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PREFACE 

This is an interim report describing part of the research efforts at the Naval Health Research 
Center Detachment Toxicology (NHRC/TD) to construct either a single or series of 
mathematical model(s) that can predict a chemical's potential as a cardiac sensitizer. The model 
is based upon physiological measurements prior to the onset of cardiac arrhythmia. The 
measurements were separated into baseline and arrhythmicgenic responses. Ouabain, a digitalis 
glycoside, was selected for this study because of its ease of use and documentation as a cardiac 
sensitizer. This work was sponsored by the Naval Medical Research Command under Work Unit 
#63706N-M00095.004.1711 and was preformed under the direction of CAPT Kenneth R. Still, 
MSC, USN, Officer-in-Charge NHRC/TD. 

The opinions contained herein are those of the author and are not to be construed as official 
or reflecting the view of the Department of the Navy or the Naval Services at large. The 
experiments reported herein were conducted according to the principles set forth in the "Guide 
for the Care and Use of Laboratory Animals," as prepared by the Committee on Care and Use of 
Laboratory Animals of the Institute of Laboratory Animal Research, National Research Council, 
DHHS, National Institutes of Health. Publication 85-23, 1985 and the Animal Welfare Act of 
1966, as amended. 
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EXECUTIVE SUMMARY 

PROBLEM 

Cardiac sensitization is the sensitization of the heart to circulating catecholamines (i.e. 
epinephrine) after exposure to an exogenous chemical, such that sudden alarm or exercise may 
precipitate a cardiac arrest. The main mechanism of cardiac arrest is a cardiac arrhythmia, 
although anoxia, respiratory depression, and vagal stimulation along with aspiration of vomit or 
trauma may be contributing factors leading to sudden death. The most prevalent example of 
cardiac sensitization is the recreational abuse of solvents, commonly known as "Huffing" or 
"Sniffing". Chemicals that have a known cardiac sensitizing potential include: fuel gases 
(butane, propane, and gasoline vapors); other solvents such as typewriter correction and dry 
cleaning fluids (trichloroethane); fire extinguishers (bromochlorodifluoromethane); degreasing 
agents (trifluorotrichloroethane); adhesives (toluene); aerosol propellants (halons and/or butane); 
and medications (digitalis glycosides and cocaine). 

OBJECTIVE 

The purpose of this investigation is to develop a predictive mathematical model that can 
identify cardiac sensitizers. 

APPROACH 

The dog and the swine were used as surrogates for the human. Physiologic and 
electrocardiographic measurements were taken during the control period and after each dose of 
ouabain, a digitalis glycoside known to provoke ventricular arrhythmia. Logistic regression was 
used to develop the model by converting binary data into a function (curve/equation) that can 
estimate of the probability of a particular result, in this case experiencing a cardiac arrhythmia. 

RESULTS 

Five parameters were significant predictors of arrhythmia in dog. These included heart rate 
(HR), PQ interval (PQ), QT interval (QT), systolic aortic pressure (Paos) and estimation of 
contractility (dP/dtma). Three parameters were significant in the swine (PQ, QT and dP/dtma). 
The study demonstrates that several mathematical models can be constructed to predict the onset 
of ouabain induced arrhythmia, in both the dog and the swine, and that there are similarities in 
the two animal models. Efforts to reduce the number of parameters to a single term showed 
colinearity among simple pair wise combinations. 

CONCLUSION 

Since the QT interval was significant in both species it appears to be the most promising of 
all the parameters for predicting cardiac sensitization. 
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INTRODUCTION 

Cardiac sensitization is a specialized physiological condition. In its simplest terms, it is the 

sensitization of the heart to circulating catecholamines (i.e. epinephrine) after exposure to an 

exogenous chemical, such that sudden alarm or exercise may precipitate a cardiac arrest (Adgey 

et al., 1995). The main mechanism of cardiac arrest is a cardiac arrhythmia, although anoxia, 

respiratory depression, and vagal stimulation along with aspiration of vomit or trauma may be 

contributing factors leading to sudden death. The most prevalent example of cardiac sensitization 

is the recreational abuse of solvents, commonly known as "Huffing" or "Sniffing" (Bass, 1970). 

