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Abstract

Further advancement in understanding the dynamics of larval exchange between
estuarine and coastal marine benthic invertebrate populations requires (1) knowing the origins of
field-sampled larvae and (2) synoptic assessments of horizontal and vertical larval distribution
patterns over large areas for extended periods. Larval concentration and water velocity data were
sampled concurrently and used to estimate larval flux rates between regions of San Diego Bay
(SDB) and nearshore coastal waters in southern California. Simulations with a 2-D
hydrodynamic model of SDB indicated widely differing larval transport probabilities depending
on whether tidal vertical migration behavior occurs in the water column. Field studies indicate
that crab (Pachygrapsus crassipes) zoeae migrate vertically in SDB, a behavior that promotes
transport out of the Bay. In contrast, larvae of other crab species (Lophopanopeus spp.), which
do not migrate vertically, are retained within SDB during development. An elemental larval
fingerprinting technique (based on Cu, Zn, Al, Mn, and Sr) was developed to distinguish SDB
from non-SDB spawned P. crassipes zoeae. With this method, bi-directional larval exchange
was observed between SDB and coastal waters. Approximately 26% of P. crassipes larvae
observed at the SDB entrance, and 5% at a mid-bay site, originated outside the Bay. This
exchange is likely to have significant consequences for larval populations. Laboratory
- experiments revealed reduced survivorship in larva spawned from or reared in SDB water
relative to pristine coastal waters. Combined use of trace elemental fingerprinting and synoptic
field methods can facilitate understanding of larval transport and ultimately population dynam1cs
of coastal species. :
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Introduction

The early life history of most nearshore and estuarine benthic invertebrate species
involves the release of a planktonic larval stage (i.e., meroplankton) which acts as an agent of
dispersal and gene flow (Grahame and Branch 1985, Levin and Bridges 1995). A detailed
understanding of dispersal trajectories and the magnitude of larval transport are fundamental to
understanding the complexities and fate of larvae in the plankton, including the origin of recruits
(Levin 1990) and sources and rates of mortality (Rumrill 1990, Morgan 1995).

In some populations, larval development occurs entirely in coastal waters or within
embayments. For others, the life history may involve larval development in both open water and
bay settings. Some species have larvae that are retained within estuaries throughout larval
development until ready to settle and recruit to local adult populations (e.g., Cronin 1982). Other
taxa preferentially export larvae to open coastal waters where they develop prior to reentering
estuaries and recruiting to adult populations (e.g., Christy and Stancyk 1982). Mechanisms
mediating the movements of larvae into and out of estuaries include passive transport (larval
movement controlled by ambient physical processes) and active transport (larval behavior, such
as vertical migration coupled with physical processes to allow differential horizontal advection)
(Butman 1987, Young 1995, Shanks 1995). The ability of many of these larvae to exit or return
to estuarine habitats has been considered critical for survival (Morgan 1995). This is the case for
estuarine species that release planktonic larvae that develop offshore but recruit to adult
populations located within estuaries (Epifanio 1988).

A number of marine invertebrate species inhabit both bay and exposed coastal
environments. For these, failure to return to estuarine habitats may not be synonymous with
death. Gaines and Bertness (1992) demonstrated that there was no significant correlation
between interannual variation in settlement of the barnacle Semibalanus balanoides and variable
reproductive output by adults or mortality rates during larval development. Instead, variability in
settlement and recruitment was explained by interannual variations in estuarine flushing rates.
Gaines and Bertness® (1992) study showed that for species which have adult populations
inhabiting both bay and coastal settings, the exchange of larvae between these two environments
is likely and may have significant consequences for population maintenance. ‘ ‘

The overall objective of this research was to develop methods to track the exchange of
planktonic larvae between San Diego Bay and open coast habitats. Brachyuran larvae, in
particular those of the lined shore crab (Pachygrapsus crassipes, Randall 1840), were studied.
Adult P. crassipes populations are widely distributed throughout southern California bays and
coastal habitats, their spawning cycle is predictable, and larvae are easily sampled and identified
(Ricketts et al. 1985, Schlotterbeck 1976). Pachygrapsus crassipes zoeae served as a model in
this study for relatively strong swimming decapod larvae that potentially disperse through the
coastal zone (e.g., Epifanio 1988, McConnaugha 1988). Specific goals of the proposed research
- were to: (1) develop and test the use of trace elements as tags to distinguish P. crassipes larvae
originating from bay and open coast waters, (2) apply elemental fingerprinting to examine bay-




ocean exchange of P. crassipes larvae between San Diego Bay and nearby coastal waters, (3)
examine the interaction of physical processes and larval behavior in determining the export and
retention of larvae in San Diego Bay, and (4) study the effects of brood site and culture water on
larval survivorship and development to establish whether there was any selective advantage for
development in bay versus coastal waters.

