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ABSTRACT 

The technique of image compression using Iterative Function System (IFS) is known as fractal image 
compression. An extension of IFS theory is Partitioned or local Iterative Function System (PIFS) 
for coding the gray level images. Several techniques of PIFS based image compression have already 
been proposed by many researchers. The theory of PIFS appears to be different from the theory of 
IFS in the sense of application domain. The present article discusses some basic differences between 
IFS and PIFS and provides a separate mathematical formulation for the existence of attractor of 
partitioned IFS. In particular, it has been shown that the attractor exists and it is an approximation 
of the given target image. The experimental results have also been presented in support of the theory. 
The experimental results have been obtained by using a GA based PIFS technique proposed by Mitra 
et al [1]. 

key words : Image Compression, Iterative Fuction System (IFS), Partitioned Iterative Function 

System (PIFS), Attractor, Isometry. 

1     Introduction 

The theory of fractal based image compression using Iterative Function System (IFS) was 

proposed by Barnsley [2, 3]. He modeled real life images by means of deterministic fractal 

objects i.e., by the attractor evolved through iterations of a set of contractive affine trans- 

formations. Once the set of contractive affine transformations J- (say) is obtained the rest is 

an iterative sequence of the form {TN (O)}jv>0, where "O" is an initial object to start the 

iterative sequence. The set of contractive affine transformations T is called IFS. In particular 

at the Nth iteration, the object ON is used as input to the IFS, where ON is the output 

object obtained from the (TV — l)th iteration. The detailed mathematical description of the 

IFS theory and other relevant results are available in [2, 3, 4, 5, 6]. 



Image compression using IFS can be looked upon as an inverse problem of iterative trans- 

formation theory [7]. The basic problem here is to find appropriate contractive affine trans- 

formations whose attractor is an approximation of the given image. Thus for the purpose of 

image compression it is enough to store the relevant parameters of the said transformations 

instead of the whole image. This technique reduces the memory requirement to a great ex- 

tent. But the question is how to construct the transformations for a given image. A fully 

automated fractal based image compression technique of digital monochrome image was first 

proposed by Jacquin [7, 8, 9]. This technique is known as partitioned [10] or local [3] iterative 

function system. The partitioned/local IFS is an IFS where the domain of application of the 

contractive affine transformations is restricted to the small portions of the image (subimages) 

instead of the whole image as in the case of IFS. In PIFS the given image is first partitioned 

into non overlapping square blocks. In the encoding process, separate transformations for 

each square block is then found out on the basis of its similarity with other square blocks, 

located any where within the image support. As the transformations are applied partition 

wise the scheme is known as partitioned IFS or local IFS. Different schemes, using PIFS, 

have been proposed by several other researchers [1, 10, 11, 12]. 

The theory of partitioned/local IFS appears to be different from the theory of IFS in the sense 

of restriction of the application domain for the contractive affine transformations. So, the 

questions are, how PIFS produces an attractor and how it becomes a close approximation of 

the given target image. Generally, PIFS is considered to be a simple extension of IFS and it 

is assumed that the theoretical foundation of PIFS is same as that of IFS. In reality IFS and 

PIFS techniques differ widely. The present article discusses some basic differences between 

IFS and PIFS in the context of image compression and provides a separate mathematical 

formulation for the existence of attractor of partitioned IFS. In particular, firstly we have 

shown that the transformations, in the PIFS scheme, give rise to a fixed point (attractor). 

Secondly, it has been shown that the transformations, though not exactly contractive, are 

eventually contractive. Finally, we have proved the attractor and the given image are very 

close to each other in the sense of a chosen distance measure. 

In the next section we have described the theory of image coding using IFS. Section 3 consists 

of basic features of constructing PIFS codes for a given image. Section 4 deals with the basic 

difference between IFS and PIFS techniques. The proposed mathematical formulation of 

PIFS has been discussed in Section 5. The experimental results have been presented in 

Section 6 and the conclusions are drawn in Section 7, 



2    Theoretical Foundation of IFS 

The salient features of IFS theory and image coding through IFS are given below. An 

elaborate description of this methodology is available in [2]. 

Let (X, d) be a complete metric space, where X is a set and d is a metric. Let / be a con- 

tractive map defined on the metric space (X,d) such that / : X -> X and d(f(xi),f(x2)) < 

s d(xi,x2); Vxi,x2 € X, where 0 < s < 1 is called contractivity factor of the map /. Note 

that,     lim /   (x) — a, Vx G X, and also f(a) = a.   "a" is called fixed point of /.   Here 
N—>oo 

fN(x) is defined as 

■fN{x)  = /( fN~Hx) ), with }l{x) = f(x), Vx G X. 

Now let ~H(X) be the space of all non empty compact subsets of X. Let D denote Hausdorff 

metric defined on H(X). It can be shown that CH(X),D) is a complete metric space. 

