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University of Washington 

Abstract 

ARCHITECTURE AND ALGORITHMS FOR 
A FULLY PROGRAMMABLE ULTRASOUND 

SYSTEM 

George W. P. York 

Chairperson of the Supervisory Committee: Professor Yongmin Kim 
Departments of Bioengineering and Electrical Engineering 

Diagnostic ultrasound has become a popular imaging modality because it is safe, non- 

invasive, relatively inexpensive, easy to use, and capable of real-time imaging. In order 

to meet the high computation and throughput requirements, ultrasound machines have 

been designed using algorithm-specific fixed-function hardware with limited 

reprogrammability. As a result, improvements to the various ultrasound algorithms and 

additions of new ultrasound applications have been quite expensive, requiring redesigns 

ranging from hardware chips and boards up to the complete machine. On the other hand, 

a fully programmable ultrasound machine could be reprogrammed to quickly adapt to 

new tasks and offer advantages, such as reducing costs and the time-to-market of new 

ideas. 

Despite these advantages, an embedded programmable multiprocessor system capable 

of meeting all the processing requirements of a modern ultrasound machine has not yet 

emerged. Limitations of previous programmable approaches include insufficient 

compute power, inadequate data flow bandwidth or topology, and algorithms not 

optimized for the architecture. This study has addressed these issues by developing not 

only an architecture capable of handling the computation and data flow requirements, but 



also designing efficient ultrasound algorithms, tightly integrated with the architecture, 

and demonstrating the requirements being met through a unique simulation method. 

First, we designed a low-cost, high performance multi-mediaprocessor architecture, 

capable of meeting the demanding processing requirements of current hardwired 

ultrasound machines. Second, we efficiently mapped the ultrasound algorithms, 

including B-mode processing, color-flow processing, scan conversion, and raster/image 

processing, to the multi-mediaprocessor architecture, emphasizing not only efficient 

subword computation, but data flow as well. In the process, we developed a 

methodology for mapping algorithms to mediaprocessors, along with several unique 

ultrasound algorithm implementations. Third, to demonstrate this multiprocessor 

architecture and algorithms meet the processing and data flow requirements, we 

developed a multiprocessor simulation environment, combining the accuracy of a cycle- 

accurate processor simulator, with a board-level VHDL (VHSIC Hardware Description 

Language) simulator. Due to the large scale of the multiprocessor system simulation, 

several methods were developed to reduce component complexity and reduce the address 

trace file size, in order to make the simulation size and time reasonable while still 

preserving the accuracy of the simulation. 
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Chapter 1: Introduction 

1.1 Motivation 

Since the introduction of medical ultrasound in the 1950s, modern diagnostic 

ultrasound has progressed to see many diagnostic tools come into widespread clinical 

use, such as B-mode imaging, color-flow imaging and spectral Doppler. New 

applications, such as panoramic imaging, three-dimensional imaging and quantitative 

imaging, are now beginning to be offered on some commercial ultrasound machines, and 

are expected to grow in popularity. 

Today's ultrasound machines achieve the necessary real-time performance byusing a 

hardwired approach (e.g., application-specific integrated circuits, (ASIC), and custom 

boards) throughout the machine. While the hardwired approach offers a high amount of 

computation capacity tailored for a specific algorithm, disadvantages include being 

expensive to modify, having a long design cycle, and requiring many engineers for their 

design, manufacture, and testing. The high cost of ASIC and board development can 

hinder new algorithms and applications from being implemented in real systems, as 

companies are conservative about making modifications. 

While the older, mature B and color-flow modes are implemented using hardwired 

components and boards, new applications, such as three-dimensional imaging and image 

feature extraction, are being implemented more using programmable processors. This 

trend toward programmable ultrasound machines will continue in the future, as the 

programmable approach offers the advantages of quick implementation of new 

applications without any additional hardware and the flexibility to adapt to the changing 

requirements of these dynamic new applications. 



While a programmable approach offers more flexibility than the hardwired approach, 

an embedded programmable multiprocessor system capable of meeting all the 

computational requirements of an ultrasound machine currently has not been 

implemented. Limitations of earlier programmable systems include not having enough 

computation power, due to either designs scoped for only single functions (versus the 

entire ultrasound processing in general) or inefficient large-grained parallel architectures 

combined with algorithms not tightly-coupled with the architecture. 

This research addresses the above issues by first designing our architecture based 

upon new advanced digital signal processors (DSP), known as mediaprocessors. 

Mediaprocessors offer a fine-grained parallelism at the instruction level, which we have 

found necessary for efficient implementation of ultrasound algorithms. Next, we 

carefully mapped the various ultrasound algorithms to the mediaprocessor architecture, 

creating new efficient algorithm implementations in the process. In addition, this 

provided thorough understanding of the number of processors and data flow required to 

implement the entire system, leading to the final design of our multi-mediaprocessor 

architecture. Finally, to demonstrate that the system could meet the requirements, we 

developed a multiprocessor simulation environment, with reduced simulation complexity 

and time, while preserving accuracy. Our simulation results show that a cost-effective, 

programmable architecture utilizing eight mediaprocessors is feasible for ultrasound 

processing. 

The remainder of the chapter reviews the basic ultrasound processing requirements 

and previous programmable ultrasound systems, motivating the need for a fully 

programmable ultrasound system, and summarizes the contributions of this research. 

1.1.1 Review of Ultrasound Processing 

Figure 1-1 illustrates the processing stages of a typical ultrasound system. The 

ultrasound acoustic signals are generated by converting pulses of an electrical signal 

ranging from 2 to 20 MHz (known as the carrier frequency, coc) from the transmitter into 



a mechanical vibration using a piezoelectric transducer. As the acoustic wave pulse 

travels through the tissue, a portion of the pulse is reflected at the interface of material 

with different acoustical impedance, creating a return signal that highlights features, such 

as tissue boundaries along a fairly well-defined beam line. The reflected pulses are 

sensed by the transducer and converted back into radio frequency (RF) electrical signals. 

Transducer 

Tissue/Flow 
Decision 

Echo Pixels 

Color Pixels ^~ 

Figure 1-1. Processing stages of a typical diagnostic ultrasound machine. 

The transducer emits the acoustic pulses at a pulse repetition frequency (PRF), 

typically ranging from 0.5 to 20 kHz, based on the time for the pulse to travel to the 

maximum target depth (d) and return to the transducer. The PRF is 



PRF=-^T~ (i-i) 
c setup 

where tsetup is the transducer setup time between each received and transmitted pulse and 

speed of sound, c, is assumed to be a constant 1540 m/s, although it actually varies 

depending on tissue type. 

As the acoustic wave travels through the tissue, its amplitude is attenuated. Therefore, 

the receiver first amplifies the returned signal in proportion to depth or the time required 

for the signal to return (i.e., time-gain compensation, TGC). The signal's attenuation also 

increases as ©c is increased, limiting the typical ultrasound system to depths of 10-30 cm. 

After the RF analog signal is received and conditioned through TGC, it is typically 

sampled at a conservatively high rate (e.g., 36 MHz for a transducer with coc = 7.5 MHz). 

The demodulator then removes the carrier frequency using techniques, such as quadrature 

demodulation, to recover the return (echo) signal. In quadrature demodulation, the 

received signal is multiplied with cos(coct) and sin(coct), which after lowpass filtering, 

results in the baseband signal of complex samples, I(t) + jQ(t). The complex samples 

contain both the magnitude and phase information of the signal and are needed to detect 

moving objects, such as blood. 

The samples of the signal obtained from one acoustic pulse (i.e., one beam) are called 

a vector. Today's phased-array transducers can change the focal point of the beam as 

well as steer the beam by changing the timing of the firing of the piezoelectric elements 

that comprise the array. By steering these beams and obtaining multiple vectors in 

different directions along a plane (e.g., V1-V5 in Figure 1), a two-dimensional (2D) image 

can be formed. Depending on how the vectors are processed, the image can be simply a 

gray-scale image of the tissue boundaries (known as echo imaging or B-mode) or also 

have a pseudo-color image overlaid, in which the color represents the speed and direction 

of blood flow (known as color mode) as shown in Figure 1-2. In addition, the spectrum 

of the blood velocity at a single location over time can be tracked (known as gated 

Doppler spectral estimation) and plotted in a spectrogram as shown in the bottom of 



Figure 1-2. By combining multiple slices of these 2D images, 3D imaging is also 

possible. 

Figure 1-2. Example color-flow image of the carotid artery 
and the corresponding spectral Doppler spectrogram. 

To create the final output images for these modes, several digital signal processing 

stages are needed following demodulation, including the echo processor, the color-flow 

processor, the scan converter, and additional raster processing (such as tissue/flow 

decision), which are the main stages for this study. For B-mode imaging, the echo 

processor (EP) obtains the tissue boundary information by taking the magnitude 

(envelope detection) of the quadrature signal, Ba(t) = i]l2(t)+Q2(t). The EP men 

logarithmically compresses the signalBb(t}=log(Ba(t)), to reduce the dynamic range from 

the sampled range (around 12 bits) to that of the output display (8 bits) and to nonlinearly 

map the dynamic range to enhance the darker-gray levels at the expense of the brighter- 

gray levels (Dutt, 1995). The vectors are then spatially and temporally filtered to 

enhance the edges while reducing the speckle noise. 



For color-flow imaging, the color-flow processor (CF) estimates the velocity of 

moving particles (e.g., blood) by taking advantage of the Doppler shift of the acoustic 

signal due to motion. In pulsed ultrasound systems, the velocity is estimated from: 

c-PRF     <b 

lfccos0  lit K      } 

where c is the velocity of sound in blood, 6 is the Doppler angle, (j> is the phase difference 

between two consecutive pulses (Kasai et al., 1985). To improve the accuracy of the 

velocity estimate, multiple vectors are shot along the same beam over time, known as 

ensembles. A small number of ensembles (6 to 16) are used by color flow in order to 

reduce the amount of data needed to be collected and allow real-time frame rates. The 

color-flow processor first filters out any low velocity motion not due to blood (like the 

vessel wall) using the wall filter. Then, the velocity is typically estimated by calculating 

the average change in phase using an autocorrelation technique (Barber et al., 1985): 

<j){f) = arctan (1-3) 
E!:0

2(ge(o^(o-^(oa+1(0) 
X^o2(/ew/e+1(o+awa+,(0)/ 

where the denominator and numerator are respectively the real and imaginary part of the 

first lag of autocorrelation, and E is the ensemble size. In addition to the velocity, the 

variance of the velocity and power of the flow are often calculated and imaged. 

Similarly, the spectral Doppler processor is used to get a more accurate estimate of the 

spectrum of velocities by collecting a large number of ensembles (e.g., 256) at one 

location, then doing a ID Fast Fourier Transform (FFT). 

When the vectors are obtained by sweeping the beams in an arc (sector scan), the 

scan converter (SC) geometrically transforms the data vectors from the polar coordinate 

space into the Cartesian coordinate space needed for the output display. This transform 

can also zoom, translate, and rotate the image if needed. Then, the raster/image processor 

performs tissue/flow (TF) decision, which determines if an output pixel should be a gray- 

scale tissue value or a color-flow value. It also performs frame interpolation to increase 



the apparent frame rate. Depending on the application, typical frame rates can range from 

5 to 30 frames per second (rps) for 2D color-flow imaging to over 50 fps for 2D B-mode 

imaging. 

A large amount of computing power is required to support all the processing in B- 

mode imaging, color-flow imaging, and image processing/display. The ultrasound 

systems are typically implemented in a hardwired fashion by using application specific 

integrated circuits (ASIC) and custom boards to meet the real-time requirements. In our 

recent article (Basoglu et al., 1998), we estimated the total computation required for a 

modern ultrasound machine to range from 31 to 55 billion operations per second (BOPS), 

depending on if certain functions are implemented in lookup tables or calculated on the 

fly. To incorporate new features, such as advanced image processing applications, 

panoramic imaging or 3D imaging, will require even more computing power in future 

machines. These new applications are currently not well defined and are continually 

evolving. These dynamic applications will require the flexibility to adapt to changing 

requirements offered by programmable processors, which the hardwired ASIC approach 

cannot support easily. 

1.1.2 Advantages of a Fully Programmable Ultrasound System 

Benefits of an ultrasound processing system based on multi-mediaprocessors are: 

• Adaptable. Easy to add new algorithms or modify existing algorithms by just 
modifying the software. With the hardwired approach, often a simple change could cause 
the costly redesign of specialized chips or an entire board. 

• Hardware Reuse. Depending on the mode of operation of an ultrasound machine, 
much of the hardwired components can sit idle or are needlessly computing results never 
to be used. With the programmable system, the idle processors can be reconfigured to do 
useful tasks. For example, when switching from various modes, e.g., B-mode, color 
mode, power mode, spectral Doppler, 3D imaging, panoramic imaging, quantitative 
imaging, etc., the same processors can be reprogrammed to do different tasks. 

• Scalable. By adding or removing multiprocessor boards, the system will be able to 
scale from a low to high-end system. 



• Reduced R&D Cost. Less engineering manpower will be needed not only for the 
design, testing, and manufacturing of ASICs and boards, but also for their redesigns. 

• Reduced System Cost. The programmable approach may not be cost-effective 
compared to the hardwired approach for low-end systems that use well-define, non- 
changing algorithms. However, for high-end systems the fully programmable system 
maybe more cost-effective because of the hardware reuse advantage and developing only 
one standardized multiprocessor board repeated throughout the system, where the board 
is composed of low-cost processors, standardized memory, and a simple bus structure. 

• Faster Clinical Use of New Features. The ease of adaptability and reduced cost of 
system modifications compared to a hardwired system should decrease the time and 
increase the probability of new, innovative algorithms actually making the leap from 
R&D into a product routinely used by the customer. 

• Software Upgrades. The cost of field upgrades will be reduced by providing new 
features to the users in the field through software upgrades without any hardware changes 
needed. 

1.1.3 Previous Research in Programmable Ultrasound. 

Table 1-1 lists several programmable systems developed for various ultrasound 

functions. This table shows how the performance has improved and the number of 

processors required decreased as processor technology has improved, particularly with 

the introduction of mediaprocessors (e.g., TMS320C80 and MAP1000). Many of these 

systems were designed to implement specific experimental functions without an 

architecture that could handle the full computation load and/or be generalized for the full 

processing requirements of modern ultrasound machines. For example, Cowan et al. 

(1995) developed a system to perform gated Doppler spectral estimation using the 

INMOS T800 transputer processor. With this early 90's technology, it required 2 

hardwired FFT chips (Al 00) along with a T800 transputer to achieve real-time 

performance. 

Color-flow imaging requires much more computing power than these spectral 

Doppler systems. Thus, using early 90's technology, Costa et al. (1993) developed a 

parallel architecture with 64 Analog Devices ADSP2105 programmable DSPs running 



for a real-time (10 fps with 8 ensembles) narrowband color-flow estimation system based 

on an autoregressive method. Using mid 90's technology, Jensen et al. (1996) developed 

a programmable system with 16 Analog Devices ADSP21060 processors and were 

planning to implement color flow on this system, but were "disappointed with the 

performance of the 21060," finding that the system could not achieve its expected 

performance. This is often the case when dealing with algorithm mapping and data flow 

issues of implementing real applications on parallel processing systems. 

Table 1-1. Performance and number of processors required 
for basic ultrasound functions. 

Number of 
Function Processor Data size    Processors (MHz) Performance 

Color-flow ADADSP2105 256x512x8 64 40 10fps (Costa, 93) 
ADADSP21060 16 40 (Jensen, 96) 
Tl TMS320C80 256x512x16 4 50 10fps (Basoglu, 98) 
Equator MAPI 000 256x512x16 2 200 10 fps* 

SDectral doDDler INMOST800&A100 889 3 20 40 ms (Cowan, 95) 
Tl TMS320C25 1024 1 40 30 ms (Christman, 90) 
Tl TMS320C80 512 1 50 0.073 ms (Basoglu, 97) 
Equator MAPI 000 512 1 200 0.012 ms * 

Scan conversion SUN SPARC 512x512 1 25 630 ms (Berkhoff, 94) 
Tl TMS320C80 512x512 1 50 17 ms (Basoglu, 96) 
Equator MAP 1000 512x512 1 200 4 ms (York, 98) 

Tissue/Flow Tl TMS320C30 17x48 2 20 24 fps (Bohs, 93) 
Tl TMS320C80 304x498 1 50 60 fps (Basoglu, 97) 

* Our estimate includes similar assumptions as the above implementations, but excludes several filters 
and the adaptive wall filter. The specifications for the complete ultrasound system in this thesis includes 
all filters, requiring a much larger processing load than indicated by this table. 

Bohs et al. (1993) developed a unique system to experiment with a velocity 

estimation technique based on the sum of absolute difference method. The velocity 

estimate was performed with a hardwired board, but the tissue/flow decision and final 

image processing were implemented on 2 Texas Instruments TMS320C30 DSPs and one 

TMS34020 graphics processor. For scan conversion, various algorithms have been 

explored on an off-line workstation, taking an excessive 630 ms on a 512x512 image, as 

no effort was made to optimally map the algorithm to the architecture. None of these 

systems are flexible or powerful enough to implement a full ultrasound processing 

system. 
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In addition to these systems, many researchers who developed their own "add-on" 

programmable systems (typically external to existing ultrasound machines) to take 

advantage of the flexibility of the programmable approach when developing new 

algorithms or applications. These systems often have difficulty achieving real-time 

performance as they are not integrated with the machine and process the digitized data 

off-line. The external implementations typically do not have access to the original vector 

data or scan-converted data inside the machine, thus suffer from poor image quality from 

digitizing the analog video out from the ultrasound machine. Examples include off-line 

external systems for speckle reduction (Czerwinski et al., 1995), intravascular ultrasound 

image subtraction (Pasterkamp et al., 1995), and 3D reconstruction (Rosenfield et al., 

1992). Others have been used for real-time experiments with limited functionality, such 

as for left ventricular endocardial contour detection (Bosch et al., 1994), speckle 

reduction (Loupas et al., 1994), and contour tracing (Jensch & Ameling, 1988). 

Noting the limitations of the above architectures, the Image Computing Systems 

Laboratory at the University of Washington started the UWGSP8 project to demonstrate 

the feasibility of using a programmable approach in an ultrasound machine (Basoglu, 

1997). A programmable ultrasound image processor (PUIP) board, composed of two 

TMS320C80 mediaprocessors, was integrated with the other hardwired boards inside a 

Siemens' ultrasound machine. The PUIP has access to both the pre-scan-converted data 

and post-scan-converted data. Therefore, several experiments could be done testing 

various algorithms on the mediaprocessors, such as the TMS320C80 results in Table 1-1. 

Basoglu experimented with implementing efficient algorithms for scan conversion, color 

flow (frequency estimation and wall filter only), tissue/flow decision, and the FFT 

required by spectral Doppler. His results indicated the performance of mediaprocessors is 

sufficient to support several of the primary functions of an ultrasound machine. 

The PUIP board could not implement the entire backend processing. Still, the 

ultrasound machine with the PUIP board relies on the hardwired boards for many 

functions.   However, the PUIP board clearly demonstrated several advantages of the 
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programmable approach. A new application (not initially intended for the PUIP) called 

panoramic imaging was quickly developed on the mediaprocessors (Weng et al., 1997). 

Panoramic imaging allows the user to see organs larger than the field of view of the 

standard B-mode sector by blending multiple images into a larger panoramic image as the 

multiple images are acquired. The mediaprocessors were capable of handling panoramic 

imaging's dynamic processing requirements of registration, warping, and interpolation in 

real time. Since the exact algorithms for panoramic imaging were initially undefined, the 

ability to modify the programs and iterate the design was crucial to quickly prototype, 

test and finalize the application. A hardwired design approach could not have adapted 

this quickly, and there would have difficulty creating a working prototype in a reasonable 

time and cost. This programmable system also has successfully proven the advantage of 

hardware reuse. The same hardware has been reprogrammed to offer other features in 

addition to panoramic imaging, such as automatic fetal head measurement (Pathak et al., 

1996), fetal abdomen and femur measurement, harmonic imaging, color panoramic 

imaging, and 3D imaging (Edwards et al., 1998). 

The programmable approach has also recently emerged in other commercial 

ultrasound machines. The ATL HDI-1000 is a mid-range ultrasound machine in which 

programmable processors replace 50% of the previous hardware components (ATL, 

1997). This system uses a Motorola 68060 (113 MIPS) for B-mode and scan conversion 

and two ATT DSP3210 (33 MFLOPS) for Doppler processing, thus cannot handle the 

computation load of a 30 BOPs ultrasound machine. There are also some low-end PC- 

based ultrasound machines emerging supporting only B and M mode, such as the Fukuda 

Denshi UF-4500 that uses 7 programmable processors (Fukuda, 1999) and the Medison 

SA-5500 that uses Pentium processors combined with a hardwired ASIC (Medison, 

1999). 
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1.2 Research Goals and Contributions 

Although many researchers have implemented programmable methods for various 

ultrasound algorithms, no group has created a programmable architecture capable of 

implementing an entire high-end ultrasound system and meeting the real-time 

requirements. These various programmable systems, including the PUIP, are not suitable 

to implement a full system because either they were too specialized or did not have the 

proper architecture. Shortcomings include: 

• Not meeting the computation requirement. Many of these systems increased their 

computation power through large-grained multiprocessor systems (Costa et al., 1993; 

Jensen, 1996), only to find many of the processors were under-utilized waiting on 

data to be moved between processors. We have found the fine-grained parallelism 

offered by new processors with instruction-level parallelism and subword parallelism 

(like mediaprocessors) is better suited for ultrasounds signal and image processing 

requirements (Basoglu & Kim, 1997; Basoglu et al., 1997; York et al., 1998). 

Not meeting the dataflow requirement. In addition to the communication overhead of 

multiprocessor systems, we have found that the VLIW mediaprocessors can compute 

so quickly that data flow is becoming a limiting factor (York et al., 1998). The 

parallel mesh networks (Costa et al., 1993) offer data flow flexibility, but cannot 

achieve the efficiency of a topology optimized for ultrasound. On the other hand, 

specialized ultrasound systems implemented with systolic pipelined architectures 

have fast data flow in one direction, but are not flexible enough for generalized 

ultrasound processing (Jensch & Ameling, 1988; Basoglu, 1997). A compromised 

architecture, partially parallel and partially systolic and optimized for our ultrasound 

processing requirements, is needed. 