The results of this research have been prepared as four papers for publicétion in the
primary literature. Key findings are outlined below.

Vertical Migration Behavior and Horizontal Distribution of Brachyuran Larvae in a Low
Inflow Estuary: Implications for Bay-Ocean Exchange

Tidally timed vertical migration has been well documented for brachyuran larvae that are
preferentially exported or retained within partially mixed estuaries. However, the effectiveness
of tidally timed vertical migration in an unstratified low inflow estuary (LIE), such as San Diego
* Bay, has not been addressed. This study examines the effect of larval vertical migratory
behavior on dispersal by characterizing temporal and spatial (vertical and horizontal) distribution
patterns of brachyuran larvae over tidal and diel cycles in SDB. The influence of temporal
changes in larval vertical and horizontal distribution on larval retention and dispersal is
evaluated. This research provides the first detailed description of the vertical and horizontal
distribution of crab larvae within a recognized LIE and within any embayment along the West
Coast of North America. Hydrodynamic modeling is combined with field surveys to examine
hypotheses regarding dispersal in brachyuran larvae. A novel benthic sampling strategy was
employed to establish the presence of larvae on the bottom of the bay during critical phases of
the tide affecting transport between regions of SDB and between the bay and the nearshore
coastal environment.

Net larval transport simulations, using a validated hydrodynamic model (TRIM2D) of
San Diego Bay generated the prediction, a priori, that tidally timed vertical migration was ‘
necessary to transport larvae out of the bay, while larvae lacking vertical migratory behavior
should be retained within SDB. Model simulations predicted that larvae with tidal rhythmic
migration behavior experienced net transport towards the bay entrance (Fig.1A-D). TRIM2D
simulations of passive larvae, with vertically uniform distributions of zoeae, predicted that larvae
would be retained within the back bay (Fig. 1E-H). This study examined hypotheses that
brachyuran larvae sampled in SDB (1) migrate vertically into surface and bottom boundary
Jayers causing enhanced export or retention from estuaries, and (2) are not homogeneously
distributed horizontally in space between eastern, mid-channel and western stations along cross-
channel transects in SDB. Brachyuran larvae from two families [i.e., Pachygrapsus crassipes
(Grapsidae) and Lophopanopeus spp. (Panopeidae)] were studied at sites in central- and outer-
SDB. Stage I P. crassipes zoeae exhibited tidally timed vertical migratory behavior (i.e.,
selective tidal stream transport) which enhanced their net export from the bay. Pachygrapsus
crassipes zoeae were aggregated in surface layers (0 to 2 m) during nocturnal ebbing tides and
exhibited behavior that effectively retarded transport back into the bay by exploiting zero
velocity conditions associated with the benthic-boundary layer during flood tide (Table 1; Fig.
2). Lophopanopeus spp. exhibited no clear tidally timed rhythmic migration or aggregation
patterns. All developmental stages were collected within SDB, indicating larvae were retained




within SDB throughout meroplanktonic development (Table 1; Fig. 2). Heterogeneous horizontal
distributions of stage I P. crassipes and Lophopanopeus spp. larvae reflect hatching sites and
physical circulation features which concentrate larvae at specific stations. Differences in larval
behavior of the sort observed for grapsid and panopeid larvae in SDB may ultimately affect the
success of recruitment to adult populations.

" The vast majority of studies considering temporal and spatial distributions of brachyuran
larvae have been conducted in estuaries with significant freshwater input (e.g., partially mixed
estuaries) resulting in non-tidal residual flows and net downstream transport and flushing of
passive and uniformly distributed particles. The present study considered the vertical migratory
behavior of crab larvae in SDB, a low inflow estuary which experiences negligible or no net
downstream flow due to limited freshwater input. Swimming behavior mediated retentive
mechanisms were not necessary for retention of Lophopanopeus spp. larvae within SDB.
Panopeid species studied in partially mixed estuaries tend to exhibit tidally timed vertical
migrations which maintain their position within estuaries (Cronin & Forward 1979, 1982;
Lambert & Epifanio 1982; Johnson 1985). Stage I P. crassipes zoeae employed selective tidal
stream transport that facilitated their export from SDB to the coastal ocean. Tidal stream
transport appears necessary for P. crassipes larvae to exit SDB, based on the observation of
retention of panopeid larvae (which lack vertical migration) within SDB through all planktonic
stages of development. The efficiency of tidally timed vertical migration in promoting export
appears to be enhanced by P. crassipes' ability to exploit zero velocity at the sediment-water
interface during flood tides.

