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Abstract

Recently Fosam and Shanbhag (1997) gave an extended version of the Laha-Lukacs
characterization result based on a regression property, subsuming the Letac-Mora
characterizations of the natural exponential families of distributions with variances
as cubic functions of means. In the present note, we provide a new approach based

on functional equations to arrive at the Fosam-Shanbhag result.

Key words: Laha-Lukacs result; Morris and Letac-Mora characterizations; Exponential
families; Power series distributions; Polya-Eggenbeger distribution; Inverse Gaussian distribution;

Regression property; Bhattacharyya matrices; Functional equation; Wet period of a dam.

AMS subject classifications: Primary 62 E 10, Secondary 60 E 05.

1 Introduction

Laha and Lukacs (1960) proved, under some mild conditions, that if X, X5, ..., Xn, where
n > 2, are independent identically distributed non-degenerate square-integrable random
variables, then a quadratic expression of X;s has its regression on > 7=1 X; to be a quad-
ratic function of 3°7_, X; almost surely if and only if for some real o # 0 and 8, aX; + 8

*This research is supported by NSERC Grant: 283-34
tCorrespondence address: 3 Worcster Close, Sheffield, S10, 4JF, UK
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is either normal or Poisson or gamma or binomial or negative binomial or Meixner (hyper-
bolic cosine). Indeed, the main theme of the Laha-Lukacs result is contained in, essentially,
the following specialized version of it:

Let X3, ...,Xn, where n > 2, be independent identically distributed (iid) non-degenerate
random variables. Then, with a, b, ¢ as real,

E{X}-aX;X, - bX)] i Xi}=c as. (1)
i=1

holds if and only if for some real o # 0 and 8, aX; + 8 is either normal or Poisson or
gamma or binomial or negative binomial or Meixner, depending upon what a, b and c are.
(A more precise statement of the result in this latter case will be met later as Theorem 3.1
in the present paper.) This specialized version of the Laha-Lukacs result gives, amongst
other things, as a corollary, the Morris (1982) characterization of the class of natural
exponential families where the members have their variances as quadratic functions of the
corresponding means.

Rao and Shanbhag (1994) have given an elementary technique, based mainly on moments,
to identify the class of distributions for which (1) holds. Considering X, ..., X, as iid non-
degenerate random variables, where n > 3, and using an extended version of the Rao-
Shanbhag argument, Fosam and Shanbhag (1997) have identified the class of distributions
for which n
E{X{ - aX1 X, - bX1 — dX1 X2 X3|> X} =c¢ as. (2)
i=1
with a,b, ¢, d as real holds. The Fosam-Shanbhag result, in turn, yields as corollary, the
Letac-Mora (1990) characterization of natural exponential families where variances are
cubic functions of the means; Rao and Shanbhag (1994) and Fosam and Shanbhag (1997)

cite some further literature that is linked with this result.

The purpose of the present short note is to provide an approach based on a functional
equation of the type met in storage theory, in conjunction with that based on moments,
to arrive at the Fosam-Shanbhag result. (The reader is advised to familiarise himself with
the notation in Fosam and Shanbhag (1997) in order to understand the contents of the
present note.)

2 Some auxiliary results

Lemma 2.1 Let T be an open interval containing zero as one of its points and ¢ : T —>
R be a twice differentiable function (everywhere) with ¢(0) = 0 and ¢ (t) > 0 for all
t € T, where ¢" is the second derivative of ¢. Then

"

¢ (t)=a+PBe (t)+v(d )% teT, (3)
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with o, B and v as real numbers, ¢’ as the first derivative of ¢, and ¢" as defined above,
if and only if one of the following holds:

(i) B=v=0 and ¢(t =ut+aﬁ, teT, witha >0 and u as a real number.
2
(ii) B#0 ,y=0 and ¢(t) = -\ + APt — 3t t € T, with A as a positive real number.

(iii) v > 0, 4ay = B2, and ¢(t) = -y~ 'log(l - At) — %t, t € T, with A as a non-zero
real number, T C (—00,A™1) if A> 0 and T € (\~!,oc) if A < 0.

(iv) v < 0 and there ezists a positive real number X such that 4ay = % — A2, and
() = (—7) "' log(1 — p+ peM) — E22t, t € T, with p € (0,1).

(v) ¥ > 0 and there ezists a non-zero real number \ such that 4oy = (% — A%, and
#(t) = v~ {log(1—p) —log(1—pe*)} - &2t ¢ € T, withp € (0,1), T C (—o0, =g22)
ifA> 0 and T C (52, 00) if A < 0.

