
Andrei Ershov
Third International Conference "■■ «§

Informatics

1999
July 6-9

Akademgorodok

Novosibirsk

REPORT DOCUMENTATION PAGE
Form Approved

OMBNo. 0704-0188

Pubic reporlirg burden tor this collection ot information is estimatedto averagB 1 hour per response, including the lime tor reviewing inslruclions, searching dais sources,
gaheringand nrainainingthe data needed, and conpletirn and reviewing the colleclion ol information. Send comments regarding Ih'E burdBn eslimale or any olhBr aspecl oHhis collection
ot htornHlbn, including suggestions ior reducing this burden to Washington Headquarters Service, Directorate lor Information (Relations and Reports,
lZISJetterson Dave Hgrmay, Suite 1Z04, Arlington, VA ZZZ0Z43QZ, and1o1hBOh"iceot Management and Budget,
Paperwork Reduction Project (07O4-01SS) Washington, DC 33533.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
10.06.1999

REPORT TYPE
conference proceedings

TITLE AND SUBTITLE

Andrei Ershov Third International Conference
PERSPECTIVES OF SYSTEM INFORMATICS

6. AUTHOR(S)

Dines Bjorner,
Manfred Broy,
Alexandre Zamulin

3. DATES COVERED (Rom - To)
March 1999-July 1999

5a. CONTRACT NUMBER

5b. GRANT NUMBER
N00014-99-1-03 84

5c. PROGRAM ELEMENT NUMBER
601153N

5d PROJECT NUMBER
99PR04598-00

5e. TASK NUMBER

Sf. WORK UN IT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

A.P. Ershov Institute of Informatics Systems.
6, Akad. Lavrenitiev pr.,
630090, Novosibirsk, Russia

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research,
Nortel Networks,
Russian Foundation For Basic Research,
Relative Technologies,
UN University's International Institute for Software Technology

6. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR 'S ACRONYM(S)

ONR, NORTEL, RFBR, RT, UNUIIST

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Extended abstracts of the papers
presented at the Andrei Ershov Third International Conference
PERSPECTIVES OF SYSTEM INFORMATICS

15. SUBJECTTERMS

system informatics, computer science, artificial intelligence

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

U>'CLASSIFIED

17. LIMITATION OF
ABSTBACT

SAR

1ß. NUMBER
OF PAGES

394

19a. NAMEOF RESPONSIBLE PERSON
Alexandre Zamulin

19b. TELEPONE NUMBER {Include area cods;
+7(3832) 396258

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI-StdZ39-1fl

J

PERSPECTIVES OF SYSTEM INFORMATICS

Andrei Ershov Third International Conference
6-9 July 1999, Novosibirsk, Akademgorodok, Russia

Sponsored by:

Russian Foundation for Basic Research
Office of Naval Research
Nortel Networks
Relativity Technologies, Inc
UN University's International Institute for Software Technology

Organized by:

A.P.Ershov Institute of Informatics Systems,
Siberian Branch of Russian Academy of Sciences

UTIC QUALITY INSPECTED 4

UDK 519.6

■ Perspectives of System Informatics (Proceedings of Andrei Ershov Third International Con-
ference). - Novosibirsk: A.P.Ershov Institute of Informatics Systems, 1999. - 394 p.

The volume comprises the papers presented at Andrei Ershov Third International Con-
ference "Perspectives of System Informatics" held in Akademgorodok (Novosibirsk. Russia)
July 6-9, 1999. '

Various problems of theoretical computer science, programming methodology and artificial
intelligence are considered in the papers.

The book is addressed to specialists in theoretical and systems programming and new in-
formation technologies.

This work relates to Department of Navy grant N 00014-99-1-0384 issued by the Office of Naval Research. The United

States Goverment has a royalty-free license throught the world in all copyrightable material contained herein.

11

FOREWORD

The volume comprises extended abstracts of the papers selected for the presentation at the
Third International Andrei Ershov Memorial Conference "Perspectives of System Informatics",
Akademgorodok (Novosibirsk, Russia), July 6—9, 1999. The main goal of the conference is to
give an overview of research directions which are decisive for the growth of major areas of
research activities in system informatics.

The conference is the third one in the line. The First International Conference "Perspectives
of System Informatics" was held in Novosibirsk, Akademgorodok, May 27—30, 1991 and the
second in June 25—28,1996. Both conferences gathered a wide spectrum of specialists and were
undoubtedly very successful.

The third conference includes many of the subjects of the second conference, such as the-
oretical computer science, programming methodology, new information technologies, and the
promising field of artificial intelligence — as important components of system informatics. The
style of the second conference is preserved to a certain extent: a considerable number of invited
papers in addition to contributed papers. However, posters are replaced by short talks mainly
given by young researchers.

This time 73 papers were submitted to the conference by researchers from all continents.
Each paper was reviewed by three experts, at least two of them from the same or closely
related discipline as the authors. The reviewers generally provided high quality assessment of
the papers and often gave extensive comments to the authors for the possible improvement
of the presentation. As a result, the programme committee selected 27 high quality papers as
regular talks and 17 papers as short talks. A broad range of "hot" topics in system informatics are
covered by eight invited talks given by prominent computer scientists from different countries.

The conference, like the previous ones, is dedicated to the memory of A. P. Ershov, the real
and recognized leader in Soviet (and Russian) informatics.

The late Academician Andrei P. Ershov was a man for all seasons. He commanded universal
respect and received affection all over the world. His view of programming was both a human
one and a scientific one. He created, at Akademogorodok, a unique group of scientists — some
now in far away regions of the world: a good example of "technology transfer", although perhaps
not one that too many people in Russia are happy about.

Many of his disciples and colleagues continue to work in the directions initiated or stimulated
by him, at the A. P. Ershov Institute of Informatics Systems. The institute was and is the main
organizer of the three conferences.

We are glad to express our gratitude to all the persons and organizations who contributed
to the conference — to the sponsors for their moral, financial and organizational support, and
to the members of local Organizing Committee for their mutual efforts towards a success of
this event. We are especially grateful to N. Cheremnykh for her selfless labour when preparing
the conference.

July, 1999 D. Bj0rner,
M. Broy,

A. Zamulin

in

CONFERENCE CHAIR

Alexander Marchuk (Novosibirsk, Russia)

PROGRAMME COMMITTEE
CO-CHAIRS:

Dines Bj0rner (Lyngby, Denmark)
Manfred Broy (Munich, Germany)
Alexandre Zamulin (Novosibirsk, Russia)

LOCAL ORGANIZING
COMMITTEE

Sergei Kuznetsov
Gennady Alexeev
Alexander Bystrov
Tatyana Churina
Vladimir Detushev
Olga Drobyshevich
Vera Ivanova
Vladimir Sergeev
Anna Shelukhina
Irina Zanina

INVITED SPEAKERS

K. Apt (CWI, The Netherlands)
V. Basili (University of Maryland, USA)
M.-C. Gaudel (Universite Paris-Sud, France)
A. Zamulin (IIS, Novosibirsk)
N. Jones (DIKU, Denmark)
D. Mery (University Henri Poincar<§ &
LORIA, France)
R. Morrison (University of St. Andrews,
Scotland)
A. Narin'yani (RIAI, Moscow)
D, Sannella (Edinburgh University,
Scotland)

CONFERENCE SECRETARY

Natalia Cheremnykh (Novosibirsk, Russia)

PROGRAMME COMMITTEE

Janis Barzdins (Riga, Latvia)
Frederic Benhamou (Nantes, France)
Christian Boitet (Grenoble, France)
Mikhail Bulyonkov (Novosibirsk, Russia)
Piotr Dembinski (Warsaw, Poland)
Alexander Dikovsky (Nantes, France)
Victor Ivannikov (Moscow, Russia)
Philippe Jorrand (Grenoble, France)
Leonid Kalinichenko (Moscow, Russia)
Alexander Kleschev (Vladivostok, Russia)
Vadim Kotov (Palo Alto, USA)
Reino Kurki-Suonio (Tampere, Finland)
Alexander Letichevski (Kiev, Ukraine)
Eduard Ljubimsky (Moscow, Russia)
Rüdiger Loos (Tübingen, Germany)
Bernhard Möller (Augsburg, Germany)
Hanspeter Mössenböck (Linz, Austria)
Valery Nepomniaschy (Novosibirsk, Russia)
Gennady Osipov (Pereslavl-Zalesski, Russia)
Jaan Penjam (Tallinn, Estonia)
Peter Pepper (Berlin, Germany)
Igor Pottosin (Novosibirsk, Russia)
Wolfgang Reisig (Berlin, Germany)
Dieter Rombach (Kaiserslautern, Germany)
Dean Rosenzweig (Zagreb, Croatia)
Viktor Sabelfeld (Karlsruhe, Germany)
Vladimir Sazonov (Pereslavl-Zalesski,
Russia)
David Schmidt (Manhattan, USA)
Sibylle Schupp (Troy, USA)
Valery Sokolov (Yaroslavl, Russia)
Nicolas Spyratos (Paris, France)
Alexander Tomilin (Moscow, Russia)
Enn Tyugu (Stockholm, Sweden)
Andrei Voronkov (Uppsala, Sweden)
Tatyana Yakhno (Novosibirsk, Russia)
Zhou Chaochen (Macau)

IV

REFEREES

I. Anureev
J. Barzdins
F. Benhamou
D. Bj0rner
C. Boitet
M. Broy
M. Bulyonkov
C. Bunse
K. Cerans
Dang Van Hung
P. Dembinski
A. Dikovsky
T. Ehm
S. Gaissaryan
A. Godlevskiy
M. Gorbunov-Posadov
V. Ivannikov
T. Jen
Ph. Jorrand
L. Kalinichenko
A. Kleschev
M. Korovina
V. Kotov

G. Kucherov
S. Krivoi
R. Kurki-Suonio
K. Lellahi
A. Letichevski
E. Ljubimsky
R. Loos
B. Möller
F. Moller
H. Mössenböck
0. Müller
A. Mycroft
G. Osipov
A. A. Parosh
J. Penjam
P. Pepper
J. Philipps
K. Podnieks
1. Pottosin
W. Reisig
D. Rombach
A. Sabelfeld
V. Sabelfeld

U. Sarkans
V. Sazonov
D. Schmidt
K. Schneider
S. Schupp
W. Schwerin
N. Shilov
V. Sokolov
N. Spyratos
T. Stauner
A. Tomilin
M. Tudruj
E. Tyugu
M. Valiev
D. von Oheimb
A. Voronkov
J. Winkovski
Xu Qiwen
T. Yakhno
A. Zamulin
Zhou Chaochen

TABLE OF CONTENTS

Algebraic Specifications

Sannella D. The Common Framework Initiative for Algebraic Specification
and Development of Software (Invited Talk) !

Korovina M. V., Kudinov O. V. A Logical Approach to Specification
of Hybrid Systems ,,,. 7

Specifications with States

Gaudel M.-C, Zamulin A. Algebraic Imperative Specifications (Invited Talk) 12
AnlauffM., Kutter Ph. W., Pierantonio A. Enhanced Control Flow Graphs

in Montages 27

Sünbül A. Abstract State Machines for the Composition of Architectural Styles 37

Partial Evaluation and Supercompilation

Jones N. D. The Essence of Program Transformation by Partial Evaluation and Driving
(Invited Talk) : 43

Christensen N. H., Glück R., Laursen S. Binding-Time Analysis in Partial Evaluation:
One Size Does Not Fit All 56

Glück R., Leuschel M. Abstraction-Based Partial Deduction for Solving Inverse
Problems — A Transformational Approach to Software Verification 62

Martin J., Leuschel M. Sonic Partial Deduction 67
Secher J. P., S0rensen M. H. B. On Perfect Supercompilation 76
Mogensen T. M. Linear Time Self-Interpretation of the Pure Lambda Calculus 86
Uvarov D. L. An Optimal Algorithm for Purging Regular Schemes 96
Plümicke M. Polymorphism in OBJ-P " j00

Concurrency and Parallelism

Gibson P., Mery D. Formal Modelling of Services for Getting a Better Understanding
of the Feature Interaction Problem (Invited Talk) 105

Chkliaev D., Hooman J., van der Stok P. Serializability Preserving Extensions
of Concurrency Control Protocols 123

Chelomm Yu. V. Platform Independent Approach for Detecting Shared Memory
Parallelism 1 „„

Ustimenko A. P. Hierarchical Cause-Effect Structures 136
Lomazova I. A., Schnoebelen Ph. Some Decidability Results for Nested Petri Nets 143
Raja N., Shyamasundar R. K. Relating Paradigms of Mobility !49
Ciobanu G., Olariu F. Abstract Structures for Communication 159
Kobilov S. S. Language Tools and Programming Systems in Educational Informatics '.'.'.'.'. 162
Logic and processes

DekhtyarM I., Dikovsky A. Ya., Valiev M. K. Applying Temporal Logic to Analysis
ot Behavior of Cooperating Logic Programs 165

Man Lin, Malec J., Nadjm-Tehrani S. On Semantics and Correctness of Reactive
Rule-based Programs

Dam M., Gurov D. Compositional Verification of CCS Processes 178
Trichina E. Locality Based Programming for FPGAs 185

VI

Languages and Software
Basili V., Shull F., Lanubile F. Using Experiments to Build a Body of Knowledge

(Invited Talk) 190
Kucherov G., Rusinowitch M. Patterns in Words vs Patterns in Trees:

A Brief Survey and New Results .-'. 202
Caballero R., Löpez-Fraguas F. J. Extensions: A Technique for Structuring

Functional-Logic Programs 211

Database Programming
Morrison R., Connor R. C. H., Cutts Q. I., Dearie A., Farkas A,, Kirby G. N. C,
McGettrick R., Zirintsis E. Current Directions in Hyper-Programming

(Invited Talk) , 221
Frank L. Integration of Different Commit/Isolation Protocols in CSCW Systems

with Shared Data 238
Asgari S., Yonezaki N. A General Object-Oriented Model for Spatial Data 245

Object-Oriented Programming
Mössenböck H. Twin — A Design Pattern for Modeling Multiple Inheritance 251
Lellahi K., Souah R. A Partial Semantics for Object Data Models with Static Binding ... 257
Simonis V., Weiss R. Heterogeneous, Nested STL-Containers in C++ 263
Shelekhov V. I., Kuksenko S. V. Data Flow Analysis of Java Programs

in the Presence of Exceptions 268
Hof M. Late Adaptation of Method Invocation Semantics 272
Scripkin A. E. Object-Oriented Development Framework for Creating Distributed

Programs Using Java 277

Artificial Intelligence I
Apt K. R. Component-Based Framework for Constraint Programming (Invited Talk) 280
Kolushev F.A., Bogdanov A.A. Multi-agent Optimal Path Planning for Mobile Robots

in Environment with Obstacles 289
Kononenko I., Popov /., Zagorul'ko Yu. Approach to Understanding Weather

Forecast Telegrams with Agent-Based Technique 295

Constraint Programming
Castro C, Monfroy E. A Control Language for Designing CSP Solvers 299
Benhamou F., Goualard F., Languenou E., Christie M. An Algorithm to Compute

Inner Approximations of Relations for Interval Constraints 306
Sidorov V., Telerman V., Ushakov D. Constraint Programming Techniques

for Solving Problems on Graphs 312
Yakhno T., Petrov E. Extensional Set Library for ECLTS6 318

VII

Artificial Intelligence II

Narin'yani A. Information Technologies: Revolution at the Beginning of the 21st
. Century (Invited Talk) 325

Cheblakov G.B., Dinenberg F. G., Levin D. Ya., Popov I. G.','zagoruVkoYu.A.
An Approach to Development of a System for Speech Interaction with
an Intelligent Robot _ 330

Herath S., Saito G, Herath A. Analysis of Sign Languages: A Step towards
Multi-hngual Machine Translation for Sign Languages 340

Model & Program Checking

Schneider K., Sabelfeld V. Introducing Mutual Exclusion in Esterel 346
Anderson R. J., Beame P., Chan W., Notkin D. Experiences with the Application

of Symbolic Model Checking to the Analysis of Software Specifications 355
Bold A., Vialard V. Formal Verification of a Compiler Back-end Generic Checker

Program 362

HeberleA., Gaul T., Goerigk W., Goos G., Zimmermann W. Construction of Verified
Compiler Front-Ends with Program-Checking 370

de la Riva G, Tuya J, de Diego J. R. Translating SA/RT Models to Synchronous
Reactive Systems: An Approximation to Modular Verification 378

vm

Algebraic Specifications

The Common Framework Initiative for Algebraic Specification
and Development of Software*

Donald Sannella

Laboratory for Foundations of Computer Science
University of Edinburgh., UK

dts@dcs.ed.ac.uk www.des.ed.ac.uk/~dts/

Abstract. The Common Framework Initiative (CoFI) is an open international collaboration which aims
to provide a common framework for algebraic specification and development of software. The central
element of the Common Framework is a specification language called CASL for formal specification of
functional requirements and modular software design which subsumes many previous algebraic specification
languages. This paper is a brief summary of past and present work on CoFI.

1 Introduction

Algebraic specification is one of the most extensively-developed approaches in the formal methods area. The
most fundamental assumption underlying algebraic specification is that programs are modelled as many-sorted
algebras consisting of a collection of sets of data values together with functions over those sets. This level of
abstraction is commensurate with the view that the correctness of the input/output behaviour of a program
takes precedence over all its other properties. Another common element is that specifications of programs
consist mainly of logical axioms, usually in a logical system in which equality has a prominent role, describing
the properties that the functions are required to satisfy. This property-oriented approach is in contrast to
so-called model-oriented specifications in frameworks like VDM which consist of a simple realization of the
required behaviour. Confusingly — because the theoretical basis of algebraic specification is largely in terms of
constructions on algebraic models — it is at the same time much more model-oriented than approaches such
as those based on type theory (see e.g. [NPS90]), where the emphasis is almost entirely on syntax and formal
systems of rules and semantic models are absent or regarded as of secondary importance.

The past 25 years has seen a great deal of research on the theory and practice of algebraic specification.
Overviews of this material include [Wir90], [BKLOS91], [LEW96], [ST97], [AKK99] and [ST??]. Developments
on the foundational side have been balanced by work on applications, but despite a number of success stories,
industrial adoption has so far been limited. The proliferation of algebraic specification languages is seen as
a significant obstacle to the dissemination and use of these techniques. Despite extensive past collaboration
between the main research groups involved and a high degree of agreement concerning the basic concepts, the
field has given the appearance of being extremely fragmented, with no de facto standard specification language,
let alone an international standard. Moreover, although many tools supporting the use of algebraic techniques
have been developed in the academic community, none of them has gained wide acceptance, at least partly
because of their isolated usability: each tool uses a different specification language.

Since late 1995, work has been underway in an attempt to remedy this situation. The Common Framework
Initiative (abbreviated CoFI) is an open international collaboration which aims to provide a common framework

* This research was supported by the ESPRIT-funded CoFI Working Group.

Perspectives of System Informatics'99

for algebraic specification and development of software. The Common Framework is intended to be attractive to
researchers in the field as a common basis for their work, and to ultimately become attractive for use in industry.
The central element of the Common Framework is a specification language called CASL (the Common Algebraic
Specification Language), intended for formal specification of functional requirements and modular software
design and subsuming many previous specification languages. Development of prototyping and verification tools
for CASL will lead to them being interoperable, i.e. capable of being used in combination rather than in isolation.

Most effort to date has concentrated on the design of CASL, which concluded in late 1998. Even though the
intention was to base the design on a critical selection of concepts and constructs from existing specification
languages, it was not easy to reach a consensus on a coherent language design. A great deal of careful con-
sideration was given to the effect that the constructs available in the language would have on such aspects as
the methodology for formal development of modular software from specifications and the ease of constructing
appropriate support tools. A complete formal semantics for CASL was produced in parallel with the later stages
of the language design, and the desire for a relatively straightforward semantics was one factor in the choice
between various alternatives in the design. Work on CoFI has been an activity of IFIP WG 1.3 and the design
of CASL has been approved by this group.

This paper is a brief summary of work in CoFI with pointers to information available elsewhere. CASL is
given special prominence since it is the main concrete product of CoFI so far. A more extensive description of
the rationale behind CoFI and CASL may be found in [Mos97] and [Mos99].

2 CASL

CASL represents a consolidation of past work on the design of algebraic specification languages. With a few
minor exceptions, all its features are present in some form in other languages but there is no language that
comes close to subsuming it. Designing a language with this particular novel collection of features required
solutions to a number of subtle problems in the interaction between features.

It soon became clear that no single language could suit all purposes. On one hand, sophisticated features
are required to deal with specific programming paradigms and special applications. On the other, important
methods for prototyping and reasoning about specifications only work in the absence of certain features: for
instance, term rewriting requires specifications with equational or conditional equational axioms.

CASL is therefore the heart of a family of languages. Some tools will make use of well-delineated sub-languages
of CASL obtained by syntactic or semantic restrictions, while extensions of CASL will be defined to support
various paradigms and applications. The design of CASL took account of some of the planned extensions
particularly one that involves higher-order functions [MHK98], and this had an important impact on decisions
concerning matters like concrete syntax.

CASL consists of the following major parts or "layers": basic specifications; structured specifications; archi-
tectural specifications; specification libraries. A detailed description of the features of CASL may be found in
[Mos99] and the complete language definition is in [CoFI98]. Here we just give a quick overview and a couple of
simple examples in the hope that this will give a feeling for what CASL is like. Further examples may be found
in the appendices of [CoFI98]. Since features of various existing specification languages have found their way
into CASL in some form, there are of course many interesting relationships with other languages. It is not the
purpose of this paper to detail these so many relevant references are omitted.

A CASL basic specification denotes a class of many-sorted partial first-order structures: algebras where the
functions are partial or total, and where also predicates are allowed. These are classified by signatures, which list
sort names, partial and total function names, and predicate names, together with profiles of functions and pred-
icates. The sorts are partially ordered by a subsort inclusion relation, which is interpreted as embedding rather
than set-theoretic inclusion, and is required to commute with overloaded functions. A CASL basic specification
includes declarations to introduce components of signatures and axioms to give properties of structures that are
to be considered as models of a specification. Axioms are written in first-order logic (so, with quantifiers and the
usual logical connectives) built over atomic formulae which include strong and existential equalities, definedness
formulae and predicate applications, with generation constraints added as special, non-first-order sentences
The interpretation of formulae is as in classical two-valued first-order logic, in contrast to some frameworks that
accommodate partial functions. Concise syntax is provided for specifications of "datatypes" with constructor
and selector functions.

Here is an example of a basic specification:

free types Nat ::= 0 | sort Pos;
Pos ::= suc(pre : Nat)

 Sannella D. The Common Framework Initiative for Algebraic Specification and Development of Software 3

op pre : Nat ->? Nat
axioms

->def pre(O);
Vn : Nat • pre(suc(n)) = n

pred even—: Nat
var n : Nat
• even 0
• even suc{n) -43- ->even n

The remaining features of CASL do not depend on the details of the features for basic specifications, so
this part of the design is orthogonal to the rest. An important consequence of this is that sub-languages and
extensions of CASL can be defined by restricting or extending the language of basic specifications (under certain
conditions) without the need to reconsider or change the rest of the language.

CASL provides ways of building complex specifications out of simpler ones (the simplest ones being basic
specifications) by means of various specification-building operations. These include translation, hiding, union,
and both free and loose forms of extension. A structured specification denotes a class of many-sorted partial
first-order structures, as with basic specifications. Thus the structure of a specification is not reflected in its
models: it is used only to present the specification in a modular style. Structured specifications may be named
and a named specification may be generic, meaning that it declares some parameters that need to be instantiated
when it is used. Instantiation is a matter of providing an appropriate argument specification together with a
fitting morphism from the parameter to the argument specification. Fitting may also be accomplished by the use
of named views between specifications. Generic specifications correspond to what is known in other specification
languages as (pushout-style) parametrized specifications.

Here is an example of a generic specification (referencing a specification named PAR.TIAL_OR.DER, which is
assumed to declare the sort Elem and the predicate _ < _.):

spec LIST_WITH_ORDER [PARTIAL_ORDER] -
free type List[Elem] ::= nil | cons(hd :?Elem; tl :!List[Elem\)

then
local

op insert: Elem x List[Elem] -» List[Elem};
vars x, y : Elem; I : List[Elem]
axioms insert(x, nil) = cons(x, nil);

x < y =>■ insert(x, cons(y, I)) = cons(x, insert(y, I));
~~^{% < y) =^ insert(x, cons(y, I)) — cons(y, insert(x, I))

within
pred order[.^ < __] : List[Elem] x List[Elem]
vars x : Elem; I: List[Elem]
axioms order[— < ..](nil) = nil;

order[— < .\{cons{x, I)) = insert(x, order[.. < _](/))
end

Architectural specifications in CASL are for describing the modular structure of software, in constrast to
structured specifications where the structure is only for presentation purposes. Architectural specifications are
probably the most novel aspect of CASL; they are not entirely new, but they have no counterpart in most
algebraic specification languages. An architectural specification consists of a list of unit declarations, indicating
the component modules required with specifications for each of them, together with a unit term that describes
the way in which these modules are to be combined. (There is an unfortunate potential for confusion here: in
CASL, the term "architecture" refers to the "implementation" modular structure of the system rather than to
the "interaction" relationships between modules in the sense of [AG97].) Units are normally functions which
map structures to structures, where the specification of the unit specifies properties that the argument structure
is required to satisfy as well as properties that are guaranteed of the result. These functions are required to be
persistent, meaning that the argument structure is preserved intact in the result structure. This corresponds to
the fact that a software module must use its imports as supplied without altering them.

Here is a simple example of an architectural specification (referencing ordinary specifications named LIST,

CHAR, and NAT, assumed to declare the sorts Elem and List[Elem], Char, and Nat, respectively):

Perspectives of System Informatics'99

arch spec CNJLlST =
units

C : CHAR;
N : NAT ;
F : ELEM ->• LIST[ELEM]

result F[C fit Elem H- Char) and F[N fit Elem H- Nat]

More about architectural specifications, including further examples, may be found in [BST99].
Libraries in CASL are collections of named specifications. A specification can refer to an item in a library by

giving its name and the location of the library that contains it. CASL includes direct support for establishing
distributed libraries on the Internet with version control. '

3 Semantics

The formal semantics of CASL, which is complete but whose presentation still requires some work, is in [CoFI99l
The semantics 1S divided into the same parts as the language definition (basic specifications, structured specifi-
cations, etc.) but in each part there is also a split into static semantics and model semantics.

The static semantics checks well-formedness of phrases and produces a "syntactic" object as result failing
to produce any result for ill-formed phrases. For example, for a basic specification the static semantics yields
& theory presentation containing the sorts, function symbols, predicate symbols and axioms that belong to
the specification. (Actually it yields an enrichment: when a basic specification is used to extend an existing
specification it may refer to existing sorts, functions and predicates.) A phrase may be ill-formed because it
makes reference to non-existent identifiers or because it contains a sub-phrase that fails to type check The model
semantics provides the corresponding model-theoretic part of the semantics, and is intended to be applied only
to phrases that are well-formed according to the static semantics. For a basic specification, the model semantics
yields a class of models. A statically well-formed phrase may still be ill-formed according to the model semantics-
tor example, if a generic specification is instantiated with an argument specification that has an appropriate
signature but which has models that fail to satisfy the axioms in the parameter specification, then the result is
undefined. The judgements of the static and model semantics are defined inductively by means of rules in the
style of Natural Semantics.

The orthogonality of basic specifications in CASL with respect to the rest of the language is reflected in

n7 SnTaiSCS by the USe °f a Variant °f the n0ti0n of institutk>n [GB92] called an institution with symbols
lMos98j. (For readers who are unfamiliar with the notion of institution, it corresponds roughly to "logical
system appropriate for writing specifications".) The semantics of basic specifications is regarded as defining
a particular institution with symbols, and the rest of the semantics is based on an arbitrary institution with
symbols.

The semantics provides a basis for the development of a proof system for CASL. AS usual, at least three levels
are needed: proving consequences of sets of axioms; proving consequences of structured specifications; and finally
proving the refinement relation between structured specifications. The semantics of CASL gives a reference point
for checking the soundness of each of the proposed proof systems and for studying their completeness.

4 Methodology

The original motivation for work on algebraic specification was to enable the stepwise development of correct
software systems from specifications with verified refinement steps. CASL provides good support for the pro-
duction of specifications both of the problem to be solved and of components of the solution but it does not
incorporate a specific notion of refinement. Architectural specifications go some way towards relating differ-
ent stages of development but they do not provide the full answer. Other methodological issues concern the
endpoints of the software development process: how the original specification is obtained in the first place

(requirements engineering), and how the transition is made from CASL to a given programming language Fi-
nally, the usual issues in programming methodology are relevant here, for instance: verification versus testing-
software reuse and specification reuse; software reverse engineering; software evolution.

CASL has been designed to accommodate multiple methodologies. Various existing methodologies and styles
of use of algebraic specifications have been considered during the design of CASL to avoid unnecessary difficulties
for users who are accustomed to a certain way of doing things. For the sake of concreteness, the present author
prefers the methodology espoused in [ST97], and work on adapting this methodology to CASL has begun

Sannella D. The Common Framework Initiative for Algebraic Specification and Development of Software

5 Support tools

Tool activity initially focussed on the concrete syntax of CASL to provide feedback to the language design
since the exact details of the concrete syntax can have major repercussions for parsing. CASL offers a flexible
syntax with mixfix notation for application of functions and predicates to arguments, which requires relatively
advanced parsing methods. ASF+SDF was used to prototype the CASL syntax in the course of its design,
and several other parsers have been developed concurrently. Also available is a M£X package for uniform
formatting of CASL specifications with easy conversion to HTML format. ATerms [BK098] have been chosen
as the common interchange format for CoFI tools. This provides a tree representation for various objects
(programs, specifications, abstract syntax trees, proofs) and annotations to store computed results so that one
tool can conveniently pass information to another. Work is underway on a format for annotations and on a list
of specific kinds of annotations.

At present, the principal focus of tools work in CoFI is on adapting tools that already exist for use with CASL.

Existing rewrite engines such as in OBJ, ASF+SDF and ELAN should provide a good basis for prototyping
(parts of) CASL specifications. For verification tools, we plan to reuse existing proof tools for specific subsets
of CASL: equational, conditional, full first-order logic with total functions, total functions with subsorts, partial
functions, etc. The integration of proof tools such as SPIKE, EXPANDER and others will provide the potential to
perform proofs by induction, observational proofs, termination proofs, etc. One system on which development is
already well-advanced is HOL-CASL [MKK98] which provides static analysis of CASL specifications and theorem
proving via an encoding into the Isabelle/HOL theorem prover [Pau94]. Another is INKA 5.0 [AHMS99] which
provides theorem proving for a sub-language of CASL that excludes partial functions.

6 Specification of reactive systems

An area of particular interest for applications is that of reactive, concurrent, distributed and real-time systems.
There is considerable past work in algebraic specification that tackles systems of this kind, but nonetheless
the application of CASL to such systems in speculative and preliminary in comparison with the rest of CoFI.
The aim here is to propose and develop one or more extensions of CASL to deal with systems of this kind^
and to study methods for developing software from such specifications. Extensions in three main categories are
currently being considered:

- Combination of formalisms for concurrency (e.g. CCS, Petri nets, CSP) with CASL for handling classical
(static) data structures;

- Formalisms built over CASL, where processes are treated as special dynamic data; and
- Approaches where CASL is used for coding at the meta-level some formalism for concurrency, as an aid to

reasoning.

Work in this area begun only after the design of CASL was complete and so it is still in its early stages.

7 Invitation

CoFI is an open collaboration, and new participants are welcome to join at any time. Anybody who wishes
to contribute is warmly invited to visit the CoFI web site at http://www.brics.dk/Projects/CoFI/ where
all CoFI documentation, design notes, minutes of past meetings etc. are freely available. Announcements of
general interest to CoFI participants are broadcast on the low-volume mailing list cof i-listSbrics dk and
each task group has its own mailing list; see the CoFI web site for subscription instructions. All of these mailing
lists are moderated. Funding from the European Commission is available until September 2000 to cover travel
to CoFI meetings although there are strict rules concerning eligibility, see http://www.dcs.ed.ac.uk/home/
dts/CoFI-WG/.

Acknowledgements Many thanks to all the participants of CoFI, and in particular to the coordinators of the various
CoFI Task Groups: Bernd Krieg-Brückner (Language Design); Andrzej Tarlecki (Semantics); Michel Bidoit (Methodol-
ogy); Helene Kirchner (Tools); Egidio Astesiano (Reactive Systems); and especially Peter Mosses (External Relations)
who started CoFI and acted as overall coordinator until mid-1998.

Perspectives of System Informatics'99

References

[AG97]

[AKK99]

[AHMS99]

[BKL0S91]

[BST99]

[BK098]

[CoFI98]

[CoFI99]

[GB92]

[Mos98]

[MHK98]

[MKK98]

[LEW96]
[Mos97]

[Mos99]

[NPS90]

[Pau94]
[ST97]

[ST??]

[Wir90]

le^;aZ
dLZ^y^miLTis for ^^coimection-ACM 2hHuadfe" m s°*™ »*

sUttr^pi ar999)Ski ^ B- KrieS"Bräckner ^ ***** ^daUons of System Specification.
S. Autexier D. Hutter, H. Mantel and A. Schairer. Inka 5.0: a logic voyager. Proc. 16th Intl Conference
on Automated Deduction, Trento. Springer LNAI, to appear (1999) inference

M. Bidoit H.-J. Kreowski, P. Lescanne, F. Orejas and D. Sannella (eds.). Algebraic System Specification
and Development: A Survey and Annotated Bibliography. Springer LNCS 501 (1991) ^^aüon

Al * S \lTf* and A- TaXleCkL Architectural specifications in CASL. Proc. 7th Intl Conference on
Algebralc Methodology and Software Technology, Manaus, Brazil. Springer LNCS 1548, 341-357 (S

CoFl NoTe Tr3nn;rp
K//lan

b
d * ^ ATemS; -*"** *** ^ heterogeneous tool for CASL.

^o*ilNote 1-3, http://ww.brics.dk/Projects/CoFI/Notes/T-3/ (1998)

SonTo)G;ttW/v^Tage ?wT-.CASV The COFI ***"* ^cation language - Summary
rZ"T T . n P T•brlCS-dk/ProJect3/CcFI/DocUments/CASL/Suimnary/ (1998).

?0) Co?i No"! Thttw/t8- bASL "I!: C0FI a?eta,fc SpedfiCati0n lan«^e " Semant- (—ion i.u;. ^ofi iNote S5-9, http://www. bncs.dk/Projects/CoFI/Notes/S-9/ (1999)
J. Goguen and R. Burstall. Institutions: abstract model theory for specification and programming Journal
of the Assoc. for Computing Machinery 39:95-146 (1992) "gauming, journal

T. Mossakowski. Institution-independent semantics for CASL-in-the-large. CoFI Note S-8 http-//www
bncs.dk/Projects/CoFI/Notes/S-8/ (1998) ' üttP-//www-

Jf CA°sSf cT^Nte^Tt11 7? B- K;ieg"Bf ,kner- SUbS°rted Partial higher-Mder to<* as - «te»«» 01 OASL COM Note L-10, http://www.brics.dk/Projects/CoFI/Notes/L-10/ (1998).

Llf^T ' ^Tg Mn B- Krie8-Brückner- Static semantic analysis and theorem proving for CASL

Sl^^^)
DWd,Vm^ nCfmiqUeS: S^^P^sfrom WADT'97, ÜÄ

J. Loeckx, H.-D Ehrich and M. Wolf. Specification of Abstract Data Types. Wiley (1996)

L. P«nl«on. /.«Jell«: ,4 Generic Tn.orem Pro.er. Springer LNCS 828 (1994)

ttn^^ °f al^'aiC ^^ *» Warn development. *W

HS^fS^ SPedfiCati0n- Handb0°k °f The0reÜCd C°m^ S™<* (J- - Leeuwen, ed.).

A Logical Approach to Specification of Hybrid Systems

M. V. Korovina1 and 0. V. Kudinov2

1 A. P. Ershov Insitute of Informatics Systems,
Lavrent'ev pr., 6,

Novosibirsk, Russia
ritaOssc.nsu.ru

Institute of Mathematics, University pr., 4,
Novosibirsk, Russia
kudfflmath.nsc.ru

ststemrBvIt^11 **?"* °' °W 'mvtstiVf>a is behaviour of ^ continuous components of hybrid
A iTordi Ä f Y 7 7 "Tu lneiWOrk °f digitaJ and anal°S devkeS inter^ing at discrete times. A first-order logical formahzat.on of hybrid systems is proposed in which the trajectories of the continuous
components are presented by majorant-computable functionals. continuous

1 Introduction

t ntlideC^ltime' attef°f,t0 the Pf°blems of exact mathematical formalization of complex systems such

Mel^TZZrT \miSed- By " h?rid SyStem We mean a netWOrk üf diSitaJ a"d anaIo6 devices interacting at discrete times. An important characteristic of hybrid systems is that they incorporate both

^ZTcZZZT USUaUy °ttd PlantS' " WeU " digital COmP°nentS' -• *** comUrs,Cors and
of thf conZn™ y PTT/-7neSe T*""" are deSigned t0 Select> COntroI> and SUP™ ^ behaviours
be omeTZZTT * &' ^ "* fVeStiSation ^behaviours of hybrid systems have recently
become active areas of research in computer science (for example see [7,10,11,15,16,19]). We use the models
of hybrid systems proposed by Nerode, Kohn in [19].

co^^tT^ ^ a SyStr Whi<? C°nSiStS °f " COntinUOUS Plant that is di^bed by external world and
ZsflnXnTZZ^TT "MT'" automaton. The control program reads sensor data, a
on the olan Th° n t n ? samPled at discret* times, computes the next control law, and imposes it
on the plant. The plant will continue using this control law until the next such intervention '

A representation of external world is an input data of the plant. The control automaton has input data (the

by tTZTTTr'i and the °UtPUt data (the S6t °f COntr01 ^ The C°ntro1 -tomaton is modelled
SnSTaSLS? Th ""I 1S 'l COn?T WhlCh C°nVertS 6aCh measureraent int° -Put symbols of the internal control automaton. The internal control automaton, in practice, is a finite state automaton with finite input
and output alphabets. The second unit is the internal control automaton, which has a symbolic repre ntSn

PanTZTSP
1

 TT rdUCeS ' Symb°liC rePresentation of the -xt control law to be imposed on the
into th^ ZT\ colt n 1S ' C°nVu rtef WhiCh C°nVertS th6Se °Utput s^mbols ^presenting control laws
lutoirI iPf/ r r°: on the pla?\The piant interacts with the Rxternai ™*d ^ *» ™** automata at times ti} where the time sequence fa} satisfies realizability requirements

1 he mam subject of our investigation is behaviour of the continuous components. In [191, the set of all nossible
trajectories of the plant was called as a performance specification. We propose a first-o der logical tmzZtiol
of hybrid systems in which the trajectories of the continuous components (the periorrnJeTecS^tiZTe

7TJXTomnt'computaUe functionals-The followins properties are the main d»XS!
nonlrivbfr111^1?11 " tbe

u
external WOrld is presented by a majorant-computable real-valued function In

nontnv al cases for proper behaviour our system should analyse some complicated external information a everv
mojnent when such information can be processed. In general case, we can't represent this in o mation byevS

:l^ZteSZ^!T °f behaTUrS.°f the external WOTld ™>- ^ unknown in advance^Ä
external information should be measured so, in some sense, it is computable. According this reasons we oresent
an external mformation by a majorant-computable real-valued function P

2. The plant is given by a real-valued functional. At the moment of interaction, using the law comouted bv the
discrete device, the plant transforms external function to a real value which is the output Z Zplant So he
theory of majorant-computable functionals is adequate mathematical tool for a formaSion of the mentioned

representation of the plant by an ordinary differential equation (see [13,20]). Really, if there exists some metlod

Perspectives of System Informatics'99

for approximate computing of the solution to the differential equation that is based on difference operators like
the Galerkin method, then such solution can be described by a computable functional (see [13,20]).
3. The trajectories of plants are described by computable functionals. So the trajectories are exactly characterized
in logical terms (via ^-formulas). Thus, the proposition is proved which connects the trajectory of a plant with
validity of two ^-formulas in the basic model.

2 Basic Notions

To construct a formalization of hybrid systems we introduce a basic model and recall the notions of majorant-
computability of real-valued functions and functionals. To specify complicated systems such as hybrid svstems
we extend the real numbers R by adding the list superstructure L(R), the set of finite sequences (words), A*,
of elements of A, where A is a finite alphabet, together with the predicates Pai for each elements ad of A, and
appropriate operations for working with elements of L(IR) and A*.

We consider the many-sorted model M =< HW(1R), A* > with the following sorts:

1. HW0R) = (1R;L(]R), cons, €,, Q>, where
IR =< R, 0,1, +,-,<> is the standard model of the reals, denoted also by JR;
the set L(H) is constructed by induction:
(a) L0(IR) = 1R;
(b) Li+1=the set of finite ordered sequences (lists) of elements of 1R U LJJR);
(c)L(JR) = [j Li(JR).
(d) ofcw(n) = {0,1, +,-,<} U {cons, e, 0}, where cons,(=, Q (empty list) are defined in standard -way (see

[8])- -
At first this structure was proposed by Backus in [1], now, it is rather well studied in [2,5,8]. This structure
enables us to define the natural numbers, to code, and to store information via formulas.

2. A* =< A*, oA* > is the set of finite sequences (words) of elements of A, where A = {en,..., o„} is a finite
alphabet. The elements of the language aA, ■= {P0l,..., Pa„, =, e, cone, ()} are defined in standard way (see
[23]). ■ ., . J v

3. CTM = crHw(iR) U a A» U {*}, where * are defined in the following way:
(a) * : A* x HW(]R) -> HW0R),
(b) (ah,...,aik) * [xi,...,xn] = \yi,...,ym], where m =mva(ik,n) and

_ (Xj if ai. =Oi,.
3 \ 0 otherwise .

The variables of aM subject to the following conventions: a, b, c,d,... range over B, lu l2,... range over L(H),
x,y,z,... range over MUL(JR), au.. .an range over A, a, ß, j, w,... range over A*. This notation gives us easy
way to assert that something holds of real numbers, of lists, or of words.

The notions of a term and an atomic formula in the languages anwm and aA. are given in a standard
manner.

The set of atomic formulas in aM is the union of the sets of atomic formulas in CTHW(IR), OA' and the set
of formulas of the type w * U = lj. The set of A0-formulas in aM is the closure of the set of atomic formulas
in om under A,V,-.,är e l,Vx e l,3a e w and Va £ w. The set of E-formulas in aM is the closure of
the set of ^-formulas under A, V,3x € I.Va: € l,3a e w,Va e w, and 3. We define U-formulas as negations
of 27-formulas.

We use definability as one of the basic conceptions. Montague [17] proposed to consider computability from
the point of view of definability. Later, many authors among them Ershov [5], Moschovakis [18] paid attention
to properties of this approach applied to various basic models.

Definition 1. 1 A set B C HW(H) x (A*)n is S-definable if there exists a S-formula ${x) such that
x e B o M |= #(z). 2. A function f is S-definable if its graph is S-definable

In a similar way, we define the notions of II-definable functions and sets. The class of A-definable functions
{sets) is the intersection of the class ^-definable functions (sets) and the class of 77-definable functions (sets)
Properties of S-, II-, A- definable sets and functions were investigated in [5,8,12]. Note only that ^-definable
sets are analogies of recursive sets on the natural numbers.

We will use majorant-computable functions and functionals to formalize information about external world
and plants. Let us recall the notion of computability for real-valued functions and functional proposed and
investigated in [12,13]. A real-valued function (functionals) is said to be majorant-computable if we can construct
a special kind of nonterminating process computing approximations closer and closer to the result.

 Korovina M. V., Kudinov 0. V. A Logical Approach to Specification of Hybrid Systems 9

Definition 2. A function f : Et" -> Et is called majorant-computable if there exist an effective sequence of S-
formulas {#s(x,y)}sew and an effective sequence of II-formulas {Gs(x,y)}seu such that the following conditions
hold.

1. For all s E u), x 6 Et™, the formulas <t>3 and Gs define the same nonempty interval < as,ßs >.
2. For all x € Et™, the sequence {< as,ßs >}sew decreases monotonically, i.e., < as+i,ßs+i >C< as,ßs >

for s € u>;
3. For all x € dom(/), /(x) =j/f) f|s6u> < a^^ >= M holds-

For formalization of information about external world we will use the following set. .!F — {/|/ is a majorant-
computable total real-valued function}.
An important property of a total real-valued function, which will be used below, is that the function is majorant-
computable if and only if its epigraph and ordinate set are U-definable (i.e. effective sets).

Definition 3. Let g\ be Gödel numbering of a set A\, g2 be Gödel numbering of a set A2. A procedure h :
Ai -> A2 is said to be effective procedure if there exists recursive function £ such that the following diagram is
commutative

. NAN
91 i 92 i

Ai A A2 .

Denote the set of I7-formulas by £ and the set of i7-formulas n.

Definition 4. A set R C Et™+1 x T is said to be E-definable by an effective procedure <p : S x S —> S if for
each majorant-computable function f and for S-formulas A(x,y), B(x,y) with the following conditions:
/(x) = y <-> A(x, -)<y< 5(x, •) and {z | A(x, z)} U {z | ß(x, z)} = Et \ {y}
the following proposition holds M [= i?(x, y, f) <-> M |= tp(A,ß)(x,y).

In a similar way, we define the notion of LT-definable functional by an effective procedure ij) : S x £ —»II.

Definition 5. A functional F : Et™ x F —> Et is called majorant-computable if there exists effective sequence of
sets {i2s}s6w, where each element Rs is S-definable by an effective procedure (ps and LT-definable by an effective
procedure ips, such that the following properties hold:

1. For all s € w, the set i?s(x, -, /) is a nonempty interval;
2. For all x € Et" and f e T, the sequence {Re(x,-,f)}seu} decreases monotonically;
3. For all (x, /) G dom(F), F(x, /)=!/«• f)seu Ä,(x, •, /) = {y} holds.

3 Specifications of Hybrid Systems

Let us consider hybrid systems of the type considered in Introduction. A specification of the hybrid system
SHS = (TS, T, Convl, A, Conv2,1) consists of:

• TS = {ti}ieuj. It is an effective sequence of real numbers. The real numbers ij are the times of communication
of the external world and the hybrid system, and the plant and the control automata. The time sequence
{ti}i£u satisfies the realizability requirements:
1. For every i, tj > 0;
2. t0 < h < ... < ti...;
3. The differences U+i — ti have positive lower bounds.

• T : HW(Et) x T -> Et. It is a rnajorant-computable functional. The behaviour of the plant is modelled by
this functional.

• Convl : IN x S2 -> A*. It is an effective procedure. At the time of communication this procedure converts
the number of time interval, measurements presented by two Z'-formulas into finite words which are input
words of the internal control automata.

• A : A* -> A*. It is a X'-definable function. The internal control automata, in practice, is a finite state
automata with finite input and finite output alphabets. So, it is naturally modelled by ^-definable function
(see [5,8,12]) which has a symbolic representation of measurements as input and produces a symbolic
representation of the next control law as output.

JO Perspectives of System Informatics'99

• Conv2 : A* ->■ HW(]R). It is a ^-definable function. This function converts finite words representing control
laws into control laws imposed on the plant.

• I CA*U HW(1R). It is a finite set of initial conditions.

Theorem 1. Suppose a hybrid system is specified as above. Then the trajectory of the hybrid system is defined
by a majorant-computable functional.

Proof. Let SHS = (TS, ?t Convl, A, Conv2,1) be a specification of the hybrid system. We consider behaviour
of the hybrid system in terms of our specification on [th ti+1}. Let T(ti, z, f) = Vi, where z{ represents the recent
control law , and yt is the state of the plant at the time tt.

At the moment tt Converter 1 gets measurements of recent states of the plant as input. By properties of
majorant-computable functionals, these measurements can be presented by two ^-formulas which code methods
of computations of measurements. These representations are compatible with real measurements. Indeed, using
different approaches to process some external signals from the plant, Converter 1 may transform it to different
results. Tins note is taken into account in our formalization of Converter 1 . Thus, Convl is a ^-definable
function and its arguments are the methods of computations of measurements. The meaning of the function
Convl is an input word u>i of the digital automaton which is presented by A. By Wl the function A computes
new control law w2 and Convl transforms it to z.

The plant transforms new information about external world presented by / to recent states of the plant
according to the control law i, i.e., y = T{t,zJ) for t G %ti+l]. The theorem states that there exists a
majorant-computable functional F such that y(i) = F(t, /).

By Definition, ?(t,z,f) is majorant-computable functional. Denote the initial time by t0 and the initial
position of the plan by y0. Let / be a majorant-computable function, and O be its ordinate set, E be its epigraph
By the properties of majorant-computable functionals (see [13,14]) there exist two effective procedures h, h2
suchthat '

F{x,f) = y+>h1(0,E)(x,-) <y<h2(0,E)(x,-) and
{z | /n(0,£;)(x,z)} U {z | h2(0,E)(x,z)} =M\{y}

Denote $+ ^ (y > y0), #- ^ (y < yo). For i € [to, h] put:

4>i(0,E)(t,y) <+ 3Wl3w23a[Convl(l,#J,#o) = ««iAA(t«i) = w2 A

Conv2(w2,a)Mn(p,E)(t,a,y)],
MO,E)(t,y) o Bwi3w23a[Convl(l,$+,$-) = Wl A A(Wl) = w2A

Conv2(w2,a) Ah2(0,E)(t,a,y)].

In the same way we can construct the procedure fc, ^2 for each interval [ti,ti+l]. Put

F(t, f) = y <+ 0! (O, E)(t, -)<y< ^2(0, E)(t, ■) and

{z | (h(0,E)(t,z)} U {z | <j)2{0,E)(t,z)} = H \ {y}

By constructions, the functional F is majorant-computable and defines the trajectory of the hybrid system with
oiib specification.

a
This paper has presented the description of trajectories in terms of majorant-computable functionals which

can be constructed by the specifications SHS of hybrid systems. The preliminary results suggest possible
directions for future applications to study real hybrid systems.

References

1. J. Backus, Can Programming be Liberated from the von Neumann Style, A Functional Style and its Algebra of
Programs, Comm. of the ACM, V. 21, N 8, 1978, pages 613-642. ^igeora ot

2. J. Barwise, Admissible sets and structures, Berlin, Springer-Verlag, 1975
3. L. Blum and M. Shub and S. Smale, On a theory of computation and complexity over the reals:NP-comPleteness

recurswe functums: and umversal machines, Bull. Amer. Math. Soc, (N.S.), v. 21, no. 1, 1989, pages 1-46
SciencaTo appeal ^main-theoretic approach to computability on the real ^^ Theoretical Computer

5. Yu. L. Ershov, Definability and computability, Plenum, New York, 1996.

 Korovina M. V., Kudinov 0. V. A Logical Approach to Specification of Hybrid Systems 11

6. H. Preedman and K. Ko, Computational complexity of real functions, Theoret. Comput. Sei. , v. 20, 1982, pages
.323-352.

7. A Logical for specification of Continuous System, LNCS N 1386, 1998, pages 143-159.
8. S.S. Goncharov, D.I. Sviridenko, .^-programming, Vychislitel'nye Sistemy, Novosibirsk, v. 107, 1985, pages 3-29.
9. A. Grzegorczyk, On the definitions of computable real continuous functions, Fund. Math., N 44, 1957, pages 61-71.
10. T.A. Henzinger, Z. Manna, A. Pnueli, Towards refining Temporal Specifications into Hybrid Systems, LNCS N 736,

1993, pages 36-60.
11. T.A. Henzinger, V. Rusu, Reachability Verification for Hybrid Automata, LNCS N 1386, 1998, pages 190-205.
12. M. Korovina, Generalized computability of real functions, Siberian Advance of Mathematics, v. 2, N 4, 1992, pages

1-18.
13. M. Korovina, O. Kudinov, A New Approach to Computability over the Reals, SibAM, v. 8, N 3, 1998, pages 59-73.
14. M. Korovina, O. Kudinov, Characteristic Properties of Majorant-Computability over the Reals, Proc. of CSL'98,

LNCS, to appear.
15. C. Livadas, N.A. Lynch, Formal verification of Safety-Critical hybrid systems, LNCS N 1386, 1998, pages 253-273.
16. Z. Manna, A. Pnueli, Verifying Hybrid Systems. LNCS N 736, 1993, pages 4-36.
17. R. Montague, Recursion theory as a branch of model theory, Proc. of the third international congr. on Logic,

Methodology and the Philos. of Sc, 1967, Amsterdam, 1968, pages 63-86.
18. Y. N. Moschovakis, Abstract first order computability, Trans. Amer. Math. Soc, v. 138, 1969, pages 427-464.
19. A. Nerode, W. Kohn Models for Hybrid Systems: Automata, Topologies, Controllability, Observability, LNCS N

736, 1993, pages 317-357.
20. M. B. Pour-El, J. I. Richards, Computability in Analysis and Physics, Springer-Verlag, 1988.
21. D. Scott, Outline of a mathematical theory of computation, In 4th Annual Princeton Conference on Information

Sciences and Systems, 1970, pages 169-176.
22. V. Stoltenberg-Hansen and J. V. Tucker, Effective algebras, Handbook of Logic in computer Science, v. 4, Clarendon

Press, 1995, pages 375-526.
23. B.A. Trakhtenbrot, Yu.Barzdin, Finite automata: Behaviour and Syntheses, North-Holland, 1973.

Specifications with States

Algebraic Imperative Specifications

Marie-Claude Gaudel1, Alexandre Zamulin2

1 L.R.I., URA CNRS 410
University de Paris-Sud et CNRS, Bat. 490

91405 Orsay-cedex, Prance
mcg@lri.fr, fax 33 1 69 15 65 86

2A.P. Ershov Institute of Informatics Systems
Siberian Division of Russian Academy of Sciences

Novosibirsk oSOOaO
zam@iis.nsk.su, fax: +7 3832 323494

Abstract. Algebraic imperative specifications (AIS) are specifications with implicit state represented by
an algebra and with a number of transition rules indicating state transformations. They are designed for
tbe formal definition of complex dynamic systems.
Two approaches to algebraic imperative specifications have been developed in parallel during the last
decade: Abstract State Machines (ASMs), initially known as evolving algebras, and Algebraic Specifications
with Implicit State (AS-IS). Moreover typed versions of ASM have been developed which have incorporated
some aspects of AS-IS.

This survey paper provides a guided tour of these imperative approaches of specification based on the
state-as-algebra paradigm, and sketches a synthesis of two of them, under the name of dynamic systems
with implicit state. J

1 Introduction

Algebraic imperative specifications (AIS) are specifications with implicit state represented by an algebra and
with a number of transition rules indicating state transformations. They are designed for the formal definition
of complex dynamic systems.

an/dl^W W * & T^ TT!° ** implemented in some programming language usually possesses static
and dynamic features. The static features are represented by a number of data types involved and a number of
functions defined over them. The dynamic features are represented by a number of states the system can be in
and a number of operations (procedures, modifiers) transforming the states

Conventional algebraic specifications [12,13,38] have proved to be an elegant and effective way of defining
the static aspects of such a system. Using this technique, one can define a number of data types (sets with
corresponding operations) and functions just by providing a signature (i.e., the names of sorts, and the names
of operations accompanied by their profiles) and a set of axioms limiting the set of possible models. These data
types and operations can be further used in the system specification.

However, algebraic specifications are less convenient in defining the dynamic aspects of a system In this
ojBMhe state has to be defined in some way (for example, as a complex data type) and its instances'have to
be exphcitly used as arguments and/or results in operations transforming one state into another. As a result
the specification becomes very clumsy: it is difficult both to write and read

In parallel with algebraic specifications, a number of methods involving the notion of built-in state have

^TSl^tm^t a)ZTnti0n1 Pr0blT^f the eXplidt State" The m°St well-knowntf thl are VDM [31] and Z [36,37]. (See [35] for a good review.) One of the latest developments in the field is B [1].

Gaudel M.-C, Zamulin A. Algebraic Imperative Specifications 13

The main idea of each of these methods is that all the operations transforming the state can be characterized
by observing their effect on a number of variables (variables are understood here in the same way they are
understood in programming languages) representing components of the system's state. Therefore, the variable
value before the operation and after its execution is taken into account and a relation between these two values is
specified. It is done by a logical formula relating pre-operation and post-operation values of one or more variables
in Z, by giving two formulas specifying the condition to be satisfied by the variables before the operation (pre-
condition) and the condition to be satisfied by them after the operation execution (post-condition) in VDM,
and by substitution rules in B. For this purpose, special decoration is normally proposed for indicating variable
values before the operation and after it (hooks for pre-operation values in VDM and primes for post-operation
values in Z).

A common feature of the three methods is their use of a fixed number of basic types and type constructors
for the representation of application data. The usual basic types are integers (with their subsets) and scalars
given by enumerations. The usual type constructors are set constructor, tuple constructor and several kinds of
function constructors. VDM restricts the set of function constructors to finite maps (i.e., partial functions with
a finite domain) and offers a sequence constructor in. addition. Z allows the definitions of binary relations in
addition, and B does not possess a tuple constructor.

Another common feature of these methods is that some parts of the semantics of some basic notions remain
informal. For example, the formal definition of "a simple and powerful specification language closely similar to
the Z notation" in [36] does not explain the notion of state intensively used in its informal semantics. There, a
not-producing-result operation is said to transform the state while its formal specification just sets some relations
among primed and non-primed names in a model of the signature induced by the operation specification. In
VDM and B such notions as state, variable, and operation are also introduced informally: it is assumed that
they are well understood by those who write specifications and those who read them.

However, if we say "constant" instead of "variable", we can regard the state as an algebra with a number of
defined constants and functions, and we can regard primed and non-primed (or hooked and non-hooked) names
as denotations of the same constant name in two different algebras. In this case, we can say that a formula
relates values associated with a given constant name in two algebras, and an operation updating the state can
be defined as an algebra transformation. Moreover, if we specify the state as an algebra, we can delete the
limitations on the sets of data types involved. In the specification of a particular application, those data types
are defined which are practically needed in the application. All the power of the algebraic specifications can be
used in this case.

The introduction of the notion of algebra update as a transition from one state to another naturally leads
us to such form of specification which explicitly indicates in which way a constant (a function in the general
case) is updated in the process of algebra transformation. No decoration of names is needed in this case. In
parallel with imperative languages, we call this kind of specifications algebraic imperative specifications (AIS).
The word algebraic emphasizes the algebraic nature of the state; the word imperative suggests an analogy with
imperative languages.

AIS may be used for describing algorithms: every step of an algorithm can be regarded as a transition
from one state to another simulated at the most appropriate abstraction level. Imperative specifications may
be also used for describing, in an abstract and non algorithmic way, dynamic features of a system: each state
transforming operation is described in terms of some complex algebra updates.

Finally, it is generally accepted that the ease (or difficulty) of the implementation of a specification heavily
depends on its structure and complexity. Since the majority of the programs are written in imperative languages,
there is much more chance that a specification will be read and implemented by a programmer if it is imperative.
This feature relates AIS to some other specification languages which could also be called imperative but not
algebraic [1,6]. ' ■

Two approaches to algebraic imperative specifications have been developed in parallel during the last decade:
Abstract State Machines (ASMs), initially known as evolving algebras [28,29], and Algebraic Specifications with
Implicit State (AS-IS) [8,33]. The main features of AS-IS are presented in the next section. Basic notions of
ASM and its typed versions are described in Section 3. Dynamic systems with implicit state combining some
features of the both approaches are presented in Section 4. Some related work, all based on the state-as-algebra
idea, is discussed in Section 5 and some conclusions are given in Section 6.

2 Algebraic specifications with implicit state

The origins of this approach go back to the 1980's, to some work on compiler construction from some formal
semantics of the source and,target languages [14,15]. There, the semantics of imperative languages was modeled

14 Perspectives of System Informatics;99

by state transformations, where the states were many-sorted-algebras. In the area of programming language
semantics, other approaches generally model states as functions, which, roughly, go from some kinds of names
into some kinds of values, the domain and co-domain of these state functions being unions of sets. Such ap-
proaches become clumsy when values of complex data types have to be stored and modified: some operations
on names must mimic the operations on the data types (such as accesses to components and constructors) and
adequate commutativity properties must be maintained when modifying the state. In [14], it was shown how
to use many sorted algebras as models of such states, based on the classical idea that data types are algebras.
Some extensions were invented to take into account the notion of variables, assignments being modeled as trans-
formations of algebras. The advantage of such a framework for compiler specification is that the representation
of the source data types by some target data types can be proved using the techniques developed for algebraic
specifications ,[15].

Some years later, this first approach served as the inspiration for AS-IS, Algebraic Specifications with Implicit
State. The motivation for the design of AS-IS was a case study on the formal specification of the embedded
safety part of an automatic subway pilot [9,10]. The specified system was a classical control-command loop,
where the body of the loop receives some inputs, performs some computations, and returns some outputs.
Inputs come from some sensors or some ground controller. Outputs are alarms, commands, or messages to
the ground controller. The first formal specification was written in a pure algebraic style, using the PLUSS
specification language [16]. It turned out that the state of the system was characterized by 54 values of various
types (abscissa, speed, next train, tables,...). Most of these values were liable to be updated during some cycles
of the loop. As a consequence, the specification contained 54 observer operations of the state, i.e. operations
of profile state x ... —*. s, where s is a sort different from state, and 54 update operations, i.e. operations of
profile state x ... x s —► state. A long and uninteresting axiomatization of these 108 operations was needed. In
order to shorten the specification, a predefined notion of record, similar to the one in VDM, was introduced in
the specification language. However, it was still boring and redundant to have states as parameters everywhere.
This has led to the introduction of a concept of implicit state in the algebraic specification language. Of course
such a notion must not be limited to the special case of a record. Actually, it must be possible to specify any
kind of data structure, at different abstraction levels, and any evolution concerning the implicit state.

Another, more complex, case study was then performed [17], namely the Steam-Boiler Control Problem. It
has led to some addition to the formalism, in order to avoid too algorithmic specifications of complex evolutions
of the system. The most recent version of AS-IS is presented in [32].

An AS-IS specification is based on a classical algebraic specification which describes the data types to be used
by the system. This part is clearly isolated in the specification and its meaning is stable, whatever modification
of the state is specified . The evolving parts of the implicit state are specified as access functions whose results
depend on the implicit state.

Example. In a subway example, there may be the following access functions which correspond to the section
ot the railway where the train is currently located, and a table where the speed limit for each section is stored.

CurrentSection :—> Section
LocalSpeedLimit: Section —> Speed

where the Section and Speed types are specified in the data type part.
The evolutions of the implicit state are described by modifications of the access functions.
Example. When the train progresses, one may have
CurrentSection := next(CurrentSection)

or when the weather conditions change
Vs : Section, LocalSpeedLimit(s) := LocalSpeedLirnit(s) - 10
Let E be the signature of the data types, Ax their axioms, and Eac the part of the signature corresponding

to the names and profiles of the access functions. A state is any < E U Eac, Ax >-algebra. A modification is a
mapping from the < E U Eac, Ax >-algebras into themselves where the interpretation of some access functions
ot the resulting algebra are different from their interpretations in the source one. The example modifications
above are called elementary since each of them involves one access function only.

In addition to the elementary accesses, such as the ones above, which characterize the implicit state there
are dependent accesses which are related by some property to the other accesses.

Example. One may define
CurrentSpeedLimit:—> Speed
CurrentSpeedLim.it - min(LocalSpeedLimit(CurrentSection),...)

This implies that the carriers remain invariant.

Gaudel M.-C, Zamulin A. Algebraic Imperative Specifications 15

Among the design choices of AS-IS, it was decided to keep the specified behaviors deterministic. In order
to ensure this, the dependent accesses must be defined by a set of axioms which is sufficiently complete with
respect to the elementary accesses and data types. Thus an AS-IS specification includes, in addition to the
specification of some data types with signature £ satisfying some axioms Ax, some elementary access functions
whose names and profiles are given in a sub-signature £eac, some dependent access functions specified by a
sub-signature £dac and some axioms Axac. Let £' = £ U £eac U Edac- Then a state is any < £', Ax U Axac >-
algebra.

The semantics of elementary modifications is based on restrictions and extensions of the state algebras. First,
all the dependent accesses are forgotten. Then, if ac is the name of an elementary access being modified, the
algebra is extended by the new elementary access ac', with the same profile as ac, which is different from ac for
the values of the arguments specified in the modification (see below) and the same everywhere else. Then ac
is forgotten, ac' is renamed ac, and the algebra is extended to include the dependent accesses and satisfy the
corresponding axioms.

In an AS-IS specification, as soon as an elementary access ac : s\ x ... x sn —> s is declared, it is possible
to write elementary modifiers of the form

Vxi:s'1,...,Xp:Sp,[ac(iri,...,nn)"R(iri,-'--,Vn)]

where the 7r; are terms of Ts'({xi,...,xp}), of sort Si, which play a role similar to patterns in functional
programming, and R(iri,..., TT„) is a term built with the constants of £', the 7Tj, and the operations of £'. Such
a modifier induces the modification of the result of ac for all the values matching the patterns, i. e., if A is the
original state and B the modified one, we have:
\/vi,...,vn in ASl x ... x ASn

- if there exists an assignment a of the Xi into ASi, such that a(iri) = vi,... ,a(irn) — vn, then
acB (vi,..., vn) = JR(5(7TI), ..., &7(?rn))

- otherwise
acB(vi,...,vn)=acA(v1,...,vn).
In the above example a quantified elementary modifier is used to specify a global change of the local speed

limits.
There is a conditional version of such modifiers, with the same restriction on the form of the conditions as

on the result : they must involve the it{ only.
Vyi,...,2/p cases
fa then ac{tr\,..., TT*) := R1 \... \ fan then ac(ir?,..., it™) := Rm

end cases
The restrictions on the form of the conditions and results ensure that only one result is specified for each

item of the domain of the elementary access being modified. Counter-examples justifying these restrictions are
given in [19].

Elementary accesses can be used to specify defined modifiers. Defined modifiers are specified by compositions
of elementary modifiers and defined modifiers. The compositions are

— Conditional composition of the following form:
begin fa then Em\ \ ... \ fa, then Emp end

indicating that a modification expression Errii is chosen if its condition fa is valid. If several conditions fa
are valid, the modification expression with the smallest index is chosen.
Note: This form of modification is different from the conditional elementary modifier in two ways: the Errii
are any modification expressions and there are no universally quantified variables.

— Sequential composition, m^m^, meaning that the execution of m\ is followed by that of mi.
- Casually independent composition, mi and m2, indicating any sequential composition of mi and m2. The

order of execution of mi and m2 is unimportant.
- Simultaneous composition, mi ««2, where the modifications specified by mi and m2 are applied to the same

state. If mi and m2 specify a modification of the same access function, they must change it at different
points; otherwise, only the modification mi is taken into account.

This list does not aim at being minimal. Actually, some constructs overlap in some cases. It aims to provide
a convenient way of specifying complex state modifications, without worrying about details such as intermediate
results or order of execution when they are not relevant to the specification.

Thus defined modifiers are declared with a profile which states the sorts of their arguments, and their effect
on the state is described by a modification expression.

16 Perspectives of System Informatics'99

Example.
switchSpeedLimits : Speed
switchSpeedLimits(As) = Vs : Section,

[LocalSpeedLimit[s) := LocalSpeedLimit(s) - As]
Defined modifiers and access functions may be exported by a system specification. When using a system

specification, only the exported features can be mentioned. This ensures some encapsulation of the implicit

An AS-IS specification also contains a set of axioms Axinit which specifies possible initial states of the
specified system. The behaviors of the system are sequences of exported instantiated modifiers, i. e exported
defined modifiers with ground terms as arguments, or elementary modifiers of exported accesses with parameters
either quantified or instantiated by ground terms. A reachable state of the system is either an initial state or
tne resulting state of an exported instantiated modifier applied to a reachable state.

An example of a system specification is given below. It is a drastic (and thus unrealistic) simplification of
the specification presented in [10].

The specified system can progress, with a measured speed, during an interval of time At, or the speed limits
of the sections can be changed via the switchSpeedLimits modification, or an emergency stop can occur

The progress modification is the most complex one. It checks that the speed limit is respected If it is not
an emergency stop occurs, and if it is, the system deals with a possible section change, chooses an acceleration
which depends on the current speed (this choice is not specified here), and computes the next position of the

system TRAIN export progress, emergency Stop, switchSpeedLimits
use UNITS, % defines the sorts Abscissa, Speed, and Acceleration

% and some constants of these sorts
SECTION % defines the Section sort

elementary accesses-
Currentsection :—> Section,
LocalSpeedLimit: Section —> Speed,
MeasuredSpeed:—)• Speed,
Current Abscissa :—► Abscissa,
CurrentAcceleration :—> Acceleration

accesses
CurrentspeedLimit:—> Speed,

accesses axioms
CurrentSpeedLimit = min(LocalSpeedLimit(CurrentSection),...)

Init
CurrentSection = sectionO, LocalSpeedLimit(s) = speedlimO,
MeasuredSpeed = speedO, Current Abscissa = 0,
CurrentAcceleration = occO,

modifiers %declaration of some defined modifiers
progress : Speed,
emergency Stop,
switchSpeedLimits : Speed,
sectionC hange,
accelerationChoice,

modifiers definitions
progress(s) =

MeasuredSpeed := s and CurrentAbscissa := NextAbscissa ;
begin

CurrentAbscissa > length(CurrentSection) then sectionChanqe
end ;
begin

MeasuredSpeed > CurrentSpeedLimit then emergencyStop |
MeasuredSpeed < CurrentSpeedLimit then

accelerationChoice ;
NextAbscissa := CurrentAbscissa+

(CurrentSpeed + CurrentAcceleration x At) x At;...
end

 Gaudel M.-C, Zamulin A. Algebraic Imperative Specifications 17

switchSpeedLimits(As) — Vs : Section,
[LocalSpeedLimit(s):— LocalSpeedLimit(s) - As]

sectionC hange —
CurrentSection := next(CurrentSection) •
CurrentAbscissa := CurrentAbscissa — length(CurrentSection)
% NB : it is much more complex in reality ...

accelerationChoice = ...
emergency Stop = ...

end system

3 Abstract State Machines

3.1 Gurevich Abstract State Machines

Abstract State Machines (ASMs), originally known as evolving algebras, have been proposed by Gurevich [25]
as a framework for the formal definition of the operational semantics of programming languages. During the last
decade many real-life programming languages and many complex algorithms including communication protocols
and hardware designs have been defined as ASMs (the first complete description of the evolving algebra approach
is contained in [28], the annotated bibliography of the majority of papers in the field can be found in [5], for
the most recent developments look at http://www.eecs.umich.edu/gasm/).

The success of the approach can be attributed to two reasons: (1) sound mathematical background and (2)
imperative specification style. The imperative nature of evolving algebras has led to the introduction of a new
term for them, Abstract State Machines (the terms Gurevich Abstract State Machines or just Gurevich Machines
are also in use). The latest version of ASM is described in [29] which is used as the main reference source in
this section.

ASMs are based on the notion of a universal algebraic structure consisting of a set, a number of functions,
and a number of relations. Such a structure serves for the representation of the state. The underlying set is
called a super-universe and can be subdivided into universes by means of unary relations. A universe serves to
model a data type (in fact, the set of data type values).

There are a number of transition rules indicating in which way a state can be converted into another state
of the same signature. Normally, this is done by a slight change of a function. For this reason, functions can be
either static or dynamic. A static function never changes, a change of a dynamic function produces a new state.
Another means of state modification is changing the number of elements in the underlying set (importing new
elements).

Only total functions are used in Gurevich ASM. A distinguished super-universe element undef is used to
convert a partial function into a total one. Thus, every r-ary function / is defined on every r-tuple 5 of elements
of the super-universe, but they say that / is undefined at an ö if f(a) = undef, the set of tuples ä with
f(a) T^ undef is called the domain of /.

The other two distinguished super-universe elements are true and false. The interpretation of an r-ary
predicate (relation name) U, defined on the whole super-universe, with values in {true, false} is viewed as a
set of r-tuples ä such that U(a) = true. If relation U is unary, it can be viewed as a universe.

The vocabulary (signature) of any ASM contains the names of the above three distinguished elements, the
name of the universe Boole defined as {true, false}, the names of the usual Boolean operations interpreted
conventionally, and the equality sign interpreted as the identity relation on the super-universe. All the functions
corresponding to the above names are static.

Example. The vocabulary for oriented trees contains a unary predicate Nodes and unary function names
Parent, FirstChild, and NextSibling. An oriented tree with n nodes gives rise to a state with n + 3 elements: in
addition to n nodes, the super-universe contains the obligatory elements true, false, undef. The universe Nodes
contains the n nodes.

For the interpretation of transition rules, the notions of location, update, and update set are introduced. A
location in a state A is a pair I = (f,a), where / is a function name of arity r and ä is an r-tuple of elements
of A. In the case that / is nullary, (/, ()) is abbreviated to /.

Example. Assume that we have an oriented tree and let a be a node, then some locations are (Parent, a),
(FirstChild,a), (NextSibling,a)

An update in a state A is a pair a = (l,b), where I = (f,a) is a location in A and b is an element of A. To
update the state A using a ("to fire a at A"), it is necessary to "put 6 into the location l", i.e. convert A into
a new algebra B so that /ß(ö) = b. The other locations remain intact.

-i^ ■ Perspectives of System Informatics'99

Example. Assume again that we have an oriented tree and let a, b be any two nodes, then some updates
are ((Parent, a),b), ((FirstChild, b),a).

An update set over a state A is a set of updates of A. An update set 7 is consistent if no two updates in
7 clash, i.e. there are no two (hM) and (l2,b2) such that h = l2 but b, ± b2. To update the state A using a
consistent 7, it is necessary to "fire all its updates simultaneously". The state does not change if the update set
is inconsistent.

The main transition rule (or simply "rule" in the sequel) called update rule has the following form:
f(s) :— t,

where / is the name of a function of arity r, s is a tuple (Sl,.., Sr) of terms, and t is a term. The interpretation
ot this rule in a state A causes an update a - ((/,ä), tA), where a = (sA,..., sA).

Example Assume that c and p are terms denoting two nodes of an oriented tree. Then the transition rule
parent(s) := p

interpreted in a state A by the update ((parent, sA),pA) will transform A in B so that parent3(sA) = pA and
the other locations remain intact.

A conditional rule having the form
if «7 then i?! else R2 endif, where 9 is a Boolean term and RUR2 are rules, causes the execution of

either Rx or R2 depending on whether g is true or false.
Another basic rule is a block constructed as follows:

do in-parallel R1,...,Rn enddo,

where Äx R are rules. The block rule is interpreted by an update set consisting of updates produced by
interpretations of R,,..., Rn. The state does not change of course if the update set is inconsistent

The last basic rule is an import rule having the following form:
import v R(v) endimport,

where v is an identifier and R(v) is a rule using this identifier as a free variable. The interpretation of this rule
in a state A causes the extension of its basic set (super-universe) with a new element a and the subsequent
interpretation of R with v bound to a. It is supposed that different imports produce different reserve elements
For example, the interpretation of the block

do in-parallel
import v Parent(v) := c endimport
import v Parent(v) := c endimport

enddo
creates two children of node c.

There are several extensions of the set of basic rules. A try rule of the form
try Ri else R2 endif

permits some form of exception handling, i.e., the rule R2 is executed only if Rt is inconsistent
A nondetermmistic choose rule of the form

choose v : g(v) R(v) endchoose,
where v is an «identifier, and g(v) and R(v) are, respectively, a Boolean term and a rule both using v as a free
variable.causes the execution of R only for some one element of the superuniverse satisfying g. This means
that rf there are several superuniverse elements such that g evaluates to true for v bound to any of them, then
nondeterministically one of them is chosen and R is executed with v bound to this element

Finally, a do-forall rule of the form
do forall v : g(v) R(v) enddo

T^^T^f R i0Ty S,uperuffse element bound to v and satisfying g. In this way the quantification
of etementary modifiers and conditional elementary modifiers of AS-IS is generalised to any transition rule

rnl!rZ^7^n'0m?^nS ?-r°dUCe SOme SyntaCtiC SUgar PermittinS to flatten enclosed conditional
S and WoSrut, ttc. * ** ^^ *° ^^ ^^ elementS fa an imp°rt rule> combine

thaf^woW^ n°teH hf' ? C0? ^ AS"IS deSCTibed in the previ°US SeCtion> no effOTt is made to ensure that any two function updates do not update the same function at the same point, all possible inconsistences

a^Tr^tn rule• ^ "* " ^^ ^ ^ ** ** <^ific^ "an be apphed here to

st imTh^iten in [" * GASM' ^ "*"*"* ^ *» "*** *«**> *» spec^ion of a

The stack machine computes expressions given in reverse Polish notation, or RPN. It is supposed that the
RPN expression is given in the form of a list where each entry denotes a number or an ppe^^r£^
machine reads one entry of the list at a time. If the entry denotes a number, it is pushed onto the stack If

Gaudel M.-C, Zamulin A. Algebraic Imperative Specifications 19

the entry denotes an operation, the machine pops two items from the stack, applies the operation and pushes
the result onto the stack. At the beginning, the stack is empty. It is supposed that the desired ASM has
universes Data for the set of numbers and Oper for the set of bynary operations on Data, Argl and Arg2 are
distinguished elements of Data. To handle operations in Oper, the ASM has a ternary function Apply such that
Apply(f, x, y) = f(x, y) for all / in Oper and all x, y in Data.

To handle the input, the ASM has a universe List of all lists composed of data and operations. The basic
functions Head and Tail have a usual meaning. If L is a list, then Head(L) is the first element of L and Tail(L)
is the remaining list. F is a distinguished list initially containing the input. Finally, the ASM has a universe
Stack of all stacks of data with the usual operations Push, Pop, and Top. S is a distinguished stack initially
empty. With these explanations, the specification of the algorithm looks as follows:

if Data(Head(F)) = true then
do in-parallel S := Push(Head(F), 5)

F := Tail(F)
enddo,

endif

if Oper(Head(F)) = true then
if Argl = undef then

do in-parallel
Argl :— Top(S) % Argl is defined now
S ■- Pop(S)

enddo
elseif Argl = undef then

do in-parallel
Argl := Top(S) % Arg2 is defined now
S:=Pop(S)

enddo
else

do in-parallel
S~Push(Apply(Head(F),Argl,Arg2),S)
F:=Tail{F)
Argl := undef % Argl is undefined now
Argl := undef % Arg2 is undefined now

enddo
endif

3.2 Typed Abstract State Machines

The above example clearly indicates some shortcomings of Gurevich ASMs. The first of them is the absence
of a formal definition of the static part of the state. Therefore, it is defined in plain words (universes Data,
Stack, List, and Oper, operations Head, Tail, etc.). This is typical of ASM. When writing a specification, one
can write the signature of any function operating with values of one or more universes. One cannot, however,
define formally the semantics of a static function or a sufficiently large set of values of a particular universe. It'
is assumed that the behavior of all static functions is either well known or defined by some external tools; in
the majority of cases, the same refers to universes (one can make sure of this, looking at the definition of C [27]
where almost all static functions and universes are defined in plain words).

The second shortcoming is the actual absence of a type system: one cannot construct arbitrary data types
and functions with a well-defined semantics and either one has to use a small number of well-known data types
like Boolean, Integer, etc. or one has to define informally needed data types and functions. The results of this
shortcoming are well-known: neither an appropriate structuring of the data of an application nor type checking
of a specification is possible. At the same time, a big specification like a big program is error-prone and type
checking helps to detect many errors at the earliest state of the specification development. For example, the
following error could be done in the above specification:

S:=Tail(F)
Unfortunately, no formal tool is able to detect this error, and it can be only debugged with the use of a concrete
input in the process of its interpretation if an interpreter is developed.

20 Perspectives of System Informatics'S

For these reasons several attempts have been done to introduce typing in ASMs. The first proposal is
described in [39] and its modification in [40]. An Oberon compiler is fully specified with the use of the method
[41]. A distinguished feature of the approach is the actual proposal of a specification mechanism incorporating
the advantages of both many-sorted algebraic specifications and ASMs. The main idea behind the choice of basic
specification constructs has been to use the notions most familiar to the programming community. Another task
has been avoidance of any other logic except the first-order many-sorted logic which is most familiar to the
computer scientists.

As a result, universes are replaced with data types for which the semantics can be formally defined by
means of algebraic equations. The mechanism provides means for defining both concrete data types and type
constructors (generic, or parameterized data types). Some popular data types and type constructors are built-in
(these are enumeration type, record type and union type constructors). Data type operations are defined together
with the corresponding sort in a so called data type specification. In addition, independent static functions (i.e.
functions not attributed to particular data types) can be specified with the use of data type operations.

The set of transition rules proposed in the approach is mainly based on the set of basic rules of [28]. There
is, however, an important difference in the treatment of the assignment of an undefined value to a location.
There cannot be a single undef value for all data types. To simplify the specification of data types, no one of
them is equipped with its own undef value. Partial functions are used instead, and a definedness predicate, D
is introduced. For each term t, the predication D(t) holds in a given algebra A if t is defined in it and does not
hold otherwise. In an update rule

/(*i,...,*„) := undef
undef is just a keyword indicating that f(t1: ...,tn) becomes undefined.

For the interpretation of such a construction, another algebra update, ß is introduced in addition to a
described above. An update ß is just a location. To update the state A using /?, it is necessary to convert A
into a new algebra B so that the content of the location is undefined. The other locations remain intact.

The other main additions are sequence constructor and a tagcase constructor resembling, respectively a
compound statement and a tagcase statement of some programming languages. The need for a sequential rule
constructor has arisen in several practical applications and is noted in [4,22]. They are also part of AS-IS, as
described in the Section 2. The tagcase rule constructor is needed when union types are used. It has the following
form: &

tagcase uofT1:R1,T2:R2,...,Tk:Rk endtag
where u is a term of type Union{TuT2, ...,T„), Rx,R2,...,Rk are rules, and k <= n. In the interpretaion of
the rule, the component type of u is compared with Tu ...Tk. If the component type is Tit then Jfc is executed
regarding «asa term of type 2V Thus, the tagcase constructor permits us to manipulate a union type value as
a value of the type needed (this facility is not provided by the conditional constructor).