Development and Application of Elemental Fingerprinting to Track the Dispersal of |
Marine Invertebrate Larvae

The early life history of many marine benthic invertebrate and fish species involves a
planktonic larval stage that allows exchange of individuals among separated adult populations.
Inability to determine sources of planktonic larvae and to consequently track their fate in situ has
limited our understanding of dispersal and recruitment mechanisms. The purpose of this study
was to develop and test the use of naturally-occurring trace elements and pollutants as viable tags
to distinguish origins of planktonic larvae and to use this method to examine bay-ocean exchange
processes in the striped shore crab, Pachygrapsus crassipes (Grapsidae, Randall 1840). This
research has: (1) described an analytical protocol to measure trace element concentrations in
individual crab larvae, (2) characterized the elemental composition of individual P. crassipes
larvae sampled from embayments and exposed coastal habitats of southern California, (3) tested
the discriminatory power of observed elemental differences as a tag to determine larval origin,
~ and (4) applied this approach to examine the exchange of stage I zoeae between San Diego Bay
(SDB) and nearshore coastal habitats. Based on observations of tidally associated vertical
migration of larvae, we initially hypothesized that transport of stage I zoeae originating inside
SDB should be unidirectional and out of the Bay.

Trace elements are effective site markers for estuaries because run-off and pollutant
loading often impart distinct elemental signatures to bay habitats relative to nearshore coastal
environments. Crab larvae originating from San Diego Bay (SDB) were distinguished from those
originating in neighboring embayments and exposed coastal habitats by comparing multiple trace




element concentrations (‘fingerprints’) in individuals (Fig. 3, Table 2). Discriminant function
analysis (DFA) was used to characterize stage I zoeae of the striped shore crab, Pachygrapsus
crassipes, of known origin (reference larvae) via trace elemental composition (i.e., Cu, Zn, Mn,
Sr, Ca) (Fig. 4). A validation of the classification algorithms indicated that 93 percent of SDB
larvae (n=39 larvae) and 96 percent of non-SDB larvae (n=57 larvae) were correctly identified
(Table 3). Linear discriminant functions were used to identify the origin and characterize the flux
of stage I P. crassipes zoeae between SDB and the nearshore coastal environment during one
spring tidal cycle. Elemental fingerprinting revealed that most (87%) of the stage I larvae
collected at the bay entrance during the flood tide were larvae of SDB origin that were reentering
the bay. Nearly one third of zoeae sampled (32%) at the entrance during ebb tide were coastal
larvae leaving the bay and returning to open water. These results contrast with the unidirectional
transport of zoeae out of the bay predicted from stage I vertical migrations. Because zoeal
survivorship differs in SDB and coastal waters, the bi-directional bay-ocean exchange shown
here has significant implications for the dynamics of P. crassipes populations. Trace-elemental
fingerprinting of invertebrate larvae promises to facilitate investigations of many previously
intractable questions about larval transport and dynamics of nearshore species.

Use of Elemental Fingerprinting to Assess Net Flux and Exchange of Brachyuran Larvae
Between Regions of San Diego Bay, California and Nearshore Coastal Habitats

Marine benthic invertebrate populations found in estuarine or coastal habitats often
exchange larvae. However, the dynamics of larval exchange are poorly understood because of
difficulties in (1) making synoptic assessments of horizontal and vertical larval distribution
patterns over large areas for extended periods of time and (2) determining the origins of field-
sampled larvae. This study examines how temporal changes in the vertical and horizontal
distribution of crab larvae (i.e., Pachygrapsus crassipes and Lophopanopeus spp.) affect larval
transport. Larval concentration estimates were combined with concurrently sampled water
velocity measurements to test the hypothesis that heterogeneous vertical and horizontal
distributions of brachyuran larvae affect larval flux between regions of SDB and between SDB
and nearshore coastal waters. Elemental fingerprinting was employed to analyze a subset of stage
I P. crassipes larvae sampled in middle and outer regions of SDB to test the null hypothesis that
all zoeae sampled within the bay originated from inside SDB. '

