
ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

ADVANCED DISTRIBUTED

SIMULATION TECHNOLOGY II

(ADST II)

HIGH LEVEL ARCHITECTURE TOOLS ANALYSIS
AND INTEGRATION SUPPORT

(DO #0061)

CDRL AB01

FINAL REPORT

FOR: NAWCTSD/STRICOM
12350 Research Parkway
Orlando, FL 32826-3224
N61339-96-D-0002
DI-MISC-80711

BY: Lockheed Martin Corporation
Lockheed Martin Information Systems
ADST II
P.O. Box 780217
Orlando, FL 32878-0217

Approved for public release; distribution is unlimited

DTIC QUALITY IN&>ECTED 4 19991115 062

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
31 MAR 1998

3. REPORT TYPE AND DATES COVERED
final

4. TITLE AND SUBTITLE
Advanced Distributed Simulation Technology II (ADST-II)
High Level Architecture Tools Analysis And Integration
Support Final Report

6. AUTHOR(S)

5. FUNDING NUMBERS
N61339-96-D-0002

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lockheed Martin Information Systems
ADST-II
P.O. Box 780217
Orlando Fl 32878-0217

8. PERFORMING ORGANIZATION
REPORT NUMBER

ADST-II-CDRL-HLAIDE-9800083

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

NAWCTSD/STRICOM
12350 Research Parkway
Orlando, FL 32328-3224

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The HLA Integrated Development Environment (HIDE) delivery order was to provide a focus for the analysis, evaluation,
implementation, and integration of many tools and toolkits required by the High Level Architecture (HLA). This effort was intended
to expand and enhance the initial prototyping effort discussed in the Advanced Distributed Simulation Technology (ADST) II HLA
Integrated Development Environment (HIDE) Results of Analysis Report, Contract Data Requirements List (CDRL) AB01, 31 March
1998. That initial prototyping effort focused on the design and initial implementation of an integrated development environment to
support High Level Architecture development and the integration of tools from the Defense Modeling Simulation Office (DMSO),
Simulation, Training, and Instrumentation Command (STRICOM), Defense Advanced Research Projects Agency (DARPA) and
others.

14. SUBJECT TERMS
STRICOM, ADST-II, HLA, simulation, Tools, DARPA, DISMO

15. NUMBER OF PAGES
57

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT UNCLASSIFIED

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

Document Control Information

Revision Revision History Date
Initial Release 03/31/98

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

EXECUTIVE SUMMARY 3

1. INTRODUCTION 5

1.1 PURPOSE 5
1.2 CONTRACT OVERVIEW 5
1.3 EFFORT OVERVIEW 5
1.4 TECHNICAL OVERVIEW 5

1.4.1 Implementation oftheHLA tools integration framework 6
1.4.2 Integration of selected object modeling tools into the framework 6
1.4.3 Integration of selected software engineering tools into the framework 6
1.4.4 Implement a new tool using the framework 7

2. APPLICABLE DOCUMENTS 7

2.1 GOVERNMENT 7
2.2 NON-GOVERNMENT 7

3. RESULTS AND ANALYSIS 7

3.1 IMPLEMENTATION OF HIDE 7
3.1.1 Catalyst Browser Issues 8
3.1.2 Catalyst Administration Tool Issues 9
3.1.3 Catalyst Support Tool Issues 9
3.1.4 Impact Analysis Issues 10
3.1.5 Process Definition Issues 10
3.1.6 Process Enactment Issues 12
3.1.7 Loose Integration Issues 13
3.1.8 Tight Integration Issues 14
3.1.9 Levels of Integration 15

3.1.9.1 Level 1: Access to Tools and Files within a Process 16
3.1.9.2 Level 2: Bi-directional Translation of Data into CORBA/Catalyst 16
3.1.9.3 Level 3: Linking CORBA Objects from Different Tools/Databases 17
3.1.9.4 Level 4: Completeness and Consistency of Integrated Data 17

3.1.10 Common Object Model 18
3.1.11 Semantic Consistency and Completeness 19
3.1.12 Automatic Linking of Data 20
3.1.13 FOM Generation Issues 20
3.1.14 Documentation Generation and Navigation 22
3.1.15 FEDEP Process Enactment 25

3.2 INTEGRATION OF CURRENT HLA TOOLS 27
3.2.1 CAFDE 27
3.2.2 Federation Management Tool (FMT) 30
3.2.3 Federation Data Collection Tool 30
3.2.4 TASCVision 30
3.2.5TASCOMDT 30
3.2.6 Visual OMT. 31
3.2.7 OMDT Pro (HLA Lab Works) 31
3.2.8 FedProxy (HLA Lab Works) 31
3.2.9 FedDirector (HLA Lab Works) 32
3.2.10 Conceptual Modeler (HLA Lab Works) 32
3.2.11 Federation Composer (HLA Lab Works) 33
3.2.12 Scenario Generation Tool (SGT) (HLA Lab Works) 33
3.2.13 Scenario Execution Planning Tool (SEPT) (HLA Lab Works) 33
3.2.14 Scenario Monitor (HLA Lab Works) 34
3.2.15 Federation Test Suite (FTS) 34

FNL_RPT.DOC Approved for public release; distribution is unlimited

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

3.2.16 OSim 35
3.2.17 ModOIS 35
3.2.18 ModSAF scenarios 35
3.2.19 RTIME. 35
3.2.20 Warfighting Analysis and Integration Center Java PVD 35
3.2.21 Federation Execution Planner's Workbook Tool 36
3.2.22 Federation Verification Tool 36
3.2.23 XGen 36
3.2.24 DEM. 36
3.2.25 TASC HLA Construction Kit 36
3.2.26 Modus Operandi Scenario Generation Tool 37

3.3 INTEGRATION OF SOFTWARE ENGINEERING TOOLS 37
3.3.1 Chimera 38
3.3.2 OzWeb 38
3.3.3 WinWin 39
3.3.4 EMMA 40
3.3.5 Sybil 41
3.3.6 Together/J 41

3.4 IMPLEMENTATION OF HLA ARBITRATION TOOL 41
3.4.1 Comparing SOMs with other SOMs andFOMs 42

3.4.1.1 Object Correlation Metrics 42
3.4.1.2 Attribute Correlation Metrics 45
3.4.1.3 Incremental Decomposition and Abstraction 46

3.4.2 SOM-FOM translation 47

4. SCENARIO 49

5. CONCLUSION 49

6. POINTS OF CONTACT 52

7. ACRONYMS 53

FNL_RPT.DOC Approved for public release; distribution is unlimited

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

EXECUTIVE SUMMARY

The HLA Integrated Development Environment (HIDE) delivery order was a study and
prototyping effort focused on the design and initial implementation of an integrated
development environment to support High Level Architecture (HLA) development and the
integration of tools from the Defense Modeling Simulation Office (DMSO), STRICOM,
DARPA and others. The focus of the effort was on the analysis, evaluation, implementation,
and integration of the tools required to support the Federation Development and Execution
Process (FEDEP) of the HLA. HLA tools currently being developed are not interoperable
and most are being developed in a stovepipe fashion or with the expectation that data
interchange formats (DIF) will solve all the interoperability needs. A common integration
framework is needed that supports a common object representation for domain information,
allowing data from various tools to be shared and semantically linked, thus giving an
integrated view of related HLA FEDEP data. The framework should also support the
continuous evolution of tools, standards, and applications.

The objectives of the HIDE effort were:

1. Implement an initial version of HIDE. This objective involved using Catalyst as a basis
for HIDE. Catalyst is a CORBA-based (Common Object Request Broker Architecture)
integration framework developed by Modus Operandi under sponsorship from Rome
Labs and DARPA's Evolution Design of Complex Software (EDCS) program. Catalyst
meets the goals specified above by providing common CORBA object models for data
and providing mechanisms importing tool data into the common object representation and
exporting it out of the same representation. Catalyst also supports the semantic linking of
these objects so that integrated information can be browsed in an appropriate fashion. A
basic functionality was to have been demonstrated by developing a prototype ModSAF
Simulation Object Model (SOM) in the common object representation. However, the
focus of the effort was changed to Federation development and a ModSAF-based
Federation Object Model (FOM) was developed instead.

2. Integrate current HLA tools. This objective was to integrate robust HLA tools that were
available, low cost, useful, and met the customer's needs. At the time, the STRICOM
Object Model Development Tool (OMDT) developed by TASC was the only UNIX tool
that met these requirements. It was "loosely" integrated using integration scripts that
parse OMDT DIF files, creating CORBA objects and vice-versa. As part of this
objective, other candidate HLA tools were also to be identified for future integration.

3. Integrate selected software engineering tools. This objective was to identify and
integrate appropriate tools from the software engineering domain. Such tools include
information web/browsers, information linking tools, process enactment tools, impact
analysis tools, requirements negotiation tools, design management tools, code generation
tools, and reengineering tools. The DARPA EDCS program was the primary source of
these tools. Catalyst itself already provided tools in the area of process enactment, impact
analysis, information browsing, information linking, and requirements negotiation and

FNL_RPT.DOC Approved for public release; distribution is unlimited 3

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

thus the goal was to demonstrate their functionality in an HLA federation development
environment.

4. Implement an initial HLA arbitration tool. A need was identified for a new HLA tool
able to support a developer in creating new Federation Object Models (FOMs) by
providing the capability to compare Simulation Object Models (SOMs) with FOMs. This
comparison allows a developer to determine where the SOM from a new federate should
be placed in the FOM and also allows the developer to find the best match of an existing
FOM with the candidate federate SOMs. A prototype of this kind of tool was to be
developed. Because of competing efforts by Aegis Research, the development of this
tool was put on hold. Only requirements and design information was gathered for this
tool.

5. Develop a detailed plan for the implementation of a robust version of HIDE and the
tools within it. This plan became the proposal for the follow-on work and thus is not
presented in this document. Refer to the High Level Architecture Tools Analysis and
Integration Support proposal for more information.

The following report contains the results of these objectives. The issues associated with the
use of Catalyst as the basis for HIDE are discussed as well as changes deemed necessary to
the Catalyst tool suite. Also presented is a brief analysis of the various HLA, EDCS, and
other tools available with emphasis on their capabilities and their appropriateness to the
HLA. Tools that were integrated are also discussed, along with any appropriate issues.

Through the course of this work the effort shifted focus to the HLA FEDEP model. As a
result, there is some discussion concerning the development of the FEDEP in HIDE and its
enactment, along with issues concerning tools and the FEDEP. As this work progressed,
other topics were discovered, such as the automatic generation of FOMs, loose versus tight
integration of tools in HIDE, the automatic linking of integrated data in the FEDEP process,
automatic documentation generation and navigation, and the semantic consistency and
completeness of integrated FEDEP data. These are all discussed in this report.

FNL_RPT.DOC Approved for public release; distribution is unlimited

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

1. INTRODUCTION

1.1 Purpose

The purpose of this final report is to document the ADST II effort which created the initial
version of HIDE. This report includes a full description of each effort pursued under each
initial objective, any lessons learned, and the results of analysis.

1.2 Contract Overview

HIDE was performed as DO #0061 under the Lockheed Martin Corporation (LMC) ADST II
contract with STRICOM. The contract required LMC to create a prototype HLA
development environment and perform a study (much like a Mini-FAS) for a more robust
environment to be developed under follow-on work. The effort was successfully completed
on 31 March 1998. The results are documented in this final report (CDRL AB01).

1.3 Effort Overview.

The HLA Integrated Development Environment (HIDE) delivery order was a study and
prototyping effort to implement an integrated development environment to support High
Level Architecture (HLA) development, and it included the integration of tools from the
Defense Modeling Simulation Office (DMSO), STRICOM, DARPA and others. The focus
of the effort was on the analysis, evaluation, implementation, and integration of the tools
required to support the Federation Development and Execution Process (FEDEP) of the
HLA. HIDE was used as the foundation of this effort. Based upon the Catalyst framework,
it provided a common object representation for the integration and semantic linking of the
data from various HLA and software engineering tools.

1.4 Technical Overview

The technical approach to the HIDE effort involved the data collection, evaluation, analysis,
implementation, integration, and demonstration support of HIDE and its corresponding tools.
The effort leveraged existing freeware toolsets, DMSO tools, and DARPA tools to provide a
foundational framework for the tool suite. Specifically, the technical approach involved four
tasks:

1. Implementation of the HLA tools integration framework;
2. Integration of selected object modeling HLA tools into the framework;
3. Integration of selected software engineering tools into the framework;
4. Implement a new tool using the framework.

The following is a short synopsis of each technical effort.

FNL_RPT.DOC Approved for public release; distribution is unlimited

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

1.4.1 Implementation of the HLA tools integration framework

Catalyst was used as a basis for developing HIDE. Catalyst is a CORBA-based (Common
Object Request Broker Architecture) integration framework developed by Modus Operandi
under sponsorship from Rome Labs and DARPA's Evolution Design of Complex Software
(EDCS) program.. Catalyst provides common object models for data and provides
mechanisms for the integration of data from tools into and out of the common object
representation. Catalyst also supports the semantic linking of this data so integrated
information can be browsed in an appropriate fashion. A basic functionality was to have
been demonstrated by developing a prototype ModSAF Simulation Object Model (SOM) in
the common object representation. However, the focus of the effort was changed to
Federation development and a ModSAF-based Federation Object Model (FOM) was
developed instead.

Through the course of this task, the effort shifted focus to the HLA FEDEP model. As a
result, issues concerning the development of the FEDEP in HIDE and its enactment in the
Catalyst process enactment tool were discovered. As this work progressed, it became clear
that other important issues needed to be addressed, such as the automatic generation of
FOMs, loose versus tight integration of HLA tools, the automatic linking of integrated HLA
data, automatic documentation generation and navigation, and the semantic consistency and
completeness of integrated FEDEP data.

