
STeP: A Tool for the Development of Provably 
Correct Reactive and Real-Time Systems 

— Final Technical Report — 

P.I.: Prof. Zohar Manna 

Computer Science Department 

Stanford University 

Stanford, CA. 94305-9045 

June, 1999 

U.S. Army Research Office 
Grant Number: DAAH04-95-1-0317 

Approved for Public Release; 

Distribution Unlimited. 

DTIC QUALITY INSPECTED 4 19991102 116 



REPORT DOCUMENTATION PAGE 
form AC0'0**<3 

OMt NO. 0704-C1U 

^t»«Mj3 in* »txilMUKq I»« uit Ml«««. «<• 

1. AGENCY USE ONLY (Lfv* oHnk) 
J. REPORT TYPE  ANO OATES COVERED 2. REPORT DATE 

06/30/99 
4. TITLE ANO SUITtTU 

STeP: A tool for the Development of Provably Correct 
Reactive and Real-Time Systems 

t. AUTHOR(S) 

P.I.: Professor Zohar Manna 

FINAL REPORT:   f,f] /QS--3/31 /QQ 
5.  FUNDING NUMIERS 

DAAH04-95-1-0317 

7. PERFORMING ORGANIZATION NAMEl») ANU AOORESS(ES) 

Computer Science Department 
Stanford University 
Stanford CA 94305-9045 

I. SPONSORING/MONITORING AGENCY NAMUS) ANO AOORESS(ES) 

U.S. Amy Research Office 
P. 0. Box 12211 
Research Triangle Park, NC 27709-2211 

|.  PERFORMING ORGANIZATION 
REPORT NUMIER 

10. SPONSORING' MONITORING 
AGENCY REPORT NUMIER 

fr/Lo 3vViT4^-^/?- 

'Th^Tiews    JpSons and/or findings contained in this report are those of the 
2?J^(s) 'andP^hould not be construed as an official °«P*»»*°< ^£t£' 
position, policy, or decision, unless so designated by other documentation. 
12«. DISTRIBUTION/AVAILAHUTY STATEMENT 

Approved for public release; distribution unlimited. 

12b. DISTRIBUTION COOE 

13. AiSTRAa (M**mum200wofOi> 

This research is directed towards the implementation of a comprehen- 
sive toolkit for the development and verification of high assurance reactive 
systems, especially concurrent, real-time, and hybrid systems. For this, we 
have designed and implemented the STeP (Stanford Temporal Prover) ver- 

ification system. 
STeP is a tool for the computer-aided formal verification of reactive 

systems, including real-time and hybrid systems, based on their temporal 
specification. STeP integrates model checking and deductive methods to 
allow the verification of a broad class of systems, including parameterized 
(N-component) circuit designs, parameterized (N-process) programs, and 

programs with infinite data domains. 

! 1«. SUUECT TERMS 
1 IS. NUMIER OP PACES 

17.  SECURITY CLASSIFICATION 
OP REPORT 

UNCLASSIFIED 

NSN 7S4O-0WIO-55O0 

II.   SECURITY CLASSIFICATION 
Of THIS PAGE 

UNCLASSIFIED 

II.   SECURITY CLASSIFICATION 
OP AiSTRAa 
UNCLASSIFIED 

14. Mia COM 

20. LIMITATION OF AMTRACT 

UL 

Standard Form 2M (Rt* 2-M> 
hwi«M •» M* Ma IM*1! 



Contents 

1 Introduction 4 

2 Describing Reactive Systems 4 
2.1 Transition Systems  5 
2.2 SPL Programs      5 
2.3 Real-Time Systems  6 
2.4 Hybrid Systems  7 
2.5 Modularity  7 
2.6 Hardware Description  8 

3 Verification Methodology 8 

4 Deductive Verification and Model Checking 9 
4.1 Property Specification: Linear-Time Temporal Logic  10 
4.2 Deductive Verification  11 
4.3 Model Checking  12 
4.4 Modular Verification  12 

5 Combining Deductive and Algorithmic Methods 13 
5.1 Automatic Invariant Generation      13 
5.2 Decision Procedures  14 
5.3 Generalized Verification Diagrams      16 
5.4 Constructing Finite-State Abstractions  18 

6 Applications 19 
6.1 Real-time Systems  19 
6.2 Fault-tolerant Systems  19 
6.3 Hybrid Systems  19 
6.4 Case Study: Steam boiler  19 
6.5 Educational Use      20 

7 Implementation 20 
7.1 Stand-alone components  21 
7.2 External systems  21 
7.3 Obtaining STeP  21 

8 Publications 22 

9 Participating Scientific Personnel 24 



10 Report of Inventions 25 

11 Bibliography 26 



1 Introduction 

Reactive systems have an ongoing interaction with their environment, and 
their computations are infinite sequences of states. A large number of sys- 
tems can be seen as reactive systems, including hardware, concurrent pro- 
grams, network protocols, and embedded systems. Temporal logic provides 
a convenient language for expressing properties of reactive systems. A tem- 
poral verification methodology provides procedures for proving that a given 
system satisfies a given temporal property. 

This research is directed towards the implementation of a comprehen- 
sive toolkit for the development and verification of high assurance reactive 
systems, especially concurrent, real-time, and hybrid systems. For this, we 
have designed and implemented the STeP (Stanford Temporal Prover) ver- 
ification system. 

STeP is a tool for the computer-aided formal verification of reactive 
systems, including real-time and hybrid systems, based on their temporal 
specification. STeP integrates model checking and deductive methods to 
allow the verification of a broad class of systems, including parameterized 
(A-component) circuit designs, parameterized (A-process) programs, and 
programs with infinite data domains. 

Figure 1 presents an outline of the STeP system. The main inputs are a 
reactive system and a property to be proven for it, expressed as a temporal 
logic formula. The system can be a hardware or software description, and 
include real-time and hybrid components (Section 2). Verification is per- 
formed by model checking or deductive means (Section 4), or a combination 
of the two (Section 5). 

2 Describing Reactive Systems 

The various systems STeP can verify differ in their time model—discrete, 
real-time, or hybrid—as well as in the domain of their state variables, which 
can be finite or infinite. Furthermore, systems can be parameterized in the 
number of processes that compose them (A-process systems). All of these 
systems can be modeled, however, using the same underlying computational 
model: (fair) transition systems [MP95]. This basic model is extended in 
appropriate ways to allow for modular structures, hardware-specific compo- 
nents, clocks, or continuous variables. Figure 2 describes the scope of STeP, 
classified along these three main dimensions. 