Not mapping the algorithms to the architecture. The key to meeting the performance 

requirements is in optimizing the algorithms for the architecture. Some of the above 

systems used generic software, not tailored for their machine. 
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This thesis addresses the issues associated with proving the feasibility of a fully 

programmable ultrasound system. Key contributions include: 

• Multi-Mediaprocessor Architecture for Ultrasound. We have designed the first fully 

programmable ultrasound system, meeting the real-time requirements of modern 

hardwired ultrasound machines. Our goal has been for a cost-effective system 

composed of a reasonable number of processors with simple interconnection and 

memory. Standardized boards can be repeated throughout the system depending on 

the system's need. Our resulting system contains two boards, each with four 

processors, capable of meeting the specifications. It can easily be expanded to a four- 

board system for future requirements. 

• Ultrasound Algorithm Mapping Study. To achieve real-time performance, we found 

efficient mapping of the ultrasound algorithms to the multi-mediaprocessor 

architecture is essential. In the process, we established a methodology for mapping 

algorithms to mediaprocessors and developed several new ultrasound algorithm 

implementations. For example, 

(1) For echo processing, we reduced the overhead of implementing the log 

compression lookup table (LUT) common to processors using SDRAM, by using 

a special mode of the direct memory access (DMA) controller to implement the 

log LUT in parallel with the other echo processing computations. In addition, 

the other echo processing filters were further optimized using subword 

parallelism and a data flow sharing technique. 

(2) For scan conversion (a key function requiring up to a third of the system 

processing load and posing a potential bottleneck in the middle of the system 

between EP/CF processing and the image processor), we performed the 

following studies: 
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(a) A trade-off study of the various data flow approaches for scan conversion 

available to mediaprocessors, such as cache-based versus DMA-based 

(including 2D block transfers and guided transfers). Our study shows that 

carefully managing data flow is the key to efficient scan conversion. 

(b) A different scan conversion algorithm for the color-flow data on 

mediaprocessors was developed, called circular interpolation, improving the 

performance by removing the need for two image transformations. 

(3) For the final frame interpolation and tissue/flow processing, a combined 

algorithm was used to reduce the I/O overhead. Also we removed the if/then/else 

barrier to subword parallelism, which improved the algorithm's efficiency. 

• Multiprocessor Simulation Environment. To demonstrate that the system 

requirements are met, we developed a unique multiprocessor simulation environment 

using VHDL models of the system components to simulate various processing modes 

on our ultrasound processing system. To prevent these simulations with complex 

components and large programs from becoming intractable (and unable to run) as the 

scale of the multiprocessor system is increased, we developed a method to reduce the 

simulation time of our system while still remaining reasonably accurate. This includes 

techniques to reduce the size of the address trace files as well as control the 

component complexity by combining the accuracy of a commercial cycle-accurate 

simulator for a single mediaprocessor along with our multiprocessor VHDL 

simulation environment. 

1.3 Overview of Thesis 

Chapter 2 specifies the requirements that our architecture must support for both B- 

mode and color-flow ultrasound modes. 
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In Chapter 3, we first discuss how we selected the mediaprocessor upon which the 

architecture is based. We then discuss a methodology for optimally mapping algorithms 

to mediaprocessors. 

In Chapter 4, we discuss the mapping of various ultrasound algorithms to the 

mediaprocessor architecture, the new algorithm implementations created, and how we 

estimated the number of processors and data flow required for the final architecture 

through cycle-accurate simulations on a single processor. 

Chapter 5 discusses the design of our multi-mediaprocessor architecture, the 

simulation tools and techniques we developed, and the results of our multiprocessor 

VHDL simulations for both B-mode and color mode. 

Finally in Chapter 6, we summarize our conclusions and contributions of this thesis 

and discuss future directions. 
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Chapter 2: System Requirements 

The first step of this research was to define the system requirements. Correctly 

specifying the system requirements is critical, as it drives the design process and 

determines the characteristics of the final architecture. Underspecifying would result in 

a system incapable of handling the frame rates or quality expected by the user, while 

overspecifying would result in an expensive system, having too many processors utilized 

inefficiently. 

Our goal is to design a cost-effective system targeted for the high-end ultrasound 

market, yet scalable to the low or mid-range market. For our system to be cost-effective, 

the architecture must be composed of a reasonable number of low-cost processors (e.g., 

not exceeding 16) with a simple interconnection mechanism and standardized memory 

into standardized boards that can be repeated throughout the system. 

Based on a review of the literature and the anticipated features of next-generation 

ultrasound machines, the following system requirements have been defined: 

• The processing system must interface with the beamformer through a high-speed bus, 

delivering vectors at a PRF up to 20 kHz for 2D imaging and working in the dual- 

beam mode. A PRF of 20 kHz corresponds to a depth of ~3 cm according to equation 

(1-1). 

• Table 2-1 lists the system requirements for B-mode and color-flow mode in various 

worst case scenarios, where fps is the required frames per second or frame rate to 

support, k is the B-to-color frame rate ratio, E is the number of ensembles, and ROI is 

the color-flow region of interest in terms of percentage of the B-mode image. These 

requirements are driven by the worst case PRF of 20 kHz and assume the B and color 



17 

image have the same depth, thus same PRF. The color mode frame rate is determined 

by: 

Color   fps = 
PRF • beams 

•" ' ^vectors '     vectors 
(2-1) 

where beams is 2 for a dual-beam system. In addition, the frame rate is limited to the 

maximum display update rate of 68 fps. The sector angle is based on a maximum 

lateral resolution for 2D imaging of 3.8 vectors/degree. 

Table 2-1. Worst case scenarios for various processing modes. 

Mode k 
Color 
fps 

B 
fps 

# Color 
vectors 

#B 
vectors E ROI 

Output 
Image 

sector 
angle 

B — — 68.0 — 512 — — 800x600 136 
— 68.0 — 340 — 800x600 90 

Color 1 9.0 9.0 256 340 16 100% 800x600 90 
2 8.4 16.8 
3 7.8 23.5 
4 7.3 29.3 
5 6.9 34.5 

Color 1 22.3 22.3 256 256 6 100% 800x600 90 
2 19.5 39.1 
3 17.4 52.1 
4 15.6 62.5 

Color 1 68.0 68.0 52 256 6 20% 800x600 90 

The largest number of samples per vector is assumed to be 1024 for B-mode and 512 

for color mode, with 16 bits per sample. Current hardwired ultrasound machines 

process the maximum number of samples, regardless of whether all the samples 

contain meaningful data. For example, for the 3 cm depth, 1024 data samples led to 

many more axial samples than can be resolved by a 7.5 MHz transducer. This can 

lead to an overspecified system. A programmable system has the flexibility to adapt 

the processing to the actual data size/resolution required, as discussed more in section 

5.3.3 . 
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In color mode, the timing of the acquisition of the B and color vectors are as shown in 

Figure 3-2 for the K = 4 and E =6 scenario. 

K=4 spatially adjacent B beams T= 1/PRF, including fse(up 

r ^ 

Bi B2 B3 B4 C1.1 
C1,2 C1,3 C1,4 C1,5 C1,6 B5 B6 B7 B8 C2,1 

^ J 
Y 

E=6 Color beams, spatially coincident with B1 

Figure 2-1. Example timing and location of the B and color data. 

•    The processing system must interface with the host processor through the system PCI 

bus (either 32 bits or 64 bits @ 33 MHz). 

Finally, when designing embedded computer systems it is prudent to allow room for 

future growth as requirements often change after the system has been developed. Our 

rule-of-thumb is the system should be designed with enough capacity that only 50% of 

the processing power, memory, and bus bandwidth are utilized. 
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Chapter 3: Mediaprocessors and Methods for Efficient Algorithm 

Mapping 

3.1 Introduction 

In this chapter, we discuss rationale behind selecting the mediaprocessor for our 

architecture. We then discuss the key techniques we have developed to achieve efficient 

mapping of algorithms to the highly parallel architectures of mediaprocessors. 

3.2 Methods 

3.2.1 Mediaprocessor Selection 

To meet the ultrasound processing requirement of 31 to 55 BOPS (Basoglu et al., 

1998) is challenging for systems based on programmable processors. Fortunately, a new 

class of advanced DSPs, known as mediaprocessors, have rapidly evolved recently to 

handle the high computation requirements of multimedia applications, which are similar 

to those of ultrasound processing. To avoid the high cost of developing huge 

multiprocessor systems with large-grained parallelism, mediaprocessors increase 

performance through fine-grained on-chip parallelism, known as instruction-level 

parallelism (ILP) (Gwennap, 1994). ILP allows multiple operations (e.g., load/stores, 

adds, multiplies, etc.) to be initiated each clock cycle on multiple execution units. The 

two primary methods of implementing ILP are known as superscalar and very long 

instruction word (VLIW) architectures (Patterson & Hennessey, 1996). For VLIW 

architectures, the programmer (or compiler) uses the long instruction word to uniquely 

control each execution unit each cycle, while for superscalar architectures, special on- 

chip hardware looks ahead through a serial instruction stream to find independent 

operations that can be executed in parallel on the various execution units each cycle. 



20 

Thus, the superscalar architectures are easier to program at the expense of this additional 

hardware to find the parallelism on the fly. On the other hand, VLIW architectures 

require the programmer to understand the architecture intimately to efficiently maximize 

the parallelism of a given algorithm. The VLIW programmer usually can outperform the 

superscalar scheduling hardware, which can only search a limited number of future 

instructions. Much research has been conducted to ease the VLIW programming burden 

thought smart compilers (Lowney et al., 1993), as discussed in section 3.2.2.2. 

Instruction-level parallelism can be extended further by execution units that support 

partitioned operations (subword parallelism, e.g., allowing a 64-bit execution unit to be 

divided into eight 8-bit execution units, as shown for the partitioned add instruction in 

Figure 3-1). This single instruction multiple data (SIMD) style architecture can usually 

be partitioned on different subword sizes (i.e., 32, 16, or 8 bits), increasing the 

performance by 2x, 4x, or 8x for carefully-mapped algorithms such as the vector and 

image processing required in ultrasound machines. In some instances, these partitioned 

operations require multiple cycles to complete, thus the execution units are fully 

pipelined, providing an effective throughput of a complete partitioned operation each 

cycle. 

8-bit 
partition 

A7 A6 A5 A4 A3 
A2 A A0    | 

■   + + + + + + + + 

By B6 B5 B4 B3 B2 Bi B0 

A7+B7 A6
+B6 A5

+B5 
A4+B4 A3

+B3 
A2+B2 A+Bi A0

+B0 

64-bit registers 

Figure 3-1. Example partitioned operation: partitioned add. 
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In addition to these SEVLD-style partitioned operations, mediaprocessors have begun 

to implement more powerful instructions, e.g., the innerjproduct instruction, which 

implements 

JLXi'Yi (3-1) 
1=1 

and is useful for convolution-based filters that are frequently used in ultrasound 

processing. 

In addition to meeting the large computation requirement, another challenge is to 

efficiently handle the data flow within the processor and between the multiple processors. 

Several mediaprocessors have an on-chip programmable direct memory access (DMA) 

controller for moving the data on and off chip in parallel with the core processor's 

computations. For compute-bound algorithms like convolution, the DMA controller 

effectively eliminates the I/O overhead experienced by cache-based microprocessors 

(discussed further in section 3.2.2.5). 

Since a single mediaprocessor currently is not capable of meeting the computation 

requirements, a multi-mediaprocessor architecture is required. Thus, another criterion for 

our mediaprocessor is to support interprocessor connectivity, providing easy 

communication between processors, with enough bandwidth and in a cost-effective 

manner, e.g., "glueless" or requiring few additional support chips. 

The last criterion is efficient high-level programming1. The first generation of 

mediaprocessors, such as the Texas Instruments TMS320C80, offered much computing 

power (e.g., 4 parallel VLIW DSPs plus a RISC processor). However, to achieve an 

acceptable level of performance, assembly language programming was required as the C 

compiler had difficulty exploiting the C80 parallelism, often resulting in more than an 

1 We loosely define high-level language as any programming abstraction level higher than assembly 
language, thus C is a high-level language. Some communities consider C to be a mid-level language, 
reserving high-level for languages such as Ada and C++. 
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order of magnitude performance difference (Stotland et al., 1999). For ease of 

maintenance, portability, and reduced development time, it would be preferred to use a 

high-level language, such as C. The next-generation mediaprocessors have been 

developed with the C compiler in mind. For example, the Phillips TM1100 and Equator 

MAP 1000 for some algorithms like morphology achieve a 3 to 2 performance difference 

between C and assembly language implementations (York et al., 1999). 

These features (or criteria) for the superscalar and VLIW architectures considered for 

our ultrasound architecture are compared in Table 3-1. Concerning data flow, the support 

for on-chip DMA, the SDRAM bus bandwidth (SDRAM BW), the size of the on-chip 

data memory (Data RAM), and the number and bandwidth of the glueless interprocessor 

(IP) ports are listed. Regarding computation ability, the maximum number of 8-bit 

partition adds per second (million additions per second, Madds/s), the maximum number 

of 16x16 innerjproduct operations (millions of multiply-accumulates per second, 

Table 3-1. Comparison i of processors considered 

Processors Intel 
P2/MMX 

AD 
21160 

Phillips 
TM1100 

Tl                  Tl 
TMS320C62 TMS320C80 

Equator 
MAPI 000 

Architecture Superscalar VLIW VLIW VLIW VLIW VLIW 

Clock (MHz) 450 100 133 200 60 200 

Power (W) 23.3 2 6 10 6 

Glueless IP 
connectivity 

none*** Serial Links 
6x100 MB/s 

PCI 
1x132 MB/s 

Serial Links 
2x3.1 MB/s 

none dual PCI 
2x264 MB/s 

DMA vs Cache Caching DMA Caching DMA DMA Both 

SDRAM BW (MB/s) 800 400 532 332 480 800 

Data RAM (kbytes) 16 512 16 64 36 16 

Register Bank 
per cluster 

8 
64-bit 

16 
40-bit 

128 
32-bit 

16 
32-bit 

8 
32-bit 

32 
64-bit 

Processing clusters 1 1 1 2 4 2 

Partitioned 8-bit 
Adds (Madds/s) 

3600 200 1064 800 960 3200 

16x16 Innerprod 
(MMAC/s) 

900 200 266 400 240 3200 

Max BOPS* 4.5 0.4 2.3 2 2.8 6.4 

~# CPU for ultrasound 13 138 24 28 20 9 

CPU price ($)** $256 $100-300 $80 $25-180 $150 $40-150 

Programmability easy medium easy medium hard easy to med. 

♦excluding special instructions for sum-of-absolute difference 
"""marketing estimates, subject to change 
***using external chip set, 4 can be connected across a 100 MHz bus, with a bottleneck of shared memory. 
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MMAC/s), and the maximum BOPS ratings are shown for various processors. The 

number of partitioned registers available per processing cluster is also listed, as a large 

number of registers are needed for many applications to approach their ideal performance 

on a processor, particularly when using techniques, such as software pipelining discussed 

in section 3.2.2.2. The power drawn by each chip is also a consideration, as several 

processors will be needed to implement the system. Finally, the cost of a system will be 

influenced not only by the CPU price listed, but also by the support for glueless 

interprocessor connectivity and the total number of processors required. The number of 

processors required to implement a 55-BOPS ultrasound machine is roughly estimated in 

Table 3-1 based solely on the ideal BOPS number of each processor. Estimates based on 

the ideal BOPS are rarely achieved, but serve as an initial estimate. 

The MAP1000 was selected for our system, as it leads most of the categories in Table 

3-1. As shown in Figure 3-2, the MAPI000 is a single-chip VIJW mediaprocessor with a 

highly parallel internal architecture optimized for signal and image processing. The 

processing core is divided into two clusters, each of which has two execution units, an 

IALU and an IFGALU, allowing four different operations to be issued per clock cycle. 

MAPI 000 

Core Processor 
Cluster 0 

registers 

IALU     IFGALU 

Cluster 1 

registers 

IALU     IFGALU 

Cache 

16KB 
Data 

16KB 
Instruction 

Video 
Graphics 

Coprocessor 

9KB SRAM 

64 bits @ 
100 MHz 

SDRAM 

Other 
Media 
Ports 

PCI 
Ports 

32 bits @ 
66 MHz 

*-^+ 

Figure 3-2. Block diagram of the MAP 1000. 
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The IALU can perform either a 32-bit fixed-point arithmetic operation or a 64-bit 

load/store operation while the IFGALU can perform either a 64-bit partitioned arithmetic 

operation, a 8-tap, 16x8 inner_product, or a floating-point operation (e.g., division and 

square root operations). Each cluster has 32 64-bit general registers, 16 predicate 

registers, and a pair of 128-bit registers used for special instructions like inner_product. 

In addition, the MAP 1000 has a 16-kbyte data cache, a 16-kbyte instruction cache, an on- 

chip programmable DMA controller called the Data Streamer (DS), and two PCI ports. 

The MAPlOOO's dual PCI ports will provide a good basis for interconnecting the 

multiple processors gluelessly, with only the ADSP21160 in Table 3-1 providing a better 

connectivity (6 serial links). The MAP 1000 is the only processor offering both the 

caching mechanism and DMA controller, leads in SDRAM bus bandwidth, is fairly 

inexpensive, and in general is the best computation engine. The MAPlOOO's primary 

weakness is that it has the smallest data cache in Table 3-1, which requires careful data 

flow management for efficient ultrasound processing. In addition, developing a system 

based on the MAP 1000 carries a risk in that it is a new chip under development from a 

new company. 

3.2.2 Algorithm Mapping Methods 

Even with these new powerful mediaprocessors, carefully designing algorithms by 

making efficient use of this newly available parallelism will be necessary to implement 

the ultrasound processing in a reasonable number of processors. Through our extensive 

experience in developing algorithms (both ultrasound processing and an imaging library) 

for the TMS320C80 and MAP 1000 mediaprocessors, we found several keys to efficiently 

mapping algorithms. Performance is gained by: 

(1) Mapping the algorithms to the mediaprocessor's multiple processing units and 
subword parallelism. 

(2) Utilizing the full capacity of the multiple processing units using software 
pipelining. 
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(3) Removing barriers to subword parallelism, such as if/then/else code and memory 
alignment problems. 

(4) Avoiding redundant computations by using lookup tables (LUT). 

(5) Carefully managing the data flow using the programmable DMA controller and 
minimizing the I/O overhead. 

(6) Optimize from a system-level perspective, reducing unnecessary transforms, 
sharing the data flow between algorithms, and balancing the processing load 
throughout the system. 

The following sections describe these techniques in more detail. Also, the method used 

to determine the efficiency of our algorithm mapping is presented as well. 

3.2.2.1 Mapping the algorithms to the parallel processing units 

Most of the ultrasound algorithms are vector-based or image-based with the 

computations for each data point or pixel the same, but independent from its neighbors. 

These computations readily map to the subword parallelism of the IFGALU units, which 

can implement all the typical computations (e.g., or, and, min, max, add, subtract, 

multiply, compare, etc.). Most of the ultrasound computations are on 16-bit data, 

allowing 8 data to be computed in parallel using both IFGALU units. Some algorithms 

use special instructions, e.g., innerjproduct, which due to special 128-bit registers can 

compute an 8-tap FIR with 16-bit coefficients in a single instruction. While the IFGALU 

is performing the primary computations, the IALUs are generally used to load and store 

the data from the cache and to handle loop control and branching. Examples are 

discussed in the following sections. 

3.2.2.2 Loop unrolling and software pipelining 

For VLIW mediaprocessors to achieve their peak performance, all the execution units 

need to be kept busy, starting a new instruction each cycle. However, different classes of 

instructions have different latencies (cycles to complete), sometimes making it difficult to 

achieve peak performance.  For example, a load instruction has a 5-cycle latency while 
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partitioned operations have a 3-cycle latency for the MAP 1000. Let us consider the gray- 

scale morphology dilation computation : 

(* © S)(m,n) = MAX^iX^j, +S(iJ)] (3-2) 

where X is the input image, S is the structuring element (similar to the kernel used in 

convolution), and m, n, i, j are the spatial coordinates. Figure 3-3(a) illustrates a 

simplified version of the gray-scale morphology computation loop before pipelining. For 

simplicity, loop branching instructions are ignored and only one cluster is shown. In this 

loop, LDX and LDS represent loading the input pixels and structuring element pixels. 

After a 5-cycle latency, the partitioned_add (ADD) is issued, and then after 3 cycles, the 

partitioned_max (MAX) is issued. Finally, after iterating for each active structuring 

element pixel (i), the results are stored (ST) after another latency of 3. This results in 

only 4 instruction slots used out of 20 possible slots for the IALU and IFGALU in the 

loop. 

For better performance, loop unrolling and software pipelining can be used to more 

efficiently utilize the execution units by working on multiple sets of data and overlapping 

their execution in the loop (Lam, 1988). In loop unrolling, multiple sets of data are 

computed inside the loop, illustrated by Figure 3-3(b), in which we dilate five sets of data 

(indexed 1 through 5). We then software pipeline the five sets of operations, overlapping 

their execution wherever possible to make the IALU and IFGALU execution units 

initiating a new instruction each cycle. Using these techniques result in all possible slots 

used in the inner loop in Figure 3-3(b), processing five times more data in approximately 

the same number of cycles. This is an ideal example in that there are equal numbers of 

IALU and IFGALU instructions, allowing all the slots to be filled. 