1.4.2 Integration of selected object modeling tools into the framework

Under this task, the STRICOM Object Model Development Tool (OMDT) developed by
TASC was "loosely" integrated into Catalyst using integration scripts that could parse
OMDT DIF files, creating CORBA objects, and vice-versa. Also under this task, other
candidate HLA tools were identified for future integration. Special attention was given to
tools that met the following criteria: (1) robustness, (2) availability, (3) inexpensive, (4)
useful, (5) meets customer needs.

1.4.3 Integration of selected software engineering tools into the framework

Under this task, WinWin, an EDCS requirements capture and negotiation tool developed by
the University of Southern California Center for Software Engineering, was integrated into
HIDE. WinWin was already loosely integrated into Catalyst but WinWin did not work under
the current HIDE environment nor were there any HLA artifacts. Also performed under this
task was the identification of potentially applicable tools from the software engineering
domain. Such tools included information web/browsers, information linking tools, process
enactment tools, impact analysis tools, requirements negotiation tools, design management
tools, code generation tools, and reengineering tools. The DARPA EDCS program was the
primary source of these tools. Catalyst itself already provided tools in the area of process
enactment, impact analysis, information browsing, information linking, and requirements
negotiation and thus the goal was to demonstrate their functionality in an HLA federation
development environment.

FNL_RPT.DOC Approved for public release; distribution is unlimited

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

1.4.4 Implement a new tool using the framework

A need was identified for a new HLA tool that to support a developer in creating new FOMs
by providing the capability to compare SOMs with FOMs. This comparison allows the
developer to determine where the SOM from a new federate should be placed in the FOM
and also allows the developer to find the best match of an existing FOM with the candidate
federate SOMs. Under this task, a prototype of this tool was to be developed. However,
because of competing efforts by Aegis Research, the development of this tool was put on
hold. Only requirements and design information was gathered for this tool.

2. Applicable Documents

2.1 Government

ADST II Work Statement for the High Level Architecture Tools Analysis and
Integration Support, September 3,1997, AMSTI-97-W084.

2.2 Non-Government

ADST II Technical Approach for the High Level Architecture Tools Analysis and
Support Delivery Order (HIDE98), February 13, 1998, ADST II-TAPP-HIDE98-
9800046

3. Results and Analysis

3.1 Implementation of HIDE

The Catalyst framework developed by Modus Operandi serves as the framework for HIDE.
It is a CORBA framework that provides a set of tools to support the integration of data as
CORBA objects and navigation among objects within the resultant knowledge base. In order
to met the needs of HIDE, several problems have been identified a that should be corrected,
complemented by recommended enhancement to make HIDE a more powerful environment,
such as automatic FOM generation, automatic linking of data, loose versus tight integration
of tools, the levels of tool integration, semantic consistency and completeness, automatic
document generation and navigation, a common domain object model, and FEDEP
enactment; all of these issues need to be explored in follow-on work to create a HIDE that is
useful for large federations Each of these problems and recommended enhancements is
discussed within the context of the tool to which it relates.

FNL_RPT.DOC Approved for public release; distribution is unlimited

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

3.1.1 Catalyst Browser Issues

Cosmetic Changes.
1. Change the Title bar of the browser and the popup selector to HIDE Information

Browser.
2. The object locator should be changed to something like HIDE Information Locator. This

would have to change on the Browser Window menu, the popup selector, and the title bar
of the object locator itself.

3. The machine and workgroup contexts need to also be removed from the viewer and only
displayed with some command line option. These just confuse things and allow the user
to do potentially harmful things.

Saving.
It is unnatural to require the user to save objects before they can be copied and pasted. If this
is a CORBA requirement, then the objects should be saved automatically if needed as part of
the copy process.

Orphaned Objects.
There needs to be a way to get a list of all available object servers so that objects that are
orphaned can be deleted. Perhaps a better way to accomplish this would be to prompt the
user for confirmation when removing an unreferenced object from the name service If the
user then "ok's" removal from the name server, the object may be deleted as well.

Multiple Object Servers.
There needs to be an easy way within Catalyst to specify different object servers for the same
class. This will account for the case of more than one tightly integrated tool providing the
same class data.

GUI.
1. There needs to be a horizontal scrollbar on the edit attributes window.
2. The user should be able to click on the name of the attribute to edit, in addition to the

field area.

Tool Invocations.
There needs to be a quicker way to invocate a tool from the annotation object. Perhaps the
user could double right click on an annotation object and it would automatically call the
display function to invoke the tool.

Schema Browser.
There needs to be a Catalyst schema browser. Links to Schemas and instances can provide
many different uses and would help in querying of data. As part of an evolvable framework,
we may want to think more about schema maintenance.

FNL RPT.DOC Approved for public release; distribution is unlimited

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

OCI scripting.
A TCL command is needed to refresh objects automatically. For this effort, TCL scripts
have been written that execute when the user clicks on "display" in the edit attributes
window. The script takes all the Catalyst data and exports it to an HLA DIF/FED file format,
then automatically executes the appropriate tool with that file. Next, upon closing the tool,
another script is run that automatically converts the newly modified data back to Catalyst
(using mapping files to reuse existing objects and delete ones that were deleted in the tool).
Since the data has changed in Catalyst, the display in the Catalyst browser needs to be
refreshed and started over from the root object. Refreshing the root object doesn't seem to
work: the root has to be deleted and retrieved from the locator again. A TCL command that
would do this automatically would go a long way towards making the loose integrations act
more like a tight integration, while also enforcing consistency among the tool and Catalyst
data.

3.1.2 Catalyst Administration Tool Issues

Clear and import.
The Administration tool needs a mechanism to clear all process data before re-importing it.
In the current version, each process/role/work product has to be individually deleted from a
scrolling list. There needs to be a capability to allow the user to select a range of items (or
all) from the scrolling list, mark them, and delete them. Users should also be warned,
however, that they may be deleting common objects on a global edit.

Saving .ver files.
For export into Catalyst, the user should be able to save to any filename with a .ver extension
and load it, rather than having the tool automatically save it as CPD.ver file. Consequently,
the Administration tool should allow the user to enter the name of the export file.

3.1.3 Catalyst Support Tool Issues

Deleting Relations.
Currently, relations can be added to the system but never deleted. This is a problem if a
relation is accidentally created.

Creating Relations.
A GUI interface is needed for the definition of relations. The current approach is via a text
file which is inadequate for most users.

FNL_RPT.DOC Approved for public release; distribution is unlimited

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

3.1.4 Impact Analysis Issues

Window resizing.
When the Impact Definition window is resized, the Available Relations scrolling list covers
the [move »] button. The window has to be closed and reopened to get it back.

Defaults.
The "Open" selection did not provide the default name "new impact analysis"; it was blank at
first. This should not be the case.

Label area.
The return command does not work. The user must click the mouse instead.

Analysis results.
For some reason, only partial data was copied into the solution columns from Impact
Analysis (2 in column 1 and none in the rest.)

Impact definition.
The issue here is why do selected relations have to be in order?

Not equal does not work.
In Impact Definition you cannot say [state != "initial"] and have it test correctly.

3.1.5 Process Definition Issues

Because the process definition tool is written using InSight, a majority of the issues with the
tool result from the interface of InSight. The interface does not work the way other mouse
interfaces work (using different buttons, double clicking required in some places, menu bar
toggles) making it difficult to use and in some cases causing work to be lost. This tool
should be ported to Java so that a consistent interface can be used across platforms.

Quick delete.
When the user selects the File menu bar with the right button, it toggles the option to close
instead of bringing down the menu. Since there also is no confirmation of closing, work can,
and was, lost numerous times.

The meaning of "work product."
It is unclear that a "work product" is an object in Catalyst/InSight that is a symbolic reference
to the "actual work product" that stakeholders might be working on. This needs to be pointed
out, maybe with a picture. Also, it would be nice to have some easy way of linking the
Catalyst/CORBA object to the actual artifact with an established semantic relation. [Note:
this may be done through Annotations.] In that way, instances of objects could be related to
instances of artifacts. It would be a much easier thing to do version control and CM using

FNL RPT.DOC Approved for public release; distribution is unlimited 10

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

scripts/rules to monitor changes to the document and compare it to the last edit date, for
example.

InSight work product attribute definition and display.
It would be nice to be able to define attributes of objects (especially work products) in
InSight as you are setting up your entry and exit conditions, or at least have some easy way to
look at what attributes are available to use in the conditions. With the current mechanism,
the user has no way to verify which attributes could be tested against or what they were from
this window.

Window back tracking.
If the top level window is accidentally closed, the current work can never be saved since the
save option is only present in this topmost window. Closing this window should not only
require confirmation but should close all the child windows as well, essentially closing the
application.

Selecting text to edit.
The InSight tool makes it very hard to highlight the text fields for editing. Apparently, the
mouse has to be in an exact pixel location at the end of the field. This makes editing very
frustrating.

User defined roles.
The tool's predefined roles are too limiting. The capability needs to be added to allow the
user to define their own roles such as "customer" or "database administrator".

Macro editing functions.
The user needs to be able to cut and paste "composite data" defined, i.e. steps, methods,
tasks, activities, work products to quickly evolve the process. It is tedious to define, for
example, all the steps for all the methods for all the tasks for all the activities from scratch,
especially since the same basic approach is reused for all activities. If one activity is defined
to the step level and then copied with changes such as its name, the work product it inputs,
and the tools its steps invoke, it would have taken 1/10 the time to develop the FEDEP
process. This is difficult due to the creation of many objects with unique ID's and due to
some of the semantic conflicts and ambiguities, but some such functions need to be there to
make it easier to use.

Undo deletion.
In many places, items (e.g. an activity and all its children) can accidentally be deleted. The
tool needs to either warn the user or allow the deletion to be undone.

Save on exit.
The tool should warn the user to save on exit.

FNL_RPT.DOC Approved for public release; distribution is unlimited 11

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

Reorder steps.
The tool provides no mechanism to reorder steps. If a step is added later that needs to be
placed between two others, the user must delete the activity and redo all its steps in the
proper order.

Scrolling in steps window.
After the user defines five steps, new steps cannot be scrolled. A dummy step must be
defined to get the new step to scroll up.

Reentrant activities.
The capability needs to be added to allow the user to create a work product, exit the activity,
and reenter the activity later to edit the document. Currently, this cannot be done within the
same activity. This is critical for the FEDEP, which can be used iteratively or will reuse
previous federation artifacts.

Optional Work Products.
There needs to be a way to specify that a work product is optional and allow the activity to be
entered without it. This is necessary to support different, tailorable paths through the same
process, where certain steps can use a previous work product as a starting point or start from
scratch (e.g. FOM development).

Saving .ver files.
For export into Catalyst, the user should be able to save to any filename with a .ver extension
and load it, rather than having the tool automatically save it as CPD.ver file.

Tight Integration.
The tool should be more tightly integrated with Catalyst so the user does not have to go
through the Administration tool to export the data into Catalyst. The tool would have be
modified to allow the user to specify the project.

Launching of tools.
Some modifications may need to be made to support the launching of tools from machines
other than the server and differentiating between launching UNIX tools and Windows tools.

3.1.6 Process Enactment Issues

Roles and execution.
Roles need to be optional. Currently, in order for tasks to be run, the role:<none> must be
specified at a minimum. If there is no particular person/role required for the task, there
should be no role annotation. This is cleaner than specifying "none".

Error 2.
In the "No WP for WPI (error 2)" error, you cannot get out of the error condition.
(WpiSet::PrivateAddWpiList 2 ERROR).

FNL_RPT.DOC Approved for public release; distribution is unlimited 12

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

Not equal test.
In the test conditions, the parser does not seem to like the logical statement [x.state !=
"initial"]. The logic has to be changed to [x.state = "draft" | x.state = "final"] for it to work.
This is cumbersome if there are many states.

Clear and reload process definition.
The tool needs to provide the user with an option to clear a process and reload it without
exiting the tool and re-launching it.

Process Enactment.
It would be very helpful to provide an easy way to semantically link work product instances
to actual file artifacts in a way that allows users to get access to the artifact from the WPI,
whether that is in the browser or the enactment tool or elsewhere. That is, a "problem
statement" work product is linked through a "path" attribute to the actual file and through an
"application" attribute to its application. A script is used to append these into a command
line command.

3.1.7 Loose Integration Issues

The loose integration is the simplest and lowest cost method of integration. In a loose
integration, scripts or programs are written to read data files produced by the tool and then
store the information the files contain in Catalyst as CORBA objects. Scripts or programs
can also be written which take information stored in Catalyst and write it to files formatted
for input back to the integrated tool. This approach uses data files as the method for passing
information between the integrated tool and Catalyst. This strategy works very well for tools
which do not provide callable Application Programmer Interfaces (APIs) or for tools
intended to be single user tools. Examples of such tools are spreadsheets, word processors,
scheduling tools, graphing programs, etc.

Catalyst contains high level scripting commands to make loose integrations easy to create. A
script for transferring data to and from an Excel spreadsheet would take roughly 8 hours to
create. Bi-directional scripts for the FED and OMT DIF files were created with the effort
specified below. Some time was spent on the OMT DIF because of the large amount of
parsing required. Effort for the FED scripts is skewed since part of the time was used
learning TCL, the scripting language. Initially, new objects could not be created since HIDE
did not contain the development toolkit that allows users to create their own servers. Thus,
the predefined Component class had to be used, which is why FOM attributes were expressed
as relationships instead of object attributes. The listing of the number of objects, attributes,
and relationships was an attempt to get an idea of the complexity of the objects being used by
the script, since this has an important bearing of the level of effort.