Hardware 
Description 

Discrete 
System 

_J  
Real-Time 
System 

Hybrid 
System 

Transition System Temporal specification 

Modularity 

Abstraction Refinement 

Algorithmic 

model checking 

- explicit-state 
- symbolic 

Deductive- 

Algorithmic 

deductive 
model checking 

Deductive 

Verification rules 

Verification diagrams 

Automatic generation of: 
- invariants 
- intermediate assertions 

Automatic prover: 
- simplifier 
- decision procedures 
- first-order reasoning 

Interactive Prover 

Proof 

Counter- 
example 

OOD 

SIe_P 

Figure 1: An outline of the STeP system 

2.1    Transition Systems 

The basic system representation in STeP uses a set of transitions. Each tran- 
sition is a relation over unprimed and primed system variables, expressing 
the values of the system variables at the current and next state. Transitions 
can thus be represented as general first-order formulas, though more spe- 
cialized notations for guarded commands and assignments is also available. 
In the discrete case, transitions can be labeled as just or compassionate; 
such fairness constraints are relevant to the proof of progress properties (see 
[MP95]). 

2.2    SPL Programs 

For convenience, discrete systems can be described in the Simple Program- 
ming Language (SPL) of [MP95]. SPL programs are automatically trans- 
lated into the corresponding fair transition systems, which are then used as 
the basis for verification. 



OOP 

SJeJP 
SCOPE 

Hybrid 

Real-Time 

Discrete 

Time Model 

S^                         \                                                                           yS                    \                                                                                yS 

y^        i         's           : 
; ; 

Hybrid Automata Phase,Traiis. 

^ 
; | 

Timed Automata Clocked Trdns. 

; ; 

Finite Automata Fair Jrans. 

/ l-comDon< 

N-components 

Finite Infinite 
(Hardware) (Software) 

Domain of Discrete Variables  

Parameterization 

Figure 2: Scope of STeP 

2.3    Real-Time Systems 

STeP can verify properties of real-time systems, using the computational 
model of clocked transition systems [MP96]. Clocked transition systems 
consist of standard instantaneous transitions that can reset auxiliary clocks, 
and a progress condition that limits the time that the system can stay in 
a particular discrete state. Clocked transition systems are converted into 
discrete transition systems by including a tick transition that advances time, 
constrained by the progress condition. The tick transition is parameterized 
by a positive real-valued duration of the time step. 

Temporal logic properties can refer to the global clock, and the auxiliary 
ones, to specify real-time properties; the underlying temporal logic remains 
the same. Since the transition system framework is also retained by rep- 
resenting tick as a discrete parameterized transition of the time-step, this 



representation allows STeP to reuse existing verification rules for untimed 
temporal logic can be reused for [KMP96]. 

2.4 Hybrid Systems 

Hybrid transition systems generalize clocked transition systems, by allow- 
ing real-valued variables other than clocks to vary continuously over time. 
The evolution of continuous variables is described by a set of constraints, 
which can be sets of differential equations or differential inclusions. Similar 
to clocked transition systems, hybrid transition systems are converted into 
discrete transition systems by including a tick transition, parameterized by 
the duration of the time step. However, for hybrid systems the tick transi- 
tion must not only update the values of the clocks, which is straightforward, 
but must also determine the value of the continuous variables at the end of 
the time step. The updated value of the continuous variables is represented 
symbolically; axioms and invariants, generated based on the constraints, are 
used to determine the actual value or the range of values at the time they 
are needed. 

Other formalisms such as timed transition systems, timed automata and 
hybrid automata can be easily translated into hybrid and clocked transition 
systems [MP96]. Furthermore, the transition system representation allows 
discrete variables that range over infinite-domains, as opposed to automata- 
based formalisms where the domain of discrete variables must be finite-state. 

2.5 Modularity 

Complex systems are built from smaller components. Most modern pro- 
gramming languages and hardware description languages therefore provide 
the concept of modularity. STeP includes facilities for modular specification 
and verification [FMS98], based on modular transition systems, which can 
concisely describe complex transition systems. Each module has an inter- 
face that determines the observability of module variables and transitions. 
The interface may also include an environment assumption, a relation over 
primed and unprimed interface variables that limits the possible environ- 
ments the module can be placed in. The module can only be composed with 
other modules that satisfy the environment assumption. Communication be- 
tween a module and its environment can be asynchronous, through shared 
variables, and synchronous, through synchronization of labeled transitions. 

More complex modules can be constructed from simpler ones by pos- 
sibly recursive module expressions, allowing the description of hierarchical 



Systems of unbounded depth. Module expressions can refer to modules de- 
fined earlier, or instances of parameterized modules, enabling the reuse of 
code and of properties proven about these modules. Besides the usual hid- 
ing and renaming operations, the language provides a construct to augment 
the interface with new variables that provide a summary value of multiple 
variables within the module. Symmetrically, a restriction operation allows 
the module environment to combine or rearrange the variables it presents 
to the module. 

Real-time and hybrid systems: Real-time and hybrid systems can also 
be described as modular systems; discrete, real-time and hybrid modules 
may be combined into one system. The evolution constraints of hybrid 
modules may refer to continuous variables of other modules, thus enabling 
the decomposition of systems into smaller modules. To enable proofs of 
nontrivial properties over such modules, we allow arbitrary constraints on 
these external continuous variables in the environment assumption. 

2.6    Hardware Description 

A Verilog hardware description language front-end has recently been added 
to STeP. Its main component is a compiler that takes Verilog input and 
produces a fair transition system, which can then be analyzed using the 
deductive and algorithmic tools of STeP. 

The goal of this compiler is to produce a faithful representation of the 
input program, taking into account the delays and events that are part of the 
Verilog semantics. The compiler extends the Verilog language by allowing 
parameters to be left unspecified. These parameters can be used to declare 
bit vectors of arbitrary size, or to compose an array of lower-level modules. 
These features cater to the deductive component of STeP, which can verify 
properties of general infinite-state systems. 

3    Verification Methodology 

STeP is best viewed as providing a toolkit of verification methods based on 
a common system description language and specification language. A given 
system can be analyzed in a number of ways. Depending on the system and 
property to be proved, different tools will be applicable or more appropriate: 

Model Checking: If the system is finite-state, arbitrary temporal prop- 
erties can be automatically established or refuted, using explicit-state or 



symbolic model checking (Section 4.3). Symbolic model checking is appli- 
cable only if all variables have finite-domain. Some classes of infinite-state 
systems can be checked with the explicit-state model checker, which is not 
guaranteed to terminate in this case. For parameterized and infinite-state 
systems, finite-state instances of the system can be model checked to quickly 
search for bugs. 

Invariant Generation: For most deductive verification proofs, system 
invariants of increasing strength must be collected, where previous invariants 
are used to establish subsequent ones. Automatic invariant generation is 
used to establish a basic initial set of invariants (Section 5.1). 

Verification Rules: To prove simple safety properties, deductive rules can 
be used, with the user providing adequate strengthenings (intermediate as- 
sertions) where necessary (Section 4.2). Previously established invariants are 
used to prove the required verification conditions, which are automatically 
generated by the system. 