Chemicals that have a known cardiac sensitizing potential include: fuel gases (butane, propane, 

and gasoline vapors); other solvents such as typewriter correction and dry cleaning fluids 

(trichloroethane); fire extinguishers (bromochlorodifluoromethane); degreasing agents 

(trifluorotrichloroethane); adhesives (toluene); aerosol propellants (halons and/or butane); and 

medications (digitalis glycosides and cocaine) (Adgey et al., 1995, Kaufman et al., 1994, Mest et 

al., 1995, Ohuoha et al., 1998). 

The test currently accepted by federal regulators to determine a chemicals' cardiac 

sensitization potential exposes beagle dogs to the chemical of interest and then challenges the 

animal with a predetermined titrated dose of epinephrine (U.S. EPA 1994). During the titration, 

chemical exposure, and epinephrine challenge periods, an electrocardiogram (ECG) on the 

animal is monitored for ectopic beats. An ectopic beat is a premature contraction of the heart 

prior to the time that a normal contraction would have been expected. Numerous ectopic beats 

can disrupt the cyclic nature of the heart. The concentration at which ectopic beats are first 

observed establishes the level at which cardiac arrhythmias may be expected under stressful 

conditions. 

When the cardiac sensitization model was developed, the physical observation of ectopic 

beats was clearly the most obvious endpoint (parameter) by which to measure a chemical's 

sensitizing effect on the heart. Although several in vitro models have been attempted to predict 

cardiac sensitizers, a better understanding of the mechanism behind cardiac sensitization is 

needed. The primary objective of this investigation is to construct a mathematical model that is 

capable of predicting clinical conditions of cardiac arrhythmia before the onset of cardiac arrest. 



As a first step, 15 cardiac physiological parameters were evaluated prior to the development of 

cardiac arrest (arrhythmia). A corollary to this objective is to determine if anesthesia in any way 

obfuscates the ability of physiological monitoring to predict the onset of arrhythmia. 

METHODS AND MATERIALS 

ANIMALS 

Six male (10 kg) beagle dogs and six male (25 kg) Yorkshire swine were used. 

PHYSIOLOGICAL PARAMETERS 

A combination of hemodynamic and electrophysiologic parameters was measured during a 

baseline state (control) and immediately prior to arrhythmia. The parameters are as follows: 

1) HR, beats/minute 8) Paom (mean aortic pressure), mmHg 

2) PQ interval, sec 9) LVED (left ventricular end-diastolic pressure) 

3) QT interval, sec 10) Peak (peak aortic blood flow), cm/sec 

4) dP/dtmax, nun or mmHg/s 11) DT (duration time of left ventricular ejection), sec 

5) dP/dtmin, mm or mmHg/s 12) TVI (time velocity integral), cm 

6) Paos (systolic aortic pressure), mmHg 13) CO, TVPHR 

7) Paod (diastolic aortic pressure), mmHg 14) Z, dPao/dF 

15) SVR (Poam/CO) 

Pulsatile aortic (AP) and left ventricular pressures (LVP), dLVP/dt, pulsatile aortic flow, 

and its integral (SV) were recorded on a direct-writing photographic oscillograph and FM tape. 

Aortic impedance was estimated by dividing pulsatile aortic pressure by pulsatile flow (i.e. 

stroke volume), and systemic vascular resistance was estimated by dividing mean systemic 

arterial pressure (presuming right atrial pressure was constant) by cardiac output. To estimate 

contractility and lusitropy, respectively, dP/dtmax and dP/dtmjn were used, realizing that both 

methods are load dependent. ECGs were analyzed for heart rate (chronotrope), and PQ 

(dromotrope), and QT (repolarization) duration. 



CHEMICAL/DRUG 

Ouabain, a digitalis glycoside, was used to provoke ventricular arrhythmia. Pigs were 

anesthetized with thiopental-halothane; and dogs with thiopental-chloralose. 