Morphology is not a mainstream ultrasound function. However, it has been used as a nonlinear filter for 
speckle reduction (Harvey et al., 1993) and it has been found useful in ultrasound feature extraction, e.g., 
segmenting ventricular endocardial borders (Klinger et al., 1988) and fetal head segmentation and 
measurement (Matsopoulos et al., 1994) 
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cycle 

1 
2 

3 
4 
5 
6 
7 
8 
9 
10 

11 
12 
13 

IALU IFGALU 

LD_S(i) 

LD_X(i) 

ADD(i) 

MAX(i) 

ST, 

For i in 0 
to Elements 
Loop 

End Loop 

IALU IFGALU 

LD_S,(0) 

LD_X,(0) 

LD_S2(0) 

LD_X2(0) 

LD_S3(0) 

LD_X3(0) 

LD_S4(0) ADD,(0) 
LD_X4(0) 

LD_S5(i) ADD2(i) 

LDX5(i) MAX,(i) 

LD_S,(i+l) ADD3(i) 

LD_X,(i+l) MAX2(i) 

LD_S2(i+l) ADD4(i) 

LD_X2(i+l) MAX3(i) 

LD_S3(i+l) ADD5(i) 

LD_X3(i+l) MAX4(i) 

LD_S4(i+l) ADD,(i+l) 
LD_X4(i+l) MAX5(i) 

LD_S5(i) ADD2(i) 

LD_X5(i) MAX,(i) 

ADD3(i) 

MAX2(i) 

ST, ADD4(i) 

MAX3(i) 

ST2 ADD5(i) 

MAX4(i) 

ST3 

MAX5(i) 

ST4 

ST5 

Prolog 

For i in 0 
to Elements-1 
Loop 

End Loop 

Epilog 

(a) Before Pipelining (b) After Pipelining 

Figure 3-3. Example of software pipelining 

Pipelining code in assembly language is a tedious process and creates code that is 

difficult to modify and maintain. The MAP 1000 C compiler has the capability to 

automatically unroll and software pipeline the code for the programmer. For functions 

like morphology, we found that the compiler is only 50% slower than an optimized 

assembly code implementation (York et al., 1999). 
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3.2.2.3 Avoiding barriers to subword parallelism 

To utilize the full computation capability of the IFGALU's subword parallelism, an 

ideal situation in algorithm mapping is to continuously compute useful partitioned 

instructions on the IFGALUs without interruptions, as was achieved in the simple 

example in Figure 3-3(b). More complex algorithms often have barriers to continually 

computing in the pipeline, which need to be overcome, e.g., if/then/else code and memory 

alignment problems. 

if/then/else code (i.e., conditional branching) in executing the inner loop can severely 

degrade the performance of a VLIW processor, as the multiple paths of the branches are 

usually short (only a few instructions) and make software pipelining difficult, if not 

impossible. Thus, the execution units incur many idle cycles, as the latencies between 

instructions are difficult to overlap. In addition, the if test can only operate on a single 

data value, and it cannot take advantage of subword parallelism. For example, if we 

directly implement the algorithm in Figure 3-4(a), where X, S, and Y are image pixels, the 

direct implementation would be Figure 3-4(b), where the branch-if-gredter-than (BGT) 

and jump (JMP) instructions have a 3-cycle latency. Due to these idle instruction slots, it 

takes either 6 or 9 cycles (depending on the path taken), and since the IFGALU's 

partitioned units are not used, only one pixel is processed per loop. To take better 

advantage of the subword parallelism, this if/then/else algorithm could be remapped to 

use partitioned compares as illustrated in Figure 3-5, comparing each subword in two 

partitioned registers and storing the result of the test (e.g., TRUE or FALSE) in the 

respective subword in another partitioned register. This partitioned register can be used 

as a mask register (M) for the bitselect instruction, bitselect selects between each 

respective subword in two partition registers, based on the a TRUE or FALSE in the mask 

register. The implementation in Figure 3-5 requires three IFGALU and three IALU 

instructions. As there are no branches to interfere with software pipelining, it only 

requires 3 cycles per loop compared to 6 or 9 cycles above. More importantly, since the 

subword parallelism of the IFGALU is used, performance is increased by a factor of 8 for 
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16-bit subwords or 16 for 8-bit subwords. For our ultrasound algorithms, these 

techniques were useful for the color-flow data scan conversion, discussed in section 4.4 

and in tissue/flow decision, discussed in section 4.5. 

ifX> Ythen 
S = S+X; 

else 
S = S+Y; 

Label 
LI 
L2 
L3 
L4 
L5 
L6 
L7 
L8 
L9 

L10 

IALU IFGALU 

CMP(X,Y) 

BGTL9 

JMPL10 ADD(S,Y) 

ADD(S,X) 

(a) if/then/else algorithm (b) Direct implementation 

Figure 3-4. if/then/else barrier to subword parallelism 

23 89 24 52 53 43 36 50 

49 49 49 49 49 49 49 49 

False True False True True False False True 

49 89 49 52 53 49 49 50 

10 10 10 10 10 10 10 10 

59 99 59 62 63 59 59 60 

Figure 3-5.    Using partitioned operations to implement 
if/then/else code without any branches. 

Another barrier to efficient subword parallelism is not having the data in the proper 

format or alignment to take advantage of the partitioned operations. Before subword 

parallelism, alignment was not a problem, as just the data value of interest was directly 
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loaded and then operated on. Now, when the IALU loads 64 bits into a partitioned 

register containing several subwords, each subword's location in the partitioned register 

is determined by its respective offset from a 64-bit-aligned address. This is not a problem 

for simple functions (e.g., inverting an image) where each output pixel is computed 

independent of its neighboring pixels. However, for functions that compute an output 

value based on a window of neighboring pixels, such as convolution, FIR filters, median 

filters, morphology filters, etc., extra overhead is incurred for loading, shifting, and 

masking the neighboring subwords into the proper positions for the partitioned 

computations. To reduce this overhead, special mediaprocessor instructions are used to 

extract the proper subwords from a neighboring pair of partitioned registers, as shown for 

the align instruction below, in which a shift_amount of 3 is given to fetch the subwords 3 

taps away. 

source 1 (64-bit) | I source 0 (64- bit) 

*« x14 X13 X12   X„ X10 *B x8 k x6 x5 x4 x3 x2 *i X0 

shift amount - 3 
X10 x9 x8 x7 x6 x5 x4 x3 ^ 

destination (64-bit) 

Figure 3-6. The align instruction. 

3.2.2.4 Use Lookup Tables (LUT) to Avoid Redundant Computations 

LUTs are often used throughout an ultrasound machine to avoid redundant 

calculations that can be predetermined ahead of time, such as for transcendental functions 

(sin, cos, atan, sqrt, log, etc.) and for nonlinear mapping between input and output data, 

such as the output color map for color-flow data. For scan conversion, we use several 

LUTs to prevent recomputing the relative addresses between the output image and input 

data vectors, which could not be computed in real time, as discussed in section 4.3. 

While LUTs can greatly improve performance in general, the LUT approach can also 

become a bottleneck when implemented on mediaprocessors (as oppose to the hardwired 
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ASIC systems). If a LUT is too large to fit in the fast on-chip memory and the data 

access pattern to the LUT is random (i.e., not sequential), a large I/O penalty can occur, 

stalling the processor. Cache line miss and SDRAM row miss penalties occur due to 

randomly-accessed data. An example of this is the large, randomly-accessed logarithm 

LUT used in echo processing. In section 4.1, we discuss a method to minimize this 

penalty by using the DMA controller to implement the LUT in parallel with other 

computations on the core processor. LUTs also can be a barrier to efficient subword 

parallelism. As discussed in section 4.1, the adaptive persistence algorithm must incur a 

cost of unpacking (extracting) each individual subword from a partitioned register, then 

individually performing a LUT access for each subword, and then repack the LUT results 

into a partitioned register before continuing with the computations. 

3.2.2.5 Data Flow Management with Programmable DMA Controller 

The programmable DMA controller is used to carefully manage the data flow with a 

goal of minimizing the I/O overhead. Since the on-chip memory is limited (16 kbytes for 

the MAP 1000) and cannot hold the entire image or vector set for a frame, we process 

either smaller 2D image blocks or individual vectors at a time. To keep the processor 

from waiting on data I/O from external memory to on-chip memory, an on-chip 

programmable DMA controller is used to move the data on and off chip concurrent with 

the processor's computations. This technique is commonly known as double buffering, 

illustrated in Figure 3-7. To double buffer, we allocate four buffers in on-chip memory, 

two for input blocks (pingjnbuffer and pong in buffer) and two for output blocks 

(pingoutjbuffer and pongoutjbuffer). While the core processor processes a current 

image block (e.g., block #2) from ponginjbuffer and stores the result in 

pongoutbuffer, the DMA controller stores the previously-calculated output block (e.g., 

block #1) in pingoutbuffer to external memory and brings the next input block (e.g., 

block #3) from external memory into pingjnbuffer. Then, the core processor and DMA 

controller switch buffers, with the core processor now working on the ping buffers and 

the DMA controller working on the pong buffers. 
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Figure 3-7.    Double buffering the data flow using a 
programmable DMA controller. 

The DMA controller can also be programmed to perform other tasks, such as image 

padding (or vector padding) needed for filters like convolution to prevent edge artifacts 

from occurring. We have developed a method to perform this padding with little 

additional overhead. As Figure 3-8 shows, since the interior blocks are not on the 

boundary, they require no padding. Therefore, the processor computes these blocks first 

while the DMA controller concurrently pads the outside exterior blocks. By the time the 

core processor finishes processing the inner blocks, the DMA controller has completed 

M'ttX'K^KWIMI'M'J'KWI'MW^^^^ 

| 

2 
itisspfp 
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Padded region 

Outer blocks 
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Figure 3-8. Example of a padded image. 
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this padding, and the processor can begin processing the exterior blocks with no 

additional overhead. 

An alternative to using the DMA controller to bring the data on and off chip is to rely 

on the natural caching mechanism of the MAPlOOO's data cache. If the needed data do 

not already reside in the cache, a cache miss occurs, in which the cache must first evict a 

cache line (32 bytes) to external memory if it has been modified, then load the requested 

data (another 32 bytes) into the cache line. The core processor must stall when the 

necessary data are not ready. When comparing using the DMA versus the caching 

mechanism, we found using the DMA to be between 66% faster for morphology (York et 

al., 1999) and 300% slower for convolution (Managuli et al., in press). 

3.2.2.6 System-Level Optimizations 

In our algorithm mapping study, some optimizations were made from a system-level 

perspective. In section 4.4, we discuss how using a different approach to the color-flow 

data scan conversion can reduce unnecessary transforms before and after scan 

conversion. In section 4.1, we show how sharing data flow between algorithms can 

decrease the overall I/O overhead, and in section 5.2.1.5 the importance of balancing the 

processing load throughout the multiprocessor system is presented. 

3.2.3 Method to Determine Efficiency of Algorithms 

In developing the software for the ultrasound algorithms, using a high-level language 

like C is preferred for ease of programming and maintenance. However, coding in 

assembly language is often required to achieve good performance. To determine if the C 

compiler's ability to software pipeline is efficient enough for a given algorithm or if 

assembly programming is required, we used the following method. We first break down 

our computation loop into the IALU and IFGALU operations required, thus determining 

if the loop is IALU-bound or IFGALU-bound. The maximum of the two determines the 

optimum number of cycles (assuming the instruction latencies can be overcome by ideal 
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software pipelining) required to compute the number of subword pixels across two 

clusters. For example, in Figure 3-3 there are two IALU instructions and two IFGALU 

instructions in the loop. If the subword size is 8 bits, then ideally every two cycles we 

should be able to compute sixteen pixels or 0.125 cycles/pixel. By multiplying the total 

number of pixels in the image and dividing by the clock rate (200 MHz), can estimate the 

computing time required on the core processor (tcompute). 

We then implement the algorithms in the C language. After coding and simulations, 

we can determine how well the C compiler did compared to our ideal time (tcompute). Our 

rule-of-thumb is that if an algorithm is more than 2 times slower in C, then we implement 

the computing loop in assembly language. For example, the C implementation for 

morphology was only 1.7 times slower than the ideal performance, while the C 

implementation for convolution was 3.6 times slower, thus convolution was implemented 

again in assembly language, resulting in only 1.17 times slower than the ideal 

performance (Stotland et al., 1999). 

We also estimate the I/O time (ti/o) required to move the input and output images on 

and off chip assuming the ideal bandwidth on the SDRAM bus is achieved (800 

Mbytes/s). From these two numbers, we have an estimate as to if our algorithm is 

compute-bound (i.e., tcompule > ti/o) or I/O-bound (i.e., ti/o > tcompute)- If an algorithm is I/O- 

bound, it becomes a candidate for data flow sharing, as discussed in section 4.1. 

3.3 Conclusions 

Using these algorithms mapping techniques, we have obtained good performance for 

a variety of image processing algorithms. For example, in mapping morphology to the 

TMS320C80 (assembly language) and MAP 1000 (C language) for a 515x512 image and 

a 3x3 structuring element, gray-scale dilation took 32.7 ms and 7.0 ms, and binary 

dilation took 9.2 ms and 0.8 ms, respectively (York et al., 1999). These results offer 

comparable performance to ASIC-based approaches proposed in the literature, e.g., a 
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gray-scale dilation ASIC takes 8.8 ms* at 30 MHz (Andreadis et al., 1996) and improved 

performance over previously reported programmable approaches, e.g., binary dilation 

took 43.2 ms* on Sun IPX SparcStation (Boomgaard & Balen, 1992). In mapping 

convolution to the TMS320C80 (assembly language), TM1000 (C language), and 

MAP 1000 (assembly Language) for a 512x512 image and a 7x7 kernel, convolution took 

71.3 ms, 68.3 ms, and 8.2 ms (Managuli et al., in press). This MAP1000 performance is 

also comparable to some ASIC hardware implementations, e.g., LSI logic's L64240 takes 

13.4 ms (LSI, 1989) and Plessey's PDSP 16488 takes 6.7 ms (Mitel, 1997). 

These comparable performance numbers to hardwired chips makes the programmable 

MAP 1000 attractive for use in a fully programmable ultrasound system. In the next 

section, we discuss how we applied these techniques to the ultrasound processing 

algorithms. 

* Times scaled for equivalent image and structuring element sizes and assuming no I/O overhead. 



36 

Chapter 4: Mapping Ultrasound Algorithms to Mediaprocessors 

In this chapter, we look at each major ultrasound processing stage (echo processing, 

color-flow processing, scan conversion, and image processing) and discuss the unique 

mapping techniques and algorithms we have implemented. Besides providing highly- 

tuned algorithms for each stage, these algorithm mapping studies have not only provided 

results that can be used to more accurately estimate the number of processors required in 

the complete ultrasound system, but also aided in understanding the data flow and 

architectural requirements needed for designing the multi-mediaprocessor architecture. 

4.1 Efficient Echo Processing 

4.1.1 Introduction 

Real-time B-mode scanning has been in use for the last two decades and is still the 

most frequently-used ultrasound mode by clinicians, allowing them to image in real time 

the various tissue structures throughout the body.  The B-mode image is created by first 

taking the magnitude (envelope detection) of the quadrature signal, Ba(t) = ^I2(t) + Q2(t). 

Then, the signal is logarithmically compressed, Bb(t) = log(Ba(t)), to reduce the dynamic 

range from the sampled range (around 16 bits) to that of the output display (8 bits) and to 

nonlinearly map the dynamic range to enhance the darker-gray levels at the expense of 

the brighter-gray levels (Dutt, 1995). 

Several techniques are used to improve the quality of the image. Edge-enhancing 

filters are used to sharpen the tissue boundaries. A finite impulse response (FIR) can be 

used: 

M-l N-l 

^(^^ZZ^"'™)-^*-"'^-™) (4-1) 
m=0 w=0 
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with the proper highpass filter coefficients, h(n,m). These filters also enhance the noise 

in the image, which is typically dominated by speckle. Due to the transmitted acoustic 

pulse having a finite size as it travels through the body, different scatterers that are 

closely spaced may reflect parts of the same beam. When these reflected parts arrive 

back at the transducer, they may be in phase or out of phase. The combined reflected 

acoustic energy will show both constructive and destructive interference, resulting in a 

granular pattern called speckle. Even though B-mode imaging is very mature, 

suppressing speckle noise without degrading the image signal is still a challenge. This is 

further complicated by the fact that some speckle patterns are used by clinicians to 

distinguish different tissue regions, such as fat versus muscle (Kremkau & Taylor, 1986). 

The following discusses various speckle filtering techniques, which usually can be turned 

on or off as needed by the clinician. 

Temporal, Spatial, And Frequency Compounding. Compounding averages 

multiple images of the same target obtained under different imaging conditions designed 

to have uncorrelated speckle patterns. This averaging enhances the stationary signal 

(e.g., tissue boundaries) while reducing the varying speckle noise. Temporal 

compounding assumes that the frame rate is low enough to ensure uncorrelated speckle. 

It averages the current unfiltered image Bin with the previous filtered output image Bout, 

i.e., Boul{k) = a ■ Bout(k-1) + (1 -a)Bin(Jc) where k is the frame number and a is the weight, 

also known as the persistence coefficient (Evans & Nixon, 1993). This averaging can 

cause streaking of fast moving objects (Kalivas & Sawchuck, 1990). To avoid this, a can 

be made to adapt to quick changes, e.g., let a = f[\./\Bln (k) - Bout (k -1)|). 

In spatial compounding, the uncorrelated speckle patterns are generated by varying 

the spatial orientation of the aperture relative to the target (Trayhey & Allison, 1987), 

while in frequency compounding, the acoustic frequency is varied to create the 

uncorrelated speckle patterns (Magnin et al., 1982). Spatial compounding is more 

complicated as the images must be spatially registered with respect to each other before 



38 

they are interpolated.   Both of these techniques require multiple images to be acquired to 

produce an averaged output frame, which decreases the frame rate. 

Other Filters. Linear filters tend to introduce severe blurring and loss of 

diagnostically significant information (Loupas et al., 1994), thus several nonlinear filters 

have been attempted, such as simple three-tap median filters (Novakov, 1991) that are 

known for preserving edges while reducing the noise. However, the statistical 

characteristics of the speckle throughout ultrasound images are not consistent. Some 

regions behave as fully-formed speckle (i.e., high density of random scatterers with small 

spacing compared to wavelength of ultrasound), which can be modeled as a Rayleigh 

distribution and filtered accordingly, and other regions behave as partially-formed 

speckle, requiring higher-order statistics to model (e.g., Rician and homodyned-K 

distributions) (Dutt, 1995). Adaptive techniques have been developed to adjust the 

amount of filtering pixel-by-pixel based on the speckle texture in a local window. For 

example, Loupas et al. (1994) used an adaptive algorithm that measures the local 

homogeneity (i.e., weighted median) in a 9x9 window and adapted the smoothing for 

each pixel, while Bamber (1986) used an unsharp masking filter where the amount of 

smoothing is controlled by the local mean and variance in a 7x7 window. These 

nonlinear filters require a large amount of computation and present a challenge to 

implement in real time. 

4.1.2 Methods 

We divide these echo processing (EP) algorithms into two stages. In the first stage, 

the magnitude of the complex signal is taken, followed by log compressing the signal. 

The second stage is primarily the filters to enhance the image: an edge enhancing FIR 

filter, a speckle reduction filter, a corner turn (transposing the data for the later scan 

conversion), and a persistence (temporal compounding) filter. 
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The computation and data flow for EP part 1 (EP1) is shown in Figure 4-1. For the 

magnitude computation (Ba(t) = jl\t)+Q2(t)), the floating-point hardware of the 

MAPlOOO's IFGALU is used, which allows four square-root operations to be computed 

in parallel. Some overhead is required to convert from fixed-point to floating-point and 

back, and the floating-point hardware is not fully pipelined, resulting in the ideal 

computing time tcompMe of 4 cycles/pixel or 10.5 ms. 

«3 

Q 

"DMA Controller' 
loading l3 & Q3 

while 
^   storing logfB^  y 

External Memory On-Chip Memory 

 \  
—► Ping_ln_Buffer 

2 -►   ! 1, ► 
h (   T-D transfer^^  -Qr ► 

"•"'    1 Z^ Q. 
JE 

n Ping_Out_Buffer 
 Qj   ^ 

o2 1 Bi ► 
U3 ./ \               I 

£?      :      Pong In Buffer      ; 

^       / 

I                     k (       Core  4oa<B.->--- -► d             I 
Q.I 

u2            ► Processor *-*    : 

o 
, )<^öuided transf?r^ > Pong Out Buffer 

 -B2- ► 
[fi2=V/2

2+e2
2 

log_LUT 
x$ V 

Figure 4-1.  Echo processing part 1: computation and data 
flow for magnitude and log compression. 

However, the challenge of this stage is not the magnitude computation, but instead 

the implementation of logarithmic compression. The log function, £6(0 = log(5a(0), 

could be estimated using a Taylor series expansion. However, using a LUT is faster, and 

it allows other nonlinear transforms to be implemented, e.g., allowing the clinician to 

select different dynamic range transforms depending on the tissue being imaged (Wells & 

Ziskin, 1980). The challenge in implementing the log LUT is that it is too large to fit in 

on-chip memory (128 kbytes) and the B-mode data frequently change due to speckle 

noise. If the core processor directly implements the log LUT after calculating the 

magnitude for a data point B by loading log_LUT[B], the probability that the correct data 
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already reside in the cache is low. Thus, with the randomly-changing data, a large 

number of cache misses will occur causing many SDRAM row misses, which results in 

high overhead. 

Our approach to minimize this overhead is to have the core processor perform the 

magnitude computation concurrently with the DMA controller implementing the 

log_LUT as shown in Figure 4-1. The DMA uses a special mode called guided transfer, 

in which the output values of the magnitude computation (B) are used as relative 

addresses, telling the DMA controller where to fetch the proper values in the logLUT. 

This method still has the overhead of the SDRAM row access penalties, but minimizes 

the penalty of the cache misses. 

Edge Enhance 
FIR filter: 

B0U,(x,y)='^Ydc(n,m)-Bl„(x-n,y-m) 

Speckle Reduction 
3 tap median: 

B^rmedianßjx-l.y), BJx.y), BJx+l,y)] 

Bla,erar
median[BJ*-y-1)- fio*,W BJx,y+l)] 

Corner Turn 
Transpose Block: 

B0Jy*)=Btn(x,y) 

Adaptive Persistence 

Bmi,(k) = a-B0Ul(k-\) + (l-a)Bl„(k) 

where    k = frame number 

« = /(#.„(*)-*»„,(*-1)|) 

Figure 4-2. Computation for echo processing part 2. 
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The main computations for EP part 2 (EP2) are shown in Figure 4-2. A 3xl6-tap FIR 

filter is used for edge enhancement (3 taps in the sparser lateral direction) and utilizes the 

MAPlOOO's inner product instruction. For speckle reduction, the following algorithm 

implements 3-tap axial and lateral median filters without the branching overhead of a 

sorting algorithm: 

BaJiai=  mini  max{ Bin(x-l,y), min( Bin(x,y), Bin(x+l,y))},  max( Bin(x,y), Bin(x+l,y)) ] 
Biaemi = min[  max{Bin(x,y-l),min(B^,     Bin(x,y+1))},  max(B^a,    Bin(x,y+1))] 

where the partitioned min and max instructions are utilized, processing eight 16-bit 

subwords in parallel. The data are then corner turned (transposed) for the proper format 

needed for scan conversion. For an efficient transpose, both the DMA controller and core 

processor are used. The DMA brings in 2D data blocks similar to Figure 3-7 and then 

outputs the 2D blocks in a transposed order. Meanwhile, the core processor uses special 

partitioned operations to shuffle and combine the subwords between the partitioned 

registers, such that the 2D block is transposed, as shown for a 4x4 block in Figure 4-3. 