Verification Diagrams: A verification diagram can be provided by the 
user, as a system abstraction that proves a particular property in question. 
Verification conditions justify the correctness of the diagram, while an algo- 
rithmic procedure checks that the diagram, indeed, proves the property at 
hand (Sect. 5.3). 

Abstraction: A finite-state abstraction of the system can be generated, 
such that properties model checked for the abstract system will hold of 
the original system as well (Sect. 5.4). Since the abstraction is finite-state, 
it can be model checked. Available invariants improve the quality of the 
abstraction, allowing more properties to be proved. 

4    Deductive Verification and Model Checking 

STeP provides a comprehensive, integrated environment to prove tempo- 
ral properties over reactive systems. The STeP Session Editor, presented in 
Figure 3, keeps track of the main properties of interest throughout the verifi- 
cation session, including axioms, assumptions, previously proven properties, 
and automatically generated invariants, as well as the module to which each 
applies. Thus, it can handle multiple systems and proofs simultaneously. 
Properties can be activated or deactivated to control the extent of their use 
in automatic theorem-proving. 



File    System 

'OG*H :'""" 
Diagram     Property    Trace 

s». ..*„„.,-                                                                                                                                                                               —                               

Name Type |                                                             Fife 1 
;8oiier 
■ Controller 

;BotlerSystem 

FTS 

"FtS 

/manet/u2/step/examples/steamboiler/SEP/Boiler.fts 

/manet/u2/step/examples/steam'boiier/SEP7controlier.fts  
FTS :/manet/u2/s^ 

Name Type Syst..!      Module Text Proven! ActL.S 
readBoilerSensors 

IreadValvePos 
/readPumpState 

readPumpState 

Goal Cont... Controller pc = readBoilerSensors A programstatus * programrunning .. 

pc - readValvePos A programstatus - programrunning --> .. 
:: :: : 

Goal Cont.. Controller 
Goal 

Goal 

Cont... Controller 
Cont... Controller 

pc = readPumpState A programstatus = programrunning A 

pc - readPumpState A programstatus - programrunning A 
consistency 

returntoService 
operations 

Goal 
Goal 

Goal 

maint maint 

maint maint 
[mainü 1- ((-Xeqstate - broken Ä      M.matntstate - ottji —>. 

[maint] I- ((-Keqstate - broken A      M.maintstate - ok> ™>. 
- . n 

oper... operations D(0.opstate = preparing A plantstate = idle \/    O.opstate =.. ~: 
res pon dtoE merge ncy 
minqrad 

maxgrad 

Goal 
Axiom 

Axiom 

oper... operations        0.emergency V gotoEmstop —> o(o.opstate - preparing /.. 
Solle... BoilerSystem    Dmingrad * delta < 0 
Boile... BoilerSystem    DO c maxgrad • delta 

:steamflow Axiom ;Boile... BoilerSystem    ;Q0 <= ß.sf "v* 

Figure 3: STeP Session Editor 

4.1    Property Specification: Linear-Time Temporal Logic 

We use linear-time temporal logic (LTL) to represent properties of reactive 
systems [MP95]. A model of LTL is an infinite sequence of states. We 
use the usual temporal operators, such as Op (p is always true), Op (p is 
eventually true), pUq (p is true until q is true, which eventually happens), 
and p W q (p awaits q—p is true at least until q is true, but q need not 
eventually happen). 

We distinguish between safety and progress properties. Informally, safety 
properties say that certain "bad states" will never be reached, e.g. as in an 
invariance Dp for an assertion p. 

Progress properties, on the other hand, can say that "good" states will 
eventually be reached (perhaps recurrently). Safety properties do not de- 
pend on the fairness constraints of the system, whereas progress properties 
require the justice or compassion of particular transitions in order to be 
proved. 

To specify properties of real-time and hybrid systems, temporal-logic 
properties can refer to the global and auxiliary clocks, and to the continuous 

10 



Ftl»    mat    Rill*    Tictlc    Optbii 

D"*B  
• operations [B-INVJ 

• Monotonidty [Check-Valid] 
• •initial Condition [Simplify] 

• Property 
• «environment [Simplify] 

• Property 
• O.dosevalve [Check-Valid] 
• O.emergencyStop [Check-Valid] 
• OpRqstPE [Check-Valid] 

O  ♦ OpRqstPR [Simplify] 
• •OpRqstOV [Simplify] 

• •Property [Make-Sequent] 
• •Sequent [Cut] 

• • Sequent [Simplify-Sequent] 
• Sequent 

• •Sequent [Simplify-SeouenÖ 
•Sequent 

• ♦ OpRqstCV [Simplify] 

• ♦Property [Make-Sequent] 
• «Sequent [Cut] 

♦Sequent [Simplify-Sequent] 
• •Sequent [Simplify-Sequent] 

• Sequent 
• •OpEntrySD [Simplify] 

• Property 
• •OpEntryPUR [Simplify] 

• Property 
• OpEntrySW 
• idle [Check-valid] 

Wife 

-1 
-2 
-3 
-4 
-5 
-6 
-7 

levelTooHigh, 
CO.plantstate  = start_rqst, 
O.opstate'   = evacuating, 
plantstate = started__up, 
valveposition  = closed, 
valveposition'   = open, 
O.opstate  = evacuating  \/ 
O.opstate = wait_for_progr5m, 

~8   :   O.opstate  = monitoring  \/ 
O.opstate  = shutting_down 

1   :   0.emergency 

Previous Next 

Hide Rtveal 

StmpHfy-5«qu«fK 

Che ck-Vt Md-Sequent 

N«w-Check-Valid-SeQti« at 

Skslenti«        iBSUetlate 

FlattSB 

f-$ttp-Pr*poslthiital 

CDD-Spllt 

R*pfac« 

Kewrft» 

Cut 

Buplkata 

Atfrf-Assumptfpii 

PTL-Expa«s(*n 

Unmaha-S*4uent 

Figure 4: STeP Proof Editor 

variables; the underlying temporal logic remains the same. 

4.2    Deductive Verification 

The deductive methods of STeP verify temporal properties of systems by 
means of verification rules and verification diagrams. Verification rules re- 
duce temporal properties of systems to first-order verification conditions 
[MP95]. Verification diagrams [MP94] provide a visual language for guid- 
ing, organizing, and displaying proofs, and automatically generating the 
appropriate verification conditions as well (see Section 5.3). 

As clocked and hybrid transition systems are converted into fair tran- 
sition systems, verification rules and diagrams are uniformly applicable to 
discrete, real-time and hybrid systems. However, due to the parameteriza- 
tion of the tick transition, the resulting verification conditions for real-time 
and hybrid systems are usually more complex than those for (unparameter- 
ized) discrete systems. 