To demonstrate the facilities of the approach, we rewrite the previous example of a stack machine Notation-
the data.type signature is enclosed in square brackets, the axioms are enclosed in curly brackets, the symbol

<S inside the data type signature denotes the type being specified.

type Oper = ('+', '-', '*', '/'); % enumeration type
type Doper = Union(Nat, Oper); %union type

type Stack (T: TYPE) = spec
[empty: @;
push: T, @ —► @;
pop: © —> @;
top: @ —► T];
{axioms are conventional}

type List(T: TYPE) = spec
[empty: @;
append: T, © —> @;
head: @ —> T;
length: © —> Nat;
tail: @ —> @;
has: @, T —► Boolean;
is.empty: © —>■ Boolean]

{axioms are conventional}

 Gaudel M.-C, Zamulin A. Algebraic Imperative Specifications 21

dynamic const S: Stack(Nat) = empty; initially empty stack
dynamic const Argl, Arg2: Nat; % initially undefined constants
dynamic const P: List(Doper); % initialized by a demon

tagcase head(F) of
Nat: do in-parallel S := push(head(F), S), F := tail(F) enddo,
Oper:

if-iD(Argl) then % if Argl is undefined
do in-parallel Argl := top(S), S := pop(S) enddo

elseif -iD(Arg2) then % if Arg2 is undefined
do in-parallel Arg2 := top(S), S := pop(S) enddo

else
do in-parallel S := push(apply(head(F), Argl, Arg2), S),

F := tail(F),
Argl :— undef, % Argl is undefined now
Arg2 := undef % Arg2 is undefined now

enddo
endif

endtag

Note that all the operations used in the example are now formally defined in contrast to the previous version
of the example. Moreover, a type checker can easily detect an error like the previous one and even one like the
following one (which cannot be detected if a conditional rule were used):

tagcase head(F) of
Oper: do in-parallel S := push(head(F), S), F := tail(F) enddo,

The other innovations of the approach are dependent functions and procedures (defined modifiers) resembling
the corresponding constructs of AS-IS. However, their semantics, as it is defined in [43], is quite different. It will
be explained in the next section.

There is no import rule, of course. In a typed environment where each algebra element is denoted by (at least
one) ground term, it would be strange to manipulate unreachable elements in addition. Some technique of the
specification of the operations as dynamic functions could help to solve the problem, but these complications
do not seem necessary. Structures like sets or lists can be used to achieve the goal.

Another proposal for typed ASMs is contained in [11]. In contrast to the approach discussed above, this
approach does not confine the user to the algebraic style of defining data types. Only general guidelines of a
simple type system introducing parametric polymorphism as suggested in [34] are given. The interpretation of
data type is also left abstract. The only requirement is that every closed type is interpreted as a set. The set
of rules is borrowed from [29] with the exception of the import rule which, of course, is not needed in a typed
environment. There is no construct corresponding to dependent function or defined modifier of AS-IS.

Object-oriented ASMs as a kind of typed ASMs are introduced in [42]. In addition to a number of data types,
such an ASM uses a number of object types. While a data type defines a set of values and a set of operations, an
object type defines a set of object behaviors. An object possesses a unique identifier and a number of methods
subdivided in attributes (correspond to dynamic functions), observers (correspond to dependent functions) and
mutators (correspond to modifiers). The tuple of attribute values defines the object's state.

For a given object type, different system's states can possess different numbers of objects with different
object's states. An object's state can be updated with the use of a mutator. For creating new objects of type
T, the import rule of Gurevich ASMs in the form new(T) is reinvented. Note that this reinvention does not
violate the term generation principle mentioned above since there is no basic term generating an object identifier
(remember that an object type defines a set of object behaviors rather than a set of object identifiers!).

Object types are specified with the use of transition rules. Here is a example of it (method profiles and
method calls are written like in object-oriented programming languages, the other notation is like that one used
in data type specifications, two parts of an axiom are related by the symbol "=="):

class Rectangle = spec
[mutator default_rectangle; % setting a default rectangle's state

create: Nat, Nat; % setting a new rectangle's state

_2? Perspectives of System Informatics'99 .

attribute length, width: Nat; % rectangle attributes definig the state
observer area: Nat; % computing a rectangle's area

equal: Rectangle —» Boolean; % comparison of rectangles for equality]
{forall r, rl: Rectangle, x, y: Nat.
r.default_rectangle == do in-parallel r.length := 0, r.width := 0 enddo;
r.create(x, y) == do in-parallel r.length :- x, r.width := y enddo;
r.area == r.length * r.width;
r.equal(rl) == r.length = rl .length & r.width = rl .width};

Note the specification methodology: each imitator is defined in terms of a transition rule setting values of
object's attributes, and each observer is defined by a conventional axiom.

Another version of Object-oriented ASMs permitting late binding of methods is described in [44].

4 Dynamic systems with implicit state

4.1 Notion of dynamic system

The convergence of the works on AS-IS and typed ASM has eventually led to the notion of dynamic systems
which is based on the state-as-algebra concept and formalizes state updates as operations on algebras [20,43]

Let 27 be a "static" signature introducing a number of data types, Eeac a signature of elementary access
functions, Eac a signature of dependent access functions, and Emod a signature of modifiers. Then a dynamic
system, D(A), of signature < E, Eeac, Eac, Emod >, where A is a 27-algebra, is defined as a 3-uple with-
- earner \D(A)\ which is a set of (27 U 27eoc)-algebras with the same 27-algebra A,
- some set of dependent access functions with names and profiles defined in 27ac,
- some set of defined modifiers with names and profiles defined in Emod.

A dependent access function name ac : su...,sn -»• s is interpreted in a dynamic system D(A) by a map
nLwn°CifnS With each D(A>algeh™ A' (i.e., an algebra belonging to the carrier of D(A)) a function

atPW(A') : A'sl x ... x A'm -> A's.
The operation associated with a defined modifier of Emod is a transformation of a £>(A)-algebra into another

D(A)-algebra.

4.2 Specification of a dynamic system

Let

DS < (27, Ax), (Eeac,Axinit), (Eac, Axac, Emod,Defmod) > be a dynamic system specification. It has three
levels:

1. The first level is a classical algebraic specification < E,Ax > (cf. [12,38]) which defines the data types
used in the system. Semantics of this specification is given by the specification language used. The approach
is relatively independent of a particular specification language. It is only required that the semantics of a
specification is a class of algebras.

2. The second level defines those aspects of the system's state which are likely to change and the initial states
It includes: . '

- A signature, Eeac, which does not introduce new sorts. It defines the the names and profiles of elementary
access functions. A model of the specification < 27 U Eeac, Ax > is a state. In the sequel, 27' stands for
2J U Eeac.

- A set of axioms, AxInit, characterizing the admissible initial states, i. e. stating the initial properties of
the system.

3. The third level defines some dependent access functions and possible evolutions of the system's states Two
parts are distinguished here.

- A specification of dependent access functions < Eac,Axac >. It does not introduce new sorts and uses
the elementary access functions and the operations of 27. The form of this specification is the same as
in Ab-lb. However, the semantics is different (see the preceding subsection) in order to simplify the
semantics of state updates.
A D(^)-algebra A' can be extended into an algebra A" of signature 27" = 27' U 27oc satisfying Ax
Such an algebra is called an extended state. The extended state corresponding to the state A' is denoted
by Exts»{A) m the sequel. Given a 27'-algebra A' and its extended state A", any ground term of Ts„

 Gaudel M.-C, Zamulin A. Algebraic Imperative Specifications 23

corresponds to a value in A' since the specification of A" does not introduce new sorts and is sufficiently
complete with respect to the specification of A' (cf. Section 2). Thus, the notion of the value of a ground
£"'-term in a D(A)-algebra A' can be used.

- A definition of defined modifiers, < Smod,Defmod >. The form of this specification is the same as in
Section 2.
As sketched above, a modifier name mod : sx,..., s„ from Smod is interpreted in a dynamic system D{A)
by a map modDW associating a D(A)-algebia B with each pair < A',< yi,...,vn », where A' is
a D(A)-algebra and vt is an element of A'Si; this map must satisfy the corresponding definition from
Defmod as stated in [20].
This approach gives a semantics of modifications themselves, independently of their applications. More-
over, the fact that the dependent accesses are no more part of the state makes the semantics of elementary
updates much simpler [20].

4.3 States and behaviors of the system

The notions of state and behavior introduced in Section 2 are redefined below for dynamic systems.
Let DS = < (S,Ax),(Seac,AxInit), (Sac Axac,Smod, Defmod) > be a specification of a dynamic system,

and let E' = SLS Seac.
System's state. As already mentioned, a state of the system, defined by the specification DS is a Z"-algebra
satisfying the axioms Ax.

It is important that each change of state preserves the data types used. This leads to the partitioning of
< E',Ax >-algebras into subsets, stateA(S', Ax), consisting of algebras sharing the same interpretation of the
data types. Since < S',Ax > is just an extension of the specification < S, Ax > with some operation names,
we have :

(UstateA(S',Ax))AeMg{E,Ax)= Alg(S',Ax)

Initial states. A subset of this set of models represents possible initial states of the system being specified. It
corresponds to an enrichment of the specification < S',Ax > with Ax[na , thus:

stateInit(DS) = {A' e Alg(S', Ax >)\Ä f= AxInit}

Behavior of the system. A behavior is a sequence of updates which are produced by the invocations of
some modifiers. Several sequences of states (eo,ei,e2,...) correspond to a behavior (mo,mi,ffl2,...) depending
on the choice of the initial state:

- the initial state eo belongs to stateinu(DS) ;
- each ej+i is the result of the application of the modifier m; to e, (e,+i = [mjej) .

The semantics of updates as it is defined in [20] guarantees that if eo belongs to a dynamic system D(A), then
any ej also belongs to D(A) (the state changes, but the data type's do not change).

As AS-IS, this formalism is deterministic for two reasons: the semantics of elementary modifiers and, there-
fore, of all modifiers ensures that one2 and only one state (up to isomorphism) is associated with the application
of a modifier to a state; besides the specification of dependent access functions, < Sac, Axac >, is sufficiently
complete with respect to < SUSeae, Ax >. Thus, only one sequence of states starting with a given initial state
is associated with a behavior.

Reachable states. The set of reachable states, REACH(DS) is the set of states which can be obtained
by a sequence of updates corresponding to the invocations of some modifiers of Smod, starting from an initial
state.

Thus, the set REACH(DS) is recursively defined in the following way:

- stateinit(DS) C REACH(DS)
- Vrn € Smod, V«! € (TE")tl • • .*„ G (T^).», VA' € REACH(DS),

[m(ti,...,tn)]Ä £REACH(DS).

provided that the validity/invalidity of the conditions in conditional updates is always defined

JA Perspectives of System Informatics'99

5 Related works

One of the first specification languages with states represented by algebras is COLD-K [18], the kernel lan-
guage of the COLD family of specification languages. It possesses many of the features mentioned above, e.g.
dynamic (elementary access) functions, dependent (access) functions and procedures (modifiers). Procedures
are considered as relations on states. For the specification purposes some imperative constructions (sequential
composition expressions and repetition expressions) are used. However, it is still mainly axiomatic specification
language using pre- and post-conditions resembling those of VDM.

The idea of implicit state in terms of a new mathematical structure, d-oid, is given by Astesiano and Zucca
[2]. A d-oid, like the dynamic system described above, is a set of algebras (states) called instant structures, set of
dynamic operations (transformations of instant structures with a possible result of a definite sort) and a tr'acking
map indicating relationships between instant structures. Dynamic operations in a d-oid serve as counterparts
of dependent access functions and modifiers in AS-IS and the tracking map provides a very abstract way of
identifying components of different instant structures (there is no notion of tracking map in the above definition
of dynamic system since each algebra of the same signature is by definition a mapping of the same set of names
to a semantics universe). The approach in question deals only with models and does not address the issue of
specifying the class of such behaviors, which is the purpose of imperative specifications.

Dynamic types as a modified version of d-oid are further investigated in [45]. Although no direct definition
of a dynamic abstract type is given in that paper, it has contributed by formal definitions of a static framework
and of a dynamic framework with a corresponding logical formalism over a given static framework. It seems
that the formalism can be used as a basis of an imperative specification language.

Another similar approach is the "Concurrent State Transformation on Abstract Data Types" presented in
[23]. It also uses the idea of implicit state which is modeled as partial algebra that extends a fixed partial algebra
considered as a static data type. All functions are given at the same level. Dynamic functions are considered
totally undefined m the static data type. A state on a given partial algebra is a free extension of this algebra
specified by a set of function entries. Invariant relations between dynamic operations are given by axioms at the
static level. Transitions between states are specified by conditional replacement rules indicating the function
entries that should be added/removed when the condition is valid.

There are some restrictions on the partial equational specifications for the static data types, the admissible
partial algebras and states, and the replacement rules in order to have the same structural properties as the
algebraic specification logic. The most severe of them is the restriction of replacement rules only to redefinitions
of so called contents functions corresponding to the mappings of variables to their values in programming
languages This leads to severe restrictions on the use of the formalism (one cannot define and update an
arbitrary dynamic function).

In a slightly revised form the formalism is used in [24] for the definition of algebra transformation systems
and their compositions.

Aig?uaIPdatinf Tfati0riS are interpreted as relations between algebras in [3], and these relations are
specified by the usual algebraic specification technique. To make the difference between the original and updated
values of the same function (constant), one has to decorate its name in a formula. This leads to the necessity of
having two signatures (one for the original algebra and one for the resulting algebra) and signature morphisms
for establishing the correspondence between decorated and non-decorated versions of the same name and writing
formulae m the discriminated union of the signatures. From some examP<les of the paper, it seems that this can
lead to rather complex specifications.

Finally, the specification language Troll [30] should be mentioned. It is oriented on the specification of static
and dynamic property of objects where a method (event) is specified by means of evaluation rules resembling
equations on attribute values. Although the semantics of Troll is given rather informally, there is a strong
mathematical foundation of its dialect, Troll light [21], with the use of data algebras, attribute algebras and
event algebras. An attribute algebra represents a state. A relation constructed on two sets of attribute algebras
and a set of event algebra, called object community, formalizes a transition from one attribute algebra to another
when a particular event algebra takes place.

6 Conclusion

This survey paper provides a guided tour of several imperative approaches of specification based on the state-

SpMt state ^^ CheS ' Synth6SiS °f tW° °f them' Und6r the name °f d^namic SyStems wth

 Gaudel M.-C, Zamulih A. Algebraic Imperative Specifications 25

Some of these approaches differ in significant way. This is an indication of the generality of the paradigm. In
AS-IS, the aim is to specify the dynamic evolutions of the specified systems in a high level and non algorithmic
way. In ASM, the goal is to provide a way of describing algorithms in an abstract way. Moreover, the problem
of multiple inconsistent updates is considered very differently in both approaches, as mentioned in Section 3.1.

One of the advantages of these approaches to formal specification is a better understandability for people
familiar with imperative programming. AIS use a simple syntax which can be read as a form of high level code.

Another advantage is their generality. AIS have been shown to be useful in such wide variety of domains as
sequential, parallel and distributed systems with either finite-state or infinite domains.

A current weakness of these approaches is the lack of formal calculus to perform proofs. It is very likely that
a calculus based on the concept of substitution, in the line of Abrial's calculus for B [1] could be developed. It
is the subject of some future work.

References ,

1. J. R. Abrial. The B book - Assigning programs to meanings. Cambridge University Press, 1996.
2. E. Astesiano and E. Zucca. D-oids: a Model for Dynamic Data Types. Mathematical Structures in Computer Science,

5(2), June 1995, 257-282.
3. H. Baumeister. Relations as Abstract Data Types: An Institution to Specify Relations between Algebras. TAP-

SOFT'95, LNCS, vol. 915, Springer Verlag, pp. 756-771.
4. E. Boerger and D. Rosenzweig. The WAM-Definition and Compiler Correctness. Logic Programming: Formal Methods

and Practical Applications, North-Holland Series in Computer Science and Artificial Intelligence, 1994.
5. E. Boerger, J. Huggins. Commented ASM Bibliography. Formal Specification Column (H. Erhig, ed.), EATCS Bul-

letin, vol. 64, February 1998, pp. 105-127.
6. K.M. Chandy and J. Misra. Parallel Program Design: a foundation. Addison-Wesley, 1988.
7. Dauchy P., Developpement et exploitation d'une specification algebrique du logiciel embarque d'un metro. These de

Docteur en Sciences de l'Universite' de Paris-Sud, Orsay, July 1992.
8. P. Dauchy and M.C. Gaudel. Algebraic Specifications with Implicit State. Tech. report No 887, Laboratoire de

Recherche en Informatique, Univ. Paris-Sud, 1994.
9. Dauchy P., Marre B., Test data selection from algebraic specifications : application to an automatic subway module.

3rd European Software Engineering Conference, ESEC'91, LNCS, vol. 550, 1991, pp. 80-100.
10. Dauchy P., Gaudel M.-C, Marre B., Using Algebraic Specifications in Software Testing : a case study on the software

of an automatic subway. Journal of Systems and Software, vol. 21, no 3, June 1993, pp. 229-244.
11. G. Del Castillo, Y. Gurevich, and K. Stroetmann. Typed Abstract State Machines. Submitted to Journal of Universal

Computer Science, available from http://www.eecs.umich.edu/gasm/), 1998.
12. H. Ehrig, B. Mahr. Fundamentals of Algebraic Specifications 1, Equations and Initial Semantics. EATCS Monographs

on Theoretical Computer Science, vol. 6, Springer, Berlin, 1985.
13. H. Ehrig, B. Mahr. Fundamentals of Algebraic Specifications 2. EATCS Monographs on Theoretical Computer Sci-

ence, vol. 21, Springer, Berlin, 1990.
14. Gaudel M.-C, Generation et Preuve de Compilateurs basees sur une Semantique Formelle des Langages de Pro-

grammation, These d'etat, INPL (Nancy, France), 1980.
15. Gaudel M.-C, Correctness Proof of Programming Language Translations. Formal Description of Programming

Concepts-II, D. Bjorner ed., North-Holland, 1983, pp.25-43.
16. Gaudel M-C, Structuring and Modularizing Algebraic Specifications: the PLUSS specification language, evolutions

and perspectives 9th Annual Symposium on Theoretical Aspects of Computer Science (STACS'92), Cachan, feb.
1992, LNCS, vol. 577, pp. 3-18.

17. Marie-Claude Gaudel, Pierre Dauchy, Carole Khoury, A Formal Specification of the Steam-Boiler Control Problem by
Algebraic Specifications with Implicit State. Formal Methods for Industrial Applications: specifying and programming
the Steam Boiler Control, LNCS, vol. 1165, Springer Verlag, 1996, pp. 233-264.

18. H.B.M. Jonkers. An Introduction to COLD-K. Algebraic Methods: Theory, Tools and Applications, LNCS, vol. 394,
1989, pp. 139-205.

19. Gaudel, M.-C, Khoury, C and Zamulin, A., Dynamic systems with implicit state, Rapport interne no 1172, Labo-
ratoire de Recherche en Informatique, May 1998.

20. M.-C. Gaudel, C. Khoury, A. Zamulin. Dynamic systems with implicit state. Fundamental Approaches to Software
Engineering, LNCS, vol. 1577, 1999, pp.114-128.

21. M. Gogolla & R. Herzig. An Algebraic Semantics for the Object Specification Language TROLL light. Recent Trends
in Data Type Specifications, LNCS, vol. 906, pp. 290-306, 1994.

22. R. Groenboom and R. Renardel de Lavalette. Reasoning about Dynamic Features in Specification Languages. Work-
shop in Semantics of Specification Languages, Springer Verlag, 1994, pp. 340-355.

23. M. Grosse-Rhode. Concurrent State Transformation On Abstract data Types. Recent Trends in Data Type Specifi-
cations, LNCS, vol. 1130, pp. 222-236, 1995.

26 Perspectives of System Informatics'99

24. M. Grosse-Rhode. Algebra Transformation Systems And Their Composition. Fundamental Approaches to Software
Engineering, LNCS, vol. 1382, pp. 107-122, 1998.

25. Y. Gurevich. Logic and the Challenge of Computer Science. Trends in Theoretical Computer Sciience, Computer
Science Pres, ed. E. Boerger, 1988, pp. 1-57.

26. Y. Gurevich. Evolving Algebras: An Attempt to Discover Semantics. Current Trends in Theoretical Computer Sci-
ence, World Scientific, 1993, pp. 266-292.

27. Y. Gurevich and J. Huggins. The semantics of the C programming language. Computer Science Loqic, LNCS vol
702, 1993, pp. 274-309.

28. Y. Gurevich. Evolving Algebras 1993: Lipary Guide. Specification and Validation Methods, Oxford Universitv Press
1995, pp. 9-36. *

29. Y. Gurevich. May 1997 Draft of the ASM Guide. Available electronically from http://www.eecs.umich.edu/gasm/.
30. T. Hartmann, G. Saake, R. Jungclaus, P. Hartel, and J. Kush. Revised Version of the Modeling Language TROLL.

Technishe Universitaet Braunschweig, Informatik-Berichte 94-03, 1994.
31. C. B. Jones. Systematic Software Development using VDM. Prentice Hall, 1990.
32. Carole Khoury, Definition d'une approche orientee-objet de la specification algebrique des systemes informatiques.

These de Docteur en Sciences de l'Universite de Paris-Sud, Orsay, March 1999.
33. C. Khoury, M.C. Gaudel and P. Dauchy. AS-IS. Tech. report No 1119, Laboratoire de Recherche en Informatique

Univ. Paris-Sud, 1997. '
34. R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and System Sciences 1978
35. B. Monahan and R. Shaw. Model-Based Specifications. Software Engineer's Reference Book, chapter 21, Butterworth-

Heineman, 1991.

36. J. M. Spivey. Understanding Z. A specification language and its formal semantics. Cambridge University Press, 1988
37. J. M. Spivey. The Z Notation. A Reference Manual. Prentice Hall, 1989.
38. M. Wirsing. Algebraic Specifications. Handbook of Theoretical Computer Science, Elsevier Science Publishers B V

1990, pp. 665-788. " "'

39. A.V.Zamulin. Typed Gurevich Machines. Institute of Informatics Systems, Preprint No 36, Novosibirsk 1996
(ftp://xsite.iis.nsk.su/pub/articles/tgm.ps.gz). '

40. A.V.Zamulin. Typed Gurevich Machines Revisited. Joint NCC&ISS Bull, Comp. Science, 7 (1997) pp 95-121
(available electronically from http ://www.eecs.umich.edu/gasm/). '

41. A.V. Zamulin. Specification of an Oberon Compiler by means of a Typed Gurevich Machine. Institute of Informatics
Systems of the Siberian Division of the Russian Academy of Sciences, Report No. 589. 3945009.00007-01 Novosibirsk
1997 (available electronically from http://www.eecs.umich.edu/gasm/). ' '

42. A.V. Zamulin. Object-Oriented Abstract State Machines. Proc. Int. Workshop on Abstract State Machines Maeder-
burg, Germany, September 21-22, 1998, pp 1-21. '

43. A V. Zamulin. Dynamic System Specification by Typed Gurevich Machines. Proc. Int. Conf. on Systems Science,
Wroclaw, Poland, September 15-18, 1998.

44 t'^'Jo^™' °bJect-°riented Specification by Typed Gurevich Machines. Joint NCC&ISS Bull, Comp. Science
8 (1998), pp. 77-103. '

45' L«UCCa'^T StatiC *° Dynamic Data ^es- Mathematical Foundations of Computer Science, LNCS, vol 1113
iyyo, pp. 579-590. '

Enhanced Control Flow Graphs in Montages

Matthias Anlauff1, Philipp W. Kutter2, and
Alfonso Pierantonio3

1 GMD FIRST, D-12489 Berlin
maQfirst.gmd.de

2 Federal Institute of Technology, CH-8092 Zürich
kutterQtik.ee.ethz.ch

3 Universitä di L'Aquila, 1-67100 L'Aquila
alfonsoQunivaq.it

Abstract. A semi-visual framework for the specification of syntax and semantics of imperative program-
ming languages, called Montages, was proposed in an earlier work by the authors. The primary aim of
this formalism is to assist in recording the decisions taken by the designer during the language design
process. The associated tool Gem-Mex allows the designer to maintain the specification and to inspect the
semantics to verify whether the design decisions have been properly formalized.
Experience with full-scale case studies on Oberon, Java, and domain specific languages showed the close re-
lationship to Finite State Machines (FSMs). This paper gives a new definition of Montages based on FSMs.
It confers to the formalism enhanced pragmatic qualities, such as writability, extensibility, readability, and,
in general, ease of maintenance.

1 Introduction

The aim of Montages is to document formally the decisions taken during the design process of realistic program-
ming languages. Syntax, static and dynamic semantics are given in a uniform and coherent way by means of
semi-visual descriptions. The static aspects of a language are diagrammatic descriptions of control flow graphs,
and the overall specifications are similar in structure, length, and complexity to those found in common language
manuals.

The departure point for our work has been the formal specification of the C language [10]1, which showed
how the state-based formalism Abstract State Machines [8,9,13] (ASMs), formerly calldd Evolving Algebras,
is well-suited for the formal description of the dynamic behavior of full-blown practical languages. In essence,
ASMs constitute a formalism in which a state is updated in discrete time steps. Unlike most state-based systems,
the state is given by an algebra, that is, a collection of functions and universes. The state transitions are given
by rules that update functions pointwise and extend universes with new elements. The model presented in [10]
describes the dynamic semantics of the C language by presuming on an explicit representation of control and
data flow as a graph. This represents a major limitation for such a model, since the control and data flow graph
is a crucial part of the specification. Therefore, we developed Montages which extend the approach in [10] by
introducing a mapping which describes how to obtain the control and data flow graph starting from the abstract
syntax tree.

The formulation of Montages [17] was strongly influenced by some case studies [16,18] where the object-
oriented language Oberon [26] has been specified. Montages have been used also in other case studies, such
as the specification of the Java [25] language, the front-end for correct compiler construction [11], and the
design and prototyping of a domain-specific languages in an industrial context [19]. The experience showed
that the underlying model for the dynamic semantics, namely the specification of a control flow graph including
conditional control flow and data flow arrows and its close relationship to the well known concept of Finite State
Machines, shortens the learning curve considerably. In this paper a new FSM based definition of Montages is
given. Complete references, documentation and tools can be obtained via [4].

2 Montages

In our formalism, the specification of a language consists of several components. As depicted in Fig. 1, the
language specification is partitioned into three parts.

1 Historically the C case-study was preceded by work on Pascal [8], and other languages, see [5] for a commented
bibliography on ASM case studies.

28 Perspectives of System Informatics'99

language specification language instances

EBNF

MVL descriptions
(local finite state machines)

ASM
transition rules

Program

Abstract Syntax Tree

inductive decoration

Global
Finite State Machine

nodes edges

action rules

Fig. 1. Relationship between language specification and instances.

1. The EBNF production rules are used for the context-free syntax of the specified language L, and they allow
to generate a parser for programs of L. Furthermore, the rules define in a canonical way the signature of
abstract syntax trees (ASTs) and how the parsed programs are mapped into an AST. Section 2.1 contains
the details of this mapping. In Fig. 1 the dotted arrow from the EBNF rules visualizes that this information
is provided from the Montage language specification.

2. The next part of the specification is given using the Montage Visual Language (MVL). MVL has been
explicitly devised to extend EBNF rules to finite state machines'(FSM). A MVL description associated
to an EBNF rule defines basically a local finite state machine and contains information how this FSM is
plugged into the global FSM via an inductive decoration of the abstract syntax trees. To this end each
node is decorated with a copy of the finite state machine fragment given by its Montage. The reference to
dependents in the AST defines an inductive construction of a global structured FSM. In Section 2 2 we
define how this construction works exactly.

3. Finally, any node in the FSM may be associated with an Abstract State Machine (ASM) rule This action
rule is fired when the node becomes the current state of the FSM. As shown in Fig. 1, the specification of
these rules is the third part of a Montages specification.

• Tä^mplete language sPecification is structured in specification modules, called Montages. Each Montage
^\-J; I"e^enS!?n;t0"SemantiCS" in the SenSe that lt Specifies the context-free grammar rule (by means of
EBNF) the (local) finite state machine (by means of MVL), and the dynamic semantics of the construct (by
means of ASMs). The special form of EBNF rules allowed in a specification and the definition of Montages lead
to the tact that each node in the abstract syntax tree belongs exactly to one Montage.

As an example the Montage for a nonterminal with name Sum is shown in Fig. 2. The topmost parts of this
Montages is the production rule defining the context-free syntax. The remaining part defines static aspects of
the construct given by means of an MVL description. Additionally, the Montage contains an action rule, which
is evaluated after the two operands, i.e. when the control reaches the sum node.

The definition of Montages usually contains a fourth section which is devoted to the specification of static
analysis and semantics. After working with fixed traversal orders and non-local attributions, we found that
Reference Attribute Grammars [12] are most suited for our purpose. They allow us to abstract from the traversal
order while not restricting the use of non-local references. The result of the attribution can be used to define
firing conditions in the global FSM.

_ The combination of attribute grammars for static analysis and semantics is standard technique. In [121 it
is shown how reference attribute grammars define static properties of an object oriented languages in a simple
and concise way. Further [22] uses a corresponding functional system in combination with ASMs and shows
how to describe static and dynamic aspects of full-blown languages. In contrast to these works, Montages has

Anlauff M., Kutter Ph. W., Pierantonio A. Enhanced Control Flow Graphs in Montages 29

Sum ::= Factor "+" Expr

••*(add)" *T 1 -*| S-Factor \-*\ S-Expr [

@add:
value . = S-Factor.value + S-Expr.value

EBNF

MVL description
(local finite state machine)

ASM
transition rule

Fig. 2. Montage components.

an elaborated visual formalism for the specification of sequential control flow by means of FSMs. These aspects
are going to be presented in the next sections.

2.1 From Syntax to AST

In this section, the first step in Fig. 1 is described. As a result of this step we get the abstract syntax tree of the
specified program. But we also compose the Montages corresponding to the different constructs of the language.
This composition of the partial specifications is done based on the structure of the AST.

EBNF rules The syntax of the specified language is given by the collection of all EBNF rules. Without loss
of generality, we assume that the rules are given in one of the two following forms:

A::=BCD

E = F\G\H
(1)
(2)

The first form defines that A has the components B, C, and D whereas the second form defines that E is one
of the alternatives F, G, or H. Rules of the first form are called characteristic productions and rules of the
second form are called synonym productions. We guarantee that each non-terminal symbol appears in exactly
one rule as the left-hand-side. Non-terminal symbols appearing on the left of the first form of rules are called
characteristic symbols and those appearing on the left of synonym productions are called synonym symbols.

Composition of Montages Each characteristic symbol and certain terminal symbols define a Montage. A
Montage is considered to be a class2 whose instances are associated to the corresponding nodes in the abstract
syntax tree. Symbols in the right-hand side of a characteristic EBNF rule are called (direct) components of
the Montage, and symbols which are reachable as components of components are called indirect components.
In order to access descendants of a given node in the abstract syntax tree, statically defined attributes are
provided. Such attributes are called selectors and they are unambiguously defined by the EBNF rule. In the
above given rule, the B, C, and D components of an A instance can be retrieved by the selectors S-B, S-C, and
S-D. In Fig. 3 a possible representation of the A-Montage as class and an abstract syntax tree (AST) with two
instances of A and their components are depicted.

Synonym rules introduce synonym classes and define subtype relations. The symbols on the right-hand-side
of a synonym rule can be further synonym classes or Montage classes. Each class on the right-hand-side is a
subtype of the introduced synonym class. Thus, each instance of one of the classes on the right-hand side is an
instance of the synonym class on the left-hand-side, e.g. in the given example, all F-, G-, and H-instances are
E-instances as well. In the AST, each inner node is an an instance of arbitrarily many (possibly zero) synonym
classes and of exactly one Montage.

Terminals, e.g. identifiers or numbers, do not correspond to Montages. The micro-syntax can be accessed
using an attribute Name from the corresponding leaf node. The described treatment of characteristic and
synonym productions allows for an automatic generation of AST from the concrete syntax given by EBNF, see
also the work in [21].
2 In this context we consider class to be a special kind of abstract data type, having attributes and methods (actions)

and, most important for us, where the notion of sub-typing and inheritance are predefined in the usual way.

30 Perspectives of System Informatics '99

Induced structures Inside a Montage class, the term self denotes the current instance of the class. Using the
selectors, and knowledge about the AST, we can build paths w.r.t. to self. For instance, the path self.S-B.S-
H.S-J denotes a node of class J, which can be reached by following the selectors S-B, S-H, and then S-J, see Fig.
4. The use of such a path in a Montage definition imposes a number of constraints on the other EBNF rules of
the language. The example self.S-B.S-H.S-J requires that there is a B component in the Montage containing
the path. Further, every subtype of B must have an H component, and every subtype of H must have an J
component. In other words, the path self.S-B.S-H.S-J must exist in all possible ASTs.

Example As a running example we give a small language <S. The expressions in this language potentially have
side effects and must be evaluated from left to right. The atomic factors are integer constants and variables of
type integer. The start symbol of the EBNF is Expr, and the remaining rules are

Expr = Sum | Factor
Sum ::= Factor "+" Expr
Factor = Variable | Constant
Variable ::= Ident
Constant ::= Digits

The following term is an S-program:

2 + x + 1

As a result of the generation of the AST we obtain the structure represented in Fig. 5. In particular the
nodes from 1 to 8 represent instances of the Montage classes and the edges point to the successors of a particular
node. The edges are labeled with the selector functions which can be used in the Montage corresponding to
the source node to access the Montage corresponding to the target node. The nodes themselves show the class
hierarchy starting from the synonym class and ending with the Montage class. The leaf nodes contain the
definition of the attribute Name, i.e. the micro-syntax.

2.2 From AST to Control Flow Graphs

According to Fig. 1, the next step in building the data structure for the dynamic execution is the inductive
decoration of the AST with a number of finite state machines. Again, this process is described rather informally
here. J

As we have seen in Fig. 2, the second part of a Montage contains the necessary specifications given in form
of the Montage Vtsual Language (MVL). The Montages for the productions Variable and Constant are given in
Fig 6. Two kinds of information are represented in the second part of a Montage: (a) the local state machine
to be associated to the node of the AST and (b) information on the embedding of this local state machine
Using our running example, Fig. 7 just represents the MVL sections of the Montages as they are associated to
the corresponding nodes of the abstract syntax tree. The hierarchical state transition graph resulting from the
inductive decoration is shown in Fig. 8 for the running example.

class A
attributes

S-B of type B
S-C of type C
S-D of type D

methods
static-semantics
dynamic-semantics

Fig. 3. Montage class A, instances in the AST, selectors S-B, S-C, S-D

Anlauff M., Kutter Ph. W., Pierantonio A. Enhanced Control Flow Graphs in Montages 31

Montage Visual Language Now, the elements öf the MVL and their semantics can be described as follows:

- There are two kinds of nodes. The oval nodes represent states in the generated finite state machine. These
states are associated to the AST node corresponding to the Montages. The oval nodes are labeled with an
attribute. It serves to identify the state, for example if it is the target of a state transition or if it points to
a dynamic action rule.

- The rectangular nodes or boxes represent symbols in the right hand side of the EBNF rule and are called
direct components of a Montages, see Section 2.1. They are labeled with the corresponding selector function.
Boxes may contain other boxes which represent indirect components. This way, paths in the AST are
represented graphically.

- The dotted arrows are called control arrows. They correspond to edges in the hierarchical state transition
graph of the generated finite state machine. Their source or target can be any box or oval. In addition, their
source or target can be either the symbol / (J stands for initial) or T (T stands for terminal), respectively.
In a Montage, at most one symbol of each, I and T, is allowed. If the I symbol is omitted, the states of the
Montage can only be reached using a jump, if the T symbol is omitted, the Montages can only be left using
a jump.

- As in other state machine formalisms (such as Harel's StateCharts), predicates can be associated to control
arrows. They are simply terms in the underlying ASM formalism and are evaluated after executing the
action rule associated to the source node. Predicates must not be associated to control arrows with source

- There are additional notations not used in this paper — for example data flow edges representing the mutual
access of data between Montages and box structures representing lists in an effective way. Moreover, in this
section of a Montage, one may specify further action rules to be performed in the static analysis phase, for
example building up data structures necessary for the static and dynamic semantics.

It remains to show how the hierarchical finite state machine, for example Fig. 8 is built and how its dynamic
semantic is defined.

Hierarchical FSM Building the hierarchical FSM is particularly simple. The boxes in the MVL are references
to the corresponding local state transition graphs. Remember that nested boxes correspond to paths in the
AST. Therefore, there are references to children only, i.e. to other state transition graphs along the edges of the
AST. After resolving the references, a representation as in Fig. 8 is obtained.

Dynamic Semantics After the static analysis phase action rules are executed which define the dynamic
semantics of the language.

- States of the finite state machines are visited sequentially.
- The action rule associated to a visited state is executed. The specification of these actions is based on the

ASM formalism
- The control is passed to the next state along a control arrow whose predicate evaluates to true. The control

predicate, i.e. a term in the ASM formalism, is evaluated after executing the action associated to the source
node.
If there is more than one possible next state, the system behaves like a nondeterministic FSM. Up to now
we did not use nondeterministic FSMs.

imposed constraints:
B = B1 | B2 |
Bl ::= ... H .
B2 ::= H ..

H = HI | H2 |
HI ::= ... J ..
H2 ::= ... J ..

Fig. 4. Montage A using path self.S-B.S-H.S-J, situation in AST, and constraints on EBNF rules of B, H.

32 Perspectives of System Informatics'99

Fig. 5. The abstract syntax tree and composition of Montages for 2 + x + 1

- If the target of a control arrow is a T, then a control arrow leaving the corresponding box in the enclosing
parent state machine is followed. The terra parent refers to the partial ordering of local state machines as
imposed by the AST.

- If the target of a control arrow is a box, the corresponding local state machine corresponding to it is entered
via the symbol I.

More formally, the arrows from / and to the T symbols define two unary functions, Initial and Terminal
denoting for each node in the AST the first, respectively last state that is visited. According to the above
description, the inductive definition of these functions is given as follows.

For each state s in the finite state machines,

s.Initial — s

s.Terminal = s
(3)

(4)

and for each instance n of a Montage N whose MVL-graph has an edge from / to a component denoted by path
tgt,

n.Initial = n.tgt.Initial

and for each instance m of a Montage M whose MVL-graph has an edge from a component denoted by path
src to T,

m.Terminal — m. src. Terminal

Using these definitions, the structured finite state machine can be flattened. The arrows of the flat finite
state machine are given by the following equations defining the relation ControlArrow. For each instance n of a
Montage N and each edge e in the MVL-graph of N,

ControlArrow(n.src. Terminal, n. tgt.Mtial)) = true

Variable ::= Ident

•->T

Mookup:
value :=

CurrentStore(S-Ident.Name)

Constant ::= Digits

!-■*<

@setValue:
value := S-Digits.Name

Fig. 6. The Montages for the language S.

Anlauff M., Kutter Ph. W., Pierantonio A. Enhanced Control Flow Graphs in Montages 33

I- - ->| S-FactorJ - ->| S-Expr j - ->Udd)- - ->-T

I--->[s-Factor|--->|~S^Expr \ - ->{£dd} - ->T

I- - ->6et Value)- • ->T

Fig. 7. The finite state machines belonging to the nodes.

I--->4etValus>--->-T

S-Pactor (•?
!---> I---<toöku£T>-->-T

S-Pactor (5

, - .» I- - -*!etValug> - ->T

S-Expr d
- ->{adij)- - ->T

S-Exp r a
-Kadd>-->-T

G

Pig. 8. The constructed hierarchical finite state machine.

where src is the path of the source of e and tgt is the path of the target of e.
Applying these definitions to the running example results in the flat state machine of Fig. 9. In the same

figure the dotted lines denote the relation of a state to its corresponding Montage, which is accessible as self.
Using the Montages shown in Figs. 2 and 6 and their action rules, we can track how the ASM rule associated
with the add states can access the AST-nodes of its left and right arguments as self.S-Factor and self.S-Expr.
The results of calculations performed by the actions are stored in the additional attributes value. The add action
accesses the values of its arguments using the selectors, and defines its own value field to be the sum of the
arguments. Assuming that CurrentStore maps x to 4, the execution of the flat or structured finite state machine
sets the value of node two to the constant 2, sets the value" of node five to the current store at x, sets the value
of node six to 1, sets the value of node three to the sum of 4 and 1, and finally sets the value of node one to
the sum of 2 and 5.

3 Gem-Mex: The Development Environment for Montages

The development environment for Montages is given by the Gem-Mex tool [2,3]. The intended use of the tool
Gem-Mex is, on one hand to allow the designer to 'debug' her/his semantics descriptions by empirical testing
of whether the intended decisions have been properly formalized; on the other hand, to automatically generate
a correct (prototype) implementation of programming languages from the description, including visualization
and debugging facilities.

Gem-Mex is a system which assists the designer in a number of activities related with the language life cycle,
from early design to routine programmer usage. It consists of a number of interconnected components

- a specialized'graphical editor allows to enter and manipulate Montages in a convenient way;
- frames for the documentation of the specified languages are generated automatically;
- the Montages executable generator (Mex) generates a correct and efficient interpreter of the language;
- the generic animation and debugger tool visualizes the static and dynamic behavior of the specified language

at a symbolic level; source programs written in the specified language and user-defined data structures can
be animated and inspected in a visual environment.

3.1 Generation of Language Interpreters

Using the formal semantics description given by the set of Montages and a number of ADTs, the Gem-Mex
system generates an interpreter for the specified language. The core of the Gem-Mex system is Asian [1], which

34 Perspectives of System Informatics'99

S-Factor/ \S-Expr

S-Factor/ \S-Expr

©' ®-

I >Q»etVaIue_/ >QlookUp)- >(%etVaIuO- »(add)- >(add\ - -> X

Fig. 9. The flat finite state machine and its relation to the AST.

stands for abstract State Machine language and provides a fully-fledged implementation of the ASM approach
Asian can also be used as a stand-alone, general purpose ASM implementation. The process of generating an
executable interpreter consists of two phases:

- The Montages containing the language definition are transformed to an intermediate format and then
translated to an ASM formalization according to the rules presented in the previous Sections.

- The resulting ASM formalization is processed by the Asian compiler generating an executable version of
the formalization, which represents an interpreter implementing the formal semantics description of the
specified language.

Using Asian as the core of the Gem-Mex system provides the user the possibility to exploit the full power of
the ASM framework to enrich the graphical ASM macros provided by Montages with additional formalization
code.

3.2 Generation of Visual Programming Environments

Besides pure language interpreters, the Gem-Mex system is able to generate visual programming environments
tor the generated ASM formalization of the programming language semantics3. This is done by providing a
generic debugging and animation component which can be accessed by the generated executable. During the
translation process of the Montages/ASM code special instructions are inserted that provide the information
bang necessary to visualize the execution of the formalization. In particular, the visual environment can be used
to debug the specification, animate the execution of it, and generate documents representing snapshots of the
visualization of data structures during the execution. The debugging features include stepwise execution, textual
representation of ASM data structures, definition of break points, interactive term evaluation, and re-plav of
executions. J

3.3 Library of Programming Language Features

A concept for providing libraries of programming language features is currently under development With this
concept is shall be possible, to reuse features of programming languages that have already been specified in
other Montages. Examples for this kind of features are arithmetic expressions, recursive function call, exception
handling, parameter passing techniques, standard control features etc. The designer of a new language can then
import such a feature and customize it according to his or her needs. The customization may range from the
substitution of keywords up to the selection among a set of variants for a certain feature, like different kinds of
inheritance in object-oriented languages, for example. In the Verifix project [11], a number of reusable Montages
has been defined with the intention to reuse not only the Montages but as well an associated construction scheme
tor correct compilers.

3 lMS fef,Ur!iS Tn aVailaWe t0 aJ1 kind °f ASM formaliz^°ns implemented in Asian not only to those generated from a Montages language specification generdiea

 Anlauff M., Kutter Ph. W., Pierantonio A. Enhanced Control Flow Graphs in Montages 35

4 Related Work

Denotations! semantics has been regarded as the most promising approach for the semantic description of
programming languages. But its problems with the pragmatics have been discovered already in case studies
of the scale of Pascal and C [23]. Moreover domain definitions often need to be changed when extending the
language with unforeseen constructs, for instance a change from the direct style to the continuation style when
adding gotos [20].

Other well known meta-languages for specifying languages are Natural Semantics [14], ASF+SDF [24], and
Action Semantics [20]. For somebody knowing mathematical logic, Natural Semantics are pretty intuitive and
we used it for the dynamic semantics of Oberon [15]. Although we succeeded due to the excellent tool support
by Centaur [7], the result was much longer and more complex then the Montages counterpart given in [18],
since one has to carry around all the state information in the case of Natural Semantics. Similar problems exist
if ASF+SDF is applied to imperative languages. Action Semantics solves these problems by providing standard
solutions to the main concepts used in programming languages. Unfortunately the set of standard solutions is
not easily extendible.

Using ASMs for dynamic semantics, the work in [22] defines a framework comparable to ours. For the static
part, it proposes occurrence algebras which integrate term algebras and context free grammars by providing
terms for all nodes of all possible derivation trees. This allows such an approach to define all static aspects of
the language in a functional algebraic system. Since reference attribute grammars [12] correspond to occurrence
algebras the static aspects of our formalisms are almost identical to those in [22].

None of the discussed approaches uses visual descriptions of control flow and none of them supports struc-
turing of all specification aspects in a vertical way, e.g. in self-contained modules for each language construct.
This way of structuring is novel with respect to existing frameworks, as far as we know. In combination with
refinements of involved semantic functions, and renaming of the vocabulary, it allows to reuse large parts of
language specifications directly in other specifications. Programming language specifications can be presented
as a series of sub-languages, each reusing its predecessor and extending it with new features. This specification
structure has been used in ASM case studies [6,10] and was adapted to the Montages case study of Oberon [18].
Our experience with Montages shows, that such sub-languages are useful, working languages, that can be exe-
cuted, tested, and explained to the user in order to facilitate understanding of the whole language. The design
and prototyping of a language is much more productive if such a stepwise development and testing is possible.

Acknowledgments We would like to thank S. Chakraborty, C. Denzler, B. Di Franco, W. Shen, L. Thiele, and
C. Wallace for collaboration in the Montages project. Furthermore we thank G. Goos, A. Heberle, W. Löwe,
and W. Zimmermann for the helpful discussions on the topic.

References

1. M. Anlauff. The Asian Language Manual. Part of the Asian distribution.
2. M Anlauff, P. W. Kutter, and A. Pierantonio. Formal Aspects of and Development Environments for Montages. In

M. Sellink, editor, 2nd Int. Workshop on the Theory and Practice of Alg. Spec, Workshops in Computing. Springer,
1997.

3. M. Anlauff, P. W. Kutter, and A. Pierantonio. The Gem-Mex Tool Homepage, http://www.first.gmd.de/~ma/gem/,
1997.

4. M. Anlauff, P. W. Kutter, and A. Pierantonio. The Montages Project Web Page.
http://www.tik.ee.ethz.ch/~montages, 1997.

5. E. Borger and J. Huggins. Abstract state machines 1988 - 1998: Commented ASM bibliography. In H. Ehrig, editor,
EATCS Bulletin, Formal Specification Column, number 64, pages 105 - 127. EATCS, February 1998.

6. E. Borger and D. Rosenzweig. A Mathematical Definition of Full Prolog. In Science of Computer Programming,
volume 24, pages 249-286. North-Holland, 1994.

7. P. Borra, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual. CENTAUR: The system.
Technical Report 777, INRIA, Sophia Antipolis, 1987.

8. Y. Gurevich. Logic and the Challenge of Computer Science. In E. Borger, editor, Theory and Practice of Software
Engineering, pages 1-57. CS Press, 1988.

9. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Borger, editor, Specification and Validation Methods.
Oxford University Press, 1995.

10. Y. Gurevich and J. K. Huggins. The Semantics of the C Programming Language, volume 702 of LNCS, pages
274-308. Springer, 1993.

11. A Heberle. W. Löwe, and M. Trapp. Safe reuse of source to intermediate language compilations. 9th Int. Symposium
on Software Reliability Engineering, 1998. http.y/chillarege.com/issre/fastabstracts/98417.html.

36 Perspectives of System Informatics'99

12. G. Hedin. Reference attribute grammars. In Second Workshop on Attribute Grammars and Their Applications,
pages 153 - 172, 1999.

13. J. Huggins. Abstract State Machines Web Page . http://www.eecs.umich.edu/gasm.
14. G. Kahn. Natural Semantics. In Proceedings of the Symp. on Theoretical Aspects of Computer Science, Passau,

Germany, 1987.
15. P. W. Kutter. Executable Specification of Oberon Using Natural Semantics. Term Work, ETH Zürich, implementa-

tion on the Centaur System [7], 1996.
16. P. W. Kutter and F. Haussmann. Dynamic Semantics of the Programming Language Oberon. Term work, ETH

Zürich, July 1995. A revised version appeared as technical report of Institut TIK, ETH, number 27, 1997.
17. P. W. Kutter and A. Pierantonio. Montages; Specifications of Realistic Programming Languages. JUGS, Sprinqer

3(5):416-442, 1997.
18. P. W. Kutter and A. Pierantonio. The Formal Specification of Oberon. JUCS, Springer, 3(5):443-503, 1997.
19. P. W. Kutter, D. Schweizer, and L. Thiele. Integrating Formal Domain-Specific Language Design in the Software

Life Cycle. In Current Trends in Applied Formal Methods, LNCS. Springer, October 1998.
20. P. D. Mosses. Theory and Practice of Action Semantics. In MFCS'96, 21st International Symposium, volume 1113

of LNCS, pages 37-61. Springer Verlag, 1996.
21. M. Odersky. A New Approach to Formal Language Definition and its Application to Oberon. PhD thesis ETH

Zürich, 1989. '
22. A. Poetzsch-Heffter. Prototyping realistic programming languages based on formal specifications. Ada Informatica,

34:737-772, 1997. 1997.
23. D. A. Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn &: Bacon, 1986.
24. A. van Deursen, J. Heerihg, and P. Klint, editors. Language Prototyping - An Algebraic Approach, volume 5 of

AM AST Series in Computing. World Scientific, 1996.
25. C. Wallace. The Semantics of the Java Programming Language: Preliminary Version. Technical Report CSE-TR-

355-97, University of Michigan EECS Department Technical Report, 1997.
26. N. Wirth. The Programming Language Oberon. Software - Practice and Experience, 18(7):671 - 690, 1988.

Abstract State Machines for the Composition
of Architectural Styles

Asuman Sünbül*

Technische Universität Berlin
Computergesttzte Informationssysteme (CIS)

Sekr.E-N7, Einsteinufer 17,
D-10587 Berlin, Germany

+49-30-31479463
asuflcs.tu-berlin.de

Abstract. Software architecture is widely recognized as one of the most fundamental concepts in software
engineering, because of the fact, that today's software systems are assembled from components with differ-
ent characteristics: for example heterogenous, legacy or distributed systems. At the software architecture
level, designers combine subsystems into complete systems using different techniques, e.g. "Architecture
Description Languages" (ADLs). There exists a number of ADLs, each of which is specialized for one
or more architectural styles. They are designed by different research groups with different goals in mind
corresponding to their mental model on how software architecture can be expressed in the most efficient
and elegant way. As a result, ADLs are not compatible with each other, so that it is difficult to present
a homogeneous view of the software architecture of a system assembled from different components. This
paper presents an approach how architectural styles can be combined using a concept of ADL-interchange.

1 Introduction

The complexity of many of today's software developments makes it often not reasonable to fix a certain architec-
tural style for the design process of the whole software system. The need for multiple styles can come from either
the problem domain or the subparts used to construct the system. Imagine, while designing a mobile phone net-
work station, there are several architectural styles, that need to be combined. For example for receiving signals
from the mobile phone the architect may choose a streaming pipe-and-filter style to handle the constant flow
of repetitive data. For processing signals may be an event-based style is chosen. For interacting with the user,
an event-based style "plus" a pipe-and-filter style is chosen. For that part of the subsystem which is responsible
for the collection of independent components or special customer service queries, a repository-based approach
is chosen.

Problem statement: This high level descriptions and the "plus" between these styles sound attractive on paper,
but while composing different architectural styles, architects may rely on ad hoc methods in trusting their own
personal experiences. Current practice tackle the component composition problem on the technical layer using
e. g. scripting, broker, RPC, event channels or similar approaches. These approaches have to strong emphasis on
solving technical interaction problems. The realization of the overall problem specification is covered by these
low-level problems.

Architecture Description Languages (ADLs) belong to the high-level approaches. ADLs are intended to
describe the system structure and behavior at a sufficiently abstract level dealing with large and complex
systems [6]. A lot of work has been done in this research area, e.g. Aesop[10], Unicon[ll], ControlH[9], MetaH[5].
Rapide[14], Darwin[15], i7[19], UNAS[18], Wright[l], GenVoca[4]

But the heterogeneity of today's software systems forces to use different components described in different
ADLs. This leads to the situation, that the ADLs become nearly unuseful, because each ADL operates in a stand
alone fashion, they are not interoperable. In large or heterogenous systems many of these common aspects of
architectural design support are re-implemented afresh. This means a lot of unnecessary work, which is probably
one of the reasons for the often discussed question [6] in software architecture, why ADLs are only taken as early
life-cycle specification languages. A main reason for this interoperability is especially the underlying semantics
of the architectural descriptions. For instance, the notion of a component in ADL A could be a different one as
the component notion in ADL B.

* This research was supported by the German Research Society, Berlin-Brandenburg Graduate School in Distributed
Information Systems (DFG grant no. GRK 316)

38 Perspectives of System Informatics'99

In the following, we will discuss two aspects: how to use different ADLs in a large software system and how
to perform the composition task on the architectural level. The basic idea is, that there exists an interchange
level between the different architectural description means. Therefore we introduce a service layer as a platform
and common service representation layer for the component composition (see Figure 1): The system description
S and the components Cu..., Cn are mapped to corresponding ASM descriptions S',C[...,C'n which must be
consistent with their unmapped versions. This mapping can be done by using standard techniques, like language
translation, or the definition of adaptors and wrappers. Finally, as the most challenging task, we transform
the overall system specification 5' step by step in such a way that it finally contains explicit references to
the interfaces of the existing components C[... ,C'n. An example of this kind of transformation is the use of
refinement techniques in formal description methods [3]. The result of these stepwise transformations represents
the composition specification of the system. We will call this final specification 5+ in order to emphasize that
it realizes the "sum" of the components. Finally, we can now analyze the resulting specification S+ aiming at
the identification of new components Xthat need to be developed besides the existing ones. As a side-effect, the
specification of these newly identified components can then automatically be obtained from the specification
S+ and developed accordingly.

System Specification Component Description

£üri*positiori*Service Layer :

Fig.l Service layer for the composition of components

2 Why Mapping Architectural Descriptions To Service Layer Representation?

We argue, that the combination of different ADLs during the design of a system is useful at least because of
the following reasons:

- If an architectural description problem is best solved by a certain ADL A, then the use of this A is the most
natural thing even if for other parts of the system A is not appropriate, and therefore other ADLs are used

- Developers often have individual favorites for describing the architecture of software. If a developer has the
freedom to choose the ADL that he or she wants - if it is appropriate for the description of the problem
- than his or her productivity is much higher than if he or she is forced to use an ADL that is fixed by
the project policy. Often these «favorite" ADLs are none of the well known languages from literature, but
individually designed "languages" the semantics of which is normally given by an implicit agreement among
the members of a developer team.

Therefore, what is needed is the possibility to combine different ADLs so that

- for different portions and/or aspects of the software architecture the ADLs that fits best can be used and
- the resulting combined architectural description is semantically consistent w.r.t. the underlying models

or tiiG A-L/IJS.

A promising way to solve this problem is to provide a concept for an interchange of ADLs. In principle
there exist the following alternatives for an interchange between different ADLs:

Sünbül A. Abstract State Machines for the Composition of Architectural Styles 39

Defining a union language subsuming ail the capabilities of the existing languages. This approach seems
to be unrealistic because of the manifold characteristics of existing ADLs. There cannot be "the universal
ADL language" that masters every requirement and every domain specific using of ADL.

Defining an intersection language that incorporates the features being contained in each of the ADLs.
Defining a service "interchange" providing services to describe and composition problems based on ar-

chitectural descriptions.

The former two alternatives imply that the use of existing ADLs would be restricted, because they would
be at least partially replaced by a new ADL. The experience gathered for the "old" ADLs will be lost and users
are forced to learn a new language. The advantage of the third approach is, that existing ADLs can be used as
they are, because the interchange is not done on the language level but on a basic semantic description level.
Thus, the latter approach is much more promising, because there is no need to convince people in present and in
future to use a "better" approach for their architectural description. For the same reason, the third alternative
applies also for the integration of the architecture of legacy systems.

2.1 What are the problems concerning ADL interchange?

The combination of ADL A and B is less complicated, if A and B are designed to describe different aspects
of the software. For example, if the static structures of the system is described in ADL A, and the dynamic
behavior is encoded in ADL B, then the combination of these two descriptions should be easier. The situation
looks quite different, if A and B are "competing" ADLs being designed for similar purposes. In this case, it is
very important to carefully analyze the underlying semantics of A and B, so that a combination is possible and
the consistency can be checked.

Therefore, an interplay of ADLs can only be achieved, if the semantics of each of them is unambiguously
defined. Only with these descriptions it is possible to formulate propositions being valid for the combined
architectural description.

As a consequence, there must be one single description language for formulating the underlying semantics
of each of the ADLs. Thus, great care must be taken in selecting the right one, which must meet at least the
following requirements:

- Due to the fact that ADLs are manifold, the formal description language must be universal in that sense,
that it is possible to describe the feature of existing ADLs. Especially, the language must be able to express
static structures as well as dynamic behavior.

- In order to be able to make statements about certain properties of the combined architectural description
(e.g. consistency, liveness) the description language must have a well-defined mathematical basis.

- If during the process of combining ADLs is turns out, that aspects being important for the interplay of
the ADLs are not expressible by any of the participating ADLs, the description language should as well be
usable as an alternative ADL in order to insert missing parts in the architectural description.

.- The previous item implies, that the description language must be intelligible for people involved in the
software architecture.

- Due to the fact, that ADLs often describe large and complex software system, the underlying description
language must be scalable.

- From a practical point of view, the description language should have a notion of execution, so that support
tools can directly generate code that implements the interchange level.

The Abstract State Machine approach [12] seems to be a promising candidate for being used to describe
software architecture models and the semantics of ADLs:

- Abstract State Machines (ASM) is an universal, mathematically well-founded method which is capable of
the description of static structures as well as dynamic behavior of system.

- ASMs provide the possibility to choose appropriate levels of abstraction according to the problem that
should be described. This feature is also important with respect to scalability.

- ASM have been used for many different problem areas. In the context of this work, the use of ASMs in
describing the semantics of programming languages (e.g. [13]) and computer architecture (e.g. [7]) provides
an excellent basis for the task of describing software architectures.

- ASM can as well be executed; there exist several tools that generate executable versions of the ASM
specification.

40 Perspectives of System Informatics'99

The aim of this approach is neither the development of a new architecture definition language, nor a pre-
scription of a common vocabulary, nor the generation of "architectural theorems". The aim is to form a basis
for the combination of ADLs by using existing work and building a low level concept that can directly be used
to implement the interchange of ADLs.

3 Scenario: Description of the Composition

We assume in the following, that we're working within the service layer. It serves as a platform for the archi-
tectural description and component composition. It abstracts from architectural styles that have been used to
originally describe the components. However, the translation from the original description to the representation
used in the service layer must be carried out in a way, that no semantic information gets lost The format of
component description used in the service layer is very similar to the II ([19]) component model, containing the
services being provided and required by a component and additionally the specification of the functionality and
dynamic behavior of the component in ASM-notation.

For the following description we revisit the example of Section 1. The following composition problem is
described as an example: the "processing signals" component needs information from the «data management"
component m order to decide whether a phone connection can be established or not, because of potentially
existing limitations contained in the contract of a customer of the phone company. In order to combine these
two models, we translate each of them into an ASM formalization. The union of these formalizations then forms
the interchange level where the architectural composition can actually be performed

As pointed out in the previous section we use ASMs for this purpose. In a first step, the architectural
descriptions of the example mentioned in Section 1 are automatically translated into an ASM deLiption usTng
tatfSS follows ^ []' formalization of the data structures of the "processing signal» Smponenf

universes
ConnectionData

Process = -[Receive, Connection,

Timer,Disconnection}
ProcessState = {active,passive}

functions

state: Process->ProcessState

CurrentConnection: ->ConnectionData
Connection Process: -> Process

relation

access.check: ConnectionData->Boolean

For the "data management" component, the following relation is needed for describing the composition:

relation

checkAccess:ConnectionData->Boolean

Using this data structures, the composition of the two components can be specified as follows:

if state(ConnectionProcess) = active then

if not access_check(CurrentConnection)
then

access_check(CurrentConnection):=
checkAccess(CurrentConnection)

elseif access_check(CurrentConnection) then
!ConnectionProcessRules

else

error := "no access granted"

state(ConnectionProcess) := passive
endif

endif

In the next steps, these abstract description must be stepwise refined until a layer is reached where concrete

oSr:hig
bXTe. **** ****** "» >"«- «» "* «*"■ Tkese refinement s^slre

Sünbül A. Abstract State Machines for the Composition of Architectural Styles 41

4 Related work

Currently, the only effort that has been undertaken to build an interchange of ADLs is the Acme approach [16]
which is still under development. Acme is a software architecture description language that aims at providing
a common interchange format for software architecture, so that different tools for architecture description
languages can be integrated. The main difference between the approach presented in this work and Acme can
be described as follows: Acme's goal is the convergence of all ADL related research activities into the Acme
framework and tries to form an interchange between ADLs on the language level. Our approach retains existing
ADLs by pushing the interchange activities on a lower level, the semantic description level of these ADLs.

5 Conclusion

Based on the fact that architectural design fragments using different architectural description means often need
to be combined into larger architectures this paper presents a concept how to compose different architectural
styles. This will be achieved by providing an interchange level for architectural composition. This work
is focusing on ADLs and provides basic concepts for the composition based on ADLs. In contrast to existing
approaches for combining ADLs, the idea presented here does not build on a consensus between ADL developers
in present and future, because neither a superset nor an intersection of existing ADLs need to be introduced.
Following our approach, the composition keeps the freedom of choosing the architectural description means, that
is most suitable for the actual problem. The choice of an ADL is not restricted by the needs of the composition
task.

References

1. ALLEN, R., AND GARLAN, D. Formalizing architectural connection. In Proceedings of the lb*h International Con-
ference on Soßware Engineering (May 1994), pp. 71-80.

2. ANLAUFF, M., KUTTER, P., AND PIERANTONIO, A. Formal Aspects of and Development Environments for Montages.
In 2nd International Workshop on the Theory and Practice of Algebraic Specifications (Amsterdam, 1997), M. Sellink,
Ed., Workshops in Computing, Springer.

3. ANLAUFF, M., AND SüNBüL, A. Component based software engineering for telecommunication software. In SCI/ISAS
Conference, Orlando,Florida (1999). (to appear).

4. BATORY, D. Intelligent components and software generators. Tech. Rep. 97-06, Department of Computer Sciences,
University of Texas at Austin, April 1997. Invited presentation to the Software Quality Institute Symposium on
Software Reliability.

5. BINNS, P., AND VESTAL, S. Formal real-time architecture specification and analysis. In Tenth IEEE Workshop on
Real-Time Operating Systems and Software (New York, NY, May 1993).

6. BOEHM, B. W., GARLAN, D., KRAMER, J., KRUCHTEN, P., LUCKHAM, D., SALASIN, J., AND WOLF, A. L. ICSE98
Panel: Are new-generation architecture description languages useful. In ICSE98 (1998).

7. BORGER, E., AND MAZZANTI, S. A Practical Method for Rigorously Controllable Hardware Design. In ZUM'97:
The Z Formal Specification Notation, J. Bowen, M. Hinchey, and D. Till, Eds., vol. 1212 of LNCS. Springer, 1996,
pp. 151-187.

8. CIANCARINI, P., AND MASGOLO, C. Analyzing and refining an architectural style. In ZUM '97: The Z Formal
Specification Notation, 10th International Conference of Z Users (Reading, UK, April 1997), J. Bowen, M. Hinchey,
and D. Till, Eds., vol. 1212 of LNCS.

9. ENGLEHART, M., AND JACKSON, M. ControlH: A fourth generation language for real-time GN&C applications. In
Proceedings of the GACSD (Tucson, AZ, March 1994).

10. GARLAN, D., ALLEN, R., AND OCKERBLOOM, J. Exploiting style in architectural design environments. In Proceedings
ofSIGSOFT '94: The Second ACM SIGSOFT symposium on the Foundations of Software Engineering (Dec. 1995),
ACM Press, pp. 179-185.

11. GARLAN, D., AND SHAW, M. Software Architecture: Perspectives On An Emerging Discipline. Prentice Hall, 1995.
12. GUREVICH, Y. Evolving Algebras 1993: Lipari Guide. In Specification and Validation Methods, E. Borger, Ed. Oxford

University Press, 1995, pp. 9-36.
13. GUREVICH, Y., AND HUGGINS, J. The Semantics of the C Programming Language. In Computer Science Logic,

E. Borger, H. Kleine Büning, G. Jäger, S. Martini, and M. M. Richter, Eds., vol. 702 of LNCS. Springer, 1993,
pp. 274-309.

14. LUCKHAM, D., AUGUSTINE, L., KENNEY, J., VEERA, J., BRYAN, D., AND MANN, W. Specification and analysis
of system architecture using rapide. In IEEE Transactions on Software Engineering, Special Issue on Software
Architecture (Apr. 1995), vol. 21(4), pp. 336-355.

42
Perspectives of System Informatics'99

15. MAGEE, J DULAY, N„ EISENBACH, S., AND KRAMER, J. Specifying distributed software architectures In Pro-
ceedings of 5th European Software Engineering Conference (ESEC 95) (1995)

I6' KÄ:,SÄ^ W,1E' D ACME st™ —■ M- •*. *-*• ««*- ™»„ily,
17. POTTER B., SINCLAIR, J., AND TILL, D. An Introduction to Formal Specification and Z. Prentice Hall 1991
18. ROYCE, W., AND ROYCE, W. Software architecture: Integrating process arTd technology. TRW Spfctan!Defense

19' SepT^gT' H" AND GOBDICKE' M- ComP°n^t-oriented software development with /I. ISST-Berichte 21/94, ISST,

Partial Evaluation and Supercompilation

The Essence of Program Transformation
by Partial Evaluation and Driving*

Neil D. Jones

DIKU, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen, Denmark

neilQdiku.dk

Abstract. An abstract framework is developed to describe program transformation by specializing a given
program to a restricted set of inputs. Particular cases include partial evaluation [19] and Turchin's more
powerful "driving" transformation [33]. Such automatic program speedups have been seen to give quite
significant speedups in practical applications.
This paper's aims are similar to those of [18]: better to understand the fundamental mathematical phe-
nomena that make such speedups possible. The current paper is more complete than [18], since it precisely
formulates correctness of code generation; and more powerful, since it includes program optimizations not
achievable by simple partial evaluation. Moreover, for the first time it puts Turchin's driving methodology
on a solid semantic foundation which is not tied to any particular programming language or data structure.

This paper is dedicated to Satoru Takasu with thanks for good advice early in my career on how to do
research, and for insight into how to see the essential part of a new problem.

1 Introduction

1.1 History

Automatic program specialization evolved independently at several different times and places [13,31,33,5,11,
20]. In recent years partial evaluation has received much attention ([19,6], and several conferences), and work
has been done on other automatic transformations including Wadler's well-known deforestation [37,7,26].

Many of these active research themes were anticipated in the 1970's by Valentin Turchin in Moscow [29,30]
in his research on supercompilation (= supervised computation and compilation), and experiments were made
with implementations. Examples include program optimization both by deforestation and by partial evaluation;
the use and significance of self-application for generating compilers and other program generators; and the use
of grammars as a tool in program transformation [31,32,17]. Recent works on driving and supercompilation
include [33,14,15,27,24,22,1,36].

1.2 Goals

The purpose of this paper is to formulate the essential concepts of supercompilation in an abstract and language-
independent way. For simplicity we treat only imperative programs, and intentionally do not make explicit the
nature of either commands or the store, except as needed for examples.

* This work was supported in part by the Danish Natural Science Research Council (DART project) and by an Esprit
Basic Research Action (Semantique).

M Perspectives of System Informatics'99

At the core of supercompilation is the program transformation called driving (Russian "progonka") In
principle driving is stronger than both deforestation and partial evaluation [27,37,12,19], and an example will
be given to show this (the pattern matching example at the end of the paper). On the other hand, driving has
taken longer to come into practical use than either deforestation or partial evaluation, for several reasons.

First, the greater strength of driving makes it correspondingly harder to tame; cause and effect are less
easily understood than in deforestation and partial evaluation, and in fact it is only in the latter case that
self-application has been achieved on practical applications. Second, the first papers were in Russian, and they
and later ones used a computer language Refal1 unfamiliar to western readers. Finally, the presentation style of
the supercompilation papers is unfamiliar, using examples and sketches of algorithms rather than mathematical
formulations of the basic ideas, and avoiding even set theory for philosophical reasons [34].

We hope the abstract framework will lead to greater practical exploitation of the principles underlying
supercompilation (stronger program transformations, more automatic systems, new languages), and a better
understanding in principle of the difficult problem of ensuring termination of program transformation.

1.3 Preliminary definitions

First, a quite abstract definition of an imperative program is given, as a state transition system. In our opinion
the essence of the "driving" concept is more clearly exposed at this level. Later, a more intuitive flow chart
formalism will be used for examples, and to clarify the problem of code generation.

Definition 1. An abstract program is a quadruple n = (P, S, ->,p0) where p0 € P and -> C (P x S) x (P x 5)
Terminology: P is the set of program points, S is the set of stores, -> is the transition relation, and p0 is the
initial program point. We write -> in infix notation, e.g. (p, s) -+ (p', a') instead of ((p, s), (p',«')) € -> A state
is a pair (p,s) 6 P x S.

A store such as [XH-> 1:2: [], Y •-> 2: (4:5): []] usually maps program variables to their values. A program point
may be a flow chart node, or can be thought of as a label in a program.

Definition 2. p 6 P is transient if (p, 8l) -» (p', s') and (p, s2) -+ (p", a") imply p> = p", i.e. there is at most
one p with (p,.) -» (p', _). State (p, a) is terminal if (p, a) -► (pf, s') holds for no (p'; a'). The abstract program
■K is deterministic if for all states (p,s), (p,s) -> (p',s') and (p,s) -> (p",s") imply p'^ p" and s' = a".

Definition 3. A computation (from a0 € S) is a finite or infinite sequence

(po,s0) -¥ (pi,si) ->■ (p2,s2) ->....

Notation: subsets of S will be indicated by overlines, sosCS. Given this, and defining -+• to be the reflexive
transitive closure of ->, the input/output relation that TT defines ons0CS is

IO(TT,80) = {(s0, st) | so € so, (po, s0) ->* (pt, st), and (pt,st) is terminal}

More concretely, programs can be given by flow charts whose edges are labeled by commands. These are
interpreted by a command semantics:

Cl-j : Command -► (5 v^f S)

where Command and S are unspecified sets (but S = the set of stores as above).

Definition 4. A flow chart is a rooted, edge-labeled directed graph F = (P,E,Po) where p0 <E P and E C
P x Command x P (the edges ofF). We write p^p' whenever (p, C,p') eE.

If p ^ p' then C denotes a store transformation, e.g. C could be an assignment statement changing a vari-
able s value. The formulation includes tests too: the domain of partial function C\C} is the set of stores which
cause transition from program point p to pf. For example, command "if odd(X) goto" mkht label that edse
corresponding to "p: if odd(X) then goto p'" in concrete syntax. '

Definition 5. The program denoted by F is TT
F
 = (P,S,-»,p0), where

 (P. *) -> 0', *') if and only if s' = C|[C]s for some p $■ rf

1 s^t!LTTtially a langUage °f Maikr ^orh]}ms extended wiih variables 3J1d two kinds of brackets to create tree
structures. A program is a sequence of rewrite rules, used to transform data in the form of associative and possibly
nested symbol strmgs. In contrast with most pattern matching languages, most general unifiers do not always exist

 Jones N. D. The Essence of Program Transformation by Partial Evaluation and Driving 45

2 Driven programs, without store transformations

A major use of driving (and partial evaluation) is for program specialization. For simplicity we begin with a
rather weak form of driving that does not modify the store, and give a stronger version in the next section.

Given partial information about a program's inputs (represented by a subset so C S of all possible stores),
driving transforms program -K into another program itd that is equivalent to ir on any initial store so G so- The
goal is efficiency: once 7td has been constructed, local optimizations of transition chain compression and reduced
code generation can yield a much faster program than 7r, as seen in [18,19] and many others.

A useful principle is to begin by saying what is to be done, as simply as possible, before giving constructions
and algorithms saying how it can be accomplished. We thus first define what it means for a program 7r<j to be
a "driven" form of program 7r, and defer the question of how to perform driving to Section 4.

Intuitively ixd is an "exploded" form of ir in which any of 7r's program points p may have several anno-
tated versions (p,si), (p, S2), — Each Sj is a set of stores, required always to contain the current store in any
computation by ir^.

Computations by -Kd (state sequences) will be in a one-to-one correspondence with those of IT, so nothing
may seem to have been gained (and something lost, since iTd may be bigger than TT). However, if control ever
reaches an annotated program point (p,s) in 7^, then the current runtime store must lie in s. For example, s
could be the set of all stores such that the value of variable X is always even.

This information is the source of all improvements gained by partial evaluation or driving. Its use is to
optimize 7r<j by generating equivalent but more efficient code exploiting the information given by s. In particular
some computations may be elided altogether, since their effect can be achieved by using the s at transformation
time; and knowledge of s often allows a much more economical representation of the stores s €s.

2.1 Abstract formulation

The following is, in our opinion, the essential core of the driving concept:

Definition 6. Given program it - (P, S, ->,Po), program -Kd = {Pd, S, -»<*, (p0, *o)) is an s0-driven form of n if
Pd Q P x V{S) and ltd satisfies the following conditions.

1. ((p,s),s) ->d {(p',s'),s') andses imply (p,s) ->• (p',s'). soundness
2. (p,s) G Pd, (p,s) -> {p',s'), and s es imply that there exists s' such that

((p,s),s)->d((p',s'),s') completeness
S. ((p,s),s) -»<* ((p',s'),s') and s G s imply s' G s' invariance of s G s.

To begin with, Pd C P x P(S), so a program point of 7rd is a pair (p,s) where s C S is a set of stores.
The soundness condition says that nd can do only the store transformations that it can do. The completeness
condition says that for any driven program point (p, s) of 7rd, any store transformation that 7r can do from p on
stores s € s can also be done by -Kd-

Programs may in principle be infinite, but in practice we are only interested in finite ones.

The significance of store sets. The invariance of s G s in a transition ((p,s),s) ->d ({p',s'),s') expresses a
form of information propagation carried out at program transformation time [14,15].

One can think of a store set as a predicate describing variable value relationships, e.g. "X is even" or
"X = Y + 1 A Z < Y". Store sets could thus be manipulated in the form of logical formulas.

This view has much in common with regarding statements as forward or backward predicate transformers,
as used by Dijkstra and many others for proving programs correct [10]. Further, a store set s that annotates
a program point p corresponds to an invariant, i.e. a relationship among variable values that holds whenever
control reaches point (p, s) in the transformed program.

Instead of formulas, one could describe store sets using a set of abstract values S, using for example a
function 7 : £ -> V{S) that maps an abstract value a G E to the store set it denotes. In logic 7 is called an
interpretation, and Turchin uses the term configuration for such a store set description [33].

This idea is a cornerstone of abstract interpretation, where 7 is called a concretization function [9,2,16].
Our approach can thus be described as program specialization by abstract interpretation. The abstract values
are constructed "on the fly" during program transformation to create new specialized program points. This is
in contrast to most abstract interpretations, which iterate until the abstract values associated with the original
program's program points reach their collective least fixpoint.

46 Perspectives of System Mormatics'99

Lemma 1. If nd is an s0-driven form of is, then for any s0 G s0 there is a computation

(Po,*o) -* (pi,ai) -»■ (P2,»2) -»'...

i/ and onty i/ tfiere «5 a computation

((Po.so),«o) -> ((pi,*i),-si) -> ((P2,'ä2),fi2) -> ...

Proo/. "If" follows from soundness, "only if" by completeness and invariance of s G s.

Corollary 1. IO(TT, S0) - IO(ird, s0)

Program specialization by driving. Informally, program TT is transformed as follows:

1. Given IT and an initial set of stores s0 to which TT is to be specialized, construct a driven program nd. In
practice, n will be given in flow chart or other concrete syntactic form, and finite descriptions of store sets
will be used.

2. Improve nd by and removing unreachable branches, and by compressing sequences of transient transitions

((p,s),s) -> ((j/,7),8') -> ... -+ ((p",?7),*")

into single-step transitions

((p,3),a)->((p",?V)

3. If TT = TT
F
 where F is a given flow chart, then Fd is constructed and improved in the same way: by compressing

transitions, and generating appropriately simplified commands as edge labels.

The idea is that knowing a store set s gives contextual information used to transform nd to make it run faster
Conditions for correct code generation will be given after we discuss the choice of store sets and the use of
alternative store representations in Section 3.

2.2 Extreme and intermediate cases

In spite of the close correspondence between the computations of TT and 7rd, there is a wide latitude in the choice
of ird. Different choices will lead to different degrees of optimization. For practical use we need intermediate
cases for which ird has finitely many program points, and its store sets s are small enough (i.e. precise enough)
to allow significant code optimization.

We will see a pattern-matching example where a program with two inputs of size m,n that runs in time
a ■ m ■ n can, by specializing to a fixed first input, be transformed into one running in time b ■ n where b is
independent of m.

_ One extreme case is to choose every s to be equal to S. In this case nd is identical to TT, so no speedup is
gained. Another extreme is to define wd to contain ((p,s),s) ->d ((p>, {s>}),s<) whenever (p,s) -► (p',s'), s G s
and (p s) G Pd. In this case ird amounts to a totally unfolded version containing all possible computations on
inputs from s0.

State set choice and code generation. The extreme just described will nearly always give infinite programs
It is not at all natural for code generation, as it deals with states one at a time.

In flow chart form, a test amounts to two different transitions p % p' and p % p" from the same p A more
interesting extreme can be obtained from the following principle: the driven program should contain no tests
that are not present in the original program. The essence of this can be described without flow charts as follows.

Definition 7-^ requires no new tests if whenever IT contains (p,S) -+ (p>,s>), s 6 5, and Vd contains
{(P,s),s) ->d((p,s'),8'), then

s' D {s2 | 3si G s such that (p,si) -> (p',s2) is in TT}

 Jones N. D. The Essence of Program Transformation by Partial Evaluation and Driving 47

This defines the new store set s' to be inclusive, meaning that it contains every store reachable from any störe
in s by 7T transitions from p to p'. The target store set s' of a driven transition ((p, s), s) -+d {{p1, s'), s') includes
not only the target s' of s, but also the targets of all its "siblings" si € s that go from p to p'.

For deterministic programs, this amounts to requiring that Trd can only perform tests that are also performed
by ir. This is a reasonable restriction for code generation purposes, but is by no means necessary: if one somehow
knows that the value of a given variable x must lie in a finite set X = {a,b,..., k}, new tests could be generated
to select specialized commands for each case of x G X.

Even though these new tests may seem unnecessary since they were not present in the original program, one
often gains efficiency because the value of x will be known exactly in each of the specialized commands, leading
to smaller subsequent code. See the discussion on "bounded static variation" in [19].

An so-driven form of n can always be obtained by choosing equality rather than set containment for s', and
choosing wd to contain the smallest set of program points including (p0, s0) and closed under the definition above.
This extreme preserves all possible information about the computation subject to the inclusiveness condition.
It can be used in principle to produce a "most completely optimized" version of the given program, but suffers
from two practical problems:

First, this s0-driven 7rd will very often contain infinitely many specialized program points (p,s). Second, its
transition relation may not be computable.

Generalization. It is a subtle problem in practice to guarantee that the transformed program both is finite
and is more efficient than the original program. A solution in practice is not to work with the mathematically
defined and usually infinite store sets above, but rather to use finite descriptions of perhaps larger sets s" D s'
that can be manipulated by computable operations.

Finiteness of the transformed program can be achieved by choosing describable store sets that are larger
than s' but which are still small enough to allow significant optimizations.

Turchin uses the term configuration for such a store set description, and generalization for the problem of
choosing configurations to yield both finiteness and efficiency [33,35].

2.3 Driven flow charts

We now reformulate the former abstract definition for flow charts. For now we leave commands unchanged, as
Section 3 will discuss store modifications and code generation together.

Definition 8. Given flow chart F = (P, E,p0) and s0 C S, Fd = (Pd,Ed, {p0,s0)) is an s0-driven form of F if
Pd C P x V(S) and Fd satisfies the following conditions.

1. (p,s)=>(p',s') in Fd implies pQp' in F soundness.

2. (p,s) e Pd,s^ {}, andpQ p' in F imply that (p,$) M> (p',s') in Fd for some s' completeness.

3. (p,s) ^ (p',s') in Fd and se$ and s' = ClCjs is defined imply s' G s' invariance ofses.

Theorem 1. If Fd is an s0-driven form of F, then 'KFd is an so-driven form ofn.

Proof. This is easily verified from Definitions 5 and 8, as the latter is entirely parallel to Definition 6.

2.4 An example

Collatz' problem in number theory amounts to determining whether the following program terminates for all
positive n. To our knowledge it is still unsolved.

A: while n ^ 1 do
B: if n even

then (C: n := n -f- 2;)
else (D: n :— 3 * n + 1;)

fi
od

G:

48 Perspectives of System Informatics'99

A
. ' . ,

/n? \^
B Sn? \

C
< -1- 1 V-
\ / even y—

\odd ./

n = n^r l

x"1/
G D

n •— 3-n _i_ 1

Figure 1: Diagram of a simple flow chart program

A,T

B,T

G, Odd D, Odd

n := 3n + 1

A, Even

B, Even
^ L> ^ even.

G, JL

C, Even
even } r—H n := n -f- 2

D, ±

Figure 5: .A drwen version of the same program

Its flow chart equivalent is F = (P, £, 0) where P = {4, B, C, D, G} and edge set E is given by the diagram
Figure 1. The program has only one variable n, so a store set is essentially a set of values.

We use just four store sets:

m

Even = {[n H» X] \ x 6 {0,2,4,...}}
Odd ={[nH.a;] j xe {1,3,5,...}}
T = {[n^x] j x£M}
± =U

The flow chart Fd of Figure 2 is a driven version of F. Specialized program points (D,±) and (G ±) QiC un-
reachable since they have empty store sets. The driven version, though larger, contains two transient transitions,
irom (A, Even) and (B, Even). Transition compression redirects the branch from (D, Odd) to (C, Even) to give
a somewhat better program, faster in that two tests are avoided whenever n becomes odd.

are un-

3 Driven programs, with store transformations

According to Definition 6, a driven program 7rd has exactly the same stores as it. As a consequence the only
real optimizations that can occur are from collapsing transient transition chains, and little computational

 Jones N. D. The Essence of Program Transformation by Partial Evaluation and Driving 49

optimisation occurs. We now revise this definition, "retyping" the store to obtain more powerful transformations
such as those of partial evaluation by projections [19,18,21] or arity raising [25].

