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Chapter 1 Introduction 

1-1 Statement of Objectives 

In the field of astrodynamics, the areas of orbit design and on-orbit maintenance 

can have a significant impact upon the success of a given mission. Placing a satellite into 

an improperly designed orbit can greatly reduce the effectiveness of that satellite in 

accomplishing its given mission objectives. Similarly, an inability to maintain a 

spacecraft in the properly designed orbit can also have disastrous effects on the mission 

of that satellite. 

All satellite orbit design is accomplished by first establishing orbit-related mission 

requirements. Requirement definition is the first step in orbit design as the choice of 

orbit typically defines not only the satellite's location in space, but also a number of other 

factors including the space mission lifetime, cost, environment, viewing geometry, and 

often also payload performance1. Table 1-1 lists a number of mission requirements along 

with parameters that can have an affect on these mission requirements. Due to the 

significant effect that the orbit design has on each of these mission requirement related 

aspects, finding the best or optimal design deserves special attention. By placing 

emphasis on finding the optimal orbit design, satellite designers can obtain corresponding 

gains in the overall mission performance of a spacecraft. 

1 Larson, Wiley J. and James R. Wertz. Space Mission Analysis and Design, Torrance, California: 
Microcosm, Inc., 1992, p. 157. 
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Table 1-1 Principal Mission Requirements and Design Parameters 

Mission Requirement Influential Parameters 
Coverage Altitude 

Inclination 
Node 

Sensitivity or Performance Altitude 
Environment and Survivability Altitude 

Inclination 
Launch Capability Altitude 

Inclination 
Ground Communications Altitude 

Inclination 
Orbit Lifetime Altitude 

Eccentricity 
Legal or Political Constraints Altitude 

Inclination 
Longitude in GEO 

In addition to design of the optimal orbit, finding optimal methods for performing 

satellite orbit maintenance or "station-keeping" also deserves added emphasis. Even with 

an optimally designed orbit, if that orbit and/or station within that orbit are not 

maintained, the performance of the satellite will degrade. Additionally, due to recent 

gains in the operational lifetime of a variety of satellite component technologies, satellites 

can maintain on-orbit operational capabilities for longer periods of time than previously 

estimated. Despite these gains in the operational lifetime of the component technologies, 

if the spacecraft cannot be maintained in the necessary orbit, there will be no 

corresponding gain in the operational lifetime of the satellite. Therefore, on-board fuel 

limitations have an increasingly important role in determining the overall lifetime of 

spacecraft. By finding optimal station keeping strategies, designers can not only decrease 

2 Larson, Wiley J. and James R. Wertz. Space Mission Analysis and Design, Torrance, California: 
Microcosm, Inc., 1992, p. 179. 
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the amount of required on-board fuel, but potentially increase both the satellite lifetime 

and corresponding system effectiveness metric as well. 

The broad objective of this thesis is to explore ways in which both traditional and 

non-traditional optimization methods can be applied to find improvements in these two 

mission critical areas of satellite orbit design and on-orbit maintenance. Specifically, this 

thesis is a compilation of efforts to discover both orbit designs and station-keeping 

strategies capable of increasing the mission performance of multi-satellite constellations. 

1-2 Optimization 

Inherent to the efforts of this thesis is the concept of optimization. This concept 

of optimization can be defined in a number of ways. The American Heritage Dictionary 

states that to optimize something is "to make the most effective use of it. In many 

mathematical or other applications, this definition is applied very literally, and finding 

optimal solutions means obtaining the absolutely best solutions to a given problem. This 

interpretation is the conventional view of optimization as explained by Beightler, 

Phillips, and Wilde4: 

Man's longing for perfection finds expression in the theory of 

optimization. It studies how to describe and attain what is Best, once one 

knows how to measure and alter what is Good or Bad.... Optimization 

theory encompasses the quantitative study of optima and methods for 

finding them. 

3 The American Heritage Dictionary of the English Language, Houghton Mifflin Company, Boston, 
Massachusetts, 1981. 
4 Beightler, C. S., D. T. Phillips, and D. J. Wilde. Foundations of Optimization, Englewood Cliffs, New 
Jersey: Prentice-Hall, 1979, p. 1. 
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Although finding what is "Best" is the conventional view of optimization, it is not 

necessarily the only or natural definition. In human decision making, decisions are not 

usually made based on what is the perfect decision, as this "Best" solution is not typically 

available. Rather, human decision-makers take into account many factors and choose the 

solution that, at the time, appears better than any other available options. This more 

humanized view of optimization is a more natural definition and appears in many 

applications. In these applications, the goal of optimization shifts, from finding the best 

solution, to simply finding improvement.5 Using this definition, optimal solutions are not 

those that give perfect performance, but instead are those that give better performance 

relative to other solutions. This concept of attempting to quickly find some good level of 

performance is known as "satisficing"6 and is the view of optimization taken most 

frequently throughout this work. 

1-3 Satellite Constellations 

A recent trend in commercial satellite design has been the application of more 

than one satellite to a given mission. Due to the coordinated manner in which these 

satellites must perform in order to meet overall mission objectives, these multiple 

satellites are termed constellations. There are advantages which are evident when more 

than one satellite is applied to a given mission, but also a number of areas to which 

precise solutions (and hence optimization) becomes more important. 

The main advantage gained when multiple space vehicles are applied to the same 

mission is in terms of coverage, or areas of the Earth that can see a satellite at any given 

5 Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, 
Massachusetts: Addison-Wesley Publishing Company, Inc., 1989, p. 7. 
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time. With one satellite it is impossible to have coverage of more than one area of the 

globe at a given time. For most satellites, only a certain area of the Earth is covered and 

this area moves as the satellite orbits the Earth. However, if an appropriate number of 

satellites are placed in designated locations around the Earth, larger and larger portions of 

the Earth can be covered. In the late 1960s, Easton and Brecia of the United States Naval 

Research Laboratory in their 1969 report Continuously Visible Satellite Constellations 

analyzed coverage by satellites in two mutually perpendicular orbit planes and concluded 

that at least six satellites would be needed to provide full global coverage. In the 1970s, 

J.G. Walker considered orbit types not previously considered by Easton and Brecia and 

Q 

concluded that continuous coverage of the Earth would require only five satellites . 

Following this trend, John Draim, in the 1980s found and patented a constellation of four 

satellites in elliptical orbits that provide continuous Earth coverage.9 

Achieving greater coverage through constellations is not without cost, however. 

Most noticeable of these costs is the cost to build additional satellites. In order to have 

multiple satellites in space, multiple satellites must first be built and launched at great 

expense. Improper design of satellite orbits which calls for a greater number of satellites 

than is actually needed can have a direct impact on a program's cost. Therefore, 

optimization is a useful tool in the design of these multi-satellite constellations. 

The maintenance of multi-satellite constellations is also an area in which 

application of proper optimization techniques can lead to program cost savings.   An 

6 Simon, H. A. The Sciences of the Artificial, Cambridge, Massachusetts: MIT Press, 1969. 
7. Larson, Wiley J. and James R. Wertz. Space Mission Analysis and Design, Torrance, California: 
Microcosm, Inc., 1992, p. 189. 
8 Walker, J. G. "Satellite Constellations," Journal of the British Interplanetary Society. 1984, 37: 559-572. 
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optimally designed orbit is of little use if the satellite cannot be maintained in that orbit. 

An unfortunate fact of astrodynamics is that the orbits of satellites degrade. Therefore, in 

order to achieve mission objectives, small correctional maneuvers must often be 

performed such that the satellite is repositioned into the desired orbit. Each of these 

maneuvers, however, has an associated fuel cost. Through application of optimization 

techniques, the minimum fuel maneuvers can be found which allow the satellite to 

maintain the designed orbit and therefore, achieve the desired mission objectives at 

minimum cost. For constellations where the orbits of multiple satellites must be 

maintained and orbital maintenance costs are multiplied by the number of satellites, 

finding the minimum fuel maneuvers becomes even more of a priority. 

1-3-1 Communication Constellations 

An important mission to which constellations have been applied recently is the 

area of communications, specifically mobile communications. The gains in coverage 

through the application of multiple satellites to one mission are especially advantageous 

to the achievement of a communications mission. The goal of this type of mission is 

simple: provide a means whereby a user in one location on the globe can communicate 

with a user at an entirely different location on the globe. With only one satellite, 

achievement of this goal is impossible. However, by careful design and placement of the 

satellites in a constellation, coverage is increased and the goal of global mobile 

communications can become a reality. 

9 Draim, John. "Three- and Four-Satellite Continuous Coverage Constellations," Journal of Guidance, 
Control, and Dynamics, 1985, 6:725-730. 
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Seeing the advantage that constellations present to the achievement of a 

communications mission, a number of companies have proposed systems to meet this 

goal. At the present time, one of these companies (Indium) has succeed in creating an 

operating system10 while the others are scheduled to begin operation within the next few 

years. The specific details about these constellations can be seen in Table 1-2. Note that 

the data presented in this table is only an approximation as precise orbital designs are 

often considered proprietary information. 

Table 1-2 Comparisons of Personal Communications Satellite Systems 11 

Ellipso Globalstar12 Iridium13 ICO14 Teledesic15 

Borealis/Concordia 

Orbit Type SSFLA LEO LEO MEO LEO 

Altitude (km) 520-7846 / 8063 1414 780 10390 1375 

Eccentricity 0.33/0.0 0.0 0.0013 0.0 0.00118 

Inclination (deg) 116.6/0.0 52.0 86.4 45.0 98.2 

Period (hr) 3.0/4.67 1.9 1.7 6.0 1.9 

Number of Sats 10/8 48 66 10 288 

Number of Planes 2/1 8 6 2 12 

Number of Sats Per Plane 5/8 6 11 5 24 

NOTE: This table contains values that are more up to date than those available in the original reference. 
The more up to date values were taken from the home pages of the individual companies as contained in 
the footnotes. 

10 Swan, Peter A. "Iridium Gets Real," Aerospace America, Vol. 37, No. 2, February 1999, p. 23. 
11 Hulkover, Neal D., A Revaluation of Ellipso™, Globalstar, IRIDIUM™ and Odyssey™, Presentation at 
Volpe Transportation Center, Cambridge, Massachusetts, 18 October 1994. 
12 Globalstar Corporation Internet Homepage. Available at www.globalstar.com. Accessed 28 April 1999. 
13 Iridium Corporation Internet Homepage. Available at www.iridium.com. Accessed 28 April 1999. 
14 ICO Internet Homepage. Available at www.ico.com. Accessed 28 April 1999. 
15 Teledesic Internet Homepage. Available at www.teledesic.com. Accessed 28 April 1999. 
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1-3-2 Ellipso™ Constellation 

For all of the studies found in this thesis, the Ellipso™ constellation was used for 

analysis. As seen in Table 1-2, most of the designs for communications constellations are 

based on circular orbits. The only constellation that deviates from this circular standard 

is the Ellipso™ constellation. Although the optimization techniques discussed and 

implemented throughout this thesis would be applicable to the circular cases, as well, the 

non-circular nature of the Ellipso™ constellation presented a slightly more challenging 

case to which to apply and test the techniques. 

Figure 1-1 Ellipso Mobile Satellite System Orbits16 

Figure 1-1 depicts the design of the Ellipso™ communications constellation 

designed by Ellipso, Inc. This constellation achieves near global coverage using two 

low/medium altitude sub-constellations operating in tandem.  The concept of two 

16 Castiel, D. J. W. Brosius, and J. E. Draim. Ellipso™: Coverage Optimization Using Elliptic Orbits, 
Paper AIAA-94-1098-CP, 15th AIAA International Communications Satellite Systems Conference, San 
Diego, California, 28 February to 3 March 1994. 

36 



low/medium altitude sub-constellations operating in tandem, developed and patented by 

Castiel, Draim, and Brosius17, is more efficient than traditional constellation designs in 

18 balancing the dual demands of global coverage and transmission power. 

The first of the two Ellipso™ sub-constellations is known as Borealis™. 

Borealis™ consists of two critically inclined, sun-synchronous eccentric orbit planes with 

a frozen line of apsides (SSFLA). These two orbit planes are aligned 180° apart, with 

one ascending node at noon and the other at midnight. This configuration provides 24- 

hour coverage of the Northern Hemisphere with four spacecraft and one on-orbit spare in 

each orbital plane. 

Borealis™ is complemented by a second sub-constellation—a circular, equatorial 

sub-constellation known as Concordia™. Concordia™ is a medium-altitude circular 

equatorial orbit consisting of seven satellites and one on-orbit spare. It provides coverage 

around the tropical and southern latitudes. The altitude of the Concordia™ sub- 

constellation is approximately equal to the apogee height of the Borealis™ sub- 

constellation to insure that the same communications equipment can be used for all 

satellites in the constellation. 

1-4 Thesis Overview 

The remainder of this thesis is divided into two main sections: a discussion of the 

techniques and technologies that allow for optimization to be applied to constellation 

17 Castiel, D., J. E. Draim and J. W. Brosius. Elliptical Orbit Satellite System and Deployment with 
Controllable Coverage Characteristics, United States Patent Number 5,582,367, 10 December 1996. 
18 Draim, J. E. and T. J. Kacena. Populating the Abyss—Investigating More Efficient Orbits, Proceedings 
of 6th Annual AIAA/USU Conference on Small Satellites, Utah State University, Logan, Utah, 21-24 
September 1992. 
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design and a discussion of the specific cases to which these optimization techniques were 

applied. Chapters 2 and 3 fall into the first section. Chapter 2 describes the basic 

enabling technologies and fundamentals required for performing orbit design. 

Specifically, orbit basics, orbit propagation, and computer aspects of orbit propagation 

are discussed. This discussion of astrodynamic fundamentals is followed by Chapter 3 in 

which specific optimization techniques and algorithms are presented. Chapters 4 and 5 

discuss the application of these optimization techniques to the orbit design and 

maintenance applications. Chapter 4 presents an overview of the element/orbit design to 

which these optimization techniques were applied while Chapter 5 presents an 

application of the optimization techniques to a specific aspect of satellite constellation 

maintenance—station-keeping. Finally, Chapter 6 contains some observations resulting 

from the work completed for this thesis as well as some recommendations for future 

work. 
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Chapter 2 Enabling Techniques and Theories 

As this thesis is based upon optimization of various applications relating to 

satellite constellations, a basic understanding of satellite motion (i.e. astrodynamics) is 

first required. Although it is impossible to explain astrodynamics in a single chapter, this 

chapter is an attempt to give the reader who is unschooled in astrodynamics a brief 

introduction to the basic concepts of this discipline. Specifically, the fundamental 

concepts used to describe a satellite's orbit and its motion along that orbit are briefly 

discussed. In an effort to provide a basis for the constellation maintenance applications, 

basic burn strategies are then presented. An explanation of satellite propagation 

techniques, and the use of parallel processing in satellite propagation applications, 

follows this description. 

2-1 Fundamentals of Astrodynamics 

The motion of bodies in space has been studied for centuries. As early as 300 BC 

Aristotle had developed a complex, mechanical model of the universe. Others, including 

Ptolemy, Copernicus, Brahe, Kepler, and Galileo added to his contributions.19 These 

men, along with many others, helped to lay the foundation of modern astrodynamics, and 

astrodynamics, in turn, is necessary to lay the foundation for this work. 

In order to apply optimization techniques to various satellite constellation 

applications, it first becomes necessary to understand how objects move in space and also 

19 Sellers, Jerry Jon. Understanding Space: An Introduction to Astronautics, New York, New York: 
McGraw-Hill, Inc., 1994, p. 32. 
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to understand the conventions used to describe an orbit and to differentiate one orbit from 

another. This section is intended to impart some of that understanding to the reader. The 

discussions in this section are the author's compilation from the following excellent 

astrodynamic references: 

I. Fundamentals of Astrodynamics. By Roger R. Bate, Donald D. Mueller, and 

Jerry E. White.20 

II. An Introduction to the Mathematics and Methods of Astrodynamics. By 

Richard H. Battin.21 

in.  Understanding Space: An Introduction to Astronautics.     By Jerry Jon 

Sellers.22 

IV. Fundamentals of Astrodynamics and Applications. By David A. Vallado. 

The interested reader is directed to these sources for a more in depth discussion of any of 

the fundamental concepts discussed here. 

2-1-1 Orbital Motion 

Like all motion, the basis for orbital motion is found in Newton's three laws. 

Especially of interest in astrodynamics is Newton's second law that states that the time 

rate of change of an object's momentum is equal to the applied force.24 For objects of 

constant mass, this law is often summarized as follows: 

20 New York, New York: Dover Publications, Inc, 1971. 
21 New York, New York: American Institute of Aeronautics and Astronautics, 1987. 
22 New York, New York: McGraw-Hill, Inc, 1994. 
23 New York, New York: McGraw-Hill, Inc, 1997. 
24 Sellers, Jerry Jon. Understanding Space: An Introduction to Astronautics, New York, New York: 
McGraw-Hill, Inc., 1994, p. 105. 
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T F = m a Equation 2-1 

where: 

F = applied force vectors 

m = mass of the body 

ä = acceleration vector 

By enumeration of the forces that act on a satellite orbiting the Earth, a general 

understanding of orbit motion can begin to be developed. Some of these forces include: 

• The gravitational force of the Earth 

• Drag from the upper atmosphere 

• Third-Body gravitational effects from the Sun, the Moon, or other non-Earth 

bodies 

• Solar radiation pressure 

• Thrust from on-board rockets 

By including these and other forces acting on a body in motion about the earth in 

Equation 2-1, the corresponding acceleration of a body can be computed and the motion 

of the satellite can then be described (this is the basis of the orbit propagation, see section 

2-3). However, to gain an initial understanding of the type of motion to be expected, a 

number of simplifying assumptions, leading to the creation of the restricted two-body 

problem, are usually made. 
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2-1-1-1 Restricted Problem of Two-Bodies 

Even though all of the forces enumerated above in section 2-1-1 do have an effect 

on the motion of satellites, the effect of all but the Earth's gravity can be eliminated with 

the proper assumptions. For example, by assuming that the satellite is traveling far above 

the Earth's atmosphere, the effect of drag can be ignored. In a similar manner, third-body 

effects can be ignored by assuming that the satellite is far enough away from any external 

bodies that their gravitational effects are negligible. It can also be assumed that the 

satellite is not thrusting and that the solar radiation pressure and other forces are also 

small enough to be negligible. The result of these assumptions is the elimination of all 

forces besides the Earth's gravity, where the Earth is assumed to be a point mass and the 

resulting gravitational field does not include non-spherical gravitational forces. By 

applying another of Newton's Laws, the Universal Law of Gravitation, the equation of 

motion of the satellite can now be expressed in a useful, analytic form: 

G-m^H-^sateiiue f = m        . f Equation 2-2 
r 

where: 

G = universal gravitational constant (6.67 x 10~n N*m2/kg2) 

mEanh= mass °f the Earth 

msateiiue= mass of the satellite 

r = position vector of the satellite 

r = magnitude of the position vector 

Simple algebraic manipulation allows for derivation of the restricted two-body 

equation of motion seen below: 
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r' + -^r r = 0 Equation 2-3 
r 

where: 

H = G*mEarth (3.986005 x 1014 m3/s2) 

Initially, it does not appear that much has been gained by representing the motion 

of a satellite in this form. Although the restricted two-body equation of motion is quite 

simple and elegant, it is a second-order, non-linear, vector differential equation from 

which it is difficult to gain any useful information about the motion of a satellite. 

However, if this equation is solved, the resulting solution provides insight into the 

expected motion of objects in orbit about the Earth. The solution process is not detailed 

here, but the resulting equation is presented below: 

r = ■  Equation 2-4 
l + c2 -cosv 

where: 

Ci and C2 = constants that depend on \i, position and velocity at some epoch time 

v = polar angle measured from a principle axis to the position vector 

This result is quite significant. Not only does it describe the motion of the 

orbiting body about the Earth, it also represents a general relationship for any of the four 

conic sections: circle, ellipse, parabola, and hyperbola. Thus, through the restricted 

problem of two-bodies, it can be shown that any object moving in a gravitational field 

(note the gravitational field is a result of a point mass in this formulation) must follow 

one of these basic conic sections. 
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2-1-1-2 Orbit Perturbations 

The restricted problem of two-bodies and corresponding results are a direct 

consequence of the simplifying assumptions made in regards to the forces acting on a 

satellite in orbit about the Earth. In the formulation of the restricted problem of two- 

bodies, the gravitational field of the Earth was assumed to resemble that formed by a 

point mass. This is not an entirely valid assumption, due to the non-homogenous nature 

of the Earth. Additionally, as discussed previously, though the Earth's gravity is the most 

significant force, it is not the only force acting on a satellite. The forces listed in section 

2-1-1, along with some other smaller forces, can cause acceleration in the motion of the 

satellite. The accelerations that are not part of the two-body model are known as 

perturbing accelerations. 

The perturbing accelerations will generally cause three types of variations in the 

orbit of a satellite: short period, long period, and secular variations. Figure 2-1 illustrates 

the difference between these types of effects: 

3 _  Mean change 

Urne 

Figure 2-1 Perturbing Acceleration Effects ,25 

25 Vallado, David A. Fundamentals ofAstrodynamics and Applications, New York, New York: McGraw- 
Hill, Inc., 1997, p. 545. 
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As seen in Figure 2-1, secular accelerations simply add a constant increasing or 

decreasing perturbation to an orbit. The effects of long period accelerations, on the other 

hand, are periodic. Short periodic accelerations are also periodic, but their amplitude is 

smaller than the amplitude of long periodic accelerations, and they recur at higher 

frequency. 

Some important factors regarding these perturbing accelerations should be noted. 

First is the fact that the effects of most of these perturbations are dependent upon the orbit 

and/or physical characteristics of the satellite in question. Also, unlike the force of 

gravity of the Earth used in the two-body derivation, a number of these perturbing forces 

can be time varying. Both of these factors make modeling of satellite motion with 

perturbing accelerations more difficult than simple two-body modeling. It should also be 

noted that although the effects of most of these perturbations can cause undesirable 

behavior in the motion of the satellite (see Chapter 5), there are times when they can be 

utilized to one's benefit (see Chapter 4). 

Regardless of whether they contribute positive or negative effects, the perturbing 

accelerations are one of the main reasons that optimization must be applied to 

astrodynamic applications. Optimization of design and maintenance applications is 

sometimes necessary in the two-body realm, but the addition of time-varying, satellite 

dependent perturbations to this realm complicates the optimization process and increases 

the need for robust optimization tools. 
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2-1-2 Orbital Elements 

Besides having a basic understanding of orbital motion, an ability to describe the 

orbit of a given satellite in understandable terms is also a pre-requisite of attempting to 

optimize these orbits. As the size, shape and orientation of an orbit can vary drastically 

from the size, shape, and orientation of any other orbit, it is necessary to find parameters 

which allow for a complete description of these differences. 

In order to uniquely describe an orbit for a given satellite, six parameters are 

required. The three components of position along with the three components of velocity 

could serve to distinguish the orbit of one satellite from another. However, these 

parameters are difficult to visualize. Instead, six parameters, known as classical or 

Keplerian orbital elements have been defined and are more commonly used to provide a 

descriptive parameterization of an orbit. 

2-1-2-1 Keplerian Orbital Elements 

The first two Keplerian orbital elements are used to define the size and shape of 

an orbit. They are the common geometric terms of semi-major axis and eccentricity as 

described below: 

• Semi-major axis (a): The semi-major axis is a constant used to define the size of the 

orbit. It describes half the distance across the major axis of the orbit as seen in Figure 

2-2. This figure also shows two other orbital values: apogee and perigee. Apogee is 

the point in the orbit furthest from the Earth and perigee is the closest point in the 

orbit to the Earth. These points become important in the definition of some of the 

remaining orbital elements. 
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apogee perigee 

 2a ss major axis  
a = semi-major axis *\ 

Figure 2-2 Semi-Major Axis Depiction 26 

Eccentricity (e): Eccentricity is a constant that defines the shape of the orbit. For a 

circular case eccentricity is defined to be zero. As the orbit becomes more and more 

elliptical, the eccentricity then grows, reaching a value of one for parabolic orbits. 

Hyperbolic orbits are defined to have eccentricities greater than one. An example of 

eccentricities for a variety of conic sections is seen below: 

e = 1.0 -^.^^  hyperbola 
parabola " 

e = 1.4 

Figure 2-3 Sample Eccentricities of the Four Conic Sections27 

26 Sellers, Jerry Jon. Understanding Space: An Introduction to Astronautics, New York, New York: 
McGraw-Hill, Inc., 1994, p. 141. 
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In addition to defining parameters that describe the size and shape of an orbit, it is 

also necessary to describe how that geometric shape is oriented in space. To do this, it is 

first necessary to define a reference frame in which to orient the orbit. For the Keplerian 

orbital elements, the Geocentric-Equatorial coordinate system is used. This reference 

frame is centered at the center of the Earth and the fundamental plane is defined to 

correspond to the Earth's equatorial plane. The principal direction (I) points to the vernal 

equinox direction, the out of plane component (K) is aligned with the North Pole of the 

Earth, and the third direction (J) is simply a result of the cross product of the other two 

directions to create a right handed coordinate system. This coordinate system is 

illustrated in Figure 2-4: 

Figure 2-4 The Geocentric-Equatorial Coordinate System28 

Using the Geocentric-Equatorial reference frame, it is possible to define three 

parameters that uniquely describe the orientation of a given orbit in that frame. These 

three parameters are inclination, longitude of the ascending node, and argument of 

perigee. A brief description of each is provided below: 

27 Sellers, Jerry Jon. Understanding Space: An Introduction to Astronautics, New York, New York: 
McGraw-Hill, Inc., 1994, p. 142. 
^Sellers, Jerry Jon. Understanding Space: An Introduction to Astronautics. New York, New York: 
McGraw-Hill, Inc., 1994, p. 142. 
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• Inclination (i): Inclination is the angle between the out of plane component vector 

(K) and the angular momentum vector (the result of the cross product of position with 

velocity). It is used to describe the "tilt" of the orbit plane with respect to the 

equatorial plane. Its range of values is 0° < i < 180°. 

• Longitude/Right Ascension of the Ascending Node (D): The longitude of the 

ascending node is the angle between the principal direction (I) and the ascending 

node. The ascending node is defined as the location where the satellite crosses from 

the Southern Hemisphere into the Northern Hemisphere. The range of values for Q is 

0° < Q < 360°. 

• Argument of Perigee (GO): The argument of perigee is the angle from the ascending 

node to perigee measured in the direction of satellite motion. Its range of values is 0° 

< to < 360°. 

*tr      eguinox 
direction 

Figure 2-5 Four of the Keplerian Orbital Elements 29 

29 Sellers, Jerry Jon. Understanding Space: An Introduction to Astronautics. New York, New York: 
McGraw-Hill, Inc., 1994, p. 147. 
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Figure 2-5 shows the three orientation orbital elements as well as the final orbital 

element, shown as v. This element is known as true anomaly and is used to define the 

position of the satellite in the orbital plane. It is defined as the angle between the 

argument of perigee and the actual position of the satellite. It should also be noted that 

because of the similarity between v and v (the symbol for velocity), f is sometimes used 

to represent this element. 

For many applications, including this project, it is often useful to define an 

additional element to take the place of true anomaly. The element, M, or Mean Anomaly 

is often used in its place. Mean anomaly is an angular expression of the average angular 

motion of the satellite in the orbit as opposed to a description of its true position. Mean 

anomaly cannot be geometrically defined and therefore cannot be included in a figure 

such as that used to describe the other orbital elements. Instead, the mathematical 

definition must be relied upon as seen below: 

M = ]■£■ (t - T) Equation 2-5 

where: 

x = time since passage of perigee 

2-1-2-2 Equinoctial Orbital Elements 

The Keplerian orbital elements are adequate to describe the majority of orbits. 

However, for some specific cases (i.e. circular and/or equatorial orbits) singularities can 

arise when the Keplerian elements are used. For example, for circular orbits, the distance 

from Earth is constant at all points in the orbit. Therefore the location of perigee is 

undefined. This lack of a properly defined perigee location leads to an inability to define 
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a corresponding argument of perigee or true anomaly for circular orbits. In a similar 

manner, for equatorial orbits whose inclination is 0° (the orbit and equatorial planes 

coincide), an ascending node cannot be defined and therefore, the longitude of ascending 

node also does not exist. 

The singularities that arise from the use of Keplerian orbital elements can lead to 

complications for certain applications, specifically propagation of orbits with small 

art 
inclinations and eccentricities. To overcome this problem, Broucke and Cefola , and 

later the Russians Lidov and Yurasov31 derived the analytical equations required to build 

a propagator entirely in a non-singular element set. This second type of element set is 

known as the equinoctial element set. These elements are not as commonly used, but 

they do avoid the singularities present in circular and/or equatorial orbit element sets. 

The six equinoctial elements and their corresponding mathematical relationships to the 

Keplerian elements are defined as follows: 

a = a 

h = esin(a) + IQ.) 

k = ecos(a>+IQ.) 

p = tan7 'O 
v 1) 

i 

sinfl Equation 2-6 

cosQ 

A = M + 0) + Q 

where I is the retrograde factor which assumes the following values: 

30 Broucke, R. A. and Cefola, P. J., "On The Equinoctial Orbital Elements," Celestial Mechanics, 1972, 5: 
303-310. 
31 Yurasov, V. Universal Semi-analytic Satellite Motion Propagation Method, US/Russian Space 
Surveillance Workshop, Poznan, Poland, 5 July 1996. 
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f 1,       for   0<i<7T 

~[-l,       /or   0<i<x 

If I = 1, the resulting element set is known as the direct equinoctial elements. If 

I = -1, then the element set is known as the retrograde equinoctial elements. This 

formulation was introduced because the direct elements experience a singularity at i = it 

and the retrograde elements experience a singularity at i = 0. 

2-2 Burn Planning Techniques 

Throughout the operational lifetime of a satellite, it is often necessary to change 

the orbital elements in some manner. The reason for these changes can be expected or 

unexpected. For example, when first placed into orbit, a satellite may not end up in the 

exact orbit for which it was designed. To correct this problem, "burns" (short firings of 

on-board rockets) are calculated and executed such that the satellite is repositioned into 

the orbit in which it can carry out the designed mission. 

Unfortunately, a large percentage of on-orbit burns are a direct result of the 

negative effect of the perturbing accelerations described previously. Although, most 

orbits are designed to allow a satellite to perform a certain mission, due to the perturbing 

accelerations, the satellite will often drift from the desired orbit. In order to regain the 

desired state, small burns, known as "station-keeping" maneuvers, must be performed. A 

large portion of this thesis deals with the optimal way to perform these station-keeping 

maneuvers. Therefore, as background, this section contains some basic information 

regarding satellite maneuvers. 
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2-2-1 Fundamental Concepts of Burn Planning 

In order to understand the details of burn planning, it is first necessary that one 

understand two very fundamental concepts: how burns are compared/measured and how 

to calculate these comparisons. The details of these two concepts are summarized in the 

following two sections. 

2-2-1-1 Delta-V 

A fundamental concept of satellite burn planning is that of delta-v or AV. For 

satellites, the amount of fuel that is required to complete a maneuver is directly 

proportional to the change in velocity required to complete that maneuver as shown in the 

rocket equation, below. Therefore, rather than dealing with amounts and equations 

related to fuel calculations, burn planners simply keep track of the required change in 

velocity. A solution which gives the smallest required velocity change (and hence the 

smallest AV) will also be the solution which requires the least amount of fuel. 

AV = cln 
( \ 

minitial 

y™ final  j 

Equation 2-7 

where: 

AV = velocity change (m/s) 

c = effective exhaust velocity (m/s) 

minitial = initial mass of vehicle before firing rocket (kg) 

nifinai = final mass of vehicle after firing rocket (kg) 
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2-2-1-2 Vis-Viva Integral 

Because ÄV is a fundamental concept in the burn planning process, the ability to 

calculate changes in velocity between various orbits is essential. Battin and others have 

shown how this can be done using the concept of specific energy along with the 

eccentricity vector.32 The basic concept behind this derivation is that the specific energy 

(e) of an orbiting body can be expressed as a function of the gravitational constant and 

the semi-major axis as follows: 

E- JL Equation 2-8 
2a 

Additionally, the specific potential and kinetic energies of a satellite can be 

summed to yield a second relationship for the energy, which is a function of the desired 

quantity: velocity. 

2 

£ = -—t. Equation 2-9 
2     r 

A combination of equations 2-7 and 2-8, followed by some algebraic 

manipulation, yields an expression that can be easily solved for velocity. This expression 

is known as the vis-viva integral and proves useful in maneuver planning calculations. 

v*=f, 1.11 
\r aJ 

Equation 2-10 

32 Battin, Richard H. An Introduction to the Mathematics and Methods of Astrodynamics, New York, New 
York: American Institute of Aeronautics and Astronautics, 1987, p. 116. 
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2-2-2 Hohmann Transfer 

One of the most basic satellite maneuvers is the Hohmann transfer. This is a 

transfer between two coplanar orbits whose major axes are aligned. In 1925, Hohmann 

recognized that the smallest AV for this type of transfer is achieved by using a doubly 

tangent transfer ellipse.33 In an effort to provide equations representative of maneuver 

calculations, a typical Hohmann transfer is detailed below. 

Figure 2-6 Typical Hohmann Transfer .34 

Figure 2-6 displays a typical Hohmann transfer. A satellite is initially assumed to 

be in orbit one (with radius rO and it is desired to move the satellite to orbit two (with 

radius r2). For a Hohmann transfer, this change of orbit is accomplished via the elliptic 

transfer orbit whose perigee is tangent to orbit one and whose apogee is tangent to orbit 

33 Bate, Roger R., Donald D. Mueller, and Jerry E. White. Fundamentals of Astrodynamics, New York, 
New York: Dover Publications, Inc., 1971, p. 163. 
34 Bate, Roger R., Donald D. Mueller, and Jerry E. White. Fundamentals of Astrodynamics, New York, 
New York: Dover Publications, Inc., 1971, p. 164. 
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two. The calculations involved in determining the total AV for this transfer are outlined 

below. 

Step I. Find the AV required to enter the transfer orbit from orbit one: 

A. Find the velocity in orbit one 

v0=J2 M + £. orbit _1 
'ß   ß^ J! = l2£—Z-=J£- Equation2-ll 

B. Find the velocity in the transfer orbit at point of tangency with orbit one 

vi=,2 transfer _ orbit =   2 
rM       r   ^ 

ri     rx+h 
Equation 2-12 

C. Find the velocity difference between the two orbits 

Equation 2-13 

Step II. Find the AV required to exit the transfer orbit and remain in orbit two 

A. Find the velocity in the transfer orbit at point of tangency with orbit two 

V2=J2 transfer _ orbit =   2 ß 
r2     r, + r2 

B. Find the velocity in orbit two 

vf=J2 ß — + £. orbit _ 2 =   2 'ß     ß^ 
r,    2r, 

Equation 2-14 

Equation 2-15 

C. Find the velocity difference between the two orbits. 

AV2 = K~V2 Equation 2-16 

Step HI. Find the total AV for the complete Hohmann transfer 

WHohnann=AV1+AV2 Equation 2-17 
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2-2-3 Gauss' Variational Equations 

At times, circumstances arise which require certain elements of an orbit to be 

changed in a manner which cannot be accomplished by a Hohmann or any other 

predefined transfer sequence. In order to change certain elements without varying others, 

it is often useful to rely on a set of equations known as the Gauss Variational Equations. 

These equations represent the variation in the orbital elements as a function of the 

disturbing accelerations. The derivation of these equations is presented in Battin , and 

the resulting variation of each element with respect to disturbing accelerations is 

presented below. 

da    2a2 v 
 a,, 

dt       p 

de__\_ 
dt    v 

di _ rcosd 

dt        h 
dQ _ rcosO 
dt      hsini 

dco _  1 

dt     ev 

2(e + cosf)adt sin/ adn 

Ka        )    ■ 

ldh 

idh 

dM 

dt 

(2sin f)adl + 

b 

( \ 
2e-\—cos/ 

a 
a dn 

)       J 

r sin 6 cos/ 

= n — 
eav 

1 +  2 
) 

(r 
sin/ pdl + -cos/ 

hsini 
■a dh 

dn 

where: 

6 = argument of latitude = co+f 

p = parameter of the orbit = a(l-e2) 

b = semi-minor axis = J\a\ ■ p 

Equation 2-18 
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n = mean motion = J-^j 

h = magnitude of the angular momentum vector 

It should be noted that these equations are written in the tangential-normal 

coordinate frame. To define this frame, let ajt be the component of the disturbing 

acceleration in the plane of the orbit along the velocity vector. The second component, aah 

is then defined as the out of plane component of the acceleration in the direction of the 

angular momentum vector (h). Finally, adn is the component of the disturbing 

acceleration in the plane of the orbit, but perpendicular to the velocity and angular 

momentum vectors. 

In order that the Gauss Variational Equations are useful in terms of AV analysis, it 

is also necessary to realize the relationship between acceleration and velocity as seen 

below: 

tv-a-bt Equation 2-19 

By substituting this relationship (equation 2-19) into the variational equations, it 

is possible to use these variational equations in burn planning. For example, if it is 

desirable to change the eccentricity of the orbit, without changing the semi-major axis, it 

is easily seen from the variational equations that this can be done by a burn which is 

completely in the n (perpendicular to the velocity in the orbit plane) direction. Or, on the 

other hand, given a burn, with only out of plane components, the variational equations 

35 Battin, Richard H. An Introduction to the Mathematics and Methods of Astrodynamics, New York, New 
York: American Institute of Aeronautics and Astronautics, 1987, p. 488. 

58 



can be used to show that the only effect of this burn will be to change the ascending node, 

the inclination, and the argument of perigee. 

2-3 Satellite Propagation Techniques 

Inherent to the field of astrodynamics is the desire to successfully determine the 

future position and velocity of an orbiting body. If the real world were as easy to model 

and describe as it is assumed to be in the derivation of the two-body problem, finding the 

future state of a satellite would be a simple matter of solving equation 2-3. However, as 

discussed previously, many of the assumptions made to obtain the equations of motion 

for the two-body problem are not valid. In actuality, forces other than the point-mass 

modeled Earth's gravity act on the satellite, sometimes in an unpredictable manner. 

These other forces are known as perturbations and it is their presence that makes the 

determination of future orbit states difficult. 

However, although accurate orbit propagation in the presence of a number of 

perturbations is more difficult than one might originally assume, a number of methods 

have been developed which incorporate the effect of the perturbing forces in predicting 

future motion of satellites. These methods can be broken into three main categories: 

General Perturbation Techniques, Special Perturbation Techniques, and Semi-Analytical 

Techniques. Each will be discussed briefly below. For a more detailed explanation the 

reader is referred to one of the astrodynamic sources described previously in section 2-1. 

2-3-1 General Perturbation Techniques 

General perturbation techniques are also known as analytical techniques. The 

basis of these methods is an analytic integration of the perturbing accelerations.  These 
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methods replace the original equations of motion with an analytical approximation that 

captures the essential character of the motion over some limited time interval. Most 

often, the expression for the perturbing accelerations takes the form of a truncated series 

expansion. 

The general perturbation technique has both advantages and disadvantages. First, 

by expressing the equations of motion analytically, a solution is obtained which is valid 

for any set of initial conditions. Other methods are often very specialized in their 

development and are only valid for only one set of initial conditions. And, although 

expressing the perturbing accelerations analytically can be a difficult and lengthy process, 

it leads to a better understanding of the source of the perturbation. 

2-3-2 Special Perturbation Techniques 

Unlike general perturbation techniques, special perturbation techniques rely very 

little on analytical information and instead, rely upon the ability to integrate the equations 

of motion, including all necessary perturbing accelerations, numerically. However, 

because of their reliance on numerical integration, they suffer from specificity. Applying 

the solution obtained for one problem to a similar, but slightly different problem is a non- 

trivial process. For most applications, all of the computations must be re-evaluated for 

each case, adding additional time to the solution technique. 

One of the most often used special perturbation techniques is the Cowell method. 

This method was developed by P.H. Cowell in the early 20th century and was used to 

determine the orbit of the eighth satellite of Jupiter.36 Since that time, Cowell's method 

36 Bate, Roger R., Donald D. Mueller, and Jerry E. White. Fundamentals of Astrodynamics, New York, 
New York: Dover Publications, Inc., 1971, p. 387. 
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has become increasingly popular due to the increase in speed and capacity of computers 

which makes numerical integration a more feasible solution path. 

The basis of Cowell's method is to rewrite the two-body equation of motion with 

the perturbing accelerations included. 

P + -^r=äperlurbed Equation 2-20 

The specific form of the perturbing accelerations on the right side of this equation 

depends upon the number and type of perturbations to be included. However, after 

successful inclusion of the perturbations into Equation 2-19, the propagation of the 

satellite then becomes a simple matter of numerically integrating a differential equation. 

Unfortunately, although this method is fairly straightforward and can be extremely 

accurate, it can also take large amounts of computing time. 

2-3-3 Semi-Analytical Techniques 

Semi-analytical techniques were designed to combine the best features of the 

general perturbation techniques with the best features of the special perturbation 

techniques. This combination was done in an attempt to get an optimal mix of the 

accuracy of special perturbation techniques with the efficiency of the general perturbation 

techniques. This section contains a brief description of semi-analytical methods, as well 

as an overview of the semi-analytical orbit propagator used in the completion of this 

study: the Draper Semianalytic Satellite Theory (DSST) Standalone Orbit Propagator. 
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2-3-3-1 Semi-Analytical Technique Description 

The basis for semi-analytical methods lies in the de-coupling of the satellite 

equations of motion into two parts: one part which contains the secular and long periodic 

effects (see Figure 2-1) and one part which contains only the short periodic effects. This 

de-coupling is accomplished through a process known as the Generalized Method of 

Averaging or GMA (see Figure 2-7). GMA can be applied both through analytic and 

numerical methods. 

Regardless of the method used for the separation, the advantage of semi-analytical 

methods lies in the separation of the perturbing effects. By removing all high frequency 

terms from the secular and long period components, the step size for integration of these 

components can be lengthened to equal the period of the shortest long period effect. In 

practice this step size is several orders of magnitude larger than that required, should the 

de-coupling not be accomplished. The short periodic variations are then solved for and 

added to the mean elements at the request times to produce the desired element history. 

For the specific details of this is process, the interested reader is referred to Wayne 

McClain's A Semianalytic Artificial Satellite Theory: Vol. 1: Application of the 

Generalized Method of Averaging to the Artificial Satellite Program.37 

37 Privately published, 1992. Copy available from author. 
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Figure 2-7 The Generalized Method of Averaging 38 

2-3-3-2 Draper Semi-Analytic Satellite Theory Standalone Orbit Propagator 

By taking advantage of the benefits of semi-analytical methods, members of the 

staff at the Charles Stark Draper Laboratory and others have developed a highly accurate 

orbit propagator known as DSST (for a complete history of this propagator see Neelon, 

59)39. A 1995 study conducted by Barker, Casali, and Wallner of the Kaman Sciences 

Corporation compared the accuracy and run times of this DSST propagator with several 

other propagation theories. The study concluded that of all the propagators considered, 

DSST contained the most complete perturbation models, and thus produced the most 

38 Fischer, Jack D. The Evolution of Highly Eccentric Orbits, CSDL-T-1310, Master of Science Thesis, 
Massachusetts Institute of Technology, Cambridge, Massachusetts, June 1998, p. 80. 
39 Neelon, Joseph G., Jr. Orbit Determination for Medium Altitude Eccentric Orbits Using GPS 
Measurements, CSDL-T-1330. Master of Science Thesis, Massachusetts Institute of Technology, 
Cambridge, Massachusetts, February, 1999, p. 59. 
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accurate results for four different types of orbits studied.40 As this thesis relied heavily 

upon orbit propagation, and since accuracy was a desirable element of the optimizations 

to be performed, DSST was chosen as the propagator for all simulations contained within 

this study. 

Due to the reliance of this work upon DSST, it is imperative that the current 

models that make up the DSST package be outlined41. In the DSST package, the secular 

and long period effects are computed through the mean equations of motion. The 

perturbations included in this computation include: 

• Central-body gravitational spherical harmonics of arbitrary degree and order 

(zonals and tesseral resonance) based on the 50 x 50 geo-potential 

• J22 second order effect. An explicit analytical expression, truncated to the first 

power of the satellite eccentricity, is used for the mean element rates of 

change. 

• Third-body point mass effects (both single and double averaging theories) 

• Atmospheric drag with .^/drag coupling. Jacchia-Roberts, Harris Priester, and 

MSISE-90 atmospheric density models are available. 

• Solar radiation pressure with eclipsing 

• Integration Coordinate System based on the FK4 (B 1950.0) and FK5 

(J2000.0) coordinate frames 

• Solar and lunar solid Earth tides 

40 Barker, W. N., S. J. Casali and R. N. Wallner. The Accuracy of General Perturbation and Semianalytic 
Satellite Ephemeris Theories, AAS Paper 95-432, AAS/AIAA Astrodynamics Specialist Conference, 
Halifax, Nova Scotia, August 1995. 

64 



The short-period variations are calculated separately and include the following 

perturbations: 

• Central-body gravitational zonal harmonics of arbitrary degree based on the 

50 x 50 geo-potential 

• Central-body gravitational m-daily sectoral and tesseral harmonics of arbitrary 

degree and order based on the 50 x 50 geo-potential 

• Central-body gravitational high-frequency sectoral and tesseral harmonics of 

arbitrary degree and order based on the 50 x 50 geo-potential 

• J2
2 and J2/m-daily second order short-periodic variations 

• Third-body   point   mass   effects   [both   single   (including   Weak   Time 

Dependence) and double averaging theories] 

• Atmospheric drag 

• Solar radiation pressure 

2-4 Parallel Processing 

The process of optimizing satellite constellations is one that can become 

extremely computationally intensive. For some of the applications in this study, it was 

necessary to use DSST to propagate a satellite's orbit forward in time 90 days more than 

150,000 times. In order to reduce the computation time required for completion of these 

intensive optimization applications, parallel processing was implemented. 

41 Neelon, J., P. Cefola, and R. Proulx. "Current Development of the Draper Semi-Analytical Satellite 
Theory Standalone Orbit Propagator Package," Advances in the Astronautical Sciences, Volume 97 Part II, 
American Astronautical Society, 1998, p. 2037-2051. 
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2-4-1 Parallel Processing Description 

The concept behind parallel processing is to use a group of processors to work 

simultaneously on different parts of the same problem as opposed to having one 

processor perform all calculations sequentially. By implementing a solution process in 

this manner, the time required to complete a computationally intensive simulation can be 

drastically reduced. 

One of the most common parallel processing configurations, and the one used 

throughout this study, is known as the master-slave configuration. Under this 

arrangement, one process is designated as the master process. This master process then 

creates other processes, assigns these processes tasks, and monitors their progress. The 

slaves, in turn, perform the calculations required to complete their assigned task and 

return that information to the master. As a result of many slaves working on a variety of 

tasks, the overall computation load on a single processor is greatly reduced. 

2-4-2 Message Passing Interface (MPI) 

One of the limiting factors of parallel processing is the communication between 

the multiple processors. As the concepts of parallel processing developed, many 

significant applications were modeled into the parallel-programming paradigm. 

However, a different vendor created each application and these different vendors 

implemented their own variant of the parallel-programming paradigm. Over time, the 

importance of having a standardized method for implementing parallel processing into 

applications was recognized and the Message Passing Interface (MPI) effort was begun. 
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The goal of MPI is simply to develop a widely used standard for writing message- 

passing programs.42 MPI is not, itself, an application, but rather a standard that has been 

defined for use in the development of message passing applications. By having an 

established standard message passing applications become much more portable and 

increase in ease of use. Furthermore, the definition of a message passing standard 

provides vendors with a clearly defined base set of routines that they can implement 

efficiently. 

2-4-2-1 History of MPI43 

The development of the MPI standard involved about 60 people from 40 

organizations including most of the major parallel-processing vendors, as well as 

researchers from universities, government laboratories, and industry. The standardization 

effort was originally begun at the Workshop on Standards for Message Passing in a 

Distributed Memory Environment sponsored by the Center for Research on Parallel 

Computing, held April 29-30, 1992, in Williamsburg, Virginia. At this workshop, the 

basic features essential to a standard message-passing interface were discussed and a 

working group was established to continue the process. 

Dongarra, Hempel, Hey, and Walker put forth the first preliminary draft, known 

as MPI-1 a few months after this workshop in November of 1992. Although not fully 

completed until February of 1993, the MPI-1 document embodied the main features that 

were identified at the Williamsburg workshop and was successful in its intent to promote 

interest in the area of standardization.   In November of 1992, a meeting of the MPI 

42 Snir, Marc, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra. MPI: The Complete 
Reference, Cambridge, Massachusetts: The MIT Press, 1996, p. 3. 
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working group was held in Minneapolis, Minnesota. At this meeting, the Message 

Passing Interface Forum (MPIF) was formalized and a goal of producing a draft MPI 

standard by the fall of 1993 was set. This goal was eventually met and the draft MPI 

standard was presented at the Supercomputing 93 conference in November of 1993. 

Following the 1993 conference, the Version 1.0 of the standard was released on May 5, 

1994. 

Beginning in March of 1995, the MPIF reconvened to correct errors and make 

clarifications to the Version 1.0 document. Version 1.1 that contained some minor 

changes was subsequently released in June of 1995. MPI-2 meetings began in April of 

1995 and met every six weeks until April of 1997. In April of 1997, the MPI-2 document 

was unanimously accepted. 