Figure 4 shows the STeP Proof Editor, which is used to apply the basic 
deductive temporal verification rules as well as the Gentzen-style interactive 
theorem proving rules. In a typical deductive verification effort, the top-level 

11 



goal is a temporal formula to be proven valid for a given system. Verification 
rules or diagrams are used to generate verification conditions, as subgoals, 
which together imply the system validity of the original temporal property. 
These subgoals are then established automatically using decision procedures 
(Section 5.2) or interactively using the Gentzen-style rules. Model checking 
is also initiated by the Proof Editor. 

4.3 Model Checking 

STeP features automatic explicit-state and symbolic model checking for 
linear-time temporal logic. The explicit-state model checker performs an 
incremental (depth-first) search of the state-space, directed by the tempo- 
ral tableau (automaton) for the negated specification. Thus, only those 
states that can potentially violate the specification are visited. This enables 
the use of the explicit-state model checker on some infinite-state systems, 
though it is not guaranteed to terminate for these systems. The symbolic 
model checker uses a breadth-first search through sets of states represented 
by ordered binary decision diagrams (OBDDs). Thus, it is limited to finite- 
state systems, whose variables range over a fixed, finite number of values. 

When transitions can be expressed as guarded commands (i.e., the sys- 
tem is a set of deterministic actions), symbolic model checking is optimized 
using techniques for computing predecessor states without computing the 
entire transition relation. A specialized backwards search for proving invari- 
ants is also available. The set of states visited in the backwards search is 
constrained by auxiliary invariants, which may have been formulated and 
verified before, or generated automatically (see Section 5.1). 

The symbolic and explicit-state model checkers complement each other. 
Although limited to finite-state systems, the symbolic model checker can be 
considerably more efficient, particularly when the state-space is large and 
the transition relation and fixed points are amenable to representation by 
OBDD's [McM93]. On the other hand, the explicit-state model checker is 
often faster on systems with relatively few reachable states. 

4.4 Modular Verification 

Different components of a large system may require the application of differ- 
ent verification methodologies, depending on their specific type (real-time 
or discrete, finite- or infinite-state). Using the notion of modular validity, 
modular properties can be established by the same set of methods as global 
properties, accounting for environment transitions. Automatic property in- 

12 



heritance then ensures that such properties can be used as lemmas in proofs 
over composite modules. In the case of recursively defined systems, proper- 
ties can be established by structural induction. 

Many properties are not directly guaranteed by a module, but hold only 
under certain assumptions. STeP's proof management allows assumptions 
to be used before their proof is available, checking the resulting dependency 
diagram to avoid unsound circular reasoning. Assumptions about the envi- 
ronment can be made when proving a modular property, and subsequently 
discharged when the module is composed with another. The search for ap- 
propriate assumptions can be guided by constructing verification diagrams 
for each module and attempting to prove the associated verification condi- 
tions [FMS98, MCF+98]. 

5    Combining Deductive and Algorithmic Methods 

STeP includes formalisms that combine deductive and algorithmic verifica- 
tion in a number of different ways, which differ in the degree and type of 
intervention that is required from the user. 

Besides model checking, described in Section 4.3, STeP provides two ba- 
sic automatic tools that support deductive and deductive-algorithmic veri- 
fication: automatic invariant generation and decision procedures. Both are 
used extensively in the combinations of deductive and algorithmic verifica- 
tion presented in Sections 5.3 and 5.4. 

5.1    Automatic Invariant Generation 

Deductive verification is usually an incremental process: simple properties 
of the system being verified are proved first and then used to help establish 
more complex ones. STeP implements techniques for the automatic genera- 
tion of invariants, as described in [BBM97]. Invariant generation is based 
on approximate propagation, starting from the set of initial states, through 
the state-space of the system until a fixpoint is reached, based on the frame- 
work of abstract interpretation [CC77]. Depending on the approximation 
method used, different types of invariants can be generated: 

• Local invariants result from analyzing the possible values of individual 
variables, as well as the relation between control locations and data 
values. 

• Linear invariants express linear relationships between system vari- 
ables. 

13 



• Polyhedral invariants generalize linear invariants, expressing polyhe- 
dral constraints over sets of system variables. 

These invariant generation methods are now being specialized to the 
case of real-time and hybrid systems [MS98]. Invariant generation can 
also be used for the modular verification of real-time systems, as shown 
in [BMSU98]. 

For real-time and hybrid systems STeP provides an alternative technique 
of invariant generation, also based on forward propagation of system behav- 
ior through the state space, but now starting from the entire state space 
[BMSU98]. In this case every propagation step leads to an invariant; no 
fixpoint needs to be computed. For hybrid systems these techniques have 
been further optimized to take advantage of the structure of the constraints, 
resulting in stronger invariants. In [MS98] we show an example where the 
invariants thus generated are sufficiently strong to prove the main property 
of interest. 

5.2    Decision Procedures 

The verification conditions generated in deductive verification refer to the 
domain of computation of the system being verified. To establish verifica- 
tion conditions in the most automatic and efficient manner, STeP includes 
decision procedures for a number of theories frequently used in computation 
domains, and thus common in formal verification [BJ098]. 

The basic integration of decision procedures is a variant of Shostak's con- 
gruence closure-based algorithm [Sho84, CLS96, BJ098]. At the top-level, 
an algorithm based on congruence closure propagates equality constraints 
through function symbols. It invokes the other decision procedures as aux- 
iliary simplifiers and solvers. The theories supported in this way include: 

• Partial orders. Beyond basic equality, partial orders are a more ex- 
pressive constraint language to specify relations between variables. 

• Linear and non-linear arithmetic. STeP provides Fourier's quantifier 
elimination procedure to deal with formulas involving linear arith- 
metic; this procedure also extracts implied equalities. 

Some systems, including most hybrid systems, require reasoning about 
formulas featuring multiplication and division. Formulas involving 
some use of multiplication and division however arise naturally from 

14 



even simple hybrid systems. For instance 

/ a/vl + a ■ 2/vr < £2 + i/vl + i ■ 2/vr  \ , . . 
[   A      d>0A,r>0AP>t    Ap<a   J "> */* < ** + »/«r 

was encountered during verification of a symbolic temperature con- 
troller [MS98]. STeP therefore includes basic techniques for eliminat- 
ing first- and second-degree variables as described in [Wei97]. Ag- 
gressive use of abstract interpretation techniques based on sign at- 
tributes keeps the search space manageable. For instance in the exam- 
ple above, the information vr > 0 is used to simplify p/vr < X2 + i/vr 

to p < X2 • vr +i. Asserted and implied equalities are used to eliminate 
variables by rewriting equalities into the form x = t, where x does not 
occur in t, and applying the substitution [x >-¥ t] to the constraints. 
The equality x = t is also passed to the congruence closure which uses 
it for simplifying complex (non-arithmetical) terms containing x. 

• Bit-vectors. Reasoning about bit-vectors is essential for hardware ver- 
ification. STeP includes decision procedures for fixed-size bit-vectors 
with boolean bitwise operations and concatenation, and for non-fixed 
size bit-vectors with concatenation. These procedures are described in 
[BP98]. 