3.1 Abstract formulation

^Prom now on Sd will denote the set of possible stores in driven program na- Given the knowledge that s G s,
a store s of 7r can often be represented in the driven program nd by a simpler store sd G Sj. For example, if

s = { [X i->- 1, Y H- y, Z H» 3] | y G Af}

then s £ s at id program point (p,s) can be represented by the value of Y alone since X, Z are known from
context. In practice, s will be described finitely, e.g. by an abstract value a in description set S:

j=[X4l,Y(4T,Z i-»3].

together with concretization function (or interpretation) 7 : S -+ V(S). To formalize this abstractly, we assume
given a function

A : V(S) x Sd
P^T S

satisfying the following two properties (note that A is written in infix notation.):

1. sAsd G s whenever s C S,Sd & Sd, and sAsd is defined; and
2. s0Asd = siAs'd = s implies Sd = s'd

One can think of A as a reconstruction function to build s from store set s and a driven store sd- For
example, if s is as above and if Sd is, say, [Y 1-4 5] then we would have sAsd — [X H* 1, Y 1-» 5, Z H> 3].

The restriction sAsa G s says that Sd can only represent a store in the current s. The second restriction says
that A is injective in its second argument.

The previous formulation without store transformations is expressible by putting S = Sd, and letting sAsd =
Sd when sa = Sd £ s, with sAsd undefined otherwise.

We will see that allowing alternative representations of the driven stores enables much stronger program
optimizations. The new Definition 6 is as follows. The essential idea is that a transition

(p,s) -> (jpf,a') = (p,sAsd) -4 (p',s'As'd)

is transformed, by a kind of reassociation, into a specialized transition of form

((P,s),sd)->d(to>',s'),s'd)

Definition 9. Program Wd = (Pd,Sd,-+d,(po,s0)) is an s0-driven form of -K — (P,S,-*,p0) in case Pd C
P x V(S) and na satisfies the following conditions.

1. ((p,s),sd) ->d ((p',s'),s'd) implies s = sAsd and s'= s'As'd for some s,s', and (p,s) -4 (p',s'). soundness

2. (p,s) € Pa, s G s, and (p,s) -> (p',s') imply there are Sd,s'd,s' such that s = sAsd, s' = s'As'd, and
(0, s), sd) ->d ((p',s'), s'd). completeness

3. ({p, s), Sd) ->d i(p',s'), s'd) imply s'As'd G s' invariance ofs£s

Condition 3 is actually redundant, as it follows from 1 and the requirement on A.

Lemma 2. If ird is anso-drivenform ofn, then for any computation

(Po,s0) -4 (pi,si) -> (p2,82) -> • • •

with so = soAsod there is a computation

((PO,So),Sdo) ~>d ((Pl,Sl),Sdl) ~>d ((P2,S2),Sd2) ->d ...

with Si = SiAsdt for all i. Further, for any such Kd computation with so = s~oAsdo, there is a corresponding 7r
computation with Si = SiAsdi for alii.

The first part follows from initialization and completeness, and the second by soundness and invariance. The
corollary on equivalent input/output behaviour requires a modification.

Corollary 2. // every so G So equals SoAsod for some Sod, then IO(TT,S0) =

{(s0Asod,sAsd) I s0Asod G s0 and (((po,so),sod), ((p,s),sd)) G IO{TTd,s0d)}

_55 Perspectives of System Informatics'99

3.2 Correctness of code in driven flow charts

We now redefine driven flow charts to allow different code in Fd than in F. Commands labeling edges of Fd will
be given subscript d. Their semantic function is:

C4_| : Command, -> (Sd
v°^1 Sd)

The following rather technical definition can be intuitively understood as saying that for each paired p 4 p'
and (p,s) =# fa', s'), the diagram corresponding to equation

ClC\{sAsd) = ~s'A{CdlCd\sd)

commutes, provided that various of its subexpressions are defined.

Cd\Gd\ Sd

sA

cm
'A

Definition 10 Given flow chart F = (P,E,p0) and s0 CS,Fd = (Pd,Ed, (p0,s0)) is an s0-driven form of F
vPd±P x V{b) and Fd satisfies the following conditions.

1. For each (p,s) % fa',s') e Ed there exists p 4 p' 6 E such that s = sAsd and s' = ClCjs are defined if
and only if s'd = CdlCd}sd and s' = s'As'd are defined soundness

2. Ifp% p', (p,s) e Pd, and both s = sAsd and s' = C|CJs are defined, then Fd has an edqe fa s) % fa' s')
such that s> = s>A(CdlC4Sd) completeness

3. (p, s) =4 fa', s'), p => p>, and both s = sAsd and s' = ClCJs are defined imply C4<Odlsd G s'

invariance of s Es.
Theorem 2. If Fd is an s0-driven form of F, then nFd is an s0-driven form of'irf'.

Proof. This is easily verified from Definitions 5 and 10, as the latter is entirely parallel to Definition 9.

3.3 Partial evaluation by projections

.Suppose there is a way to decompose or factor a store s into static and dynamic parts without loss of information
ta basic idea in [18,19J). A data division is a triple of functions (stat: S -> Ss,dyn : S -> Sd,pair :SsxSd-+S)
The ability to decompose and recompose without information loss can be expressed by three equations:

pair(stat(s),dyn(s)) = s
statfaair(vs,vd)) = vs

dyn(pair(vs,vd)) = vd

An example. For example a division could be given (as in [18,19]) by an S - D vector, for instance SDD
specifies the division of 5 = Af3 into Mx>P where pairfa, (x, a)) = („, x, a),stat(n, x, a) = n, and dyn(n, x, a) =
(x, a). Using this, the program v '

f(n,x) =g(n,x,l)
g(n, x, a) - if n = 0 then a else g(n -l,x,x*a)

can be specialized with respect to known n = 2 to yield:

■/a (s) =ga(x,l)
gi{x,a) = g1(x,x*a)
gi(x,a) = g0(x,x*a)
g0(x,a) = l

which by transition compression can be further reduced to

fi{x) — x-t-x

Jones N. D. The Essence of Program Transformation by Partial Evaluation and Driving 51

Relationship between driving and projections. This method can be interpreted in current terms as
specialization by using store sets that are equivalence classes with respect to static projections, i.e. every store
set is of the following form for some vs G Ss:

Svs = is I stat(s) = vs}

Store reconstruction can be expressed by defining: sv,Avd — pair(vs,Vd). A specialized program 71^ in [18,19]
only contains transitions of form

((p,stat(s)),dyn(s))->((p',stat{s')),dyn(s'))

where 7r contains (p,s) -+ (p',s'). This corresponds to our soundness condition. The set "poly" in [18,19]) is
constructed so if (po,«o) ->* (p, *) by 7r for some So € «o, then poly and so na contains a specialized program
point (p, stat(s)), ensuring completeness. Invariance of s € s is immediate since every specialized state is of the
form ((p,sv,),Vd), and

sv„Avd = pair(vs,vd) € {s | stat(s) = vs}

since stat(pair(vs, vj)) = vs. The following definition is central in [18,19]:

Definition 11. Function stat': 5 -» Sd is congruent if for any % transitions (p,s) -> (p',s') and (p, si) -+
(jo', s[), if stat(s) = stat(si), then stat(s') = stat^'i).

This is essentially the "no new tests" requirement of Definition 7.

4 An algorithm for driving

The driving algorithm of Figure 3 manipulates store descriptions a £ £, rather than store sets. For the xn

example above, S is the set of all store descriptions a of the form

or = [ni->tj1xi4T,oHT]

where u € J\f. We assume given a concretization function 7 : £ -» V{S) defining their meanings, and that the
test "is 7er = {}?" is computable, i.e. that we can recognize a description of the empty set of stores.

In addition we assume given a store set update function

S : Command x H -» S

and a code generation function

Q : Command x S —> Command^

Correctness criterion. For any C G Command, a £ S, s^ € £><j, let a' = <S(C, o-) and Cd = ö(C, er). Definition
10 requires C[C](7<7Z\sd) = (7o-')^(^dICdlsd) under certain conditions (where t = t' means both are defined
and the values are equal):

1. s = (ja)Asd and s^ = CdfCdlsd: imPlv CfCJs = (7a')^s'd soundness
2. s' = CffCJs and s = (7<r)zisd imply s' = ^^^(CrflCdlsd) completeness
3. s = (7cr)zisd € 7er implies CdjfCdJsrf £70-' invariance of s Es.

-5? Perspectives of System Informatics'99

readF = (P,£!,p0);
read o-0;
Pending := {(po,o-0)}; (* Unprocessed program points *)
SeenBefore := {}; (* Already processed pgm. points *)
Pd ■■- {(po, o-0)}; (* Initial program points *)
E* := {}; (* Initial edge set *)
while 3(p, or) G Pending do (* Choose an unprocessed point *)

Pending := Pending \ {(p, a) };
SeenBefore := SeenBefore U {{p,a)}\

forall p 4 p' 6 E do (* Scan all transitions from p *)
a :== S(cr, C); (* Update store set description *)
if 70- ^ {} then (* Generate code if nontrivial '*)

, ft :=-Pd U {(pV)};
if (p',er') g SeenBefore then add (p',a') to Pending;

■ Cd:=g(a,C);- (* Generate code *)
c

Add edge (p, a) =4 (p', c') to £d; (* Extend flow chart by one edge *)
Fd := (Pd,Ed,(po,a0));

Figure 3: An algorithm for driving ~

4.1 Example: pattern matching in strings

A way to test a program transformation method's power is to see whether it can derive certain well-known
efficient programs from equivalent naive and inefficient programs. One of the most popular of such tests is to
generate from a naive pattern-matcher and a fixed pattern, an efficient pattern matcher as produced by the
Knuth-Morns-Pratt algorithm. We shall call this the KMP test [27]. •

First we give a program for string pattern matching.

match p s = loop p s p s

loop Q ss op os = True
loop (p : pp) W op os = False
loop (p : pp) (s : ss) op os = if p = s then loop pp ss op os else next op os

next op\\ - False
next op (s : ss) = loop op ss op ss

For conciseness in exposition, we specify the store sets that are encountered while driving match AAB u by
rTrZtt™.contammg free variables. These are assumed to range over all possible data values. Given this
the result of dnvmg can be described by the configuration graph seen in the Figure ending this paper (where
some intermediate configurations have been left out). More details can be seen in [27].

The program generated is:

/u = fAAB U .
IAAB D = False
IAAB (s : ss) = g s ss

gsss = if A = s then fAB ss else fAAB ss
fAB D = False
fAB (s : ss) = h s ss
hs ss = if A = s then fB ss else g ss

/B D = False

fß(s:ss) = if A = s then g s ss else
if B = s then true else h s ss

Jones N. D. The Essence of Program Transformation by Partial Evaluation and Driving 53

This is in essence a KMP pattern matcher, so driving passes the KMP test. It is interesting to note that driving
has transformed a program running in time 0(m ■ n) into one running in time 0(ri), where m is the length of
the pattern and n is the length of the subject string.

Using configurations as above can result in some redundant tests, because we only propagate positive infor-
mation (what term describes the negative outcome of a test?). However this problem can easily be overcome by
using both positive and negative environments, see [15].

Partial evaluators of which we know (other than the supecompiler) cannot achieve this effect without non-
trivial human rewriting of the matching program.

match AAB u

I
{(AAB) loop AAB u AAB u

1
(g) A = s '-¥ loop AB ss AAB (s : ss)

D next AAB (s : ss)

(fyts) loop AB ss AAB A : ss

I
(h) A = s -¥ loop B ss AAB (A: s : ss)

D next AAB (A: s : ss)

(fs j loop B ss AAB A: A: ss

I
B = s -¥ loop 0 ss AAB (A : A : s : ss)

□ next AAB (A : A : s : ss)

loop [] ss AAB A: A: B : ss

True

_*. False

_». next AAB (s : ss) (¥AAB)

_». False

_,. next AAB (A: s : ss)

loop AAB (s : ss) AAB (s : ss) (g)

_*. False

next AAB (A : A : s : ss)

loop AAB (A: s : ss) AAB (A: s : ss)

A = A -» loop AB (s : ss) AAB (A: s : ss)
O next AAB (A: s : ss)

loop AB (s : ss) AAB (A : s : ss) (h)

4.2 Finiteness and generalization

E is usually an infinite set, causing the risk of generating infinitely many different configurations while driving.
Turchin uses the term generalization for the problem of choosing configurations to yield both finiteness and
efficiency [33,35].

The idea is to choose elements a' = S{a, C) which are "large enough" to ensure finiteness of the transformed
program, but are still small enough to allow significant optimizations. This may require one to ignore some
information that is available at transformation time, i.e. to choose descriptions of larger and so less precise store
sets than would be possible on the basis of the current a and C.

How to achieve termination without overgeneralization is not yet fully understood. Turchin advocates an
online technique, using the computational history of the driving process to guide the choices of new a' [35]. It is
as yet unclear whether self-application for practical compiler generation can be achieved in this way, or whether
some form of preprocessing will be needed. If offline preprocessing is needed, it will certainly be rather different
from "binding-time analysis" as used in partial evaluation [19].

Acknowledgement

Many useful comments on this paper were made by Patrick Cousot, Robert Glück, Andrei Klimov, Sergei
Romanenko, Morten Heine S0rensen, Carolyn Talcott, and Valentin Turchin.

_^4 ; Perspectives of System Informatics'99

References

1. Sergei M. Abramov, Metacomputation and program testing. In: 1st International Workshop on Automated and
Algorithmic Debugging. (Linköping, Sweden), pp. 121-135, Linköping University 1993.

2. Samson Abramsky and Chris Hankin, editors. Abstract Interpretation of Declarative Languages. Ellis Horwood,

3. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-Wesley,

4. Lennart Augustsson, Compiling lazy pattern-matching. Conference on Functional Programming and Computer
Architecture, ed. J.-P. Jouannoud. Lecture Notes in Computer Science 201, Springer-Verlag, 1985.

5. L. Beckman et al. A partial evaluator, and its use as a programming tool. Artificial Intelligence, 7(4), pp. 319-357,

6' ?J,r^
J0™er' AR Ershov> and N-D- Jones, editors. Partial Evaluation and Mixed Computation. Proceedinqs of the

IFIP TC2 Workshop. North-Holland, 1988. 625 pages.
7. Wei-Ngan Chin, Safe fusion of functional expressions II: further improvements. Journal of Functional Proaram-

mtng. To appear in 1994.

8. Charles Consel and Olivier Danvy, Partial evaluation of pattern matching in strings. Information Processing
Letters, 30, pp. 79-86, January 1989.

9. Patrick Cousot and Radhia Cousot, Abstract interpretation: a unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. In Fourth ACM Symposium on Principles on Programmina
Languages, pp. 238-252, New York: ACM Press, 1977.

10. Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

1L i^clP18ErSh7l--67iX1982COmPUtati0n: P°tential appKcati0nS and problems for stud^ Theoretical Computer

12. Alex B Ferguson and'philip Wadler, When will deforestation stop? Glasgow Workshop on Functional Program-
miTi(fj August 1988.

13. Yoshihiko Futamura and Kenroku Nogi, Generalized partial computation. In Partial Evaluation and Mixed Com-
putation, Eds. A. P. Ershov, D. Bj0rner and N. D. Jones, North-Holland, 1988

14. Robert Glück and Valentin RTurchin, Application of metasystem transition to function inversion and transfor-
mation. Proceedings of the ISS AC '90, pp. 286-287, ACM Press 1990

15. Robert Glück and Andrei V. Klimov Occam's razor in metacomputation: the notion of a perfect process tree. In

^rs^xs^^iST'M-FMi'G ™'GRauzy-Lecture Notes in cI—«--
16. Neil D Jones and Flemming Nielson, Abstract interpretation: a semantics-based tool for program analysis 122

pages In Handbook of Logic in Computer Science, Oxford University Press to appear in 1994
17- SlÄSiSÄ ^coÄorder functional programs-In Abstract In^retation«D^—
18. Neil D. Jones Automatic program specialization: A re-examination from basic principles, in D. BJ0rner AP

lollTd,T988 (°' PaHid EValUaUOn md MXed Gom^on, pp. 225-282, Amsterdam: North^

19- nlu^T^ZmtPeter Sest°ft-Partial Emluation md Automatic Pr09mm *«-*-p^<*
20. Stephen S. Kleene, Introduction to Metamathematics. Van Nostrand 1952 550 pp
21. John Launchbury, Projection Factorisations in Partial Evaluation. Cambridge: Cambridge University Press 1991

SK" AT TA
S^fK°™nenk0' A metafivaluator far the language Refal: basic concept and Sample '

Rustfat) PP MathematicS> Academy of Scienc<* of the USSR, Moscow. Preprint No. 71, im(L

23-]££^)!££j^^ Vaushan R-Pratt'Fast pattern matdiiiig in stri^ SIAM
 .*•»- °f

24. Alexander Y Romanenko, The generation of inverse functions in Refal, in D. Bj0rner, A.P. Ershov and ND
Jones (edsO, Partial Evaluation and Mixed Computation, pp. 427-444, Amsterdam: North-Holland 1988

25. Sergei A. Romanenko A compiler generator produced by a self-applicable specializer can have a surprising
natural and understandable structure. In D. Biarner A P Ershov a^H ivr n iL^ (A \D . , r? s*TPIlsm&y
Mixed Computation, PP. 445-463, ArnsteräJZZl^on^m ^ *"** *"*"*"» ""

26' feSSSSST^Spl 9irrr'tSf dfaf7 amlySiS t0 St°P d^restation.Colloauium on Trees and Algebra
in 1994 A edmburgh' Sc0tland- lecture Notes in Computer Science, Springer-Verlag, to appear

27' stper^tL^G^r G,ÜCVnd Neil D- JrS' T°WardS Unifying Partial evaluati-> deforestation, 5^Cr^^n1SrB ymP0Smm °n Pr09mmmin9 (ES0Ph L6CtUre NOt6S iQ C0mpUt- ^
28. Akihiko Takano Generalized partial computation for a lazy functional language. Symposium on Partial Evaluation

and Semantics-Based Program Manipulation, eds. Neil D. Jones and Paul Hudak, ACM Press, 1991 "^^

Jones N. D. The Essence of Program Transformation by Partial Evaluation and Driving 55

29. Valentin F. Turchin, Equivalent transformations of recursive functions defined in Refal. In: Teorija Jazykov i
Metody Programmirovanija (Proceedings of the Symposium on the Theory of Languages and Programming Meth-
ods). (Kiev-Alushta, USSR), pp. 31-42, 1972 (in Russian).

30. Valentin F. Turchin, Equivalent transformations of Refal programs. In: Avtomatizirovannaja Sistema upravlenija
stroitel'stvom. Trudy CNIPIASS, 6, pp. 36-68, 1974 (in Russian).

31. Valentin F. Turchin, The Language Refal, the Theory of Compilation and Metasystem Analysis. Courant Computer
Science Report 20, 245 pages, 1980.

32. Valentin F. Turchin, Semantic definitions in Refal and automatic production of compilers. Semantics-Directed
Compiler Generation, Aarhus, Denmark. Lecture Notes in Computer Science, Springer-Verlag, pp. 441-474, vol.
94, 1980.

33. Valentin F. Turchin, The concept of a supercompiler. ACM Transactions on Programming Languages and Systems,
8(3), pp. 292-325, July 1986.

34. Turchin V. F., A constructive interpretation of the full set theory. In: The Journal of Symbolic Logic, 52(1):
172-201, 1987.

35. Valentin F. Turchin, The algorithm of generalization in the supercompiler. In D. Bj0rner, A.P. Ershov, and N.D.
Jones (eds.), Partial Evaluation and Mixed Computation, pp. 531-549, Amsterdam: North-Holland, 1988.

36. Valentin F. Turchin, Function transformation with metasystem transitions. Journal of Functional Programming,
3(3), pp. 283-313, July 1993.

37. Philip L. Wadler, Deforestation: transforming programs to eliminate trees. European Symposium On Programming
(ESOP). Lecture Notes in Computer Science 300, pp. 344-358, Nancy, France, Springer-Verlag, 1988.

Binding-Time Analysis in Partial Evaluation:
One Size Does Not Fit All

(Extended Abstract)

Niels H. Christensen, Robert Glück, and S0ren Laursen

DIKU, Department of Computer Science
University of Copenhagen, Universitetsparken 1

DK-2100 Copenhagen, Denmark
Email: {mrnc, glueck, scrooge}Gdiku. dk

Abstract. Existing partial evaluators usually fix the strategy for binding-time analysis. But a single
strategy cannot fulfill all conflicting analysis goals without leading to compromises regarding precision,
termination, and code explosion in partial evaluators. Our goal is to improve the usability of partial eval-
uator systems by developing an adaptive approach that can accommodate a variety of different strategies
ranging from maximally polyvariant to entirely uniform analysis, and thereby make off-line specialization
more practical in a realistic setting. The core of the analysis has been implemented in FSpec, an offline
partial evaluator for a subset of Fortran 77.

1 Introduction

Partial evaluation of imperative programs was pioneered by Ershov and his group [8,3]; later Jones et al [11]
introduced binding-time analysis (BTA) to achieve self-application of a partial evaluator. This offline approach
to partial evaluation has been studied intensively since then.

However, not much attention has been paid to the properties of the binding-time analysis in offline partial
evaluation (notable exceptions are [6,13,4,2]). This is surprising because the annotations a BTA produces
guide the specialization process of an offline partial evaluator and, thus, control the quality of the program'
transformation. The choice of the annotation strategy is therefore the most decisive factor in the design of an
offline partial evaluator.

Existing offline partial evaluators fix a particular binding-time strategy (e.g., [1,5,7,12]). None of them allow
the partial evaluator to function with different levels of precision, and all systems implement different strategies
based on decisions taken on pragmatic grounds. The growing importance of non-trivial applications with varying
specialization goals (e.g. interpreter specialization vs. software maintenance) motivated us to examine a more
flexible approach to binding-time analysis for imperative languages. Our goal is to improve the usability of
partial evaluation systems by developing an analysis framework that allows an easy adaptation and control of
different binding-time strategies within the same specialization system.

In this paper we examine the design space of binding-time strategies and develop a framework to formalize
different strategies that allows a partial evaluator to function with different levels of granularity. We claim that
it is expressive enough to cover all existing strategies and allows the design and comparison of new strategies

^riof ™ ana]ySiS engine iS imPlemented fOT pSpec, an offline partial evaluator for a subset of Fortran
77 [12J. We assume familiarity with the basic notions of offline partial evaluation, e.g. [10, Part II].

2 Problem Source: One Size Does Not Fit All

In existing partial evaluators, the strategy of the binding-time analysis (BTA), and thus its precision, is fixed at
design-time; in essence assuming 'One Size Fits All'. The most popular strategy for BTA, due to its conceptual
simplicity, is to annotate programs using uniform divisions [10]. In this case one division is valid for all program
points. A polyvariant BTA allows each program point to be annotated with one or more divisions

Figure 1 shows two pieces of source programs and for each the result of two different specializations: One
directed by a uniform BTA (column A) and one directed by a polyvariant BTA (column B). We assume polv-
vanantprogram point specialization [3,10] (a program point in the source program may be specialized wrt
different static stores). Program Monitor updates variable Val depending on the value of flag Upd (we assume
that function f has no side effects and that f (100) = 5). Program Affine repeatedly calls procedure p. Variables
a, b and count are global.

Christensen N. H., Glück R., Laursen S. Binding-Time Analysis in Partial Evaluation 57

Program Source code Res code (uniform BTA) Res. code (poly. BTA)

Monitor
1 ... 1A IB

10: IF Upd=TRUE THEN 10: Val:=100; 10: OUTPUT 5;

Upd = FALSE
Val = 100
OutVal = 0
CurVal is dynamic

11:
12:
13:
14:

Val:=CurVal;
ENDIF;
OutVal:=£(Val);

OUTPUT OutVal;

11:
12:

OutVal:=f(Val);
OUTPUT OutVal;

Affine
10:

2

IF a>0 THEN 10:

2A

b:=5;

2B

10: pl(x);

a = 2

b = 5
x is dynamic
count is dynamic

11: pW; 11: p(x); 11: p2(x);
12: GOTO 10; 12: p(x);
13:

100

ENDIF;

PROCEDURE p(y):
100
101

PROCEDURE p(y):
b:=b+y;

100: PROCEDURE pi(y):

101: b:=5+y;
102: count:=count+l;

101 a:=a-l; 102 count:=count+l; 103: RETURN;
102 b:=b+y; 103 RETURN; 104: PROCEDURE p2(y):
103 count:=count+l; 105: b:=b+y;
104 RETURN; 106: count:=count+l;

107: RETURN;

Fig. 1. Problem source: One BTA is not best for all source programs.

For Monitor, the polyvariant BTA (IB) clearly achieves the best specialization because result 5 is computed
at specialization time. The uniform BTA (1A) must consider Val dynamic and can therefore not allow the
call of f to be computed at specialization time. For Affine, the uniform BTA (2A) seems to provide a better
specialization. The polyvariant BTA (2B) recognizes that the value of b is sometimes static (in the first round
of the loop) and creates an extra instance of procedure p. This leads to undesirable duplication of code (which
is more dramatic for larger programs). Almost all existing partial evaluators, such as C-Mix [1] and FSpec [12],
give (1A,2A); Tempo [7] gives (1A,2B).

To conclude, the uniform BTA is preferable for Affine and the polyvariant BTA is preferable for Monitor. A
partial evaluator that is confined to one of the two strategies, A or B, may not be suitable for the task at hand.
In such a case the user has to resort to rewriting the source program to influence the specialization. This is why
we are looking for a more elegant and flexible solution to BTA.

3 Binding-Time Analysis and Maximal Poly variance

We consider only first-order deterministic languages, and assume that any program has a set of program points.
Examples include labels in a flow chart language and function names in a functional language. Their essential
characteristics is that computation proceeds sequentially from program point to program point by execution of
a series of commands, each of which updates a program state.

Definition 1. A programming language is a tuple L = {V,C,S, {■}), where [•] : C ->■ S -> V x S is a partial
function. Terminology: V is the set of program points, C is the set of commands, S is the set of stores, and [•]
is the semantics of L. A state is a pair (p, a) € V x S.

Definition 2. Let L be a programming language, then an .L-program is a partial mapping P : V -4 C, where
V is the set of program points of L and C is the set of commands of L. We assume each L-program P has the
property that Va G <S.Vp € dom{P) : [P(p)]cr = (pV) implies p' € dom(P), if defined. Notation: The initial
program point of a program P is denoted by po.

Definition 3. Let P be an L-program, define computation step as transition relation -»C (V,S) x (V,S) such
that (p,cr) -*• (p',0-1) iff [P(p)l(7.= (pV) is defined. A computation (from o0 £ S) is a finite or infinite
sequence

(Po,0o)■-» (pi,oi)'-» ■••

A store is usually a finite function a = [xx H- vi,... ,xn ^ vn] which maps variables x e X to values v'eV,
where notation a{xi) denotes value vt in a.

58 Perspectives of System Informatics'99

BTA

uniform pointwise polyvariant

n:l 1:1 1 : m

Fig. 2. Granularity of binding-time analysis

Offline partial evaluation [10] is done in two steps: a binding-time analysis (BTA) followed by a specialization
phase. First, the source program is analyzed over a domain consisting of two abstract values, S and D where S
(static) represents a value known at specialization time, D (dynamic) represents a value that may be unknown
at specialization time. Then the source program is specialized wrt. known values following the annotations made
by the BTA.

Definition 4. A binding-time value is a value b e B where B = {S,D}. A binding-time store ß ■ X -* B
maps variables to binding-time values. A binding-time semantics [.]Mo : C -»■ B -> B maps a command and a
binding-time store to a binding-time store. A binding-time state is a pair (p, ß), where p is a program point and
p is a binding-time store.

Definition 5. Let P be an L-program, define binding-time step as transition relationale (V,B) x (P,B) such
that {p,ß)D^{p',ß') iff

{P{p)lbtaß = ß' A 3o-,a'.(p,a) -> (p',a')

Given {PJMuaß = ß', we expect that for any transition (p, a) -+ (p'; a'), the values of the variables classified
a*iS in ß must be computable from the values of the variables classified as S in ß. In other words we expect
Vlbta to be a realization of the congruence rules of L [10].

The task of a BTA is to compute from bt-state (p0,ß0) of an L-program P, a set of bt-states (denoted
by Ann). This set is always finite because a program has finitely many variables and there are finitely many
bt-values. A BTA can compute Ann in many different ways. The set of bt-states induced by the bt-semantics
i-\bta is maximally polyvariant. To keep our discussion language-independent, we shall clearly separate the set
oi bt-states from the syntactic annotation of a source program.

Definition 6. Let P be an L-program and let ß0 be an initial bt-store, then polymax{P, ß0) denotes the set of
bt-states defined by

polymaJc(P,ß0)
dä {(p,ß) | (p0,ß0) «?. foß)}

4 Dimensions of Binding-Time Analysis

A binding-time strategy for realistic applications has to accommodate three important, but—unfortunately—
often conflicting goals: J

1. Increasing staticness by more precise analysis.
2. Taming code explosion by reducing the amount of polyvariance at specialization time
3. Ensuring termination of the specialization process by dynamizing operations that lead to infinite trans-

formations.

A uniform BTA computes one division that is valid for all program points (Fig. 2). For small programs this
assumption is reasonable, but not for larger applications because of the non-locality of binding-time effects
Pomtwise and polyvariant analyses are flow-sensitive. They allow programs points to be annotated with one
or more local divisions. They can significantly improve staticness in programs and avoid the need for manual
bmdmg-time improvements. For example, the BTA of Tempo [9] computes pointwise divisions for basic blocks
and polyvariant divisions on the procedure level. Increased staticness in a program does not always come for
free. Non-termination of the specialization process and code explosion of the generated programs are some of

Christensen N. H., Glück R., Laursen S. Binding-Time Analysis in Partial Evaluation 59

& uniform ~ p \X) — U

^pointwise — O uniform Ap = p'
&poIymax — ■CÜIS&

Fig. 3. Three well-known BTA strategies.

Source code Annotations
10: IF Upd=TRUE THEN (S,S,D,S)
11: Val:=CurVal; (S,S,D,S)
12: ENDIF; (S,D,D,S)
13: OutVal:=f(Val); {S,S,D,S){S,D,D,S)
14: OUTPUT OutVal; (S,S,D,S){S,D,D,S)

Fig. 4. Polyvariant annotation of Monitor. (Upd,Val,CurVal, OutVal).

5 Strategy Language

Informally, a BTA strategy is a guiding principle for annotation. Known strategies include uniform analysis
and pointwise analysis. Our aim is to specify a high-level 'strategy language' which may be used to control a
binding-time analysis. The ambition is that the language be simple while offering a large design space allowing
to compare the relative strength of different BTA strategies.

Formally, we define a strategy to be a criterion for being well-formed (wit. the strategy). For instance, an
annotation is well-formed wrt. the uniform BTA strategy if and only if every variable has the same annotation
in all bt-stores in the annotation. In this paper, all strategies are of the form

VxeX.V(p,ß),(p',ß>)&Ann:
S(x,p,p',ß,ß') ^ ß(x) = D

where the predicate <S can take many forms. We will identify a strategy with the predicate «S that defines it. We
implicitly assume that all annotations respect the congruence rules of the language, i.e. we implicitly require
Ann C polymax(P,ß0). For convenience, we omit the parameters of a predicate, as in the definitions in Fig. 3.
Regard the definition of Suniform. This predicate defines a strategy that allows only one annotation for each
variable in the source program. The predicate is so simple that it does not need to refer to p or p'.

To see what this strategy means, consider the Monitor program. A polyvariant annotation is given in Fig. 4.
This annotation is not well-formed wrt. Suniform since Val has more than one annotation. More formally,
choosing , '

a = Vai; (p,ß) = (13, (S,S,D,S)); (p',ß') = (13, (S,D,D,S))

we evidently get a counterexample to Suniform. We say that x and (p,ß) form a violation of the strategy. Of
course, if an annotation is not well-formed wrt. some strategy <S, a violation of <S must exist.

A natural annotation that does satisfy the uniformity constraint is the set

{(p, (S, D, D, S)) | p € {10,11,12,13,14}},

which is also the one that we would expect as output of a uniform BTA. Note, however, that classifying all
variables dynamic at all program points is an annotation that is also (trivially) well-formed wrt. Suniform. This
annotation will be well-formed wrt. any strategy.

Another example of a well-known strategy is Spointwise which is also defined in Fig. 3. It is obtained by
applying the uniform strategy to individual program points, merging bt-stores only if different ones occur at
a single point in the program. This strategy forces a monovariant (but not necessarily uniform) annotation
of all variables. Finally, as we have implicitly required all annotations to obey the congruence rules of the
programming language, we get a maximally polyvariant strategy by adding no further requirements.

The authors have implemented a maximally polyvariant PolyMax function for a non-trivial subset of Fortran—
the subset of the FSpec partial evaluator [12]. The algorithm builds upon a maximally polyvariant BTA as
defined in Sect. 3.

6 An Example Strategy

To illustrate our method, we show a new strategy that can be modeled in our framework. It is characterized by
separate treatment of different language constructs, e.g. conditionals, loops and procedures.

60 Perspectives of System Informatics'99

Source code

10: PROCEDURE eval(E):
11: CASE E.op:

12: 'cast: RETURN E.val;

13: ,'var : RETURN lookup(E.id);
14: > + : RETURN eval(E.Lexp)+

eval(E.Rexp);

20: PROCEDURE lookup(Id):
21: COMMON GlobS,LocS,St;
22: INTEGER Cur;

23: Cur:=LocS;

24: WHILE (St [Cur] .id^Id) DO

25: IF (St[Cur]='end)
26: THEN Cur:=GlobS;
27: ELSE Cur:=Cur+l;
28: ENDWHILE

29: RETURN St[Cur].val;
30: END;

Resi

(* E

dual code of eval((2+3)+x)

= (2+3)+x *)
(* GlobS = 0 *)
(* LocS and St are dynamic. *)

100: COMMON LocS,St;
101: INTEGER Cur;
102: Cur:=LocS;
103: WHILE (St[Cur].id^>x) DO
104: IF (St[Cur]='end)
105: THEN Cur:=0;
106: ELSE Cur:=Cur+l;
107: ENDWHILE
108: RETURN 5+St[Cur].val;

Fig. 5. Specialization of an interpreter fragment using the example strategy.

The idea is to minimize code explosion in the residual program while being robust wrt. procedure inlining1 a
feature that is not currently achieved by any system implementing polyvariant procedure calls for an imperative
language. We also wish to allow polyvariance elsewhere as long as it can only lead to code explosion in the
annotated program - not the residual program. Towards this end, we decree that loop entry points may only be
annotated polyvariantly if the test-expression (i.e. the loop condition) is static, in which case only one branch
will be chosen by the specializer (leaving the other branch as dead code in the annotated program). We denote
by Vioopentry the set of program points that constitute loop entries. The new strategy is defined by

Sexample = P G Vloopentry A ß(test(p)) -DA Spointwise

Here, the term ß(test(p)) is a shorthand for stating that the test expression of the loop starting at p is dynamic
in p: The above strategy will not always prevent code explosion, and it does not guarantee termination of the
specialization phase. However, it demonstrates that reasonable heuristics can be simple to phrase

An example where this strategy turns out to be useful is shown in Fig. 5. The source program is a fragment
of an interpreter for a Fortran-like language with one local and one global scope. Beside the input expression
the position of the global scope in the store is also statically known. However, the store itself and the position
ol the local scope in the store are dynamic.

The reader may convince himself that a uniform BTA will not achieve satisfactory specialization in this
example. As demonstrated [4] in a similar case, the return value of eval will be considered dynamic, disallowing
full evaluation of 2 + 3. On the other hand, using a maximally polyvariant BTA, we run into a different problem
hi the WHILE-loop of procedure lookup, there is a possibility of variable Cur turning static (by assigning to
it the value of GlobS). This possibility will be explored by the specializer. However, since Cur increases under
dynamic control, specialization will run into an infinite loop.

Now consider our example strategy. Because of the polyvariant procedure annotation, (2 + 3) can be com-
pletely evaluated. Since the (dynamically controlled) WHILE-loop must be annotated monovariantly, Cur will
always be considered dynamic and we avoid infinite specialization. Thus, we avoid both problems and obtain
useful residual code.

7 Related Work

Few attempts have been made to examine different BTA strategies. Notable exceptions are [6,2] who developed
a polyvariant BTA for a higher-order applicative language and [13] who implemented a polyvariant BTA for the
bimilrx partial evaluator. Another approach was suggested in [4] where polyvariance is achieved by instrumenting
programs with explicit bt-values and performing partial evaluation in two passes; [14] used the interpretive
approach. ^

That is, treating both procedure entry and exit fully polyvariantly.

 Christensen N. H., Glück R., Laursen S. Binding-Time Analysis in Partial Evaluation 61

8 Conclusion

Our goal was to develop the foundations for an adaptive approach to binding-time analysis which is flexible
and powerful enough to study the impact of binding-time strategies in a realistic context. We advocate that
partial evaluation systems be built that allow flexibility in the BTA instead of hard-coding a single strategy on
pragmatic grounds. We showed that different BTA strategies drastically influence of the quality of generated
programs. The strategy language we developed allows us to catalog and design different BTA strategies.

References

1. L. O. Andersen. Program analysis and specialization for the C programming language. DIKU Report 94/19,
University of Copenhagen, 1994.

2. J. M. Ashley, C. Consel. Fixpoint computation for polyvariant static analyses of higher-order applicative programs.
ACM TOPLAS, 16(5):1431-1448, 1994.

3. M. A. Bulyonkov. Polyvariant mixed computation for analyzer programs. Ada Informatica, 21:473-484, 1984.
4. M. A. Bulyonkov. Extracting polyvariant binding time analysis from polyvariant specializer. PEPM'93, 59-65, 1993.

ACM Press.
5. M. A. Bulyonkov, D. V. Kochetov. Practical aspects of specialization of Algol-like programs. O. Danvy, R. Glück,

P. Thiemann (eds.), Partial Evaluation. Proceedings, LNCS1110, 17-32, 1996. Springer-Verlag.
6. C. Consel. Polyvariant binding-time analysis for applicative languages. PEPM'93, 66-77. ACM Press, 1993.
7. C. Consel, F. Nöel. A general approach for run-time specialization and its application to C. POPL'96, 145-156,

1996. ACM Press.
8. A. P. Ershov, V. E. Itkin. Correctness of mixed computation in Algol-like programs. J. Gruska (ed.), Mathematical

Foundations of Computer Science, LNCS 53, 59-77, 1977. Springer-Verlag.
9. L. Hornof, C. Consel, J. Noye. Effective specialization of realistic programs via use sensitivity. P. Van Hentenryck

(ed.), Static Analysis. Proceedings, LNCS 1302, 293-314, 1997. Springer-Verlag.
10. N. D. Jones, C. K. Gomard, P. Sestoft. Partial Evaluation and Automatic Program Generation. Prentice-Hall, 1993.
11. N. D. Jones, P. Sestoft, H. S0ndergaard. Mix: a self-applicable partial evaluator for experiments in compiler gener-

ation. LISP and Symbolic Computation, 2(l):9-50, 1989.
12. P. Kleinrubatscher, A. Kriegshaber, R. Zöchling, R. Glück. Fortran program specialization. SIGPLAN Notices,

30(4):61-70, 1995.
13. B. Rytz, M. Gengler. A polyvariant binding time analysis. PEPM'92, 21-28, 1992.
14. P. Thiemann, M. Sperber. Polyvariant expansion and compiler generators. D. Bj0rner, M. Broy, I. V. Pottosin (eds.),

Perspectives of System Informatics. Proceedings, LNCS 1181, 285-296, 1996. Springer-Verlag.

Abstraction-Based Partial Deduction
for Solving Inverse Problems —

A Transformational Approach to Software Verification
(Extended Abstract)

Robert Glück1 and Michael Leuschel2

1 DIKU, Department of Computer Science,
University of Copenhagen, DK-2100 Copenhagen, Denmark

Email: glueck9diku.dk
2 Department of Electronics and Computer Science

University of Southampton, Southampton S017 1BJ, UK
Email: malQecs. soton .ac.uk

Abstract. We present an approach to software verification by program inversion, exploiting recent progress
in the field of automatic program transformation, partial evaluation and abstract interpretation. Abstrac-
tion-based partial deduction can work on infinite state spaces and can also provide finite representations
of infinite solution sets. We illustrate the potential of this approach for infinite model checking of safety
properties. Our claims are substantiated by several computer experiments.

1 Introduction

Modern computing applications increasingly require software and hardware systems that are extremely reliable.
Unfortunately, current validation techniques are often unable to provide high levels of assurance of correctness
either due to the size and complexity of these systems, or because of fundamental limitations in reasoning about
a given system. This paper examines the latter point showing that abstraction-based partial deduction can serve
as a powerful analytical tool. This has several advantages in comparison with, e.g., standard logic programming.
Among others, it as the ability to form recursively defined answers and can also be used for inversion checking
and program verification.

We are able to port these inversion capabilities to other languages via interpretive definitions. This means
that a wide class of different verification tasks can be analyzed in a common framework using a set of uniform
transformation techniques. We examine the potential for infinite model checking, and support our claims by
several computer experiments.

2 Inversion, Partial Deduction, and Interpreters

While direct computation is the calculation of the output of a program for a given input, inverse computation
is the calculation of the possible input of a program for a given output. Consider the familiar append program,
it can be run forwards (to concatenate two lists) and backwards (to split a list into sublists). Advances in this
direction have been made in logic programming, based on solutions emerging from logic and proof theory.

However, inversion problems are not restricted to logic languages. Reasoning about the correctness of, say, a
software specification, one may need to verify whether and how a critical state can be reached from any earlier
state. The key idea is this: to show that a given system satisfies a given specification—representing a safety
property—start with the bad states violating the specification, work backwards and show that no initial state
leads to such a bad state.

The relationship between abstract interpretation and program specialisation has been observed and for-
mal frameworks supporting this idea have been developed [6,10,9]. Abstraction-based partial deduction (APD)
combines these two approaches and can thereby obtain specialisation and analysis which are outside the reach
of either method alone [12,11]. It was shown that program specialisation combined with abstract interpreta-
tion can vastly improve the power of both techniques (e.g., going beyond regular approximations or set-based
analysis) [12].

Language-independence of program transformation can be achieved through the interpretive approach [18,
7,1]: an interpreter serves as mediator between a (domain-specific) language and the language for which the

Glück R., Leuschel M. Abstraction-Based Partial Deduction and Inversion 63

Petri-net pi-calc fct-pgm

♦ 4 +
Petri-def pi-def fct-def

♦ + t
ab-spec ab-spec ab-spec

Fig. 1. Abstraction-based partial deduction ab-spec applied to Petri-nets, 7r-calculus, and functional programs via
interpretive language definitions.

program transformer is defined. Efficient implementations of the corresponding tools can be achieved automati-
cally (a notable example are the Futamura projections). Work on porting inverse computation to new languages
includes the inversion of imperative programs by treating their relational semantics as logic programs [15].

Our Approach The approach we will pursue in this paper is twofold. First, we apply the power of APD on
inverse computation tasks. Instead of enumerating a list of substitutions, we produce a new logic program by
APD which can be viewed as model of the original program instantiated to the given query. The transformation
will (hopefully) derive a much simpler program (such as p :- fail), but this method has also the ability to
form recursively defined programs. Second, we use the interpretive approach to achieve language-independence.
We will thereby be able to apply inversion capabilities provided by APD to different language paradigms, such
as Petri-nets and the 7r-calculus, without having to write tools (illustrated in Fig. 1).

To put these ideas to a trial, we use the ECCE logic program specializer [12,13]—employing advanced control
techniques such as characteristic trees to guide the specialisation process—coupled with an abstract interpretation
technique, as described in [12]. (A more detailed technical account is beyond the scope of this extended abstract;
the interested reader will find a complete description in [12,13].) This APD-system does not yet implement the
full power of [12,11], but it will turn out to be sufficiently powerful for our purposes. Indeed, as we will show
below, it will give us a novel technique for powerful inverse computation and inversion checking.

3 Advanced Inversion Tasks for Logic Programs

To illustrate three questions about a software requirement specification relying on solving inversion problems,
let us consider a familiar example: exponentiation z = xv of natural numbers.

1. Existence of solution? Given output state z (e.g. z = 3), does there exist an input state x,y with y > 1
that gives raise to zi Answer: state z = 3 can never be reached. Observe that here we are not interested
in the values of x,y, we are just interested whether such values exists. We will call such a setting inversion
checking.

2. Finiteness of solution? Given output state z (e.g. z — A), is there a finite number of input states x,y can
give raise to zi Answer: only two states (a; = 4, y = 1 and x = 2, y = 2) lead to z = 4.

3. Finite description of infinite solution? Given output state z (e.g. z = 1), can an infinite set of input states
be described in a finite form? Answer: any input state with y = 0 leads to z = 1, regardless of x.

Example 1. We show that all questions posed above can be answered with abstraction-based partial deduction.
Consider a logic program encoding exponentiation of natural numbers represented by terms of type r = 0 | s (r).

exp(Base,Exp,BE),mul(BE,Base,Res).
exp(Base,0,s(0)).
exp(Base,s(Exp),Res)
mill (0,1,0).
mul(s(X),Y,Z) :- mul(X,Y,XY),plus(XY,Y,Z).
plus(0,X,X).
plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

1. Existence of solution. Inverting the program for xv = 3,y > 1, that is specialising exp/2 wrt. goal
exp(X, s (s (Y)), s (s(s (0)))), produces an empty program: no solution exists.

2. Finiteness of solution. Inverting xv = 4, that is by specialising exp/2 wrt. goal exp(X,Y,s(s(s(s(0)))))
produces a program in which the two solutions x = 4,y = 1 and x = 2,y = 2 are explicit:

exp__l(s(s(s(s(0)))),s(0)).
exp__l(s(s(0)),s(s(0))).

64 Perspectives of System Informatics'99

3. Finite representation of infinite solution. Finally, inverting xv = 1 can be solved by specialising exp/2 wrt.
goal exp(X,Y,s(0)). The result is a recursive program: infinitely many solutions were found (x° and V for
any x and y) and described in a finite way.1 This is possible in our approach, but not in conventional logic
programming, because we generate (recursive) programs instead of enumerating an (infinite) list of answers.

exp__l(Xi,0).
exp__l(s(0),s(XD) :- exp_conj__2(Xl).
exp_conj 2(0).
exp_conj__2(s(XD) :- exp_conj__3(Xl).
exp_conj 3(0).
exp_conj__3(s(Xl)) :- exp_conj__3(Xl).

To conclude, abstraction-based partial deduction can successfully invert programs in ways not possible with any
of the existing approaches to inversion.

Example 2. As a more practical application, take the following program:

pairl([]).
pairl([A|X]):- oddl(X). delete(X, [XIT] ,T) .
oddl([A|X]):- pairl(X). deletatt.[Y|T],[Y|DT]):- X\=Y,delete(X,T,DT).

One might want to verify the property that deleting an element from a pair list will not result in a pair list.
This can be translated into requiring that the following predicate always fails:

error(X,L) :- pairl(L).delete(X.L.DL),pairl(DL).
which can be deduced by our APD-system: error__l(X,L) :- fail. >

4 Case Study: Inversion and Infinite Model Checking

Recent years have seen considerable growth [5] in the application of model checking [4,2] techniques to the
validation and verification of correctness properties of hardware, and more recently software systems. The
method is to model a hardware or software system as a finite, labelled transition system (LTS) which is then
exhaustively explored to decide whether a given specification holds for all reachable states. One can even use
tablmg-based logic programming as an efficient means of performing explicit model checking [14] However
many software systems cannot be modelled by a finite LTS (or.similar system) and recently there has been a
lot of effort to enable infinite model checking (e.g., [17]). We argue that inverse computation in general, and our
APD-technique of Section 2 in particular, has a lot to offer for this avenue of research:
- We can model a system to be verified as a program (possibly using metacomputation by means of an

interpreter). This obviously includes finite LTS but also allows to express systems with an infinite number
of states.

- Model checking of safety properties then amounts to inversion checking: we prove that a specification holds
by showing that there exists no trace (the input argument) which leads to an invalid state.

- To be successful, infinite model checking requires refined abstractions (a key problem mentioned in [5]) The
control of generalisation of APD provides just that (at least for the examples we treated so far)! In essence
the specialisation component of APD performs a symbolic traversal of the state space, thereby producing a
finite representation of it, on which the abstract interpretation performs the verification of the specification
Consider the Petn net in Figure 2 that models a single process which may enter a critical section (cs) the

access to which is controlled by a semaphore (sema). The Petri net can be encoded directly as logic program
To do this we use an interpreter trace/3, where the object-level Petri net is encoded via trans/3 facts and the
trace/3 predicate checks for enabled transitions and fires them. The initial marking of trace/3 in start/3 is 1
token in the semaphore (sema), 0 tokens in the reset counter (c), no processes in the critical section (cs) and no
processes m the final place (y). There may be X processes in the initial place (x). Again, numbers are represented
by terms of type T = 0 | s(r). More processes can be modelled if we increase the number of tokens in the initial
place (x). Forward execution of the Petri net is: given an initial value for X and a sequence of transitions trace
determine the marking(s) that can be reached.

Let us now try to check a safety property of the above Petri net, namely that it is impossible to reach a
marking where two processes are in their critical section at the same time. Clearly, this is an inversion task-
given a marking try to find a trace that leads to it. More precisely we want to do inversion checking as the
desired outcome is to prove that no inverse exists.
1 By a better post-processing it is possible to further improve the residual program.

Glück R., Leuschel M. Abstraction-Based Partial Deduction and Inversion 65

G) x enter.cs / v—* X exit-cs y restart

4 _ 2 _r

start(Trace,X,ReachableHarking) :-
trace(Trace,[X,s(0),0,0,0].ReachableMarking).

trace([] .Marking,Marking) .
trace([Action I As],InMarking,OutMarking) :-

trans(Action,InMarking.Ml),trace(As,Mi,OutMarking).
trans(enter_cs,[s(X),s(Sema),CritSec,Y,C],[X,Sema,s(CritSec),Y,C]).
trans(exit.cs,[X,Sema,s(CritSec),Y,C],[X.s(Sema),CritSec,s(Y),C]).
trans(restart,[X,Sema,CritSec,s(Y),C],[s(X),Sema,CritSec,Y,s(C)]).

Fig. 2. Petri net with a single semaphore and its encoding as logic program.

Example 3. Inverting the Petri net by specialising the interpreter in Figure 2 wrt the query
start(Tr,s(0),[X,S,s(s(CS)),Y,C])

we obtain the following program:
start(Tr,s(0),[X3,X4,s(s(X5)),X6,X7]) :- fail.

This inversion task cannot be solved by PROLOG (or even XSB-PROLOG [3,16] with tabling), even when
adding moding or delay declarations. Due to the counter (c) we have to perform infinite model checking which
in turn requires abstraction and symbolic execution. Both of these are provided by our abstraction-based partial
deduction approach described in Section 2.

Similarly, one can prove the safety property regardless of the number of processes, i.e., for any number of
tokens in the initial place (x). When we specialise the interpreter of Figure 2 for the query unsafe(x,s(0) ,0,0,0)
we get (after 2 iterations each of the specialisation and abstract interpretation compontents of ECCE):

start(Tr,Processes,[X3,X4,s(s(X5)),X6,X7]) :- fail.

5 Porting to other Languages and Paradigms

We can apply the power of our APD-approach, along with its capabilities for inversion and verification [8], to the
7r-calculus, simply by writing an interpreter for it in logic programming. We have also successfully ported our
inverse computation and verification tool to a functional language via an interpreter (omitted from extended
abstract). Apart from highlighting the power of our approach it is further computational evidence for the
feasibility of the method of porting tools via metacomputation. We conjecture that the same approach can be
used for verification tasks in other related domains.

6 Conclusion and Assessment

We presented an approach to program inversion, exploiting progress in the field of automatic program transfor-
mation, partial deduction and abstract interpretation. We were able to port these inversion capabilities to other
languages'via interpretive definitions. We examined the potential for infinite model checking of safety properties,
and supported our claims by computer experiments. We believe, by exploiting the connections between software
verification and automatic program specialisation one may be able to significantly extend the capabilities of
analytical tools that inspect the input/output behaviour.

The emphasis was on novel ways of reasoning rather than efficiency and large scale applications. In principle,
it is possible to extend our approach to verify larger, more complicated infinite systems.2 As with all automatic
specialisation tools, there are several points that need to be addressed: allow more generous unfolding and
polyvariance (efficiency, both of the specialisation process and the specialised program, are less of an issue in
model checking) to enable more precise residual programs and implement the full algorithm of [11] which allows
for more fine grained abstraction and use BDD-like representations whenever possible. Currently we can only
verify safety properties (i.e., that no bad things happen) and not liveness properties (i.e., that good things will
eventually happen). The latter might be feasible by a more sophisticated support for the negation.
2 Larger systems have been approached with related techniques as a preprocessing phase [9]. However, their purpose is

to reduce the state space rather than provide novel ways of reasoning.

66 Perspectives of System Informatics'99

References

1. S. M. Abramov, R. Glück. Semantics modifiers: an approach to non-standard semantics of programming languages.
In M. Sato, Y. Toyama (eds.), International Symposium on Functional and Logic Programminq 247-270 World
Scientific, 1998.

2. R. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys
24(3):293-318, September 1992. .

3. W. Chen, D. S. Warren. Tabled evaluation with delaying for general logic programs. Journal of the ACM, 43(lV20-74
January 1996. > w .

4. E. M. Clarke, E. A. Emerson, A. P. Sistla. Automatic verification of finite-state concurrent systems using temporal
logic specifications. ACM TOPLAS, 8(2):244-263, 1986.

5. E. M. Clarke, J. M. Wing. Formal methods: State of the art and future directions. ACM Computing Surveys
28(4):626-643, Dec. 1996. y '

6. C. Consel, S. C. Khoo. Parameterized partial evaluation. ACM TOPLAS, 15(3):463-493, 1993.
7. R. Glück. On the generation of specializes. Journal of Functional Programming, 4(4):499-514. 1994.
8. P. Hartel, M. Butler, A. Currie, P. Henderson, M. Leuschel, A. Martin, A. Smith, U. Ultes-Nitsche B Walters

Questions and answers about ten formal methods. Proceedings of FMICS'99 (Formal Methods for Industrial Critical
Systems), Trento, July 1999. To appear.

9. J. Hatcliff, M. Dwyer, S. Laubach. Staging analysis using abstraction-based program specialization! In C Palamidessi
H. Glaser, K. Meinke (eds.) Proceedings of ALP/PLILP'98, LNCS 1490, 134-151. Springer-Verlag, 1998.

10. N. D. Jones. The essence of program transformation by partial evaluation and driving. In N. D. Jones, M. Hagiya
M. Sato (eds.) Logic, Language and Computation, LNCS 792, 206-224. Springer-Verlag, 1994. ' '

11. M. Leuschel. Program specialisation and abstract interpretation reconciled. In J. Jaffar (ed.) Proceedings of the
Joint International Conference and Symposium on Logic Programming JICSLP'98,.220-234, June 1998. MIT Press

12. M. Leuschel, D. De Schreye. Logic program specialisation: How to be more specific. In H. Kuchen, S. Swierstra (eds j
Proceedings of the International Symposium on Programming Languages, Implementations, Logics and Programs
(PLILP'96), LNCS 1140, 137-151, Aachen, Germany, September 1996. Springer-Verlag.

13. M. Leuschel, B. Martens, D. De Schreye. Controlling generalisation and polyvariance in partial deduction of normal
logic programs. ACM Transactions on Programming Languages and Systems, 20(l):208-258, January 1998

14. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. Swift, and D. S Warrend Effi-
cient model checking using tabled resolution. In Proceedings of the International Conference on Computer-Aided
Verification (CAV'97), LNCS 1254, 143-154. Springer-Verlag, 1997. '

15. B. J. Ross. Running programs backwards: The logical inversion of imperative computation. Formal Aspects of
Computing, 9:331-348, 1997.

16' ^'Jff^Tr T" Swift' D' S' Warren- XSB M an efficient deductive database engine. In Proceedings of the ACM
1* « a 2 ,™at%onal Conference on the Management of Data, 442-453, Minneapolis, Minnesota, May 1994 ACM
17. B. Steffen (ed.). Tools and Algorithms for the Construction and Analysis of Systems, LNCS 1384 Springer-Verlae

March 1998. 5'

18. V. F. Turchin. Program transformation with metasystem transitions. Journal of Functional Programming, 3(3):283-
O-Lo« j.yyo.

Sonic Partial Deduction

Jonathan Martin and Michael Leuschel

Department of Electronics and Computer Science
University of Southampton, Southampton S017 1BJ, UK

{jcm93r,mal}(3ecs. soton.ac.uk
Fax: +44 1703 59 3045 Tel: +44 1703 59 3377

Abstract. The current state of the art for ensuring finite unfolding of logic programs consists of a number
of online techniques where unfolding decisions are made at specialisation time. Introduction of a static
termination analysis phase into a partial deduction algorithm permits unfolding decisions to be made offline,
before the actual specialisation phase itself. This separation improves specialisation time and facilitates the
automatic construction of compilers and compiler generators. The main contribution of this paper is how
this separation may be achieved in the context of logic programming, while providing non-trivial support
for partially static datastructures.
The paper establishes a solid link between the fields of static termination analysis and partial deduction
enabling existing termination analyses to be used to ensure finiteness of the unfolding process. This is
the first offline technique which allows arbitrarily partially instantiated goals to be sufficiently unfolded to
achieve good specialisation results. Furthermore, it is demonstrated that an offline technique such as this
one can be implemented very efficiently and, surprisingly, yield even better specialisation than a (pure)
online technique. It is also, to our knowledge, the first offline approach which passes the KMP test (i.e.,
obtaining an efficient Knuth-Morris-Pratt pattern matcher by specialising a naive one).

Keywords: Partial evaluation, mixed computation, and abstract interpretation, Program transformation and
specialisation, Logic programming, Partial deduction, Termination.

1 Introduction

Control of partial deduction—a technique for the partial evaluation of pure logic programs—is divided into two
levels. The local level guides the construction of individual SLDNF-trees while the global level manages the forest,
determining which, and how many trees should be constructed. Each tree gives rise to a specialised predicate
definition in the final program so the global control ensures a finite number of definitions are generated and
also controls the amount of polyvariance. The local control on the other hand determines what each specialised
definition will look like.

Techniques developed to ensure finite unfolding of logic programs [9,37,36] have been inspired by the various
methods used to prove termination of rewrite systems [17,16]. Whilst, by no means ad hoc, there is little direct
relation between these techniques and those used for proving termination of logic programs (or even those
of rewrite systems). This means that advances in the static termination analysis technology do not directly
contribute to improving the control of partial deduction. The work of this chapter aims to bridge this gap.

Moreover, the control described in [9,37,36] as well as the more recent [45,29] are inherently online, meaning
that they are much slower than offline approaches and that they are not based on a global analysis of the
program's behaviour which enables control decisions to be taken before the actual specialisation phase itself.

Offline approaches to local control of partial deduction on the other hand [40,22,23,10] have been very
limited in other respects. Specifically, each atom in the body of a clause is marked as either reducible or non-
reducible. Reducible atoms remain are always unfolded while non-reducible atoms on the other hand are never
unfolded. Whilst this approach permits goals to be unfolded at normal execution speed, it can unduly restrict the
amount of unfolding which takes place with a detrimental effect on the resulting specialised program. Another
problem of [40,23] is that it classifies arguments either as static (known at specialisation time) or dynamic
(unknown at specialisation time). This division is too coarse, however, to allow refined unfolding of goals
containing partially instantiated data where some parts of the structure are known and others unknown. Such
goals are very common in logic programming, and the key issue which needs to be considered is termination. A
partial solution to this problem has been presented in [10], but it still sticks with the limited unfolding mentioned
above and can "only" handle a certain class of partially instantiated data (data bounded wrt some semi-linear
norm).

Perspectives of System Informatics'99

A Sonic Approach This paper proposes a flexible solution to the local termination problem for offline partial
deduction of logic programs, encompassing the best of both worlds. Based on the cogen approach1 for logic pro-
grams [23], the construction of a generating extension will be described which "compiles in" the local unfolding
rule for a program and is capable of constructing maximally expanded SLDNF-trees of finite depth.

The technique builds directly on the work of [38] which describes a method for ensuring termination of logic
programs with delay. The link here is that the residual goals of a deadlocked computation are the leaves of an
incomplete SLD-tree. The basic idea is to use static analysis to derive relationships between the sizes of goals
and the depths of derivations. This depth information is incorporated in a generating extension and is used to
accurately control the unfolding process. At specialisation time the sizes of certain goals are computed and the
maximum depth of subsequent derivations is fixed according to the relationships derived by the analysis. In
this way, termination is ensured whilst allowing a flexible and generous amount of unfolding. Section 3 reviews
the work of [38] and shows how it can be used directly to provide the basis of a generating extension which
allows finite unfolding of bounded goals. A simple extension to the technique is described in Section 4 which
also permits the safe unfolding of unbounded goals.

This is the first offline approach to partial deduction which is able to successfully unfold arbitrarily partially
instantiated (i.e. unbounded) goals. In fact, it is demonstrated that the method can, surprisingly, yield even
better specialisation than (pure) online techniques. In particular, some problematic issues in unfolding notably
unfolding under a coroutining computation rule and the back propogation of instantiations [36], can 'be easily
handled within the approach (for further details see [39]). Furthermore, it is the first offline approach which
passes the KMP test (i.e., obtaining an efficient Knuth-Morris-Pratt pattern matcher by specialising a naive
one), as demonstrated by the extensive experiments in Section 6.

An analysis which measures the depths of derivations may be termed a sounding analysis. Section 5 describes
how such an analysis can be based on existing static termination analyses which compute level mappings and
describes how the necessary depths may be obtained from these level mappings. Unfolding based on a sounding
analysis then, is the basis of sonic partial deduction.

2 Preliminaries

Familiarity with the basic concepts of logic programming and partial deduction is assumed [34 35] A level
mappmg (resp. norm) is a mapping from ground atoms (resp. ground terms) to natural numbers. For an atom
A and level mappmg |.|, Au denotes the set {\A9\ | A6 is ground}. An atom A is (unbounded wrt 1.1 if A , is
(in)nnite [13]. For this paper, the notion of level mapping is extended to non-ground atoms by defining for any
aff°m i flT ™n(j4ll); and similarlv for no™s- The norm \t\len returns the length of the list t. A list t is rigid
Iwii-T.7 LY* « a111 \ daUSe ° : H *~ Au ■ • •'An is recurrent if fOT every grounding substitution 6 for c, \H6\ > \Aid\ for all t G [l,n].

3 Unfolding Bounded Atoms

A fundamental problem in adapting techniques from the termination literature for use in controlling partial
deduction is that the various analyses that have been proposed (see [13] for a survey) are designed to prove Ml
termination for a given goal and program, in other words guaranteeing finiteness of the complete SLDNF-tree
constructed for the goal. For example, consider the goal <- Flatten([x, y, z], „) and the program Flatten consisting
ot the clauses appi, app2, flah and flat2.

flatj, Flatten(G, []).
flat2 Flatten([e|x], r) «- Append(e, y, r) A Flatten(x, y).
appx Append(0, x' *)■
app2 Append([u|x], y, [u|z]) <- Append(x, y, z).

A typical static termination analysis would (correctly) fail to deduce termination for this program and goal
Most analyses can infer that a goal of the form <- Flatten(x, y) will terminate if x is a rigid list of rigid lists, or if
x is a rigid list and y 1S a rigid list. In the context of partial deduction however, such a condition for termination
1 Instead of trying to achieve a compiler generator (cogen) by self-application [18] one writes the cogen directly [43].

 Martin J., Leuschel M. Sonic Partial Deduction _69

will usually be too strong. The problem is that the information relating to the goal, by the very nature of partial
deduction, is often incomplete. For example, the goal <~ Flatten([x, y, z], w), will not terminate but the program
can be partially evaluated to produce the following specialised definition of Flatten/2.

Flatten([x, y, z], r) «- Append(x, rl, r) A Append(y, r2, rl) A Append(z, [], r2).

The scheme described in [38] transforms programs into efficient and terminating programs. It will for instance
transform the non-terminating program Flatten into the following efficient, terminating program, by adding an
extra depth parameter.

flat* Flatten(x, y) 4- SetDepth_F(x, d) A Flatten(x, y, d).

DELAY Flatten(_, _, d) UNTIL Ground(d).
flatl Flatten(0, [], d) <- d > 0.
flaf2 Flatten([e|x], r, d) (- d > 0 A Append(e, y, r) A Flattenfx, y, d - 1).

app* Append(x, y, z) <- SetDepth_A(x, z, d) A Append[x, y, z, d).

DELAY Append(d) UNTIL Ground(d).
app\ Append([], x, x, d) <- d > 0.
app*2 Append([u|x], y, [u|z], d) f- d > 0 A Append(x, y, z, d - 1).

For now, assume that the (meta-level) predicate SetDepth.F(x, d) is defined such that it always succeeds
instantiating the variable d to the length of the list x if this is found to be rigid,(i.e., |x|jen = \x0\ien for every
substitution 9), and leaving d unbound otherwise. Note that a call to Flatten/3 will proceed only if its third
argument has been instantiated as a result of the call to SetDepth _F(x, d). The purpose of this last argument is to
ensure finiteness of the subsequent computation. More precisely, d is an upper bound on the number of calls to
the recursive clause flat*2 in any successful derivation. Thus by failing any derivation where the number of such
calls has exceeded this bound (using the test d > 0), termination is guaranteed without losing completeness.
The predicate SetDepth_A/3 is defined in a similar way, but instantiates d to the minimum of the lengths of the
lists x and z, delaying if both x and z are unbounded.

The main result of [38] guarantees that the above program will terminate for every goal (in some cases the
program will deadlock). Moreover, given a goal of the form <- Flatten(x, y) where x- is a rigid list of rigid lists or
where x is a rigid list and y is a rigid list, the program does not deadlock and produces all solutions to such a
goal. In other words, both termination and completeness of the program are guaranteed.

Since the program is terminating for all goals, it can be viewed as a means of constructing a finite (possibly
incomplete) SLD-tree for any goal. As mentioned above, it is indeed capable of complete evaluation but a partial
evaluation for bounded goals may also be obtained. Quite simply, the deadlocking goals of the computation are
seen to be the leaf nodes of an incomplete SLD-tree.

For example, the goal <- Flatten([x, y, z], r) leads to deadlock with the residual goal «- Append(x, rl, r, dl) A
Append(y, r2, rl, d2) A Append(z, Q, r2, d3). Removing the depth bounds, this residue can be used to construct a
partial evaluation of the original goal resulting in the specialised definition of Flatten/2 above.

The approach, thus far, is limited in that it can only handle bounded goals. For unbounded goals the
unfolding will deadlock immediately and it is not possible, for example, to specialise <- Flatten([Q, [a] j z], r) in a
non-trivial way. This strong limitation will be overcome in the following sections.

Finally, observe that—in contrast to [8,36])—our approach eliminates the need to explicitly trace direct
covering ancestors, improving performance of the specialisation process and removing a potential source of
programming errors. In addition, some problematic issues in unfolding, notably unfolding under a coroutining
computation rule and the back propogation of instantiations [36], can be easily handled within the approach
(for further details see [39]).

4 Unfolding Unbounded Atoms

The main problem with the above transformation is that it only allows the unfolding of bounded goals. Often,
as mentioned in the introduction, to achieve good specialisation it is necessary to unfold unbounded atoms also!
This is especially true in a logic programming setting, where partially instantiated goals occur very naturally
even at runtime. This capability may be incorporated into the above scheme as follows. Although an atom may
be unbounded, it may well have a minimum size. For example the length of the list [l,2,3|x] must be at least

_Z2 Perspectives of System Informatics'99

three regardless of how x may be instantiated. In fact, this minimum size is an accurate measure of the size
of the part of the term which is partially instantiated and this may be used to determine an estimate of the
number of unfolding steps necessary for this part of the term to be consumed in the specialisation process. For
example, consider the Append/3 predicate and the goal -f- Append([l,2,3|x], y, 2). Given that the minimum size
of the first argument is three it may be estimated that at least three unfolding steps must be performed. Now
suppose that the number of unfolding steps is fixed at one plus the minimum (this will usually give exactly the
required amount of specialisation). The transformed Flatten program may now be used to control the unfolding
by simply calling 4- Append([l,2.3|x], y, z, 3). The problem here, of course, is that completeness is lost, since the
goal fails if x does not become instantiated to fl. To remedy this, an extra clause is introduced to capture the
leaf nodes of the SLD-tree. The Append/3 predicate would therefore be transformed into the following.

appl Append(Q, x, x, d) <- d > 0.
app*2 Append([u|x], y, [u|z], d) f- d > 0 A Append(x, y, z, d - 1).
appl Append(x, y, z, d) -t- d < 0 A Append(x, y, z, .).

The call to Append/4 in the clause app*3 immediately suspends since the depth argument is uninstantiated
The clause is only selected when the derivation length has exceeded the approximated length and the effect is
that a leaf node (residual goal) is generated precisely at that point. For this reason, such a clause is termed a
leaf generator in the sequel. Now for the goal <- Append([l,2,3|x], y, z, 3) the following resultants are obtained.

Append([l,2,3]. y, [l,2,3|y], 3) <-

Append([l,2,3,u|x'], y, [l,2,3,u|z'], 3) <- Append(x\ y, z')

Observe that the partial input data has been completely consumed in the unfolding process In fact in
this example, one more unfolding step has been performed than is actually required to obtain an "optimal"
specialisation, but this is due to the fact that the goal has been unfolded non-deterministically. In some cases
this non-deterministic unfolding may actually be desirable, but this is an orthogonal issue to termination (this
issue will be re-examined in Section 6).

Furthermore, note that the SetDepth predicates must now be redefined to assign depths to unbounded atoms
Also a predicate such as SetDepth.A(x, z, d) must be defined such that d gets instantiated to the maximum of
the minimum lengths of the lists x and z to ensure a maximal amount of unfolding. Note that this maximum
will always be finite.

5 Deriving Depth Bounds from Level Mappings

The above transformations rely on a sounding analysis to determine the depths of derivations or unfoldings
buch an analysis may be based on exisiting termination analyses which derive level mappings. To establish the
link with the termination literature the depth argument in an atom during unfolding may simply be chosen to
be the tew? of the atom with respect to some level mapping used in a termination proof. Whilst, in principle
a depth bound for unfolding may be derived from any level mapping, in practice this can lead to excessive
unfolding and, as a consequence, poor specialisation. (For example, based on some termination analysis, an
atom might have a level mapping of 15, diminishing by 5 on every recursive call. One could give the atom a
depth of 15 but in this case the value of 3 would be much more appropriate, preventing over-eager unfolding)

A number of techniques have been devised to obtain accurate depth bounds from fairly arbitrary level
mappings derived from termination analyses. Space restrictions prohibit a detailed presentation here, but the
techniques are extremely simpie to apply and introduce minimal overhead (and sometimes none ftt ^ for

further details see [39]). It is important to note, however, that finiteness can always be guaranteed; the problems
encoutered only relate to the quality of the specialisation and this is also dependent on the control of determinacy
Although this has been touched upon in [19] this is still a relatively unexplored area in the context of partial
unfolSng' Problems may disappear altogether with the right balance of bounded and determinate

6 Experiments and Benchmarks

To gauge the efficiency and power of the sonic approach, a prototype implementation has been devised and
integrated into the ECCE partial deduction system ([27,28,33]). The latter is responsible for the global control
and code generation and calls the sonic prototype for the local control. A comparison has been made with ECCE

Martin J., Leuschel M. Sonic Partial Deduction 71

under the default settings, i.e. with ECCE also providing the local control using its default unfolding rule (based
on a determinate unfolding rule which uses the homeomorphic embedding relation < on covering ancestors to
ensure termination). For the global control, both specialises used conjunctive partial deduction ([31,21]) and
characteristic trees ([33]).

Benchmark sonic + ECCE ECCE

advisor 17 ms 150 ms
applast 83 ms 33 ms
doubleapp 50 ms 34 ms
map .reduce 33 ms 50 ms
map.rev 50 ms 67 ms
match.kmp 300 ms 166 ms
matchapp 66 ms 83 ms
maxlength 184 ms 200 ms
regexp.rl 34 ms 400 ms
relative 50 ms 166 ms
remove 367 ms 400 ms
remove2 1049 ms 216 ms
reverse 50 ms 50 ms
rev_acc_type 316 ms 83 ms
rotateprune 67 ms 183 ms
ssupply 34 ms 100 ms
transpose 50 ms 467 ms
upto.suml 33 ms 284 ms
upto.sum2 50 ms 83 ms

Benchmark sonic + ECCE ECCE

advisor 0 ms 33 ms
applast 0 ms 16 ms
doubleapp 0 ms 0 ms
map.reduce 0 ms 17 ms
map.rev 0 ms 34 ms
match.kmp 0 ms 99 ms
matchapp 0 ms 33 ms
maxlength 0 ms 67 ms
regexp.rl 0 ms 383 ms
relative 0 ms 166 ms
remove 34 ms 201 ms
remove2 33 ms 50 ms
reverse 16 ms 33 ms
rev-iicc-type 0 ms 32 ms
rotateprune 0 ms 99 ms
ssupply 0 ms 67 ms
transpose 16 ms 400 ms
upto.suml 0 ms 168 ms
upto.sum2 0 ms 66 ms

Table 1. Specialisation times (total w/o post-
processing)

Table 2. Specialisation times (unfolding)

All the benchmarks are taken from the DPPD library ([27]) and were run on a Power Macintosh G3 266
Mhz with Mac OS 8.1 using SICStus Prolog 3 #6 (Macintosh version 1.3). Tables 1 and 2 show respectively,
the total specialisation times (without post-processing), and the time spent in unfolding during specialisation.2

In Table 1 the times to produce the generating extensions for the sonic approach are not included, as this
is still done by hand. It is possible to automate this process and one purpose of hand-coding the generating
extensions was to gain some insight into how this could be best achieved. In any case, in situations where
the same program is repeatedly respecialised, this time will become insignificant anyway. Due to the limited
precision of the statistics/2 predicate, the figures of "0 ms" in Table 2 should be interpreted as "less than
16 ms." (The runtimes for the residual programs appear in Table 3 in the appendix for referees, which, for a
more comprehensive comparison, also includes some results obtained by MIXTUS.)

The sonic prototype implements a more agressive unfolding rule than the default determinate unfolding
rule of ECCE. This is at the expense of total transformation time (see Table 1), as it often leads to increased
polyvariance, but consequently the speed of the residual code is often improved, as can be seen in Table 3.3

Default ECCE settings more or less guarantee no slowdown, and this is reflected in Table 3, whereas the general
lack of determincay control in the prototype sonic unfolding rule leads to two small slowdowns. There is plenty
of room for improvement, however, on these preliminary results. For instance, the sonic approach is flexible
enough to allow determinacy control to be incorporated within it.

All in all, the sonic approach provides extremely fast unfolding combined with very good specialisation
capabilities. Observe that the sonic approach even passes the KMP test, and it is thus the first offline approach
to our knowledge which does so.4 If it were possible to extend the sonic approach to the global control as well,
one would hopefully obtain an extremely efficient specialiser producing highly optimised residual code.

2 Note that, because ECCE uses characteristic trees whereas the sonic prototype builds trace terms, running the latter
involves some extra (in principle unnecessary) overhead.

3 A more agressive unfolding rule, in conjunctive partial deduction, did not lead to improved speed under compiled code
of Prolog by BIM; see [28]. So, this also depends on the quality of the indexing generated by the compiler.

4 One might argue that the global control is still online. Note, however, that for KMP no generalisation and thus no
global control is actually needed.

21 Perspectives of System Informatics'99

7 Conclusion

The majority of termination analyses rely on the derivation of level mappings to prove termination. This paper
has described how these level mappings may be used to obtain precise depth bounds for the control of unfolding
during partial deduction. Thus, a solid link has been established between the fields of static termination analysis
and partial deduction enabling existing and future termination analyses to be used to ensure finiteness of the
unfolding process.

Furthermore, the paper has described now such depth bounds can be incorporated in generating extensions
The construction of these forms the foundation of any offline partial deduction method whether it is based on
the self-application or the cogen approach. This is the first offline technique which allows arbitrarily partially
instantiated goals to be sufficiently unfolded to achieve good specialisation results. The technique can surpris-
ingly, yield even better specialisation than a pure online technique. This is due to the availability Of global
information m the unfolding decision making process. It is also, to our knowledge, the first offline approach
which passes the KMP test.

The framework admits elegant solutions to some problematic unfolding issues and these solutions are sig-
nificantly less complex than their online counterparts. Of course, an online technique may still be able to make
refined unfolding decisions based on the availably of concrete data. This strongly suggests that offline and
online methods be combined to achieve maximal unfolding power. Another, possibly more challenging avenue
for further research is to extend the sonic approach for the global control, so that its advantages in terms of
efficiency, termination, and specialisation power also apply at the global control level.

References

L frPMW^L MA ™foh\R 3f^ and G- VidaI SPezialisation of ^ functional logic programs. In Proceedings of
,t ,J \ 9P n Sy™Posium on Partial Evaluation and Semantics-Based Program Manipulation, pages
151-162, Amsterdam, The Netherlands, 1997. ACM Press.

2. P. Anderson and C. Hoist. Termination analysis for offline partial evaluation of a higher order functional language
pages 67-82. b 6 '

3. K. Apt R. Bol, and J. W. Klop. On the safe termination of Prolog programs. In G. Levi and M. Martelli, editors
proceedings of the Sixth International Conference on Logic Programming, pages 353-368, Lisbon 1989 The MIT
Press. '

4' f990enkerimi and J' W' L1°yd' A PartiaI evaluation Procedure for logic programs. In NACLP'90, pages 343-358,

5. R. N. Bol. Loop checking in logic programming. PhD thesis, CWI, Amsterdam, October 1991. OWI Tract 112
6. R. N. Bol. Loop checking in partial deduction. The Journal of Logic Programming, 16(1 & 2)-25-46 1993
7. D. Brough and A Walker. Some practical properties of a Prolog interpreter. In Proceedings of the International

Conference on Fifth Generation Computer Systems, Tokyo, Japan, Nov. 1984
8. M. Bruynooghe, D. De Schreye, and B. Martens. A general criterion for avoiding infinite unfolding during partial

deduction of logic programs. In ILPS'91, pages 117-131. MIT Press, 1991.
9. M. Bruynooghe, D. De Schreye, and B. Martens. A general criterion for avoiding infinite unfolding during partial

deduction. New Generation Computing, ll(l):47-79, 1992.

10. M. Bruynooghe, M. Leuschel, and K. Sagonas. A polyvariant binding-time analysis for off-line partial deduction In
U Hankin, editor, Proceedings of the European Symposium on Programming (ESOP'98), LNCS 1381 Daees 27-41
Springer-Verlag, April 1998. ' 6

11. M. A. Covington. Eliminating unwanted loops in Prolog. SIGPLAN Notices, 20(1), Jan. 1985
12. M. A. Covington. A further note on looping in Prolog. SIGPLAN Notices, 20(8), Aug 1985
13. D. De Schreye and S. Decorte. Termination of logic programs: The never-ending story. The Journal of Logic

Programming, 19 & 20:199-260, May 1994. J 9

14. S. Debray and N.-W. Lin. Automatic complexity analysis of logic programs, pages 599-613

ro rams*6 ^e^n^^' Demand"driven and constraint-based automatic left-termination analysis for logic

16. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3:69-116 1987
17' 476D197h9OWitZ and Z' Manna' Pr°Ving termination with multiset Herings. Communications of the ACM, 22(8) :465-

18. A. Ershov. On Futamura projections. BIT (Japan), 12(14):4-5, 1982. In Japanese.
19. J. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of PEPM'93, the ACM Sigplan Symposium

on Partial Evaluation and Semantics-Based Program Manipulation, pages 88-98 ACM Press 1993

115GS6gher an<1 L' LafeVe' RegUlat appr0ximation of imputation paths in logic and functional languages, pages

 Martin J., Leuschel M. Sonic Partial Deduction 73

21. R. Glück, J. J0rgensen, B. Martens, and M. H. S0rensen. Controlling conjunctive partial deduction of definite
logic programs. In H. Kuchen and S. Swierstra, editors, Proceedings of the International Symposium on Program-
ming Languages, Implementations, Logics and Programs (PLILP'96), LNCS 1140, pages 152-166, Aachen, Germany,
September 1996. Springer-Verlag.

22. C. A. Gurr. A Self-Applicable Partial Evaluator for the Logic Programming Language Gödel. PhD thesis, Department
of Computer Science, University of Bristol, January 1994.

23. J. J0rgensen and M. Leuschel. Efficiently generating efficient generating extensions in Prolog. In O. Danvy, R. Glück,
and P. Thiemann, editors, Proceedings of the 1996 Dagstuhl Seminar on Partial Evaluation, LNCS 1110, pages 238-
262, Schloß Dagstuhl, 1996.

24. J. j0rgensen, M. Leuschel, and B. Martens. Conjunctive partial deduction in practice, pages 59-82. Also in the
Proceedings of BENELOG'96. Extended version as Technical Report CW 242, K.U. Leuven.

25. C. Kehler Hoist. Finiteness Analysis. In J. Hughes, editor, FPCA'91, volume 523, pages 473-495, Cambridge,
Massachusetts, USA, Aug. 1991. Springer-Verlag.

26. L. Lafave and J. Gallagher. Constraint-based partial evaluation of rewriting-based functional logic programs, pages
168-188.

27. M. Leuschel. The ECCE partial deduction system and the DPPD library of benchmarks. Obtainable via
http://www.cs.kuleuven.ac.be/~dtai, 1996.

28. M. Leuschel. Advanced Techniques for Logic Program Specialisation. PhD thesis, K.U. Leuven, May 1997. Accessible
via http://www.ecs.soton.ac.uk/~mal.

29. M. Leuschel. On the power of homeomorphic embedding for online termination. In G. Levi, editor, Static Analysis.
Proceedings of SAS'98, LNCS 1503, pages 230-245, Pisa, Italy, September 1998. Springer-Verlag.

30. M. Leuschel. Improving homeomorphic embedding for online termination. In P. Flener, editor, Proceedings of
LOPSTR'98, LNCS 1559, pages 199-218, Manchester, UK, June 1998. Springer-Verlag.

31. M. Leuschel, D. De Schreye, and A. de Waal. A conceptual embedding of folding into partial deduction: Towards
a maximal integration. In M. Maher, editor, Proceedings of the Joint International Conference and Symposium on
Logic Programming JIGSLP'96, pages 319-332, Bonn, Germany, September 1996. MIT Press.

32. M. Leuschel and B. Martens. Global control for partial deduction through characteristic atoms and global trees. In
O. Danvy, R. Glück, and P. Thiemann, editors, Proceedings of the 1996 Dagstuhl Seminar on Partial Evaluation,
LNCS 1110, pages 263-283, Schloß Dagstuhl, 1996.

33. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and polyvariance in partial deduction of
normal logic programs. ACM Transactions on Programming Languages and Systems, 20(l):208-258, January 1998.

34. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
35. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The Journal of Logic Programming

11(3& 4):217-242, 1991.

36. B. Martens and D. De Schreye. Automatic finite unfolding using well-founded measures. Journal of Logic Program-
ming, 28(2):89-146, 1996.