An alternative transpose method would be to use the DMA controller to read in a 

complete vector row, then write out the data in its transposed column. However, this has 

a high I/O penalty compared to our 2D block method, as writing to each image row in a 

column causes the maximum number of SDRAM row misses and each write is fine- 

grained (i.e., only 16 bits). 
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Figure 4-3. Partitioned operations used to transpose a 4x4 block. 
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Finally, the persistence filter is computed with the adaptive term a, which is 

determined using a small (1024 bytes) on-chip LUT. We first compute eight indexes to 

the a LUT in parallel using the partitioned_absolute_value instruction, \Bin(k) - BoM(k-l)\. 

Each resulting subword must be individually unpacked (extracted) from the partitioned 

register, individually passed through the LUT, and repacked into a partitioned register 

before continue the remaining computations {partitioned multiply add). 

Table 4-1. Performance estimates for EP part 2. 

512x1024 Ideal Performance 
(time in ms) ' compute ti/o Max 

Edge enhance 
Median filters 
Corner turn 
Persistence 
EP2 individual i/o 

9.3 6.8 9.3 
2.6 6.8 6.8 
1.3 6.4 6.4 
5.9 12.8 12.8 

19.1 32.8 35.3 
EP2 shared i/o 19.1 13.2 19.1 

Table 4-1 lists the ideal tcompute and ti/o for each algorithm, showing that all the 

algorithms are I/O-bound except the FIR filter. If each algorithm is implemented 

individually, requiring the data to be copying on and off chip for each algorithm, the total 

time can be estimated by: 

t = ^max(tcomputej,ti/0j) (4-2) 
j 

for each algorithm j, resulting in a total time for EP part 2 of 35.3 ms.  Since many of 

these algorithms are I/O-bound, the performance can be improved by sharing the data 

flow between algorithms. In data sharing, once a 2D block is brought on-chip for the first 

algorithm, it is continually processed by the other algorithms before storing the final 

results for the block off-chip. The total time using data sharing can be estimated from: 

f \ (4-3) 
? = max V / • compute j /'  «/. lo-shared 

\    J 
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where ti/0.shared is the I/O time for the shared data flow. With the shared data flow, EP 

part 2 is estimated to be compute-bound, taking 19.1 ms, or 46% faster than without data 

sharing. 

4.1.3  Results 

For a B-mode scenario with the data size of 512x1024, we found in EP part 1 that the 

magnitude compute time was overshadowed by the log LUT time, indicated by the large 

difference in the total time and Ungute in Table 4-2. Table 4-2 shows the results of two 

experiments with implementing the log LUT, one using the core processor and relying on 

the caching mechanism to fetch the LUT values, and the other having the DMA 

controller implement the LUT using guided transfers. Using the DMA controller reduces 

the total time for EP part 1 from 51.9 ms down to 34.4 ms, increasing the speed by 34%. 

Table 4-2.   EP part 1 results. 

Table 4-3.   EP part 2 results. 

(time in ms) LUT method Code ' compute Total 

Mag_Log Caching C 18.7 51.9 
DMA-guided C 16.4 34.4 

512x1024 Ideal 
* compute 

Simulated 
(time in ms) Code 'compute Total 

Edge enhance 9.3 Asm 10.3 12.4 
Median filters 2.6 C 5.1 6.5 
Corner turn 1.3 C 1.7 1.9 
Persistence 5.9 C 6.5 8.4 
Total 37.1 

t, 

For EP part 2, Table 4-3 shows the total time for each algorithm compared to its ideal 

Since the FIR filter had the largest processing load and its C performance was compute- 

3.6x slower than the ideal tcompute, it was implemented in assembly language, while the 

others are in C language. These C routines offer a potential for improved performance 

since they can be further optimized in assembly language. When the algorithms were run 

using individual data flows, the total time was 61 ms. After implementing data flow 

sharing the overall time was reduced to 37.1 ms, or 40% faster. Thus, EP part 1 and part 

2 require 71.5 ms. We also conservatively add an additional 4.6 ms representing the I/O 
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overhead of the next / and Q data frame from the beamformer, which will be arriving 

while the current frame is being processed. In total, echo processing stage takes around 

76.1 ms, which at 68 fps would require 5.17 MAP 1000s. 

4.2 Efficient Color-Flow 

4.2.1 Introduction 

Although B-mode imaging is useful for observing the spatial relationship between 

tissue layers in the body and for monitoring moving structures, such as the heart and 

fetus, it cannot be used for visualizing faster motion, such as blood flow. The ability to 

visualize and measure the velocity of moving blood cells in the body is important for 

many clinical situations, such as detecting the degree of stenosis in a vessel, monitoring 

the cardiac cycle, and assessing the blood flow to the fetus. In continuous-wave 

ultrasound systems, the velocity can be estimated from the Doppler shift of the 

continuously transmitted signal. In pulsed ultrasound systems, the velocity of a sample 

volume is estimated from: 

^ c-PRF   j>_ (4-4) 

~2/ccos<9  2K 

where c is the velocity of sound in blood, 6 is the Doppler angle, and <f> is the phase 

difference between two consecutive pulses (Kasai et al., 1985). 

In order to visualize the distribution of flow, the velocity of the blood flow for a 

specified region is mapped to a pseudo-color image and overlaid on top of a 2D B-mode 

image in real time as shown in Figure 1-2. The magnitude and direction of the velocity 

toward and away from the transducer (i.e., axial direction) are displayed as the brightness 

of colors, typically red and blue, respectively. This is known as color-flow imaging. Its 

main processing steps are wall filtering and velocity estimation. 
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4.2.1.1 Clutter Filtering (Wall Filter) 

In addition to the desired signal from the blood scatterers, the received signal contains 

clutter noise returned from the surrounding tissue and slowly-moving vessel walls. The 

frequency components due to wall motion are low, e.g., < 1 kHz, while the blood motion 

frequency is typically around 15 kHz (Ferrara & DeAngelis, 1997). Due to the smooth 

structures of the walls, the clutter signal can be much stronger than the scattered signal 

from the blood by about 40 dB (Routh, 1996). Many highpass filters have been 

developed to remove the unwanted clutter signal. These techniques include stationary 

echo canceling, finite impulse response (FIR), infinite impulse response (IIR), and 

regression filters (Jensen, 1996). Of these techniques, regression filters have shown to 

have better performance compared to other techniques (Kadi & Loupas, 1995). These 

filters are designed to filter the clutter adaptively by first estimating the clutter frequency 

and then using this estimated frequency to filter clutter noise. 

Regression wall filters treat their inputs as polynomial functions in time domain and 

operate on the assumption that the slowly-varying clutter component in the Doppler 

signal can be approximated by a polynomial of a given order (Hoeks et al., 1991). Once 

approximated, this component can then be subtracted from the original signal so that the 

contribution from the blood flow can be retrieved and analyzed. Mathematically, it can be 

described by 

D+l 

y(k) = x(k) - Y,aAd k=l,2, ... E ( 4-5 ) 

where x(k) and y(k) are input and output signals at ensemble k, ad are the regression 

model coefficients, D is the regression order. Accurately determining aa requires a 

computationally-intensive Vandermonde matrix multiplication (Kadi & Loupas, 1995). 

Basoglu (1997) developed a wavelet-based method reducing these computations by 22% 

with accuracy similar to normal regression and better than the FIR and IIR techniques. 

i_ 
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4.2.1.2 Color-Flow Velocity Estimate 

The most common method to detect the velocity is to measure the change in phase A^ 

(equation 4-4) by (a) acquiring multiple vectors along a single scan line with the 

transducer stationary and (b) calculate the average change in phase at each range bin 

along the scan line (Kasai et al., 1985). Barber et-al. (1985) showed that computing the 

first lag of autocorrelation is sufficient to correctly estimate the change in phase </> for 

each range bin t: 

0(/) = aretanW (4-6) 

where 

E-\ E-\ 

and the N and D are respectively the real and imaginary part of the first lag of 

autocorrelation, and E is the ensemble size, varying from 6 to 16.  In addition, the flow 

magnitude, R = ^N2 +D2 , is computed for use later in tissue/flow decision. Color-flow 

processing ends similar to echo processing with several filters to reduce noise and add 

persistence. 

4.2.2 Results 

Another graduate student in our laboratory, Ravi Managuli, has been researching the 

color-flow processing for this project, and obtained the following results for the scenario 

with 6 ensembles, 256 vectors, and 512 samples/vector. 
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Table 4-4. Color flow simulation results when E=6. 

256x512x6 
(time in ms) 

Simulated 
Code ' compute Total 

Corner turn 
Adaptive wall filter 
Autocorrelation 
FIR filter 
Rect-to-polar 
Median filters 
Key hole filters 
Persistence 
Total 

C 8.4 10.5 
Asm/C 51.2 56.3 

C 25.9 30.8 
C 10.5 12.4 
C 8.6 9.2 
C 4.5 5.1 
C 0.5 0.6 
C 3.5 5.1 

130.8 

4.3 Efficient Scan Conversion for B-mode 

In this section, we present an ultrasound scan conversion algorithm that can be 

efficiently implemented on mediaprocessors. Efficient implementation of scan 

conversion is important as this function utilizes 1/3 of our system's processing load. 

Since scan conversion lies in the critical path between the echo/color-flow processing 

stage and the image processing stage, it can become a system bottleneck if not 

implemented efficiently. We have discovered that when using today's mediaprocessors, 

the performance of scan conversion is not limited by their computational ability, but 

rather in how the data flow is handled. Therefore, we performed a scan conversion data 

flow study comparing using the caching mechanism versus two DMA transfer methods 

(2D block transfers versus guided transfers). 

4.3.1 Introduction 

After the B-mode vector data are acquired and processed, the polar coordinate data 

must then be spatially transformed to the geometry and scale of the sector scan on the 

Cartesian raster output image through a process known as digital scan conversion (Ophir 

& Mackland, 1979). As Figure 4-4 shows, when a sector scan is made using a curvilinear 

transducer, each Cartesian raster pixel value P(x,y) must be interpolated from its 
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Figure 4-4. Ultrasound scan conversion, (a) Pre-scan-converted 
data vectors as stored in memory, and (b) scan-converted output 
image with the original data vector location overlaid. 

surrounding polar vector data Vy/r) in real time. Because of the large number of complex 

operations required to generate each Cartesian raster pixel via scan conversion, it has not 

been possible for scan conversion implementations on general-purpose microprocessors 

to run in real time (Berkhoff et al., 1994). Thus, most ultrasound machines have 

implemented scan conversion with hardwired special-purpose chips and boards (Larsen 

& Leavitt, 1980; Lee et al., 1986). The use of specialized chips and boards tends to limit 

the flexibility and extensibility, particularly for our fully programmable system. 

Although the mediaprocessors have high processing power, a direct implementation 

of the scan conversion algorithms found in specialized boards and/or ASIC chips would 

not necessarily lead to real-time performance (Berkhoff et al., 1994). If scan conversion 

is to be implemented in real time on programmable processors, new algorithms need to 

be explored. We have developed such a new scan conversion algorithm for 

mediaprocessors. By converting redundant calculations into unique lookup tables (LUT) 
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and by utilizing the mediaprocessor's ability to perform multiple operations in parallel 

(e.g., inner_product), we have found these optimization techniques make the scan 

conversion process I/O-bound, which is remarkable. Thus, to improve the performance 

further, we compared three different data I/O methods, one using the standard caching 

mechanism and two DMA methods. We briefly review the conventional scan conversion 

algorithm and previous computational approaches. We then discuss our new scan 

conversion algorithm and data flow study. Finally, performance of these methods is 

presented and compared to that of previous approaches. 

4.3.2 Methods 

4.3.2.1 Typical Scan Conversion 

Figure 4-4(a) illustrates a typical way that the vectors are stored after being acquired 

by a curvilinear transducer. To display the acquired data in Figure 4-4(b) with the correct 

geometry, each vector must be placed into the output image at the angle it was acquired. 

This is typically done by scanning through each pixel location in the output image and 

determining whether a corresponding vector sample exists. A vector sample is addressed 

by its angle from the vertical line (y axis), y/, and its radial distance from the transducer, 

r. Calculating y/ and r for each output pixel location involves highly compute-intensive 

operations like arctangent, square root, and division. This is one of the main reasons that 

real-time scan conversion has not been successfully implemented on general-purpose 

programmable processors. 

If the ultrasound machine were to display only the acquired vector samples, the 

resultant image would have data displayed only along the vector lines at discrete 

locations, but missing pixels would be found elsewhere. Thus, an interpolation function 

is employed to compute gray-scale values for these missing pixels based on the nearby 

vector samples. To perform interpolation, the relative distances of each output pixel to 

the nearby input vector points must be calculated.   These distances can be used in 
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computing a weighted average of the vector samples. Various interpolation functions and 

window sizes have been applied in ultrasonic scan conversion (Berkhoff et al., 1994), 

such as linear interpolation, cubic spline, sine, or Bessel functions (Parker & Troxel, 

1983). 

Not every pixel in the output image needs to be interpolated, e.g., the image pixels 

that lie outside the sector scan region do not have to be processed. The pixels at such 

locations can be set to a background value (blanking) instead of going through the 

interpolation process (Zar & Richard, 1993). However, the costly computation of ^and r 

must be made for all the pixel locations in the output image including the background 

pixels. Furthermore, ^and r must be checked to see if they lie outside their bounds in the 

vector space for each output pixel including those active pixels where interpolation is 

going to be performed. 

4.3.2.2 Our Approach 

The key tasks for scan conversion are (a) to calculate the address of the input data 

(i.e., a polar conversion, requiring arctan(yfx) and yx2 + y2 ) and the interpolation 

coefficient weights for each output pixel P(x, v); (b) to fetch the 8 respective input data 

values; and (c) compute the interpolation. 

Address Calculation. Basoglu et al. (1996) demonstrated that steps (b) and (c) can 

be done in real time on mediaprocessors (TMS320C80), if the computations of step (a) 

are precomputed and stored in lookup tables. Figure 4-5(a) shows an example output 

image row containing five pixels, and in Figure 4-5(b) the corresponding input data in the 

vector storage needed for the interpolation are highlighted. We implement a 4x2 

interpolation, thus eight vector samples must be retrieved. However, only one address 

must be stored in the input-address LUT per group of eight input pixels. In addition, the 

relative offset in the axial direction (ROB=±) and lateral direction (VOB = B+c+D+E) 

between the output pixel and its neighboring input vector samples (see Figure 4-6) are 
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also precomputed and stored in a rob-vob LUT for each output pixel. To avoid the 

overhead of checking for and interpolating the blank pixels (those outside the sector 

scan), an output-address LUT is also used to guide the processor to only compute the 

active pixels in the sector. By using these LUTs, the core processor is freed from these 

time-consuming computations as well as testing for the blank pixels. Using the double- 

buffering techniques discussed in section 3.2.2 , this LUT data are moved on and off chip 

in parallel with the core processor performing the interpolation. 
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(a) (b) 

Figure 4-5. Example address calculation (a) an example output row and (b) 
the corresponding groups of input pixels needed, illustrating the non- 
sequential data access required by scan conversion. 

Interpolation. Although precalculating the address and offset LUTs reduces the 

overall computation significantly, the interpolation is still compute-intensive. However, 

it can be efficiently handled using the powerful inner_product instruction on new 

mediaprocessors. We implement the interpolation using three inner_product instructions, 

by decomposing the 4x2 interpolation into lateral interpolation (two 4x1), 

4 

Po=yZLiV^'-^ (4-7) 
/=i 

1=1 

(4-8) 
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followed by a bilinear axial interpolation (one 1x2), 

P{xt y) = (l- ROB)Po + (RQB)Pl (4-9) 

where U = f(VOB) are the respective weighting coefficients, such as the Barlett 

interpolation filter (Oppenheim & Shaffer, 1989) in Figure 4-7. These filter coefficients 

(Li) are stored in a small on-chip LUT (256 bytes), so they can be quickly accessed. 

Since this LUT is programmable, other lowpass filters could also be used for the 

interpolation. This approach allows us to only store the small 8-bit VOB index in the off- 

chip LUTs for each output pixel, which is more efficient than the alternative of storing 

the four 16-bit weighting coefficients (Lh L2, L3, L4) for each output pixel (Zar & 

Richard, 1993), which is 8 times larger, significantly increasing ti/o. 

Figure 4-6.   Computing an output pixel value via a 4x2 
interpolation with the polar input data. 

An alternative interpolation approach is to perform the axial interpolations before the 

lateral interpolations (Basoglu et al., 1996), but this requires more multiplications. Also, 

since the MAP 1000 can perform a complete 8-tap, 16-bit inner_product instruction, it is 

capable of doing the complete 4x2 interpolation in one instruction. However, this would 

either require precomputing eight 16-bit coefficients, increasing the off-chip LUTs by 16 

and greatly increasing ti/o to load the 8 coefficients, or requires computing in real time the 
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8 coefficients from ROB and Lh which overshadows the advantage of this powerful 

inner_product instruction. 
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* ** >.   Ixwpass intapdaticn fiter ooeffioenls 

0     v» L-l  L+\*B-1 2L-1    2L+\CB-1      3L-1    3L+VCB-1      4L-1 

Figure 4-7.    Extracting the filter coefficients for the 
lateral interpolation based on the single VOB index. 

Fetching the Input Data. The main bottleneck to scan conversion is the step (b) 

(fetching the input data) due to the nonlinear relationship between the input and output 

pixels. For example, to calculate one row with five output pixels shown in Figure 4-5(a), 

the sets of input data needed are stored non-sequentially along an arc in memory as 

shown in Figure 4-5(b). Today's SDRAM memory and cache-based architectures are 

optimized for sequential memory access, not the random access as needed in Figure 

4-5(b), resulting in I/O limiting the overall speed of scan conversion on mediaprocessors. 

Hardwired scan conversion boards using expensive SRAM memory do not have this 

random access penalty. However, given the constraints of today's SDRAM-based 

processors, we had to perform a data flow study to find the most efficient approach to 

address this I/O bottleneck, experimenting with the following three methods: 

(1) Cache-based:   In this method, the core processor uses the precomputed input- 

address LUT and directly "loads" the input vector data, which causes the caching 

mechanism to bring the data into on-chip memory. Advantages of the cache-based 

approach are that it is easy to program and very efficient if the data can be reused 

while in the cache before being flushed. However, for large images, the non- 

sequential memory access can cause a large number of cache misses. 
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Output pixel 
group 1 

Output pixel 
group N 

Figure 4-8. Example of run-length encoded output lines. 

(2) DMA-based guided transfers: Following a method proposed by Basoglu et al. 

(1996), the DMA controller is used in the guided transfer mode (see section 4.1.2 ), 

such that the DMA controller uses the input-address LUT to directly bring into the 

on-chip memory the exact 4x2 group of input pixels for each output pixel, properly 

aligned for the inner_product instruction. Since the data are already aligned, this 

method has the most efficient computing time tcompute of the three methods, and 

double buffering is again used so the core processor works concurrently with the 

DMA controller. A disadvantage to using the DMA guided transfers is that memory 

is accessed with a small grain size (four 16-bits values) and the data are never reused 

after being brought on-chip (e.g., if two neighboring output pixels share the same 

group of input vector data, the data will not be shared, but instead brought on-chip 

twice). However, when the input data are sparse relative to the output pixels, the 

DMA approach does not bring on-chip unused data as the cached-based method 

would. For the output-address LUT, a run-length encoded LUT is used to reduce the 

LUT size, as shown in Figure 4-8. The output pixels are processed in groups of lines 

at a time with each line represented in the LUT by a start address followed by its run- 

length (i.e., the number of sequential active pixels in the line), which greatly reduces 

the size of the LUT (e.g., 6.1 kbytes), particularly for the longer lines. 
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Input Data Output Image 

Figure 4-9. 2D block transfers.  Spatial relationship between the output 
image blocks and the corresponding 2D input data blocks. 

(3) DMA-based 2D block transfers: In an attempt to get the advantages of data 

reuse of the caching mechanism and the double-buffering advantage of a DMA 

approach, a 2D block transfer method can be used, in which the DMA controller is 

programmed to bring 2D data blocks on and off chip. The output image is divided 

into a series of 2D blocks as shown in Figure 4-9 each containing about 300 pixels. 

The output-address LUT is fairly small (7.5 kbytes) and contains the upper-left 

corner pixel's address, the block width, and block height for each block. Similarly, 

the same information is stored in the input-address LUT for the input data blocks. 

The size of the input data blocks will vary greatly due to the polar transformation, as 

illustrated in Figure 4-9. Towards the top of the sector scan, the blocks are too large 

to fit in the on-chip memory, thus the algorithm adapts in these few cases to use the 

simple caching-mechanism instead of the DMA 2D transfers. One advantage of the 

DMA-based 2D block transfer method is the data can be reused within the 2D block, 

and these 2D blocks allow a larger memory grain size to be used, transferring the 

sequential rows of the block efficiently. A disadvantage is that more input data are 

brought on-chip than is needed to calculate the output blocks, due to the polar 

transform, as shown by the overlapping blocks in Figure 4-9 and by the sparseness of 

the data used in Figure 4-5(b). Another disadvantage is that the core processor has a 
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larger processing load as some "blank" pixels are needlessly computed along the 

edge of the sector, as shown in the top and bottom block of Figure 4-9, and extra 

instructions are needed to properly align the input data for the inner_product 

instructions as the data can reside anywhere in the 2D block, unlike in the DMA- 

guided method where the input data are automatically aligned. 