Let / be a contractive map on (H(X),D).  Then also    lim fN{B) = A, VS £ H{X) and 
N-*oo 

f(A) = A. Here also    fN{B) is defined as 

fN(B)  = /( !N-\B) ), with f\B) = f(B), VB G H{X). * 

Now, let us consider n contractive maps /i, /2, • • •, fn with contractivity factors si, S2, ■ • •, sn, 

on (U{X),D). Let for any B G H{X), 

Bi = Ü MB) 
i-l 

and 
n 

BN =   (J /i(ßiv-i)     ViV>2. 
:=1 

Then it can be shown that there exists a set C G ~H(X) such that 

n 
II  f^C)  = C and    lim BN = C,MB G U(X). 
.   , iV->oo 
2=1 

C is called the attractor of the IFS {H{X);fi, f2, ■ ■ ■, /„). 4 

Let for any B G ^(X), 

W(B)  =   [J  ^(ß), 
i=l 

and 

WW(B)  = VV( VI^-^B) ), ViV > 2 where Wl{B) - W(ß), Vß G H{X). 

Note that 

D(W(Bi),W(B2)) < sD{B1,B2); VBUB2 EH{X)    where    0 < s < 1. (1) 



and s  —  Max{si,S2, ■ ■ •, sn}. 

Collage Theorem [2] :- Let I G ~H{X) and e > 0. Let there exists n contractive maps 

h, /2, • • •, fn, with contractivity factors si, s2, ■ • •, s„, from ftpQ to H(X) such that 

D(/,W(/))<e. (2) 

Then 

0(1,0 K^ (3) 

where s = max{si,s2, • • • , s„} and C is the attractor of {%{X)\ /i,/2, • • • ,/„}.  4 

The above theory is given for contractive maps defined on complete metric spaces. The 

space X under consideration in this article is a subset of the three dimensional Euclidian 

space H3. One can define affine contractive maps /i, /2, • • ■, /„ on this X and these maps 

become contractive maps on (H{X), D). In this article, hence forth, we shall be dealing with 

affine contractive maps. 

Now, let I e H be a given set and our intention here is to find a set W of affine contractive 

maps in such a way that the distance between the given set and the attractor of W is very 

small. Thus, by Collage theorem, the given set I can be approximated by the attractor of 

W. 

Prom (3) it is clear that, after a sufficiently large number (N) of iterations, the set of affine 

contractive maps W produces a set C belonging to H(X) and it is very close to the given 

original set I. Here, (H(X),W) is called iterative function system and W is called the set of 

fractal codes for the given set I. 

In the context of image coding, the given set I is the given digital monochrome image. 

Note that any digital image I with w rows, w columns and gray level value as g(i,j)'s 

(g(i,j) is the gray level values of the ith row and jth column pixel) can be represented by 

I — {{hj,g{i,j)) '■ *'■ — 1,2, • - - ,w;j = 1,2,- •• ,w}. Thus any image I is a subset of three 

dimensional Euclidian space 1R3 and hence the theory stated above is applicable for images. 

In the context of digital monochrome image coding, the scheme suggested by Jacquin [8] 

is called partitioned or local Iterative Function System (PIFS). In the next section, the 

construction of PIFS codes has been described. 

3    Construction of PIFS Codes 

The structure of PIFS codes are almost same as that of IFS codes. The only difference is 

that PIFS codes are obtained and applied to a particular portion of the image instead of the 

whole image. 



Let 7 be a given digital image having size w x w and the range of gray level values be 

{0,1,2, • • • .1 - 1}. Thus the given image I can be expressed as a matrix ({g(i,j)))Wxw, where 

i and j stand for row number and column number respectively and g(i,j) represents the gray 

level value for the position (i,j). The image is partitioned into n non overlapping squares 

of size, say b x 6, and let this partition be represented by TV = {7li,TZ2, ■ ■ ■ ,fcn}- Each TZi 

is named as range block. Note that the number of range blocks n = fxf. Let M be the 

collection of all possible blocks of size 26x26 in the image. Let M = {X>i,"D2, • • • ,Vm}. Here 

m = (w — 26) x (w — 26) and Vj 's are named as "domain blocks". 

Now, let us define, 

A =  {l,2,---,w}x{l,2,---,w}x{0,l,2,---,l-l}. 

Here A C 1R3. Note that any image I is a subset of A but any subset of A is not necessarily 

an image. Also TZi C A;Vi and Vj C A;Wj. 

Let, for a range block TZi, 

Tj — {/ : Vj -> A  ;   /  is an affine contractive map}. 

Let, /j|j G Tj be such that 

P(fti, fi\j{Pj))  <  p{Ki, f(Vj))  V/G^-, Vj. 

Here p is a suitably chosen distance measure. (A detailed description of p is given at the end 

of this section). 