DOG STUDY 

The experimental design was adopted from Robitaille, et al, 1993; Rath, et al, 1995; and 

Josephson, 1992. Prior to the start of the study, each dog was anesthetized with thiopental- 

halothane. Catheter-introducers were placed in a jugular vein and a carotid artery. Animals were 

allowed to recover after the surgery. Prior to exposure to ouabain, a pacing catheter was 

introduced through the jugular vein with the bipolar leads being positioned in the right ventricle. 

A Millar catheter containing two solid-state pressure transducers and a flowmeter was introduced 

through the carotid artery. One of the pressure transducers was positioned in the left ventricle 

and the other in the ascending aorta with the flowmeter. Electrodes forming lead II ECG were 

placed on the limbs of the animals. During the first phase of the dog study, the parameters were 

measured in conscious dogs. Each animal was dosed, intravenously, with 40 mg/kg ouabain 

(priming dose). Additional doses of 0.15 mg/kg ouabain were given every 15 minutes (graded 

doses) until ventricular arrhythmia was produced. All parameters were measured during the 

baseline period (control), after infusion of the priming dose and after each graded dose. Before 

each ouabain infusion, the right ventricle was paced ten times (eight conditioning stimuli at 300 

ms intervals, the 9th stimulus at 150 ms interval, and the 10th stimulus at 130 ms interval) to 

determine if non-paced ventricular ectopic activity (termed RVR for repetitive ventricular 

responses) occurred. The end-point of each experiment was taken when the dog developed the 

first ventricular premature depolarization, either spontaneously or after cessation of pacing. For 

the second phase of the dog study, the same animals were anesthetized 24-hours later. The dogs 

were anesthetized intravenously with thiopental sodium (15 mg/kg) and alpha chloralose (100 

mg/kg), and measurements were made as in the first phase. Upon completion, the dogs were 

euthanized before awakening. 



SWINE STUDY 

The  swine were evaluated only under anesthesia.  The model used was the  same 

experimental procedure used for the second phase of the dog study. 

STATISTICAL METHODS 

These data were evaluated using logistic regression since the outcome variable is binary 

(Neter et al, 1983). The outcome variable was defined as baseline or prior to arrhythmia. The 

analysis was performed using the logistic procedure in SAS (Cary N.C, 1999). The independent 

variables in the model for evaluating the effect of anesthesia on dogs were the parameters 

measured and "Group." The dependent variable was assigned a value of "zero" for control or a 

value of "one" for the onset of arrhythmia. A significance level of 0.10 was chosen as an 

inclusion criterion, since this study was to investigate the feasibility of building a predictive 

model. Logistic regression is given by equation 1 with/? being the probability of arrhythmia, Xi 

the corresponding cardiac parameter measurement, and ßo, ßi and ß2 the parameters of the 

logistic function to be estimated. Group (X2) is given a value of "one" for conscious or "two" for 

anesthetized. 

ß0+ßlX+ß2Group 

X + eßQ+ßiX+ß2GrouP (Equation 1) 

The output from SAS includes the ß0, ßi and ß2 estimates, p-value for these estimates, and a 

p-value for assessing goodness-of-fit for the model using -2 Log Likelihood as the criteria, which 

has a chi-square distribution under the null hypothesis. 

For the swine study the logistic regression equation is simplified and given by equation 2 

(Equation 2) 

1 + eh+ß'x 

where p is the probability of arrhythmia, Xi the corresponding cardiac parameter measurement, 

and ßo and ßi are the parameters of the logistic function to be estimated. 



RESULTS 

DOG STUDY 

The first step in evaluating the model was to examine the p-value for the goodness-of-fit. 

Those parameters whose goodness-of-fit were significant included HR, PQ, QT, Paos, and 

dP/dtmax. Table 1 contains these results. Further examination showed that the models for HR, PQ, 

QT, and Paos were significant with respect to the parameter. These same models were not 

significant with respect to the "Group" factor, indicating that there was no difference between 

data from conscious or anesthetized dogs. Because it fulfilled the criteria for significance with 

respect to goodness-of-fit as well as the predicting arrhythmia, dP/dtmax was still included as a 

model. Figures 1 and 2 illustrate significant and non-significant models. Twenty-two 

observations were made during this study; these included two readings (baseline and prior to 

arrhythmia) for five conscious animals and two readings (baseline and prior to arrhythmia) for 

six anesthetized animals. Due to technical difficulties, the values for one animal during the 

conscious phase of the study are missing. 