First order larval flux approximations between inner and outer regions of SDB and
between the bay and nearshore coastal habitats corroborate transport inferred from larval
behavior. The net flux of stage I P. crassipes zoeae integrated in this study over a semi-diurnal
tide was estimated to be from inner to outer regions of SDB at the mid bay (CBB) sampling site
(3.65 x 10° ind) and from outer SDB to nearshore coastal waters at the entrance (SDBE)
sampling site (8.63 x 10% ind) (Table 4). The net flux for combined stage I and post-stage I
Lophopanopeus spp. larvae sampled at the CBB site was from the outer to inner regions of SDB
(1.28 x 10° ind; Table 4), suggesting retention within the bay through larval development. Trace
elemental fingerprinting of stage I P. crassipes zoeae revealed bi-directional exchange between
SDB and the nearshore coastal environment when unidirectional transport out of SDB was
predicted from swimming behavior. Approximately 4.3% of stage I P. crassipes zoeae sampled -
in the mid region of SDB originated from outside SDB, while 26.4% of zoeae sampled at the




entrance originated from outside SDB (Fig. 5). Combined use of trace elemental fingerprinting
and synoptic field sampling techniques will facilitate understanding of larval transport and
ultimately population dynamics of nearshore species.

A broader objective of this study was to develop a methodology to evaluate net larval
transport using state of the art analytical techniques for determining temporal and spatial
variations in water velocity flow fields, larval distribution and larval origins. The effect of
temporal changes in the vertical distribution of decapod larvae on net transport has been well
documented, especially for brachyurans found within estuaries. This study revealed that the
horizontal distribution of larvae also has a significant effect on net larval transport estimates. In
addition to the temporal-spatial distribution of larvae, the distribution of adult source and
hydrodynamic processes of SDB had an effect on net transport and bay-ocean exchange of
larvae. Knowledge of P. crassipes zoeal origins allowed more accurate flux measurements to be
made and provided insights into potential exchange of larvae between bay and coastal
populations. The ability to accurately assess larval flux rates and to discriminate larval origins
offers the potential for improved understanding of many aspects of larval dynamics in estuarine
and nearshore ecosystems. Larval exchange between bay and coastal populations, and among
populations within bays, may greatly influence larval survivorship, gene flow and the ability of
populations to be self-sustaining.

Development énd Survival of Striped Shore Crab Larvae (Pachygrapsus crassipes)
in Bay vs Coastal Habitats

The striped shore crab, Pachygrapsus crassipes, lives in both protected embayments and
exposed nearshore coastal habitats and larvae may develop in either setting. This study compared
the survivorship and development of P. crassipes zoeae brooded and cultured in two southern
California embayments (San Diego Bay, Mission Bay) and a nearby exposed coastal habitat
(Dike Rock). Newly released larvae originating from 3 sites were reared in the laboratory in
waters from each site through to the megalopal stage. The null hypothesis was that there are no
differences in the development rate or survival of zoeae brooded in or developing in waters of
southern Californian embayments (San Diego Bay [SDB] Mission Bay [MB}]) when compared
with zoeae developmg in a nearby exposed coastal environment (Dike Rock [DR]).

Larval cultures maintained in seawater collected from the open coast experienced higher
survivorship during zoeal development, exhibited a higher percentage of stage VI zoeae
surviving to the post-larval megalopal stage, and yielded a larger percentage of viable megalopae
than larvae reared in seawater collected from either San Diego Bay or Mission Bay (Fig. 6,7).
Culture water and brood site did not affect zoeal development time. Larvae brooded in Mission
Bay were more likely to survive zoeal stages of development than larvae brooded in San Diego
Bay or Dike Rock. Megalopae which were brooded in Dike Rock and San Diego Bay habitats
had greater megalopal survival times than those originating from Mission Bay. Brood site had no
effect on the percentage of zoeae surviving to the megalopal stage of development, zoeal
development time, or molting success of stage VI zoeae to the megalopal stage of development.
Thus, brood site and culture water source will influence P. crassipes' rate of development and
survivorship, and as a consequence, the source of individuals ultimately recruiting to adult
populations. |