2-4-2-2 MPI Implementations and MPICH 

After the MPI standard had been defined, a number of groups, both commercial 

and educational, began procedures to develop applications that implemented the MPI 

standard into working code. At the current time, more than thirteen such 

implementations have been developed for a variety of platforms (see http://www- 

unix.mcs.anl.gov/mpi/implementations.html). 

One such implementation is known as MPICH. This is a portable implementation 

of the full MPI specification for a wide variety of parallel-computing environments. The 

Argonne National Laboratory and Mississippi State University developed MPICH with 

the intent of promoting the adoption of the MPI Standard by providing users with a free, 

high-performance implementation on a diversity of platforms.   The software is freely 

43 Hebert, Shane. Message Passing Interface (MPI) FAQ, Obtained online at 
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available    and    can    be    downloaded    at    the    MPICH    official    web    site: 

http://www.mcs.anl.gov/mpi/mpich/download.html. 

The specific details of how to implement and use MPICH to perform parallel 

applications are too involved to enumerate in this thesis. Rather, the interested reader is 

referred to the User's Guide for mpich, a Portable Implementation of MPI by William 

Gropp and Ewing Lusk.44 

http://www.erc.msstate.edu/mpi/mpi-faq.html on April 10, 1999. 
44 Mathematics and Computer Science Division, Argonne National Laboratory, ANL-96/6, 1996. 
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Chapter 3 Optimization Theories and Techniques 

In addition to a general knowledge of the fundamental concepts of astrodynamics, 

a general knowledge of the fundamental concepts of optimization is also essential to an 

understanding of the applications and results presented in this thesis. In an effort to 

impart such an understanding, this chapter contains a discussion of a number of 

optimization techniques that were essential to this work. 

3-1 Optimization Terms and Fundamentals 

Prior to a detailed description of the specific optimization techniques used, it is 

first necessary to define some terms that are common to all optimization techniques. This 

section attempts to enumerate such terms. 

• State Variables 

The state variables are variables that are used to describe the condition of the system 

at a given time. Throughout this work they will typically be labeled xi, x2,.. .xn. 

• Control Variables 

The control variables are those variables that can be modified and which, when 

changed, will effect a corresponding change in the system. These are usually the 

variables for which one is attempting to solve. They are typically labeled ui, U2, 

...um. 
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• Performance Measure or Objective Function 

The most fundamental part of an optimization problem is the objective function or 

performance measure. The objective function is the mathematical representation of 

the performance value one is trying to optimize, expressed as a combination of the 

state and control variables. Throughout this work, the objective function will be 

referenced as J. 

• Constraints 

Restrictions on the values that the variables or objective function can take are called 

constraints. 

It should be noted that the definitions presented above are for a certain class of 

optimization problems known as optimal control problems. There is a second class of 

simpler optimization problems in which the control variables are not present. In this 

case, the variables defined as the state variables become the variables to be optimized. 

3-2 Analytical Optimization Theories 

As the ability to find the optimal solution to a given problem is a highly desirable 

skill, the process that would allow one to do so has been studied for many years. The 

result of those years of study is a number of optimization techniques that can be applied 

to a variety of problems and yield the optimal solutions. These techniques can be broken 

into two different classifications: analytical optimization techniques and numerical 

optimization techniques. A number of examples of each of the techniques are presented 

in the following sections. This section presents concepts and examples relating to 

specific analytical techniques. A section detailing the concepts and theories relating to a 

variety of numerical optimization methods then follows this presentation. 
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3-2-1 Calculus Concepts 

One of the most common analytical techniques is simply the application of 

calculus to optimization problems. This technique does not work for optimal control 

problems, but as it is the basis for most other techniques, it is presented briefly. 

Given a function f(x), in order to find a maxima or minima of that function, it can 

easily be shown that a requirement for optimality is that the slope of f(x), evaluated at 

point x, must be equal to zero. This is best seen by contradiction and study of the cases 

where the derivative is not zero. If, for example, the first derivative of f(x) is positive 

(df/dx > 0), a small positive change in x will lead to a larger f(x) value, eliminating the 

possibility that x is a maximizing value. In a similar manner, a small negative change in 

x will lead to a smaller f(x) value, thereby eliminating the possibility that x is a 

minimizing value. The only way for x to be a minimizing value is for the slope to be 

zero. A similar result can be obtained when the first derivative of f(x) is negative. 

Therefore, a first requirement for optimality of x relative to f(x) is that the first derivative 

be equal to zero. This condition can be summarized as follows: 

df(x) = 0 Equation 3-1 
dx 

If the first condition is met, it is also possible to determine whether the given 

solution is a minima or a maxima by using the second derivative. Although the proof is 

slightly more detailed (and therefore not included here), it can be shown that if the second 

derivative of f(x) with respect to x is positive when evaluated at point x, the value of f(x) 

at point x is a minima. On the other hand, if the second derivative is negative when 

evaluated at point x, the value of f(x) at point x is a maxima. 
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3-2-1-1 Functions of More than One Variable 

The logic presented above in section 3-2-1 is also valid for functions that have 

more than one variable as an argument. However, the calculus for higher order problems 

changes slightly and this results in corresponding changes to the conditions listed above. 

The necessary condition for a maxima or minima for a function of two variables resulting 

from the change in problem order is listed below: 

fr=0 1
 Equation 3-2 

6x2 

It becomes much more challenging to find a condition which allows one to 

definitively say whether or not the point (xi, x2) is a maximizing or minimizing value 

when more than one variable is involved. Although the logic is the same, the math 

involved is more complicated. Therefore, the details are avoided here and only the 

resulting sufficient conditions are presented. These conditions can be summarized as 

follows: 

Point (xi, x2) is a relative maximum if: 

-/- < 0 and ^r-rrr- > v^T- Equation 3-3 
9 JC] d xx d x2     dxxdx2 

Point (xi, x2) is a relative minimum if: 

i!/ > 0 and ^-L^±- > -^- Equation 3-4 
d *i ö xx d x2     dx1dx2 

Point (xi, x2) a point of inflection or saddle point if: 
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d2/ d2/ <   d'f Equation 3-5 
d2xx d2x2     dx1dx2 

3-2-1-2 Lagrange Multipliers 

Situations may also occur in which a function f depends upon variables which are 

not independent, but are related by one or more constraint conditions (i.e. xi + x2 = a). A 

concept developed by Lagrange becomes useful in this situation. The basis of this 

method is to introduce one new variable (k) for each constraint condition which must be 

met. The introduction of these new variables allows for the formation of an entirely new 

objective function that can be created as follows: 

J(x1,x2,..an)^f(xl,x2...xn) + Ä1g1(xi,x2...xn) + Ä2g2(x1,x2...xn) + ...Ämgm(x1,x2...xn) 

Equation 3-6 

where: 

n = number of state variables 

m = number of constraints 

g(xi,X2,.. .xn) = constraint function 

The function J is known as the adjoined objective function. After it has been 

formed, necessary conditions similar to those defined in section 3-2-1-1 can then be 

applied. The result of this application will be n equations and n + m unknowns. 

However, the m constraint functions can be used which results in a system of n + m 

equations and n + m unknowns. This system can then be solved for the variables in 

question as well as the newly introduced Lagrange multiplier values. 

75 



3-2-2 Variational Calculus 

The calculus methods defined in the previous sections work well for functions of 

single or even multiple variables. However, situations often arise, specifically in the field 

of optimal control, in which the object to be optimized is not a set of variables, but rather 

a set of functions. For example, rather than finding the optimal input into a system at a 

given time, one might wish to find the optimal control input over an entire length of time. 

This modification to the desired result causes the objective function to become, in 

essence, a function of a function, or what is termed a functional. To handle problems of 

this sort, variational calculus has been developed. 

Variational calculus is actually one of the oldest means of solving optimization 

problems. However, although its history dates back to the ancient Greeks, it was not until 

the 17th century that Sir Isaac Newton was able to make any substantial progress. Using 

principles of variational calculus, he was able to determine the shape of a body moving in 

air that encounters the least resistance.45 Another infamous problem in the area of 

calculus of variations is known as the brachistochrone problem. This problem is to find 

the shape of a wire that causes a bead, under the influence of gravity, to move from point 

A to point B in minimum time. This problem was first posed by Johann Bernoulli in 

1696 and the solution, a cycloid lying in the vertical plane, is credited to Johann 

Bernoulli, Newton, and L'Hospital.46 

45 Kirk, Donald E. Optimal Control Theory: An Introduction, Englewood Cliffs, New Jersey: Prentice Hall, 
Inc., 1970, p. 107. 
46 Kirk, Donald E. Optimal Control Theory: An Introduction, Englewood Cliffs, New Jersey: Prentice Hall, 
Inc., 1970, p. 107. 
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To understand the principles behind the calculus of variations, it is useful to look 

at a simple variational problem.  To analyze a simple problem, an objective functional 

must first be defined. This is done as follows: 

'/ 
J(x) = jg(x(t),m,t))it Equation 3-7 

'o 

The notation used in the definition of the objective functional can be explained as 

follows. J(x) means that J is a functional of the function x. On the other hand, g is a 

function that assigns a real number to the point (x(t),x(t),t)). It is assumed that g has 

continuous first and second partial derivatives with respect to all of its arguments and that 

to and tf are fixed. 

If the objective were a simple function, as opposed to a functional, the next step 

would be simply to take the partial derivatives of J with respect to all of the variables and 

set them equal to zero as described previously in section 3-2-1-1. Despite the change 

from a function to a functional, finding the first derivatives is essentially what still must 

be done. However, since the variables in question are functions as opposed to variables, 

this process is termed finding the first variation of the functional as opposed to the first 

derivative. The first variation of J for the objective function presented above is: 

SJ = f f ^-&c + ^-a\t Equation 3-8 
J\dx        dx     ) 

Note that there are not any variations with respect to to or tf since they were 

specified to be fixed. In the more general case, they would also add a contribution to the 

first variation of J. 
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If the two variations 8x and <5bc were completely independent, the corresponding 

coefficients of each variation could simply be set to zero and the necessary conditions for 

a maximum or minimum would have been derived. However, since both 8x and 6x are 

closely coupled variations, one of the terms must be rewritten in terms of the other. This 

can be done through integration by parts as detailed below: 

'\h.s*3*.d8lJh.& 
i dx 1 ox [ dx "-wr 

<o       'o 

Equation 3-9 

Since there are not any variations associated with tf or to the first term of the 

integration by parts reduces to zero. The second term can then be substituted back into 

Equation 3-8 to yield the following modified equation of the first variation of J: 

SJ-\ 
dx    dt dx 

3xdt Equation 3-10 

Now, because there are not any constraints on 8x, the only way that 8J can be 

equal to zero (and hence, an extreme value) is if the coefficient of 8x is equal to zero. 

Setting the coefficient equal to zero results in the first necessary condition for an extreme 

value, also known as the Euler-Lagrange equation: 

dx    dt dx 
0 Equation 3-11 

Since the Euler-Lagrange equation is a nonlinear, ordinary, time varying, second 

order-differential equation, it is typically difficult to solve. It does, however, provide a 

necessary condition that must be met for a solution to be considered optimal. For the 

objective function presented in this section, it was assumed that the initial and final times 
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as well as the initial and final states were fixed. It can be proven however, that regardless 

of the boundary conditions, the Euler-Lagrange equation must always be satisfied. 

Although the addition of degrees of freedom into the boundary conditions does 

not change the Euler-Lagrange equation, it does introduce additional necessary 

conditions into the solution process. However, unlike the Euler Lagrange equation that is 

constant between cases, these additional conditions vary, depending upon the case being 

studied. As the intent of this chapter is to provide a brief overview of a number of 

optimization techniques, the specific equations that result from each variation of the 

above problem are not presented. The results from the varying cases have been 

computed by a number of authors and can be found in a number of textbooks dealing 

with the subject. 

3-2-2-1 Functionals of More than One Function 

In a manner similar to that of 3-2-1-1, situations may arise where it is desirable to 

maximize or minimize a functional that depends upon several independent functions. 

The problem studied above would now be written as follows: 

'/ 
J(Xl,x2,...xn) = Jsfa(*)...,*„(O.JiCOv..,*,,(0,0)* Equation 3-12 

'o 

The preceding equation can also be written using vector notation that greatly 

simplifies future equations. This is done below: 

'/ 
J(x) - Ig(x(t),x(t),t))it Equation 3-13 

47 Kirk, Donald E. Optimal Control Theory: An Introduction, Englewood Cliffs, New Jersey: Prentice Hall, 
Inc., 1970, p. 131. 
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Using this form of the objective function and vector algebra that parallels the 

derivation from the previous section, the matrix representation of the Euler-Lagrange 

equation can be produced: 

dx    dt 
= [o] Equation 3-14 

dx _ 

Again, this equation becomes a necessary condition for all problems regardless of 

boundary conditions.   However, the additional conditions that must be met are very 

dependent upon boundary conditions.   Kirk has developed a table that summarizes the 

majority of these cases. 

3-2-2-2 Variational Approach to Optimal Control Problems 

As was the case with general problems that could be solved through the 

application of calculus, the theory of calculus of variations as explained above is useful, 

but it would be even more useful if problems that are constrained in some manner could 

be solved using this technique. In fact, the solution process for constrained variational 

calculus problems is very similar to the Lagrange multiplier method used in non- 

variational calculus problems. This section briefly outlines the method. 

3-2-2-2-1 Theory Description 

The distinguishing factor between optimal control and simple variational calculus 

problems is the introduction of constraints, specifically state constraints. The functions 

for which one is attempting to solve are no longer arbitrary. Instead the states are usually 

constrained in the following manner: 

48 Kirk, Donald E. Optimal Control Theory: An Introduction, Englewood Cliffs, New Jersey: Prentice Hall, 
Inc., 1970, p. 151. 
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x(t) = a(x(t),u(t),t) Equation 3-15 

The objective then becomes to find the control vector (u) that minimizes some 

function J, and produces a state history (x(t)) that satisfies the state constraints detailed 

above. For this derivation, J will be given the following form: 

'/ 
J(u) = h(x(tf ),tf) + J g(x(t),ü(t),tj)dt Equation 3-16 

'o 

The only difference between this objective function and the functionals 

considered in section 3-2-2 is the term involving the final states and final time. 

Previously, it was assumed that the final state was fixed. For this application, the final 

state has become a measurable quantity in the objective function. The initial state and 

time, however, are still considered to be fixed values. 

At this point the process necessary to solve this problem parallels the process used 

to solve simple functions with constraints. Lagrange multipliers must be introduced and 

the first variation must be taken and set equal to zero. Through this process, necessary 

conditions for an extremal to this problem can be found. 

The augmented objective function is defined as follows: 

'/ _ 
7(w) = h(x(tf)Jf) + j[g^(t\ü(t),t))+Mt)T^(x(t)Mt)J)-x(t)^       Equation 3-17 

By defining a new function known as the Hamiltonian and applying the calculus 

of variations, the first variation can then be found. The Hamiltonian (H) and the first 

variation 8Ja are listed below: 
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H{x{t),ü{t),X{t),t)= g(x(t),ü(t),t)+A(t)Tä(x(t),ü(t),t) Equation 3-18 

J 

^(x(tf),tf)-Ä(tf)
T 

+ 

Sxf + 

_   dH ( T 

H (x(t), ü(t), Ä(t), t)+—(x(tf ),tf) 
dt 

dt, 

— + i(t)T I• S(t)x + ^r(jc(0,ü(t),X(0,0-<5«(0 + Äl(0r(fl(3c(0."(0,o-*(o)k 

Equation 3-19 

The first variation must vanish over the entire integral regardless of the boundary 

conditions, in order for the solution to be considered optimal.  In order to vanish for all 

possible 8's, all of the coefficients on those 8's must go to zero.   This results in the 

following conditions, all of which are necessary for optimality. 

State Equations 

By setting the coefficients of the 8A, vector equal to zero, the original state equation 

constraints are recovered. 

(fl(3c(r),« (0.0 - Jc(0)= 0 Equation 3-20 

Co-state Equations 

In a similar manner, setting the coefficients of the 8x vector equal to zero gives a 

differential equation relationship for the X vector. As this X vector is often termed the 

co-state, this equation is also known as the co-state equation. 

A(t)=-—(x(t),mMt),t) 
ox 

Equation 3-21 
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• Control Condition 

In order for the 8u term to vanish, the following constraint on the control must be 

met: 

Z—\x(t),ü(t),A(t),t)= 0 Equation 3-22 
du 

• Transversality Condition 

The transversality condition arises in problems in which the terminal time is not fixed 

(such as this one). It is found by setting the 8tf coefficient to zero: 

H(x(t),u(t)J(t),t)+-^-(x(tf),tf)=0 Equation 3-23 
dt 

• Terminal Constraints 

The final condition is a direct result of the need for an adequate number of boundary 

conditions to make the problem solvable. Because the terminal state vector was 

allowed to vary, a condition has arisen in which the final components of the co-state 

vector are specified. If only portions of the state vector components are specified, the 

following relationship must hold for all of the components that are not specified. 

M*f) = Ir(x(tf),tf) Equation 3-24 
ox 

• Initial Conditions 

Although not a result of the derivation, it is also important to remember the fact that 

the initial conditions were specified as follows: 

x(t0) = *o Equation 3-25 

The result of this section is a set of 2n+m+l equations that can be used to solve 

for 2n+m+l variables as summarized in Table 3-1 
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Table 3-1 Variable and Condition Summary for Optimal Control Problems 

Variable to Be Solved For Number Corresponding Condition Number 
Constants of Integration from 
State Equation 

n Initial Conditions n 

Constants of Integration from 
the Co-state Equation 

n Terminal Constraints n 

Control Elements m Control Condition m 
Terminal Time 1 Transversality Condition 1 

3-2-2-2-2 Primer Vector Theory: An Application of Optimal Control Techniques 

The application of optimal control techniques to this thesis can be seen in the 

development of primer vector theory. Lawden first developed this theory in 1963 in his 

book Optimal Trajectories for Space Navigation.49 In this work, Lawden used variational 

calculus techniques to find "the trajectory a rocket must follow if it is to accomplish some 

specified mission in an optimal manner as judged against some criterion of a quantitative 

nature."50 One of his most important contributions was the development of four 

necessary conditions that must be met for the solution to an impulsive rendezvous 

problem to be optimal. 

Through application of these conditions, Shah developed an optimization 

algorithm known as the Automated Station-Keeping Simulator (ASKS) which he used to 

compute optimal fuel budgets for the Ellipso™ Borealis sub-constellation.51 This work 

becomes of interest to the present study as a similar problem is studied in Chapter 5. So 

that the reader might have a background to Shah's work, a brief derivation of the primer 

vector theory and the four Lawden conditions are presented here. 

49 Washington, D.C.: Butterworth, Inc., 1963. 
50 Lawden, D. F. Optimal Trajectories for Space Navigation, Washington, D.C.: Butterworth, 1963, p. 3. 
51 Shah, Naresh, H. Automated Station-Keeping for Satellite Constellations, CSDL-T-1288, Master of 
Science Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, June 1997. 
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The equations of motion for a satellite are described by 

R = V 

V = i—l + G Equation 3-26 
m 

m = ß 

where: 

R = the position vector 

V = the velocity vector 

G = the gravity vector, 

£ = the direction cosine vector of the thrust 

ß = the mass flow rate 

c = the characteristic velocity 

m = the mass of the satellite. 

The corresponding constraints on the direction cosine vector and mass flow rate are: 

£T£ = 1 
. Equation 3-27 

ß{ßBm-ß)=cx2>0 

where: 

a = a slack variable. A slack variable of oc=0 implies that the mass flow rate will be 

zero or maximum. This is the equivalent of a bang-bang controller. 
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Using the methods of variational calculus, the Hamiltonian function for this 

problem can be formed: 

fßc \ 
H = AT £ + G 

\m J 
+ (pTV-r1ß-fil(£T£-\)-ß2[ß(ßr^-ß)-a2\     Equation3-28 

The vectors X and (p and the scalars |ii, |X2, and r\ are time varying Lagrange 

multipliers (equivalent to the X vector used previously). As has been shown, variational 

calculus states that the necessary conditions for the trajectory that optimizes the cost 

function J are 

dV 
. j-       oH       »j dG 

9 =~~dR~~ ~dR 

dm     m 

d£         m 

0 = -^ = -^£ + V + Ju 
dß        m 

0 = = -2fi2a 
da 

Equation 3-29 

The term primer vector was introduced by Lawden to describe the X vector in 

these equations. Through a variety of assumptions and simplifications, (for which the 

interested reader is referred to Lawden's work), Lawden developed the following four 

necessary conditions, known today as Lawden's conditions52. 

52 Lawden, D. F. Optimal Trajectories for Space Navigation, Washington, D.C.: Butterworth, 1963, p. 63. 
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1) The primer vector and its first time derivative must be continuous 

everywhere. 

2) Whenever the rocket motor is operative, the thrust must be aligned with 

the primer which must have a certain constant magnitude P. 

3) The magnitude p of the primer must not exceed P on any coasting arc. 

4) The time derivative of the primer vector magnitude must be zero at all 

interior junction points separating coasting arcs. 

3-3 Numerical Methods 

The calculus concepts presented in the previous section are fundamental theories 

behind optimization, however in most cases they can not be directly implemented or 

programmed to solve an optimization problem. For situations in which direct 

programmable implementation is desired, a number of numerical optimization algorithms 

and techniques have been developed. Some of these techniques rely upon the 

fundamental theories presented above, while others do not. 

For this thesis, a number of these techniques were applied to astrodynamic 

applications. Those optimization techniques that have relevance to this thesis are 

presented in this section. It should be noted however, that this list is in no way 

exhaustive. There are a large number of optimization techniques in existence, and new 

advances are made in the field on a routine basis. However, the techniques studied and 

presented below do represent a diverse slice of the available optimization techniques. 

3-3-1 Dynamic Programming and Principle of Optimality 

Dynamic programming is an optimization technique that is useful for making a 

sequence of interrelated decisions. It provides a systematic procedure for determining the 
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optimal combination of decisions.53 Unlike some other methods, there does not exist a 

standard mathematical formulation of a dynamic programming problem. Rather, 

dynamic programming is made up of some general concepts, and the actual equations 

must be developed for each individual problem. For this thesis, dynamic programming 

was not actually used in the optimization of constellation design and/or maintenance. 

However, some of the fundamental concepts behind dynamic programming were relied 

upon heavily. These concepts are summarized in this section. 

3-3-1-1 Greedy Algorithms 

Inherent to optimization techniques that are used to make interrelated decisions is 

the concept of greediness. Greedy strategies are those that attempt to find the optimal 

path from a current state to a desired state without worrying about the effect of the chosen 

path on subsequent decisions. Very few optimization techniques can actually be solved 

through the application of greedy algorithms54. However, as their concept is important to 

this thesis as well as dynamic programming, they are briefly explained, by example, here. 

Take for example, Figure 3-1 Example of Greedy Optimization Strategy. Assume 

the current state is point A, the objective is to move to point E, and the numbers are the 

costs to move from one state to another along a given path. It is easy to see that A-D-E is 

the optimal path. However, a greedy strategy will not find this path. Instead, starting at 

point A, a greedy strategy will attempt to find the optimal point from the current state, A, 

to one of the intermediate states (B, C, or D). Since the least costly choice is to move 

from A to B, this is the path the greedy algorithm will choose. No attention will be paid 

53 Hillier F. S. and G. J. Lieberman. Introduction to Operations Research, New York, New York: 
McGraw-Hill, Inc., 1995, p. 424. 
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to the fact that this choice forces the completion of the problem along route B-E: the most 

costly of the allowable paths. 

Optimal Path = A-D-E Optimal Cost = 4 
Greedy Path = A-B-E Greedy Cost = 11 

Figure 3-1 Example of Greedy Optimization Strategy 

3-3-1-2 Principle of Optimality 

For the problem in Figure 3-1, finding the optimal solution via trial and error is a 

fairly simple process. However, by increasing the number of nodes drastically, the 

number of possible routes will be increased and the difficulty of calculating all possible 

routes will also be increased. Rather than attempt trial and error on problems with a large 

number of nodes, dynamic programming and the principle of optimality have been found 

to be useful. 

Dynamic programming starts with a small portion of the original problem and 

finds the optimal solution for this small portion.    Then through the principle of 

54 Hillier F. S. and G. J. Lieberman. Introduction to Operations Research, New York, New York: 
McGraw-Hill, Inc., 1995, p. 363. 
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optimality, it is able to gradually enlarge the problem until a solution for the entire 

problem is found. 

Exactly what is the principle of optimality that makes the dynamic programming 

solution path possible? Bellman, the developer of dynamic programming explained it 

this way: 

An optimal policy has the property that whatever the initial state and 

initial decision are, the remaining decisions must constitute an optimal 

policy with regard to the state resulting from the first decision. 

In other words, the optimal decision at a current state is independent of the choices that 

led to arrival at that state. 

As with greediness, the principle of optimality is best proven by example. Figure 

3-2 contains the same problem as previously presented in Figure 3-1 with the addition of 

a path between C-D. It has already been shown that the optimal path from A to E is via 

D (the addition of the C-D link does not change that). The principle of optimality simply 

states that if A-D-E is the optimal path from A to E then D-E must be the optimal path 

from D to E. Other paths from D to E are possible (i.e. D-C-E), but if D-E were not the 

optimal path from D to E, then A-D-E would not be the optimal path from A to E. 

55 Kirk, Donald E. Optimal Control Theory: An Introduction, Englewood Cliffs, New Jersey: Prentice Hall, 
Inc., 1970, p. 54. 
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Cost A-E (4) = Cost A-D (3) + Optimal Cost D-E (1) 

Figure 3-2 Problem for Which Principle of Optimality can be Demonstrated 

The principle of optimality seems almost trivial, but recognition of it allows for 

important statements to be made which in turn form the basis of dynamic programming. 

First, due to the principle of optimality, the optimal policy for the remaining stages of a 

problem is independent of the decisions that forced arrival to a given state. In other 

words, the optimal path from the current state to the end is always the optimal path from 

the current state to the end, regardless of how one arrived at the current state. In the case 

above, D-E is always the optimal path from D-E no matter how one arrives at point D. 

The second important result from the principle of optimality is that a recurrence 

relationship between various stages of a problem can be written. 

c^=J^rXlh Equation 3-30 

where: 

C*c« h - the optimal cost to go from a to h via Xi 

Jm = the cost to go from a to x* ■ca, 
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J*xh = the optimal cost to go from x* to h (by any allowable path) 

Also, the optimal decision at cc can be found by: 

•C = min{CiA, CA...,CiA} Equation 3-31 

These two equations, which are made possible by the principle of optimality, form 

the basis of dynamic programming. The dynamic programming process is then a simple 

iterative process. The decisions nearest the destination (h) are considered first. The 

optimal trajectories from these states (h-1) to the end state (h) are found and recorded. 

The process then moves backward one step and finds the optimal trajectories from the 

next states (h-2) to the end. This is done via the fact that the cost from these states to the 

end is simply the cost from the h-2 level states to a given h-1 state, plus the optimal cost 

from that h-1 state to the end (via the principle of optimality). The process can be 

iterated any number of times until an optimal path from the initial state to the desired 

state has been constructed. 
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3-3-2 Localized Methods 

For problems in which the objective is to optimize a sequence of decisions or 

states, dynamic programming works well. However, the objective is often not to 

optimize a sequence of decisions, but rather to find the optimal value of a certain 

function. As a function maps a surface in n-dimensional space, the objective of this type 

of optimization problem can be seen as finding the extreme location on that mapped 

surface. To meet this objective, a number of methods, the majority of which can be 

classified as localized methods, have been developed. 

Localized methods rely heavily upon the derivative or gradient information of a 

surface to find the maxima or minima of that surface. The optimization is accomplished 

by looking at points in the immediate vicinity of the current location and moving some 

distance in some direction that meets a predefined requirement, such as the direction of 

greatest descent. The process is then repeated at the next point (i.e. the direction of 

greatest decent from that point is calculated). By continually applying the same rule at a 

successive number of points, the optimal point is eventually reached. 

The main problem with localized methods is their tendency to converge upon 

local rather than global optima. Figure 3-3 illustrates the difference. Point A, a local 

minima, is optimal when compared to the points immediately surrounding it. However, if 

the scope of the optimization is broadened, it can easily be seen that Point B is the true 

minima. If the starting point and/or step size for a localized method was not defined 

properly, there is a high probability that the solution produced would be the local rather 

than the global optimum. 
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0     0 

Figure 3-3 Local vs. Global Optimal Point1 56 

A number  of localized  search  algorithms have been  developed  and used 

successfully. A few of these are summarized in the following sections: 

3-3-2-1 Gauss-Seidel Method 

The basis of the Gauss-Seidel method is to minimize one coordinate axis at a time 

from the given starting point. The steps to the algorithm are presented below: 

A. Initiate the algorithm at any point. 

B. Minimize along the first coordinate axis. 

C. Minimize along the next coordinate axis. 

D. Minimize along remaining coordinate axes (one at a time until last direction has been 

minimized.) 

56 Feron, Eric. Course Notes for Course 16.410: Introduction to Optimization and Decision Analysis, 
Massachusetts Institute of Technology, Cambridge, Massachusetts, Spring 1998. 
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E. Iterate the process until the difference between resulting point and current point is less 

than a predefined tolerance. 

5 10 15 20 

Figure 3-4 Application of the Gauss-Seidel Method 

25 80 

57 

A sample application of the Gauss-Seidel method to the surface presented in 

Figure 3-3 is shown in Figure 3-4. As this is a two-axis optimization, the algorithm 

continually switches from optimizing in the horizontal direction to optimizing in the 

vertical direction until it eventually converges at the global optimum. Note, however, 

that this solution is somewhat dependent upon the starting location. If the algorithm had 

started at a vertical value near the value of the local minima and minimized along the 

horizontal axis, the convergence would be to the incorrect solution. 
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3-3-2-2 Steepest Descent or Gradient Method 

Rather than minimizing along one coordinate axis at a time, the gradient method 

first calculates the gradient or direction of steepest descent at the given point and then 

minimizes in that direction. As before, the steps to the algorithm are presented below 

along with Figure 3-5 which shows an application of the gradient method to the surface 

shown in Figure 3-3. 

Figure 3-5 Application of the Method of Steepest Descent1 58 

A. Initiate the algorithm at any point. 

B. Calculate the direction of steepest descent from this point. 

d = V/(jE) = -~ 
dx 

Equation 3-32 

57 Feron, Eric. Course Notes for Course 16.410: Introduction to Optimization and Decision Analysis, 
Massachusetts Institute of Technology, Cambridge, Massachusetts, Spring 1998. 
58 Feron, Eric. Course Notes for Course 16.410: Introduction to Optimization and Decision Analysis, 
Massachusetts Institute of Technology, Cambridge, Massachusetts, Spring 1998. 
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C. Minimize along the direction of steepest descent. 

D. Iterate upon this process until a predefined tolerance is met. 

Note that this method requires slightly fewer iterations than the Gauss-Seidel 

method, but this increase is due to the increase in available information. In order to apply 

this method, the gradient information must be available. 

3-3-2-3 Newton's Method 

By using even more information than just the gradient of the function, Newton's 

method is able to achieve even slightly faster convergence. This increase in convergence 

is accomplished by approximating the function to be minimized (f) by a vector Taylor 

series expansion, truncated at the quadratic terms: 

f(x + d) = f(x) + Vf(x)Td+-dT(y2f(x)}d Equation 3-33 

where: 

dx2 
V f(x) - —t-i— =Hessian Matrix 

Once the function is in quadratic form, the minimizing step (d) can easily be 

found through a simple partial derivative. The result, known as a Newton step is as 

follows: 

d = -V2
/(JC)

_1
 V/00 Equation 3-34 

By using the direction and step defined by the Newton step, one pass will find the 

minimum of the quadratic form which was used to approximate f. For functions that are 

not exactly quadratic forms, the minimum of the quadratic approximation will vary from 

the actual minimum.   However, by re-approximating the function quadratically at the 
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resulting point and recalculating the Newton step, the process will eventually converge to 

the minimum. 

Figure 3-6 shows the results of application of Newton's method to the problem 

discussed previously. By comparing this figure with the gradient application shown in 

Figure 3-5, it can be seen that Newton's method does indeed reach the minimum in 

slightly fewer steps. 

Figure 3-6 Application of Newton's Method 59 

3-3-2-4 Powell's Method 

Although Newton's method appears to work well for minimizing functions, it has 

a major limiting factor. In order to successfully use the method, one must be able to 

successfully calculate not only the gradient, but also the Hessian matrix at a number of 

points.   Powell's method, on the other hand, takes advantage of many of the same 
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principles of quadratic convergence, but is able to calculate the required step without 

requiring gradient or Hessian data. The basic steps to this method are as follows  : 

A. Initialize the set of directions Uj to correspond to the principle axis vectors. 

B. Save your starting position as P0 

C. For i = 1,...,N (where N is the dimension of the search space), move PM to the 

minimum along direction Uj and call this point Pi. 

D. Fori= 1,...,N-1, setUitoUi+i 

E. Set uN to PN   - Po, the average direction moved after trying all N possible 

directions 

F. Minimize in this average direction and call this point P0. 

G. Repeat the steps A through F until predefined convergence criteria are met. 

This method achieves similar convergence characteristics as the Newton's method 

but does so without requiring explicit calculation of the Hessian matrix. This is a distinct 

advantage over Newton's method and therefore Powell's method was selected for 

application to many of the problems in this thesis (see section Chapter 4). 

3-3-3 Non-localized Approaches 

One of the biggest problems with localized approaches is the dependence upon 

starting point and step size definition. If these features are not chosen carefully, the 

localized algorithms may end up at local as opposed to global optimums. Figure 3-7 

contains the results of the gradient techniques applied in the same manner as before to the 

59 Feron, Eric. Course Notes for Course 16.410: Introduction to Optimization and Decision Analysis, 
Massachusetts Institute of Technology, Cambridge, Massachusetts, Spring 1998. 
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identical problem (see Figure 3-5), however, the step size has been changed, slightly. 

The result is a convergence to the incorrect minimum. 

Figure 3-7 Gradient Method Convergence to Incorrect Solution1 61 

One way to avoid convergence to the incorrect optimal point is to sample the 

surface at more than one point, or to perform the optimization from multiple starting 

points. This is the foundation, and also the advantage to non-localized or global 

optimization approaches. 

A random search is one such global optimization technique. However, although 

sampling at multiple random locations may help avoid the problem of convergence to a 

local optimum, it introduces a new problem—the technique may never randomly choose 

the actual optimum. 

60 Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes 
in FORTRAN: The Art of Scientific Computing—Second Edition, New York, New York: Cambridge 
University Press, 1992, p. 409. 
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There is a compromise solution, however. That solution is to direct the 

randomness of the search in some manner. This idea, of directed randomness, is the 

foundation for a technique known as genetic algorithms. As the majority of the 

applications for this thesis relied heavily upon the use of genetic algorithms, the 

fundamentals behind this optimization scheme are discussed in some detail in the sections 

that follow. 

3-3-3-1 Genetic Algorithms 

Genetic algorithms were first introduced in the 1970's by John Holland and his 

students.62 They have since been used to solve a number of optimization problems in a 

variety of fields. One of Holland's students, David Goldberg applied the technique to the 

gas-pipeline industry and since has created an excellent reference on genetic algorithms. 

This reference, Genetic Algorithms in Search, Optimization, and Machine Learning 

forms the basis for the descriptions in this section and the interested reader is referred to 

it for further description of the concepts explained here. 

3-3-3-1-1 Genetic Algorithm Differences from Other Optimization Methods 

Before describing genetic algorithms in detail, it is first useful to study the 

differences (and corresponding advantages) between genetic algorithms and the more 

traditional optimization techniques outlined in the previous sections of this chapter. 

There are three main differences 4: 

61 Feron, Eric. Course Notes for Course 16.410: Introduction to Optimization and Decision Analysis, 
Massachusetts Institute of Technology, Cambridge, Massachusetts, Spring 1998. 
62 Holland, J. H. Adaptation in Natural and Artificial Systems, Ann Arbor, Michigan: The University of 
Michigan Press, 1975. 
63 Reading, Massachusetts: Addison-Wesley Publishing Company, Inc., 1989. 
64 Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, 
Massachusetts: Addison-Wesley Publishing Company, Inc., 1989, p. 7. 
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1. Genetic algorithms search from a population of points, not a single point. This is 

an advantage as it helps the algorithm avoid convergence to local minimum. 

2. Genetic algorithms use objective function information, not derivatives or other 

auxiliary knowledge. Both the calculus methods and localized methods discussed 

previously require the ability to calculate the derivative in some manner. For simple 

problems, this is not an issue, but for problems which are difficult to express 

analytically, finding the derivative can be a challenge. As will be explained, the only 

information a genetic algorithm needs is the value of the objective function, evaluated 

at a given point, thus allowing for simpler implementation. 

3. Genetic algorithms use probabilistic transition rules, not deterministic rules. In a 

manner similar to the advantage presented by maintaining a population of solutions 

rather than a single solution, by using probabilistic as opposed to deterministic rules, 

a genetic algorithm is able to avoid convergence to local minimum 

These three differences combine to make the genetic algorithm a robust, global 

search tool. 

3-3-3-1-2 Cycle of the Genetic Algorithm 

Genetic algorithms are modeled after the Darwin natural selection principals of 

survival of the fittest. They imitate the natural selection process found in genetic 

evolution. This process is modeled in Figure 3-8: 
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    Decoded 
Offspring   ^^^^" \   | Creation of | ^^^^^^    Chromosomes 

a Population 

■ Crossover ] W 
I                 and I 
■ Mutation I 

Evaluation 

Selected V- l ■ Selection \^ ^y   Fitness Values 
Parents 

Figure 3-8 Cycle of Genetic Algorithm65 

To gain a better understanding of genetic algorithms, it is useful to analyze each 

step of this cycle. The mechanics of the cycle are really very simple consisting of 

nothing more than copying strings and swapping partial strings. However, as the 

terminology can become slightly confusing, the following section provides details of each 

step of the cycle. 

The first step of the cycle is the creation of all the members that form the first 

population. Population is simply the term used to describe a group of possible solution 

strings, while a member is the term used to describe an individual solution string from a 

population. Each member is a self-contained solution to the given problem as the values 

for all of the variables of interest have been coded in some manner (often binary) into that 

solution string. For the initial population, all members are generated randomly in order to 

65 Frayssinhes, E. Investigating New Satellite Constellation Geometries with Genetic Algorithms, Paper 
AIAA-96-3636, AIAA/AAS Astrodynamics Specialist Conference, San Diego, CA, 29-31 My 1996. 
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have a high amount of diversity in the initial population (to avoid convergence to local 

minima, as previously discussed.) 

Following creation of the population, each member string is decoded to reveal the 

actual values of the variables of interest. These variables are then inserted into a 

predefined objective function and this objective function is evaluated using the variable 

contained in each string. The result of that evaluation is a numerical value of the 

objective function that can be associated with each string. Using the objective function 

values, a numerical value, termed a fitness value is assigned to each string. This fitness 

value can be thought of as a measure of the profit, utility, or goodness that one is 

attempting to optimize. These fitness values become important in the remaining steps of 

the cycle and in directing the randomness of the algorithm. 

Using the fitness values for each member, a certain number of strings are selected 

for inclusion into the mating pool. This simply means that they are strings that have been 

chosen to make the members of the next generation or population. There are a number of 

ways in which this selection can be accomplished. Most often, however, these strings are 

selected in proportion to their fitness value (i.e. strings with higher fitness values are 

copied more times to the mating pool). By copying strings according to their fitness, 

strings with a higher value have a higher probability of contributing one or more 

offspring in the next generation. As the cycle is repeated, this allows for continual 

evolution to higher and higher fitness values. 

Two other operators are also important contributors to the process of forcing 

evolution to higher and higher fitness values. These are the operators of crossover and 

mutation and they make up the fourth phase of the genetic algorithm cycle.    Two 
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members of the mating pool are selected at random to enter this phase. After entering 

this phase they first undergo crossover. Crossover is simply an operator that switches 

some of the information from one string with the information in the corresponding 

locations of the other string. Randomness is preserved in this step as well, as the location 

for the crossover is randomly chosen each time that crossover is performed. 

A number of crossover types have been developed, but two-point crossover is 

often used. In this form of crossover, a starting and ending location are both randomly 

generated with probability pc. The variables that fall between these locations are then 

swapped and two new offspring for the next population are created. An example of two- 

point crossover can be seen in the following figure: 

Parents Offspring 

X  X X X  X 

o o o o o 

X  X  X  X 

0 0 0 0 

XXX Crossover XXXXXOOOOXXX 

O O O [/ OOOOOXXXXOOO 

• random cross sites 
(with probablity pc) 

Figure 3-9 Two-Point Crossover Operation66 

Before entering the next population and restarting the cycle, the new members 

must undergo one final operation: mutation. Mutation is simply the change of value of a 

random string position. It is applied independently to each element in each string with 

some probability pm. It is useful in preventing the loss of some useful piece of genetic 

information during the crossover operation. Figure 3-10 illustrates this operation. 
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Parents Offspring 

xxxxxxxxxxxx Mutation      N    XXXOXXXOXXXX 

OOOOOOOOOQOO w oooooxoooxoo 

_ random mutation sites 
(with probablity pm) 

Figure 3-10 Mutation Operation67 

3-3-3-1-3 Mathematical Foundations of the Genetic Algorithm 

Although the operators that make up a genetic algorithm cycle seem random in 

definition and behavior, it can be shown that through continual application of these 

operators, the average fitness value of a population will converge to higher and higher 

values. However, in order to prove this point, a new term must be defined: schema. 

A schema is a particular arrangement of bits at a particular location within a 

string. For example, if the strings which compose a population are binary in nature, and a 

* is used as a wildcard symbol, a string matches a particular schema if at every location a 

1 in the string matches a 1 in the schema, a 0 in the string matches a 0 in the schema, and 

either value is found in the * locations. Therefore, a schema defined as 1*0* would be 

matched by the any of the following string: 1000,1001,1100, or 1101. 

Schema can be thought of as the building blocks of a particular problem. By 

creating a string that is composed of all the correct building blocks (schema), the optimal 

66 Van Deventer, Paul G. Flight Control Command Generation in a Real-Time Mission Planning System 
Using Constrained Genetic Optimization, Master of Science Thesis, Massachusetts Institute of Technology, 
Cambridge, Massachusetts, June, 1992, p. 28. 
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solution can be built. Therefore, by showing that the number of Schemas with above 

average fitness values increases in each generation, the mathematical foundation of 

genetic algorithms can be demonstrated. 

Two further definitions are required before proceeding with the derivation. These 

are the concepts of schema order and schema defining length. The order of a schema, 

denoted by o(H) is simply the number of fixed positions (in binary strings the number of 

l's and O's) present in the template. In the schema presented above (i.e. 1*0*) the order, 

o(H), is 2. The defining length 8(H) is then defined to be the distance between the first 

and last specified positions. For the 1*0* schema, the last specified position is 3 and the 

first is 1, therefore, the defining length 8(H) = 2. 

With all the required definitions in place, it is now possible to develop the 

fundamental theorem of genetic algorithms. This is accomplished by considering the 

combined effect of the selection, crossover, and mutation operators on the schemata 

contained within a population of strings. 

First, it is necessary to start with selection. During selection, a string Aj is copied 

according to its fitness Fi5 by being selected to the mating pool with probability pi = 

Fi/SFj. The expected number of copies of a string Ai in the mating pool is then given by 

npi (where n = population size). If m(H,t) is defined to be the number of instances of a 

particular schema, H, contained in the population A(t) at time t, then the expected number 

of occurrences of the H schema in the next population A(t+1) can be written in a similar 

manner (if F(H) is the average fitness of the strings representing schema H at time t): 

67 Van Deventer, Paul G. Flight Control Command Generation in a Real-Time Mission Planning System 
Using Constrained Genetic Optimization, Master of Science Thesis, Massachusetts Institute of Technology, 
Cambridge, Massachusetts, June, 1992, p 29. 
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m(H,t + l) = n-m(H,t)^m Equation 3-35 

By recognizing that XF/n is simply the average fitness of the entire population, 

this representation can be reduced to the following form, known as the reproductive 

schema growth equation. 

m(H,t + V) = m(H,t)^P- Equation 3-36 
F 

From the reproductive schema growth equation, it can easily be seen that a 

particular schema grows as the ratio of the average fitness of the schema to the average 

fitness of the population. Therefore, schemata with fitness values above average fitness 

value of the population will proliferate as time goes on, while schemata with below 

average fitness values will die off. 

Although Equation 3-36 shows the increase of above average schemata in 

subsequent populations, it does not take into account the effects of crossover and 

mutation. Simply copying the best portions of each existing string into future populations 

succeeds in raising the average fitness of the future populations, but does not promote 

exploration of new areas of the solution space, one of the main goals on non-localized 

methods. This is the function of crossover and mutation, but the effect they have on the 

propagation of above average schema must also be analyzed. 

If crossover between two strings occurs at random with probability pc, then a 

lower bound on the probability of survival ps of a particular schema with defining length 

8(H) can be given by: 

p  >i-n ^—L Equation 3-37 
s l-l 
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where / is the length of the entire string. 

The best way to understand this probability is through example. Consider a string 

of length 1=7 and two representative schemata, one with 8(H) = 5 and one with 8(H) = 1: 

A=0111000 

JJ _ * \ * * * * o 

JT   _   *   *   *   2   0   *   * 

Now suppose one-point crossover is employed to generate a crossover site anywhere 

from position 1 to 7. Clearly the likelihood that that site will fall within the defining 

length of Hi is higher than the likelihood that it will fall between positions 4 and 5, the 

only possible way to break up H2. Therefore, as demonstrated by Equation 3-37, the 

schemata with shorter defining lengths have higher probability of surviving crossover. 

Combining the effects of selection and crossover, it can be seen that the number of 

occurrences of schemata that have above-average fitness values and short defining 

lengths will increase in future generations. 

m{H,t + \)>m{H,t)^W- 
F 

\        S{H) 
Equation 3-38 

l-\ 

Finally, the effects of mutation on the survival of a schema must be determined. 

The probability that any position in a string will be changed has been defined to be pm. 

Therefore, the probability of survival of any single position is (1 - pm). Since there are 

o(H) positions specified in a schema, the probability that the entire schema will survive is 

(l-Pm)°(H)- Since pm is typically « 1, this probability can be approximated by l-o(H)pm. 

The overall probability that a given schema survives selection, crossover, and mutation is 

given by the following equation (where small cross product terms have been ignored). 
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m(H,t + \)>m(H,t)^W- 
F 

I-,.MUH,P. Equation 3-39 

This result is known as the fundamental theorem of genetic algorithms . It proves that 

above-average schemata of low order with short defining lengths increase exponentially 

in successive populations. 

3.3.3.1.4 A Computer Implementation of the Genetic Algorithm—PGAPack 

For the applications studied in this thesis, it was necessary to obtain an 

implementation of the genetic algorithm which could interface well with the orbit 

propagation software DSST, while also providing important features such as parallel 

calculations and the ability to provide user input for certain genetic algorithm parameters. 

The Argonne National Laboratory Parallel Genetic Algorithm Package or PGAPack met 

these requirements and was used successfully in a number of the applications. A few of 

the important features of this software are summarized here. 

PGAPack is a general-purpose, data-structure-neutral, parallel genetic algorithm 

library under development at the Argonne National Laboratory. It is freely available, 

including all source code, installation instructions, users guide and a collection of 

examples from ftp.mcs.anl.gov or http://www.mcs.anl.gov/pgapack.html. 

According to the Users Guide to the PGAPack Parallel Genetic Algorithm 

Library69 the intention of PGAPack is to provide most capabilities desired in a genetic 

68 Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, 
Massachusetts: Addison-Wesley Publishing Company, Inc., 1989, p. 33. 
69 Levine, D. Argonne National Laboratory, ANL 95/18, 1996, Online at http://www- 
unix.mcs.anl.gov/~levine/PGAPACK/index.html. 
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algorithm package, in an integrated, seamless and portable manner.   Some of the key 

features listed in this user's guide are: 

Ability to be called from Fortran or C 

Executable on uni-processors, multiprocessors, multi-computers, and workstation 

networks. 

Binary, integer, real, and character valued native data types. 

Object-oriented data structure neutral design. 

Parameterized population replacement. 

Multiple choices for selection, crossover, and mutation operators 

Easy integration of hill climbing heuristics. 

Easy-to-use interface for novice and application users. 

Multiple levels of access for expert users. 

Full extensibility to support custom operators and new data types. 

Extensive debugging facilities. 

Large set of example problems. 

Basic usage of the program is simple and is explained in detail in Chapter 5 of the 

Users Guide70. A cursory overview of the requirements is contained here: 

Any file that uses a PGAPack function (all of which begin with PGA, i.e. 

PGACreate), must include the PGAPack header file, (in Fortran, this file is pgapackf.h). 

After including this file, the first call to PGAPack is always to PGACreate. PGACreate 

allocates space for the context variable, ctx, and returns its address. After the PGACreate 

70 Levine, D. Users Guide to the PGAPack Parallel Genetic Algorithm Library, Argonne National 
Laboratory, ANL 95/18, 1996. Online at http://www-unix.mcs.anl.gov/~levine/PGAPACK/index.html. 
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call, the user may optionally set any non-default values desired. These are then followed 

by a call to PGASetUp to initialize the default values for any variables not specified by 

the user. 

Finally, the PGARun command is used to execute the genetic algorithm. It is at 

this step that the objective function is tied into PGAPack. For this thesis, it is also at this 

step that the link to DSST was made. The second argument of the call to PGARun is the 

name of a user-supplied evaluation function. This is the only function that must be 

written by the user, and it is this function that defines the problem one is trying to 

optimize. Each string is passed into this evaluation function and the objective function 

value is passed out of this function, back to PGAPack that then uses this objective 

function value to assign the string a fitness value. The rest of the genetic algorithm 

process is transparent to the user who doesn't wish to modify the default values. For the 

applications in this thesis in which PGAPack was used, the specific parameters will be 

laid out in the sections detailing each application. 