Now let k be such that 

p(Ku /i|*(2?fc))   = min{ p{JU, fi\j(Vj)) }. (4) 

Also,    let fi\k{Vk) = Ki\k- We shall denote /^ by fa. 

The aim here is to find fa{Vk) for each i G {1,2, • • •, n}. In other words, for every range block 

TZi, one needs to find an appropriately matched domain block Vk as well as an appropriate 

transformation fa. The set of maps T = {/i|.,/2|„ • ■ • ,/n|.} thus obtained is called the 

partitioned or local IFS or fractal codes of image I. 

To find the best matched domain block as well as the best matched transformation, all 

possible domain blocks as well as all possible transformations are to be searched with the 

help of equation (4). The problem of searching for an appropriately matched domain block 

and transformation for a range block has already been solved by enumerative search [8] and 

by using Genetic Algorithms [1]. 

The affine contractive transformation fa is constructed using the fact that the gray values 

of the range block are a scaled, translated and rotated version of the gray values of domain 



block. The contractive affine transformation /^ is defined in such a way that fi\j(Vj) is 

close to Hi. Also f^j can be separated into two parts, one for spatial information and the 

other for information of gray values. The first part indicates which pixel of the domain block 

corresponds to which pixel of range block. The second part is to find the scale and shift 

parameters for the set of pixels of the domain blocks to the range blocks. 

The first part is shuffling the pixel positions of the domain block. Generally, eight transfor- 

mations (isometries) are considered for this purpose [1, 11]. On the other hand, second part 

is the estimation of a set of values (gray values) of range blocks from the set of values of 

the transformed domain blocks. These estimates can be obtained by using the least square 

analysis of two sets of values [1, 11]. 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

• • 
\ 

• • 

• • 

Figure 1: Construction of contracted domain block : Scheme 1 

The second part is obtained using least square analysis of two sets of gray values once the 

first part is fixed. Moreover the size of a domain block is double that of any range block. But, 

the method of least squares (straight line fitting) needs point to point correspondence. To 

overcome this, one has to construct contracted domain block such that the number of pixels 

in a contracted domain block becomes equal to that of any range block. The contracted 

domain block is obtained by adopting any one of the following two techniques. In the first 

technique, as shown in Figure 1, for a 4 x 4 domain block, the average values (integers) of 

four pixel values in 2 x 2 non overlapping squares within the domain block are considered 

as the pixel values of the contracted domain block. In this scheme, row number and column 

number corresponding to each pixel value of the contracted domain block are equal to the 

row number and column number of the topmost pixel value in every 2x2 square considered 

within the domain block [8]. In the other scheme, as shown in Figure 2, for a 4 x 4 domain 

block, contracted domain block is constructed by taking pixel values along with the row 



number and column number from every alternative rows and columns of the domain block 
[1, 11]. 

/     / 
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Figure 2: Construction of contracted domain block : Scheme 2 

Now to select an appropriately matched domain block (Vk) and appropriately matched trans- 

formation (/i|fc) for a range block (7^), the distance measure "p" plays an important role. 

The distance measure "p" [used in equation (4)] is taken to be the simple Root Mean Square 

Error (RMSE) between the original set of gray values and the obtained set of gray values of 

the concerned range block. The map from Vk to 7^ is constructed in such a way that the 

pixel positions of Hi and Hi]jk are same. The difference between Ki and H^ are found only 

in the gray level values of the pixels. Let TZi(p,q) and Ki\k(p,q) be respectively the original 

and the obtained values of the (p, q)th pixel for the range block 7^ of size 6x6. The distance 
measure p is then computed as 

P(Ku   ftiifc)    = 

\ 
!EJE {Ki\k<p,q) - Ki{p,q)}2- b ^  b 

v q 

The RMSE is not a metric though it serves the purpose of a distance measure.  Note that 

the same measure had been used in several articles [1, 8, 10, 11, 12]. 

4    How PIFS technique differs from IFS 

Extension of the iterative function system concept results in the partitioned iterative func- 

tion system. PIFS mainly differs from IFS in the domain of application of their respective 

transformations. In PIFS the transformations are not applied to the whole image, as in the 



case of IFS, but rather have restricted domains.  In every PIFS, the information on every 

transformation /; should contain the location of the domain block to which /, is applied. 

I» 

f T 

f? 

X01 

T 

.   T f 

x02 

Ji *   X03 

Figure 3: Mapping for an IFS scheme 

The difference in the domain of application of the two techniques is shown in Figure 3 and 

Figure 4. In Figure 4, three affine contractive transformations are applied on the image IQ to 

result in an image which consists of three parts/oi 5-^02 and I03. These three transformations 
are then applied sequentially to result in a fixed point. The set of transformations {/1; f2, fz} 

is called the IFS, and the fixed point of this set of transformations in this case is Sierspinski 

gasket [2]. 