Conclusions and comments

‘Many marine invertebrate organisms have a planktonic larval stage of development that
promotes the exchange of individuals between isolated adult populations inhabiting different
regions of a bay, different bays, or bay and coastal habitats. The duration of the planktonic stage
of development as well as larval behavior enhance or retard larval dispersal. This has been
particularly well documented for brachyuran larvae (e.g., Epifanio 1988, McConnaugha 1988).
The present study employed larval pump sampling, concurrent characterization of hydrographic
features (i.e., tidal currents), hydrodynamic simulations, and a novel larval fingerprinting
technique to study brachyuran larval exchange between San Diego Bay and exposed coastal
habitats. Pachygrapsus crassipes larvae (Decapoda, Grapsidae) were selected for study of bay-
ocean exchange processes since adult populations inhabit protected embayments as well as
exposed coastal rocky intertidal habitats.

The majority stage I P. crassipes zoeae sampled in SDB exhibited tidally timed, vertical
migratory behavior (i.e., selective tidal stream transport) that enhanced their net transport from
the bay (Chapter II). Larvae aggregated in surface layers during nocturnal ebbing tides and
retarded transport back into the bay by exploiting reduced velocity conditions in the bottom
~ boundary layer during flood tides. Post-stage I P. crassipes zoeal stages of development were
rarely sampled within SDB. The lack of post-stage I zoeae within SDB agrees with results from
flux studies which revealed net transport of stage I larvae from inner to outer regions of SDB and
ultimately into nearshore coastal waters (Chapter IV). Larval behavior and flux estimates suggest
that most P. crassipes larvae spawned within embayments exit while still in the initial larval
stage of development. Zoeal development is likely completed in coastal waters until molting into
the post-larval stage of development (i.e., megalop), which actively recruit to adult habitats
located within embayments and on exposed coastal shores.

The majority of studies on brachyuran larval migratory behavior reveal some larvae that
either do not migrate in phase with the majority or do not migrate at all (e.g., Queiroga et al.
1997, Garrison et al. 1999). The non-tidal, residual flow characteristic of partially mixed
estuaries, where most larval studies have been conducted, results in net downstream transport
and flushing of non-migratory larvae. This is not the case for SDB, a low inflow estuary (LIE)
where freshwater input is negligible or absent for extended periods of time (Largier et al. 1996,
1997). As a result of limited freshwater input, LIE’s are characterized by sluggish circulation and
extended residence times for tidally sheltered waters and passive constituents, including non-
migratory larvae. For example, Lophopanopeus spp. zoeae, sampled concurrently with P.
crassipes larvae during this study, did not exhibit rhythmic migratory behavior and were retained
within the bay through larval development. Those P. crassipes larvae lacking rhythmic
migrations should also be retained within the bay.

The retention of some P. crassipes larvae and most Lophopanopeus spp. larvae within
SDB and their potential for completing development within the Bay has important implications
for population sustainability within SDB and in other LIE’s. Despite experimental evidence
which suggests that P. crassipes larvae reared in SDB seawater experience slower development
and reduced survivorship than larvae reared in coastal water, the retention and subsequent
recruitment of SDB spawned zoeae to adult SDB populations (i.e., self-seeding) could represent




~ amajor source of recruitment. Retention within embayments during planktonic development

would limit dispersal and increase the probability that post-larval recruits would locate suitable
adult habitat (e.g., Cronin and Forward 1982, Lambert and Epifanio 1982, Epifanio 1988).

In southern California, many physical oceanographic features have been recognized
which can enhance larval transport away from nearshore coastal waters, effectively eliminating
their return and recruitment to coastal populations. These mechanisms include offshore transport
associated with upwelling-induced equatorward coastal jets, eddy structures, and filaments
associated with the California current (Haury et al 1986, Roughgarden et al. 1984, Roughgarden
et al. 1988 , Farrell et al. 1991, Strub et al. 1991, Wing et al. 1998). By splitting larval
development between bay and coastal habitats, P. crassipes effectively hedges its bets for
successful recruitment, especially during years when recruitment by larvae developing in
nearshore coastal waters is low.