37. B. Martens, D. De Schreye, and T. Horväth. Sound and complete partial deduction with unfolding based on well-
founded measures. Theoretical Comput. Sei., 122(l-2):97-117, 1994.

38. J. Martin and A. King. Generating Efficient, Terminating Logic Programs. In TAPSOFT'97. Springer-Verlag, 1997.
39. J. Martin and M. Leuschel. Sonic Partial Deduction. Technical Report DSSE-TR-99-3, Department of Electronics

and Computer Science, University of Southampton. February 1999.
40. T. Mogensen and A. Bondorf. Logimix: A self-applicable partial evaluator for Prolog. In K.-K. Lau and T. Clement,

editors, Logic Program Synthesis and Transformation. Proceedings of LOPSTR'92, pages 214-227. Springer-Verlag'
1992.

41. D. Nute. A programming solution to certain problems with loops in Prolog. SIGPLAN Notices, 20(8), Aug. 1985.
42. D. Poole and R. Goebel. On eliminating loops in Prolog. SIGPLAN Notices, 20(8), Aug. 1985.
43. S. A. Romanenko. A compiler generator produced by a self-applicable specializer can have a surprisingly natural

and understandable structure. In D. Bj0rner, A. P. Ershov, and N. D. Jones, editors, Partial Evaluation and Mixed
Computation, pages 445-463. North-Holland, 1988.

44. D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog. New Generation Computing, 12(1):7-51, 1993.
45. M. H. S0rensen and R. Glück. An algorithm of generalization in positive supercompilation. In J. W. Lloyd, editor,

Proceedings of ILPS'95, the International Logic Programming Symposium, pages 465-479, Portland, USA, December
1995. MIT Press.

46. A. van Gelder. Efficient loop detection in Prolog using the Tortoise-and-Hare technique. Journal Logic Programming
4(l):23-32, Mar. 1987.

47. W. Vanhoof and B. Martens. To parse or not to parse. In N. Fuchs, editor, Proceedings of LOPSTR'97, LNCS 1463,
pages 322-342, Leuven, Belgium, July 1997. Springer-Verlag.

74 Perspectives of System Informatics'99

A Further Figures and Tables

Fl3tten([[l], [2]], r, 2)

Append([l], y, r, 1) A Flatten([[2]], y, 1)

Append([], y, rl, 0) A Flatten([[2]], y, 1)

Flatten([[2]], y, 1)

Append([2j, yl, y, 1) A Flatten([], yl, 0)

«- Append(g, yl, r2, 0) A Flatten(0, yl, 0)

Flatten([], yl, 0)

t
D

Fig. 1. Unfolding of -f- Flatten([[l], [2]], r, 2)

Martin J., Leuschel M. Sonic Partial Deduction 75

Benchmark Original sonic + ECCE ECCE MIXTUS

advisor 1541 ms
1

483 ms
3.19

426 ms
3.62

471 ms

applast 1563 ms
1

491 ms
3.18

471 ms
3.32

1250 ms

doubleapp 1138 ms
1

700 ms
1.63

600 ms
1.90

854 ms

map.reduce 541 ms
1

100 ms
5.41

117 ms
4.62

383 ms

map .rev 221 ms
1

71 ms
3.11

83 ms
2.66

138 ms

match.kmp 4162 ms
1

1812 ms
2.30

3166 ms
1.31

2521 ms

matchapp 1804 ms
1

771 ms
2.34

1525 ms
1.18

1375 ms

maxlength 217 ms
1

283 ms
0.77

208 ms
1.04

213 ms

regexp.rl 3067 ms
1

396 ms
7.74

604 ms
5.08

relative 9067 ms
1

17 ms
533.35

1487 ms
6.10

17 ms

remove 3650 ms
1

4466 ms
0.82

2783 ms
1.31

2916 ms

remove2 5792 ms
1

4225 ms
1.37

3771 ms
1.54

3017 ms

reverse 8534 ms
1

6317 ms
1.35

6900 ms
1.24

rev-acc-type 37391 ms
1

26302 ms
1.42

26815 ms
1.39

25671 ms

rotateprune 7350 ms
1

5167 ms
1.42

5967 ms
1.23

5967 ms

ssupply 1150 ms
1

79 ms
14.56

92 ms
12.50

92 ms

transpose 1567 ms
1

67 ms 67 ms 67 ms

upto.suml 6517 ms
1

4284 ms
1.52

4350 ms
1.50

4716 ms

upto.sum2 1479 ms
1

1008 ms
1.47

1008 ms
1.47

1008 ms

Table 3. Speed of the residual programs (in ms, for a large number of queries, interpreted code) and Speedups

On Perfect Supercompilation
(extended abstract)

Jens Peter Secher and Morten Heine B. S0rensen

Department of Computer Science, University of Copenhagen (DIKU)
Universitetsparken 1, DK-2100 Copenhagen 0, Denmark

{jpsecher,rambo}Qdiku.dk

1 Introduction

Turchin's supercompiler [19] is a program transformer for functional programs which performs optimizations
beyond partial evaluation [8] and deforestation [21].

Positive supercompilation [6] is a variant of Turchin's supercompiler which was introduced in an attempt to
study and explain the essentials of Turchin's supercompiler, how it achieves its effects, and its relation to other
transformers. In particular, the language of the programs to be transformed by positive supercompilation is a
typical first-order functional language - the one usually studied in deforestation - which is rather different from
the language Refal, usually adopted in connection with Turchin's supercompiler.

For the sake of simplicity, the positive supercompiler was designed to maintain positive information only
that is, when the transformer reaches a conditional if x=x'thenteiset', the information that x = x' is assumed
to hold is taken into account when transforming t (by performing the substitution x H- x' on t). In contrast
the negative information that x ? x' must hold is discarded when transforming t' (since no substitution can*
represent this information!). In Turchin's supercompiler this negative information is maintained as a constraint
when transforming t. Consequently, Turchin's supercompiler can perform some optimizations beyond positive
supercompilation.

In this paper we present an algorithm which we call perfect supercompilation - a term essentially adopted
from 15J - which is similar to Turchin's supercompiler. The perfect supercompiler arises by extending the positive
supercompiler to take negative information into account. Thus, we retain the typical first-order language as the
language of programs to be transformed, and we adopt the style of presentation from positive supercompilation.

A main contribution of the extension is to develop techniques which manipulate constraints of a rather general
form. Although running implementations of Turchin's supercompiler use such techniques to some extent the
techniques have not been presented in the literature for Turchin's supercompiler as far as we know The only
exception is the paper by Glück and Klimov [5] which, however, handles constraints of a simpler form- for
instance, our algorithm for normalising constraints has no counterpart in their technique. As another main
contribution we generalise a technique for ensuring that positive supercompilation always terminates to the
perfect supercompiler and prove that, indeed, perfect supercompilation terminates on all programs As fax as
we know, no version of Turchin's supercompiler maintaining negative information has been presented which in
general is guaranteed to terminate.

The remainder of this extended abstract is organized as follows. We first (Section 2) present a classical
application of positive supercompilation (of transformers in general): the generation of an efficient specialised
string pattern matcher from a general matcher and a known pattern. As is well-known, positive supercompi-
lation generates specialised matchers containing redundant tests. We also show how these redundant tests are
eliminated when one uses instead perfect supercompilation. We then (Section 3) present an overview of perfect
supercompilation and (Section 4) an overview of the proof that perfect supercompilation always terminates In
bection 5 we conclude and compare to related work.

 Secher J. P., S0rensen M. H. B. On Perfect Supercompilation 77

2 The Knuth-Morris-Pratt Example

Consider the following general matcher program1 which takes a pattern and a string as input and returns True
iff the pattern occurs as a substring in the string.

match(p,s) = m(p,s,p,s)
m(\\,ss,op, os) — True
m(p:pp, ss, op, os) = x(p,pp, ss, op, os)
%{p,pp, \\,op, os) = False
x(j>,pp, s:ss, op, os) — if p=s then m(pp, ss, op, os) else n(op, os)
n(op,s:ss) — m(op,ss,op,ss) '

Now consider the following naively specialised matcher match^pj^ which matches the fixed pattern [J4,4#]

with a string u by calling match:

matchA£j$(u) — match([A,A,B],u)

Evaluation proceeds by comparing A to the first component of u, A to the second, B to the third. If at some
point the comparison failed, the process is restarted with the tail of u.

This strategy is not optimal. Suppose that after matching the two yl's in the pattern with the first two .A's in
the string, the B in the pattern fails to match yet another A in the string. Then the process is restarted with the
string's tail, even though it is known that the first two comparisons will succeed. Rather than performing these
tests whose outcome is known, we should skip the three first A's in the original string and proceed directly to
compare the B in the pattern with the fourth element of the original string. This is done in the KMP specialised
matcher:

match AAB(u) = mAAB(w)
mAAB(D) =False

mAAB(s:5S) = if ^=s then mAß(ss) else mAAB(ss) '
mAB(D) =False

TOAB(S:SS) = if A=s then mg(ss) else WJAAB(
SS

)
mß(D) = False
mß(s:ss) — if B=s then True else if A=s then mß(ss) else WIAAB(

SS
)

After finding two A's and a third symbol which is not a B in the string, this program checks (in mg) whether
the third symbol of the string is an A. If so, it continues immediately by comparing the next symbol of the
string with the B in the pattern (by calling mg), thereby avoiding repeated comparisons.

Can we get this program by application of positive supercompilation to the naively specialised matcher?
The result of this application is depicted graphically in Figure 1. We do not have space to explain this in detail;
informally, each arc represents a step of transformation. At the same time the tree can be viewed as a new
program, where arcs with labels (e.g. w = Q) represent tests on the input, and the leaves represent final results
or recursive calls. In fact, the program corresponding to the tree is the following:

™AAB(0) = False
mAAß(s : ss) — if ^=s then mAB(ss) else nAAB(ss>s)
mAB(D) =Faise

mAß(s : ss) = H A=s then m^(ss) else nj^^ss,s)
mB(0) = False
mß(s : ss) = if B=s then True else TIQ(SS,S)

"AAB(*
S
'
S

) =#
mAAB(ss)

nAß(ss>s) = if A=s then mAB(ss) else ^AAB(
SS

>
S
)

nft(ss,s) = if J4=S then wg(ss) else nAB(ss,s)

The term ^AAB(
U

)
m this program is more efficient than match([A,A,B],u) in the original program. In fact,

this is the desired KMP specialised matcher, except for the redundant test A — sin nAg . The reason for the
1 We use standard shorthand notation [] and y:ys for the empty list respectively the list constructed from y and the tail

ys. The auxiliary function x in the program is motivated by certain restrictions of the object language. Observe that
although this example only compare variables to variables, our method can manipulate more general equalities and
inequalities.

-Z§ Perspectives of System Informatics'99

redundant test A = s is that positive supercompilation ignores negative information: when proceeding to the
false branch of the conditional (from the original program)

if A=s then m([B],ss,[A,A,B],(A:s:ss)) else n([A,A,B],{A:s:ss)) (*)

the information that A / s holds is forgotten. Therefore, the test is repeated in the subsequent conditional

if A=s then m([A,B],ss, [A,A,B], (s:ss)) else n([A,A,B], (s:ss)) (+)

In contrast, in perfect supercompilation, this information is maintained as a constraint, and can be used
to decide that the conditional (+) has only one possible outcome. The tree would therefore continue below
the node (+), and the resulting program would have a recursive call back to the rightmost child of (*)• this is
exactly the KMP specialised matcher. For another example of the use of negative information, see [14].'

3 Overview of Perfect Supercompilation

The transformation is carried out in two phases. First, a model of the subject program is constructed in form
of a process tree similar to the one in Figure 1. Second, a new program is extracted from the process tree

The root of the process tree consists of the initial term that is to be specialised and an empty constraint
system. The process tree is developed by repeated unfoldings of the terms in the leaves. The rules that govern
the unfolding of terms are constructed by extending the small-step semantics of the language by rules that
speculatively executes tests that depend on variables. For each possible outcome of a test, a child is added
and information about the test that has been conducted is appended to the current constraint system The
extended constraint system is then passed on to the child that resulted from the speculative execution. A
constraint system [1] is a restricted kind of conjunctive normal form of formulae of the form

' n \ / m \

A°* = °< A A6*^i
v*=l / \i=l /

where a, b are terms that consist of variables and constructors only, i.e.

a,b::=x \ c{a1,...,an) .

The constraint systems are used to prune branches from the process tree: speculative execution of a test that
results in a constraint system that cannot be satisfied will not produce a new child. For a constraint system
to be satisfiable, it must be possible to assign values to the variables in the system such that the constraints
.are satisfied. A constraint system is thus satisfiable if there exists a substitution 0 such that, for each equation
a - a o£ will be syntactically equal to a% and likewise, for each disequation b * b', b9 will be syntactically
different from b 9. The satisfiability of a constraint system can be decided by a mere syntactic check of a normal
form tor a constraint system. A constraint system in normal form is either ± (false), T (true) or of the form

where xy are variables. The normal form of a constraint system can be calculated by a series of rewrite
steps^ The core of these rewrite rules are shown in Figure 2. Additional control on these rules ensure that
non-deterministic, exhaustive application of the rewrite rules to any constraint system terminates and results
m a constraint system in normal form.

, When no type information about the variables in a constraint system is present, a constraint system in
normal form xs satisfiable exactly when it is different from ±. However, when it is known that the si of the
domain of values is fimte for some variable x, it is necessary to verify that there indeed exists a value which,
when assigned to x, satisfies the constraint system. To see this, consider the constraint system

x^yAy^zAz^x

where all variables have boolean type. This system is in normal form and therefore appears to be satisfiable -
but it is not possible to assign values False, True to the variables such that the system is satisfiable It is thus
necessary to systematically try out all possible combinations of value assignments for variables Ths an be

Secher J. P., Sprensen M. H. B. On Perfect Supercompilation 79

'■■ match([A,A,B],u) '■
.:::::;■ ::::J. ZZZZ.....

im{[A,A,B],u,[AAB],u):

; f N

(Fhhel< ,_n (<A,[AB],u [A,A,B],uj)
U=(s:ss)ty

A±s

in([AAB],(s:ssy))

zzizzz:
im(lAAB],ss,[AAB],ss))

if A = s
then m([AB],ss, [AAB], (s:ss)) \ (x(A, [A, B], ss, [A, A, Biss))
else n([44-B]> (s:ss))

A—sü

(m([ÄB], ss, [AAB),A:ss)) ; n([AAB], (A-.siss)))

Zt ' A*S ^rrrr^ZZZZZJZZZZZ...
(^^——(x{A, [B], ss, [AAB], A:ss))

A^ta

3S=(s:ss) Y

if A = S . (**
then ro([J3], SS, [J4,J4,JB], (A:s:ss))
eise n([AAB], (A:s:ss))

\ m([AAB], (s:ss),[AAB], (s:ss)) ~:

 ' y

x(A,[AB),(s:ss),[AAB],(s:ss))

A=:S
]

[m([B],ss, [AAB], A:A:ss);
if A = s (+JN

then m([AB], ss, [AAB], (s:ss))
eise «([^A-ß], (s:ss))

F^MU -(4Z?, 0, ss, [AAB],A:A:ssS)
g.s=(s:55)^

n([AAB],(A:A:s:ss))

zzizz: if B = s
then m([\,ss,[AAB],(A:A:S:ss))) [m([AAB], (A:s:ss), [AAB], (A:s:ss))':

eise n([AAB], (A:A:s:ss))

(True}< : m(ö, ss, [AAB], A:A:B:ss) \x(A, [A, B], (A:s:ss), [AAB], A:s:ss)

"ZZZZZZZZZ3ZZZZZZZZZ"
ifA = A

then m([AB], (s:ss), [AAB], (A:s:ss))
. eise n([AAB], (A:s:ss))

"""::::::.:::'::::::::::::.:.::*::::::::::;:::::::::::::::■"""

i rn([AB], (s:ss), [AAB], (A:s:ss))';

":::::::::::::::::':'::::*::::::::::::::::::::::::::::"■

[x(A, [B], (s:ss), [AAB], (A:s:ss))

' ♦ "•• "
/ ifyl = s
then m([B], ss, [AAB], (A:s:ss))

V eise n([i4,^4,B], (J4:S:SS))

Fig. 1. Driving the naively specialised matcher

80 Perspectives of System Informatics'99

a; = a;HT
X 7^ X H- J_

• A T i-> •
• VJ.M-«
• Aif4l
• VTH. T

c(6i,...,&n) = c'(ai,...,om)i->± (c^c')
c(61,...,6„)^c'(ai,...,am) H+T (c £ c')
c(bx,...,bn) = c(ai,...,an) (->■ 61 = ai A ... A bn = «„
c(6i,...,6„)/c(ai,...,o„) t->6i # ai V ... V 6„ # an

" = «^i (a;eVar(o)&a^a:)
a/a.i->T (a;6Var(a)&a^4

x = a A» H» a; = aA«{s:=a} (x g Var(a)) ■ .
 ^oVmi/aViji-fl} (z£Var(a))

Fig. 2. Rewrite system for normalisation of constraint systems. • stands for an arbitrary part of a formula.

achieved by instantiation of such variables, which will call for further rewrite steps, and so on until it is proven
that the system is satisfiable. For a full treatment of the normalisation and satisfiability of constraint systems
see [14]. J '

We can now show how constraint systems can be used to guide the construction of the process tree Every
term t in the process tree is associated with a constraint system 11, denoted (t,H). The complete set of unfold
rules is presented in Figure 3. Rules (1),(2),(4), (7),(11) and (12) correspond to normal evaluation with respect
to the semantics of language2. Rules (3),(5) and (6) perform speculative execution of a term based on the
information in the associated constraint system.

_ Rule (3) instantiates a free variable y to the pattern c(yi,.., ym) taken from the function definition. This
is achieved by appending the equation y = c(yx,.. .,ym) to the current constraint system. If the new constraint
system is satisfiable, the function application can be unfolded. In the same manner, rules (5) and (6) han-
dle conditional expressions, but more complex equations and disequations are allowed. Rule (11) propagates
instantiations performed in a subterm to the surrounding term. For a full description, see [14]

Unfolding of a branch is stopped if the leaf in that branch is a value or if an ancestor node covers all possible
executions that can arise from the leaf. In the latter case, a fold operation is performed which will result in a
recursive call in the derived program.

How do we decide that a node covers another node? Well, first of all the terms of the two node must be equal
up to renaming of variables; secondly the constraint system of the leaf must be at least as restrictive as the
one of its ancestor. If these conditions are met, we can safely produce a recursive call in the derived program
We have constructed an algorithm that gives a safe approximation to the question «is 11 more restrictive than

wl71l0°k lthe PTSS *-ee in, FigUre, h WG WU1 See that S°me Parts 0f the tree ** created by deterministic
colnS'. 17 ean TS1SV°f a Sin? Path" TWS iS a S°0d Sign' Since * means that they «present local
computations that will always be carried out when the program is in this particular state, regardless of the
unmstantiated variables. We can thus precompute these intermediate transitions - as done in partial evaluation
- once and for all, throw away the intermediate steps and just remember the results. Such local unfolding* will
not only decrease the S1Ze of our process trees, they will also allow us to ensure that folding is not carried out
prematurely, thus losing potential specialisation.

«m^TrSS °f 7TeSS trT ^ Tnner JUSt deSCribed d06S QOt alwa^S terminate since infini^ Process trees
can be produced: the simple "fold when possible» strategy does not ensure termination. To keep the process

must be a
e'Je Tt\ n° infi^,bran(;hes are Produ-d. It turns out that in every infinite branch" there

must be a term that homeomorphically embeds an ancestor - this is known as Kruskal's Tree Theorem The
homeomorphic embedding < is the smallest relation on terms such that,

3ie{l,...,n}:t<^ Vi e {1,... ,n} : U < t\

2
*<y t<h{t\,...,t'n) Ktu~in)<h{t'u...,t'n)

Informally the semantics of language is evaluation to weak head normal form, except for comparison in conditionals
where the terms to be compared are fully evaluated before the comparison is carried out. concutionals

Secher J. P., S0rensen U.E. B. On Perfect Supercompilation 81

f(xu...,xn)= t
(f(tU...,tn),'R.) ->• {t{xi: = ti,...,Xn--=tn},K)

■ f(c(xi,...,Xm),Xm+l,...,Xn) = t
(2) {/(c(tl, . . ., tm), tm+1, ..., t»), fc). -► (*{*i:=*i, • • • , S!n :=*»},»)

/(c(j/i,...,j/m),a:i,...,a:„) = *
71'=^A[t/ = c(j/i,...,j/m)l satisfiable(Te')

(} </(v,«i, • • • ,<»), W) -+ <*{afi:=*i, ...,*„ :=«„}. W>

^/(c(»i,.--,Vm),a:i,...,*»)=*o (t,K)-+{t',n')
W (f(t,h,...,tn),K}^(f(t',t1,...,tn),n'}

U' = K/\[a = a'} satisfiable(^)
^ (if o=a' then i eise t',7^> -)■ (t,K')

TZ' = 7e A [a ■# a'] satisfiable(^)
'6) {if 0=0' then * else t',11) -S- (*',ft'>

 (ti,ftW<*i,ft) _____
^ (if ti=*2 then is eise t4,7e) -» (if *i=*2 then *3 eise U,K)

 {t2,K)^fä,K)
1 ' (if o=<2 then t3 eise t4,1l) -+ (if o=*'2 then ts eise «4,^)

(9) <*, 71)-+<*', ft>

(10)

(t,K)^(t',1l}

(t,K)^(t',K)
(c(oi,...,aut,ti+i,...,t„),72.) <->■ (c(oi,...,g»,t',*i+i,...,*n),72.')

(£,7£) -4 (t',72.') 0 is the substitution extracted from Tl'
(11) ^ ^ ^ ^ __,^

(12) (^T^Ö^RT^) *e {1,'""'n}

Fig. 3. Unfold rules. x,y ranges over variables, / ranges over function names, c ranges over constructors, t ranges over
terms, and a ranges over terms that does not contain function calls.

— Perspectives of System Informatics'99

where ft ranges over constructor and function names, x and y range over variables, and t ranges over terms
When a leaf homeomorphically embeds an ancestor, there is thus a danger of producing an infinite branch

In such a situation, the nodes in question are collapsed into one by a generalisation step.

Definition 1 (Generalisation).

1. A term s is an instance of term t, denoted t <• s, if there exists a substitution 6 such that t6 = s.
2. A generalisation of two terms t, s is a term u such that u<t andu<s.
3. A most specific generalisation (mag) of two terms t,s is a generalisation u such that, for all generalisation

u' oft,s, u <u .

There exists exactly one msg of t,s modulo renaming. A generalisation step calculates the msg of the nodes
which is then used to divide one of the nodes into subterms that can be unfolded independently:

cf
l£> (let a;i=<,

1,...,a!w=f/
n in t"

where. t" is the msg of t and f. Which of the nodes that is split up depends on how similar the nodes are-
see [14J for more detail. '

We can now sketch the full supercompilation algorithm. To ensure termination and, at the same time, provide
reasonable specialisation, we partition the nodes in the process tree into three categories:

1. nodes labelled by let-terms,
2. global nodes, and
3. local nodes.

Global nodes are those nodes that represent speculative execution and/or instantiation of variables. Local nodes
are those nodes that are not global and does not contain let-terms. For example, in Figure 1 the set of local nodes
are indicated by dotted frames there are no nodes containing let-terms since there is no need for generalisation
in that particular example). This partitioning of the nodes is used to control the unfolding.

Definition 2. Let T be a process tree and 7 a node in T. Then

1. T(i) denotes the label of node 7.

2. r{7:=r'} denotes a new tree that is identical to T except that the subtree rooted at 7 has been replaced by

3. e denotes the root node of a tree.

Definition 3. Let T be a process tree and 7 be a leaf node in T. Then

drive(T,7) = T{7:= T(y) }

where {tu..., tn} = {t | T(7) =► t}.

Definition 4. A leaf 7 in a process tree T is finished if one of the following conditions are satisfied:

1. T(j) = (c(),...) for some constructor c.
2. T(7) = {x,...) for some variable x. v

3. Thenjs an ancestor 7' to 7 such that 7' is a global node and the term in T(7) is a renaming of the term

A tree T is said to be finished when all leaves are finished.

 Secher J. P., S0rensen M. H. B. On Perfect Supercompilation 83

Definition 5. Let T be a process tree and let the set of relevant ancestors relanc(jT,7) to a node 7 in T be
defined thus:

{0, t/7 contains a let-term
all ancestors that are global, ify is global
all local ancestors, if 7 is local

where the local ancestors to 7 is all ancestors that are local up to the first common ancestor that is global.

For an example, consider the process tree in Figure 1; the local node
x(A, [B], (s:ss), [A,A,B], (A:s:ss)) at the bottom has as local ancestors all ancestors up to and including the node
n([A,A,B],(A:A:s:ss)).

With these definitions, we can sketch the supercompilation algorithm thus:

input t
let T consist of a single node labelled (t, T)
while T is not finished begin

let 7 be an unfinished leaf in T
if Vf e relanc(T, 7) : T(i) ^ T(j) then T = drive(T, 7)
else begin

let 7' € relanc(T, 7)
if T(i) <-T(7) then generalise T(<y)
else generalise T(Y)

end
end
return T

The transformed program can be extracted from the process tree by examination of the global nodes and the
annotations on the edges.

4 Overview of the Termination Proof

A language-independent framework for proving termination of abstract program transformers has been presented
in [16], where sufficient conditions have been established for abstract program transformers to terminate.

An abstract program transformer is a map from trees to trees, such that a single step of transformation is
carried out by each application of the transformer. Termination then amounts to a certain form of convergence
of sequences of trees. In the metric space of trees, the distance between two trees is measured by the depth to
which they first differ, i.e. the further down one should go find a difference, the more alike are the trees. The
main idea is to ensure that

1. the transformer converges, in the sense that for each transformation step, the process tree gets still more
stable, and

2. the transformer maintains some invariant such that only finite trees are produced.

Theorem 1. Let M be an abstract program transformer that maintains a predicate p on (possibly infinite) trees.
If

1. for every tree T consisting of a single node, the sequence T,M(T),M{M(T)),... is a Cauchy sequence3;
and

2. for every infinite tree T, p{T) is false; and
3. for every convergent sequence of trees T0, Ti, T2,... with limit T, the sequence p(T0),p(Ti),p(T2),... stabilises

top(T).

then M terminates on all trees consisting of a single node.

For a proof, see [16]. To show that each step of our algorithm for perfect supercompilation develops a Cauchy
sequence, we will use a proposition that states that, if an abstract program transformer operates by either 1)
adding new children to a leaf node, or 2) replacing a subtree by a new subtree that is strictly smaller (in some
sense), then the transformer produces a Cauchy sequence of trees.
3 For a metric space (X, d), a sequence x0, xi,... G X is a Cauchy sequence if, for all e > 0, there exists an A'eN such

that, for all n, m > N, d(xn, xm) < e.

J_ Perspectives of System Informatics'99

Proposition 1. Let M be an abstract program transformer and t be a well-founded quasi-order on the labels
of the trees produced by M. Furthermore, for all trees T, let M(T) = T{T.=T'} for some node 7 and some tree
T where

1. 7 is a leaf in T and Tfr) = T'(e) (unfold); or
2. T(j) y T'(e) (generalise).

Then M produces a Cauchy sequence.

For a proof, see [16]. Since our supercompiler algorithm can be viewed as an instance of such an abstract
program transformer, we can show that the algorithm produces a Cauchy sequence by ensuring that a well-
founded quasi-order is maintained by the algorithm. The following well-founded quasi-order is used for that
end:: let {t,Tl) y {?,K') iff either t is not a let-term and t' is a let-term, or size(K) > size{H').

We now know that our algorithm produces still more stable process trees. We then need to show that the
supercompiler does not "produce infinite trees". This is ensured by the check for homeomorphic embedding in
algorithm. For full details, see [14].

5 Conclusion and Related Work

We have presented an algorithm for a supercompiler for a first-order functional language that maintains positive
as well as negative information. The algorithm is guaranteed to terminate on all programs, and we have shown
that it is strong enough to pass the so-called KMP-test.

In [20], Turchin briefly describes how the latest version of his supercompiler utilises contraction and re-
striction patterns in driving Refal graphs, the underlying representation of Refal programs. It seems that the
resolution of clashes between assignments and contractions/restrictions can achieve propagation of negative
mformation that - to some extent - provides the power equivalent to what has been presented in the present
paper, but the exact relationship is at present unclear to us.

In the field of partial evaluation, Consel and Danvy [2] have described how negative mformation can be
incorporated into a naive pattern matcher, thereby achieving effects similar to those described in the present
paper. This, however, is achieved by a non-trivial rewrite of the subject program before partial evaluation is
applied, thus rendering full automation impossible.

In the case of Generalised Partial Computation [4], Takano has presented a transformation technique [17] that
exceeds the power of both Turchin's supercompiler and perfect supercompilation. This extra power however
stems from an unspecified theorem prover that needs to be fed the properties about primitive functions in the
language, axioms for the data structures employed in the program under consideration, etc. In [18] the theorem
prover is replaced by a congruence closure algorithm [13], which allows for the automatic generation of a KMP-
matcher from a naive algorithm when some properties about list structures are provided. In comparison to
supercompilation, Generalised Partial Computation as formulated by Takano has no concept of generalisation
and will therefore terminate only for a small class of programs.

When one abandons simple functional languages (as treated in the present paper) and considers logic pro-
gramming and constraint logic programming, several accounts exist of equivalent transformation power, e.g.
[15,7,9,10]. In these frameworks, search and/or constraint solving facilities of the logic language provides the
necessary machinery to avoid redundant computations. In this field, great efforts have been made to produce
optimal specialisation, and at the same time to ensure termination, see e.g. [11,12].

Acknowledgments Thanks to Laura Lafave, Michael Leuschel, and Robert Glück for discussions and comments
Thanks to Peter Sestoft for many insightful comments to [14] and to Neil D. Jones for additional comments.

References

L wo^oS"?« ™d PJerf ?fscanne- Eqiiational problems and disunification. Journal of Symbolic Computation,
7(3-4):371-425, March-Apnl 1989.

2' Si^le^C
Q?

Sfi^d 0Hvier DanVy' Partial evaluati011 of Pattern matching in strings. Information Processing Letters,
oU^Zj .79—o63 1989.

3. O. Danvy, R. Glück, and P. Thiemann, editors. Partial Evaluation, volume 1110 of Lecture Notes in Computer
Science. Springer-Verlag, 1996.

4 I'^T1? and K N0gi' Generalized Partial computation. In D. Earner, A.P. Ershov, and N.D. Jones, editors
Partial Evaluation and Mixed Computation, pages 133-151, Amsterdam, 1988. North-Holland.

 Secher J. P., S0rensen M. H. B. On Perfect Supercompilation 85

5. R. Glück and A.V. Klimov. Occam's razor in metacomputation: the notion of a perfect process tree. In P. Cousot,
M. Falaschi, G. File, and G. Rauzy, editors, Workshop on Static Analysis, volume 724 of Lecture Notes in Computer
Science, pages 112-123. Springer-Verlag, 1993.

6. R. Glück and M.H. S0rensen. A roadmap to metacomputation by supercompilation. In Danvy et al. [3], pages
137-160.

7. T.J. Hickey and D. Smith. Toward the partial evaluation of clp languages. In Proceeding of the ACM SIGPLAN
Syposium on Partial Evaluation and Semantics-Based Program Manipulation, pages 43-51. ACM Press, 1991.

8. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation. Prentice-Hall,
1993.

9. L. Lafave and J. P. Gallagher. Partial evaluation of functional logic programs in rewriting-based languages. Technical
Report CSTR-97-001, Department of Computer Science, University of Bristol, March 1997.

10. L. Lafave and J. P. Gallagher. Extending the power of automatic constraint-based partial evaluators. ACM Computing
Surveys, 30(3es), September 1998. Article 15.

11. Michael Leuschel and Danny De Schreye. Constrained partial deduction and the preservation of characteristic trees.
New Generation Computing, 1997.

12. Michael Leuschel, Bern Martens, and Danny De Schreye. Controlling generalization and polyvariance in partial
deduction of normal logic programs. ACM Transactions on Programming Languages and Systems, 20(l):208-258,
January 1998. ,

13. Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure. Journal of the ACM,
27(2):356-364, April 1980.

14. Jens Peter Secher. Perfect supercompilation. Technical Report 99/01, Department of Computer Science, University
of Copenhagen, 1999.

15. D. Smith. Partial evaluation of pattern matching in constraint logic programming. In Proceeding of the ACM
SIGPLAN Syposium on Partial Evaluation and Semantics-Based Program Manipulation, pages 62-71. ACM Press,
1991. •

16. M.H.B. S0rensen. Convergence of program transformers in the metric space of trees. In J. Jeuring, editor, Mathemat-
ics of Program Construction, volume 1422 of Lecture Notes in Computer Science, pages 315-337. Springer-Verlag,
1998.

17. A. Takano. Generalized partial computation for a lazy functional language. In Proceeding of the ACM SIGPLAN
Syposium on Partial Evaluation and Semantics-Based Program Manipulation, pages 1-11. ACM Press, 1991.

18. A. Takano. Generalized partial computation using disunification to solve constraints. In M. Rusinowitch and J.L.
Remy, editors, Conditional Term Rewriting Systems. Proceedings, volume 656 of Lecture Notes in Computer Science,
pages 424-428. Springer-Verlag, 1993.

19. V.F. Turchin. The concept of a supercompiler. ACM Transactions on Programming Languages and Systems, 8(3):292-
325, 1986.

20. V.F. Turchin. Metacomputation: Metasystem transition plus Supercompilation. In Danvy et al. [3], pages 481-510.
21. P.L. Wadler. Deforestation: Transforming programs to eliminate intermediate trees. Theoretical Com.puter Science,-

73:231-248, 1990.

Linear Time Self-Interpretation
of the Pure Lambda Calculus

Torben JE. Mogensen

DIKU, University of Copenhagen, Denmark
Universitetsparken 1, DK-2100 Copenhagen 0, Denmark

phone: (+45) 35321404 fax: (+45) 35321401 email: torbenm9diku.dk

Abstract. We show that linear time self-interpretation of the pure untyped lambda calculus is possible.
The present paper shows this result for reduction to weak head normal form under call-by-name, call-by-
value and call-by-need.
We use operational semantics to define each reduction strategy. For each of these we show a simulation
lemma that states that each inference step in the evaluation of a term by the operational semantics is
simulated by a sequence of steps in evaluation of the self-interpreter applied to the term.
By assigning costs to the inference rules in the operational semantics, we can compare the cost of normal
evaluatwn and self-interpretation. Three different cost-measures are used: number of beta-reductions, cost
of a substitution-based implementation and cost of an environment-based implementation.
For call-by-need we use a non-deterministic semantics, which simplifies the proof considerably.

1 Program and data representation

In order to talk about self-interpretation of the pure lambda calculus, we must consider how to represent
programs as data.

We will use the representation defined (for closed terms) in [5]:

|"M] = Xa.Xb.M
where

5f = x
PQ_ = aPQ_
Xx.P = bXx.P

where M has been renamed so the variables a and 6 do not occur anywhere. == is alpha-equivalence. We get an
exceedingly simple self-interpreter:

selfint = Xm.m 11

where I = Xx.x. It is trivial to prove that selfint [M] -» M.

2 Linear time self-interpretation using call-by-name reduction

Call-by-name evaluation can be described by the inference rules:

p\-\x.M => (Xx.M, p) (LAMBDA)

p\-x=^W where p{x) = {M,p') (VAR)

pVM ^ (Xx.M1, p') p'[xt->(N,p)]\-M' ^ W
p\-MN=>w (BETA)

We can define various cost measures by assigning costs to uses of the inference rules in an evaluation tree For
example, we can count beta reductions by letting each use of the (BETA) rule count 1 and not charge anything

Mogensen T. Jh. Linear Time Self-Interpretation of the Pure Lambda Calculus 87

for the other rules. But we can also define more fine-grained (and more realistic) cost measures by assigning
different costs.

For lack of space, we omit showing how the inference rules can be used to derive the initial stages of self-
interpretation of a closed term M. These stages, however, define the relation between the environments used in
normal evaluation and in self-interpretation:

G " = P2
■ p[x^(S,p')] = p[x^(S,p'))

where
p2 = [a^(I,pi),b^(I,p1)]
pr =[m^([Ml,[])]

The empty environment is denoted []. The M referred to in pi is be the entire term being interpreted. Note
that \p\ = \p\ + 2. We need a simulation lemma:

Lemma 1. // we from the call-by-name inference rules can derive the evaluation p\-N =$■ (Xy.W, p') then we
can also derive the evaluation p\-N => (Xy.W, p').

We prove lemma 1 by induction over the the evaluation tree with Ar at its root:
N = x: Let p(x) = (S, p"):

TVT i i *•■ p"yS=>(\y.W,Y) oi*-* w p"\~S^(Xy.W, p') Normal evaluation: ■*—■. A ,,r W Self-mterpretation: ■i-- ' "—- 'J-f-
p\-x^(Xy.W,p') F phx=>(Xy.W, p')

N = Xy.W: phN =*■ (Xy.W, p) is a leaf tree. N = b (Xy.W), so we get

pihJ=»(f,pi) phXyW^(XyW,p)
p\-b=>(\z.z,pi) pl[z^(Xy.W.p)]hz^(Xy.W,p)

phfc (Xy.W) =>(Xy.W,p)

N — Ni N2: The normal evaluation tree is

phNx =>(Xv.N3, p") p"[v^(N2,p)]^N3 =»(Ay.W,7J
johJVi N2=>(Xy.W,p')

We have N = a N% N2, so we get (by induction) the following tree for self-interpretation

pit-1 =$■(!,pi) joK/Vi ^(Xv.Ns, p")_
pi-a =»(Az.z,pi) pi\z^(NlLp)}\-z=^(Xv.N3, p'r)

p\-aNi^(Xv.N3,p") . . p"lv^(N2,p)]\-N3=>(Xy.W,p')

pt-aThN2~^(Xy.W,pr)

Fig. 1. Proof of lemma 1 n

which we prove in figure 1. We use in this (and the following proofs) a notation where "• • •" refers to an
unspecified proof tree. This is to indicate where an induction step is used: If normal evaluation has a proof tree
indicated by "• • •", we replace this in the simulation by a proof tree that by induction is assumed to exist. This
proof tree is in the simulation also indicated by "■ • ■". Semantic variables (place holders) in the conclusion of
a rule where the premise is "• • •", can be considered existentially quantified, like variables in the premise of an
inference rule typically are.

By assigning costs to the inference rules, we can count the costs for normal evaluation and self-interpretation
and hence prove linear-time self-interpretation. We start by counting beta reductions. For this, we let each use
of the (BETA) rule count 1 and the other rules count 0.

The (not shown) tree for the initial stages of self-interpretation uses the beta rule three times, so this tree
has cost 3. For the remainder of the computations we use this lemrna:

Lemma 2. // derivation of p\-N =>• (Xy.W, p') %tses n beta-reductions, then derivation o/phiV => (Xy.W, p1)
uses 3n + 1 beta-reductions.

Perspectives of System Informatics'99

skekthonPr00f ^ d°ne ^ indUCti°n °Ver ^ StrUCtUre °f the eValuati°n tree' using the Proof of lemma 1 as

indu^on teTubtreT1 6ValUati°n ^ *" Self-interpretation uses the (BETA) ™Ie, ~ the result follows by

N = \y.W: The normal evaluation tree has cost 0 while self-interpretation uses the (BETA) rule once Since
ö ■ u + i = l, we are done. >->«"^c

k fr^
1 R

2:

A™nS Je subtrfs ^ave costs h and k2 respectively, the total cost of normal evaluation is

/p£rvi w nductl°n'the cost for the subt»*s for self-interpretation are 3^ + 1 and Sk2 + 1 and the tree
uses (BETA) twice, so the total cost is 3fe + U2 + 4 = Sfc + k2 + 1) + 1, which is what we want

By adding the cost for the initial states of self-interpretation, we get: °

Si01"6 w1' 5 a f/0Sediem Mjia the call-by-name semantics evaluates to a weak head normal form (WHNF)
using n beta reductions, then selfint \M] evaluates to a WHNF using Sn + 4 beta reductions. J

2.1 A more realistic cost measure

its^iofidthV'd?i0nS •« *fIy Cmde TOy °f meaSUring the C°St °f reduCtion of lambda terms. In
ltguages TO W y meaSUreS that emUlate C°mm0n meth0ds for dementing functional

The first of these is (simplified) graph rewriting. In graph rewriting, a beta-reduction is implemented bv
makmg a new copy of the body of the function and inserting the argument in place of the 4SmThZ

Tel ufonrÄf * 1 t SlZe °?he frti? that 1S aPPlled- HenCe' ™ WiU USe a -fmeas^that
ITni . n (1 } c a C°St eqUal t0 the Size °f the function (Xx-M>) tha* » applied. The other
u es still count 0, as he use of environments and closures in the inference rules do not directly correspond to

frtT mHfraP PTT
5

-
IfStetd' WG WiU treat eaCh dOSUre <*>> as the term obtained by ibSSftS

free variables m P by the values bound to them in ,, after the same has been done recursively to thesevSues
More formally, we define the function unfold by:

unfold{P,\\) = P
m/old(P,p[x^(Q,p')]) = unfold(P,p)[x\unfold{Q,p')}

We need a small lemma

Lemma 3. unfold(P,^) = unfold(P,/9)[a\/][&\/].

We prove this by induction over the definition of unfold-
unfold(P, D) = P:

unfold(P,[})
= unfold(P, p3)
= unfold(P,p2)[b\unfold(I,Pl)]
= unfold(P,p2)[b\I]
= unfold(P[a\unfold(I, Pl)}, \\)[b\I]
= P[a\I][b\I]

unfold(P,p[x^(Q,p')}) = unfold(P,p)[x\unfold(Q,p")]:

mfold(P,p[x^(Q,£)])
= unfold(P,p[x^(Q,p>)})

_ by definition of p
= unfold(P,p)[x\unfold(Q,p')]
 by definition of unfold

= unfold(P,p)[a\r\[b\I][x\unfold(Q,rho')[a\I][b\I}}
. . by induction

= unfoldjP, p)[x\unfold{Q, rho>)]\a\I][b\I}
= unfold(P, p)[x\unfold(Q, rho')][a\I][b\I}

 Mogensen T. M. Linear Time Self-Interpretation of the Pure Lambda Calculus 89

We count the size of a term as the number of nodes in the syntax tree, i.e. one for each_ variable occurrence
plus one for each application and one for each abstraction. It is easy to see that the size of P[a\I][b\I] is strictly
less than 4 times the size of P.

We first count the cost of the initial part of the tree to be \selfint\ = 8 for the first beta reduction,
| [M] | < 3|M| for the second and the size of Xb.M with a replaced by I (< 4|M|) for the third, for a total cost
less than 7\M\ +8.

We now proceed with the lemma

Lemma 4. // derivation of p\-N =*• (Xy.W, p') has cost c, then derivation ofp\-N =>■ (Xy.W, p') has cost at
most 4c + 2.

Again we prove this by induction following the structure of the proof for lemma 1.
N = x: Neither normal evaluation nor the self-interpretation uses the (BETA) rule, so the result follows by

induction on the subtrees.
N = Xy.W: The normal evaluation tree has cost 0 while self-interpretation uses the (BETA) rule once. The

applied function is Xz.z which has size 2, so we have what we need.
N = N\ N2'- Assuming the subtrees have costs k\ and &2 respectively, the total cost of normal evaluation is

ki+k2+s, where s is the size of unfold(Xv.N3, p"). By induction, the cost for the subtrees for self-interpretation
are at most 4&i '+ 2 and 4fe + 2. The tree uses (BETA) twice, once for the function Xz.z (size 2) and once for
unfold(Xv.7^, p*) = Xv.unfold(N3, p")[a\I][b\I].

Since the size of unfold(N3, p")[a\T][b\I] is strictly less than 4 times the size of unfold(N3, p"), we have that
the size of Xv.unfold(N3, p")[a\I][b\I] is at most 4\unfold(N3, p")\ - 1 + 1 = 4(s — 1). Hence, we have a total
cost bounded by 4fcx + 2 + 4&2 + 2 -f~ 2 + 4(s - 1) < 4(fci + k2 + s) + 2, which is what we needed.

D
By combining lemma 4 with the start-up cost of 7\M\ + 8, we get the theorem

Theorem 2. If a closed term M via the call-by-name semantics evaluates to a WHNF in cost c, selfint \M]
evaluates to a WHNF in cost at most 4c + 7|M| + 10.

The start-up cost proportional to the size of M is unavoidable, regardless of how lambda terms are rep-
resented and how the self-interpreter works. We required representations to be in normal form, so to perform
any evaluation that depends on the representation, we will have to apply the representation to one or more
arguments, which by our measure has a cost proportional to the size of the representation, which can not be
less than linear in the size of the term.

2.2 Environment-based cost

Another common method for implementing call-by-name lambda calculus is using environments and closures,
much as indicated by the inference rules. The cost measure used for an environment based implementation
depends on how the environments are implemented. Typical data structures for environments are linked lists
and frames.

Using a linked list, a new variable is added to the front of the list at unit cost, but accessing a variable equires
a walk down the linked list and hence has a cost that depends on the position of the variable in the environment.
With the chosen interpreter, we can not get linear time self-interpretation if linked-list environments are used,
as looking up the two specail variables a and 6 has a cost that depends on the size of the environment, which
again depends on the size of the program.

If frames are used, a new extended copy of the environment is built every time a new variable is added to
it. This has cost proportional to the size of the built environment, but accessing a variable in the environment
is now using aconstant offset from the base of the frame, which is unit cost. We shall see below that we can get
linear time self-interpretation when frames are used to represent environments.

Our cost measure now counts each use of the (VAR) or (LAMBDA) rule as 1 and each use of the (BETA)
rule as the size of the new frame, i.e. \p'\ + 1.

We first note that the cost of the initial part of the evaluation tree is 8. We then state and prove the following
lemma:

Lemma 5. If derivation of p\~N =$> (Xy.W, p') has cost c, then derivation ofp\~N => (Xy.W, p') has cost at
most 8c.

90 Perspectives of System Informatics'99

N = x: Both normal evaluation and self-interpretation use the (VAR) rule once, so if the cost of evaluating
the contents of the variable is *, the total evaluation cost is k + 1. By induction, self-interpretation of the
contents costs at most 8k, for a total self-interpretation cost of 8k + 1, which is less than the 8(* + 1) limit

N,rrAy;W\T}Le* n°rmaI evaluation tree has cost !' for a single use of the (VAR) rule. Self-interpretation
uses (VAR) and (LAMBDA) twice each and the (BETA) rule once. The size of the expanded environment is 2
so we have a total cost of 6, which is less than 8 times the cost of normal evaluation.

• uN =uNl f«. Assuming the subtrees have costs kx and *2 respectively, the total cost of normal evaluation
is *! +k2 + \p \ + 1 By induction, the cost for the subtrees for self-interpretation are at most 8fc, and 8*2

The tree uses (VAR) twice, (LAMBDA) once and (BETA) twice, once for the function Xz.z (where the size of
the expanded environment is 2) and once for (Xv.N3, p"). Since \?\ = \p"\ + 2, the total cost is bounded by
8*a + 8k2 + 2 + 1 + 2 + \p"\ + 3 = 8Ai + 8*2 + \p"\ + 8, which is less than the budget of 8(*i + *2 + \p"\ + 1).

By adding the start-up cost of 8 to the cost found in lemma 5, we get:

T^Tr^3' I{adosed te™ M ™^ates to a WHNF in cost c (using the environment-based cost function),
seljint \M\ evaluates to a WHNF in cost at most 8c + 8. .

3 Linear time self-interpretation using call-by-value reduction

We define call-by-value reduction by the inference rules

phXx.M^(Xx.M, p) (LAMBDA) phx=>p(x) (VARV)

p\-M^(Xx.M',p') p\-N=>V p'[x^V]hM' => W
■ pTMN^W ~~ (BETAV)

YnrTf^Tf the JrivatiT °f *he initial staSes of self-interpretation. We will slightly change definition of p
to reflect that variables are bound to values, i.e., (closures of) terms in WHNF:

D = /*
p[x^{Xx.P,p')] = -p[x^(Xx.P,p')}

We first define a simulation lemma for call-by-value:

?tW^(Xyw!%USing tke Call'by'mlUe infermCe mleS> Cm derive f>hN =* (*V-W> P') th™ ™ can also derive

which we prove in figure 2.

Again we assign different costs to the rules to obtain linear-time self-interpretation results. We start by
counting beta-reductions. UJ

callly^nante?1 ^ ^ ^ *** ^ 3 ^ reduCtions- For the remainder we use a lemma like the one for

«T^h^l^V^ deriV1im °!fhN, ? {XyW> p,) US6S U b^-™ductions, then call-by-value deriva- tion of p\-JV => (Xy.W, p1) uses at most 4n + 1 beta-reductions.

We will use the structure of lemma 6 for proving this
N = x: Neither normal evaluation nor self-interpretation use beta reductions

onceJ^ToT+lZr"tZäT0n tree US6S ° redUCti°nS Wh0e Self-intePretation ™» the (BETA) rule

r^= N- ** ATmifg the SUbtreeS USe h' k2 and ks beta eductions respectively, the total number of

Z™r:k\7ZlTTliS k\ +k/ + h + h By indUCti°n' the the Subt"ees ^elUnterpretlüon^l
bounded by tk 4Ik +S + t \ ?*"?? "T ^ ** "*" (BBTA> tW™> S° the total reduction ™* *
bounded by 4fci + 4fc2 + 4*3 + 5 - 4(*j + fc2 + A:3 + 1) + 1, which is what we want.

By adding the cost for the initial states of self-interpretation, we get: °

^ZTtoaWHNpf- '"? M ZdUa\eS 'L" WHNF USiUg U "tt-hwhe beta reductions, selfint \M] evaluates to a WHNF using at most 4n + 4 call-by-value beta reductions.

 Mogensen T. M. Linear Time Self-Interpretation of the Pure Lambda Calculus 91

We prove lemma 6 by induction over the evaluation tree with N at its root:

N = x:

Normal evaluation: p\-x =>{Xy.W, p') Self-interpretation: p\-x =>(Xy.W, p')

N = Xy.W: p\-N=> (Xy.W, p) is a leaf tree. N = b {Xy.W), so we get

p\-b=>(\z.z,pi) pi{z^{XyW,pj\\-z =*(\y.W,p)

phb{Xy.W)=>{Xy.W,p)

N = A/i N2: The normal evaluation tree is

p\-Ni ^(Xv.fh^j p\-N2=>(Xw.N4,p'"j p"[v*-*(Xw.N4,p'")]hN!i^(Xy.W,P')
p\-Ni N2=>(Xy.W,p')

We have JV = oJVi JV2, so we get (by induction) the following tree for self-interpretation

■(*) p\-N2 =»(Xw.Nj, p"<) p">>->{Xw.N4, p'")]t-Ar
3 =»{Xy.W, p')

p^amN2'=>{Xy.W,y)

where (*) is the tree

pha=>{Xz.z,pi) —-■■■ —. Pl[z-*(\vJh, p7T)]hz^{XvM, P77)
 pl-JVi =$-(Xv.N3, p")

phaNi=i-{XvM,plr)

Fig. 2. Proof of lemma 6

3.1 Substitution-based cost

Again we want to base the cost of a beta reduction on the size of the function, and again we consider a value
{Xy.P,p) to represent the term unfold{Xy.P,p). We heed a variant of lemma 3, using the new definition of p.
We do not get equality, as we did in lemma 3, as some terms T may be replaced by (7 T). We define P -<Q
to mean that some subterms T in P may be replaced by (7 T) in Q and use this in the definition of the new
lemma. Note that size of P is no larger than the size of Q.

Lemma 8. unfold (Ay.P,p) < At/.unfold(P,p)[a\7][6\7].

where P -<Q means that some subterms T in P may be replaced by (7 T) in Q. Hence, the size of P is no
larger than the size of Q. We prove lemma 8 similarly to the way we proved lemma 3:

unfold{Xy.P, Q) = Xy.P:

unfold{Xy.P,Ä)
= unfold{Xy.P_, p3)
= unfotd(Xy.P,p2)[b\unfold(I,pi)]

= unfold{XyT,p2)[b\I\
= unfold{Xy.P[a\unfold(I, pi)], \\)[b\T\
= Xy.P[a\I][b\I]

unfold{Xy.P,p[xt->{Xz.Q,p')]) = unfold{Xy.P,p)[x\unfold{Xz.Q,p")]:

unfold{Xy.P,p[xv^{Xz.Q,p')})
= unfold{Xy.P,~p[x*-+{\z.Q,p')])

by definition of p
= unfold(\y.P,p)[x\unfold{Xz.Q, p')]

by definition of unfold

^Xy.unfold{P,p)[a\I][b\I][x\Xzim^örd\Q,rho'){a\T\[b\I}]
by induction

= Xy.unfold{P^p)[x\Xz.unfold{Q,rh&)][a\I][b\T]

* Xy.unfold{P,p)[x\unfold{Xy.Q,rh&)][a\T\[b\I\

— : Perspectives of System Informatics'99

Since the size of P[a\I\[b\l) is strictly less than 4 times the size of P, we see that \unfold{Xy.P,p)\ <
\Xy.unfold(P,p)[a\I][b\I}\<l + 4.\unfold(P,p)\. Ky ,m ~

FJZZT
the COS* °f,the initial Part °f the tree t0 be at most 7IMI + 8> *«* as for the call-by-name case" tor the rest, we use the lemma

nTZw^Zt**"1? e/e™atJon°fPhN * to-W,ff) has costc, then call-by-value derivation of pi- JM =$> [Xy.W, p') has cost at most 5c+ 2. JH

Proof:

N = x: Both normal evaluation and self-interpretation has cost 0.
N = Xy.W: The normal evaluation tree has cost 0 while self-interpretation uses the (BETA) rule once for

the term A*.*, which has size 2, giving 5 -0 + 2, as we needed.

is kN+kNlf't7mrthe SU^treeS ha!e «f,B/*■ *s ^ ** respectively, the total cost of normal evaluation
is h + k2 + k3 + s, where s xs the s1Ze of unfold(Xv.N3,p"). By induction, the cost for the subtrees for self
mterpretaüon are at most 5fc + 2^-f 2 and 5k3 + 2. The tree uses (BETA) twice, onceforTzwS

SS +» °+T+?r ^Ä?' tich f °f size at most 4(s" ^so the total cost is b-^ S
thatw want (" } " (' + 2 + ^ + S) + * ~ '" SinCe the SmalleSt P°Ssible value for s is 2> ™ have

Combined with the initial cost of 7|M| + 8, we get

Theorem 5. // a closed term M evaluates by call-by-value to a WHNF in cost c, selfint \M] evaluates by
call-by-value to a WHNF in cost at most 5c + 7|M| + 10. evaluates by

3.2 Environment-based cost

X t^^t^Tm"the sam<i"for ca,1-by-name'Thc C08t of the "*tiIJ -*» °f«- *»
£"i'?^r«frtt"

o/'hN *(w»to - *<*«» .<**-» *•*■*» i
is used. We prove this as before

N = x: Both normal evaluation and self-interpretation has cost 1. .

i N ~ XlWlThe T1 evaluation tree has cost 1 while self-interpretation uses (VAR) twice and the (BETA)

btwTe limit term XZ-Z' Where Üie eXPanded enVir°nment iS °f Size 2> ™ a total cost oS Thillf weli

is kN+l+k%^T^S^ TbtreS ^ r*^1' *2 and h resPectively. the total cost of normal evaluation
?h ^^K^^m^U w, , SUbtreeS f°r ^^ation are at most lku 7k2 and 7*». ifie tree uses (VAR) and (Btfia; twice each, the latter once for Az.z (cost 2) and once for (Xvlh ^) which

Combined with the initial cost of 9, we get

r?)°rT ?VÄiß ^ 'T M emlmteS by call-by-™l™ to a WHNF in cost c (using environment-based cost), selfint fM] evaluates by call-by-value to a WHNF in cost at most 7c+ 9. environment based

4 Call-by-need reduction

phM=> (Xx.M',p') (/[xh+tlhM1 =>W
-pTMN^W : (DUMMY)

lu^lAV) rUle,fr°m te\call-by-value semantics evaluates the argument, the (DUMMY) rule doesn't but
inserts a dummy value . m the environment instead of the value of the argument. There is no rule that a low
• m computations, so choosing the latter application rule will only lead to an answer if the ^^^

 Mogensen T. M. Linear Time Self-Interpretation of the Pure Lambda Calculus 93

We prove lemma 11 by induction over the evaluation tree with N at its root. Only the case for the (DUMMY) rule differs
from the proof of lemma 6, so we omit the rest.

N = N\ AT2: Using the (DUMMY) rule, the normal evaluation tree is

phiVi =»(A«.Ar3ip"") p"[v^»]\-N3=>{Xy.W,p')
phiVi N2=>(Xy.W,p')

Which (by induction) leads us to the following self-interpretation tree

(*) p"[v<-*»]\-m=>(\y.W, p')
ph-alhm^ (Xy.W, p7)

where (*) is the tree

pha=»(A*.*,pi) _hWi^-Xv—-} Pl[z^(\v.Ns,p")]hz^(\v.N3,p")

pl-aNi^iXv.Th,^)
D

Fig. 3. Proof of lemma 11

These rules model both call-by-need, call-by-value and everything in-between. We can define a partial order
on inference trees for the same expression by saying that a tree T\ is less than a tree T<z if T2 uses the (BETAV)
rule whenever T\ does. The least tree in this ordering that computes a non-» result corresponds to call-by-need
reduction to WHNF. Hence, we have moved parts of the operational behaviour of the language to the meta-level
of the semantic rules, rather than in the rules themselves.

This characterization of call-by-need may not seem very operational. However, a process that builds a mininal
evaluation tree may mimic traditional implementations of call-by-need: When an application is evaluated, the
(DUMMY) rules is first used. If it later turns out that the argument is in fact needed (when a use of a • is
attempted), the origin of the • is traced back to the offending (DUMMY) rule. This is then forcibly overwritten
with a (BETAV) rule and the sub-tree for the argument constructed. When this is done, the • is replaced by
the correct value and computation resumed at the place it was aborted. Hence, »'s play the role of suspensions
and the replacement of a (DUMMY) rule by a (BETAV) rule corresponds to updating the suspension.

The initial part of self-interpretation for call-by-need is the same as for the call-by-value case, except that
for simple terms, the variables a or b may not be needed and can hence be bound to • and the corresponding
evaluations of their closures not occur. However, the cost of the initial portion will (by any reasonable cost
measure) be no more than the cost of the call-by-value tree. We will use the same initial environments as for
the call-by-value case, but extend the definition of p to handle variables that are bound to.».

D ' =PB
p[x^(Xx.P,p')] = p[x^{Xx.P,p')}
p[xy-¥m] =p[a:i->»]

Like in the previous cases, we define a call-by-need simulation lemma:

Lemma 11. Jf vie using the call-by-need inference rules can derive p\-N =» (Xy.W, p') then we can also derive
p\-N=>(Xy.W,p').

Which we prove in figure 3.
Since lemma 11 includes the cases where variables in the environment are bound to •, we conclude that, if

normal evaluation does not need the value of a variable, then neither does the self-interpreter.
We will in the proofs of linear-time self-interpretation also refer to the proofs for the call-by-value case except

for the (DUMMY) case, as we use the same cost measures and the same constant factors.
We start by counting beta reductions. Our theorem is

Theorem 7. 1/ a closed term M via the call-by-need semantics evaluates to a WHNF using n call-by-need beta
reductions, selfint \M] evaluates to a WHNF using at most 4n + 4 call-by-need beta reductions.

The corresponding lemma proves simulation using 4n +1 steps, after the initial portion. We use the proof for
lemma 7 with the addition of a case for the (DUMMY) rule: Normal evaluation uses Jbi + fa +1 beta reductions,

94 Perspectives of System rnformatics'99

where h and fc3 are the numbers of beta reductions required for N, and N3. By induction, interpreting 7% and
Ns«costs at most 4k,, + 1 and 4k2 + 1. Additionally, 2 beta reductions are used, so the total cost is bounded by
4{kx + k2 + 1), which is one less than our limit.

mvTAV? r%f °n to/«b8titutio
i
n-bas«i cost. We assign the same cost to the (DUMMY) rule as to the

(titilAV) rule: The size of the extended environment.
We extend the definition of unfold to handle •:

unfold(P,p[x !->•]) = unfold(P,p)[x\d]

where d is a free variable that does not occur anywhere else. It is easy to see that the same size limit as before
apphes: \unfold(\y.P,p)\ < 4\unfold(P, p)\. Hence, we shall go directly to the theorem

ZTZZJ't If wi°Zdterm
t
M emlmteS 6f call-by-need t0 « WHNF *» cost c, selfint \M] evaluates by call-by-need to a WHNF m cost at most 5e + 7\M\ + 10.

^«■Ä We ^f^ fe.CaSe %thG (DUMMY) rule and «*» to lemma 9 for the rest: If normal evaluation
has cost h and fe3 for evaluation of ^ and_JVs, the total cost is k1+k2+s, where s is the size of unfoldiXv N3 p")
For self-interpretation, interpretation of N, and N3 have by induction costs bounded by 5k1+2 and L + 2 Ad-
ditionallywe use (BETAV) once at cost 2 and (DUMMY) once at cost \unfold(\v.N~3, ^)| < 4\unfold(N3 p")\ =
4(. - 1). This gives a total cost bounded by 5(h + k2 + s)-s + 2, which is well wilhin our Lit

tnvironment-based cost is no bigger problem:

SETFE]
9

* ^ f°Sf t6T,M eVfmteS bV call-by-need i0 a WHNF ^ cost c (using environment-based cost),
selfint \M\ evaluates by call-by-need to a WHNF in cost at most 7c + 9.

to htnt'ti: ^MMhr7rUle°f fOT ^ CalR)y-ValUe "" "** ** » ■ddtttaul «" for ** P-f of lemma 10

Normal evaluation uses the fWWJ rule at cost \p"\ + 1 plus the costs of evaluating N, and N3, which

resof^V) 2" fSSSS"1 USeS ^ m0St 7h and ™3 t0 interpret ^ and ^ To this we a^ two
uo ^ + jT^lTif (« >n V{a\C0St 2 f" the US6 °f (DUMMY) at C0St 1^1 + l = \P"\ + 3- ™* ^ds up to 7{ki + k3 + \p"\ + 1) - 6\p"l which is within our budget.

5 Conclusion and future work

We have proven that a simple self-interpreter for the pure lambda calculus can do self-interpretation in linear
tame, i.e. constant overhead. We proved this for reduction to weak head normal form using call-by-name call-
by-value and call-by-need using three different cost measures.

It would be interesting to extend the present work to include studies of self-interpretation cost for reduction
to h ad normal form and full normal form. The author expects the* to have linear-time self-interpretation o"
but is not currently working on proving this. ^ '

ti™ Lart I™0? \einS in*erf tin,S in US °Wn right'the result is a steP towards Proving the existence of a linear-
ime complexity hierarchy for the pure lambda calculus, along the lines of Jones' result for first-order functional

c^untThpT TTf [\The Pr°0f inV0lV6S ' ^-«^Preter that not only has constant overhead but Xo
tZ! f ! T f e ?y S°me C°St meaSUre) [t USes" If [t can not finish within a set budget of time
he self-interpreter stops with a special error-value. This self-interpreter is then used in a diagonalization proof

ZZTt^tll^1: ^f Pffem Pr00f to show that a -tain P-blem can be solved in time o(kn) but not in time o{n), where k is the interpretation overhead.
We axe currently working on this and have sketched a proof for call-by-name reduction to WHNF. However

due to the resource counting the proof is about an order of magnitude harder than the proofs shown in thS
paper, so we are investigating ways to simplify the proofs

for CAM ^wJr6 tati°n V^ WOT^ by R°Se [7] °n Sh°Wil,g that there exist a linear"time hierarchy for CAM an abstract machine used for implementing higher-order functional languages. This was proven by
showing linear- ime^interpretations between CAM and the language used in Jones' paper. This method does

cntr^t °Ver the
f
hmb?a calculus' M such interpretations are not likely to exist, at least not for natura

complexity measures for reduction in the lambda calculus

It isRstaeted Sat Tl ?""* *? characterize,neccesary editions for the existence of a linear-time hierarchy.
a noc^tTrZZZtT&geu STP°? ' lmear"time hierarChy' i4 may n0t allow instant-time access to a non-constant number of variables, locations, symbols or functions, where the constant is uniform over all

Mogensen T. JE. Linear Time Self-Interpretation of the Pure Lambda Calculus 95

programs. This would indicate that any cost measure for the lambda calculus that allow constant time access to
variables (e.g. counting beta-reductions) contradics the existence of a linear-time hierarchy. However, the proof
sketch mentioned above indicates that one such actually does exist. We will look further into this apparent
contradiction in future work.

In [4], a different representation of lambda terms was used. It was based on higher-order abstract syntax,
but used a standard-style representation where recursion over the syntax is not encoded in the term itself.
Hence, the self-interpreter needed to use an explicitly coded fixed-point combinator, making it somewhat more
complex than the one used in this paper. Redoing the proofs in this paper for that self-interpreter will be much
more work due to the larger size, but the same principles should apply and we expect a (much larger) constant
overhead for this case as well.

The use of a nondeterministic operational semantics to encode call-by-need reduction made the proofs for
this very simple. In our knowledge, this technique hasn't been used earlier, though a similar notion (repacing a
term by •) has been used to define neededness [1]. We expect it to be useful for proving other properties about
call-by-need reduction.

Our discussion of different cost measures may seem similar to the discussions by e.g. Lawall and Mairson [3]
on cost models for the lambda calculus. However, these models are meant to be independent of any particular
implementation whereas the measures presented here try to mimic specific implementation methods.

References

1. I. Durand and A. Middeldorp. Decidable call by need computations in term rewriting. In CADE '97, Lecture Notes
in Artificial Intelligence 1249, pages 4-18. Springer-Verlag, 1997.

2. N. D. Jones. Constant time factors do matter. In Steven Homer, editor, STOC '93. Symposium on Theory of
Computing, pages 602-611. ACM Press, 1993.

3. J. L. Lawall and H. G. Mairson. Optimality and inefficiency: What isn't a cost model of the lambda calculus. In
R. Kent Dybvig, editor, Proceedings of ICFP '95, pages 92-101. ACM, ACM Press, 1996.

4. T. JE. Mogensen. Efficient self-interpretation in lambda calculus. Functional Programming, 2(3):345-364, July 1992.
5. T. M. Mogensen. Self-applicable online partial evaluation of the pure lambda calculus. In William L. Scherlis, editor,

Proceedings of PEPM '95, pages 39-44. ACM, ACM Press, 1995.
6. Eva Rose. Characterizing computation models with a constant factor time hierachy. In B. Kapron, editor, DIMAGS

Workshop On Computational Complexity and Programming Languages, New Jersey, USA, July 1996. DIMACS, RUT-
COR, Rutgers University.

7. Eva Rose. Linear time hierachies for a functional language machine model. In Hanne Riis Nielson, editor, Programming
Languages and Systems - ESOP'96, volume 1058 of LNCS, pages 311-325, Linköping, Sweden, Apr 1996. Linköping
University, Springer-Verlag.

An Optimal Algorithm for Purging Regular Schemes

D. L. Uvarov

A. P. Ershov Insitute of Informatics Systems,
Lavrent'ev pr,, 6,

Novosibirsk, Russia
duvarovQisi.nsk.su

1 Regular Schemes

In the following, we assume that sets of variables, basic statements, and selectors are given. Let us choose
subsets of arguments A(s), results R(s), and obligatory results R'(s) C R(s) in the set of variables for each
basic statement s. For each selector c, we choose the set of its arguments A(c). The sets of results and obligatory
results for selectors are considered to be empty. In addition, an arity ar(c) € N is assigned to each selector c.

Regular schemes (hereafter, schemes) are directed ordered labeled graphs of a special kind. The set of schemes
can be inductively described as follows.

1. The graph with the empty set of nodes and arcs is a scheme: this is an empty scheme. For any nonempty
scheme S, we will indicate two distinguished nodes — the input and the output.

2. A graph without arcs with the single node v labeled by a basic statement a is a scheme: this scheme
corresponds to the basic statement s and has node v as its input and output.

3. Let Si and S2 be nonempty schemes. Connect the output of Si with the input of S2 by a new arc. Let
the input of Si be the input of graph S constructed in this way, and the output of S2 be its output. Extend
the order of S by the relation of the new arc with itself. Then, the graph S is a scheme: we will say that S is
obtained from Si and S2 by the series union and write it as S = Si o S2.

4. Let B be a scheme, c be a selector, and ar(c) = 2. Consider two new nodes v and w — the input and
the output of a new scheme S, respectively. Let us label w by the selector c and connect w and v by a new arc
Ihen we act as follows. If B is nonempty, we connect v with the input of B by a new arc, and the output of
B with w, by another new arc. If B is empty, we connect v and wbya new arc. For each new arc, we extend
the order of S by the relation of this arc with itself. Graph S, constructed as described above, is a scheme: we
will say that S is the loop with the body B and the condition c.

5. Let B1,...,Bn be regular schemes, c be a selector, and ar(c) = n. Consider two new nodes v and w—
the input and the output of a new scheme S, respectively. Let us label v by the selector c. Then, we act as
follows. For each nonempty scheme Bu we connect v with the input of Bt by a new arc, and the output of Ä
with w, by another new arc. For each empty scheme Bh we connect v and w by a new arc. For each pair of new
arcs with the common beginning and belonging to schemes Bt and Bh respectively, extend the order of S by
the relation between these arcs if i < j. Graph S constructed as described above is a scheme: we will say that
A is the hammock with the selector c and the branches Bi, ..., Bn.

A scheme is called a component if it is nonempty and cannot be represented in a form of the series union of
two nonempty schemes.

. We now define the sets of arguments A(S), results R(S), and obligatory results R'(S) for scheme S. A path in
a regular scheme is a sequence v1e1 ... vn^en^vn, consisting of nodes vx.,...,vn and arcs eu ..., en_x in which
tne arc et leads from Vi to vi+1. An execution chain in a regular scheme is a sequence of labels written down when
going along a path from the input to the output. For an execution chain a, let us set A(a) = R(a) = R'(a) = 0
rf a 1S empty and A(a) = A(öl) U (A(a2) \ R>(ai)), R(a) = R(ai) U R(a2), R'(a) = R>[ai) UR'(a2), if a can
be represented as a concatenation of subchains at and a2 at least one of which is nonempty

If S is empty, we set A(S) = R(S) = R'(S) = 0. Now assume that S is nonempty. Let BC(H) be the set of
all execution chams of S. Then A(S) = ^Ec{s) A[a), R{S) = Ua£ßC(s) R(a), Z R>(S) = WaJ^(a).

of the It," TTTVtSSeme °f S- Let US den°te by S^T'^ a scheme that is ob^»ed from S L a result

^tw£? 1S empty scheme'we wm say that s™ = S[T/T'^is obtained from s hy
aariLTTSJf5 either determined by the set of values of all variables or is an invalid state. An interpretation

eSselect ,Z £ f™ "^ °f memOTy ^ t0 eadl hasic Statement^ interpretation also assigns to
each selector a function that generates a number of the branch to be chosen, depending on the memory state

 . Uvarov D. L. An Optimal Algorithm for Purging Regular Schemes 97

or generates an error message. Once an interpretation is specified, it can be extended on the set of all regular
schemes in a natural way. Two schemes are called equivalent if any interpretation assigns them identical functions.

A regular scheme S is called a pseudoscheme if the parent scheme par(S) and the sets of candidates for
deletion after the removal up or down, u-dels(S) and d-dels(S), are specified.

An execution chain a is called irredundant if it cannot be represented in the form of the concatenation of
three subchains a = CHOLICXZ, in such a way that t € #(0:2), t G #'(0:3), t & 4(0:2), and t §£ A(as) for some
variable t. A scheme S is irredundant if, for any of its arc, there exists an irredundant execution chain obtained
from a path involving this arc. If a scheme is irredundant, any of its subscheme is also irredundant.

2 Removal from Loops and Hammocks

Let L be a subloop of a scheme S with a body i? = X o X o X and a condition c, where X, X, X be regular
schemes, and X be a component. If the conditions of removal up from L 4(X) f~l R{X) = R(X) n A(X) =
R(X) n R(X) n (A(X)U(A(c) \ &(£})) = R(X) D R(X) \ 2?'(X)_= 4(X) n R(X o X o X) = 0, and either
(A(X o X)U (A(c) \R'(X° 20)) n R(X o X ° 20 = 0 or R(X) n i?" (X o X) = Ü!(X) n R'{X o X) n (4(X o 20 u
(4(c) \ R'(X o20)) = 0, hold for X, the removal up of X from. L consists in the substitution of scheme XoL(X)
for subloop L. If the conditions^ of removal down from L 4(X) n i?(X) = il(X) D (4(X) U (.4(c) \ i?'(X))) =
R(X) n #(X) = R(X)n(A(X ° X) IJ (4(c) \ R'(X o X))) = 0, and either A(X) n E(X o X o X) = 0 or
(4(X o X) U (4(c) \ R'(X o 20)) n R(X o X) = 4(X) n i?(X) \ #'(X o X) = 0, hold for X,. the removal down
of X from L consists in the substitution of scheme L^x) ° X for subloop L.

Let X and F be linear subcomponents of B. We say that the removal up of Y depends on the removal up of
X and write X ->„ F, if X is arranged before V in B, Y is not a pseudoscheme with par(Y) = X, and one of
the intersections 4(X) n J?(F), Ä(X) n 4(F), or i?(X) n R(Y) is not empty, or X = F and 4(F) n R(Y) ^ 0,
or X is arranged after F in B and one of the intersections 4(F) n R(X), or R(Y) n -R(X) is not empty. We
say that the removal down of F depends on the removal down of X and write X ->d F, if one of the following
conditions X is arranged after F in 5, F is not a pseudoscheme with par(Y) — X, and one of the intersections
4(F) n -R(X), R(Y) n 4(X), or R(Y) n R(X) is not empty, or X = F and 4(F) n R(Y) ^ 0, or X is arranged
before F in ß and one of the intersections R(X) n 4(F), 4(X) n R(Y), or i?'(X) n J?(F) is not empty. We say
that the removal down of F depends on the selector c and write c ->d F, if 4(c) n i?(F) ^0.

We define a removal dependency graph A(L) as follows. The set of nodes consists of the selector c and all
the linear subcomponents of B. The set of arcs is divided in two nonoverlapping sets of u-arcs and d-arcs, in
such a way that u-arc e connects nodes v and w if and only if v ->•„ w, and d-arc e connects nodes u and w if
and only if v ->d w. Let deg+(v) be the number of u-arcs with the end node v, and deg^(v) be the number of
d-arcs with the end node v.

Let H be a hammock with a selector c and branches B\, ..., Bn. A candidate chain for removal up from fl"
is a sequence X = Xi,..., Xn of mutually isomorphic schemes, such that X, is a linear subcomponent of Bi and
the number of linear subcomponents of Bi that are isomorphic to Xi and are arranged in Bi before X{ is the
same for all i. Similarly, a candidate chain for removal down from H is a sequence X = X1; ..., Xn of mutually
isomorphic schemes, such that Xi is a linear subcomponent of Bi and the number of linear subcomponents of
Bi that are isomorphic to Xi and are arranged in Bi after X,- is the same for all i. Let us designate any of
the schemes Xi, ..., Xn as Comm(X) and the hammock obtained from H by deleting all schemes Xi, ..., Xn
as H(X)- Let X be a candidate chain for removal (up or down), and X«, Xi, i = 1.. .n be the subschemes of
H such that Bi = X o Xj o X* for all «'. If X is a candidate for removal up and the conditions of removal up
from H (4(c) U 4(X)) n -R(X) = RpQ D 4(X) = Ä(X7) n i?(X,) n 4(X) = RpQ) n iZ(X) \ ^'(X) = 0 for
all i, hold for X, the removal up of chain X from H consists in the substitution of scheme Comm(X) o H(x)
for hammock H. Similarly, if X is a candidate for removal down and the conditions of removal down from H
A{Xi) n R(Xi) = R(Xi) n 4(Xi) = R(Xi) D R{X£ = 0 for all», hold for X, the removal down of chain X from
H consists in the substitution of scheme H^X) ° Comm(X) for hammock H.

Let Xj be a linear subcomponent of Bi, F be a candidate for removal up from H. We say that the removal
up of F depends on Xt and write X» ->u F, if Xi is arranged before F in B,, F is not a pseudoscheme with
par(Yi) = Xj, and one of the intersections 4(F)nil(Xj), Ä(Fj)n4(Xj), or i?(Fj)nfi(Xj) is not empty. Let X be
a candidate for removal up from H. We say that the removal up of F depends on the removal up of X and write
X -*•« F, if Xi ->u F for all i. We say that the removal up of F depends on the selector c and write c ->„ F, if
4(c) n Comm(Y)) ^ 0. Similarly, let Xj be a linear subcomponent of Bi, Y be a candidate for removal down
from H. We say that the removal down of F depends on the removal down of Xj and write Xj ->d F, if Xj is

98 Perspectives of System Informatics'99

arranged after Yt in Bu Y is not a pseudoscheme with par(Yi) = Xh and one of the intersections A(Yi) f)R(Xi),
R{Yj) n A(Xi), or R(Yi) n R(Xi). Let X be a candidate for removal down from 77. We say that the removal
down of Y depends on the removal down of X and write X -*d Y, if X{ ->rf Y for all i.

We define a removal dependency graph A(H) as follows. The set of nodes consists of the selector c, candidate
chains for removal up or down from 77, and all the linear subcomponents of Bx, ..., Bn that do not belong to
any of candidate chains. The set of arcs is divided into two nonoverlapping sets of u-arcs and d-arcs in such a
way that u-arc e connects nodes v and w if and only if v -»„ w, and d-arc e connects nodes v and w if and only
if v ->d w. Let deg+(v) be the number of u-arcs with the end node v, and degj(v) be the number of d-arcs with
the end node v.

If X = Xi, ..., Xn is a candidate chain for removal up or down, then a candidate chain X for removal in
opposite direction is called dual to X if Xi = Xt for some i. '

3 The Purging Algorithm

Algorithm.
Input: a regular scheme 5.
Output: a regular scheme 5'.
First, procedure 1 is applied to the input scheme 5. It constructs a scheme 5' and the set 77(5'). Then,

each pseudoscheme T <E 77(5') is transformed to an ordinary scheme (additional information is deleted) and all
subschemes belonging to the set u-dels(T) are deleted from 5' in the process.

Procedure 1.
Input: a regular scheme 5.
Outputs: a scheme 5' and the set 77(5').
1. If S is an empty scheme, or 5 corresponds to a basic statement, then return 5 and the set 77(5) = 0.

Otherwise, go to step 2.
2. If 5 is a loop, then go to step 3. If 5 is a hammock, then go to step 4. Otherwise, let 5 = 5X o o 5

n> 2. The procedure 1 is then applied to schemes 51; .., 5„. Let S{, n(S[), ..,, S'n, II(S'n), respectively, be
the outputs obtained. Then, return the scheme 5' = S[o ... o S'n and the set 77(5') = \}ie[Vn] 77(5-).

^ 3. Let 5 be a loop with a body B and a condition c. The procedure 1 is then applied'to the scheme B. Let
B' and 77(B') be the outputs obtained, and 5' be the loop with the body B' and the condition c. The procedure
2 is then applied to the loop 5' and to the set 77(5') = 77(B'). Let 5" be the output obtained. Then, return
5" and the set 77(5") - 0. '

4. Let 5 be a hammock with a selector c and branches Bu ..., Bn. The procedure 1 is then applied to
schemes Bu ..., Bn. Let B[, II{B[), .., B'n, n(B'J, respectively, be the outputs obtained, and 5' be the
hammock with the selector c and branches B{, ..., B'n. The procedure 3 is then applied to the hammock S'
and to the set 77(5') = Ulg[1:n] 77(7^). Let 5" and 77(5") be the outputs obtained. Then, return 5" and the
set 77(5").

Procedure 2.
Inputs: a loop L and the set 77(7).
Output: a regular scheme V.
1. Construct the graph A(L). Then, transform each pseudoscheme T £ 77(7) to an ordinary scheme and

delete from 5' all subschemes that belong to set d-dels(T). Set M = N = e. Then, go to step 2.
2. If there exists at least one scheme X such that deg+(X) = 0, select this scheme and go to step 3. Otherwise

go to step 4. '

3. Delete the node X and all arcs that begin in X from A(L). Then, delete X from L, set N = X o N and
go to step 2. '

4. If there exists at least one scheme X such that deg+(X) = 0, select this scheme and go to step 5. Otherwise
go to step 6. o *- ,

5. Delete from A(L) the node X and all arcs that begin in X. Then, delete X from L, eetM = MoX and
go to step 2. '

6. Recalculate A(L), R(L), and R'(L). Then, return the scheme MoLoN.
Procedure 3.
Inputs: a hammock 77 and the set 77(77).
Outputs: a scheme 77'and the set 77(77').

Uvarov D. L. An Optimal Algorithm for Purging Regular Schemes 99

1. Construct the set # of all the candidate chains for removal up from H and the set <?, of all the candidate
chains for removal down from H. Construct the graph A(H) and set F = G = e. Then go to step 2.

2. If there exists at least one chain X €9 such that deg^(X) = 0, select this chain, set <P = <? \ {X}, and
go to step 3. Otherwise, go to step 6.

3. Delete from A(H) all arcs that begin from X. Set G = Comm(X) o G. If a dual chain for X exists, then
go to step 4. Otherwise, go to step 5.

4. Ü = Q U {(T, X)}. Go to step 2.
5. For each element Xi that is a pseudoscheme, delete from H all the schemes that belong to set d-dels(Xi).

Then, delete all elements of X from H. Return to step 2.
6. If there exists at least one chain X G # such that deg+(X) = 0, select this chain, set # = $ \ {X}, and

go to step 7. Otherwise, go to step 10.
7. Delete from zl(fl') all the arcs that begin from X. If X has no dual chain or if there is no pair of the

(T,X) form in set Q, then go to step 8. Otherwise, go to step 9.
8. For each element Xi that is a pseudoscheme, delete from H all the schemes that belong to set u-dels(Xi).

Then, delete all elements of X from H. Set F = F o Comm(X) and return to step 6.
9. Let (T,X) G Ü. From T, construct a pseudoscheme for which par(T) = H, f-dels(T) - (J"=1 f-dels(Xi),

and b-dels(T) = U"=i b-dels(Xi) (for the sake of convenience, we set f-dels{Xi) = b-dels(Xi) = {Xi} if
scheme Xi is not a pseudoscheme). Add T to set II and delete from H all the elements of X and X that are
pseudoschemes. Go to step 6.

10. Recalculate A(H), R(H), and B,'(H). In the process, we should take into account only those deletions
that were really performed (ordinary schemes are not deleted when pseudoschemes are constructed). Then,
return the scheme JET = F o H o G and the set II(H') = 11.