FNL_RPT.DOC Approved for public release; distribution is unlimited 13

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

HIDE METRICS
j

Integration SLOC I Effort (manhours) SLOC/manhour # of Catalyst Objects Avp # of attributes per obiect Avp # of source relationships per object
Catalyst->FED 275 41 68.75 10 0 1
FED->Catalyst 640 24 26.66666667 10 0 1
Catalyst->DIF 600 8 75 26 0 5
DIF->Catalyst 20511 40j 51.275 26 0 5

TOTALS: 3566 76 46.92105263 36 0 6
AVERAGES: 891.5 19 46.92105263 18 0 3

An important issue for loose integrations is keeping the data consistent between Catalyst and
the tool. If the tool is used outside of Catalyst, this cannot be guaranteed, unless the user
executes the import/export scripts. However, if the tool is launched from the process
enactment tool some steps can be taken to ensure cross-tool consistency Under this effort,
shell scripts were developed that can be launched from the FEDEP to convert the current
Catalyst FOM data into a DIF file which was then launched as a command line argument to
the OMDT (Unfortunately, TASC's OMDT never did process the command line argument
correctly). Upon exit from the OMDT, the edited DIF file was converted back to Catalyst
(with existing CORBA objects reused and deleted DIF artifacts removed as well). This helps
insure consistency between loosely integrated tools and Catalyst.

The disadvantage of loose integrations is that source data from a tool needs to be dealt with
in batch mode, as entire file; access to data on an object-by-object basis is not possible using
loose integration scripts.. For example, if one FOM class was to be changed with the
OMDT, the entire FOM would be written to a DIF file, edited within the OMDT, and
converted back into Catalyst objects, all for a single change to one object Depending upon
the tool, there may be possibilities for working on partial files, but that will have to be
investigated on a case-by-case basis.

3.1.8 Tight Integration Issues

The tight integration strategy is more complex than loose integration but provides real time
access to the integrated tool's data. In a tight integration, a server program is created which
interfaces with the tool by calling its API. Requests for data from Catalyst are translated by
the server into calls to the tool's API to retrieve the data. Only the data retrieved by the API
is converted into Catalyst objects.

The structure of all the server programs is defined by Catalyst. A toolkit is provided with
Catalyst for generating the standard server structure code; the tool integrator merely has to
fill in the parts which are unique to the tool being integrated. The ORACLE database was
integrated into Catalyst to provide read-only access to ORACLE data in 160 hours. Write
access could be provided in another 160 hours of effort. ORACLE is a very complex tool to
program; simpler tools could be integrated in less time.

One feature of Catalyst tight integration is that it does not require changes to the tool being
integrated (source tools), unless the server needs to be linked in. Therefore, the owners of a

FNL RPT.DOC Approved for public release; distribution is unlimited 14

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

source tool do not need any development tools and do not need to make any changes to their
tool, provided the tool already has an API. If source tools do not produce data files and do
not have APIs, then some work may have to be done on the part of the tool provider to
support one of these features.

Unfortunately, tight integration is only valuable for tools that support a client-server
architecture, such as databases. Since Catalyst gets its information from the tool's repository,
the tool needs to have a back end server running that can be queried through an API. Tight
integration should not require a tool's front end to be running. For tools that store their
information in files, loose integration is the preferred integration technique; In loose
integration situations, data must be kept consistent.

Another problem with tight integration is that the tool interface is linked in with the Catalyst
object server. Typically, only one tool can supply data for a given class of object. Conflicts
arise if two tools provide the same kind of data from different sources. It may also be
advantageous for one server to be run on multiple machines to distribute the load. With the
loose integration, this is not a problem. If the object factory for a given class from a given
tool can be specified via the name service for the server to use then the tightly integrated tool
to use can be specified. Currently there is no way to do this in Catalyst.

3.1.9 Levels of Integration

Integration can be subcategorized into four levels in increasing level of difficulty.

Level 1, the simplest level of integration, involves "process integration," in which a tool is
integrated into an executable process model, from which it can be invoked. Level 1 involves
no data integration, but rather provides users with access to tools within the process context
in which they are to be used. For example, ModSAF has been linked into the Scenario
Development activity of the FEDEP executable process model to support federation
developers in laying out battlefield scenarios. In this case, ModSAF can be invoked from
within the executable process model and used in context for scenario development.

Level 2 integration is the "bi-directional translation of data" into Catalyst, which is where the
traditional loose and tight integrations come into play. In level 2 integration, source data are
converted into CORBA objects and CORBA objects back into source data. For example,
"M1A2 tank" data from the ModSAF scenario files may be translated into CORBA "Ml A2
tank" objects in Catalyst. These objects might then be translated into DIF formats for OMDT
tools.

Level 3 integration involves the "automatic linking of integrated data" with other data from
other tools. At this level, CORBA objects are linked to each other by semantic relations
defined for the domain. For example, CORBA M1A2 tank objects originating from
ModSAF may be linked by a "has-requirement" semantic relation to a "night vision"
requirement object originating from the Win Win requirements tool.

FNL_RPT.DOC Approved for public release; distribution is unlimited 15

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

Level 4 involves keeping this data complete and consistent as the related data changes. If the
"night vision" requirement is deleted, for example, which related objects will be affected?
Clearly, in this example, the "Ml A2" tank behaviors will be affected.

Below, we discuss tool integration by level. The characteristics of each level are discussed
first, followed by a discussion of work performed at each level. Future integration work will
be scoped in terms of these levels of integration. .

3.1.9.1 Level 1: Access to Tools and Files within a Process

Level 1 is identified by the following characteristics:

• Organizes tool/file access for users within the FEDEP Process
• Serves to guide users through the process
• Ensures common tools/files are used across the process
• Helps to structure thinking about what tools are appropriate for what activities
• Ensures conditions are met to start/perform/complete work on work products (CM)

• Input status checked
• Authorized personnel checked
• Output status checked

Under the FEDEP executable process work several tools were integrated and demonstrated at
level 1:
1. Win Win: this requirements development and rationale capture tool is integrated into the

Conceptual Model Development and FOM Development activities of the FEDEP.
2. OMDT: the Object Modeling and Development tool is also integrated into the

Conceptual Model Development and FOM Development activities.
3. ModSAF: this simulation system has been integrated to support the Scenario

Development activity. ModSAF allows developers to lay down forces on a battlefield and
to use the resultant objects as the basis for a Federation Object Model (FOM), also known
as an Ideal FOM.

4. Xemacs: is available in various FEDEP activities for documentation.
5. Netscape: is also available at any time to access HLA standards documents, as well as

the MSRR, the OML, and so forth, as referenced in the FEDEP model.

3.1.9.2 Level 2: Bi-directional Translation of Data into CORBA/Catalyst

Level 2 integration is characterized as follows:

• Data structures represented as common CORBA objects
• Common GUI for browsing objects and object networks
• Data may be edited in Catalyst and exported to a tool, or vice versa

FNL_RPT.DOC Approved for public release; distribution is unlimited 16

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

• Impact analysis (limited) may be performed on CORBA objects/network
• Serves as common knowledge representation required for Level 3 integration

As mentioned previously, OMT DIF data was represented in Catalyst as a CORBA object
network. The DIF data can be changed via the Catalyst browser itself and exported to the
OMDT or vice versa. Similarly, the FEDEP model is available within Catalyst as well and
can be changed either within the browser tool or within the process definition tool.

3.1.9.3 Level 3: Linking CORBA Objects from Different Tools/Databases

Level 3 is where the power of the integrated data model comes into play. This level is
identified by the following characteristics:

Links related objects from multiple tools in meaningful ways
Supports Catalyst browsing of integrated data as networks of objects
Supports data transfer from tool to tool (import from one, export to another):

• Promotes data sharing across tools
• Facilitates use of different (similar) tools within common environment
• Supports evolutionary migration from legacy tools (databases) to new tools

(databases) with no impact
• Supports analysis of integrated data through:

• Browsing
• Impact analysis
• Custom analysis scripts
• Data exported to analysis tools

• Serves as common knowledge representation required for Level 4 integration

Using Level 3 integration, Federation "objectives objects" can be semantically linked to
Conceptual Model "requirements objects" which can be linked to "scenario objects" which
can be then be semantically linked to FOM classes and interactions. Furthermore, impact
analysis can identify what FOM objects are affected when requirements change. Research is
required to determine how this linking can be done automatically (see Automatic Linking of
Data).

3.1.9.4 Level 4: Completeness and Consistency of Integrated Data

Level 4 represents the knowledge management of enterprise information, in this case all the
integrated data associated with the FEDEP and its tools. In order for a framework like HIDE
to be flexible over time it must have the following level 4 characteristics:

• Maintain semantic correlation of data/objects as they change
• Understand impacts of change (robust) to correlated data/knowledge base across projects

and processes

FNL_RPT.DOC Approved for public release; distribution is unlimited 17

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

• Intelligent support to team members for system design, development, and maintenance
• Automated/semi-automated updating of information/knowledge base across tools
• Ensured accuracy of analyses based upon ensured consistency and completeness of

data/knowledge base

As an example, if a FOM requirement is deleted, added, or modified, semantic consistency
and completeness can help answer the following questions:

• How do I know when the FOM is consistent with this change?
• What products/objects will be affected and how will they be altered?
• How can the integrated data/knowledge base be automatically transformed to maintain

consistency?
• What will the change affect cost?
• How will the change impact schedule?

Of these four levels of integration, the most important are levels 3 and 4, but the most visible
are levels 1 and 2. Future work will focus considerable effort on levels 3 and 4.

3.1.10 Common Object Model

To achieve the benefits of level 3 and level 4 integration, a common object model will need
to be developed for all HIDE data/knowledge. This common model will allow tools to more
seamlessly share data. The common model is also important for allowing complementary
tools to each produce part of the final product, such as a FOM. The common modeling
representation will also provide the meta-data necessary to support automatic linking and
semantic consistency and completeness maintenance.

As a starting point for this domain model, common classes have been created in Catalyst to
represent OMT DIF information. The tight integration mechanism is the same mechanism
used to create custom object servers only no tool access code is required (unless tightly
integrated of course) . The following object servers were created for HLA FOM-specific
classes:

OMTAffectedAttribute
OMTAssociation
OMTAssociationMember
OMTAttribute
OMTClass
OMTComplexComponent
OMTComplexDataType
OMTComponent
OMTDIF
OMTEnumeratedDataType
OMTEnumeration

FNL_RPT.DOC Approved for public release; distribution is unlimited 18

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

• OMTInteraction
• OMTInteractionMember
• OMTNote
• OMTObjectModel
• OMTParameter
• OMTParticipatingClass

However, the loose integration scripts developed for this UDO used the provided Component
classes and thus will need to be modified to use the new OMT classes in follow-on work.
Originally, each attribute, parameter, characteristic, etc. of the FOM was a separate instance
of a component class. These are now members of the new OMT classes and thus not
represented as individual Component objects as viewed in the browser. The only
disadvantage of this approach is that some of the relations must have the attribute name in the
relation, such as datatype note reference, since individual attributes cannot be related
directly to, only objects can. Using the Component class approach, a datatype attribute
would be a separate Component object that would have a note_reference relation to some
note object.

3.1.11 Semantic Consistency and Completeness

As mentioned previously, the semantic consistency and completeness of integrated data is
critical for a robust development environment , in which project-wide information is
continually changing. As changes are made, the impacts to existing data need to be identified
and, where possible, automatically corrected. In order for this to be possible a domain meta-
model and ontology/lexicon needs to be created. This meta-model is a semantic network that
includes the domain classes, as well as required and optional relations that define the linkages
among the object classes. Such relationships would include those that link federation
objectives to federation requirements , and federation requirements to FOM objects.

The meta-model should also include categories of artifacts. Requirements, for example,
should be subclassified as performance requirements, interface requirements, entity
requirements, and so forth. This subclassification scheme will help reduce the search space
when working with specific kinds of artifacts.

In knowledge-based systems terminology, the ontology is a typical "is-a" heirarchy of terms
from the domain. For example, "tank is-a platform". Frequently, reasoning needs to be
performed on abstract object classes, such as a "platform" class, rather than on a specific
object instance, such as a particular Ml tank..

Using the domain model and ontology, inconsistencies are much easier to identify. For
example, it is a relatively easy matter to answer such queries as: "What objects are
inconsistent if requirement R is deleted?".. This domain model can be stored in one central
location and can be represented in a Resource Definition Format (RDF), which is a semantic
network representing meta-knowledge about data sources at a given site. XML is one

FNL_RPT.DOC Approved for public release; distribution is unlimited 19

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

method used to represent a RDF, since XML provides services for navigation and update (see
Documentation Generation and Navigation).

Inconsistency analysis can be accomplished in one of three ways:

1. External impact analysis can be executed by the user when desired;
2. Attributes can be added to all objects to identify inconsistencies with a set of defined

inconsistency relations;
3. A method can be added to all objects that allows them to perform self tests for

consistency. The object can run a standard test (present in the Catalyst core code) when it
is created, modified, or deleted. Catalyst servers can also capture deletion events of
related objects so the objects can then determine if they have been rendered inconsistent
by an external event.

To facilitate the automatic assurance of semantic consistency and completeness, a rule-based
system, such as CLIPS, should be integrated into Catalyst. Simple consistency mechanisms
can be implemented without a rule-based system, but as the domain model and complexity
grows, a rule-based system would be more maintainable and efficient. Also, as the user
updates the domain model, it also must be checked for consistency and completeness.

3.1.12 Automatic Linking of Data

The automatic linking of data is actually one facet of semantic consistency and completeness.
The automatic linking of new objects to existing artifacts is similar to a repair situation when
things have changed. The domain meta-model describes what should be linked to what (e.g.
requirements should be linked to design artifacts in the following way: "requirement-object
is-a-requirement-for design-object".) and the ontology/lexicon describes the common
language for reasoning about the data. For example, in defining requirements, the user can
designate that a requirement pertains to tanks (using the ontology/lexicon). When a new tank
is added to the FOM, the systems knows that requirements are to be linked to FOM classes
and it examines the current requirements and links the new tank class to any requirements
containing the tank keyword. The system should present the linking options to users for
verification. As a second step, natural language parsing techniques can be added so that the
keywords can be extracted from the requirements without the user having to specify them.
The latter is a future and longer-term effort.