4.3.3 Results & Discussion 

Table 4-5 compares the results of the three scan conversion data flow methods on the 

MAP 1000, using the large input and output image sizes proposed for the ultrasound 

system. As expected, the DMA-guided transfer method has the best compute time 

tcompute- However, the DMA 2D block transfer method (with the worst tcompute) has the 

best overall time, 52% faster than the Cache-based method and 36% faster than the 

guided method. The DMA 2D block transfer method for handling data flow offers a 

good balance of grain-size, data reuse, and double-buffering, combining the benefits of 

the other two methods. A lesson we learned is that even though our processor supports 

exciting hardware features, such as DMA-guided transfers, we should be careful in 

accepting that using these new features is the best approach. We need to take into 

account the entire system during algorithm mapping. In this case, using simpler 2D block 

transfers that are common to many on-chip DMA controllers provides the best result 

Table 4-5. Comparison of the performance of the three scan conversion 
data flow methods for 16-bit 800x600 output image, a 90-degree sector, 
and 340x 1024 input vector data. 

(time in ms) ^compute Total Time 

Cache-Based Transfers 11.8 49.6 
DMA Guided Transfers 7.8 37.1 
DMA 2D Transfers 12.9 23.8 

When a smaller input data set of 40x512 was used on the MAP 1000 to create a 16-bit 

512x512, 60-degree sector scan, tcompute was 1.9 ms, and the total time was 4.4 ms (York 
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et al., 1998). Using the same data and image size, Basoglu et al. (1996) used the DMA- 

guided transfer on a 50 MHz TMS320C80 getting a total time ranging from 16 ms to 24 

ms depending on external memory speed. Berkhoff et al. (1994) implemented several 

scan conversion interpolation methods on a programmable SPARC IPX workstation, 

finding a computer graphics line drawing algorithm achieved the fastest time of 630 ms 

for a 512x512 image. Today's mediaprocessors are clearly faster than general-purpose 

processors and fast enough to support real-time video-rate ultrasound scan conversion. 

Similar to the log LUT in echo processing, scan conversion is I/O-bound and poses a 

challenge for programmable processors using inexpensive SDRAM memory. As a result 

of our data flow study and algorithm mapping techniques, we have created an algorithm 

on mediaprocessors efficient enough for a real-time ultrasound machine. This DMA 2D 

block technique also applies to color-flow scan conversion with a different interpolation 

method used for the color data. 

4.4 Efficient Scan Conversion for Color-flow Data 

In this study, we created a new algorithm for scan converting color-flow data on 

mediaprocessors using circular interpolation. Using this different approach, we can 

remove the need for 2 transforms, i.e., a polar (RZ(f>) to rectangular (D + jN) and a 

rectangular to polar conversion, improving the performance of the system. 

4.4.1 Introduction 

In color-flow imaging, our velocity estimate is proportional to a change in phase, <j). 

Phase is angular data and naturally periodic, as opposed to the scalar B-mode data, thus 

the scan converter interpolation must be different. Our color-flow data are in the form of 

a complex vector, which can be represented in a rectangular form (D +jN) or polar form 

(i?Z^), as shown for vectors Vt and Vi+i in Figure 4-10. Vectors Vt and Vi+] could be 

two velocity estimates we are trying to interpolate where Vi+i has aliased over the color 
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boundary (e.g., passing TC from the positive color, red, of V{ to the negative color, blue). 

Aliasing often occurs in color-flow imaging (Routh, 1996). The speed of blood is 

typically a few centimeters per second, but it can increase to as high as 10 m/s in a 

stenotic area (Beach, 1992). For the phase-shift technique, the maximum velocity that can 

be measured without aliasing depends on the PRF and center frequency of the transducer, 

cPRF 
v     = max 

4   fc 

(4-10) 

While the clinician can increase the PRF (thus the maximum measurable velocity) by 

decreasing the imaging depth, aliasing can still occur in the color-flow image. An 

example of aliasing can be seen in Figure 1-2 in the carotid artery where it is 

predominantly blue-green, then transitions from white to yellow to red. This red is not 

reversed blood flow, but instead faster blood flow in the same direction as the blue-green, 

but it has aliased over the pseudo-color range. 

Figure 4-10. Interpolating color-flow data: RZ(f> versus D +jN 

In Figure 4-10, we assume the shortest distance angle between the two vectors is their 

correct relationship, which is more probable. However, with extreme turbulent flow the 

flow could reverse direction between Vt and Vi+i, making the longer obtuse angle a 

possibility (as well as other multiples of 2n due to aliasing). Interpolating Vt and Vi+i in 

rectangular form by averaging the N and D components produces the "correct" vector, 
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VCOrrect- However, interpolating in polar form by simply linearly averaging $ and R would 

use the longest distance arc and give rise to the "incorrect vector", Vincorrect- 

Interpolating in rectangular form (D +jN) uses the same interpolation computation as 

in the B-mode scan converter. Thus, a company designing a hardwired ultrasound 

machine would be encouraged to reuse any hardwired B-mode scan conversion board 

and/or ASICs for color-flow scan conversion in order to save in non-recurring 

engineering cost. The cost of reusing this scan converter for color flow is shown in 

Figure 4-11(a). The output of the color-flow processing stage is in the polar form (RZfi) 

and the input to the final tissue/flow stage also requires the polar form (RZ0). Thus, 

extra polar-to-rectangular and rectangular-to-polar conversions are required (taking 17.9 

ms for our data size). These image transforms can be avoided if scan conversion can be 

done directly in the polar form (RZ<f>), which requires circular interpolation. Circular 

interpolation assumes the shortest distance arc between vectors, resulting in the "correct" 

vector. 
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(a) System with linear interpolation 
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Figure 4-11. Extra transforms are needed to use the linear 
scan converter on color-flow data versus using a special 
scan converter implementing circular interpolation. 
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In this section, we present an efficient method to implement circular interpolation on 

mediaprocessors, reducing the number of transforms required in the system. The 

flexibility of programming regular interpolation for the B-mode while programming 

circular interpolation for the <|> data is one advantage of a programmable ultrasound 

system, which hardwired systems often do not have due to cost considerations. 

4.4.2 Methods 

One method to compute the circular interpolation for two vectors is to use the 

following pseudo-code: 

If\<ßi- <th+i\ > x then 
Iffy   < 0 then $    = fa    + 2n 
If<lH+i < 0 then fi+i = ipi+i + 2n 

0out = (1-ROB)<IH + (ROB)<IH+, 

If(f>0ut > it then 

<t>out = faut - 2K 

As discussed in section 3.2.2.3, directly implementing this code faces the if/then/else 

barrier to efficient processing on mediaprocessors, making it difficult to harness the 

power of the partitioned operations and software pipelining due to the individual pixel 

tests and branching. In addition, extending this algorithm from 2-tap interpolation to 4x2 

interpolation would increase the complexity of this if/then/else style algorithm. 

Another approach is based on finding the shortest arc distance. In developing an 

angular (circular) median filter, Nikolaidas & Pitas (1998) proposed one method to 

calculate the shortest arc distance: 

Arcshort =n-\n-\fa -(j>MI (4-11) 

However, we greatly reduce this computation using fixed-point arithmetic: 

Arcshort=^-<ßM (4-12) 

and taking advantage of 2's complement arithmetic's ability to overflow (or wrap around) 

the number range (Morris, 1984). This assumes that our measurements for the <|> data are 
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scaled to the full dynamic range of our signed 2's complement number (e.g., with 8-bit 

data, maximum red n = Olli 1111 and maximum blue -n = 1000 0000). Then, if we 

compute the signed subtraction of two vectors, $ - $+;, ignoring the overflow flag and 

use the 8-bit result, we are guaranteed to have the shortest arc distance between the two 

vectors (illustrated in Figure 4-12 for 4-bit data). This method produces a signed result 

where the sign bit indicates the relative direction of the arc distance. On the other hand, 

equation (4-11) produces an unsigned result. 

Figure 4-12. Example of shortest arc math, simplified for 
4-bit data. The long arc of "13" is too large for signed 4-bit 
data, resulting in the short arc of "3". 

"-6" = 1010 

+7 
-(-6) 

+13 

-6 
•    (7) 

-13 

0111 
0110 

lllOl ->   -3 

t 
overflow 

1010 
1001 

i|ooii ->   3 

t 
overflow 

To utilize the signed shortest arc distance, we need to modify our interpolation 

computation. The scalar B-mode 4-tap lateral interpolation has the form: 

tout = LA + Liti + A& + LA ( 4-13 ) 

where the filter coefficients sum to one, i.e., U + L2 + L3 + L4 = 1. The above equation 

can be manipulated into the following equivalent form for 4-tap circular interpolation: 

where the new filter coefficients are computed from the old coefficients: 

Lc~ L4 
LB — L3 + L4 

(4-14) 
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LA —L2 + L3 + L4 

fa can be thought of as the basis vector, and the other terms are the weighted shortest arc 

distances from this basis vector. The additions in equation ( 4-14 ) also use shortest arc 

distance mathematics, ignoring the overflow and keeping the signed 16-bit result. 

Equation ( 4-14 ) requires no if/then/else code, thus we can efficiently utilize the 

MAPlOOO's subword parallelism using a shift, partitionedjsubtract, and inner_product 

as shown in Figure 4-13. 

^ ♦, <|>2             <t>3             <f>4 
C    shift »8~~^> 

J^     0 (J),             (|>2            ()>3 

(^subtract   "*} 

^     *1 «Mv ^-$2   V"^ 
T r 

1 LA LB 
Lc 

(1nner_produrt^> 

ku, = fa + LA(4>2 ~ A) + LB(01 ~ <t>2)+Lc(<f>4 ~ A) 

Figure 4-13. 4-tap circular interpolation using shortest arc 
distance and partitioned operations. 

Therefore, to scan convert the RZ.(f> color-data, one subroutine is used for performing 

normal interpolation for the R data and circular interpolation for the ^ data. Since the 

spatial geometry between the output pixels and input data are the same for both R and $, 

both interpolations can share the same input-address LUT, output-address LUT, and rob- 

vob LUT saving some I/O overhead between the two. The estimated tcompute is 18.3 ms 

for 256x512 8-bit input data and 800x600 8-bit output image with a 90-degree sector. It 

is still I/O-bound similar to B-mode scan conversion. 
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4.4.3 Results & Discussion 

Table 4-6 compares the results for implementing color scan conversion (</> with 

circular interpolation and R with regular interpolation) using the DMA 2D block transfer 

method for two different implementations: one with (/> and R processed in separate 

subroutines and the other with ^ and R combined into one subroutine tight loop. The 

combined tight-loop implementation reduces the total scan conversion time from 47.6 ms 

to 36.4 ms as the two could share several LUTs and some data flow. 

By using this efficient circular interpolation method and eliminating the external 

polar-to-rectangular and rectangular-to-polar transforms, we saved an extra 17.9 ms, or 

49% of the scan conversion time. 

Table 4-6. Simulation results for color scan conversion, 
comparing processing ^ and R in separate routines versus 
in one combined routine. 

Color SC 
(time in ms) 

Ideal 
' compute 

Simulated 
Code ' compute Total 

Seperate 0 and R 19.5 C 26.6 47.6 
Combined <j> and R 18.3 C 24.2 36.4 

In addition, this circular interpolation method using shortest arc distance can also be 

applied to similar filters, such as circular FIR, circular convolution, circular edge 

detection and segmentation, etc. These techniques apply not only to our color-flow 

application, but to other applications based on angular (circular) data, such as radar and 

seismic signal processing, color image processing (e.g., hue data), and estimating wind 

direction or moving target direction. 
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4.5 Efficient Frame Interpolation & Tissue/Flow , 

In this section, we present our unique approach of combining frame interpolation and 

tissue/flow into one algorithm to reduce the processing time and efficiently implementing 

this algorithm on mediaprocessors. 

4.5.1 Introduction 

Following the creation of the B-mode and color-flow image frames after scan 

conversion is the final image processing stage containing the frame interpolation (FI) and 

tissue/flow decision (TF) algorithms. If the B-mode and color-flow image frames are 

obtained at different frame rates, then frame interpolation can be used to increase the 

apparent frame rate of the slower mode. Then, the tissue/flow decision creates the final 

output image by properly overlaying the color-flow image on the B-mode image at the 

frame rate of the faster mode. 

Frame interpolation is illustrated in Figure 4-14 where the slower color frames, C0u 

and Cnew, are used to temporally interpolate synthetic frames, Cy to d, in synchronization 

with the B-mode frames, Bj to B3. Bilinear interpolation can be used with the weighting 

ColdC1 

f\ 

C3      Cnew 

Figure 4-14. Frame interpolation. 
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coefficient a = %, where Att is the change in time from C0id to C, and Tc is the period 

between the original C frames. The color frame data are in the RZ<f> format, and similar 

to scan conversion, the R data require linear interpolation: 

Ri=(\-a)RcU+aRmw (4-15) 

and the ^ data require circular interpolation: 

After frame interpolation, the color-flow and B-mode data are at the same frame rate, 

and they can be combined into one output image. The tissue/flow decision algorithm 

determines whether a gray-scale B-mode pixel, B(x,y), or a color-flow pixel, <tfx,y), 

should be output for each pixel in the color-flow region of interest (ROI). The decision is 

based on predetermined thresholds for parameters, such as the B-mode value, the 

magnitude and phase of the velocity vector (Boh et al., 1993) and other statistics, such as 

the variance or power of the flow (Shariatti et al., 1993). The algorithm we implement is: 

IfB(x,y)>Bthreshoidthen 

Out(x,y) = B(x,y) 
Else if\(j)(x,y)\ > threshold andR(x,y) > RthreshoU then 

Out(x,y) = <f>(x,y) 
Else 

Out(x,y) = B(x,y) 

4.5.2  Methods 

Frame interpolation of equations (4-15) and (4-16) can directly utilize the subword 

parallelism of the MAP 1000, using the partitioned multiply, add, and subtract 

instructions. However, the tissue/flow algorithm above is classically if/then/else-based, 

which must be remapped using techniques discussed in 3.2.2.3 to avoid the if/then/else 

barrier to efficient subword parallelism. The resulting partitioned algorithm for the 

combined frame interpolation and tissue/flow tight loop is shown in Figure 4-15 with the 

ideal performance shown in Table 4-7.   Since all the if/then/else statements have been 
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removed and all operations implemented using partitioned operations, the algorithm can 

be easily software pipelined. 

™new 

♦old/ 

♦nl *n2 *n3 *n4 

'♦.1 4>o2 *o3 ♦o4 

a a a a 

B, B2 B3 B4 
R- R, R3 R4 w I w I w I w 

"thresh Bfhresh Bthresh B(hresh 

' ' 
True False False True 

1 

elecT>< 
♦ 

♦1 B2 B3 *4 

Figure 4-15. Partitioned operations used to implement the 
combined frame interpolation and tissue/flow tight loop. 

A double-buffered data flow (Figure 3-7) using 2D block transfers similar to scan 

conversion is used. The respective LUTs are preprogrammed to only move the data 

needed within the color-flow ROI, avoiding computation for blank pixels and the B-mode 

only regions. As shown in Table 4-7, both frame interpolation and tissue/flow are highly 
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I/O-bound due to the large number of images ($,w, fa*» R0id, Rnew, B, Out) involved with 

relatively low processing load. Combining the two algorithms into one function reduces 

the I/O load around 33%. However, the function is still I/O-bound. 

Table 4-7.   Ideal performance for frame interpolation and 
tissue flow, implemented individually and combined. 

800x600 Ideal Performance 
(time in ms) ' compute tj/0 Max 

Frame interpolation 
Tissue flow 
Total 

0.63 4.58 4.58 
1.09 4.58 4.58 
1.72 9.16 9.16 

Fl & TF combined 2.97 6.10 6.10 

4.5.3 Results & Discussion 

Frame interpolation and tissue/flow (FI/TF) were implemented in C language. 

Simulation results for our scenario with an 800x600 output image with a 90-degree 

sector, having approximately 250,000 active pixels in the color-flow ROI, show that the 

total time for frame interpolation and tissue implemented individually were 14.1 ms, 

while the combined algorithm took 7.96 ms. The combined function is I/O-bound with 

the actual tcompute of 3.3 ms or 11% slower than ideal, indicating that the compiler 

performs well in software pipelining. • 

The Pentium II with MMX supports similar partitioned operations needed for FI/TF 

in Figure 4-15. Using a standard C compiler (gcc) with optimizations turned on, we 

achieved a performance of 60 ms, which is 7.5 times slower than the MAP1000.' Basoglu 

& Kim (1997) implemented tissue/flow decision combined with the velocity computation 

(i.e., a rectangular-to-polar conversion instead of frame interpolation) targeted to a 50- 

MHz TMS320C80 mediaprocessor. They achieved a total execution time of 16 ms for 

304x498 12-bit images (N, D, and B). However, direct comparison of these two 

approaches is inappropriate, as rectangular-to-polar conversion (atari and square root) 

requires more computation while frame interpolation requires more I/O. 
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4.6 Overall Results of Ultrasound Algorithm Mapping 

The results of mapping and simulating the various ultrasound algorithm stages (echo 

processing, EP; color flow, CF; scan conversion, SC; frame interpolation, FI and 

tissue/flow, TF) for all the specified scenarios from Chapter 2 are shown in Table 4-8. 

The estimated number of MAP 1000 processors required for a scenario was calculated by 

multiplying the total execution time for a processing stage on a single MAP 1000 (units of 

processor*seconds/frame) with the frame rate requirement (frames/second). The total 

execution time includes not only the execution time for each stage, but an additional I/O 

time (ti/o) due to incoming data frames from the previous processing stage. These 

incoming frames are double-buffered. Thus, some of this ti/o may be hidden behind the 

computation of the respective stage. However, to be conservative we assume it is not 

hidden, slightly inflating the number of processors estimated. On the other hand, the 

estimate in Table 4-8 does not account for any overhead that would be experienced in 

typical multiprocessor architectures, which includes interprocessor communication 

delays, bus traffic and contention between processors. In addition, division of the 

processing load across parallel processors can incur additional load if the processing load 

can not be evenly balanced between stages (due to different grain size of the procesing 

Table 4-8.    Estimated number of MAP 1000 processors 
needed for various scenarios. 
c 

Mode k   fps 
B 

fps 
#C        #B 

vectors vectors E ROI 
sector 
angle 

Number of Map1000s 
EP    CF  SC/FI/TF    Total 

B 
B 

color  1   9.0 
2 8.4 
3 7.8 
4 7.3 
5 6.9 

color  1  22.3 
2 19.5 
3 17.4 
4 15.6 

color      68.0 

68.0 
68.0 
9.0 
16.8 
23.5 
29.3 
34.5 
22.3 
39.1 
52.1 
62.5 
68.0 

256 

256 

52 

512 
340 
340 

256 

256 

16 

6 

6 

100% 

100% 

20% 

136 
90 
90 

90 

90 

5.17 1.42 6.74 
3.44 1.73 5.16 
0.46 2.42 0.66 3.54 
0.85 2.25 0.89 3.99 
1.19 2.10 1.10 4.38 
1.48 1.97 1.27 4.73 
1.74 1.85 1.43 5.03 
0.85 2.62 1.61 5.08 
1.49 2.29 2.07 5.85 
1.98 2.04 2.42 6.44 
2.38 1.83 2.70 6.91 
2.59 1.62 2.23 6.44 
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tacks) and due to overlapping data between parallel processors being recomputed. The 

internal overhead of each MAP 1000 processor can also increase in the multi-processor 

architecture as its internal data flow interacts with external data flow, possibly requiring 

more internal bus arbitration and SDRAM row miss cycles. The actual loading due to 

these effects will be determined during the multiprocessor simulations in section 5.3. 

4.7 Discussion 

Of the above scenarios, the worst case B-mode and color-mode simulations require 

about seven MAP 1000s, with 6.74 and 6.91, respectively. Based on these initial results, 

in Chapter 5 we designed our architecture based on eight MAP 1000s, but expandable to 

sixteen MAP 1000s. As these simulations were based on our stringent specifications and 

most of the functions were implemented in C language, leaving more room for assembly 

optimizations, an eight-processor system appears feasible. This will require the 

algorithm's processing load to be well-balanced across the multiprocessor system and 

sufficient bus bandwidth. The multiprocessor simulations in Chapter 5 will determine 

whether the overhead incurred in the multiprocessor environment requires more than 

eight processors. 

By sharing the data flow between processing stages, we were able to reduce the 

overall execution time of echo processing and color-flow processing, making the overall 

implementation primarily compute-bound. However, the unique requirements of scan 

conversion, frame interpolation, and tissue flow make them I/O-bound. Using our 

algorithm mapping techniques from section 3.2.2 , we have created new algorithms and 

implementations for: 

•   Magnitude/log compression: implementing magnitude on the core processor 
while the DMA performs log LUT using guided transfers 
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Edge enhancement/speckle reduction/persistence: used powerful partitioned 
operations and inner_product instructions, removing barriers like if/then/else 
to fully utilize mediaprocessor subword parallelism. 

B-mode scan conversion: performed the data flow study to find the optimum 
data flow approach and reducing redundant computations using a LUT 
method. 

Color scan conversion: developed an efficient circular scan conversion 
algorithm to eliminate the need for two transformations. 

Frame interpolation/tissue flow: combining multiple algorithms reduces 
some I/O overhead, and removal of the if/then/else barrier efficiently utilizes 
subword parallelism. 
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Chapter 5: Multi-mediaprocessor Architecture for Ultrasound 

Through the algorithm mapping study of Chapter 4, we gained a good understanding 

of the processing and data flow requirements for the various ultrasound algorithms. 

Based on these results, we present our multi-mediaprocessor architecture for ultrasound 

processing in this chapter. To evaluate the performance of this architecture, we 

developed a simulation method and models, attempting to preserve accuracy with a 

reasonable simulation time. This chapter concludes with the results of our B-mode and 

color-mode simulations on this architecture, demonstrating that a fully programmable 

ultrasound machine with mediaprocessors is feasible. 

5.1 Introduction 

While the fine-grained parallelism of VLIW mediaprocessors incorporating 

instruction-level parallelism and subword parallelism can efficiently compute our 

ultrasound algorithms, we still need multi-mediaprocessors to meet our system 

requirements. Designing an efficient parallel architecture depends on two key issues: 

(1) Balanced Processing Load. Ideally, the application should be inherently parallel, 

such that the processing load can be divided across the system with an equal 

processing load for each processor and no idle time. Load balancing is easier for 

fine-grained tasks like low-level image processing, but more challenging for our 

large-grained ultrasound processing stages of EP, CF, SC, and FI/TF. 