Self-seeding is not likely from SDB spawned larvae which exit the bay and develop in
coastal waters. Average summer surface currents recorded off southern California can be
extremely rapid (6.1 cm sec”') (Winant and Bratkovitch 1981), and larvae exported from SDB
are likely to be transported a considerable distance from the bay entrance before they are ready to
settle. Levin (1983) suggested that longshore currents off southern California could carry
polychaete larvae with a two-week planktonic phase 80 to 120 km from Mission Bay in southern
California. Dispersal potential is likely to be even greater during the 6 to 8 week duration of P.
crassipes zoeal development in the absence of behavioral (i.e., swimming) or physical retentive
features (i.e., eddies, fronts). ‘ ' -

The relative importance of self-seeding versus recruitment by larvae originating from
neighboring embayments or coastal populations in sustaining adult P. crassipes populations
within SDB is unknown. Southern California has lost up to 95 % of its wetlands, the
predominant natural habitat for adult P. crassipes within embayments (Hiatt 1948). The loss of
wetland habitat precludes establishing the historical significance of self-seeding. However, ‘
understanding the importance of bay versus coastal spawned larvae in maintaining populations in
both habitats is critical if current populations are to be effectively managed and preserved. This
understanding will only be possible when larval tracking techniques currently under
development (e.g., trace elemental fingerprinting, genetic tags) allow the origin of newly
recruited individuals to be determined.

Trace elemental fingerprinting determined that stage I P. crassipes zoeae originating
from populations outside SDB were present inside the bay. Previous studies have combined ‘
information on spawning sites, larval behavior, and hydrographic features to infer potential larval
dispersal trajectories. This study exemplifies what can be learned by determining the origin and
tracking the dispersal of individual larvae. The ability to determine the origin of field sampled
larvae allowed the observation of bi-directional exchange of stage I P. crassipes larvae between

" SDB and nearshore coastal waters, even when net transport was from bay to coastal habitats.

Calculations involving known larval concentrations and an estimated instantaneous mortality rate
for P. crassipes zoeae, suggest that approximately 150 non-SDB spawned P. crassipes zoeae
would be expected to complete larval development from an estimated 5.9 x 107 stage I zoeae in
the vicinity of the CBB sampling site, and serve as potential recruits to adult habitats.



" There are many questions that remain to be answered regarding the transport and

-~ dispersal of P. crassipes zoeae, and meroplankton in general. The fate of subsequent larval
stages of P. crassipes development could not be addressed in the current study because a limited
numbers of post-stage I zoeae were sampled with the larval pump. Later stages, especially the
post-larval megalopal stage of development, will be critical to a better understanding of
recruitment dynamics. Study of larval stages may allow us to identify preferred habitats for
Jarval development prior to recruitment inside and outside SDB. The trace elemental

~ fingerprinting technique developed in this study did not effectively distinguish larvae that
originated from neighboring embayments and coastal populations. More sensitive analytical
protocols and instrumentation capable of more sensitive analyses may improve methodologies
established here. ' a

Ultimately, it is hoped that this research has provided a novel approach that can be
improved and applied in future studies to assess the relative significance of self-seeding and
Jarval exchange between bay and coastal populations as alternate recruitment mechanisms. The
relation between larval exchange and long-term persistence of coastal and bay populations will
have important implications for the way that coastal habitats are managed in the future. A viable
technique for assessing the degree of self-seeding of estuarine populations will aid future -
management of remaining coastal habitats, especially for fragmented systems such as mudflats
and salt marshes of southern California (Fairweather 1991). San Diego Bay, like many other
~ urbanized bays, has lost much of its natural habitat to industrial, commercial and military
development. The interdependence of estuarine and coastal populations is highlighted when there
are potential consequences of losing one habitat type (e.g., wetlands) on another (e.g., rocky
shores). ' ' -
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Table 1. One-way analysis of variance comparing larval abundance estimates for
surface (0-2 m = T), middle-depth (5-7 m = M), and bottom (<2 mab, meters above
the bottom = B) layers sampled during ebbing and flooding tides during July, August
and September 1997 sampling periods. Stage 1 zoeae were analyzed for
Pachygrapsus crassipes; stage 1 and post-stage I Lophopanopeus spp. zoeae were
combined for the analysis presented, however separate analyses of stage I and post-
stage I larvae also failed to identify any statistical differences. Statistically
significant multiple comparison results (Bonferroni corrected Student-t) are given for
each Anova which identified significant differences. The July 1997 sampling period
was not analyzed since the sediment-water interface was not adequately sampled for
P. crassipes during this sampling period.

