocates memory and copies the contents of the image i and

returns a pointer to the new image */
image * copy_image(image * i)
{
int index, x, y;
image *d;
d = (image *)malloc(sizeof(image));
d->pixel = (Pixel *)malloc(i->xsize*i->ysize*sizeof(Pixel));

d->xsize = i->xsize;
d->ysize = i->ysize;

for(y = 0; y < i->ysize; y++) {
for(x = 0; x < i->xsize; x++) {

index = y*i->xsize + x;
d->pixel[index][0] = (double)i->pixel[index][0]
d->pixel[index][1] = (double)i->pixel[index][1]
d->pixel[index][2] = (double)i->pixel[index][2]

}
}
return(d);

}

/* This frees the memory used to store the image */
void free_image(image * il)
{
if(il != NULL) {

if(il->pixel != NULL) {
free(il->pixel);

}
free(il);

}
il = NULL;
return;

}

/* reads the header of a ppm file and returns the x and y dimentions in xs and ys */

Ill
void initfile(FILE **infile, char * s, int *xs, int *ys)
{

unsigned char dummystring[256];
unsigned char final;

int xsize, ysize, dummy;

(*infile) = fopen(s, "r");
if (!(*infile))

return;

fscanf((*infile), "%s",dummystring);
fscanf((*infile), "%c",&final);

while(final != '\n')
fscanf((*infile), "%c",&final);

fscanf((*infile), "%c",&final);
while(final != '\n')

fscanf((*infile), "%c",&final);
fscanf((*infile), "%d%d%d%c",&xsize, fcysize, &dummy, fcfinal),

while(final != '\n')
fscanf((*infile), "%c",&final);

(*xs) = xsize;
(*ys) = ysize;

}

/* this function loads a file into the image pointer filestruct
name is a string which is the name of the file to be read in.
the image must be saved as a ppm to be read using this function */

void loadfile(image *filestruct, char * name)
{
int xsize, ysize, x, y, index;
FILE * infile;
int red, green, blue;
initfile(&infile, name, &xsize, fcysize);
filestruct->pixel = (Pixel *)malloc(xsize*ysize*sizeof(Pixel));
for(y = 0; y < ysize; y++) {

for(x = 0; x < xsize; x++) {
fscanf(infile, "%d%d%d", &red, &green, Sblue);
index = y*xsize + x;
filestruct->pixel[index][0] = red;
filestruct->pixel[index][1] = green;
filestruct->pixel[index][2] = blue;

}
}
filestruct->xsize = xsize;
filestruct->ysize = ysize;
fclose(infile);

}

/* This function copies the contents of the image to a ppm file with the name of
the string passed in */

void savefile(image *filestruct, char * name)
{
int numcol = 255, x, y, xsize, ysize, index;
FILE * outfile;
outfile = fopen(name,"w");
if (outfile == NULL)

return;
xsize = filestruct->xsize;
ysize = filestruct->ysize;
fprintf(outfile, "P3\n# Created by Ted Meek\n');
fprintf(outfile, "%d %d %d\n", xsize, ysize, numcol);
forty = 0; y < ysize; y++) {

for(x = 0; x < xsize; x++) {
index = y*xsize + x;

fprintf(outfile, "%d %d %d ", (int)abs(filestruct->pixel[index][0]),
(int)abs(filestruct->pixel[index][1]),
(int)abs(filestruct->pixel[index][2]));

112

}
fclose(outfile) ;

}

/* This function copies the contents of the image to a ppm file with the name of
the string passed in. It is a grayscale of either the red, blue, or green image.
To save red, color = 0, green color = 1, and blue color = 2*1

void savefile_onecolor(image *filestruct, char * name, int color)

{
int numcol = 255, x, y, xsize, ysize, index;
int red, green, blue;
FILE * outfile;
outfile = fopen(name,"w");
if (outfile == NULL)

return;
xsize = filestruct->xsize;
ysize = filestruct->ysize;
fprintf(outfile, "P3\n# Created by Ted Meek\n");
fprintf(outfile, "%d %d %d\n", xsize, ysize, numcol);
for(y = 0; y < ysize; y++) {

for(x = 0; x < xsize; x++) {
index = y*xsize + x;
red = (int)filestruct->pixel[index][color];
green = (int)filestruct->pixel[index][color];
blue = (int)filestruct->pixel[index][color];
fprintf(outfile, "%d %d %d ", red, green, blue);

}
}
fclose(outfile);