• Lists, queues, and word decision procedures. Lists and queues are com- 
mon data structures, especially in systems using abstract datatypes 
or asynchronous channels. Both lists and queues can be viewed as 
special cases of words, with concatenation being the basic operation. 
Although the known decision procedures for word equalities have pro- 
hibitive complexity, the special cases of lists and queues can be solved 
efficiently. 

• Recursive data-types. STeP supports equality reasoning for general 
recursive datatypes, which allow the specification of S-expressions and 
other tree-like structures. Enumeration types and records are treated 
as special cases of recursive datatypes. 

Co-inductive data-types, such as lazy lists, are also supported. Both 
equality constraints and subterm relationships are supported in the 
integration of decision procedures. 

Recursive data-types are given initial term algebra semantics. On the 
other hand, co-recursive data-types contain infinite and cyclic terms. 

15 



• Set theory. STeP provides basic support for Multi-level Syllogistic 
Set-theory (MLSS) [CF089, CZ98]. MLSS terms range over sets, 
and operations include union, intersection, set-difference, and finite 
set-enumeration. Atomic relations include set equality, inclusion and 
membership. 

STeP uses decision procedures not only to check validity, but to simplify 
formulas as well, rewriting them to smaller, logically equivalent ones. Effi- 
cient formula simplification can make verification conditions more readable 
and manageable, and improves the efficiency of subsequent validity checking. 

The above decision procedures check validity of ground formulas, where 
no first-order quantification is present. STeP extends this combination of 
ground decision procedures to include theory-specific unification algorithms, 
which find quantifier instantiations needed for first-order validity check- 
ing [BSU97]. 

As mentioned in Section 4.2, an interactive Gentzen-style theorem prover 
is available as part of the Proof Editor (Figure 4) to establish verification 
conditions that are not proved automatically. 

5.3    Generalized Verification Diagrams 

Generalized verification diagrams [BMS95, MBSU98] are an extension of 
verification diagrams that allow the verification of arbitrary temporal prop- 
erties. Like temporal formulas and w-automata, generalized verification dia- 
grams have an associated set of computations, constrained by an acceptance 
condition. Diagrams can be seen as intermediaries between the system and 
the property to be proven. A set of verification conditions is proved, de- 
ductively, to show that the diagram faithfully represents computations of 
the system: initiality and consecution conditions, associated with individual 
nodes of the diagram, ensure that all runs of the system have correspond- 
ing paths of the diagram. Acceptance conditions, based on well-founded 
orders, prove that system computations fulfill the acceptance requirements 
associated with the diagram. An algorithmic check then establishes that 
the diagram corresponds to the formula being proved. Together, these two 
stages show that all computations of the system are models of the temporal 
property. 

The STeP Diagram Editor, shown in Figure 5, allows the user to draw a 
diagram and then prove, using the Proof Editor, the associated verification 
conditions. In STeP 2.0, the Diagram Editor and the Proof Editor are more 
tightly coupled, to facilitate the incremental development of diagrams. The 

16 



Fil«    Diagram    Drawing    Onw    Transformations    Vhw    Undo    Htlp 

s  .View   

in 
undo ■ 

1! 
■:    H-.     

R-H»N<ff|<3fe|*i3'(&l<?l a xj>~.-c ssiS-fö!fe,: • i •. 
b 

fc n0:O.opstat«=pi«paringA 
plantstat«=idl« 

'......  ■    .:■;; ;■','-'.' ■' 

* 

' 
•0 j£& 

nl :0.opstate=warHor_program/\ 
plantstate2tart_rqst 

n2.0.opstat«=«vacuatingA 
plantstat«=avac_rqstA 
valv«posrtlon=op«n 

n3:0.opstat*= 
*■'* J° r_P rogramA 

p lantstat« =avac_rqst 

1 

•ir «23 
.12 * .24 

' 
•1 «is •14 

» 

«21 

n4:0.opstats=startlng_upA 
p lantstat« =not if i« d_raady 

r                                      1 

i 

•2 
f 

n5 :0.opstat«=monitoringApBntstat« 
start«d_up 

' i 

•22 

i 

n6:0.opstate=shuttlng do«mAplantstatc!=idlc 

*;          % f* ~l                      _..  .: __           „„           _                                                 |>L.J 

Figure 5: STeP Diagram Editor 

17 



user can draw an initial version and try to prove the associated verification 
conditions. If they fail, the user can make local corrections to the diagram 
(or discover something wrong with the system) and attempt the proof again. 

The verification conditions are local to the diagram; failed verification 
conditions point to missing edges or nodes, weak assertions, or possible bugs 
in the system. Since local changes to a diagram do not affect the verification 
conditions elsewhere, much of the work from the previous iteration can be 
saved. Using feedback from the Proof Editor, the Diagram Editor can high- 
light proved and unproved edges and nodes in the diagram, helping the user 
correct the diagram. A change to the diagram automatically invalidates the 
verification conditions in the Proof Editor that are affected by the change. 

Deductive model checking [SUM99] uses diagrams to explore and refine 
the state-space of possibly infinite-state systems, searching for a counterex- 
ample computation by transforming the diagram. The STeP Diagram Editor 
supports some of these diagram transformations for interactive state-space 
exploration. We will include a more comprehensive implementation in up- 
coming releases. 

5.4    Constructing Finite-State Abstractions 

Temporal properties can be proved for a complex system by finding a sim- 
pler abstract system such that if the abstract system satisfies a related prop- 
erty, then the original concrete system satisfies the original one as well. If 
the abstract system is finite-state, its temporal properties can be estab- 
lished automatically using a model checker. We have developed methods for 
automatically generating finite-state abstractions of possibly infinite-state 
systems [CU98, Uri98], using the decision procedures in STeP (Section 5.2). 

The abstraction algorithm compositionally abstracts the transitions of 
the system, expressed as first-order relations, relative to a given, fixed set 
of assertions which define the abstract state-space. The number of validity 
checks is proportional to the size of the system description, rather than the 
size of the abstract state-space. 

Once the finite-state abstraction is generated, it can be model checked, 
explicitly or symbolically (see Section 4.3). The generated abstractions are 
weakly preserving for universal (VCTL*) temporal properties, including LTL 
[DGG97]. This means that validity at the abstract level implies the validity 
of the original property over the concrete system; however, if the abstract 
property fails, the original property might still hold. In this case, we say 
that the abstraction was not fine enough. An abstract counterexample can 
be used, manually, to determine if a corresponding concrete counterexample 

18 



exists, or else to build a finer abstraction. 

6    Applications 

6.1 Real-time Systems 

In [BMSU98], we present a modular framework for proving temporal prop- 
erties of real-time systems, based on clocked transition systems and linear- 
time temporal logic. We show how deductive verification rules, verification 
diagrams, and automatic invariant generation can be used to establish prop- 
erties of real-time systems in this framework. We also discuss global and 
modular proofs of the branching-time property of non-Zenoness. As an 
example, we present the mechanical verification of the generalized railroad 
crossing case study using STeP. 

