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Abstract 

Recently Fosam and Shanbhag (1997) gave an extended version of the Laha-Lukacs 

characterization result based on a regression property, subsuming the Letac-Mora 

characterizations of the natural exponential families of distributions with variances 

as cubic functions of means. In the present note, we provide a new approach based 

on functional equations to arrive at the Fosam-Shanbhag result. 
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1    Introduction 

Laha and Lukacs (1960) proved, under some mild conditions, that if Xi,X2, ...,Xn, where 

n > 2, are independent identically distributed non-degenerate square-integrable random 

variables, then a quadratic expression of X'{s has its regression on £"=1 Xj to be a quad- 

ratic function of YJj=i Xj almost surely if and only if for some real a ^ 0 and ß, oJfi + ß 
'This research is supported by NSERC Grant: 283-34 
'Correspondence address: 3 Worcster Close, Sheffield, S10, 4JF, UK 



is either normal or Poisson or gamma or binomial or negative binomial or Meixner (hyper- 

bolic cosine). Indeed, the main theme of the Laha-Lukacs result is contained in, essentially, 

the following specialized version of it: 

Let X\,...,Xn, where n > 2, be independent identically distributed (iid) non-degenerate 

random variables. Then, with a, b, c as real, 

n 

E{Xl-aXxX2-bXx\YJXi} = c   a.s. (1) 
t=i 

holds if and only if for some real a^O and ß, aX\ + ß is either normal or Poisson or 

gamma or binomial or negative binomial or Meixner, depending upon what a, b and c are. 

(A more precise statement of the result in this latter case will be met later as Theorem 3.1 

in the present paper.) This specialized version of the Laha-Lukacs result gives, amongst 

other things, as a corollary, the Morris (1982) characterization of the class of natural 

exponential families where the members have their variances as quadratic functions of the 

corresponding means. 

Rao and Shanbhag (1994) have given an elementary technique, based mainly on moments, 

to identify the class of distributions for which (1) holds. Considering Xi,..., Xn as iid non- 

degenerate random variables, where n > 3, and using an extended version of the Rao- 

Shanbhag argument, Fosam and Shanbhag (1997) have identified the class of distributions 

for which 
n 

E{Xl-aXlX2-bXx-dXlXiXz\YdXi} = c   a.s. (2) 
i=l 

with a,b, c, d as real holds. The Fosam-Shanbhag result, in turn, yields as corollary, the 

Letac-Mora (1990) characterization of natural exponential families where variances are 

cubic functions of the means; Rao and Shanbhag (1994) and Fosam and Shanbhag (1997) 

cite some further literature that is linked with this result. 

The purpose of the present short note is to provide an approach based on a functional 

equation of the type met in storage theory, in conjunction with that based on moments, 

to arrive at the Fosam-Shanbhag result. (The reader is advised to familiarise himself with 

the notation in Fosam and Shanbhag (1997) in order to understand the contents of the 

present note.) 

2    Some auxiliary results 

Lemma 2.1 Let T be an open interval containing zero as one of its points and (j>: T —)■ 
R be a twice differentiable function (everywhere) with 0(0) = 0 and (j)"(t) > 0 for all 

t E.T, where <j>   is the second derivative of <f). Then 

<t>"(t) = a + ßcj>'(t) + 1((t>'(t))2,    t£T, (3) 

2 



with a, ß and 7 as real numbers, <p as the first derivative of 0, and <p" as defined above, 

if and only if one of the following holds: 

(i) ß = 7 = 0 and (p(t) = ßt + cvy, t £T, with a > 0 and ß as a real number. 

(ii) ß / 0 ,7 = 0 and <fi(t) = -A + Xe01 - ^t, t G T, with X as a positive real number. 

(iii) 7 > 0, 4a7 = ß2, and (j>(t) = -7-1 log(l - Xt) - -§^t, t G T, with X as a non-zero 

real number, T C (-00, A-1) if X > 0 and T G (A-1, oc) if X < 0. 