Sampling Period
P. crassipes
4-5 August 1997
18-19 August 1997

1-2 September 1997

Lophopanopeus spp.
21-22 July 1997

1-2 September 1997

Tidal Phase

Ebb
Flood

Ebb
Flood

Ebb
Flood

Ebb
Flood

Ebb
Flood

n

12
30 .

33
30

33
51

33
42

33
51

F-ratio

4.367
3.091

4.010
7.453

5.694

12.787

1.207
0.978

1.573
0.759

p-value

0.038
0.060

0.028
0.002

0.008

<0.001

0.312
0.384

0.223
0.473

Student-t

T>M,B
T,M>B
T,M<B
T>M,B
T,M<B
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Table 3. Validation results of the classification algorithm. (a) Classification
matrix indicating the predicted origin for larvae comprising the model data set
and (b) Cross-validation using a ‘jackknifed' classification matrix (described in
methods) to test the robustness of the classification algorithm.

(a) Classification Matrix

Predicted Identity
True Identity SDB not SDB % Correct
SDB 37 3 93
not SDB 2 54 96
© Total 39 57 95
(b) Jackknifed Classification Matrix
Predicted Identity -
True Identity SDB not SDB % Correct -
SDB 36 4 90
not SDB 3 53 95
Total 39 57 92
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Zoeal Abundance

A. 4-5 August 1997
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Flgure 2. Pachygrapsus crassipes. Temporal and vertical distribution of stage I zoeae
sampled at the San Diego Bay Entrance (SDBE) transect on (A) 4-5 August 1997 and
(B) 18-19 August 1997. Zoeal abundance for each transect was summed across eastern, .
middle and western stations for each depth, respectively. The dashed line on the x-axes
indicates ebb tide. The thick and thin vertical arrows on the x-axes indicate approximate
times of sunset and sunrise, respectively.
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Figure 4. Trace elemental fingerprints characteristic of stage I Pachygrapsus crassipes
zoea sampled from San Diego Bay, neighboring embayments and coastal sites. (A) First
and second canonical variable scores correspond to individual zoea of known origin. The
first canonical variable (Canonical Variate 1) accounts for 98% of the dispersion between
groups. (B) Plot of two discriminant functions for zoea of unknown origin sampled at the
entrance of San Diego Bay over a tidal cycle. Note that the points cluster within San
Diego Bay and non-San Diego Bay groupings defined by discriminant function ana1y51s
shown in the upper panel.
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* Figure 5. Plot of discriminant function values 1 and 2 (based on trace elemental
composition) for zoeae of unknown origin sampled over a tidal cycle at the (A) ,
Coronado Bay Bridge and (B) San Diego Bay Entrance sampling sites. Discriminant
function space defined from reference stage I Pachygrapsus crassipes zoeae (of
known origin) are shown for larvae from San Diego Bay (dotted line) and non-SDB
(i.e., neighboring embayments and coastal sites; dashed line) sampling sites. Note
that most of the points, each of which represerits a single larva of unknown origin,
cluster within discriminant function space defined by the dotted and dashed lines,
with only limited overlap. '
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Figure 6. Culture water effects on laboratory cultured crab larvae, Pachygrapsus
crassipes, expressed as percent survivorship. Mean survivorship estimates within
each plot (A-C) are independent of larval origin since larvae were brooded in (A)
Sweetwater Marsh, San Diego Bay (SDB), CA, (B) Northern Wildlife Preserve,
Mission Bay (MB), CA, or (C) Dike Rock (DR), La Jolla, CA. All curves are _
terminated at day 50, but cultures lasted an average of 98 = 7 d (SD). Error bars are
not shown for the sake of clarity. Statistical comparisons among sites are given in
the text.
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Figure 7. Culture water and brood site effects on (A) the mean percentage of stage I
zoea, Pachygrapsus crassipes, surviving to the megalopal stage of development, (B)

the mean percentage of stage VI zoea, Pachygrapsus crassipes, which attempted and
survived molting from the sixth zoeal stage of development to the megalopal stage, and
(C) the survival time (days) for laboratory cultured crab megalopae, Pachygrapsus =
crassipes, since molting from the sixth zoeal stage of development. Error bars indicate
+1 SE. MB= Mission Bay, SDB= San Diego Bay, DR= Dike Rock. Culture water
treatments sharing the same letter (a, b) are not significantly different. Brood site

results are given in the text.
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