3-3-4 Hybrid Methods71 

Although genetic algorithms are powerful tools for finding optimal points while 

avoiding local minima, they often require excessive amounts of computation time. An 

additional method of optimization which, although not used in this thesis, has proven to 

be successful in many applications is a hybrid optimization scheme. This type of scheme 

combines the ability of non-localized methods to avoid local minima with the ability of 

localized methods to converge quickly to a solution. An example of this type of scheme 

71 Levine, D. Users Guide to the PGAPack Parallel Genetic Algorithm Library, Argonne National 
Laboratory, ANL 95/18, 1996. Online at http://www-unix.mcs.anl.gov/-levine/PGAPACK/index.htrnl. 
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would be a genetic-algorithm/Newton method combination in which the genetic 

algorithm is used to obtain a rough estimate of a solution and this solution then becomes 

the starting point of a local optimization scheme. It is thought that for some of the 

applications, to which genetic algorithms were applied in this thesis, hybrid methods 

might work better, as pointed out in the future works section. 
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Chapter 4 Optimal Constellation Design 

The optimization techniques and theories presented in Chapter 3 can be applied to 

the fundamentals of astrodynamics described in Chapter 2 to solve a variety of 

astrodynamic optimization problems. This chapter focuses on one class of those 

problems: the optimal design of satellite constellations. Specifically, this chapter focuses 

on the optimization of two Ellipso™ sub-constellation designs. The first of these 

applications is an attempt to find the optimal mean elements for the baseline 113:14 

repeat ground track Ellipso™ Borealis sub-constellation. The second application studies 

the Ellipso™ Gear Array Design (U.S. Patent pending). 

4-1 Ellipso™ Borealis 113:14 Repeat Ground Track Problem 

As discussed in Chapter 1, the baseline Ellipso™ constellation consists of three 

orbit planes: one circular, equatorial orbit known as Concordia™ and two elliptical, 

inclined orbits known as the Borealis™ sub-constellation. Due to the circular, equatorial 

nature of the Concordia™ sub-constellation, its orbits are quite stable. A slight variation 

in any of the orbital elements does not drastically change the overall performance of this 

sub-constellation. However, the same cannot be said for the Borealis™ sub-constellation. 

Due to the eccentric, inclined nature of the Borealis™ orbits, slight variations in the 

orbital elements can have significant effects on the overall performance of the 

constellation. Thus, the problem is to find the optimal initial orbital elements which, 

when propagated over time, cause the least decay in the performance of the constellation. 

115 



The performance of the Borealis™ sub-constellation can be quantified through 

three desired behaviors. These desired behaviors are outlined below: 

1. First, in order to best serve the populated areas of the Northern Hemisphere, the two 

Borealis™ planes were designed with apogees in the Northern Hemisphere. This 

apogee location allows for longer dwell times over the Northern Hemisphere and 

therefore increases the coverage in this hemisphere. In order to maintain high levels 

of coverage over the populated areas, it is necessary that apogee remains in the 

Northern Hemisphere for the entire lifetime of the satellite. 

2. The second desired behavior of the satellites in the Borealis™ plane is a sun- 

synchronous behavior. By sun-synchronous it is meant that the ascending node of the 

orbital plane rotates around the Earth at the same rate as the sun (or approximately 1° 

per day). By forcing the orbit to move at the same rate as the Sun, the satellites in the 

orbit plane appear to be in the same location, relative to the ground each day. 

Specifically, the Borealis™ planes have been designed such that one orbital plane has 

an ascending node at noon and the other has an ascending node at midnight. For 

performance to avoid degradation, it is necessary that these nodal locations be 

maintained for the lifetime of the satellite, as well. 

3. The final desired behavior of the satellites in the Borealis™ orbits is a repeat ground 

track behavior. The satellites in the constellation will have a repeating ground track if 

they have exactly an integer number of revolutions per integer number of Earth 

revolutions. This behavior allows for constant viewing angles and has been designed 
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11 
into a number of existing satellite systems including SeaSat, LandSat, and GeoSat. 

For the Ellipso™ application, the specific desired integer values are 113 orbital 

revolutions of the Borealis™ satellites for every 14 revolutions of the Earth.   The 

choice of the 113:14 configuration was based on trade studies undertaken by MCHI. 

during the second half of 1997.73 

By quantifying the 113:14 repeat ground track problem in terms of fixed perigee, 

sun-synchronous, repeat ground track orbital planes, constraints are immediately 

introduced on two of the orbital elements and the order of the design problem is 

simultaneously reduced. First, in order that apogee remains constant over the Northern 

Hemisphere, it is necessary that perigee remains constant in the Southern Hemisphere (or 

260°). Therefore, there is no need to design for the argument of perigee. It must be fixed 

at 260°. Additionally, if the orbit is truly sun-synchronous, with a repeat ground track, 

then the ascending node locations of noon and midnight must change at a constant rate. 

Therefore, the location of the ascending node can be determined based upon the location 

of the Sun on any given day. With these two orbital elements fixed, the objective of this 

optimization study then became the determination of the initial orbital elements, which 

were not fixed (a, e, and i), that would cause the smallest deviation from the desired 

values of the predetermined elements (co and Q.) as well as from the 113:14 repeat ground 

track behavior. 

72 Larson, Wiley J. and James R. Wertz. Space Mission Analysis and Design, Torrance, California: 
Microcosm, Inc., 1992, p. 154. 
73 Draim, J.E., P. Cefola, R. Proulx, and D. Larsen. Designing the Ellipso™Satellites into the Elliptical 
Orbit Environment, Paper IAF-98-A.4.03,49th International Astronautical Congress, Melbourne, Australia, 
28 September to 2 October 1998, p. 3. 
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4-1-1113:14 Repeat Ground Track Problem Formulation 

The objective function for this optimization can be created through a simple 

combination of each of the desired conditions described above: a fixed CO, a constant rate 

of change on Q, and a 113:14 repeat ground track ratio. A linear combination of these 

conditions results in an objective function of the following form: 

J (a0, e0, i0) = aKl + fiK2 + }K3 Equation 4-1 

where: 

• oc,ß, and y are scale factors chosen arbitrarily to provide the desired combination of 

the desired behaviors. For this case these factors were empirically set to the 

following: a = 1, ß = 10000, and y = 1. 

• Ki, K2, K3 are functions which represent the desired behaviors 

The desired behaviors can each be described mathematically as follows: 

Fixed argument of perigee. The fixed argument of perigee behavior can be 

obtained by summing the differences between the actual argument of perigee (co) and the 

desired argument of perigee (coo) over all sample times (S). In order to maintain apogee 

in the Northern Hemisphere, the desired behavior is for all deviations from the actual 

value of 260° to approach zero. 

Kx = V \co — coQ I Equation 4-2 
s 

Sun Synchronous. The sun-synchronous behavior can be verified by checking 

that the actual rate of change of the ascending node is always approximately equal to the 

Earth's secular rotation about the sun (0.98657day).    Once again, this behavior is 
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sampled over the orbital lifetime and the desired behavior is for all deviations to approach 

zero. 

K2 = 2|ß - 0.9865° / day\ Equation 4-3 

113:14 Repeat Ground track. One way to ensure the repeat ground track behavior 

is met, is to compare the desired time between nodal crossings (which can be calculated 

using the node rate and the rotation rate of the Earth, coe as outlined in Sabol's thesis74) 

with the actual time between nodal crossings of a given satellite in the plane. The result 

is an equation for K3 and again the desired behavior is that, at all sample times, the 

deviations approach zero. 

*3=X 
2JU       14     In 

M+ti)   113 0) -Q 
Equation 4-4 

4-1-2113:14 Repeat Ground Track Localized Solution Process 

After creation of the objective function, a first attempt at finding the optimal 

semi-major axis, eccentricity, and inclination was made using localized methods. As 

search space was small (only three solve-for variables), and the gradient information was 

74 Sabol, Christopher. Application of Sun-Synchronous, Critically Inclined Orbits to Global Personal 
Communications Systems, CSDL-T-938, Master of Science Thesis, Massachusetts Institute of Technology, 
Cambridge, Massachusetts, January 1987. 
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not easily available, it was decided that Powell's method would work well for attempting 

to solve this problem. 

4-1-2-1 Powell's Method Program Structure 

Powell's method was implemented in a simple Fortran program as shown in 

Figure 4-1. 

Satellite 

Other DSST 
Routines 

POWELL i 
i 

1 

r- 

i 
1 

LINMIN         ! 
i 

1               J 

   L   L  
i 
i 

BRENT 1    ■ 
1    ■ PI DIM      ; 

1 

!         MNBRAK 

FL nc 

KEY 

Created for this thesis 

Outlined in Numerical Recipes 

Shaded DSST Routine 

Figure 4-1 Program Structure for Powell's Method 

In this structure, POWELL is the main program that performs the steps to the 

Powell algorithm outlined in section 3-3-2-4. The LINMIN and subsequent subroutines 

are simply used to perform the minimization in a given linear direction after POWELL 

has determined that direction. FUNC is a FORTRAN coding of the objective function 

for this optimization. Included in FUNC are calls to DSST, since orbit propagation is a 
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key component of the objective function.   The details for all of the routines except for 

FUNC and those routines called by FUNC can be found in Numerical Recipes in 

FORTRAN.75 

4-1-2-1-1113:14 Repeat Ground Track Objective Function Code Structure 

Since the majority of the routines created to perform this optimization are outlined 

in Numerical Recipes in FORTRAN76, they will not be outlined here. These routines 

simply perform the necessary steps for Powell's method as described in Chapter 3. 

However, the FUNC routine is the exception. Rather than being a standardized routine 

for performing Powell's method, FUNC is a routine created especially for the 

implementation of the objective function into the solution of the 113:14 repeat ground 

track problem. More information regarding FUNC is presented here due to the 

specialized nature of its development. 

Figure 4-2 contains an overview of the FUNC subroutine created for the solution 

of the 113:14 optimization problem. As can be seen from this figure, the FUNC routine 

is simply an implementation of the objective function detailed previously in section 4-1- 

1. Using DSST, the Borealis™ orbit is propagated for the desired length of time from 

certain specified initial values of a, e, and i. The variation of each of the three behaviors 

(fixed perigee, fixed node rate, and 113:14 repeat ground track) is checked and summed 

75 Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes 
in FORTRAN: The Art of Scientific Computing—Second Editio,. New York, New York: Cambridge 
University Press, 1992, p. 412. 
76 Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes 
in FORTRAN: The Art of Scientific Computing—Second Edition, New York, New York: Cambridge 
University Press, 1992, p. 412. 
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over time as the satellite is propagated.   A weighted sum of these variations is then 

returned as the objective function value for the given a, e, and i combination. 

Real Values of a, e, and i 
are passed to FUNC 

lnitialize_Sat is called to 
re-initialize DSST 

Initialized Values of a, e, and i 
are overwritten with the 

values passed into FUNC 

Total Variation at all 
times is summed and 
returned as Objective 

Function Value for gven 
a, e,i combination 

SATELLITE propagates 
forward one time step 

Perigee Deviation is 
Calculated and Summed 

Node Rate Deviation is 
Calculated and Summed 

113:14 Ratb Variation is 
Calculated and Summed 

Time = Time + TimeStep 

Figure 4-2113:14 Repeat Ground Track FUNC Overview 

4-1-2-1-2113:14 Repeat Ground Track Propagation Input Parameters 

In order to perform any type of calculations using the DSST software, it is 

necessary to first define certain parameters of the propagation. For example, one 

parameter that must be specified is whether or not to include the effect of third body point 

masses.   The specific parameters to use are specified through an input deck.   For this 
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optimization it was determined that only a 50 x 0 gravitational field and the Lunar/Solar 

Point mass perturbations should be included. The specific input deck used to convey this 

information to DSST for the 113:14 case can be found in Appendix A-l. 

In addition to the perturbation parameters that must be specified, it was also 

necessary to specify certain features relating the satellite to be optimized. For this case 

one satellite from the Borealis™ node-at-noon orbit plane was chosen. To define this 

satellite, an argument of perigee of 260° and a right ascension of the ascending node 

value of 280° in the J2000 True of Date reference frame at an epoch time of 0 hr 0 min 00 

sec on January 1, 1997 were specified. Additionally the satellite parameters of spacecraft 

mass and area were also specified as 1250 kg and 43.3 m2, respectively. 

4-1-2-2 Powell's Method Performance on 113:14 Repeat Ground Track Problem 

Using the FORTRAN implementation of the Powell algorithm, along with the 

coded objective function and Borealis™ input deck described previously, attempts were 

made to find the optimal epoch elements. On each run of the Powell algorithm, 

convergence to a solution occurred rapidly. However, the result of that convergence was 

not always the same (a, e, and i) element set on successive runs of the algorithm. The 

majority of the time, the algorithm converged to the solution presented in Table 4-1. 

However, by varying the starting location, it was possible to cause the algorithm to 

converge to what has since been found to be an incorrect solution. 

Figure 4-3 and Figure 4-4 show the reason for the inconsistency in convergence. 

These are surface plots of the eccentricity and inclination space plotted against the 

corresponding objective function values. To create these plots, the semi-major axis was 

fixed at the optimal value of 10496.8968 km, and both inclination and eccentricity were 
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allowed to vary over specified ranges. The result of this variation was a number of a, e, i 

combinations which could then be passed to FUNC to obtain objective function values 

for the specified variable combinations. As each objective function evaluation required a 

five-year propagation of the satellite orbit, MPI was used to reduce the total computation 

time, by dividing the many objective function evaluations across multiple processors. 

The resulting objective function values were then plotted against the two variable ranges. 

All possible combinations of these plots are presented in Appendix A-2. The two plots of 

most interest are presented here. 

0.45 

Inclination 110    0.Z5 Eccentricity 

Figure 4-3 3-D Surface of 113:14 e/i Space (a = 10496.8968 km) 
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Figure 4-4 Contour Plot of 113:14 e/i Space (a = 10496.8968 km) 

The interesting feature of the eccentricity and inclination space shown in Figure 

4-3 and Figure 4-4 is the presence of multiple minima. The existence of one global 

minima is clear, but there are also at least two other points to which a localized method, 

such as the Powell algorithm could conceivably converge. In fact, after creating these 

plots, it was found that the non-optimal answers that were sometimes converged upon by 

Powell's method did in fact coincide with the local minima presented in these figures. 

4-1-2-3 Results of Powell's Method for 113:14 Repeat Ground Track Optimization 

The optimal results of a five-year optimization using the localized method was the 

a, e, and i combination shown in Table 4-1. When used as the epoch elements for the 

Borealis™ satellite, the elements presented in this table produced the smallest variation in 

each of the three desired behaviors over a five-year period. The details of the resulting 

behavior (see section 4-1-4) will be discussed after first discussing the optimization of the 

113:14 case via a second optimization method: genetic algorithms. 
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Table 4-1113:14 Results from Powell's Method Optimization 

Orbital Element Powell Determined Optimal Value 
Semi-major axis (a) 10496.8968 km 
Eccentricity (e) 0.32986 
Inclination (i) 116.5782° 

4-1-3 113:14 Repeat Ground Track Genetic Algorithm Solution Process 

Although the localized Powell's method worked reasonably well in solving this 

design problem, attempts were also made to obtain the appropriate orbital elements using 

genetic algorithms. By using genetic algorithms to solve the same problem, it was hoped 

that the solution obtained through the local methods could be reproduced, and that by so 

doing, the optimality of this solution could be verified. Additionally, genetic algorithms 

were also chosen in the hopes of creating a more robust optimization algorithm that could 

avoid the local minima sometimes converged upon by the localized approach without 

requiring human intervention. 

4-1-3-1113:14 Repeat Ground Track Genetic Algorithm Code Structure 

To solve this optimization problem using genetic algorithms, the genetic 

algorithm package known as PGAPack was used. Although PGAPack is a self-contained 

genetic algorithm software package, it was necessary that an interface between the DSST 

code and the various portions of the PGAPack code be created. This structure remained 

fairly constant throughout all applications in this thesis and therefore it is be presented in 

detail here. Future applications discussed in this thesis that also employed PGAPack will 

contain only descriptions of the changes necessary to the basic structure presented here. 

In order to tie PGAPack into DSST, which would allow for propagation of the 

Borealis orbits necessary to calculate the desired objective function values, two main 
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pieces of code were required: a program shell which would execute PGAPack 

commands, and an objective function routine which would perform the propagations and 

return the objective function values to the genetic algorithm. PGA_SAT was created to 

be the program shell and the function FINDBEST was created as the objective function 

tie in to DSST. The structure of the entire program can be seen in Figure 4-5. 

PGA_SAT 

INIT HEADERS INIT_PGALIM SETLIM PGA Create PGASetup PGARun  ! i    PGADesiroy 

ZCZIZ3 
Other 

PGAPAck 
Routines 

Other 
PGAPAck 
Routines 

Other 
PGAPAck 
Routines 

FindBest 

KEY 

Created for this thesis 
— Built into PGAPack 

Shaded DSST Routine 

Func 

hrtializeSat Satellite 

Other DSST 
Routines 

Other DSST 
Routines 

Figure 4-5 Software Overview for 113:14 Genetic Algorithm Solution Process 

Although the flow through the software can be seen in Figure 4-5, the actual 

purpose of each routine is not readily evident. Therefore, a brief summary of each 

routine is provided below: 

• PGA_SAT: As mentioned previously, PGA_SAT is the executable shell used to run 

the PGAPack program. It is first used to initialize the necessary values of a number 

of necessary variables. It then calls the PGAPack routines that perform the genetic 

algorithm optimization. 
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• INIT_HEADERS: INIT_HEADERS is a DSST routine used to initialize certain 

values necessary for the orbit propagator. 

• INIT.PGALIM: The INIT_PGALIM routine is used to set a number of variables 

specific to the 113:14 optimization problem to predefined default values. 

• SETLIM: The SETLIM routine is used to overwrite the default values of certain 

variables with user specified values. 

• PGACreate: PGACreate is always the first PGAPack function called in a PGAPack 

program. It initializes the context variable, ctx that is necessary in calls to all other 

PGAPack routines. The parameters to PGACreate are the data-type to be used 

(Binary, Real, Character, or Integer), the string length, and the direction of 

optimization (maximization or minimization). 

• PGASetUp: Following a call to PGACreate, a user can specify any number of 

PGAPack parameters through a series of commands as explained in the PGAPack 

Users Guide.77 The call to PGASetUp initializes all parameters and function pointers 

not explicitly set by the user to the default values. The only required parameter is the 

ctx variable. 

• PGARun: The PGARun call executes the genetic algorithm. It requires two 

arguments, the ctx variable, and the name of a user defined function that will be 

called to evaluate the strings (i.e. the objective function routine). 

• FINDBEST: FINDBEST is the user-defined function that is used to evaluate each of 

the genetic algorithm strings.   The parameters which are passed to it are the ctx 

77Levine, D. Users Guide to the PGAPack Parallel Genetic Algorithm Library, Argonne National 
Laboratory, ANL 95/18, 1996. Online at http.7/www-unix.mcs.anl.gov/-levine/PGAPACK/index.html. 
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variable, an index to the string to be evaluated (p), and an index to the population that 

contains that string (pop). The actual call to FINDBEST is accomplished internal to 

the PGAPack software. 

• FUNC: In the software created for this application, FINDBEST is simply used to 

convert a string of any data-type to an array of real numbers which can then be 

evaluated against an objective function. The real number array is then passed to the 

next routine (FUNC), which actually performs the evaluation of the objective 

function. The FUNC used for the 113:14 optimization is the same routine that was 

used in the localized attempt. The only required parameter that must be passed to 

FUNC is the array of real numbers. 

• INITIALIZE_SAT: Each objective function evaluation for these genetic algorithm 

satellite design problems involved a propagation of the orbit using DSST. In order to 

re-initialize the DSST software, each time FUNC was called upon to evaluate a 

string, INITIALIZE_SAT was created. It is simply a tool for initializing DSST given 

a predefined file name. 

• SATELLITE: SATELLITE is the routine that actually performs the orbit 

propagation. It ties directly into DSST and returns the state of the specified satellite 

at any given time. 

4-1-3-1-1113:14 Repeat Ground Track Variable String Structure 

As detailed in the section on genetic algorithms (section 3-3-3-1), genetic 

algorithms do not work directly with the variables of interest, but rather with strings that 

contain mappings of values for the variables to be solved for. For most genetic algorithm 

applications this mapping is a binary mapping, although PGAPack does allow users the 
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option of choosing between binary, integer, real, and character data-types. The choice of 

data-type is very dependent upon the type of problem being solved. For the solution of 

the 113:14 case, a binary mapping was found to work best. 

As the only variables of interest for the 113:14 repeat ground track optimization 

were the orbital elements of a, e, and i, the creation of the string structure for this problem 

was quite simple. To achieve the greatest resolution of the search space allowable, each 

variable was simply coded into a 31-bit binary string (PGAPack has an upper limit of 31 

bits). The result of this coding was a 93-bit string that PGAPack could then optimize. 

The structure of the resulting string is shown below in Figure 4-6: 

[ Binary Semi-major Axis ] [ Binary Eccentricity ] [ Binary Inclination ] 

Figure 4-6 String Structure for 113:14 Genetic Algorithm Optimization 

4-1-3-1-2113:14 Repeat Ground Track GA Objective Function Structure 

Not only was it necessary to define the structure of the strings to be optimized, but 

it also was also necessary to properly define the objective function to be used in the 

evaluation of each string. An objective function for this problem was defined previously 

in Equation 4-1. In order for genetic algorithms to work properly, it is often necessary to 

modify the desired objective function to fit into a genetic algorithm framework. This 

problem, though, is quite simple and the objective function is acceptable in the form 

presented previously. In fact, the structure of the FUNC routine created previously for 

the localized Powell algorithm was such that it could be tied directly into the genetic 

algorithm application without any modification.   The obvious result of this objective 

130 



function is that an a, e, and i combination which gives small variations from the desired 

behaviors will end up with small objective values and therefore high fitness values. 

4-1-3-1-3 113:14 Repeat Ground Track Genetic Algorithm Parameters 

As is the case with most attempts to solve problems with genetic algorithms, it is 

not enough simply to specify the desired string and objective function structure. Even 

with these definitions in place, the performance of a genetic algorithm is very dependent 

upon a number of other parameters. The mutation rate provides an excellent example of 

the need to choose the appropriate values for certain parameters. If the mutation rate is 

set too high, the population will maintain a high level of diversity, but will have difficulty 

converging to a solution. On the other hand, a mutation rate that is set too low will cause 

premature convergence to a solution that is more than likely not optimal. 

Unfortunately, the best values for each of the genetic algorithm parameters 

change with each problem one attempts to solve. Therefore, a large portion of the time 

that must be invested into a genetic algorithm solution process must be invested into a 

process known as "tuning" the genetic algorithm. During the tuning process, one 

performs multiple runs of the genetic algorithm software and observes the behavior that 

changes in certain parameters have on the performance. Eventually, the parameters that 

give the best performance can be found. 

The parameters that gave the best performance for solving the 113:14 problem are 

summarized in Table 4-2. They are also detailed briefly below: 

•    Stopping Rule: Since a genetic algorithm is an iterative process, some type of rule 

must be predefined as to when the algorithm should stop.   PGAPack has three 

131 



different options for when to stop: If a maximum number of iterations has been met; 

If the best value of the objective function hasn't changed for a fixed number of 

iterations, or if all members of the population are too similar to one another. For this 

problem, setting a no-change-stopping rule of 100 iterations seemed to work well. 

• Population Size: The population size parameter defines the number of strings to be 

maintained in each generation. The default PGAPack value is 100 which also seemed 

to work well for this optimization problem. 

• Replaced Per Iteration Value: Two population replacement schemes are common in 

the literature. The first, the generational replacement genetic algorithm (GRGA) 

replaces the entire population each generation. The second, the steady-state genetic 

algorithm (SSGA) replaces only a few strings each generation and is a more recent 

development.78 One advantage to the SSGA is that fewer function evaluations are 

required per iteration. As the function evaluations for this problem involved detailed 

orbit propagation, it proved advantageous to replace only a portion of the population 

each iteration as opposed to replacing all 100 strings. The number replaced each 

generation was 25. 

• No Duplicates Flag: The no duplicates flag determines whether or not duplicate 

strings are allowed in a population. By setting it equal to true, the mutation operator 

is repeatedly applied to a duplicate siring until the string no longer matches any other 

strings in the population. This requirement was found to be very advantageous as it 

78 Levine, D. Users Guide to the PGAPack Parallel Genetic Algorithm Library, Argonne National 
Laboratory, ANL 95/18, 1996. Online at http://www-unix.mcs.anl.gov/~levine/PGAPACK/index.html, p. 
19. 
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• 

allowed the populations to maintain a high level of diversity, thereby avoiding 

premature convergence to local minima. 

Mutation and Crossover Flag: The default for PGAPack is to apply mutation only to 

strings that did not undergo crossover.   However, as with the no duplicates flag, it 

was desirable to maintain high levels of diversity in solving the 113:14 repeat ground 

track problem.   Setting the mutation and crossover flag to true allowed strings to 

undergo both mutation and crossover, thereby increasing the overall population 

diversity. 

Mutation Rate: The default PGAPack mutation probability is 1/L where L is the 

length of a string.  This rule for defining the mutation rate was found to work well, 

and therefore the mutation rate was not modified from its default value. 

Crossover Type: As mentioned previously, there are a number of available crossover 

operators.   The most common of these is the two-point crossover.   PGAPack also 

allows for one-point or uniform crossover, but since two-point crossover was 

successful, neither of these options was selected. 

Crossover Probability: Like many of the other PGAPack parameters, the default 

probability of crossover of 0.85 also needed no modification. 

Selection Type: As described in section 3-3-3-1-2, the selection operator allocates 

reproductive trials to strings on the basis of their assigned fitness values.  However, 

like crossover, a number of different ways of applying this operator are possible. 

PGAPack supports four selection schemes with tournament selection as the default. 

79 Levine, D. Users Guide to the PGAPack Parallel Genetic Algorithm Library, Argonne National 
Laboratory, ANL 95/18, 1996. Online at http://www-unix.mcs.anl.gov/~levine/PGAPACK/index.html. p. 
22. 
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Table 4-2113:14 Case Genetic Algorithm Parameters 

Parameter Type/Value 
Stopping Rule No Change 
No Change Value 100 
Population Size 100 
Replaced Per Iteration 25 
No Duplicates Flag True 
Mutation and Crossover Flag True 
Mutation Rate 1/String Length 
Crossover Type Two-Point 
Crossover Probability 0.85 
Selection Type Tournament 

4-1-3-1-4 113:14 Repeat Ground Track Genetic Algorithm Propagation Parameters 

An input deck identical to the input deck used to implement the Powell algorithm 

was used (See 4-1-2-1-2) to perform the genetic algorithm optimization.  Applying both 

methods to identical input decks allowed for a direct comparison of the results. 

4-1-3-2 Performance of the GA on 113:14 Repeat Ground Track Optimization 

Using the parameters and structures defined above, the genetic algorithm was able to 

successfully solve the 113:14 orbit design problem in a reasonable number of iterations. 

The time required to reach a converged state was longer than time required by the Powell 

method, but unlike the Powell algorithm, the genetic algorithm was able to avoid 

convergence to incorrect solutions. Both the best and the average objective function 

values as a function of iteration number are presented in the following figures. These 

figures clearly show that both the average and best objective function values are 

continually evolving to better and better values as predicted by the fundamental theorem 

of genetic algorithms. The fact that the best value remains constant for the last 150-200 

iterations indicates that the number of iterations defined as the stopping rule is too large. 
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However, it was found that it was better to run for too many iterations, than to stop before 

actual convergence had been reached. 
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Figure 4-7 Best 113:14 Objective Function Value vs. Iteration Number 
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Figure 4-8 Average 113:14 Objective Function Value vs. Iteration Number 
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4-1-3-3 Genetic Algorithm Results for 113:14 Repeat Ground Track Optimization 

As was the case with Powell's method, the result of the genetic algorithm 

optimization was a three-variable optimized set of the orbital elements (a, e, and i) that 

gave the minimum decay from the initially specified values of argument of perigee, node 

rate, and repeat ground track. The optimal elements from Powell's method have already 

been presented in Table 4-1. Table 4-3 shows the results from the genetic algorithm 

optimization along with the difference between these results and the results from the 

Powell optimization. Notice that the answers generated by both techniques are nearly 

identical. 

Table 4-3 GA Derived Optimal Elements for the Borealis Node at Noon 113:14 Case 

Element Value Difference from Powell 
Semi-major Axis (a) 10496.8969 km 0.0001 km 
Eccentricity (e) 0.32985 0.00001 
Inclination (I) 116.5782° 0.0000° 

4-1-4 Performance of Borealis™ With Optimally Designed Elements 

After establishing (both through localized and genetic algorithm approaches) the 

optimal initial elements for the Borealis™ node-at-noon orbit plane, it was necessary to 

analyze the behavior of the orbit with those elements specified. To understand the 

behavior, DSST was again used to propagate the orbit. The result of that propagation 

was a series of plots that show the design accuracy of the orbit. 

Of most interest among the elements are the accuracy of the argument of perigee 

and the ascending node. One of the three desired behaviors was a constant argument of 

perigee of 260°. Although, due to the zonal and third body perturbations, it is impossible 
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to meet this objective exactly, Figure 4-9 shows that the set of optimal elements does 

provide a trajectory whose mean is maintained near zero. 

113:14 Borealis Node at Noon — Zonal /Third Body Perturbations 
Perigee Drift: Deviation from 260 Deg 
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Figure 4-9 113:14 Repeat Ground Track Argument of Perigee Design Accuracy 

The other desired behavior that can easily be plotted is the behavior of the 

longitude of the ascending node. As mentioned previously, the desire for this element 

was for it to have a constant rate that would allow the orbit to be sun-synchronous. Since 

the desired rate is a constant, the desired node can be easily computed as a function of 

time. The difference between the propagated ascending node and the desired ascending 

node is shown in Figure 4-10. Once again it is impossible to maintain the desired orbit 

exactly, but the optimal elements found are successful in zeroing out the mean of the 

variation. 
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113:14 Borealis Node at Noon — Zonal I Third Body Perturbations 
Node Drift 
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Figure 4-10 113:14 Right Ascension of the Ascending Node Design Accuracy 

The behavior of the other elements is not nearly of as much interest as there were 

not any predefined desires for their behavior. Plots similar to those for the argument of 

perigee and the node can, however, be found for all the elements in Appendix A-4-1. 

Also, the maximum and minimum variations of these elements over the five-year life 

span are summarized in Table 4-4. 

Table 4-4 Borealis Node at Noon 113:14 Design Accuracy over 5 Year Life Span 

Oscillation/Variation Maximum Minimum 
Semi-major axis (km) 0         J 0 
Eccentricity 6.0 e-03 -1.7e-04 
Inclination (deg) 1.5e-02 -1.4e-02 
Argument of Perigee (deg) 2.7 e-01 -2.8 e-02 
Ascending Node (deg) 2.0e+00 -l.le+00 
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Although the optimally designed elements seem to perform well when propagated 

under zonal and third-body perturbations, there is an additional requirement to check 

their behavior when subjected to real world perturbations. Some additional decay is 

expected when the orbits are subjected to full perturbation models, but it must be verified 

that this additional decay is small enough that, through station keeping, the spacecraft 

could be controlled to desired levels of decay. In order to analyze the decay, it was 

necessary to propagate the satellite with more than just zonal and third body point mass 

effects included. The effects of these "real-world" perturbations were created using 

atmospheric drag, solar radiation pressure, tessera! harmonics, third-body, and solid Earth 

tides. A Jacchia-Roberts atmospheric density model was used in the determination of the 

drag effects. 

The element history plots resulting from these full-perturbation propagations are 

included in appendix A-4-2. The argument of perigee and ascending node plots are 

included here in Figure 4-11 and Figure 4-12 for comparison to the results presented 

previously. It can readily be seen from the element decay figures that the behavior of the 

orbit under full perturbation models is not as stable as the behavior under only zonal and 

third-body effects. The decrease in stability is simply because the additional 

perturbations have effects on the orbit which were not taken into account during the 

optimization. However, as the decay under full perturbations appears small enough to be 

controllable through station keeping (see Chapter 5), the design can be considered 

adequate. Table 4-5 summarizes the decay under the effect of these perturbations. 
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113:11 Borealis Node at Noon — Full Perturbations 
Perigee Drift: Deviation from 260 Deg 
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Figure 4-11113:14 Argument of Perigee Decay Under Full Perturbations 

113:14 Borealis Node at Noon — Full Perturbations 
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Table 4-5 Borealis™ Node-at-Noon 113:14 Design Decay over 5 Year Life Span 
under Full Perturbations 

Oscillation/Variation Maximum Minimum 
Semi-major axis (km) 7.7e-01 -1.4e+01 
Eccentricity 6.2e-04 -1.7e-03 
Inclination (deg) 9.0e-03 -2.9e-02 
Argument of Perigee (deg) 1.2e-03 -9.6e-01 
Ascending Node (deg) 0 -4.1e+00 

4-2 Ellipso™ Gear Array Design Optimization 

Following successful application of genetic algorithms to the 113:14 repeat 

ground track design problem, attempts were made to solve a similar problem, that of the 

gear array, using similar techniques. The following sections contain a discussion of the 

gear array problem, the techniques used to solve the problem, and the resulting orbital 

behavior observed. 

4-2-1 Gear Array Description. 

Draim80 and Turner81 have described the use of elliptical orbits in the equatorial 

plane, whose apogees always remain on the sunlit side of the Earth. These types of orbits 

appear well suited to the field of satellite communications since they provide extra Earth 

coverage, as well as extra redundancy due to the "bunching" of the satellites near apogee. 

80 Draim, J. E. Optimization of the ELLIPSO and ELLIPSO 2g Personal Communications Systems, 
International Workshop on Mission Design and Implementation of Satellite Systems, Toulouse, France, 17- 
19 Novmeber 1997. 
81 Turner, A. E. New non-Geosynchronous Orbits for Communications Satellites to Off-Load Daily Peaks 
in Geostationary Traffic, AAS Paper 87-547, AAS/AIAA Astrodynamics Specialists Conference, 
Kallispell, Montana, 10-13 August 1987. 
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The concept of the "Gear Array" (US Patent Pending) is under development at 

Ellipso, Inc.82 This gear array concept is a two-orbit hybrid elliptical/circular 

constellation consisting of two sub-constellations as shown in Figure 4-13: 

• An elliptical sub-constellation of Apogee Pointing to the Sun (APTS) orbits 

containing n satellites. 

• A circular sub-constellation whose motion is commensurable with that of the 

APTS orbits containing m satellites. 

The apogee of the elliptical orbit approximately (or exactly, in some cases) 

matches the altitude of the circular orbit. On the daylight side, they are phased with an 

approximately equal spread between the circular satellites and the elliptical satellites. 

Figure 4-13 5:6 Gear Array Viewed from North Pole 

82 Proulx, Ronald J, James E. Smith, John E. Draim, and Paul J. Cefola. Ellipso™ Gear Array: 
Coordinated Elliptical/Circular Constellations, AIAA Paper 98-4383, AIAA/AAS Astrodynamics 
Specialist Conference, Boston, Massachusetts, 10-12 August 1998. 
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The choice of the term "gear array" appeared naturally, as the satellites resemble 

the teeth in a mechanical epicyclical gear train. The satellites appearing in the elliptical 

component of the gear array have shorter periods than those appearing in the circular 

component of the gear array. The ratio of the number of elliptical satellites to circular 

satellites is approximately the same as the ratio of their periods, thus as they rotate, the 

orbits periodically repeat their alignment in a manner similar to the teeth of a gear. 

4-2-2 Gear Array Problem Formulation 

Like the optimization problem for the 113:14 repeat ground track case, the 

optimization problem for the design of the gear array is to find the optimal initial orbital 

elements that give the desired behavior over some specified length of time. The objective 

function, from which the optimal elements are to be determined, is, once again, a simple 

linear combination of the desired behaviors. For the gear array there are two basic 

desirable behaviors: APTS and commensurability. These two behaviors are described by 

three mathematical expressions (Ki, K2, and K3) which can be combined to form the 

desired objective function (J). 

J(ae,ac,e) =cc Kj +ß K2 +y K3 Equation 4-5 

where: 

a,fi, and ? are scale factors chosen to normalize the individual constraints. For 

this application a was emipirically set to 1000, ß to 10, and yto 1000. 

In addition to defining the objective function, the desired behaviors also force all 

of the initial orbital elements except for those which are the arguments of the objective 

function J: the eccentric orbit semi-major axis (as), the circular orbit semi-major axis (ac), 

and the eccentric orbit eccentricity (e). Since both orbits are in the equatorial plane, their 
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inclinations are defined to be zero and their ascending nodes are undefined. Additionally, 

for circular orbits, eccentricity is defined to be zero and the argument of perigee is 

undefined. The only remaining variable, the initial argument of perigee for the eccentric 

orbit is forced by virtue of the fact that apogee must always point towards the Sun. The 

initial Sun vector can be computed and the initial argument of perigee can then be set to 

this value. 

4-2-2-1 APTS behavior 

Having defined the solve-for variables as well as the form of the objective 

function, it is now necessary to mathematically define each of the desired behaviors 

which make up that objective function. The simplest of the behaviors to define 

mathematically is the APTS behavior. This is similar to the sun-synchronous behavior 

desired of the 113:14 orbits. However, since the elliptical orbit in the gear array is in the 

equatorial plane (i = 0°), it is not enough for the node (Q) to move at the same rate as the 

Sun. Instead, a combination of the node and the argument of perigee (ra) must move at 

this rate. This desired combination is expressed below: 

a + Q, = .9865° / day Equation 4-6 

For equatorial orbits, the right ascension of the ascending node, O, is not well 

defined, and the APTS constraint must be recast on the line of apsides motion in terms of 

equinoctial elements. In this formulation, the APTS constraint takes on the following 

form: 

*.-Z 
kh — hk „, , 

F7F--9865/<% 
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Figure 4-14 shows values of the APTS constraint, ^,, as a function of the 

eccentric orbit semi-major axis and eccentricity. The reason for the choice of these two 

variables will be discussed in detail later in section 4-2-3-1. However, if a desired offset 

between the circular semi-major axis and the eccentric orbit apogee height, A, is defined 

ahead of time, the gear problem can be reduced to a two-variable optimization problem 

and plots of the behavior of each constraint can be generated. All of the plots in this 

section were created with a A of 0 km (i.e. the eccentric and circular orbits are tangent at 

apogee) and an n to m ratio of 4:5 (i.e. 4 satellites in the APTS array and 5 satellites in 

the circular array). 

Figure 4-14 APTS Constraint Behavior Contour Plot 

With sufficient graphical resolution, Figure 4-14 shows exactly what is expected. 

For a given eccentricity, there is a corresponding semi-major axis such that apogee is 
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always offset from the Sun at a fixed angle.    Therefore, for any eccentricity, a 

corresponding semi-major axis produces an APTS orbit. 

4-2-2-2 Commensurability Behavior 

In the previous section, the desired APTS behavior has been framed 

mathematically and plotted. The result of that discussion, however, is that for any 

eccentricity, there is a corresponding semi-major axis that will minimize Ki. Therefore, 

with only a constraint on the APTS behavior, the problem is not sufficiently constrained 

to be solvable. In order to further define the problem, it is necessary to also include the 

effect of the desired commensurability relationship. 

The commensurability relationship between the APTS and Circular components 

of the gear array is actually both a geometric and a rate control. That is, the gear array 

should have a stroboscopic character, its structure repeating cyclically; and the periods of 

the APTS and circular arrays should also be approximately commensurable. Each of 

these behaviors can be expressed mathematically as discussed below: 

4-2-2-2-1 Geometric or Stroboscopic Constraint 

To define the desired geometric behavior, let ue(t) be the unit vector pointing at a 

satellite in the APTS sub-constellation and let uc{t) be the unit vector pointing at a 

satellite in the circular sub-constellation of the GEAR array at time t. Also define Pe to 

be the anomalistic period of the APTS array and Pc to be the anomalistic period of the 

circular array. The stroboscopic constraint then requires that the dot product between the 

two vectors be periodic every m periods of the elliptical array as follows: 
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üe (t + mPe)- üc (t + mPe)= Q(t) Equation 4-8 

This constraint geometrically connects the motion of the circular array to the motion of 

the APTS array. Putting the APTS satellite at apogee at t = 0, and setting 

ßo = ö(°) = cos(/r/m) Equation 4-9 

the initial position of the satellite in the circular orbit is seen to be offset from the apogee 

direction of the APTS orbit at epoch by n/m radians. In order to sample the deviation 

from this constraint at many times during the constellation lifetime, this stroboscopic 

constraint can be recast as: 

K2 = XK (smPe)- ac (smPe)" ßo| Equation 4-10 
s 

The surface formed by this constraint is much more complex than the surface 

formed by the APTS constraint as shown in Figure 4-14. Rather than having a one to one 

correspondence between a and e, this stroboscopic constraint appears to be largely 

independent of a and has multiple minimizing values of e as seen in Figure 4-15. 

An edge-on view of the behavior along the semi-major axis is depicted in Figure 

4-16. Note that the value of the objective function depends only on the choice of 

eccentricity. In the range selected, there are two minimizing values of eccentricity: 0.16 

and 0.41. Also note that although 0.16 appears to be the best choice of eccentricity, both 

choices actually cause objective values of approximately zero. The differences present in 
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the figure are due to the refinement of the a/e grid over which the objective function was 

plotted. 
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Figure 4-15 Stroboscopic Constraint Behavior 

Figure 4-16 Stroboscopic Constraint Behavior: Edge-on View 
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4-2-2-2-2 Period Commensurability or Ratio Constraint 

As shown in Figure 4-16, the stroboscopic constraint alone cannot force a unique 

eccentricity. Instead, several eccentricities provide a stroboscopic solution for the gear 

array. In order to further define the problem, a second commensurability constraint, was 

defined. Rather than relying on the desired geometry, this constraint instead frames the 

commensurability relationship in terms of the periods of the two orbits. This constraint 

requires that the anomalistic period of the APTS array and the anomalistic period of the 

circular array be approximately commensurable to the ratio of the number of satellies in 

each array: n/m. Sampling through the period of performance, we obtain the following 

constraint: 

*3=I P.    m c 

Equation 4-11 

Proceeding in a manner similar to that followed for the discussion of the other two 

constraints, the ratio constraint can be plotted. Like the other commensurability 

condition, the plot shows that this periodic constraint is also quite dependent on 

eccentricity. The variation of the constraint with respect to eccentricity can be seen in 

Figure 4-17. 
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Figure 4-17 Ratio Constraint Behavior 

Over the wide range of eccentricity values analyzed in Figure 4-16 and Figure 

4-17, it appears that the minimum values of the stroboscopic and ratio constraints are 

aligned near an eccentricity of 0.16. However, there is actually a slight shift, due to 

changes in the period of both orbits caused by non-two body effects. With an 

appropriately complex level of analysis, the ratio constraint could be constructed such 

that the minimum occurred at a point corresponding exactly to one of the minima of the 

stroboscopic constraint. An advantage to the approach used here, however, is that this 

complexity is not necessary. The purpose of the ratio constraint is only to locate the 

general region over which to search the stroboscopic space. The stroboscopic constraint 

can then be used to locate the exact value of eccentricity that will cause the desired 

repetition between orbits. 

150 



4-2-3 Gear Array Solution Process 

This section discusses the various steps that were taken to find a solution to the 

objective function outlined above. Initial attempts were made using the localized 

Powell's method, but as with the 113:14 case, Powell's method often converged to 

incorrect solutions. Therefore, Powell's method was abandoned, and the gear array 

design problem was instead solved using the parallel genetic algorithm approach. The 

steps taken in this approach are presented in this section. 

4-2-3-1 Gear Array Problem Parameterization 

Like many optimization problems, solutions to the gear array problem may be 

parameterized in several different ways. In attempting to find a solution three of these 

parameterization methods were considered. 

• Fix a desired offset, A, between the apogee heights, and construct the APTS array 

which will meet the desired constraints. For example two tangent orbits at apogee 

could be achieved with a A of 0 km.   By using the relationship ac =ae(l + e)-A, 

where ac is the semi-major axis of the satellite in the circular array, and ae is the 

semi-major axis of the satellite in the APTS array, one of the solve for variables could 

be eliminated. 

• Fix the semi-major axis of the circular array, and find the semi-major axis and 

eccentricity of the APTS array which   meets the constraints.   This approach also 
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reduces the problem to a two-variable optimization problem, but it assumes that a 

desired semi-major axis is known. 

• Fix the desired apogee height of the elliptical array, and find the semi-major axis of 

both the ellipitcal and circular arrays which minimize the objective function. Again 

the problem becomes a two-variable optimization, but like the previous 

parameterization, it assumes that something about the design is pre-defined. 

These three parameterization methods have been labeled the offset method, the 

fixed circular semi-major axis method, and the fixed apogee height method, respectively. 

All three are viable options for solution of the gear array problem, but a study of each 

method found that a careful choice of the parameterizatoin method led to an easiser 

solution path. 

The best parameterization was found to be the offset method. Not only did this 

method allow for the most flexibility in the three design parameters (a-, ac, and e), but the 

solution space was also determined to be the easiest to navigate. The following three 

figures were created by formulating the problem in each of the three parameterization 

methods described above and allowing the free variables to vary over specified ranges. 

The result of these variations was an array of objective function values corresponding to a 

variable pair. Since each of the parameterization methods reduced the problem to a two- 

variable problem, the surfaces shown below are the actual surfaces over which 

optimization for the 4:5 gear array with 0 km offset is desired. 

152 



Figure 4-18 Offset Method Contour Plot 

Figure 4-19 Fixed Circular Semi-Major Axis Method Contour Plot 
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Figure 4-20 Fixed Apogee Height Method Contour Plot 

A careful analysis of the three surfaces shows why the offset method is the 

parameterization method of choice. Although both the offset and fixed circular semi- 

major axis methods create smooth surfaces, the surface created by the offset method has a 

much clearer minimum. Both surfaces have regions of minimum values, but the region 

created by the offset method is a small sink, as opposed to the large region of minimum 

values created by the fixed semi-major axis method. For optimization purposes, it was 

found to be much easier to find the minimum of the sink than to find the minimum of the 

large region in Figure 4-19. 

The selection of the offset method over the fixed apogee height method is much 

more obvious. A simple comparison between the two surfaces of Figure 4-18 and Figure 

4-20 reveals that the offset surface is much easier to minimize. The fixed apogee height 
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surface does have clearly defined minima, but they are located at the bottom of very 

narrow spikes, making optimization quite difficult. 

4-2-3-2 Gear Array Optimization Code Structure 

Having settled upon a parameterization method, it was necessary to create the 

code that would allow implementation of that method. Since the code for the 

implementation of the 113:14 case was created in a fairly general manner, the code 

structure presented in Figure 4-5 could also be used to solve the gear optimization 

problem. The only required changes were in the SETLIM routine to specify the different 

solve-for variables, in FUNC to define the new objective function, and in PGA_SAT to 

define new genetic algorithm parameters. Additionally, a new DSST input deck was 

defined. Each of these modifications is discussed in more detail in the following 

sections. 

4-2-3-2-1 Gear Array Genetic Algorithm Variable String Structure 

In order to implement the fixed offset method, the strings in the genetic algorithm 

were defined to be 62 bit binary strings with 31 bits representing the eccentric semi-major 

axis and 31 bits representing the eccentric orbit eccentricity. There was no need to 

include the circular orbit semi-major axis in the solve-for string as it was simply a 

function of these other two variables and the predefined offset. 

4-2-3-2-2 Gear Array Objective Function Structure 

The objective function routine, FUNC, was the only piece of code that required 

significant modification for the gear array optimization to be successful.   Since FUNC 
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contains the objective function information and the gear problem dealt with an entirely 

different objective function than the 113:14 case, it was necessary to write an entirely 

new FUNC to perform the objective function evaluations for each string. An overview of 

the evaluation process can be seen in Figure 4-21. 

Real Values of ae and e 
are passed to FUNC 

lnitialize_Sat is called 
with APTS input deck to 

re-initialize DSST 

Initialized Values of ae and e 
are overwritten with the 

values passed into FUNC 

SATELLITE propagates 
APTS orbit forward one 

time step 

APTS Rate Deviation is 
Calculated and Summed 

Geometric and Periodic 
Behavior is Stored 

lnitialize_Sat is called 
with Circular input deck to 

re-initialize DSST 

Initialized Values of ac is 
replaced with calculated 
value based on ae and e 

passed into FUNC 

Time is reinitialized to 
Start Time 

Total Variation at all 
times is summed and 
returned as Objective 

Function Value for gven 
ae and e combination 

SATELLITE propagates 
APTS orbit forward one 

time step 

Period Constraint 
Deviation is Calculated 

and Summed 

Geometric Constraint 
Deviation is Calculated 

and Summed 

Figure 4-21 Gear Array Optimization FUNC Overview 

As can be seen by a simple comparison between the FUNC flowchart seen here 

and the FUNC flowchart for the 113:14 case shown in Figure 4-2, the main difference 

between the two objective functions is the addition of a second loop through the DSST 

propagation.   This additional loop is necessary for the gear array optimization because 
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there are now two separate orbits of interest: the elliptical APTS orbit and the circular 

orbit. The APTS orbit is propagated first with the values of ae and e that are contained in 

the GA string to be evaluated. From this propagation the APTS rate deviation is 

calculated and the information necessary to calculate the geometric and periodic 

behaviors is stored. 