(2) Minimizing I/O Overhead. Properly managing the data flow into and out of the 

parallel processors is very important. If not, the processors can be underutilized 

while waiting for data. In a multiprocessor system, as the number of processors is 

increased to decrease tcompute, the I/O overhead typically increases to a point that 
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adding an additional processor can increase the overall execution time (York, 

1992). 

The parallel processing load can be divided spatially (i.e., each processor does the 

same task on different data) or temporally (i.e., each processor is responsible for a 
J 

different processing stage on the same data stream, also known as pipelining). Both 

pipelining and spatial parallelism achieve an overall throughput based on the slowest 

processing node, thus the need for a balanced system (Patterson & Hennessey, 1994). 

Pipelining has the disadvantage of latency or a delay between when the input data are 

acquired and when the data are output, which equals to the sum of the processing time for 

each pipeline stage. Spatial parallelism has the disadvantage that the processors must 

often share overlapping data. Thus, these overlapping data can be processed once by one 

processor, then shared with the neighboring processors (increasing tuo) or processed 

multiple times by each processor (increasing tcompute)- 

Since the advent of microprocessors, parallel processing systems have become more 

practical allowing several high performance, low-cost processing nodes to be integrated 

on a single board (also known as a cluster) (Patterson & Hennessey, 1994). The short 

distance between microprocessors on the boards has allowed higher bandwidth 

communications. A variety of multiprocessor systems have been implemented, and they 

can be classified by their connection schemes, both between clusters and within the 

cluster, as shown in Figure 5-1. The fully-connected topology can offer the most 

flexibility, least I/O latency, and highest system bandwidth. This comes at an expensive 

cost, increasing by a factor of N*(N-1) where N is the number of processors, requiring 

either dedicated ports between processors, as in the symbolic processing array by Weems 

et al. (1989) or crossbar switches, such as the Raceway™ architecture (Kuszmaul, 1999). 

Other topologies offer a varying trade-off between data flow flexibility and cost, such as 

hypercubes (e.g., Proteus System by Haralick et al., 1992), 2D arrays (Weems et al., 

1989) and ring topologies (Duncan, 1990). 
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üüüü D4>M 4 i i 6 
Fully connected        Cube 2D Array Ring Pipeline        Shared Bus 

Figure 5-1. Parallel processing topologies. 

These large parallel processing systems are not cost-effective for embedded 

applications like ultrasound, which do not require the data flow flexibility of these 

topologies. For example, for ultrasound tomography, Wiegand & Hoyle (1991) used a 

system of 12 transputers connected by serial links to form a flexible 2D array 

architecture, but found after algorithm mapping that a parallel architecture with systolic 

pipelines was required. Due to difficulty in balancing the processing load, a few 

transputers were overloaded, while most of the other transputers were underutilized (I/O 

bound) waiting on data from other transputers. For most ultrasound applications, the 

ultrasound data flow originates with the transducer on one end and usually terminates at 

the output display on the other end with sequential processing stages in between, the 

clusters for ultrasound systems tend to be systolic pipelines (Jensch & Ameling, 1988; 

Kim et al., 1997). Another practical approach with more flexibility than the pipeline is to 

connect the clusters across a shared bus. However, adequate bus bandwidth is required to 

prevent bottlenecks and idle processors. For example, Costa et al (1993) developed a 

color-flow system by connecting 64 AD2105 DSPs across a shared bus. Even with the 

computing power of 64 processors, real-time performance was limited as the processing 

time took longer than the acquisition time of the data from the transducer. Combinations 

of connection schemes are common, such as a system by Jensen et al. (1996) with 16 

AD21060s using a combination of shared bus and direct links between 4 boards where 

each board has 4 processors fully connected by both shared memory and communication 

links. While data flow was not a problem for this system, they found the AD21060 lacks 

the computation power for their ultrasound application. 
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In general, these previous architectures (summarized in Table 1-1 in Chapter 1) were 

not designed to handle either the full computing or data flow requirements of ultrasound 

processing, which we have to consider in designing a fully programmable ultrasound 

architecture. In Chapter 4, eight MAP 1000s were estimated to provide enough 

computation power, provided that our architecture can support the proper data flow and 

bandwidth and the algorithms are well balanced throughout the system. 

5.2 Methods 

Our goal in designing the ultrasound architecture is to develop a high performance, 

flexible, cost-effective system targeted for the high-end ultrasound market. We define 

high performance as meeting the specifications in Chapter 2. We define flexible as ä 

reprogrammable system, capable of adapting dynamically to the changing requirements 

of different ultrasound modes. To be cost-effective for the high-end ultrasound market, 

the architecture must be composed of a reasonable number of processors with a simple 

interconnection mechanism, low-cost standardized memory (e.g., SDRAM), and 

standardized boards repeated throughout the system. 

5.2.1 UWGSP10 Architecture 

In this section, we discuss the primary and alternative architectures considered. Also, 

various architectural issues are discussed, such as interprocessor communication, system 

data flow, bus bandwidth, memory size, and remapping the algorithms to a 

multiprocessor architecture. 

5.2.1.1 Primary Architectures 

Taking advantage of the MAPlOOO's dual PCI buses, our baseline architecture uses 

clusters of four MAPlOOOs per board, connected by shared buses, as shown in Figure 5-2. 

Similar to systolic architectures, the data flow in from one end (Vector bus) and after 

processing flow out the other end (Top/System PCI buses).  Thus, this architecture has 
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the flexibility to implement both spatial and pipelined parallel processing, provided that 

the shared buses have enough bandwidth. 
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Figure 5-2.   UWGSP10 architecture utilizing 2 PCI ports 
per MAP 1000 processor. 

The host processor (Pentium) is located at the top level. It handles the graphical user 

interface and controls up to four standardized boards. The results from Chapter 4 

indicate a 2-board system with eight MAP 1000s is feasible for our ultrasound machine. 

However, this architecture can be expanded 100% to a four-board system with a total of 

16 processors. Each MAP 1000 block in Figure 5-2 includes a MAP 1000 and its local 64 

Mbytes of SDRAM. Data vectors flow in from the beamformer through a proprietary 

bus. They are relayed by a bridge to the appropriate processor through the bottom PCI 
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bus. The middle PCI bus is used to share data between processors. Through another 

bridge, we can transfer the output to either the host processor on the top (or system) PCI 

bus. The top PCI bus can interface with the system PCI bus through a bridge to relieve 

the fan-out limitation on the system PCI bus or the boards can directly connect to the 

system PCI bus (eliminating the need for the top bus and bridge). The system and/or top 

PCI buses between the boards are at 33 MHz with either 32-bit or 64-bit width, while the 

middle and bottom on-board PCI buses run at 66 MHz at 32 bits. 

In case we can use only a single PCI port on the MAP1000, Figure 5-3 shows the 

architecture using MAP 1000s utilizing one PCI port. Both the single and dual-PCI port 

architectures were simulated in this study. 

Top (or System) PCI bus 

Vector bus 

t board #1 ± 
1 

Bridge Bridge 

Middle PCI Bus 

MAP1000 MAP1000 MAP1000 MAP1000" 

board #2 

additional boards -> 

Bridge Bridge 

MAP1000 

/ii>- 
"iflv, 

MAP1000 MAP1000 MAP1000 

Figure 5-3. UWGSP10 architecture utilizing 1 PCI port per 
MAP 1000 processor. 

5.2.1.2 Alternative Architectures 

As an alternative to the four-processor board, the top bridge could instead be 

implemented by a fifth MAP 1000 as shown in Figure 5-4, adding more computing power 

to each board. This would require a trade-off of slowing the top bus by reducing its 

width from 64 bits to 32 bits. In addition, this fifth processor would be handicapped in 

computing due to the added responsibility of transferring data between the other 

processors and the system bus. 
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Figure 5-4. Hierarchical architecture 
with five processors per board. 

Figure 5-5. 2D array architecture. 

Another alternative is to arrange 16 of the dual-PCI port MAP 1000s in a 2D array as 

shown in Figure 5-5. 2D arrays would allow more flexible data transfer between 

processors, particularly those from opposite ends of the system (Patterson & Hennessey, 

1994). However, the flow of our ultrasound algorithms is more tightly-coupled, and we 

do not anticipate needing this flexibility. Furthermore, manufacturing the 2D array in a 

scalable fashion is difficult, while still supporting the 66-MHz PCI bus speed. In 

addition, 2D arrays technically violate the PCI specification (PCI, 1993) by allowing 

multiple paths between processors, creating an ambiguous address map. 

5.2.1.3 Interprocessor Communication 

For our primary architectures of Figure 5-2 and Figure 5-3, the interprocessor 

communication is based on a simple message passing paradigm (Patterson & Hennessey, 

1994), in which the destination processor is assumed to be polling certain predefined 

memory addresses (either continually or at regular intervals) waiting on a message (32 

bytes) from the source. The source processor then sends the message (using a normal 

PCI write) to the destination processor's memory. The destination processor then returns 

an acknowledge message. In addition, a hardware interrupt mechanism is also available 

for more urgent cases, e.g., allowing the host processor to put every processor in a known 
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state during events, such as "booting up" the system and restarting the processing when 

the machine switches operating modes. For example, after a processor has been 

configured via interrupt for a certain processing stage, e.g., echo processing, it will then 

go into a polling mode, checking for a message from the beamformer whether a frame of 

vectors has arrived. After the processor receives the message, it responds with an 

acknowledgment, and proceeds with processing the vectors. 

5.2.1.4 Data Flow between Processors 

The incoming data vectors from the beamformer are written from a programmable 

DMA controller vector-by-vector onto the vector bus, with a target address for the proper 

processor in the system. For those overlapping vectors that are shared between 

processors and/or boards, either the beamformer board's DMA controller can rebroadcast 

the shared vectors to the second processor/board or the shared vectors can be broadcast 

once while the bridges on the processor board detect the proper "window" of vectors for 

each processor on the board. The demodulator board's DMA controller is also assumed 

to transmit a special 32-byte "end of transfer" message to signal the end of each frame for 

each processor's portion of the frame data. 

The processing stages (e.g., EP and SC during B-mode) are pipelined and use double- 

buffering techniques between stages to increase the throughput, similar to the double 

buffering internal to each processor as discussed in section 3.2.2.5. For example, while 

the processor is computing the current frame in one memory buffer in its SDRAM, the 

next frame is being loaded in another buffer by the earlier processing stage in the 

pipeline. Thus, the external frame I/O and the internal processing occur in parallel with 

the maximum of the two determining the overall throughput for the stage. The stage with 

the slowest throughput determines the frame rate that the system can support. 

Pipelining incurs a latency of time between data acquisition and when the first frame 

is displayed. B-mode's two stages result in a latency of two frame periods plus the time 

to acquire the frame subsection needed for an EP processor.    Color mode has an 
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additional latency when frame interpolation is enabled, as several B-mode frames (e.g., k 

in equation 2-2) and the old color frame C0u must be buffered until the next color frame 

C„ew arrives. 

After the final processing stages (scan conversion and tissue/flow decision), the 

output images are sent to the host processor, which performs color map lookup during 

color mode and overlays other graphics, such as text, logos, etc. 

5.2.1.5 Remapping Algorithms to Multiple Processor Architecture 

The ultrasound algorithms mapped to the architecture of an individual MAP 1000 in 

Chapter 4 were then mapped to the multiple processor architecture. Since the 

performance of parallel processors and systolic pipelines depend on the speed of the 

slowest processing stage, balancing the processing load equally across all the processors 

in the system is essential for maximum performance. For our system, we need to map a 

processing load estimated for about 6.91 processors to an 8-processor system. 

We mapped the ultrasound functions across the system in both a spatial-parallel and 

temporal-pipelined fashion. The spatial-parallel mapping has an advantage of less latency 

than pipelining, while the pipeline has an advantage of not requiring the duplicate 

processing of overlapping data as the parallel approach requires. For example, in color 

mode we divide the image into four subsections as shown in Figure 5-6 to be processed in 

parallel. Due to the lateral 4-tap window of scan conversion and the 3-tap window of 

other filters, overlapping vectors must be shared with the other subsections. One option 

is to process the overlapping vectors once and then copy the processed vectors to the 

neighboring processors. However, this can slow down the neighboring processor, 

making it wait on the shared vector. Instead we choose to increase the computation 

burden by recomputing the shared vectors, making the pipeline control and data flow 

easier. 
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Figure 5-6.     Example of division of a sector between four 
processors, showing the overlapping vectors for a sub-sector #2. 

For B-mode, we map the 5.17 processing load for EP to 6 processors (-86% 

load/processor) and the 1.42 load for SC to 2 processors (-71% load/processor), which is 

fairly well balanced. Thus, the sector data are divided into 6 subsections for EP and only 

2 subsections for SC. Figure 5-7 shows the processing assignments per processor on one 

board, processing half the image. The gray arrows indicate the data flow pattern. For 

example, while the scan converter is processing the first frame (#1) and outputting the 

^f    Top (or System) PCI bus    additional boards -> 

board #1 

Bridge 

MAP 1000 
(EP) 

MAP1000 

(EP) 

^rw 
MAP1000 

(EP) 
MAP 1000 

(SC) 

^s».*?!/ Bottom PCI bus 

Bridge 

I 
Vector bus 

Figure 5-7. B-mode algorithm assignments (for one of 2 boards). 
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results across the middle PCI bus to the system bus, the echo processors are processing 

the second frame (#2), sending these results to the scan converter also across the middle 

bus. Meanwhile, the third frame (#3) is being transmitted across the bottom PCI bus to 

the echo processors. The timing of this pipeline is illustrated in the results in Figure 5-13. 

For color mode, the initial grouping combining EP/CF (~5 processors) and SC/FI/TF 

(~3 processors) functions is not well balanced across the two board architecture, as 

shown in Table 5-1. Therefore, the functions are remapped, moving EP2 to the second 

stage, implementing EP1/CF and EP2/SC/FI/TF in two pipelined stages. This results in a 

well-balanced system, dividing the processing across four image subsections. Table 5-1 

also shows the additional overhead due to the overlapping vectors, after mapping to the 

8-processor system. The processor assignments for one board (half the image) are shown 

in Figure 5-8 with the EP1/CF processors 88% loaded and the EP2/SC/FI/TF processors 

90.5% loaded. 

Table 5-1.   Load balancing of 
color-mode. 

Color-Flow Number of MAPI 000s 
EP/CF      SC/FI/TF      total 

unbalanced 4.21             2.7           6.91 

EP1/CF EP2/SC/FI/TF total 
balanced 
with overlap 

3.44 3.53 6.97 
3.53 3.62 7.15 

Top (or System) PCI bus    additional boards -> 

Bridge 

Middle PCI bus t 

T~L 
MAP 1000 
(EP1/CF) 

MAP iooo 
(EP1/CF) 

•MAP1000' 
(EP2/SC/ 
LfJ/TFjJ 

Bottom PCI bus f 

1VIAP1000' 
(EP2/SC/ 
I FI/TR J 

Bridge 

f 
Vector bus 

Figure 5-8. Color-mode algorithm 
assignments (for one of 2 boards). 

5.2.1.6 Bus Bandwidth 

In addition to ensuring that our system can meet the processing requirements, it must 

have adequate bus bandwidth to handle the high amount of data flow in ultrasound 
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processing. At first look, the 64-bit PCI bus at 33 MHz and the 32-bit PCI bus at 66 

MHz appear to have the same maximum bandwidth (BWmax) of 264 Mbytes/s (MBps). 

However, not all of this bandwidth can be used to transfer data, as some bandwidth is 

used in overhead cycles. For example, the PCI bus is set to transfer 32 bytes for one 

processor before switching to another processor. Each transfer includes one clock cycle 

to send address information followed by the cycles needed to send the 32 data bytes (i.e., 

4 cycles for a 64-bit bus and 8 cycles for a 32-bit bus) followed by the spin cycle, needed 

between transfers to allow one processor to release the bus (unload signals) while the 

next processor begins to load the bus (PCI, 1993) as shown in Figure 5-9. The effective 

bandwidth available for data can be estimated from: 

BW. 
data cycles 

eff    address cycles + data cycles + spin cycles 
BWm 

(5-1) 

This estimate does not include any overhead due to bus arbitration, which for the PCI 

bus is often hidden. While one processor has been granted the bus and is transferring 32 

File   View  Edit   Change   Signal   Axis   Select 

Figure 5-9. Detailed PCI Bus Signals, showing an example of 4 
processors requesting the bus (PCI_REQl-4; active low signal), and the 
round robin arbitrator's corresponding bus grants (PCI_GNTl-4; active 
low signal). The address, data, and spin cycles are labeled on the 
PPCIADDR (multiplexed address and data) signal. 
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bytes of data, the other processors arbitrate for the next transfer as shown in Figure 5-9. 

This estimate also does not factor in back-to-back transfers on the PCI bus, in which the 

current processor can send back-to-back transfers avoiding the overhead of the spin 

cycles when there is no second processor arbitrating for the bus. 

Table 5-2 estimates the amount of bus loading based on the BWej? and the estimated 

data bandwidth required (BWreq) for the worst ease B-mode and color-mode scenarios on 

the various buses in the dual-PCI bus system.   All the buses are expected to have less 

Table 5-2. Estimated bandwidth required versus effective 
bandwidth available for various buses for the worst case 
scenarios for the dual-PCI bus architecture. 

PCI Bus 
B-mode Color-mode 

Clock 
(MHz) 

Width 
(bits) 

BWeff 
(MBps) 

BWreq 

(MBps) 
load BWreq 

(MBps) 
load 

Top/System bus 33 32 106 34 31.9% 34 31.9% 
Top/System bus 33 64 176 34 19.2% 34 19.2% 
Middle bus 66 32 211 53 24.9% 36 17.3% 
Bottom bus 66 32 211 73 34.6% 61 29.1% 

than a 35% load, indicating that our system sufficient bus throughput (which needs to be 

verified during the multiple processor simulations). For the single-PCI architecture, the 

load on the middle and bottom buses is to be placed on one bus, resulting in an expected 

loading for B-mode of 59.5% and color mode of 46.4%. 

5.2.1.7 Memory Map and CINE data 

Each MAP 1000 processor can support up to 64 Mbytes of local SDRAM memory for 

a total of 512 Mbytes for a 2-board (8-processor) system. Table 5-3 lists the memory 

requirement per processor based on the algorithm mapping of B-mode and color mode in 

section 5.2.1.5. The frame buffers are double-buffered between processing stages, the 

internal buffers are for temporary storage between algorithms, and the cache buffers are 

the double buffers used to internally bring data to and from the cache memory. 
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Table 5-3. Memory requirement per processor. 

Memory Requirement per Processor (kbytes) 
B-mode Color mode 

EP sc EP1/CF EP2/SC/FI/TF 

Program size 
Frame buffers 
Internal buffers 
Lookup-tables 
Cache buffers 
Total 

60 63 105 109 
688 1032 2224 412 
192 0 70 7636 
129 665 129 768 

16 16 16 16 
1,085 1,776 2,544 8,941 

To allow for program growth above the 109 kbytes required in Table 5-3, we are 

reserving 1 Mbyte for the program space. This leaves between 55.6 to 63.4 Mbytes 

(depending on the processor) available for local CINE memory. CINE memory is used to 

store quite a few frames of data, which can be later played back in real time by the 

clinician. With the fairly large amount of memory free at each processing node, we can 

store the CINE data before the filter stage (after EP part 1 for B-mode and after CF part 1 

for color-mode). This allows the clinician to modify the various filters (e.g., edge 

enhancement, speckle reduction, persistence), the scan conversion zoom or rotation, and 

tissue/flow thresholds during playback, allowing the data to be viewed in a different light. 

Storing the CINE data for color mode after CF part 1 also reduces the amount of color 

data by the ensemble size (e.g., E = 6 to 16) and after EP part 1 reduces the amount of B 

data by a factor of 2 (e.g., reducing / +jQ to B). 

The CINE data are stored in the local processor's memory where they will later be 

reprocessed during playback. For B-mode, we store the B CINE data on the EP 

processors. For color mode, we store the B CINE data on the EP1/CF processors and the 

color CINE data on the EP2/SC/FI/TF processors. Based on the CINE memory available 

on each processor and the data size per frame per processor, Table 5-4 lists the number of 

CINE frames available for various scenarios, ranging from 369 to 1666 frames. Typical 

commercial ultrasound machines advertise supporting from 30 to 256 CINE frames, with 
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one high-end machine supporting up to 1024 frames (Siemens, 1997).    The number of 

CINE frames can be translated into the CINE time (TONE) by 

T
CINE = min 

B C frames     ^frames (5-2) 

The B-mode CINE ranges from 5.4 to 8.2 seconds for our two scenarios. In 

comparison, a high-end commercial ultrasound machine is advertised to support from 2.1 

to 30.5 seconds of CINE running at 30 fps for 256 vectors/frame, depending on the 

amount of CINE memory purchased (Siemens, 1997). Scaling this to our specification of 

68 fps and 512 vectors reduces their CINE range to 0.5 to 6.7 seconds. For color mode, 

our CINE time ranges from 6.6 to 38.1 seconds while the commercial ultrasound machine 

supports from 2.2 to 17.4 seconds of CINE running at 30 fps for 128 color vectors and 

256 B vectors. Scaling this to our specification of 22.3 fps (k = 1) and 256 color vectors 

results in a CINE time ranging from 4.4 to 25.6 seconds, compared to our 19.8 seconds 

for this scenario. This hardwired commercial machine stores pre-scan-converted CINE 

data, thus it can only allow the clinician to modify the scan conversion and tissue/flow 

during playback, but not to modify the various filters of EP2 and CF2. The ability of our 

programmable system to randomly select the location (relative to the processing stages) 

of our CINE data illustrates the flexibility of programmable system, allowing additional 

Table 5-4. Number of CINE frames and CINE time supported 
by the local SDRAM memory in various scenarios. 