Figure 4: Mapping from domain blocks to range blocks in PIFS scheme 

In PIFS, contrary to the above, as shown in Fig. 2(b) the map f^ is applied to the domain 

Vj to result in 7^, which is an estimate of 7£j. In the next iteration, this estimate {Hi) is 

not used as the domain to the map f^. In particular in the next iteration an estimate of 

Vj is used as the domain to obtain improved estimate, 7£,, of TZi. Note that a domain block 

includes many other range blocks or part of them (Figure 4). So, the estimate of Vj consists 

of several other estimated range blocks or part of them. 

PIFS differs from IFS not only in the application domain but also in the case of selecting 

distance measure.   In, IFS, the Hausdorff distance, which is a metric, is considered as the 



distance measure. But in PIFS, RMSE is considered as the distance measure and RMSE is 

not a metric. Even then RMSE serves the purpose of selecting an appropriately matched map 

and domain block for a range block. As our purpose is to measure the closeness of the set of 

pixel values of the concerned range block and the scaled, translated and rotated version of 

the set of pixel values of appropriately matched domain block, selection of RMSE as distance 

measure is sufficient. But it needs to be examine whether the attractor, if it exists, of PIFS 

is close to the given image, considering RMSE as distance measure. 

Another important and significant difference of PIFS and IFS lies in the context of contrac- 

tivity factor of the transformations. For an IFS with an expansive map /;, the set of maps 

will not converge to a compact fixed point. The expansive part will cause the limit set to be 

infinitely stretched along some direction. This is not necessarily true for a PIFS. PIFS can 

contain expansive transformations and still have a bounded attractor. So, it is not neces- 

sary, in PIFS, to impose any contractivity condition on all the transformations. A sufficient 

contractivity requirement is that the set of transformations T be eventually contractive [10]. 

Fisher et al [10] have shown experimentally that maximum allowable value of s (contractivity 

factor) can be 1.5 (> 1). Also they have shown that this maximum value of s, for a partic- 

ular image, yields minimum distortion between the original image and the attractor evolved 

through the iterative process of the eventually contractive transformations. 

In the next section we have described the mathematical formulation of attractor of PIFS, 

where the meaning of eventually contractive maps has been defined. 

5    Mathematical Formulation of PIFS 

In this section we have proposed a mathematical formulation of PIFS. To make it convenient 

we have divided our tasks into three stages. Firstly, it has been shown that the PIFS code (!F) 

possesses a fixed point or attractor in iterative sequence. Secondly, the eventual contractivity 

of the maps in PIFS setup has been proved. Finally, it has been shown that the given image 

and the attractor are very close to each other in the sense of a chosen distortion measure 

which is root mean square (RMSE). 

Let, / be a given image having size w x w and the range of gray level values be {0,1,2, • • •, I — 

1}. For this given image we can construct a vector x whose elements are the pixel values of 

the given image I. Note that there are w2 pixel values of I. Thus, 

x   =   (xi,     x2,     x3,      ...     ,XW2) 

is the given image where x\ is the pixel value corresponding to the (l,l)th position of 

I. Likewise, let xT be the pixel value corresponding to the (i, j)th position of /, where, 

r  =  (i  —  1) w + j,     1    <    i,   j    <   w. 



In this setup PIFS can be viewed as following. There exists an affine (linear), not necessarily 

strictly contractive, map for each element of x and this map is called forward map of the 

element. In the process of iteration, the input to a forward map will be any one of the w2 

elements of x and the map is called backward map for this input element. Thus for each 

element of x there exists a forward map and an element of x can have one or more or no 

backward map(s). The set T, of forward maps, is called the PIFS codes of /. 

Let us define a set V as 

V = {0,1,2, ■■■,1-1} 

Now consider the set S where, 

S     =     {x    |    X    =    (xi,      X2,      S3,        ...       ,XW2)'  ,        XiGV    }. 

S is the set of all possible images. The given image / is surely an element of S i.e. I £ S. 

The PIFS codes T can be looked upon as 

T   :    S   -»•    S  . 

The attractor of T, a (say), if exists, will also belongs to S. So, the first task is to show the 

existence of a. 

Let  /i  be the forward map for a particular element  xri , where n = («i — l)w + j\ . Also 

let this element be mapped from the element  xr2   ( r2  =  (i2 
— 1) w + j2 ) . Thus  /i   is 

the backward map for  xr2 ■ Again  xT2   is being mapped from  xTi, (r^ = («3 — l)w + jz) 

with a forward map f2 . Thus we have a sequence of maps for the element xri  as following. 