(vi) v > 0 and there ezists a positive real number \ such that 4oy = % + X2, and
¢(t) = v~ {log(cos ) — log(cos(n + 3t))} - -%t, t € T, with n as real number lying
in(-5,5), TC((=3-n/AEG-n)/N.

Lemma 2.1 given above follows via a straightforward argument, and hence we shall not
deal with its proof here.

Remark 2.2 In each of the cases (i)-(vi) of Lemma 2.1, exp{¢4(t)} has a Taylor series
expansion about the origin in a neighbourhood of the origin. If we denote the coefficient
of £ by pm for each m =0, 1, ..., then we have that {x,} is such that

ST (M trsatimer = (Y+ Dbr st fimorst = Blirtilmer — Ofirhmer} =0 m=0,1,... (4)

r=0
implying that {um,} is determined given (e, 8,7, u1) such that o + Buy +yu2 > 0. In-
deed, it is now clear that given (o, 8,7, p1) such that @ + Bu1 + yp? > 0, the sequence
{um} satisfying (4) is indeed the sequence {yu,,} realtive to the Taylor series expansion
of exp{¢(t)}, in a neighbourhood of the origin. This is the moment sequence relative to
a distribution that is determined uniquely by the corresponding moment sequence unless
v < 0 with y~! as a non-integer real number; in the case with v < 0 and 4! as a non-
integer real number, we have exp{¢(t + to) — ¢(to)}, t € I — to, for some neighbourhood
I of the origin and ¢y € I, as the restriction to I of the Laplace transform of a signed
measure that is not a non-negative measure, and hence the corresponding {u.,} cannot
be a moment sequence. In each case where the distribution is determined by the cor-
responding moment sequence, the restriction to T of the respective cumulant generating
function (exists and) is defined by ¢. |




Lemma 2.3 Let S be an open interval containing zero as one of its points and ¢ : S —»
R be a twice differentiable function with ¥(0) = 0 and ( in obvious notation) v'(s),
1,/)"(3) > 0 for all s € S, Further, let B and v be real numbers and & be a non-zero real
number. Then

¥'(s) = BY'(s) + 1 (¥ ()P +6(¥ ()%, s€S, (5)
if and only if ¢ defined by
ot) =t -9p7'(t), teT, (8)
where T is the range of v, is such that one of (i)-(vi) of Lemma 2.1 with (o, 8,7) replaced
by (B+7+6,—(28+7),8), and ¢ (t) < 1 for allt € T is met. (In the present case, one
could replace “4ay = B%”, “bary = % — A2” and 4oy = B2+ M%7 appearing in the lemma
by “4B6 = %", 406 =% — \2” and “4B6 = v2 + A?” respectively.)

Proof: Because of the inverse function theorem (Apostol (1977), p. 372), (6) implies
that ¢ is differentiable with derivative

gH)=1-@ @O, teT, (7)
which, in turn, implies that ¢ is twice differentiable with ¢"(¢) > 0 for all ¢ € T} also,

trivially, (6) gives that ¢(0) = 0. (7) implies that

13

P(s)=(1-¢ (%)), ses,
and

¥’ (s) d

Y -1
0 = @)

= ¢ (Y())(1-¢(B()))2 seS.

Consequently, it follows that (5) holds if and only if

¢ (%()) =B(L- ¢ W) +7(1- ¢ ((s)+6, s€S,

which, in turn, is equivalent to the assertion that (3) with (a, 3, v) replaced by (8 + v +
d,—(28 + 7v),0) holds. The result claimed, i.e. Lemma 2.3, is hence obvious in view of
Lemma 2.1.

Remark 2.4 (6) can also be rewritten as

P(s) =s+o(P(s)), s€S;

a functional equation of this form has appeared in storage theory (see, for example,
Kendall (1957) and Prabhu (1965; p. 237); see also Prabhu (1980) for further relevant
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material). In each of the cases (i)-(vi) in Lemma 2.3 , ¢ possesses the property that it
has a Taylor expansion about each point (in S) in some neighbourhood of the point; if we
denote the coeflicients of

3m

in the Taylor series expansion about the origin, of exp{¥(s)},
in a neighbourhood of the origin, by um for m = 0,1, ..., we have, in view of (5), that

m!

m!
Z Z (m—r1 - r2)!r1!r2!{/"r1+2ﬂr2»um—f1 —ra = Ofbry 418y +1 by —ra 41

r1=0 ro=0

—(1+ V) hry 41 8o 41 Bmmry =y = Blbry+1lbrybm—r —rp } =0, m=0,1,....