However, since the geometric and periodic behavior is a relationship between the 

APTS and circular orbit, the deviation from the desired values cannot be calculated 

without first determining the motion of the circular component. Therefore, the necessary 

information for the APTS orbit is stored and the DSST propagator is restarted with the 

circular orbit information, including the circular semi-major axis that is calculated from 

the ae and e values contained in the string. After propagation of the circular orbit, it is 

then possible to compare the motion of each orbit at each time step and calculate the 

deviations from desired behavior at each step. The total deviation of all three constraints 

is then combined in a weighted sum and returned to the genetic algorithm as the objective 

function for the given string. As was the case with the 113:14 case, the objective 

function has been designed so that strings that give small variations from the desired 

behavior will end up with small objective function values and therefore high fitness 

values. 

4-2-3-2-3 Gear Array Genetic Algorithm Parameters 

With two exceptions, the specific genetic algorithm parameters used for the 

113:14 case and presented in Table 4-2 were also found to work well for the gear array 

optimization. The two exceptions were the number of iterations to repeat without 

changing before stopping and the mutation rate.  The reason for both of these changes 
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was related to premature convergence at slightly incorrect answers. It was found, 

through test runs of the genetic algorithm, that the GA had a tendency to settle upon an 

answer that was near the optimum, but was not exactly the optimum. By forcing the 

genetic algorithm to perform more iterations (by increasing the No Change Value) and to 

maintain more diversity (by raising the mutation rate) it was found that this premature 

convergence could be avoided. The specific genetic algorithm parameters used for the 

gear array optimization are summarized in Table 4-6. 

Table 4-6 Gear Array Genetic Algorithm Parameters 

Parameter Type/Value 
Stopping Rule No Change 
No Change Value 150 
Population Size 100 
Replaced Per Iteration 25 
No Duplicates Flag True 
Mutation and Crossover Flag True 
Mutation Rate 0.02 
Crossover Type Two-Point 
Crossover Probability 0.85 
Selection Type Tournament 

4-2-3-2-4 Gear Array Propagation Parameters 

The design of the gear array was accomplished in the presence of the Zonal Geo- 

potential, employing the J2 through J50 harmonics. All other perturbations were not 

included in the design process (although they were included in an analysis of the optimal 

designs). The epoch for all cases was January 1, 1997 and all cases were designed over a 

one-year time span. 

Two different cases were run, both employing the offset method. The first case 

was a 5:6 gear with an offset of 285 km. This case was chosen as it produced an apogee 

height of 8050 km. This apogee height is the same as the original seven satellite 
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Concordia™ equatorial ring of the Ellipso™ constellation and therefore could be used for 

direct comparison between the original baseline Ellipso™ and the gear design. A nine- 

satellite 4:5 gear array with a 0-km offset was also investigated as an alternative with two 

fewer satellites in the array. The input decks for the elliptic and circular arrays of both 

cases can be found in Appendix B-4. 

4-2-4 Genetic Algorithm Performance on Gear Array Design Optimization 

After tuning the genetic algorithm with the correct parameters, the genetic algorithm 

approach proved successful in finding the elements to create optimally designed gear 

arrays. The required number of iterations also proved to be quite reasonable—on the 

order of 300-500. Figure 4-22 and Figure 4-23 show how the best objective function of 

each population slowly evolved to the optimal value for both the 5:6 and 4:5 case. The 

same plots showing the average value evolution can be found in Appendix B-5. 
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Figure 4-22 5:6 Case Gear Design Genetic Algorithm Convergence Plot 
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Figure 4-23 4:5 Case Gear Design Genetic Algorithm Convergence Plot 

4-2-5 Results of Gear Array Optimization 

Successful optimization of the gear problem using genetic algorithms resulted in a 

simple semi-major axis/eccentricity pair which, when used as the epoch elements of an 

orbit propagation (under a zonal 50 x 0 field), produced the smallest total deviation from 

the desired behaviors of periodicity and apogee pointing to the Sun. The optimally 

designed elements for both the 5:6 gear 8050 apogee and the 4:5 gear 0 km offset are 

presented in Table 4-7. 
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Table 4-7 Optimal Gear Array Design Parameters 

5:6 GEAR 
8050 APOGEE 

4:5 GEAR 
0 KM OFFSET 

Array Type APTS Circular APTS Circular 
Number of Satellites 5 6 4 5 
Semi-Major Axis (Km) 12537.37 14143.57 12546.57 14555.45 
Eccentricity 0.151172 0.0 0.160114 0.0 
Apogee Height 8050. 7765. 8177. 8177. 
Perigee Height 6149. 7765. 4159. 8177. 
Phasing in Mean Anomaly 72 60 90. 72. 
Anomalistic Period (sees) 13947.98 16737.58 13980.01 17475.07 

4-2-6 Gear Array Performance 

Two separate analyses regarding the performance of the optimal orbital elements 

shown in Table 4-7 can be performed. The first is an analysis into the performance of the 

orbits in relation to the objective function and the desired behaviors. The second is a 

comparison of the overall performance of these gear arrays in terms of communications 

coverage capabilities, when compared to the baseline Ellipso™ constellation. 

4-2-6-1 Gear Array Performance Objective Function Analysis 

Two separate areas must also be studied in terms of the design behavior with regard 

to the objective function. First, in an effort to show that the designs achieved by the 

genetic algorithm are optimal, it should be shown that the APTS, commensurability, and 

geometric behaviors are all minimized in the 50 x 0 field in which they were designed. 

Then, since the design optimization was performed only in the presence of zonal fields, it 

is also necessary to study the behavior of the constellations under full perturbations to 

ensure the desired behaviors are still met. 
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4-2-6-1-1 Gear Array Design Accuracy 

The design accuracy of the optimized elements is best assessed by analyzing the 

deviation in each of the three desired behaviors: APTS pointing, gearing ratio, and 

gearing phase. As these were the three items to be directly optimized, it is expected that 

their error will be small. For a well designed orbit, it is also desirable that the elements 

remain fairly constant over time. If the elements decay drastically from their initial 

values, the gear behavior of the arrays will also decay. Therefore, in assessing the design 

accuracy, the decay of the orbital elements was also studied. 

Table 4-8 and Table 4-9 contain a summary of the statistics for the desired 

behaviors as well as the orbit elements for the two designed arrays propagated five years 

from a January 1, 1997 epoch under a zonal 50 x 0 field. The corresponding plots can 

also be found in Appendix B-6. 

Table 4-8 5:6 Gear 8050 Apogee Design Accuracy 

Miiximiini Minimum Mean St. Dev. 
Nominal Pointing Error (Deg) 7.07e-05 -3.43e-05 2 OOc-OS 2.46e-05 

Gearing Ratio Error 3.43e-03 -l.lle-03 -5.53e-06 1.80e-04 

Gearing Phase Error (Deg.) 3.63e-05 -6.75e-03 -3.13e-03 2.50e-03 

APTS SMA Deviation (km) 0.00e-00 0.00e-00 0.00e-00 0.00e-00 

APTS Eccentricity Deviation 3.00e-08 -1.09e-07 -4.65e-08 4.38e-08 

APTS Inclination Deviation (Deg) 1.13e-02 3.69e-15 7.20e-03 3.28e-03 
APTS Mean Anomaly Deviation (Deg) 7.61e-02 0.00e-00 3.54e-02 2.83e-02 

Circular SMA Deviation (km) 0.00e-00 0.00e-00 0.00e-02 0.00e-00 
Circular Eccentricity Deviation 4.53e-08 0.00e-00 2.33e-08 1.48e-08 
Circular Inclination Deviation (Deg) 2.84e-03 3.69e-15 1.62e-03 8.29e-04 
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Table 4-9 4:5 Gear 0 km Offset Design Accuracy 

Maximum Minimum Mean StDev. 
Nominal Pointing Error (Deg) 2.30e-05 -2.92e-04 -1.15e-04 9.31e-05 
Gearing Ratio Error 3.69e-03 -1.12e-03 1.13e-06 1.90e-04 
Gearing Phase Error (Deg.) 2.49e-13 -5.46e-03 -2.56e-03 2.00e-03 
APTS SMA Deviation (km) 0.00e-00 0.00e-00 0.00e-00 0.00e-00 
APTS Eccentricity Deviation 3.00e-08 -1.15e-07 -4.90e-08 4.57e-08 
APTS Inclination Deviation (Deg) 1.18e-02 3.70e-15 7.56e-03 3.46e-03 
APTS Mean Anomaly Deviation (Deg) 7.60e-02 0.00e-00 3.53e-02 2.82e-02 
Circular SMA Deviation (km) 0.00e-00 0.00e-00 0.00e-00 0.00e-00 
Circular Eccentricity Deviation 4.99e-08 0.00e-00 2.70e-08 1.61e-08 
Circular Inclination Deviation (Deg) 3.16e-03 3.69e-15 1.92e-03 8.71e-04 

The data found in the above tables and the plots found in Appendix B-6 show that 

the elements converged upon by the genetic algorithm optimization approach do indeed 

produce stable orbits that meet the gear criterion specified in the problem. The furthest 

deviation in either case of any of the three constrained behaviors is less than 0.004 (the 

Gearing Ratio Deviation). The largest value of the mean error is also on this same order 

(less than 0.004) and occurs in the gearing phase error in both cases. Analysis of the 

element decay over the five-year period also shows that under the 50 x 0 zonal field, the 

orbits are quite stable and experience only very small drift over the entire five-year 

period. 

4-2-6-1-2 Gear Array Orbit Decay Under Full Perturbations 

Although the designed orbits appear to meet the gearing criterion and to maintain 

their stability over the desired five-year lifetime, it is also necessary to study the decay of 

the orbits under all perturbations during the same five-year period. It is possible that 

when subjected to third-body point mass effects, atmospheric drag, solar radiation 

pressure, tessera! harmonics, and solid Earth tides, that the gear behavior seen in the 50 x 
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0 design space might disappear. Appendix B-6 as well as Table 4-10 and Table 4-11 

detail the results of the five-year propagation under full perturbation models. 

Table 4-10 5:6 Gear 8050 Apogee Decay Under Full Perturbations 

Maximum Minimum \le:in St Dev. 
Nominal Pointing Error (Deg) 8.63e-03 -1.75e-00 -8.726-01 5.05e-01 
Gearing Ratio Error 4.40e-03 -4.99e-04 -3.11e-04 3.32e-04 
Gearing Phase Error (Deg.) 5.95e-01 -5.79e-00 -8.80e-01 1.75e-00 
APTS SMA Deviation (km) 6.43e-02 -6.30e-03 1.89e-02 1.92e-02 
APTS Eccentricity Deviation 2.21e-04 -4.49e-05 5.71e-05 5.60e-05 
APTS Inclination Deviation (Deg) 4.82e-02 3.69e-15 2.34e-02 1.42e-02 
APTS Mean Anomaly Deviation (Deg) 5.09e-04 -14.65e-00 -4.75e-00 4.16e-00 
Circular SMA Deviation (km) 0.00e-00 -2.20e-03 -1.15e-03 7.42e-04 
Circular Eccentricity Deviation 1.28e-03 0.00e-00 8.41e-04 3.72e-04 
Circular Inclination Deviation (Deg) 8.11e-02 3.69e-15 4.63e-02 2.37e-02 

Table 4-11 4:5 Gear 0 km Offset Decay Under Full Perturbations 

Maximum Minimum Mean StDev. 
Nominal Pointing Error (Deg) 8.12e-03 -1.90e-00 -9.44e-01 5.48e-01 
Gearing Ratio Error 7.17e-03 -5.10e-04 -2.54e-04 5.49e-04 
Gearing Phase Error (Deg.) 6.21e-01 -6.08e-00 -9.16e-01 1.87e-00 
APTS SMA Deviation (km) 7.16e-02 -6.60e-03 2.12e-02 2.14e-02 
APTS Eccentricity Deviation 2.52e-04 -4.86e-05 6.61e-05 6.44e-05 
APTS Inclination Deviation (Deg) 4.88e-02 3.69e-15 2.35e-02 1.43e-02 
APTS Mean Anomaly Deviation (Deg) 5.72e-04 -15.74e-00 -5.01e-00 4.47e-00 
Circular SMA Deviation (km) 0.00e-00 -1.70e-03 -8.15e-04 5.75e-04 
Circular Eccentricity Deviation 1.12e-03 0.00e-00 6.75e-04 3.53e-04 
Circular Inclination Deviation (Deg) 9.40e-02 3.69e-15 5.74e-02 2.60e-02 

The designed gear arrays are actually quite stable in the presence of full 

perturbation models. As expected, the decay of all elements increased when additional 

perturbations were included, but that increase was not enough to destroy the structure of 

the array and eliminate the desired behaviors. Probably the most serious decay occurred 

in the expected mean anomaly of the APTS orbit (measured at each anomalistic period). 

This value decayed approximately 15° in both cases. This decay was a direct result of the 

semi-major axis decay due to the addition of solar radiation pressure. And although this 

semi-major axis decay was small (on the order of 70 m), its corresponding effect on mean 
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anomaly led directly to error in the gearing phase. In both cases, the phase error decays 

approximately 6°. This decay is not enough to destroy the gear-like behavior, but it is 

larger than originally expected. 

Two possible explanations exist for the decay seen under the full perturbation 

model. First is simply the fact that the design was created under a simpler model than it 

is now being analyzed in. This fact alone is enough to introduce error into the orbit 

design. Ideally, the orbit would be designed in the presence of all modeled perturbations, 

not just the zonal field. However, due to the extremely iterative process of genetic 

algorithms, the choice was made to avoid the increase in computer time that would be 

incurred through the addition of a full perturbation model. 

The second possible way to avoid the increase in decay under the full-perturbation 

model also was not implemented in this study due to the computer processing time 

requirements. Due to the large amount of time required for each period of satellite 

propagation, the optimization of the gear array elements was performed in both cases 

using only one-year propagations. However, the decay models studied in the tables 

above presents the total decay over a five-year period (the lifetime of the satellites in 

question). It is entirely feasible that by performing the optimization using five-year 

propagations that more optimal (in terms of five-year decay) elements would be the 

result. 

Figure 4-24 demonstrates this fact using the semi-major axis decay history for the 

APTS orbit of the 4:5 gear 0 km offset case. It can clearly be seen that for approximately 

the first 400 days, the motion is centered on zero. As 366 days is the length of time for 

which the design was created, this centered behavior is to be expected, even under the 
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full perturbation model. However, after the first 400 days, the semi-major axis begins to 

diverge quite rapidly. Although some of this divergence can be attributed to an increase 

in drag during this second and third years, by including the entire five year period of 

interest in the optimization it is thought that this divergence can be further minimized. 

APTS Semimajor Axis: Deviation from 12546.5718Km 
Stroboscopic Samples at 69900.2504 Seconds 

500 1000 1500 
Days From Epoch: 01-Jan-1997 

2000 

Figure 4-24 4:5 Gear 0 km Offset 5-Year APTS SMA Divergence (Full Pert.) 

4-2-6-2 Gear Array Coverage Analysis 

A final area of the gear array that is necessary for analysis is its performance 

relative to the current Ellipso™ baseline constellation consisting of Concordia™ and 

Borealis™ sub-constellations. To perform this analysis a coverage comparison was 

prepared for both of the designed gear arrays and the Ellipso™ Concordia constellation 

which is an equatorial, circular constellation at 8050-km altitude as well. 

The coverage analysis performed identifies the minimal elevation angle, the 

average elevation angle, and the average number of satellites in view at any given time. 

The data is collected over a two-week time interval and is presented as a function of 
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latitude at a set of local times (+/- \-Vt hours). The data for all three constellations is 

presented on the same "wedge" plots, which allows for a simple comparison between the 

designs. 

A sample of one of these wedge plots can be seen in Figure 4-25. This figure 

contains a comparison of the minimum elevation angles as a function of latitude. It is 

clear that both the 11-satellite 5:6 gear array and the 9-satellite 4:5 gear array provide 

better elevation angles than the baseline 7-satellite Concordia™ array. The "wedge" 

plots for the other areas of interest (average elevation angle and number of satellites in 

view) at both noon and 3 P.M. local time can be found in Appendix B-7. All figures 

show that the gear arrays out-perform the Concordia™ array. 

MM» local Time *t- 1.5 or: MftfoKNtt Elevation f 14 Days 

Figure 4-25 Gear Array Minimum Elevation Angle Comparison—Noon Local Time 
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Chapter 5 Optimal Constellation Maintenance 

This chapter investigates the use of optimization techniques (specifically genetic 

algorithms) to generate optimal station-keeping strategies, under a variety of constraints, 

with highly accurate orbit propagation. The basic problem is first formulated, followed 

by a discussion of previous attempts to solve the station-keeping problem. Genetic 

algorithms and the two specific methods studied are then described in detail. The first 

approach is a global approach where all burns required to maintain the orbit for a 

specified period of time are found. Due to limitations that arose under this approach, a 

second, more "operational" approach was implemented and tested. The results of these 

tests, as well as observations stemming from these results, are included. 

5-1 Station Keeping Problem Formulation 

The objective for station keeping problems is simple: minimize the fuel required 

to maintain the orbit for a given period of time. Mathematically this can be expressed as 

seen below: 

/ = V IIAVII Equation5-1 
Z^i=\ II     ' II x 

where: 

i = index variable 

n = number of burns used 

J = Cost/Objective to be minimized 

Avj = delta-v required for the i01 burn 
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Without any constraints this problem is quite trivial. The satellite will propagate 

forward in time and nothing will be required to happen. Therefore, it is necessary to 

constrain the orbit in such a manner that burns will be required to occur in order that the 

constraints are met. For this investigation, a box form of constraints was chosen. Each 

of the elements of the actual orbit was constrained to lie within a given error distance 

from the reference orbit. The net effect of each of these error distances becomes a box 

around the reference orbit. As long as the satellite stays within this box, the constraints 

are met. 

A simple two-dimensional rendering of this type of constraint can be seen in 

Figure 5-1. Here the dot represents the state of the satellite at a given time and the 

dashed line represents the reference orbit. If state one is taken to be the semi-major axis 

then it is easily seen that an error limit on this state will translate into an upper and lower 

limit on the position which the two solid lines represent. In a similar manner, if state two 

is taken to be the mean anomaly, then the corresponding error limit will translate into a 

forward and backward limit on the position of the satellite. The combined effect of the 

constraints on the two states translates into a box. The satellite is now constrained in 

both directions. In a similar manner, additional constraints will only add dimensionality 

to or change the shape of this box. 

State 1 Error 
Tolerance limits 

State 2 Error 
Tolerance limits 

Combined 
Constraint Box 

<~r- 

+ 
Figure 5-1 Box Constraint Depiction 

170 



This type of constraint results in the following mathematical expression: 

|ö"«f (0-«"actual(0| ^ e"(t) Equation 5-2 

where: 

cxref(t) = vector of reference states at time t 

oCactuai(t) = vector of actual states at time t 

e(t) = vector of tolerances 

Although for this study the constraints were defined to be in terms of the mean 

orbital elements, there is nothing about this general method that requires this exact 

selection of constraints. Any quantity that can be measured as a function of time and 

then compared to a measurable reference quantity should be acceptable. It should also be 

noted that although they are not detailed here, the system is further constrained by the 

state equations, which depend upon the system modeling. 

5-2 Previous Station-Keeping Attempt Limitations 

As the station-keeping problem is a fundamental problem to satellite on-orbit 

operations, a number of attempts have been made to find efficient solutions. However, 

each of the schemes studied to date suffers from one or more of the following three 

limitations. 

5-2-1 Simplified Orbit Propagation 

In order to lower the complexity of the station-keeping problem to an order that 

can be solved through traditional optimization methods, many attempts use simplified 

orbit propagation techniques. This simplification often means that any effects due to 

higher order orbital dynamics are neglected.  Even in cases where higher order orbital 
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dynamics are included, the dynamics are usually linearized, thereby reducing their true 

effects. In order to find truly accurate optimal solutions, it is necessary to include as 

many effects as possible. 

5-2-2 Localized/Greedy Strategy 

A number of previous attempts also suffer from what is termed greediness. These 

greedy strategies were discussed previously in section 3-3-1-1. Basically, greedy 

strategies are those which attempt to find the optimal path from a current state to a 

desired state, without worrying about the effect the chosen path will have on subsequent 

decisions. 

In terms of the station-keeping problem, a greedy strategy is one that waits until a 

violation of the constraints is about to occur and that then finds the optimal burns that are 

necessary to return the spacecraft to a non-violating state. By waiting until a violation is 

approached and then finding the optimal bums necessary to return the spacecraft to a 

non-violating state, it is often the case that a need to perform more expensive burns later 

on is created. For greedy algorithms, however, this fact is ignored. On the other hand, a 

non-greedy strategy is one that calculates all the burns required to maintain the satellite 

within the given constraints for the entire length of time specified. 

5-2-3 Requirement of Pre-defined Targeting Scheme 

A direct result of the localization of previous methods is that a targeting scheme 

must be defined prior to attempting the optimization. As mentioned previously, upon a 

spacecraft's approach of a violation, previous methods attempt to find the optimal way to 

return a spacecraft to a non-violating state.   However, as an infinite number of non- 
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violating states are available, there must be some pre-determined manner of defining 

which of the available states should be targeted. Without a well-defined knowledge of 

the state space, it is very difficult to define the proper state to label as the desired target. 

An incorrect choice of targeted state can have a drastic effect on the amount of fuel 

required, making this an important aspect of the optimization problem. 

5-3 Global Station Keeping Approach 

The global station keeping approach was an attempt to find a way to overcome the 

three limitations of previous studies listed above. It was thought that by solving for all of 

the bums required over the lifetime of a specified satellite, that the greediness of previous 

approaches could be overcome. Additionally, if this solution was accomplished using 

accurate orbit propagation techniques, the accuracy limitation could be overcome, as 

well. In order to overcome these limitations, however, an optimization method that 

would allow very accurate orbit propagation while at the same time providing a global, 

non-greedy perspective to the optimization was required. A parallel genetic algorithm 

proved to be a viable tool for accomplishing this objective. 

Due to the nature of the genetic algorithm operators of selection, crossover, and 

mutation, genetic algorithms have distinct advantages over other optimization techniques 

in overcoming the limitations of previous station-keeping methods. First, because these 

operators do not rely in any manner upon the gradient or derivative information of the 

problem, they allow for utilization of very accurate orbit propagation methods. In 

analytic and other attempts at solving the minimum fuel, path-constrained problem, it is 

often necessary to calculate some level of derivative information. The accuracy of the 

model to be applied to the solution method is dependent upon the accuracy of these 
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derivatives. However, in a genetic algorithm solution process, derivative information is 

not necessary, thereby allowing for much easier application of more detailed system 

models. 

The lack of derivative information along with the robust, global nature of genetic 

algorithms also allows the other two limitations of previous studies to be overcome. 

Unlike some methods which are forced to break the problem into various sections (i.e. 

coasting arcs, impulsive arcs, etc.), genetic algorithms are able to arrive at a solution to 

the problem over entire pre-defined intervals. This ability allows for a non-greedy 

approach to be taken, which in turn eliminates the need for a targeting scheme to be 

defined. During the course of operation, the genetic algorithm defines its own targeting 

scheme such that the total effect of all the burns over the period of time specified is 

optimal. 

5-3-1 Global Station Keeping Implementation83 

After deciding upon the optimization technique to apply to the global station- 

keeping problem, some sort of reasonable implementation scheme was necessary. The 

implementation was accomplished through the use of three main software libraries: the 

Draper Laboratory Semi-analytical Satellite Theory standalone orbit propagator package 

(DSST); the Mississippi State implementation of Message Passing Interface (MPI) 

known as MPICH; and the Argonne National Laboratory parallel version of genetic 

algorithms known as Parallel Genetic Algorithm Package or PGAPack. DSST was used 

as the orbit propagator, MPICH was used to provide parallelism and to decrease 
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computation times, and PGAPack was used to provide the optimization capabilities. As 

PGAPack is a complete genetic algorithm package, implementing it with the DSST 

software was simply a matter of specifying the variables to be encoded into each string, 

the objective function to optimize, and the values of certain genetic algorithm parameters. 

5-3-1-1 Global Station Keeping Variable Description 

In order to find the optimal burn strategy required to maintain the desired orbit of 

a given satellite, it is necessary to solve for three different things: the time of each burn, 

the direction of each burn, and the magnitude of each burn. For this particular 

investigation these variables to be optimized were specified as shown in Figure 5-2 and 

as detailed in Table 5-1. 

[ Burn 1 Time ] [Burn 2 Time]...[Burn m Time] [Burn 1 Tangential 
Component] [Bum 2 Tangential Component]... [Bum m Tangential 
Component] [Burn 1 Normal Component] [Burn 2 Normal 
Component]... [Burn m Normal Component] [Bum 1 Radial 
Component] [Bum 2 Radial Component]... [Bum m Radial Component] 
[Burn 1 On/Off Flag] [Burn 2 On/Off Flag]...[Burn m On/Off Flag] 

Figure 5-2 Global Station Keeping Approach Genetic Algorithm String Structure 

One variable was created for the time of each bum, each of the three bum 

components and a flag for each bum to indicate whether or not the effect of the given 

bum should be included in the propagation. The flag variable was necessary to allow for 

n-bum solutions where n was not known ahead of time and was some number less than 

83 Smith, James E., Ronald J. Proulx, Paul J. Cefola, and John E. Draim. Optimal Station-Keeping 
Strategies via Parallel Genetic Algorithms. Paper AAS 99-123, AAS/AIAA Space Flight Mechanics 
Meeting, Breckenridge, Colorado, 7-10 February 1999. 
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the total allowable m bums. This structure led to a total of five variables per burn. Thus, 

for a typical case in which a maximum often burns was allowed, the resulting string to be 

optimized by the genetic algorithm would be 50 variables. 

Table 5-1 GA Global Station Keeping Solution Process Variable Allocation 

Variable Number/Burn Lower Limit Upper Limit Units 
Elapsed Time from Epoch 1 0.00 Maximum 

Time 
Seconds 

Magnitude      of      Burn 
Components 

3 - Maximum 
Component 
Magnitude 

+ Maximum 
Component 
Magnitude 

m/s 

On/Off Hag 1 0.00 1.00 N/A 

5-3-1-2 Global Station Keeping Objective Function 

Although an objective function for the general station-keeping problem was 

defined previously in section 5-1, this objective function is not sufficient for application 

to a genetic algorithm. Genetic algorithms work best with unconstrained objective 

functions. Therefore, the constraints must be adjoined to the objective function in a 

manner that yields an acceptable objective function for solution by genetic algorithms. A 

first attempt at this was a simple linear combination as seen below: 

=E;JNI
+M<k/ w -*— (»i)-*o}it Equation 5-3 

where: 

A, = vector of scale factors 
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It can readily be seen that using this objective function will attempt to force the 

difference between the reference state and the actual state to be equal to the defined 

tolerance in order that the resulting effect on the objective function is equal to zero. This 

is not the desired behavior. As long as the difference between the actual and the 

reference states is less than the defined tolerance, the contribution to the objective 

function should be negligible. 

In order to create this behavior, it was necessary to define an objective function 

that is in some sense two objective functions. The effect of the deviation from the 

reference state is only included in the objective function if the deviation is greater than 

the defined tolerance. Otherwise, the objective function is reduced to the unconstrained 

minimum fuel problem objective defined previously. The following is the resulting 

mathematical formulation of the objective function that was incorporated into the genetic 

algorithm solution process. 

J = ]T"_, ||Av.I + J C(t)dt Equation 5-4 
o 

If \äref (t)- äaaml (tj > E(X) then C(t) = V (|äre/ (t) -ä^,(t)| - e(t))    Otherwise C(t) = 0 

5-3-1-3 Global Station Keeping Genetic Algorithm Parameters 

As with the optimal design cases presented in the previous chapter, since the 

performance of the genetic algorithm is very dependent upon a number of predefined 

parameters, tuning of the approach was necessary to determine appropriate values of a 

number of genetic algorithm parameters. The specific genetic algorithm parameter 

values that were found to work best can be seen in Table 5-2. 
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Table 5-2 Global Station Keeping Approach Genetic Algorithm Parameters 

Parameter Type/Value 
Stopping Rule No Change 
No Change Value 2000 
Population Size 100 
Replaced Per Iteration 25 
No Duplicates Flag True 
Mutation and Crossover Flag True 
Mutation Type Gaussian 
Real Mutation Constant 0.5 
Mutation Rate 1/String Length 
Crossover Type Two-Point 
Crossover Probability 0.85 
Selection Type Tournament 

These parameters are the same as those used in the previous cases with the 

exception of the mutation parameters. In the two design cases, the strings being 

optimized were simply a binary representation of the variables to be optimized. For the 

station-keeping problem, however, the required accuracy eliminated a binary 

representation as a possible choice. Instead each allele (i.e. numerical value) in the string 

was represented by the real value of the variable it was representing. The genetic 

algorithm operators of selection and crossover were unaffected by this change in string 

structure, but the mutation operator required modification. 

In a binary representation, if an allele is randomly selected for mutation, it simply 

undergoes a "bit-flip" operation where its value is changed from 0 to 1 or vice versa. 

However, for a real valued allele, the possible values that it can take are infinite. 

Therefore, a simple bit-flip operation is impossible. Instead, the mutation operator takes 

the following form: 
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v <— v ± p x v Equation 5-5 

where: 

v = existing allele value 

p = a percentage operator 

Thus, if a real valued allele is selected for mutation, the operation it undergoes is 

simply the addition of a positive or negative percentage of its current value to its current 

value. 

In the PGAPack software there are three possible options for how p is selected. 

The first option is to simply define p to be a constant percentage. The second is to define 

a range from which p is selected via a uniform distribution. The final option is to select p 

from a Gaussian distribution with zero mean and predefined standard deviation. This last 

option, with a predefined standard deviation of 0.5 is the option that was found to provide 

the best convergence rate for this application. 

5-3-1-4 Useful Modifications to the Global Station Keeping Implementation 

Although the formulation of the station keeping problem presented in the previous 

sections can be used successfully to find near optimal station-keeping strategies, a 

number of modifications were found to be useful in helping the genetic algorithm to 

arrive at near-optimal solutions in a more efficient manner. These changes fall into one 

of two categories: modifications to the objective function or modification to the variable 

structure. An explanation of these modifications follows. 
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5-3-1-4-1 Modifications to the Global Station Keeping Objective Function 

In order to force faster convergence of the genetic algorithm, a number of changes 

were made to the objective function. Section 5-3-1-2 presents the problem in a very 

straightforward manner, but the genetic algorithm has some difficulty in navigating the 

resulting solution space. After a number of trials, the following three part objective 

function demonstrated the best behavior in forcing the genetic algorithm to the optimal 

solution. 

J = DeltaV Contribution + Deviation Contribution + Time Contribution     Equation 5-6 

Delta-V Contribution: Previously, the delta-v contribution to the objective function was 

simply a sum of the magnitudes of the burns used (n). However, the inclusion of an 

on/off flag in the variable string caused difficulty with this formulation. If the flag for a 

given burn was in the off position, the genetic algorithm did not receive any feedback on 

whether or not the components of that burn should be large or small. This made it very 

difficult for new burns to ever be turned on as their magnitudes were usually too large to 

maintain the trajectory within the desired box. Instead, it was found that a more 

appropriate function was to minimize the sum of all allowable burns (m) as shown below: 

Delta V Contribution = ^=11|
A^r || Equation 5-7 

Deviation Contribution: The deviation constraint described previously is sufficient to 

obtain the desired results. It was found, however, that it was useful to have some sort of 

reward for having more burns on than off. It was easier for the genetic algorithm to zero 

out a burn that was on but unnecessary than it was for the genetic algorithm to turn on a 
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needed burn. For example, if a four-burn strategy is the optimal solution, it was seen to 

be easier to zero out one burn in a five-burn solution than to add a burn to a three-burn 

solution. Therefore, to present some sort of reward for having more burns turned on, the 

deviation contribution was changed as shown below: 

Deviation Contribution = V° )/r- Equation 5-8 
/ \n 

With the number of burns, n, in the denominator of the deviation contribution, increasing 

the number of burns has the same effect as lowering the weighting on the deviation 

constraint and therefore rewards solutions that have a higher number of burns turned on. 

Time Contribution: Although not present in the original objective function, another useful 

modification was found to be the inclusion of a time of first deviation parameter. This 

parameter was simply a measure of the time until the first violation of the box constraints 

occurred. If the system did not exit the box until later on in the time period of interest, 

this was considered better than a solution which caused an earlier exit. Early runs of the 

algorithm without this addition to the objective function were found to converge to 

solutions in which the last half of the trajectory was maintained within the box, but the 

first half had violations. However, as the early burns have an impact on the entire 

trajectory it was very difficult to change the early burns in a manner that eliminated the 

early violation. By adding the time until first deviation parameter to the objective 

function, strings that violated near the beginning of the time period were quickly 

eliminated. 

Time Contribution = Maximum Time - Time Until First Deviation Equation 5-9 

181 



5-3-1-4-2 Modifications to the Global Station Keeping Variable Structure 

Two changes to the variable structure presented in Table 5-1 were found to be 

very useful in causing faster convergence of the genetic algorithm. The first of these 

changes relates to the time until first deviation parameter that was added to the objective 

function as discussed above. It was noted that under all circumstances, if the orbit is to 

be maintained within the desired box, at least one burn must occur before the first 

deviation of the uncontrolled orbit occurs. This led to a new constraint on the time of the 

first burn. Rather than being constrained to occur somewhere between time zero and the 

maximum time, the first burn was constrained to occur before the time of the first 

deviation. 

The second change to the variable structure did not stem from the nature of the 

station-keeping problem but rather from the nature of genetic algorithms, themselves. In 

the initial formulation detailed in Table 5-1, the variable which the genetic algorithm sees 

for crossover and mutation can have any value, as long as this value falls within the limits 

listed in the table. For example a time variable can have the value 20,000 seconds while 

the bum component might be of the form 0.05 m/s. This formulation led to the genetic 

algorithm operators not having as significant an effect as expected. 

To combat this problem, the variables were scaled so that the maximum and 

minimum allowable value for each type of variable was the same. This was done by 

setting the minimum value of each variable to zero and the maximum to two. For 

example, for the burn components a value of zero was made to correspond to the negative 

of the maximum allowable magnitude, a value of one was set to correspond to a zero 

magnitude, and a value of two was set to correspond to the positive maximum allowable 
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magnitude. A similar scale was created for the time and flag variables. As all variables 

in the string were now identically scaled, this allowed crossover and mutation operators 

to function more efficiently. The variables were then converted to the actual values prior 

to the objective function evaluation. 

5.3.I.4.3 Effectiveness of the Global Station Keeping Modifications 

Prior to implementation of the modifications described in this section, the genetic 

algorithm required between 30,000 and 50,000 iterations to arrive at near-optimal 

solutions. Even after this large number of iterations, 30% or more of the time the 

solution to which the genetic algorithm converged did not maintain the satellite within 

the desired box constraints. After the modifications, all cases have been found to 

converge in 10,000 to 20,000 iterations, and the majority of the time, the station-keeping 

strategies generated, meet the desired constraint conditions 

5-3-1-5 Computer Implementation of the Global Station Keeping Approach 

The implementation of the solution process for the station-keeping problem 

followed closely the structure used to implement the 113:14 and gear design optimization 

problems. However, as the objective function to be optimized in the station keeping 

problem was more involved than the two design objective functions, it was necessary to 

make some significant changes to that program structure. These changes are illustrated in 

Figure 5-3 and discussed below. 
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Figure 5-3 Global Station Keeping Genetic Algorithm Software Overview 

5-3-1-5-1 Code for Reference Orbit Definition 

The first modification to the PGA_SAT structure was the addition of a call from 

the PGA routine to a newly created subroutine known as DEFREFORB for DEFine 

REFerence ORBit. This routine simply reads in the reference orbit input file and 

propagates the reference orbit forward a predetermined number of time steps, storing the 

orbital elements at each step. Since the necessary data is stored in a global array, it is 

only necessary to call this routine one time at the beginning of the genetic algorithm 

optimization. 
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5-3-1-5-2 Code for Time of First D eviation Calculation 

A second routine that also had to be created for this application of genetic 

algorithms was the routine known as CALCFIRSTDEVTIME for CALCulate FIRST 

DEViation TIME. As discussed in section 5-3-1-4-2, the performance of the genetic 

algorithm was greatly improved by modifying the variable structure such that the time of 

the first burn was constrained. Because at least one burn must occur before the time of 

the first violation of the constraints or deviation outside of the constraint box, the upper 

limit on the first time variable was set to be equal to the time of the first deviation. 

However, this time had to be calculated after the reference orbit had been defined, but 

before the variable strings were created. The subroutine CALCFIRSTDEVTIME was 

created and called from the PGA program in order that this objective might be met. 

5-3-1-5-3 Objective Function Code Structure (FUNC) 

The final required code modification/creation was the formulation of the desired 

objective function into a routine through which each string could be evaluated. As with 

all PGAPack objective function routines, the variables to be passed to the objective 

function routine are simply those variables that make up the strings (in this case burn 

times, magnitudes and on/off flags). The desired result of the call to the objective 

function is then simply a numerical value of the performance of the given string against 

the objective function. The process by which the numerical objective function value was 

generated for the global station keeping optimization problem is illustrated below in 

Figure 5-4. 
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Figure 5-4 Global Station Keeping Optimization FUNC Routine Overview 

The process depicted in Figure 5-4 is simply a coded representation of the 

modified objective function as discussed in section 5-3-1-4. For a given string to be 

evaluated, the information from that string, namely burn times, components, and on/off 

flags are passed to the objective function routine, FUNC. FUNC then determines which 

burns are "on" and sorts those burns into an array to be used by DSST. Following that 

sorting, DSST is used to perform a full propagation of the orbit, incorporating the burns 
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at the specified times. The resulting trajectory is then compared to the previously stored 

reference trajectory and for those times at which the trajectory is outside of the allowable 

tolerance limits, the deviations of the elements are summed. The result of the 

propagation is a numerical value that represents the total deviation of the trajectory that 

the given burns create. For trajectories that cause large deviations, the deviation value is 

then summed with the total AV and also a time parameter. As discussed in section 5-3-1- 

4-2, this technique helps with convergence as strings that cause violations early in the 

time period of interest are quickly eliminated. For those strings whose violation value is 

below a predetermined limit, only the violation and the AV are summed and returned as 

the objective function. Ideally, the violation value goes to zero and all that is seen in the 

objective function is the AV value which can then be minimized. 

5-3-2 Global Station Keeping Approach Test Cases 

This global genetic algorithm station-keeping solution process was evaluated 

through a number of test cases. Each case was accomplished using propagations of the 

Ellipso™ Borealis sub-constellation. This constellation was chosen because of the tight 

element limits that are imposed on the orbits in order to maintain certain desired 

constellation characteristics. Using the Borealis sub-constellation for testing of this 

method also allowed for direct comparison to the results of previous studies that also used 

this sub- constellation as a test case. 
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5-3-2-1 Global Station Keeping Case Descriptions 

Although a number of trial cases were run to test the genetic algorithm software, 

only two cases are presented here as a sample of the type of problem this method was 

successful in solving.   Both of the cases presented are 90-day runs of the Ellipso 

Borealis satellite propagated as detailed in the following sections. 

Note that although the original intent of this optimization approach was to find the 

optimal burns for the entire lifetime of a given satellite (in this case the 5-year lifetime of 

the Borealis™ sub-constellation), computational issues prevented this from actually being 

accomplished (see section 5-3-4-1). Instead of a full five-year optimization, a ninety day 

time frame was found to be long enough to provide complexity while still maintaining a 

problem that was computationally feasible. Therefore, both cases presented in the 

following sections are ninety-day rather than 5-year optimizations. 

5-3-2-1-1 Global Station Keeping Reference Orbit Definition 

As described previously in section 5-3-1-5-3, the objective function for this 

solution process takes into account the deviation of the propagated orbit using a given set 

of burns, from a predefined reference orbit. Therefore, an important aspect of this 

solution process is the definition and propagation of the reference orbit. 

For all cases presented in this thesis, the reference epoch was set to the vernal 

equinox of March 21, 2000. The genetic algorithm design process of the 113:14 case was 

then applied to obtain the initial elements that gave the smallest deviation from the 

113:14 desired behaviors over a 90-day period. The resulting elements in a J2000 True 

of Date reference frame and corresponding Ellipso, Inc. defined tolerances for the chosen 
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satellite (a node at noon Borealis satellite) are as listed in Table 5-3.  A spacecraft mass 

of 1250 kg and area of 43.3 m2 are also assumed in all cases 

Table 5-3 90-Day Optimized Ellipso Borealis™ Node at Noon Epoch Elements and 
Tolerances 

Element Reference Epoch State Tolerance 
Semi-major axis (km) 10496.8839 +/-1.0000 
Eccentricity 0.3328 +/- 0.0003 
Inclination (deg) 116.5577 +/- 0.0500 
Right Ascension of Ascending Node (deg) 0.0000 +/- 0.5000 
Argument of Perigee (deg) 260.0000 +/-1.0000 
Mean Anomaly (deg) 0.0000 +/-1.0000 

The reference orbit for both cases was then created using the DSST software with 

the epoch elements from Table 5-3 propagated using a 50 x 0 gravitational field. The 

result was an orbit which gave the best performance to the desired 113:14 Sun- 

synchronous behavior. This orbit was stored and the burns under real perturbations were 

computed which would maintain the difference between the actual orbit and this 

reference orbit within the given tolerances. The input deck used in the creation of this 

reference orbit can be found in Appendix C-2-1. 

5-3-2-1-2 Global Station Keeping Case 1—Epoch Aligned with Reference Elements 

Case one was perhaps the simplest of all cases to run, but despite its simplicity, 

was a useful case for demonstrating the feasibility of the genetic algorithm method. It 

also proved to be a helpful case from which to gain an initial understanding about the 

behavior of the algorithm. For this case, the propagation was begun with both the actual 

and reference orbits aligned. In terms of the box constraints described previously, this 

was equivalent to starting the satellite in the center of the box. 
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The fully perturbed orbits were propagated using the epoch elements which were 

aligned with the reference epoch elements and a 21 x 21 gravitational field with drag, 

solar-radiation pressure, solar and lunar third-body point mass disturbances, and solid- 

earth tide effects also included. A Jacchia-Roberts atmospheric density model was used 

in the determination of the drag effects. The input deck that specified all of these 

perturbations can be found in Appendix C-2. 

The behavior of the uncontrolled orbit is detailed in Table 5-4 and plotted in 

Appendix C-3-1. It can clearly be seen that by including the full perturbations on the 

orbit for a 90-day period that the semi-major axis, eccentricity, and Mean Anomaly all 

drift beyond the allowable range. The largest of these drifts is the Mean Anomaly drift of 

37.7° as shown in Figure 5-5. Due to this large drift the mean anomaly was found to be 

the driving factor in this case. 

Table 5-4 Global Case 1 Epoch Elements and Uncontrolled Deviations 

Element Epoch State Max. 
Deviation 

Violation? 

Semi-maior axis (km) 10496.8839 1.68922 Yes 

Eccentricity 0.3328 0.00047 Yes 

Inclination (deg) 116.5577 0.00594 No 

RAAN (deg) 0.0000 0.05282 No 

Argument of Perigee (deg) 260.0000 0.18047 No 

Mean Anomaly (deg) 0.0000 37.73677 Yes 

190 



40 

35 

30 
•■■^ oi a 
a 
~25 
o> 
cc 

P20 

c 
o 

> 
CD 
D 

j15 

) 
l 
10 

5 

0 
10        20 30        40 50 60        70 80 90 

Days from Epoch 

Figure 5-5 Global Case 1 Uncontrolled Mean Anomaly Drift (Limit = 1°) 

5-3-2-1-3 Global Station Keeping Case 2—Epoch Elements at Extreme Limits 

In order to offset the simplicity of the first case, the second case was designed to 

be as difficult as possibly could be expected. After proving feasibility with case one, it 

was desirable to prove the robustness of the genetic algorithm method with case two. In 

order to do this, a large percentage of the tolerance of each limit was added to or 

subtracted from the reference epoch state such that the actual orbit was almost as far 

away from the reference as the tolerances would allow. The direction of motion of each 

element was also determined such that a violation of each element was almost certain to 

occur within the first few days of propagation. In terms of the box constraints, this was 

equivalent to placing the satellite on the corner of the box with a velocity that will force it 

to leave the box almost immediately. 
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The epoch elements and corresponding deviations can be seen in Table 5-5 and 

are plotted in Appendix C-4-1. This table and corresponding plots show that all elements 

do indeed drift beyond the allowable states if the orbit is not controlled. As with case 

one, mean anomaly has the largest deviation but semi-major axis and argument of perigee 

deviations are also quite large. The argument of perigee and mean anomaly histories 

were found to be the most difficult to control. Their uncontrolled history plots are 

presented in appendix C-4-1 for comparison to the future controlled histories. 

Table 5-5 Global Case 2 Epoch Elements And Uncontrolled Deviations 

Element Epoch State Max. 
Deviation 

Violation? 

Semi-major axis (km) 10495.9739 2.66704 Yes 
Eccentricity 0.3331 0.00078 Yes 
Inclination (deg) 116.5082 0.05574 Yes 
RAAN (deg) 359.5020 0.534322 Yes 
Argument of Perigee (deg) 259.0200 1.49870 Yes 
Mean Anomaly (deg) 0.9000 73.44632 Yes 
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Figure 5-7 Global Case 2 Uncontrolled Mean Anomaly Drift (Limit = 1°) 

5-3-2-2 Global Station Keeping Results 

The result of the genetic algorithm optimization performed for each of the two 

cases described above is an n-burn solution that maintains all six of the actual orbital 

elements within the desired tolerances from the reference orbit. The resulting element 

history plots for Case 1 and Case 2 can be found in Appendix C-3-2 and Appendix C-4-2, 

respectively. Some observations regarding these results as well as some details of the 

results are presented below. 

5-3-2-2-1 Case 1 Results—Epoch Elements Aligned with Reference Elements 

Based on the uncontrolled history plots for this case (see Appendix C-3-1), it was 

determined that no more than five burns should be necessary to maintain the orbit within 

the desired tolerances over the specified 90-day period. Of the allowable five burns, the 

genetic algorithm converged on the four-burn solution displayed in Table 5-6. 
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Table 5-6 Global Case 1 Burn Times and Components 

Burn Time 
(Since Epoch) 

Mean Anomaly at 
Burn Time 

Radial 
(m/s) 

Along-Track 
(m/s) 

Cross-Track 
(m/s) 

Magnitude 
(m/s) 

07d23h 43m 44.98s 173.33° 0.0002 0.2572 0.0001 0.2572 
19d06h 30m 50.77s 196.52° 0.0001 0.0324 0.0000 0.0324 
20d 12h 41m 33.55s 250.21° 0.0000 0.0107 0.0000 0.0107 
46d00h 38m 01.39s 179.99° 0.0000 0.2690 0.0000 0.2690 

Total DeltaV 0.5693 

A number of observations can be made regarding this solution. First is the fact 

that the solution contains only along-track components. Additionally, the mean anomalies 

of the two burns with largest magnitudes reveal that these two burns occur very close to 

apogee. Both of these observations are useful in showing that the solution is at least a 

near-optimal solution. 

For this case, the two elements that require controlling are mean anomaly and 

eccentricity. Based on astrodynamics, it can be shown that the most efficient way to 

control these two elements is to perform burns near perigee or apogee and to burn in such 

a manner that the full effect of the burns goes toward controlling these two elements. By 

burning at apogee, in an along-track direction, no fuel is wasted in controlling inclination, 

ascending node, or argument of perigee trajectories. The solution in Table 5-6 clearly 

meets these two requirements for efficiency. 

An additional observation which further suggests near-optimality of this solution 

is that one or more of the controlled element histories ends at the edge of the designated 

tolerance box.  In this case, both the final eccentricity and mean anomaly deviations are 

equal to the defined tolerances at the end of the run (see Figure 5-8 and Figure 5-9). 

Although this behavior introduces problems if this method is to be used for long-term 

station keeping (see section 5-3-4-2), it does help to show optimality of the solution. By 

burning just enough to be exactly at the defined tolerance at the end of the predetermined 
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time period, the minimum amount of fuel is consumed.  Given the locations of the four 

bums, any decrease in the amount of fuel expended will cause a violation of the 

constraints.   On the other hand, any increase in the amount of fuel expended could 

possibly cause the end point of the trajectory to move away from the tolerance limit, but 

there is no benefit to this change. Instead, it will only serve to increase the delta-v. 
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Figure 5-9 Global Case 1 Controlled Mean Anomaly Deviation (Limit = 1°) 

5-3-2-2-2 Case 2 Results—Epoch Elements at Extreme Limits 

With all of the epoch elements at the allowable limits, a greater number of burns 

appears to be required to maintain the case two uncontrolled trajectories (see Appendix 

C-4-2) within the desired tolerances. Application of the genetic algorithm optimization 

software resulted in the following 12-burn solution (see Table 5-7) which maintained the 

trajectory within the desired tolerances for the desired 90-days. 