3.1.13 FOM Generation Issues

During the process of creating the FEDEP in Catalyst, the potential for automatically creating
a FOM from the integrated data arose. For example, integrated data from a requirements tool
or scenario generation tool could be used to automatically create a FOM in Catalyst. This
FOM could then be accessed from other tools that use the OMT DIF format, such as the
OMDT.

FNL_RPT.DOC Approved for public release; distribution is unlimited 20

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

Unfortunately, automatic FOM generation has its issues. It can be especially difficult
because of single inheritance, the only kind supported within the HLA. Single inheritance
forces developers to create less efficient and flexible class hierarchies, such as:

Ground

I
 Wheeled

 Tracked

I
 ArmoredTracked

 ArmoredTrackedAPC

 US M2

 UnArmoredTracked

 UnArmoredTrackedAPC

Note the necessary redundancy of information under Tracked Ground vehicles.

A better, multiple inheritance object hierarchy would look as follows:

Ground

I
 Wheeled

 UnArmored

I
 Armored

-\
APC

USM2

Tracked

Using single inheritance can cause a combinatorial explosion, since there needs to be classes
to represent each possible combination of class types. Alternatively, some of the abstract
classes (such as "unarmored" or "armored") might be better "flattened" and represented as

FNL_RPT.DOC Approved for public release; distribution is unlimited 21

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

attributes, rather than classes. The usual rule of thumb is if a class represents a different
behavior that can be inherited, then it should be represented as a class; if it is simply a
conceptual difference (armored vs. wheeled), then these might be better served as attributes.
In any case, the HLA only supports single inheritance in its FOM, so the FOM developer is
already limited in the development of class hierarchies.

FOM development includes identifying the interactions among objects that will occur during
federation execution. Traditional scenario tools, such as the ModSAF PVD, provide no
declarative information on object interactions; only classes can be derived from the scenario
file. HLA specific scenario tools need to be developed that can elicit the interactions from
the federation developer.

Determining FOM attributes is also difficult. In the ModSAF scenario case, vehicles have
tasks, some of which are physical models and some of which are behaviors. Although
physical models have useful attributes, some may be internal while others may be external,
with no automated way to tell one type from the other. Without meta-knowledge about the
system (in this case ModSAF) it is unclear what attributes should be represented within the
FOM. Thus, most of the FOM comes from an a priori domain model. With the ModSAF
scenario integration into Catalyst (see ModSAF PVD scenario under HLA tools), 90% of the
generated FOM is accomplished independent of the actual scenario .The scenario only
provides the leaf classes, such as vehicles; information about these vehicles (armored,
tracked, etc.) determines where in the domain model they should be placed.

In addition, many abstract classes are not used in the FOM. These classes are defined as
placeholders for future FOM. The unused classes could be removed from the FOM based on
the classes used in the federation scenarios. This highlights another FOM creation issue:
"What is the proper mix between domain and scenario-specific FOM classes and
interactions?" Too much domain information can make the FOM large and unwieldy but too
little makes the FOM less flexible for future federation use.

3.1.14 Documentation Generation and Navigation

A key problem in any large system development effort is the generation of accurate
documentation. Since the objective of HIDE is to integrate multiple tools across different
phases of the FEDEP process, and since each tool contributes to the evolving knowledge base
of artifacts, the problem of generating documentation is compounded. Some tools may
define similar objects, which must be coalesced into a single view, other tools may contribute
new objects that must be related to others in the evolving knowledge base. In this integration
framework, therefore, it is desirable to be able to view documentation and navigate the
various semantic relationships between artifacts in an easy and well-understood (i.e. web
browser) manner.

The Extensible Markup Language (XML) may provide the basis of a solution to this
challenge. XML is the successor to HTML, the Hyper-Text Markup Language. XML allows
Schemas to be associated with documents, allows custom tags to index document parts, and

FNL_RPT.DOC Approved for public release; distribution is unlimited 22

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

provides a rich set of linkages that may be used to relate document parts to each other in
meaningful ways. To create current, consistent documentation of FEDEP artifacts, we intend
to use XML to generate documents from the CORBA objects in the HIDE knowledge base.
By generating documentation directly from the FEDEP knowledge base, we accomplish two
key objectives in one approach: (1) the generation of current, user-friendly web
documentation from the FEDEP artifacts and (2) a web-based browsing environment that
allows users to access and navigate through FEDEP artifacts in a format that they understand.
Just as the FEDEP provides a process-centric view of the enterprise, XML browsers can
provide a document-centric view of the world. XML advantages include:

1. A mechanism for aggregating enterprise objects into custom views that can be navigated
in a hyperlink fashion using standard XML parsers and browsers.

2. A Document Type Definition (DTD) that can be associated with the document. This
DTD acts like a schema, providing the potential for Schemas to be stored with the data
and the documentation.

3. XML tags that allow different views of the same data. For example, a FOM class tag
<OMTClass> might be used to display the class in a traditional form or a
<OMTDIFclass> tab might be used to display the information in a DIF format. The use
of XML style language (XSL) sheets also allow the documentation presentation format to
be changed using a simple style language similar to that in use today for HTML.

4. A common presentation format (like HTML) for enterprise information, such as
integrated data, web documents, and others, using plug-ins (Word, postscript, audio,
video, etc.)—all in a web browser-like environment.

5. Robust XML links and custom tag attributes (to store the Catalyst unique ID, for
example) can be used to represent all of the expressive power of Catalyst's relationships

Semantic links represent one of the most powerful features of XML and distinguish it from
HTML. XML links can be simple, like HTML links, extended, to incorporate multiple link
destinations within the same links, groups, to group links together, or document. Links
contain many attributes that can be of use to Catalyst data:

ROLE: This represents the role of the link and can be used to capture Catalyst's
semantic linkages.

TITLE: The title of link for navigational purposes.

CONTENT-TITLE: Specific information about the resource being linked to. The
Catalyst instance name can be placed here.

CONTENT-ROLE: The role of the information being linked to. The Catalyst class
type can be placed here.

FNL_RPT.DOC Approved for public release; distribution is unlimited 23

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

SHOW: This attribute can hold three values: NEW, REPLACE, or EMBED. NEW
follows the link in a new browser, REPLACE replaces the current page with the link
resource, and EMBED embeds the linked resource within the current document. As
mentioned later, EMBED can allow objects of different types to be embedded in the
same document.

ACTIVATE: This attribute can hold two values: AUTO or USER. USER follows
the link when the user clicks on the link. An AUTO value instructs the browser to
follow the link as soon as it hits the link when parsing the document. In combination
with the EMBED SHOW attribute, this can allow any kind of embedded resource to
automatically be displayed.

BEHAVIOR: This attribute allows an implementation-dependent description of the
link traversal behavior to be stored with the link. This can be used to provide tool
display information such as that used by Catalyst annotation objects.

XML links also have flexibility in defining the destination of the linked resource. The
destination is given using an URL but can be augmented using XPointers. XPointers allow
the link to go to a specific location within a document instead of to the top. They allow the
destination to be specified in terms of the ID of a specific tag (Absolute), by traversing the
document tree (Relative), or by string matching. Relative terms allow you to specify the
relationship (CHILD, ANCESTOR, PRECEDING, FOLLOWING, PSIBLING, FSIBLING,
ROOT, DITTO, or STRING), the index (e.g. the 5th child of some parent) and the type of the
element. A span can also be defined so only a portion of the document is displayed. For
example, the XPointer (starting with the pound sign):

http://hideserver.eom/tanks.xml#ROOT0Ml ..DITT0()FSIBLING(1,..)

specifies the destination of the link as starting from the root of the document, find the tag
with ID equal to Ml and display starting there ending with the following tag of any type at
the same level. The use of links and spans can be very useful for presenting custom views of
the integrated data as the result of queries.

There are two alternatives for integrating XML with Catalyst:

The Catalyst core IDL can be modified to generate an XML version of each object. This is
not desired because not only does it require changes to the core IDL but restricts the potential
presentations of the object.

XML documents can be maintained on a server that contain all the objects of the same class
type. The XML API allows individual elements to added, deleted, or changed, since the
document is represented internally as a tree. The only disadvantage is the potential
bottleneck as many objects of the same type are changed at the same time. Updates would be

FNL_RPT.DOC Approved for public release; distribution is unlimited 24

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

deadlocked as the XML file is being updated. The advantage of this approach include easy
querying of the data and existing documentation. This advantage has the following features:

•

• Ad-hoc queries can reference internal components within these documents.
• Using the capability of XML Xpointers, which can provide a span, we may selectively

display only appropriate portions of a document In other words, document displays
based on specific queries present only what was desired by the user.

• Using the auto traverse and embedding feature of links, objects of dissimilar type can all
be aggregated into the same document as a result of queries.

• These XML documents can also be edited and transformed back into the Catalyst objects.
XML templates can be set up for the various kinds of HLA artifacts (objectives,
requirements, FOMs, etc.) so that users can enter their information without other tools.

• The XML browser can be set up to view the documents based upon the FEDEP process.
A selection of Work Products can be presented to users, for example, allowing them to
choose what they wants to view based on artifact types(requirements, design artifacts,
etc.)

Although XML is not yet mature, it shows promise for combining the Catalyst browser with
the HTML documentation and referenced artifacts. XML paves the way for automatic
generation of HTML documents representing the FEDEP data in HIDE. A Java prototype
using JACL (Java/TCL linkage) should be developed to explore the potential for document
navigation.

3.1.15 FEDEP Process Enactment

The FEDEP model vl.l was created and enacted using Catalyst's process definition and
enactment tool. Available tools were integrated with this executable process model so that
tools could be invoked from activities within the process.. For example, a requirements tool,
called Win Win, is one tool that can be invoked by users from the "Conceptual Analysis"
activity. In some cases, more than one tool is available to users to accomplish an activity.
This provides them with multiple approaches to creating the same work product.

Roles and products were also defined that correspond to the activities in the FEDEP. Future
activities include making the process tailorable to facilitate federation reuse and modifying
the tool to support the concept of "optional work products".

Several issues concerning the process enactment tool and the FEDEP itself have arisen out of
the process definition and enactment work:

Process Brittleness. The brittleness of the process is a concern. At the recent SIW
conference, the conclusion among the FEDEP designers was that the current level of detail
does not cover all the uses of the FEDEP so a 5-step abstract model was included as well.

FNL_RPT.DOC Approved for public release; distribution is unlimited 25

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

This is not sufficient for enactment, but it does beg the question of how brittle a defined,
executable process model will be.

Early Identification of Federates. In requirements development, it is possible to identify
federates early in this phase. How is this done in the current FEDEP and what is the work
product?

Ideal FOMs. In the Conceptual Model development phase, the concept of an "ideal FOM"
in OMDT format was added to the enacted process. ModSAF was used as a proof-of-
principle to generate an initial FOM of objects based upon a federation scenario. This is an
opportunity for other scenario tools, such as Modus Operandi's tool, to collaborate and add
their own information to the ideal FOM. The reuse of ideal FOMs also needs to be
supported.

Alternative FOM Development Strategies. In federation design there are alternative FOM
development strategies, such as using a bottoms-up approach, using a combination of the
SOMs, using a previous FOM, or using a reference FOM. This may require alternative paths
through an enacted process that reflect these alternative approaches; this multithreaded
approach is not currently supported in the automated FEDEP process model developed
under this UDO. The tool may need to be modified to support multithreaded process paths,
or separate versions of the process could be developed. References to documentation
discussing the FOM development process should also be accessible from the process. FOM
development should also take into account changes to federates necessary to conform to the
FOM; these changes may be captured as "issues" within a rationale capture tool, such as
WinWin.

FEDEP Roles. Using the defined FEDEP roles and products the proper roles need to be
used where applicable in the process. Currently there are no roles defined. One problem is
that some of the roles are supervisory and not the actual "doers". Some products are also
collaborative such as Requirements negotiation and thus are not assigned to any one
individual. How can this be supported?

Federation Execution. The execution phase of the FEDEP raises some questions about its
enactment within HIDE. Should HIDE launch the RTI, the federates, and data collection
applications? Although this is defined as an "activity" within the FEDEP model, it appears
to be quite different and much more complex in nature than other activities within the
process. In particular, federates are usually distributed over various machines, require special
initialization, and are often managed by controller applications. It is not clear that these
variable and complex functions should be handled within HIDE. Secondly, should results of
the federation execution be fed back into the HIDE knowledge base and linked to other
data/objects? How the "Federation Execution" activity within the FEDEP fits into HIDE is a
concern and must be addressed, since many HLA tools focus on the execution phase.
Recommendations for execution phase tools will be withheld until decisions concerning the
execution phase can be reached.

FNL_RPT.DOC Approved for public release; distribution is unlimited 26

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

3.2 Integration ofCurrent HLA Tools

The HLA tools developed by DMSO and others are the best candidates for integration into
HIDE, since they are already support specific activities within the FEDEP. However, issues
that must be considered include the platform of the tool, its robustness, its capability,
availability and cost.

The platform issue is an important one. In order for HIDE to be successful, it needs to
operate across heterogeneous platforms in as a homogeneous a manner as possible. This
topic will be explored in depth in follow-on work. The conversion of the Catalyst toolset to
Java is currently underway and will help with this problem.

The current state of the art in HLA tools was analyzed under this effort. The issues
mentioned previously were taken into consideration for each tool and any potential tools for
integration into HIDE were identified.