Theorem. The scheme that is obtained from the input scheme as a result of applying the algorithm
described above can be obtained by applying transformations of removal from subloops and subhammocks.

The number of the nodes of a regular scheme S will be called its size and denoted by \S\. The depth d(S) of
a scheme S is the maximum length n of the sequences of the components Ti, ..., Tn such that T, is a proper
subcomponent of Cj+i for alH = 1, ..., n — 1. If there are no such sequences, we set d(S) = 1.

Theorem. The algorithm described above requires the time 0(d(S)\S\2time(m)) and the storage 0(|5|2 +
space(m)) to work with a scheme S. Here m is the number of variables, time(m) is the upper bound of the time
required for one operation (n, U, or \) over subsets of the set of variables, and space(m) is the upper bound of
the memory needed to store one subset of the set of variables.

Theorem. Let S be an irredundant scheme without degenerate subloops, and let S' be a scheme ob-
tained from S by applying the algorithm described above. Let S" be any scheme obtained from S by applying
transformations of removal from subloops and subhammocks. Then, the following statements are true.

1. Let /' be a number of transformations that must be applied to obtain S' from S, and let I" be a number
of transformations that must be applied to obtain S" from 5. Then, /' > I".

2. |S'| < \s"\:

References

1. Pottosin, I.V., Justification of Algorithms for Optimization of Programs, Programmirovanie, 1979, no. 2, pp. 3—13.
2. Pottosin, I.V. and Yugrinova, O.V., Justification of Purging Transformations for Loops, Programmirovanie, 1980, no.

5, pp.8—16.

Polymorphism in OBJ-P

Martin Plümicke

Wilhelm-Schickard-Institut, Universität Tübingen, Sand 13
D-72076 Tübingen, Fax.: +49 7071 610399

pluemick@informatik.uni-tuebingen.de

Abstract. In this paper we present the functional programming language OBJ-P. OBJ-P is a polymorphic
extension of OBJ-3. The main features are overloaded function symbols, set inclusion subtyping, and
parametric polymorphic types.
In the first part of the paper we give an introduction to the core language and the semantic base, while in
the second part the module system is presented by an interesting example from computer algebra.

1 Introduction

The functional programming language OBJ-3 (e.g. [GWM+93]) has two main features: overloading of function
symbol and subtyping m the sense of set inclusion. There is also a powerful module system for OBJ-3 In OBJ-3
parameterized types are missing. There is sure the possibility to parameterize whole modules. But this is a not
good solution, because if one type within a module has a parameter the whole module must be parameterized.
We extend OBJ-3 by parametric polymorphic types, which are well-known from SML [Mil97] We call this
extension OBJ-P. Furthermore, we change a little the module system, such that modules can be parameterized
by function and type parameters. This means that OBJ-P allows both of parameterized types and parameterized
modules. This combination leads to a powerful language which has enormous possibilities to reuse code and to
overload function symbols; however, function evaluation remains unambiguous. Our overloading feature is more
expressive than overloading in Haskel! [PH+97],
These features (overloading and set inclusion subtyping) are very interesting in computer algebra, as in math-
ematics we deal with overloaded function names and with set hierarchies.
The semantic base of OBJ-3 is the theory of order-sorted algebras (e.g. [GM89]). Therefore, we generalize the
theory to polymorphic order-sorted algebras. For our theory we extend the theory of Smolka [Smo88].

2 The Functional Programming Language OBJ-P

2.1 Types, Signatures, and Equations

The types of OBJ-P programs are sorted type terms Te{TV) over a finite rank alphabet 6> of type constructors
and a set of type variables TV.

Example 1. The following OBJ-P type term declaration determines the types of the integer numbers, non-scalar
vectors, vectors, and matrices.

sorts Int nsVector(a) Vector(a) Matrix(a) .
subsort nsVector(a) < Vector(a) .

subsort Vector(nsVector(a)) < Matrix(a) .

The basic part of the corresponding infinite type term ordering is given by the following Hasse diagram:

Vector(x)

nsVector(x)

Matrix(x) Vector(Vector(x))

Vector(nsVector(x)) nsVector(Vector(x))

nsVector(nsVector(x))

This example is completed later to the OBJ-P program MATRIX.

The signatures of OBJ-P programs are defined as polymorphic order-sorted signatures. [P1Ü99]

 Plümicke M. Polymorphism in OBJ-P 101

Example 2. The following OBJ-P program describes the signature of the sum function over integer number,
vectors, and matrices, where the type term ordering is the same as in example 1.

op scalar : a -> Vector(a) .
op vec : a Vector(a) -> nsVector(a) .
op + : Int Int -> Int .
op + : Vector(Int) Vector(Int) -> Vector(Int) \ ■
op + : Matrix(Int) Matrix(Int) -> Matrix(Int) .

[GM89] gives a regularity condition for order-sorted signatures. This condition guarantees that each term over
a regular order-sorted signature has a least type.
We generalized this regularity condition for polymorphic order-sorted signatures such that each term has a least
principal type. [P1Ü99]
The semantics of OBJ-P programs is defined as polymorphic order-sorted algebras [P1Ü99], which is declared in
OBJ-P programs by recursive equations over the signature.

Example 3. The OBJ-P program MATRIX is now completed by the equations.

obj MATRIX is
*** type and signature declarations

vars si s2 : Int .
vars vl v2 : Vector(Int) .
eq +(scalar(sl), scalar(s2)) = scalar(+(si, s2)) .
eq +(vec(sl, vl), vec(s2, v2)) = vec(+(sl, s2), +(vl, v2)) . ■ " '
vars vsl vs2 : nsVector(Int) .
vars vvl vv2 : Vector(nsVector(Int)) .
eq +(scalar(vsl), scalar(vs2)) = scalar(+(vsl, vs2)) .
eq+(vec(vsl, vvl), vec(vs2, vv2)) = vec(+(vsl, vs2), +(vvl, vv2)) .

endo

2.2 The Module System of OBJ-P

We present the powerful module system with an interesting example, which shows the enormous possibilities of
overloading and set inclusion subtyping in connection with module hierarchies.
The module hierarchy presented in this example describes the sum of polynomials over rings. The parameters of
this module are the ring over which the polynomials are defined and the sum over the ring elements, respectively.
The appendant product function is presented in [P1Ü99].
The function symbol + is overloaded with the sum over the ring elements, the monomials, and the polynomials
over the ring, respectively. There is a predefined module Int. which exports usual functions about numbers.

The Recursive Representation of Polynomials In the SAC LIB [BCE+92] computer algebra library, poly-
nomials are described in the recursive representation.
The OBJ-P sorts declaration in the OBJ-P module Polynom represents recursive polynomials over any ring.

module Polynom (nmPolynom(Ring), nrMonom(Ring),
mono: Ring nzCard -> Monom(Ring), *** exports
poly: Monom(Ring) Polynom -> nmPolynom(Ring))

[sorts Ring, Polynom] is *** parameters
import Int .
sorts Monom(a) nmPolynom(a) .
subsorts Ring Monom(Ring) mnPolynom(Ring) < Polynom .
op mono: Ring nzCard -> Monom(Ring) .
op poly: Monom(Ring) Polynom -> nmPolynom(Ring) .

endm

In the module two type constructors Monom and nmPolynom are declared. The type Monom (Ring) stands for the
set of monomials with exponents greater than 0 and nmPolynom(Ring) stands for the general polynomials (the
non-monomial polynomials). Both types are parameterized by the module parameter Ring which stands for the
type of the ring elements. The other module parameter is Polynom. It stands for the type of the union of all
ring elements (Ring), all Monomials (Monon(Ring)), and all non-monomial polynomials (nmPolynom(Ring)). The

102 Perspectives of System Informatics'99

exported sorts are nmPolynom(Ring) and Momon(Ring), while the exported constructors (function symbols) are
mono and poly.

A polynomial in this representation consists of a list of monomials with the list constructor poly. In this
representation the names of the variables are unknown.
Now we give an example. Let us consider a polynomial in two variables:

xl + (3xl+2x1+l)xl + (x2
1+x1+l)x2 + (x2

1+x1 + 12).

For polynomials in two variables we must import the module Polynom twice:

import Polynom[Ring = Int, Polynom = Polynomi].
import PolynomtRing = Polynomi, Polynom = Polynom2].

where Polynomi (stands for Z[x{\) and Polynom2 (stands for Z[xx][x2}) are new sorts, which are instantiated in
the imported modules. Then, the above polynomial is represented by:

poly(mono(mono(1, 0), 3),

poly(mono(poly(mono(3, 3), poly(mono(2, 1), 1)), 2),
poly(mono(poly(mono(l, 2), poly(mono(l, 1), 1)), 1),

poly(mono(l, 2), poly(mono(l, 1), 12)))))

It is an element of the ring Z[a;i][i2]. Therefore, the type is Polynom2.
Ifwe have a closer look at the representation (Poly(mono(l, 2), poly (mono (1, 1), 12))) of the coefficient {x\ +
f1 + Ul (last lme) we notlce that its ^Pe is Polynomi instead of Polynom2. This is possible as the type Polynomi
is a subtype of Polynom2 induced by the subsort declaration Ring < Polynom in module Polynom through the
second import. On the other hand, the type of the monomial x\ (represented by mono (mono (1, 0), 3)) is
Monom(Monom(Int)) and not Monom(Int) as Z[x2] is not a subset of Z^]^].
The main difference to the usual recursive representation of polynomials is the following: A polynomial p G
R[zi]... [Xn-i] is usually represented in R[xi]... [xn] asp-x°n and not as p like in our representation. This is
only possible, because OBJ-P allows set inclusion subtyping and multiplied importation of one module with
different parameter instantiations.

Sum of Polynomials

module PolynomSUM (+: Polynom Polynom -> Polynom) *** exports
[sorts Ring Polynom, op +: Ring Ring -> Ring] is

import Int . ^t parameters
import PolynomERing = Ring, Polynom = Polynom]. *** import where

*** the parameters
op +: Polynom Polynom -> Polynom . *** are instatiated

vars coel coe2 re : Ring .
vars expl exp2 : nzCard .
vars pi p2 : Polynom . ,
var m : Monom(Ring) .
eq +(mono(coel, expl), re) = poly(mono(coel, expl), re) .
eq +(poly(m, pi), re) = poly(m, +(pl, re)) .
eq +(mono(coel, expl), mono(coe2, exp2)) = ...
eq +(poly(mono(coel, expl), pi), mono(coe2, exp2)) =

if (expl > exp2) then poly(mono(coel, expl), +(pl, mono(coe2, exp2)))
else '

if (exp2 > expl) then poly(mono(coe2, exp2), poly(mono(coel, expl), pi))
else poly(mono(+(coel, coe2), expl), pi) fi fi .

eq +(poly(mono(coel, expl), pi), poly(mono(coe2, exp2), p2)) =
eq +(pl, p2) = +(P2, pi) .

endm

In the module PolynomSUM there is a function call named by the overloaded function symbol + (underlined)
This functior. call produces either a recursive call (depended on the argument type) or the call of the module
parameter + function. This is an example for the overloading feature in OBJ-P.

Plümicke M. Polymorphism in OBJ-P 103

The module PolynomSUM is a parameterized module similar to the module Polynom. Now we present different
possibilities to import these two modules.

Polynomials over the Integer Numbers

module Int2PolynomSUM is
sorts Polynoml Polynom2 .
import Int .
import PolynomSUM [Ring = Int, Polynom = Polynoml,

+ = +: Int Int -> Int] .
import PolynomSUM [Ring = Polynoml, Polynom ■ Polynom2t

+ = +: Polynoml Polynoml -> Polynoml] .

op Main: Polynom2 Polynom2 -> Polynom2 .
vars x y : Polynom2 .
eq Main(x, y) = + (x, y) .

endm

The module PolynomSUM is imported twice. While in the first import the parameters of PolynomSUM are instantiated
by Int, Polynoml, and +: Int Int -> Int, in the second import the parameters Ring and +: Ring Ring -> Ring
are instantiated by the already imported types Polynoml and +: Polynoml Polynoml -> Polynoml and Polynom is
instantiated by the additionally declared type polynom2. Finally, the function Main define the polynomial sum
over the ring Zjari]^].
We notice that the type Polynoml is the union of Int, Monom(lnt), and nmPolynom(lnt) while Polynom2 is the union
of Polynoml, Monom (Polynoml), and nmPolynom(Polynoml). From this follows that the Main function is enormously
overloaded. Main is applicable to integer numbers, to polynomials in the variable xi as well as to polynomials in
the variables xi and X2, and to the mixture of all these types. This is a very natural way to overload the sum
function. In languages like Haskell [PH+97] this is impossible, as we have shown in [P1Ü99].

Polynomials over Z/n The ring over which the polynomials are defined is now Z/n. We assume that there is
module Zmodn, which is parameterized by n and where the sum function of Z/n is exported.

module Zmod43PolynomSUM is
import Int .
import Zmodn [n = 4] as Zmod4 . *** the identifiers id are used

*** qualified as Zmod4.id
sorts Polynoml, Polynom2, Polynom3 .

import PolynomSUM [Ring = Card, Polynom = Polynoml, + = Zmod4.+: ...] .
import PolynomSUM [Ring = Polynoml, Polynom = Polynom2, + = +: ...] .
import PolynomSUM [Ring = Polynom2, Polynom = Polynom3, + = +: ...] .
op Main: Polynom3 Polynom3 -> Polynom3 .
vars x y :-Polynom3 .
eq Main(x, y) = +(x, y)

endm

The Main function defines the sum of polynomials over Z/4[a>i][a:2][a;3]-
This example shows the possibilities for reuse code in OBJ-P. It is possible to give a new sum function (in this
example from module Zmodn) and assign them to the function parameter + in the module PolynomSUM, while the
code of PolynomSUM is unchanged.

Summary The subtyping feature of OBJ-P allows to represent polynomials p 6 R[xi]... [xm] in the supertype
R[xi]... [xn], (m < n) identical as in R[xi]... [xm]. This is not possible in other programming languages.
Furthermore, the subtyping feature enables the sum function to have only two arguments, instead of three (the
number of variables) as would usually be expected (cf. SACLIB [BCE+92]).
Additionally, because of the overloading feature of OBJ-P, there is the same function symbol for the sum
function over ring elements, monomials, and polynomials, although these sets of elements are represented by
different types.

— : Perspectives of System Informatics'99

3 Conclusion and Further Work ~

We have presented the programming language OBJ-P, which has the special features of overloaded function
symbols, set inclusion subtyping, and parametric polymorphic types. OBJ-P is very suitable for computer alge-
bra as in the mathematics we deal often with overloaded function names and set hierarchies. The combination
of these features with a module system presents more possibilities to overload function symbols than in Haskell.
Adcht onally m [Plu99] we have denned a type inference system and a corresponding type reconstruction
algorithm, which allows us to omit the declarations of the function symbols and the variable declarations in
UBJ-r programs.

References

[BCE+92] B Buchberger G. Collins, M. Encarnacön, H. Hong, J. Johnson, W. Krandick, A. Mandache, A. Neubacher
rmiM ^ H- Vielhaber. SACLIB User's Guide (version 1.0), September 1992
IGM89J J. A. Goguen and J. Meseguer. Order-sorted algebras I: Equational deduction for multiple inheritance

FGWM+MI 7A
ar S' e*T™nir*^&l °Perati0nS' TeChniCal reP°rt' SRI International, July 1989. '

S\] R w M°f6n' luW?ileT' J- MeS6gUer' K- PutatSUgi' and J-R J°*aBnaud. Introducing OBJ, October 1993
gl feiner. The definition of Standard ML (Revised). MIT Press, Cambridge, Mass , 1997.

199?. ' Vm Hamm0nd' et aL ReP°rt °* the Programming language Haskell, version 1.4, April

[P1Ü99] »de. OBJ-P The Polymorphic Extension of OBJ-3. PhD thesis, University of Tuebingen,

tSm088] iTn !r°i/ka,LOgiC »?rmiinS WitH PolymorPhica»y order-sorted types. Proc. First International Work-
shop on Algebraic and Logic Programming, Springer-Verlag, LNCS 343:53-70, 1988. Gaussig, GDR.

Concurrency and Parallelism

Formal Modelling of Services for Getting a Better Understanding
of the Feature Interaction Problem

A multi-view approach

Paul Gibson1 and Dominique Mery2

1 NUI Maynooth, Ireland
email: pgibson@cs.may.ie

2 Universite Henri Poincarö-Nancy 1 & LORIA UMR 7503 CNRS
Campus Scientifique, BP 239,

54506 Vandoeuvre-les-Nancy, (Prance)
email: mery@loria.fr

Abstract. We report results of a joint project with France Telecom on the modelling of telephone services
(features) using formal methodologies such as 00 ACT ONE, B and TLA+. We show how we formalise the
feature interaction problem in a multi-view model, and we examine issues such as animation, validation,
proof and verification.

1 Introduction

In this section we briefly introduce the need for formal methods in software engineering, the use of formal
methods to help resolve the feature interaction problem, and the particular formal methods we adopt in our
mixed-semantic model.

1.1 Formality

Many software engineers do not acknowledge the value of formality. In 1993, a major study [13] concluded
by stating: "... formal methods, while still immature in certain important respects, are beginning to be used
seriously and successfully by industry to design and develop computer systems ..." We believe that formal
methods are, five years later, just about ready for transfer to the industrial development of telephone features.
Like all forms of engineering, one must always compromise between quality and cost. In telephone systems, it
appears that the cost of resolving interactions between features at the implementation stage is now (or will
soon be) greater than the cost of developing formal features requirements models and eliminating many of the
potential interactions before implementation begins. Formal methods in this domain should be regarded as an
investment for the future.
There are a wide and varied range of definitions of formal method which can be found in the majority of texts
concerned with mathematical rigour in computer science. The most common methods used for telephone feature
specification are reviewed in [42]. For the purposes of this paper we propose the following definition: A formal
method is any technique concerned with the construction and/or analysis of mathematical models which aid the
development of computer systems. Formal methods are fundamentally concerned with correctness: the property
that an abstract model fulfils a set of well defined requirements. In this paper, we are concerned with the
construction of such requirements models.
A formal model of requirements is unambiguous — there is only one correct way to interpret the behaviour
being defined. Although the model must still be mapped onto the real world (i.e. validated by the customer),

106 Perspectives of System Informatics'99

this mapping is in essence more rigorous than in informal approaches. Building a formal model requires a better
understanding of the problem domain and a better understanding of how the problem domain is viewed by the
customer.
A major problem when using formal methods in software engineering is that much of the recent research places
emphasis on analysis rather than synthesis. The means of constructing complex formal models is often overlooked
in favour of techniques for analysing models.
Re-usable analysis techniques will automatically arise out of re-usable composition mechanisms. Formal method
engineers need to learn techniques for building very large, complex systems. Such techniques have been followed,
with various degrees of success, by programmers. In particular, object oriented programmers have evolved
techniques which have been successfully transferred to the analysis and design phases of software engineering.
Where better then to look for aid in the construction of large formal models?

1.2 Feature Interactions

A feature interaction is a situation in which system behaviour is specified as a composition of some set of features-
each individual feature can meet its requirements in isolation but all features cannot meet their requirements
when composed.

The problem of feature interaction is a major topic in telecommunications where formal methods have been
usefully applied. There is no single technique which addresses all the aspects of the problem, but the most
commonly used approaches that have been used to tackle the problem, at the requirements stage, are: SDL [29,
30], LOTOS [18,7,17], state machine and rule based representation [19], and temporal logic[4,3,11], .

1.3 Our formal models

In our formal approach, interactions occur only when requirements of multiple features are contradictory The
complexity of understanding the problem is thus contained within a definition of contradiction in our semantic
framework. We have argued that in most of the feature interaction examples found in published texts, there
is no generally accepted standard formal definition of feature interaction[25,43,6,9,15]. In fact, most of the
interactions which we studied correspond to incomplete and informal requirements models. In'other words
if the features were modelled better then we would be able to better understand what is and what isn't an
interaction.

LOTOS (Language Of Temporal Ordering Specifications), see [40,28], is a wide spectrum language, which is
suitable for specifying systems at various levels of abstraction. Consequently, it can be used at both ends of
the software development spectrum. Its natural division into ADT part (based on ACT ONE [161) and process
algebra part (similar to CSP [26] and CCS [37]) is advantageous since it provides the flexibility of two different
semantic models for expressing behaviour, whilst managing to integrate them in a relatively coherent fashion -
LOTOS provides an elegant way to specify services and to detect interaction among services; it allows the user

tnSS?xiS^Ci6S ^ a comPositional manner and Jt Provides a set of tools such as LITE from the project
, ? T ' t0 aSS1S* m ServiCe enSineerinS- Questions regarding fairness cannot be easily expressed or

solved in LOTOS: modeling fairness requires us to state properties on traces, or a scheduling policy, and LOTOS
has not yet integrated fairness constraints.
W^n AT

d L0T0S in our pr°Ject and compared the expressivity of different languages such as B, TLA+
and 00 ACT ONE LOTOS [23]; our conclusions are clear on the expressivity of TLA, and on the availability
of practical development environments for B and LOTOS. The style of specification plays a very important
role and the approach of Gammelgaard [19] is automaton-oriented, their approach uses a specification language
based on transition systems as predicates. The weakness of their solution relies on the partial view of details
but a sound and semantically complete reasoning system is required. The solution using TLA [31 241 borrows
the initial idea from their model, but TLA has the advantage of a very carefully equipped proof system. Finally
as the temporal framework can be very expressive, we need a computer-aided proof environment and more
generally applicable software environments based on these formalisms.
Blow et Al. [3] and Middelburg [36] investigate the use of temporal logic for specifying services; Blom uses a
temporal logic integrating the reactive and the frame parts for services. Middelburg introduces a temporal logic
ot branching time and restrict its expressivity to obtain a TLA-like logic.
In fact, the integration of very different formalisms such as TLA, B and LOTOS is a way to improve service
engineering. B is simple and a tool helps the user in developing specifications: we do not claim that B will solve

(see http://wwwtios.cs.utwente.nl/lotos/)

 Gibson P., Miry D. Formal Modelling of Services 107

the entire problem but it is very helpful in the building of requirements models for telecommunication services.
As we emphasize B as a tool for developing services specifications using a theorem prover, another crucial
element of B is its animator. Several problems are detected by animation which do not need to be resolved by
the prover. We have explored B as a tool for service engineering, although it was not one of the original goals of
the language. Another point is that B and TLA are very close, at least for the action part; we have studied the
integration of B and TLA [35] to re-use the B tools for TLA and to extend the scope of B by temporal features.
Our paper is organized as follows. Section 2 describes our mixed model involving different aspects of the formal
development. Section 3 introduces service requirements. Section 4 gives details on the way we model services in
TLA+; we explain how our mixed views can be checked to be coherent. Section 5 concludes our paper.

2 A Mixed Semantic Model

We have shown the need for a mixed semantic model when specifying telephone feature requirements [22]. Such
a model is used to provide three different client views:

- An object oriented view which provides the operational semantics used during animation for validation, and
the structuring mechanisms which are fundamental to our approach. This view is formalised using an object
oriented style of specification in LOTOS [20].

- An invariant view which allows the client to describe abstract properties of a system (or component)
which must always be true. This view is formalised using B and leads to the automatic detection of many
interactions [33,34].

- A fairness view which allows the client to describe properties of the system which must eventually be true
even though they have no direct control over them. A temporal logic provides an ideal means of specifying
and verifying such requirements [23].

2.1 Objects and Classes

Labelled state transition systems are often used to provide executable models during the analysis and require-
ments stages of software development [12,14]. In particular, such models play a role in many of the object
oriented analysis and design methods [5,10]. However, a major problem with state models is that it can be
difficult to provide a good decomposition of large, complex systems when the underlying state and state tran-
sitions are not fully understood. The object oriented paradigm provides a natural solution to this problem. By
equating the notion of class with the state transition system model, and allowing the state of one class to be
defined as a composition of states of other classes, we provide a means of specifying state transition models in a
constructive fashion. Further, such an approach provides a more constructive means of testing actual behaviour
with required behaviour.
This state based view forms the basis on which we build our feature animations and permits behaviour validation
in a compositional manner. However, such operational models are not good for formal reasoning about feature
requirements [44]: for this we need to consider specification of state invariants and fairness properties.

2.2 Invariants

Invariants are used to specify properties of a system which must always be true for reachable states. Within the
object oriented framework we have three kinds of invariant:

- Typing: By stating that all objects are defined to be members of some class we are in fact specifying an
invariant. These invariants are verified automatically by our object oriented tools.

- Service requests: Typing also permits us to state that objects in our system will only ever be asked to
perform services that are part of their interfaces. These invariants are also verified automatically by the
object oriented tools.

- State Component Dependencies: In a structured class we may wish to specify some property that
depends on the state of two or more of the components, and which is invariant. This cannot be statically
verified using the object oriented tools, but it can be treated through a dynamic analysis (model check).
Unfortunately, such a model check cannot be guaranteed when we have a large (possibly infinite) number
of states in our systems. For this reason we need to utilise a less operational framework. By translating our
state invariant requirements into B, we have been able to statically verify our state component invariants.

Jü§ Perspectives of System Informatics'99

2.3 Nondeterminism and fairness

TLA is a temporal logic introduced by Lamport [31] and based on the action-as-relation principle. A system is
considered as a set of actions, namely a logical disjunction of predicates relating values of variables before the
activation of an action and values of variables after the activation of an action; a system is modeled as a set
of traces over a set of states. The specifier may decide to ignore traces that do not satisfy a scheduling policy
such as strong or weak fairness, and temporal operators such as D (Always) or O (Eventually) are combined to
express these assumptions over the set of traces. Such fairness is important in feature specification and cannot
be easily expressed using our state based semantics. The key is the need for nondeterminism in our requirements
models.

Without a temporal logic, nondeterminism in the features can be specified only at one level of abstraction: namely
that of an internal choice of events. This can lead to many problems in development. For example, consider the
specification of a shared database. This database must handle multiple, parallel requests from clients. The order
in which these requests are processed is required to be nondeterministic. This is easily specified in our object
model. However, the requirements are now refined to state that every request must be eventually served (this is
a fairness requirement which we cannot directly express in our semantic framework). The only way this can be
done is to over-specify the requirement by defining how this fairness is to be achieved (for example, by explicitly
queuemg the requests). This is bad because we are enforcing implementation decisions at the requirements level
With TLA we can express fairness requirements without having to say how these requirements are to be met.

2.4 Composition Mechanisms

Composition is primarily a question of re-use: given two already specified components, how can we create a new
component from those given? A composition mechanism defines a creation mechanism which is reusable (i e
can be applied to different sets of components). Clearly, we have to be more precise as to the meaning of a
component. ^From the customer's point of view, and hence at the requirements level of abstraction, a component
must be some piece of behaviour which can be validated independently. In other words, a component must be
able to be seen as a model of behaviour in its own right. We give an overview of the composition techniques from
each of our three different view points and argue that a user oriented view would be best during requirements
capture:
(1) Object oriented composition in LOTOS:
LOTOS [8] is made up from an abstract data type part [32], and a process algebra part [26]. Clearly there are
ways of composing behaviours in each of these models. However, the object oriented composition is at a higher
level of abstraction. We do not compose with language operators; rather we compose using object oriented

(2) Invariant composition (in B):
B [1] is a model-oriented method providing a complete development process from abstract specification towards
implementations through step-by-step refinement of abstract machines. An abstract machine describes data
operations and invariant preserved by every operation. Abstract machines are composed by conjunction of its
invariants and combination of operations. The resulting abstract machine may either preserve the resulting
invariant, or invalidate it. The violation of the invariant is interpreted as an interaction [34] and is in fact an
interference between operations: it is a way to detect interaction among services specified as abstract machines
Ihe mam advantage of B is that it is supported by a powerful sofware environment, namely the Atelier B [39]
The B method [1] is itself a conceptual tool for specifying, refining and developing systems in a mathematical
and rigorous, but simple way.
(3) Fairness composition (in TLA):
The composition of fairness assumptions in TLA is done at a high level of abstraction and is preserved through
the composition process. A model for a TLA formula is an infinite trace of states, and a TLA specification is
made up of three parts:

- the initial conditions, Init,
- the relation over variables, Next(x,x'), and

- the fairness constraints, /\ WFX(A) A f\ SFX(A) (we require that A =» Next(x,x'), for all A in
A6WFA AeSFA

WFA or SFA to ensure the machine-closure property).

Fairness constraints remove models or traces that do not satisfy them. A service is characterized by a set of
flexible variables, initial conditions, a next relation over variables and fairness contraints. When combining

Gibson P., Mery D. Formal Modelling of Services 109

two services, we increase the restrictions over traces but we extend the models by adding new variables. TLA
provides an abstract way to state fairness assumptions but in our approach this unfriendly syntax is hidden
from the customer. We encapsulate fairness within each object as a means of resolving nondeterminism due to
internal state transitions. This is a simple yet powerful way for the fairness to be structured and re-used within
our requirements models.
(4) Feature composition (user conceptualisation):
In an ideal world, feature composition would be done using concepts within the clients' conceptual model of
their requirements. Clients cannot be expected to express themselves using formal language operators. This
does not mean that they cannot express themselves formally. It is the role of the analyst to map the clients'
composition concepts onto composition methods in the formal model. For now, we are forced to communicate
through the object oriented models (which could be argued to be client friendly). In the future we hope to
develop a modeling language based on client concepts rather than modeling language concepts.

3 Requirements for features

3.1 Requirements Modeling: Customer Orientation

Requirements capture is the first step in the process of meeting customer needs. Building and analysing a model
of customer needs, with the intention of passing the result of such a process to system designers, is the least
well understood aspect of software engineering. The process is required to fulfil two very different needs: the
customer must be convinced that requirements are completely understood and recorded, and the designer must
be able to use the requirements to produce a structure around which an implementation can be developed and
tested. In this paper, we concentrate on the customers' point of view, whilst noting that the object oriented
approach does lend itself to meeting the designers' needs [21]. We advocate such a customer oriented approach
since it is generally agreed that customer communication is the most important aspect of analysis [27,38,41].
The fundamental principle of requirements capture is the improvement of mutual understanding between cus-
tomer and analyst, and the recording and validation of such an understanding in a structured model. The
successful synthesis of a requirements model is dependent on being able to construct a system as the customer
views the problem. [2,25] illustrate this point with respect to feature models.

3.2 Feature Interaction: What's new?

We concentrate on the domain of telephone features, where the problem has been acknowledged for many
years![6,9]. Figure 1 illustrates the problem within the formal framework which we adopt throughout this
paper. We note that the means by which features are composed is not specified.
Features are observable behaviour and are therefore a requirements specification problem [45]. Many feature
interaction problems can be resolved through communication with the customer during requirements capture.
Given a feature requirements specification which is not contradictory, interaction problems during the design
and implementation will arise only through errors in the refinement process. Certainly the feature interaction
problem is more prone to the introduction of such errors because of the highly concurrent and distributed
nature of the underlying implementation domain, but this is for consideration after each individual feature's
requirements have been modelled and validated. We have extended the work given in [25], where the composition
of features was done in an ad-hoc fashion, by identifying and formalising re-usable composition mechanisms.
The configuration of multiple features will be shown to depend on the way in which individual features are
composed with POTS (plain old telephone service).
Features are requirements modules and the units of incrementation as systems evolve. A telecom system is a
set of features. Having features as the incremental units of development is the source of our complexity. An
understanding of feature composition helps us manage the four main sources of this complexity —
(1) State explosion:
Potential feature interactions increase exponentially with the number of features in the system and traditional
model checking techniques cannot cope with the complexity. The fundamental problem is that analysis can-
not be done compositionally. We argue that compositional (re-usable) analysis depends on having a formal
understanding of the composition mechanisms. This is the main goal of this work.
(2) Chaotic Information Structure In Sequential Development Strategies:
The arbitrary sequential ordering of feature development is what drives the internal structure of the resulting
system. As each new feature is added the feature must potentially include details of how it is to be configured

110

Feature 1
Perspectives of System Informatics 99

(animator)
«■ ' -» ,_ dynamic validation fr

/ Informal ^ W »njal
V Requirements; * m-°-del

s, s

i — — —>
static validation

property list Pl=
Pll Pin

verification

Feature 2

(animator) ^ ,.
«" ""» ^-- dynamic validation^ /formaT

' Informal N. W mo<1"
» R flrl n i ram antn / ' Requirements'

I

static validation

property list P2=
P21,...,P2n

verification

Featurel and Feature2

composition

Properties list
P12 =

Pll,..., Pin
P21,...,P2m

-s». verification _^_

Interaction Definition

|Interact(Fl,F2)iff *
Fl satisifesPl and '
F2 satisfies P2 and |
not(F12 satisfies (PI2))

Fig. 1. Feature Interaction: A formalisation

with all the features already in the system. Consequently, to understand the behaviour of one feature it is

th?riTyw eXanpr thffedfiCati0n °f a11 the featureS in the S^stem- A" «»oeptual integrity s lo 's no
he dlstnbut10n of knowledge is potentially chaotic. At the moment this is certainly true. Hoover we believe

TCZ^Zf5^0" °f tWS COnfi9UraUOn kn0Wkd°e by ^^ * *** * re-u'Sableb
Strf

(3) Implicit Assumption Problem:

rlntdy de
+T

lo
f
pe^ features oft,en reJy on sumptions which are no longer true when later features are conceived

Consequently, features may rely on contradictory (implicit) assumptions. This is a great source cf££S™

rÄs^r"*formaiise their (expiidt) assumptions-by ^ *«»-* ---
(4) Independent Development:

Traditional approaches require a new feature developer to consider how the feature operates with all ntW,
already on the system. Consequently, we cannot concurrently develop new featureB^^T^fe^

riÄr 7 r be C°nSidered by either °f the tw° ****»*«* feature developer"S^problfm
amplified if feature developers can configure features in any way that they wish.

Feature Interaction: An incremental development view

In figure 2, we take POTS as one requirement model. We note that to extend this base requirement with a
new feature we must define a means of composing POTS with this feature, or, as iM^le^ZTl^
use a previously defined mechanism. Unfortunately, for two different features there is no guarantee tha we

^z^t^:z::t^riant) on the way in which the parts are co^™d * <*^ * **■*-
Given such a composition technique we must now address the problem of integrating Featurel and Feature2
n the same set o reqmrements. In figure 3, we see that an interaction occurs if the JiL£Sto£™£ 1^£
wo features and/or the two composition mechanisms are contradictory. Properties are «SSbHrc^

^^-^^^^^-^—■*- - *i-u the>ääSS

ml" st^rar diferent WayS ^ WMCh W ^ WiSh t0 C°mP0Se the *™ -P-nts. The four

Gibson P., Miry D. Formal Modelling of Services 111
Composition Set

Feature)

Satisfies F2 J I Satisfies Fl 1

Composition!

POTS + Featurel Satisfies P and Fl iff

/ C roTs) \
Jnvl(POTS,Featurel)

(\^ \ where, Invl is an invariant

of the composed system

\ (Feature! j / which is enforced by the
composition mechanism
compl

Composition2

POTS + Feature2

N-\

Satisfies P and F2 iff

Inv2(POTS,Feature2)

where, Inv2 is an invariant
of the composed system
which is enforced by th
composition mechanism
comp2

Composition!

POTS + Featurel

Fig. 2. Incrementing POTS

Satisfies P and Fi iff

Invl(POTS,Fearurel)

and P and F2

where, Invl is an invariant
of the composed system
which is enforced by the
composition mechanism
compl

. Composition

Satisfies P and F2 iff

Inv2(POTS,Feature2)

and P and F2

where, Inv2 is an invariant
of the composed system
which is enforced by th
composition mechanism
comp2

N ^ Configure (POTS.Featurcl ,Feature2)

t compl

) ^- (POTS) * (^Feature?))

comp2 " -VT^ ' T^' >

SatisfiesPandFlaildF2iff

lnvl(POTS,Featurel)
and
Inv2(POTS, Feature2)
and

PandFl andF2

Fig. 3. Integrating Two Features

-Composel(compl(POTS,featurel), feature2), where we compose the feature2 with the component
which results from a composition between POTS and the featurel.

- Compose2(comp2(P0TS,feature2), featurel), where we compose the featurel with the component
which results from a composition between POTS and the f eature2.

- Compose3 (POTS, comp3 (featurel, feature2)), where we first compose the two features and then compose
this new component with POTS.

- Compose4(P0TS, featurel, feature2), where we define a new composition mechanism which acts on all
three components.

The feature composition problem is certainly difficult (even when there are only 2 features); now we argue that
having formal requirements models makes it manageable, but we need to develop a methodology for composing
features

4.1 Modelling services

A service is an extension of POTS, POTS is the basic service, providing functionality to the customer for
interacting with the switch and the billing system. The modeling of services is based on the view of services
as processes altering a set of calls. The current state of a service is characterized by an invariant over calls. A
call is a structure that manages and describes the current parameters as the caller, the callee, the call state,
the paying party ... However, a call may be extended into another call by operations over calls such as fusion,

112 Perspectives of System Informatics'99

(use/)- -^(user)

©—0

Fig. 4. View of services through calls

completion etc. It means that calls are central concepts in our modelling but this makes the modelling more
flexible. More generally, a call is a structure recording the current participants, the connection, the state, the
billing. We use the TLA+ syntax for writing service specifications, as follows:
COEF — 0..100 used to definethe percentage for contributing in the biling

CALLS =
[party : SUBSET USERS,
linkcall : SUBSET (USERS x USERS),
paycall : SUBSET {USERS x USERS x USERS x COEF x TIME x TIME)
com : SUBSET (USERS x USERS),
state : CALLSTATES]

Variables such as calls, phones, tones, messages, billings, services are typed according to the following typing
invariant. We define it and operations or actions which have to preserve it.

Typing-Variables-Invariant =
A calls € CALLS
A phones e [USERS -> PHONESTATES] '
A tones € [USERS -> TONESTATES]
A messages 6 [USERS -» SUBSET STRING]
A billings e USERS x COEF x USERS x COEF x TIME x TIME
A services € USERS -> SUBSET SERVICES

Now, we can incrementally add new operations that are either activated by users or customers, or by the telecom
systems. The basic service, called POTS, provides the following operations :.

- off-hook
(*

'■•)

A user can off hook the phone because he/she wants to call somebody

somebodyelse is calling him/her. The switch will reply either by

sending a dialtone or by starting the communication.

 Gibson P., Miry D. Formal Modelling of Services 113

OFFHOOKCALLING(Xcalkr) =
A phones' = [phones !EXCEPT[Xcaller] = "offhook"]
A tones' = [tones !EXCEPT[JLcaller] = "notone"]
A UNCHANGED < tones, calls, messages, billings, t >

Y wants to can sbmeb^

OFFHOOKRINGING(X,Y,Xcall) =
A Xcall £ calls
A{X,Y} C Xcall.party
A tones[X] = "ringing"
A tones[Y] — "ringbacktone"
Atones' = [[tones !EXCEPT[X] = "notone"] !EXCEPT|Y] = "notone"]
A phones[Xcalled] ^ "offhook" =» phones' = [phones \EXCEPT[Xcaller] = "offhook"]
A pftones[Xco^e(f] = "offhook" =*■ phones' = phones
A UNCHANGED < calls, messages, billings, t, services >

Xcalled is called by somebody else and Xcalled is^ringing;

the operation is done by the user

- on-hook
- dial
- communication

We have added an event which is executed infmitly often to model the time, since we need to specify the starting
point of a call and the ending point of a call, for instance.

TICTAC = A t' = t + 1
A UNCHANGED < tones, calls, messages, billings,phones, services >

The global system, called POTS, is operationally defined as a disjunction of relations over primed and unprimed
variables (thanks to TLA),
we define the set of possible events of the basic system, called

PQTS

EventsBasicSystem = U OffHookCallingEvents
U OffHookRingingEvents
U OnHookFirstEvents
U UpdateCallsEvents
U FinalUpdateCallEvents
U OnHookLastEvents
U DialEvents
U SendingToneDialevents
U DialToneEvents
U CommunicationOkEvents
U CommunicationDownEvents
U CommunicationBusyEvents
U OnHookDownEvents
U OnHookBusyEvents
U Clean-Down-CallsEvents
U Clean-Busy-CallsEvents
U Clean-Completed-Calls
U {TICTAC}

Now we apply the'Next'operator to obtain the next relation

114 Perspectives of System Informatics'99

for the-operational semantics.

NextBasicSystem = Next(EventsBasicSystem)

TLA$+$ requires that we specify the variables of the system.

VarsBasicSystem = < messages, calls,phones, tones, billings, t, services >

Finally, we assume that every event is executed under weak fairness
assumption.

FairnessBasicSystem = WF{VarsBasicSystem,EventsBasicSsystem)

We have defined an operator assigning a formula from a set of formulae; it allows us to get a simpler way to
specify, since we have to give the set of possible events and to apply it on the current set of events. Now the
bare basic service is simply specified by the following formulae.

InitBasicSystem =
A calls = {}
A Vp e USERS : phones\p] = "onhook"
A Vp € USERS : tones[p] = "notone"
A billing = {}
A Vp G USERS : messages[p] = ""
A Vp £ USERS : services[p] = {"basic"}
At = 0

SpecificationBasicSystem =
A InitBasicSystem
AD[NextBasicSystem].{VarsBasicSystem}
A FairnessBasicSystem

The basic system provides the user basic functionalities required for calling somebody else. At this stage, a user
X can call only one user <Y<; if we increase the possibility of calling, we add a new functionality related to

a, new service Increasing the basic functionalities means that we allow the user additional operations- if N is

nrPtTLl^CtTwithnCUrrent SerVke'th6n a n6W functionality * obtained by adding another relation,
name y F as follows N V F. Composing is reduced to logical operations over relations on states, but we may
have transformations to do on relations. The user view of the service is like a reactive system. The modules for
FUlb have a very restricted scope, since the functionality of each is very limited.

4.2 Adding a new service

The user's view deals with operations such as subscribing, unsubscribing, paying, billing, and a service is gener-
al y characterized by at least two operations that enable or disable the service, when the user has subscribed- for

SdTust be'comes'idfe ""^ ** USer/Subscriber to be informed> whan another, whom he is calling

CCBS-activation(X) =
AX £ USERS
AX i CCBSsub
A CCBSsub' = CCBSsub U {X}
A CCBSJieap' = [x e DOM CCBSJieap U {X}

I-» IF x = X THEN {} ELSE CCBSJieap\x\\
A UNCHANGED < list-ofjanchangedjoariables >

CCBSJnhibition(X) 4
AX e USERS
AX € CCBSsub

 Gibson P., Mery D. Formal Modelling of Services 115

A CCBSsub' = CCBSsub - {X}
A CCBS-heap' = [x E DOM CCBSJieap - {X} i-> CCBS-heap[x}}
A UNCHANGED < list-of-unchanged-variables >

It modifies the basic service, by strengthening operations of the callee; moreover, CCBS is a very interesting
service, since it requires the expression of a fairness constraint. A first step is to analyse what is shared by CCBS
and POTS and what is private or local for CCBS. We introduce two variables that will manage the current
subscribers of CCBS and the waiting users for re-calling somebody.

VARIABLES

CCBSsub, set of users that have subscribed to CCBS ;
CCBS-heap function defining heaps : :

The typing invariant of CCBS declares the role of those variables.

INVARIANT-CCBS = A CCBSsub C USERS
A CCBS-heap e [USERS -+ SUBSET USERS]

The next step is to define "side-effects" on events of the basic service. CCBS requires an event for dequeing
recalls for users having subscribed to CCBS; we call it CCBS-Dequeue(X,Y, Xcall) and it requires a fairness
assumption.

CCBS-Dequeue(X,Y, Xcall)
A tones[X] — "notone"
A phones[X] = "onhook"
A phones[Y] — "onhook"
A tones[Y] = "notone"
AX E CCBSsub
Atones' = [{tones IEXCEPT[X] = "ringing"]!EXCEPT[]f] = "ringing"]
A Xcall.state = "busyCCBS"
A Xcall € calls n CCBS.heap[Y]
A {X, Y} C Xcall.party
AhKTnewcall = CHOOSE c . A c G calls n CCBS-heap[Y)

A estate = "waiting"
A c.com = Xcall.com
A c.paycall = Xcall.pay call
A c.linkcall — Xcall.linkcall

IN A calls' = calls — {Xcall} U {newcall}
A CCBSJieap' = [CCBS-heap !EXCEPT[F] = @- {Xcall}]

A UNCHANGED < messages,phones, billings, calls, t, CCBSsub >

Now, we modify two events in the specification of the basic service, namely the COMMUNICATION-BUSY,
which manages calls when they are busy, and OFFHOOKRINGING, which manages when somebody is called
and this phone is ringing. Hence, we modify events of the basic service and add new events.
CBS-COMMUNICATION-BUSY(X,Y, Xcall) =
A Xcall E calls
A Xcall.state = "waiting"
A Xcall.party = {X, Y}
AX ^ Y
A3 c E calls :

Ac / Xcall
Aphones[Y] = "off hook"
A tones[Y] - "talking"
AYe c.party y

A estate = "active"
A X £ c.party
A phones[X] = "offhook"
A tones[X] = "dialling"

116 Perspectives of System Informatics'99

A LET newcall =
CHOOSE c . A c e CALLS \ calls

A estate = "busyCCBS"
A c.party — {X, Y}
A c.com = {}
A c.paycall — {}
Ac.linkcall = \<X,Y>}

IN A calls' = calls - {Xcall} U {newcall}
A CCBS-heap' = [CCBS-heap !EXCEPT[Y] = @ U {newcaZ?}]
Atones' = [tones IEXCEPTJX] = "CCBStone"]

A UNCHANGED < phones, messages, billings, t, CCBSsub >

CCBS-OFFHOOKRINGING(X,Y, Xcall) =
A Xcall G calls
A{X,Y} C Xcall.party
AV tones[X] = "ringing"

V tones[Y] = "ringing"
A <X,Y> Xcall.linkcall
AX € CCBSsub
Aphones[X]^"offhook" =» A phones' = [phones !EXCEPT[X] = "offhook"]

Atones' - [tones !EXCEPT[X] = "notone"]
A p/iones[X] = "offhook" => A phones' = [phones !EXCEPT[F] = "offhook"]

A tones' = [tones !EXCEPT[F] = "notone"]
A UNCHANGED < calls, messages, billings, t, CCBSsub, CCBS-heap >

Now, events of CCBS are defined as follows:

CCBS-events = ■
U UNION\(CCBS-activation, USERS)
U UNIONliCCBSJnhibition, USERS)
U UNION2{CCBS-Dequeue, USERS, USERS, CALLS)
U UNION2{CCBS.OFFHOOKRINGING, USERS, USERS, CALLS)

However, POTS is modified by the service CCBS, by restricting COMMUNICATION events when the called
user is busy; in fact, it leads to enqueue the busy called user. We define a restriction of the POTS service which
is modified and then we define a way to instantiate a system, defined by a set of events.

CCBS-Restriction(System} =
System — CommunicationBusyEvents
U ÜNIONa (CCBS-COMMUNICATION-BUSY, USERS, USERS, CALLS)

CCBSJnstance(System) = CCBS.Restriction(System} U CCBS-events

Properties of CCBS tells us that when somebody (X) calls somebody else (Y) and, if Y is busy, when Y will be
on hooked, the system will recall X and Y. X and Y will ring together, when fairness constraints are ensured.

CCBSPlusBSEvents = CCBSJnstance(EventsBasicSystem)
SpecCCBSPlusBS =

A InitBasicSystem
AlnitCCBS
A □ [Next(CCBSPlusBSEvents)]. < VarsBasicSystem, VarsCCBS >
A WF(VarsCCBS U VarsBasicSystem, CCBSPlusBSEvents)

THEOREM SpecCCBSPlusBS =» D INVARIANT.CCBS

f 'X' calls 'Y', while 'Y is busy and 'X* has subscribed 'GCBg',

Gibson P., Mery D. Formal Modelling of Services 117

then eventually 'Y' is appended to the waiting heap for 'X'
THEOREM

SpecCCBSPlusBS =»
(D (Calling(X,Y) A (X £ CCBSsub A Busy(Y)) ^ (X £ CCBSJieap[Y]))

if 'X' is in the waiting heap of 'Y', and if 'Y' has subscribed CCBS,

while 'X' is infmitly often busy, then eventually 'X' and 'Y' will

ring both
THEOREM

SpecCCBSPlusBS =$■
(X e CCBS.heap[Y] A □ (Y € CCBSsub) AGO-, Busy(X)

~> (RingingBdth{X,Y))

We have expressed the formal modelling of the basic service and of CCBS; now, we have to verify theorems and
to validate the specifications.

4.3 Coordinating views

Our model of services in TLA+ can be verified and validated using the Atelier B toolkit. This means that we
can verify invariants using a coding of our TLA specifications in B. Services can be viewed as abstract machines
or as TLA+ modules. The coordination of views means that properties that are observed in each model are not
contradictory. Our model of services in TLA+ can be verified and validated using the Atelier B toolkit, since
our TLA+ specifications are made up of imperative actions, namely actions are written as x' = fix) where f{x)
is an expression codable in B. Services in TLA+ can be viewed as B abstract machines, but this leads us to
forget fairness issues. However, it means that we got a framework for animating and verifying the B view of a
TLA+ specification. It is clear that our approach is based on the use of a theorem prover but one can also use
a model-checking-based tool.

4.4 Validation and Verification

We give a graphical representation of our formal models. The graphical syntax is informally explained and, where
appropriate, we comment on how the formal meaning is captured using LOTOS, B and TLA. The semantics are
clearly based on a state transition model and, as such, are easily communicated to the client through a process
of animation.
We have specified a simple (POTS) client-oriented model of phone behaviour. This is sufficiently complex to
illustrate the graphical syntax, in figure 5, being employed to communicate the formal semantics with the client.
The following aspects of the specification should be noted:
The header
The name of the class (Phone) being specified is given first in the header of the diagram. The other classes
which are used in the specification of the new class are listed after the USING keyword: the Phone uses classes
signal and on-off.
The interface
The interface to the class is represented by the connections at its boundary. Each connection corresponds to
a service. In this case there are 5 services, namely: lift, drop, dial, listen and regard. Lift, drop and
dial correspond to transformer services. When requested they result in a state transition. Listen and regard
correspond to accessor services. When requested they return a value to the service requester. The type of the
value returned is identified by a class name: listen, for example, returns a signal value. Services can be
parameterised by a set of input classes: dial, for example, is parmeterised by an ID value. Services can be
polymorphic on their input classes. In other words, a class can have two different services of the same name
provided they can be distinguished by the types of their input parameters. The user of the class sees the class as
a black box. The internal state of the class is encapsulated by its interface. The only access to state information
is through the accessors. (There is one more type of service which is not illustrated by the Phone: the dual
service is a combination of a transformer and an accessor, it returns a value and results in a state transition.)

118 Perspectives of System Informatics'99

Phone USING ID, signal, on-off

,/' ji' otherUp~-s vOtheiDown

drop

dial(ID)

listen:signal

regard: on-off I

l__FlT: W(Boconiioaion) ^ ^ State Invariant: (regard-on) «■((listen - ringing) or (listen - süert))~ ~

Fig. 5. The Phone

Communication
Communication between an object server and its environment of clients is taken, unless otherwise specified to
be synchronous. This may lead to situations in which services are requested but are not enabled by the server
We note that accessor services are always enabled. Duals and transformers may not always be enabled- if a
client requests a service which is not enabled then it is the client's responsibility to avoid a potential deadlock
situation. One role of fairness in our models is to gurantee that services will be eventually enabled.
The operational semantics
There are eight states in the Phone class. Thus every Phone instance (object) must be in one of these eight
states. These states are represented as nodes in the inside of the class boundary. For each state each of the
accessor values must be defined. To aid compositional specification techniques, and to facilitate the specification
of classes with large (potentially infinite) numbers of states, we can define a class to be structured as a set of
component classes. Then, these internal state values can be used to define the external accessor values This
provides a degree of implementation freedom and emphasises that internal details are hidden to the outside
In the Phone example, there is no structure definition as the number of states is manageable without one The
initial state of an object on creation is specified by a bold pointer which does not originate from another state
Hence, a Phone always starts on and silent. The state transitions which occur in response to an external
service request are represented by solid pointers from old to hew states.
Invariants
State invariant properties define restrictions on the possible sets of component values. For example, as is shown in
figure 5, we may require that when onhook the Phone mustbe ringing or silent. These properties are verified
for more complex cases, using B: by checking that all transitions are closed with respect to the invariant it is
not necessary to examine every single reachable state (which we can do directly with the simple Phone model)
Note that the state invariants specified in this way are explicit requirements of the client that must be respected
by the model. A specification where the invariants are not true is said to be contradictory.
Nondeterminism

Nondeterminism is formalised as internal state transitions that may occur independent from external service
requests. These are represented by (possibly labelled) dotted pointers from old to new states. For example when
off and connecting the Phone user has no control over whether the number they are trying is busy, free or
if noconnection is possible. These three cases are specified using internal actions (labelled appropriately) The
difference between internal and external actions specifies a point-of-view onto a class (and the objects of the
class). In this paper, our models specify the Phone user's point of view (or abstraction). The way in which the
telephone network interacts with the Phone is abstracted away from in the form of nondeterministic transitions
Certainly, it is necessary to specify other points of view when modelling the whole telephone network Our

HolwTrr? f U8^rk."?h m?T abstractions "* then helps us to integrate these abstractions into
IWess eClficatlon- Thls 1S bey°nd the sc°Pe of ^is paper, which concentrates on user requirements.

Liveness conditions can be specified on the nondeterministic events in the model. For example, we may require

Gibson P., Miry D. Formal Modelling of Services 119

that when off and connecting the user does not wait forever for a state transition if they refuse to drop the
phone. This must be specified in a separate TLA (temporal) clause. In figure 5, we specify weak fairness on the
no connect ion action.
(In)finite processes
A Phone is an infinite process. In later examples we specify finite behaviours which EXIT after some specific
behaviour is fulfilled. A Phone is said to be of type NOEXIT.
A new feature: black list ".,'■'■•
The Black List feature has a similar function to originating call screening, but restricts incoming rather than
outgoing calls. The idea is that you can store a list of numbers that you know you do not wish to talk with and
then your phone does not ring when such numbers are the source of an incoming call. Our specification of this
feature is illustrated in figure 6.

Phone+Blacküsr=Phone][diallnpiacklist

Phone USING ID, signal, on-off

irj. •]

?* jf otherUp V
N \otherDown

Blacklist USING IDSet, Boolean

dialInFrom{n) [n is_in numbers]

-. -- ** forall numbers:IDSet'"" ■
/ " "\ checkID(n)=

1 diallnFrom(n) **- „ _ nis_inmimbe/s- "'
\[not(n isjn numbers)] ~ ~ ~

/
(numbers={M

numbers Y" dialln

lift

drop

dial(iP)

listenrsigna!

regard: on-off

addlD(ID)

checklD(ID):Boolean

removelD(ID)

Fig. 6. Black list

Again, we have some comments to make with regard to this feature model:
Composition Re-Use
The composition is precisely that seen for a similar, better known, Caller ID feature: there is internal synchro-
nisation on the dialln event and the system depends on an action refinement in the network to carry the new
identification data using a diallnFrom action.
Phone refinement
Unlike CalllD, not all diallnFrom actions result in a dialln action: the blacklist filters out all incoming dials
which are stored in the list of numbers in its state. However, like CalllD, from the point of view of the user the
new system is a refinement of the old phone — the only difference is the resolution of some of the nondeterminism
in the original phone model.
Weak fairness guarantees eventuality
We require weak fairness on the dialln event in the BlackList component. In the BlackList component
we see that after a diallnFrom event, the external services removelD and addID may not be enabled until a
dialln action is performed, in the case where the number is not black listed. However, weak fairness on dialln
guarantees that this transition will eventually occur. Thus, we guarantee that the telephone user will not be
deadlocked if they wish to add or remove a number from the blacklist because of an incoming call.

-i?9 . Perspectives of System Informatics'99

Localisation

At first glance this feature seems to be local. All other users of the telephone system can remain unaware of
this particular feature at any given phone. However, we have abstracted away from an implementation detail
which has global effect: what signal should a caller hear if they telephone someone who has black listed them?
I here are a number of choices: '

- A new type of signal telling them that they have been blacklisted.
This may not be acceptable from a social point of view - do you really want someone to know that you
don't wish to talk to them. ' 3

A noconnected signal.

This may not be acceptable since the caller may misinterpret the signal as saying that the number they are
dialling is impossible to connect. Furthermore, an intelligent user may realise why they are unconnected,
which brings us back to the first problem.

- A busy signal.

This may be unacceptable since the caller may continue dialling because they think the person they are
trying to contact will be available as soon as their current call is completed.

- A ringing signal.

This seems to be the most acceptable choice, and in our network model we specified the feature in this way
Thus the blacklist service required only local change to the telephone user which requested this service. All
other users retain their original behaviour. '

It is only through animation that a user can be expected to understand such choices and help the designers to
resolve the nondeterminism. &

5 Conclusion

The problem of telephone feature interaction is just a particular instance of a general problem in software
engineering. The same problem occurs when we consider inheritance in object oriented systems, sharing data
m distributed systems, multi-way synchronisation in systems of concurrent processes, etc However the
problem is particularly difficult in telephone systems because features are the increments of development '
We have shown the importance of re-usable composition mechanisms. Although our work is targeted towards
the eben during requirements capture, we believe that the same models could be used during design and at the
network level. We support the principle of developing re-usable analysis techniques based on re-usabfe syhnthesis
mechamsms. The object oriented approach can be extended to include a classification of feature types and we
hope to map this onto a formal algebra for feature development.
We have used a graphical notation for communicating with the customer. However, our graphics are based
on formal notations of other languages, that may be difficult to understand by a customer. This work wa.
very helpful in studying the complementary nature of different formalims. Logical formalisms such as B or

^™7 rr1Iy/Ultable ff OS1Cal analysis °f Services based on Proof techniques. Animation is made easier by automata-based representations.

This work is dependent on the different view points and the different semantic models. The integration of these
semantics and the development of user-oriented tools is the most important element of our c^SlTZ^Zl

rothJr'Xmains6 inteSratl°n refinement-based reasoning is an important point to develop, with experiments

References

1. J.-R Abrial The B book - Assigning Programs to Meanings. Cambridge University Press, 1996
2. XBlom. Formalisationof requirements with emphasis on feature interaction detection. In Feature Interactions In

Telecommunications IV, Montreal, Canada, June 1997. IOS Press interactions m
3' and TmöLJ0.H>S°n' r! L- ^mPe- Aut0matic detection of ^nre interactions in temporal logic. In K. E. Cheng

and T. Ohta editors, Feature Interactions in Telecommunications Systems, pages 1-19. IOS Press 1996 [91
4. J. Blom, B Jonsson and L. Kempe. Using temporal logic for modular specLation of teta^aa^L L G

Bourna and H. Velthuijsen, editors, Feature Interactions in Telecommunications Systems, pages l95ie5IOS! Prest

5. G.Booch. Object oriented design with applications. Benjamin Cummings 1991
6. L. G. Bouma and H. Velthuijsen, editors. Feature Interactions in Telecommunications Systems. IOS Press, 1994.

Gibson P., Mery D. Formal Modelling of Services 121

7. R. Boumezbeur and L. Logrippo. Specifying telephone systems in LOTOS. IEEE Communications Magazine,
31(8):38-45, 1993.

8. Ed. Brinksma, Giuseppe Scollo, and Chris Steenbergen. LOTOS specifications, their implementation and their tests.
In Sixth International Symposium on Protocol Testing, Specification and Verification, Montreal, June 1986.

9. K. E. Cheng and T. Ohta, editors. Feature Interactions in Telecommunications Systems. IOS Press, 1996.
10. P. Coad and E. Yourdon. Object oriented design. Prentice-Hall (Yourdon Press), 1990.
11. P. Combes and S. Pickin. Formalisation of a user view of network and services for feature interaction detection.

In L. G. Bouma and H. Velthuijsen, editors, Feature Interactions in Telecommunications Software System, pages
120-135. IOS Press, 1994. [6].

12. L. Constantine. Beyond the madness of methods: System structure methods and converging design. In Software
Development 1989. Miller-Freeman, 1989.

13. Dan Craigen, Susan Gerhart, and Ted Ralston. An international survey of industrial applications of formal methods.
Nistgcr 93/626, U.S. Department of Commerce, Technology Administration, National Institute of Standards and
Technology, Computer Systems Lab., Gaithersburg, MD 20899, 1993.

14. Geoff Cutts. Structured system analysis and design method. Blackwell Scientific Publishers, 1991.
15. P. Dini, R. Boutaba, and L. Logrippo, editors. Feature Interactions in Telecommunications Newtworks IV, Montreal,

1997. IOS Press.
16. H. Ehrig and Mahr B. Fundamentals of Algebraic Specification I. Springer-Verlag, Berlin, 1985. EATCS Monographs

on Theoretical Computer Science (6). ■
17. M. Faci and L. Logrippo. Specifying features and analysing their interactions in a lotos environment. In L. G. Bouma

andH. Velthuijsen, editors, Feature Interactions in Telecommunications Software System, pages 136-151. IOS Press,
1994. [6].

18. M. Faci, L. Logrippo, and B. Stepien. Formal specification of telephone systems in lotos ; constraint-oriented style
approach. Computer Networks and ISDN Systems, 21:53-67, 1991.

19. A. Gammelgaard and J. E. Kristensen. Interaction detection, a logical approach. In L. G. Bouma and H. Velthuijsen,
editors, Feature Interactions in Telecommunications Systems, pages 178-196. IOS Press, 1994. ,

20. J.-P. Gibson. Formal Object Oriented Development of Software Systems Using LOTOS. Tech. report CSM-114,
Stirling University, August 1993.

21. J.-P. Gibson. Formal object based design in LOTOS. Tr-113, University of Stirling, Computing Science Department,
Stirling, Scotland, 1994.

22. J.-P. Gibson. Feature Requirements Models: Understanding Interactions. In Feature Interaction Workshop 1997,
Montreal, Canada, Feature Interaction Workshop. IOS Press, June 1997.

23. J.-P. Gibson, B. Mermet, and D. Mery. Feature interactions: A mixed semantic model approach. In Gerard O'Regan
and Sharon Flynn, editors, 1st Irish Workshop on Formal Methods, Dublin, Ireland, July 1997. Irish Formal Methods
Special Interest Group (IFMSIG), Springer Verlag, http://ewic.springer.co.uk/.

24. J.-P. Gibson, B. Mermet, D. Mery, and Y. Mokhtari. Specification de services dans une logique temporelle compo-
sitionnelle. Rapport de fin du lotl du marche n°96 IB CNET-CNRS-CRIN, Centre de Recherche en Informatique
de Nancy, döcembre 1996.

25. J.-P. Gibson and D. Mery. A unifying framework for multi-semantic software development. In Max Mühlhäuser,
editor, Special Issues in Object-Oriented Programming. Dpunkt, 1997.

26. C.A.R Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.
27. IEE. Special Collection On Requirements Analysis. IEE Transactions on Software Engineering, 1977.
28. ISO. LOTOS — a formal description technique based on the temporal ordering of observed behaviour. Technical

report, International Organisation for Standardisation IS 8807, 1988.
29. B. Kelly, M. Crowther, and J. King. Feature interaction detection using sdl models. In GLOBECOM. Communica-

tions: The Global Bridge. Conference Record, pages 1857-61. IEEE, 1994.
30. B. Kelly, M. Crowther, J. King, R. Masson, and J. Delapeyre. Service validation and testing. In K. E. Cheng and

T. Ohta, editors, Feature Interactions in Telecommunications Systems, pages 173-184. IOS Press, 1996. [9].
31. L. Lamport. A temporal logic of actions. Transactions On Programming Languages and Systems, 16(3):872-923,

May 1994.
32. B. Liskov and Zilles S. Programming with abstract data types. In ACM SIGPLAN Notices, volume 9, pages 50-59,

1974.
33. B. Mermet and D. Mery. Incremental specification of telecommunication services. In M. Hinchey, editor, First IEEE

International Conference on Formal Engineering Methods (ICFEM), Hiroshima, November 1997. IEEE.
34. B. Mermet and D. Mery. Safe combinations of services using b. In John McDermid, editor, SAFECOMP97 The 16th

International Conference on Computer Safety, Reliability and Security, York, September 1997. Springer Verlag.
35. D. Mery. Requirements for a temporal B : Assigning Temporal Meaning to Abstract Machines ... and to Abstract

Systems. In A. Galloway and K. Taguchi, editors, IFM'99 Integrated Formal Methods 1999, Workshop In Computing
Science, YORK, June 1999.

36. C. A. Middleburg. A simple language for expressing properties of telecommunications services and features. Technical
report PU-94-356, KPN Research, Network and Service Control department, 1994.

37. R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980.

-i^ Perspectives of System Informatics'99

38. D. T. Ross. Structured analysis (SA): A language for communicating ideas. In IEE Transactions oh Software
Engineering. IEE, 1977.

39. Steria Mdditerrannee. Atelier B, Version 3.2, Manuel de Reference du Langage B. GEC Alsthom Transport and
Steria Mediterrannee and SNCF and INRETS and RATP, 1997.

40. Kenneth J. Turner. Using Formal Description Techniques - An Introduction to ESTELLE, LOTOS and SDL John
Wiley, New York, January 1993. '

41. K.J. Turner. SPLICE I: Specification using LOTOS for an interactive customer environment - phase 1 University
of Stirling SPLICE Internal Technical Document, 1992.

42. K.J.T. Turner. Using FDTS: An Introduction To ESTELLE, LOTOS and SDL. John Wiley and Sons 1993
43. P. Zave. Feature interactions and formal specifications in telecommunications. Computer, August 1993
44. Pamela Zave. The operational versus the conventional approach to software development. Comm. ACM, 27:104-118,

45. Pamela Zave Feature interactions and formal specifications in telecommunications. IEEE Computer Magazine
pages 18-23, August 1993. '

2

Serializability Preserving Extensions of
Concurrency Control Protocols

Dmitri Chkliaev1, Jozef Hooman2, and Peter van der Stok1

1 Dept. of Computing Science, Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

e-mail: {dmitri,wsstok}@win.tue.nl
Computing Science Institute, University of Nijmegen, The Netherlands

e-mail: hooman@cs.kun.nl

Abstract. The verification system PVS is used to obtain mechanized support for the formal specification
and verification of concurrency control protocols, concentrating on database applications. A method to
verify conflict serializability has been formulated in PVS and proved to be sound and complete with the
interactive proof checker of this tool. The method has been used to verify a few basic protocols. Next we
present a systematic way to extend these protocols with new actions and control information. We show
that if such an extension satisfies a few simple correctness conditions, the new protocol is serializable by
construction.

1 Introduction

Concurrency control protocols [SKS97,UU88], when applied to databases, manage the concurrent access to a
database by multiple users or processes. Access is performed by means of transactions, consisting of a number
of actions (such as reads and writes of data items). This access has to be both correct, i.e. always leaving
the database in a consistent state, and efficient, i.e. providing a good overall performance. One of the most
important correctness notions is serializability of transactions, which is the main topic of this paper.

It is prominently difficult to achieve both correctness and efficiency at the same time. The most popular
database protocol, the Two Phase Locking protocol (2PL), is simple and ensures serializability. Although it
became a commercial standard in the seventies, it has been criticized for low performance and the possibility of
deadlock (see, for instance, [Tho93]). A number of more efficient database protocols has been suggested, often
on top of basic protocols such as 2PL. Newly developed protocols are becoming increasingly complex, and their
correctness becomes difficult to ensure. Specification and reasoning are often very informal, which easily leads to
ambiguous specifications. All these factors make the understanding and the use of these new protocols difficult
and they increase the danger of incorrect protocols.

To address this problem, observe that many database protocols can be modeled as variations of a few basic
concurrency control protocols. Although these variations can be obtained in different ways, they can often be
considered as extensions of a basic protocol. An extension of a database protocol is a protocol, which includes
more control information (such as timestamps and versions) and corresponding new actions.

The aim is to obtain the correctness of extensions from the correctness of a basic protocol. Here we focus
on only one important correctness notion, namely serializability. An interleaved execution of a number of
transactions is said to be serializable, if it has the same effect on a database as some serial execution of these
transactions, i.e. an execution which has no interleaving between actions of different transactions. Deadlocks
are assumed not to occur (as e.g. [U1188]), since they do not influence serializability.

Given some set of basic concurrency control protocols, we propose to prove the correctness of extensions
of these protocols, using the following strategy: a) Prove correctness (i.e. serializability) of the basic protocols,
b) Derive the correctness of the extensions in a systematic way, using some assumptions on their construction.
Ideally, this should be done in a structured way, using some mechanical support. The aim of our paper is to
suggest a method to implement this strategy. Therefore, we address the following questions: 1) How to obtain
mechanical support for specification and verification? 2) How to model concurrency control protocols? 3) How
to formalize serializability? 4) How to verify serializability? 5) How to formalize protocol extensions and which
conditions are needed to ensure their correctness?

1) Mechanical support. To get mechanical support, we use a higher-order interactive theorem prover,
since notions like serializability are easily expressed in a property-oriented, assertional, way. To express general
properties about these notions, that hold for all protocols, a higher-order logic is needed. Since we would like
to use arbitrary data types and not restrict ourselves to finite state systems, Completely automatic verification

124 , Perspectives of System Informatics'99

is not feasible. Although there are several verification systems that satisfy our requirements, we have chosen to
use PVS [PVS], because it has a convenient specification language and is relatively easy to learn and to use.

The specification language of PVS is a strongly-typed higher-order logic. Specifications can be structured into
a hierarchy of parameterized theories. There is a number of built-in theories and a mechanism for constructing
abstract datatypes. The PVS system contains an interactive proof checker with, for instance, induction rules
automatic rewriting, and decision procedures for arithmetic. It allows users to construct proofs interactively, to'
discharge simple verification conditions automatically, and to check proofs mechanically.

2) Specification of protocols. To model a particular protocol in PVS, we define two types: 1) Actions
such as read and write, and possibly additional actions necessary for the adjustment of the control information 2)
States, representing control information (locks, timestamps, etc.); and two predicates: 3) Effect, defining how
a state is changed after applying a particular action 4) Pre, defining which actions are allowed in a particular
state, and which are not.

3) Serializability notions. A schedule is a sequence of actions by transactions. Intuitively, a schedule is
considered to be correct, if it is equivalent to some serial schedule. Serial schedules are those which have no
interleaving between actions of different transactions. There are different ways to define equivalence of schedules
The most intuitively appealing one leads to the notions of view equivalence. Informally, two schedules are view
equivalent iff each transaction in these schedules reads the values written by the same transaction. A schedule
is said to be view serializable, if it is view equivalent to some serial schedule. Testing view serializability is NP-
complete [Pap79], and therefore this notion is difficult to use in practice. Another form of schedule equivalence
is conflict equivalence, leading to conflict serializability. Two schedules are conflict equivalent iff one of them can
be transformed into the other by a sequence of swaps of non-conflicting actions. Testing conflict serializability
has a quadratic complexity, and therefore the majority of existing database protocols ensures not just view
serializability, but the stronger notion of conflict serializability.

We formalize the notions of conflict and view serializability, and prove, that any conflict serializable schedule
is also view serializable. This relation is well known but has never been checked mechanically. In fact, there is
no standard definition of view serializability in the literature. Here we combine the informal intuition of [SKS971
with the reads-from relation of [Vid91].

4) Method of verification. A traditional method for proving conflict serializability is based on conflict
graphs. Our method is a modification of this traditional method and does not use any notions from graph theory
We believe that our method is logically more simple and straightforward, and therefore more appropriate for
mechanical verification. This makes it possible to efficiently implement our method in PVS.

Our method is based on the notion of conflict-preserving timestamps (CPT). We formulate a condition for
schedules to be conflict serializable using an assignment of timestamps to transactions which orders conflicting
transactions (two transactions are conflicting iff at least one of them contains a write to a common data
item). We prove that this condition is necessary and sufficient, Hence, to show that a protocol ensures conflict
serializability, we must prove that any schedule accepted by this protocol satisfies the condition. This implies
then that the protocol indeed ensures conflict serializability, as well as the weaker notion of view serializability.

5) Extensions and correctness conditions. Suppose some basic protocol, for instance the 2PL protocol
has been proved correct. Adding more control information and more actions, we obtain various extensions of
this protocol. We show that serializability of these extensions is ensured by four simple correctness conditions
lne proof that these conditions lead to serializable protocols is far from trivial, but has to be done only once
By applying the resulting extension scheme, we easily obtain protocols that are serializable by construction.

As an example, we consider the 2PL protocol and several layered extensions. In the basic protocol, serial-
izability is ensured by locking and unlocking data items. The first extension adds sequences of transactions
waiting for data items to become available (i.e., unlocked). The second extension gives priority to urgent trans-
actions resulting in a more realistic protocol. Since we formally verified the correctness of the 2PL protocol a
simple check of the four conditions leads to the correctness of these new protocols.

Structure of this paper. This paper is organized as follows. In section 2, we provide a general specification
pattern and apply it to the specification of the 2PL protocol. In section 3, the notions of conflict and view
seriahzabihty are formalized. We prove that conflict serializability implies view serializability. In section 4 our
verification method is presented and its soundness and completeness are shown. The method has been applied to
venfy the 2PL protocol and the Timestamp Ordering protocol. In section 5, we formalize extensions of protocols
and the restrictions on these extensions, needed to ensure their correctness. In section 6, we apply our method to
specify and verify several layered extensions of the 2PL protocol. Section 7 contains some concluding remarks

Chkliaev P., Hooman J., van der Stok P. Serializability Preserving Extensions of Concurrency Control Protocols 125

2 Specification of protocols

We consider protocols in which transactions perform atomic actions on certain data items. Two basic actions
are common for such database protocols: read and write, which are the only actions that concern the values
of the data items. Additionally, there are usually other actions, necessary for the concurrency control. The set
of actions of a database protocol is defined by type ActionNames, containing at least read and write actions
(denoted as R and W). In the PVS notation (henceforth written in typewriter style):

R, W : ActionNames

The set of data items is defined by uninterpreted type Variables; the set of transactions is defined by type
Transactions, representing the names of transactions. Moreover, we define a type Actions consisting of records
with three fields, called act, tr, and vari, expressing that a particular action is performed by a transaction on
a data item.

Actions : TYPE = [# act : ActionNames, tr : Transactions,
vari : Variables #]

E.g., (W, T, x) represents a write action by transaction T on variable x.
Concurrency control protocols maintain a control part to determine which actions on data items are allowed

and which are not allowed in a particular state of a database. E.g., the control part for lock-based protocols
determines which data items are locked and in which mode (shared or exclusive) .The control part for timestamp-
based protocols contains information about timestamps of data items. In PVS, the control part for database
protocols is defined by type States. ■ ■ ■■

Each action causes certain changes in the control part. For example, for lock-based protocols, it may lock
or unlock some data items. For timestamp-based protocols, this concerns the adjustment of read- and write-
timestamps of some data items. Therefore, we define the initial value of the control part, i.e. the initial state,
and how the control part is changed after every possible action. We also have to define which actions are allowed
in a particular state, and which are not. E.g., a transaction cannot lock a data item in an exclusive mode if it
is already locked by another transaction. Consequently, a database protocol is defined by the following steps:

1. Define type ActionNames, containing the atomic actions R and W and possibly some other atomic actions,
responsible for the adjustment of control information.

2. Define type States, containing all control information essential for the definition of the protocol, and define
the initial state is.

3 Define how a particular state is changed after applying a particular (allowed) action (e.g., a read or write oi
a data item) by means of the Effect predicate; a function with three arguments of types States, Actions,
States, resp., and result of type bool. For states si and s2 and an action al, we have Effect (si, al,
s2) = TRUE iff s2 is obtained from si by applying al.

4. Define which actions are allowed in a particular state by the Pre predicate. For a state si and an action al
we have Pre(sl, al) = TRUE iff al is allowed in si.

A finite execution is represented by a sequence r of the form s0 ^ sx % ... s„ ^ s„+i. Here st (0 < i < n + 1)
are states, and a{ (0 < i < n) are actions. Infinite executions are represented by all finite approximations.
Sequence r is a correct execution or run iff s0 is the initial state, subsequent states are related by the Effect
predicate, and actions are enabled, as expressed by the Pre predicate.

In PVS, a run r is formalized as a record with two fields: StateSeq(r) is a finite sequence of states, and
ActionSeq(r) is a finite sequence of actions, where StateSeq(r) has one more element then ActionSeq(r).
For the example run above, we have StateSeq(r) = s0si...snsn+i and ActionSeq(r) = a0ai...o„.

A finite sequence of actions is called a schedule. For instance, (W, Tl, x) (W, T2, y)(R, Tl, y) represents
an execution where first transaction Tl writes a data item x, then transaction T2 writes a data item y, and next

Tl reads y. ,,.,.,
For a protocol, represented by States, is, Actions, Effect and Pre, and a run r of this protocol, we say

that ActionSeq(r) is a schedule, allowed by this protocol Given a definition by the four points mentioned above,
we identify a protocol with the set of allowed schedules.

protocol : setof[Schedules] =
{ S : Schedules | EXISTS (r : Runs) : S = ActionSeq(r) }

-— Perspectives of System Informatics'99

2.1 Example of the Two Phase Locking protocol '

Informal description. The 2PL protocol (see, e.g., [SKS97]) requires that access to data items is done in a
mutually exclusive manner; that is, while one transaction is accessing a data item, no other transaction can
modify that data item. The most common method used to implement this requirement is to allow a transaction
to access a data item only if it is currently holding a lock on that item. There are various modes in which a
data item may be locked. The basic 2PL protocol, considered in this paper, has only two modes:

- Shared. If a transaction T has obtained a shared-mode lock on item x, then T can read, but cannot write,

- Exclusive. If a transaction T has obtained an exclusive-mode lock on item x, then T can both read and
WJ.ll;" jLm

Let A and B represent arbitrary lock modes. Suppose that transaction T2 requests a lock of mode B on item x on
which transaction Tl (Tl * T2) currently holds a lock of mode A. If T2 can be granted a lock on x immedTately

L? , * feST- the m°de A l0Ck' th6n WG Say that mode B is compatible with mode A. In the 2PL
protocol shared mode is compatible with shared mode, but not with exclusive mode; exclusive mode is not
compatible with both shared and exclusive modes.

i, JlTf 'if ,data item' tranS£Sion T must first lock tha* item in the corresponding mode. If the data item
saheady locked m an incompatible mode, the request to lock this item is rejected. The 2PL protocol requires

ttiat each transaction issues lock and unlock requests in two phases:

- Growing phase. A transaction may obtain locks, but may not release any lock
- Shrmkmg phase. A transaction may release locks, but may not obtain any new locks.

Initially, a transaction is in the growing phase. The transaction acquires locks as needed. Once the transaction
releases a lock, it enters the shrinking phase, and it can issue no more lock requests

PVS implementation. We specify this protocol, following the four steps mentioned above. The Ef f ect2PL
predicate and the Pre2PL predicate are not shown here.

~ t^T^T ^T Td6il0Cking iS incorP°rated in read and write actions, and hence does not require a
separate action. We only add an unlock action to unlock a data item which is locked in a shared or exclusive
mode and a downgrade action which changes the mode of the lock from exclusive to shared.

ActionMames2PL : TYPE = { R, W, unlock, downgrade }

" ^emfwnLSlaiel2PL * ' T* ^ ?"* fields' xset and sset **P each transaction to a set of data
Lw , l^S 'I an, "I™ and Shared m°de' resPectivelv- drinking is a set of transactions which
already entered the shrinking phase and therefore cannot issue any new locks.

States2PL : TYPE =
[# xset : [Transactions -> setof[Variables]] ,

sset : [Transactions -> setof[Variables]],
shrinking : setof[Transactions] #]

In the initial state, is2PL, all the data items are unlocked and no transaction is shrinking.

3 View and Conflict serializability

To define view serializability, we first define view equivalence between schedules, following [SKS971 Consider
two schedules SI and S2, where the same set of transactions participates in both schedules J'

Definition 1. The schedules SI and S2 are view equivalent if the following three conditions are met:

1. For each data item x if transaction Tl reads the imtial value of x in schedule SI then, in schedule S2
transaction Tl must also read the initial value of x scneame b2,

2' ZnTacliVTr,*' ^ wTto" I' rmdS ü mhe °fX iH SCheMe S1 md th* ™l™ ™s Ponced by
IZsatZll ' hm T1 mUSt dS0 nad tHe Vahe °fx that was P™duced £

3. For each dataitemx, the transaction!! (if any) that performs the last write action on x in schedule SI
must also perform the last write action on x in schedule S2. scneaule &i,

Chkliaev P., Hooman J., van der Stok P. Serializability Preserving Extensions of Concurrency Control Protocols 127

Conditions 1 and 2 ensure that each transaction reads the same values in both schedules and, therefore, performs
the same computation. Condition 3, coupled with conditions 1 and 2, ensures that both schedules result in the
same final system state.

The definition of view equivalence can be presented in a more formal way using the notion of a reads-
frorn relation [Vid91]. We associate with each schedule S a reads-from relation Reads Jrom(S), not shown
here, relating a transaction that read a value of an item and the transaction that wrote this value. Then view
equivalence can be defined as follows.

Definition 2. (Equivalent to 1.) The schedules SI and S2 are view equivalent if their reads-from relations are
equal:

view_equiv(Sl, S2) : bool = (Reads_from(Sl) = Reads_from(S2))

As we mentioned in introduction, a schedule is serial, in PVS represented by predicate serial (S), if it has no
interleaving between actions of different transactions. For instance, schedule (W, T2, y)(W, Tl, x)(R, Tl,
y) is serial, because an action by T2 precedes both actions by Tl. Schedule (W, Tl, x) (W, T2, y)(R, Tl,
y) is not serial, because two actions by Tl are interleaved by an action by T2.

A schedule S belongs to the set of view serializable schedules, denoted byView_serializable, iff it is view
equivalent to a serial schedule. ■

View_serializable : setof[Schedules] =
{ S I EXISTS SO : serial(SO) AND view_equiv(S, SO) }

Next we explain the notion of conflict equivalence. Suppose S includes two consecutive actions al = (Al, Tl,
x)anda2 = (A2, T2, y), where Al and A2 belong to { R, W }. Thus S = SI al a2 S2 for some subschedules
SI and S2. As explained in [SKS97], the order of al and a2 does not influence the result of computation if either
x ^ y or (x = y and Al = A2 = R). If x = y and (Al = W or A2 = W), then the order of al and a2 matters, i.e.
changes the result of computation. Observe that Tl '= T2 is allowed, assuming that actions of a transaction are
partially ordered rather than totally ordered as in [SKS97].

Definition 3. The actions (Al, Tl, x) and (A2, T2, y) are conflicting iffx = y and (Al = W or A2 = M).

Definition 4. The schedules SI and S2 are elementary equivalent iff SI = S3 al a2 S4, S2 = S3 a2 al S4
and the actions al and a2 are not conflicting.

Definition 5. The schedules SI and S2 are conflict equivalent, dercoüedconf_equiv(Sl,S2) iff there is a finite
sequence of schedules S_0, S_l,.. .SJk, k >= 0, such that SI = S_0, S2 = SJc and for all i < k the schedules
S.i and S_(i + 1) are elementary equivalent.