(iv) 7 < 0 and there exists a positive real number X such that 4aj = ß2 - A2, and 

<t>{t) = (-7)"1 log(l - p + pext) - ££t, t G T, with p G (0,1). 

(v) 7 > 0 and there exists a non-zero real number A such that icn'y = ß2 - A2, and 

<t>(t) = 7-
1{log(l-p)-\og(l-peXt)}-^t, t G T, withpe (0,1), r c (-00, ^2E) 

i/A>0 andT c (=^,00) z/A<0. 

(vi) 7 > 0 and there exists a positive real number X such that 4a7 = ß2 + X2, and 

(j){t) = 7-1{log(coS77) - log(cos(?7+ |i))} - &-t, t eT, with n as real number lying 

m(-f,f))rc((-f-r?)/A,(f-??)/A). 

Lemma 2.1 given above follows via a straightforward argument, and hence we shall not 

deal with its proof here. 

Remark 2.2 In each of the cases (i)-(vi) of Lemma 2.1, exp{</>(£)} has a Taylor series 

expansion about the origin in a neighbourhood of the origin. If we denote the coefficient 

of £jy by /xm for each m = 0,1,..., then we have that {ßm} is such that 

m 

^](r){/ir+2^m_r -(7 + l)/ir+1/jm_r+1 -ßßr+ißm_r -aßrßm-r) = 0   m = 0,1,... (4) 
r=0 

implying that {ßm} is determined given (a, ß, 7, ß\) such that a + ßß\ +jß2 > 0. In- 

deed, it is now clear that given (a, /?,7,MI) such that a + ßß\ + 7/12 > 0, the sequence 

{ßm} satisfying (4) is indeed the sequence {ßm} realtive to the Taylor series expansion 

of exp{0(£)}, in a neighbourhood of the origin. This is the moment sequence relative to 

a distribution that is determined uniquely by the corresponding moment sequence unless 

7 < 0 with 7_1 as a non-integer real number; in the case with 7 < 0 and 7-1 as a non- 

integer real number, we have exp{^(t +10) - 0(£o)}, t e I - t0, for some neighbourhood 

/ of the origin and *o G /, as the restriction to I of the Laplace transform of a signed 

measure that is not a non-negative measure, and hence the corresponding {ßm} cannot 

be a moment sequence. In each case where the distribution is determined by the cor- 

responding moment sequence, the restriction to T of the respective cumulant generating 

function (exists and) is defined by <p. 



Lemma 2.3 Let S be an open interval containing zero as one of its points and tp : S —► 
R be a twice differentiable function with ip(Q) = 0 and ( in obvious notation) ip'(s), 

V>"(s) > 0 for all s G S, Further, let ß and 7 be real numbers and 6 be a non-zero real 

number. Then 

/(S) = /?V'(s) + 7W'(s))2 + W'(s))3,    ssS, (5) 

if and only if (f> defined by 

<t>{t)=t-i>-\t),    t£T, (6) 

where T is the range of ip, is such that one of (i)-(vi) of Lemma 2.1 with (a, ß, 7) replaced 

by (ß + 7 + S, -(2ß + ~f),ß), and <f>'(t) < 1 for all t ET is met. (In the present case, one 

could replace "iaj = ß2", "4aj = ß2 - A2" and "4ct7 = ß2 + A2" appearing in the lemma 

by "4ßö = 72", %ßö = 72 - A2" and "4ßö = -y2 + A2" respectively.) 

Proof: Because of the inverse function theorem (Apostol (1977), p. 372), (6) implies 

that <f> is differentiable with derivative 

<l>'(t) = i-(ip'(ip-l(t))r\   ter, (7) 

which, in turn, implies that 0 is twice differentiable with 0"(i) > 0 for all t G T; also, 

trivially, (6) gives that 0(0) = 0. (7) implies that 

V'OO = (!-<£'Ms)))"1,    «65, 

and 

=  <t>"Ms))(i-<t>'(m)r2,   ses. 