( ti, ji )    4    (t2, j2)    £    ( h, h)   &    ■■■    /r1    (im, jm );    m  <  (w2 - 1) . (5) 

The above sequence will be stopped at   ( im, jm )  if 

( Wi. jm+i )    =    ( hi 3k );    for  i  = 0 or  1  or 2  or   ■••   or  m. (6) 

The stopping phenomenon of this sequence is mandatory as there are finite number ( w2 ) 

of elements in x . Moreover all the elements of x possess same type of sequence in PIFS 

codes. Thus it is enough to show that the element xri has got a fixed point in the process 

of iteration and this will lead to prove the existence of a    (attractor of x). 

It is clear from the sequence (5) that during the iterative process the element xTl will have 

a fixed point once the element xT2 is fixed. Again the convergence (to a fixed point) of the 

element xTi confirms the convergence of the element xr.2 and likewise for the rest of the 

elements. Thus convergence of the last element of the sequence implies the convergence of 

the rest of the elements. The convergence of the last element of the sequence is possible in 

four different ways according to the stopping condition (6). 

10 



An important point to be noted in this context is the problem of discretization. To get the 

decoded image in an iterative process using PIFS codes one need to discretize the output. 

This can be done in two ways. One is discretization of the output in each iteration. Another 

is discretization at the end of the iterative process. The iterative process is stopped whenever 

there is no change in gray values in two successive iterations. To prove the convergence of 

the elements in four different ways we have used the discretization of the second type. 

Case 1 :     771   =    1. 

Here    ( i2, 32)    =    ( h, ji ) • 

It implies that    ( «i, Ji )   is mapped into itself with a map  f\ . 

Here    fi   —  ai x + bi ;   x  G V    and  0  <  a\   <   1. 

Note that in this case the affine map   f\   should necessarily be a strictly contractive map 

otherwise the element will not converge to a fixed point. 

If we start with any value (x G V) of ( ii, ji ) , the element will converge to the fixed point 

1 — ai   ' 

Case 2 :     m >  0      and      k — m 

Here    ( im+i, jm+\ )    =    (4, jm) ■ 
It implies that   ( im, jm)   is mapped into itself with a map   fm  =  am x + bn 

x  G  V  and  0  <  am   <   1 . Thus  ( im, jm)  will converge to   -^- . Once   ( im, jm)   i 

fixed at   YZ^- > the element    ( im_i, jm-i)   will be fixed at 

(7™     1    h_ 

+   &m-l     = 

IS 

am-i bm flm-i bm — am bm-\  + 6m_i 
1 - Or,. 

In this case the forward map is   fm-\   =   am-i x   +   bm-i ;    0   <   x   <   g .   Again 

( Jm-i, jm-\ )   is fixed implies convergence of  ( im-2, jm-2 )   with forward map 

fm-2   —   «m-2 X   +   6m_2 ;    X   G   V , at 

Qm-2 «TO-1 bm   —   am~2 0-m bm-l   +   O-m-2 bm-\   —   am 6m-2   +   frm-2 

1   -  dm 

Proceeding in this way, the fixed point of ( i\, ji )   is found out to be 

'1°3   ■ ■ ■   °m-l >m    +   (aia;   ...   am-2 l)m_i   +   ai a;   ...   am-3 bm_2   +    ...    + at q2 63   +   q, b2   +   61) (1   -   om) 

1   -   am 

Note that in this case the affine map fm should necessarily be contractive in strict sense. But 

the rest of the maps need not be strictly contractive. The eventual contractivity, associated 
m 

with the element  xri   =  (n , ji) , will be  sn   =  JJ a, . 
t=i 

Case 3 :     m  >  0      and      k  =  1 

Here    ( im+i, 3m+\ )    =   ( h, ji) ■ 
It implies that the starting and the last element of the sequence (5) is same.  This can be 

looked as a complete loop for the sequence. This case has been solved stepwise. First of all 

11 



the case is solved for m = 2, and m — 3 . Then on the basis of these the fixed point for 

the case of general m is solved. 

Case 3(a) :     m  =  2 

Here we have only two elements viz. ( i\, j\ ) and ( 12, 32) • The element ( i\, ji ) is being 

mapped from the element ( i^, j'2 ) by the affine map f\ — a\ x + b\ ; x G V . On 

the other hand the element ( i2, j2 ) iS being mapped from ( i\, j\ ) by the affine map 

fi  —  a2 x + 62 ;   x  E  V . 

(*i, h )   £-   ( h, 32)   &-   ( k, h ) • 

Let x be the starting value of ( i\, j\ ) and y be the starting value of ( i2, 32 ) • After 

first iteration the values of ( i\, j\ ) and ( 12, 32 ) wm be a\ y + bi and 02 x + b2 

respectively. Again after second iteration these will be a\ a.2 x + ai b2 + &i and 
a2 ai V + a2 b\ + 62 respectively. Proceeding this way after infinite (practically large but 

finite) number of iterations, the fixed point of (i\ , j\) and (22 , 32) will be independent of 2; 

and y. The Coefficients of x and y after N (even) iterations will be (ai 02)^ which tends 

to zero as N tends to infinity. The fixed points of  {i\, j\ )   thus will be 

ai 62 + bi 

1  — a\ 02 

The same for the element   ( «2, 32 )   will be 

0,2 bi   +  62 
1  — ai a,2 

Note that both the maps need not be contractive. Moreover the eventual contractivity 

associated with the element  xri   is  a\a,2  which should be less than one. 