With easy calculations, it can also be seen that the following assertions ( in the notation
of Fosam and Shanbhag (1997)) hold here:

(i) ¥B=7=0and 6 =1, {2"™um} is the moment sequence of an IGD(1,.).

(ii)' fB=0,v9>0and 6 =1, {y 2> un} is the moment sequence of a distribution
that is absolutely continuous with respect to Lebesgue measure with density, f,
satisfying for some sp > 0, f(z) x e™*0%k(z), z € R, where k is the density of the
Kendall-Ressel distribution with parameter y—1.

(iii) ¥y > 0,6 =1and 0 < § < 192 then depending upon whether or not § =
24?, {B~™um} is the moment sequence (respectively) of a GPED (%, 1,0,v) with
v < e”! or a GPED(h,1,c*,v) with ¢* = 2y - 1)~ h = (24 c*)/y and
v < (14 c*)~(tet)/et,

(iv) Ify> 0,6 =1and 8 > 142 then depending upon whether or not v = 0, {3~™ tim}
is the moment sequence of an AGPED (2—::, a* —i,2i,v) with 0* = ;7T and
v< e—a'ain'l((l-!-a‘z)-”z)(l+a*2)-—1/2.

(v) ¥8<0,6=~1,7>0with v > 48,0t > 0,6 =1, v < 0 with 43 > 72, {ttm}
is not a moment sequence. (% in this case can be extended to a domain with left
extremity equal to —oo or right extremity equal to oo, such that the extension has
a Taylor series expansion in some neighbourhood about each point; if we denote the
extension by %*, then, it follows that we can find, unless 1 is not the restriction
to S of a cumulant generating function, an sy and sufficiently small positive v such
that, for s lying in some neighbourhood of the origin,

exp{¥”"(s+ s9)} x i exp{kfBs}Ji(2a*/7y,a" - 1,21, —v),
k=0

where ¢* is as defined in (iv)’ but with || in place of v, in the case with v negative,

exp{*(s+ 50)} x Y_ exp{—kv*s}Jk(~y71, 1,0, —v) exp{7ys},
k=0




in the case with 6 — 1 and 8 =0, and

= 1 "N
exp{Y™(s+ s9)} x exp{—k — 718}k y1, , —v) exp{sy2},
p{¥" (s + s0)} :L:B p{-kr2(72 — )5} (71—72 F—— ) exp{sv2}
where v = §(y ~ (v - 4|])*/2) and 12 = 4(y+ (v - 48])!/?), in the case of 6 = -1
and B < 0. In each of the cases, {Jx} is not a non-negative sequence and hence we
have a contradiction. (Note that as in Fosam and Shanbhag (1997), we take

1 if k=0
Je(At eu)={ Au i k=1
A(A+kt+c)(kl?+kt+(k—l)c) uk if k = 2, 3’ ..... )

Remark 2.5 In the case of § = 0, § = —1, v > 0 with v2 > 48, we can choose the
extension * such that there ezists a point so < 0 and sufficiently small positive v such
that (unless v is not the restriction to S of a cumulant generating function)

exp{9*(s + so)} i ezp{ky1(72 — 711)8}Jk( 1= (=2

,v)exp{s11},
prt - T v epten

where v, and vy, are as in (v)' of Remark 2.4, leading us to a contradiction once more.

Remark 2.6 There do exist cases of (¢, ¥) with

P(s) =s+¢(¥(s)), s€S,

in which %, with obvious notational alterations, satisfies (3) and ¢" is a cubic function of
é'. The following example provides us with an illustration of this:

Example Let m > 0,

bls) = -ms+s?, s € (-00,7)

and 2

2
__m m” /2 _m-

Note that we have here 9(s) = s + ¢(¥(s)), s € (~o0, B).

3 The Fosam-Shanbhag extended version of the Letac-Mora

result

In the present section, we prove the Fosam-Shanbhag extension of the Letac-Mora result,
via a new argument. This result is given jointly by the following Theorems 3.1 and 3.2;
the notation used in Theorem 3.2 is that introduced by Fosam and Shanbhag (1997).
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Theorem 3.1 Let n be an integer > 2 and Xi,...,X, be #d non-degenerate random
variables. Then, with a, b, and c as real numbers, we have (1) to be valid if and only if

one of the following is valid:

(1) a =1, b =0 and X, is normal with variance ¢ (implying that ¢ > 0).
(i) a=1, b#0 and (1/b)(X;1 + (c/b)) is Poisson.