196 



Table 5-7 Global Case 2 Burn Times and Components 

Burn Time 
(Since Epoch) 

Mean Anomaly at 
Burn Time 

Radial 
(m/s) 

Along-Track 
(m/s) 

Cross-Track 
(m/s) 

Magnitude 
(m/s) 

OOd 07h 09m 38.70s 147.97 0.5174 0.6092 2.5290 2.6523 
00dl3h 52m 55.81s 241.62 0.2854 0.0836 -0.0642 0.3042 
Old 20h22m 14.32s 332.49 -0.0108 -0.1526 -0.5102 0.5326 
07d23h 40m 32.91s 166.92 0.2504 0.1357 0.2054 0.3511 
lid 19h 36m 18.69s 136.55 -0.0136 0.1626 2.7394 2.7443 

12d00h 11m 27.14s 331.70 -0.1610 -0.2072 -0.0861 0.2762 

15dllh 59m 23.28s 037.62 -0.0131 0.0017 0.0044 0.0139 
18dl2h 00m 21.34s 117.07 0.1100 0.2494 2.5528 2.5673 

44dl2h 49m 08.31s 162.84 0.0234 0.0534 0.0030 0.0584 

55d04h 31m 06.52s 161.21 0.2431 0.1472 0.0505 0.2886 
77d 02h 53m 35.52s 169.44 0.0134 0.0196 0.0006 0.0238 
85d22h 01m 08.98s 170.93 0.0002 0.1773 -0.0011 0.1773 

Total DeltaV 9.9900 

The most noticeable characteristic of this result is its complexity. Unlike case 

one, where the solution could be verified for near-optimality, it is difficult to determine 

whether or not this result is an optimal one. The burns are occurring at random locations 

and in all three possible directions. There are, however, some features of this solution 

that warrant discussion. 

The first of these is that all of the elements are maintained within the desired 

constraint box. As this case was purposely designed to be the most difficult case 

imaginable, the fact that the genetic algorithm determined a solution which met all the 

constraints is, of itself, a significant feature of this solution. 

Second, three of the six element trajectories end on the edge of the constraint box 

(see Figure 5-10 and Figure 5-11). As discussed with case one, this shows that no extra 

fuel is being expended, at least for the given times and positions of the twelve burns. 

Therefore, although optimality cannot be proven, this shows that at least to some degree 

this solution is optimal. 
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Figure 5-10 Global Case 2 Controlled Argument of Perigee Deviation (Limit = 1°) 
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Figure 5-11 Global Case 2 Controlled Mean Anomaly Deviation (Limit = 1°) 

One especially noticeable feature of this result is the large amount of AV that is 

required in the out of plane or cross track direction. Returning to Table 5-7, it can be 

seen that three of the burns contain out of plane components greater than two m/s, 
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whereas none of the other components of any of the burns exceed one m/s. The large 

variation of these components from the others calls into question the optimality of the 

solution. 

The three burns in question occur on day 0, 11, and 18. Figure 5-10 shows that 

there are significant changes in the argument of perigee history at these three times. It 

can also be seen in that there are significant inclination changes that occur at these three 

times as well (see Figure 5-12). 
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Figure 5-12 Global Case 2 Controlled Inclination Deviation (Limit = 0.05°) 

Since the argument of perigee ends at its tolerance limit, the initial assumption is 

that these large out of plane burns are required to keep the argument of perigee from 

violating. However, the inclination history plot shows that these three components are 

larger than needed to control the inclination. The inclination ends far away from its 

tolerance limit of 0.05°. Since it is also possible to control the argument of perigee using 

radial or along track burns (which would not affect the inclination), it seems that it would 
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be more optimal to control the system in a different manner.   By using smaller out of 

plane burns, the inclination could be controlled closer to its limit and the overall AV 

could even be lowered. 

Unfortunately, although it would save fuel if the orbit could be controlled in this 

more logical manner, the constraints imposed on the system limit the possibilities. To 

better understand the presence of the large out of plane components in the case two 

solution, a simple test case was created and run for two different scenarios: with only out 

of plane burns allowed, and with no out of plane bums allowed . For these two 

scenarios the same initial conditions were used as for case two, but rather than 

constraining all six of the orbital elements, only the argument of perigee was constrained. 

Additionally, rather than attempting to control the argument of perigee for all 90 days, 

only 20 day runs were performed. The results of this case make it painfully obvious why 

the large out of plane components are necessary. 

When attempting to control the argument of perigee using only out of plane 

components, a two-burn solution with a AV of 6.49 m/s was required. On the other hand, 

controlling the argument of perigee with only radial and along-track burns led to a 

required AV of only 1.97 m/s. This is a nearly 70 percent reduction in required AV and 

seems to support the conclusion that a significant fuel savings could be achieved in the 

case two solution by reducing the out of plane component magnitudes. 

However, when all six elements are constrained as was done in case two, it is 

impossible to control argument of perigee through radial and along-track burns while still 

84 The author would like to acknowledge Tim Brand of The Charles Stark Draper Laboratory for his 
recommendations in this section. 
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meeting the other constraints. This is especially true when the semi-major axis and mean 

anomaly are constrained. 
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Figure 5-13 Semi-Major Axis History for Controlling Argument of Perigee with 
Radial and Tangential Burns 

Figure 5-13 shows the semi-major axis deviation history for the simple case above 

in which the argument of perigee was controlled entirely by radial and along-track burns. 

Both of the required burns can be easily seen on this plot. In order that the argument of 

perigee be changed enough to avoid violation, it is necessary to change the semi-major 

axis by more than three kilometers. With only a two kilometer range to work in (from -1 

to +1 km), it is clear that using this method, it will be impossible to control both the 

argument of perigee and semi-major axis simultaneously. The only solution then is some 

combination of burns which relies heavily on the out of plane components which fail to 

change the semi-major axis significantly, but greatly affect the argument of perigee. This 
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is exactly what is seen in the case two solution and therefore, despite its non-intuitive 

nature, the solution seems to be more optimal than originally thought. 

5-3-3 Global Station Keeping Comparison to ASKS Results 

In previous work, Shah85, along with Proulx, Kantsiper, Cefola, and Draim86, 

developed a station-keeping method that employed primer vector techniques in 

conjunction with Lambert's theorem to calculate the optimal burns required to maintain a 

constellation, given a set of orbit tolerances of the type defined in Table 5-3. Like the 

current study, the primer vector technique utilized precise orbit propagation tools and was 

tested on the Ellipso™ constellation. These similarities allowed for somewhat direct 

comparisons between the two methods. 

However, unlike the current study, the primer vector method was very dependent 

upon a pre-defined targeting scheme. Specifically, the targeting schemes developed by 

Shah were tailored to an Ellipso™ 8:1 orbit design (i.e. future target locations were 

determined based on expected behavior of the 8:1 orbit). The current study utilizes the 

more recent Ellipso™ 113:14 design that contains variations in the orbital elements of the 

satellites in the Borealis orbit plane. As a result of the resonance change between the two 

orbit designs, the secular decay of the orbit also changed. Therefore, the targeting 

schemes for the Automated Station-Keeping Simulator (ASKS) developed by Shah which 

were developed under the expectation of certain values of secular drift were not as 

accurate when they were applied to the current case as they were when applied to the 8:1 

85 Shah, Naresh, H. Automated Station-Keeping for Satellite Constellations, CSDL-T-1288, Master of 
Science Thesis, Massachusetts Institute of Technology, June 1997. 
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constellation design. However, in an effort to show the advantage the genetic algorithm 

method possesses in not requiring a pre-defined targeting scheme, the two cases studied 

previously were solved using the ASKS software and a variety of available targeting 

schemes. A comparison between the best ASKS results and the best genetic algorithm 

(GA) results can be found in Table 5-8. 

Table 5-8 Global Station Keeping GA and ASKS Results Comparison 

Case ASKS Burns ASKS Delta V (m/s) GA Burns GA Delta V (m/s) % Reduction 
Case 1 20 2.3941 4 0.5693 76.22 
Case 2 22 78.721 12 9.9900 87.31 

As shown in Table 5-8, the genetic algorithm method was much more successful 

at calculating minimum fuel station-keeping trajectories than the ASKS approach. This 

is a direct result of the lack of a correctly defined targeting scheme for the 113:14 

constellation design in the ASKS package. It is expected that if a correct targeting 

scheme for 113:14 design could be defined, then both the GA and ASKS methods would 

generate similar results. However, the process of defining the appropriate targeting 

scheme is difficult, and as can be seen, the result of that effort is a very specialized result. 

The advantage to the genetic algorithm approach lies in its generalized view of the 

problem. There is no need for a predefined targeting scheme. This allows for any 

satellite to be studied with minimal change in the implementation of the approach. 

Besides the obvious advantage which comes from the lack of a pre-defined 

targeting scheme in the genetic algorithm approach, an additional advantage of this 

86 Shah, N., R. J. Proulx, B. Kantsiper, P. J. Cefola, and J. E. Draim. Automated Station-Keeping for 
Satellite Constellations, Paper #C-7, International Workshop on Mission Design and Implementation of 
Satellite Constellations, Toulouse, France, 17-19 November 1997. 
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method over the ASKS method arises from the fact that the converged solution always 

maintains the fully perturbed trajectory entirely inside the constraint box. This is not true 

of the ASKS approach. Depending upon the targeting scheme chosen, a number of the 

solutions generated by this method were unable to maintain all six elements inside the 

desired tolerance limits over the entire 90-day period. 

5-3-4 Limitations of the Global Station Keeping Approach 

Despite the success with which the genetic algorithm method is able to find near- 

optimal station-keeping strategies, there are a number of difficulties with this technique 

that should be noted. 

5-3-4-1 Computational Limitations 

The first of these limitations is not necessarily a problem with the methodology, 

but rather an issue with the current state of computational capabilities. The cases for this 

study were run on a high-end graphics workstation—a Silicon Graphics Origin server 

with eight 195 MHz processors and 2 GB of RAM. On average six processors were used 

in parallel, but the time required to arrive at a solution was still between 12 and 24 hours. 

This time can mostly be attributed to the inclusion of very accurate orbit propagation 

tools, but is also due to the large number of iterations (an average of about 10,000) that 

were necessary for the genetic algorithm to converge to a solution. An increase in 

computing power could help to eliminate this limitation, but as of 1999, computational 

time issues are a main limitation to the use of this approach in an operational manner. 
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5-3-4-2 Limitation of Ending at Near-Violations 

A second limitation to using this technique in any type of operational manner has 

been touched on previously in analyzing the results of the two cases and is also an 

indirect result of the computational limitations. As discussed in some detail previously, 

the solutions generated by the genetic algorithm to the station-keeping problem all 

exhibited the behavior of causing at least one of the element histories to end at the edge 

of its tolerance box. This is not a problem if the time period for which the optimal burns 

are being calculated is the entire time period of interest. 

However, as is the case with the Ellipso™ system, the operational lifetime is 

longer than the three-month cases run here. When this occurs the only way to handle the 

next time period is to start optimizing where the previous solution left off. For example, 

if days 90 to 180 were to be run for Case 1 of this study, the starting elements would have 

to be the same as the ending elements of the first 90 days and therefore, both eccentricity 

and mean anomaly would immediately reach a point of violation. Although this 

technique should be able to optimize the resulting 90-day trajectory, continually starting 

at a point of violation does not make sense from an operational standpoint. 

Additionally, continually starting at a point of violation fails to overcome the 

greediness of previous techniques. The algorithm is finding the optimal way to handle 

the first 90 days without taking into account the effect that the first 90-day solution might 

have on the next 90 days. In fact, the combined 0 to 180-day delta-v solution that would 

be generated through separate runs of this algorithm, would be more than the delta-v 

determined by one 180-day run which eliminated the intermediate stopping point. 

Originally, the intent of this study was to apply the genetic algorithm technique to the 
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entire lifetime of the satellites of interest, but once again the computational capabilities 

available at the current time proved to be a limiting factor. 

5-3-4-3 Non-repeatable Limitation 

An additional limitation to any type of operational implementation of this 

approach stems from the non-repeatable nature of this method. Due to the random nature 

of genetic algorithms and the jagged nature of the solution space, it is extremely difficult 

to obtain the same solution to an identical problem two or more times in a row. The most 

common behavior observed was that multiple runs of the same problem provided similar 

values for the objective function, but very different values for the variables (i.e. burns) 

necessary to arrive at these objective function values. For example, a second and third 

run of Case 1 provided objective function values (i.e. delta-v values) of 0.5630 m/s and 

0.5632 m/s. These values are comparable to the original value of 0.5693 m/s arrived at 

on the first run. However, the burn strategies that allowed for arrival at these delta-v 

values for the second and third runs of Case 1 are much different than the burn strategy 

originally obtained and presented in Table 6. 

5-3-4-4 Dependence on Propagation Techniques 

A final operational limitation of this technique lies in the dependence of the 

overall solution on the accuracy of the propagation tools. Even if the computational 

limitations could be overcome and the optimal trajectory could be calculated for the 

entire lifetime of a given satellite, the optimal trajectory would only be valid as long as 

the true trajectory of the satellite corresponded exactly to the trajectory predicted by the 

model.   If, due to atmospheric or other modeling error, the true flight of the satellite 
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differed even slightly from that predicted by the DSST code, the entire solution from that 

point on would no longer be valid. 

5-4 Operational Station Keeping Approach 

Although the global station keeping method described up to this point in this 

chapter was successful in generating near-optimal station-keeping strategies, the 

limitations discussed in section 5-3-4 limit the actual usefulness of this method. It has 

been found that the global approach could be used successfully to create baseline station- 

keeping fuel budget estimates, but it could not be used in any sort of operational station- 

keeping algorithm. 

In an effort to overcome the operational limitations of the previous global 

optimization approach, an attempt was made to develop a method which would be faster, 

more repeatable, and allow for easy implementation of the solution into an operational 

station-keeping scheme. This method builds upon many of the concepts developed for 

the global station keeping approach, but rather than focusing only on maintaining the 

orbit within the desired state constraints, this method focused on ways to maintain near- 

optimality in the station keeping maneuvers, while also maintaining operational 

characteristics. 

The following sections discuss the modifications that were made to the global 

station keeping approach in order to make it more operational. The concepts behind 

these modifications are first discussed. This discussion is followed by specific details 

regarding the modifications to the code and implementation. Finally, a number of cases 

are presented and analyzed. 
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5-4-1 Definition of Operational Features 

Although the objective function for this operational approach is the same as the 

objective function for the global station-keeping approach discussed in the previous 

section (i.e. minimize the required fuel), there are some additional objectives which will 

be used to evaluate the solution and the solution process. These are the objectives of 

repeatability, speed of convergence and implementation ease and are used to define the 

"operationality" of a given process. As it is through these parameters that this approach 

will be compared to the more global approach, they are each defined briefly in this 

section. 

Repeatability: For station-keeping processes that could be used in actual satellite 

operations schemes, it is desirable that a given solution process generate identical or 

nearly identical solutions to the same station-keeping problem. The global approach 

discussed earlier in this chapter did not meet this requirement. If the global approach 

were exercised twice on the same problem, the resulting burn sequence was found to be 

quite varying. Although the overall AV estimates were of the same magnitude, the times 

and magnitudes of the burns that made up these AV estimates varied widely. For an 

approach to be considered operational, it is highly desirable that the same results can be 

generated on a repeatable basis. 

Speed of Convergence: As a satellite progresses along its orbit, it experiences many 

perturbations. The effects of some of these perturbations are entirely predictable, while 

the effects of others, such as drag, continually vary and are therefore impossible to 
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predict. In order to be able to maintain the satellite's orbit despite the changes caused by 

these unpredictable perturbations, it is necessary that the station-keeping strategy can be 

developed in an operational (e.g. daily planning) mode. Methods for generating these 

station-keeping strategies that require an extreme number of iterations and long 

convergence times are clearly not operationally feasible. 

Ease of Implementation: This objective refers not to how easily the solution process can 

be implemented and station-keeping strategies generated, but rather to how easily the 

solution itself can be applied to satellite operations. The solutions from the global 

approach clearly did not lend themselves to easy implementation. They relied heavily 

upon the accuracy of the orbit propagation software. Any deviation of the satellite from 

the expected position renders the entire burn list (from that time on) useless. A more 

operational station keeping approach should remove this dependency on the accuracy of 

the orbit propagator, thereby providing easier implementation of the resulting burns 

5-4-2 Operational Approach Overview 

As the basic objective of this operational approach and the previously discussed 

global approach are the same (to minimize required fuel), the basic features of the 

solution process did not change. The same objective function, complete with useful 

modifications and the same variable structure were utilized. However, in order to make 

the approach more operational, the ways in which these basic components were 

implemented had to be modified. This section looks at the modifications that were made 

and the motivation behind these modifications. 
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One of the primary objectives of this approach was to reduce the time required for 

the genetic algorithm to converge to an optimal station keeping strategy. Through 

experimentation, it was found that the convergence time was tied directly to two things: 

the length of time of the propagation and the number of variables to be optimized. It was 

found that by reducing one or both of these parameters, the convergence time could also 

be reduced. 

However, given the global nature of the previous approach, neither the number of 

allowable burns nor the length of time over which to solve can be easily reduced. In fact, 

in order to apply the method to the entire lifetime of a satellite, it is actually desirable that 

both of these parameters be increased. This is a clear contradiction to the operational 

desire of fast convergence and therefore it is necessary to create a new way of looking at 

the problem before faster convergence can be achieved. 

To define a new way of looking at the problem, it was necessary to relinquish 

some of the global nature of the problem and return to a somewhat greedy strategy. The 

greedy operational strategy can be summarized as follows. The satellite flies along 

unhindered until a constraint violation is predicted to occur. In the region of this 

predicted deviation, an optimal burn strategy is developed. By this it is meant that the 

burns which make up this optimal burn strategy are only allowed to occur during a short 

time period on either side of the expected constraint violation. Also, rather than meeting 

the objective of maintaining the satellite inside the constraint box for some specified 

period of time, the optimal burn strategy is developed to meet the objective of allowing 

the satellite to drift for maximum time without violation of the constraints. The resulting 

210 



burn strategy can then be implemented and the satellite can be left alone until another 

constraint violation is predicted. 

This approach has many operational advantages. First it allows for a decrease in 

the number of variables and in the propagation time. Since the burns must be contained 

within a short time period in the region of the constraint violation, the required number of 

burns is small. Additionally, since burns are only allowed in the region of the deviation, 

it is only possible to prevent future constraint violations for fairly short periods of time. 

Both of these factors lead to shorter convergence times. 

This approach also has the advantage of being more easily implemented. The 

burns are all performed within a short period of a deviation that is expected to occur quite 

soon. After that short period has passed, no more burns are performed until another 

deviation is expected, at which time the optimization is repeated. This has a distinct 

advantage in terms of implementation, as the reliance on the accuracy of the orbit 

propagator has been reduced. Notice that all burns occur within the neighborhood of the 

current time. It is much easier to model with accuracy the current environment than it is 

to predict future environmental changes. Also, should some unexpected error enter the 

system after the burns have been performed, this perturbation does not have any effect on 

future burns, as it would have previously. Instead, once the burns have been performed, 

the satellite is left to drift until a future deviation is expected. If this deviation occurs 

before the propagator predicts it will occur, this has no effect on the burn strategy. The 

optimization can simply be executed at this time and the process repeated. Table 5-9 

details the differences between the global and operational approaches and section 5-4-3 

discusses the implementation of the operational approach. 
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Table 5-9 Global vs. Operational Optimization Approach Comparison 

Parameter Global Optimization Approach Operational Approach 
Burn Number Enough to Handle Multiple 

Constraint Violations Over 
Lengthy Propagation Time 

Enough to Handle One Violation 
in Constrained Time Period 

Burn Times Occur Anywhere in Time Period 
of Interest 

Occur in Short Time Period on 
Either Side of Violation 

Propagation 
Time 

Predetermined Lengthy Period 
of Time 

Algorithm Determined Maximum 
Drift Time 

Follow On 
Burns 

Very Reliant on Predicted 
Satellite State 

Independent of Current 
Predictions—Determined by Future 
Optimizations. 

5-4-3 Implementation of Operational Approach 

Although the basic structure of this more operational optimization approach was 

quite similar to the global station-keeping approach, some changes were still required in 

order to implement this technique.  These changes are outlined briefly in the following 

sections. 

5-4-3-1 Operational Approach Variable Description 

The variable structure outlined in Table 5-1, along with the modifications outlined 

in section 5-3-1-4-2, was essentially adequate for this problem as well. The desired solve 

for variables are still the time of each burn, the magnitude of each burn component and 

an on/off flag for each burn. The only modification required was a change in the 

allowable times for each burn. Rather than being allowed to vary anywhere between zero 

and the maximum time, the burn times were now constrained to lie within a certain 

predefined range of the expected deviation time (see section 5-3-1-5-2). It should also be 

noted that scaling all variables between 0 and 2 as described in section 5-3-1-4-2 was 

found to be effective in this problem, as well. 
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Table 5-10 GA Operational Station Keeping Solution Process Variable Allocation 

Variable Number 
/Burn 

Pre-Scaling 
Lower Limit 

Pre-Scaling 
Upper Limit 

Units 

Elapsed Time from Epoch 1 Time Of Expected 
Violation Minus 
Burn Window 

Time of Expected 
Violation Plus 
Burn Window 

Seconds 

Magnitude of Burn 
Components 

3 - Maximum 
Component 
Magnitude 

+ Maximum 
Component 
Magnitude 

m/s 

On/Off Flag 1 0.00 1.00 N/A 

5-4-3-2 Operational Approach Objective Function 

The largest modifications to the implementation were required in the modification 

of the objective function. Due to the new approach of attempting to find the optimal 

burns that allowed for maximum drift time between burns, it was necessary to modify the 

objective function to include some information about the drift time in order that it might 

be maximized. 

Initially, attempts were made to create this modification by simply adjoining an 

additional term to the modified objective function of Equation 5-6 as follows: 

J = AV + Deviation Contribution + Time Contribution - Drift Time Equation 5-10 

Upon first glance, it appears that this is a sufficient objective function. Since the 

other three terms are being minimized, the negative of the drift time has simply been 

added onto the objective function. Therefore, larger values of the drift time should lead 

to smaller objective function values. 

However, there are problems with this formulation. Notice that when optimizing 

J, the goal is to minimize AV. In order for this to happen effectively, the other terms in 
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the objective function must go to zero. If they do not go to zero, the problem then 

depends heavily on the weights that are associated to each term. By placing weights that 

are too large on the deviation or time contributions, one can essentially eliminate all 

minimization of fuel. Solutions that provide non-violating trajectories will be generated, 

but they will not be fuel optimal. 

In the global approach, reducing the objective function to a complete fuel 

minimization function was not a problem. Since the deviation contribution is simply a 

function of the total deviation from the constraints, as soon as a solution is found which 

does not violate the constraints, the deviation contribution goes to zero and is effectively 

removed from the objective function. Also, recall that the time contribution is simply a 

measure of the difference between a fixed end time and the time until the first deviation. 

For the global case the end time was known and so once again, solutions which created 

trajectories that were entirely contained with in the constraint box forced this term to 

zero. As the global case progresses, strings that do not cause violations of the constraints 

survive, and the objective function reduced entirely to J = AV which allows for 

minimization of the AV. 

However, if the same objective function is used to solve the operational approach, 

it is impossible to reduce the objective function to the simple form J = AV. First, since 

the end time is no longer known (it is equal to the maximum drift time which is being 

solved for), it is impossible to force the difference between the end time and the time of 

the first deviation to zero. It can, however, be argued that having both the maximum drift 

time and the time contribution both in the objective function is an unneeded redundancy. 

The purpose of both is to favor solutions that produce trajectories that avoid violation for 
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long periods of time. However, even removing the time contribution from the objective 

function above does not eliminate the problem. Since the maximum drift time will 

always be a real value, it is still impossible to reduce the objective function to J = AV in 

order to minimize the required fuel, as desired. Even modifying this term to be the 

reciprocal of the drift time (i.e. -1/drift time) does not allow for complete minimization 

of the AV. The objective function will still rely heavily upon randomly chosen weighting 

factors. 

To eliminate this difficulty, a two-step solution process was used. The first step 

of the solution process was used to maximize the drift time. For this portion of the 

optimization the objective function was simply J = Drift Time. The genetic algorithm, 

with the same string structure described in section 5-4-3-1 of burn times, magnitudes and 

on/off flags was then used to find a string of burns that allowed for maximum drift time 

before another series of burns was required. Once this portion of the optimization had 

completed, the resulting maximum drift time was saved as the end time. A second 

optimization was then accomplished, using the techniques from the previous global 

approach, along with the burn time constraints, to minimize the required AV over the 

previously solved for fixed period of time. This process is summarized in Figure 5-14. 

Note that even though the global genetic algorithm approach is used to perform a portion 

of this optimization, because the number of burns and total propagation time has been 

reduced, the time to perform the optimization has also been reduced. 
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Figure 5-14 Operational GA Optimization Approach Overview 

5-4-3-3 Operational Approach Genetic Algorithm Parameters 

Since the genetic algorithm is used twice in the operational station-keeping 

approach, it is necessary to tune the genetic algorithm with two different sets of genetic 

algorithm parameters. For the most part, the parameters used in the global approach and 

presented in Table 5-2 were also good values for this optimization approach. However, it 

was necessary to modify some of the parameters. Those which worked best for the 

maximum time optimization loop are presented below in Table 5-11, while those that 

worked best for the AV portion of the optimization can be found in Table 5-12. 
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Table 5-11 Operational Station Keeping Approach Maximum Drift Time 
Optimization Genetic Algorithm Parameters 

Parameter Type/Value 
Stopping Rule No Change 
No Change Value 100 
Population Size 100 
Replaced Per Iteration 25 
No Duplicates Flag True 
Mutation and Crossover Flag True 
Mutation Type Gaussian 
Real Mutation Constant 0.2 
Mutation Rate 1/String Length 
Crossover Type Two-Point 
Crossover Probability 0.85 
Selection Type Tournament 

Table 5-12 Operational Station Keeping Approach AV Optimization Genetic 
Algorithm Parameters 

Parameter Type/Value 
Stopping Rule No Change 
No Change Value 2000 
Population Size 100 
Replaced Per Iteration 25 
No Duplicates Flag True 
Mutation and Crossover Flag True 
Mutation Type Gaussian 
Real Mutation Constant 0.5 
Mutation Rate 1/String Length 
Crossover Type Two-Point 
Crossover Probability 0.85 
Selection Type Tournament 

The main difference between the parameters used for the two different portions of 

the optimization can be found in the no change value required before the genetic 

algorithm is allowed to stop. For the maximum time portion of the optimization, only 

100 iterations with the same value were required before stopping as opposed to 2000 

required for the AV optimization.  There are two reasons for this difference.   First, the 
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genetic algorithm seemed to converge to the maximum drift time much faster than it 

could converge to the optimal AV and it usually did so without settling on intermediary 

solutions. Therefore, any repetition of the same solution was a clear signal that a near 

optimal had been reached. 

The second reason stems from the difference in the required accuracy of the 

solution from each portion of the optimization. There is a clear desire to have the optimal 

AV be as accurate as possible. Therefore, the genetic algorithm is forced to continue, 

even after converging to a solution, to ensure that no future decrease can be obtained. On 

the other hand, there is no clear need for an extremely accurate drift time. Even if the 

maximum drift time is not found, the genetic algorithm will still produce an optimal burn 

strategy for whatever time is determined. This burn strategy can then be implemented 

and satellite operations continued, regardless of any error in the maximum drift time. 

5.4.3.4 Operational Approach Computer Implementation 

The implementation of the operational approach required very little modification 

from the previous software developed for the global approach. In fact, the code structure 

presented in Figure 5-3 and used for the global station keeping case is identical to the 

code structure used for this operation approach. However, although the structure of the 

code is the same, two modifications were required to the details of both PGA_GASK and 

FUNC. 

The change to both of these routines involved the creation of a flag that was used 

to signal which portion of the optimization the genetic algorithm was in at any given 

time.   If the flag indicated that the drift time maximization was being performed, then 
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FUNC calculated the maximum drift time for a given string and returned it to the genetic 

algorithm as the objective function value. Otherwise, FUNC again performed the steps 

illustrated in Figure 5-4. This two-layered FUNC approach to the optimization did cause 

some difficulty with the genetic algorithm, but this difficulty was overcome by simply 

killing the entire population at the end of the time maximization and restarting the genetic 

algorithm with a fresh population for the ÄV minimization. 

5.4.4 Operational Approach Feasibility Test 

In order to test the feasibility and robustness of this operational approach, 

attempts were made to control Ellipso Borealis™ node at noon satellite given the same 

epoch time and elements as were used in the case two optimization for the global 

operational method. These elements along with the corresponding uncontrolled 

deviations can be found in Table 5-5. These elements were designed to represent the 

worst possible state of the satellite with all elements at or near their limits and with rates 

which will soon cause each element to violate. The global approach was successful in 

controlling the satellite even with these extreme starting conditions, but the solution was 

composed of 12 burns spread out over the 90 day period (see Table 5-7). For this case, 

only five burns were allowed and they were constrained to occur within a 48-hour period 

(24 hours on either side of the first expected deviation). 

5-4-4-1 Feasibility Test Results 

Using the localized optimization approach, the genetic algorithm was first used to 

calculate burns that allowed for maximum drift between the last burn and the time of the 

next deviation.   This step of the optimization was surprisingly fast requiring only 330 
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iterations. The result was a total time of 38 days with a 3-burn solution comprised of 

burns totaling 15.12 m/s in AV. Clearly, stopping the optimization at this point would be 

a serious error. The previous application of the global approach to this problem resulted 

in a solution of 9.99 m/s for a 90-day period. This approach exceeded that amount over 

only a 38-day interval. 

In order to arrive at a more reasonable solution, the second portion of the 

operational approach was implemented. The genetic algorithm was again used in 

conjunction with DSST to find AV solutions. However, rather than solving for maximum 

drift time, the time was set to the 38 day limit solved for previously and the optimization 

simply attempted to find minimum fuel solutions which avoided violation of the 

constraints. This portion of the optimization required a slightly greater number of 

iterations (2670), but the resulting AV of 6.26 m/s was less than half that originally 

estimated during the first half of the optimization. The four-burn solution that resulted 

from the optimization is presented below in Table 5-13. 

Table 5-13 Operational Approach Feasibility Test Case Burn Times and 
Components 

Burn Time 
(Since Epoch) 

Mean Anomaly at 
Burn Time 

Radial 
(m/s) 

A long-Track 
(m/s) 

Cross-Track 
(m/s) 

Magnitude 
(m/s) 

6d 37m 55.03s 83.94° 0.0136 -0.0351 3.2910 3.2912 
6d 46m 01.15s 100.30° 0.2899 0.3992 2.6092 2.6554 
9d 00m 41.36s 12.00° -0.2058 0.0046 0.0086 0.2060 
15d 58m 53.60s 135.84° 0.0194 0.0958 0.0526 0.1110 

Total DeltaV 6.2636 

Both the mean anomaly and argument of perigee deviation history plots are 

presented below in Figure 5-15 and Figure 5-16. These two deviation histories are 

presented as these two elements had the most significant impact on the solution. They 

clearly show that the time of 38 days arrived at by the first pass through the optimization 
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is optimal. It is impossible for the mean anomaly to drift any longer without violation of 

the constraints. It is possible to allow the argument of perigee to drift longer than this 38- 

day limit. However, doing so would require more fuel. Since the entire system is 

constrained by the mean anomaly time limit, more motion in the argument of perigee 

would be wasteful. The optimal solution is then to burn enough in the argument of 

perigee to drift right to the limit at the end of the 38 days as shown in Figure 5-16. The 

element deviation history plots of all six elements can be found in appendix D-2. 

Figure 5-15 Operational Feasibility Test Controlled Mean Anomaly Deviation 
(Limit = 1°) 
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Figure 5-16 Operational Feasibility Test Controlled Argument of Perigee Deviation 
(Limit = 1°) 

5-4-4-2 Feasibility Test Results Evaluation 

In order to qualify the results presented in the previous section (5-4-4-1) as a 

successful operational approach, it is necessary to evaluate the solution and the solution 

process in terms of the pre-defined operational characteristics of speed of convergence, 

ease of implementation and repeatability. Specifically, by comparing the previous global 

solution with the solution resulting from the operational approach, it can be determined 

whether or not any gains in the operational feasibility of the genetic algorithm approach 

have been made. 

The difference between both approaches in terms of speed of convergence is quite 

distinguishing. Although both optimizations were accomplished using an SGI 

workstation with five processors, the operational approach was able to converge in a total 
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number of iterations less than 3000 which required less than 2 hours of computer time. 

The global approach, on the other hand, required over 10,000 iterations and 14 hours of 

computer time. For actual implementation into an operational scheme, the two hours that 

are required by this new approach is definitely a more reasonable value. 

The steps required for implementation of the solution resulting from this new 

approach into an operational scheme are more reasonable, as well. As discussed 

previously, in order to implement the 12-burn global approach solution, it is necessary 

that the satellite maintain a trajectory that exactly matches the trajectory predicted by the 

DSST software. Any variation, no matter how slight, will invalidate the solution and 

require the entire optimization be re-accomplished with an updated state as an input. 

The solution from the new approach, on the other hand, has only a very slight 

dependence on the accuracy of the DSST prediction. The predicted trajectory must be 

maintained only long enough that all of the burns can be performed. Ideally, the 

trajectory will be maintained after the burns, as well, and the entire predicted 38-day drift 

can be accomplished without violation. However, a deviation from the DSST predicted 

trajectory does not invalidate the solution. Rather, the satellite can be allowed to drift on 

any actual trajectory until a future violation approaches. If the DSST model is exactly 

right, this violation will occur on day 38. If not, the only change to the process is that the 

next iteration must be accomplished sooner. The solution arrived at from the previous 

optimization is unchanged and can be fully implemented. 

Finally, in order to qualify as a more operational approach than the global 

method, the new optimization scheme must be more repeatable than the global approach. 

This is one area in which the difference between the approaches is not entirely clear. 
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Both methods can be ran repeatedly and will generate similar AV values for each 

successive optimization. However, neither method will generate identical burn lists on 

two successive runs of the software. Due to the fact that the solution of the operational 

approach is dependent upon fewer burns than the global approach, the resulting burn lists 

from successive optimizations via the operational approach are much more similar than 

burn lists resulting from successive optimizations via the global approach. Due to the 

fact that burns cannot occur after the first few days in the operational approach, the 

trajectories resulting from successive runs of the operational approach are much more 

similar than successive global approach solution trajectories. 

5-4-5 Operational Approach as a Planning Tool 

Although the approach presented in this section was developed with an 

operational intent, it can also serve well as a planning tool. If used in an operational 

context, the method would be used to find the optimal burn strategies to avoid violation 

(such as that shown in Table 5-13), each time that a violation of the constraints is 

suspected. Note, however, that the end result of the optimization is always an end state 

that is nearing a violation. Therefore, by simply looping through the process, with the 

end state of one iteration becoming the epoch state of the next, it is possible to use this 

approach to obtain operational estimates of the required AV over any length of time. 
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5-4-5-1 Operational Approach Planning Test 

Using the operational approach as a planning tool, it was desirable to estimate the 

AV required to maintain an Ellipso™ Borealis Node at Noon satellite for the entire 

lifetime of five years. The following sections describe the steps necessary to use the 

operational approach as a planning tool to accomplish this goal. 

5-4-5-1-1 Planning Test Epoch Elements Definition 

In order to estimate the required AV for the Borealis satellite in question, it was 

first necessary to use the tools from Chapter 4 to define the optimal epoch elements for 

this case. For comparison sake with the global approach and other cases presented in this 

thesis, an epoch date of March 21, 2000 was chosen. However, even though the global 

cases are also a Borealis Node at Noon satellite with this identical epoch date, the 

elements used for the reference orbit in those cases (presented in Table 5-3) were 

optimized for the 113:14 repeat ground track behavior over only a 90-day period. Using 

these elements as epoch elements for a five-year period will not yield optimal behavior in 

the reference orbit. Instead, the 113:14 repeat ground track optimization was again 

performed using March 21, 2000 as the epoch state and the deviations from the desired 

repeat ground track behavior were minimized over a five year period. The result was a 

set of elements which gave minimal deviation from the 113:14 repeat ground track 

behavior over the entire five-year period starting in March 2000. These elements (seen in 

the J2000 True of Date reference frame in Table 5-14) were then used as the epoch 

elements for both the reference and actual trajectories in the exercise of the operational 

approach as a planning tool. 
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Table 5-14 5-Year Optimized Ellipso Borealis™ Node at Noon Epoch Elements and 
Tolerances 

Element 
Semi-major axis (km) 
Eccentricity 
Inclination (deg) 
Right Ascension of Ascending Node (deg) 
Argument of Perigee (deg)  
Mean Anomaly (deg) 

Epoch State 
10496.8757 

0.3330 
116.5614 

0.0000 
260.0000 

0.0000 

Tolerance 
+/-1.0000 
+/- 0.0003 
+/- 0.0500 
+/- 0.5000 
+/-1.0000 
+/-1.0000 

As with the global cases, the reference orbit was created using the DSST software 

with the epoch elements from Table 5-14 propagated using a 50 x 0 gravitational field. 

The actual orbit was propagated using the same elements and a 21 x 21 gravitational field 

with drag, solar-radiation pressure, solar and lunar third-body point mass disturbances, 

and solid-earth tide effects also included. A Jacchia-Roberts atmospheric density model 

was used in the determination of the drag effects. A spacecraft mass of 1250 kg and area 

of 43.3 m2 was also assumed in all cases. 

5.4.5.I.2 Planning Test One Year Validation Case 

Prior to attempting to run the operational approach software to plan for an entire 

five-year lifetime of the Borealis™ satellite, a shorter one-year ran was first attempted. 

By continually looping through the operational approach software with updated epoch 

elements corresponding to the end state of a previous optimization, the approach was able 

to successfully maintain the Borealis™ satellite within the required limits for 404.8 days 

using 14 burns and a AV of 14.88 m/s. However, despite the successful completion of 

the one-year validation attempt, a number of needed improvements were evident. When 

implemented, these improvements allowed for even better operation of the approach as a 

planning tool. 
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Allowable Number of Iterations: The most noticeable feature of the one-year 

optimization using the operational approach was the lengthy time required for 

convergence. Using five processors on an SGI machine, the optimization still required 

more than 24 hours of computer time. Assuming linear growth, more than five days of 

computer time would be required to complete the desired five-year estimation. 

The driving factor behind the required time seemed to be the number of iterations 

required by some of the optimization loops. Although the majority of the genetic 

algorithm optimizations were able to converge in approximately 1000 iterations, a few 

required approximately 5000 iterations. Inspection of the difference revealed that those 

optimizations requiring 5000 iterations could be attributed to initial convergence to an 

incorrect solution. Although these populations were able to eventually converge to the 

correct solution, the time and iterations required to move from the incorrect solution were 

higher than expected. 

It was found that restarting the optimization allowed for quicker convergence than 

waiting for the partially converged solution to move from the incorrect point. This was 

done by simply limiting the allowable number of iterations to a lower number (such as 

1000). Most of the time, the optimization is completed before this limit is reached. 

However, if the allowable limit of iterations is reached, the optimization is stopped and 

the end state is checked against the reference state. If the resulting deviations are larger 

than the allowable (i.e. the trajectory is not in the box), the current population is 

destroyed and the algorithm is restarted from the last known epoch state. Using this 

approach, it was found that, at most, three restarts were needed. Thus, at most 3000 

iterations were required, greatly reducing the required amount of time for convergence. 
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Size of the Time Grid: Since this approach is trying to approximate a continuous time 

process with a discrete number of computations, it is necessary to define a grid over 

which the reference and actual orbits can be compared. For the global case, this 

comparison was performed four times every day without problem (once every six hours). 

However, for this more operational approach, all the burns are constrained to fall within a 

two-day interval. Thus, the probability that two burns will occur within a six-hour grid 

point is much higher. Although the net effect of those two burns will still be calculated 

by the DSST propagator (which has its own pre-defined step size), it is possible for a 

violation of the constraints to occur in between the six hour checks (i.e. one burn causes a 

constraint violation and the other fixes it, before a check for violations is performed.) 

This undesirable behavior is quite evident in both the semi-major axis and 

eccentricity history plots for the one year planning case (see Figure 5-17 and Figure 

5-18). Twice during the year history of the semi-major axis a burn occurs which forces 

the deviation from the reference down to greater than three kilometers, only to have a 

second burn occur which forces the deviation back less than the 1 km limit. Similar 

behavior can be seen in the eccentricity deviation plot in which the deviation is forced up 

beyond 4 x 10 ~* only to be almost immediately driven back below the 3 x 10"4 limit. In 

all cases the burns in question occur less than six hours apart, and therefore, the 

deviations are not seen by the objective function which is only checked on a six hour 

grid. 

228 



E 

<U 
u 
c 
0) 

0) 
DC 
E 
o 

C 
o 

s 
Q 

1 

0.5 

0 

-0.5 

-1 

-1.5 

-2 

-2.5 

-3 

-3.5 

-4 

J^\gfs(H: 

0    50   100  150  200  250  300  350  400  450 
Days from Epoch 

Figure 5-17 One Year Operational Approach Planning Test Semi-major Axis 
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It seems that simply checking the deviations over a denser time grid can solve this 

problem. However, this solution goes counter to the desired behavior of fast 

convergence. By checking even eight as opposed to four times per day, the number of 

computations for each iteration are doubled, and the problem still might not be eliminated 

as any deviations which occur within a three hour window still would not be seen. 

Ideally, the grid should be defined to be less than the orbit period of 1.5 hours, but with 

the objective function defined as it is, checking this often is not feasible. 

A more reasonable solution was discovered by noticing that the only time a dense 

grid is required is during the allowable window for burns to occur (in this case, a two-day 

window). During the time that burns cannot occur, it is impossible for any element to 

drive extremely far out of its allowable range and back in before being checked (this 

scenario can only be created by burns). Therefore, by modifying the code to check over a 

one-hour grid during the two-day burn window and only an eight-hour grid over the rest 

of the optimization time period, it was hoped that the undesirable deviations could be 

eliminated while still maintaining relatively low times for convergence. 

It should also be noted that despite the undesirable nature of the deviations in this 

case, it is conceivable that lower AV values could be achieved by redefining the problem 

to allow violations during the length of the burn window. It is often the case that burns of 

the type found in Figure 5-17 and Figure 5-18 are useful for changing certain elements at 

lower cost than other types of burns. By allowing deviations to occur during the short 

length of the burn window, some satellites may be able to be controlled at lower cost than 

when even the burns are constrained to stay within the constraint box. 
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5-4-5-1-3 Planning Test 2.5 Year AV Estimation 

Even with the improvements in convergence time gained by implementation of 

the changes discussed in the previous section, the time required to complete a five-year 

AV estimation was still felt to be longer than desirable. Therefore, despite the desire for a 

five-year AV estimation, the planning tool was only used to estimate approximately a 2.5- 

year period of the Borealis™ Node-At-Noon satellite's lifetime. Although not entirely 

accurate, approximate estimates of the five-year period can be gained by scaling the 

solution over the entire five-year period. 

This 2.5-year AV estimation was created using the 5-year optimized elements 

listed in Table 5-14 along with the actual and reference orbits discussed in the 

accompanying section (section 5-4-5-1-1). The resulting optimization required less than 

24 hours of computer time (using 5 processors) and resulted in the solution summarized 

in Table 5-15. 

Table 5-15 2.5-Year Borealis Node-at-Noon AV Planning Test Results 

Days Forward 995.07 days 
Number of Burns 65 burns 
Total Delta-V 24.35 m/s 

The deviation histories of all six orbital elements for this 2.5-year case can be 

found in appendix D-4-3. The semi-major axis deviation history is also presented below 

(see Figure 5-19) as it contains behavior that merits discussion. Note that unlike previous 

solutions, even during the time that the satellite is maneuvering to correct its state, no 

violations of the semi-major axis are present. Due to a failure to check over a dense 

enough grid, previous optimizations had found solutions that drove the semi-major axis 
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beyond its one-kilometer limit and back in a short enough time span that the deviation 

was not noticed by the algorithm. However, prior to this 2.5-year optimization, the 

solution to this problem discussed in section 5-4-5-1-2 was implemented. This 

implementation allowed the algorithm to sample more often during the times of possible 

burns, but less often during the drift time. By sampling more often during the times of 

possible burns, strings which contained burns that caused "out and back" violations were 

quickly eliminated. Due to the absence of any of this type of deviations in the solution to 

the 2.5-year optimization, it can be reasonably concluded that the methodology and 

implementation for eliminating these deviations was successful. 
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Figure 5-19 2.5-Year Operational Planning Approach Semi-Major Axis Deviation 
(Limit = 1 km) 
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5-4-5-1-4 Limitations of the Operational Approach as a Planning Tool 

Despite the success of the operational approach as a planning tool over the 1000- 

day region from March 21, 2000, there is a significant limitation of the approach which 

must be discussed. This limitation is the inability to change the parameters of the 

optimization for each loop when the optimizations are strung together in the manner used 

by the operational planning tool approach. 

The 2.5-year planning tool test case provides an illustrative example of this 

limitation. Note that over the entire 1000 day region for the Borealis™ optimization each 

cycle of the optimization entails making changes to essentially the same elements: a, e, 

and M. Only occasionally do the argument of perigee, inclination, or ascending node 

require change (see Appendix D and the ascending node deviation history in Figure 

5-20). Due to the similarity of each step, the weighting factors, genetic algorithm 

parameters, number of burns, etc. can remain fairly constant and the algorithm will still 

be successful. However should the required optimization change drastically, (i.e. should 

additional elements violate the constraints on a routine basis), it is entirely likely that the 

optimization will fail if forced to use the initial set of parameters. 

For example, due to the nature of the 2.5 year Borealis™ optimization presented 

in the previous section, it was possible to achieve successful results by limiting the 

algorithm to four allowable burns, each with a maximum component magnitude of 3 m/s. 

Additionally, an increase in speed of convergence was obtained by realizing that, due to 

the simplicity of the problem, near maximum time could be determined in less than 500 

iterations. However, although these parameters worked well for this 2.5-year 

optimization, they did not work well if times beyond the 1000 days were attempted. 
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Figure 5-20 2.5-Year Operational Planning Approach RAAN Deviation 
(Limit = 0.5°) 

Note the ending location of both the argument of perigee and the ascending node 

at the end of the 1000-day optimization. Both end at/or near their tolerance limit. This 

ending location makes optimizations beyond this point more difficult than those which 

preceded it. Rather than only dealing with eccentricity and Mean Anomaly violations, 

optimizations beyond this point must find a way to handle the secular violation of the 

ascending node and argument of perigee as well. The control of these new violations 

requires more burns as well as burns of larger magnitude than the four 3 m/s burns 

previously allowed. Additionally, due to the more difficult nature of the optimization, 

iterations beyond the 500 allowable may be required to find the maximum drift time. The 

result of these changes is that the parameters that worked well previously are no longer 

adequate, and due to the unpredictable effect of previous burns on the trajectory, it is 

impossible to predict these changes ahead of time. 
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The ability to predict the required weights is not an issue when the algorithm is 

run in an operational rather than a planning sense. When run in a non-planning mode, the 

algorithm is only run one step at a time and an operator would be present to interpret the 

results. Using previous experience, the operator could then input the required parameters 

to allow for a successive step to be completed. However, when run in the planning mode, 

the operator is not present at each step and the inability to input the necessary weights 

becomes a serious limitation to the usefulness of the method as a planning tool. 

5-4-5-2 Greediness of the Operational Approach 

Despite the low AV estimate that the operational approach was able to generate 

for the 2.5 year Borealis orbit analyzed in this study, it is important to remember that the 

operational approach is a greedy strategy. As a greedy algorithm, the approach cares 

only about finding the optimal AV strategy for the here and now, it cares nothing about 

the future. Due to this failure to take the future into consideration, continual application 

of the operational method over long periods of time can lead to high fuel estimates and 

undesirable behavior, particularly if secular motion of some of the elements is involved. 

5-4.5.2-I Example of the Operatio nal Approach Greediness 

The Borealis™ satellite studied again provides a useful example of this 

phenomenon. As has been discussed, the 1000-day period studied above posed no 

problems, as the secular motion of the ascending node did not reach the tolerance limit 

until only slightly before the end of the 1000 days. However, by performing an 

optimization for a slightly longer period of time (approximately 1200 days) the 

greediness of the algorithm becomes evident. 
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Figure 5-21 contains the deviation of the ascending node from the reference 

trajectory resulting from the approximately 1200-day optimization. The behavior of the 

orbit during the first 1000 days is, as expected, unperturbed by the optimization. 

However, upon reaching the limit of 0.5° at about the 1000-day point, the behavior 

changes quite significantly. As the goal of each step of the optimization is to simply find 

a way to move forward some specified time step (typically about 30-45 days in this 

region), the burns resulting from each step are only enough to barely maintain the 

ascending node inside the tolerance region. As this process repeats itself for each time 

period, the cumulative result is a trajectory that seems to "crawl" along the specified 

tolerance limit. 
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Figure 5-21 RAAN Deviation of 1200 Day Optimization Showing Greedy Behavior 
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Although this behavior meets the requirement of maintaining the satellite's orbit 

inside the constraint box, it is clear that this is a greedy and more costly solution than a 

global optimal solution would be. The greediness is even more evident when the AV for 

the first 1000 days is compared to the AV required for the last 200. Table 5-15 shows 

that for the first 1000 days a total of 24.35 m/s was required to maintain the trajectory 

inside the specified constraints. However, once control of the secular behavior of the 

ascending node was introduced, an additional 15.35 m/s was required for the last 200 

days. This is an increase of over 63 percent for only a 20 percent increase in time. 

However, a significant increase in AV alone is not necessarily the result of a 

greedy strategy. It is possible, that a significant increase in AV would be required to 

control the violation of the ascending node that occurs around the 1000th day, even in a 

non-greedy approach. The nature of the increase, however, is a more significant indicator 

of the greediness of the approach. 