Consequently, it follows that (5) holds if and only if 

4>"Ms)) = 0(1 - d>'(rp(s)))2 + 7(1 - 4>'(1>(s))) + Ö,    s G 5, 

which, in turn, is equivalent to the assertion that (3) with (a, ß, 7) replaced by (ß + 7 + 

ö, —{2ß + 7),/?) holds. The result claimed, i.e. Lemma 2.3, is hence obvious in view of 

Lemma 2.1. 

Remark 2.4 (6) can also be rewritten as 

ip{s) = s + 4>{tp(s)),    sGS; 

a functional equation of this form has appeared in storage theory (see, for example, 

Kendall (1957) and Prabhu (1965; p.  237); see also Prabhu (1980) for further relevant 



material). In each of the cases (i)-(vi) in Lemma 2.3 , tp possesses the property that it 

has a Taylor expansion about each point (in S) in some neighbourhood of the point; if we 

denote the coefficients of f^- in the Taylor series expansion about the origin, of exp{^(s)}, 

in a neighbourhood of the origin, by fim for m = 0,1,..., we have, in view of (5), that 

m    m—r\ % 

Z2    ZJ    (m -r, - r«Vr, *rJ ^n+fißr2ßm-rl -r2 - ößn+lßn+lßm-n -r2+l 
n=0 r2=0   " l 2>    l    2- 

-(l + 7)^n+lMr2 + l^m-ri-r2 ~ ßßn +lßr2ßm-n -r2 } = 0,      771 = 0,1,.... 

With easy calculations, it can also be seen that the following assertions (in the notation 

of Fosam and Shanbhag (1997)) hold here: 

(i)' If ß = 7 = 0 and 6 = 1, {2~mßm} is the moment sequence of an IGD(1,.). 

(ii)' If ß = 0, 7 > 0 and 6 = 1, {j~2mßm} is the moment sequence of a distribution 

that is absolutely continuous with respect to Lebesgue measure with density, /, 

satisfying for some s0 > 0, f(x) oc e~s°xk(x), x £ R, where k is the density of the 

Kendall-Ressel distribution with parameter 7""1. 

(iii)' If 7 > 0, 6 = 1 and 0 < ß < 57s, then depending upon whether or not ß = 

472i {ß~mßm} is the moment sequence (respectively) of a GPED (|, 1,0, v) with 

v < e-1 or a GPED(/i, l,c',v) with c* = 2{^2JAß)ll2 -1)~\ h= {2 + c*)/j and 
v< (l + c*)-(i+<=*)/c'. 

(iv)' If 7 > 0, 6 = 1 and ß > \'y2, then depending upon whether or not 7 = 0, {ß~mßm} 

is the moment sequence of an AGPED (^1, a* - i, 2i, v) with a* =  4fl_
7

2u/2 and 
V < e-^.n-1((l+a'2)-1/2)(l + a*2)-l/2 

(v)' If ß < 0, 6 = -1, 7 > 0 with 72 > Aß, or ß > 0, 6 = 1, 7 < 0 with 4/? > 72, {/zm} 

is not a moment sequence,  (tp in this case can be extended to a domain with left 

extremity equal to -00 or right extremity equal to 00, such that the extension has 

a Taylor series expansion in some neighbourhood about each point; if we denote the 

extension by ip*, then, it follows that we can find, unless ip is not the restriction 

to 5 of a cumulant generating function, an so and sufficiently small positive v such 

that, for s lying in some neighbourhood of the origin, 

00 

exp{ip*{s + so)} oc Yl exp{kßs}Jk{2a*/-y, a* - i, 2i, -v). 
fc=0 

where a* is as defined in (iv)' but with I7I in place of 7, in the case with 7 negative, 