Case 3(b) :     m  =  3 

Here we have three elements viz. ( i\, ji ) , ( 12, 32 ) and ( 13, j'3) . These three elements 

are making a complete loop in the sequence. The sequence of forward and backward maps 

is as follows; 

( h, h )   P-   ( k, h)   &-   ( h, 33)   £   ( h, h )■ 

Taking the starting values of three elements as x, y and z and proceeding as case 3(a) we 

have the following results. 

The fixed point of ( ii, j\ )  will be 

Qi ( a-2 h + h ) + 61 
1   —0,10,2 03 

The element   ( 12, 32 )   will converge to 

Q2 ( Q3 h + b3 ) + b2 

1 — a\ Ü2 03 

12 



The fixed point, of ( 13, j'3 )   will be 

g3 ( QI 62  + fri )  + &3 
1   —   Oi Ü2 03 

Here also the maps need not be contractive in the strict sense. The eventual contractivity 

will be  010203   in this case. 

Case 3(c) :    General  m 
Here we have m elements which are making a complete loop of sequence. It is clear from 
case 3(a) and case 3(b) that all the elements of this sequence will have a fixed point after 
a large but finite number of iteration. Also the affine maps which are used, need not to be 
contractive. In particular, in this case the element  ( i\, j\ )  will converge to 

ax (q2 ( ... (am-2 (flm-i bm + 6m_i)  4- frm-a)  +   ■•• )  + 62)  + h 

1  — a\ a-2  ... o,m 

m 

Also the eventual contractivity for the element is  sn   —  Yiai ■ 
1=1 

Case 4 :     m  >  0      and      0  <  k  <  m 

Here    ( im+i, jm+1 )    =    ( ik, jk) , where  k  =  2 or 3 or ... orm-2. 

Without loss of generality say,   I   <  k  =  mo  <  m — 1. 

This case can be viewed as mixture two cases. Taking  ( imo, jmQ )   as the starting element, 

a complete loop of sequence can be formed with rest of the elements. Thus, one can find the 

fixed point of this element as it is nothing but case 3. Once the element  ( imo, jmo )  is fixed 

then the fixed point of the original starting element (i\, j\ ) can be found out by using case 
m 

2. Like all the previous cases the eventual contractivity, in this case, will be  sn   =   J| Oj . 
i=i 

The above stated four cases provide the fixed point of the PIFS codes T. Thus for a very 

large positive number N, we have 

FN(o)  -»■  a  Wo  S  S. (7) 

Note that for each element there will be a sequence of the form (5). This sequence will follow 

any one of the above mentioned four cases. Thus for each element there will be a sequence 

of forward maps. The contractivity factor associated with this element will be the product 

of all the scaled parameters ( a* ) of the forward maps. 

The next task is to define, mathematically, the eventual contractivity of the PIFS codes. In 

this context we are stating the following theorem. 

Theorem 1 : Let T be the PIFS codes and S be the set of all possible images. For every 

x and y,  Xy£yeS3N>0 and  0  <  s  < 1   such that 

I Fix)    -   Fq(y) I    <    a I £   -   y\;    V p, q  >  N . 

13 



Proof :     Using equation (7) we have for a very small positive number  e  >  0 ,   3  a large 

positive number N\ such that 

p  >  Ni    =*•    | J^{x)    -   a |    <    £ ;   Vx  e  S. 

Also,   3 another large positive number N2 such that 

2 

e 
q  >   N2    =*    I F"(y)    -    o I    <    - ;   V y  G   S. 

Thus for x  ^  y  €  5 , 

I J*(x)    -   J*{y) I    =    I F>{x)  -a + a - F>(y) |. 

< I ^(s)  - a I  +  I ^(y)   -a\. 
< e ;   where ,   p, q > N - Max (iVi, 7ST2). 

Thus, for x j^ y, 3 a large number JV and   0  <  s  < 1  such that 

p, q  >  N    =>-    I J*(£)    -   J«(y) I    <    s I £   -    y | .      Q.JS.D. 

Once the eventual contractivity of the PIFS codes T has been proved the last task is to show 

that the given image and the fixed point of J- are very close to each other. 

Theorem 2 :      Let a be the fixed point of the PIFS codes T and x be the given image. 

Also let "p" be the given distortion measure. Under this setup, if 

then 

P(x, a)    < 
*■       smax 

Where  smax  =  Max {si, s2,   ■■■ ,5^2},   s;   being the eventual contractivity of the  ith 

element of x . 