3.2.1 CAFDE

The Computer Aided Federation Development Environment (CAFDE) is an effort whose
goals and objectives seem similar to those of HIDE, but whose approach is quite different.
CAFDE's main goals are logical flow through the FEDEP, a standard GUI interface to all
tools, internet access to repositories, coordination of multiple development sites, HLA
compliance, feedback into process, and interoperability (tools, platforms, and languages).
The development approach to CAFDE includes using a standard shell for connecting tools,
relying on next generation tools to be developed using CAFDE-specific APIs, and the
relying on DIFs formatting standards for interoperability among tools. CAFDE expects
future tools to provide the automation needed to capture sponsor objectives, provide
requirements traceability, and to support the development of object models that conform to
sponsor objectives and needs. Some of the problems associated with this approach are
discussed below.

The HIDE environment provides for similar functionality as CAFDE, but uses
CORBA/Catalyst as the integration framework. There is no reliance on DIFs; traceability
and consistency can be maintained via the Catalyst semantic relations manager capability.
Collaboration can not only be provided by collaborative tools, such as Win Win, but by the
distributed nature of CORBA itself, which provides implicit collaboration and coordination
across separate development sites.

In the CAFDE approach, all tools are intended to have the same look-and-feel, because this
makes training and integration easier. This is reasonable in theory but impractical in reality;
in general, it requires starting from scratch in the development of what is essentially an
object-based software development environment. HIDE can provide a consistent interface to
the integrated FEDEP data via the Catalyst tools, but the tools themselves will have different
interfaces. Requiring tools to conform to a single kind of interface is impractical unless you

FNL_RPT.DOC Approved for public release; distribution is unlimited 27

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

develop all the tools yourself (e.g. Microsoft Office) and won't work for all the legacy tools.
Unlike CAFDE, HIDE cannot rely on next generation tools to implemented, but rather
provides an agile, CORBA-based framework that can take advantage of existing and
developing tools through seamless integration of the underlying knowledge base. This is a
fundamentally different approach based on open interoperability standards and high leverage
integration of evolving technologies as they become available. The notion here is that many
tools may be used to support a specific activity, with the appropriate integration of the tool
into the HIDE framework; users are free to select what works best for them, whether that be
using a familiar tool to do the job or using a number of tools that each contribute a part of the
solution. Were a set of tools to be developed in CAFDE, HIDE would treat them as
alternative tools that could be used in different phases of the FEDEP process to produce and
use FEDEP data, like any other tools.

CAFDE is built on the notion of a Federation Engineering Framework (FEF). The FEF is an
abstraction of the FEDEP process (or any development process, for that matter) and gives
CAFDE its commercial bent needed since it is a SBIR. The FEF consists of 3 steps:
requirements, construction, and transition. The FEF is not practical for process enactment
but the FEDEP can be mapped to the FEF.

CAFDE plans to use "Use-Cases" to represent federation requirements. This is a promising
notion, provided tools exists that allow developers to create Use-Cases (see Together/J
Commercial Edition). In HIDE, use-cases would be linked to requirements and other related
artifacts. CAFDE will allow the steps of the FEF to be performed incrementally and
iteratively; this is one required extension to the process enactment tool (as previously
discussed).

CAFDE also supports the use of automated tools to perform computer-aided compliance
checking of the simulation components against the use-cases defined. This has not actually
been done, but APIs exist that would allow the creation of semantic consistency tools.

CAFDE-based tools (that have yet to be created) will document the construction of the
simulation components in the OMT tables. Using the OMDT, these tables may be printed.
In HIDE, another simple Java tool may be desirable that can print these and other FEDEP
data from Catalyst.

CAFDE "embraces" the use of the OMT Base Object Models (BOMs) for reuse. These can
be considered portions of FOMs that identify a "single aspect of federation interplay". These
BOMs can be represented as a palette of components in a CAFDE tool. This seems to a be a
function of the tool itself, like OMDT, rather than one that is a function of the HIDE
integration environment. Under HIDE perhaps potential BOMs could be identified from
requirements or scenario information and brought into Catalyst. CAFDE can also use the
requirement information to generate the meta-data for the newly created BOM, but only if the
requirements were generated by a CAFDE tool. HIDE does not restrict tools to a single
format; any may be used and integrated into Catalyst.

FNL_RPT.DOC Approved for public release; distribution is unlimited 28

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

CAFDE plans to use the RTI itself as the mechanism for distributing information. While this
sounds like a promising synergy, "using the HLA to develop an HLA federation!", the RTI
was not designed for this task. More robust and proven distributed information technologies,
such as the Web and CORBA, are better suited to this task.

CAFDE plans to develop a wizard control to guide users through federation development.
This is a good idea, and should be incorporated into HIDE. CAFDE has a scripting language
for creating Wizard Controls. HIDE could do something similar with some Java classes
provided.

CAFDE relies on DIFs for integration of information (OMT DIFs, FED file DIFs, UML
DIFs, etc.) This is a danger for a number of important reasons. (1) DIF is yet another data
interchange format. As such, it lends itself to a proliferation of interchange formats. (2) DIF
is not a universal standard. This means that other (COTS) tools being developed cannot be
easily integrated with DIF-based tools. This is an unfortunate consequence of using yet
another "ad hoc" interchange format. (3) There are many different DIF formats; it is unstable
and changing. Tools using the DIF "formats" must deal with this instability. (4) Support
tools for DIF are virtually non-existent. For example, users cannot "browse" DIF files,
perform impact analysis on changes to objects within DIF files, export DIF file data easily to
other tools, or analyze integrated DIF data using simple scripting languages, rule bases or
other methods. HIDE's approach of using CORBA, a widely accepted standard for common
distributed object representation and distribution, offers a more scaleable approach.

The CAFDE API is not discussed in detail. The future goal of this API is to provide OML
interfaces, access to the web, and the RTI collaboration interfaces. No other detail is
provided. With the API approach, each tool will be integrated differently, using different
interfaces and functions from the API. In Catalyst, each tool is effectively integrated the same
way - by creating a server that implements the small number of core IDL interfaces. This is a
much cleaner approach to tool/data integration.

A few questions should be answered with regard to the API:

1. Does the API support distribution? That is, can the tools be running on a different
machine and still exchange data with CAFDE?

2. When data changes, is it up to the user or to CAFDE to propagate those changes to other
tools within the CAFDE toolset? For example, if a requirement changes, will all affected
design artifacts be "notified" of the changes and appropriately "updated" to maintain
semantic consistency across the DIF files?

3. If the API is responsible for change management, then CAFDE itself would have to be
modified as new tools are added so that it knows what needs to be updated. This is not a
very evolvable approach.

In summary, the CAFDE framework has some interesting ideas that should be incorporated
into any "HLA environment" approach. However, the design of CAFDE does not go far
enough to provide a truly agile and evolvable integration framework. CAFDE has been

FNL_RPT.DOC Approved for public release; distribution is unlimited 29

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

envisioned as a comprehensive environment, but with the contractor providing most of the
tools; true integration has not been seriously considered. The detail in the CAFDE paper
suggests a lack of integration experience and the problems associated with it. For example,
client-server technology is lacking (2 tier or 3 tier), a widely accepted technology for tool and
data integration. Thus, there is no common data/knowledge representation and no integrated
view of the data via semantic relationships (thus no impact analysis can be performed).
Integration is done entirely through various DIF formats and APIs similar to the loose
integration of Catalyst. In conclusion, HIDE is farther along as an integration framework,
since the Catalyst infrastructure has been developed over years and has already dealt with
some of the hard issues of tool integration.

3.2.2 Federation Management Tool (FMT)

This tool is written in Java and records and displays the MOM data about the federation and
federations. There was no mention of support for the pausing/starting of federations. It does
support extra capabilities by extending the MOM data; it is important to note that federates
must be modified to supply this data. Since the FMT fits under the execution phase of the
FEDEP, and since it is unclear how the execution phase fits into HIDE, it is also unclear how
to integrate the FMT (Note: There similar tools are being developed by MITRE/MaK
technologies and Aegis).

3.2.3 Federation Data Collection Tool

This tool is being developed by Virtual Technologies Corporation (VTC) and fits in the
execution phase of the FEDEP. Nothing further is known about this tool at this time.

3.2.4 TASCVision

TASCVision is not an HLA-specific tool but is a simulation visualization tool. TASCVision
was investigated for possible integration into HIDE and it was determined that it would not
be of use to be directly integrated. The data it produces is low level, consisting of
information on light sources, polygons, etc. instead of domain objects such as vehicles.
However, it can be linked to a scenario tool to give a nice visualization environment and the
scenario tool can be integrated. TASC is in the process of integrating TASCVision with its
scenario tools and once completed, TASCVision will be indirectly integrated when the
scenario tool is integrated.

3.2.5 TASCOMDT

The TASC OMDT was loosely integrated into HIDE as mentioned previously. To be fully
useful, a newer version that supports command line arguments for file access and access to

FNL_RPT.DOC Approved for public release; distribution is unlimited 30

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

the OMDD is needed. TASC did create a version with command line argument support but it
never worked properly.

The OMDT was loosely integrated using a OMT DIF file translator. Any tool that uses the
DIF format can now be integrated into HIDE. The loose integration scripts also keep the data
consistent between HIDE and the OMDT. When the tool is launched from HIDE, HIDE
FOM data is converted into a DIF file read into the OMDT and when the OMDT is exited,
the DIF file is converted back into HIDE reusing CORBA objects that did not change. Work
needs to be done to remove the hard-coding of the files and to allow the specification of the
FOM for HIDE to use. This integration, however, demonstrates a proof-of-principle.

3.2.6 Visual OMT

This is another OMDT tool developed by PITCH that is currently in the test and evaluation
phase. It provides all the expected OMDT capabilities. It is of limited use to HIDE at
present because it is a COTS tool and only runs on Windows NT/95.

3.2.7 OMDT Pro (HLA Lab Works)

This is the Aegis version of the OMDT. The latest version supports access to the OMDD. It
allows the user to import one or more data dictionary files and then pick from the contents of
the data dictionary files when populating or modifying an object model. The user interface
looks much cleaner than the TASC OMDT. Unfortunately, OMDT is a Windows 95 tool,
but a Java version is forthcoming sometime in the future. It interesting to note that OMDT
Pro is an OLE server which may provide some integration flexibility through the use of some
OLE/CORBA bridges. A Sun and SGI version is due out the 2nd Qtr of 1998. This version
should be integrated into HIDE when available, since it has more capabilities than the TASC
OMDT that is currently integrated into HIDE.

3.2.8 FedProxy (HLA Lab Works)

The Aegis FedProxy is a federate that acts like a tool. It can be used to prototype early
design concepts and test them in a realistic environment. It can also model incomplete or
external functionality. As part of federate development it can aid in compliance testing by
serving as an auxiliary federate to test with the federate under test. As part of the FEDEP, the
FedProxy can be used during federation design to serve as a stand-in for real federates and
can generate realistic data traffic to study network traffic under various hardware, software
and network configurations. FedProxy's event queue and clock can be used to schedule
events. Also, the user can watch external events affect FedProxy's objects and view record
logs of all subscribed activity. During federation integration and testing, the FedProxy could
stand-in for missing federates. There is some overlap here with the Federation Test Suite that
will have to be investigated.

FNL_RPT.DOC Approved for public release; distribution is unlimited 31

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

The FedProxy is FOM/SOM independent, has a way to represent a federate's published and
subscribed entities, represents the state and behavior (with user intervention) of proxy
entities, and supports all the HLA time management schemes. It has a set of Java classes that
allow users to add automated responses to external events or to create any custom behavior
desired.

FedProxy is being developed under a SBIR and it is currently planned for a release for Sun
and SGI in the 2nd Qtr 1998. Again, since this is an execution tool, integration depends upon
the federation execution/HIDE issue. From an integration standpoint, it could use the OMT
object model data in HIDE but it may not contribute any data back to HIDE. Integration of
this type of tool may not make much sense and it needs further exploration.

3.2.9 FedDirector (HLA Lab Works)

The FedDirector is a federation management tool that ties into the federation management
RTI services and subscribes to the MOM and FOM. FedDirector subscribes to everything in
the FOM so it can display various views centered around the HLA functional areas.
FedDirector has a main view that displays information on all federates such as status and
time. There is a Federation Management view that supports the pausing, restarting, saving,
restoring, etc. of federations. The Declaration Management view provides publish and
subscribe information on a federate-by-federate basis and allows modification of these
interests on behalf of the federates (RTI 1.3). The Object Management view displays
instance information of all objects by federate with values, delivery order, and transport type
information. The Ownership Management view describes what objects and attributes are
owned by which federates and allow changes given a list of possible owning federates. The
Time Management view displays each federates time, lookahead, and whether it is time
constrained or time regulated. Finally, the tool can also send and receive interactions to/from
any federate. This tool is only available for Windows NT in March 1998 (beta) and will be
available for use with the RTI 1.3 in June (version 1.0). It seems to be more robust than any
of the other management tools but its platform will be an issue.

3.2.10 Conceptual Modeler (HLA Lab Works)

This tool constructs and records the static and dynamic portions of the conceptual model
using an object-oriented approach. It uses UML as its symbology. It will import entities,
actions, tasks, and interactions from the CMMS and convert it to the UML representation.
The UML can also be annotated with information such as requirements and constraints to
support VV&A. Other annotations, such as specific simulations for modeling particular
objects, security requirements, or scheduling, can be captured and attached to the
specifications. This tool is being developed under a SBIR and is believed to be in the very
early stages, but should be integrated into HIDE when available.

FNL_RPT.DOC Approved for public release; distribution is unlimited 32

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

3.2.11 Federation Composer (HLA Lab Works)

This tool records federation composition, performs comparisons among object models
(conceptual model to SOM, conceptual model to SOM, SOM to FOM, etc.) The similarity
comparison is done in the same way as the arbitration tool and relies on the HLA Data
Dictionary to aide in the comparison. The comparison is used to find candidate SOMs for a
federation. This tool is exactly what the arbitration tool is supposed to be, although from
discussions with Aegis it does not have the complexity in terms of its comparison heuristics.
Since this tool is a year from deployment, work on the arbitration tool may need to be
continued. However, Federation Composer should be integrated into HIDE when available.