00 

exp{V>*(s + so)} oc ]T exp{-A;72s}Jfc(-7_1,1,0, -v)exp{7s}, 
fc=0 



in the case with 6-1 and ß = 0, and 

oo i 

exp{ip*{s + so)} oc Y, exp{-fc72(72 - li)s}Jk{ , 1, ——, -u) exp{s72}, 
k=0 7i - 72      72 - 7i 

where 7i = 5(7-(7~4|/?|)1/2) and 72 = £(7 + (7-4I/?!)1/2), in the case of 5 = -1 

and ß < 0. In each of the cases, {Jjt} is not a non-negative sequence and hence we 

have a contradiction. (Note that as in Fosam and Shanbhag (1997), we take 

1 if    Jfc = 0 

Jk(A,t,c,u)= {  Au if    jfc = i 
A(A+kt+c)...(A+kt+(k-l)c) uk    if    A: = 2 3       ) 

Remark 2.5 In the case of ß — 0, 6 = -1, 7 > 0 with 72 > 4/?, iwe can choose the 

extension tp* such that there exists a point so < 0 and sufficiently small positive v such 

that (unless ip is not the restriction to S of a cumulant generating function) 

00 . 

exp{^*(s + so)} oc £ ezp{&7i(72 - 7i)s}Jk(- , 1, -(    72    ),v) exp{s7i}, 
£rQ 72 - 7i 72 - 7i 

where 71 and 72 ore as in (v)' of Remark 2.4, leading us to a contradiction once more. 

Remark 2.6 There do exist cases of (0, ip) with 

V>(s) = s + 0(V(s)),    seS, 

in which ip, with obvious notational alterations, satisfies (3) and <t>" is a cubic function of 

(j>. The following example provides us with an illustration of this: 

Example Let m > 0, 

ip(s) = -ms + s2,    s e (-00, —) 

and 

<t>(t) = -j + 2 + (^ + t)V\   *e(-^,oo). 

Note that we have here tp(s) = s + <p(tp(s)),    s e (-00, y). 

3    The Fosam-Shanbhag extended version of the Letac-Mora 

result 

In the present section, we prove the Fosam-Shanbhag extension of the Letac-Mora result, 

via a new argument. This result is given jointly by the following Theorems 3.1 and 3.2; 

the notation used in Theorem 3.2 is that introduced by Fosam and Shanbhag (1997). 



Theorem 3.1 Let n be an integer > 2 and X\,...,Xn be iid non-degenerate random 

variables. Then, with a, b, and c as real numbers, we have (1) to be valid if and only if 

one of the following is valid: 

(i) a = 1, b = 0 and X\ is normal with variance c (implying that c > 0). 

(ii) a = 1, b / 0 and (l/b)(Xi + {c/b)) is Poisson. 

(iii) a > 1, 4c(a - 1) = b2, and {Xx + b/[2{a - 1)]) or -(Xi + b/[2{a - 1)]) is Gamma 

with index (a- l)-1. 

(iv) a < 1 and there exists a number 6 > 0 such that 4c(a - 1) = b2 - 62, and S~1(Xi + 

((b-6)/[2(a-1)])) has a binomial ((1 -a)-1,.) distribution (implying that (1 -a)-1 

is a positive integer). 

(v) a > 1 and there exists a number 6^0 such that 4c(o - 1) = b2 - Ö2 and 6~1(Xi + 

((b - ö)/[2(a - 1)])) has a negative binomial ((a - l)-1,.) distribution. 

(vi) a > 1 and there exists a number Ö > 0 such that 4c(a - 1) = b2 + 62 and 25~1(Xi + 

(&/[2(a-l)])) has a Meixner distribution with index (a-1)-1, i.e. has a distribution 

that is absolutely continuous with respect to Lebesgue measure with density of the 

form 

/(*) = (cos<!jle«r(f + f)r(f - f),   -co < , < oc 

with p = (a — l)-1 and a real and lying in (-ir/2,ir/2). (The moment generating 

function corresponding to the distribution in question is defined for t G ((—7r/2) — 

a, (TT/2) -a), by (cosa)p(cos(a + 0)"p-) 

Proof: The "if" part follows via the characteristic function argument appearing on page 

231 in Rao and Shanbhag (1994), or on noting that for each of the distributions, the 

respective moment generating function M satisfies, on its domain of definition, 

{(M"(t) - bM\t))M(t) - a{M\t))2 - c{M{t))2}{M{t))n-2 = 0, (8) 

where M' and M" are the first two derivatives of M, implying that (1) holds. (Note that 

the moment generating function satisfies the differential equation referred to if and only 

if the corresponding cumulant generating function satisfies the differential equation (3) 

with j = a-l, ß = b and a = c). 