Proof:     Let 

X = [Xl, X2,    ■ •    ) Xw2) 

F(x) = (z~i, ■Z~2,    ■ ■    1 Xw2 j 

F2{x) = (zT, X2,    ■ ■     TXW2) 

F3(x) = (xi, X2,    ■ ■    lXw'2) 

In the PIFS scheme, the given image is partitioned into range blocks IZi of sizes 6x6. So, 

there are n = (j)2 range blocks each having b2 pixel values. Pixel values are nothing but 

the elements of x. Also the distortion measure "p" is Root Mean Square Error (RMSE). "p" 

, defined on S, is as follows 

P( 
1   w 

\ ur r—f 
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Where,     ß ( w; , v{ )   =   \Ui 

Now, 

p{ x , F(x) 

[ij is being mapped from Xj with forward map fa.] 

< 
\ 

1 

^ Y^ ß {xi , Xi 
i=l 
w 

IJ2- Yl Maxi\xi  - fi 71)^ 

i=l 

^ J] (a)2;     where, a  =  MaZje{1]2,...!U,2} |x*  - x{\ 
i-\ 

<    a 

Again, 

p{ x , F(x) )  = 
\ 

1    n     1    b2 

~ Y Tp.  Y   ^( xj|i ' /jli^lf)) .     tas  w2  =  nb2} 

where, a:^ is the jth pixel value of ith range block and /^ is the forward map associated 

with Xj\i which is being mapped from  xk\i , the kth element of Ith range block. 

Thus, 

^ 

l   "   i   P 

- Y ja Y 0( xo\i> /jii(**|j)) i 
l   n   l   ft2 

~  Y  Ü2   Y   P( XJ\i . n  f—'  62 
z=l j=l 

It implies that 

\ 

1    "     1    fc2 

n ~ 62   .  , t=i        j=i 
(8) 

Again, 

p(Hs) , ^2te) 
N 

1    "    1    fc2 

Y 7ä Y   Pi fj\i(xk\l) , fj\i(xk\i)) ■ 
t=i        j=i 

Note that the size of the range block and the contracted domain block [from where this range 

block is being mapped] is same (Section 3). Moreover the number of range blocks and the 

number of matched contracted domain blocks is same as there is only one matched contracted 

domain block for each range block. Also for each element there is an eventual contractivity 

factor and  smax   is the maximum of these factors. 
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So, 

p(F(x) , F2(x) )    <     sr, \ - E 12 E 0( x*i< > **!') ■ 

<     Sm«i  « .        [By  (8)] 

Similarly, 

P(^2(x) , &{x) 
l A  l b2 

.„E^E 0( /iii^tu)> fj\i(xk\i)) ■ 

<      sr 1 
1     n      1      *2        r==: 

H   fe   &2   fc=l 

1     n      1      ^   
\      -      E      £2       E ^    Zfcll^Pl«)     »     fk\l(Xp\g))     ■ 
\ 1 = 1 fc=l 

[where  x^  is being mapped from  xpig 

with forward map  fk\i ] 

1      n       1      * 

\| g=l p=l 

<      *Lx   «.        [By   (8)] 

So, finally we have 

P ( £ , a )    =    p(x, TN{o) ) ;   V o G  5  and for a large N. [By (7)] 
=    p(x,^N(x)); 

<    Piss., F{x)) + p(F{x) , T2{x)) + p(T2(x) , T3(x)) +   .... 
-     a  +  Smax o.  +  s^ax a  +   ...    . 

=    a ( 1  + sma:r  + s^ax  +   ... )   . 

Q. E. D. 
1 Smax 

In the next section we have presented the experimental results in support of the mathematical 

formulation of PIFS. 

6    Experimental Results 

In the context of PIFS, a technique for fractal image compression using Genetic Algorithm 

(GA) has been proposed by Mitra et al [1, 11]. Using this technique, the PIFS codes for 

256 x 256, 8 bits/pixel "Lena" image and "LFA" (Low Flying Aircraft) image are found. Both 

the images have been reconstructed iteratively starting from different images. In particular 

we have used "Blank" image (having all the gray values zero), "Seagull" image, "Lena" 

image and "LFA" image as starting images. At the time of reconstruction, RMSE (distortion 

measure) between two successive iterations has been computed. In all the cases, computed 
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values of RMSE are gradually decreasing with the increasing iteration number. It has been 

found that the PIFS codes almost achieved a fixed point after ten (10) iterations in both 

the images. Finally, the distance (RMSE), as expected, between the given image and the 

attractor is found to be very small. The distances are found to be on an average 7.75 and 

11.44 for "Lena" image and "LFA" image respectively. 

The computed values of RMSE have been presented in tabulated form in Table 1 and Table 2. 