(iii) a > 1, 4e(a — 1) = b2, and (X +b/[2(a - 1)]) or —(X1 + b/[2(a — 1)]) is Gamma
with indez (a — 1)~1.

(iv) a < 1 and there ezists a number 6 > 0 such that 4c(a — 1) = b% — 62, and 6~ (X; +
((b=06)/12(a—1)])) has a binomial ((1-a)™!,.) distribution (implying that (1—a)~!
18 a positive integer).

(v) a > 1 and there ezists a number § # 0 such that 4c(a — 1) = b2 — 6% and 6~1(X, +
((b—6)/[2(a — 1)])) has a negative binomial ({(a — 1)71,.) distribution.

(vi) @ > 1 and there ezists a number § > 0 such that 4c(a — 1) = b% + 6% and 26~1(X; +
(b/12(a—1)))) has a Meizner distribution with indez (a—1)~!, i.e. has a distribution
that is absolutely continuous with respect to Lebesgue measure with density of the
form -

Py _
)T( 5= %5 )y, —00<z<00

20-2 p iz
— 4 —
f(z) = (cosa) - 5t 3

with p = (a — 1)~! and a real and lying in (—r/2,7/2). (The moment generating
function corresponding to the distribution in question is defined for t € ((—m/2) —
a, (7/2) — @), by (cosa)?(cos(a +t))~=*.)

Proof: The “if” part follows via the characteristic function argument appearing on page
231 in Rao and Shanbhag (1994), or on noting that for each of the distributions, the
respective moment generating function M satisfies, on its domain of definition,

{(M"(t) = bM (1) M(2) — a(M'(£))* - (M (£))*}(M(¢)""> =0, ®)

where M’ and M" are the first two derivatives of M, implying that (1) holds. (Note that
the moment generating function satisfies the differential equation referred to if and only
if the corresponding cumulant generating function satisfies the differential equation (3)
withy=a-1,8=band a=c.).

To prove the “only if” part, observe first that (1) implies by induction that X; has
moments of all order, since it implies that E(X?) < oo and that, for each integer k¥ > 0

E(X{| inV‘) < E{(lal| X[ Xal + |01 X3} + ICI)(XH:IX;'I)"}, (9)

=1 =1




where the right hand side of the inequality is finite (implying that E(|X,|*** < o0)
if E(|X]'**) < 00). Appeal to (1) once more to see then that the moment sequence
{tm : m=0,1,2,...} relative to X, satisfies

m

Z('F){ﬂr-f-?ﬂm—r = Ofbr g1 hm—rd1 = Ofbr g1 fbrn—y — cUr.Um—r} =0 m=0,1,.., (10)
r=0

implying that {gm,} is determined given (a,b, ¢, u1) such that (a — 1)p? +bu; +¢ > 0. In
view of what is revealed in Remark 2.2, we can now claim that the result sought holds;
note that the situation of @ < 1 with (1 —a)~! as a non-integer does not occur since {im, }
here is a moment sequence, and , in each of the other situations, the moment sequence
{tm} determines the distribution uniquely as that in the assertion.

Theorem 3.2 Let n be an integer > 3 and X1, Xo, ..., X, be iid non-degenerate random
variables. Also, let a, b, ¢, d with d # 0 be real numbers and £ be the largest real
number such that cd? + béd + (a — 1)€%2 + €3 = 0, o), oy be real numbers such that
ar =bd+2¢(a-1)+32 and ap = a—1+43¢€ and Yy = dX; — €. Then, (2) is met if and
only if one the following conditions holds:

(i) o1 =02 =0 and ;Y; has an IGD(1,.).

(ii) a1 =0, a2 > 0 and the distribution of (1/a3)Y; is such that it is absolutely continuous
with respect to Lebesque measure with density, f, satisfying, for some A > 0,

f(z) x e*k(z), z€R,

where k is the density of the Kendall-Ressel distribution with parameter 1/qy (i.e.
u = 1/ay in the Fosam-Shanbhag notation).