A schedule S belongs to the set of conflict serializable schedules, denoted by
Conf-serializable, iff it is conflict equivalent to a serial schedule.

Conf.serializable : setof[Schedules] =
{ S I EXISTS SO : serial(SO) AND conf_equiv(S, SO) }

Since swaps of nonconflicting actions do not change the result of computation, we can expect that they do
not change the reads-from relation as well. Indeed, we have proved in PVS theorem Conf View, expressing that
conflict equivalent schedules SI and S2 are also view equivalent:

ConfView : THEOREM Conf_equiv(Sl, S2) IMPLIES View_equiv(SI, S2)

4 Our method of verification

We present a general method for mechanical verification of conflict serializability. Our approach is a modification
of a traditional method for proving conflict serializability based on conflict graphs. We do not use graphs, but
do need a notion of conflicting transactions which is defined as a conflict relation.

Definition 6. A conflict relation Conflict(S) of a schedule S is defined as follows: a pair (Tl, T2) belongs
to Conflict (S) iff HI ^ T2 and

— S includes actions al and a2 by Tl and T2 respectively
— al precedes a2 in S
— al and a2 are conflicting.

128 ; Perspectives of System Informatics'99

It is well-known (although not mechanically verified) that a schedule S is conflict serializable iff the relation
Conflict (S), considered as a graph in which nodes are transactions, is acyclic. Our method does not use graph
theory, but assigns timestamps to transactions, using an irreflexive order on timestamps. A time domain Time
is some domain with a transitive, irreflexive order. For instance, the set of natural, rational or real numbers
with the conventional order. A timestamp TS is a function from Transactions to Time.

Our method is based on the notion of conflict-preserving timestamps (CPT).

CPT(S, TS) : bool = FORALL Tl, T2: Conflict(S)(Tl, T2) IMPLIES
TS(T1) < TS(T2)

Definition 7. A timestamp TS is a conflict-preserving timestamp (CPT) with respect to schedule S iff CPT(S
TS) = TRUE.

If a schedule S has a CPT then the transitive closure of Conflict (S) is irreflexive, because < is an irreflexive
order on Time.

A schedule S belongs to the set of ordered schedules Ordered iff there is a timestamp TS which is conflict-
preserving with respect to S.

Ordered : setof[Schedules] ={S | EXISTS TS : CPT(S, TS) }

We proved that any ordered schedule is conflict serializable, and any conflict serializable schedule is ordered.
The proof has been constructed by means of the interactive proof checker of PVS and is technically fairly
complicated.

OrdSerializable : THEOREM Ordered = Conf_serializable

Theorem OrdSerializable provides a basis for a sound and complete method for proving serializability. Given a
particular protocol, we prove that each schedule allowed by this protocol is ordered, i.e. has a conflict-preserving
timestamp. Thus, for a particular protocol, the aim is to prove the following theorem.

ProtocolOrdered : THEOREM subset?(protocol, Ordered)

After that, theorem OrdSerializable implies that protocol indeed ensures conflict serializability:

ProtocolCS : THEOREM subset?(protocol, Conf.serializable)

We successfully applied our method to the machine-checked verification of the Timestamp Ordering protocol
and the 2PL protocol.

5 Extensions of (serializable) protocols

Although we have formulated in the previous section a complete method to prove conflict serializability, it is not
always easy to find a conflict-preserving timestamp function for any schedule (and'to prove that it actually is
one). Observing that many protocols can be seen as extensions of a basic protocol (such as Timestamp Ordering
or 2PL), we investigate how we can obtain serializability of an extension from serializability of a basic protocol.
First we define the notion of an extension more precisely.

We say that protocol NewProt is an extension of protocol OldProt iff

- OldActionNames, the set of atomic actions of OldProt, is a subset of
NewActionNames, the set of atomic actions of NewProt.

- NewStates, the control part of NewProt, is obtained from OldStates, the control part of OldProt, by adding
a record ext of type Extension, representing the added control information:

NewStates : TYPE = [# old : OldStates, ext : Extension #]

Our goal is to prove that if OldProt ensures conflict serializability and extension NewProt satisfies certain
conditions, then NewProt also ensures conflict serializability. Below we derive the required conditions during the
construction of the proof. '

Let Conf _ser_01d and Conf _ser JJew be instantiations of set of schedules Conf .serializable for schedules
from OldProt and NewProt, respectively. Our aim is to prove the following theorem.

Chkliaev P., Hooman J., van der Stok P. Serializability Preserving Extensions of Concurrency Control Protocols 129

MainTheorem : THEOREM subset?(OldProt, Conf_ser_01d) IMPLIES
subset?(NewProt, Conf_ser_New)

Proof: Suppose OldProt ensures conflict serializability and schedule NewS is accepted by NewProt. The proof
that NewS is conflict serializable consists of two steps.

Step 1 We prove that NewS is a refinement of some schedule OldS, accepted by OldProt, i.e. it is obtained from
OldS by adding some actions. To construct OldS, we simply remove from NewS all added actions, i.e. all actions
that do not occur in DldActionNames. The result is formally defined by function Extract (NewS). Note that
we don't remove any read or write actions, because R and W belong to OldActionNames. The following theorem
expresses that Extract (NewS) is accepted by OldProt.

ExtractOld : THEOREM NewProt(NewS) IMPLIES OldProt(Extract(NewS))

As we show below, the proof of this theorem reveals the required correctness conditions. Since OldProt is conflict
serializable, theorem ExtractOld implies Conf_ser_01d(Extract(NewS)).

Step 2 If Extract (NewS) is conflict serializability, then also NewS:

ConfNewOld ,: THEOREM Conf_ser_01d(Extract(NewS)) IMPLIES
Conf_ser_New(NewS)

The proof of this theorem uses completeness of our verification method for conflict serializability. Since it implies
Conf _ser_New (NewS), this completes the proof of theorem MainTheorem. End Proof

It remains to prove theorem ExtractOld and to derive the required correctness conditions.

Proof of theorem ExtractOld
Assume NewProt (NewS). Then there exists a run NewR = s0 ^ st % ... sn ^ sn+1 of NewProt such that NewS
= ActionSeq(NewR), i.e. NewS = a0ai...an. Let a'0a'1...a'k be the sequence obtained from a0ai...an by removing
all actions that are not in OldActionNames, i.e., Extract (NewS) = a'0a'1...a'k.

To prove OldProt (Extract (NewS)), we construct a run s'0 ^ s[4 ... s'k ^ s'k+1 of OldProt. This run is
extracted from run NewR by the function ExtractR which removes from a run of NewProt any action that is not
in OldActionNames and its successor state. Moreover, we take only the old part of the remaining states. Since
Extract and ExtractR both remove the same actions (those with action names not in OldActionNames), observe
that ActionSeq(ExtractR(NewR)) = Extract (Act ionSeq (NewR)) = Extract (NewS) = a'^^.a',.. Hence, it
remains to prove that OldR = ExtractR (NewR) is a run of OldProt.

For any run r, let last(r) denote the last state of r. Instead of proving, that ExtractR (NewR) is a run in
OldProt, it is more convenient to prove the following, stronger statement, consisting of two parts:

(i) ExtractR (NewR) is a run of OldProt and
(ii) last(ExtractR(NewR)) = old(last(NewR)).

The proof proceeds by induction on the length of Act ionSeq (NewR).

Basic Step Let length(ActionSeq(NewR)) = 0. Then NewR = NewInitState and, by definition of ExtractR,
ExtractR (NewR) = old(NewInitState). Hence, ExtractR (NewR) is a run if old (NewInitState) is equal
to the initial state of OldProt. Then also (ii) is satisfied. This leads to the first condition.
Condition 1 old(NewInitState) = OldlnitState

Induction Step Let length(ActionSeq(NewR)) = m + 1. Then NewR =
NewRl Alast (NewR) for some run NewRl. We distinguish two cases.

act(a) ^OldActionNames Then ExtractR (NewR) = Extract (NewRl). For part (i), recall that by the
induction hypothesis ExtractR (NewRl), and hence also ExtractR (NewR), is a run of OldProt.
For (ii), note that last (ExtractR (NewR)) = last (ExtractR (NewRl))
= old (last (NewRl)), using the induction hypothesis. To obtain
olddast (NewRl)) = old (last (NewR)), we introduce a condition expressing that if we apply a newly
added action aa to an extended state esl, then the old part of it should not change.
Condition 2

NewEffeet(esl, aa, es2) IMPLIES old(esl) = old(es2)

.I52 Perspectives of System Informatics'99

act{a) eOldActionNames By definition of ExtractR, we have in this case
ExtractR(NewR) = Extract (NewRl) 4 old (last (NewR)).
By the induction hypothesis, part (ii), we have

last(Extract(NewRl)) = old(last(NewRl)). (*)
To prove (i), note that ExtractR (NewR) is a run of OldProt if the following two conditions are satisfied.
- o is allowed in the last state of Extract (NewRl), that is,

OldPre(last(Extract(NewRl)), a) = TRUE.
By (*), it remains to prove OldPre (old(last (NewRl)), a) = TRUE. Since a is allowed in the last
state of NewRl, we have that
NewPre (last (NewRl), a) = TRUE. Hence it is sufficient to require that any old action oa which is
allowed in an extended state es according to NowPre, is also allowed in the old(es) according to
OldPre.

Condition 3 NewPre (es, oa) IMPLIES OldPre (old (es) , oa)

- old (last (NewR)) is obtained from last (Extract (NewRl)) by applying a to it, i.e.
OldEffect(last(Extract(NewRl)), a, old (last (NewR))) = TRUE. By (*), it remains to prove
01dEffect(old(last(NewRl)), a,old(last(NewR))) = TRUE.
Since last (NewR) is obtained from last (NewRl) by applying a to it, we have NewEf f ect (last (NewRl),
a, last (NewR)) = TRUE. Hence it is sufficient to require, for any old action oa, that NewEf feet must
transform the old part of an extended state esl in the same way OldEffect does.

Condition 4 NewEf feet (esl, oa, es2) IMPLIES
 OldEffect (old (esl), oa, old(es2))

This proves (i). To prove (ii), observe that by the definition of ExtractR. in this case
last (ExtractR (NewR))= old(last (NewR)).

This completes the induction step and also the proof of ExtractOld. End Proof

To implement extensions in PVS, we define a general PVS theory ProtExtend. As parameters, it has all
types and predicates that are needed to define OldProt and NewProt. Theorem MainTheorem, which establishes
the mam result, is proved in ProtExtend. The conditions 1 through 4 mentioned above are added to this theory
by including them as four assumptions. If any theory imports ProtExtend then a proof of these assumptions is
required.

Given a conflict seriaiizable protocol OldProt we can prove serializability of an extension NewProt by
importing theory ProtExtend. This requires a proof of the four assumptions. Once they have been proved', we
can use MainTheorem, and obtain conflict serializability of NewProt.

6 Two extensions of the 2PL protocol

We have applied our method to the basic 2PL protocol, described in section 2. This protocol is extended in two
steps, leading to a realistic protocol which is seriaiizable by construction.

First extension — adding a sequence of waiting transactions. In the first step, we associate with
each data item a sequence of transactions that are waiting for the permission to read or write this data item
If a transaction is not allowed to read or write a data item x immediately (because it is currently locked in an
incompatible mode), the corresponding action is inserted into the sequence of x. After x becomes available a
postponed action from the sequence of x may be executed. '

The operation of inserting an action into a sequence is modeled by read-request actions (Rrequest) and a
wnte-request actions (Wrequest). The extension of the state consists of a function that maps each data item
to a finite sequence, consisting of read- and write-requests performed by certain transactions; in an initial state
all sequences are empty. A new effect predicate transforms the state in the same way Ef f ect2PL does for old
actions it leaves the old part of the state unchanged for addtd actions, and includes an additional predicate to
define how to insert and remove requests from the waiting sequences. A new precondition ensures that not only
preconditions defined by Pre2PL are satisfied, but also some additional preconditions.

Second step — adding priorities to waiting transactions. We define a second-level extension of the
2PL protocol by extending the first-level extension above such that the processing of transactions depends on

Chkliaev P., Hooman J., van der Stok P. Serializability Preserving Extensions of Concurrency Control Protocols 131

their priorities. A priority function PR assigns to each transaction T its priority PR(T) from the set of natural
numbers.

We also introduce the notion of wr^enUransactions, which is important for real-time protocols. Assume given
a natural number Ü. Transaction T is called urgent with respect to U, if PR(T) >= U. We define our protocol in a
new theory, such that its set of parameters includes PR and U. Changing PR and Ü, we obtain different protocols.
Therefore our theory actually defines a class of protocols.

This extension does not introduce any new control information or any new actions. Instead, it introduces
some restrictions on the order, in which transactions are performed. The aim of these new restrictions is to
ensure that "urgent" transactions obtain immediate access to data items, whereas that non-urgent transactions
should be served on a first-in, first-out basis.

Suppose a data item x has a sequence xs. We define a predicate urgent .ex ist, which expresses that xs
includes requests from urgent transactions. If
urgent-exist(xs) = TRUE, then we must execute one of the urgent transactions with the highest priority
MaxPriority(xs). Otherwise, we may execute the first-inserted request of the waiting sequence.

Correctness of the obtained extensions. After importing the theory ProtExtend with corresponding
parameters for both protocols, it turned out to be very easy to prove that our four assumptions are satisfied for
both protocols. Therefore our extensions indeed ensure conflict serializability.

Note that one may satisfy the conflict serializability condition by not allowing any schedule. Therefore, we
additionally show that for every valid schedule in the initial protocol there is a representative in the extended
protocol. For the first extension of the 2PL protocol presented above, it is easy to see that for every schedule S
in the 2PL protocol there is a representative S' in the extension, which consists of the same actions. Let S' be
a schedule where a transaction never tries to read or write a data item if it is not immediately available; then
all sequences of requests are always empty and S' is indeed accepted by the extension. The same holds for the
second extension of the 2PL protocol.

7 Concluding remarks

We have presented a formal framework for the specification of concurrency control protocols and the verification
of serializability, and successfully applied it to the verification of the 2PL protocol and the Timestamp Ordering
protocol. Mechanical support has been obtained by formulating this framework in the language of the verification
system PVS, and all proofs have been constructed by means of the interactive theorem prover of PVS.

Moreover, a systematic way to extend serializable concurrency control protocols has been developed. If such
an extension satisfies four simple verification conditions, it is serializable by construction. This can be applied in
a hierarchical way, thus complex protocols can be obtained by a sequence of extensions of a basic concurrency
control protocol. An old, serializable, protocol can be extended to a new protocol by adding more control
information to the state and introducing additional control actions. One has to define the new initial state, a
new precondition for all actions and a new effect predicate which describes the state change after each action.
Then the new protocol is serializable if the following conditions are satisfied.

1. Ignoring the added control part, the new initial state equals the old initial state.
2. A new action only affects the added part of the state; it does not change the original part of the state.
3. The new precondition of an old action implies its old precondition.
4. The new effect of an old action implies its old effect.

There are several directions for future work. We intend to investigate more protocols and develop more
detailed strategies for their verification. We may also add timing, i.e. extend our method to real-time database
protocols. Another possibility is to study not only serializability for databases, but also more general protocols
and correctness notions such as atomicity of transactions.

References

[Pap79] C.H. Papadimitriou. The serializability of concurrent database updates. Journal of the ACM, 26(4):631-653,
1979.

[PVS] PVS Specification and Verification System, http://pvs.csl.sri.com/.
[SKS97] A. Silberschatz, H. P. Korth, and S. Sudarshan. Database System Concepts. The McGraw-Hill Companies, Inc.,

1997.

_M? Perspectives of System Informatics'99

{Tho93] A. Thomasian. Two-phase locking performance and its thrashing behavior. ACM Transactions on Database
Systems, 18(4):579-625, 1993.

[U1I88] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volume 1. Computer Science Press, 1988.
[Vid91] K. Vidyasankar. Unified theory of database serializability. Fundamenta Inform,aticae, 14:147-183, 1991.'

Platform Independent Approach for Detecting
Shared Memory Parallelism

Yury V. Chelomin

Institute for Automation, Far Eastern Branch of Russian Academy of Sciences
5 Radio St., Vladivostok 690041, Russia

e-mail: chelomin@yahoo.com

Abstract. This paper presents the platform independent approach to detecting shared memory paral-
lelism. The brief overview of Automatic Parallelizing Expert Toolkit being developed and the description
of basic concepts used by this toolkit are given.

1 Introduction.

Known approaches to porting existing serial programs onto parallel platforms could be divided into two groups:

- using of automatically parallelizing compilers [1,2];
- adding to the source codes of serial program special directives, which explicitly specify the actions to be

taken by the compiler and run-time system in order to execute the program in parallel.

Both of these approaches have some shortcomings.
Parallelizing compilers usually does not detect all the regions where parallelization is possible. Moreover,

it could be uneasy task to determine rather compiler detect the parallelism or not, and why. Adding new
parallelizing techniques to such compilers is up1;o vendor, so developer cannot rely on soon release of techniques
needed. This approach also led to portability problems — different compilers can be significantly different in
parallelization quality.

Explicit specification of all the necessary parallel regions may be even more complex task. Though the result-
ing program would probably work better this is not the case of program reuse — this approach is comparable
to writing completely new code.

The way out from such situation could be found in using restructuring tools that automatically inserts
parallelization directives into ordinary serial source code; the possibility of adding new parallelization techniques
by tool's user should be present.

This approach has the following obvious advantages:

- the output of such tool is a meaningful source code thus developer understand clearly what parallelization
has made;

- appearance of such directive sets as OpenMP API [3] solves a problem ot" cross-platform portability within
a class of SMP platforms;

- the tool based on expert systems technology can explain all the parallelizing actions made;
- once an existing set of techniques does not satisfy a particular developer it is possible to expand this set

with new ones.

It is clear that such tool needs powerful models of both the "parallel program" and the "parallelization
technique". This paper presents these models targeted on implementation of Automatic Parallelizing Expert
Toolkit (APET) and provides toolkit architecture overview.

2 Parallel Program and Execution Models.

APET utilizes two models (the single at the same time) of parallel program:

- Extension of Model of Structured Program (MSP [4]), called Model of Parallel Program (MPP [5]). This
model represents a parallel program in n-processor SMP-system as n serial programs with common data
space and additional synchronization points, so-called barriers.

134 Perspectives of System Informatics'99

- Open-MP compliant Fork-Join Model, FJM. In this model program begins execution as a single thread of
execution called master thread. The master thread executes as a serial region until the parallel construct
creates a team of threads, which executes in parallel. Upon completion of parallel construct, the threads in
the team synchronize at an implicit barrier, and only the master thread continues execution. Work sharing
directives, nested parallelism and orphaning is permitted.

It is shown that for a great enough n the conformity between these models exists. The MPP is quite a simple
model to operate, but APET's output in this model can be used only as an illustration of toolkit's actions.
On the contrary, the FJM is much more complex; APET's output using this model can be interpreted as C or
FORTRAN program with Open MP compliant extensions and than immediately be compiled under the most
of the popular SMP-platforms.

3 Parallelizing technique model.

Parallelizing technique in APET is represented in three parts:

- Condition — logical expression in terms of MPP or FJM. The Parallelizing technique is possible to apply
if and only if this condition is true.

- Subset of variables defined in Condition. These variables are the parts of the program, which will change
due to the given technique, so-called "Parallelization Region". Note that the value of these variables is one
or more consequent operators and/or directives.

- Parallelizing Transformation — the set of expressions determining the new value of "Parallelization Region".

4 Automatic Parallelizing Expert Toolkit architecture overview.

APET's input is a model of serial program (MSP) obtained by specialized compiler from high-level languages
and the knowledge base of parallelization techniques. The output is MPP or FJM model that represents the
source program after all the parallelization techniques possible applied. Both of the models can be converted
back into the high-level language (not necessary the same as the source) form. APET also provides an extensive
report explaining which of the parallelization techniques were (or were not) applied and why (see figure 1).

It is also possible to define the set of criteria of parallelization quality to measure some static values of
parallelization made by selected set of parallelization techniques.

References

1. William Blume, Ramon Doallo, Rudolf Eigenmann et al. Advanced Program Restructuring for High-Performance
Computers with Polaris. Technical report 1473. University of Illinois at Urbana-Champaign, Center for Supercom-
putmg Res. & Dev. January 1996.

2. Briang Armstrong, Seon Wook Kim, Insung Park, Michael Voss and Rudolf Eigenmann. Compiler-Based Tools for
Analyzing Parallel Programs. Parallel Computing Journal, 1997.

3. Open MP C and C++ Application Program Interface. Document No. 004-2229-001. October 1998; Open MP Archi-
tecture Review Board, http://www.openmp.org.

4. Oleg A. Kupnevich, Margarita A. Knyazeva. Expert Toolkit for Simulating Program Optimization. Preprint. Institute
for Automation, Vladivostok, 1997.

5. Yury V. Chelomin. Model of optimization process for shared memory parallel programs. Proceedings of E Zolotov's
workshop. Vladivostok, June 1998. (In Russian)

Chelomin Y. V. Platform Independent Approach for Detecting Shared Memory Parallelism 135

Expert Developers

T-
ParaRefaation

Toohniquoo

I

Automatic Parallelizing Expert sou™ cod«* *
Coquontol Programs

Toolkit i

Knowledge Base
on Parallelizatlon

Techniques

Sets of Source
MSPs

Knowledge Base Interpreter

MPP and/or FJM
Models

Set of Criteria of
Parallelizatlon

Quality

Back-translation
System

Evaluation System

Specialized
Translators from

High-Level
languages into

MSP

Extension Models

Source Codes of
Parallel Programs

Evaluation Of
Parallelizatlon

Quality

Extensive
Explanation

Report u
Knowledge abouf Quality of

Parallelizatkm Techniques
Set Used

Expert

Fig. 1. APET's architecture diagram

Hierarchical Cause-Effect Structures

Ustimenko A. P.

A. P. Ershov Institute of Informatics Systems,
Siberian Division, Russian Academy of Sciences,

630090 Novosibirsk, Russia,
apu8iis.nsk.su

Abstract. We suggested an extension of the class of cause-effect structures by semantics of hierarchy. As
an example of hierarchical c-e structure we use a simulation of zero-testing operator. Relationships between
classes of hierarchical c-e structures and hierarchical Petri Nets introduced by V.E. Kotov are investigated.

1 Introduction

In order to describe concurrent systems, L.Czaja has introduced in [1] cause-effect structures (CESs) which
were inspired by condition/event Petri nets (PNs). CES can be defined as a triple {X,C,E) where X is the
set of nodes, C and E are the cause and effect functions from X to the set of formal polynomials over X such
that xeX occurs in C(y) iff y occurs in E(x). Each polynomial C(x) (E(x)) denotes a family of cause (effect)
subsets of the node x. The operator * combines nodes into subsets, and the operator 4- combines subsets into
families.

. Unfortunately, practical expressiveness of CESs is not sufficient to use them in real-life applications. Some
supplementary constructions, for instance, semantics of coloured tokens or hierarchy are necessary.

Note that the extension of CESs by coloured tokens has been received in [7]. In ordinary CESs a token or
an active state of a node denotes presence of some resource. However this approach does not allow qualitative
difference between resources functioning in CES to be discovered. Moreover, each node should not simultaneuosly
have more than one token-resource. Sometimes it is important to differ resource qualitatively. This difference is
represented by colours of tokens, and each node may have several differently coloured tokens.

This work is devoted to constructing a class of hierarchical CESs (HCESs) which improves compactness of
the algebraic representation of CESs and enlarges their practical expressiveness.

Relationships between this new class and the class of hierarchical Petri nets (HPNs) introduced by V.E Kotov
m [3] are investigated. We prove that every HCES has behaviorally equivalent HPN.

There was an interesting open problem: in [4] Raczunas investigates converse mapping from PNs to CESs
He remarks that so called strong equivalence is not the case for converse mapping. We decided this problem
m [6] by introducing extension of cause-effect structures - two-level CESs (TCESs). TCESs is a convenient
intermediate class between PNs and CESs, because it is strongly equivalent to the class of PNs and we can
transform any TCES into structurally equivalent CES with the help of folding-transformation. On the other
hand, each CES has a strongly equivalent TCES.

The problem of the converse mapping from HPNs to HCESs is decided with help of the class of two-lewel
HLEDS.

2 Preliminaries

2.1 Regular and Hierarchycal Petri Nets

The> algebra of regular Petri nets (RPN) introduced in [2] is generated by the class of atomic nets with the use
ot the set or net operations.

An atomic net is a net of the following form:

ä ° =

where is a transition symbol, "is a head net place, = is its tail place.

 Ustimenko A. P. Hierarchical Cause-Effect Structures . 137

The concurrency operation (denoted by ",") is defined as a common graph union: it superposes one net on
another.

UNi = (Pi,Ti,Fi) and N2 = (P2,T2,F2) then
N = (Ni,N2) = (Pi UP2,Ti UT2,FX UF2)

Let h(N) denote the set of head places of a net N and 1(N) be the set of tail places of N. By definition,
h(N) = h(N!) U h{N2) and l(N) = l(Ni) U f (JV2).

Other net operations can be defined via the concurrency operation and an auxiliary merging operation. The
latter merges two sets of places in a specific way. This involves two suboperations: 1) formation of a set of
merged places, 2) replacement of two existing sets by a new set.
Given two sets of places X and Y the forming operation x results in the set Z of merged places:
Z = X x Y = {xUy\x € X,y € Y)

The merging operation M merges two sets of places, X and Y, in a net N — (P, T, F) and generates a new
net M(N,X x Y) = (P',T',F'), where

P' = P-(XUY)U(XxY),T' = T,

VpeXxY: F'{p) = F(x) U F(y),
where p = x U y.

The operation of iteration " *" merges the sets of head and tail places of the net if their intersection is empty:

N' - *(N) = m(N, h(N) x l(N))
By definition, its sets of head and tail places are equal.

The precedence operation ";" joins two nets by merging the set of tail places of the first net with the set of
head places of the second net. By definition, h(N) = h(N\) and /(Ar) = l(N2).

The alternative operation " V" unites two nets by merging their sets of head places and their sets of tail
places separately. By definition, h(N) = h(Ni) x h(N2) and l(N) - l(Ni) x /(Ar

2)-

Let E be a class of atomic nets, i.e. a class of transition symbols. A net formula in the algebra of RPN over
basis E is defined as follows:

1) each symbol of E is a formula;

2) if A is a formula, then *(A) is a formula;

3) if A and B are formulae, then (A, B), (A; B) and (AVB) are formulae.

The class of hierarchical Petri nets (HPN) introduced in [3] is a generalization of the class of RPN and is
used for modelling hierarchical systems.

To define HPN, we should divide the class of transition symbols into two nonintersecting subclasses: terminal
and nonterminal symbols. Correspondingly, any transition can be simple or compound.

HPN is defined by a structural formula constructed from terminal and nonterminal symbols using the set of
the (regular) net operations and an ordered set of nonterminal symbols'definitions.

Each such definition looks like s : A, where s is a nonterminal symbol, and A is a formula of HPN which is
internaJ for this symbol.

We have two contextual restrictions:
1) Any symbol of a structural formula is terminal if it is not defined in this formula.
2) Each nonterminal symbol is defined only once and it can not join the right-hand part of its definition and all
the following ones.

A compound transition may be in a passive or active (when its internal net is working) state. The begining
and the end of a compound transition's work are momentary events.

On Fig.l you can see HPN which allows us to check whether the place x has token. Thus, expressive power
of the class of HPNs is greater than of the class of PNs.

138 Perspectives of System Informatics'99

Fig.l Zero-testing operator.

2.2 Cause-Effect Structures

Cause-effect structures are represented as directed graphs with an additional structure imposed on the set
of nodes. These graphs, with operations + and * corresponding to nondeterministic choice and parallelism,
constitute a near-semi-ring where "near" means that distributivity of * over + holds conditionally.

A CES is completely represented by the set of annotated nodes: each node x is subscribed by a formal
polynomial E(x) built of (names of) its successors and superscribed by a formal polynomial C{x) built of its
predecessors and may be either in an active or passive state. The active state of a node represents the presence
of control in it.

If a node is active, then we try to move control from it simultaneously to all its successors which form a
product in its lower (subscript) polynomial - if they are passive. Symmetrically, if a node is passive, then we try
to move control to it simultaneously from all its predecessors which form a product of its upper (superscript)
polynomial - if they are active (if no predecessors or successors exist then the upper or lower polynomial is 6
omitted sometimes). This rule renders complex - in general - interdependences between nodes in the aspect of
a control flow: a group of nodes have to "negotiate" the possibility of changing their state with one another
Such groups of nodes will play a role similar to that of transitions in PNs. They are called firing components
The set of all firing components of the CES U is denoted by FC[U].

All the formal definitions of CESs can be found in [1]. Moreover, for better understanding and convenience
of comparison, we include all these definitions to Sect.3: Definitions 3.1, 3.2, 3.3, 3.6, 3.7, 3.8 and 3 10 without
any changes; Definition 3.5 modifed a little for the case of hierarchy, and Definition 3.12 with additional (second
and third) alternative groups of conditions.

3 Hierarchical Cause-Effect Structures

We construct an extension of the CESs class up to hierarchical one in the manner proposed by V.E.Kotov for
Petri nets. We have compound transitions in the hierarchical Petri nets (HPNs), but CESs have only one type
of vertices - nodes. The attempt to introduce compound nodes leads to complicated and unwieldy construction

Our solution is to introduce compound or " global" tokens which appear on some directions of moving control
between nodes. Each such token includes an inner CES. When a group of nodes is ready to move control jointly
to their successors and at least one of them gives birth to a global token on this direction, then-
- this group of nodes move control to CES which is inner for appearing global token;
- the inner CES is working and when it reaches the final state it moves control to all successors of the original
group of nodes. &

Ustimenko A. P. Hierarchical Cause-Effect Structures 139

In fact we have some subclass of hierarchycal or global firing components; This way allows us to preserve
the style and the scheme of defining CESs. We add only a globalization function on the set of nodes, and extend
semantics correspondingly.

Definition 1. (3.1.) Let X be a set called a space of nodes and let $ be a symbol called neutral. The least set
Y satisfying the following: 9€Y,XCY, if K G Y and L G Y then (K + L) G Y and (K * L) G Y, is a set of
polynomials over X denoted by F[XJ.

Definition 2. (3.2.) We say that the algebraic system A = (F[X],+,*,9) is a near-semi-ring of polynomials
over X if the following axioms hold for all K € F[X),L e F[X],M eF[X],x£X :

(+) 0 + K = K + 6 = K (*) 9*K = K*9 = K
(++) K + K = K (**) x*x = x
(+++) K + L = L + K (* * *) K*L = L*K
(++++) K + (L + M) = (K + L) + M (****) K * (L * M) = (K * L) * M
(+*) K*(L + M) = K*L + K*M
provided that either L = M = 9 or L ^ 6 and M ^ 6

Definition 3. (3.3.) Let X be a space of nodes and (F[X},+,*,6) be a near-semi-ring of polynomials. A CES
over X is a pair (C,E) of functions:
C : X —> F[X] (cause function)
E:X —> F[X] (effect function)
such that x occurs in the polynomial C{y) iffy occurs in E(x) (then x is a cause of y and y is an effect ofx).
The set of all CES's over X is denoted by CE[X].
The CES is completely represented by the set of annotated nodes x.

Definition 4. (3.4.) Let (C,E) is a CES overX, and let for each x G X its effect polynomial be transformed to
the canonical form: E(x) = YlEi{x), where each Ei{x) is a monomial. The globalization function G prescribes
some global token (i.e. a token which includes an inner CES or the neutral element 6) to each effect direction
Ei(x) of each node x. Then a hierarchical cause-effect structure is a triple of functions (C(X),E(X),G(<
X,E(X)>)).
The set of all HCESs over is denoted by H\\.

Remark 1. A token may be an ordinary "unfaced" resource denoted by 6. That is, if <?(< x,Ei(x) >) = 6 for
some node x and direction Ei(x), then it means that the token on this direction is non-compound, and moving
of control runs without delay.

Definition 5. (3.5.) Let us define the addition and multiplication of functions by the rules:
(Ci + C2){x) = d(x) + C2(x) and (Ex + E2)(x) = Ei(x) + E2{x),
G(<x,Ei>) = Gi(<x,Ei>);
(Ci * C2)(x) = Ci(x) * C2{x) and (Ex * E2)(x) = Ex(x) * E2(x),
G(<x,Ex*E2>) = Gx(<x,Ex>) + G2(<x,E2>).
Then an algebra of HCESs is obtained as follows. Let 6 : X —► F[X] be a constant function 9(x) = 9, let, for
brevity, the HCES (9,9) be denoted by 9, and let + and * on HCESs be defined by the following:

(l,l,Gx) + (2,2,G2) = (l +2,1 +2,C),
(l,l,Cl)*(2,2,G!2).= (l*2,l*2,C).

Obviously, if Ui = (CuEi, d) G HCE[X)(i = 1,2), then Ux + U2e HCE[X] and Ux*U2e HCE[X].

Definition 6. (3.6.) A CES U is decomposable iff there exist CESs V,W such that
9^V ^U,9^W ^U and either U = V + W orU = V*W.

Definition 7. (3.7.) Let U, V be CESs. V is a substructure of U iff V + U = U'. Then we write V < U.
SUB[U] - {V : V < U}. Easy checking ensures that < is a partial order. The set of all minimal (wrt <) and
^ 9 elements of SUB[U] is denoted by MIN[U].

Definition 8. (3.8.) For a CES U, let Q = (CQ,EQ) be a minimal substructure of U such that for every node
x in Q:

(i) polynomials CQ(X),EQ(X) do not comprise '+',
(ii) exactly one polynomial, either CQ(X) or EQ(X), is 9.

Then Q is called a firing component of U. FCl[U] = {Q G MIN[U] : (i),{ii) hold} is the set of all firing
components of the first level. We denote by *Q (preset of Q) the set of nodes x in Q with CQ(X) = 0, and by
Q* (post-set of Q) the set of nodes x in Q with EQ(X) = 9.

140 Perspectives of System Informatics'99

Definition 9. (3^)fG(x) ^ 6 for any node x e« Q, then we say that a global firing component Q has an
internal CES denoted by G(Q) = £ G(x).

xemQ

Remark 2. Each internal CES has a set of its own firing components. Thus, there exist a union of sets of firing

Tr^T\T ! ??maI CESS °f the firSt level Called a set of firin§ components of the second level, and
so on. The full set of firing components of any HCES U (denoted by FC[U}) is a union of its sets of firing
components ot all levels. °

Definition 10. (3.10.) A state is a subset of the space of nodes X. A node x is active in the state s iff x e s
and passive otherwise. JJ

Definition 11. (3.11.) Let us define, for each global firing component Q, two supplementary subsets of its

blZTcm l HCES G{Q) denoted hy So{Gm and a terminal state of w)denöted

Definition 12. (3.12.) For Q € FC[U], let [[Q]) denote a binary relation on the set of all states: (s,t) e [[Q]}

•QQs,G(Q) = 6,Q'ns = 0,t=(s-'Q)uCr
or

•QQ*,G(Q)?6,S0(G(Q))ri8 = <2>,t = (8-'Q)uS0(G(Q))
or

Semantics [{U}} of a HCES U is a union of relations:

liu}} = U [[<?]]
QeFC[u]

Remark 3. Firstly in preserving the condition Q' n. = 0 and similar, we follow the tradition of defining
semantics of CESs that requires the artificial safety. That is, each node must not have more than one token

Secondly, alternative groups of conditions in Def.3.12 mean the following-
- if the finng component is not global, all nodes of its pre-set are active and all nodes of its post-set are passive
(the requirement of safety) then control is moving from all nodes of its pre-set to ail nodes of t posset

mt rnal HclT ™f it^' * "^ 'f ^ *" "^ and a11 nodes of the -itiaf s ate of its
7notsTomStheeiSl l^ ^"^ ^ "**>' ^ ""** ta ^ ^ the ^ ^ »firing»

- if the internal HCES of the global firing component has reached the terminal state and all nodes of the post-set
of this global firing component are passive, then control is moving to them.

On Fig.2 one can see a HCES which is equivalent in a sense to HPN on Fig.l:

O x

a ii

a 2

{tf/,*#,2#,jjj;«'}

Fig.2 Zero-testing operator.

 Ustimenko A. P. Hierarchical Cause-Effect Structures : 141

4 Relationships between HCESs and HPNs

There is an interesting question about relationships between GESs and PNs. In [4] Raczunas states that every
CES has a strongly equivalent PN, i.e., two bijections exist: between the firing components of CES and transitions
of PN, and between nodes of CES and places of PN; moreover, the bijections must preserve pre- and post-sets
of firing components and transitions.

In [2] Kotov proved that each PN has a behaviorally equivalent regular PN,i.e., their sets of languages or
traces of firing are equal. So we may formulate:

Theorem 1. (1.) Each HCES has a behaviorally equivalent HPN.

Sketch of a proof. In [4] Raczunas proves that each CES has strongly equivalent PN. But the only structural
difference between CES and HCES is the globalization function which does not touch an external cover of
HCES (the cover is a HCES in which all global firing components are substituted by simple ones). The last is
an ordinary CES and so it has a strongly equivalent PN which is the cover of some HPN. But the cover of an
internal HCES of any global firing component also is a CES and has a strongly equivalent PN which is internal
for corresponding global transition of this cover-HPN, and so on. Finally, with the help of the regularization
algorithm (see [2]), we construct a behaviorally equivalent HPN from given set of strongly equivalent external
and internal PNs.

Raczunas investigates a converse mapping from PNs to CESs. He remarks that strong equivalence is not the
case for the converse mapping.

We decided this problem in [6] by introducing an extension of cause-effect structures - two-level CESs
(TCESs). Any CES is completely represented by the set of annotated nodes {zJ^j} where E(x) and C(x) are
polynomials with operations + and *. We propose to exclude the operation + from the formal polynomials and
to call the resulting elementary CES (or unalternative CES - UCES) a two-level CES of the first syntactic level.
Elementary CESs are united by the operation ® into the set called a two-level CES of the second syntactic
level, or simply TCES. Thus, TCES is a set of sets of annotated nodes.

So, the operation © is a union of sets of an upper level. It differs from the operation + because it does
not merge elementary CESs into a set of annotated nodes. An operation ® on the set of TCESs is a Cartesian
product of sets of an upper level. The operation ® on the set of UCESs is the same as operation * on the set
of CESs. In its canonical form TCES is a sum of its firing components.

TCESs is an usefull intermediate class betwr "-n PNs and CESs, because it is strongly equivalent to the class of
PNs and we can transform any TCES into structurally equivalent CES with the help of folding-transformation.
On the other hand, each CES has a strongly equivalent TCES. Thus, there are only structural differences
between TCESs and CESs, their semantics are the same. So the semantics of hierarchy is transferred to the
class of TCES without essential changes. Thus, we have:

Theorem 2. (2.) Each HPN has a strongly equivalent hierarchical TCES.

Sketch of a proof. An algorithm of constructing of a strongly equivalent HCES is stage by stage:
1. we map the cover-net of given HPN in a strongly equivalent CES which is the cover-structure of the con-
structed HCES;
2. we map the cover-net of an internal HPN of each compound transition of the first level in a strongly equivalent
CES which is the cover-structure of an internal HCES of corresponding global firing component;
3. and so on.
On the each stage we deal with mapping an ordinary PN in ordinary CES. But the algorithm of such mapping
has constructed and proof of its correctness and fullness has made in [6].

5 Conclusion

This work is a continuation of the series of papers [5], [6], [7] devoted to constructing different extensions and
generalization of the cause-effect structures. Moreover, the globalization function proposed in this work has
more general and important meaning. It allows us to unite all these extensions into an universal model. That
is, such function may prescribe internal CESs to one group of firing components, time restrictions to another
one, and rules of token colour transformations to some other firing components. Thus, an important direction

___ Perspectives of System Informatics'99

of future investigations is constracting a high-level class of CESs which will unite feasibilities and advantages of
all above semantics and two-level representation.

Acknowledgements

The author thanks Dr. Valery Nepomniaschy for useful discussions.
This work is supported by the Grant of Presidium of Siberian Division of Russian Academy of Sciences.

References

1. Czaja L. Cause-effect structures// Inform. Process. Lett. 26 (1988) 313-319.
2' WSJ _420251L*A"' K°tOV V*E' StrUCtUred nets// LeCture Notes in Computer Science 118 (Springer-Verlag, Berlin,

3" _"°J.°V 7,'E: An alg6bra for P8™110113«1 based on petri nets// Lecture Notes in Computer Science 64 (Springer-Verlag
Berlin, 1978) 39-55.

4. Raczunas M. Remarks on the equivalence of c-e structures and Petri nets// Inform. Process. Lett. 45 (1993) 165-169
Ustimenko AR Mapping of time cause-effect structures into time Petri nets// Cybernetics and system analysis 2
(Kiev, 1997) 44-54. J

6. Ustimenko A.P. Algebra of two-level cause-effect structures// Inform. Process. Lett. 59 (1996) 325-330
7. Ustimenko A.P. Coloured cause-effect structures// Inform. Process. Lett. 68 (1998) 219-225.

Some Decidability Results
for Nested Petri Nets*

Irina A. Lomazova1 and Philippe Schnoebelen2

1 Program Systems Institute of the Russian Academy of Science
Pereslavl-Zalessky, 152140, Russia

email: irina8univ.botik.ru
Lab. Specification & Verification, ENS de Cachan & CNRS UMR 8643

61, av. Pdt. Wilson, 94235 Cachan Cedex, Prance
email: phs81sv.ens-cachan.fr

Abstract. Nested Petri nets are Petri nets using other Petri nets as tokens. Their nested structure make
some important verification problems undecidable (reachability, boundedness, ...) while some other prob-
lems remain decidable (termination, inevitability, ...).

1 Introduction

For modelling and analysis distributed concurrent systems, there exists a large variety of formalisms based on
Petri nets [ReiS5,Smi96,Jen92,Lom97]. Among them, several approaches extend the Petri nets formalism by
notions and structures inspired from object oriented programming [Sib94,Lak95,MW97,Val98]. Such extensions
are helpful for modelling hierarchical multi-agent distributed systems.

While Sibertin-Blanc [Sib94], Lakos [Lak95], Moldt and Wienberg [MW97] consider systems with communi-
cating coloured Petri nets, Valk [Val98] in his object Petri nets considers tokens as objects with a net structure.
In his approach, the system net and object nets are elementary net systems, but an object is in some sense not
located in one place (since Valk uses object Petri nets for solving specific fork-join situations in task planning
systems), and this leads to a rather complex definition of the notion of states for object Petri nets.

Nested Petri nets. Here we study another Petri net model where tokens may be nets themselves: nested x Petri
nets [Lom98]. Nested Petri nets are a convenient tool for modelling hierarchical multi-agent dynamic systems.
The object nets in a nested Petri net have their own structure and behaviour, they may evolve and disappear
during the system lifetime, and their number is unlimited. A nested Petri net has four kinds of steps. A transfer
step is a step in a system net, which can "move", "generate", or "remove" objects, but does not change their
inner states. An object-autonomous step changes only an inner state in one object. There are also two kinds of
synchronisation steps. Horizontal synchronisation means simultaneous firing of two object nets, situated in the
same place of a system net. Vertical synchronisation means simultaneous firing of a system net together with
some of its objects "involved" in this firing.

In this paper we show how some crucial verification problems remain decidable for tfested Petri nets and some
become undecidable. This shows that nested Petri ne'ts are in some weaker than Turing machines and stronger
than ordinary, "flat" Petri nets. The decidability results are mostly based on the theory of Well-Structured
Transition Systems [Fin90,ACJY96,FS98]. ,

The paper is organised as follows. Section 2 contains definitions of Nested Petri nets. In Section 3 the
expressive power of nested Petri nets and some other Petri nets models is compared. In Section 4 we prove
that nested Petri nets are well-structured transition systems and deduce some decidability and undecidability
properties. In the Appendix we give a simple example of a two-level nested Petri net with ordinary Petri nets
as tokens.

This work was mainly prepared during the stay of the first author at Lab. Specification & Verification in June-July
1998, and was partly supported by INTAS-RFBR (Grant 95-0378) and the Russian Fund for Basic Research (Project
No.<96-01-01717)
The word "nested" points to the analogy with nested sets, containing sets as their elements, which in turn may contain
sets and so on. There may be any fixed number of levels in nested Petri nets. It is also possible to consider nested nets
with unbounded depth, but we do not do this here.

144 Perspectives of System Informatics'99

2 Nested Petri Nets

Definition 1. Let P and T be disjoint sets and let F C (P x T) U (T x P). Then M = (P, T, F) is a net. The
elements of P, T and F are called places, transitions and arcs respectively.

Pictorially, P-elements are represented by circles, T-elements by boxes, and the flow relation F by directed arcs.
ForiePUTwe write *x for the pre-set {y \ yFx} of x, and x* for its post-set {y \ xFy}. The input arcs of a
transition t are those in {(x,t) | x 6 **}, its output arcs are those in {(t,x) \ x £ f}.

Markings. In the Coloured Petri nets formalism [Jen92], places carry marked multisets of coloured tokens. Recall
that a multiset m over a set S is a mapping m : S -* N, where N is the set of natural numbers, m is finite iff
{s e S I m(s) > 0} is. We let m <m' (m + m') denote multiset inclusion (resp. sum). By SMs we denote the
set of all finite multisets over S.

Definition 2. Let M = (P,T,F) be a net and S an arbitrary set. A marking of M over S, also called an
S-marking, is a function M from P to SMs mapping every place to a multiset over S. A marked net is a net
together with some marking, called the initial marking of this net.

In the above definition tokens may be arbitrarily complex objects (as in Coloured Petri nets). In nested Petri
nets the tokens may be nets.

Transitions. As with Coloured Petri nets, we want to keep track of moving tokens. For this we label arcs with
variables and other expressions.

Let V■ = {«!,...} be a set of variable names, and C = {a,...} a set of constant names. Write A for the set
V U C of atoms. An expression is a finite multiset of atoms (usually written with the binary symbol +: e g
«l + (ca + «i) is an expression). Expr(A) is another way of denoting AMS - {e,..:.}, the set of expressions. For
e € Expr(A), Var{e) is the set of variables occuring in expression e.

Assume any constant c denotes a fixed element cs in S. Assume & maps any variable v to an element b(v) € S.
Then 6(e) denotes a multiset over S in the obvious way.

Let Lab = {h ,l2,...} and Lab' = {I1,?,...} be two disjoint sets of labels. For each label I e Lab U Lab' we
define an adjacent label I, such that the sets Lab, Lab', Lab =def {I | I e Lab} and Lab' =def {V | /' e Lab'} are
pairwise disjoint. Let I =def / and C =def Lab U Lab' U Tab U Lab'.

Now we come to the definition of a nested Petri net structure, consisting of a system net, several object nets
labels on arcs, and labels on transitions. '

Definition 3. A nested Petri net structure E is an array ofk>\ nets M, ..., Mk, where Nx is a distinguished
net, called a system net, and the Mi's, fori = 2,..., k, are called object nets.

In any Mi = (Pj, Tj, Fi) the input (resp. output) arcs from Ft are labeled by expressions £(p, t) (resp Sit p))
from ExpiiA). We require that no variable occurs twice in an input label S(p,t), or in two input labels for a
same transition. (There is no restriction on the output labels.)

In any Mit the transitions may carry labels from C (possibly several labels).

Assume a given nested Petri net structure E and let markings in object nets M2,...,Mk be considered over
some finite sets S2,... ,Sfc correspondingly and let M denote the set of all marked object nets of E.

Definition 4. A nested Petri net (NP-net) is a nested Petri net structure E with each constant ceC inter-
preted as some marked object net from M.

By a marking of a NP-net, we mean a marking of its system net over the set M.
A marked NP-net is an NP-net together with some (initial) marking.

Note that the definition of an NP-net depends on the sets S2,..., Sk as parameters. If the St'B are one-element
sets, then the object nets are ordinary Petri nets with black dots as tokens, and a nested Petri net is just a
system net with ordinary nets as tokens. If the S4's are sets of coloured tokens, then a nested Petri net has
Coloured Petri nets as tokens. If the ^'s are sets of marked nets, we get a three-levels (or more) structure, in
which object nets are system nets with respect to the next level. It's clear that we can have as many levels as
we like. And at last, if some of sets S2,S3,...,Sk contain the system net Mu as its element we get recursion
which is not considered here. '

In NP-nets, firing a transition requires instantiating the variables in arc labels:

Lomazova I. A., Schnoebelen P. Some Decidability Results for Nested Petri Nets 145

Definition5. LetMi = (Pi,Ti,Fi)beanetinanestednetNPN.
1. A binding of a transition t € Ti is a function b mapping each variable v € V to a value b(v) from the set

Mus2us3u...uSk-
2. A binded transition is a pair Y — (t,b), where t is a transition and b is a binding oft.
3. A binded transition Y = (t, b) is enabled in a marking M of Mi iffVp 6 *t: b(£(p,t)) C M(p).
4- An enabled binded transition Y = (t, b) may fire in a marking M and yield a new marking M', written

M[Y)M'. For any p e Pi, M'(p) =defM(p) - b(E(p,t)) + b(S(t,p)).

Now we come to defining a step in a NPN-net.

Definition 6. Let NPN be an NP-net. A step of NPN is either
a transport step: firing (through some appropriate binding) an unlabeled transition in the system net N\, not

changing markings of object nets;
an object-autonomous step: firing an unlabeled transition in one of the object nets, while all object nets

remain in the same places of the system net;
an horizontal synchronisation step: simultaneous firing of two transitions of two object nets lying in the

same place w.r.t. the same binding, provided these two transitions are marked by two adjacent labels I and
I from Lab' U Lab';

a vertical synchronisation step: simultaneous firing of a transition t marked by a label I £ LabULab in the
system net and transitions in object nets marked by the same label I — one in each net from the multiset
£(p,t)(b) for each p G *t w.r.t. the same binding.

We say a marking M' is (directly) reachable from a marking M and write M —> M', if there is a step in NPN
leading from M to M'.

An execution of NP-net NPN is a sequence of markings M0 -> Ma ->■ M2 ... successively reachable from the
initial marking Mo-

3 Nested Petri nets and other Petri net models

In this section we compare expressive power of nested Petri nets with some other Petri net models. First of all,
it was already explained, that

Proposition 1. Ordinary Petri nets form a special case of nested Petri nets.

Then we compare nested Petri nets with some extensions of ordinary Petri net model.
Petri nets with reset arcs [Cia94] extend the basic model with special "reset" arcs, which denote that firing

of some transitions resets (empties) the corresponding places.

Theorem 1. Petri nets with reset arcs can be simulated by nested Petri nets with ordinary Petri nets as object
nets.

Proof. The idea is to simulate the presence of n tokens by one simple object net having n tokens. Then it is
possible to remove this object net in one step (and replace it by an empty object net), simulating the effect of a
reset arc. Incrementations and decrementations in the object nets simulate incrementations and decrementations
in a place of the system net. They can be enforced by the synchronisation mechanism.

Since it is known [DFS98,DJS99] that Petri nets with reset arcs are more expressive than ordinary Petri nets,
we immediately get the following

Theorem 2. Nested Petri nets with ordinary Petri nets as object nets are more expressive than "flat" ordinary
Petri nets.

4 Decidability for Nested Petri Nets

In this section we discuss some issues of decidability for nested Petri nets. First, we briefly formulate some
problems crucial for verification of Petri nets.

A net terminates if there exists no infinite execution (Termination Problem). A marking M' is reachable
from M, if there exists a sequence of steps leading from M to M' (Reachability Problem). The reachability
set of a net is the set of all markings reachable from the initial marking. A net is bounded if its reachability

-1^ Perspectives of System Informatics'99

set is finite (Boundedness Problem). The Control-State Maintainability Problem is to decide, given an initial
marking M and a finite set Q = {qu q2,..., qm) of markings, whether there exists a computation starting from
M where all markings cover (are not less than w.r.t. some ordering) one of the qfr The dual problem, called
the Inevitability Problem, is to decide whether all computations starting from M eventually visit a state not
covering one of the Qi% e.g. for Petri nets we can ask whether a given place will eventually be emptied.

Theorem 3. 1. Reachability is undecidable for nested Petri nets.
2. Boundedness is undecidable for nested Petri nets.

Proof. Due to Theorem 1 Nested Petri nets can simulate Petri nets with reset arcs, hence, validity of this two
statements follows from undecidability of reachability [AK77] and boundedness [DFS98,DJS99l for Petri nets
with reset arcs. □

To obtain decidability results we use the notion of well-structured transition system introduced in [Fin90 AC JY961
Recall that a transition system is a pair S = (S, ->) where S is an abstract set of states (or configurations)
Trjll ?! * ^ transition realtion- For a transition system S = (S,-+) we write Succ(s) for the set
\s eb\s -» s} of immediate successors of a. S is finitely branching if all Succ(s) are finite

A well-structured transition system is a transition system with a compatible wqo: recall that a quasi-ordering
(a qo) is any reflexive and transitive relation < (over some set X).

Definition 7. A well-quasi-ordering (a wqo) is any quasi-ordering < such that, for any infinite sequence
x0,xi,x2,..., in X, there exist indexes i < j with Xi <Xj.

Note, that if < is a wqo, then any infinite sequence contains an infinite increasing subsequence: xio <xh<xh...

Definition 8. A well-structured transition system (a WSTS) is a transition system S = (S' -> <) eauinved
with an ordering <C S x S between states such that >-/ i rr
- < is a wqo, and
- < is "compatible" with ->,

where "compatible" means that for all s, < tl, and transition 8l -> s2, there exists a transition t, -). t2, such
that s2 < t2.

[FS98,FS97] introduce more liberal notions of compatibility:
A WSTS S has transitive compatibility if for all 8l < tx, and transition 8l ->'«2, there exists a nonempty

sequence h -)■ t2 -> ... -> tn with s2 < tn. y

A WSTS E has stuttering compatibility if for all s1<t1, and transition 8l -► s2, there exists a nonempty
sequence *i -^_*2 ->..,-+*„ with s2 < tn and 8l < U for all i < n.

Now we define a wqo on the set of states of our NP-nets and show that they are WSTS.

Definition 9. Let NPN.be a nested Petri net, MMS ~ the set of all its states.
A quasi-ordering < on MMS is defined as follows:

{Tt
Mu)*f2 I ^MJ\ *?\- M2 iSJ°!f P £ P^ tkere 6XistS m inicctive funetion 3'P ■■ M^P) -+ M2(p), such

^ W."»> e Wi(p)> for s € Mx{p): either jp(S) = s or s = (A/i,m> and h{{Num)) = W,m>) implies

Thus, the relation ^ is a kind of a nested set inclusion. • ' '

Proposition 2 Let NPN be a nested Petri net, with MM's the set of all us states, -> the step relation on
Wtem <P«""-orideriTig on MMS, defined above. Then {MMS,^, <) is a well-structured transition '

We skip the proof here.

, NwQ?cat lf ^^ not restrict multiple occurrences of variables in input arc expressions, we would not
have WSTS, as well as Object Petri nets of Valk are not WSTS.

It was proved in [FS97] that

- Termination is decidable for WSTS's with (1) transitive compatibility, (2) decidable <, and (3) effective
bucc{s). (Theorem 4.6.) _ w

- The control-state maintainability problem and the inevitability problem are decidable for WSTS's with (1)
stuttering compatibility, (2) decidable <, and (3) effective Succ(s). (Theorem 4.8.)

It turns out that for NP-nets

Lomazova I. A., Schnoebelen P. Some Decidability Results for Nested Petri Nets 147

Lemma 1. (1). The qo -< is decidable.
(2). Succ is effective.

With the help of these statements we can obtain the following decidability results for NP-nets:

Theorem 4. Termination is decidable for nested Petri nets.

Proof. Follows from Proposition 2, Lemma 1 and Theorem 4.6 in [FS97]. □

Corollary 1. Nested Petri nets are expressively strictly weaker than Turing machines.

Proof. Since termination is not decidable for Turing machines. □

Theorem 5. The control-state maintainability problem and the inevitability problem (w.r.t. <) are decidable

for nested Petri nets.

Proof. Follows from Proposition 2, Lemma 1 and Theorem 4.8 in [FS97]. □

References

[ACJY96] P. A. Abdulla, K. Ceräns, B. Jonsson, and T. Yih-Kuen. General decidability theorems for infinite-state
systems. In Proc. 11th IEEE Symp. Logic in Computer Science (LICS'96), New Brunswick, NJ, USA, July
1996, pages 313-321, 1996.

[AK77] T. Araki and T. Kasami. Some decision problems related to the reachability problem for Petri nets. Theoretical
Computer Science, 3(1):85-104, 1977.

[Cia94] G. Ciardo. Petri nets with marking-dependent arc cardinality: Properties and analysis. In Proc. 15th Int.
Conf. Application and Theory of Petri Nets, Zaragoza, Spain, June 1994, volume 815 of Lecture Notes in
Computer Science, pages 179-198. Springer, 1994.

[DFS98] C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and undecidability. In Proc.
25th Int. Coll. Automata, Languages, and Programming (ICALP'98), Aalborg, Denmark, July 1998, volume
1443 of Lecture Notes in Computer Science, pages 103-115. Springer, 1998.

[DJS99] C. Dufourd, P. Jancar, and Ph. Schnoebelen. Boundedness of Reset P/T nets. In Proc. 26th Int. Coll.
Automata, Languages, and Programming (ICALP'99), Prague, Czech Republic, July 1999, Lecture Notes in
Computer Science. Springer, 1999. To appear.

[Fin90] A. Finkel. Reduction and covering of infinite reachability trees. Information and Computation, 89(2): 144-179,
1990.

[FS97] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere ! Accepted for publication in
Theor. Comp. Sei., October 1997.

[FS98] A. Finkel and Ph. Schnoebelen. Fundamental structures in well-structured infinite transition systems. In Proc.
3rd Latin American Theoretical Informatics Symposium (LATIN'98), Campinas, Brazil, Apr. 1998, volume
1380 of Lecture Notes in Computer Science, pages 102-118. Springer, 1998.

[Jen92] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Vol. 1, Basic Concepts.
EATCS Monographs on Theoretical Computer Science. Springer, 1992.

[Lak95] C. Lakos. From coloured Petri nets to object Petri nets. In Proc. 16th Int. Conf. Application and Theory
of Petri Nets, Turin, Italy, June 1995, volume 935 of Lecture Notes in Computer Science, pages 278-297.
Springer, 1995.

[Lom97] I. A. Lomazova. Multi-agent systems and Petri nets. In Proc. Int. Workshop on Distributed Artificial Intelli-
gence and Multi-Agent Systems (DAIMAS'97), St. Petersburg, Russia, June 1997, pages 147-152, 1997.

[Lom98] I. A. Lomazova. Modelling of multi-agent dynamic systems by nested Petri nets (in Russian), August 1998.
Accepted for publication in Transactions of Program Systems Institute of Russian Academy of Science.

[MW97] D. Moldt and F. Wienberg. Multi-agent-systems based on coloured Petri nets. In Proc. 18th Int. Conf.
Application and Theory of Petri Nets, Toulouse, France, June 1997, volume 1248 of Lecture Notes in Computer
Science, pages 82-101. Springer, 1997.

[Rei85] W. Reisig. Petri Nets. An Introduction, volume 4 of EATCS Monographs on Theoretical Computer Science.
Springer, 1985.

[Sib94] C. Sibertin-Blanc. Cooperative nets. In Proc. 15th Int. Conf. Application and Theory of Petri Nets, Zaragoza,
Spain, June 1994, volume 815 of Lecture Notes in Computer Science, pages 471-490. Springer, 1994.

[Smi96] E. Smith. A survey on high-level Petri-net theory. EATCS Bull., 59:267-293, June 1996.
[Val98] R. Valk. Petri nets as token objects: An introduction to elementary object nets. In Proc. 19th Int. Conf.

Application and Theory of Petri Nets, Lisbon, Portugal, June 1998, volume 1420 of Lecture Notes in Computer
Science, pages 1-25. Springer, 1998.

148 Perspectives of System Informatics'99

A Appendix: Example

ttLTtit? w^Xaiaf\°{ a two-level,nested Petri **■ I* models a set of worker receiving some tasks from
time to tune When a task comes, a worker is to borrow a tool from the buffer of tools. The number of workS
mvo ved m tins system .unlimited. The behaviour of each worker is described by the same obje"t net whTch
an elementary Petn net The system net describes a buffer of tools. The number of tools is fixed and is Sally
represented by the number of tokens in the place S5. initially

Element net for a Worker

~72 _ W3

System net for a Buffer of tools

R—^ "

L <J6 x *m

-O,

Fig. 1. Nested Petri net

The substantive meaning of places in an object net is as follows: T - set of tasks for a worter. w

Ä a Scf -a worker * appw"s fm * ** *> - *—- ^ % *«£ Äte

Relating Paradigms of Mobility
(Extended Abstract)

N.Raja* and R.K.Shyamasundar**

School of Technology & Computer Science
Tata Institute of Fundamental Research

Mumbai 400 005, INDIA

Abstract. We relate two major paradigms of mobile computation, namely concurrent constraints and
TT-calculus. We first define a minimal calculus which contains the core features of concurrent constraint
paradigm, and then provide an embedding from it to the 7r-calculus. Within such a framework, we define
a notion of behavioral congruence on concurrent constraints, and demonstrate that it corresponds to weak
barbed congruence in 7r-calculus.

1 Motivation

There has been a proliferation in the number of models that are being proposed to study concurrent computation.
Given such a situation, it is imperative to relate such models in order to evaluate their relative benefits and
drawbacks, and to carry over successful analysis techniques across models. Such an enterprise should relate at
least two benchmark work models of concurrency that are most expressive and widely used. This paper takes a
step in that direction.

In the design space of models for concurrency, there are two major paradigms which have been shown to
possess an expressive power of astounding range, namely the concurrent constraint paradigm [1,14.16] and the
Tr-calculus [4,5,7]. Each of them have been shown to be capable of embedding various other models of sequential
and concurrent computation as special cases of themselves [7,11,14,15]. The expressive power of these models
essentially derives from their ability to model the key notion of mobility elegantly, within a first-order framework.

The above two paradigms appear to be completely divergent from each other. This is not surprising since
they evolved from distinct sub-disciplines of computer science. The Tr-calculus (PI) uses communicating processes
which evolve concurrently, and interact by passing messages along named channels. In order to model mobility,
it suffices to restrict the communicated data values to be channel names only. On the other hand, the concurrent
constraints paradigm (CCP) uses concurrent processes which evolve by adding and resolving constraints on logical
variables. In order to represent mobility, it suffices to deal with equational constraints, and use unification as the
resolution mechanism. The differences in the primitives of the two paradigms gives them their distinct flavour,
but also makes the task of relating them a non-trivial one.

The difficulty in relating the two paradigms can be seen by examining related research work. Most of the
related work which embed (variants of) CCP into PI have used additional features over and above the basic
primitives of PI in order to succeed. The embedding proposed by Victor and Parrow [18] is the only exception
to this rule. However their proposal is inadequate, since their translation of logic variables leads to deadlocks
during concurrent update operations on the logic variables. We discuss this aspect in Section 5 while examining
related work. '

In this paper, we relate the two major paradigms of mobile computation - concurrent constraints and Tr-
calculus. Significant contributions of the work are summarized below:

1. It defines a minimal calculus which contains the core features of the concurrent constraint paradigm.
2. It defines a notion of behavioral congruence on concurrent constraints and demonstrates that it corresponds

to weak barbed congruence in 7r-calculus.
3. As far as our knowledge goes, this is the first work that gives a correct translation from the essential

features of CCP to the minimal PI, without requiring any additional enhancements to the basic primitives
of 7T-calculus.

4. It relates two major paradigms of mobile computation, which are based on totally orthogonal primitives. In
a sense, this opens up possibilities of exploring new paradigms of mobility, which use a judicial mix of the
characteristics of concurrent constraints and ^-calculus.

Email: raja@tifr.res.in; WWW: http://www.tcs.tifr.res.in/~raja
Email: shyam@tcs.tifr.res.in; WWW: http://www.tcs.tifr.res.in/~shyam

150 Perspectives of System Informatics'99

2 Two paradigms of mobility

We follow the notion of paradigm of mobility as given by Milner, Parrow, and Walker [4], and define it as given
below:

Definition 1 (Mobility Paradigm). A paradigm of concurrent computation is said to be a paradigm of mo-
bility provided it can model the behaviour of systems whose component processes may be arbitrarily linked, and
can also model the fact that communication between component processes of the system may carry information
which modifies that linkage.

2.1 Paradigm of 7r-Calculus

In the following, we present a brief overview of 7r-calculus [4,5]. For more details, the reader is referred to [4,
5]. The 7r-calculus (PI) is a process algebra that has two kinds of basic entities - nam.es (channels) (x v z)
and processes (agents) (P,Q,...). '"'"

Definition 2. Names (x, y,... e X), have no structure, while
Processes (P, Q,... e V) possess a well defined structure given by
P::= 0 | x(y).P \ x[y}.P \ P\Q \ P + Q | \P \ (Vx)P I

[* = VWQ) I A(yi,...,yn)
where, x and y denote finite sequences of names.

Basic actions in Pi constitute sending or receiving names on channels. Process x(y).P inputs a name say y
along x, and binds y in P. Process x[z].Q outputs the name z along x, but does not bind z. The basic rule
of computation in PI is provided by the parallel composition of processes which communicate along the same
channel: .

x(y).P | x[z].Q -> p{y^z}\Q

In the above interaction, the process x(y).P receives the channel z from the process x[z].Q over the channel x
and gets modified to P{y *- z}, where the name z replaces appropriate instances of name y. Further evolution
of P{y <- z] may get crucially affected by the arrival of the name z. Thus PI supports mobility by naming
and passing channels. Communication consists in synchronously sending and receiving through a shared labeled
channel. It consciously forbids the transmission of processes as messages. One of its goals is to demonstrate that
m some sense it is sufficiently powerful to allow only names to be the content of communications.

The term 0 represents an inactive process, which cannot perform any action. We shall omit the trailing " 0"
from process terms. The form P + Q means that the process can indulge in precisely one of the alternatives
given by P and Q, for communication. The operator "!" is called replication (Bang), and !P means P\P\ ■ as
many copies as you wish. The format (vx)P restricts the use of name x to P. Apart from input prefix V' is
another mechanism for binding names within a process term in Pi. The operator 'V may also be thought of as
creating new channels. The match form [x = y](P, Q) process behaves like P if the names x and y are identical,

and otherwise like Q. Agent identifiers A have a fixed arity and a unique defining equation A(Xl ,...,xn) ^ P

The operational semantics of PI is given in Wo stages. A structural congruence is first defined over processes
and then, a reduction relation is defined. .'

Definition 3 (Structural Congruence over Processes). = is the smallest congruence relation over pro-
cesses such that the following laws hold:

1. Processes are identified if they only differ by a change of bound names.
& (P/ => +> 0) is an abelian monoid.
3. (P/ =, |,0) is an abelian monoid.
I !P = P|!P
5. (ux)0 = 0, (vx)(vy)P = (vy)(vx)P

6- (vx)(P\Q) = P\(vx)Q if x $ FreeName(P).

7. A(x) = P{y <- £} if A(y) dJ/ P and |£| - \y\

 . Raja N., Shyamasundar R. K. Relating Paradigms of Mobility 151

Definition 4 (Reduction Relation). The reduction relation ->■ over processes is the smallest relation satis-
fying the following rules:

Comm (... + x(y).P) | (x[z].Q + ...) -+ P{y ^ z} | Q if |jj| = |5|

Par " P->P'

Match [a: = a:](P,<2) -> P

Mismatch [x = y](P, <5) -» Q if a: =^ y

Struct ** %%, ^

Res P-KP'
(KaOP-+(M;)P'

Note that the rules do not allow reduction under prefix, sum, or replication.
Following [5,8], we define a notion of equivalence for Pi.

Definition 5 (Unguarded Occurrence). A process Q occurs unguarded in P if it has some occurrence in
P which is not under a prefix. ,

Definition 6 (Observable Action). A process P can perform an observable action at x, written P].x, if
for some x,y, the input prefix x(y).Q occurs unguarded in P with x unrestricted; A process P can perform an
observable action at x, written P \&, if for some x,y, the output prefix x[y].Q occurs unguarded in P with x
unrestricted.

Let "->*" denote the transitive reflexive closure of "->".

Definition 7 (Weak Barbed Equivalence). A relation Rw over processes, is a Weak Barbed Relation, if
P Rw Q implies:

1. For each x, P \.x implies 35 s.t. Q -»* S ix.
2. For each x, P \.x implies 3S s.t. Q -+* S \.x ■
3. If P -> P 'then Q -►* Q' and P' Rw Q1';

The relation Rw is a Weak Barbed Equivalence if R and P_1 are Weak Barbed Relations. Two processes P
and Q are Weak Barbed Equivalent, if P Rw Q for some Weak Barbed Equivalence Rw.

Definition 8 (Process Context). A Process Context C[] is a process term with a single hole, such that-
placing a process in the hole yields a well-formed process.

Definition 9 (Weak Barbed Congruence). Two processes P and Q are Weak Barbed Congruent, written
P ~ Q, if for each process context C[], it holds that C[P] is Weak Barbed Equivalent to C[Q].

2.2 Paradigm of Concurrent Constraints

In the following, we present a brief overview of a minimal calculus which contains the core features of the
concurrent constraint paradigm [1,14,16]. For more details, the reader is referred to [1,14,16]. The concurrent
constraint paradigm (CCP) is a formalism that has two kinds of basic entities - logic variables (l\,h,---)
and agents (A, B,...). Basic actions in CCP constitute telling and asking constraints on logic variables. Agent
tell(c) -» A adds the constraint 'c' to the constraint set (fails if it is not possible to do so while preserving
consistency) and then behaves like A. The agent ask(c) -» A awaits until the store entails the constraint 'c',
and then it behaves like A. The basic rule of computation in CCP is provided by the constraint, resolution .
mechanism (unification), which gives rise to bindings on logic variables as a side effect.

Modeling of mobility in the CCP paradigm can be understood informally by the following scenario. Consider
a situation with two agents A and B, one global logic variable I, and two local logic variables Za and lb which are
local to A and B respectively. The logic variables denote communication channels, and the constraint resolution
(unification) implements the communication mechanism. Suppose agent A wants to transmit its local variable la

to the agent B. This can be achieved by the parallel composition of the CCP agent terms A = 3la.tell(l - la)

152 Perspectives of System Informatics'99

and-B = 3lb.ask(l = lb). Agent A 'tells' a constraint which identifies the global* and local*Q. Agent B waits
for this constraint to get added, and when it 'asks' for such a constraint, it identifies the global I and local lb.
The unification mechanism completes the communication by effectively binding la to /6, thus transmitting la

from Ato B, along I. In order to achieve mobility, it is sufficient to restrict the constraint mechanism to just
equational constraints over logic variables:

Definition 10. Let Nat denote the natural numbers (0,1,... € Nat);
Logic Variables (l,h,l2, ■ ■ • € C) have no structure;
Constraints (c,c',...eC) are given by c ::= I — Nat \ h=l2

Agents (A,B,... E A) are given by
A ::= ask(c) -»■ A \ tell{c) -> A \ nil | A \\ A \ A © A \ 31.A | P(x)
Declarations are given by D ::= e | P(y) : - A.

Each agent has an associated local store with it. Further there is a global store which is accessible to all the
agents. The local store contains constraints on the local variables, while the global store contains constraints
on the global variables. The basic actions are given by ask{c) and tell(c) constructs, where c is a constraint.
The symbol '-»' denotes the prefix operation. The agent ask(c) -+ A awaits until the store entails c and then
it behaves like A. The agent tell(c) -4 A adds c to the store and then it behaves like A. Operations ask(c)
and tell(c) fail when c is inconsistent with the store. The term nil represents an inabtive agent, which cannot
perform any action. We shall omit the trailing "-> nil" from agent terms. Operators || and ® denote the parallel
composition and nondeterministic choice respectively. Agent 31. A is the same as agent A, except that variable I
is treated as local. The term P(x) denotes a procedure call, where P is the name of the procedure and x denotes
the actual parameters. The meaning of P(x) is given by a procedure declaration of the form P(y) : - A, where
y denotes the formal parameters. We shall assume that for every procedure name there exists precisely one
declaration in D.

Constraints are equalities over the basic signature consisting of logical variables and the natural numbers.
Store is a set of constraints (equalities). We shall use C to range over sets of constraints. Entailment of a
constraint c by C will be written Che; and consistency of a constraint set will be denoted by C \f false. The
formal definition of the operational semantics exploits a relation —► between elements of V {Processes), where
V = {< A, a > | A is an agent term, a is a store}.

Definition 11 (Structural Congruence over Processes). = is the smallest congruence relation over pro-
cesses such that the following laws hold:

1. Processes are identified if they only differ by a change of bound names.
2. <A,C>=< A, C>, if C implies C and C implies C.
3- (V/ =,(B,nil) is an abelian monoid.
4. {V/ =, ||,nil) is an abelian monoid.
5. {3l)nil = nil, (3h)(3l2)A = (3l2)(3h)A.
6. If 1$ FreeName{A) then (3l)(A \\ B) = A || (3l)B.

Definition 12 (Reduction Relation). The reduction relation -> over processes is the smallest relation sat-
isfying the following rules:

AqV C h c arv <asfc(c)-M, C> —* <A, C>

Tp]] CAc V false
<tell(c)->A, C> —> <A, CAO

Siim <AuC> —+ <A\, C>
<Ai®A2, C> —> <A'1, C>>.

Par <Au C> —*• <A'' c'>
<A1\\A2, C> —> <A\\\A2, C>>

ReS <Mk*-h}, C> —>■' <A', C> l2 is a fresh variable
Oh.A, C> —4 <A>, C>>

PrOCCall <A^i-^' C> —» <A'> c'> where P(v):-A
<P(x), C> —s- <A', C>

 Raja N., Shyamasundar R. K. Relating Paradigms of Mobility 153

Definition 13 (Unguarded Occurrence). Process B occurs unguarded in.A if B has some occurrence in A
which is not under a prefix.

Definition 14 (Observable Action). Process A can perform an observable action at x, written A \.x, if for
some x, I, either the prefix ask(x = /) -> B or the prefix ask(x = Nat) -¥ B occurs unguarded in A, where x is
not bound by the 3 operator; Process A can perform an observable action at x, written A \.x, if for some x,l,
either the prefix tell(x = I) ->• B or the prefix tell(x — Nat) ->• B occurs unguarded in A, where x is not bound
by the 3 operator.

Definition 15 (Weak Reduction Equivalence). A relation Rw over processes, is a Weak Reduction Rela-
tion, if A Rw B implies: (a) Vx, A ix implies 3JS s.t. B —>* E \.x (b) Vx, A \.x implies BE s.t. B —>* E \.x

(c) If A —> A' then B —>* B' and A' Rw B'; where "—>■*" denotes the transitive reflexive closure of "—>".
Relation Rw is a Weak Reduction Equivalence if R and R~l are Weak Reduction Relations. Processes A and
B are Weak Reduction Equivalent, if A Rw B for some Weak Reduction Equivalence Rw.

Definition 16 (Process Context). A Process Context C[] is a process term with a single hole, such that
placing a process in the hole yields a well-formed process.

Definition 17 (Weak Reduction Congruence). Two processes P and Q are weak reduction congruent,
written P ~ Q, if for each process context C[], it holds that C[P] is weak reduction equivalent to C[Q].

3 Embedding CCP in PI

A formal embedding from CCP to PI is described briefly in the following subsections. This will form a semantic
foundation for CCP in terms of PI.

3.1 Translating logic variables

The formal translation of logic variables is shown in Figure 1. There are two basic requirements that have to
be satisfied in the translation of logic variables:

— Enforce an ordering relation so that unwarranted deadlocks during unification are avoided.
— Preserve 'write once, read often' property of logic variables.

The basic entity of CCP is the logic variable. We assume an implicit injective function which maps any given
CCP logic variable (lccp) to a PI name (lpi). Hence we can use I to represent both lccp and lpi, and the context
will uniquely determine the entity that I denotes. ' • ,

A CCP logic variable I is translated to a PI process InitLVar(l) which performs certain initialization actions,
and thereafter gets transformed to LVar(l, i). The initialization phase involves interaction between InitLVar(l)
and the process OrderLVar(z), which constructs a total ordering relation on logic variables. The process
OrderLVar(z) interacts sequentially with one logic variable at a time, and orders them in a list. The list begins
at location z, and incrementally adds an element for each logic variable. The address i at which an element
corresponding to the logic variable I is to be located is communicated by InitLVar(l) to OrderLVar(z). Each
element of the list can be thought of as a record which contains two pointers - one to the process LVar(l,i)
corresponding to the logic variable I, and another pointer to the location of the previous element of the list. The

[LogicVariableJ I = InitLVar(l)
InitLVar(l) =g[l, vi].LVar(l,i)

OrderLVar(z) == g(l, i). (\i[z, I] | OrderLVar(i))
LVaril, i) = J[-l, l,i].LVar{l, i)

+
l(k).(k(s,n)fl[s,n,i] + k.LVar{l,i))

Fig. 1. Translation of logic variables and ordering mechanism

154 Perspectives of System Informatics'99

lask(h = l2)]s,f = Ask(h,l2,s,f)
Ask(h,l2,s,f) = [h=l2]

(5, ■

h(xi,X2,Xs).
,h(wi,wa,ws).
[xi = Wi]

{[x2 = Wi]

:■(?, ■
[xi = 0]

(/.
Ask(x2,W2,s,f)

)
).

Ask(X2,W2,S,f)
)

)

Fig. 2. Translation of 'Ask' action

logic variable which occurs earlier in the list maintained by OrderLVar(z) has greater priority over the other
logic-variable which occurs later. Such an order would be a superfluous overhead in case we had been considering
sequential constraint programming systems. But it is useful in the translation of concurrent constraint systems,
as a precaution against deadlocks in the translation of the dynamics of unification mechanism. The possibility
of deadlock arises while trying to avoid circularities in the equivalence trees of unified logic variables.

Ensuring "write once, read often" property

A logic variable can be unified to a distinct constant only once; any further attempts to unify it with the same
constant succeed, while subsequent attempts to unify with distinct constants fail. However a logic variable can
be unified to any number of distinct logic variables as long as consistency allows such a unification. Thus a logic
variable can be in any one of the three distinct states - un-unified, unified to a constant, and unified to another
logic variable. The process LVar records these states by storing one of the integers -1,0,1 respectively as the
first component of its record. The process LVar is located at the address I. The act of reading the value of I is
modeled as receiving values on the channel I, while the act of writing on I is modeled as sending values on the
channel I. A logic variable is at first in a un-unified state. This is shown by the subterm l[-l, I, i] of LVar(l i)
The process trying to read the value of I receives a triple of names on the channel I, and from the value of the
first entity, it can make out that I is in a un-unified state. Thus any number of processes can concurrently read
the state of I. J

On the other hand only one process can succeed while trying to unify a given logic variable with any other
entity. Before attempting to unify a logic variable it is necessary to 'lock' it so as to ensure mutual exclusion
This is essential in order to avoid circularities in the data representation. Locking a logic variable I is achieved
by sending a newly created channel name k on the name I. The channel name k is next used to transmit the
entity to which / has to unified and also the code which represents the 'sort' information regarding the entity
lne act of communicating s and n on k also corresponds to one of the ways of unlocking I. The other way of
unlocking I is to simply send a synchronization signal k without transmitting any names oak. HI is locked
and unlocked again without unification, then it returns to the state in which it existed prior to locking This is
indicated by the recursive definition of LVar(l, i). On the other hand, if unification succeeds then the behavior
of I is forever governed by the sub-term with the bang operator, namely fl(s,n,i). The value of I can be read
orever by any number of processes. Any further attempts to unify I will be passed on to the entity n to which

/ has already been unified to.

3.2 Translating constants

Natural numbers are formally translated as PI processes. The translation of number n is given by fnl = »nfO n z\
Note that the format of the encoding is consistent with that of logic variables. ' '

Raja N., Shyamasundar R. K. Relating Paradigms of Mobility 155

[teH(fi = h)}s,f = Tell{h,h>sJ)
TeH(li,f2, *,/) = [fi= Ja]

(s,
Priority (h,h,vpi,vp2).
(pi.Unify(h,l2,s,f)
+
P2-Unify(h,h,s,f)

)
)

Priority(li,l2,pup2) = h{xi,X2,x3). Traverse(x3,l2,pi,P2)
Traverse(from,dest,pi,p2) — /rom(ai, 0-2).

[ai = z]

(Pi.
ax(a,b).
[b = dest]

(P2.
Traverse{a,deH,pi,p2)

)
,)

Fig. 3. Translation of 'Tell' action

3.3 Translating "ask"

The translation of "ask" action is shown in Figure 2. The query ask(h - l2) is mapped to the process
Ask(h ,h,s,f) where s and / are two additional channel names which are used to indicate the result of the ask
operation, where s stands for 'success' and / for 'failure'. The process Ask(h,l2,s,f) succeeds immediately if
h and l2 denote the same logic variable; otherwise it receives the triples of names (xi, x2,x3) and (w1,w2,w3)
on the channels h and l2 respectively. In case the sorts match i.e. xx - wi, then x2 and w2 are compared for
identity. If they are identical then the ask operation succeeds, as indicated by s. Else the situation that prevails
is as follows: h and l2 are distinct entities of the same sort. If they refer to constants then the ask operation
fails, as shown by /; else they refer to other logic variables, and the the ask operation is recursively invoked on
the entities x2 and w2 as shown by the subterm Ask(x2,w2,s,f) where the same channels s and / are passed
on to indicate the result of the osfc operation.

3.4 Translating "tell"

The translation of "tell" action is shown in Figure 3. The query tell(h = l2) is mapped to the process
Tell(li,l2,s,f) which begins by invoking the process Priority in order to determine which of h and l2 has
greater priority, and uses such information to execute one of the two mutually disjoint choices.

The process Priority{h,l2,Pi,P2) first reads the state of the logic variable h and then invokes the process
Traverse(x3,l2,p1,p2) where z3 gives the index of h in the linked list of all logic variables maintained by
OrderLVar. The process Traverse begins accessing the list by indexing into the element which points to Zx. It"
then traverses the list until it can find l2 on the list, or until it reaches the beginning of the list.

In case Z2 is encountered during the traversal of the list, it shows that l2 occurs earlier than h on the list,
thus l2 has greater priority. On the other hand if the beginning of the list is reached without encountering l2,
then lx has greater priority. The result is communicated back by performing either px or p2 as the case may be.
The process Tell(h,l2, s, f) then invokes the appropriate unification routine.

3.5 Translating "unification"

The translation of "Unify" operation is shown in Figure 4. Unification of concurrent logic variables is achieved
using a two-phase locking strategy. In the process Unify(h,l2, s, f) it is known that h has greater priority over
l2. Thus any need to keep Zx and l2 locked at the same time is executed by first locking lx and only when this
succeeds l2 is also locked. This helps in preventing deadlock in situations where there are multiple instances of
the Unify process trying to unify the same pair of logic variables.

■■■■■56 Perspectives of System Informatics!99

Unify(lul2,8,f) = [h=l3]

(iiWh}.