6.2 Fault-tolerant Systems 

In [BLM97], a parameterized fault-tolerant leader-election algorithm re- 
cently proposed in [GM96] is modeled and verified using STeP. Our methods 
settle the general iV-process correctness for the algorithm, which had been 
previously verified only for N = 3. We formulate the notion of Uniform 
Compassion to model progress in faulty systems more faithfully, and com- 
bine it with the more standard notions of fairness. We also show how the 
correctness proofs generalize to different channel models by a reduction to 
a simple channel model. 

6.3 Hybrid Systems 

In [MS98] we present invariant generation methods for hybrid systems, and 
verify a simple hybrid water level controller using STeP. In [MCF+98], we 
show how deductive verification tools, and the combination of finite-state 
model checking and abstraction, allow the verification of infinite-state sys- 
tems featuring data types commonly used in software specifications, includ- 
ing real-time and hybrid systems. 

6.4 Case Study: Steam boiler 

The incorporation of modularity and abstraction in STeP has enabled us 
to analyze much larger systems than was previously possible. An exam- 
ple is the steam boiler case study [ABL96], a benchmark for specification 
and verification methods for hybrid controlled systems. At the time of its 

19 



appearance we developed a comprehensive model of this system, including 
both the plant and the controller. The model consisted of some 1000 lines 
of SPL code and contained eight parallel processes. However, verification 
proved impractical and further analysis was suspended. Recently the case 
study was revived. The system was rewritten as a modular transition sys- 
tem consisting of ten modules with a total of 80 transitions, 18 real-valued 
variables and 28 finite-domain variables. 

Modularity allowed us to prove properties over selected subsystems and 
inherit them for the full system, thus reducing the number of verification 
conditions to be proven. In some cases, involving discrete finite-state mod- 
ules only, the model checker could be applied, making the verification fully 
automatic. In our previous implementation finite-state components could 
not be separated from the infinite-state ones, and thus use of the model 
checker was not possible. 

Assertion-based abstraction (see Section 5.4) enabled us to indirectly 
apply the model checker to infinite-state modules as well, by eliminating the 
real-valued variables. The relationships between the relevant real-valued 
variables captured by a small set of assertions were sufficient to let us prove 
the properties. 

A more detailed description of the case study is given in [MCF+98]. 

6.5    Educational Use 

STeP has been used on several occasions for teaching a graduate-level in- 
troductory course on temporal verification of reactive systems, at Stanford 
University and at the Technion (Israel Institute of Technology, Haifa). 

STeP is freely available for research and educational use. The STeP 
manual is available as [BBC+95], and system descriptions are provided in 
[BBC+96, MBB+99]. For information on obtaining STeP, see the STeP web 
pages at: 

http://www-step.Stanford.edu/ 

7    Implementation 

The parsing, theorem-proving and invariant generation components of STeP 
are implemented in Standard ML of New Jersey. The graphical user interface 
for STeP 2.0 was developed in Java. The Java graphical packages and the 
inheritance features of the language are well-suited for the implementation 

20 



of a variety of visual formalisms with common features, as in the STeP 
Diagram Editor. 

The explicit-state model checker is implemented in C, while the sym- 
bolic model checker uses ML linked together with external OBDD libraries, 
written in C. Similarly, the polyhedral invariant generation uses external 
polyhedra manipulation routines, implemented in C [HP95]. 

7.1 Stand-alone components 

Many of the components of STeP described above can be used in batch 
mode, as stand-alone components, including: 

• the parser/translator from SPL into fair transition systems (Section 2) 

• the explicit-state and symbolic model checkers (Section 4.3) 

• the linear, local and polyhedral invariant generators (Section 5.1) 

• the validity checker and formula simplifier (Section 5.2) 

These options are available as command-line options to a separate executable 
binary file. 

7.2 External systems 

Verification conditions in STeP can be output to external theorem provers 
or decision procedures. In particular, the MONA package for monadic sec- 
ond order logic can be used; output to the OTTER and Gandalf resolution 
theorem provers is also provided. STeP interacts with these provers by in- 
voking them in the background and digesting their output to check if the 
verification conditions have been discharged. 

7.3 Obtaining STeP 

STeP is freely available for research and educational use. It has been down- 
loaded by more than 180 registered users in 28 countries around the world. 
For more information, the STeP web pages at 

http://www-step.Stanford.edu 

21 



8    Publications 

The following publications were supported (partially or in whole) by this 
grant: 

1. N.S. Bjorner, A. Browne, E.S. Chang, M. Colon, A. Kapur, Z. Manna, 
H.B. Sipma, and T.E. Uribe. STeP: The Stanford Temporal Prover, 
User's Manual. Technical Report STAN-CS-TR-95-1562, Computer 
Science Department, Stanford University, November 1995. 

2. N.S. Bjorner, A. Browne, E.S. Chang, M. Colon, A. Kapur, Z. Manna, 
H.B. Sipma, and T.E. Uribe. STeP: Deductive-algorithmic verification 
of reactive and real-time systems. In R. Alur and T.A. Henzinger, 
editors, Proc. 8th Intl. Conference on Computer Aided Verification, 
vol. 1102 of LNCS, pages 415-418. Springer-Verlag, July 1996. 

3. N.S. Bjorner, A. Browne, and Z. Manna. Automatic generation of 
invariants and intermediate assertions. Theoretical Computer Science, 
173(l):49-87, February 1997. Preliminary version appeared in 1st Intl. 
Conf. on Principles and Practice of Constraint Programming, vol. 976 
of LNCS, pp. 589-623, Springer-Verlag, 1995. 

4. N.S. Bj0rner. Integrating Decision Procedures for Temporal Verifica- 
tion. PhD thesis, Computer Science Department, Stanford University, 
November 1998. 

5. N.S. Bj0rner, U. Lerner, and Z. Manna. Deductive verification of 
parameterized fault-tolerant systems: A case study. In Intl. Conf. on 
Temporal Logic. Kluwer, 1997. To appear. 

6. A. Browne, Z. Manna, and H.B. Sipma. Generalized temporal verifi- 
cation diagrams. In 15th Conference on the Foundations of Software 
Technology and Theoretical Computer Science, vol. 1026 of LNCS, 
pages 484-498. Springer-Verlag, 1995. 

7. N.S. Bj0rner, Z. Manna, H.B. Sipma, and T.E. Uribe. Deductive 
verification of real-time systems using STeP. Technical Report STAN- 
CS-TR-98-1616, Computer Science Department, Stanford University, 
January 1998. To appear in Theoretical Computer Science. Prelim- 
inary version appeared in 4th Intl. AMAST Workshop on Real-Time 
Systems, vol. 1231 of LNCS, pages 22-43. Springer-Verlag, May 1997. 