Figure 5-22 and Figure 5-23 show this nature, graphically. Figure 5-22 contains a 

fifth order polynomial fit to the total amount of AV required as a function of time. Figure 

5-23 is similar, but shows the total number of burns required as a function of time. Note, 

in both figures, the significant increase in slope of the functions after the 1000 day. It is 

this increase in slope that signals a greedy result. As the algorithm progresses over time 

without regard to future ramifications of current choices, it is forcing higher AV choices 

in the future as evidenced by the increase in slope. A similar plot of a non-greedy 

algorithm would not have the continual increase in slope shown here. Rather, the overall 

slope would be fairly constant with discontinuities at certain locations corresponding to 
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large AV requirements to return to secular motion of certain elements (such as the 

ascending node) to near nominal states. 
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Figure 5-22 Cumulative Delta-V vs. Time for Greedy Case 

120 

100 

ffl   80 

.O 

|   60 
z 
> 

40 

20 

200 400 600 800 1000        1200 
Days from Epoch 

1400 

Figure 5-23 Number of Burns Required vs. Time for Greedy Case 

238 



5-4-5-2-2 Possible Solutions to Minimize Greediness of the Operational Approach 

The fundamental limitation of the greediness of the operational approach is that it 

allows the algorithm to ignore secular variation of non-violating elements until the 

variations reach a violating state. At this violating state the system is much more 

unstable and difficult to control than if extra effort had been expended early on to 

maintain the secular variation near nominal values. 

Returning again to the ascending node deviation history in Figure 5-21, note the 

rate of change of the deviation in the first 500 days as compared to the last 500 days. 

With all elements starting at their nominal values, the system is quite stable and the 

secular rate of change of the ascending node is small. However, as the overall stability of 

the system is allowed to degrade, the tendency toward instability also increases. As, the 

nominal elements have been designed with maximum stability in mind (see Chapter 4), a 

direct correlation can be found between deviation from these nominal values and 

instability of the system. 

The result of this correlation is the need to find an algorithm that maintains the 

final solution closer to the nominal values than to the artificially defined tolerances. The 

best solution would be to implement the global algorithm. This approach would notice 

the increase in AV required by allowing the secular motion to continue unchecked during 

the first few hundred days. However, current limitations in computing power (see section 

5-3-4) make this solution path infeasible. Therefore, a number of other paths are 

proposed as possible solutions to eliminate some of the negative effects of the greediness 

of the operational approach. These proposed solutions are summarized below. 
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Tighten Constraints: Probably the most easily implemented of the proposed solutions is 

to simply modify the constraint box such that the secular violations of the ascending node 

and other elements are not allowed to vary enough to destabilize the system. By 

tightening the constraints, the algorithm would be forced to perform adjustments to the 

ascending node and other secular violations earlier in the process, thereby, eliminating 

the ability to wait on these adjustments and also eliminating some of the greediness of the 

algorithm. The difficulty of this implementation lies in choosing the appropriate 

constraint values. Excess tightening of the constraints may lead to an increase in 

stability, but may also lead to an unnecessary increase in frequency and number of 

maneuvers. 

Implement a Restart Protocol: A second possible solution that would allow the system to 

remain more stable is the implementation of some sort of restart protocol. By defining 

either certain intervals or states at which the solution process must be "restarted" or 

returned to nominal, overall stability of the system could be increased. For example, the 

restart protocol could be defined such that any time the solution is seen to "crawl" along 

the tolerance limit for some fixed number of iterations, the operational approach is 

paused and the burns necessary to return the system to nominal are computed. This 

return to nominal would return stability to the system and the operational approach could 

be continued as before. The main limitation to this solution is, again, the need for 

specific insight into the problem before the restart protocol can be defined. 

Implementation of the improper protocol may indeed eliminate the greediness, but at the 

expense of large amounts of AV. 
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Integral Objective Function: The most reasonable of all solutions to the greediness 

resulting from the secular behavior of some of the elements is to modify the objective 

function such that the integral of the deviation from nominal is minimized over time. 

This would have the effect of averaging out the secular variation around nominal and 

therefore would maintain average stability. Unlike the other two suggested solutions, the 

implementation of this solution requires little insight into the specifics of the case at 

hand. In some sense, the algorithm itself would determine the proper limits and restart 

protocol. 

The only difficulty to this implementation would be the balancing of the AV and 

deviation contributions to the objective function. In the current formulation, only 

deviations outside of the constraint box contribute to the objective function. In feasible 

solutions (those which meet all constraints), the deviation contributions are zero and 

minimization can be performed only on the AV. However, with an integral formulation, 

even feasible solutions will have both deviation and AV contributions to the objective 

function. Proper balancing of the weighting of these contributions will have a significant 

effect on the solution. Too much weight on the integral portion will produce solutions 

that are maintained very close to the nominal value, but at the expense of AV. On the 

other hand, too much weight on the AV portion will produce solutions with low AV, but 

which fail to meet the desired behavior of minimum deviation from nominal. 
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Chapter 6 Conclusions and Future Work 

This work developed optimization methods that proved successful in both 

designing and maintaining satellite constellations. Two design applications were 

developed and tested along with two methods for performing orbit maintenance. Initial 

optimizations were performed using Powell's localized method, but convergence to local 

minimums required the introduction of genetic algorithms into the optimization process. 

A robust genetic algorithm astrodynamic optimization tool was created using the 

genetic algorithm package PGAPack in conjunction with the Charles Stark Draper 

Laboratory implementation of DSST and the Mississippi State University development of 

MPICH. These three software tools were tied together through a series of FORTRAN 

routines to create an optimization tool general enough to handle both design and 

maintenance applications with minimal modification. 

The genetic algorithm optimization tool developed was first used successfully in 

the refinement of two Ellipso™ constellation designs. The Borealis™ sub-constellation 

initial elements were refined to provide minimum drift away from the three desired 

behaviors of 113:14 repeat ground track, fixed argument of perigee and constant nodal 

rate. Based on the success of the tool in optimizing the repeat ground track design, it was 

also used to refine the initial orbital elements of the recently conceived gear array. The 

optimal design for the gear array was found to provide better coverage and elevation 

characteristics than the previous Borealis™/Concordia™ design of the Ellipso™ 

constellation. 
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The combination PGAPack, DSST, MPICH optimization tool was also used 

successfully to generate optimal station-keeping strategies for the Borealis™ sub- 

constellation using two different optimization approaches. The first approach viewed the 

problem from a global perspective and attempted to find all burns necessary to maintain 

the desired constellation over an entire satellite lifetime. Although the method was 

successful over short time frames, computational and other limitations prevented it from 

being successful over an entire satellite lifetime, as originally desired. Additionally, the 

method lacked a number of desirable operational characteristics such as repeatability and 

speed of convergence. 

To overcome the limitations of the global station-keeping approach, a second 

method was implemented. This second method can be considered a more operational 

approach. This operational approach did prove successful in generating near-optimal 

station keeping strategies, and although, due to greediness, the required AV's are slightly 

higher than the AV's required by the global approach, the method can be more easily 

implemented into a satellite operations concept. 

The next sections list specific conclusions and recommendations for future work 

for each of the four design and maintenance problems detailed in this thesis. 

6-1113:14 Repeat Ground Track Design 

Optimization techniques were first used to find the optimal orbital elements that 

minimized the total deviation of an Ellipso Borealis™ node-at-noon satellite from the 

three desired design behaviors of 113:14 repeat ground track, fixed argument of perigee, 

and sun synchronous node behavior. Both Powell's method and genetic algorithms were 

used to find the optimal epoch elements for a five year optimization starting on January 
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1st, 1997 in a 50 x 0 zonal field with third-body effects also included. The result of the 

optimization was a set of elements that proved extremely stable in the design space as 

well as relatively stable in the presence of full perturbations. The optimal elements for 

this design are presented below in Table 6-1. 

Table 6-1 Optimal Epoch Elements for the Borealis Node at Noon 113:14 5-Year 
Optimization (Epoch = January 1,1997) 

Element Value 
Semi-major Axis (a) 10496.8969 km 
Eccentricity (e) 0.32985 
Inclination (i) 116.5782° 
RAAN (Q) 280.00° 
Argument of Perigee (co) 260° 
Mean Anomaly (M) 0.00° 

6-1-1113:14 Repeat Ground Track Design Conclusions 

One important conclusion gained from the 113:14 repeat ground track design 

application was the inadequacy of the localized methods to avoid convergence to 

incorrect solutions. This behavior was evident even for this fairly simple problem with 

only three solve-for variables. Although the localized methods were able to find the 

optimal solution on the majority of the trials, there were also a number of trials in which 

they failed. Without some sort of external feedback, such as plots or a second 

optimization technique, determining which of the solutions is truly the global optimum 

can be difficult. 

A second conclusion relates to the importance of designing in the same 

environment that the actual operation of the satellite will be performed. For this 113:14 

repeat ground track design problem, the optimal elements were designed in a 50 x 0 

zonal/third body field as opposed to a field which included all possible perturbations. 
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The result was a set of initial elements that gave optimal behavior under the 50 x 0/third- 

body field, but which were not necessarily optimal under the full perturbation model. 

6-1-2 Areas of Future Work for the 113:14 Repeat Ground Track Design 

Two areas are recommended for future pursuit. First, despite the significant 

increase required in computer time, it is recommended that the design be optimized under 

the full perturbation model and the results compared to the optimal orbital resulting from 

the 50 x 0/third body optimization. It is expected that the elements resulting from the full 

perturbation optimization will vary slightly from those presented in Table 6-1 and that 

corresponding changes in the drift from nominal under full perturbation models will also 

be seen. To reduce computation time in performing the optimization under full 

perturbations, it might be possible to create a hybrid optimization scheme where the 

result from the genetic algorithm simple model optimization is used as the starting point 

for a localized method with full perturbations included. 

The second area of recommended future work deals with the amount of allowable 

drift in the elements. Even with an optimization of the elements under full perturbation 

analysis, it will still be impossible to exactly meet the desired conditions at all times. 

Some amount of drift will still be present in the element histories of the final solution. If 

the amount of drift present is larger than acceptable values, it may be necessary to 

perform the optimization in a manner that would solve for more than just the initial 

elements. Instead, it may be necessary to solve for the optimal elements at various times 

throughout the lifetime of the satellite. This type of optimization would require a 

significant reformulation of the problem. 
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6-2 Gear Array Design 

The design of the gear array was an attempt to use the same optimization tools 

that were successful in refining an existing constellation concept to refine an entirely new 

constellation design. In this new design, the two orbit planes are aligned at the equator 

and the orbit of one sub-constellation is designed to have a period that is a certain ratio of 

the period of the second sub-constellation. This type of design forces motion that is 

similar to the teeth of a gear assembly. 

In order to design a gear array, the problem was decomposed into three desired 

behaviors: an apogee pointing to the Sun constraint, a ratio constraint, and a geometric 

constraint. Various methods of parameterizing the problem were also studied. Using a 

fixed offset method of parameterization, two types of gear array were constructed. The 

design of these arrays was constructed using a 50 x 0 zonals only field over the course of 

one year with an epoch date of January 1, 1997. The resulting design parameters for the 

two arrays are summarized in Table 6-2. 

Table 6-2 Optimal Gear Array Design Parameters 

5:6 GEAR 
8050 APOGEE 

4:5 Gl 
0KMO 

EAR 
FFSET 

Array Type APTS Circular APTS Circular 
Number of Satellites 5 6 4 5 
Semi-Major Axis (Km) 12537.37 14143.57 12546.57 14555.45 
Eccentricity 0.151172 0.0 0.160114 0.0 
Apogee Height 8050. 7765. 8177. 8177. 
Perigee Height 6149. 7765. 4159. 8177. 
Phasing in Mean Anomaly 72 60 90. 72. 
Anomalistic Period (sees) 13947.98 16737.58 13980.01 17475.07 
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6-2-1 Gear Array Design Conclusions 

The first conclusion regarding the gear array design optimization is quite similar 

to one of the conclusions drawn from the repeat ground track optimization. Specifically, 

it can be concluded that the resulting solution would be more optimal if designed in the 

desired operation space (a fully perturbed 5-year optimization) as opposed to a zonals 

only 1-year optimization space. However, like the 113:14 case, computer limitations 

prevented this ideal optimization from actually occurring. 

Further conclusions relating to optimization techniques can also be drawn from 

the gear array design process. For example, in attempting to find the optimal design for 

the gear array, three parameterizations of the problem were studied. Although each 

parameterization contained the same information, the resulting solution spaces were 

drastically different. This leads to the conclusion that for many optimization problems, 

the formulation of the problem can have a significant impact on the ability to find an 

optimal solution. 

The gear array design also allows for conclusions regarding coverage to be made. 

Due to the nature of the optimally designed gear array constellations, all communication 

constellation characteristics exceeded those for the baseline Ellipso™ Concordia™ sub- 

constellation including satellites in view and minimum and average elevation angles. 

Although some of this increase can be attributed to the increase in the number of 

satellites in the gear array design, a significant portion of the increase can also be 

attributed to the phasing and design of the gear array. 
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6-2-2 Areas of Future Work for the Gear Array Design 

For the future it is recommended that the gear array designs be refined in a full 

perturbation field. The differences in decay can then be compared with the current design 

to see if the increase in computer time for the fully perturbed optimization is worth the 

expected decrease in decay. 

Additionally, a variety of gear combinations beyond the 4:5 and 5:6 cases 

implemented for this thesis should be studied. It is quite possible that an array that 

exhibits better coverage than either of the arrays studied to date exists. It is also possible 

that additional solve-for variables, such as the number of satellites in each array, and 

additional constraints, such as coverage constraints, could be built into the optimization 

process. If properly implemented the addition of such solve-for variables and coverage 

parameters could make possible the design of a more optimal array. 

6-3 Global Station Keeping Optimization 

Genetic algorithms were also used successfully to maintain the Borealis™ node- 

at-noon satellite within certain pre-defined tolerances in relation to the designed reference 

orbit. Using the 113:14 repeat ground track optimization process with an epoch date of 

March 21, 2000 and a total time of 90 days, the optimally designed elements were found 

and used to create a reference orbit in a 50 x 0 zonal field which exhibited the desired 

characteristics. These elements and tolerances are summarized in Table 6-3. 
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Table 6-3 90-Day Optimized Ellipso Borealis™ Node at Noon Epoch Elements and 
Tolerances (Epoch = March 21,2000) 

Element Reference Epoch State Tolerance 
Semi-major axis (km) 10496.8839 +/-1.0000 
Eccentricity 0.3328 +/- 0.0003 
Inclination (deg) 116.5577 +/- 0.0500 
Right Ascension of Ascending Node (deg) 0.0000 +/- 0.5000 
Argument of Perigee (deg) 260.0000 +/-1.0000 
Mean Anomaly (deg) 0.0000 +/-1.0000 

Two different sets of initial elements were then used to test the application of the 

genetic algorithm to the station-keeping problem. The first case aligned the initial 

elements with the reference elements and propagated the actual orbit in a fully perturbed 

field. The resulting four-burn solution was successfully able to maintain the difference 

between the actual and reference orbits within the predefined constraints. The second 

case moved the actual epoch elements to a location such that all elements were near the 

predefined tolerances in an effort to test the robustness of the system. Although 12 burns 

were required to control this trajectory, the method was still successful and provides an 

upper bound on the AV required to control the satellite. The total number of burns and 

delta-v for the two cases used to test this approach are summarized in Table 6-4. 

Table 6-4 Results of Two Global Station Keeping Optimization Test Cases 

Case Number of Burns DeIta_V (m/s) 
1-Elements Aligned With Reference 4 0.5693 
2-Elements at Extreme Limits 12 9.9900 
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6-3-1 Global Station Keeping Optimization Conclusions 

An important aspect of the implementation of genetic algorithms into the global 

station keeping optimization was the change from binary to real allele values. Despite 

their usefulness in the design optimization schemes, binary variable representations were 

found to be inadequate to handle the refinement necessary for the station-keeping 

approaches. It was also found that a number of other genetic algorithm parameters 

required modification before the genetic algorithm code created for the design 

applications could be successfully used to optimize the maintenance applications. 

The need for modification of the genetic algorithm parameters is an important 

conclusion as it shows the need for proper tuning of the genetic algorithm for each 

application. It is impossible to define the "perfect" genetic algorithm parameters that will 

work for all problems, even when the problems are somewhat related. As proof of this 

point, the parameters that were used for each optimization in this thesis are summarized 

in Table 6-5. Note that although there are similarities among these parameters, 

significant differences also exist. 

Table 6-5 Genetic Algorithm Parameter Comparison 

Parameter 
113:14 Gear Global Operational 

Time Opt 
Operational 

AVOpt 

Variable Type Binary Binary Real Real Real 

Stopping Rule No Change NC NC NC NC 

No Change Value 100 150 2000 100 2000 

Population Size 100 100 100 100 100 
Replaced Per Iteration 25 25 25 25 25 

No Duplicates Flag True True True True True 

Mutation & Crossover Flag True True True True True 

Mutation Type Binary Binary Gaussian Gaussian Gaussian 

Real Mutation Constant N/A N/A 0.5 0.2 0.5 
Mutation Rate 1/L 0.02 1/L 1/L 1/L 

Crossover Type Two-Point 2-Pt 2-Pt 2-Pt 2Pt 
Crossover Probability 0.85 0.85 0.85 0.85 0.85 

Selection Type Tournament Tournament Tournament. Tournament. Tournament 
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Even with proper tuning, the global station-keeping algorithm was unable to reach 

the original goal of defining station-keeping strategies for the entire lifetime of a given 

satellite. Instead it was found that the method was extremely limited by the amount of 

available computing power. This leads to the conclusion that although a given 

optimization technique might be possible, it is not always feasible. There is not anything 

about the approach presented in this thesis which should keep it from working over 

longer time frames, it is just not feasible to attempt to do so. 

6-3-2 Areas of Future Work for the Global Station Keeping Optimization 

One of the areas of future work which is expected have a significant impact on the 

global station keeping optimization scheme is the creation of a hybrid genetic 

algorithm/localized approach. One of the major limitations of the global station keeping 

approach is the number of iterations and corresponding amount of time required to 

exercise the algorithm. A large percentage of the iterations are required simply to refine 

the optimal solution (i.e. zero out unneeded burns, etc.). By incorporating a localized 

algorithm into the refinement stage of the global station keeping optimization, it is 

expected that required run times could be greatly reduced. 

An additional area to which future efforts could be directed is the definition of the 

reference orbit. For all cases studied in this thesis, the reference orbit was defined as the 

orbit in a zonal 50 x 0 field that gave the minimum drift from the 113:14 repeat ground 

track characteristics. At times near epoch, burning to meet this designed orbit is 

desirable. However, as time elapses, even the designed orbit begins to decay from the 

desired behavior. After this decay has begun, burning to meet the designed orbit is not 

necessarily the best thing to do.   After some time has elapsed from epoch, it might be 
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possible to burn to a set of elements different from the reference trajectory that will cause 

smaller future drift from the 113:14 repeat ground track characteristics than the 

previously designed orbit. By performing a re-optimization of the 113:14 repeat ground 

track orbit design at regular intervals, it may be possible to define a reference that is more 

stable, relative to the 113:14 characteristics than the orbit resulting from only one 

optimization performed at epoch. 

It may also be desirable to perform an analysis into the actual dependence of the 

global station keeping approach on the orbit propagation. In discussing the limitations of 

the global approach, the point was made that should the satellite even slightly deviate 

from the trajectory laid out by the global station keeping algorithm, all future burns 

would have to be recalculated. Although this statement is true, it is possible that some 

slight error in the propagation could be ignored. Through a series of tests, it might be 

possible to determine the sensitivity of the global solution process to the expected 

propagator error. 

Drawing on the lessons learned from the gear array design process, it might be 

useful to also perform an analysis into the different ways to parameterize the station- 

keeping problem. In the design of the gear array, it was found that various 

parameterizations yielded solutions with varying levels of difficulty. It is possible that 

the current parameterization of the station-keeping problem is leading to some of the 

difficulty in generation of optimal solutions. Study into other ways to parameterize the 

problem could therefore prove very useful. 

Along similar lines, the effect of the objective function formulation is also an area 

into which further efforts could be directed. This thesis focused solely upon controlling 
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the spacecraft based upon orbital element constraints. As other methods of constraining 

the trajectory are possible, these methods should be implemented and the effect on the 

solution process analyzed. For example, rather than constraining the orbital elements, it 

may be desirable to constrain a function of these elements such as ground track or cross- 

track and along-track. The implementation of this type of control is thought to be fairly 

simple, however the effect on the optimization tool's performance is unknown and should 

be pursued. 

6-4 Operational Station Keeping Optimization 

In an effort to overcome many of the limitations present in the global station 

keeping approach, a second application of genetic algorithms to the station-keeping 

problem was created. Due to the faster convergence, easier implementation, and increase 

in repeatability (all desirable operational characteristics), this application was termed the 

operational station keeping approach. 

The main difference between the global and operational station keeping 

approaches was the introduction of a two-layered optimization scheme. In the 

operational approach, prior to solving for the optimal burns, the maximum drift times 

between constraint violations is first computed. Due to the addition of a restriction that 

burns can only occur in the region of an expected deviation, the maximum drift time is 

quite easily solved for. Using the maximum drift time, the optimal burns that allow for 

that drift time can then be solved for in the second step of the optimization. The entire 

process requires many fewer iterations than the global approach. 
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The operational station keeping optimization tool was first tested using epoch 

elements identical to the global case two epoch elements. This case was successful in 

showing the viability of this approach. 

Attention was then turned to the application of the operational approach to AV 

estimations over extended periods of time. By restarting the algorithm with the final 

elements from a previous run as the epoch elements for the next, the operational approach 

was found to be a viable way of making reasonable AV estimations. Using this 

methodology, the approach was used to compute a one-year test case as well as a two and 

a half-year AV estimation. The results of these cases are summarized in Table 6-6. 

Table 6-6 Results of Three Operational Station Keeping AV Planning Test Cases 

Case Actual Days Forward Number of Burns Delta_V (m/s) 
1 Year Test Case 404.8 14 14.88 

2.5 Year AV Estimation 995.1 65 24.35 

6-4-1 Operational Station Keeping Approach Conclusions 

One important conclusion relating to the operational station keeping approach is 

in regards to the effectiveness of greedy algorithms. Although over some time frames, 

the operational approach was successful, it was found that the greediness of the approach 

eventually led to difficulty. This supports the original thought that a global approach is 

often a better choice than a greedy one for performing optimizations. 

6-4-2 Operational Station Keeping Approach Areas of Future Work 

The most important area of future work for the operational station keeping 

approach is the incorporation of some strategy to contain the secular motion near the 

nominal value as discussed in section 5-4-5-2-2.  Three possible solutions are presented 
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in this section which might be successful at accomplishing this goal. However, further 

study is required to determine which of the possible solutions is indeed the best for 

eliminating some of the greediness of the operational station keeping approach. 

A second area of possible future study that was not pursued in this thesis is the 

optimal value of the restriction on the burn times. For this thesis the burns were 

constrained to lie within either one day or one half day on either side of the expected 

deviation. However, these time limits were simply chosen at random. It is thought that 

forcing the burns to lie within one orbit period might have a significant impact on the 

performance of the algorithm, as the number of burn locations will be greatly reduced. 

However, exactly what that impact will be is yet to be determined. 
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Appendix A 113:14 Repeat Groun d Track Optimization Data 

This appendix contains data necessary to perform the optimization of the 113:14 

repeat ground track case, as well as various plots representing the results of that 

optimization. Specifically, this appendix contains the DSST input deck, 3-D surface 

plots of the surface to be optimized, genetic algorithm FORTRAN code specific to this 

case, and the resulting element decay plots. 

A-l 113:14 Repeat Ground Track DSST Input Deck 

This section contains the input deck to the DSST propagator for the Borealis™ node- 

at-noon, argument of perigee at 260° orbit used in the optimization of the 113:14 repeat 

ground track orbit design process. Proper flag and keyword values were determined from 

personal communications with Dr. Ronald Proulx, The Charles Stark Draper Laboratory. 

c 
c 
C      PMEF FILE FOR 113:14 OPTIMIZATION 
C 
C23456789012345678901234567890123456789012345678901234567890123456789012 

0.1997010100000000D+08 PME_DATE 1 
O.OOO0OO0OOOO00OOOD+O6 PME_TIME 2 
0.1049688200000000D+05 ELS_KEP(1) 3 
0.3320880821578410D-00 ELS_KEP(2) 4 
0.1165837080726980D+03 ELS_KEP(3) 5 
0.2800000000000000D+03 ELS_KEP(4) 6 
0.2600000000000000D+03 ELS_KEP(5) 7 
O.OOOOOOOOOO00O0OOD+O3 ELS_KEP(6) 8 
O.OOOOOOOOOOOOOOOOD+00 ELS_EQUIN(1) 9 
0.0O00OO0O00OO00O0D+O0 ELS_EQUIN(2) 10 
O.OOOOOOOOOOOOOOOOD+00 ELS_EQUIN(3) 11 
0.00000000000000000+00 ELS_EQUIN(4) 12 
O.OOOOOOOOOOOOOOOOD+00 ELS_EQUIN(5) 13 
O.OOOOOOOOOOOOOOOOD+00 ELS_EQUIN(6) 14 
O.OOOOOOOOOOOOOOOOD+00 POSVEL(l) 15 
0.0000000000000000D+00 POSVEL(2) 16 
0.0OO00OOOO00OO0O0D+0O POSVEL(3) 17 
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O.OOOOOOOOOOOOOOOOD+00 P0SVEM4) 
O.OOOOOOOOOOOOOOOOD+00 P0SVEL(5) 
O.OOOOOOOOOOOOOOOOD+00 P0SVEL(6) 
0.2000000000000000D+01 PME_CD 
O.OOOOOOOOOOOOOOOOD+OO PME_RHO_ONE 
0.5000000000000000D-04 SMA_SIGMA 
0.5000000000000000D-04 INC_SIGMA 
0.5000000000000000D-04 ASC_SIGMA 
0.1250000000000000D+04 PME_SCMASS 
0.4330000000000000D-04 PME_SCAREA 
0.8640000000000000D+05 PME_STEPSIZE 
0.1400000000000000D+02 DP_SPARE1 
0.1130000000000000D+03 DP_SPARE2 
O.OOOOOOOOOOOOOOOOD+OO DP_SPARE3 
O.OOOOOOOOOOOOOOOOD+OO DP_SPARE4 
O.OOOOOOOOOOOOOOOOD+OO DP_SPARE5 
O.OOOOOOOOOOOOOOOOD+OO DP_SPARE6 

1 
12 
12 
1 
1 

840401 
123 

840401 
456 

840401 
789 

840401 
123 

2 
10 
50 
0 
1 
1 
0 
0 
1 
2 
2 
2 
2 
1 
1 
2 

12 
11 
19 
0 
1 
2 
4 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

PME_RETRO 
PME_KEP_SYS 
POS_VEL_SYS 
GEN_METHOD 
ATMOS_MODEL 
JACRB_DATE 
JACRB_SSS 
SLP1950_DATE 
SLP1950_SSS 
SLPTOD_DATE 
SLPTOD_SSS 
TIMECF_DATE 
TIMECF_SSS 
HARRIS_MODEL 
POTNTL_MODEL 
PME_NMAX 
PME_MMAX 
PME_IZONAL 
PME_IJ2J2 
PME_NMAXRS 
PME_MMAXRS 
PME_ITHIRD 
PME_INDDRG 
PME_ISZAK 
PME_INDSOL 
PME_JSHPER 
PME_JZONAL 
PME_JMDALY 
PME_INP_TYPE 
PME_EQUI_SYS 
INTEG_FRAME 
OUTPUT_FRAME 
PME_NSTATE 
PME_SPSHPER 
PME_KSPCF 
PME_INDSET 
INT_SPARE1 
INT_SPARE2 
INT_SPARE3 
INT_SPARE4 
INT_SPARE5 
INT_SPARE6 
INT_SPARE7 
INT_SPARE8 
INT_SPARE9 
INT SPARE10 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

2 = DRAG OFF 

2 = SOLRAD OFF 
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A-2 113:14 Repeat Ground Track Surface Plots 

This section contains plots of the surface to be optimized for the 113:14 repeat 

ground track case. The optimization was actually performed in four-dimensional space. 

However, since four dimensions could not be plotted, these plots were generated by 

fixing one of the variables at the optimal value and allowing the other two values of 

interest to vary. These plots can therefore not be used to validate the optimality of all 

three variables, but they are useful in gaining an understanding of the types of surfaces 

the constraints in this problem generate. 

For all sections, the order of the plots is the same. The first plot is a three- 

dimensional view of the surface. The second plot is a top view of the surface with 

contour lines drawn. The final two plots in each section are edge on views along one of 

the two variable axes. These edge on views allow for the optimal value of each variable 

to be easily distinguished. 

For Section A-2-1, inclination was fixed at the optimal value 116.5782° and semi- 

major axis and eccentricity were allowed to vary. The same process was followed in A- 

2-2, with semi-major axis fixed at its optimal value of 10496.8968 km. Finally, Section 

A-2-3 contains the surface plots with eccentricity fixed at 0.32986 and semi-major axis 

and inclination taking a range of values. The most notable of these sections is section A- 

2-2. The plots in this section clearly show regions of local minima in the (e-I) space, into 

which a localized method might unknowingly converge. 
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A-2-1113:14 Repeat Ground Track Semi-major Axis/Eccentricity Plots 
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Figure A-3 Eccentricity Edge-on View of 113:14 a/e Space (i = 116.5782°) 
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A-2-2 13:14 Repeat Ground Track Eccentricity/Inclination Plots 
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A-2-3113:14 Repeat Ground Track Semi-major Axis/Inclination Plots 

6- 

X1U 

ai 
5Sv « 
> 
= 4^ o 
^ %WJ^^W^^^'^^^^^ 

%3. 
3 

LL if      •   t-: 

fell O . ' 'TJwM™iiiiW^ 
oil ,. 
£t 
o,, ....:.-^H 

uj 
120 

1.05 
1.049 

1.048 

Inclination 110    1.045 
1.046 

1.047 x10 

Semimajor Axis 

Figure A-9 3-D Surface of 113:14 a/i Space (e = 0.32986) 

Figure A-10 Contour Plot of 113:14 a/i Space (e = 0.32986) 
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A-3 113:14 Repeat Ground T rack Genetic Algorithm Code 

This section contains the FORTRAN code that was developed specifically to tie 

DSST to the PGAPack software in the solution of the 113:14 repeat ground track 

problem. For a description of the function of each routine see Chapter 4. 

A-3-1 PGA_113_14 
Program pgasat 

C 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Program PGASAT 

This file contains Genetic Algorithm code for optimizing any number 
of orbital elements in conjunction with DSST orbit propagator. 

Author: James E. Smith, 2Lt, USAF 
MIT/ Aero-Astro Dept./ Draper Fellow 

Modifications: 
Ver Date Author Description 

1.0 
1.1 

01/15/98 
01/23/98 

J. 
J. 

Smith/R. 
Smith 

Proulx 

1.2  02/03/98  J. Smith/R. Proulx 

Original 
Moved limit initialization to 
setlim 
Moved call to initialize_sat to 
func 

Parameters: 
CTX 
P 
POP 
MYID 
IERROR 
BESTINDEX 
I 
BEST 

PGAPack context variable 
Chromosome Index in Population 
Which Population to refer to 
MPI process ID variable 
MPI error code 
Index of the best string 
Counter Variable 
Array containing the optimized values 

Subroutines Called: 

MPI Routines: 
MPI_Init 
MPI_Comm_rank 
MPI_Bdcast 
MPI Finalize 

Initialize MPI 
Determine ID of all processes 
Broadcast message to all processes 
Finalize MPI 

PGA Pack Routines: 
PGASetStoppingRuleType 
PGASetMaxNoChangeValue 

Define stopping Rule 
Set number of iterations to 
continue without change 
Set number of string to change in 
each population 
Allow/Disallow duplicate strings 

PGASetMutationAndCrossoverFlag Mutation and Crossover performed 
separately or together 

PGASetUp Setup the PGA routines 
PGASetPrintOptions Allows for various output options 

PGASetNumReplaceValue 

PGASetNoDuplicatesFlag 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

PGARun 
PGADestroy 

Other Routines: 
init_headers 
init_pgalim 
setlim 

External Functions: 
findbest 

Run the Genetic Algorithm code 
End the PGA Code 

Creates the pgalim common block 
Use to set number of variables to 
be optimized and limits 

Converts binary string to real 
and returns fitness values 

implicit none 

include 'pgapackf.h' 
include 'mpif.h' 
include 'pgalim.h' 

double precision findbest 
external        findbest 

C  Variable Declarations 

integer ctx, p, pop 
integer myid, ierror 

integer bestindex, i 
double precision best(MAXVAR) 

character*24 fdate 
external fdate 

C- 

c 

c 
c 
c 

  Main Program   

Initialize MPI processes 

write(*,*) fdate() 

call MPI_Init(ierror) 
call MPI_Comm_rank(MPI_COMM_WORLD, myid, ierror) 

Initialize DSST code and PGALIM for PGA code 

call init_headers 
call init_PGALIM 

Limits on the variables to be optimized must be included here 

call setlim 

Calculate the string lengths and the location of each variable 
within string. 

PGALIM.LEN = PGALIM.NUMVAR*PGALIM.BPN 

PGALIM.BITLIML(1)=1 
PGALIM.BITLIMU(1)=PGALIM.BPN 

1 = 2 
DO WHILE (I . LE. PGALIM.NUMVAR) 

PGALIM.BITLIML(I)=PGALIM.BITLIML(1-1)+PGALIM.BPN 
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PGALIM.BITLIMU(I)=PGALIM.BITLIMU(I-1)+PGALIM.BPN 
I = 1 + 1 

ENDDO 

ctx = PGACreate(PGA_DATATYPE_BINARY, PGALIM.LEN, PGA_MINIMIZE) 

C    This section contains all the non-default PGA Pack modifications 
C    the user wishes to make 

C    This defines the stopping rule and sets the number of iterations 
C     in which no change is allowed before stopping 

call PGASetStoppingRuleType(ctx,PGA_STOP_NOCHANGE) 
call PGASetMaxNoChangeValue(ctx,10 0) 

C    This call sets the number of strings to replace in each population 

call PGASetNumReplaceValue(ctx,25) 

C This call allows or disallows duplicate strings in the population. 
C NOTE:  If string length is short this may cause a failure as it 
C is impossible to generate enough combinations so that there aren't 
C any duplicates. 

call PGASetNoDuplicatesFlag(ctx, PGA_TRUE) 

C     If set to true, this call allows for mutation to occur on strings 
C    which are produced through crossover.  If false, mutation can 
C    only occur on strings which did not experience crossover. 

call PGASetMutationAndCrossoverFlag(ctx,PGA_TRUE) 

C    This call prints the average of each population as well as the 
C    best. 

call PGASetPrintOptions(ctx,PGA_REPORT_AVERAGE) 

C    This section runs PGA Pack and finds the "best" values of the 
C    parameters based on a metric defined by "findbest" 

call PGASetUp(ctx) 

call PGARun(ctx, findbest) 

C    This final section converts the best values to real numbers, 
C    prints them and ends the program 

If (myid .eg. 0) then 
bestindex = PGAGetBestIndex(ctx,pop) 
i = 1 
do while (i .le. PGALIM.NUMVAR) 

best(i) = PGAGetRealFromGrayCode(ctx,bestindex,pop, 
1 PGALIM. bitliml(i),PGALIM. bitlimu(i), 
2 PGALIM.lowlim(i),PGALIM.uplim(i)) 

print *, best(i ) 
i = i + 1 

enddo 
endif 

call PGADestroy(ctx) 
call MPI_Finalize(ierror) 

write(*,*) fdate() 
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stop 
end 

A-3-2 SETLIM 
SUBROUTINE setlim 
C 
c 
C    Revision History ************************************************ 
C 
C    Rev    Date    Who/Where Comments 
C     1.0  01/23/98   J.E. Smith/CSDL    Initial routine 
C 
C    Description ****************************************************** 
C 
C    Set the nondefault values of variables for use by PGASAT 
C 
C     CALLING SEQUENCE ************************************************* 
C 
C CALL setlim 
C 
C     PARAMETERS ******************************************************* 
C 
C No parameters 
C 

C     INPUTS FROM INCLUDED MODULES ************************************* 
C 
C None 
C 
C     OUTPUTS FROM INCLUDED MODULES ************************************ 
C 
C NUMVAR 
C UPLIM 
C LOWLIM 
C 
c***************** DECLARATIONS **************************************** 
C 

IMPLICIT NONE 
C 
C     HEADER FILES ***************************************************** 
C 

INCLUDE        'pgalim.h' 
C 
C     LOCAL VARIABLES  ************************************************* 
C 

INTEGER*4   I 
C 
c***************** BEGIN PROGRAM *************************************** 
C 
C 
C Specify the number of variables to optimize 

PGALIM.NUMVAR = 3 

C Specify the number of bits to code each variable with 

PGALIM.BPN =20 

C Specify the upper and lower limit on the variables to be optimized 

PGALIM.LOWLIM(l) = 10490.0D0 
PGALIM.UPLIM(1) = 10500.0D0 
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PGALIM.L0WLIM(2)   =   0.30D0 
PGALIM.UPLIM(2)   =   0.45D0 

PGALIM.LOWLIMP)    =   HO.OdO 
PGALIM.UPLIM(3)   =   13 0.0DO 

RETURN 
END 

A-3-3 FINDBEST 
double precision  function  findbest(ctx,p,pop) 

C 
C Function findbest 
C 
C 
C    This function converts the binary strings to real numbers and 
C    sends them to an "evaluation" function 
C 
C Author: James E. Smith, 2Lt, USAF 
C MIT/ Aero-Astro Dept./ Draper Fellow 
C 
C Modifications: 
C Ver Date     Author Description 
c                 
C  1.0  01/15/98  J. Smith/R. Proulx    Original 
C 
C  Parameters: 
C    CTX        PGAPack context variable 
C    P Chromosome Index in Population 
C    POP        Which Population to refer to 
C    I Counter Variable 
C    X Array of variables being evaluated 
C 
C  Subroutines Called: 
C 
C  PGA Pack Routines: 
C    PGAGetRealfromGrayCode    Coverts binary strings to real numbers 
C 
C  External Functions: 
C     func Does the satellite propagation and calculates 
C a fitness value 
C 
C- 

implicit none 

inelüde 'pgapackf.h' 
include 'pgalim.h' 

real*8 func 
external func 

C  Variable Declarations 

integer ctx, p, pop,  i 
double precision x(MAXVAR) 

Main Program 
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This steps converts the binary string into 'numvar' real numbers. 

i = 1 
do while (i .le. PGALIM.numvar) 

x(i) = PGAGetRealFromGrayCode(ctx,p,pop 
1 ,PGALIM.bitliml(i), PGALIM. bitlimu(i), 
2 PGALIM.1owlim(i),PGALIM.uplim(i)) 

i = i + 1 
enddo 

This call to func returns an fitness value for each string 

findbest=func(x) 

return 
end 

A-3-4 FUNC 
real*8  function func (p) 

C 
C Function Func 
C 
C  This file contains the objective function for the 113_14 optimization 
C problem 
C 
C Author: James E. Smith, 2Lt, USAF 
C MIT/ Aero-Astro Dept./ Draper Fellow 
C 
C Ronald J. Proulx 
C Draper Laboratory 
C 
C 
C  Parameters: 
C    CTX        PGAPack context variable 
C    P Chromosome Index in Population 
C    POP        Which Population to refer to 
C 
C  Subroutines Called: 
C 
C External Functions: 
C     satellite    Link to DSST Orbit Propagator 
C 
C 

implicit none 

include 'pmern.h' 
include 'frc.h' 

C   VARIABLE DECLARATIONS   

C  Define variables for call to Satellite 

integer*4      satellite 
external      satellite 

integer*4     max_list_length 
parameter    (max_list_length = 1) 
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integer* <4 status 
integer* 'A burn number 
Integer* <4 iatmos_preburn / 1 / 
integer* '4 iatmos_postburn / 1 / 

real*8 time 
real*8 burn_delta_v(4,max_list_len 
REAL*8 RHO_ONE_HIGH     / 0.0 DO / 
REAL*8 RHO_ONE_LOW      / 0.0 DO / 
real*8 epoch_ymd 
real*8 epoch_hms 
real*8 posvel(6) 
real*8 elements (17) 

character*(6)  name  /'pmernl'/ 
CHARACTER*(72) MESSAGE 
CHARACTER*(12) FILENAME 

C   Define Other Variables 

integer*4 

real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 

PARAMETER 
PARAMETER 
parameter 

n_days 
n_revs 
ratio__nom 
ratio_cur 
lambda_rate 
ratio_dif 
ratio_var 
xp 
xq 
pdot 
qdot 
radians 
degrees 
P(*) 
omega_earth 
node_rate_nom 
node_rate 
node_init 
node_expected 
node_prev 
node_nom 
node_cur 
node_di f 
node_var 
perigee_init 
perigee_cur 
perigee_nom 
perigee_dif 
perigee_var 

RADIANS = 57.295779513082321 D00 ) 
DEGREES = 0.017453292519943296 D00 ) 
(node_rate_nom = .98564736d0/86400.d0) ! deg/sec 

Q ********** BEGIN PROGRAM ******************************** 

C     *** Initialize the DSST Code **************************** 

call initialize_sat(name) 
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C    Set defaults for request time and burn list ************ 

TIME = 0.D0 
BURN_NUMBER      = 0 
DO I=1,MAX_LIST_LENGTH 

BURN_DELTA_V(1,I) = 0.D0 
BURN_DELTA_V(2,I) = 0.D0 
BURN_DELTA_V(3,I) = 0.D0 
BURN_DELTA_V(4,I) = 0.D0 

END DO 

C  Set the DSST elements equal to the values from the GA string ** 

pmern.els_kepler(1) = p(l) 
pmern.els_kepler(2) = p(2) 
pmern.els_kepler(3) = p(3) 

C *** Initialize the variations to zero ************************ 

node_var = 0.dO 
perigee_var = 0.dO 
ratio_var    = O.dO 

c    Find the variations at each time ************************** 

DO i = 1,1827 
time = dble(i-l) * 86400.dO 

CALL SATELLITE to obtain state at request time ********** 

STATUS = SATELLITE ( name , TIME, 
2 BURN_DELTA_V, BURN_NUMBER, 
3 IATMOS_PREBURN, IATMOS_POSTBURN, 
4 RHO_ONE_HIGH, RHO_ONE_LOW, 
5 EPOCH_YMD, EPOCH_HMS, 
6 POSVEL, ELEMENTS, 
7 MESSAGE, FILENAME ) 

Q  **** initialize Certain Values the First time through ************ 

if(i.eq.l) then 

node_init = pmern.els_kepler(4) 
node_init = mod(node_init,3 60.dO) 
if(node_init.lt.O.dO) node_init = node_init + 360.dO 
node_prev = node_init - 86400.dO*node_rate_nom 

n_days = pmern.dp_spare(1) 
n_revs = pmern.dp_spare(2) 
omega_earth = fre.omega(1) 
ratio_nom = n_days/n_revs 

perigee_init = pmern.els_kepler(5) 
perigee_init = mod(perigee_init,360.dO) 
if(perigee_init.lt.O.dO) perigee_init = perigee_init + 360.dO 

endif 

C    Find the Deviation from the Desired Node Behavior *************** 

node_nom   = node_init +    time  *node_rate_nom 
node_cur   =    elements(4) 
node_expected = node_prev + node_rate_nom*86400.dO 
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do while (abs(node_cur - node_expected).gt.180.dO) 
if(node_cur .It. node_expected) then 

node_cur = node_cur + 3 6 0.dO 
else 

node_cur = node_cur - 360.d0 
endi f 

end do 

node_prev = node_cur 
node_dif = node_nom-node_cur 

node_var = node_var + abs(node_dif) 

C    Find the Deviation from the Desired Argument of Perigee Behavior 

perigee_nom = perigee_init 
perigee_cur = elements(5) 
perigee_dif = perigee_nom - perigee_cur 
if(abs(perigee_dif).gt.180.d0) then 

if(perigee_dif.lt.O.dO) then 
perigee_dif=perigee_dif+360.dO 

else 
perigee_dif=perigee_dif-3 60.dO 

endif 
endif 

perigee_var = perigee_var + abs(perigee_dif) 

C    Find the Deviation from the Desired Repeat Ground Track Behavior * 

xp = elements(9) 
xq = elements(10) 
pdot = elements(15) 
qdot = elements(16) 
lambda_rate = elements(17) 
node_rate  =  (xq*pdot - xp*qdot)/(xp*xp+xq*xq) 
ratio_cur = ( omega_earth - node_rate ) / ( lambda_rate*degrees - 
node_rate ) 
ratio_dif = n_days/n_revs - ratio_cur 
ratio_var  = ratio_var + abs(ratio_dif) 

ENDDO 

c ****calculate the Total FUNC value through a weighted sum of the three 
C    variations *** 

func = node_var + perigee_var + 10000.dO*ratio_var 

return 
end 
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A-4113:14 Repeat Ground Track Element History Plots 

This section of Appendix A consists of two sections, both of which contain the 

history plots of all five orbital elements (a, e, i, Q, and co). They were created by 

propagating the orbits with DSST using the optimal orbital elements. For all but Q, the 

resulting element histories were then compared with the optimal (initial values) to create 

the deviation plots presented below. Since the desired behavior of the ascending node 

was a fixed rate, rather than a fixed value, the desired history had to be calculated based 

on a linear relationship that used the desired fixed rate. The actual trajectory was then 

compared with the calculated trajectory and this is the Q deviation presented in the 

figures below. Section A-4-1 contains the decay plots for the elements in the design 

space of a 50 x 0 zonal field with third-body effects, while Section A-4-2 is the decay 

plots for the orbit in the presence of full perturbation models. All elements are presented 

in a J2000 True of Date reference frame. 
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A-4-1113:14 Repeat Ground Track Zonal and Third Body Decay Plots 
113:14 Borealis Node at Noon — Zonal /Third Body Perturbations 

SemimajorAxis Drift: Deviation from 70496.8968 Km 
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Figure A-13 113:14 SMA Deviation from 10496.8968 km (Zonals/3B Pert.) 
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Figure A-14113:14 Eccentricity Deviation from 0.32986 (Zonals/3B Pert.) 
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113:14 Borealis Node at Noon — Zonal / Third Body Perturbations 
Inclination Drift: Deviation from 116.5782 Deg 
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Figure A-15 113:14 Inclination Deviation from 116.5782° (Zonals/3B Pert.) 

113:14 Borealis Node at Noon — Zonal /Third Body Perturbations 
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Figure A-16113:14 Node Deviation from Calculated Values (Zonals/3B Pert.) 
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113:14 Borealis Node at Noon — Zonal / Third Body Perturbations 
Perigee Drift: Deviation from 260 Deg 
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Figure A-17 113:14 Perigee Deviation from 260° (Zonals/3B Pert.) 

A-4-2 113:14 Repeat Ground Track Full Perturbation Decay Plots 

113:14 Borealis Node at Noon — Full Perturbations 
SemimajorAxis Drift: Deviation from 70496.8968 Km 
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Figure A-18113:14 Semi-Major Axis Deviation from 10496.8968 km (Full Pert.) 

278 



-4 
X10 

113:14 Borealis Mode at Noon — Full Perturbations 
eccentricity Drift: Deviation from 0.32986 
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Figure A-19 113:14 Eccentricity Deviation from 0.32986 (Full Pert.) 

113:14 Borealis Node at Noon — Full Perturbations 
Inclination Drift: Deviation from 116.5782 Deg 
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Figure A-20113:14 Inclination Deviation from 116.5782° (Full Pert.) 
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113:14 Borealis Node at Noon — Full Perturbations 
Node Drift 
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Figure A-21113:14 Node Deviation from Calculated Values (Full Pert.) 
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Figure A-22113:14 Perigee Deviation from 260° (Full Pert.) 
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Appendix B Gear Array Design P roblem Data 

This appendix contains data necessary to perform—as well as plots representing 

the setup and results of—the gear array optimization problem. The various constraint 

surface plots are first presented. Similar surface plots produced through three different 

problem formulations follow these plots. FORTRAN code specific to the gear solution is 

then included, along with corresponding DSST input decks. Finally, the results are 

presented in three forms: genetic algorithm convergence plots, element decay plots 

(under zonal and full perturbations), and coverage analysis plots. 

B-l Gear Array Constraint Surface Plots 

This first section of Appendix B contains four views of each of the constraint 

surfaces. These plots were created by setting the scale factors on the other two 

constraints to zero and plotting the objective function vs. the two solve for variables (ae 

and i). All of the plots were created for the 4:5 gear array with an offset of 0 km. Also 

note that all of the plots were created in a 50 x 0 zonal field over the course of one year, 

except for the stroboscopic constraint plots. Due to the extremely varying nature of this 

constraint's surface, the plot resulting from one-year propagations could not be plotted 

successfully without extremely dense sampling. In order to sample at a more reasonable 

level, the stroboscopic constraint surface was created using only a one week propagation. 