(I2W2]. ki[l,l2}. k2.s
+
h(wi,W2,Wi).
[wi = 0]

(ki[Q,w2].s,
ki.Tell(h,w2,8,f)
)

)
+

[xi = 0]
((h[vk2]M[0,X2].8
+

[W! = 0]
([X2 = W2]

Tell(x2,W2,s,f)

),
Tell(x2,l2,s,f)

)
)

)

Fig. 4. Translation of 'Unification'

3.6 Translating procedures and other constructors

The translation of procedures and other constructors is shown in Figure 5. The translation of procedures
nvolves translaüng procedure declarations and also translating procedure invocations. Procedure £Z

are mapped to infinitely rep Heating resources, which can make any number of copies of the translating Se
corresponding procedure bodies. Procedure invocations are mapped to requests which trigger the appropriate

^Äobe'Ä'T rtaCe the f°rmal Param6terS-ActUal Paramet6rS in p'oceduretnvocSn
Zlume s ThS •« f er.l0glCa' VTa?eS °r COnStantS- U Particular, other procedures are not allowed as
arguments. Ths is m keeping with the first-order nature of CCP. Further, parameter passing is by reference
There is a straight forward translation of all the other process constructs. reterence.

4 Semantic Correspondence

The following theorem establishes that our embedding is semantics preserving, and in particular the semantic
function maps weak reduction congruence of CCP processes to weak barbed congruence of PI processes

™r:«Ä F°r my tW° CCP — ^ 0. «* «* correspond se-

L ^ZntZ^s^t^7t^Ra iU CCP SUCh that P R« Q' th™ »~> «*■ « ™* ^bed
2. IfP is weak reduction congruent to Q in CCP, then [P] is weak barbed congruent to [Q] in PI.

Proof. Provided in [12].

Raja N., Shyarnasundar R. K. Relating Paradigms of Mobility 157

[P{y):-A]p = \p(y).lA]
[P(x)]p = p[fi]
{nilj s, f = 8.0

[Ai -4 A2] sj= \v cord) {\AX\ cord, f | cont.{A2} s, /)
l3l.Als,f = (ul)([lj\[Ajs,f)

[Ai e A2]8,f = [A1]a,f + lA2}s,f
[Ai || A3]8,f = lA1]a,f\[A2]8,f

Fig. 5. Translations of Procedures and other constructors

5 Related Work

Related research may be classified under three main sub-headings:

1. Sequential logic programming to ir-Calculus: Sequential logic programming and sequential Prolog may be
considered as special cases of CCP. Work reported in [3,13] provide translations of logic variables, unifica-
tion, and features of Prolog to 7r-calculus. However, these papers are unencumbered by the complexities of
concurrency in their source languages.

2. Variants of CCP to enhanced ir-calculus: There are papers [9,17] which provide an embedding from either
p-calculus or 7-calculus to the 7r-calculus. The p-calculus and 7-calculus [17] are variants of CCP. However
the embedding proposed by these papers [9,17] require the support of extra additions to the primitives of
7r-calculus, such as variables, equations, and elimination rules. The work in [19] embeds the p-calculus on
the fusion calculus [10], which is a generalisation of 7r-calculus,

3. Variants of CCP to basic ir-calculus: The work of Victor and Parrow [18] provides an embedding from the
7-calculus [17] to the basic (polyadic) 7r-calculus without the need for any additional enhancements. The
version of the 7-calculus that they deal with, contains logic variables, equational constraints, and a form of
constraint resolution called elimination. However their proposal is inadequate, since their translation of logic
variables leads to deadlocks during concurrent update operations on the logic variables. Such a scenario can
be constructed as follows: In their construction, equivalence trees of PI processes correspond to equivalent
classes of logic variables. In order to make sure that the equivalence trees do not become circular, certain
conditions are imposed on the PI terms that correspond to the logic variables. In particular when a logic
variable (say x) is processing an 'x> update' request, no other logic variable is allowed to update to x. This
is ensured by disabling 'x > value' requests during update sections, and vice versa, since another variable
must read the value of the reference it is updating to. Their translation does indeed take measures to
prevent deadlocks when x is told to update to itself either directly or indirectly. However, their translation
does not prevent deadlocks in cases where two distinct logic variables are trying to update to each other
concurrently. For example, the request x > update^) in parallel with the request y > update(z) could lead
to a deadlock (for ever). Further, there is no simple way of modifying their translation in order to escape
from such situations.

In contrast with the other works, our approach gives a correct translation from the essential features of CCP to
the minimal PI without requiring any additional enhancements.

6 Conclusion

In the design space of models of mobile computation, CCP and PI are located at opposite ends of the spectrum.
PI is based on the message passing approach, while CCP is based on the shared memory approach. A major
difference between these two approaches lies in the extent to which the interaction between components can
affect the rest of the system. In the case of PI the effect of an interaction is entirely local to the complementary
pair of communicating agents. On the other hand, in CCP the result of interactions is to modify a global state,
which could affect even those components which were not part of the interaction. We have thus related two
major paradigms of mobile computation, which are based on totally orthogonal primitives. In a sense, this opens
up possibilities of exploring new paradigms of mobility, which use a judicial mix of the characteristics of CCP
and Pi. One such paradigm is the fusion calculus [10]. The study of such formalisms within a more general
framework, would surely be a fruitful direction of research on paradigms of mobility.

158 Perspectives of System Informatics'99

References

1. de Boer F.S., Palamidessi C: A Fully Abstract Model for Concurrent Constraint Programming, TAP-
SOFT/CAAP'91, LNCS 493, Springer-Verlag (1991) 296-319.

2. Laneve C, Montanari U.: Mobility in the CC-Paradigm, MFCS'92, LNCS 629, Springer-Verlag (1992) 336-345.
3. Li B. Z.: A 7r-calculus specification of Prolog, LNCS 788, Springer (1994) 379-393.
4. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (Parts I and II), Information and Computation

100 (1992) 1-77.
5. Milner, R.: The polyadic 7r-calculus: a tutorial, Logic and Algebra of Specification, Springer-Verlag (1993).
6. Milner, R.: Communication and Concurrency, Prentice Hall (1989).
7. Milner, R.: Elements of Interaction, CACM 36(1) (1993)'78-89.
8. Milner, R., Sangiorgi, D.: Barbed Bisimulation, ICALP'92, LNCS 623, Springer (1992) 685-695.
9. Niehren J., Müller, M.: Constraints for Free in Concurrent Computation, ACSC'95, LNCS 1023, Springer-Verlag

(1995) 171-186,.
10. Parrow J., Victor, B.: The Fusion Calculus, LICS'98 (1998), 176-185.
11. Pierce, B.C., Turner, D.N.: Pict: A Programming Language Based on the Pi-Calculus, Essays in Honour of Robin

Milner, MIT Press (1998).
12. Raja, N., Shyamasundar, R.K.: Relating Paradigms of Mobility, TIFR Research Report, Bombay (1996).
13. Ross B.J.: A 7r-calculus semantics of logical variables and unification, Proc. of First North American Process Algebra

Workshop, Springer-Verlag (1993) 216-230.
14. Saraswat V.A.: Concurrent Constraint Programming Languages, Ph.D. Thesis, Carnegie-Mellon University (1988).
15. Saraswat V.A., Lincoln P.: Higher-order, linear, concurrent constraint programming, Xerox PARC Technical report

August 1992.
16. Saraswat V.A., Rinard M.: Concurrent Constraint Programming, POPL'90, ACM Press (1990) 232-245.
17. Smolka G.: A Foundation for Higher-Order Concurrent Constraint Programming, Constraints in Computational

Logics, LNCS 845, Springer-Verlag (1994) 50-72.
18. Victor, B., Parrow J.: Constraints as Processes, CONCUR'96, LNCS 1119, Springer-Verlag (1996) 389-405.
19. Victor, B., Parrow J.: Concurrent Constraints in the Fusion Calculus, ICALP'98, LNCS 1443, Springer-Verlag

(1998). 5

Abstract Structures for Communication

Gabriel Ciobanu and Florentin Olariu

Institute of Theoretical Computer Science, Romanian Academy
6600 Ia§i, Romania

gabrielQinfo.uaic.ro oflorinQiit.tuiasi.ro

Abstract. This paper describes an algebraic structure which allows to define an abstract structure for
1 communication in distributed systems. Using this structure we introduce an equivalence relation; the
quotient induced by this equivalence relation preserves the initial algebraic structure. Our results can give
a suitable framework to study communication in computer networks, complementary to process algebras.

1 Introduction

The aim of the paper is to find a class of structures as mathematical abstractions used for structural aspects of
concurrent communication processes. In process algebra processes are usually considered as terms. We treat a
process considering its internal structure which is related with communication, namely its ports and communi-
cation symmetries. Our approach is close to that presented in [Ho].
First we define in an abstract way how two processes can communicate each other by using communication
handles. We consider mainly correspondences and maps of suitable handles used by communicating processes.
The basic elements of our approach are the interface ports used by processes for interaction. We give a name-
free presentation where the notion of symmetry plays an essential role. Interacting processes assume points of
interaction called ports. Each interaction channel is determined by two points of interaction. Various concurrent
algebras and calculi use names for communicating channels, i.e. they use names for the corresponding interaction
points which determine the communication channels. This fact suggests that the semantics of processes depends
on names. Here we "forget" names, but still keep their functionalities. The essence of the functionality of channel
names is to determine multiple identities and to represent in an intelligible way how we relate the communication
entities. The model we propose works with a concept of communication internal symmetry; this symmetry is
related to the communication channels between the process and the network. Over the set of interaction points
given by these communication channels we may define a permutation group; each permutation represents an
interchange of interaction points which preserve the external communication capabilities of the process. In this
way we introduce a communication structure which is based on the notions of process, communication channels,
interaction points and permutations. These structures are designed to make easy the introduction of a suitable
notion of congruence, and then a suitable notion of quotient. Our main result is that any two quotients are
isomorphic.

2 Communication Structures, Correspondences, Maps.

Definition 1. A communication structure is given by the following elements:

(i) V - the set of processes; p,q,s,... range over V;
(ii) every process p G V has a set of handles H(p) ;

(Hi) for every process p £ V and for every subset K C H(p), it exists a permutation subgroup over K denoted
bySp

K;
(iv) for every H C H' C H(p) we have : '

(a) if p£ SV
H, and p/H'\H = idH'\H then p/H e S^,

(b) Sfj is a subgroup in 5^, (we use extension by identity on H' \ H).

The set H(p) is the set of all communication points of p. Permutations of SjL v describe the internal symmetry
of p.

Definition 2. Let V and Q be two communication structures; & correspondence between two processes p £ V
and q € Q is a triple (S^, <p,S9

w), where H C H(p), H' C H(q) and (p : 5^ -» Sq
H, is a group morphism. We

denote by d(P, Q) the set of all correspondences between processes from V and Q.

160 Perspectives of System Informatics'99

Definition 3. LetV, Q andS be three process structures. The composition of correspondences is a partial binary
operation "c" : d(P, Q) x d(Q,S) —► d(P, S) defined by (SP

H, </>,S%) ° (Sq
H,, <p', SH„) = (Sp

H,<p'o<ptSH„), where
p£V,q£Q,s£S andHC H(p), H' C H{q), H" C H(s).

It is easy to prove that the composition of correspondences "o" is associative.

• Definition 4. IfV and Q are two communication structures, a map from V to Q is a set of correspondences
FQd(P, Q) such that for every process p&T, and every subset H C H(p), there exist a process q € Q, a subset
H' Q H(q), and a correspondence (SP

H, <p, S9
H,) 6 T, and they are unique. We denote this map by T :J> —> Q.

If T : V -* Q, P : Q -> S are two maps, then we define their composition P o T : P -> 5 as the set of all
possible compositions between correspondences from T and P; it is easy to see that the composition P a T is
also a map.

Definition 5. Let V be a communication structure.

(i) the identical map over V, lv : V -t V is the set {(S* , id, SP
H) : H C H(p)}.

(ii) a map T :V -> Q is called isomorphism if there exists another map P : Q -> V such that Pop - 1Q and
P o T = lp. In this case P is called the inverse map of T and is denoted by P"1.

3 p-translations and p-equivalences.

Definition 6. Let V be a communication structure.

(i) for two given processes p,q&V,& translation from p to q is a triple (H, 5, H'), where H C -Hip), H' C H(q)

andS-.H-^H'isa one-to-one function (denoted also by pH <A qH> or, if it is possible, simply by 6).

(ii) two translations pH A> qH, and pH Ä qH, from p to q are called equivalent (we denote this by Si ~ S2)
if we have two permutations p £ SH and p' e S"H, such that 5i = p' o S2 o p;

(Hi) a p-translation ift : V —+ V over the communication structure V is a family R of translations (from V to
V) with the following properties:
- for every translation 6 € 5ft, if S ~ 6', then S' eU, and

-ifpH<-^-pH<E$l,thenÖ£Sp
H.

The relation ~ defined over translations is an equivalence relation. We define the following operations over
translations and p-translations:

(i) the inverse of a translation pH <A qB, is qH, A pm the inverse of a ^-translation aft is the set
{a'1 :6eR} denoted by «ft-1.

(ii) the composition of two translations pH <A-> qH, and qB, Ä sH» is the translation pH £4 sH»; the
composition of two p-translations ^ and 5ft2 over the same communication structure is the family {Si o 82 :
Si G 5fti,<52 e 5ft2} (whenever the composition is possible), and it is denoted 5fti o 5ft2-

Lemma 1. (i) the inverse of a p-translation is also a p-translation;
(ii) the composition of two p-translations over the same structure is also a p-translation.

Definition 7. (i) the identical p-translation over a communication structure V, denoted by idv, is the family
{PH^PH-.peV^CHip), peSp

H} ;
(ii) a p-translation 3? defined over a communication structure V is a p-equivalence */ it is reflexive (idv C R)

symmetric ($t~l C &), and transitive (1ft o !ft c %t). ~

4 Quotient structure. Isomorphism theorem.

Let 3J : V —>Pbea p-translation, and we consider the set p = '{(p,H) : p € V,H C H(p)}- for the sake
of simplicity, we use the notation pH instead of {p,H). Then we define the binary relation «ic p x p by
PH «a* qw if and only if there exists a translation pH +i-» qH, e 5ft.

Lemma 2. «K is an equivalence relation over p if and only if Sft is a p-equivalence.

Ciobanu G., Olariu R. Abstract Structures for Communication 161

We will denote the quotient p/«R by äßw, and equivalence class of PH by [p#]. Moreover, we choose a repre-
sentative from every equivalence class; for each such a choice, we can build a structure on SR* in the following
way:

- the process set is the family of the all equivalence classes [PH]',

- for every equivalence class [p#], if PH is the representative we have chosen above, then we define H(\PH])

as H (which is included in H(p));
- if [PH] is an equivalence class, and H' C H{\pn]), the corresponding permutation group is S#, (of our

initial communication structure).

Theorem 1. The structure defined above on Sft^ is a communication structure.

Two different representative choices determine different structures on the quotient W. The following theorem
shows the relationship among these structures.

Theorem 2. Any two structures determined by two different representative choices are isomorphic communi-
cation structures.

Proof. We denote by Si^ and U" the structures determined by two families of representatives {piH :■{£/}

and {qiffi : i € I}; PiH «R qm, for every i £ J. Clearly, we have a translation piH <-i-> qiH, £ 3£. Let
Hi C if([pt/y]) = H and H'i = 6i(Hi). Consider now p\ £ S^1; we extend /Oi on H \ Hi by identity, and
we obtain p e S^. Since tffS/o € 9ft, we have p' = 6i° p.o 8i~l £ 9?; this implies p' € S|j,. Therefore
p'j = P'/H'J, & Sff, . We define ipiHl : Sj£ -—> SH!iby (fiHl(pi) = p\\ ipiHi is a group morphism. In a similar

way we define i>iH 1 : SHli —> S^ and show that ipiH 1 is a group morphism.

The family F = { tp?1 : i £ I, Hi C H } is a, map from &~ to W*', and T1 = { ^i11'1 : i € I, H[C H' } is
a map from W' to 3P. .F' is the inverse map of T : <piHl ° ipiH. x ■= idg« and ^jff J o ipiHl.— idSPi .

5 Final Remarks

The definition of correspondences has the advantage that it does not require an equivalence relation over
correspondences. The correspondences are not used to define translations and p-translations and this helps us
to distinguish between maps and equivalences. As a final remark, we can affirm that such a structure reflects
the complexity of the communication along the computer networks. The need of a conceptual and formal
framework which make possible the study of network communication problems and properties is strongly felt
(in our opinion). This paper is a step to such a suitable framework. It defines and studies the communication
structures, formal tools which are complementary to process algebras, and can describe, analyze, and possibly
improve network distributed systems.

References

[Ho] K. Honda. Composing Processes, Proceedings POPL'96, ACM Press, 1996.
[Ku] A. Kurosh. Cours d'algebre superieure Ed. MIR, Moscou, 1980.
[Mi] R. Milner. Action Structures and the 7r-calculus, In Proof and Computation, ed. H. Schwichtenberg, series F,

219-280, Springer-Verlag, 1994.

Language Tools and Programming Systems
in Educational Informatics

S. S. Kobilov

Samarkand State University
703004, Samarkand-4, University BL, 15

andreyQbisr.silk.org

Abstract. The present work is oriented on the description of the elementary educational informatics based
on the programming support environment. The environment structure and its components developed on
naüonal Languages are being investigated. The problems of language tools and program development system
as well as computer support and informatics systems are being studied.

1 Introduction

Educational informatics provides elementary computer knowledge [1]. This course should be supplied with a
pecm teaching concepts model). Educational informatics can be considered as an elementary subject (such

as mathematics, physics, biology), but it has two peculiarities which should be taken into consideration:

1. Methodological and technological basis and methods of teaching are being rapidly changed-
2. It needs constant support with special technical, language and programming means. That's why the cho-

pecuSrtiesS implementation of its program language support should take into account these

We present one of the educational informatics models and introduce the ways of developing language tools
and programming systems aimed to support this model. The paper consists of three parts and a conclusion. The
first part deals with the description of informatics teaching model. The peculiarities of development of complex
components are introduced in the second and third parts. ^mpiex

2 Informatics Teaching Model

At present different methods are used in conceptual development of informatics teaching. One of them is the
usage of the vanguard style directed to the study of logic-mathematical base of algorithmization and elements of

ESSTS 2ÄÄSTbasis'we can offer the informatics teaching modeL Its generaI ^
1 Ä£^^ — - " technology is

2. Learners' qualification. The main accent is made on teaching algorithmics and programming-

£ZÄ£ÄT JaSe StmCtUreS an? tyPiCal Pr°gramminS ™thods. Constant interconnection be-
is shown programming is demonstrated, and "smooth" transition from one level to another

4. Usage of the native language. Teaching is aimed at the learner's native language with the use of language
program means and technological methods based on national interface- ™ tne use oi language-

5' ^^^^S^^T1 and technological means of "udy are deveIoped with account of

The functional purpose of such a method and language tools and programming systems is to satisfv needs
of the informatics teaching model for senior pupils and junior students Y

 Kobilov S. S. Language Tools and Programming Systems in Educational Informatics 163

3 Language Tools

Language tools contain a special language used for the description of algorithms and a programming language
of higher level.

Algorithmic Language. A special algorithmic language (SAL) [2] has chosen as the algorithmic language.
This language has different notations, close to the natural language, algorithms in it can be written and read
as a usual text and, what is more, the study of this language will help one to get more profound knowledge
of any programming language in the future. Another important aspect of SAL is that its structure is close
to algorithmic mentality of a learner, it has no goto command, which satisfies the reguirements of structural
construction, and there are no details connected with the computer device.

For easy usage and realization needs, some changes and additions were made to SAL, such as introduction of
two new commands (input and output) which are used for intermediate data input and output; specification
of dynamic tables; the usage of key words without underlining and linear notation of expressions, etc., as in
modern programming languages (PL).

Programming Language. We have chosen Pascal/P [3] which has the basic Russian notation of Standard
Pascal [4]. In general, we can state two main factors having effect on defining the language tools.

The first is the choice of the minimum necessary structures sufficient for initial study of algorithms and
programming and traditional for many modern languages. Some data types, as well as statements and special
Pascal functions, were excluded. The label, datatype set, variant record, goto statement, cycle statements
of the type for... downto and repeat...until were reduced and the procedures get(/) and put(/) of the
processing file / were not used. For practical needs data types string and string[n] were included into the
language, as well as two new procedures of file processing (Close and Assign) of the programming language
Turbo Pascal. „ •

The second factor is connected with the national lexicons of the language means. That is why they were
localized on the other languages (Russian, Uzbek,Tajik) on the basis of Cyrillic and Latin graphics. Thus,
algorithmics and programming should be studied on the basis of the native language of the learner, and input
languages of the system should have modifiable lexical structure.

4 Programming Systems

The programming complex consists of a specialized system on the basis of SAL and a programming system
(PS) with the localized input language Pascal. The first system is used for computer support of the algorithmic
course, and PS, for study of fundamentals of programming. Each of these systems are developed in the form
of an integrated environment with common components. The environment is initially produced to support a
definite style of constructing and debugging of algorithms (programs). Its components are the working window
with the main menu, editor, compiler, help subsystem and data base (DB). Let us briefly discuss the peculiarities
of the teaching environment and its components.

The Program Construction and Debugging Style. The environment is oriented at the style of struc-
tured construction on the basis of structure editing algorithms. It is also supplied with the debugging display
and program running [5]. The structural construction in educational informatics gives the following advantages:

a) This type of construction is closer to operation mentality of a man. It gives the possibility of more
adequate description of typical processes in the application area of the task with the help of definite integral
constructions of the programming language;

b) It combines the "strict" requirements to the structural and usual types of string editing. The first of them
puts limitations on the user actions and is useful in training the beginners;

c) The program becomes an active object at the very beginning and within the process of its construction.
Partially, it is ready for use even not being completed. This provides the program check out which step by step
ensures the programmer in correctness of his choice and actions.

Another important mechanism of the education process is visualization of debugging and running of a
program. To display the process of running, the output facilities should be realized in the system so that the
text of the original program should be presented on display with its increased detailed block-scheme, with
underlined and coloured areas of constructions' domains and keywords of the language, and values of variables
being indicated in the control points.

Working Panel and Main Menu Console. It is known that the interactive mode is the basic in the
training systems. It provides interconnection with the pupil. The program start is followed by displaying the
main menu at the top of the window. Menu contains options: File, Editing, Translation, Lexics — each can

.1^ Perspectives of System Informatics'99

have vertical suboptions. In the lower part of the display there is a prompting string showing the coincidence
between the functional keyboards and actions. Using the option Lexic[suboption], a learner chooses the notation
for wntting algorithms on the basis of SAL (Pascal program) and lexicon of the communication system. Further
work is fullfilled in this Language environment.

Editor. The embedded system editor has two operation modes — textual and structural. The structural
mode is the main one, since in the process of studying PL much attention is given to its syntactical constructions
and rules. Editor has both traditional and specialized operations with texts in the structural mode such as
call of language constructions which are kept in the form of "ready-made" pictures, transformation of the
source program text into an abstract syntactic tree (AST) and vice versa, reorganization of AST, recognition
of elementary errors and output information on them, creation and modification of pictures At first the
pictures (general structure of algorithms in SAL and of Pascal programs, program items, commands, statements
additional algorithms and subprograms) are kept in the data base and called when needed and after the
processing, "loaded" ("hung") in a definite place of the abstract tree.

For example, the construction if (condition) then (statementl) else (statement2); are entirely produced
on display, while the parts put into brackets are easily deleted and their place is taken by real constructions

Thus, this principle of structural editing gives us the possibility of program check at each step of the process
of its development, being useful for the learner and preventing him from "making errors".

Compiler. The specialized translators of the system on the basis of SAL and PS with Pascal input language
are developed m the form of an interpreter. This method is used to simplify its implementation and possesses the
following peculiarities. The interpreter opens the perspective of easy process-projecting management, debugging
and visualization of programs [6]. Using the interactive mode, we can write, check and run programs within
the interpreter. Errors can be easily corrected. We should not go back to editor and compile the program
again. Structural construction and editing [7] provides the intermediate representation and interpretation of
uncompleted programs. Programming systems can be used for educational purpose and are not aimed to solve
the tasks which require immediate actions.

Help Subsystem and Data, Base System. DB is developed on the basis of the electronic textbook
ideology. It is supposed to keep the structural information: theoretical, practical and methodological materials
(glossaries containing the basic notions and terms of input language, the set of type schemes, demonstration
algorithms and programs, as well as many tests aimed to control and evaluate the trainer's knowledge)

The Data base of environment is organized and kept in the form of a hypertext. The data base files contain
texts of the main and intermediate representation programs, educational texts and additional information
connected with a definite lexicon. The support of construction and functioning of the components of the help
subsystem and the data base is fulfilled by a separate tool system. It contains the set of special operations
working with the hypertext, information input, processing, and output in the DB system.

5 Conclusion

The educational model for studying informatics is discussed in this work, as well as the questions of the language
tools and programming system development intended to support this model. The general strategy of teaching
is based on advanced learning of algorithmics and elements of programming on the basis of a native language

™rf S C.TPltX and/l^ements on its components including the language and program facilities
and hardware support has been defined.

References

h SSr A;R, ZTPUteTiZf°? °f Sch00lS and Mathematical Education // Proc. of the Sixth Intern. Congress on Mathematical Education. Budapest, 1988. P. 49—65.
2' SS^fVw381" ?°T£tS f A1£*ithmfi and Programming to Be Taught in a School Course in Informatics //
i ?I, Q <= o C0Df- °n The°ry and Practice of Software Development (Tapsoft). Berlin, 1985 14 p 3 ^^^"^T^^J*;.Important Problems of Applic"L ^J—d *-£ -
4. Jensen K., Wirth N. Pascal. User Guide and Report. Springer-Verlag 1978
5. Boltaev T. B Kuzminov T V., Pottosin I. V. On Structured Construction and Supporting Tools. In: Programming

Envmmments: Methods and Tools, Novosibirsk, 1992, pp. 22-37. (in Russian). Programming
v n? ST? Construction for Digital Computers. John Wileyfe Sons, Inc., N 4, 1971

f9°92apVp 38 ' sTfT °f In)
C°mpIeted Pr°Srams'In: Programming Environments: Methods a,nd Tools, Novosibirsk,

Logic and Processes

Applying Temporal Logic to Analysis
of Behavior of Cooperating Logic Programs

Extended abstract *

Michael I. Dekhtyar1, Alexander Ja. Dikovsky2,
and Mars K. Valiev3

1 Dept. of CS, Tver St. Univ. Tver, Russia, 170000, Michael,Dekhtyar®tversu.ru
2 Keldysh Inst. for Appl. Math. Moscow, Russia, 125047, dikovsky@spp.keldysh.ru

3 Keldysh Inst. for Appl. Math. Moscow, Russia, 125047, valievQspp.keldysh.ru

Abstract. We consider systems of cooperating logic programs which generalize dynamic deductive data-
bases (DDDBs) from [1,2], Some properties of the system behavior are defined which ensure an infinite
steady life of the system. Decision problems for these properties of cooperating productional logic programs
are investigated. It is shown that these problems are reducible to the satisfiability problem for the prepo-
sitional temporal logic of branching time. It follows that stability problems for cooperating productional
logic programs are decidable with exponential time complexity.

1 Introduction

In this paper we consider a logical approach to the mathematical analysis of the behavior of interactive discrete
dynamic systems. A state of a dynamic system is represented by a data base state (DB state), i.e. a finite set
of facts. The behavior of the system is determined by actions of a set of logical programs which update DB
states. These actions generate a set of possible trajectories of the system, i.e. sequences of DB states. Different
requirements on the system behavior can be defined in terms of conditions which should be satisfied by the set
of trajectories. Here we consider only one of interesting kinds of the behavior properties which are expressible
in such terms, namely, the stability property of the system. Moreover, we limit our consideration by the case
when any system B consists of n + 1 (in general, nondeterministic) logic programs, a master MP and a set
of slaves SP =< SPi,...,SPn >, which work over a (finite dynamic) database £ , updating states of £ in
turn: on every odd step slave programs concurrently change the current database state, and on even steps the
master program updates the database state with the aim of restoring integrity constraints possibly violated by
the slaves in the previous step. This notion of cooperating (symbiotic) logic programs generalizes the notion of
dynamic deductive databases with external updates from [1,2].

The binary relation on DB states induced by the updates executed by the set LP of logic programs
LPi,..., LPn we denote by \-LP (in this paper we use only sets LP defining total relations \-LP). Then local
behavior of the system B in the current state £0 is described as one interaction of SP and MP applied
to this state, i.e. as the sequence of two updates £0 t-SP £[\-MP £t. Normally, one should distinguish
between acceptable and not acceptable interactions, depending on a criterion of admissibility of system states.
Each acceptable interaction applies to an admissible state £0 and yields an admissible state £x. However, the
intermediate state £[may in general be inadmissible, in which case the reaction of MP compensates for the
destroying actions of SP . We represent the admissibility criterion by an integrity constraint (IC) expressed by
a formula g over DB states. In terms of the IC the acceptability of the interaction is expressed as follows: the

* This work was sponsored by the Russian Fundamental Studies Foundation (Grants 97-01-00973 and 98-01- 00204).

166 Perspectives of System Informatics'99

interaction of the form above is acceptable if £0 f= <2> and £x |= <£, Thus, the system B representing the
interactive discrete dynamic system has in fact the form < MP, SP =< SPi,...,SPn >, # >, and its local
behavior is expressed in terms of acceptable interactions.

Global behavior of the system in current state £Q is represented by sequences of interactions starting in
£o which we call trajectories

A) (~5P £[\~MP £\ hSP £'2 \~MP £2 ...
The infinite acceptable trajectories represent the stable behavior of the system: any possible destroying actions
of the slave programs SP are compensated by some actions of the master program MP along all the
trajectory. Such trajectories are called stable.

Trajectories of the system B form a tree T(£0) with the root £0. A number of natural properties of
interactive behavior of B in a given DB state can be formalized in terms of this tree, in particular, different
kinds of stability.

Definition 1 Let QUQ2 £ {V,3}. Then B is QiQ2-stable in DB state £0 if in the tree T(£0) there is a
QiQ2-subtree in which all branches are infinite stable trajectories. 1

One of natural questions connected with these notions is to consider algorithmic decidability of the stability. Of
course, in general case these problems are undecidable. In [1,2] some classes of logic programs were distinguished
for which the stability problem is decidable. But only one slave was allowed there, and a very simple kind of
updates was considered as possible actions of masters. Here we consider more general case when SP is
represented by a set of working in parallel programs belonging to the same class as MP. Because of space
limitations we present here only results for the case when programs MP and SP belong to the class GPROD
of ground productional logic programs with updates. We show that for the cooperative systems of this class
the decision problems for stability are decidable and have the same decision complexity as for corresponding
problems in [1,2]. To prove our results we show that the variants of stability problem which are considered here
are reducible to the satisfiability problem for a variant of the propositional logic of branching time. Moreover,
for 33 -stability this reduction is simultaneously a reduction to satisfiability problem for the logic of linear
time. As a corollary we obtain that results on polynomial space and exponential time complexity of stability
and homeostaticity problem for GPROD from [1,2] are generalized to systems of cooperating programs from
GPROD. Moreover, we note that some lower bounds in [1,2] can be improved. Namely, results on EXPTIME-
hardness of the stability problem can be complemented by 2n/lonn lower bound of time complexity.

2 Basic Notions and Definitions

2.1 Productional logic programs

We consider productional logic programs with updates in a signature S consisting of a set of constants C
and a set of predicate symbols Pr. Let H denote the Herbrand base over S. A productional logic program
consists of clauses of following form:

vr : Con1k...kConk ^ Actu...,Actm

Each Com {elementary condition) is either a ground atom in H or its negation. Each Actj (action) is one of
elementary updates insert(A), delete(A) where, A e H. For simplicity we assume that there are no conflicts
in application of actions, i.e. there are simultaneously no Actj = insert(A) and Actt = delete(A)

A data base (DB) state £ is a finite subset of the Herbrand base H. The production vr is applicable to a
DB state £ iff for every 1 < i < k Com G £ if Corn is a ground atom and Com * £ if Com is a negated
ground atom. Let ix =< nu..., TT„ > be a set of productions. The simultaneous application of these productions
to a state £ can be defined in different ways. We choose here the following one. If there is a production TT* not
applicable to £ then -K is not applicable to £. In other case the result TT(£) of simultaneous application of
productions -K to £ is defined as a DB state Ex obtained from £ by adding all atoms A such that there
is a production m £ n whose action includes insert(A) and by deleting all atoms A such that there is a
production TT* e TT whose action includes delete(A). When for some atom A there are two productions in TT one
of which wants to insert A and the another wants to delete it, then A does not change, i.e. A € £x <■» A £ £. (Of

1 We omit here the straighforward definition of Q1Q2-subtrees. E.g., V3 -subtree T, of T has the following properties'
if a node N belongs to an even level of 7\ , then all successors of N in T are also successors of AT in T, and
any node belonging to an odd level of 7\ has at least one successor (from T).

 Dekhtyar M. I., Dikovsky A. Ja., Valiev M. K. Applying Temporal Logic 167

course another strategies of conflict resolution are possible as well, e.g. by some kind of priority of programs.)
So, the set of productions ■K defines an update relation H* on the set of all DB state's: £\-*~£i iff £1 = TT(£).

The update relation \-LP induced by a set of productional logic programs LP =< LPi,...,LPn > is defined
as

'LP = V{ir\ir=<irii...',irn>,iri€LPi}'~7c-

We consider as integrity constraints (ICs) quantifier-free first order formulas over S. We say that a DB
state £ satisfies an IC <£ iff £ f= #.

2.2 Propositional Temporal Logic

We use the following variant of propositional logic of branching time (BPTL). It differs from the logics CTL
and CTL* considered in the survey [3] by presence of the past temporal operator VT ("in the previous state"),
though it is simpler in other respects: it does not contain complex temporal operators of the kind VF. CTL-like
logics with past temporal operators were considered in [4] and [5]. The temporal structure used in BPTL is
tree-like (branching forwards and linear backwards). Such variant of the time structure is also considered in [5]
among other variants (the time structure used in [4] is branching backwards as well as forwards). Other more
general than BPTL systems can be found in the area of the propositional dynamic logics.

The formulas of BPTL are constructed from propositional variables by using the Boolean connectives and
temporal operators MX, MY and MG (operators 3X,3Y and 3F are expressed as -iV-X"-., -.VF-i and -.VG-i ,
respectively).

Models of BPTL have the form < T, T? > where T is an infinite tree with branches of the height u , and
n assigns to any node s of T a set of propositional variables satisfied on s (as usual we write s f= p instead
of p € 7r(«)). The relation |= is extended to all the formulas of BPTL in the following Way:

semantics of boolean connectives is defined as usual;
s (= MX p iff s' |= p for all sons s' of s;

s \= MY p iff s' \= p if s is not the root of T and s' is the predecessor of s (if s is the root we can
assume s [= MY p for any formula p);

s f= MGp iff s' |= p for all nodes s' of the forward paths beginning with s .
According to the definition above 3Yp means "there exists the predecessor s' of s such that s' (= p "

(the meaning of other operators is also clear).
The given above version of semantics for BPTL supposes that time structure is branching forwards and

linear backwards. Another variant of semantics for BPTL assumes that time is linear forwards, too.

3 Reduction of Stability to BPTL

In this section we construct for a system of cooperating logic programs B -< MP, SP =< SPX,..., SP„ >, # >
and DB state £ BPTL-formulas representing QiQ2- stability of B in £. To simplify notations we suppose that
n = 2. Let MP be the productional logic program

h~>updi

fm- > updm,
and let SPi be the productional logic program

/n- >updn

hm - > updlni,
and SP2 be the productional logic program

/21- >upd2i - '

hn2- > Upd2n2,
where /y are conditions, updij are updates.

Any DB state £ can be described statically as conjunction Ccmj(£) of (positive ground) atoms occurring
in £ . But to reflect changes of states caused by actions of MP, 5Pi and SP2 we should in following to
take into account also some negative atoms. So, with any DB state £ and logic programs MP, 5PX, SP2 we
connect the formula s(£) which is conjunction of Conj(£) and negations of ground atoms occurring in MP
SP! or SP2 but not in £.

_1^§ ; Perspectives of System Informatics'99

Note that in fact we can consider ground atoms as prepositional letters. In what follows £ will denote the
set of propositional letters which occur in MP, SPi, SP2.

For any update upd which inserts at,...,ak , deletes bu...,b, and leaves invariant cu...,cm we introduce
a formula UPD with the intended meaning:
s f= UPD iff the following is true: for any £ the formula s{£) is satisfied in s iff there exists a DB state £'
such that £ is obtained by applying upd to £' and s(£') is satisfied in the state s' of T previous to s
needed,too)

UPDhastheformAZi (* = 3FCi) A A-=i O, A AU -&i-
For any x e E we introduce new variables x~,x+. Using these variables we introduce two variants of UPD ■
UPD' = A£i (« = 3FCi) A Af=1 (af A a,) A AL {bj A -6«).
*™" - A*6^

+ A -*") A Ar=x (« s 3FCi)
AALiCC^Fa^ -> ai) A (3Fa~ -> (a* = 3F3Fa*)))
A AU ((-3F6+ -» -.60 A (3F6+ -» (^ = 3F3F&*))).
Formulas tfPZ>' and UPD" are used below to simulate parallel executions of productions from SPi and

AP2 ; the variables x+ and ar in them are used to store the information for the conflict resolution.
Let Q be a new propositional variable. Then the formula EVEN of the form

QAVG (Q -» (\/X -, Q AVX VX Q))

expresses the property » Q is true exactly on the states in even levels of T ". A somewhat more complicate
formula THIRD' (using some axillary propositional letter) expresses the property » Q is true exactly on the
states in any third level of T".

Let Safety denote the formula
THIRD AVG (<?-► #).

It is obvious that if this formula is satisfied on the root of T then in all states at any third level of T inteeritv
constraint # is satisfied. B *

Now we are ready to write out the formulas which show reducibility of the stability problems for the
cooperating logic programs to the satisfiability problem for BPTL. constraint when the slave of subformulas to

(33): B=<MP,<SPUSP2>,$ > is 33-stable in £
iff the formula

fltL^ty A VG iQ "* yZl ifU A BX{UPD» A V" i 0*7* A 3X(UPD^ A VLi (A A SXUPDk)))))y

Remark. For this formula the linear and branching time satisfiability coincide.

only fire
(V3) : B =< MP, <SP1,SPi>,$> is V3-stable in £
iff the formula

fj * f/# * V?„ft 7* V^ hi A V£i /« A AE,(/u -> WP^ A A^I(3F/2, -> 3X(C/P^ A
yk=1(fk A3XUPDk)))))) is satisfiable. ' 3

Similar formulas can be given for the W -stability and the 3V -stability.
Remark In fact, using the past operators in these formulas can be avoided. For the 33 -stability it is

rather straightforward (using the linear time logic) and does not increase the size of the corresponding formulas
But for the case of V3-stability the branching structure of the time is essential. It seems that in this case the
description of updates without using the past operator needs to explicitly consider all the DB states but it
leads to the exponential increasing of the formula size.

Note that all these reductions have polynomial complexity. In general, the reduction formulas have the poly-

Zrithm fnT RPTSTPf %l T "S * ^ W ^ pr°gramB: S°' * ™ USe the exponential time decision
algorithm for BPTL (such algorithms can be obtained by easy adapting the known algorithms for different
propositional temporal or dynamic logics, e.g. from [6]) we obtain for the stability problems an upper bound
of complexity which has the form of an exponential on a polynomial. However, we can obtain some more exact
complexity bound since the complexity of the satisfiability problem for BPTL is exponential respectively to the
number of subformulas of the formula considered (not to the length of the formula), and it is easy to see that

t r^rssÄln reduction formuIas'is linear with respect to the size of the °riginai programs-

Theorem'1. (i) The Q\Qi-stability problem for cooperating programs in GPROD with quantifier-free in-
tegrity constraints is decidable in exponential time for any Qi,Qi £ {3,V} ;

(ii) The 33-stability problem for the same classes of programs and integrity constraints is decidable in
polynomial space.

The point (ii) is obtained using reduction to the linear time logic (see remark above) for which there exists
an algorithm with polynomial space complexity (see [3]).

Acknowledgement We express our gratitude to anonymous referees for their helpful comments.

References

1. Dekhtyar M.I., Dikovsky Ä.Ja. Dynamic deductive data bases with steady behavior. In "Proc. of the 12 Intern. Conf.
on Logic Programming", Ed. L.Sterling, The MIT Press, 1995, 183-197.

2. Dekhtyar M.I., Dikovsky A.Ja. On homeostatic behavior of dynamic deductive data bases. In: D.Bjorner, M.Broy,
I.Pottosin (eds.) Proc. 2nd Int. A.P.Ershov Memorial Conference "Perspectives of Systems Informatics", Lect. Notes
in CS, vol. 1181, 1996, 420-432. '

3. Emerson E.A. Temporal and modal logic. In "Handbook of Theor. Comput. Sei.", Ed. J. van Leeüwen, Elsewier Sei.
Publishers, 1990.

4. Pinter S.S., Wolper P. A temporal logic for reasoning about partially ordered computations. Proc. 3rd ACM Symp.
on Principles of Distributed Computing, 1984, 28-37. /

5. Valiev M.K. On axiomatization of logic of discrete branching time. In "Modal and Intensional Logics. Proc. VIII
Confer, on Logic and Method, of Science", Palanga, 1982 (in Russian).

6. Valiev M.K. Decision complexity of variants of propositional dynamic logic. Lect. Notes in Comput. Sei., vol. 88,
1980, 656-664.

On Semantics and Correctness of Reactive Rule-Based Programs

Man Lin1*, Jacek Malec2**, Simin Nadjm-Tehrani1

1 Department of Computer and Information Science
Linköping University

S-581 83 Linköping, Sweden
linmajam,snt@ida.liu.se

2 Department of Computer Engineering
Mälardalens Högskola

Box 883, S-721 23 Västeräs, Sweden

Abstract. The rule-based paradigm for knowledge representation appears in many disguises within com-
puter science. In this paper we address special issues which arise when the rule-based programming
paradigm is employed in the development of reactive systems. We begin by presenting a rule-based language
RL which has emerged while developing intelligent cruise control systems. We define a desired declarative
semantics and correctness criteria for rule-based programs which respect causality, synchrony assump-
tion and desired determinism. Two alternative approaches are proposed to analyze RL programs Both
approaches build upon static checks of a rule-based program. In the first approach we accept programs
which are correct with respect to a constructive semantics while in the second approach, a stratification
check is imposed. The combination of rules and reactive behaviour, together with a formal analysis of this
behaviour is the main contribution of our work.

1 Overview

The rule-based paradigm for knowledge representation appears in many disguises within computer science. Lan-
guage issues related to this paradigm appear in production systems [3], parallel program design (e g Unity [21)
default reasoning within AI [9], logic programming [1], rewriting [7], active and deductive databases [41, and
logics for action and change [15].

Our work combines results from the three areas of rule-based knowledge representation, reactive systems [11
6j, and programming language semantics. The combination of rules and reactive behaviour, together with a for-
mal analysis of this behaviour is thus the main contribution of our work. Different approaches for specification
of real-time and reactive systems range over automata-based, temporal logics, Petri nets, action systems and
process algebras. In our view a rule-based language with a formal semantics shares the benefits of these spec-
ification languages. In addition, it has a special appeal: it mimics the natural mode of reasoning by humans
in many applications. Therefore, it can be considered as a powerful tool for capturing expert knowledge and
formally analyzing it. Moreover, rules can be executed and can therefore be seen as both a specification and a
programming language.

The synchronous family of high-level programming languages [5] for real-time systems (Lustre, Esterel
Signal) share the above characteristic. They too can be used both for capturing high level design and as
executable code. Though very different in syntax and style of programming, adding reactiveness to our rules
teads to formal semantics which is reminiscent of a couple of the proposed semantics for Statecharts [141, and
Esterel [13]. l J

2 Rules and Reactiveness

A reactive rule-based system (illustrated in Figure 1) is a system that reacts to the changes of its environment
continuously [12]. Such a system is composed of three entities called state, rules, and inference engine. The state
consists of slots: state variables, with associated pairs of values indicating the previous and the current value
ol the slot, respectively. During a period when no changes happen (equilibrium period, EP), the two values of a
slot are identical. At a point when there is a change (a stimulus comes from the environment), the current value

* Man Lin has been supported by TPR (Swedish Research Council for Engineering Sciences) and WITAS (the Wallenberg
^ laboratory for research on Information Technology and Autonomous Systems).
** Jacek Malec has been partially supported by Mälardalens Real-Time Research Center (MRTC)

Man Lin, Malec J., Nadjm-Tehrani S. On Semantics and Correctness of Reactive Rule-Based Programs 171

of some slot becomes updated. We call such a moment an asynchronous computational point (ACP). At each
ACP, the stimulus triggers one or more rules, producing new changes in the slots, which in turn trigger other
rules, and so on. This is continued until no changes are possible, i.e. a steady state is reached. Then the system
starts "resting" in its new EP, awaiting new stimuli. The inference engine is in charge of the computations at
the ACPs.

state ■

 >- rules

inference
engine JW-

 *■

responses

Fig. 1. A reactive rule-based system.

The rule language RL (syntax can be found in the appendix) is developed to express responses of the system
at each ACP. The language has been successfully used for developing a reactive application: a driver-support
system [10].

The rules in an RL program have an event-condition-action form, e.g.:

WHEN A *= a IF (B *= b AND NOT E |= e) THEN D d;

read as "When A changes to a then if B changes simultaneously to b and E has not been e then D obtains value
d". The WHEN part: A *= a is called the trigger part of the rule, the IF part: (B *= b AND NOT E |= e) is
called the condition part of the rule, and the THEN part D := d is called the assignment part of the rule. The
trigger part and the condition part together are called the precondition of the rule. The characteristics of this
language are:

- The meaning of a reactive program is independent of the ordering of the rules (in case of larger systems rule
ordering is a cumbersome and error-prone process; the semantics of such programs is unclear and easy to
distort). In our approach a program can be enhanced by simply adding new rules to the existing rule base;

- The language assumes finite domains for variables (c.f. datalog) allowing a finite model;
- The language allows the logical operations, negation and conjunction;
- The language allows for taking account of concurrent events (in the example rule events A *= a and B *=

b occur simultaneously);
- The language models time flow without introducing metric time (E |= e checks if "E has had value e

before", while E *= e checks if "E has changed to value e");

A rule responds to external stimuli at a given state by checking whether the rule is enabled at the current
state, and firing the rule (performing the assignments) if so is the case.

A stimulus to a system, denoted as I, is a set of changes which are (slot, value) pairs. A state of a rule-based
system is a pair (S, C) where S contains the values of all the variables (slots), and C contains the set of changes.
We use Sx to denote the value of x in the latest EP. During an EP, S is the same and C = 0. At an ACP, S
is the same as S in the previous EP and C contains the changes occurring at this ACP including the external
stimuli and the changes derived as the result of the assignments of the enabled rules.

A rule r being enabled at a state (S, C) is denoted by (S, C) \- r. A rule r being not enabled at a state (S, C)
is denoted by (S, C) \f r. To check whether (S, C) h r, we only need to check if all the primitive preconditions
of rule r are satisfied at (S,C). By primitive precondition, we mean positive condition including X \=v (was),
X *= v (changes to), or negative condition including NOT X \- v (was not), NOT X *='v (does not change
to). The trigger part of a rule contains only one primitive condition X *= v , while the condition part of a rule
can be a conjunction of primitive conditions. We define h for rules by first defining h for primitive conditions
of rules, here delimited by [].

172 Perspectives of System Informatics'99

- (S,C)\-[x\=v]iffSx=v;■•■
- (5, C) h [x*=v] iSSx^v and {x, v) EC;
- negation (NOT) and conjunction (AND) are interpreted as standard logical connectives. That is:

• (S, C) \- [NOT p] where p is any positive primitive iff not (5, C) \- p.
• (S, C) h [pi AND p2] where px and p2 are primitive preconditions iff (S, C) h »i and (S, C) h »,

- (S,C)\/r iff not (S,C)\-r. '

Let's look at a simple example. Suppose x, y, and z are the three slots of the system. Let Sx = 0, Sy = 0,
Sz = 0 and C = J = {(x, 1)}. Program PI contains only one rule rl:

rl: WHEN x *= 1 IF y |= 0 THEN z := 1;

Rule rl is enabled at (S,C) since (x,l) e C and Sy = 0. The effect of firing this rule is to assign 1 to z.
Therefore, the set of changes becomes C\ = {(x, 1), (z, 1)}.

Let's consider another program P2 containing only r2 with the same (S, C):

r2: WHEN z *=1 IF y |= 0 THEN y:= 1;

Rule r2 is not enabled at (S, C) since (z, 1) £ C. Therefore, the set of changes is still {(x, 1)}.
If an RL program contains several rules, then the response of the system at each ACP may no longer be

only one (or zero) firing of rule. There could be several rule firings some of which are caused by others.

3 Synchrony Assumption and Causality

One might ask why the responses only occur at ACPs. The fundamental assumption taken here is the synchrony
assumption: each response is assumed to be synchronous with the effects it causes. This assumption is realistic
if the responses of the system are fast enough so that the environment does not change during the responses
(which should be checked in practice). The effects of the execution of one component are instantly broadcast to
all the other components of the system. Therefore, all the components of the system have the same view of the
system state.

The smallest component of an RL program is one single rule. If several rules get fired at the same ACP
then all the rule firings are considered to occur at the same time. We don't care how the rule firings are done
step by step if only synchrony requirement is considered. What is interesting is only the result of the response
The result of a response at (5, /) is a stable state (S, C") and a set of fired rules R* where:

- C is the result of firing all the rules in W at the given initial state (S, I). Let Ar denote the assignments
of rule r. Then

C'= (J ArUL
r€Rf

(S, C) is seen as the state after the response. ,

~ f<fintho ma3?mal S6t °f mleS that are enabled at state to0")- First> ah the rules in Rf are enabled at
C-b, G). Second, no other rules not belonging to Rf are enabled at (S, C).

_ However, we would like to retain causality which is a very important property for a reasoning system The
principle of causality requires that any change issued should have a sequence of (enabled) rule firings leading
to it. The following example shows a causal reasoning. By composing earlier programs PI and P2, we get a new
program P3 which contains two rules: rl and r2. One can infer that both rl and r2 are fired and the new
set of changes becomes CZ = {(x,l), (y, 1), (z, 1)}. The reasoning is simple. Since rl is enabled at (5,7), rl
w fired[and the effect: the change (z, 1) is instantaneously broadcast. The system state becomes (S,C1) where

* u },>Z'1)}' SmCe r2 is enabled at (S' CV> r2 is ^o fired and results in the final set of changes C3
^ For the above example, C = C3 and Rt = {rl,r2}. The synchrony requirement is also satisfied since
Orf - l u Ari U Ar2, and rl and r2 are the only rules enabled at (5, C3).

However, not all the responses respect both synchrony hypothesis and the principle of causality. Let's look
at two examples.

Given S where Sx = 0Sy = 0, Sz = 0, I = {<„, 1)} and a program with two rules r3 and r4, what are the
final state and the fired rule set?

r3: WHEN x *= 1 IF y |= 0 THEN z := 1;
r4: WHEN z *= 1 IF y |= 0 THEN x := 1;

 Man Lin, Make J., Nadjm-Tehrani S. On Semantics and Correctness of Reactive Rule-Based Programs 173

There are two solutions which satisfy the synchrony requirement. One is C" = J and R? = 0. The other is
C" = {(y, 1), {x, 1), (z, 1)} and Rf ==' {r3,r4}. The problem with the second solution is that without the firing
of r4, r3 can not get fired. The same is for r4: without the firing of r3, r4 can not get fired. The result is
self-triggered. Or, in other words, it is not causal since we can not generate this final result via a causal sequence
of rule firings.

The above example shows that not all the responses satisfying synchrony requirement are causal. Next, we
show that not all the causal responses satisfy the synchrony requirement either.

Suppose (S, I) be Sx = 0, Sy = 0, Sz = 0, / = {(y, 1)}, and a program be as follows.

r5: WHEN y *= 1 IF NOT x *= 1 THEN z := 1;
r6: WHEN y *= 1 IF x 1=0 THEN x := 1;

A causal rule firing sequence is r5 followed by x6 which results in '
C" = {(y, 1), (x, 1), (z, 1)}. The problem is that r5 is not enabled at (5, C") which violates the synchrony
requirement.

4 Other Requirements ,

As we deal with variables, one important requirement is not to assign different values to the same variable at
the same ACP. Another requirement is that there should be only one final result at each ACP. This requirement
is understood as observable determinism.

Next, we provide a desired semantics definition for a response which respects the synchrony hypothesis, the
principle of causality and the above requirements.

5 Declarative Semantics

Definition 1. Suppose R is the set of rules of a program P. The declarative response of the program P in a
state (S, I) is any sequence of firings

a0cri...

such that

<70 = (Cb, #£) = (/, 0),
o-i+i = (Ci+i,Ri+1)

' (d U Ar,, R{ U {r/}) where rf £ R={r\r e R \ R{ A (5, Ct) h r}
ifR^$

oi ifR = $

In the definition, each firing (CTJ) contains a set of changes '(d) and a set of fired rules (Rf).
It can be proved that a declarative response has always a finite length [8].

Definition 2. Let R be the rule set in a program P. Let a declarative response of the program in a state (S, 0) to
a stimulus I be cr0<7i.. .am. Let om = (Cm,Rf) and R? = {ri,r2,... ,rm}. The declarative response is correct
if and only if

— the response is rule-consistent;
Vr(reRt->(S,Cm)^r) .

that is, none of the rules fired in this response will become disabled after the final firing;
— the response is slot-consistent:

Vx((x,v1)eCmA(x,v2)eCm-*vi=v2)

that is, no slot can have more than one change of value in this response;
— the response is unambiguous: for any other declarative response a0a['.:.a'k with a'k = (C'k,R'f) that is

both rule-consistent and slot-consistent, we have C'k = Cm. □

-IZi Perspectives of System Informatics'99

A correct response is the desired response. This semantics is referred to as declarative semantics. An RL
program is correct if and only if it has a correct response for any possible combination of state and stimuli
Two natural questions arise:

- Can we construct an operational semantics to implement the desired declarative semantics?
- Can we identify the ill-behaved programs during compile time without having to generate all the responses

for each state-and-stimulus combination?

We will devote the next two sections to answering the above questions.

6 Constructive Semantics

6.1 The semantics

Constructive semantics is an application of the three-valued-logic approach to non-monotonic reasoning in the
setting of reactive systems. It also resembles the recently proposed semantics for pure Esterel [13] The main
differences are in the structure of programs (rule-based in our case, imperative in the case of Esterel) and the
means of communication (change in slot values in our case, pure signals/events in Esterel). In what follows we
present the constructive semantics.

The constructive semantics needs not only positive information about the changes of the system but also
negative information about the lack of changes. In constructive semantics, we deal with extended system state
{S,Z) where S records the values of the slots before the ACP and Z contains a set of annotated changes where
each (slot, value) pair has a annotation indicating the status of this change. The status is an element from the
Set„/' ~v - + 1S read aS positive> and (*> v)+ means that <*> v) does occur in this ACP; - is read as negative
and {x, v) means that the change {x, v) can not possibly occur in this ACP; 1. is read as Unknown, and (x, v)-*-
means that the change of x to v is not present yet at this point of the computation, but it is not sure whether
it will take place later.

The result of evaluation of a rule is one of the following: True, False or Unknown instead of only True or
False as in 2-valued logic. The evaluation evaluates a rule to be Unknown if it is not known whether the rule will
evaluate to true or false after this response. More specifically, a primitive condition (NOT x *= v) is evaluated
to be True at a state (S,C) if (x,v) does not belong to C when reasoning under 2-valued logic, but Unknown
in the case of constructive semantics if (x,v) is not explicitly marked with unchangeable status (positive or
negative).

The ordering between the status annotations is

__={(-L,-),(J-,+),(±,±)> (-,-), (+,+)}.

Let Z, Z' be two sets of annotated changes. Z is less informative than Z', denoted Z < Z' if and only if

(y(x,v)aeZ)(3a')((x,v)a' eZ'Aa^a1).

Given C, C+ is defined as the extension of C where: '

C+={(x,v)+\(x,v)eC}U{(x,v')-\{x,v}€CAv'^v}U
Ulfe«)1 \W(x,v')$C}

Symmetrically, given Z, Z~ is defined as the reduction of Z where:

Z~={{x,v) | (x,v)+eZ).

»n tml* b/?Sw fa"d ai an eX!?df State (5'Z) is den0ted by ^ Z) h3 r- A rule beinS 3-non-enabled at
Z^ff TU* ^wod % <?'Z) V° T- (5' Z) h3 r if ** °nl^ if a11 the Primitive preconditions are
evaluated to beTrue at (S,Z). (S, Z) ft r if and only if one of the primitive precondition is evaluated to be
false at {b, Z). lne evaluation of a primitive condition p at a given extended state (S, Z) is shown as follows:

- [x\=v] is True if 5_ = v;
[x | =v] is False if 5- ^ v;

- [x*=v] is True if (x, v)+ e Z and Sx ^ v;
[x*=v] is False if {x, v)~ e Z or 5. = v;

Man Lin, Make J., Nadjm-Tehrani S. On Semantics and Correctness of Reactive Rule-Based Programs 175

- [NOT p] is True if p is False; [NOT p] is False if p is True;
- With the exception of [True], all other primitive conditions are evaluated to Unknown.

It should be observed that there are intermediate cases when neither (S, Z) h3 r nor (5, Z) i/3 r is true.
The negative changes are derived by function never. Function never works iteratively. At each iteration,

a negative change is added into the set of annotated changes. The change added has one of the following
characteristics:

- No rule in the program can issue such change.
- All the rules that can issue such change are 3-non-enabled at the current extended state.

When we say adding negative changes or positive changes, we mean updating the annotation of the (slot,
value) pair in the set of annotated changes. This is done by update function. The annotation can only be
changed from ± to 4- or -. An attempt to change the status from + to - or vice versa indicates a symptom
of slot-inconsistency. When such situation occurs, the set of annotated changes returned is an empty set to
indicate failure. The formal definition for never and update can be found in [8].

We are now in a position to define an operational semantics.

Definition 3. Given a program P with a rule set R, an initial system state (S,0), and a stimulus I, the
constructive response of the program is a sequence

ToTi

such that

- 7o = (Zo,0), where Z0 = never(S,/+,.#),

- 7t+l = {Zi+liRi+l)

($,R{) ifZi = 9,
(never(S, update^, A+)),R), R{ U {r/}) if Z{ ^_0 and

rf£_R~^$,
SZUR{) ifRi = Q,

where fy = {r\r £ R \ R{ A (S, Zt) h3 r}. □

As we can see, if there exists an unfired rule 3-enabled in the current state, and no slot-inconsistency occurred
in the update of the previous step (Zj ^ 0), then the current set of annotated changes Z{ is updated with positive
changes, and negative changes. The positive changes come either from the external stimulus (step 0) or from
the assignments of the selected rule that is 3-enabled at the current extended state (subsequent steps). The
negative changes derived by never function are those potential negative changes that could be deduced from
the current state. If there is no unfired rule 3-enabled by the current state, then the procedure returns the same
tuple as in the previous step. Finally, if the state indicates the occurrence of slot-inconsistency (Zj = 0), the
procedure returns the empty set as the new set of annotated changes.

We say that the constructive response terminates at Zm if and only if (Zm- = 0 and Zm-i ^ Zm)ox {Rm = 0
and Rm-i ^ 0), that is, a slot-inconsistency occurs or there is no rule to be selected.

A terminating constructive response is accepted if and only if it terminates at Zm and Zm ^ 0 and
(y{x,v)a € Zm)(a y£ _L). That is, an accepted constructive response terminates normally, meaning that no
slot-inconsistency occurs (Zm ^ 0), and the set of annotated changes of its final state is complete, meaning that
no change in Zm is marked with J_.

6.2 Properties

It can be proved that given a program P and (S,I), all the constructive responses reach the same final set of
annotated changes (the thereom can be found in [8]).

It can also be proved that any accepted constructive response yields a correct declarative response. In order
to prove this, we first define a mapping from an accepted constructive response to a sequence of firings and
then prove that this sequence is a construction of a declarative response (see [8]). Then, we prove that this
declarative response is a correct one (see theorem 1).

176 Perspectives of System Informatics'99

T/ST*1011 4' ^ CR = 7°71 '"7m be m accePteä constructive response, where 7i = (Zi,lt{),0 < i < m.

map(C7Ä)=or0,o-i,...,ffm)

where ai = (Zr,R{). ^

™;:r™, Äs;Jr=map<Cfl)" •fa(aras" resf™ **->•" - «*- -**<«» D

The proof can be found in [8].
The static checker performs an exhaustive check of acceptability of the responses for all possible states and

sümuli It can be easily proved that that all the programs passing the constructive check procedtire are correct
ones with respect to the desired declarative semantics.

7 Stratified Program

StTmnftrfZ^L" weI|known
u
notion in kg* Programming and deductive databases. It was an early

strldvesS rt£ ^ " ^ ^^ " PreSenCe * "^t^ The ^°M «imputation along
E2J fit ♦ I Pr°S

1
ramS a natUral semantics- We induce the idea of stratification into reactive rule

ste a cond"on° SOT7* Tf*? ^ "^ ^^ reSP°nSe iS n0t —^ ^-conLtent since a condition NOT x *= v) of a rule r can be disabled by firing other rules after r, which may generate

ttl IT"? * "I ' 5ira^e" °rder'thlS kind °f SitUati°n Can be aTOided- WOTkinS with straS E has the following effect: every time a rule which has a condition part including negation over \s*=vl is tested
or being enabled, we can be sure that a rule with an assignment v to , has been fired earlier in th espouse

(if it is included in the final fired rule set of this response at all) response

"*■ ^°WeVe": ^ the USer needs not exPlicitly consider these dependencies when introducing rules The
support at compile time is supposed to check whether such a stratification exists. Given a progrfm P and a
pair (xv) the definition of <*,„) is the set of rules in whose assignment part <*,„) appears.

A stratified rule-based program consists of a disjoint set of rules P = P1 u ... U P* U UP* called ttra+n
If a program is stratifiable, its stratification is constructed as follows: "

" I craned wtthin^ P.f ^ " ^ ^ ^ " C°nditi°n ^ °f & ^ ^ P» ^ itS definit-
" wi?hinS^"^ir [N°^*^ aPPe-s in the condition part of a rule from Pu then its definition is contained

if th!v ltZlStX&?*?TTT?
Pr°f T' the reSP°nSeS generated * such operational semantics are correct

they are slot-consistent. Unfortunately, for a stratified program this operational semantics does not guarantee
slot-consistency. Stratification simply provides a sufficient condition for rule-consistency.

8 Summary

The technical results obtained in our research can be summarized as follows:

- We have defined a rule-based language RL that combines asynchronous interaction with an environment

Fo tInf°n0US treTenl °i a reSP°nSe- Time and c—ency are thus dealt with in a simXm"

■ ^SS^SJ:^^^: declarative semantics which enabies a naturai *— °f —■
- We have defined a correctness criterion for reactive RL programs. A correct program ensures termination of

toU^Tyrm;eaCh reaCtl°n' COnSiStenCy °f the &ed rUl6S and a »**» <"*£** «* £%%%£
- We have defined and implemented constructive semantics, based on three-valued evaluation of rules that

guarantees the correct results of computations for correct programs- evaluation ot rules, that

Man Lin. Malte J., Nadjm-Tehrani S. On Semantics and Correctness of Reactive Rule-Based Programs 177

References

1. K. Apt and R. Bol. Logic programming and negation: A survey. Journal of Logic Programming, 19/20:9-71, 1994.
2. K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. MA: Addison-Wesley, 1988.
3. T. A. Cooper and N. Wogrin. Rule-based Programming with OPS5. Morgan Kaufmann Publishers, Inc, 1988.
4. K.R. Dittrich, S. Gatziu, and A. Geppert. The active database management systems manifesto: A rulebase of

ADBMS features. In Timos Sellis, editor, Rules in Database System. RIDS'95, Springer Verlag, 1995.
5. N. Halbwachs. Synchronous Programming of Reactive^Systems. Kluwer Academic Publishers, 1993.
6. D. Harel and A. Pnueli. On the development of reactive systems. In K. R. Apt, editor, Logics and Models of

Concurrent Systems, volume 13 of NATO ASI Series. Springer Verlag, 1985.
7. G. Huet. Confluent reductions: Abstract properties and applications to term rewriting systems. Journal of ACM,

27(4):797-821, 1980. -
8 M Lin Formal Analysis of Reactive Rule-based Programs. Licentiate thesis, Linköping University, 1997. Linkopmg

Studies in Science and Technology, Thesis No 643, ISBN 91-7219-030-2, ISSN 0280-7971.
9. W. Lukaszewicz. Non-Monotonic Reasoning. Ellis Horwood, 1990.

10. J. Malec, M. Morin, and U. Palmqvist. Driver support in intelligent autonomous cruise control. In Proceedings of
the IEEE Intelligent Vehicles Symposium'94, pages 160-164, Paris, France, October 1994.

11. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer-Verlag, 1992.
12. M. Morin, S. Nadjm-Tehrani, P. Österling, and E. Sandewall. Real-time hierarchical control. IEEE Software,

9(5):51-57, September 1992.
13. G. Plotkin, C. Stirling, and M. Tofte, editors. Language and Interaction: Essays in Honour of Robm Milner, chapter

The Foundations of Esterei. MIT Press, 1998. To Appear.
14. A. Pnueli and M. Shalev. What is in a step: On the semantics of Statecharts. Theoretical Aspects of Computer

Software, LNCS, 526:510-584, 1991.
15. E. Sandewall. Features and Fluents, volume 1. Clarendon Press. Oxford, 1994.

A Appendix: Syntax

The syntax for RL is defined as follows.

Definition 5. A rule is a string

WHEN <rtHg> IF <rcond> THEN <rassign>

fulfilling the requirements of the following grammar:

<rtHg> ::= <slot-name> *= <slotval>
<slotvat> ::= <ident>
<rCOnd> ■■—<rCond> AND <rHteral>

I <mteral> .
I TRUE

<ruteral> "= N0T literal >
I <slot-name> *= <slotval>
I <slot-name> |= <slotval>

<rassign> ::= <assignment> I { <assignment-list> }
<assignment-list> ::= <assignment> I <assignment-list> , <assignment>
<assignment> ::= <slot-name> := <slotval>
<slot-name> ::— <ident>

where <ident> denotes an identifier. n

Compositional Verification of CCS Processes

Mads Dam1 and Dilian Gurov2

Dept. of Teleinformatics, Royal Institute of Technology (KTH/IT),
Electrum 204, SE-164 40 Kista, Sweden, E-mail: mf d<Ssics. se

2 Swedish Institute of Computer Science, Box 1263,
SE-164 29 Kista, Sweden, E-mail: dilian9sics.se

Abstract. We present a proof system for verifying CCS processes in the modal ^-calculus. Its novelty lies
in the generality of the proof judgements allowing parametric and compositional reasoning in this complex
setting. This is achieved, in part, by the use of explicit fixed point ordinal approximations, and in part
by a complete separation, following an approach by Simpson, of rules concerning the logic from the rules
encoding the operational semantics of the process language.

1 Introduction

In a number of recent papers [1-4,9] proof-theoretical frameworks for compositional verification have been put
forward based on Gentzen-style sequents of the shape r h A, where the components of r and A are correctness
assertions P: <j>. Several programming or modelling languages have been considered, including CCS [31 the
»r-caiculus [2], CHOCS [1], general GSOS-definable languages [9], and even a significant core fragment of a
real programming language, Erlang [4]. An important precursor to the above papers is [10] which used ternary
sequents to build compositional proof systems for CCS and SCCS vs. Hennessy-Milner logic [6].

A key idea is that the use of a general sequent format allows correctness properties P : </> to be stated and
proved in a parametric fashion. That is, correctness statements <j> of a composite program P(QUQ2), say can
be relativized to correctness statements of the components, Qx, Q2. A general rule of subterm cut

r\-Q:^,A r,x:ip\- P-.(f>,A
r h- P[Q/x) : <j>, A (!)

allows such subterm assumptions to be introduced and used for compositional verification
... ^i8; h™e

T
ver' d"Jcult to suPP°rt temporal properties within such a framework. As is well known [12], logics

üke L1L, C1L, or CTL are poorly equipped for compositional reasoning without resort to devices like history
or prophecy variables. For this reason, our investigations have tended to focus on logics based, in some form on
the modal ^calculus in which the recursive properties needed for property decomposition can more adequately
be expressed. In [3] the first author showed one way of realizing a proof system using the subterm cut rule,
and built, for the first time, a compositional proof system capable of handling general CCS terms, including

to address EriSf ^ Pr°CeSSeS dynamically- fc W we used * similar, though considerably improved, approach

The approach of [3] suffered from two main shortcomings, however:

1. Though systematic, the embedding of the CCS operational semantics into the proof system was indirect
and allowed only rather weak completeness results to be obtained.

2. The handling of recursive formulas was very syntactic and hedged by complicated side conditions, hiding
the essence of our proof-theoretical approach from view.

In this paper both these issues are addressed. First, following an idea by Simpson [9] we fully separate the
embedding of the transitional semantics for P from the general handling of the logic by employing process
variables and transition assertions of the shape P 4 Q. These assertions provide a semantically explicit bridge
between the transitions of P and the one-step modalities of the logic. A similar approach is used to handle
the second complication. The essential difficulty is that, to be sound, rates of progress for fixed point formulas
appearing m different places in a sequent must be related. To achieve this in a simple and semantical^ explicit
way we employ fixed point approximations using ordinal variables, and ordinal constraints of the shape «, < «-

In the paper we first introduce the modal /.-calculus with explicit ordinal approximations, and we introduce
the basic form of judgment used in the proof system. In the absence of process structure such as CCS, models
are just standard Knpke models. Correspondingly, the proof system in this case can be seen to provTde an

Dam M., Gurov D. Compositional Verification of CCS Processes 179

account of Gentzen-style logical entailment. The novelty, in this case, lies in the use of ordinal approximations.
This fragment of the proof system is introduced in Sect. 3. The key ingredient to release the power of this proof
system is a rule of discharge, or termination, which recognizes proofs by well-founded induction. In another
paper [5] we introduce a game which embodies such a rule, and show completeness of the resulting proof system
by reduction to Kozen's well-known axiomatization [7]. A practical rule of discharge, however, must be local
which the game condition of [5] is not. Here, instead, we introduce a local version of the discharge rule which
is, we believe, a simple and intuitive approximation of the complete global condition. This local discharge rule
is introduced (summarily, in this abstract) in Section 4. A full instantiation of our approach to CCS requires
in addition an embedding of the CCS operational semantics into the present Gentzen-style format (following
Simpson [9]) plus the subterm cut rule (1). This extension is shown in Section 5, and then in Section 6 we give
a rough sketch of a correctness proof of a simple infinite state CCS process.

2 Logic

Formulas <f> are generated by the following grammar, where K ranges over a set of ordinal variables, a over a set
of actions, and X over a set of propositional variables. ,

<j> ::=((> V<t> | -.0 | (a)0 | X \ 11X4 \ {ßX.<j>)K

An occurrence of a subformula «/> in (p is positive, if ip appears in the scope of an even number of negation
symbols. Otherwise the occurrence is negative. The formation of least fixed point formulas of one of the shapes
ßX.<f> or (p,X.<f>)K is subject to the usual formal monotonicity condition that occurrences of X in <f> are positive.
We use the symbols U and V to range over (unindexed) fixed point formulas pX.4>- A formula <f> is propositionally
closed if <fr does not have free ocurrences of propositional variables. Standard abbreviations apply:

false = pX.X,

true = ->false,

<j> A tp = ->(-<$ V -itp),
[a]<f> = -.(OJ)-.0,

vX.<j> = ->ßX.-n(cp[-iX/X))

We assume the standard modal ^-calculus semantics [7]:

\\<t>vi>\\p = M\\Pu\M\p
\\-4\\p = s\\\4>\\p

\\(a)<f>\\P={P\BQ€U\\p.P^Q}
\\X\\P = P(X)

\\ßX.ct>\\p = f]{S\SC\\4>\\p[S/X]}

augmented by the clause:

-l\ if P(K) = 0
HOi*.0«||p= { M\\p[\\(ßX.4>)«\\p/x,ß/K) if P(K) = ß + i

\ \J{\\(pX4)K\\p[ß/K] I ß < P(K)} if p(K) is a limit ordinal

where p is an interpretation function (environment), mapping ordinal variables to ordinals, and propositional
variables to sets of closed process terms, or states, from a domain <S ranged over by P.

The use of ordinal approximation hinges on the following results (of which (1) is the well-known Knaster-
Tarski fixed point theorem).

Theorem 1.

1. \\iiX4\\p = U/3 \\(ßX.4>)K\\p[ß/K}
2. \\(fiX4r\\p = \Jß<piK) U\\p[\\{pX,<i>Y\\plx,ßiK}

180 Perspectives of System Informatics'99

Observe how this casts the properties U and UK as existential properties: This is useful to motivate the
proof rules for fixed point formulas given below. Observe also that, for countable models, quantification over
countable ordinals in Theorem 1 suffices. In the definition below, we extend interpretation functions p to map
process variables a; to closed process terms (states).

Definition 1 (Assertions, Judgements).

1. An assertion is an expression of one of the forms E : <f>, « < «', orE^F, where E, F are a process terms
and <}> is a propositionally closed formula.

■ 2. The assertion E : <j> is valid for an interpretation function p (written E \=p if»), if Ep € \\<j>\\p. The assertion
K<K' is valid for p, if p(K) < P(K'). The assertion E 4 F is valid for p, if Ep 4 Fp is a valid transition.

3. A sequent is an expression of the form r \- A, where T and A are sets of assertions.
4- The sequent r h A is valid (written T |= A), if for all interpretation functions p, all assertions in F are

valid for p only if some assertion in A is valid for p as well.

An assertion of the shape E : <t> is called a property assertion, an assertion of the shape K < «' is called an
ordinal constraint, and an assertion of the shape E 4 F is called a transition assertion.

3 Proof System: Logical Entailment

We first consider the problem of logical entailment. In this case, process terms E in assertions of the shape E : <t>
are variables.

Structural Rules We assume the axiom rule, the rule of cut, and weakening:

Ax r,A\-A,A

n,mr\-A,A r,AY-A CbT rhA

W T FhA WD r^A

As in [9], in the axiom rule assertion A needs only be instantiated to transition assertions, and then A can be
assumed to be empty. Since r and A are sets, structural rules like permutation and contraction are vacuous.
We conjecture that both cut and the weakening rules are admissible.

Logical Rules In the following listing we assume that U = ßX.(f>.

r.\-E:cj>,A p r,E:cj>hA
r,E:-><l>\-A ""-"r l-.f?:-.0,4

V L r^E:^^A r,E:^VA Rrh£ : <P,E : r/,,A
r,E:<t>\/i}>\-A V"n .r\-E:<t>\/ip,A

(a)-L r>E^x,x:4>^A_
W r,E:{a)4>V-A iremw

(a)-RrhE^E'>A r\-E':4>,A
' T\-E: (a)<ß,~Z

r,£:t/"hZ\ r\-E:^[U/X},A
U U r,E:UhA F^W U-ii r\-E:U,A

TTKT r,K'<K,E:4>\UK'/X]^A
r,E :UKh A jresn[K)

UK-R F h K> < K'A r h E : WIX\, &
r\-E:UK,A

The side condition fresh(x) {fresh{K)) is intended to mean that x («) does not appear freely in the conclusion
oi the rule.

The rules for unindexed and indexed fixed point formulas are directly motivated by Theorem 1 The lack of
symmetry between rules U-L and U-R is not accidental; their symmetric counterparts are in fact admissable.

Darn M., Gurov D. Compositional Verification of CCS Processes 181

Ordinal Constraints Finally, we need to provide rules for reasoning about ordinal constraints.

r,n' <K\~ K" < K',A
ORDTR r, K' <K\- K" <K,A

This rule is sufficient provided ordinal variables and constraints are only being introduced during the proof, i.e.,
do not appear in the root sequent.

Theorem 2 (Local Soundness). All rules for logical entailment are individually sound: Each rule's conclusion
is valid whenever its premises are valid.

4 Proof System: Rule of Discharge

Processes and formulas can be recursive, allowing for proof trees to grow unboundedly. Intuitively, one would
like to terminate an open branch whenever a "repeating" sequent is reached, i.e. a sequent which is an instance,
up to some substitution cr, of one of its ancestors, its "companion", in the proof tree. A proof structure, all leaf
nodes of which are either axioms or such repeating nodes, serves as the basis for well-founded ordinal induction
arguments. A global discharge condition is a sufficient condition for such an argument to be valid. In case a global
discharge condition applies all leaves which are not axioms can be considered induction hypothesis instances in
some, possibly deeply nested, proof by well-founded induction.

The use of ordinal variables and constraints allows global discharge conditions to be phrased in a clear and
semantically transparent way. The most general view of discharge is presented in game-based terms elsewhere
[5]. In essence, global discharge guarantees well-foundedness of proofs: That along every infinite path in the
infinitely unfolded proof tree, ordinal constraints grow downwards in an unbounded manner.

Here we present a discharge condition which is, in contrast to the global condition of [5], more local, and
easier to understand and apply. Moreover, even though it is in general incomplete, it is, in our experience,
adequate in a great many situations. In particular it is powerful enough to handle the example considered
below.

First a single piece of terminology: Two repeat nodes are called related if they are in the same strongly
connected component in the directed graph obtained from the proof structure by identifying the repeat nodes
with their companions.

Definition 2 (Rule of Discharge). A node labelled F \- A can be discharged with UK and substitution a
against an ancestor node labelled r' r- A' if:

(i) UK occurs as subformula in J1' or A';
(ii) (fia G r whenever <j> & T', and <f>a G A whenever <j> £ A';

(Hi) F h Kcr < K is derivable;
(iv) assuming the related discharge nodes labelled T\ \- A\:... Fn t- An have'been discharged with E/*1 .. .[/£"

and o~\ .. .an against F[\- A[.. .r'n\- A'n, there is a linear ordering ■< on these discharge nodes including
the present node, such that whenever i -< j: (a) U*1 occurs as subformula in Fj or A'^, and (b) either
KiVj = Ki, or Fj \- Ki&j < Ki is derivable.

In clause (iv), the linear ordering can be chosen differently each time the rule is applied (and a new node is added
to the corresponding class of related discharge nodes). The purpose of the clause is to guarantee that along
every infinite path in the infinitely unfolded proof tree, ordinal constraints grow downwards in an unbounded
manner.

Theorem 3 (Soundness). The proof system including the rules for logical entailment and the rule of discharge
is sound: All sequents derivable in the proof system are valid.

The full version of the paper explains the discharge mechanism in greater detail and gives a soundness proof.
For finite state labelled transition systems the above proof system reduces to an ordinary model checker like
the one presented in [11], and is hence complete for such systems. In general, however, due to undecidability of
the model checking problem addressed here, the system is necessarily incomplete.

182 Perspectives of System Informatics'99

5 Proof System: Operational Semantics

Having transition assertions allows the transitional semantics of a process language to be embedded directly into
the proof system as a separate set of proof rules. This can be done in a straightforward manner for any GSOS-
definable language [9]. Here we illustrate this approach on a well-known process language, Milner's Calculus of
Communicating Systems [8].

We assume that CCS process terms E are generated by the following grammar, where I ranges over a given
set of labels, L over subsets of this set of labels, a over actions of the shape r, I or 7, and x over a set of process
variables.

E::=0\a.E\E + E\E\E\E\L\x\fixx.E

The set of states S used in Section 2 is the set of all closed process terms. The operational semantics of CCS is
given as a closure relation on processes through a set of transition rules [8]: the transitions that a CCS process
can perform are exactly those derivable by these rules. Hence, the transition rules can be included directly as
right introduction rules into our proof system, while the left introduction rules (stating what transitions are not
possible), come from the closure assumption.

For lack of space we present only the most significant of the resulting rules in this, abstract, and in particular
the ones used in the Example to follow.

0-L „n a , A a-R

T ■r[E/x]\-A[E/x} ■
r,a.E->x\-A r,a.E^x\-A ^

+ L rbM E^yV A[y/x] r[z/x], F 4 s h A[z/x)
r,E + F^x\-A

+_R_r±E$E',A
r<rE + F^E',A

IRi r\-E->E',A lE<2n-EAE' rt-F^F',A
rhE\F^E'\F,A '-^ r\-E\F*E>\F>,A

L ! r[y\FM, E±y\- A\y\F/x] r[E\z/x], F -4 zV A[E\z/x]
T,E\F-4x h A :

rly^F/xlE^y^Aly^F/x]

l-L-2 rl%/4^K^[%/i]
ffolWsUi =h,E^ zuFl-\ z2 V A[zi\z2/x]

r,E\F^x\-A

fix-1 r,E[fixx.E/x]$y\-A fh E\fixx.E/x]5 E',A
r,fixx.E^yhA fl3> r^fixx.E^E',A

In addition to these rules, a subterm cut rule is needed to allow for parametric and compositional reasoning:

SUBTERMCUT-R ^ \~ F :£A r,x: 4>\-E : frA
r f~ E[F/x] : 4>, A Fesn{x)

Dam M., Gurov D. Compositional Verification of CCS Processes 183

6 Example

Consider a process

Counter = fixx. up. (x \ down.x)

which can alternatingly engage in up and down actions, generating a new copy of itself after each up action.
Clearly, in any point in time, regardless how many counters have already been spawned, this system can engage
in finite sequences of consecutive down actions only. This propery can be formalised as the negation of the
following formula:

<f> = \iX. -> (JY. -I ((up)X V (down)-» Y)

So, we want to prove validity of the sequent

\r Counter: -i <f>

We perform the proof backwards, from this goal sequent towards the axioms, guided by the shape of the formulas
and process terms involved. After eliminating the negation and approximating <j> one obtains'

Counter: <f>K h (2)

Continuing in the same straightforward manner we soon arrive at the following two sequents:

K' < re, up. (Counter] down.Counter) -> x h x : ip

re' < re, Counter] down.Counter: cj>K h

the first of which is an axiom. The second sequent is similar to sequent (2), with the important difference of a
new down. Counter component having appeared. This is the point where one would like to perform an inductive
argument on the system structure, and this can be done using subterm cut. The most important question is what
the property of the component being cut is that yields the overall system property being verified. A convenient
case is when it is the same property, i.e., when the property being verified composes nicely. This is the case in
our example, partly because there is no communication between the components. So, after two applications of
subterm cut we obtain the following three sequents:

re' < re, Counter: <f>K. h

re' < re, down. Counter : <f>K h x : cf>K

re' < K,x\y : (f>K> t- x :<f>K',y : <pK'

the first of which can be discharged with 0K and substitution [re H- re'] against (2). Notice that this node has no
related discharge nodes (so far), so only clauses (i) - (iii) of the Rule of Discharge have to be checked in this
case. The second sequent is easily reduced to an axiom and a discharge node. Handling the remaining sequent
is only slightly more involved (it will be considered in more detail in the full version of the paper).