To prove the "only if" part, observe first that (1) implies by induction that Xi has 

moments of all order, since it implies that E(X2) < oo and that, for each integer k > 0 

E(X2\J2XAk) < E{(\a\\X1\\X2\ + \b\\Xl\ + \c\)(J2\Xj\)
k}, (9) 



where the right hand side of the inequality is finite (implying that E(\Xi\2+k < oo) 

if E(\Xi\l+k) < oo). Appeal to (1) once more to see then that the moment sequence 

{ßm : m = 0,1,2,...} relative to X\ satisfies 

m 

Y^(r){ßr+2ßm-r ~ aHr+lßrn-r+l ~ bßr+lßm-r ~ Cßrßm-r} = 0     TO = 0, 1, ...,       (10) 
r=0 

implying that {ßm} is determined given (a, b, c, ßi) such that (a - l)ß\ + bßi + c > 0. In 

view of what is revealed in Remark 2.2, we can now claim that the result sought holds; 

note that the situation of a < 1 with (1 — a)-1 as a non-integer does not occur since {ßm} 

here is a moment sequence, and , in each of the other situations, the moment sequence 

{ßm} determines the distribution uniquely as that in the assertion. 

Theorem 3.2 Let n be an integer > 3 and Xi,X2, ...,Xn be iid non-degenerate random 

variables. Also, let a, b, c, d with d ^ 0 be real numbers and £ be the largest real 

number such that cd2 + b£d + (a - 1)£2 + £3 = 0, a\, GL<I be real numbers such that 

an = bd + 2£{a-l)+3Z2 anda2 = a-l + 3£ and Yx = dXy - £. Then, (2) is met if and 

only if one the following conditions holds: 

(i) o;i = at = 0 and \Y\ has an IGD(1,.). 

(ii) cti = 0, #2 > 0 and the distribution of (l/a2)Y\ is such that it is absolutely continuous 

with respect to Lebesgue measure with density, f, satisfying, for some A > 0, 

f{x) a e~Xxk{x),    x e R, 

where k is the density of the Kendall-Ressel distribution with parameter I/OLI (i.e. 

u = l/a2 in the Fosam-Shanbhag notation). 

(iii) a2 > 0, 0 < a\ < \a\, and depending upon whether or not a\ = \a\, a^Yi 

has (respectively) a GPED(2/a2,l,0,v) with v < e~l or a GPED(h,l,c*,v) with 

c* = 2((a2/(a^-4ai)1/2)-l)-1, h = (2 + c*)/a2 andv< (1+ c*)-(1+c*)/c*. 

(iv) »2 > 0, cti > 4^2, and depending upon whether or not ot<i = 0, OL\
X
Y\ has an 

AGPED{ail/2,-i,2i,v) with v < 1 or an AGPED(2a*/'a2,a* - i,2i,v) with a* = 
aa/(4ft! - al)1/2 and v < e~a' sin-'((i+«,2)-1/2)(i + a«2)-i/2 

Proof: There is no loss of generality in assuming that ö = a1,o-l = a;2,c = 0 and d = 1 

with £ = 0 (implying that a\ > 0 and a2 < 4ai.) The theorem then follows essentially 

via the argument used to prove the pervious theorem provided we take 

{{M"(t) - axM\t)){M{t))2 - (1 + a2)(M'(t))2M{t) - (M'(t))3}(M(t))n-3 = 0,    (11) 



in place of (8), "|X1||X2||X3| + |l + «21i^il|^2| + |ari||JTi|" in place of "|o||Xi||X2| + 