22 



8. N.S. Bj0rner and M.C. Pichora. Deciding fixed and non-fixed size 
bit-vectors. In J^th Intl. Conf. on Tools and Algorithms for the 
Construction and Analysis of Systems (TACAS), vol. 1384 of LNCS, 
pages 376-392. Springer-Verlag, 1998. 

9. N.S. Bj0rner, M.E. Stickel, and T.E. Uribe. A practical integration 
of first-order reasoning and decision procedures. In Proc. of the 14th 

Intl. Conference on Automated Deduction, vol. 1249 of LNCS, pages 
101-115. Springer-Verlag, July 1997. 

10. M.A. Colon and T.E. Uribe. Generating finite-state abstractions of re- 
active systems using decision procedures. In A.J. Hu and M.Y. Vardi, 
editors, Proc. 10(/l Intl. Conference on Computer Aided Verification, 
vol. 1427 of LNCS, pages 293-304. Springer-Verlag, July 1998. 

11. B. Finkbeiner, Z. Manna, and H.B. Sipma. Deductive verification of 
modular systems. In W.P. de Roever, H. Langmaack, and A. Pnueli, 
editors, Compositionality: The Significant Difference, COMPOS'97, 
vol. 1536 of LNCS, pages 239-275. Springer-Verlag, December 1998. 

12. Y. Kesten, Z. Manna, and A. Pnueli. Verifying clocked transition 
systems. In R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Hybrid 
Systems III, vol. 1066 of LNCS, pages 13-40. Springer-Verlag, 1996. 

13. Z. Manna, N.S. Bj0rner, A. Browne, M. Colon, B. Finkbeiner, M. Pi- 
chora, H.B. Sipma, and T.E. Uribe. An update on STeP: Deductive- 
algorithmic verification of reactive systems. In R. Berghammer and 
Y. Lakhnech, editors, Tool Support for System Specification, Develop- 
ment and Verification, Advances in Computing Science, pages 174- 
188. Springer-Verlag, 1999. 

14. Z. Manna, A. Browne, H.B. Sipma, and T.E. Uribe. Visual ab- 
stractions for temporal verification. In A. Haeberer, editor, Alge- 
braic Methodology and Software Technology (AMAST'98), vol. 1548 
of LNCS, pages 28-41. Springer-Verlag, December 1998. 

15. Z. Manna, M.A. Colon, B. Finkbeiner, H.B. Sipma, and T.E. Uribe. 
Abstraction and modular verification of infinite-state reactive systems. 
In M. Broy, editor, Requirements Targeting Software and Systems En- 
gineering (RTSE), LNCS. Springer-Verlag, 1998. To appear. 

23 



16. Z. Manna and A. Pnueli. Clocked transition systems. Technical Re- 
port STAN-CS-TR-96-1566, Computer Science Department, Stanford 
University, April 1996. 

17. Z. Manna and H.B. Sipma. Deductive verification of hybrid sys- 
tems using STeP. In T. Henzinger and S. Sastry, editors, Hybrid Sys- 
tems: Computation and Control, vol. 1386 of LNCS, pages 305-318. 
Springer-Verlag, April 1998. 

18. H.B. Sipma, T.E. Uribe, and Z. Manna. Deductive model checking. 
To appear in Formal Methods in System Design, 1999. Preliminary 
version appeared in Proc. 8th Intl. Conference on Computer Aided 
Verification, vol. 1102 of LNCS, Springer-Verlag, pp. 208-219, 1996. 

19. T.E. Uribe. Abstraction-based Deductive-Algorithmic Verification of 
Reactive Systems. PhD thesis, Computer Science Department, Stan- 
ford University, December 1998. Technical Report STAN-CS-TR-99- 
1618. 

9    Participating Scientific Personnel 

(Partially supported by this grant.) 

Graduated Master's Students: 

1. Mark Pichora (1998) 

Graduated Ph.D. Students: 

1. Arjun Kapur (1997). Thesis: Interval and Point-based Approaches to 
Hybrid System Verification. 

2. Luca de Alfaro (1997).   Thesis:   Formal Verification of Probabilistic 
Systems. 

3. Nikolaj Bj0rner (1998).   Thesis:  Integrating Decision Procedures for 
Temporal Verification. 

4. Tomas E. Uribe (1998). Thesis: Abstraction-Based Deductive-Algorithmic 
Verification of Reactive Systems. 

5. Henny B. Sipma (1999).   Thesis:  Diagram-based Verification of Dis- 
crete, Real-time and Hybrid Systems. 

24 



Other Personnel: 

1. P.I.: Prof. Zohar Manna 

2. Scientific Programmer: Anca Browne 

3. Ph.D. Student: Michael Colon 

4. Ph.D. Student: Bernd Finkbeiner 

10    Report of Inventions 

A negative Final Report of Inventions and Subcontracts (DD Form 882) is 
enclosed. 

25 



11    Bibliography 

References 

[ABL96] J.R. Abrial, E. Boerger, and H. Langmaack, editors. Formal 
Methods for Industrial Applications: Specifying and Program- 
ming the Steam Boiler Control, vol. 1165 of LNCS. Springer- 
Verlag, 1996. 

[BBC+95] N.S. Bj0rner, A. Browne, E.S. Chang, M. Colon, A. Kapur, 
Z. Manna, H.B. Sipma, and T.E. Uribe. STeP: The Stanford 
Temporal Prover, User's Manual. Technical Report STAN-CS- 
TR-95-1562, Computer Science Department, Stanford Univer- 
sity, November 1995. 

[BBC+96] N.S. Bj0rner, A. Browne, E.S. Chang, M. Colon, A. Kapur, 
Z. Manna, H.B. Sipma, and T.E. Uribe. STeP: Deductive- 
algorithmic verification of reactive and real-time systems. In 
R. Alur and T.A. Henzinger, editors, Proc. 8th Intl. Conference 
on Computer Aided Verification, vol. 1102 of LNCS, pages 415- 
418. Springer-Verlag, July 1996. 

[BBM97] N.S. Bjorner, A. Browne, and Z. Manna. Automatic generation 
of invariants and intermediate assertions. Theoretical Computer 
Science, 173(l):49-87, February 1997. Preliminary version ap- 
peared in 1st Intl. Conf. on Principles and Practice of Constraint 
Programming, vol. 976 of LNCS, pp. 589-623, Springer-Verlag, 
1995. 

[BJ098] N.S. Bjorner. Integrating Decision Procedures for Temporal Ver- 
ification. PhD thesis, Computer Science Department, Stanford 
University, November 1998. 

[BLM97] N.S. Bj0rner, U. Lerner, and Z. Manna. Deductive verification 
of parameterized fault-tolerant systems: A case study. In Intl. 
Conf. on Temporal Logic. Kluwer, 1997. To appear. 