C      B       #C        #B 
Mode k   fps    fps   vectors vectors 

C 
frames 

B 
frames 

time 
(s) 

B                   68.0                   512 
B                   68.0                   340 

369 5.4 
559 8.2 

color  1   9.0    9.0     256       340 
2 8.4   16.8 
3 7.8   23.5 
4 7.3   29.3 
5 6.9   34.5 

421 343 38.1 
421 322 19.1 
421 316 13.5 
421 311 10.6 
421 306 8.9 

color  1 22.3 22.3     256       256 
2 19.5 39.1 
3 17.4 52.1 
4 15.6 62.5 

442 450 19.8 
442 422 10.8 
442 415 8.0 
442 408 6.5 

color  1  68.0 68.0      52        256 1666 451 6.6 
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features to be offered to the clinician. 

5.2.2 Multiprocessor Simulation Environment 

Based on this multi-processor architecture and the mapped ultrasound algorithms, we 

developed a simulation method and tools to test whether our system could meet the 

design specifications. While the individual function's performance was already assessed 

by running single processor simulations, the goal of the multiprocessor simulation is to 

evaluate if there is enough bus bandwidth between the processors and what the impact of 

the interprocessor communication and bus traffic is on the overall processing 

performance. 

5.2.2.1 Introduction 

The timing of the data flow between processors is key to determining multiprocessor 

performance. A common approach is to record the bus level events when running the 

application algorithms for each processor in the system (e.g., the detailed timing of all the 

reads and writes across the bus, known as address traces). Stunkel et al. (1991) classified 

the primary methods of collecting address traces into hardware-captured traces, interrupt- 

based traces, instrumented program-based traces, and simulation-based traces. One 

challenge for these techniques is not to modify the data flow timing while collecting the 

address traces, causing the dilation artifact, i.e., increasing the number of cycles required 

for a task due to adding additional instructions to monitor the task (Koldinger et al., 

1991). Hardware-based traces are collected by monitoring the real hardware bus in real 

time, which is very accurate. However, the hardware monitors have limited memory, 

only allowing a short fragment of execution to be monitored. In interrupt-based traces, 

interrupts are programmed to occur after every instruction to store the address trace 

information. However, this can cause a severe dilation (lOOx to lOOOx). In the 

instrumented program approach, the executable program is modified to store the major 
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events of the basic program blocks, e.g., address parameters for each iteration of the tight 

loop, which also leads to dilation. 

The above techniques allow fast collection of address traces by running the 

application program on real hardware. Since the MAP 1000 chip did not exist for the 

majority of this project, we used the simulation-based trace approach, in which the 

hardware is modeled in software. Ideally, a simulator capable of simulating the entire 

multiprocessor system, including running the actual executable code on each processor in 

the simulation, would not require the address trace. However, a software simulator of 

this level of complexity is difficult to design and would require an excessively long time 

to run the simulation. Instead, using the address traces can significantly reduce the 

complexity of the processor model and reduce the simulation time. However, the address 

trace files for long simulation times can be extremely large (much larger than the original 

executable code), thus methods are needed to reduce the address trace file size within the 

memory limits of the simulation workstation. 

The software simulation models can be classified by their temporal resolution, e.g., 

sub-nanosecond accurate models, cycle-accurate models, and instruction-accurate models 

(Rowson, 94), and by their abstraction level, e.g., behavioral or structural (Kim, 1995). 

Structural models mimic the internal logic gates and electrical timing of a device and tend 

to be very accurate. This accuracy is necessary for ensuring signal integrity before 

fabricating chips and/or manufacturing a circuit board, but it would take too long to 

simulate complete applications like an ultrasound system. The behavioral-level models 

tend to be cycle-accurate, modeling the device behavior at a higher abstraction via high- 

level programming languages or hardware description languages like VHDL. For 

multiprocessor simulations, the behavioral model approach combined with address 

tracing can lead to reasonable accuracy with a manageable simulation time. 
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5.2.2.2 Simulation Process 

In developing our simulation process, our goal is to achieve a cycle-accurate 

simulation with reasonable simulation time and manageable address trace file size. In 

Chapter 4, we simulated the ultrasound algorithms targeted to a single processor using 

Equator's MAP1000 cycle-accurate simulator, CASIM. CASIM is designed to model the 

complex interaction between the core processor, the 4-way set-associative data cache 

with 4 banks, 2 way set-associative instruction cache, DMA controller, and SDRAM. 

CASIM's accuracy is advertised to be +/- 5% of the real hardware, similar to the results 

we found in section 5.2.2.4. For our multiprocessor simulation, ideally we would like to 

run multiple CASIM simulations for each processor, having the programs dynamically 

interact cycle by cycle. However, we cannot use CASIM directly for the multiprocessor 

simulation, as it produces static address traces (debug files) instead of allowing dynamic 

interaction. In addition, CASIM does not simulate the PCI ports needed for the 

multiprocessor simulation. The alternative of creating a complete dynamic simulator of 

the MAP 1000 on our own would have been challenging. Furthermore, there is no 

guarantee it could be as accurate as CASIM since we do not have access to all the 

internal technical design details of the MAP 1000. 
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Figure 5-10. Simulation process. 
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Instead, we created a simulation process combining the accuracy of CASIM with the 

flexibility of a VHDL simulation environment for multiprocessor architectures. Our 

simulation process is shown in Figure 5-10 with the following features to maintain 

accuracy while reducing the simulation complexity and time. 

(1) The simulation process starts with using the "real" ultrasound algorithms coded 

in C and/or assembly language, which are then compiled to generate accurate 

MAP 1000 executable code. 

(2) The MAPI000's cycle-accurate simulator (CASIM) is then used to generate 

detailed instruction and data flow timing information called debug files for each 

processor. These debug files have the necessary information for accurate address 

trace files (ATF) needed to drive a multiprocessor simulation. CASIM generates 

extreme details of data access patterns, as shown in Appendix B, creating a large file. 

For example, a simple convolution of a 512x512 image with a 3x3 kernel with 4.5 ms 

of execution time creates a 420-Mbyte debug file. If these files are created statically 

for our full ultrasound system, they will far exceed our workstation's memory 

capacity. 

(3) To prevent CASIM's debug files from overflowing our workstation's memory, 

we developed sparser program to extract only critical information from the debug 

file as it is created during the CASIM simulation before being stored, resulting in a 

1200-to-l reduction in the final ATF file size. For example, the convolution final 

ATF is around 350 kbytes. 

(4) The size of the ATF files is further reduced by limiting data flow we monitor to 

the transfers external to the processor/cache model in Figure 3-2, e.g., data flow 

between the cache and SDRAM and between the DMA controller and SDRAM 

and/or cache, rather than the highly detailed data flow activities between the core 

processor and cache. The. data accesses between the core processor and cache (every 
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load and store operation) occur much more frequently and in small grain sizes, which 

would lead to creating extremely large ATF files. The corresponding cache read and 

write bursts to SDRAM occur less frequently, and can be recorded in a compressed 

format (e.g., start address and sequential burst size). An example ATF file for our 

processor/cache model is shown below: 

an 14 -- no address  operation,   anop  <cycles> 
rb 80000  4 --  read burst  <addressxburst  size> 
wb 90000  4 -- write burst  <addressxburst  size> 
is 1 --  issue DMA transfer on <channel  #> 
an 467 --  anop  <cycles> 
wt 1 -- wait  on DMA transfer on <channel  #> 

(5) In addition, the data transfers for the DMA controller can be compressed into a 

descriptor with 2D block parameters, such as start address, width, length, etc., 

compared to having an ATF entry for each individual transfer. An example of a 

DMA ATF entry for a DMA transfer is shown below: 

wl  80000  64 16 448   --  write  <address><widthxcountxpitch> 

(6) We rely on the accuracy of CASIM to simulate the timing of data accesses 

between the core processor and cache, while our VHDL models (discussed in the 

next section) have the flexibility to model the cache, DMA, SDRAM, and PCI port 

data flow dynamically. 

(7) We use a standard simulation environment (by Viewlogic) for simulating VHDL 

behavioral models, providing the accuracy and security of a well-established 

simulation tool. 

(8) The multiprocessor performance is obtained by tracking key signals in the output 

timing diagrams. The computation load of each processor is known by the start and 

stop times of main computation loops and when the issues and waits on the DMA 

occur. In addition, special VHDL models track the PCI bus statistics needed to 

determine bus loading, as shown in Figure 5-11. 
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fMlABLE""^.,;"    fyi»e. Value 

/ADDRESS_C0UNT NATURAL 

/ARBITRATE_COI    | NATURAL 

/DATA_COUNT         NATURAL 

/DATA_FLAG_BOO BOOLEAN 

/GO_BOO                  BOOLEAN 

/IDLE^COUNT           NATURAL 

/SPIN_COUNT          NATURAL 

j-    142049 
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1277S516 
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Figure 5-11. When the simulation has reached steady state, 
the PCI arbitrator VHDL model counts each cycle by type 
(address, data, un-hidden arbitration, spin, and idle) to be 
used to determine the bus load statistics. 

5.2.2.3 VHDL Models 

A block diagram of our MAP 1000 VHDL model is shown in Figure 5-12. The model 

is composed of a processor core/cache model, DMA channel models, an SDRAM buffer 

and controller model, PCI port models, an internal 1MB (I/O-memory bus) bus arbitrator, 

and an external PCI bus arbitrator model. 

The processor core/cache model runs an ATF file implementing five operations: 

read burst (rb), write burst (wb), no-address-operation (an), issue DMA transfer (is), and 

wait on DMA transfer (wt). With these five instructions, timing of the data flow with 

respect to the processor/cache and the control of the DMA channels can be simulated. 

The processor/cache data transfers are loaded into a 4-entry buffer to wait for access to 

the 1MB bus. 

The MAPlOOO's DMA controller supports 64 independently programmable channels. 

In our ultrasound algorithm mapping, we utilize only six channels and simulate these six 

channels in our VHDL model to reduce complexity. Channels 0 and 1 are combined for 

input data flow from the SDRAM to the processor/cache; channels 2 and 3 are combined 

for output data flow from the processor/cache to either the SDRAM or PCI ports; and 
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channels 4 and 5 are used for memory to memory transfers, such as when implementing 

the log LUT with guided transfers. 

v \ (issues & waits) 

PMB i        64 bits @ 200 MHz 

I • '" DMA 
\ (Data Streamer) 

Buffer Buffer 

Channel 
4 

IL 
I Channel 
1        5 

SDRAM 
Buffer 

SDRAM 
Controller 

64 bits® 100 MHz   ^ 

Figure 5-12. MAP1000 VHDL model. 

The SDRAM models follow the specifications assumed by CASIM. The SDRAM 

buffer stores up to four data transfers while the SDRAM controller simulates controlling a 

2 bank, 2 kbytes per row SDRAM (64 bits at 100 MHz) and refreshes a row in each bank 

every 16 microseconds. The dual PCI ports (32 bits at 66 MHz) are modeled with each 

port having an 8 entry buffer for input and a 4 entry buffer for output. The PCI Port 

models act as agents to talk on PCI bus, while PCI channel models act as agents to talk 

on the internal 1MB bus. The PCI arbitrator uses round-robin arbitration, allowing a 

fixed 32-byte burst between bus masters. On the 1MB internal bus, the 1MB arbitrator 

uses a prioritized round-robin arbitration after 32-byte bursts, giving the highest priority 

to the processor/cache model, the next to the PCI channel, and the lowest priority to the 

DMA channels. 
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Maintaining the accuracy of the VHDL simulation relative to the original CASM 

simulation depends on the timing of the data flow on the MB bus. When the parser 

creates the ATF, it guarantees the core processor on the VHDL simulator will repeat (as a 

minimum) the number of cycles as the original CASM simulation. Any DMA and cache 

data transfers executed out of order in the VHDL simulator compared to the CASIM 

simulator can cause additional overhead in terms of extra arbitration cycles and SDRAM 

row miss penalties, causing dilation of the original time line. The dilation occurs as the 

core processor must stall during read operations to wait on the delayed data, as we do not 

know the true data dependencies of the instructions in the ATF, so we must stall, 

assuming they are dependent on incoming data. Fortunately, the 1MB arbitrator's 

prioritized arbitration scheme reduces some of the dilation by giving the processor/cache 

highest priority. The dilation error is always conservative, increasing the estimated 

execution time, thus our final estimates for processing load for the system should be 

larger than that of the actual hardware. 

5.2.2.4 Validation 

To validate the accuracy of the VHDL model and parser, we compared their accuracy 

to that of CASIM in executing various ultrasound algorithms with the dilation artifact in 

% shown in Table 5-5, indicating the VHDL simulator dilates the CASIM simulation by 

0.55 to 2.46% for the ultrasound functions. 

Table 5-5.   Validation results, comparing the accuracy of 
the VHDL models to that of the CASIM simulator. 

Program      % error 
EP 
SC 
CF 
EP1/CF 
EP2/SC/FIHT 

1.24 
1.99 
0.55 
2.46 
1.85 

The accuracy of our multiprocessor VHDL simulation is highly dependent on the 

accuracy of the CASM simulator to generate the proper address trace files. To verify the 
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accuracy of CASIM, we compared its performance to the real MAP 1000 hardware, as 

shown in Table 5-6. A positive error indicates when CASIM is conservative (dilation), 

while a negative error indicates when CASIM is optimistic. For B-mode and color mode, 

the CASIM simulator adds an additional 4.5 to 5.7% dilation (Table 5-6) to the 0.55 to 

2.46% dilation of the VHDL simulation in Table 5-5. Thus, we can expect the processing 

load in our final simulation results will be conservative. 

Table 5-6.  Performance of the CASIM simulator versus the real 
MAP 1000 processor in executing ultrasound algorithms. 

Input Output 
time in ms 

simulator hardware % error 

EP part 1 
EP part 2 
CF part 1 
CF part 2 
B-mode SC 
B-mode SC 
Color SC 
TF+color map 

100x1024 
100x1024 
40x576x6 

40x576 
40x512 

100x1024 
40x576 
240x320 

100x1024 
100x1024 
40x576 
40x576 
120x320 
320x400 
240x320 
240x320 

7.81 8.51 -8.2% 
14.15 13.12 7.9% 
24.64 22.03 11.8% 
19.66 19.06 3.1% 
3.15 2.85 10.5% 

19.26 17.83 8.0% 
13.20 12.04 9.6% 
3.46 4.05 -14.6% 

B-mode Total 40x512 
100x1024 
40x576x6 

120x320 
320x400 
320x400 

7.54 7.18 5.1% 
B-mode Total 41.22 39.46 4.5% 
Color-mode Total 102.18 96.64 5.7% 

The above validation is for the single MAP 1000s, not the complete multi-processor 

environment, which can only be verified after the multi-processor hardware is 

prototyped. Since CASIM does not simulate the PCI ports, the above simulations do not 

verify the accuracy of the VHDL PCI ports and PCI arbitrator. The PCI model was 

verified by comparing the output waveforms of the PCI bus with those of the PCI 

standard specification (PCI, 1993) as shown in Figure 5-9. 

5.3 Results 

In this section, we present the multiprocessor simulation results for our worst case B- 

mode and color-mode scenarios.   We are very interested in determining whether bus 
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bandwidth is adequate for both single and dual-PCI MAP 1000 designs and understanding 

the impact on computation load per processor due to bus traffic and interprocessor 

communication. 

5.3.1 B-mode 

Figure 5-13 shows an example timing diagram illustrating the pipelining of the EP 

computations on three processors and the SC computations on the fourth processor for 

three B-mode frames for board #1. The overlap of the middle PCI bus data flow (PCI 

out) for each subframe is also illustrated. Figure 5-13 was derived from Figure A- 1, 

which is a plot of the actual simulator display showing the signals used to measure the 

beginning and end of the processing for each frame, tcompute, and the time the processor is 

waiting for the next frame, twait. Although at times all four processors appear to have 

conflicting transfers on the middle PCI bus in Figure 5-13, a "zoomed-in" plot in Figure 

A- 2 shows that the actual PCI data transfers are relatively sparse, thus bus conflicts do 

not occur as often as Figure 5-13 may imply. Figure A- 3 is a more detailed timing 

diagram of the other signals tracked for each processor, such as the data flow for each 

channel, showing the transition from EP1 to EP2 and 2D versus guided transfers on the 

Bottom PCI Bus|1-1h-2M':=3|- 

EP CPU #1 

EP CPU #2 

2-1 2-2 2-3 3-1 3-2 3-3 
i wt compute 1-1 

i wt compute 2-1 
wt compute 3-1 

wt compute 1-2 
wt compute 2-2 

wt compute 3-2 

EP CPU #3       h 

SCCPU h 

EP PCI OUT #1 h 

EPPCIOUT#2l- 

EP PCI OUT #3h 

wait (wt) 

SC PCI OUT     h 

compute 1-3 
wt 

wt 

out 1-1 

out 1-2 

out 1-3 

compute 2-3 
wt 

compute 1 
wt 

out 2-1 

out 2-2 

out 2-3 
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compute 3-3 

compute 2 
wt 

out 3-1 
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out 3-3 

out 2 

compute 3 
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Figure 5-13. Timeline of B-mode simulation (dual-PCI 
architecture on board #1) illustrating the pipelining of 
computations on the processors and overlapping of data 
flow on the PCI bus for 3 frames. 



96 

EP. 

From the timing diagrams, we calculate the processing load for each processor as 

follows: 

r, •        T       J        compute Processing Load = —-f— 
/fPS 

(5-3) 

where the tcompute we measure includes computation time plus any extra overhead due to 

incoming data flow from other processors during the processing of one frame. Table 5-7 

shows the simulation results for B-mode on for both the architectures (dual-PCI port and 

single-PCI port) for the worst case scenario (512x1024 at 68 fps). The processing load is 

fairly well-balanced with the EP processors slightly more loaded than the SC processors. 

The processing load is about the same for the two architectures, indicating that the single- 

PCI port architecture has sufficient bandwidth. The bus load results in Table 5-7 are 

defined as 

busload — 
overhead cycles + data cycles 

idle cycles + overhead cycles + data cycles (5-4) 

where the overhead cycles consist of the spin, address, and any un-hidden arbitration 

cycles (defined in section 5.2.1.6), and they are tracked by the VHDL PCI arbitrator over 

one complete frame, when all processors are computing and the pipeline has reached 

steady-state.   In the dual-PCI port architecture, there is sufficient bandwidth available 

Table 5-7. B-mode multiprocessor simulation results. 

B-Mode Clock 
(MHz) 

Bus 
width 

Dual-PCI 
bus board 

Single-PCI 
bus board 

PROCESSING LOAD 
EP 
SC 

BUS LOAD 
System bus 
System bus 
Middle bus 
Bottom bus 

200 
200 

33 
33 
66 
66 

32 bits 
64 bits 
32 bits 
32 bits 

85.6% 85.7% 
76.6% 77.1% 

30.2% 30.2% 
17.2% 17.2% 
29.9% 64.1% 
32.4% 
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(-1/3 utilized).  In the single-PCI port system, the middle bus is heavily utilized (64% 

loaded) and offers less room for growth, but can support the system specifications. 

5.3.2 Color Mode , 

Similar timing diagrams for the color-mode simulations are shown in Figure A- 4 and 

Figure A- 5, and the performance results are tabulated in Table 5-8 for the worst case 

scenario (i.e., B = 62.5 fps and color = 15.6 fps, 256x512 E=6 color data). For color 

mode, the PCI buses are even less loaded than B-mode, with sufficient bandwidth for 

both the dual-PCI port and single-PCI port architectures. However, the processors are 

heavily loaded to about 94% for the worst case. While this is within limits, this would 

become risky due to very little room available for error and growth, unless additional 

boards are added or the stringent specifications are reduced as discussed in the next 

section. 

Table 5-8. Color-mode Multiprocessor Simulation Results 

Color Mode clock   Bus 
(MHz) Width 

Dual-PCI 
bus board 

One PCI 
bus board 

PROCESSING LOAD 
EP1/CF 

EP2/SC/FI/TF 
BUS LOAD 

System bus 
System bus 
Middle bus 
Bottom bus 

200       
200       

33    32 bits 
33    64 bits 
66    32 bits 
66    32 bits 

93.2% 93.7% 
91.0% 91.1% 

30.1% 30.1% 
17.3% 17.3% 
18.6% 46.1% 
27.8% 

5.3.3 Refined Specification Analysis 

In Chapter 2, our specifications were conservatively estimated based on a dual-beam 

system, 20 kHz PRF, and a large vector size with 1024 samples in B-mode and 512 

samples in color mode. The vector size was fixed similar to a commercial hardwired 

ultrasound machine, always processing the maximum number of samples per vector 
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regardless of whether all the samples contain meaningful data or are sampled more than 

the actual axial resolution. At the high 20 kHz PRF specified, the fixed vector size is 

overspecified. For example, the axial resolution can be approximated from 

Axialresolution =  (5-5) 

where f0 is the center frequency of the transducer and Q is its quality factor (Christensen, 

1996). For B-mode imaging, a broadband signal is used with a typical Q of 2, while for 

color imaging using the time-shift velocity estimation technique, a narrow-band signal is 

used with a typical Q of 8 (Jensen, 1996). Assuming a 7.5-MHz transducer is used, the 

minimum axial resolution for B and color data is 0.1 mm and 0.4 mm, respectively. For 

the 20 kHz PRF, the vector depth is ~3 cm, from equation (1-1 ). Thus, if we take one 

sample per axial resolution bin, we would need 300 samples per vector for B data and 75 

samples per vector for color data, which are much less than our specification of 1024 and 

512, respectively. 

Table 5-9 shows the impact on processor loading comparing the current oversampled 

specification, to two times oversampled axially (2x) and one time oversampled (lx) for 

both B-mode and color mode. For the lx case, the processing load reduces down to 

-27% for the EP and CF stages, which is directly dependent on the number of data 

samples per vector. For the SC processors, the loading is not reduced much since SC is 

more dependent on the output image size than the varying input data size. Thus, simply 

reducing the number of samples per vector results in an unbalanced processing load. A 

more balanced processing load can be achieved as shown in the last entry of Table 5-9. 

B-mode can be balanced by dedicating 4 processors for EP (versus 6) and 4 processors 

for SC (versus 2), while color mode can be balanced by keeping the same number of 

processors for each stage, but moving EP2 and color scan conversion (SCC) from the 

second stage to the first. This results in a well-balanced system. The processing load in 
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this case is about 38% for B-mode and 50% for color mode, which are well within our 

design goals. 