SWINE STUDY 

Starting with goodness-of-fit, QT and PQ were significant. Table 2 contains these results. 

Further examination showed that the model for QT was significant with respect to the parameter. 

Since PQ passed the goodness-of-fit test, it was included as a model, even though its p-value 

with respect to parameter was not significant at the 0.1 level. Because there was complete 

separation in baseline data and data prior to arrhythmia, dP/dW produces no unique logistic 

function (figure 3) However, this does not mean that it is not a significant predictor for cardiac 

arrhythmia. 

DISCUSSION 

The objective of this investigation is to construct either a single or series of mathematical 

model(s) that can predict a chemical's potential as a cardiac sensitizer. The model is based upon 

physiological measurements prior to the onset of cardiac arrhythmia. The measurements were 



separated into baseline and arrhythmicgenic responses. Ouabain, a digitalis glycoside, was 

selected for this study because of its ease of use and documentation as a cardiac sensitizer (Mest 

et al, 1995; Lotan et al, 1992; Mest et.al, 1992; Mest and Balewska, 1991; Thomas and Varma, 

1991). It is a potent parasympathomimetic with positive inotrope and negative doromtrope 

behavior. Programmed electrical stimulation (PES) was selected in place of epinephrine because 

repeated use of an arrhythmic dose of epinephrine may result in myocardial damage (Van-Belle 

et al, 1992; Herbaczynska-Cedro and Gajkowska, 1992; Prichard et al, 1991). 

In constructing the model, our focus was to develop a bridge between the current dog model 

and a predictive mathematical model. In order to develop the most humane procedure, it had to 

be determined if anesthesia would exert any effect on the physiological parameters chosen to be 

measured. The current model uses conscious dogs. Comparing data from conscious and 

anesthetized dogs suggest that anesthesia has no significant effect on the physiological 

parameters measured. This was evident by the lack of significance for the factor "Group," which 

designated data as conscious or anesthetized in the statistical argument. Determining if 

anesthesia would obfuscate the results became crucial for future studies that would involve 

swine, the second and confirming (supportive) animal model. 

Conventional inferential statistics only determine if control values for each parameter are 

significantly different from their corresponding experimental values. The goal was for the model 

to provide an estimate of the probability for an arrhythmicgenic response, hence, the use of 

logistic regression. Logistic regression takes binary data (baseline/arrhythmia) and converts it to 

a function (curve/equation) that can estimate of the probability of a particular result, in this case, 

experiencing a cardiac arrhythmia. This approach allows the user to predict, at a given dose, the 

predisposition of an individual to an arrhythmicgenic response. The only limitation of logistic 

regression is in the event all control values and experimental values are contained in intervals, 

such that there is no overlap with each other. In this situation, there is no single logistic function, 

which will describe the data. Instead, there are an "infinite" number of functions which could 

describe the data. 

For the dog, functions for each of the five parameters (HR, PQ, QT, Paos, and dP/dtmax) 

were found to be significant predictors for cardiac arrhythmia. Data for each parameter can be 



measured via non-invasive procedures (electrocardiograms and pressure cuff). Although all five 

parameters were individually predictive of arrhythmia, their combinations provide no increase in 

predictive powers. As shown in Table 3, the goodness-of-fit test is significant for each pair wise 

comparison and the "Group" factor indicates that there was no difference between data from 

conscious or anesthetized dogs. However, simple pair wise combinations show that there is 

colinearity among the five parameters, illustrating a lack of independence. 

Swine were selected as the second animal model to confirm the findings in the dog, as well 

as being a transition model for humans. Swine have a cardiovascular system similar to that of 

humans. For the swine, only QT was found to be a significant predictor for cardiac arrhythmia. 