The notation A{ j used in the tables denotes the RMSE value between ith and jth iterations. 

Thus we have 

Aid  = p(F(o), P(O) ) , 

where T is the PIFS codes used and o is the starting image. As we have stopped the process 

of iterations after 10 iterations, the value of j4o,io provides the distance between the attractor 

and the given image. The value of Aoi will provide an approximate value of a if the starting 

image is the given image itself. The approximate values of a are found to be 7.18 and 10.67 

for "Lena" and "LFA" images respectively. 

tiny 

Table 1: RMSE values between successive iterations using PIFS code of "Lena" image 

Starting 

image M,w ■A0,i Ah2 M,3 ^3,4 ^■4,5 ^5,6 -46,7 Alfi -48,9 -4g,io 

Lena 7.73 7.18 2.91 1.12 0.45 0.24 0.15 0.10 0.07 0.04 0.03 

Blank 7.86 X 43.93 32.05 19.72 11.30 6.25 3.48 1.97 1.13 0.66 

Seagull 7.71 89.24 60.40 39.31 17.16 8.89 3.91 1.62 0.87 0.41 0.26 

LFA 7.74 66.47 41.59 23.07 11.26 4.97 2.13 0.97 0.48 0.27 0.17 

Table 2: RMSE values between successive iterations using PIFS code of "LFA" image 

Starting 

image -4o,io -A0,i Ait2 A2,i A3,4 A4,5 -45,6 AQJ Ay,?, -48,9 ^■9,10 

LFA 11.42 10.67 4.32 1.56 0.63 0.34 0.23 0.16 0.12 0.09 0.06 

Blank 11.48 X 53.78 36.51 21.87 12.70 7.39 4.28 2.46 1.42 0.84 

Seagull 11.41 141.92 99.69 44.12 21.14 9.91 4.11 2.14 1.12 0.78 0.54 

Lena 11.43 64.95 45.50 27.23 13.38 5.66 2.36 1.09 0.60 0.38 0.26 

To judge the validity of the PIFS technique, the original and reconstructed images have also 

been checked visually. Figure 5, Figure 6 and Figure 7 show the original images of "Lena", 

"LFA" and "Seagull" respectively. Figure 8 and Figure 9 show the reconstructed images of 

"Lena" and "LFA" respectively. In both the cases the starting image is the "Seagull" image. 

Both the reconstructed images are found to be of good quality. Also the compression ratios 
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are found to be 10.5 and 5.5 for "Lena" and "LFA" images respectively, using GA based 

PIFS technique [1]. Note that the compression ratio depends upon several factors like image 

size, range block size, bits per pixel and the gray level variation present in the given image. 

Figure 5: Original "Lena" image 

The next section concludes the present article. 

7    Conclusions 

The present article provides an elaborate and direct proof for the existence of the attractor 

and the closeness of the attractor to the given image in the partitioned IFS scheme. The upper 

bound of the difference, between the original image and the attractor evolved through its PIFS 

code, is almost same as that in the IFS set up (Collage theorem [2]). The only distinction 

between these two scheme is the contractivity factor which is eventually contractive in the 

case of PIFS whereas it is strictly contractive for IFS. 

In PIFS technique the estimates of all the range blocks are obtained by finding the self 

similarities present in the given image. The domain block which is most similar to a range 

block is named as appropriately matched domain block for that range block. The similarity 

between the range block and its estimate is measured by RMSE. Thus the efficiency of PIFS 

technique depends on two factors. The first one is the efficiency of the distortion measure. 

The second one is the extent of similarity present in the given image after choosing an 

"appropriate" distortion measure. 

RMSE, being a global measure has its own limitations [13].   In this context a better and 
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Figure 6: Original "LFA" image 

Figure 7: "Seagull" image 
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Figure 8: Decode "Lena" image 

Figure 9: Decoded "LFA" image 
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reliable distortion measure can probably make the PIFS technique more efficient. Regarding 

the second factor, it may so happen that there is hardly any domain block which is appropri- 

ately matched with the concerned range block. In other words, the domain block closest to 

a range block in the sense of similarity, may provide a quantitatively large distortion. This 

may lead to inefficient coding. In such a case, many authors proposed subdivision of the 

concerned range block [8, 10] and coding of those divided blocks. The continuation of this 

process [10] will ultimately lead to a coding with less distortion, though sometimes it may 

lead to a coding with a very small compression ratio. Thus a proper choice of the size of the 

range block is important for obtaining good compression ratios. 

The theory of PIFS technique is also applicable to one dimensional signals. In this context 

the technique has already been applied to code the fractal curves [7] and EEG signals [14]. 

But either case, computational time of the PIFS scheme for two dimensional signal (gray 

level image) and one dimensional signal (curve) is quite large. So, many attempts have been 

made to reduce the computational time [1, 15]. 
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