[BMS95] A. Browne, Z. Manna, and H.B. Sipma. Generalized temporal 
verification diagrams. In 15th Conference on the Foundations 
of Software Technology and Theoretical Computer Science, vol. 
1026 of LNCS, pages 484-498. Springer-Verlag, 1995. 

26 



[BMSU98] N.S. Bj0rner, Z. Manna, H.B. Sipma, and T.E. Uribe. De- 
ductive verification of real-time systems using STeP. Technical 
Report STAN-CS-TR-98-1616, Computer Science Department, 
Stanford University, January 1998. To appear in Theoretical 
Computer Science. Preliminary version appeared in J^th Intl. 
AM AST Workshop on Real-Time Systems, vol. 1231 of LNCS, 
pages 22-43. Springer-Verlag, May 1997. 

[BP98] N.S. Bj0rner and M.C. Pichora. Deciding fixed and non-fixed 
size bit-vectors. In 4th Intl. Conf. on Tools and Algorithms for 
the Construction and Analysis of Systems (TACAS), vol. 1384 
of LNCS, pages 376-392. Springer-Verlag, 1998. 

[BSU97] N.S. Bj0rner, M.E. Stickel, and T.E. Uribe. A practical integra- 
tion of first-order reasoning and decision procedures. In Proc. of 
the 14th Intl. Conference on Automated Deduction, vol. 1249 of 
LNCS, pages 101-115. Springer-Verlag, July 1997. 

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified 
lattice model for static analysis of programs by construction or 
approximation of fixpoints. In 4th ACM Symp. Princ. of Prog. 
Lang., pages 238-252. ACM Press, 1977. 

[CF089] D. Cantone, A. Ferro, and E. Omodeo. Computable Set Theory. 
Oxford Science Publications, 1989. 

[CLS96] D. Cyrluk, P. Lincoln, and N. Shankar. On Shostak's decision 
procedure for combinations of theories. In Proc. of the 13t/l Intl. 
Conference on Automated Deduction, vol. 1104 of LNCS, pages 
463-477. Springer-Verlag, 1996. 

[CU98] M.A. Colon and T.E. Uribe. Generating finite-state abstractions 
of reactive systems using decision procedures. In A.J. Hu and 
M.Y. Vardi, editors, Proc. 10i/l Intl. Conference on Computer 
Aided Verification, vol. 1427 of LNCS, pages 293-304. Springer- 
Verlag, July 1998. 

[CZ98] D. Cantone and CG. Zarba. A new fast tableau-based decision 
procedure for an unquantified fragment of set theory. In Int. 
Workshop on First-Order Theorem Proving (FTP'98), 1998. 

27 



[DGG97] D.R. Dams, R. Gerth, and 0. Grumberg. Abstract interpreta- 
tion of reactive systems. A CM Transactions on Programming 
Languages and Systems, 19(2):253-291, 1997. 

[FMS98] B. Finkbeiner, Z. Manna, and H.B. Sipma. Deductive verifi- 
cation of modular systems. In W.P. de Roever, H. Langmaack, 
and A. Pnueli, editors, Compositionality: The Significant Differ- 
ence, COMPOS'97, vol. 1536 of LNCS, pages 239-275. Springer- 
Verlag, December 1998. 

[GM96] H. Garavel and L. Mounier. Specification and verification of 
various distributed leader election algorithms for unidirectional 
ring networks. Rapport de recherche 2986, INRIA, Rhone-Alpes, 
France, September 1996. 

[HP95] N. Halbwachs and Y.E. Proy. POLyhedra desK cAlculator 
(POLKA). VERIMAG, Montbonnot, France, September 1995. 

[KMP96] Y. Kesten, Z. Manna, and A. Pnueli. Verifying clocked transition 
systems. In R. Alur, T.A. Henzinger, and E.D. Sontag, editors, 
Hybrid Systems III, vol. 1066 of LNCS, pages 13-40. Springer- 
Verlag, 1996. 

[MBB+99] Z. Manna, N.S. Bj0rner, A. Browne, M. Colon, B. Finkbeiner, 
M. Pichora, H.B. Sipma, and T.E. Uribe. An update on 
STeP: Deductive-algorithmic verification of reactive systems. In 
R. Berghammer and Y. Lakhnech, editors, Tool Support for Sys- 
tem Specification, Development and Verification, Advances in 
Computing Science, pages 174-188. Springer-Verlag, 1999. 

[MBSU98] Z. Manna, A. Browne, H.B. Sipma, and T.E. Uribe. Visual ab- 
stractions for temporal verification. In A. Haeberer, editor, Al- 
gebraic Methodology and Software Technology (AMAST'98), vol. 
1548 of LNCS, pages 28-41. Springer-Verlag, December 1998. 

[MCF+98] Z. Manna, M.A. Colon, B. Finkbeiner, H.B. Sipma, and T.E. 
Uribe. Abstraction and modular verification of infinite-state re- 
active systems. In M. Broy, editor, Requirements Targeting Soft- 
ware and Systems Engineering (RTSE), LNCS. Springer-Verlag, 
1998. To appear. 

[McM93] K.L. McMillan. 
Pub., 1993. 

Symbolic Model Checking.   Kluwer Academic 

28 



[MP94] Z. Manna and A. Pnueli. Temporal verification diagrams. In 
M. Hagiya and J.C. Mitchell, editors, Proc. International Sym- 
posium on Theoretical Aspects of Computer Software, vol. 789 of 
LNCS, pages 726-765. Springer-Verlag, 1994. 

[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Sys- 
tems: Safety. Springer-Verlag, New York, 1995. 

[MP96] Z. Manna and A. Pnueli. Clocked transition systems. Technical 
Report STAN-CS-TR-96-1566, Computer Science Department, 
Stanford University, April 1996. 

[MS98] Z. Manna and H.B. Sipma. Deductive verification of hybrid 
systems using STeP. In T. Henzinger and S. Sastry, editors, 
Hybrid Systems: Computation and Control, vol. 1386 of LNCS, 
pages 305-318. Springer-Verlag, April 1998. 

[Sho84] R.E. Shostak. Deciding combinations of theories. J. ACM, 
31(1): 1-12, January 1984. 

[SUM99] H.B. Sipma, T.E. Uribe, and Z. Manna. Deductive model check- 
ing. To appear in Formal Methods in System Design, 1999. Pre- 
liminary version appeared in Proc. 8th Intl. Conference on Com- 
puter Aided Verification, vol. 1102 of LNCS, Springer-Verlag, 
pp. 208-219, 1996. 

[Uri98] T.E. Uribe. Abstraction-based Deductive-Algorithmic Verifica- 
tion of Reactive Systems. PhD thesis, Computer Science De- 
partment, Stanford University, December 1998. Technical Re- 
port STAN-CS-TR-99-1618. 

[Wei97] V. Weispfenning. Quantifier elimination for real algebra—the 
quadratic case and beyond. In Applied Algebra and Error- 
Correcting Codes (AAECC) 8, pages 85-101, 1997. 

29 