\b\\Xi\ + |c|" in (9). "Remark 2.4" in place of'Remark 2.2", and the following system of 

equations in place of (10) 

m    m—ri • —   — m' 
2-/    2_/    (m_ ri _r2\!rilr2!{/in+2Mr2Mm-r1-r2 -/^ri+l/ir2 + lMm-ri-r2+l 

-{I + a2)ßrx+\ßr2 + \ßm-n-ri ~ Ol\ßn+lßr2ßm-n-r7} = 0,       771 = 0,1,.... (12) 

(The statement under brackets, following (8) holds here, provided "(3) with 7 = 0-1, 

ß = b and a = c" is replaced by (5) "with ß = au 7 = a2 and 6 = 1".) 

Note that (12) implies that given (01,0:2, ßi) such that/if + a2^ + ai/ii > 0, the moment 

sequence {/im} is determined and the cases of ßi < 0 and a2 < 0 do note arise here. (For 

Mi < 0, ß*m = (-l)m/jm, m = 0,1,... satisfy the system of equations relative to {/xm} in 

Remark 2.2 with <5 = -1, ß = -ai and 7 = a2.) 

Remark 3.3 The proofs of The'orems 3.1 and 3.2 simplify slightly if it is assumed a 

priori that Xx has a moment generating function. Also, since the distributions listed 

in the assertions in Theorems 3.1 and 3.2 are determined by the corresponding moment 

sequences, it is clear that the "only if" parts of the assertions follow from the respective 

"if" parts, provided the cases in which the moment sequences with desired properties 

do not exist, are dealt with appealing to the relevant observations in Remarks 2.2 and 

2.4. Our findings in section 2 in their existing form, though throw further light on the 

behaviour of the distributions involved in the Letac-Mora result, and on its extension due 
to Fosam and Shanbhag. 

The following is a corollary to Theorems 3.1 and 3.2: 

Corollary 3.4 Let {Fe : 6 € 6} be a family of non-degenerate d.f. 's on R that are 

absolutely continuous with respect to some a-finite measure v such that for each 6 

F6{x) oc / exp{g{0)y}u(dy),    x € R, 
J(—oo,x] 

■with g : Q -> R satisfying the condition that the set of values of g is dense in an open 

interval. (The condition on g obviously places a restriction on Q implicity, and the family 

that we have here is a version of an exponential family.) For each 6 £ 0, denote by ß6 

and a\ the mean and the variance corresponding to Fe respectively. Then 

(7g=ao + aiße + a2ß2
e + a3ßl     for all 0 (13) 

with a0, a\, a2 and a3 as real and independent of 6 if and only if given a point 0Q G 0, 

(2) with n = 3, a = a2 + 1,& = «I, c = a0, d = a3 and X{ as a random variable with d.f. 
Fg0, holds. 



Proof: Suppose for each 6 e 0, we denote by X^ ,X^2) and xf' three independent 

random variables distributed with d.f. Fe. Then, it easily follows that (13) holds if and 

only if for any fixed 80 6 0 we have (in obvious notation) 

^{(<1})2 - («2 + D<X2) -^ -«3<1)<2)<3)l<1) + <2) + <3)) = «o    a,. 
(14) 

The assertion now follows trivially. 

The family {Fe} of Corollary 3.4 is clearly such that given any 90 € 0, for each 9 e 0, 

the moment generating function Me of Fe is given by 

e[->       Meo(g(6)-9(0o)) 

with an appropriate domain of definition and Mg0 as the moment generating function of 

FeQ. In other words, we have the family in question to be such that for each 6 

Fe(x)<x [        exp{{g(e)-g(e0)y)}FeQ(dy),    x G R. 
J (—oo,x] 

Assuming {Fe} to be a natural exponential family, Letac and Mora (1990) have identified 

the cases under which (13) holds; Corollary 3.4 given above is hence essentially their 

result. 

Remark 3.5 There exist typos in Theorem 1 and Remark 9 of Fosam and Shanbhag 

(1997): in (vi) of the theorem in question "& - <5" should have appeared as "6", and in the 

remark referred to "(13)"should have appeared as "(17)". 
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