/* This resizes the image to the closest, next-smallest power of 2 dimention.
If n = 5, it will resize to 2*5, otherwise it will use 2*4.
This is necessary for creating a pyramid to represent the image which is
at least 4 levels deep. Bilinear interpolation is used. */

image * resize(image *il, int n)
{
image *newpic;
int xnew, ynew, preMc, preMr, index, N, x, y;
DPoint color;
if(n == 5) N = 32; else N = 16;

preMc = (int)floor((double)il->xsize/N);
preMr = (int)floor((double)il->ysize/N);
xnew = preMc*N + 1;
ynew = preMr*N + 1;

newpic = (image *)malloc(sizeof(image));
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
newpic->xsize = xnew;
newpic->ysize = ynew;

forty = 0; y < ynew; y++) {
for(x = 0; x < xnew; x++) {

index = y*xnew + x;
interpolate_pixel_bi(il, xnew, ynew, x, y, color);
newpic->pixel[index][0] = color[0];
newpic->pixel[index][1] = color[1];
newpic->pixel[index][2] = color[2];

}
}
return(newpic);

}

/* This resizes the image to the closest, next-smallest power of 2 dimention.
If n = 5, it will resize to 2*5, otherwise it will use 2*4.
This is necessary for creating a pyramid to represent the image which is
at least 4 levels deep. Nearest Neighbor interpolation is used. */

113
image * resize_nn(image *il, int n)

{
image *newpic;
int xnew, ynew, preMc, preMr, index, N, x, y;
DPoint color;
if(n == 5) N = 32; else N = 16;

preMc = (int)floor((double)il->xsize/N);
preMr = (int)floor((double)il->ysize/N);
xnew = preMc*N + 1;
ynew = preMr*N + 1;

newpic = (image *)malloc(sizeof(image));
newpic->pixel = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));
newpic->xsize = xnew;
newpic->ysize = ynew;

for(y = 0; y < ynew; y++) {
for(x = 0; x < xnew; x++) {

index = y*xnew + x;
interpolate_pixel_nn(il, xnew, ynew, x, y, color);
newpic->pixel[index][0] = color[0];
newpic->pixel[index][1] = color[1];
newpic->pixel[index][2] = color[2];

}
}
return(newpic);

}

/* This resizes the image to a defined x and y size; defined by xnew
and ynew. Bilinear interpolation is used. */

void resize_define(image *il, int xnew, int ynew)

{
Pixel *pic;
int index, x, y;
DPoint color;

pic = (Pixel *)malloc(xnew*ynew*sizeof(Pixel));

for(y = 0; y < ynew; y++) {
for(x = 0; x < xnew; x++) {

index = y*xnew + x;
interpolate_pixel_bi(il, xnew, ynew, x, y, color);
pic[index][0] = color[0];
pic[index][1] = color[l];
pic[index][2] = color[2];

}
}
free(il->pixel);
il->pixel = pic;
il->xsize = xnew;
il->ysize = ynew;
return;

}

/»Nearest neighbor interpolation */
void interpolate_pixel_nn(image * g, int xnew, int ynew, int x, int y, DPoint color)

{
int fx, fy, index;
double xval, yval;

xval = (double)(x*g->xsize)/(double)xnew;
yval = (double)(y*g->ysize)/(double)ynew;

fx = (int)round(xval);
fy = (int)round(yval);
index = fy*g->xsize + fx;

color[0] = g->pixel[index][0];

114
color[l] = g->pixel[index][1];
color[2] = g->pixel[index][2];
return;

}

/♦bilinear interpolation */
void interpolate_pixel_bi(image

{
double il, i2, i3, i4;
int fx, fy, ex, cy;
double xval, yval, si, s2, s3,

int xnew, int ynew, int x, int y, DPoint color)

s4, error .0000000001;

xval = (x*g->xsize)/xnew;
yval = (y*g->ysize)/ynew;

fx = (int)floor(xval+error);
ex = (int)ceil(xval);
if(fx == ex && ex != (g->xsize
fy = (int)floor(yval+error);
cy = (int)ceil(yval);
if(fy == cy && cy != (g->ysize

si = (xval - fx)/2;
s2 = 0.5 - si;
s3 = (yval - fy)/2;
s4 = 0.5 - s3;

cx++;

-1)) cy++;

il = g->pixel[fy*g->xsize +
i2 = g->pixel[fy*g->xsize +
i3 = g->pixel[cy*g->xsize +
i4 = g->pixel[cy*g->xsize +
color[0] = (sl*il + s2*i2 +
il = g->pixel[fy*g->xsize +
i2 = g->pixel[fy*g->xsize +
i3 = g->pixel[cy*g->xsize +
i4 = g->pixel[cy*g->xsize +
color[l] = (sl*il + s2*i2 +

fx][0];
ex][0];
fx][0];
ex][0]i
s3*i3 + s4*i4);
fx] [1];
ex][1];
fx] [l]i
ex][1];
s3*i3 + s4*i4)j

il = g->pixel[fy*g->xsize + fx][2];
i2 = g->pixel[fy*g->xsize + ex][2];
i3 = g->pixel[cy*g->xsize + fx][2]j
i4 = g->pixel[cy*g->xsize + ex][2];
color[2] = (sl*il + s2*i2 + s3*i3 + s4*i4)j
return;

#endif