PQ was marginally significant. PQ, and dP/dtmax were significant but did not produce a unique 

function. However, for the dog study, there were twice as many observations (conscious and 

anesthesized) as in the swine. By increasing the number of observations in the swine, more 

parameters may become significant. Therefore, there was no attempt to examine pair wise 

comparisons. 

This study suggests that the QT interval, the PQ interval, and dP/dtmax are the most 

promising of all parameters for predicting cardiac sensitization. Since the QT interval was the 

only parameter significant in both the dog and the swine, it is the leading model for predicting 

cardiac sensitization among multiple species. Additional research is needed in this area, however 

this paper sets the foundation for a comprehensive predictive mathematical model, regardless of 

species. 
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TABLE 1. Results of Multiple Logistic Regression (coefficients and p-values) for Predicting 
Cardiac Arrhythmia in Conscious and Anesthetized Dogs 

Model Intercept (ßo) 
(p-value) 

Parameter (ßi) 
(p-value) 

Group (ß2) 
(p-value) 

GOF* 
(p-value) 

Number 
of Obs 

HR 10.9995 
(0.05) 

-0.1074 
(0.03) 

-0.7800 
(0.58) 

15.5560 
(<0.01) 

22 

PQ -11.6561 
(0.05) 

131.600 
(0.04) 

-1.8058 
(0.21) 

11.2960 
(<0.01) 

22 

QT -9.2750 
(0.04) 

41.0680 
(0.02) 

-2.0673 
(0.20) 

15.1040 
(<0.01) 

22 

DP/dTmax -21.2588 
(0.03) 

0.5570 
(0.02) 

4.9337 
(0.07) 

14.5820 
(<0.01) 

22 

DP/dTmin -5.8093 
(0.13) 

0.2858 
(0.09) 

0.0798 
(0.94) 

3.5660 
(0.17) 

22 

Paos -9.8166 
(0.06) 

0.0765 
(0.05) 

-0.9769 
(0.41) 

8.9350 
(0.01) 

22 

Paod -1.7436 
(0.45) 

0.0257 
(0.34) 

-0.3848 
(0.69) 

0.9630 
(0.62) 

22 

Paom -4.0873 
(0.16) 

0.0465 
(0.10) 

-0.6673 
(0.50) 

3.4160 
(0.18) 

22 

LVED -1.3440 
(0.43) 

0.1998 
(0.15) 

-0.3497 
(0.71) 

2.4640 
(0.29) 

22 

Peak -2.3822 
(0.33) 

0.0197 
(0.22) 

0.2790 
(0.76) 

1.6250 
(0.44) 

22 

DT -0.7526 
(0.76) 

6.4402 
(0.72) 

-0.1368 
(0.88) 

0.1320 
(0.94) 

22 

TVI -1.3587 
(0.47) 

0.1836 
(0.27) 

-0.0091 
(0.99) 

1.2710 
(0.53) 

22 

CO 2.5104 
(0.23) 

-0.0033 
(0.08) 

-0.2572 
(0.79) 

3.5900 
(0.17) 

22 

z -1.5933 
(0.38) 

3.0612 
(0.14) 

-0.2079 
(0.82) 

3.1950 
(0.20) 

22 

SVR -0.9861 
(0.54) 

8.9137 
(0.06) 

-0.5768 
(0.56) 

4.8060 
(0.09) 

22 

* = goodness-of-flt (GOF) for the model using -2 Log Likelihood as the criteria, which has a chi- 
square distribution under the null hypothesis 
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TABLE 2. Results of Multiple Logistic Regression (coefficients and p-values) for predicting 
Cardiac Arrhythmia in Swine 

Model Intercept (ßo) 
(p-value) 

Parameter (ßi) 
(p-value) 

GOF* 
(p-value) 

Number 
of Obs 

HR 2.0074 
(0.54) 

-0.0188 
(0.53) 

0.4160 
(0.52) 

12 

PQ -17.5096 
(0.13) 

152.7000 
(0.13) 

5.5710 
(0.02) 

12 

QT 10.1593 
(0.11) 