3.2.12 Scenario Generation Tool (SGT) (HLA Lab Works)

This is a 2D/3D tool that uses the CMMS to drive the definition of the scenario laydown. Its
primary purpose is to map the conceptual object representations to the FOM representation
and assign responsibility of each scenario object instance to a federation member capable of
modeling the scenario instance. Since some of this mapping is what HIDE is supposed to do
and it will be interesting to analyze the overlap.

The SGT will follow these steps:

1. Capture the identification of theater, geographical specification, scenario time frame and
study resolution.

2. Determine scenario laydown classifications (land, sea, air), resolution (aggregation level),
terrain models, and coordinate systems.

3. Define assets and initial locations.
4. Determine associated components of assets (radars, weapons, sensors, etc.).
5. Define the scenario timeline and events that will occur.
6. Determine routes of assets and times.
7. Determine command and control relationships.
8. Define areas of interest, such as flight corridors, engagement areas, etc.

The SGT plans to interoperate with other tools using DIF formats and SQL interfaces. This
tool will be available within about three months. Other scenario tools will be integrated into
HIDE, as should this tool. The overlap with other scenario tools needs to be explored. If
Aegis can be part of the HIDE team, then perhaps the proof-of-principle version can be
integrated.

3.2.13 Scenario Execution Planning Tool (SEPT) (HLA Lab Works)

The primary responsibility of this tool is to bring together the federation composition, the
FOM, and the scenario laydown, each from a separate planning tool, and plan how the

FNL_RPT.DOC Approved for public release; distribution is unlimited 33

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

scenario will be executed within the identified federated environment. Its requirements
include:

1. Associating the conceptual models used during scenario laydown with the objects defined
in the selected FOM. Since associations are made at an attribute level, this can be a
difficult task. Under HIDE, some or all of this may be able to be done automatically (see
Automatic Linking of Data).

2. Identifying the FOM object publishing responsibilities of each federate.
3. Assign ownership responsibility of each object instance.
4. Develop a translator file for federate initialization.

This kind of tool would be of use in the FEDEP of HIDE.

3.2.14 Scenario Monitor (HLA Lab Works)

The Scenario Monitor acts like a PVD for the federation execution and also serves as a logger
for scenario playback.

3.2.15 Federation Test Suite (FTS)

While it is still unclear how federation execution will operate under HIDE, the data used by
the FTS can still be integrated for linkages to other products. The FTS scripts were
developed by consulting various HLA resources such as the FOM, Fedex Performance
Workbook, Interaction protocols, and federation agreements. The test procedures are written
in an HTML-like (looks like XML) format that should pose no problems for parsing. Test
procedures contains tags for initial conditions, requirements, capabilities, scenario
information, pass-fail criteria, and script filenames or instructions for the test and analysis
federates. The only problem is in linking the test procedures to the HLA artifacts in HIDE,
given the text in the appropriate section of the test procedure. The text in the test procedure
would have to be written conforming to certain rules so the appropriate artifacts could be
found and linked within HIDE, otherwise these would have to be done manually. This is
another example of the automatic linking problem mentioned earlier.

It is interesting to note that while the FTS and other testing tools are referred to as "federation
testing tools," they really fit more in the federate development process, not the FEDEP
process. To the extent they are federation testing tools seems to be limited to the fact that the
RTI calls given to the federates under test involve data from the FOM as opposed to the
SOM. How to best integrate testing tools needs to be investigated.

FNL_RPT.DOC Approved for public release; distribution is unlimited 34

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

3.2.16 OSim

OSim has promise for integration as part of the Federate development process. It is a
complete simulation framework that generates federate code. It stores its classes and
instances in Object Store, which is also used as Catalyst's persistent object archive, and thus
can be tightly integrated through its own APIs. OriginalSim, Inc. also plans to integrate
OSim with the Rational Rose CASE tool. OSim can also can store its data in text files,
which can be parsed, but this is inefficient since the data is quite complicated. OSim needs to
be explored further and integrated into the federate development process.

3.2.17 ModOIS

The CDF Upgrade delivery order has been modifying Motorola's ModOIS for exercise setup
(specifically for simulators). Motorola has developed an HLA RPR FOM version that may
play a role in HIDE, once the execution phase issue has been addressed.

3.2.18 ModSAF scenarios

ModSAF is not an HLA tool but was integrated with Catalyst to provide a proof-of-principle
scenario generation capability for HIDE. The ModSAF PVD is not really meant for this task
(nor is it removed from ModSAF, so the entire simulation must be run to use it) but it
illustrates how some initial FOM objects can be derived from scenario files. The ModSAF
rearchitecture task is currently developing a stand-alone scenario editor that the HIDE team
may be able to employ. In any case the problems mentioned under FOM generation still
exist.

3.2.19 RTIME

RTIME is a graphical CASE tool that has been augmented to support SOM annotations to the
Shlaer-Mellor Object-Oriented Analysis Methodology. It can generate RTI code for
federates and exports the SOM in the DIF format. This tool really has no place in the FEDEP
process but could be used as part of a federate development process.

3.2.20 Warfighting Analysis and Integration Center Java PVD

Booz-Allen & Hamilton, Inc. (BAH)has developed an initial version of a web-based PVD
that can be used for simulations. Special server processes tap into the DIS network (they use
VR-Link) and format this information for display on the web via a Java applet. Portions of
the server processes are written in Java as well. HLA support is planned for the future.
There is really nothing to integrate for FEDEP activities. However, during federation
execution it might be useful to launch this from HIDE to watch the exercise. Since BAH is
an ADST-II team member, there may be a possibility of using their tool as HIDE matures.

FNL_RPT.DOC Approved for public release; distribution is unlimited 35

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

3.2.21 Federation Execution Planner's Workbook Tool

This tool is being developed by VTC and proposes to automate the creation of the Federation
Execution Planner's Workbook. It is unclear why a tool is needed to fill out a workbook, but
perhaps it will use artifacts produced by other HLA tools through DIF. Once more
information becomes available, this tool can more be more properly analyzed.

3.2.22 Federation Verification Tool

This tool is being developed by GTRI and will most likely not be available for alpha test
until August or September. This tool will use yet another DIF format. No further details are
known at this time.

3.2.23 XGen

XGen is a ModSAF scenario generation tool designed to create scenarios and initialize
vehicles for a ModSAF-only exercise (with possibly more than one ModSAF). It uses the
CATT task database and TOE data to do this. XGen can fit into the FEDEP in the same
manner as the ModSAF PVD proof-of-principle. Since it creates ModSAF scenario files that
can already be translated into HIDE, it is in effect already integrated, albeit loosely. The
modifications it makes to ModSAF vehicle reader files are part of federate initialization;
how this fits into the FEDEP needs to be explored.

3.2.24 DEM

TASC's DEM is an execution monitor that monitors network-specific properties in addition
to access to the MOM data. It also initializes federates, the communications network, and the
RTL The actual execution of the federation from the HIDE perspective is nebulous, as
mentioned earlier, so DEM may or may not have a place within HIDE.

3.2.25 TASC HLA Construction Kit

The HLA Construction Kit is a TASC IR&D project that plans to integrate primarily OMDT,
DEM, and XGen in some fashion. The HLA construction toolkit also plans to provide
support for entering exercise objectives using keywords and keyboard input. It also plans to
provide a data mining engine that can retrieve and display from the appropriate authoritative
database(s) a scenario laydown and object selections in textual and visual formats. When this
capability is available, it may provide functionality for the beginning phases of the FEDEP
process. This is especially important, since most of the tools that can be used in these phases
are Windows-specific and thus cannot be run in the UNIX environment. Communication

FNL_RPT.DOC Approved for public release; distribution is unlimited 36

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

needs to be kept with TASC to keep abreast of their progress. This tool may possibly be
integrated into HIDE.

3.2.26 Modus Operandi Scenario Generation Tool

The Modus Operandi Scenario Generation tool allows users to capture descriptions of
federation functionality and use. Scenario Generation provides a graphical means, called an
outliner, for a user to enter a scenario. The outliner is a visualization of the underlying
schema used to capture scenario information. The underlying schema forms a template for
the kinds of information that are required to generate a complete, valid scenario. Scenarios
are driven by goals or requirements. The goal describes the intended outcome of the
scenario. This goal-driven approach ensures that a user is able to articulate what he/she is
trying to accomplish in a given scenario.

A scenario comprises a context and a narrative. The context includes the scenario name and
type, any background information, any related goals, and any related scenarios. The scenario
narrative includes the steps which are performed to achieve the scenario goals. Each scenario
step includes the role of the entity performing the step, the actor who performs the step, the
step inputs, the step outputs, any obstacles to performing the step (exceptional conditions),
any optional extensions associated with a time reference that specify step sequence (perform
before or perform after), and attributes such as postconditions (completed/not completed).

The entire structure is recursive, allowing steps to have subgoals and substeps. Quality
attributes, such as cost, performance, schedule, stability, availability, etc., can be associated
with a narrative to allow trade-off analyses during scenario generation. The actors identified
in scenario steps will be linked to model entities in the simulation federates. Using this
approach, a scenario can be used to select the appropriate model entities for a federation.

While not a graphical laydown tool, this tool does allow the user to specify the kinds of
information necessary for a federation. It is expected that this tool will be integrated into
Catalyst by Modus Operandi themselves, but if it is not, it should definitely be integrated into
HIDE. It may also collaborate with other scenario tools that are not specific to the HLA to
provide 2D/3D visualization.

3.3 Integration of Software Engineering Tools

Most of the software engineering tools investigated are part of the DARPA Evolutionary
Design of Complex Software (EDCS) program, since these tools are more easily available
and the HIDE team is involved in other EDCS-related efforts. Unfortunately, most of the
tools apply to the federate development process and do not really apply at the federation
level. Most are concerned with problems at the code level. These tools should be
investigated more closely when the federate development process is investigated.

FNL_RPT.DOC Approved for public release; distribution is unlimited 37

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

3.3.1 Chimera

Chimera is a prototype for a software development environment based upon the idea of
hyperlinks. It is similar to Catalyst in the use of relations between data but does contain any
common format and is only a 2-tier client server model (not as scaleable). The basic idea is
that all the tools that work on the data support the use of hyperlinks so as links are followed,
tools are automatically brought up with the appropriate document and the user is placed at the
proper position within the document. Actions can be taken upon link traversal, determined as
a function of who clicked on the link or how the traversal was requested. Chimera supports
composable links, n-ary links, and multiple context links. The links themselves are objects as
well, which is a useful feature. The disadvantage is that all tools have to be modified to
support the Chimera API and hyperlinks within their native formats (there are exceptions,
such as Framemaker, which has macro support and supports hyperlinks of its own). This is
impractical for third party tools, such as those from Microsoft and Adobe. There is really
nothing to be gained by trying to work with Chimera.

3.3.2 OzWeb

OzWeb is similar to Chimera in that its foundation is hyperlinks. It stores all artifacts and
corresponding links in an object-oriented referential hyperbase. It also supports associative
and navigational queries over the hyperbase objects.

OzWeb also contains some kind of process enactment. Depending upon process definition,
OzWeb enforces task prerequisites and implications, including constraints on when artifacts
can be viewed or updated; automates the invocation of tasks at the appropriate time; notifies
appropriate supervisors under specified conditions; and collects metrics and maintains a
complete audit trail of user actions. Using the same process information, OzWeb can
automatically infer some linkages based upon inputs of one task being the output of another.
HIDE will do this using a domain model, but the process objects could also be traversed to
give other forms of linkages as well.

Like Catalyst, OzWeb supports the remote launching of tools and redirection of X Windows
and Windows NT/95 GUI's to the user's screen. More specifics on how OzWeb redirects
Windows NT/95 GUIs are needed, since this has a direct bearing on architecting HIDE for a
multi-platform environment. Peer tool servers communicate with each other across a WAN
to determine the best place to launch a tool, and automatically set up the local environment
and invoke the tool on the user's machine. This most likely means that OzWeb has copies of
the tool on various machines and uses load balancing to determine which one to run.
Currently in Catalyst, tools can be run remotely by using a "rsh" (remote shell) command.

OzWeb provides Java, HTML, and X window client interfaces. The server can run on
Solaris or Windows NT/95. The major components, notably the object management system,
the process engine, the transaction manager, and the tool service can be used separately and
their APIs accessed via direct links in code, TCP/IP sockets, HTTP or CORBA. It is

FNL_RPT.DOC Approved for public release; distribution is unlimited 38

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

available for free download from www.psl.cs.columbia.edu/software/download.html.
OzWeb does overlap Catalyst capabilities, but it should be explored further because some of
their components, if robust, could be reused in HIDE.

3.3.3 WinWin

Win Win is a requirements/rational capture, negotiation, and coordination tool. It supports:

• capturing the desires of stakeholders;
• organizing the terminology so that stakeholders are using the same terms in the same

way;
• expressing disagreements or issues needing resolution;
• offering options as potential solutions;
• negotiating agreements which resolve the issues;
• using third party tools to enlighten or resolve issues;
• producing a requirements document that summarizes the current state of the proposed

system;
• creating documents that support multimedia and hyperlinks;
• tracing the ways by which requirements decisions were reached;
• checking the completeness and consistency of requirements.

To accomplish these capabilities, WinWin supports a set of artifacts including win conditions
(requirements and rationale), issues, options, agreements, and terms. It also supports
comments pertaining to these artifacts and the association of artifact files/tools with the
WinWin artifacts. WinWin also supports relations among the artifacts. It has relatesto and
replaces relations and links from issues to win conditions, options to issues, agreements to
options, and agreements to win conditions. These relations are mirrored in Catalyst, allowing
browsing of requirements by their relationships within Catalyst as well as within WinWin.