(iii) 02 > 0, 0 < a3 < jo3, and depending upon whether or not oy = 1a3, or'V;
has (respectively) a GPED(2/as,1,0,v) with v < e~! or a GPED(h, 1, c*,v) with
¢ =2((ae/ (0 —401)?) = 1), h = (24 ¢*)/ag and v < (1 + ¢*)~(1+e)/e*,

(iv) o2 > 0, a; > Loi, and depending upon whether or not a; = 0, o7'Y; has an
AGPED(al_l/2, —4,21,v) with v < 1 or an AGPED(2a* /a3, a* — 1,2i,v) with ¢* =
o/ (4oy — 03)1/? and v < e=o"sin T ((1Ha") T2 (1§ ge2y-1/2,

Proof: There is no loss of generality in assuming that b= oy, a~1=az,¢=0andd=1
with £ = 0 (implying that ¢; > 0 and o2 < 4a;.) The theorem then follows essentially
via the argument used to prove the pervious theorem provided we take

1"

{(M7(t) = aa M (£)) (M(2))? = (L+ a2) (M (1))*M(2) — (M (£)3HM ()" =0, (11)




in place of (8), “|X1]|Xal|X3] + |1 + aal|X1||X2| + ||| X1)” in place of “la|| X1]| Xo| +
]| X1] + e[ in (9). “Remark 2.4” in place of“Remark 2.2”, and the following system of
equations in place of (10)

m m-—r m!
Z Z (m e 7,2)'7,1'7,2|{ﬂ1'1+2u7‘2um-—7‘1 —ry = Hri+18ro41lm—r) —rg+1
r1=0 ro=0 cAther
—(1 + a‘Z)/Jfr1+1;u'r2+lﬂm—r1 -ry al/ir‘+1/1vr2/1m-—r1 —1’2} = 01 m= 0, 1, ceae (12)

(The statement under brackets, following (8) holds here, provided “(3) with y = a — 1,
B =band a =" is replaced by (5) “with 8 =a;,y=ay and 6 = 1)

Note that (12) implies that given (a1, a2, 1) such that u$ + aau? +aypy > 0, the moment
sequence {ym } is determined and the cases of z; < 0 and @ < 0 do note arise here. (For
p1 <0, pr, = (=1)™pm, m = 0, 1, ... satisfy the system of equations relative to {tm} in
Remark 2.2 with § = -1, f = —a; and v = ay.)

Remark 8.3 The proofs of Theorems 3.1 and 3.2 simplify slightly if it is assumed a
priori that X; has a moment generating function. Also, since the distributions listed
in the assertions in Theorems 3.1 and 3.2 are determined by the corresponding moment
sequences, it is clear that the “only if” parts of the assertions follow from the respective
“if” parts, provided the cases in which the moment sequences with desired properties
do not exist, are dealt with appealing to the relevant observations in Remarks 2.2 and
2.4. Our findings in section 2 in their existing form, though throw further light on the
behaviour of the distributions involved in the Letac-Mora result, and on its extension due
to Fosam and Shanbhag.

The following is a corollary to Theorems 3.1 and 3.2:

Corollary 8.4 Let {Fy : § € O} be a family of non-degenerate d.f.’s on R that are
absolutely continuous with respect to some o-finite measure v such that for each 6

Re)e [ ewlo@uvidy), zeR

with g : © — R satisfying the condition that the set of values of g is dense in an open
interval. (The condition on g obviously places a restriction on © implicity, and the family
that we have here is a version of an ezponential family. ) For each 6 € ©, denote by pe
and o} the mean and the variance corresponding to Fy respectively. Then

03 = a0+ arpg + aopd + azul  for all 6 (13)

with ag, a1, a2 and a3 as real and independent of 0 if and only if given a point 6y € O,
(2) withn =3, a=ay+1,b=ay, ¢c = ag, d = a3 and X; as a random varicble with df.
Fy,, holds.




Proof: Suppose for each § € ©, we denote by Xél) ,Xe(,2) and X£3) three independent
random variables distributed with d.f. Fy. Then, it easily follows that (13) holds if and
only if for any fixed 6y € © we have (in obvious notation)

E(;(){(Xé;))2 — (a2 + l)Xé;)Xg) - angs) - ang(;)Xg(:)Xg(g)IXé;) +Xé§) +X(§g’)} =ay a.s.
(14)
The assertion now follows trivially.

The family {Fp} of Corollary 3.4 is clearly such that given any 6y € ©, for each 6 € O,
the moment generating function My of Fy is given by

_ May(9(6) - 9(60) + )
Mo0) = e (00 = 9(60))

with an appropriate domain of definition and Mp, as the moment generating function of

Fg,. In other words, we have the family in question to be such that for each 8
Br(e)oc [ ewllold) - g1} Fuoldy), xR

Assuming {Fp} to be a natural exponential family, Letac and Mora (1990) have identified

the cases under which (13) holds; Corollary 3.4 given above is hence essentially their
result.

Remark 3.5 There exist typos in Theorem 1 and Remark 9 of Fosam and Shanbhag
(1997): in (vi) of the theorem in question “b — §” should have appeared as “b”, and in the
remark referred to “(13)”should have appeared as “(17)”.
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