-32.6935 
(0.10) 

15.5560 
(<0.01) 

12 

DP/dTmax *** *** *** 12 

DP/dTmin NA NA NA 

Paos -4.5428 
(0.44) 

0.0483 
(0.44) 

0.6660 
(0.42) 

12 

Paod 2.3835 
(0.63) 

-0.0383 
(0.63) 

0.2440 
(0.62) 

12 

Paom -0.0831 
(0.99) 

0.0011 
(0.99) 

0.0001 
(0.99) 

12 

LVED 0.0713 
(0.96) 

-0.0060 
(0.96) 

0.0030 
(0.96) 

12 

Peak NA NA NA 

DT 5.4580 
(0.33) 

-23.7102 
(0.32) 

1.1230 
(0.29) 

12 

TVI NA NA NA 

CO -1.5297 
(0.64) 

0.4302 
(0.64) 

0.2320 
(0.63) 

12 

z -4.8077 
(0.37) 

5.1124 
(0.38) 

1.4530 
(0.63) 

12 

SVR -0.1028 
(0.95) 

0.0045 
(0.95) 

0.004 
(0.95) 

12 

* = goodness-of-fit (GOF) for the model using -2 Log Likelihood as the criteria, which has a chi- 
square distribution under the null hypothesis 
*** = Because there was complete separation in baseline data and data prior to arrhythmia, 
dP/dtmax produces no unique logistic function 
NA = not available 

All values are mean ± standard deviation 

* significantly different from all other methods at p < 0.05. 
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TABLE 3. Pairwise comparison of the five significant parameters in the dog. 
Results are given as p-values 

Parameters Likelihood Intercept 
Group 

Parameter 1$ Parameter 2 

HR&PQ <0.0001 * * * * 

HR&QT 0.0002 0.7610 0.2131 0.1208 0.1152 
HR & Paos 0.0003 0.9539 0.4707 0.0570 0.2984 
HR & dP/dW O.0001 * * * * 

PQ&QT 0.0003 0.0401 0.1365 0.1758 0.0683 
PQ & Paos 0.0001 0.0817 0.1140 0.1661 0.0479 
PQ & dP/dW 0.0006 0.0292 0.4127 0.2256 0.0576 
QT & Paos <0.0001 0.1115 0.2916 0.0522 0.2237 
QT & dP/dtmax O.0001 * * * * 

Paos & dPdT 0.0013 0.0271 0.2295 0.3579 0.0670 

$ Parameter 1 is the first parameter in the pair (i.e. HR & PQ: Parameter 1 is HR and 
Parameter 2 is PQ) 

* means that there was complete separation in 2-space, i.e. not unique solution 
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Figure 1.    Heart Rate : Dog (Conscious vs. Anesthetized). 

Comparison of probabilities for the onset of arrhythmia based on the heart rate (HR) of 
conscious and anesthetized dogs. (GOF = goodness-of-fit). 
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Figure 2.    dP/dtmi„: Dog (Conscious vs. Anesthetized). 

Comparison of probabilities for the onset of arrhythmia based on the dP/dtmjn of conscious and 
anesthetized dogs. 

14 



E 
f 
< 
•s 

1.0 ' 

0.9 

0.8 

0.7 

/    / 
/    / / 

/    / 
/ 
/ 

-—;.-pF*"-TS~ ass- 

■ / 

i 

0.6 / 

0.5 ' 
/       / 

0.4 ' /      / 

0.3 /       j 
0.2 /        / 

/      / 
0.1 • 

nn ■ A  —1_ 

/ / / 

1000 1200       1400       1600       1800       2000      2200       2400      2600      2800 
dpdt 

+ + +   Baseline    *** Arrhythmia 

Figure 3.      dP/dtmax: Pig. 

Possible graphical representations for dP/dW in swine. Because there was complete separation 
in baseline data and data prior to arrhythmia, dP/dtmax produces no unique logistic function. This 
however, this dose not mean that it is not a significant predictor for cardiac arrhythmia. Hence, 
all lines drawn in figure 3 are possible functions for dP/dtmax- 
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