WinWin can also print out the artifacts in a text file (for loose integration), a HTML file or
Framemaker file. WinWin also allows level 1 integration of third party tools (currently
COCOMO and XEmacs are supported) which can be launched from the WinWin menu.

Currently, a loose integration for WinWin exists. However, WinWin should be tightly
integrated into HIDE, since it has a client server architecture. A separate database server is
run to coordinate among the various stakeholders. A tight integration would provide for
immediate updates to Catalyst and impact analysis could be run when changes are detected.

WinWin should be used wherever negotiation exists. Currently, this is during the
Conceptual Analysis and FOM Development activities within the FEDEP process. For FOM
development, requirements capture and linkage is critical, since federation-wide decisions
must be made concerning the object model, algorithms used, databases used, etc. One of the
lessons learned from implementing the FEDEP is that frequently decisions remain
undocumented.

FNL_RPT.DOC Approved for public release; distribution is unlimited 39

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

3.3.4 EMMA

The Evolution-Memory Management Assistant (EMMA) is a collaborative development and
evolution system developed by CoGenTex, Inc. under the EDCS program. It supports
collaboration and evolution in the following ways:

• EMMA supports structured, goal-directed communication about the development of a
system and can record information about the expectations and responsibilities of all
parties involved. This is defined as the context of the development in which decisions are
made (i.e. rationale). A system is decomposed into a series of goals, each with its own
subgoals and context, and so on down to the primitive level. Plans for achieving those
goals and corresponding assumptions are recorded.

• EMMA presents this information as a solution status in terms of uncompleted goals or
inconsistent goals resulting from changes to requirements or assumptions. All goals will
have interrelationships that can be traversed to anticipate the impacts of evolutionary
changes.

• EMMA supports system evolution by recording anticipations about future changes in
requirements, assumptions, and resources. A plan for responding to these changes can be
recorded as well. EMMA also provides a mechanism for the high level goals
(requirements) and assumptions to be changed as a result of changes to part of the system
(architecture, COTS replacement, interface changes, etc.). This is known as top-down
evolution. For example, when a system is placed into a new environment, assumptions
under which the system was developed may no longer hold. Traces from the assumption
in the top level context can be traced to all the lower level goals that depended upon the
assumption. Given plans for likely evolution, EMMA develops anticipated responses to
possible evolutionary changes. EMMA also allows changes as a result of problems
encountered fulfilling lower level goals (bottom-up evolution). Finally, EMMA supports
the impact analysis of changes and distribution of the results to interested stakeholders.

EMMA provides a Java browser that allows the user to navigate the knowledge base.
Elements in the knowledge such as goals, plans, etc. can be linked to source documentation,
much like the "annotation object" in Catalyst.

EMMA has several features in common with Win Win, namely support for collaboration
(although no mention of any central database server was mentioned), recording of goals and
assumptions, and recording possible directions for system evolution. However, EMMA is
more suited for goal-directed development, after the initial requirements have stabilized, and
is useful for planning future evolution. EMMA can complement WinWin and could
potentially play a role in the later phases of the FEDEP, such as federation planning and
future federation evolution. WinWin can provide requirements, assumptions, and evolution
directives to EMMA and EMMA can provide back to WinWin exceptions and

FNL_RPT.DOC Approved for public release; distribution is unlimited 40

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

requirement/assumption changes that have associated issues and/or require more negotiation.
The use of EMMA should be explored to see how well it fits federation development.

3.3.5 Sybil

Sybil is a set of tools and browsers developed by the University of Colorado under the EDCS
program to support the integration of heterogeneous databases. Its focus is the gradual
migration of data from legacy databases to more modern ones and/or the interoperability
among them. For example, as an application adds a new database, relationships among
existing databases and the new database are built gradually over time. New data is placed
into this new database and interconnections are built for keeping this data consistent with the
legacy databases.

It is important to note that the legacy data is still accessed through the legacy applications (or
through the modern application via the interconnections), there is no centralized view like the
common objects of Catalyst. However, since there is no centralized view, the integrations
are reduced to a set of point-to-point transformations which is not as scaleable as a
centralized, common format. Every time a new database is added to the system, schema
translations, data translations, and query translations need to be performed, as in Catalyst.
However, interconnections to all the other appropriate databases must also be developed,
which is where scaleability and adaptability becomes an issue. Based upon the information
provided by the developers, there does not seem to be anything in Sybil that Catalyst cannot
do or is not already doing.

3.3.6 Together/J

Together/J is Java-based tool for enterprise-wide software development, a product of Object
International Corporation. It uses the Unified Modeling Language (UML) as the object
paradigm and features simultaneous design-and-code editing, supporting either design first,
code first, or both. The Whiteboard version is free. The commercial version also adds visual
UML modeling, wall chart printing, automatic generation of HTML documentation, saving
of class diagrams, use-case diagrams, sequence diagrams, and state diagrams.

This tool may be of use for federate development. The use of UML for specifying
federation-specific elements, such as federation design and scenarios, should be investigated.
If it proves worthwhile, this tool can be used during federation development.

3.4 Implementation ofHLA Arbitration Tool

During FOM development, an arbitration tool can be used to compare federate SOM
representations to identify similarities that can be used to arbitrate a common format required
for the FOM. For new objects to be integrated into an existing FOM, the tool can examine the
existing FOM and determine where the new object best fits. As FOMs become more object-

FNL_RPT.DOC Approved for public release; distribution is unlimited 41

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

oriented this will be of more use. The Aegis FedComposer has this same goal. However,
the heuristics behind the comparison are complex and the information needed may not be
represented in the FOMs themselves. Also, once the FOM is decided upon and given a
standard lexicon and a set of standard types, transformations can also be derived to transform
federate SOMs into the FOM.

3.4.1 Comparing SOMs with other SOMs and FOMs

Using the OML, the user can query for existing SOMs and FOMs. However, there is
currently no way for the user to determine which FOM best matches the SOMs that the
federation is using. Also, once a base FOM is chosen, any SOM objects that do not exist in
the FOM need to be added. Heuristics need to inform the user the best place for the object in
the hierarchy (what it is most related to) and what the format needs to be.

The arbitration will be aided by a hierarchy of content-standard attributes, such as the
OMDD, which will help determine the similarity among object models and will also
represent the objects that will hold the transformation routines. The content standards also
serve to filter what FOM capabilities are required so that some SOM information can be
ignored. The impact of having no content standards or attribute hierarchy in the HLA is that
more guidance is required from the user and there is less reuse of existing transformations.

3.4.1.1 Object Correlation Metrics

HLA objects are represented in terms of more general objects (inheritance) and in terms of
aggregation of objects (components) and atomic attributes. This means the comparison of
object models must be done in terms of their inheritance hierarchies and the composition of
an object itself, which includes components and attributes. When trying to compare and
correlate objects, several metrics can be used to determine how similar they are. These
include the WHERE-IS, HAS-A, IS-A, SIBLING-OF metrics.

WHERE-IS Metric

A source object can be found in the FOM at a lower or higher level of decomposition than it
is in its own SOM. This can be defined as the WHERE-IS metric and can be illustrated as
follows:

SOM Object A FOM Object B

Object Attribute A Object Attribute D
Atomic Attribute B Object Attribute A
Atomic Attribute C Atomic Attribute B

Object Attribute D Atomic Attribute C

FNL_RPT.DOC Approved for public release; distribution is unlimited 42

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

The attribute A, which happens to be the class we are looking to compare, is a component of
Object A but in the FOM, represented by Object B, it is a component of Object Attribute D
which is a component of the main object. Object A and Object B are clearly similar in this
case but are not exact. Comparing from Object B to Object A gives us the inverse metric.
The WHERE-IS metric can be defined algorithmically as:

FOR I - 1 TO LEVEL_DIFFERENCE
closeness = closeness - WHERE_IS_ADJUSTMENT*closeness

For each level of decomposition difference, the current closeness is reduced by the
WHERE_IS_ADJUSTMENT percentage amount.

IS-A Metric

A source object can be related to a more general or more specific object present in the
destination FOM object we are comparing against. This is defined as the IS-A metric. For
example:

SOM Object A FOM Object B

Tank Tank
Main Gun M256
Smoke Launcher Smoke Launcher

In this case, Tank B specifies an Ml09, where Tank A specifies a more general Main Gun.
This illustrates both the general-to-specific and specific-to-general IS-A metrics depending
upon the direction of the comparison. The IS-A metric can be specified algorithmically as:

FOR I = 1 TO INFERENCE_DISTANCE
closeness = closeness - IS_A_ADJUSTMENT*closeness

For each level of inheritance difference, the current closeness is reduced by the
IS_A_ADJUSTMENT percentage amount.

SIBLING-OF Metric

A source object can be related to a similar object of the destination FOM via a common
parent/ancestor. This is defined as the SIBLING-OF metric. For example:

SOM Object A FOM Object B

Tank Platoon Tank Platoon
Ml M1A1

FNL_RPT.DOC Approved for public release; distribution is unlimited 43

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

Here, Object A and Object B are similar, since they are composed of similar subobjects (Ml
and Ml Al) that share a common parent in the domain (Tank). The SIBLING-OF metric can
be represented algorithmically as:

FOR each sibling
closeness = (WHERE-IS metric of sibling) *

Number_Of_Parents_In_Common / Number_Of_Parents
if (closeness > max)

max = closeness
closeness = max - SIBLING_OF_ADJUSTMENT*max

The SIBLING-OF metric tries to correlate a similar (sibling) object in the destination object
with a source object. The closeness is adjusted based upon where the sibling object is found
in the destination FOM and the number of parents shared by the source object and the sibling
object. The best metric of all the siblings is used as the final metric result.

HAS-A Metric

A source object can be decomposed into its sub-objects, which can then be correlated. This
is defined as the HAS-A metric. For example:

SOM Object A FOM Object B

Object Attribute A Atomic Attribute B
Atomic Attribute B Atomic Attribute C
Atomic Attribute C

Object Attribute A is composed of attributes B and C in the SOM; Object Attribute A does
not exist in the FOM but the subobjects do. Objects A and B are clearly related. The HAS-A
metric is represented algorithmically as:

closeness = 1.0 - HAS_A_ADJUSTMENT
contribution_percentage = 1.0/ Number_of_Subobjects
closeness_sum = 0
FOR each subobject

closeness_sum = closeness_sum +
max_for_subobject(IS-A,WHERE_IS,SIBLING_OF)

closeness = closeness * closenesssum

The HAS-A metric tries to correlate the source object's sub-objects in the destination object.
The sub-objects are subjected to the previous metrics. The maximum for each of these
metrics is used for each sub-object which are then combined together. The sum is then
reduced in closeness by the HAS_A_ADJUSTMENT amount. Notice that in this
implementation, the HAS_A_ADJUSTMENT is actually applied first, which the other
metrics use as their initial value.

FNL_RPT.DOC Approved for public release; distribution is unlimited 44

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

It is important to note that any combination of these metrics can be used at the various levels
of decomposition and inheritance hierarchy to determine the closeness. Extra subobjects may
also be present on either the source object or the destination object. Extra subobjects on the
destination object do not affect the closeness as it has been defined. Extra subobjects only
means that the destination object represents more than is necessary for the source object
which is acceptable. However, there may be some ambiguity if more than one destination
object share the same subset of subobjects that match the source object. As far as the
closeness is concerned the objects are equal. A modification to the algorithm could be made
that would choose the object with the least amount of extra subobjects but that is no
guarantee that objects will not be ambiguous. Extra subobjects on the source object do
decrease the closeness since the destination object may be missing important characteristics.

3.4.1.2 Attribute Correlation Metrics

In addition measuring the correlation among objects, metrics must also be calculated for the
correlating the attributes associated with that object. Given a common lexicon, such as the
OMDD, attribute values with the same name have an more similarity than those that do not.
However, the name alone is not enough to guarantee identical matches, since often it is not
guaranteed that attributes with the same name are identical. Metrics similar to the object
correlation metrics must be used: IS-A, HAS-A, PARENT-OF, and WHERE-IS. In addition
to the OMDD, what is also needed is a common hierarchy of domain attribute types, such as
"ASSAULT POSITION is-a POSITION", "POSITION is-an AREA" and "AREA is-a
LOCATION". This ontology allows similar semantic types to be compared and the
closeness determined; it also provides a potential conversion path among types.

Using this ontology, the IS-A and PARENT-OF metrics both determine the closeness along
an inference path between a source attribute and destination attribute. The IS-A metric
determines if a destination attribute is a child of one of the source attributes. The metric
determines the inferential distance between the two. Similarly, the PARENT-OF metric
determines if a destination attribute is a parent of one of the source attributes. Unmatched
(Additional) parents in a PARENT-OF metric also do not affect the closeness for the
attribute. This just means that the attribute is more complex than the source attribute being
correlated, which is satisfactory. These two metrics can be combined to generate a
correlation path from a specific source attribute to a more general attribute and then back to a
more specific destination attribute. For example, ASSAULT POSITION can be correlated to
an OBJECTIVE by following the inference path from ASSAULT POSITION to POSITION
to AREA to OBJECTIVE, where OBJECTIVE is a specific type of AREA.

The HAS-A metric determines the closeness along a decomposition path between a source
attribute and destination attribute. For example, suppose a ROUTE can be decomposed into
a START POINT and END POINT. Then, a source ROUTE attribute can be correlated with
START POINT and END POINT attributes of the destination object. The IS-A and

FNL_RPT.DOC Approved for public release; distribution is unlimited 45

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

PARENT-OF metrics can be combined with the HAS-A metric so that the subattributes of
attributes may also be matched with the destination attributes.

Finally, the WHERE-IS metric can be used to locate attributes present in more general or
specific objects in the class hierarchy. The closer the attribute is found to the destination
object, the more similar the source and destination objects are. This metric can also be
combined with the previous metrics since, technically, all cases can apply to one attribute at
the same time: it can be higher or lower in the tree, of a more general or specific type than
the attribute being compared, and or decomposed into subattributes.