The four views presented for each constraint are a 3-D view, a contour plot or top 

view, and an edge on view along both the ^ and i axis to show the location of the 

minima. 
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B-l-1 APTS Constraint 

Eccentricity 
0.1    1.2 Semi-major Axis 

Figure B-l 3-D View of APTS Constraint Surface 

Figure B-2 Contour Plot of APTS Constraint Surface 
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Figure B-3 Semi-Major Axis Edge on View of APTS Constraint Surface 
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Figure B-4 Eccentricity Edge-on View of APTS Constraint Surface 

283 



B-l-2 Stroboscopic Constraint 
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Figure B-5 3-D View of Stroboscopic Constraint Surface 

Figure B-6 Contour Plot of Stroboscopic Constraint Surface 
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Figure B-7 Semi-Major Axis Edge-on View of Stroboscopic Constraint Surface 
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Figure B-8 Eccentricity Edge-on View of Stroboscopic Constraint Surface 
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B-l-3 Ratio Constraint 
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major Axis 

Figure B-9 3-D View of Ratio Constraint Surface 
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Figure B-10 Contour Plot of Ratio Constraint Surface 

286 



14 X10 

12 

1.2 1.25 1.3 1.35 1.4 1.45 1.5 
Semi-major Axis x10 

Figure B-ll Semi-Major Axis Edge-on View of Ratio Constraint Surface 

Figure B-12 Eccentricity Edge-on View of Ratio Constraint Surface 
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B-2 Gear Array Parameterization Options Surface Plots 

This section contains the surface plots that resulted from formulating the gear 

array optimization problem in three different ways. In actuality, there are three solve for 

variables for the gear array problem: ae, a-, and i. However, it is likely that some 

information (such as desired offset or apogee height) about the gear array will be known 

prior to the optimization. Therefore, the relationship between the known information and 

the solve for variables can be taken advantage of and the problem can be reduced to a two 

variable optimization. This reduction in variables allows for a variety of ways to 

parameterize the problem. For this study, three of those parameterization methods were 

analyzed. An important aspect of that analysis was an inspection of the optimization 

surfaces that resulted from the various parameterizations. The plots contained in this 

section present that information. 

The fixed offset surface is first presented, followed by the fixed circular semi- 

major axis surface which is then followed by the fixed apogee height surface. As in 

previous appendices, four views are presented: a 3-D view, a contour plot, and an edge- 

on view of each axis. Each plot was created via a one year propagation in a 50 x 0 zonals 

only field. 
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B-2-1 Offset Method 

Eccentricity 0.1    1.2 
Semi-major Axis 

Figure B-13 3-D View of Offset Method Parameterization Surface 

Figure B-14 Contour Plot of Offset Method Parameterization Surface 
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Figure B-16 Eccentricity Edge-on View of Offset Method Parameterization Surface 
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B-2-2 Fixed Circular Semi-Major Axis Method 

Eccentricity 0.1    1.2 Semi-major Axis 

Figure B-17 3-D View of Fixed Circular SMA Parameterization Surface 

Figure B-18 Contour Plot of Fixed Circular SMA Parameterization Surface 
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Figure B-19 SMA Edge-on View of Fixed Circular SMA Parameterization 

,x10 

Figure B-20 Eccentricity Edge-On View of Fixed Circular SMA Parameterization 
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B-2-3 Fixed Apogee Height Method 

ircular Semi-Major Axis 14    1.Z 
1.22 

Eccentric Semi-Major Axis 

Figure B-21 3-D View of Fixed Apogee Height Parameterization Surface 

Figure B-22 Contour Plot of Fixed Apogee Height Parameterization Surface 
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Figure B-23 Circular SMA Edge-on View of Fixed Apogee Height Parameterization 

Figure B-24 Eccentric SMA Edge-on View of Fixed Apogee Height 
Parameterization Surface 
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B-3 Gear Array Objective Function Code (FUNC) 

Included in this section is the objective function code required to perform the 

optimization of the gear array using PGAPack in conjunction with DSST and MPICH. 

The code presented here is for the fixed offset parameterization. Similar functions were 

created for the other two methods of formulating the problem 

real*8  function func (p) 
c  
C 
C Function Func 
C 
C This file contains the objective function for the GEAR fixed offset 
C parameterization optimization problem 
C 
C Author: James E. Smith, 2Lt, USAF 
C MIT/ Aero-Astro Dept./ Draper Fellow 
C 
C Ronald J. Proulx 
C Draper Laboratory 
C 
C External Functions: 
C     satellite    Link to DSST Orbit Propagator 
C 
c  

implicit none 

include 'pmern.h' 
include 'frc.h' 
include 'switch.h' 
include 'matrix.h' 
include 'satelm.h' 

c   VARIABLE DECLARATIONS   

C  Define variables for call to Satellite   

integer*4     satellite 
external      satellite 

integer*4     max_list_length 
parameter    (max_list_length = 1) 

integer*4 status 
integer*4 burn_number 
Integer*4 iatmos_preburn / 1 / 
integer*4 iatmos_postburn / 1 / 
integer*4 month,hour,minute 
real*8 day(maxvar) 

real*8 time 
real* 8 burn_delta_v(4,max_li s t_length) 
REAL*8 RHO_ONE_HIGH     / 0.0 DO / 
REAL*8 RH0_0NE_L0W      / 0.0 DO / 
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real*8 epoch_ymd 
real* 8 epoch_hms 
real*8 posvel(6) 
real*8 elements (17) 

character*(6) name 
CHARACTER*(72) MESSAGE 
CHARACTER*(12) FILENAME 

 uerine L. 

integer*4 i 

real*8 P(*) 
real*8 pi 

real*8 n_apts 
real*8 n_circ 
real*8 radians 
real*8 degrees 

real*8 h 
real*8 k 
real*8 hhkk 
real*8 dhdt 
real*8 dkdt 
real*8 dldt 
real*8 aptsrate_nom 
real*8 aptsrate_cur 
real*8 aptsrate_dif 
real*8 aptsrate_var 
real*8 M_apts 
real*8 P_apts(12 000) 
real*8 mag_x 
real*8 UX_apts(12000) 
real*8 UY_apts(12 000) 
real*8 UZ_apts(12 000) 
real*8 M_circ 
real*8 P_circ 
real*8 gear_ratio_nom 
real*8 gear_rat i o_cur 
real*8 gear_ratio_dif 
real*8 gear_ratio_var 
real*8 UX_circ 
real*8 UY_circ 
real*8 UZ_circ 
real*8 gear_phas e_nom 
real*8 gear_phase_cur 
real*8 gear_phase_di f 
real*8 gear_phas e_var 
real*8 sma_circ 
real*8 offset 
real*8 numdays 
real*8 height_apts 

parameter  (  radians      = 57.295779513082321   D00 ) 
parameter  (  degrees      =  0.017453292519943296 D00 ) 

common /offsetcom/ offset,sma_circ,numdays,height_apts 

********** BEGIN PROGRAM ******************************** 
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pi = 4.0dO*atan2(l.dO,l.dO) 

Set defaults for request time and burn list 

BURN_NUMBER      = 0 
DO I=1,MAX_LIST_LENGTH 

BURN_DELTA_V(1,I) = 0.D0 
BURN_DELTA_V(2,I) = 0.D0 
BURN_DELTA_V(3,I) = 0.D0 
BURN_DELTA_V(4,I) = 0.D0 

END DO 

Initialize APTS component of Gear Constellation 

name = 'pmerna' 
call initialize_sat (name) 

n_apts = pmern.dp_spare(1) 
n_circ = pmern.dp_spare(2) 

gear_ratio_nom = n_apts/n_circ 
gear_phase_nom = pi/n_circ 
aptsrate_nom  = .98564736d0*degrees/86400 .dO 
aptsrate_var = O.dO 

Set sma and ecc to input values 

pmern.els_kepler(1) = p(l) 
pmern.els_kepler(2) = p(2) 

time = O.dO 
i    =1 

DO WHILE (time .It.numdays*86400.dO) 

STATUS = SATELLITE ( name, TIME, 
2 BURN_DELTA_V,   BURN_NUMBER, 
3 IATMOS_PREBURN, IATMOS_POSTBURN, 
4 RHO_ONE_HIGH,   RHO_ONE_LOW, 
5 EPOCH_YMD,      EPOCH_HMS, 
6 POSVEL, ELEMENTS, 
7 MESSAGE, FILENAME ) 

Compute the period of the anomalistic period of the satellite 

h = elements(7) 
k = elements(8) 
hhkk = h*h+k*k 
dhdt = elements(13) 
dkdt = elements(14) 
dldt = elements(17)*degrees ! radians/sec 

aptsrate_cur = (k*dhdt-h*dkdt)/hhkk ! radians/sec 
aptsrate_dif = aptsrate_cur - aptsrate_nom ! radians/sec 
aptsrate_var = aptsrate_var + abs(aptsrate_dif) ! radians/sec 

M_apts    = dldt - aptsrate_cur ! radians/sec 
P_apts (i) = 2.d0*pi / M_apts ! seconds 

mag_x = sqrt (posvel (1) **2+posvel (2) **2+posvel (3) **2) ! Km 

UX_apts(i) = posvel(1)/mag_x 
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UY_apts(i) = posvel(2)/mag_x 
UZ_apts(i) = posvel(3)/mag_x 

time = time + n_circ*P_apts(i) 
i = i+1 

end do 

name = 'pmernc' 

Initialize circular component of Gear Constellation 

call initialize_sat(name) 

pmern.els_kepler(l) = p(l)*(l.dO + p(2)) - offset 

gear_ratio_var = O.dO 
gear_phase_var = O.dO 

open(unit=39) 
open(unit=40) 

time = O.dO 
i = 1 
DO While (time.lt. numdays*86400.dO) 

STATUS = SATELLITE ( name, TIME, 
2 BURN_DELTA_V, BURNJSTUMBER, 
3 IATMOS_PREBURN,    IATMOS_POSTBURN, 
4 RHO_ONE_HIGH, RHO_ONE_LOW, 
5 EPOCH_YMD,      EPOCH_HMS, 
6 POSVEL, ELEMENTS, 
7 MESSAGE,        FILENAME ) 

h = elements(7) 
k = elements(8) 
hhkk = h*h+k*k 
dhdt = elements(13) 
dkdt = elements(14) 
dldt = elements(17)*degrees ! radians/sec 

if (hhkk.gt.O.dO) then 
M_circ =  dldt - (k*dhdt-h*dkdt)/hhkk ! radians/sec 

else 
M_circ =  dldt      ! radians/sec 

endif 
P_circ = 2.dO*pi/M_circ 

gear_ratio_cur = P_apts(i)/P_circ 
gear_ratio_dif = gear_ratio_cur - gear_ratio_nom 
gear_ratio_var = gear_ratio_var + abs(gear_ratio_dif) 

mag_x = sqrt(posvel(1)**2+posvel(2)**2+posvel(3)**2) ! Km 

UX_circ = posvel(1)/mag_x 
UY_circ = posvel(2)/mag_x 
UZ_circ = posvel(3)/mag_x 

gear_phase_cur = 
* acos( 
* UX_circ*UX_apts(i) + 
* UY_circ*UY_apts(i) + 
* UZ_circ*UZ_apts(i) 

)*radians * 
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gear_phase_dif = gear_phase_cur - gear_phase_nom*radians 

gear_jphase_var = gear_phase_var + abs(gear_phase_dif) 
time = time + n_circ*P_apts(i) 
i = i+1 

ENDDO 

close(39) 
close(40) 

func = 
* 10.d0*gear_phase_var 
* + 1000.0d0*gear_ratio_var 
* + 1000.0dO*aptsrate_var*86400.dO*radians ! degrees/day 

return 
end 

B-4 Gear Array Input Decks 

Also important to the computer implementation of the gear optimization are the 

DSST input decks that specify which parameters and perturbations should be used in the 

propagation of the orbits. Since the gear array is composed of two separate orbital arrays 

(a circular and elliptical component), two separate input decks were required. The input 

deck for the circular component of the 5:6 8050 km apogee height gear array is first 

presented followed the by elliptical component input deck for the same 5:6 array. Proper 

flag and keyword values were determined from personal communications with Dr. 

Ronald Proulx, The Charles Stark Draper Laboratory. 

B-4-1 Gear Array Circular Orbit DSST Input Deck 
c 
c 
C      PMEF FILE FOR 5:6 GEAR ARRAY CIRCULAR ORBIT 
C 
C23456789012345678901234567890123456789012345678901234567890123456789012 

0.1997010100000000D+08 PME_DATE 1 
O.OOO00OO0O000OO00D+O6 PME_TIME 2 
0.1414357000000000D+05 ELS_KEP(1) 3 
0.0000000000000000D-00 ELS_KEP(2) 4 
O.OOOOOOOOOOOOOOOOD-00 ELS_KEP(3) 5 
0.0000000000000000D+00 ELS_KEP(4) 6 
0.1010000000000000D+03 ELS_KEP(5) 7 
0.1500000000000000D+03 ELS_KEP(6) 8 
0.0000000000000000D+00 ELS_EQUIN(1) 9 
0.0000000000000000D+00 ELS_EQUIN(2) 10 
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0 .000000000000OOOOD+00 ELS_EQUIN(3) 11 
0 .00000000000000000+00 ELS_EQUIN(4) 12 
0 . OOOOOOOOOOOOOOOOD+OO ELS_EQUIN(5) 13 
0 . 000OOO00OO0OO0O0D+00 ELS_EQUIN(6) 14 
0 .OOOOOOOOOOOOOOOOD+OO POSVEL(1) 15 
0 .OOOOOOOOOOOOOOOOD+OO POSVEL(2) 16 
0 .OOOOOOOOOOOOOOOOD+OO POSVEL(3) 17 
0 OOOOOOOOOOOOOOOOD+OO POSVEL(4) 18 
0 OOOOOOOOOOOOOOOOD+OO POSVEL(5) 19 
0 OOOOOOOOOOOOOOOOD+OO POSVEL(6) 20 
0 2000000000000000D+01 PME_CD 21 
0 OOOOOOOOOOOOOOOOD+OO PME_RHO_ONE 22 
0 500000000000OOOOD-04 SMA_SIGMA 23 
0 5000000000000000D-04 INC_SIGMA 24 
0 50000000000OOOOOD-04 ASC_SIGMA 25 
0 7000000000000000D+03 PME_SCMASS 26 
0 2500000000000000D-04 PME_SCAREA 27 
0 86400000000O0OOOD+05 PME_STEPSIZE 28 
0 5000000000000000D+01 DP_SPARE1 29 
0 6000000000000000D+01 DP_SPARE2 30 
0 OOOOOOOOOOOOOOOOD+OO DP_SPARE3 31 
0 OOOOOOOOOOOOOOOOD+OO DP_SPARE4 32 
0 OOOOOOOOOOOOOOOOD+OO DP_SPARE5 33 
0 OOOOOOOOOOOOOOOOD+OO DP_SPARE6 34 

1 PME_RETRO 35 
12 PME_KEP_SYS 36 
12 POS_VEL_SYS 37 
1 GEN_METHOD 38 
1 ATMOS_MODEL 39 

840401 JACRB_DATE 40 
123 JACRB_SSS 41 

840401 SLP1950_DATE 42 
456 SLP1950_SSS 43 

840401 SLPTOD_DATE 44 
789 SLPTOD_SSS 45 

840401 TIMECF_DATE 46 
123 TIMECF_SSS 47 

2 HARRIS_MODEL 48 
10 POTNTL_MODEL 49 
50 PME_NMAX 50 
0 PME_MMAX 51 
1 PME_IZONAL 52 
1 PME_IJ2J2 53 
0 PME_NMAXRS 54 
0 PME_MMAXRS 55 
3 PME_ITHIRD 56 
2 PME_INDDRG 57 2 = DRAG OFF 
2 PME_ISZAK 58 
2 PME_INDSOL 59 2 = SOLRAD OFF 
2 PME_JSHPER 60 
2 PME_JZONAL 61 
2 PME_JMDALY 62 
2 PME_INP_TYPE 63 

12 PME_EQUI_SYS 64 
11 INTEG_FRAME 65 
19 OUTPUT_PRAME 66 
0 PME_NSTATE 67 
1 PME_SPSHPER 68 
2 PME_KSPCF 69 
4 PME_INDSET 70 
0 INT_SPARE1 71 
0 INT_SPARE2 72 
0 INT_SPARE3 73 
0 INT_SPARE4 74 
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INT .SPARE 5 75 
INT SPARE6 76 
INT SPARE7 77 
INT SPARE8 78 
INT SPARE9 79 
INT SPARE10 80 

B-4-2 5:6 Gear Array APTS Elliptical Orbit DSST Input Deck 
c 
c 
C      PMEF FILE FOR 5:6 GEAR ARRAY ELLIPTICAL ORBIT 
C 
C23456789012345678901234567890123456789012345678901234567890123456789012 

0.1997010100000000D+08 PME_DATE 1 
O.OOOOOOOOOOOOOOOOD+06 PME_TIME 2 
0.1252737131888390D+05 ELS_KEP(1) 3 
0.1517200478453748D+00 ELS_KEP(2) 4 
0.O0000OOOO0O0OOO0D+0O ELS_KEP(3) 5 
0.000OOO0O00O00OO0D+O0 ELS_KEP(4) 6 
0.1010000000000000D+03 ELS_KEP(5) 7 
0.1800000000000000D+03 ELS_KEP(6) 8 
O.OOOOOOOOOOOOOOOOD+OO ELS_EQUIN(1) 9 
0.0000000000000000D+00 ELS_EQUIN(2) 10 
0.00000O0O0OO0OO00D+00 ELS_EQUIN(3) 11 
0.00000000000000000+00 ELS_EQUIN(4) 12 
0.00O0O0OO000O00O0D+00 ELS_EQUIN(5) 13 
O.OOOOOOOOOOOOOOOOD+OO ELS_EQUIN(6) 14 
O.OOOOOOOOOOOOOOOOD+00 POSVEL(l) 15 
O.OOOOOOOOOOOOOOOOD+OO POSVEL(2) 16 
O.OOOOOOOOOOOOOOOOD+00 POSVEL(3) 17 
O.OOOOOOOOOOOOOOOOD+OO POSVEL(4) 18 
O.OOOOOOOOOOOOOOOOD+00 POSVEL(5) 19 
O.OOOOOOOOOOOOOOOOD+00 POSVEL(6) 20 
0.2000000000000000D+01 PME_CD 21 
O.OOOOOOOOOOOOOOOOD+OO PME_RHO_ONE 22 
0.5000000000000000D-04 SMA_SIGMA 23 
0.5000000000000000D-04 INC_SIGMA 24 
0.5000000000000000D-04 ASC_SIGMA 25 
0.7000000000000000D+03 PME_SCMASS 26 
0.2500000000000000D-04 PME_SCAREA 27 
0.8640000000000000D+05 PME_STEPSIZE 28 
0.5000000000000000D+01 DP_SPARE1 29 
0.6000000000000000D+01 DP_SPARE2 30 
O.OOOOOOOOOOOOOOOOD+00 DP_SPARE3 31 
O.OOOOOOOOOOOOOOOOD+00 DP_SPARE4 32 
O.OOOOOOOOOOOOOOOOD+OO DP_SPARE5 33 
O.OOOOOOOOOOOOOOOOD+00 DP_SPARE6 34 

1 PME_RETRO 35 
12 PME_KEP_SYS 36 
12 POS_VEL_SYS 37 
1 GEN_METHOD 3 8 
1 ATMOS_MODEL 39 

840401              JACRB_DATE 40 
123 JACRB_SSS 41 

840401 SLP1950_DATE 42 
456 SLP1950_SSS 43 

840401 SLPTOD_DATE 44 
7 89 SLPTOD_SSS 45 

840401 TIMECF_DATE 46 
123 TIMECF_SSS 47 

2 HARRIS_MODEL 48 
10              POTNTL_MODEL 49 
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INT_SPARE9 79 
INT_SPARE10 80 

B-5 Gear Array Genetic Algorithm Performance Plots 

Contained in this section are the convergence plots of the genetic algorithm for 

both the 4:5 0 km offset and the 5:6 8050 apogee height optimizations. As the genetic 

algorithm performed the optimization, the best and average value of the strings in each 

population were stored and plotted here. The resulting plots demonstrate the fundamental 

theorem of genetic algorithms: that the average of a population slowly converges to better 

and better values. 
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B-5-1 5:6 Gear 8050 km Apogee Case 
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B-5-2 4:5 Gear 0 km Offset Case 
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Figure B-27 Best 4:5 Gear Array Objective Function Value Convergence 
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B-6 Desired Gear Behavior and Element Decay Plots 

Important to the optimization of the gear array is an understanding of how stable 

the resulting orbits are, or in other words, how the orbits decay over time. The following 

four sections present plots that detail this decay. The decay of the 5:6 8050 km apogee 

height array under a zonal 50 x 0 field is first presented. The decay for the same case is 

then shown under a fully perturbed field. The remaining two sections present identical 

plots for the 4:5 0 km offset case. 

Ten plots are presented in each section. The first three show the deviation of the 

design from the three desired constraints: apogee pointing to the sun, gearing phase, and 

gearing ratio. The element decay plots of the APTS orbit and the element decay plots of 

the circular array then follow. 
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B-6-1 5:6 Gear 8050 km Apogee Height Zonal 50 x 0 Field Decay Plots 
Nominal Pointing Error 
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Figure B-29 5:6 Gear APTS Constraint Error (Zonals Only) 
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Figure B-30 5:6 Gear Stroboscopic Constraint Error (Zonals Only) 
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Figure B-31 5:6 Gear Ratio Constraint Error (Zonals Only) 
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Figure B-32 5:6 Gear APTS Semi-major Axis Deviation from 12527.3713 km 
(Zonals Only) 
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Figure B-33 5:6 Gear APTS Eccentricity Deviation from 0.15172 (Zonals Only) 
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Figure B-34 5:6 Gear APTS Inclination Deviation from 0.0° (Zonals Only) 
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Figure B-35 5:6 Gear APTS Mean Anomaly History (Zonals Only) 
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Figure B-36 5:6 Gear Circular Semi-major Axis Deviation from 14143.57 km 
(Zonals Only) 
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Circular Eccentricity: Deviation from S.1763e-1S 
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Figure B-37 5:6 Gear Circular Eccentricity Deviation from 0.0 (Zonals Only) 
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Figure B-38 5:6 Gear Circular Inclination Deviation from 0.0° (Zonals Only) 
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B-6-2 5:6 Gear 8050 km Apogee Height Full Perturbation Decay Plots 
Nominal Pointing Error 
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Figure B-39 5:6 Gear APTS Constraint Error (Full Pert.) 
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Figure B-40 5:6 Gear Stroboscopic Constraint Error (Full Pert.) 
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Figure B-41 5:6 Gear Ratio Constraint Error (Full Pert.) 
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Figure B-42 5:6 Gear APTS Semi-major Axis Deviation from 12527.3713 km 
(Full Pert.) 
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Figure B-43 5:6 Gear APTS Eccentricity Deviation from 0.15172 (Full Pert.) 
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Figure B-44 5:6 Gear APTS Inclination Deviation from 0.0° (Full Pert.) 
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Figure B-45 5:6 Gear APTS Mean Anomaly History (Full Pert.) 
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Figure B-46 5:6 Gear Circular Semi-major Axis Deviation from 14143.57 km 
(Full Pert.) 
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Circular Eccentricity: Deviation from S.1756e-1S 
Stroboscopic Samples at 83687.859 Seconds 
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Figure B-47 5:6 Gear Circular Eccentricity Deviation from 0.0 (Full Pert.) 
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Figure B-48 5:6 Gear Circular Inclination Deviation from 0.0° (Full Pert.) 
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B-6-3 4:5 Gear 0 km Offset Zonal 50 x 0 Field Decay Plots 
Nominal Pointing Error 
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Figure B-49 4:5 Gear APTS Constraint Error (Zonals Only) 
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Figure B-50 4:5 Gear Stroboscopic Constraint Error (Zonals Only) 
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Figure B-51 4:5 Gear Ratio Constraint Error (Zonals Only) 

APTS Semimajor Axis: Deviation from 1254B.S718Km 
Stroboscopic Samples at 69900.2802 Seconds 
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Figure B-52 4:5 Gear APTS Semi-major Axis Deviation from 12546.5718 km 
(Zonals Only) 
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Figure B-53 4:5 Gear APTS Eccentricity Deviation from 0.16011 (Zonals Only) 
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Figure B-54 4:5 Gear APTS Inclination Deviation from 0.0° (Zonals Only) 
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Figure B-55 4:5 Gear APTS Mean Anomaly History (Zonals Only) 
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Figure B-56 4:5 Gear Circular Semi-Major Axis Deviation from 14555.4545 km 
(Zonals Only) 
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Figure B-57 4:5 Gear Circular Eccentricity Deviation from 0.0 (Zonals Only) 
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Figure B-58 4:5 Gear Circular Inclination Deviation from 0.0° (Zonals Only) 
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B-6-4 4:5 Gear 0 km Offset Full Perturbation Decay Plots 
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Figure B-59 4:5 Gear APTS Constraint Error (Full Pert.) 
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Figure B-60 4:5 Gear Stroboscopic Constraint Error (Full Pert.) 
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Figure B-614:5 Gear Ratio Constraint Error (Full Pert.) 
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Figure B-62 4:5 Gear APTS Semi-Major Axis Deviation from 12546.5718 km 
(Full Pert.) 
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Figure B-63 4:5 Gear APTS Eccentricity Deviation from 0.16011 (Full Pert.) 
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Figure B-64 4:5 Gear APTS Inclination Deviation from 0.0° (Full Pert.) 
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Figure B-65 4:5 Gear APTS Mean Anomaly History (Full Pert.) 
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Figure B-66 4:5 Gear Circular Semi-Major Axis Deviation from 14555.4545 km 
(Full Pert.) 
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Figure B-67 4:5 Gear Circular Eccentricity Deviation from 0.0 (Full Pert.) 
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Figure B-68 4:5 Gear Circular Inclination Deviation from 0.0° (Full Pert.) 
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B-7 Gear Array Coverage Analysis Plots 

In order to compare the performance of the optimally designed gear arrays with 

the baseline Ellipso™ array, the designs were used to simulate the coverage seen at 

various latitudes at various times of the day. The simulation was used to collect data over 

a two-week time interval which could then be used to create the "wedge" plots found in 

the following sections. 

The wedge plots from a local time of noon and the wedge plots from a local time 

of 3 PM are presented in the following sections. For each time, data corresponding to the 

minimum elevation angle, average elevation angle, minimum number of satellites in 

view, maximum number of satellites in view, and average number of satellites in view is 

presented. 
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B-7-1 Local Time of Noon Coverage Analysis Plots 
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Figure B-70 Average Elevation Comparison—Noon Local Time 
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Figure B-71 Minimum Number of Satellites in View Comparison—Noon Local Time 
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Figure B-72 Maximum Number of Satellites in View Comparison—Noon Local 
Time 
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Figure B-73 Average Number of Satellites in View Comparison—Noon Local Time 
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Figure B-75 Average Elevation Comparison—3 P.M. Local Time 
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Appendix C Global Station Keepi ng Approach Data 

This appendix contains the input data and related results for the global station 

keeping approach optimization cases. The modifications required to the previously used 

PGAPack/DSST code are first presented. These modifications are followed by the 

presentation of the two required input decks: one for a reference orbit definition, and one 

for propagation of the actual orbit. Finally, the uncontrolled and controlled element 

histories for both the center of the box case (Case 1) and the more difficult edge of the 

box case (Case 2) are presented. 

C-l Code Modifications for Global Station Keeping Implementation 

As discussed in Chapter 5, some slight modifications to the PGAPack/DSST code 

setup was required to convert the software tool from an orbit design optimization package 

to an orbit maintenance optimization package. The most obvious of these modifications 

is the definition of a completely different objective function (FUNC) subroutine. 

Inherent to the problem is also the requirement for a reference orbit definition and a 

calculation of the time of the first deviation. These requirements each led to the creation 

of the DEFREFORB and CALCFIRTDEVTIME subroutines, respectively. 
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C-l-1 FUNC 
real*8     function  func(p) 

C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c- 

Function Func 

This file contains the objective function for the global 
station keeping optimization problem. 

Author: James E. Smith, 2Lt, USAF 
MIT/ Aero-Astro Dept./ Draper Fellow 

Ronald J. Proulx 
Draper Laboratory 

implicit none 

  Include necessary modules 

include 'pmern.h' 
include 'frc.h' 
include 'pgalim.h' 

C Define variables for call to Satellite 

integer*4 
external 

integer*4 
parameter 

integer*4 
integer*4 
Integer*4 
integer*4 
integer*4 

real*8 
real*8 
real*8 
REAL*8 
REAL*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 

satellite 
satellite 

max_list_length 
(max_list_length = 52) 

status 
burn_number 
iatmos preburn / 1 / 
iatmos_postburn / 1 / 
month,hour,minute 

day(maxvar) 
time 
burn_delta_v(4, max_list_length) 
RHO_ONE_HIGH     / 0.0 DO 
RHO_ONE_LOW      / 0.0 DO 
epoch_ymd 
epoch_hms 
posvel(6) 
elements (17) 
second(maxvar) 
btime(max_list_length) 

character*(6) 
character*(6)   
CHARACTER*(72) MESSAGE 
CHARACTER*(12) FILENAME 

name  /'pmernl'/ 
re fname /'pmernr'/ 

C   Define other variables 

integer*4 
integer*4 
integer*4 
integer*1 
integer*4 

l 

index 
j,k 
onoff(maxvar) 
usedburn 
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real*8 p(*) 
real*8 mag 
real*8 burn(maxvar) 
real* 8 magburn(maxvar) 
real*8 deltavtot 
real*8 deltavsum(maxvar) 
real*8 burntime(maxvar) 
real*8 bcconst(maxvar) 
real*8 bcconsttot 
real*8 vconst 
real*8 Mcheck 
real*8 pi 
real*8 comp 
real*8 two_n 
real*8 bitzero(3) 
real*8 deltat 
real*8 maxbcconst(maxvar) 
real*8 totbcconst(maxvar) 
real*8 timeweight 
real*8 timeconst 
real*8 endconsttot 
real*8 endconst(maxvar) 
real*8 order(maxvar) 
real*8 same(maxvar) 

external mag 

********** BEGIN PROGRAM ******************************** 

pgalim.eflag = .false. 

Initialize everything to 0.OdO   

deltat = 86400.OdO/PGALIM.TIMESPERDAY 

deltavtot = 0.OdO 
vconst = 0.OdO 
bcconsttot = O.OdO 
endconsttot = 0.OdO 
do i = 1, maxvar 

bcconst(i) = 0.OdO 
deltavsum(i) = O.OdO 
maxbcconst(i) = O.OdO 
totbcconst(i) = O.OdO 
day(i) = O.OdO 
endconst(i) = O.OdO 
order(i) = O.OdO 
onoff(i) = O.OdO 
same(i) = O.OdO 

enddo 
PGALIM.firstdev = O.OdO 

TIME = 0.D0 
BURN_NUMBER      = 0 
DO I=1,PGALIM.MAXBURN 

BURN_DELTA_V(1,I) = 0.D0 
BURN_DELTA_V(2,I) = 0.D0 
BURN_DELTA_V(3,I) = 0.D0 
BURN_DELTA_V(4,I) = 0.D0 

ENDDO 

pi = acos(-l.OdO) 
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See if burns are on or off and find total number of burns 

do i = 1,PGALIM.MINBURN 
onoff(i) = 1 

enddo 

k = PGALIM.MINBURN+1 
do i = PGALIM.NUMVAR+1,PGALIM.LEN 

if (p(i).gt.l.OdO) then 
onoff(k) = 1 

else 
onoff(k) = 0 

endif 
k = k + 1 

enddo 

do i = 1, PGALIM.MAXBURN 
BURNJNUMBER = onoff(i) + BURNJSTUMBER 

enddo 

Get burn components from the string 

usedburn = 1 
do i = 1, PGALIM.MAXBURN 

if (onoff(i).eq.l) then 
btime (usedburn) = p(i) 
usedburn = usedburn+1 

endif 
enddo 

do i = 1, BURN_NUMBER 
order(i) =1 
do j =1, BURNJSTUMBER 

if (btime (i) .gt.btime(j)) then 
order(i) = order(i)+l 

endif 
enddo 

enddo 

k =1 
do i = 1,BURN_NUMBER 

do j = 1,BURN_NUMBER 
if (btime(i).eq.btime(j).and.(i.ne.j)) then 

same(k) = (i) 
endif 

enddo 
if (same(k).ne.0) then 

k = k + 1 
endif 

enddo 

k = k-1 
do i=l,k 

order(same(i))=order(same(i))+(i-1) 
enddo 

usedburn = 1 
DO 1=1,PGALIM.MAXBURN 

if (onoff(i).eq.l) then 
BURN_DELTA_V(1,order(usedburn)) = p(i) 
BURN_DELTA_V(2,order(usedburn)) = p(i+PGALIM.MAXBURN*l) 
BURN_DELTA_V(3,order(usedburn)) = p(i+PGALIM.MAXBURN*2) 
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BURN_DELTA_V(4,order(usedburn)) = p(i+PGALIM.MAXBURN*3) 
usedburn = usedburn + 1 

end if 
ENDDO 

CALL SATELLITE to obtain state at request time 

time = O.OdO 
index = 1 

do while (time.le.PGALIM.MAXTIME) 

STATUS = SATELLITE ( name , TIME, 
2 BURN_DELTA_V, BURN_NUMBER, 
3 IATMOS_PREBURN, IATMOS_POSTBURN, 
4 RHO_ONE_HIGH, RHO_ONE_LOW, 
5 EPOCH_YMD, EPOCH_HMS, 
6 POSVEL, ELEMENTS, 
7 MESSAGE, FILENAME ) 

if(status.ne.O) WRITE(*,*) 'STATUS = ', STATUS 

This is the check  for elements 1 through 2 
do i = 1,2 

PGALIM.target(i) = PGALIM.reforb(i,index) 
If(DABS(PGALIM.target(i) - elements(i)).gt.PGALIM.tol(i)) then 
bcconst(i)=DABS((PGALIM.target(i)-elements(i)))-PGALIM.tol(i) 

if (PGALIM.firstdev .eq. O.OdO) then 
PGALIM.firstdev = time 

end if 
else 

bcconst(i) = O.OdO 
endif 
totbcconst(i) = bcconst(i)*timeweight + totbcconst(i) 
if (bcconst(i) .gt. maxbcconst(i)) then 

maxbcconst(i) = bcconst(i) 
endif 

enddo 

This is the constraint check for elements 3 through 6 

do i = 3,6 
PGALIM.target(i) = PGALIM.reforb(i,index) 

Mcheck = dacos(dcos((PGALIM.target(i)- 
elements(i))*pi/180.OdO))*(180.OdO/pi) 

IF (Mcheck.gt.PGALIM.tol(i)) then 
bcconst(i) = DABS((Mcheck-PGALIM.tol(i))) 
if (PGALIM.firstdev .eq. O.OdO) then 

PGALIM.firstdev = time 
endif 

else 
bcconst(i) = O.OdO 

endif 
totbcconst(i) = bcconst(i)*timeweight + totbcconst(i) 

if (bcconst(i) .gt. maxbcconst(i)) then 
maxbcconst(i) = bcconst(i) 

endif 
enddo 

time = time + deltat 
index = index + 1 

enddo 
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do i = 1,6 
totbcconst(i) = totbcconst(i)*PGALIM.targetweight(i) 

*PGALIM.targeton(i) 
bcconsttot = totbcconst(i)+bcconsttot 

enddo 
bcconsttot = bcconsttot+endconsttot 

Scale Total Deviation to favor more burns 

bcconsttot = bcconsttot/sqrt(dble(BURN_NUMBER)) 
bcconsttot = bcconsttot/(PGALIM.MAXTIME/86400.OdO) 

Find the total Delta V 

do j = 1, Burn_number 
do i = 1, 3 

BURN(i) = BURN_DELTA_V(i+l,j) 
enddo 
MAGBURN(J) = MAG(BURN) 

enddo 

do i = 1, BURNJTOMBER 
deltavtot = MAGBURN(i)+deltavtot 

enddo 

C    Find the sum of the Delta_V used for func 
C    Use this formulation if outside the box 

if (bcconsttot .gt. l.OdO) then 

usedburn = 1 
do i = 1, PGALIM.MAXBURN 

if (onoff(i) .eq.l) then 
do j = 2,4 

comp = BURN_DELTA_V(j,usedburn)* *2.OdO 
deltavsum(i) = comp + deltavsum(i) 

enddo 
usedburn = 1 + usedburn 

else 
do j = 1,3 

comp = (p(i+j*PGALIM.MAXBURN)-O.OdO)**2.0dO 
deltavsum(i) = deltavsum(i) + comp 

enddo 
endif 

vconst = dsqrt(deltavsum(i))+vconst 
enddo 

C    Use this formulation if inside the box 

else 

usedburn = 1 
do i = 1, PGALIM.MAXBURN 

do j = 1,3 
comp = (p(i+j*PGALIM.MAXBURN))**2.0d0 
deltavsum(i) = comp+deltavsum(i) 

enddo 
vconst = dsqrt(deltavsum(i))+vconst 

enddo 

endif 
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vconst = vconst * PGALIM.targetweight(7) 

timeconst = (PGALIM.MAXTIME-PGALIM.firstdev)/86400.OdO 

C    FINALLY, calculate func associated with given string 

if (pgalim.eflag .eq. .false.) then 
if (bcconsttot.lt.4000.OdO) then 

func = (bcconsttot)*4.0d-2 + vconst*4.Od-2 
else 

func = bcconsttot*0.000001d0 + vconst*0.5d0 + timeconst 
endif 

else 
func = PGALIM.MINERROR 

endif 

C    Write the output the last time through func   

if ((pgalim.end .eq. .true.) .or. (pgalim.plot .eq. .true.)) then 

write(*,*) 'func=',func 

do i = 1,6 
if (PGALIM.targeton(i) .eq. 1) then 

write(*,100) 
i,PGALIM.target(i) , elements(i),PGALIM.target(i)-elements(i) 

else 
write(*,101) i,PGALIM.target(i),elements(i) 

endif 
enddo 

write(*,*) 'First Deviation Occurs at time=', 
PGALIM.FIRSTDEV/86400.OdO 

do i = 1,6 
writef*,*) 'Max Deviation of element',i,maxbcconst(i) 

enddo 
do i = 1,6 

write(*,*) 'Total Deviation of element', i, totbcconst(i) 
enddo 

deltavtot = 0.OdO 
do i = 1, BURN_NUMBER 

deltavtot = MAGBURN(i)+deltavtot 
enddo 

write(*,*) 'Total DeltaV=',deltavtot 
write( * , *) 'Number of Burns=',BURN_NUMBER 

write(*,*) 'BURN TABLE ' 

do i = 1, BURN_NUMBER 
write(*,*)      i,'      Time=',BURN_DELTA_V(1,i), 'Magni tude 

=',MAGBURN(i) 
enddo 

writef*,*) 'BURN COMPONENTS ' 
write(*,*)  ' TIME   TANGENTIAL    NORMAL       RADIAL 

BURN NUMBER' 

usedburn = 1 
do i = 1, PGALIM.MAXBURN 

if (onoff(i).eq.l) then 
writef*,50) p(i),p(i+PGALIM.MAXBURN*1),p(i+2*pgalim.maxburn) 
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,p(i+3*pgalim.maxburn),order(usedburn) 
usedburn = usedburn +  1 
else 
write(*,51) 

p(i) ,p(i+PGALIM.MAXBURN*l) ,p(i+2*pgalim.maxbum) ,p(i+3*pgalim.maxbum) 
endif 

enddo 
endif 

if   (PGALIM.plot   . eq.    .true.)   then 
C call   plots(BURN_NUMBER,BURN_DELTA_V,PGALIM.MAXTIME) 

endif 

50 FORMAT(F14.4,F12.6,F12.6,F12.6,F10.0) 
51 FORMAT(F14.4,F12.6,F12.6,F12.6) 
100 Format(I4,F16.8,F16.8,F16.8) 
101 Format(I4,F16.8,F16.8) 
150     Format(I4,F16.8,F16.8) 

return 
end 

C-l-2 DEFREFORB 
Subroutine DefineRefOrb 
c  
C 
C Subroutine DefineRefOrb 
C 
C  This file performs the steps necessary to define the reference orbit 
C  for the GA optimal satellite maintenance program. 
C 
C  Author: James E. Smith, 2Lt, USAF 
C MIT/ Aero-Astro Dept./ Draper Fellow 
C 
C Ronald J. Proulx 
C Draper Laboratory 
C 
C 
c  

implicit none 

C Include necessary modules  

include 'pmern.h' 
include 'frc.h' 
include 'pgalim.h' 

C Define variables 

integer*4     satellite 
external      satellite 

integer*4 max_list_length 
parameter (max_list_length  = 52) 

integer*4 status 
integer*4 burn_number 
Integer*4 iatmos_preburn / 1 / 
integer*4 iatmos_postburn / 1 / 
integer*4 month,hour,minute 
integer*4 index,i 
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real*8 day(maxvar) 
real*8 time 
real* 8 burn_delta_v(4,max_list_length) 
REAL*8 RHO_ONE_HIGH     / 0.0 DO / 
REAL*8 RHO_ONE_LOW      / 0.0 DO / 
real*8 epoch_ymd 
real*8 epoch_hms 
real*8 posvel(6) 
real*8 elements (17) 
real*8 second(maxvar) 
real*8 btime(max_list_length) 
real*8 deltat 

character*(6) refname /'pmernr'/ 
CHARACTER*(72) MESSAGE 
CHARACTER*(12) FILENAME 

CALL SATELLITE to define reference array   

deltat = 86400.OdO/PGALIM.TIMESPERDAY 

index = 1 

TIME = 0.D0 
BURNJSTUMBER      = 0 
DO I=1,PGALIM.MAXBURN 

BURN_DELTA_V(1,I) = 0.D0 
BURN_DELTA_V(2,I) = 0.D0 
BURN_DELTA_V(3,I) = 0.D0 
BURN_DELTA_V(4,I) = 0.D0 

ENDDO 

if (PGALIM.REFFLAG .eq. -false.) then 

do while (time.le.PGALIM.MAXTIME) 

STATUS = SATELLITE ( refname , TIME, 
2 BURN_DELTA_V, BURN_NUMBER, 
3 IATMOS_PREBURN, IATMOS_POSTBURN, 
4 RHO_ONE_HIGH, RHO_ONE_LOW, 
5 EPOCH_YMD, EPOCH_HMS, 
6 POSVEL, ELEMENTS, 
7 MESSAGE, FILENAME ) 

if(status.ne.0) WRITE(*,*) 'STATUS = ', STATUS 

do i = 1,6 
PGALIM.reforb(i,index) = elements(i) 

enddo 

time = time + deltat 
index = index + 1 

enddo 
PGALIM.REFFLAG = .true. 

endif 

return 
end 
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C-l-3 CALCFIRSTDEVTIME 
subroutine calcfirstdevtime 

C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c- 

Subroutlne Calcfirstdevtime 

This file determines the time of first violation of the given box 
Constraints for the GA optimization approach 

Author: James E. Smith, 2Lt, USAF 
MIT/ Aero-Astro Dept./ Draper Fellow 

Ronald J. Proulx 
Draper Laboratory- 

implicit none 

  Include necessary modules 

include 'pmern.h' 
include 'frc.h' 
include 'pgalim.h' 

integer*4 satellite 
external satellite 

integer*4 max_li s t_length 
parameter (max_list_length  = 52) 

integer*4 status 
integer*4 burn number 
Integer*4 iatmos_preburn / 1 / 
integer*4 iatmos_postburn / 1 / 
integer*4 month,hour»minute 
integer*4 index,i 

real*8 day(maxvar) 
real*8 time 
real*8 burn_de1ta_v(4,max_li s t_len 
REAL*8 RHO_ONE_HIGH     / 0.0 DO / 
REAL*8 RHO ONE_LOW      / 0.0 DO / 
real*8 epoch_ymd 
real*8 epoch_hms 
real*8 posvel(6) 
real*8 elements (17) 
real*8 s econd(maxvar) 
real*8 bt ime (max_l i s t_l ength) 
real*8 firstdev,deltat,pi,Mcheck 

character* (6) name  /'pmernl'/ 
CHARACTER* (72) MESSAGE 
CHARACTER* (12) FILENAME 

C Initialize variables ************8 

deltat = 86400.OdO/PGALIM.TIMESPERDAY 

firstdev = 0.OdO 
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TIME = O.DO 
BUKN_NUMBER      = 0 
DO I=1,PGALIM.MAXBURN 

BURN_DELTA_V(1,I) = 0.D0 
BURN_DELTA_V(2,I) = O.DO 
BURN_DELTA_V(3,I) = O.DO 
BURN_DELTA_V(4,I) = O.DO 

ENDDO 

index = 1 

C Until a violation occurs, call satellite to obtain current state ** 

do while (firstdev.eq.0.OdO) 

STATUS = SATELLITE ( name , TIME, 
2 BURN_DELTA_V, BURNMKTUMBER, 
3 IATMOS_PREBURN, IATMOS_POSTBURN, 
4 RHO_ONE_HIGH, RHO_ONE_LOW, 
5 EPOCH_YMD, EPOCH_HMS, 
6 POSVEL, ELEMENTS, 
7 MESSAGE, FILENAME ) 

if(status.ne.O) WRITE(*,*) 'STATUS = ', STATUS 

C Check if the current state causes a violation ****** 

do i = 1,2 
PGALIM.target(i) = PGALIM.reforb(i,index) 
If  (DABS(PGALIM.target(i)  - elements(i)).gt.PGALIM.tol(i)) 

then 
firstdev = time 

endif 
enddo 

do i = 3,6 
pi = acos(-l.OdO) 
PGALIM.target(i) = PGALIM.reforb(i,index) 
Mcheck = dacos(dcos((PGALIM.target(i)- 

elements(i))*pi/180.OdO))*(180.0d0/pi) 
IF (Mcheck.gt.PGALIM.tol(i)) then 

firstdev = time 
endif 

enddo 

time = time+deltat 
index = index + 1 

enddo 

PGALIM.UPLIM(l) = (firstdev)/(PGALIM.MAXTIME/2.OdO) 

return 
end 

C-2 Global Station Keeping Approach DSST Input Decks 

In order to estimate the station keeping requirements for a given satellite, the 

definition of two orbits is required: a reference or desired orbit and an actual or perturbed 
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orbit. For the PGAPack/DSST simulation of these orbits it was necessary to define 

DSST input decks which could simulate both the desired and actual behaviors. These 

input decks are presented in the following sections. The reference orbit input deck 

(which was the same for both cases) is first presented. This is then followed by the actual 

orbit input deck used in the first case and the input deck used to simulate the actual orbit 

for case two. Proper flag and keyword values were determined from personal 

communications with Dr. Ronald Proulx, The Charles Stark Draper Laboratory. 