Table 5-9. Impact of reducing the number of 'samples pei ■ vector. 

sampling 

B 
samples 

per vector 

Color 
samples 

per vector 

Processor Loading 
B-mode Color-mode 

EP SC EP1/CF EP2/SC/FI/TF 

current 1024 512 85.6% 76.6% 93.2% 91.0% 
2x 600 150 50.2% 70.2% 54.6% 77.9% 
1x 300 75 25.1% 66.8% 27.3% 69.0% 

number of processors 6 2 4 4 

Balanced Processing Load EP SC 
75      |   37.6%   |   33.4%~T 1x 300 

EP/CF/SCC    SCB/FI/TF 
46.3%     1 50.0% 

number of processors 

In addition, reducing the samples per vector to lx increases the number of CINE 

frames that can be stored in memory in Table 5-4. For the worst B-mode case, the 

maximum CINE time increases from 5.43 seconds to 18.7 seconds, and the worst color- 

mode case increases from 6.5 seconds to 22.3 seconds. 

5.3.4 Single MAP 1000 Ultrasound Demonstration 

Recently, the first MAP 1000 chips have been produced and we have access to a 

development board with one MAP 1000. To create a real-time ultrasound demonstration 

with only one MAP 1000, a smaller data size was used as shown in Table 5-10. B-mode 

on a single MAP 1000 with 100x1024 input data can achieve 25 fps, while adding the 

additional color-flow load of 40x576 with E=6 reduces the frame rate to 10 fps. This 

data set was taken from a diagnostic ultrasound machine under typical operating 

conditions (not worst case). The ability of one MAP 1000 with efficient algorithm 

mapping to handle the complete ultrasound processing for these conditions illustrates the 

power of today's programmable processors, which has not been possible before. 

However, the frame rates achieved for the data sizes in Table 5-10 can keep up with the 

beamformer's acquisition frame rate only when the depth is greater than 22 cm or PRF < 
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3500 Hz. This is not fast enough for a high-end ultrasound machine, but one MAP1000 

could serve as the ultrasound processor for a low-end machine or specialized device. 

Table 5-10.    Performance of a single MAP 1000 (actual chip) 
executing the ultrasound algorithms with reduced specifications. 

Input Output time (ms) fps 

EP part 1 
EP part 2 
CF part 1 
CF part 2 
B-mode SC 
B-mode SC 
Color SC 
TF+color map 

100x1024 
100x1024 
40x576x6 
40x576 
40x512 

100x1024 
40x576 
240x320 

100x1024 
100x1024 
40x576 
40x576 
120x320 
320x400 
240x320 
240x320 

8.51 
13.12 
22.03 
19.06 
2.85 

17.83 
12.04 
4.05 

B-mode total 40x512 
100x1024 
40x576x6 

120x320 
320x400 
320x400 

7.18 139.4 
25.3 
10.3 

B-mode total 39.46 
Color-mode total 96.64 

5.4 Discussion 

The simulation results demonstrate a two-board system is capable of supporting both 

B-mode and color mode for a high-end ultrasound machine with two remaining board 

slots available for future expansion. Simulations of both modes show that there is 

adequate bandwidth on the PCI buses and that the single-PCI bus architecture is also 

feasible, even though the dual-PCI bus architecture offers more room to grow. The 

processing load is our main concern. With our original scenarios, the processors were 

between 77% (B-mode) to 94% (color mode) loaded. When the data sampling was 

reduced to meet the axial resolution, the load was reduced to 38% (B-mode) to 50% 

(color mode). Thus, a reasonable system load lies somewhere between 38 % and 86% for 

B-mode and 50% to 94% for color mode, providing a safe margin for the system design. 

Even though this proposes reducing the number of samples/vector specification, the 

overall system still has challenging specifications, requiring supporting dual beams 

(doubling the fps requirement) and a high maximum frame rate of 68 fps, while early 

systems supported a display refresh rate of 30 to 50 fps.   Furthermore, the load per 
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processor can be further reduced by adding additional boards or by optimizing our C 

language functions in assembly language. In addition, the ability of our programmable 

system to adapt the samples/vector in the processing stages depending on the situation, 

offers an advantage over the hardwired system around which our specifications were 

developed, where all subsystems process at the maximum samples/vector regardless of 

whether the situation requires this or not. 

The impact on one specification, such as samples per vector, highlights an important 

lesson learned. Correctly specifying the system requirements is critical, as it determines 

the performance of the final system. Incorrect assumptions can lead to an overdesigned 

system (e.g., twice the number of boards and processors with higher cost) possibly 

making the system noncompetitive on the market or to an underdesigned system failing 

to meet the worst case requirements. 

For a low-end ultrasound machine, the single MAP 1000 demonstrated surprisingly 

good performance in Table 5-10. This indicates a single MAP 1000 can handle the 

computation of low-end ultrasound machines supporting only B and M mode, such as the 

Medison SA-5500 that uses Pentium processors combined with a hardwired ASIC 

(Medison, 1999). For a mid-range ultrasound machine, the processing load values for the 

balanced lx specs in Table 5-9 are less than 50% and the bus loading is less than 33 % 

for our two board system. Thus, a single board system (i.e., 4 MAPlOOOs) would be too 

risky for a high-end ultrasound system, but a one-board system could handle the 

requirements of a mid-range ultrasound system. For example, this four MAP 1000 board 

has more computing power than the mid-range ATL HDI-1000 ultrasound machine, 

which uses a Motorola 68060 (113 MIPS) for scan conversion and two ATT DSP3210 

(33 MFLOPS) for Doppler processing (ATL, 1997), thus can handle its reduced 

processing requirements. 

Regarding CINE loop memory, the 64 Mbytes of SDRAM per MAP 1000 supports 

reasonable CINE times between 5.4 to 38.1 seconds (or over 369 CINE frames).   In 
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addition, the flexibility of the programmable approach allows additional CINE features 

not offered by the hardwired ultrasound machine. Since we can store the CINE loop data 

after any stage of processing, we choose to store after EP1 and CF1, allowing all the 

filters to be modified by the user during CINE playback, e.g., changing persistence, the 

degree of speckle reduction or edge enhancement, zoom or rotation of scan conversion, 

and the thresholds for tissue/flow decision. 

Regarding bus bandwidth, although we prefer the comfort and extra bandwidth 

offered by the dual-PCI port architecture, the single-PCI port architecture can adequately 

support the bandwidth. Having only one PCI port would decrease the expense of the 

MAP 1000 chip and board, reducing the pin count by at least 52 pins and the number of 

high speed (66 MHz) lines needed to be routed on the board. 

There are other issues involved in manufacturing this architecture. PCI specifications 

limit each PCI board to 25W of power consumption. The MAP 1000 is currently 

estimated to consume 6W. With four processors, each with 64 M-Byte SDRAM, plus 2 

PCI bridges on the board, the board will require more than 25W. Thus, an additional 

power source (and cooling) might be required. The standard PCI long card is 4.2" x 

12.3" which may be challenging to fit all the components. Thus, a nonstandard PCI rack 

with larger boards may be required. More challenging will be designing the board layout 

with four MAP 1000s plus two arbitrators connected across an on-board PCI bus running 

at 66 MHz. Systems designed with these high-speed buses must be carefully designed, 

modeling the bus as a transmission line, ensuring the bus signals are properly loaded, the 

noise between the bus signal's are minimized, and the maximum length between nodes is 

short enough for the signals to propagate within this short clock period. Failure to 

consider these factors resulted in several early systems targeted for 66 MHz PCI bus only 

achieving 40-50 MHz (Needham, 1995). 

The estimated cost for this 4-processor board is around $1400, or $2800 for a two- 

board system.  This programmable system replaces 9 uniquely designed boards totaling 
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over $10,000 in a commercial ultrasound machine. Thus, the programmable approach 

not only greatly reduces the system cost, but also can potentially reduce the non-recurring 

engineering cost by developing only on one board (repeated throughout the system) 

instead of 9 custom boards. 
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Chapter 6: Conclusions and Future Directions 

6.1 Conclusions 

Modern diagnostic ultrasound machines require over 30 billion operations per second 

(BOPS) and have been designed using hardwired boards to achieve the necessary real- 

time performance. Though the real-time processing requirements have been met, these 

hardwired boards have many disadvantages, such as being inflexible to adapt to new 

algorithms. The expense and long lead-time required to modify the hardware can hinder 

new innovative ideas from making the transition from the research lab to clinical use. 

On the other hand, programmable systems have the flexibility to adapt to changing 

requirements. A programmable ultrasound system would ideally require developing one 

multiprocessor board and consist of several copies of this board, instead of incurring the 

cost of developing many unique single-function boards as in the current systems. In the 

current hardwired systems, when a machine is used in B-mode, the color-flow boards sit 

idle. In a fully-programmable system, the processors can be reused as a machine 

switches modes. For example, the many processors needed to process color-flow image 

sequences during scanning can be easily switched to performing 3D rendering during the 

visualization phase of 3D imaging. Additionally, the programmable system would 

provide a real-time platform to experiment many new ideas, features, and applications. 

For example, it may be possible with a fully-programmable architecture to radically 

convert an ultrasound system from using phase-shift (autocorrelation) to time-shift 

(cross-correlation) velocity estimation without requiring any modifications to the signal 

processing hardware. The ease of adapting new algorithms to the programmable system 

should not only encourage the research and development of new applications or better 

algorithms, but also reduce the time required to bring innovative ideas from the research 
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laboratory into clinical use, providing the clinicians a fast and effective means to enhance 

the quality of patient care. 

Despite these advantages, an embedded programmable multiprocessor system capable 

of meeting all the processing requirements of a modern ultrasound machine has not 

emerged yet. Limitations of previous programmable approaches include limited 

computing power (Costa et al., 1993; Jensen et al. 1996; Basolgu, 1997; ATL, 1997), 

inadequate data flow bandwidth or topology (Jensch & Ameling, 1988), or algorithms not 

optimized for the architecture (Berkhoff et al., 1994). This study has addressed the issues 

associated with proving the feasibility of a fully programmable ultrasound system not 

only by developing the architecture capable of handling the computation and data flow 

requirements, but also designing tightly integrated ultrasound algorithms, efficiently 

mapping them to the architecture, and demonstrating that the requirements are met 

through a unique simulation method. 

6.2 Contributions 

The major contributions of this research are to the fields of medical ultrasound 

imaging and embedded computer architecture design. Overall, the feasibility of a cost- 

effective, fully programmable ultrasound machine capable of handling the real-time 

processing requirements of a high-end ultrasound machine was demonstrated. To 

achieve this, we had to tackle several challenges. 

(1) Multiprocessor Architecture for Ultrasound: We designed and demonstrated the 

feasibility of a low-cost, high performance multi-mediaprocessor architecture, 

targeted for a high-end ultrasound machine. Simulation results showed that both the 

computation load and bus load were adequate for both B-mode and color mode for a 

2-board system composed of 8 mediaprocessors. We found that the single-PCI port 

architecture has adequate bandwidth, allowing the possibility for a less expensive 

system than the dual-PCI port architecture.     In addition, this multi-processor 
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architecture has demonstrated some of the advantages of a programmable system, 

including: (a) hardware reuse: allowing the same processors to be reused in different 

ultrasound modes, (b) flexibility and adaptability: allowing CINE loop data to be 

stored at an early stage, so that the clinician can change many filter parameters during 

CINE playback; allowing different scan conversion algorithms with reduced 

computation for B and color data; and allowing algorithms to be quickly swapped, 

such as changing the speckle reduction from a proprietary algorithm to a median 

filter, (c) scalability: allowing the system to scale from a low to high-end system by 

removing or adding boards, (d) cost-effective: using a common board repeated 

through the system with low-cost mediaprocessors, standard SDRAM memory and a 

standard bus. 

(2) Algorithm Mapping Techniques: To achieve ultrasound's high computation 

requirement of 31 to 55 BOPS, efficient algorithms that are tightly coupled to the 

mediaprocessor architecture are needed to implement the entire system with a 

reasonable number of processors. We developed a systematic methodology toward 

algorithm mapping including the steps of (a) mapping the algorithm to utilize 

subword parallelism, (b) remove barriers to subword parallelism, such as if/then/else 

algorithms, (c) utilize software pipelining, (d) avoid redundant computations using 

lookup tables, and (e) minimizing I/O via utilizing the DMA controller. These 

techniques were developed in collaboration with the UW Image Computing Library 

(UWICL) algorithm development team (Stotland et al., 1999; Managuli et al., in 

press; York et al., 1999). Following our method of determining the efficiency of 

algorithms, we used tcompute and ty0 estimates to optimize the algorithms from a 

system perspective, sharing data flow between I/O-bound algorithms and balancing 

the load throughout the system. 

(3) Ultrasound Algorithm Mapping Studies: Using these algorithm mapping techniques, 

several new algorithms and optimized mappings to mediaprocessors have been 

developed for ultrasound processing.   For echo processing, we found a method to 
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minimize the log lookup table (LUT) bottleneck by implementing the magnitude 

computation on the core processor concurrently with the DMA controller performing 

the log LUT, increasing the speed by 34% over cache-based methods. For the echo 

processing filters (e.g., edge enhancement, speckle reduction, corner turn, and 

persistence) we utilized subword parallelism combined with sharing the data flow 

between functions, increasing the speed by 40% versus individual functions. For B- 

mode scan conversion, we performed a study to find the optimum data flow approach 

and used a new 2D block DMA transfer method increasing the speed by 36% over a 

DMA guided method (Basoglu et al., 1997), and by 52% over cache-based methods. 

For color scan conversion, we developed an efficient circular interpolation using 

shortest distance math to eliminate the need for two image transforms, increasing the 

speed by 49%. Finally, we combined the frame interpolation and tissue/flow 

algorithms and removed barriers to subword parallelism to increase the speed by 

another 44%. This work was done in collaboration with Ravi Managuli, a Ph.D. 

candidate in EE at the University of Washington, who developed the color-flow 

processing and convolution algorithms. 

(4) Multiprocessor Simulation Method: To demonstrate that the ultrasound architecture 

meets the processing load and bus bandwidth requirements, we developed a unique 

multiprocessor simulation environment with a goal of maintaining accuracy while 

reducing the simulation time and size of address trace files. This method uses the 

accuracy of a cycle-accurate simulator running compiled ultrasound algorithms to 

generate address trace files (ATF) for each processor in the system. These ATF files 

are used to drive the VHDL mediaprocessor models in our multiprocessor simulation 

board. This work was done in collaboration with Ravi Managuli who developed a 

key component known as the parser tool. 
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6.3 Future Directions 

Having designed and simulated the fully programmable ultrasound architecture and 

demonstrated in detail its feasibility, the next step is transitioning the design to an 

ultrasound company for implementation inside a commercial ultrasound machine. Areas 

of future work include mapping advanced ultrasound applications, developing a graphical 

user interface, and staying current with mediaprocessor advances. 

6.3.1 Advanced Ultrasound Applications 

In this study, our goal was to support the main stream modes (B-mode and color 

mode) of a typical high-end diagnostic ultrasound machine. High-end machines are now 

beginning to offer more advanced features. For example, the programmable ultrasound 

image processor (PUIP) board with two TMS320C80 mediaprocessors is integrated along 

with its other hardwired boards in a Siemen's Elegra™ (Kim et al., 1997). These two 

processors have been adapted to implement several advanced features, e.g., panoramic 

imaging (Weng et al., 1997), segmentation and quantitative imaging (Pathak et al., 1996), 

and 3D imaging (Edwards et al., 1998). Our architecture with eight MAPlOOOs has much 

more computing power than two TMS320C80s, particularly for algorithms and 

applications that usually process after image acquisition when all 8 processors are free, 

such as segmentation and 3D volume rendering. Thus, further studies are needed to map 

implement these advanced features, as well as develop new features/applications. 

For example, 3D reconstruction is often done while acquiring images, thus we need to 

determine if 8 processors can handle this extra computation or if another board needs to 

be added. Another challenge is to share the 3D volume memory across multiple 

processors. Current 3D implementations use smaller volumes, e.g., 128 =2 Mbytes or 

2563 = 16 Mbytes (Edwards et al., 1998), which can easily fit in the SDRAM available to 

one MAP 1000. However, future volumes of 5123 or 128 Mbytes will not only require the 

memory space and processing power of multiple MAPlOOOs, but new algorithms to share 
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volume reconstruction and rendering computations and 3D data across multiple 

processors. 

6.3.2 Graphical User Interface and Run-Time Executive 

To create the final product, a graphical user interface (GUI) needs to be developed for 

the host computer, and a real-time operating system is needed for the multiprocessor 

architecture. A multi-tasking scheduler is needed to automatically reconfigure and 

balance processor load for the system when the clinician changes the mode of operation, 

the transducers, or other settings. Our estimates for tcompu,e and ty0 for the various 

algorithms can be used as guides for this load balancing routine as they are a function of 

the changing data sizes and frame rates. 

6.3.3ProcessorSelection 

Processor technology advances rapidly. As the MAP 1000 is currently replacing older 

mediaprocessors like the TMS320C80, the MAP1000 could soon be replaced by new 

mediaprocessors offering better architectures and higher clock speeds. Since the future 

mediaprocessors seem to be continuing the trend toward supporting subword parallelism 

and DMA controllers, our algorithm mapping techniques and ultrasound algorithm 

implementations should be readily remapped to newer processors. A future 500 MHz 

mediaprocessor would enable us to reduce our 8-processor system to a single board 4- 

processor system. However, processor memory bandwidth usually does not scale with 

the increase in computing power with clock speed. As many ultrasound stages are VO- 

bound, such as log compression, scan conversion and frame interpolation/tissue-flow, this 

4-processor system could fail to meet requirements. Thus, a systematic methodology is 

needed to estimate the number of processors required to implement the architecture 

composed of new mediaprocessors. 
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APPENDIX A: Timing Diagrams from Multiprocessor 

Simulations. 

T2 DefaultActSJii 

Key "Meltdown' Is unbound 

Figure A- 1. Processing load and PCI bus load for the middle bus, for 3 frames of B- 
mode simulation of the single PCI-port architecture. Signals POPER* show processing 
on the core processor (indicated by color bars) versus the wait periods (indicated by 
"08"), as does PFRAMEx with odd numbers indicating the processing time and even 
numbers indicating the wait periods. On signals P_PCI_OPx, solid bars and "05" indicate 
the time period a processor or bridge is trying to transfer a frame sub-section on the PCI 
bus. x = 0 for the bridge (sending vectors); x= 1, 2, or 3 for the EP processors; and x = 4 
for the SC processor. 
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P_PC!_OP2 

Figure A- 2. Zoomed-in PCI bus load for the middle bus, illustrating the bus conflicts 
during steady state of the B-mode simulation when all four processors are using the bus. 
"05" indicates a processor is trying to transfer data a large block of data (e.g., -1024 
kbytes). Fortunately, each processor needs to use the bus relatively sparsely, having 
plenty of time to finish one transfer, before the next one begins. 

Figure A- 3. Example signals tracked for EP #3 (x=3) and the SC processors (x=4) 
during B-mode simulation of 3 frames. POPERJC shows processing on the core 
processor (indicated by the color bar) versus the waits (indicated by "08"), as does 
PFRAMEx with odd numbers indicating processing time and even numbers indicating 
wait periods. P_CH01_OPx indicates the DMA input data flow, while P_CH23_OPx 
indicates the DMA output data flow. P_CH4_OP3 and P_CH5_OP3 show the DMA 
guided transfer to implement the LogLUT in EP part 1, while PCH230P3 shows the 
normal output transfers for EP part 2. 
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If Select 12 DefaultAction OTäSPolirt mptjtip 

Figure A- 4. Color-mode simulation signals showing steady-state processing load 
(P_OPERx and P_FRAMEx) and bus load (P_PCI_OPx), with K=4 (or 4 B frames for 
every color frame). x= 1 or 2 for EP1/CF processors; x= 3 or 4 for the EP2/SC/FI/TF 
processors; and x= UB for the bridge on the bottom PCI bus. 

L2 DefaultAction 

Figure A- 5. Detailed signals for EP1/CF processor #1 and EP2/SC/FI/TF processor #3 
during steady-state of color mode simulation with 4 EP frames to every one CF frame. 
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APPENDIX B:   Example CASIM Debug File 

Example entries from a CASIM debug file 

The details of the events tracked cause excessively large files. For example, the total 
debug file size when simulating convolution of 512x512 image with 3x3 kernel is 
420Mbytes. Below are selected entries from an example CASIM debug file, showing 
key processor, data streamer, and SDRAM events, such as when the processor kicked a 
DS data transfer (cycle 12931), when the DS receives the transfer parameters (cycle 
12947), the SDRAM row miss for the first data (cycle 12991), the RAS and CAS signals 
(cycles 12994 and 13001), and the data transfers for the first 32 bytes (cycles 13001- 
13009). Our parser tool creates the ATF files for our multiple processor simulations by 
extracting the key information from the CASIM debug file, greatly reducing the file size 
in the process. 

cycle:12931: DS: DSHandle_Kick: #13348 channel 0 kicked off with 
Descriptor address 0x007fee60 

cycle:12947: DS: DSReceiveDesc: descriptor got for channel 0, 
nextDescAddr 0x7fee60, dataAddr  0xb500, count 0x8, 
controlWord 0x38, pitch 0x0, width 0x200  PA:0x7fee60 

cycle:12991: MB: SDRAMStateMachine: #13414 moving entry from 
pStage3Mess to pPrecharge ROW_MISS, setting 
SDRAMBusUsed=TRUE, no other request in SDRAM BA: 0xb500 

cycle:12 994: MB: SDRAMStateMachine: #6 moving entry from pP2 to pRAS, 
setting SDRAMBusUsed=TRUE BA: 0x100 

cycle:13001: MB: firstCASCycle: #13414 moving LOAD to CAS, cyclesToGo 
3, cyclesToEarlyWarning 5  BA: 0xb500 

cycle:13003: MB: dataToFromMemory: #13414 LOADING 
Data[0]=Oxffffffffffffffff from CasimMemory[0x0000b500] 

cycle:13005: MB: dataToFromMemory: #13414 LOADING 
Data[l]=Oxffffffffffffffff from CasimMemory[0x0000b508] 

cycle:13007: MB: dataToFromMemory: #13414 LOADING 
Data[2]=0xffffffffffffffff from CasimMemory[0x0000b510] 

cycle:13009: MB: dataToFromMemory: #13414 LOADING 
Data[3]=0xffffffffffffffff from CasimMemory[0x0000b518] 
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