3.4.1.3 Incremental Decomposition and Abstraction

The correlation algorithm uses incremental decomposition and abstraction of objects to
determine the closeness. Each source object is recursed into (its components which are
subobjects) and is compared (via recursion again) to the levels of the destination object.
Each object is decomposed into its sub-objects which are also correlated down to the
primitive level. The correlation algorithm uses the following high level steps when
correlating a source object:

1. Check for the presence of the source object at the given level of decomposition in the
destination object.

2. If the object is not present, apply the WHERE-IS, IS-A, HAS-A, and SIBLING-OF
metrics, using the maximum closeness result.

3. Recurse into the source behavior, performing these steps on each sub-object. Combine
the results of the sub-object correlations and multiply the result by the closeness value
determined in one of the two previous steps.

4. Repeat steps 1-3 on the next object at this same level of decomposition.

The attribute correlation algorithm follows the same basic steps, with the attribute metrics
being applied instead. It is important to note again that objects can have an increased
closeness if their names match, but objects that match in name are not necessarily equal. The
closeness must be determined down to the primitive level to determine an accurate
correlation (hence the presence of step 3 above). The correlation algorithm uses the semantic
closeness metrics defined earlier to determine the object closeness value. This value is
calculated using closeness factors (decreases in closeness) for each metric, along with a few
others. These factors may need to be adjusted for a specific destination FOM to guarantee
proper correlation.

As each object is correlated, the metric that produces the best closeness value is combined
with the aggregate closeness value of its sub-objects. The value is then combined with the
other objects at the same level of decomposition and filtered up to the upper levels of

FNL_RPT.DOC Approved for public release; distribution is unlimited 46

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

decomposition. At the top level, the correlation of the objects is combined with the attribute
correlation to obtain a final correlation for the object in the range between 0 and 1.

The attribute correlation uses a similar version of the correlation algorithm but is slightly
modified, because it is also focused on a possible conversion path, as well as the closeness.
This will aid in the actual transformation of the data mentioned below. These same
algorithms and metrics also apply the interactions and their parameters as well; these are just
more reduced cases.

The total closeness between a source object and a destination object in the found is defined
by:

total_closeness = ATTRIBUTE_PERCENTAGE*attribute_closeness +
(1.0 - ATTRIBUTE_PERCENTAGE)*object_closeness

3.4.2 SOM-FOM translation

Once the FOM format and the relationships between the SOM objects and the FOM objects
have been identified, transformation routines need to be developed for each federate to
conform to the new FOM. As the SOM-FOM arbitration process is executed,
transformations can be identified based upon how close the representations are. The
transformations are built from primitive transformations ,such as those shown below. Since
the "closeness" determination is done recursively up the class hierarchy and into aggregated
structures, the transformation process is as well. In fact, the additional closeness metrics and
heuristics described above are required for the transformation to be determined. Once the
transformation has been identified, the transformations can be stored in a "case base" so that
transformations can be used again, or used as the basis for new sets of transformations.

Since a transformation is built up from a set of primitive transformations, not all
transformations will always be found in the case base. Heuristics will suggest either the
closest transformation or suggest and entirely new one that has been built up from other
transformations in the case (primitive or otherwise). The user can then alter these
transformations if necessary and store them back into the case base. The transformations
themselves will be developed using a high-level transformation grammar that will be parsed
and stored in the case base. The following example illustrates this grammar:

SOM OBJECT A

al float32
a2{

x float64
y float64
z float64

}

FNL_RPT.DOC Approved for public release; distribution is unlimited 47

FOM OBJECT B

al int32
a2{

x float64
y float64

}

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

a3 int32 a3 {
posl float32
pos2 float32
pos3 float32

}
a4 float64 (precision x) a4 float64 (precision y)

Here there are two different representations (A and B) of the same object. A set of mapping
operations can be created to transform A into B as follows:

trunc(al,al)
remove(a2,a2,z)
user-defined-expand(a3 ,a3)
adjust-precision(a4,a4,new_precision)

user-defined-expand(source,dest)
dest.posl = toreal(source) + 6.759
dest.pos2 = toreal(source)
dest.pos3 = 0.0

Potential primitive operations include truncation of values, removal of attributes, precision
adjustments, addition of default values, conversions between integral types, conversions
between real and integral types, and user defined conversions between unlike types. Since
attribute al is converted from a float to an int type, a truncation operation is used. In object
B, attribute a2 does not have a z component so it is removed. Attribute a4 simply needs a
precision adjustment. Attribute a3 is more complicated since it is converted from an atomic
type to an aggregate structure. A user defined expansion is used in this case which is
composed of more primitive transformations to create the mapping. Inverses can also
defined as follows:

toreal(al,al)
add(a2,a2,z,default-function)
user-defined-collapse(a3,a3)

default-function
return query("Default value for attribute z of member a2")

Note that a default function is required for adding attributes which in some cases may require
input from the user. Also, a user defined collapse function is needed to transform an
aggregate structure into an atomic one (it is not presented here).

Once the transformations have been determined they are stored in the case base as a mapping
between SOM Object of type A and FOM Object of type B. The case base itself will be
stored in an object database as a set of transformation services associated with each kind of
object. Given a correct API, federates can create instances of these objects (attributes are

FNL_RPT.DOC Approved for public release; distribution is unlimited 48

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

objects as well) at run-time allowing the dynamic loading of different SOM-FOM
transformations without re-compile. This of course requires that legacy federates also have
an internal-SOM transformation routine in place.

4. Scenario
Under this effort, a scenario was not required. However, for demonstration purposes a simple
scenario had to be developed to exercise the tool integrations and the environment. The
scenario consisted of objectives in XEmacs, a scenario in ModSAF, an ideal FOM created
from this scenario, a full FOM created with the OMDT from the ideal FOM.

5. Conclusion
The prototype HLA Integrated Development Environment (HIDE)_ demonstrated that an
HLA integration framework is not only feasible, but is highly desirable for the future
evolution of HLA development. The results are promising. Tools not designed to work
together have been integrated into an executable FEDEP process model, a level 1 integration.
These tools include Netscape (web-browsing), XEmacs (word processing), WinWin
(requirements definition), OMDT (object model development), and ModSAF (scenario-based
object model development). In addition, many of these tools (OMDT, WinWin, ModSAF)
were integrated at level 2, with the data they produce translated into standard CORBA object
representations that have the potential of being semantically linked, resulting in a seamless
FEDEP knowledge base. In short, we have surpassed our original objectives, which
included:

1. Implement an initial version of HIDE: accomplished

2. Integrate current HLA tools.: accomplished

3. Integrate selected software engineering tools: accomplished

4. Implement an initial HLA arbitration tool: requirements accomplished; tool work
discontinued based on similar Aegis work.

5. Develop a detailed plan for the implementation of a robust version of HIDE and the
tools within it: accomplished (under a separate document).

In addition to these objectives, an executable FEDEP process model was developed, with
tools integrated into it, that helps to structure the distributed, collaborative work of federation
development. All of this was accomplished under cost.

The FEDEP process is complicated and requires integrated tools to support it. These tools
come from many sources and produce data in many different formats, yet many of them are

FNL_RPT.DOC Approved for public release; distribution is unlimited 49

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

very useful to HLA developers. Nevertheless, they were not developed to work together,
producing stovepiped data. Therefore, these tools are not as useful in isolation as they are
when integrated. Furthermore, as data from these tools are integrated as a seamless
CORBA knowledge base, change is easier to manage within the FEDEP process, since the
impacts of changes can be analyzed and made visible to all stakeholders. Ensuring a
seamless, visible, consistent knowledge base produced by a wide variety of HLA support
tools is the focus of follow-on work in HIDE.

h ■■■■•.'isssä •.-...iii..^ ■ .-■ :...-, *>«!■ . ■■.;.■. ■ ■ i .■>■■.:■■■
Sponsor needs identification Formafaed problem statement XBnacs

Wjrd croc (doc) HTML/Acrobat (Doc linkages)

Objectives development Detailed federation objectives HLAOxistructionKit

Proj mgmt ted

Spreadsheet

Scenario development Fed functional scenario spec(R) Word processor

Ideal FOM Event trace ted

Graphics tool

Scenario databases

Xgen TOE, Equipment, Scenarics, Mxfsaf

SGT
HLA Construction Kit

MO Scenario Tod

Conceptual analysis Federation conceptual model Object modeling tools 3WIS

Detailed federation requirements OMDT, CM Template 3MDD

v\brd processor 3MDT

CMVB tools

OMDD tools

VMnWn

Conceptual Modeler

Traceabilitytcds

Federation design FOMreusecorrponenls s, \Ntmw;m^;:: rOMUbrary

(Federate design) FOM member list EMvW SOMUbrary

Fed development approach SE process tods

Together/J

Rational Rose

FeclerationdevBlcpmert'* "!-*fl- HA FOM Web&tpds , ^ferencsFOM ■,. :^t<m>W

Fed commonality matrix TASCOMDT Similar FOMs

Scenario data HTML HLA CM Development Process

OMDT Pro 3ML
Visual OMT 3MDD

FedCorrposer

Becgtai pfenning Feda*VWiXKk(5tabies) mm
RTI Initialization Data (RID) file V\brd processor

SEPT

EMVft

Federation Heg^bori&testlBS ßjmral test plan FXS HLAMmgemntOjaäeWckl^s
Test data collection files FedPrxoy

Cost & schedule impacts of modficatk iMgmttod

FVT
Federationexecution TestÄcöSeOioiifles Databa»tcds:l«l:::"S

Playback data files RTI analysis teds

FMT
DEM
FedDirector

McdOiS

FederaBbriAAR Analysed data Statistical analysis toots

Postprocessing tods

FDCT

Feedback Aaicnit8riBC«*^B*let5SctivJy)

Reuseatte federation products MSRR

FCM SOMmods, OMX), Scenario,

Conceptual model, etc |

In summary, many tools have been examined under this effort and we plan to analyze many
more for integration into HIDE in follow-on work. In addition, we have analyzed what it
means to integrate these tools into the FEDEP process. The above table lists the FEDEP
activities explored, their output products, and the category of tools (or specific tools) that
need to be part of HIDE to support the FEDEP. This provides the point of departure for
future HIDE work.

FNL RPT.DOC Approved for public release; distribution is unlimited 50

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

FNL_RPT.DOC Approved for public release; distribution is unlimited 51

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

6. Points of Contact

ADST II HIDE Team
Kent Bimson
Project Director
407-306-5631
Kent.D.Bimson@cpmx.saic.com

Christopher Dean
Lead Engineer
407-306-4038
Christopher.Dean@cpmx.saic.com

STRICOM
Rob Miller
Project Director
407-384-3685
MILLERl@stricom.army.mil

Bryant Lafoy
Project Engineer
407-384-3864
lafoyb@stricom.army.mil

FNL RPT.DOC Approved for public release; distribution is unlimited 52

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

Acronym List

ADST

API

BAH

CAFDE

CATT

CDF

CDRL

CLIPS

CMMS

COCOMO

CORBA

DARPA

DEM

DIF

DIS

DMSO

DO

DTD

EDCS

EMMA

FAS

FDCT

FEDEP

FEDEX

FEF

FMT

Advanced Distributed Simulation Technology

Application Programmer Interface

Booz, Allen & Hamilton

Computer Aided Federation Development Environment

Combined Arms Tactical Trainer

Core DIS Facility

Contract Data Requirements List

C Language Integrated Production System

Conceptual Model of the Mission Space

Constructive Cost Model

Common Object Request Broker Architecture

Defense Advanced Research Projects Agency

Distributed Exercise Management

Data Interchange Format

Distributed Interactive Simulation

Defense Modeling Simulation Office

Delivery Order

Document Type Description

Evolution Design of Complex Software

Evolution-Memory Management Assistant

Feasibility and Analysis Study

Federation Data Collection Tool

Federation Execution and Development Process

Federation Execution

Federation Execution Framework

Federation Management Tool

FNL RPT.DOC Approved for public release; distribution is unlimited 53

ADST-II-CDRL-HLAIDE-9800083
March 31, 1998

FOM

FVT

GRTI

GUI

HIDE

HLA

HTML

IDL

IR&D

LMC

ModSAF

MOM

MSRR

OCI

OLE

OMDD

OMDT

OML

OMT

PVD

RDF

RTI

SBIR

SEPT

SIW

SGT

SOM

STRICOM

TASC

Federation Object Model

Federation Verification Tool

Georgia Tech Research Institute

Graphical User Interface

HLA Integration Development Environment

High Level Architecture

Hyper Text Markup Language

Interface Definition Language

Internal Research and Development

Lockheed Martin Corporation

Modular Semi-Automated Forces

Management Object Model

Modeling Simulation Resource Repository

Object Community Interchange

Object Linking and Embedding

Object Model Data Dictionary

Object Model Development Tool

Object Model Library

Object Modeling Template

Plan View Display

Resource Definition Format

Run Time Infrastructure

Small Business Innovative Research

Scenario Execution Planning Tool

Simulation Interoperability Workshop

Scenario Generation Tool

Simulation Object Model

(US Army) Simulation Training and Instrumentation Command

The Analytical Sciences Corporation

FNL RPT.DOC Approved for public release; distribution is unlimited 54

ADST-II-CDRL-HLAIDE-9800083
March 31,1998

TCL

TCP/IP

TOE

UDO

UML

VTC

WAN

WPI

XML

XSL

Tool Command Language

Terminal Control Program/Interconnect Protocol

Tables of Operation Equipment

Unilateral Delivery Order

Unified Modeling Language

Virtual Technologies Corporation

Wide Area Network

Work Product Instance

Extensible Markup Language

XML Style Language

FNL RPT.DOC Approved for public release; distribution is unlimited 55