C-2-1 Reference Orbit 
c 
c 
C      PMEF FILE FOR GLOBAL STATION KEEPING REFERENCE ORBIT 
C 
C23456789012345678901234567890123456789012345678901234567890123456789012 

0.2000032100000000D+08 PME_DATE 1 
0.0148000000000000D+06 PME_TIME 2 
0.1049688389359363D+05 ELS_KEP(1) 3 
0.3327635613329539D+00 ELS_KEP(2) 4 
0.1165576926449117D+03 ELS_KEP(3) 5 
0.0000000000000000D+03 ELS_KEP(4) 6 
0.2600000000000000D+03 ELS_KEP(5) 7 
0.0O0O0OO0O0O0OOO0D+03 ELS_KEP(6) 8 
O.000OOO000OO00OO0D+OO ELS_EQUIN(1) 9 
O.000OOOO00OOOO0O0D+00 ELS_EQUIN(2) 10 
O.O0000OOO0OOOO0O0D+00 ELS_EQUIN(3) 11 
0.00000000000000000+00 ELS_EQUIN(4) 12 
O.00000O0000OOOO00D+OO ELS_EQUIN(5) 13 
O.00000O0OO0OOOO0OD+00 ELS_EQUIN(6) 14 
O.00000OO00OOO0OO0D+O0 POSVEL(l) 15 
O.00000000OOOOOO0OD+00 POSVEL(2) 16 
O.O00OOO0OOOOOOOOOD+O0 POSVEL(3) 17 
0.0000000000000000D+00 POSVEL(4) 18 
O.000OOO00OOOO0000D+OO POSVEL(5) 19 
O.OOOOOOOOOOOOOOOOD+00 POSVEL(6) 20 
0.2000000000000000D+01 PME_CD 21 
O.OOOOOOOOOOOOOOOOD+00 PME_RHO_ONE 22 
0.5000000000000000D-04 SMA_SIGMA 23 
0.5000000000000000D-04 INC_SIGMA 24 
0.5000000000000000D-04 ASC_SIGMA 25 
0.1250000000000000D+04 PME_SCMASS 26 
0.4330000000000000D-04 PME_SCAREA 27 
0.8640000000000000D+05 PME_STEPSIZE 28 
0.1400000000000000D+02 DP_SPARE1 29 
0.1130000000000000D+03 DP_SPARE2 30 
0.O0000000O000O0O0D+O0 DP_SPARE3 31 
0.O000OO00OOOOOOOOD+00 DP_SPARE4 32 
O.OOOOOOOOOOOOOOOOD+OO DP_SPARE5 33 
O.00000OO00OOOOOO0D+0O DP_SPARE6 34 

1 PME_RETRO 3 5 
12 PME_KEP_SYS 36 
12 POS_VEL_SYS 37 
1 GEN_METHOD 38 
1 ATMOS_MODEL 39 
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840401 
123 

840401 
456 

840401 
789 

840401 
123 

2 
10 
50 
0 
1 
1 
0 
0 
3 
2 
2 
2 
2 
1 
1 
2 

12 
11 
19 
0 
1 
2 
4 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

JACRB_DATE 40 
JACRB_SSS 41 
SLP1950 DATE 42 
SLP1950_SSS 43 
SLPTOD_DATE 44 
SLPTOD_SSS 45 
TIMECF_DATE 46 
TIMECF_SSS 47 
HARRIS_MODEL 48 
POTNTL_MODEL 49 
PME_NMAX 50 
PME_MMAX 51 
PME_I ZONAL 52 
PME_IJ2J2 53 
PME_NMAXRS 54 
PME_MMAXRS 55 
PME_ITHIRD 56 
PME_INDDRG 57 2 = DRAG OFF 
PME_ISZAK 58 
PME_INDSOL 59 2 = SOLRAD OFF 
PME_JSHPER 60 
PME_JZONAL 61 
PME_JMDALY 62 
PME_INP_TYPE 63 
PME_EQUI_SYS 64 
INTEG_FRAME 65 
OUTPUT_FRAME 66 
PME_NSTATE 67 
PME_SPSHPER 68 
PME_KSPCF 69 
PME_INDSET 70 
INT_SPARE1 71 
INT_SPARE2 72 
INT_SPARE3 73 
INT_SPARE4 74 
INT_SPARE5 75 
INT_SPARE6 76 
INT_SPARE7 77 
INT_SPARE8 78 
INT_SPARE9 79 
INT_SPARE10 80 

C-2-2 
c 
c 
c 
c 
C2345 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

Case 1 Actual Orbit 

PMEF FILE FOR GLOBAL STATION KEEPING CASE 1 

6789012345678901234567890123456789012345678901234567890123456789012 
2000032100000000D+08 PME_DATE 1 
0148000000000000D+06 PME_TIME 2 
1049688389359363D+05 ELS_KEP(1) 3 
3327635613329539D+00 ELS_KEP(2) 4 
1165576926449117D+03 ELS_KEP(3) 5 
OOOOOOOOOOOOOOOOD+03 ELS_KEP(4) 6 
2600000000000000D+03 ELS_KEP(5) 7 
0000000000000000D+03 ELS_KEP(6) 8 
0000000000000000D+00 ELS_EQUIN(1) 9 
O000OO0O0OOO000OD+O0 ELS_EQUIN(2) 10 
OOOOOOOOOOOOOOOOD+OO ELS_EQUIN(3) 11 
00000000000000000+00 ELS_EQUIN(4) 12 
0000000000000000D+00 ELS_EQUIN(5) 13 
O000000O000O000OD+00 ELS_EQUIN(6) 14 
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0 0000000000OOOOOOD+00 POSVEL(1) 15 
0 00000000000OOOOOD+00 POSVEL(2) 16 
0 0000000000000000D+00 POSVEL(3) 17 
0 00000000000OOOOOD+00 POSVEL(4) 18 
0 0000000000OOOOOOD+00 POSVEL(5) 19 
0 0000000000000000D+00 POSVEL(6) 20 
0 2000000000000000D+01 PME_CD 21 
0 0000000000000000D+00 PME_RHO_ONE 22 
0 5000000000000000D-04 SMA_SIGMA 23 
0 5000000000000000D-04 INC_SIGMA 24 
0 5000000000000000D-04 ASC_SIGMA 25 
0 1250000000000000D+04 PME_SCMASS 26 
0 433 0000000000000D-04 PME_SCAREA 27 
0 8640000000000000D+05 PME_STEPSIZE 28 
0 1400000000000000D+02 DP_SPARE1 29 
0 1130000000000000D+03 DP_SPARE2 30 
0 0000000000OOOOOOD+00 DP_SPARE3 31 
0 0000000000OOOOOOD+00 DP_SPARE4 32 
0 00000000000OOOOOD+00 DP_SPARE5 33 
0 0000000000000000D+00 DP_SPARE6 34 

1 PME_RETRO 35 
12 PME_KEP_SYS 36 
12 POS_VEL_SYS 37 
1 GEN_METHOD 38 
1 ATMOS_MODEL 39 

840401 JACRB_DATE 40 
123 JACRB SSS 41 

840401 SLP1950_DATE 42 
456 SLP1950_SSS 43 

840401 SLPTOD_DATE 44 
789 SLPTOD_SSS 45 

840401 TIMECF_DATE 46 
123 TIMECF_SSS 47 

2 HARRIS_MODEL 48 
10 POTNTL_MODEL 49 
21 PME_NMAX 50 
21 PME_MMAX 51 
1 PME_IZONAL 52 
1 PME_IJ2J2 53 

21 PME_NMAXRS 54 
21 PME_MMAXRS 55 
1 PME_ITHIRD 56 
1 PME_INDDRG 57  2 = DRAG OFF 
1 PME_ISZAK 58 
1 PME_INDSOL 59  2 = SOLRAD OFF 
2 PME_JSHPER 60 
1 PME_JZONAL 61 
1 PME_JMDALY 62 
2 PME_INP_TYPE 63 

12 PME_EQUI_SYS 64 
11 INTEG_FRAME 65 
19 OUTPUT_FRAME 66 
0 PME_NSTATE 67 
1 PME_SPSHPER 68 
2 PME_KSPCF 69 
1 PME_INDSET 70 
0 INT_SPARE1 71 
0 INT_SPARE2 72 
0 INT_SPARE3 73 
0 INT_SPARE4 74 
0 INT_SPARE5 75 
0 INT_SPARE6 76 
0 INT_SPARE7 77 
0 INT_SPARE8 78 
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0 INT_SPARE9     79 
0 INT_SPARE10    80 

C-2-3 Case 2 Actual Orbit 
c 
c 
C      PMEF FILE GLOBAL STATION KEEPING CASE 2 
C 
C 
C23456789012345678901234567890123456789012345678901234567890123456789012 

0.20000321OOOOOOOOD+08 
0.0148000000000000D+06 
0.1049597389359363D+05 
0.3330605613329539D+00 
0.1165081926449117D+03 
0.3595020000000000D+03 
0.2590200000000000D+03 
0.0009000000000000D+03 
0.0000000000000000D+00 
0.0000000000000000D+00 
0.0000000000000000D+00 
0.00000000000000000+00 
0.00000000OOOOOOOOD+OO 
0.0000000000000000D+00 
0.00000OOOOOOOOOOOD+OO 
0.0000000000000000D+00 
0.0000000000000000D+00 
0.000000000OOOOOOOD+00 
O.O0OO0OOOOOOOO0O0D+O0 
0.000000000OOOOOOOD+00 
0.2000000000000000D+01 
0.0000000000000000D+00 
0.5000000000OOOOO0D-O4 
0.5000000000000000D-04 
0.5000000000000000D-04 
0.1250000000000000D+04 
0.4330000000000000D-04 
0.8640000000OOOOO0D+05 
0.140000000 0000000D+02 
0.113 0000000000000D+03 
0.OO0O0OOOOOOOOOOOD+OO 
0.00000OOOOOOOO000D+OO 
0.0000000000OOOOOOD+00 
O.OO00OOOOOOOOOOO0D+O0 

1 
12 
12 
1 
1 

840401 
123 

840401 
456 

840401 
789 

840401 
123 

2 
10 
21 
21 
1 

PME_DATE 1 
PME_TIME 2 
ELS_KEP(1) 3 
ELS_KEP(2) 4 
ELS_KEP(3) 5 
ELS_KEP(4) 6 
ELS_KEP(5) 7 
ELS_KEP(6) 8 
ELS_EQUIN(1) 9 
ELS_EQUIN(2) 10 
ELS_EQUIN(3) 11 
ELS_EQUIN(4) 12 
ELS_EQUIN(5) 13 
ELS_EQUIN(6) 14 
POSVEL(1) 15 
POSVEL(2) 16 
POSVEL(3) 17 
POSVEL(4) 18 
POSVEL(5) 19 
POSVEL(6) 20 
PME_CD 21 
PME_RHO_ONE 22 
SMA_SIGMA 23 
INC_SIGMA 24 
ASC_SIGMA 25 
PME_SCMASS 26 
PME_SCAREA 27 
PME_STEPSIZE 28 
DP_SPARE1 29 
DP_SPARE2 30 
DP_SPARE3 31 
DP_SPARE4 32 
DP_SPARE5 33 
DP_SPARE6 34 
PME_RETRO 35 
PME_KEP_SYS 36 
POS_VEL_SYS 37 
GEN_METHOD 38 
ATMOS_MODEL 39 
JACRB_DATE 40 
JACRB_SSS 41 
SLP1950_DATE 42 
SLP1950_SSS 43 
SLPTOD_DATE 44 
SLPTOD_SSS 45 
TIMECF_DATE 46 
TIMECF_SSS 47 
HARRIS_MODEL 48 
POTNTL_MODEL 49 
PME_NMAX 50 
PME_MMAX 51 
PME_IZONAL 52 
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1 PME_IJ2J2 53 
21 PME_NMAXRS 54 
21 PME_MMAXRS 55 
1 PME_ITHIRD 56 
1 PME_INDDRG 57  2 = DRAG OFF 
1 PME_ISZAK 58 
1 PME_INDSOL 59  2 = SOLRAD OFF 
2 PME_JSHPER 60 
1 PME_JZONAL 61 
1 PME_JMDALY 62 
2 PME_INP_TYPE 63 

12 PME_EQUI_SYS 64 
11 INTEG_FRAME 65 
19 OUTPUT_FRAME 66 
0 PME_NSTATE 67 
1 PME_SPSHPER 68 
2 PME_KSPCF 69 
1 PME_INDSET 70 
0 INT_SPARE1 71 
0 INT_SPARE2 72 
0 INT_SPARE3 73 
0 INT_SPARE4 74 
0 INT_SPARE5 75 
0 INT_SPARE6 76 
0 INT_SPARE7 77 
0 INT_SPARE8 7 8 
0 INT_SPARE9 79 
0 INT_SPARE10 80 

C-3 Global Station Keeping Case 1 Element Deviation Plots 

This section contains plots that show the actual orbit's difference from the 

reference orbit over the entire 90 day period of interest for case one. The uncontrolled 

deviations are first presented to show that control is indeed necessary to meet the desired 

constraints, specifically on elements a, e, and M. The controlled deviations resulting 

from the optimization are then presented. These plots show that the optimization 

technique was indeed able to maintain the trajectory within the desired constraints over 

the entire period of interest. 
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C-3-1 Global Case 1 Uncontrolled Deviations 
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Figure C-l Global Case 1 Uncontrolled SMA Deviation (Limit = 1°) 
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Figure C-2 Global Case 1 Uncontrolled Eccentricity Deviation (Limit = 0.0003) 
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C-3-2 Global Case 1 Controlled Deviations 
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Figure C-7 Global Case 1 Controlled SMA Deviation (Limit = 1 km) 

x10 

2.5- 

o,      2h 
o c 
0 
£   1.5 
o> 

DC 

i   1 
•^ 
c o 
«   0.5 
> 
0 
D 

-0.5 

0 10        20 30        40 50 60 70 80 90 
Days from Epoch 
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Figure C-9 Global Case 1 Controlled Inclination Deviation (Limit = 0.05°) 
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C-4 Global Station Keeping Case 2 Element Deviation Plots 

This section contains plots that show the actual orbit's difference from the 

reference orbit over the entire 90-day period of interest for case two. The uncontrolled 

deviations are first presented to show that control is indeed necessary to meet the desired 

constraints for all elements. The controlled deviations resulting from the optimization are 

then presented. These plots show that the optimization technique was indeed able to 

maintain the trajectory within the desired constraints over the entire period of interest, 

even despite the difficult starting conditions which were imposed on the system. 
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C-4-1 Global Case 2 Uncontrolled Deviations 
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C-4-2 Global Case 2 Controlled Deviations 
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Appendix D Operational Station K eeping Approach Data 

This appendix contains the code modifications required for the implementation of 

the operational station keeping approach as well as the results of a number of test cases to 

which this approach was applied. The code modifications are first presented. These 

modifications are followed by the results of the application of the operational approach to 

the global case elements. Finally, results from one year, 2.5 year and 1200 day 

applications of the approach as a planning tool are included. 

D-l Code Modifications Required for Operational Approach Implementation 

This section contains printouts of the genetic algorithm and objective function 

code necessary to implement the operational station keeping approach. Both the genetic 

algorithm code (PGA_GASK) and the objective function code (FUNC) required 

modification from the similar routines used to implement the global approach. The most 

important of these changes was the conversion to a two-layered objective function as 

discussed in section 5-4-3-4. The specific modifications to each routine can be seen 

below: 

D-l-1 Operational Approach Modifications to PGA_GASK 
Program pga_opgask 
c  
c 
C Program PGA_OPGASK 
C 
C This file contains Genetic Algorithm code for finding optimal number 
C  of burns in conjunction with DSST orbit propagator using the 
C  operational approach. 
C 
C  Author: James E. Smith, 2Lt, USAF 
C MIT/ Aero-Astro Dept./ Draper Fellow 
C 
C 
c  

implicit none 
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include 'pgapackf.h' 
include 'mpif.h' 
include 'pgalim.h' 
include 'pmern.h' 

double precision findbest_nburn 
external findbest_nburn 

double precision findbest_last 
external        findbest_last 

C Variable Declarations   
integer ctx, p, pop 
integer myid, ierror 
integer number, counter, step 
integer bestindex, i, locnumvar 

integer*4 BURN_NUMBER,repeat 
real*8 BURN_DELTA_V(4,MAXVAR),FIRSTDEV,looptime,lasttime 

double precision best(MAXVAR) 

character*24 fdate 
external fdate 

character*6 name /'pmernl'/ 

C Main Program  

C     Initialize MPI processes 

write(*,*) fdate'O 

call MPI_Init(ierror) 
call MPI_Comm_rank(MPI_COMM_WORLD, myid, ierror) 

C     Initialize The Variables to Default Values 

PGALIM.totalburns = 0 
PGALIM.totaldeltav = 0.OdO 
PGALIM.epochtime = 0.OdO 
repeat = 0 
lasttime = -10.OdO 
looptime = 1.25d0 

call init_headers 
call init_PGALIM 

C     Perform Maximum Drift Time Optimization 

do while (PGALIM.epochtime.le.looptime) 

PGALIM.OPFLAG = 1 

call setlim_nburn 
PGALIM.END = .FALSE. 

PGALIM.FIRSTDEVZEROB = PGALIM.MAXTIME 

call DefineRefOrb 

BURN_NUMBER      = 0 
DO I=1/PGALIM.MAXBURN 

BURN_DELTA_V(1,I) = 0.D0 
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BURN_DELTA_V(2,1) = O.DO 
BURN_DELTA_V(3,I) = O.DO 
BURN_DELTA_V(4,I) = O.DO 

ENDDO 

call initialize_sat(name) 

if (PGALIM.epochtime.gt.O.OdO) then 
pmern.date = pgalim.nextdate 
pmern.time = pgalim.nexttime 
do i = 1,6 

pmern.els_kepler(i) = PGALIM.kepels(i) 
enddo 

endif 

call CalcFirstDevTime(BURN_NUMBER,BURN_DELTA_V,0) 

ctx = PGACreate(PGA_DATATYPE_REAL, PGALIM.LEN, PGALIM.FLAG) 

C    This defines the stopping rule and sets the number of iterations 
C     in which no change is allowed before stopping.  A number of other 
C    PGA parameters are also set. 

call PGASetRealInitRange(ctx,PGALIM.LOWLIM,PGALIM.UPLIM) 
call PGASetStoppingRuleType(ctx,PGA_STOP_NOCHANGE) 
call PGASetStoppingRuleType(ctx,PGA_STOP_MAXITER) 
call PGASetMaxGAIterValue(ctx, 2000) 
call PGASetMaxNoChangeValue(ctx,500) 
call PGASetPrintOptions(ctx,PGA_REPORT_STRING) 
call PGASetPrintOptions(ctx,PGA_REPORT_AVERAGE) 
call PGASetPrintFrequencyValue(ctx,5) 

call PGASetMutationRealValue(ctx,0.5d0) 
call PGASetMutationBoundedFlag(ctx,PGA_TRUE) 

call PGASetPopSize(ctx,100) 
cal1 PGASetNumReplaceValue(ctx, 25) 

C This call allows or disallows duplicate strings in the population. 
C NOTE:  If string length is short this may cause a failure as it is 
C impossible to generate enough combinations so that there aren't 
C any duplicates. 

call PGASetNoDuplicatesFlagfctx, PGA_TRUE) 

call PGASetRestartFlag(ctx,PGA_TRUE) 
call PGASetRestartFrequencyValue(ctx,50) 

C     If set to true, this call allows for mutation to occur on strings 
C    which are produced through crossover.  If false, mutuation can 
C    only occur on strings which did not experience crossover. 

call PGASetMutationAndCrossoverFlag(ctx,PGA_TRUE) 

C    This section runs PGA Pack and finds the "best" values of the 
C    parameters based on a metric defined by "findbest_nburn" 

call PGASetUp(ctx) 

call PGARun(ctx, findbest_nburn) 

C    This final section converts the best values to real numbers, 
C    prints them and ends the first half of the optimization. 
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PGALIM.END = .TRUE. 
If (myid . eq. 0) then 

bestindex = PGAGetBestIndex(ctx,pop) 
best(l) = findbest_nburn(ctx,bestindex,pop) 
write(*,*) 'final eval = ',best(l) 

endif 

do i = 1, PGALIM.LEN+1 
call MPI_BCAST(PGALIM.BEST(i),1,MPI_DOUBLE_PRECISION,0, 

MPI_C0MM_W0RLD,ierror) 
enddo 
call MPI_BCAST(PGALIM.OPFLAG,1,MPI_INTEGER,0, 

MPI_COMM_WORLD, ierror) 

PGALIM.MAXTIME = PGALIM.BEST(PGALIM.LEN+1) 

call PGADestroy(ctx) 

c    loop 2  
C    Perform the Delta V optimization   

call setlim_nburn 

PGALIM.END = .FALSE. 

if (PGALIM.epochtime.eq.lasttime) then 
repeat = repeat + 1 

else 
repeat = 0 

endif 

write(*,*) 'repeat = ', repeat 

lasttime = PGALIM.epochtime 

call DefineRefOrb 

BURN_NUMBER      = 0 
DO I=1,PGALIM.MAXBURN 

BURN_DELTA_V(1,I) = 0.D0 
BURN_DELTA_V(2 , I) = 0.D0 
BURN_DELTA_V(3,I) = 0.D0 
BURN_DELTA_V(4,I) = 0.D0 

ENDDO 

call initialize_sat(name) 

if (PGALIM.epochtime.gt.O.OdO) then 
pmern.date = pgalim.nextdate 
pmern.time = pgalim.nexttime 
do i = 1,6 

pmern.els_kepler(i) = PGALIM.kepels(i) 
enddo 

endif 

call CalcFirstDevTime (BURNJSTUMBER, BURN_DELTA_V, 0) 

Ctx = PGACreate(PGA_DATATYPE_REAL, PGALIM.LEN, PGALIM.FLAG) 

C    This defines the stopping rule and sets the number of iterations 
C    in which no change is allowed before stopping and other 
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C    PGAPack Parameters 

call PGASetReallnitRange (ctx, PGALIM.LOWLIM, PGALIM.UPLIM) 
call PGASetStoppingRuleType(ctx,PGA_STOP_NOCHANGE) 
call PGASetStoppingRuleType(ctx,PGA_STOP_MAXITER) 
call PGASetMaxGAIterValue(ctx, 3000) 
call PGASetMaxNoChangeValue(ctx,200) 

call PGASetPrintOptions(ctx,PGA_REPORT_STRING) 
call PGASetPrintOptions(ctx,PGA_REPORT_AVERAGE) 
call PGASetPrintFrequencyValue(ctx,5) 

call PGASetMutationRealValue(ctx,0.2d0) 
call PGASetMutationBoundedFlag(ctx,PGA_TRUE) 

call PGASetPopSize(ctx,100) 
cal1 PGASetNumReplaceValue(ctx,2 5) 

C This call allows or disallows duplicate strings in the population. 
C NOTE:  If string length is short this may cause a failure as it is 
C impossible to generate enough combinations so that there aren't 
C any duplicates. 

call PGASetNoDuplicatesFlag(ctx, PGA_TRUE) 
call PGASetRestartFlag(ctx,PGAJTRUE) 

C     If set to true, this call allows for mutation to occur on strings 
C    which are produced through crossover.  If false, mutuation can 
C    only occur on strings which did not experience crossover. 

call PGASetMutationAndCrossoverFlag (ctx, PGAJTRUE) 

C    This section runs PGA Pack and finds the "best" values of the 
C    parameters based on a metric defined by "findbest_nburn" 

call PGASetUp(ctx) 

call init_string(ctx,l,PGA_OLDPOP) 

if (repeat.eq.l) then 
PGALIM.TARGETWEIGHT(7) = 15.OdO 

c     d PGALIM.TARGETWEIGHT(7) = 10.OdO 
elseif (repeat.ge.l) then 

PGALIM.TARGETWEIGHT(7) = PGALIM.TARGETWEIGHT(7) 
0.25dO*PGALIM.TARGETWEIGHT(7) 

cd        if (repeat.ge.3) then 
cd        if (repeat.ge.2) then 
c    call init_string(ctx,l,PGA_OLDPOP) 
c    d        endi f 

endif 

call PGARun(ctx, findbest_nburn) 

C    This final section converts the best values to real numbers, 
C    prints them and ends the program 

PGALIM.END = .TRUE. 
If (myid .eq. 0) then 

bestindex = PGAGetBestIndex(ctx,pop) 
best(l) = findbest_nburn(ctx,bestindex,pop) 
write(*,*) 'final eval = ',best(l) 

endif 
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do i = 1, 6 
call MPI_BCAST(PGALIM.kepels(i),1,MPI_D0UBLE_PRECISI0N, 0, 

PI_C0MM_W0RLD,ierror) 
enddo 
call MPI_BCAST(PGALIM.epochtime,1,MPI_D0UBLE_PRECISI0N, 0, 

MPI_COMM_WORLD,ierror) 
call MPI_BCAST(PGALIM.nextdate,1,MPI_DOUBLE_PRECISION, 0, 

MPI_COMM_WORLD,ierror) 
call MPI_BCAST(PGALIM.nexttime,1,MPI_DOUBLE_PRECISION,0 , 

MPI_COMM_WORLD,ierror) 

call PGADestroy(ctx) 

enddo 

if (myid.eq.O) then 
write(*,*) 
write(* 
write(* 
write(* 
write(* 
write(* 

endif 

*) 'SUMMARY STATS   
*) 'Days forward = ',PGALIM.epochtime/86400.OdO 
*) 'Total number of burns =',PGALIM.totalburns 
*) 'Total Delta V = ',PGALIM.totaldeltav 
*} 

call MPI_Finalize(ierror) 
write(*,*) fdate() 

stop 
end 

D-l-2 Operational Approach Modifications to FUNC 
real*8  function func(p) 

C 
C    Function Func 
C 
C    This file contains the objective function for the operational 
C    station keeping approach. 
C 
C     Author: James E. Smith, 2Lt, USAF 
C    MIT/ Aero-Astro Dept./ Draper Fellow 
C 
C    Ronald J. Proulx 
C    Draper Laboratory 
C 
c- 

implicit none 

 Include necessary modules 

include 'pmern.h' 
include 'frc.h' 
include 'pgalim.h' 

C Define variables for call to Satellite 

integer*4      satellite 
external      satellite 
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integer*4 
parameter 

integer*4 
integer*4 
Integer*4 
integer*4 

real*8 
real*8 
REAL*8 
REAL*8 
real*8 
real*8 
real*8 
real*8 
real*8 

character*(6) 
character*(6) 
CHARACTER*(72) 
CHARACTER*(12) 

max_list_length 
(max_li s t_length 52) 

status 
burn_number 
iatmos_preburn / 1 / 
iatmos_postburn / 1 / 

time 
burn_delta_v(4,max_list_length) 
RHO_ONE_HIGH     / 0.0 DO / 
RHO_ONE_LOW      / 0.0 DO / 
epoch_ymd 
epoch_hms 
posvel(6) 
elements (17) 
btime(max_list_length) 

name  /'pmernl'/ 
re fname /'pmernr'/ 
MESSAGE 
FILENAME 

real* 8 dayjul0,secjul0,year,second,month,day,hour,minute 
real*8 dayjul,secjul,nexttime,nextdate,checktime 

C Define other variables 

integer*4 
integer*4 
integer*4 
integer*4 
integer*4 
integer*4 

real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 

l 

index 
j 
k 
onoff(maxvar) 
usedburn 

P(*) 
mag 
sumdelta 
burn(maxvar) 
magburn(maxvar) 
deltavtot 
deltavsum(maxvar) 
burntime(maxvar) 
bcconst(maxvar) 
bcconsttot 
vconst 
Mcheck 
Pi 
comp 
two_n 
bitzero(3) 
deltat 
maxbcconst(maxvar) 
totbcconst(maxvar) 
timeweight 
timeconst 
endconsttot 
endconst(maxvar) 
endtime 
firstdev 
temp 
order(maxvar) 
same(maxvar) 
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integer*4       skip 

external      mag 

********** BEGIN PROGRAM ******************************** 

pgalim.eflag = .false, 
skip = 0 

Initialize everything to 0.OdO   

deltavtot = 0.OdO 
vconst = 0.OdO 
bcconsttot = O.OdO 
endconsttot = 0.OdO 
do i = 1, maxvar 

bcconst(i) = O.OdO 
deltavsum(i) = O.OdO 
maxbcconst(i) = O.OdO 
totbcconst(i) = O.OdO 
endconst(i) = O.OdO 
order(i) = O.OdO 
onoff(i) = O.OdO 
same(i) = O.OdO 

enddo 

TIME = 0.D0 
BURN_NUMBER      = 0 
DO I=1,PGALIM.MAXBURN 

BURN_DELTA_V(1,1) = 0.D0 
BURN_DELTA_V(2,I) = 0.D0 
BURN_DELTA_V(3,I) = 0.D0 
BURN_DELTA_V(4,I) = 0.D0 

ENDDO 

See if burns are on or off and find total number of burns 

if (PGALIM.OPFLAG.eq.l) then 
j = 0 

else 
j = 0 

endif 

do i = 1,PGALIM.MINBURN 
onoff(i) = 1 

enddo 

k = PGALIM.MINBURN+1 
do i = PGALIM.NUMVAR+l,PGALIM.LEN-j 

if ((p(i).gt.O.ldO).and.(p(i)-le.0.2d0)) then 
onoff(k) = 1 

elseif ((p(i).gt.0.3d0).and.(p(i).le.0.4d0)) then 
onoff(k) = 1 

elseif ((p(i).gt.0.5d0).and.(p(i).le.0.6d0)) then 
onoff(k) = 1 

elseif ((p(i).gt.0.7d0).and.(p(i).le.0.8d0)) then 
onoff(k) = 1 

elseif ((p(i).gt.0.9d0).and.(p(i).le.l.OdO)) then 
onoff(k) = 1 

elseif ((p(i).gt.l.ldO).and.(p(i)-le.l.2d0)) then 

370 



onoff(k) = 1 
elseif ( (p(i) .gt.l.3d0).and.(p(i).le.l.4d0)) then 

onoff(k) = 1 
elseif ( (p(i) .gt.l.5d0).and.(p(i).le.l.6d0)) then 

onoff(k) = 1 
elseif ((p(i).gt.l.7d0).and.(p(i).le.l.8d0)) then 

onoff(k) = 1 
elseif ((p(i).gt.l.9d0).and.(p(i).le.2.0d0)) then 

onoff(k) = 1 
else 

onoff(k) = 0 
endif 
k = k + 1 

enddo 

BURN_NUMBER = 0 
do i = 1, PGALIM.MAXBURN 

BURNJSTUMBER = onoff(i) + BURN_NUMBER 
enddo 

Get burn components from the string 

usedburn = 1 
do i = 1, PGALIM.MAXBURN 

if (onoff(i).eq.l) then 
btime(usedburn) = p(i) 
usedburn = usedburn+1 

endif 
enddo 

do i = 1, BURN_NUMBER 
order(i) = 1 
do j =1, BURN_NUMBER 

if (btime(i).gt.btime(j)) then 
order(i) = order(i)+l 

endif 
enddo 

enddo 

k =1 
do i = 1,BURN_NUMBER 

do j = 1,BURN_NUMBER 
if (btime(i).eq.btime(j).and.(i.ne.j)) then 

same(k) = (i) 
endif 

enddo 
if (same(k).ne.O) then 

k = k + 1 
endif 

enddo 

k = k-1 
do i=l,k 

order(same(i))=order(same(i))+(i-1) 
enddo 

usedburn = 1 
DO 1=1,PGALIM.MAXBURN 

if (onoff(i).eq.l) then 
BURN_DELTA_V(1,order(us edburn)) = p(i) 
BURN_DELTA_V( 2, order (usedburn) ) = p(i+PGALIM.MAXBURN*l) 
BURN_DELTA_V(3,order(usedburn)) = p(i+PGALIM.MAXBURN*2) 
BURN_DELTA_V(4,order(usedburn)) = p(i+PGALIM.MAXBURN*3) 
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usedburn = usedburn + 1 
endif 

ENDDO 

c    If this is the time optimization, 
C    calculate the time of first devation- 

if (PGALIM.OPFLAG.eq.l) then 
call calcfirstdevtime(BURN_NUMBER,BURN_DELTA_V,1) 

else 

C    Otherwise call satellite to perform deltav optimization   
c    CALL SATELLITE to obtain state at request time 

call calcfirstdevtime(BURN_NUMBER,BURN_DELTA_V,1) 

endtime = PGALIM.MAXTIME 
time = O.OdO 
index = 1 

do while (time.le.endtime) 

STATUS = SATELLITE ( name , TIME, 
2 BURN_DELTA_V,   BURN_NUMBER, 
3 IATMOS_PREBURN, IATMOS_POSTBURN, 
4 RHO_ONE_HIGH,   RHO_ONE_LOW, 
5 EPOCH_YMD,       EPOCH_HMS, 
6 POSVEL, ELEMENTS, 
7 MESSAGE, FILENAME ) 

if(status.ne.O) WRITE(*,*) 'STATUS = ', STATUS 

c    This is for elements 1 through 2 
do i = 1,2 

PGALIM.target(i) = PGALIM.reforb(i,index) 
If (DABS(PGALIM.target(i) - elements(i)).gt. 

PGALIM.tol(i)) then 
bcconst(i)=DABS((PGALIM.target(i)-elements(i)))- 

PGALIM.tol(i) 
else 

bcconst(i) = O.OdO 
endif 
totbcconst(i) = bcconst(i) + totbcconst(i) 
if (bcconst(i) .gt. maxbcconst(i)) then 

maxbcconst(i) = bcconst(i) 
endif 

enddo 

c    This is for elements 3 through 6 

pi = acos(-l.OdO) 
do i = 3,6 

PGALIM.target(i) = PGALIM.reforb(i,index) 
Mcheck = dacos(dcos((PGALIM.target(i)- 

elements(i))*pi/180.OdO))*(180.OdO/pi) 
IF (Mcheck.gt.PGALIM.tol(i)) then 

bcconst(i) = DABS((Mcheck-PGALIM.tol(i))) 
else 

bcconst(i) = O.OdO 
endif 
totbcconst(i) = bcconst(i) + totbcconst(i) 
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if (bcconst(i) .gt. maxbcconst(i)) then 
maxbc const(i) = bcconst(i) 

endif 
enddo 

if (time.ge .(PGALIM.FIRSTDEVZEROB+PGALIM.BURNWINDOW)) then 
deltat = 86400.0d0/(PGALIM.TIMESPERDAY) 
index = index + (24) 

else 
deltat = 86400.OdO/(PGALIM.TIMESPERDAY*24. OdO) 
index = index + 1 

endif 
time = time + deltat 

enddo 

do i = 1,6 
totbcconst( i) = totbcconst(i)*PGALIM.targetwe 

*PGALIM.targeton(i) 
>ight(i) 

enddo 

c    Scale Total Deviation to favor more burns 

bcconsttot = bcconsttot/sqrt(dble(BURN_NUMBER)) 
bcconsttot = bcconsttot/(PGALIM.MAXTIME/86400.OdO) 

endif 

C    Find the total Delta V 

do j = 1, BURN_NUMBER 
do i = 1, 3 

BURN(i) = BURN_DELTA_V(i+l,j) 
enddo 
MAGBURN(J) = MAG(BURN) 

enddo 

do i = 1, BURN_NUMBER 
deltavtot = MAGBURN(i) + deltavtot 

enddo 

C    Find the sum of the Delta_V used for func 
C    Use this formulation if outside the box 

if (bcconsttot .gt. l.OdO) then 

usedburn = 1 
do i = 1, PGALIM.MAXBURN 

if (onoff(i) .eq.l) then 
do j = 2,4 

comp = BURN_DELTA_V(j,usedburn)* *2.OdO 
deltavsum(i) = comp + deltavsum(i) 

enddo 
usedburn = 1 + usedburn 

else 
do j = 1,3 

comp = (p(i+j*PGALIM.MAXBURN)-0.0d0)**2.0d0 
deltavsum(i) = deltavsum(i) + comp 

enddo 
endif 
vconst = dsqrt(deltavsum(i))+vconst 
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enddo 

Use this formulation if inside the box 

else 

usedburn = 1 
do i = 1, PGALIM.MAXBURN 

do j = 1,3 
comp = (p(i+j*PGALIM.MAXBURN))**2. OdO 
deltavsum(i) = comp+deltavsum(i) 

enddo 
vconst = dsgrt(deltavsum(i))+vconst 

enddo 

endif 

vconst  = vconst * PGALIM.targetweight(7) 

if (PGALIM.firstdev.ne.O.OdO) then 
timeconst = (PGALIM.MAXTIME-PGALIM.firstdev)/86400.OdO 

else 
timeconst = 0.OdO 

endif 

FINALLY, calculate func associated with given string 

if (pgalim.eflag .eq. .false.) then 
if (pgalim.opflag.eq.l) then 

func = PGALIM. firstdev/86400. OdO 
else if (bcconsttot.lt.3000.OdO) then 

func = bcconsttot*(4.Od-l)+vconst*(4.Od-l) 
else 

func = bcconsttot*0.000001d0 + vconst*0.5d0+timeconst 
endif 

else 
func = PGALIM.MINERROR 

endif 

Write the output the last time through func   

if ((pgalim.end .eg. .true.) .or. (pgalim.plot .eq. .true.)) then 

if(PGALIM.OPFLAG.eq.l) then 

do i = 1,PGALIM.LEN 
PGALIM.BEST(i) = p(i) 

enddo 
PGALIM.BEST(PGALIM.LEN+1) = PGALIM.firstdev- 

(86400.OdO/PGALIM.TIMESPERDAY) 
PGALIM.OPFLAG = 2 

write(*,*) 'func=',func 
write(*,*) 'Endtime = ',PGALIM.firstdev,'seconds' 

else 

write(*,*) 'func=',func 
do i = 1,6 

if (PGALIM.targeton(i) .eq. 1) then 
write(*,100) i,PGALIM.target(i),elements(i), 

PGALIM.target(i)-elements(i) 
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else 
write(*,101) i,PGALIM.target(i),elements(i) 

endif 
enddo 

do i = 1,6 
write(*,*) 'Max Deviation of element',i,maxbcconst(i) 

enddo 
do i = 1,6 

write(*,*) 'Total Deviation of element', i, totbcconst(i) 
enddo 

write(*,*) 'Total DeltaV=',deltavtot 
write(*,*) 'Number of Burns=',BURN_NUMBER 
write(*,*) 'End Time=',endtime/86400 . OdO 

write(*,*) 'BURN TABLE  
do i = 1, BURN_NUMBER 

write(*,*) i,' Time=',BURN_DELTA_V(1,i), 
'Magni tude =',MAGBURN(i) 

enddo 

  Update for next time through loop 

if (bcconsttot.gt.5.0d0) then 
writef* *) '*******************************************' 
write (*',*) '* ERROR--SOLUTION NOT IN BOX *' 
write(*,*) '* REOPTIMIZING LAST LOOP *' 
writef* *) '*******************************************' 

else 
checktime = endtime - 86400.0d0*2.OdO 

time = checktime 

STATUS = SATELLITE ( name, TIME, 
2 BURN_DELTA_V,   BURN_NUMBER, 
3 IATMOS_PREBURN, IATMOS_POSTBURN, 
4 RHO_ONE_HIGH,   RHO_ONE_LOW, 
5 EPOCH_YMD,      EPOCH_HMS, 
6 POSVEL, ELEMENTS, 
7 MESSAGE, FILENAME ) 

do i = 1,6 
write(*,*) 'Next Starting Element',i,elements(i) 

enddo 

cal1 j ulpak(dayj ul0,secj ul0,pmern.date,pmern.time) 
call calndr (year,month,day,hour,minute,second, 

1 dayjulO,secjulO + checktime) 
call Julian (dayjul,secjul,year,month,day, 

hour,minute,second) 
call calpak (nextdate,nexttime,dayjul,secjul) 

write(*,*) 'Next Start Date',nextdate 
write(*,*) 'Next Start Time',nexttime 

PGALIM.totalburns = PGALIM.totalburns + BURN_NUMBER 
PGALIM.totaldeltav = PGALIM.totaldeltav + deltavtot 

do i = 1,6 
PGALIM.kepels(i) = elements(i) 

enddo 
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do i = 1,BURN_NUMBER 
write(91,*) BURN_DELTA_V(1,i)+ PGALIM.epochtime 
write(91,*) BURN_DELTA_V(2,i) 
write(91,*) BURN_DELTA_V(3,i) 
write(91,*) BURN_DELTA_V(4,i) 

enddo 

PGALIM.epochtime = checktime + PGALIM.epochtime 
PGALIM.nextdate = nextdate 
PGALIM.nexttime = nexttime 

endif 

endif 

write(*,*) 'BURN COMPONENTS   
write(*,*) '        TIME  TANGENTIAL 

NORMAL      RADIAL    BURN NUMBER' 

usedburn = 1 
do i = 1, PGALIM.MAXBURN 

if (onoff(i).eg.l) then 
write(*,50) p(i),p(i+PGALIM.MAXBURN*!), 

p(i+2*pgalim.maxburn),p(i+3*pgalim.maxburn),order(usedburn) 
usedburn = usedburn + 1 

write(*,51) p(i),p(i+PGALIM.MAXBURN*1) 
,p(i+2*pgalim.maxburn),p(i+3*pgalim.maxburn) 

endif 
enddo 

endif 

5 0 FORMAT(F14.4,F12.6,F12.6 , F12.6,F10.0) 
51 FORMAT(F14.4,F12.6,F12.6,F12.6) 
100 Format(I4,F16.8,F16.8,F16.8) 
101 Format(I4,F16.8,F16.8) 
150 Format(I4,F16.8,F16.8) 

return 
end 
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D-2 Feasibility Test of the Op erational Approach Deviation Plots 

In order to verify that the operational approach was indeed a viable method for 

producing station-keeping strategies, the operational approach was applied to the global 

approach case two epoch elements. As described in section 5-3-2-1-3 these epoch 

elements were created such that a violation of all six orbital elements is guaranteed in the 

first few days of operation. Due to all six orbital elements violating, this choice of 

elements provides a robust test of the station-keeping algorithm and was therefore used to 

determine the feasibility of employing such an approach. This section contains the 

element history plots of each of the six orbital elements resulting from the application of 

the operational station keeping approach to the case two epoch elements. 
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D-3 Input Decks for Operational Approach as Planning Tool 

This section contains the input decks utilized to define both the reference and 

actual orbits for testing the application of the operational approach as a planning tool. 

The first input deck was used to create the reference orbit in DSST and the second was 

used to create the actual orbit. The elements contained in both input decks are a result of 

a five-year 113:14 optimization as explained in section 5-4-5-1-1. Proper flag and 

keyword values were determined from personal communications with Dr. Ronald Proulx, 

The Charles Stark Draper Laboratory. 

D-3-1 
c 
c 
c 
c 
C2345 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

Reference Orbit 

PMEF FILE FOR PLANNING TEST REFERENCE ORBIT DEFINITION 

678901234567 
200003210000 
014800000000 
104968757094 
333032573734 
116561450620 
000000000000 
260000000000 
000000000000 
000000000000 
000000000000 
000000000000 
000000000000 
000000000000 
000000000000 
000000000000 
000000000000 
000000000000 
000000000000 
000000000000 
000000000000 
200000000000 
000000000000 
500000000000 
500000000000 
500000000000 
125000000000 
433000000000 
864000000000 
140000000000 
113000000000 
000000000000 
000000000000 
000000000000 

890123456 
0000D+08 
0000D+06 
8029D+05 
1785D+00 
9416D+03 
0000D+03 
0000D+03 
0000D+03 
0000D+00 
0000D+00 
OOOOD+00 
00000+00 
0000D+00 
OOOOD+00 
OOOOD+00 
0000D+00 
0000D+00 
0000D+00 
OOOOD+00 
0000D+00 
0000D+01 
0000D+00 
0000D-04 
OOOOD-04 
00OOD-O4 
0000D+04 
0000D-04 
0000D+05 
O000D+02 
0000D+03 
0000D+00 
0000D+00 
0000D+00 

78901234567890123456789012345678901234567 89012 
PME_DATE 1 
PMEJTIME 2 
ELS_KEP(1) 3 
ELS_KEP(2) 4 
ELS_KEP(3) 5 
ELS_KEP(4) 6 
ELS_KEP(5) 7 
ELS_KEP(6) 8 
ELS_EQUIN(1) 9 
ELS_EQUIN(2) 10 
ELS_EQUIN(3) 11 
ELS_EQUIN(4) 12 
ELS_EQUIN(5) 13 
ELS_EQUIN(6) 14 
POSVEL(l) 15 
POSVEL(2) 16 
POSVEL(3) 17 
POSVEL(4) 18 
POSVEL(5) 19 
POSVEL(6) 20 
PME_CD 21 
PME_RHO_ONE 22 
SMA_SIGMA 23 
INC_SIGMA 24 
ASC_SIGMA 25 
PME_SCMASS 26 
PME_SCAREA 27 
PME_STEPSIZE 28 
DP_SPARE1 29 
DP_SPARE2 3 0 
DP_SPARE3 31 
DP_SPARE4 32 
DP SPARE5 33 
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000000000000OOOOD+00 DP_SPARE6 34 
1 PME_RETRO 35 

12 PME_KEP_SYS 36 
12 POS_VEL_SYS 37 
1 GEN_METHOD 38 
1 ATMOS_MODEL 39 

840401 JACRB_DATE 40 
123 JACRB_SSS 41 

840401 SLP1950 DATE 42 
456 SLP1950_SSS 43 

840401 SLPTOD_DATE 44 
789 SLPTOD_SSS 45 

840401 TIMECF_DATE 46 
123 TIMECF_SSS 47 

2 HARRIS_MODEL 48 
10 POTNTL_MODEL 49 
50 PME_NMAX 50 
0 PME_MMAX 51 
1 PME_IZONAL 52 
1 PME_IJ2J2 53 
0 PME_NMAXRS 54 
0 PMEJYMAXRS 55 
3 PME_ITHIRD 56 
2 PME_INDDRG 57 
2 PME_ISZAK 58 
2 PME_INDSOL 59 
2 PME_JSHPER 60 
1 PME_JZONAL 61 
1 PME_JMDALY 62 
2 PME_INP_TYPE 63 

12 PME_EQUI_SYS 64 
11 INTEG_FRAME 65 
19 OUTPUT_FRAME 66 
0 PME_NSTATE 67 
1 PME_SPSHPER 68 
2 PME_KSPCF 69 
4 PME_INDSET 70 
0 INT_SPARE1 71 
0 INT_SPARE2 72 
0 INT_SPARE3 73 
0 INT_SPARE4 74 
0 INT_SPARE5 75 
0 INT_SPARE6 76 
0 INT_SPARE7 77 
0 INT_SPARE8 78 
0 INT_SPARE9 79 
0 INT_SPARE10 80 

2 = DRAG OFF 

2 = SOLRAD OFF 

D-3-2 Actual Orbit 

c 
C      PMEF FILE FOR ACTUAL ORBIT FOR PLANNING TEST CASES 
C 
C23456789012345678901234567890123456789012345678901234567890123456789012 

0.2000032100000000D+08 PME_DATE 1 
0.0148000000000000D+06 PME_TIME 2 
0.1049687570948029D+05 ELS_KEP(1) 3 
0.3330325737341785D+00 ELS_KEP(2) 4 
0.1165614506209416D+03 ELS_KEP(3) 5 
0.0000000000000000D+03 ELS_KEP(4) 6 
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0.2600000000000000D+03 ELS_KEP(5) 7 
O.OOOOOOOOOOOOOOOOD+03 ELS_KEP(6) 8 
0.000000000000000OD+00 ELS_EQUIN(1) 9 
0.0000000000000000D+00 ELS_EQUIN(2) 10 
0.00000000000OO0OOD+0O ELS EQUIN(3) 11 
0.00000000000000000+00 ELS_EQUIN(4) 12 
0. 00000000OOOOOOOOD+OO ELS_EQUIN(5) 13 
0.00000000000000OOD+00 ELS_EQUIN(6) 14 
0.00000000000000OOD+OO POSVEL(1) 15 
0.00000000000000OOD+00 P0SVEL(2) 16 
O.OOOOOOOOOOOOOOOOD+OO POSVEL(3) 17 
O.OOOOOOOOOOOOOOOOD+00 POSVEL(4) 18 
O.OOOOOOOOOOOOOOOOD+OO POSVEL(5) 19 
O.OOOOOOOOOOOOOOOOD+00 POSVEL(6) 20 
0.2000000000000000D+01 PME_CD 21 
O.OOOOOOOOOOOOOOOOD+OO PME_RHO_ONE 22 
0.500000000000000OD-04 SMA_SIGMA 23 
0.5000000000000000D-04 INC_SIGMA 24 
0.5000000000000000D-04 ASC_SIGMA 25 
0.1250000000000000D+04 PME_SCMASS 26 
0.4330000000000000D-04 PME_SCAREA 27 
0.864000000000000OD+05 PME_STEPSIZE 28 
0.140000000000000OD+02 DP_SPARE1 29 
0.113 0000000000000D+03 DP_SPARE2 30 
O.OOOOOOOOOOOOOOOOD+OO DP_SPARE3 31 
O.OOOOOOOOOOOOOOOOD+00 DP_SPARE4 32 
O.OOOOOOOOOOOOOOOOD+OO DP_SPARE5 33 
O.OOOOOOOOOOOOOOOOD+00 DP_SPARE6 34 

1 PME_RETRO 35 
12 PME_KEP_SYS 36 
12 POS_VEL_SYS 37 
1 GEN_METHOD 38 
1 ATMOS_MODEL 39 

840401 JACRB_DATE 40 
123 JACRB_SSS 41 

840401 SLP1950 DATE 42 
456 SLP1950_SSS 43 

840401 SLPTOD_DATE 44 
789 SLPTOD_SSS 45 

840401 TIMECF_DATE 46 
123 TIMECF_SSS 47 

2 HARRIS_MODEL 48 
10 POTNTL_MODEL 49 
21 PME_NMAX 50 
21 PME_MMAX 51 
1 PME_I ZONAL 52 
1 PME_IJ2J2 53 

21 PME_NMAXRS 54 
21 PME_MMAXRS 55 
1 PME_ITHIRD 56 
1 PME_INDDRG 57 2 = DRAG OFF 
1 PME_ISZAK 58 
1 PME_INDSOL 59 2 = SOLRAD OFF 
2 PME_JSHPER 60 
1 PME_JZONAL 61 
1 PME_JMDALY 62 
2 PME_INP_TYPE 63 

12 PME_EQUI_SYS 64 
11 INTEG_FRAME 65 
19 OUTPUT_FRAME 66 
0 PME_NSTATE 67 
1 PME_SPSHPER 68 
2 PME_KSPCF 69 
1 PME_INDSET 
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INT SPARE1 71 
INT SPARE2 72 
INT SPARE3 73 
INT SPARE4 74 
INT SPARE5 75 
INT „SPARE 6 76 
INT SPARE7 77 
INT. .SPARE8 78 
INT SPARE9 79 
INT SPARE10 80 

D-4 Results of Operational Approach as Planning Tool 

As discussed in section 5-4-5, by stringing together a number of applications of 

the operational approach, estimates of the amount of fuel required for an extended period 

of time can be obtained. This section contains the results from a number of these 

planning applications. The uncontrolled five-year element deviation histories are first 

presented for later comparison with the controlled elements. The results of three separate 

cases are then presented: a 1 year test case, a 2.5 year AV estimation, and 1200 day case 

used to show the greediness of the strategy. 

D-4-1 Uncontrolled Deviation with Five-year Optimized Epoch Elements 

Due to the change in length of optimization times (from 90 days to one year or 

more), it was necessary to redefine the optimal epoch elements for a five year case with a 

March 21, 2000 epoch (see section 5-4-5-1-1). The definition of new elements also 

changed the behavior of the uncontrolled orbit. For comparison to controlled results 

which are presented in subsequent sections, the five-year uncontrolled deviations from 

the reference orbit are presented here. 
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D-4-2 Results of One Year Test of Operational Planning Tool 

This section contains the results of the repeated application of the operational 

approach to the Borealis™ node at noon orbit for one year. This case was used to verify 

the use of the operational approach as a planning tool. 
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D-4-3 Results of 2.5 Year AV Estimation from Operational Planning Tool 

After slight modifications, found to be necessary as a result of the one-year case, 

the operational approach was applied to the Borealis™ node at noon orbit to estimate the 

required AV for 2.5 years. This section contains the element deviation history plots 

resulting from that optimization. 
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D-4-4 1200 Day Optimization Using Operational Approach Results 

This section contains the plots resulting from running the operational approach as 

a planning tool for an additional 200 days past the end of the 2.5-year results. Both the 

argument of perigee and ascending node trajectories end up "crawling" along the edge as 

a result of the greediness of the operational approach (see section 5-4-5-2). 
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