7 Conclusion

We presented a proof system for verifying CCS processes in the modal /t-calculus. Its novelty lies in the generality
of the proof judgements allowing parametric and compositional reasoning, in the complex setting of this powerful
logic. This is achieved, in part, by the use of explicit fixed point ordinal approximations, and in part by a complete
separation, following Simpson [9], in the proof system of rules concerning the logic from the rules encoding the
operational semantics of the process language (here CCS). This makes the proof system easily adaptable to other
languages with a clean transitional semantics. This adaptability needs to be further examined in the future, in
particular in the context of languages and models with shared memory parallelism.

184 Perspectives of System. Informatics'99

References

1. R. Amadio and M. Dam. Reasoning about higher-order processes. In Proc. CAAP'95, Lecture Notes in Computer
Science, 915:202-217, 1995.

2. R. Amadio and M. Dam. A modal theory of types for the 7r-calculus. In Proc. FTRTFT'96 Lecture Notes in
Computer Science, 1135:347-365, 1996.

3. M. Dam. Proving properties of dynamic process networks. Information and Computation, 140:95-114, 1998
4. M. Dam, L.-ä. Fredlund, and D. Gurov. Toward parametric verification of open distributed systems.' In Composi-

twnahty: the Significant Difference, H. Langmaack, A. Pnueli and W.-P. de Roever (eds.), Lecture Notes Notes in
Computer Science, Springer-Verlag, 1536:150-185, 1998.

5. M. Dam and D. Gurov. /.-calculus with explicit points and approximations. In preparation, 1999
6. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of the ACM, 32:137-162,

j.yöu.

7. D. Kozen. Results on the propositional jt-calculus. Theoretical Computer Science, 27:333-354, 1983.
8. R. Milner. Communication and Concurrency. Prentice Hall International. 1989.
9. A. Simpson. Compositionality via cut-elimination: Hennessy-Milner logic for an arbitrary GSOS. In Proceedings,

;^r^nnual IEEE Synposium on Logic in Computer Science, pages 420-430, San Diego, California, 26-29 1995
I_l__ Computer Society Press.

10. C. Stirling. Modal logics for communicating systems. Theoretical Computer Science, 49:311-347 1987

U" Vn^im and D' WaJker' L0Cal m0del CheCking ^ the m°dal mU"calculus- The°retical Computer Science, 89:161-

12. P. Wolper. Temporal logic can be more expressive. Information and Control, 56:72-99, 1983.

Locality Based Programming for FPGAs

Elena Trichina
trichina@inf.ethz.ch

Computer Systems Institute,
ETH, Zurich , CH 8092, Switzerland

No Institute Given

Abstract. We review the use of categories with products as a vehicle for the construction of bit-level
functions that correspond to combinational circuits. Further we show that results from the category the-
ory concerning list homomorphisms can help in our seaxch for a computational model that captures the
desirable properties of digital circuits, namely locality of communications and simple, repetitive structure
of computational components. We demonstrate applications of the theory to some simple problems.

1 Introduction ,

New reconfigurable computing technology redefines the traditional hardware /software boundary and enables
the rapid realization of algorithm-specific hardware architectures at a low-cost base, such as Field Programmable
Gate Arrays (FPGA) [3].

We want to develop a rigorous methodology for creating a range of application-specific high-level languages
that can be efficiently compiled into FPGA arrays. Two crucial issues should be captured by our approach,
namely hardware independent software development, and efficient compilation of programs into digital cir-
cuits. Moreover, since applications that profit from reconfigurable computing usually involve a high degree of
parallelism and/or concurrency and, thus, additional design decisions regarding decomposition, arrangement
of communication, routing, timing, etc., a good level of abstraction (which must be mathematically based) is
needed so that reasoning and formal development are possible.

The categorical data type [8] approach is an extension of the abstract data type m a way that appears to
be particularly useful for parallel computations [10,6]. CDT have operations, equations relating them, and a
guarantee that all of the required operations and equations are present. A theory of CDTs is a theory of algebraic
structures that behave "like" the constructed data type, and homomorphisms among them. The important
property of homomorphic operations is that the pattern of computations follows the structure of the argument.
Thus, for homomorphic functions, locality of communication, regularity and partitioning of computation are
inherent properties.

Many polymorphic higher-order functions are homomorphisms or almost homomorphisms. Consider function-
als like map, that applies some function to all individual elements of a data aggregate independently, producing
a data aggregate with new values of individual elements) or reduce, that calculates a "cumulative sum" of all
elements in a data aggregate. These functionals can be defined over different data types, such as cons lists [2],
cone lists [7] homogeneous binary trees'[7], arrays [1], etc. While data types vary from application to application
(i.e., 2D arrays are appropriate data types for image processing, lists for text detection, trees for divide and
conquer algorithms, etc.), the general patterns of computation on these types are the same, and satisfy criteria
of regularity and locality of communication, which is important for an efficient hardware realization.

The main idea is that for any given application a set of appropriate basic data types is defined in terms of
categories with products, and operations on these types are compiled directly into blocks of FPGA logic cells,
while higher-order functions, or operations, for application specific data aggregates defined within the scope of
CDT, are implemented as templates for composition of basic primitives. Having been carefully chosen so as to
satisfy constraints of FPGA technology, these higher-order functions ensure an efficient implementation of an
application on FPGAs. In other words, a possibility to express an application in terms of a composition of the
set of predefined higher-order functions on specific data aggregates is a test-bed for an efficient implementation
of the application.

2 Categories with Products

To describe and analyse combinational circuits (i.e., circuits without latches and feedbacks) we use a cat-
egory with products. Let B = {0,1}. Consider the category Circ [8] with objects B°, B1, B2,... and ar-
rows that represent all functions between these sets. Notice that B° — {*}, or unit object, B1 = B, and

J§6 Perspectives of System Informatics'99

Bn - {(xi,X2,...,x„) : Xi e B} for n > 1. In a category, each morphism has a designated domain and codomain
in objects; any object A has an identity morphism

1A ■ A -> A,

and for any given morphisms f : A-+-B, g : B-> C, there is a designated composition of morphisms (which
satisfies identity and associative laws):

g o f : A ->• C.

The product of Bm and Bn is Bm+n with the following projections:

Pi:Bm+n->Bm, p2 : Bm+n .-»■ Bn,

where (*i,»2,..-,«„,...,»m+B) i-+ (xux2,...,xm), and {xx,x2,...,xm,...,xm+n)^ (xm+1,...,xm+n). Two func-
tions from B to B are constants true and false. Some further interesting functions in this category are-
-. : B —> B (negation), k : B2 —+ B (logical and), OR : B2 —> B, and XOR : B2 —> B {excluded or).
Puctions -i, =0: B —> B check the equality of the argument to 1 and 0 respectively1.

- In a category with products, we can define a parallel composition of two functions: given / :'Xi ► Yx and
9 '' Xf 7\r2' * parallel comPOsition is a function / x g : Xx x X2 —► Yx x Y2 Which maps (Xl,x2) into a
pair (/(aji),ff(s2)). This function obeys the laws: pYl o (/ x g) = 'fopXl and py2 o(/xj) = /oW„ where
p's are projections.

- A diagonal function A which produces two copies of its input can also be defined in a category with products
[8]: Ax : X —> X x X, suet that x >-» (x, x) and px o Ax = lx, and p-i o Ax = lx■

- Function twist : X x Y —> Y x X interchanges its two inputs : (x,y) H». (y,x), and if Pl, p2 and qu q2

are the projections of X x Y and Y x X respectedly, than the following laws hold: qi o twist = p2 and
(foo twist = pi.

We know [8] that in category Circ we can construct any logical function starting with functions true, false, not,
and, or, identity maps, and projections using only composition and the property of products. Moreover any
such function can be implemented using a circuit without latches, consisting of wires and gates. Indeed, the set
B is the set of possible states of each wire. The functions &, OR and XOR are implemented directly as gates
as shown in Fig.l. Identity map(s) and =1 simply correspond to a (group of adjacent) wire(s), and -i (=0) to
inverter. We can do a number of things with wires and components that correspond to constructions of new
functions in a category Circ:

3-- :)5>- -^- . .

COPY A TWIST I.**" - '

Fig. 1. Implementation of functions in category Circ.

- Splitting wires corresponds to the diagonal function, AB : B —► B2.
- We can twist two wires. This corresponds to the function twist: B2 —> B2.
- We can put two components side by side. This corresponds to a parallel composition, /xj:BnxBm->

- We can put two components in a series, connecting output wires of one component with the input wires of
another. This corresponds to composition g o / : Bn —> Bm.

nT!?n nrSifnri^nCti,°Af : *f T* B2' Where {X'S) " fa'*) is defined in category Circ as follows:
{\l (l' }' (' }' ^ (0,0)' (1>0) ^ (0,1)j (°'°) ^ (°'°)- In other words> ^ want to build a circuit
which produces two values: Vl = ar&(=1 s) and y0 = xk(=0 s), or so-called l-to-2 decoder [9]. A decomposition
or function d is straightforward: first, copy both inputs x and s; pair them by twisting "middle" elements, then
1 It is easy to see that (=i) = (1B) and (=0) = (-,).

Trichina E. Locality Based Programming for FPGAs 187

apply functions =1 (identity map Is) and =0 (negation -■) to each copy of s, and compute & of each resulting
pair:

nn ABXAB p4 lBXtwistxlB p4 1BX1BX1BX^ ,-,4 fcxfcp2

r-0

Fig. 2. l-to-2 decoder.

A circuit which implements a decoder function is drawn in Fig. 2. Notice how the circuit corresponds exactly
to the decomposition given above.

Suppose now we want to design a 2-to-4 decoder: 2d : B3—> B4, where (x, si, s0) H- (2/3,2/2,2/1,2/0), such that
2/3 = xk(=i «i)&(=i so), 2/2 = x&(=i «i)&(=o so)', J/i = a;&(=o »i)&(=i s0), 2/0 = z&(=0 «i)&(=o *o).
A decomposition can use previously defined function d. Indeed, first with a l-to-2 decoder we compute partial
results x&(=i si) and xk(—o «i). Then each of the outputs is paired with signal s0 (the latter must be copied
before) and resulting pairs are used as inputs for two identical l-to-2 decoders each computing the "=1 s0" and
"=o So" parts of the formulae. Thus 2-to-4 function is decomposed into a sequence of parallel compositions,
using so-called cascading principle:

2 -to - 4 »2 y -rj dxAß 1^4 lBXtwistxlB D4 dxq B4 Bq B4

A corresponding circuit is depicted in Fig. 3. However, it is much more tedious to describe and decompose

Fig. 3. 2-to-4 decoder.

into basic components, say a 4-to-16 decoder, and it is impossible to describe a general n - to - 2n, n = 1,2,
decoder. In order to be able to manipulate with tuples of bits of any length, we use concatenation lists.

3 Concatenation Lists

Suppose a, ß,... are primitive data types, with identity functions ida : a ->■ a, idß : ß -> ß,... defined for every
type. If a is a type, we can form the type a*; its elements are lists of elements of type a. Cone, or join lists
[6,7] have three constructors, one that makes an empty list, 0 : unit -> a*, another creates a singleton list,
[.] : a -» a*, and the third concatenates two lists to make a longer one, -H- : a * xa* -> a*. A table below
summarise some of the list operations.

188 Perspectives of System Informatics'99

distribute-left
shift-left
zip

map
reduce
directed-reduce

Combinator Functions
distl y [xi,:..,xn] = [(y,x1),...,(y,xn)]
T e [xi,...,xn] = [e,xi,...,xn-i]
zip [xi,.,.,xn][yu...,yn] = [(si,yi),...,(a:n,yn)]
Functional
/*K,02,...,on] = [/(oi),/(o2))...,/(an)]
/e[oi,a2, ...,o„] = 01 ©a2ffi...©a„
(/->© e)[oi,o2,...,an] = (...((ee ai) © o2)... © on)

Operations on lists are known to be homomorphisms [2,7] and incorporate inherent parallelism and a fixed
communication pattern [6]. map is completely parallel and requires no communication. It can be implemented as
a parallel composition of n functions /, each on an individual list element, reduce can be evaluated in an obvious
tree-like fashion. A directed reduce can be implemented as a pipeline, or a sequential composition of blocks of
(combinational) circuits, each implementing © on a corresponding list element and the previous result, and
passing the result of computations to its right neighbour. A set of implemetation templates for list operations
is given in Fig. 4. Important part of categorical definition of list operations is that they come with the set of
algebraic laws which are used in transformational program derivation [2,5].

rRMMATUVOnMAr FUNCTION

TEMPI ATH TOR DIRECTED REP!IHR

mi
TBMfWTfi FOH DISTP15UTSJJBT FUNCTION

I
is

'4 "* | 1 TiiMPLATiiFor TisMiaATiiFonwiD;

(CONCLISTBl

coMposriWOPDisrnitHrrHAND MAP

Fig. 4. Implementation templates for list operations.

3.1 n - to — 2n decoder

Now we want to specify a general n - to - 2" decoder. Given an input signal a; and a number s = s0 * 2° +
si * 21 + ... + s„_i * 2"-1 represented as a bit list [s„_1,sn_2, ...,s0], the decoder must produce 2n outputs
[j/2»-i, • • •,yo], such that yt = xk(i = s).

n-to-2n function can be represented as a directed reduce. First, bits x and s„_x are used by a 1 - to - 2
decoder to produce a pair of outputs, x&(=1 s^) and x&(=0 sft_i), that are to be used in a next cascade
(as we saw in a 2-to-4 example) with element sn_2 of the input list distributed among these partial results,
producing 4 new bits, which in their turn should be paired with the consecutive element s„_3 of the input list,
etc.2 Hence, n - to - 2n : B * xB*—► B* is defined as

n - to-2n([z],[sn_i,...,s0]) = (/->(/+ o(MakeLi8tod)*odi8tr)[x])[an-i,...,8o\.

Function MakeList makes a list of two elements from a pair: MakeList(x,y) = [x,y] or, in a more concise
notation, MakeList = -W- o ([.] o Pl x [.] o^), where px and p2 are projection functions. Function d is a 1-
to-2 decoder defined in a previous section. A general template for a left reduce is a sequential composition of
combinational circuits, each of which performs operation (/ -W- o (MakeList od)* odistr). Hence, every " © box"
in the directed reduce template in Fig. 4 is a composition of templates for distr, * (map) and /'-H- (flatten). A
straightforward substitution of © boxes for templates for corresponding operations results in a circuit depicted
in Fig. 5.
2 We want to express this method in terms of list functions. Hence we will be using lists for representation of partial

results as well as for representation of an input signal s.

Trichina E. Locality Based Programming for FPGAs 189

Fig. 5. A circuit for n — to- 2n decoder.

4 Discussion

A set of basic algebras for bits, characters, short and long integers, etc., qan be fully specified in terms of
categories with products. These primitive data types reflect characteristics of the basic components from which
to build a particular application. These basic components are realized in a straightforward way by combinational
circuits and implemented by blocks of FPGA cells.'

However, as soon as we need delays, combinational circuits alone are not enough. To implement a delay, we
need a latch, i.e., a circuit with a, feedback loop. To reason about such circuits we have to consider at any moment
the state of the whole circuit. Assuming the synchronous model, that is at each tick of a clock the state of each
wire changes according to a nature of circuit components, we need functions which describe the general change
of state. Unfortunately, we cannot do it in a category with products only. We need a notion of control, that is
decisions on which operations to perform. In other words, we need categories with sums. These categories should
satisfy the distributive laws that relate sums and products [8]. Of course, it makes the design and analysis of
circuits more subtle and difficult. Nevertheless, while we stay within a category theory, we retain many useful
features - operations are introduced in a strict orderly fashion, and come up with the set of laws that can be
used on later steps of development and optimization. Hence if we follow the advice given by N. Wirth in [9]
and restrict circuit design to combinational circuits, and have latches and registers as complete parts, so that
feedback loops exist only within these parts, we can still retain much of the simplicity and expressive power of
homomorphisms.

In future, we want to extend our approach to design and analysis of any synchronous, sequential circuit, i.e.,
circuits that consist of combinational circuits and registers, the latter represent a state. We hope to develop a
compositional approach, similar to the one described in this paper, within the scope of the distributive category,
so that any state machine can be designed and analysed in a concise stepwise manner.

References

1. C.R. Banger: Construction of multidimensional arrays as Categorical Data Types. PhD Thesis, Queen's University,
Kingston, Canada, 1994.

2. R.S. Bird: Algebraic Identities for Program Calculation. The Computer Journal, 32(2): 122-126, 1989.
3. J.P. Gray, and T.A. Kean: Configurable logic: a new paradigm for computations. In: Decennial Caltech Conference

on VLSI, Pasadena CA, 1989.
4. G. Jones, M. Sheeran: Circuit design in Ruby. In: J. Staunstrup (ed.): Formal Methods for VLSI Design. Elsevier

1990, 13-70.
5. B. Möller: Deductive hardware design. In: B. Möller, J.V. Tucker (eds.): Prospects for Hardware Foundations, LNCS

1546, 1999.
6. D.B. Skillicorn: Architecture-independent parallel computation. Computer Journal, 23(12):38-51, 1990.
7. M. Spivey, A Categorical Approach to the Theory of Lists. LNCS 375, 1990, 399-408.
8. R. F. C. Walters: Categories and Computer Science. Cambridge University Press, 1991.
9. N. Wirth: Digital Circuit Design. Springer-Verlag, 1995.

10. G. Winskel: Category theory and models of parallel computation. In: Proc. Summer Workshop on Category and
Computer Programming LNCS 240, 1986, 266-281.

Languages and Software

Using Experiments to Build a Body of Knowledge

Victor Basili1, Forrest Shull2 and Filippo Lanubile3

1 Fraunhofer Center Maryland and Computer Science Dept. University of Maryland
College Park, MD 20741 USA

basiliScs.umdiedu
2 Institute for Advanced Computer Studies Computer Science Dept. University of Maryland

College Park, MD 20742, USA
fshull@cs.umd.edu

3 Dipartimento di Informatica Universita'di Bari
Via Orabona, 4 70126 Bari, Italia

lanubile@di.uniba.it

Abstract. Experimentation in software engineering is important but difficult. One reason it is so difficult is that there
are a large number of context variables, and so creating a cohesive understanding of experimental results requires a
mechanism for motivating studies and integrating results. This paper argues for the necessity of a framework for
organizing sets of related studies. With such a framework, experiments can be viewed as part of common families of
studies, rather than being isolated events. Common families of studies can contribute to important and relevant
hypotheses that may not be suggested by individual experiments. A framework also facilitates building knowledge in
an incremental manner through the replication of experiments within families of studies.
Building knowledge in this way requires a community of researchers that can replicate studies, vary context
variables, and build abstract models that represent the common observations about the discipline. This paper also
presents guidelines for lab packages, meant to encourage and support replications, that encapsulate materials,
methods, and experiences concerning software engineering experiments.

1 Introduction

Experimentation in software engineering is necessary. Common wisdom, intuition, speculation and proofs of
concepts are not reliable sources of credible knowledge. On the contrary, progress in any discipline involves building
models that can be tested, through empirical study, to check whether the current understanding of the field is correct1

Progress comes when what is actually true can be separated from'what is only believed to be true. To accomplish this
the scientific method supports the building of knowledge through an iterative process of model building, prediction'
observation, and analysis. It requires that no confidence be placed in a theory that has not stood up to rigorous deductive
testing [21]. That is, any scientific theory must be (1) falsifiable, (2) logically consistent, (3) at least as predictive as
other competing theories, and (4) its predictions have been confirmed by observations during tests for falsification
According, to Popper, a theory can only be shown to be false or not yet false; researchers only become confident in a

For the purpose of this paper, we use the defin.tions of some key terms from [15] and [1]. An empirical study, in a broad sense, is an act or operation
for the purpose of discovering something unknown or of testing a hypothesis, involving an investigator gathering data and performing analysis to
determine what the data mean. This covers various forms of research strategies, including all forms of experiments, qualitative studies, surveys and
archival analyses An experiment is a form of empirical study where the researcher has control over some of the conditions in which the study takes
place and control over the independent variables being studied; an operation carried out under controlled conditions in order to test a hypothesis
against observation. This term thus includes quasi-experiments and pre-experimental designs

fvit mi
fl

SrilSnl8.eX
fr'

anati0n °f S°me Phe"omenon' Anytheorv is ™& «P ^ a set of hypotheses. A hypothesis is an educated guess that there
tTl(l (^ i 5°," am0ng ^°iTCtS °f the0retical interest; (2) a relati0R between a construct ** obse™ble indicators (how the construct
can be observed). A model is a simphfied representation of a system or phenomenon; it may or may not be mathematical or even formal- it can be a
theory

 Basili V., ShullF., Lanubile F. Using Experiments to Build a Body of Knowledgr 191

theory when it has survived numerous attempts made at its falsification. This paradigm is a necessary step for ensuring
that opinion or desire does not influence knowledge.

Experimentation in software engineering is difficult. Carrying out empirical work is complex and time
consuming; this is especially true for software engineering. Unlike manufacturing, we do not build the same product,
over and over, to meet a particular set of specifications. Software is developed and each product is different from the
last. So, software artifacts do not provide us with a large set of data points permitting sufficient statistical power for
confirming or rejecting a hypothesis. Unlike physics, most of the technologies and theories in software engineering are
human-based, and so variation in human ability tends to obscure experimental effects. Human factors tend to increase
the costs of experimentation while making it more difficult to achieve statistical significance.

Abstracting conclusions from empirical studies in software engineering research is difficult. An important
reason why experimentation in software engineering is so hard is that the results of almost any process depend to a large
degree on a potentially large number of relevant context variables. Because of this, we cannot a priori assume that the
results of any study apply outside the specific environment in which it was run. For isolated studies, even if they are
themselves well-run, it is difficult to understand how widely applicable the results are, and thus to assess the true
contribution to the field.

As an example, consider the following study:
• Basili/Reiter. This study was undertaken in 1976 in order to characterize and evaluate the development

processes of development teams using a disciplined methodology. The effects of the team methodology were
contrasted with control groups made up of development teams using an "ad hoc" development strategy, and
with individual developers (also "ad hoc"). Hypotheses were proposed: that (BR1) a disciplined approach
should reduce the average cost and complexity (faults and rework) of the process and (BR2) the disciplined
team should behave more like an individual than a team in terms of the resulting product. The study addressed
these hypotheses by evaluating particular methods (such as chief programmer teams, top down design, and
reviews) as they were applied in a classroom setting. [7]

This study, like any other, required the experimenters to construct models of the processes studied, models of
effectiveness, and models of the context in which the study was run. Replications that alter key attributes of these
models are then necessary to build up knowledge about whether the results hold under other conditions. Unfortunately,
in software engineering, too many studies tend to be isolated and are not replicated, either by the same researchers or by
others. Basili/Reiter was a rigorous study, but unfortunately never led to a larger body of work on this subject. The
specific experiment was not replicated, and the applicability of the hypotheses in other contexts was not studied. Thus it
was never investigated whether the results hold, for example:
• for software developers at different levels of experience (the original experiment used university students);
• if development teams are composed differently (the original experiment used only 3-person teams);
• if another disciplined methodology had been used (i.e., were the benefits observed due to the particular

methodology used in the experiment, or would they be observed for any disciplined methodology?).

2 A Motivating Example: Software Reading Techniques

Yet even when replications are run, it's hard to know how to abstract important knowledge without a framework
for relating the studies. To illustrate, we present our work on reading techniques. Reading techniques are procedural
techniques, each aimed at a specific development task, which software developers can follow in order to obtain the
information they need to accomplish that task effectively [2, 3]. We were interested in studying reading techniques in
order to determine if beneficial experience and work practices could be distilled into procedural form, and used
effectively on real projects. We felt that reading techniques were of relevance and value to the software engineering
community, since reading software documents (such as requirements, design, code, etc.) is a key technical activity.
Developers are often called upon to read software documents in order to extract specific information for important
software tasks, e.g. to read a requirements document in order to find defects during an inspection, or an Object-Oriented
design in order to identify reusable components. However, while developers are usually taught how to write software
documents, the skills required for effecting reading are rarely taught and must be built up through experience. In fact,
we felt that research into reading could provide a model for how to effectively write documents as well: by
understanding how readers perform more effectively it may be possible to write documents in a way that facilitates the
task.

_192 ^ Perspectives of System Informatics'99

However, the concept of reading techniques cannot be studied in isolation. Like any other software process,
reading techniques must be tailored to the environment in which they are run. Our aim in this research was to generate
sets of reading techniques that were procedurally defined, tailorable to the environment, aimed at accomplishing a
particular task, and specific to the particular document and notation on which they would be applied. This has led a
series of studies in which we evaluated the following types of reading techniques:

• Defect-Based Reading (DBR) focused on defect detection in requirements, where the requirements were expressed
using a state machine notation called SCR f 13, 22].

• Perspective-Based Reading (PBR) also focused on defect detection in requirements, but for requirements expressed
in natural language [4, 16].

• Use-Based Reading (UBR) focused on anomaly detection in user interfaces [27].
• Second Version of PBR (PBR2) consisted of new techniques that were more procedurally-oriented versions of the

earlier set of PBR techniques. In particular, we made the techniques more specific in all of their steps [24].
• Scope-Based Reading (SBR) consisted of two reading techniques that were developed for learning about an

Object-Oriented framework in order to reuse it [10, 23].

A framework that makes explicit the different models used in these experiments would have many benefits. Such a
framework would document the key choices made during experimental design, along with their rationales. The
framework could be used to choose a focus for future studies: i.e., help determine the important attributes of the models
used in an experiment, and which should be held constant and which varied in future studies. The ultimate objective is
to build up a unifying theory by creating a list of the specific hypotheses investigated in an area, and how similar or
different they all are.

Using an organizational framework also allows other experimenters to understand where different choices could
have been made in defining models and hypotheses, and raises questions as to their likely outcome. Because these
frameworks provide a mechanism by which different studies can be compared, they help to organize related studies and
to tease out the true effects of both the process being studied and the environmental variables.

3 The GQM Goal Template as a Tool for Experimentation

Examples of such organizational frameworks do exist in the literature, e.g. [9, 17, 20]. For the purpose of this
paper we find the Goal/Question/Metric (GQM) Goal Template [8] useful. The GQM method was defined as a
mechanism for defining and interpreting a set of operational goals using measurement. It represents a top-down
systematic approach for tailoring and integrating goals with models of software processes, products, and quality
perspectives, based upon the specific needs of a project and organization.

The GQM goal template is a tool that can be used to articulate the purpose of any study. It ties together the
important models, and provides a basis against which the appropriateness of a study's specific hypotheses, and
dependent and independent variables, may be evaluated. There are five parameters in a GQM goal template:

• object of study: a process, product or any other experience model
• purpose: to characterize (what is it?), evaluate (is it good?), predict (can I estimate, something in the future?),

control (can I manipulate events?), improve (can I improve events?)
• focus: model aimed at viewing the aspect of the object of study that is of interest, e.g., reliability of the

product, defect detection/prevention capability of the process, accuracy of the cost model
• point of view: e.g., the perspective of the person needing the information, e.g., in theory testing the point of

view is usually the researcher trying to gain some knowledge
• context: models aimed at describing environment in which the measurement is taken

For example, the goal of the Basili/Reiter study, previously described, might be instantiated as:
To analyze the development processes of a 1) discipüned-methodology team approach, 2) ad hoc team

approach, and 3) ad hoc individual approach
for the purpose of characterization and evaluation
with respect to cost and complexity (faults and rework) of the process
from the point of view of the developer and project manager
in the context of an advanced university classroom

Due to the nature of software engineering research, instantiated goals tend to show certain similarities. The
purpose of studies is often evaluation; that is, researchers tend to study software technologies in order to assess their

Basili V., ShullF., Lanubik F. Using Experiments to Build a Body of Knowledgr 193

effect on development. For our purposes, the point of view can be considered to be that of the researcher or knowledge-
builder. While studies can be run from the point of view of the project manager, i.e. requiring some immediate feedback
as to effects on effort and schedule, published studies have usually undergone additional, post-hoc analysis.

The remaining fields in the template require the construction of more complicated models, but still show some
similarities. The object of study is often (but not always) a process; researchers are often concerned with evaluating
whether or not a particular development process represents an improvement to the way software is built. (E.g.: Does
Object-Oriented Analysis lead to an improved implementation? Does an investment in reviews lead to less buggy, more
reliable systems? Does reuse allow quality systems to be built more cheaply?) When the object of study is a process, the
focus of the evaluation is the process' effect. The experimenter may measure its effect on a product, that is, whether the
process leads to some desired attribute in a software work product. Or, the experimenter may attempt to capture its
effect on people, e.g. whether practitioners were comfortable executing the process or found it tedious and infeasible.
Finally, the context field should include a large number of environmental variables and therefore tends to exhibit the
most variability. Studies may be run on students or experts; under time constraints, or hot; in well-understood
application domains, or in cutting-edge areas. There are numerous such variables that may influence the results of
applying a technique.

For the remainder of this paper, we will illustrate our conclusions by concentrating on studies that investigate
process characteristics with respect to their effects on products. A GQM template for this class of studies is:

Analyze processes to evaluate their effectiveness on a product from the point of view of the knowledge builder
in the context of (a particular variable set).

For particular studies in this class, constructing a complete GQM template requires making explicit the process
(object of study), the effect on the product (focus), and context models in the experiment. Making these models explicit
is necessary in order to understand the conditions under which the experimental results hold.

For example, consider the GQM templates for the list of reading technique experiments described in the previous
section. There are many ways of classifying processes, but we might first classify processes by scope as:
• Techniques (processes that can be followed to accomplish some specific task),
• Methods2 (processes augmented with information concerning when and how the process should be applied),
• Life Cycle Models (processes which describe the entire software development process).

Each of these categories could be subdivided in turn. The set of techniques, for example, could be classified based
on the specific task as: Reading, Testing, Designing, and so on. We have found it helpful to think of the range of values
as organized in a hierarchical fashion, in which more general values are found at the top of the tree, and each level of
the tree represents a new level of detail. (Figure 1)

Selecting a particular type of process for study, our GQM template then becomes:
Analyze reading techniques to evaluate their effectiveness on a product from the point of view of the
knowledge builder in the context of a particular variable set

Process

Waterfall Spiral . .
Walk-

Inspection Through Reading Testing

Figure 1: A portion of the hierarchy of possible values for describing software
processes.

The reading technique experiments were concerned with studying the effect of the reading technique on a product.
So, the model of focus needs to specify both how effectiveness is to be measured and the product on which the

1 The definitions of "technique" and "method" are adapted from [5].

194 Perspectives of System Informatics'99

evaluation is performed.We find it useful to divide the set of effectiveness measures into analysis and construction
measures, based on whether the goal of the process is to analyze intrinsic properties of a document or to use it in
building a new system. Each of these categories can be further broken down into more specific types of process goals,
for which different effectiveness measures may apply (Fig. 2). For example, the effectiveness of a process for
performing maintenance can be evaluated by how that process effects the cost of making a change to the system. The
effectiveness of a process for detecting defects in a document can be measured by the number of faults it helps find. Of
course, many more measures exist than will fit into Figure 2. For instance, rather than measure the number of faults a
defect detection process yields, it might be more appropriate to measure the number of errors3, or the amount of effort
required, among other things.

Effectiveness

Defect

Detection

of # of
faults errors
detected detected

of
anomalies
detected

Cost of
finding
components

Cost of
integrating
components

Cost of
making a
change

Figure 2: A portion of the hierarchy of possible values for
describing the effectiveness of software processes

Similarly, a software document can be classified according to the model of a software system it contains (a
relatively well-defined set) and further subdivided into the specific notations that may be used (Fig.3). The main
purpose of organizing the possible values hierarchically is to organize a conception of the problem space that can be
used by others for classifying their own experiments. The actual criteria used are somewhat subjective; naturally there
are multiple criteria for classifying processes, effectiveness measures, and software documents, but we have selected
just those that have contributed to our conception of reading techniques.

Document

Natural
Language

Data Flow
Diagrams

Object.
Oriented Structured

Figure 3: A portion of the hierarchy of possible values for describing software
documents.

Thus a GQM template for the PBR experiment could be:
Analyze reading techniques to evaluate their ability to detect defects in a Requirements Document written
in English from the point of view of the knowledge builder in the context of a particular variable set.

A GQM goal is not meant to be a definitive description, but reflects the interests and priorities of the experimenter.
If we were to study the process model for the reading techniques in each experiment in more detail, we would see that
each technique is tailored to a specific task (e.g., analysis or construction, etc.) and to a specific document. This is what

3 Here we are using the terms "faults" and "errors" according to the IEEE standard definitions [14], in which "fault" refers to defects appearing in
some artifact while error" refers to an underlying human misconception that may be translated into faults.

Basili V., Shall F., Lanubile F. Using Experiments to Build a Body of Knowledgr 195

characterizes the reading techniques and distinguishes them from one another. Thus the process goals used to classify
measures of effectiveness in Figure 2 can be easily adapted to describe the processes themselves (Figure 4). The
distinction between analysis and construction process goals can apply directly to processes. That is, we hypothesize that
analysis tasks differ sufficiently from construction tasks that, along with differences in the way they may be evaluated
for effectiveness, there may also be different guidelines used in their construction. Thus figures 2 and 3 can also be
mechanisms for identifying process model attributes. They should be accounted for in the process model as well as the
effect on process.

Process Goal

Defect
Detection

Usability Reuse Maintenance

Figure 4: A portion of the hierarchy of possible values for describing the goal of

a software engineering process.

Thus we can say that we are:
analyzing a reading technique for the purpose of evaluating its ability to detect defects in a natural language
requirements document

or we can say that we are:
analyzing a reading technique tailored to defect detection in natural language requirements for the purpose of
evaluation.

It depends on whether we are emphasizing the definition of the process or of its effectiveness.

In linking goal templates to hypotheses, we can think of the process model (object of study) as the independent
variable, the effect on product (focus) as the dependent variable, and the context variables as the variables that exist in
the environment of the experiment. The differences or similarities between experimental hypotheses can then be
described in terms of these hierarchies of possible values. For example, consider the studies of DBR and PBR. In both
cases, the process model was focused on the same task.(defect detection); although the notation differed, both were also
focused on the same document (requirements). If all other attributes for process, product, and context models were held
constant, we could begin to think of hypotheses at a higher level of abstraction. That is, instead of the hypothesis:

Subjects using a reading technique tailored to defect detection in natural language requirements are
more effective than subjects using ad hoc techniques for this task

The following hypothesis might be more useful:
Subjects using reading techniques tailored to defect detection in requirements are more effective than
subjects using ad hoc techniques for this task.

The difference between these hypotheses is that the focus of the study is described at a higher level of abstraction
for the second hypothesis (requirements) than for the first (natural language requirements).

This difference in abstraction makes the second hypothesis more difficult to test. In fact, probably no single study
could ever give us overwhelming evidence as to its validity, or lack thereof. Testing the second hypothesis would
require some idea of what types of requirements notation are of interest to practitioners. Building up a convincing body
of evidence requires the combined analysis of multiple studies of specific reading techniques for defect detection in
requirements. But the effort required to formulate the hypothesis and begin building a body of evidence helps advance
the field of software engineering. At best, the evidence can lead to the growth of a body of knowledge, containing basic
and important theories underlying some aspect of the field. At worst, the effort spent in specifying the models forces us
to think more deeply about the relevant ways of characterizing software engineering models that we, as researchers, are
implicitly constructing anyway.

The above discussion should not be taken to imply that the attributes identified in Figures 1 through 4 are the only
ones that are important, or for which hierarchies of possible values exist. To choose another example, in specifying the
model of the context it is almost always important to characterize the experience of the subjects of the experiment. The
most appropriate way of characterizing experience depends on many things; two possibilities are proposed in Figure 5.

196

Students

Perspectives of System Informatics'99

Experience

Professionals

Experience

Never used
process
before

Learned
process in a
class

Applied
process on
one project

Applied
process on 2-
3 projects

Applied
process on >3
projects

Figure 5: Two possible value hierarchies for measuring subject experience.

The trees shown in Figure 5 present two different ways of characterizing experience. The first is a simpler way of
characterizing the attribute that distinguishes only between subjects who are still learning software engineering
principles versus those who have applied them on real projects. The second hierarchy attempts to place finer
distinctions on the amount of experience a subject has applying a particular process. Each may be appropriate to
different circumstances.

4 Replicating Experiments

In preceding sections of this paper, we have tried to raise several reasons why families of replicated experiments
are necessary for building up bodies of knowledge about hypotheses. Another reason for running replications is that
they can increase the amount of confidence in results by addressing certain threats to validity: Internal validity defines
the degree of confidence in a cause-effect relationship between factors of interest and the observed results while
external validity defines the extent to which the conclusions from the experimental context can be generalized to the
context specified in the research hypothesis [11]. In this section, we discuss replications in more detail and look at the
practical considerations that result.

Our primary strategy for supporting replications in practice has been the creation of lab packages, which collect
information on an experiment such as the experimental design, the artifacts and processes used in the experiment the
methods used during the experimental analysis, and the motivation behind the key design decisions. Our hope has been
that the existence of such packages would simplify the process of replicating an experiment and hence encourage more
replications m the discipline. Several replications have been carried out in this manner and have contributed to a
growing body of knowledge on reading techniques.

4.1 Types of Replications
Since we consider that replications may be undertaken for various reasons, we have found it useful to enumerate

the various reasons, each of which has its own requirements for the lab package. In our view the types of replications
that need to be supported can be grouped into 3 major categories:

1. Replications that do not vary any research hypothesis. Replications of this type vary none of the dependent or
independent variables of the original experiment.
1.1. Strict replications (i.e. replications that duplicate as accurately as possible the original experiment) These

replications are necessary to increase confidence in the validity of the experiment. They demonstrate that the
results from the original experiment are repeatable, and have been reported accurately by the original
experimenters.

1.2. Replications that vary the manner in which the experiment is run. These studies seek to increase our
confidence m experimental results by addressing the same problem as previous experiments, but altering the
details of the experiment so that certain internal threats to validity are addressed. For example a replication
may vary the order of activities to avoid the possibility that results depend not on the process used but on the
order in which activities in the experiment are completed.

The attempt to compensate for threats to internal validity may also lead to other types of changes. For

 Basili V., Shull F., Lanubile F. Using Experiments to Build a Body of Knowledgr 197

example, a process may be modified so that the researchers can assess the amount of process conformance of
subjects. Although the aim of the change may have been to address internal validity, the new process should
be evaluated in order to understand whether unanticipated effects on process effectiveness have resulted. Thus
such a replication would fall into the second major category, discussed below.

2. Replications that vary the research hypotheses. Replications of this type vary attributes of the process, product,
and context models but remain at the same level of specificity as the original experiment.
2.1. Replications that vary variables intrinsic to the object of study (i.e. independent variables). These

replications investigate what aspects of the process are important by systematically varying intrinsic
properties of the process and examining the results. This type of experiment requires the process to be
supplied in sufficient detail that changes can be made. This implies that the original experimenters must
provide the rationales for the design decisions made as well as the finished product. For example, researchers
may question whether the specificity at which the process is described affects the results of applying the
process. In this sense, the study of PBR2 may be seen as a replication of the study of PBR, in which the level
of specificity of the process was varied but all other attributes of the process model remained the same.

2.2. Replications that vary variables intrinsic to the focus of the evaluation (i.e. dependent variables).
Replications of this type may vary the ways in which effectiveness is measured, in order to understand for
what dimensions of a task a process results in the most gain. For example, a replication might choose another
effectiveness measure from those listed in Figure 2, investigating whether a defect detection process is more
beneficial for finding errors than faults. Other aspects of the focus model might be varied instead, e.g. a
process might be evaluated on a document of the same type but different notation to see if it is equally
effective (see Figure 3).

2.3. Replications that Vary context variables in the environment in which the solution is evaluated. These
studies can identify potentially important environmental factors that affect the results of the process under
investigation and thus help understand its external validity. For example, replications may be run using the
same process and product models as the original experiment but on professionals instead of students (see
Figure 5) to see if the same results are obtained.

3. Replications that extend the theory. These replications help determine the limits to the effectiveness of a process,
by making large changes to the process, product, and/or context models to see if basic principles still hold. We
discussed replications in the previous category as replacing the value of some variable (e.g. document on which the
process was applied, Figure 3) with another, equally specific value (e.g. SCR requirements instead of English-
language requirements). Replications in this category, however, can be thought of as replacing an attribute of a
process, product, or context model with a value at a higher level of abstraction (i.e. from a higher level in the
hierarchy). Again using Figure 3, researchers may choose to study whether a type of process is applicable to
requirements documents in general, rather than limiting their scope to a specific kind. The type of hypotheses
associated with such replications was discussed in section 3.

4.2 Implications for Lab Package Design
In software engineering research, there has been a movement toward the reuse of physical artifacts and concrete

processes between experiments. This is indeed a useful beginning. The cost of an experiment is greatly increased if the
preparation of multiple artifacts is necessary. Creating artifacts which are representative of those used in real
development projects is difficult and time consuming. Reusing artifacts can thus reduce the time and cost needed for
experimentation. A more significant benefit is that reuse allows the opportunity to build up knowledge about the actual
use of particular, non-trivial artifacts in practice. Thus replications (and experimentation in general) could be facilitated
if there were repositories of reusable artifacts of different types (e.g. requirements) which have a history of reuse and
which, therefore, are well understood. (A model for such repositories could be the repository of system architectures
[12], where the relevant attributes of each design in the repository are known and described.)

A first step towards this goal is the construction of web-based laboratory packages. At the most basic level, these
packages allow an independent experimenter to download experimental materials, either for reuse or for better
understanding. In this way, these packages support strict replications (as defined in section 4.1), which require that the
processes and artifacts used in the original experiment be made available to independent researchers.

However, web-based lab packages should be designed to support more sophisticated types of replications as well.

i^? Perspectives of System Informatics'99

For example, packages should assist other experimenters in understanding and addressing the threats to validity in order
to support replications that vary some aspects of the experimental setup. Due to the constraints imposed by the setting in
which software engineering research is conducted, it is almost never possible to rule out every single threat to validity
Choosing the "least bad" set of threats given the goal of the experiment is necessary. Lab packages need to
acknowledge this fact and make the analysis of the constraints and the threats to validity explicit, so that other studies
may use different experimental designs (that may have other threats to validity of their own) to rule out these threats.

Replications that seek to vary the detailed hypotheses have additional requirements if the lab package is to support
them as well. For example, in order for other experimenters to effectively vary attributes of the object of study the
original process must be explained in sufficient detail that other researchers can draw their own conclusions about key
variables. Since it is unreasonable to expect the original experimenters to determine all of the key variables a priori, lab
packages must provide rationales for key experimental context decisions so that other experimentalists can determine
feasible points of variation of interest to themselves. Similarly, lab packages must specify context variables in sufficient
detail that feasible changes to the environment can be identified and hypotheses made about their effects on the results.

Finally, in order to build up a body of knowledge about software engineering theories, researchers should know
which experiments have been run that offer related results. Therefore, lab packages for related experiments should be
linked, in order to collect different experiments that address different areas of the problem space, and contribute
evidence relevant to basic theories. The web is an ideal medium for such packages since links can be added
dynamically, pointing to new, related lab packages as they become available. Thus it is to be hoped that lab packages
are "living documents" that are changed and updated to reflect our current understanding of the experiments they
describe.

Lab packages have been our preferred method for facilitating the abstraction of results and experiences from series
of well-designed studies. Interested readers are referred to existing examples of lab packages: [25, 26]. By collecting
detailed information and results on specific experiments, they summarize our knowledge about specific processes
They record the design and analysis methods used and may suggest new ones. Additionally, by linking related studies
they can help experimenters understand what factors do or do not impact effectiveness.

4.3 The Experimental Community

A group of researchers, from both industry and academia, has been organized since 1993 for the purpose of
facilitating the replication of experiments. The group is called ISERN, the International Software Engineering Research
Network, and includes members in North America, Europe, Asia, and Australia. ISERN members publish common
technical reports, exchange visitors, and organize annual meetings to share experiences on software engineering
experimentation . They have begun replicating experiments to better understanding the success factors of inspection and
reading.

The Empirical Software Engineering journal has also helped build an experimental community by providing a
forum for publishing descriptions of empirical studies and their replications. An especially noteworthy aspect of the
journal is that it is open to publishing replicated studies that, while rigorously planned and analyzed, yield unexpected
results that did not confirm the original study. Although it has traditionally been difficult to publish such
"unsuccessful" studies in the software engineering literature, this knowledge must be made available if the community
is to build a complete and unbiased body of knowledge concerning software technologies.

5 Conclusions

The above discussion leads us to propose that the following criteria are necessary before we can begin to build up
comprehensive bodies of knowledge in areas of software engineering:
1. Hypotheses that are of interest to the software engineering community and are written in a context that allow for a

well defined experiment;
2. Context variables, suggested by the hypotheses, that can be changed to allow for variation of the experimental

design (to make up for validity threats) and the context of experimentation;
3. A sufficient amount of information so that the experiment can be replicated and built upon-and
4. A community of researchers that understand experimentation, the need for replication, and are willine to

collaborate and replicate. s

4
 More information is available at the URL http://wwwagse.informatik.uni-kl.de/ISERN/isern.htrnI

Basil! V., ShullF., lanubik F. Using Experiments to Build a Body of Knowledgr 199

With respect to the Basili/Reiter study introduced in section 1, we can note that while it satisfied criteria 1 and 3, it
failed with respect to criteria 2 and 4. It was not suggested by the authors that other researchers might vary the design or
manipulate the processes or criteria used for evaluation (although the analysis of the data was varied in a later study
[6]). Nor was there a community of researchers willing to analyze the hypotheses even if suggestions for replication had
been made.

In contrast, the set of experiments on reading, discussed in a working group at the 1997 annual meeting of ISERN
[18], is an example that we have built up a body of knowledge by independent researchers working on different parts of
the problem and exposing their conclusions to different plausible rival hypotheses. We have shown in this paper that
experimental constraints in software engineering research make it very difficult, and even impossible, to design a
perfect single study. In order to rule out the threats to validity, it is more realistic to rely on the "parsimony" concept
rather than being frustrated because of trying to completely remove them. This appeal to parsimony is based on the
assumption that the evidence for an experimental effect is more credible if that effect can be observed in numerous and
independent experiments each with different threats to validity [11].

A second conclusion is that empirical research must be a collaborative activity because of the huge number of
problems, variables, and issues to consider. This complexity can be faced with extensive brainstorming, carefully
designing complementary studies that provide coverage of the problem and solution space, and reciprocal verification.

It is our contention that interesting and relevant hypotheses can be identified and investigated effectively if
empirical work is organized in the form of families of related experiments. In this paper, we have raised several reasons
why such families are necessary:
• To investigate the effects of alternative values for important attributes of the experimental models;
• To vary the strategy with which detailed hypotheses are investigated;
• To make up for certain threats to validity that often arise in realistically designed experiments.

Discussion within the experimental community is also needed to address other issues, such as what constitutes an
"acceptable" level of confidence in the hypotheses that we address as a community. By running carefully designed
replications, we can address threats to validity in specific experiments and accumulate evidence about hypotheses.
However, we are unaware of any useful and specific guidelines that concern the amount of evidence that must be
accumulated before conclusions can confidently be drawn from a set of related experiments, in spite of the existence of
specific threats. More discussion within the empirical software engineering community as to what constitutes a
sufficient body of credible knowledge would be of benefit.

Building up a body of knowledge from families of experiments has the following benefits for the software
engineering researcher:

It allows the results of several experiments to be combined in order to build up our knowledge about software
processes.
It increases the effectiveness of individual experiments, which can now contribute to answering more general and
abstract hypotheses.
It offers a framework for building relevant practical software engineering knowledge, organized around the GQM
goal template or another framework from the literature.
It provides a way to develop and integrate laboratory manuals, which can facilitate and encourage the types of
replications that are necessary to expand our knowledge of basic principles.
It helps generate a community of experimenters, who understand the value of, and can carry out, the needed
replications.

The ability to carry out families of replications has the following benefits for the software engineering practitioner:
It offers some relevant practical SE knowledge; fully parameterizing process, product, and context models allows a
better understanding of the environment in which the experimental results hold.
It provides a better basis for making judgements about selecting process, since practitioners can match their
development context to the ones under which the processes are evaluated.
It shows the importance of and ability to tailor "best practices", that is, it shows how software processes can be
altered by meaningful manipulation of key variables.
It provides support for defining and documenting processes, since running related experiments assists in
determining the important process variables.
It allows organizations to integrate their experiences by making explicit the ways in which experiences differ (i.e.

200 Perspectives of System Informatics'99

what the relevant process, product, and context models are) or are similar, and allowing the abstraction of basic
principles from this information.

Acknowledgements

This work was supported by NSF grant CCR9706151, NASA grant NCC5170, and UMIACS. The authors would
like to thank Michael Fredericks and Shari Lawrence Pfleeger for their valuable comments on earlier drafts of this
paper..

References

[I] V.R.Basili, "The experimental paradigm in software engineering", Experimental Software Engineering Issues:
Critical Assessment and Future Directions, International Workshop, Dagstuhl, Germany, 1992. Appeared in
Springer-Verlag, Lecture Notes in Computer Science, Number 706, 1993.

[2] V. R. Basili, "Evolving and packaging reading technologies", Journal of Systems and Software, vol. 38, no 1
pp.3-12, July 1997.

[3] V. Basili, G. Caldiera, F. Lanubile, and F. Shull, "Studies on reading techniques", Proc. of the Twenty-First
Annual Software Engineering Workshop, SEL-96-002, Gbddard Space Flight Center, Greenbelt, Maryland
pp.59-65, December 1996.

[4] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Soerumgaard, M. Zelkowitz, "The empirical
investigation of perspective-based reading"; Empirical Software Engineering Journal, vol. 1, no. 2, 1996.

[5] V. R. Basili, S. Green , O. Laitenburger, F. Lanubile, F. Shull, S. Sorumgard, and M. Zelkowitz, "Packaging
researcher experience to assist replication of experiments", Proc. of the ISERN meeting 1996, Sydney, Australia,
1996.

[6] V. R. Basili, and D. H. Hutchens, "An empirical study of a syntactic metric family", IEEE Transactions on
Software Engineering, vol. SE-9, pp.664-672, November 1983.

[7] V. R. Basili, and R. W. Reiter, "A controlled experiment quantitatively comparing software development
approaches", IEEE Transactions on Software Engineering, vol. SE-7, no. 3, pp.299-320, May 1981.

[8] V. R. Basili, and H. D. Rombach, "The TAME project: Towards improvement-oriented software environments",
IEEE Transactions on Software Engineering, vol. SE-14, no. 6, June 1988.

[9] V. R. Basili, R. W. Selby, and D. H. Hutchens, "Experimentation in software engineering", IEEE Transactions
on Software Engineering, vol. SE-12, no. 7, pp. 733-743, July 1986.

[10] V. Basili, F. Lanubile, F. Shull, "Investigating maintenance processes in a framework-based environment", Proc.
of the Int. Conf on Software Maintenance, Bethesda, Maryland, pp.256-264, 1998.

[II] D. T. Campbell, and J. C. Stanley, Experimental and Quasi-Experimental Designs for Research Boston-
Houghton Mifflin Co, 1963.

[12] Composable Systems Group, "Model Problems", http://www.cs.cmu.edu/~Compose/html/ModProb/, 1995.
[13] P. Fusaro, F. Lanubile, and G. Visaggio, "A replicated experiment to assess requirements inspections

techniques", Empirical Software Engineering Journal, vol.2; no. 1, pp.39-57, 1997.
[14] IEEE. Software Engineering Standards. IEEE Computer Society Press, 1987.

[15] C. M. Judd, E. R. Smith, and L. H. Kidder, Research Methods in Social Relations, sixth edition, Orlando-
Harcourt Brace Jovanovich, Inc., 1991.

[16] O. Laitenberger, and J. M. DeBaud, "Perspective-based reading of code documents at Robert Bosch GmbH",
Journal of Information and Software Technology, 39, pp.781-791, 1997.

[17] F. Lanubile, "Empirical evaluation of software maintenance technologies", Empirical Software Ensineerins
Journal, vol.2, no.2, pp.95-106, 1997.

[18] F. Lanubile, "Report on the results of the parallel project meeting reading techniques"
http://seldi2.uniba.it: 1025/isern97/readwg/index.htm, October 1997. '

[19] F. Lanubile, F. Shull, V. Basili, "Experimenting with error abstraction in requirements documents", Proc. of the
5th Int. Symposium on Software Metrics, Bethesda, Maryland, pp. 114-121, 1998.

[20] C. M. Lott, and H. D. Rombach, "Repeatable software engineering experiments for comparing defect-detection

 Basili V., Shull F., lanubile F. Using Experiments to Build a Body of Knowledgr 201

techniques", Empirical Software Engineering Journal, vol. 1, no.3, pp.241-277, 1996.

[21] K. Popper, The Logic of Scientific Discovery, Harper Torchbooks, New York, NY, 1968.
[22] A. Porter, L. Votta, V. Basili, "Comparing detection methods for software requirements inspections: a replicated

experiment", IEEE Transactions on Software Engineering, vol. 21, no. 6, pp. 563-575, 1995.

[23] F. Shull, F. Lanubile, and V. R. Basili, "Investigating Reading Techniques for Framework Learning", Technical
Report CS-TR-3896, UMCP Dept. of Computer Science, UMIACS-TR-98-26, UMCP Institute for Advanced
Computer Studies, ISERN-98-16, International Software Engineering Research Network, May 1998.

[24] F. Shull. Developing Techniques for Using Software Documents: A Series of Empirical Studies. Ph.D. thesis,
University of Maryland, College Park, December 1998.

[25] F. Shull, "Reading Techniques for Object-Oriented Frameworks",
http://www.cs.umd.edu/prqjects/SoftEng/ESEG/manual/sbrjpackage/manual.html.

[26] F. Shull, "Lab Package for the Empirical Investigation of Perspective-Based Reading",
http://www.cs.umd.edu/projects/SoftEng/ESEG/manual/pbr_package/manual.html.

[27] Z. Zhang, V. Basili, and B. Shneiderman, "An Empirical Study of Perspective-based Usability Inspection",
Human Factors and Ergonomics Society Annual Meeting, Chicago, Oct. 1998.

Patterns in Words versus Patterns in Trees:
A Brief Survey and New Results

• Gregory Kucherov and Michael Rusinowitch

INRIA-Lorraine/LORIA
615, rue du Jardin Botanique, BP 101

54602 Villers-les-Nancy, France '
email: {kucherov,rusi}Qloria.fr

Abstract. In this paper we study some natural problems related to specifying sets of words and trees by
patterns. '

1 Introduction

Patterns are probably the most simple and natural way to specify non-trivial families of combinatorial structures.
Abstractly, let Q be a class of combinatorial structures with a substructure relation (such as graphs, trees, strings,
etc.). Usually, given Q we can define in a natural way a notion of pattern, interpreted as an under-specified
structure of Q, that is a structure with some "unspecified parts". A pattern defines a set of instances which are
structures obtained by instantiating the pattern's unspecified parts by other structures. For example, in case
of graph structures, patterns could be defined as graphs with some "meta-nodes" which can be instantiated by
other graphs.

Using these informal definitions, we now introduce central notions of this paper. For a set S of patterns,
we denote by Inst(S) the set of structures which are instances of patterns of S. By Cont(S) we denote the set
of structures which have a substructure in Inst(S). In the above example of graphs, if S is a set of patterns
(graphs with "meta-nodes"), Inst(S) is the set of instances of patterns from S and Cont(S) could be defined as
the set of graphs having a subgraph that is an instance of a pattern of S. We will also study the complements
of sets Inst(S) and Cont(S), defined by Inst(S) = g\ Inst(S) and Cont(S) = Q\ Cont(S).

In this paper we consider two structures, which are probably the most widely used data structures in
computer science: words and trees. We will define the notion of pattern for each of these structures and we will
compare the complexity of different natural problems related to patterns in the cases of words and trees. In this
perspective, we survey various known results and give several new ones.

2 Words, Trees and Patterns

Let us start with basic definitions. Given a finite alphabet A of letters, words over A are defined in the usual way
as finite sequences of letters. A* stands for the set of words over A. From algebraic point of view, words over A
are elements of the free monoid generated by A. Word patterns over A are defined as words over alphabet AöX,
where X is an infinite alphabet of variables. For example, v =*= abaababaabaab is a word over the alphabet {a, b}
and assuming that x,y £ X, abaxbayb,xabax,xaxxaxax are patterns over {a,b}. A variable occurring more
than once in the pattern is called non-linear, otherwise it is linear. A subword of a word is a fragment of its letter
sequence. For example, baab is a subword of v and abba is not. A substitution is a morphism a : (A U X)* ->■ A* '
such that a(a) = a for all a £ A. A substitution is non-erasing if a(x) ^ e, where e is the empty word, and
erasing otherwise. A word w G A* is an instance of a pattern p € {A U X)* if w = er(p) for some substitution a.
In this case we say also that p matches w. A substitution can be simply seen as a mapping replacing variable
occurrences in the pattern by words such that the occurrences of the same variable are replaced by the same
word. For example, the word v is an instance of each of the three patterns above.

A tree is a well-formed expression over a signature 2 of function symbols, where each symbol is indexed
by an integer number, called its arity. For example, u = f(f(f{a,a),h{a)),h(a)) is a tree over the signature
£ - {f,h,a}, where symbols f,h,a have arity 2,1,0 respectively. The set of trees over S is denoted by T{S).
From algebraic point of view, T{S) is a free ^-algebra generated by S. Thus, we are dealing with node-labeled
trees representing first-order terms over a given signature. We will use the words tree and term interchangeably.
Clearly, we assume that the signature contains at least one 0-arity (constant) symbol, otherwise the set of terms

Kucherov G., Rusinowitch M. Patterns in Words versus Patterns in Trees: A Brief Survey and New Results 203

is empty. A tree pattern is a tree over EUX, where X is an infinite set of 0-arity symbols of variables. Thus,
f(x,h(y)), f(f(f(y,a),x),x) are tree patterns over {/,h,a}, where x.y are variables. A subtree of a tree t is
a subexpression of t. In other words, a subtree of t is a tree occurring at some node of t. The subtrees of u
are f(f(f(a,a),h(a)),h(a)), f(f(a,a),h(a)), f(a,a), h(a) and o. Note that h(a) and a have several occurrences
in u. A substitution is a homomorphism a : T(S Ul)-> T(S) such that a(a) = a for each constant o from
E. Again, if t = a(p) for some term t, pattern p and substitution a, then i is said to be an instance of p,
and p is said to match t. Similar to words, a substitution replaces variables in patterns by trees such that the
same variable is replaced by the same term. For example, term u is an instance of both patterns f(x, h(y)) and
/(/(/(z/> a)> x)>x)i but is not an instance of f(f(x, x),h(a)).

Note that words can be represented as trees in at least two ways. One way is to map each letter to a distinct
unary symbol, and to add to the signature one constant symbol. Then a word can be naturally represented by
a non-branching tree. However, to represent a pattern consistently, we need to introduce variables at internal
nodes (second-order variables) which does not fit to our framework. Another way is to map each letter to a
corresponding constant symbol and use one additional binary symbol for concatenation. In this case, however,
one word is represented by several trees, due to the associativity property of concatenation. In general, words
can be seen as trees over one associative function symbol. We will see in this paper that this associativity
property makes many problems on words much more difficult than their counterparts for trees.

3 Problems

We now state the problems we will address in this paper. We assume that we are given a set S of word (resp.
tree) patterns. As defined in Introduction, Inst(S) denotes the set of word (resp. tree) instances of patterns of
5, and Cont(S) denotes the set of words (trees) having respectively a subword (subtree) that is an instance
of a pattern from S. If S consists of a single pattern p, we will write Inst(p) and Cont(p) as a short-hand for
Inst({p}) and C<mt({p}).

We are interested in the following problems for both words and trees. Below u is a word (resp. tree), p is a
word (resp. tree) pattern, and S is a set of patterns.

Pl.l u € Inst(p)l
P1.2 u g Cont(p)l
P2.1 is Inst(S) a finite set?
P2.2 is Inst(S) a regular set?
P3 Instip) C Inst(S)?
P4 Instjp) C ContjS)!
P5.1 is Cont{S) a finite set?
P5.2 is Cont(S) a regular set?

These questions are standard language-theoretic problems. Pl.l and PI.2 are membership problems for Inst-
and Conf-languages. Since Inst(S) and Cont(S) are generally infinite, it makes sense to ask if these sets are
co-finite. This justifies problems P2.1 and P5.1. Problems P2.2 and P5.2 ask whether Inst(S) (respectively
Cont(S)) is a regular set of words (trees). If the notion of regular word set (language) is well-known, the notion
of regular tree language is probably less standard. For readers who axe not familiar with regular tree languages,
we refer to books [GS84,NP92]. Finally, problems P3 and P4 are also usual language inclusion questions, as
Inst(S) = Upeslnst(p), and Inst(S) C L iff for all p G S, Instip) CL.

4 The Tree Case

We now start with the tree case and survey what is known here about the questions above. This will motivate
our study and will allow to compare these results with their counterparts for the word case.

Pl.l is a trivial problem for the tree case. It asks whether a term is an instance of a tree pattern, which can
be easily done in linear time. It is sufficient to check if the pattern coincides with the term at all non-variable
positions, and check that the subterms of the term corresponding to distinct occurrences of the same variable
in the pattern coincide. Clearly, this can be done in time 0(\u\ + \p\).

P1.2 is the subterm matching problem which has numerous applications in functional and logic programming,
automated deduction, term rewriting and other areas related to symbolic computation. The problem consists
of testing whether a given pattern occurs in a given tree, that is matches one of its subtrees. Usually, one wants

204 Perspectives of System Informatics'99 _^ -

also an algorithm to find all such subtrees, and not only to test if there is one. The restricted version of this
problem, when the pattern contains only linear variables, is known under the name tree matching. In early 80's,
a simple practical solution has been proposed [H082]. More recently, a series of work has been done to find
the most efficient (in the worst-case) algorithm for tree matching. We refer to the latest achievement [CHI99]
which proposes an 0(nlog3n) deterministic algorithm, where n is the size of the tree (assumed to be bigger
than the size of the pattern). The algorithm (as well as previously proposed theoretically efficient algorithms) is
however rather complicated and difficult to implement, and the problem of designing an efficient and practical
tree matching algorithm is still on the agenda. Now, if a pattern contains non-linear variables, we can preprocess
the subject tree by indexing its nodes in such a way that if the subtrees rooted in two nodes are the same, then
these nodes have the same index. This preprocessing can be done in linear time (under the assumption that
the signature has a constant size) by a bottom-up traversal of the tree. Then we can "forget" about repeated
variables in the pattern and consider all variable nodes to be labeled by distinct variables. We then run a tree
matching algorithm for linear patterns, and check, each time we find an occurrence of the linear pattern, if the
subterms corresponding to occurrences of the same variable in the original pattern are equal (by looking at
their indexes). This comparison takes time proportional to the maximal number of occurrences in the original
pattern (0(|p|) in the worst case), which introduces a |p| factor with respect to the theoretic complexity of linear
pattern matching. We refer to [RR92] for a detailed algorithm of subterm matching in presence of non-linear
variables.

Let us now turn to problem P2.1, and consider a generalization of it. Instead of asking whether Inst(S)
is finite, we ask if Inst{S) can be itself represented as Inst(S') for some finite set of patterns S'. Such a set
S' is called a complement representation of S [KP98]. Again, non-linear variables in patterns of S play an
important role. Consider the set S = {h(x)J(h(x),y)} over the signature {f,h,a} as above. Then the set
s> ~ ia> /(°: x)i f(f(%, y), z)} is a complement representation of S. One can generalize this and prove that if all
patterns in the set are linear, a finite complement representation of this set can be constructed. However, one
can prove that the set S = {f(x,x)} does not have a finite complement representation. The exhaustive analysis
of the situation has been given in [LM87]. The main result can be stated as follows.

Theorem 1 ([LM87]). A set of patterns S has a finite complement representation iff there exists a set of
linear patterns SMn such that Inst(S) = Inst(Sun). Moreover,

- if such a set Sun exists, it can be obtained by instantiating the non-linear variables in the patterns of S by
terms,

- the property of having a finite complement representation is decidable.

Let us illustrate Theorem 1 by an example. Consider the set S = {a,f(x,h(y)),f(x,x), f{x,f{y,z))}, still
over the signature {f,h,a}. This set contains a non-linear term f(x,x). However, a simple analysis shows
that f{x,x) can be replaced by f(a,a) without changing the set of instances. Thus, Inst(S) = Inst{Sun),
where SUn is a set of linear patterns obtained from S by substituting a to a; in the term f(x,x). Fur-
thermore, as Sun contains only linear patterns, a complement representation of SHn can be constructed:
s'iin ~ {H^),f(Hx),a),f(f(x,y),a)}. Theorem 1 asserts that this example is typical: if a finite complement
exists, the set is "linearizable", that is non-linear variables can be replaced by terms'without changing the set
of instances. The decidability of this property, stated in Theorem 1, means that a bound on the size of terms
replacing non-linear variables can be effectively computed.

Recently, the study of finite complement representations has received a new impulse [GP99,Pic99], motivated
by its applications in different areas, and in particular in logic programming. In [Pic99], it has been proved that
testing if a given set has a finite complement representation (see Theorem 1) is co-NP-complete.

Coming back to problem P2.1, to check if Inst(S) is finite, we first check, according to Theorem 1, if 5 has
a finite complement representation. If the answer is positive, we compute such a representation. If all patterns
in the representation are terms (i.e. do not contain variables), then Inst(S) is finite. Otherwise, if at least one
pattern has a variable, Inst(S) is infinite. This shows that P2.1 is in co-NP. The NP-hardness of P2.1 follows
from [KNRZ91], where it was proved that deciding if Inst(S) = 0, is co-NP-complete. An easy modification of
the hardness part of this proof shows that P2.1 is co-NP-hard, and therefore co-NP-complete.

Theorem 1 gives actually an answer to problem P2.2 too. It is an easy exercise to prove that if a set S
contains only linear patterns, Inst(S) is a regular tree language [GS84.NP92]. Thus, when a set is "linearizable"
in the sense of Theorem 1, the set of instances is regular. On the other hand, if a set is not linearizable, it can
be shown using a pumping lemma argument that the set of instances is not regular. This is however not easy
to prove, but follows from the work [Kuc91] that we will survey below. We summarize the discussion in the
following statement.

Kucherov G., Rusinowitch M. Patterns in Words versus Patterns in Trees: A Brief Survey and New Results 205

Proposition 1. In the tree case, P2.1 and P2.2 are co-NP-complete problems.

Now let us skip problem P3 for a moment and turn to problem P4 which has now a more-than-ten-years
history. The problem, known under the name of ground reducibility problem, has attracted a lot of attention in
the area of term rewriting [DJ90] because of its application to automated inductive proofs [JK89]. The problem
consists of testing if all instances of a given tree pattern p have a subtree matched by one of the patterns of
a given set S. Once again, non-linear variables in patterns of S make the problem much more difficult. In the
middle and late 80's, several authors observed that the problem is decidable if patterns of S only contain linear
variables. The problem was first proved decidable in the general case by Plaisted [Pla85], and later by other
authors independently [KNZ87,Com88]. Recently, the problem was shown to be EXPTIME-complete [CJ97].

Problem P3 can be expressed in terms of P4 in the following way. Assume we have a pattern p and a set
of patterns 5, and we want to test whether Inst(p) C Inst(S). First delete from S those patterns which do
not have the same root symbol as the root symbol of p (obviously, these patterns cover no instance of p). Then
choose a new symbol a and replace the root symbol in p and in all remaining patterns in S by a. Let p' and S'
be the resulting pattern and set respectively. It can be shown that Inst(p) C Inst(S) iff Inst(p') C Cont(S').
The latter property, which is a special instance of ground reducibility, can be expressed as the so called sufficient
completeness property for specifications with free constructors (see [KNRZ91]).. Deciding this property has been
proved co-NP-complete in [KNRZ91].

Proposition 2. In the tree case, PS and P4 are both decidable problems. P3 is co-NP-complete and P4 is
EXPTIME-complete.

Finally, let us turn to problems 5.1 and 5.2. Problem 5.1 has been proved decidable in [Pla85,KNZ87].
Concerning Problem 5.2, the following Theorem has been proved in [Kuc91].

Theorem 2. For a set of patterns S, Cont(S) is a regular tree language iff there exists a set of linear patterns
Sii„ such that Cont(S) = Cont(Sun). Moreover,

— if such a set Sun exists, it can be obtained by instantiating the non-linear variables in the patterns of S by
terms.

Theorem 2 is a lifting of Theorem 1 from the set of instances Inst(S) to the set Cont(3) of terms containing
instances of S as subterms. The latter case is however much more difficult, and the proof of Theorem 2 used
a non-constructive combinatorial argument, based on Ramsey Theorem. Therefore, no effective bound on the
size of terms to be substituted for the non-linear variables, resulted from the proof, and the decidability of the
regularity of Cont{S) remained an open problem. This problem, considered important in the area of rewriting,
has appeared in the list of major open problems in rewriting in [DJK91]. Soon after, the regularity of Cont(S)
has been proved decidable by three groups of authors [KT92,VG92,HH92]. The results of [KT95] provided also
a new proof of the decidability of problem 5.1, and even gave an effective bound on the size of Cont(S) in the
case it is finite. We then conclude this section with the following

Proposition 3. In the tree case, P5.1 and P5.2 are both decidable problems.

5 The Word Case

The overview of the tree case given in the previous section shows that all the problems are decidable, though
the complexity of some of them appears to be high. In this section we study these problems in the word case
and see that most of them, and even some restricted versions of them, turn out to be undecidable. We also
analyze the complexity of these problems in the case of linear patterns.

We first remark that in the tree case, Cont(S) is a "meta-notion" with respect to Inst(S), due to the fact
that the notion of subtree cannot be expressed by means of patterns, as only first-order variables are allowed
in patterns. In contrast, in the word case Cont(S) can be expressed in terms of Inst(S):

Cont(S) — Inst{{xpy,xp,py,p\p e S and x,y do not occur in p})

This implies that, in contrast to the tree case, the problem for Cont(S) is simpler than its counterpart for
Inst(S). In particular, if a problem is decidable for Inst(S), it is also decidable for Cont(S). On the other hand,
if a problem is undecidable for Inst(S), the undecidability of its counterpart for Cont(S) may be harder to
prove. We will face this situation later in this section.

206 ■ Perspectives of System Informatics'99

Note another difference with the tree case: in contrast to trees, we may allow variables in word patterns to be
substituted by the empty word. This gives rise to two cases depending of whether this possibility is allowed or
not. Following Kari et al. [KMPS95], we call these cases erasing (E-case for short), if substituting by the empty
word is allowed, and non-erasing (NE-case), if it is not allowed. We will generally speak about the NE-case,
unless the E-case is explicitly mentioned.

An early result of Angluin [Ang80] asserts that problem Pl.l is NP-complete. This implies that P1.2 is also
NP-complete, as w G Inst{p) iff #w# e Cont(#p#) where # is a fresh letter. This NP-completeness result
immediately shows that the word case appears to be much more difficult, as Pl.l and P1.2 are polynomial
problems in the tree case, of low polynomial degree. However, if pattern p is linear, Pl.l and P1.2 can be solved
in linear time, as they actually reduce to the well-known string matching problem, and can be solved, e.g., by
the Knuth-Morris-Pratt algorithm [CR95]. In the general case, the naive algorithm solving Pl.l is in 0(\w\A)
(respectively 0{\w\A+2) for P1.2), where A is the number of distinct variables in p. Neraud [Ner95] showed
how this complexity can be slightly reduced (roughly, the exponent can be decreased by 2) and obtained some
specialized efficient algorithms for P1.2 for the cases of low A (1 or 2).

Proposition 4. In the word case, problems Pl.l and PI.2 are NP-complete. Both problems can be solved in
linear time if pattern p is linear.

The difficulty of matching problems Pl.l in the case of words can be also illustrated by the fact that if
a word w is matched by a pattern p, that is w = a(p), then substitution a does not have to be unique. For
example, pattern xy can match a word w in {\w\ - 1) different ways, corresponding to the factorizations of
w into two parts. It is easy to see that many patterns admit this situation (e.g. all linear patterns), but not
all of them - for example, patterns x, xx (and more generally, one-variable patterns) have a unique way to
match a word. Formally, a pattern p is called non-ambiguous if there is a unique way for p to match each
word of Inst(p), and ambiguous otherwise. The ambiguity of patterns was studied by Mateescu and Salomaa
[MS94]. They introduced the notion of degree of ambiguity of a pattern p defined as the maximal number of
ways for p to match a word from Inst(p) provided this number is finite; otherwise the degree of ambiguity is
oo. It is easy to exhibit patterns with the degree of ambiguity 1 or oo, and much more difficult with a finite
degree of ambiguity different from 1. In [MS94], it was shown that pattern p = xabxbcayabcy has the degree of
ambiguity 2. For example, there are two ways for p to match the word caabcabcaabcbcabcabcbc, and any word
from Inst(p) is matched by p in at most two ways. The authors also found a pattern of degree of ambiguity 3,
and by some composition technique, patterns of any degree 2"*3n. However, they state it as an open question
if every finite degree of ambiguity is realizable by some pattern. The decidability status of determining if the
degree of ambiguity of a pattern is finite, is also open.

Let us now turn to problem P3. A striking result has been proved in [JSSY93): inclusion Inst(p) C Inst(S)
is undecidable even if 5 consists of a single pattern. This contrasts to the fact that the equivalence problem
Inst{pi) = Inst(p2) is trivial: the equivalence holds iff pi and p2 are equal modulo a variable renaming. The
latter is however true only in the NE-case, and for the E-case the decidability status of the equivalence problem
Instipt) = Inst(p2) is open. We also point out to paper [Fil88] for some results about the inclusion problem
Inst(pi) C Instil) in the E- and NE-case.

Proposition 5. In the word case, problem P3 is undecidable even if S consists of a single pattern.

Formally, the undecidability result of [JSSY93] for problem P3 does not imply the undecidability of problem
P4 (see the discussion in the beginning of this section). Problem P4 has been studied in [KR95b], where it has
been proved undecidable.

Proposition 6. In the word case, problem P4 is undecidable.

An interesting feature of the proof of [KR95b] is that it implies that the problem Inst(p) C Cont(S) remains
undecidable if p has a very simple form, namely the form axa, where a is a letter and x a variable. It seems
very difficult (if at all possible) to further simplify p. We will come back to this issue below.

Based on the proof of the result of [KR95b], we now establish a new result.

Theorem 3. In the word case, problem P2.1 is undecidable.

Proof. We give a very general idea of the proof. To reconstruct the details, the reader is referred to [KR95bl
First, we review the proof of [KR95bj of Proposition 6. To show that Inst {axa) C Inst(S) is undecidable

the construction of S is based on the following idea. The instances of p = axa are assumed to encode runs of

Kucherov G., Rusinowitch M. Patterns in Words versus Patterns in Trees: A Brief Survey and New Results 207

a given deterministic Minsky (two-register) machine M on a given data d. Patterns of S are designed in such
a way that every instance of p which does not encode a correct run of machine M on data d, contains some
pattern from S. To put it in another way, an instance of p which does not contain any pattern of S, must encode
a correct finite run of machine M on data d. Therefore, there exists an instance of p which does not contain an
instance of S iff M halts on d, which is an undecidable property.

To prove Theorem 3, we modify the proof as follows. We modify the set of patterns S in such a way that S
encodes only a Minsky machine M, and does not specify any input data d. Assume that S' is the modified set
of patterns. Consider now the set of patterns

S = {ax\a £ A, a^o}U {xa\a G A, a ^ a} U

{xpy\p £ S' arid x,y do not occur in p}, (1)

where a is the same letter as in the pattern p above. Prom the previous discussion, it is clear that the words
which are in Inst(S) are words of the form awa, which are not instances of S'. By construction of S', these
are words which encode a correct finite run of the machine M on some input data. Since it is undecidable if a
machine stops on a finite number of input data, it is undecidable if the set Inst(S) is finite or not.

The decidability status of Problem P2.2 is open [KMPS95]. The inverse problem, whether a given regular
language is expressible as Inst(S) is also not known to be decidable. It is also open if it is decidable for a
language Inst(S) to be context-free. However, it was proved in [KMPS95] that it is undecidable if a given
context-free language is expressible as Inst(S).

Let us now consider problem P5.1. The proof of Theorem 3 above may suggest that P5.1 is not so much
different from P2.1 and must be also undecidable by a similar proof. Indeed, all "important" patterns occur in
the third set of (1), and patterns in the first and the second sets are extremely simple - they consists of a single
letter followed or preceded by a variable. However, these "extremely simple" patterns play a crucial role as they
actually specify the first and last letter in the words of the language, which is necessary for an undecidability
proof (see [KR95b]).

The decidability status of Problem 5.1 is open. Actually, it is the most general version of the famous
avoidability problem. The avoidability problem was studied in the word combinatorics under a very restricted
form - when S contains a single pattern p, and moreover, p contains only variables and no letters. However,
even in this restricted form the problem turns out to be extremely difficult.

It is not known if testing the fmiteness of Cont{p) is decidable or not. The author of [Cur93] offered 100 US
dollars1 for a solution of this problem.

A pattern p is called unavoidable {blocking according to the terminology of [Zim84]) if Cont(p) is finite,
and avoidable otherwise. Clearly, p is avoidable iff there exists an infinite word which does not contain (finite)
subwords which are instances of p.

Interestingly, a study of avoidability is historically at the origin of word combinatorics and formal lan-
guage theory. Back to the beginning of the century, Axel Thue obtained his famous construction of an infinite
square-free word on the three-letter alphabet and an infinite cube-free word on the two-letter alphabet. In the
terminology of pattern avoidance, a square-free and cube-free word is a word which does not contain respectively
the pattern xx and xxx. Trivially, xx is unavoidable on two letters and xxx is unavoidable on one letter. A
pattern which is avoidable on four letters but not on three letters has been described in [BEM79]. No pattern
is known which is avoidable on k letters but unavoidable on k - 1 letters for k > 4.

The above discussion shows that the size of the alphabet may be crucial in avoiding patterns. We refer
to [Cas94] for a survey of the state-of-the-art in pattern avoidance. A key result in the area is an algorithm
proposed independently in [BEM79,Zim84], which decides if there exists an alphabet on which a given pattern
can be avoided. However, as was mentioned above, it is not known if for a fixed alphabet one can decide, given
a pattern, if it is avoidable on this alphabet.

The rest of the paper is devoted to analyzing some of our problems in case the set S consists of linear patterns.
We already mentioned that problems Pl.l and P1.2 can be efficiently solved if p is a linear pattern. For the
other problems we will see that although they become decidable in the linear case, they remain untractable.

Note that if S consists of linear patterns, the languages Inst(S) and Cont(S) are regular languages specified
by a regular expression of the form

U1t=l(A*)wilA*wi2...A*wiki(A*), (2)
1 2278.78 russian rubles as for February 12, 1999

208 Perspectives of System Informatics'99

where u^'s are words and parenthesis indicate that A* may or may not occur in the beginning and the end
of the expression. Thus, problems P2.2 and P5.2 are always positively answered. Note also that inclusion and
equivalence of regular languages specified by general regular expressions is a PSPACE-complete problem fcf
[GJ79]).

In [KR95a] problems P4 and P5.1 have been studied under the condition that the patterns of S are linear.
As for P4, it has been proved that it is decidable in this case, regardless if p is linear or not. If p is restricted
to be linear too, the problem has been proved to be co-NP-complete [KR95a]. The exact complexity of the case
when patterns of 5 are linear but pattern p is not, is not known to us. However, if the maximal number of
occurrences of a variable is bounded, the problem remains co-NP-complete.

Proposition 7. Problem P4 of testing Inst(p) C Cont(S) is decidable if S consists of linear patterns. If p is
linear in addition, the problem is co-NP-complete.

It was also proved in [KR95a] that if S is restricted to contain linear patterns only, problem P5.1 is co-NP-
complete too.

To move on, we need to sketch the co-NP-completeness proofs from paper [KR95a]. Consider problem P4
for the case that pattern p and all patterns of S are linear. The co-NP-hardness of this problem is easy to
show. We refer to [KR95a] for the reduction from MONOTONE-ONE-IN-THREE-SAT. However, proving the
membership in co-NP represents a non-trivial part. It amounts to show that if Instfja) £ Cont(S), there is
an instance of p of size polynomial on (|5| + \p\) which does not contain any pattern from S. Of course, the
language Cont(S) and its complement Cont(S) are regular, as Cont(S) has form (2). The proof of [KR95a]
consisted of defining a compact deterministic finite automaton (DFA) for these languages verifying the following
key property: although the total size (number of states) of this automaton is exponential in |S|, the length of
the longest loop-free path from the initial to the finite state is of polynomial length. We refer to [KR95a] for
further details.

This property of the automaton allowed to show that in case Inst(p) & Cont(S), the minimal size of an
instance of p which is not in Cont(S) has a size polynomial on \S\. Similarly, if Cont(S) is finite (problem
P5.1), we can give a polynomial bound on the length of words in Cont{S). This provides a key argument in the
co-NP-completeness proof.

Here we use this argument to show the co-NP-completeness of two other problems - P3 (in case p is a linear
pattern) and P2.1.

Since P3 is a more general problem than P4 in the word case, P4 is co-NP-hard if p is a linear pattern.
Similarly, P2.1 is more general than P5.1 and is then also co-NP-hard. To prove that both of them are in co-NP,
we use an adaptation of the deterministic automaton construction from [KR95a] from the language Cont{S) to
Inst{S). We skip the details of the construction which would require us too much space, and summarize the
results in the following statement.

Theorem 4. Assuming a linear pattern p and a set of linear patterns S, problems P2.1, P3, P4 and P5.1 are
co-NP-complete.

Finally, for a linear pattern p, following [Shi82], we can build a DFA recognizing Inst(p) in polynomial
(linear) time: if p = (x0)uiXl.. .xn^un{xn) (u* e A+,Xi e X), the idea is to build DFA's Du...,Dn recog-
nizing respectively Cont{Ul),..., Cont(un), and then to identify the final state of A with the initial state of
A+i. This construction implies, in particular, that for the special case of P3 and P4 where p is linear and 5
consists of a single linear pattern, a solution can be obtained in polynomial time: the question Inst(p) C Inst(p')
is equivalent to the emptiness of the language Inst(p') n Inst(p) whose DFA is easily derived in polynomial
(quadratic) time [HU79].

Proposition 8. Assuming a linear pattern p and S = {p'} with p' a linear pattern, P3 and P4 can be checked
in polynomial time.

6 Conclusions

In this paper we formulated several language-theoretic problems which are meaningful for any combinatorial
structure equipped with a notion of pattern and a substructure relation. We then studied the algorithmic
complexity of those problems for two particular structures - trees over a finite signature and words over a finite
alphabet. It turns out that the instances of these problems for words and trees cover a large area of research,
including seemingly quite unrelated subareas. Some problems on trees have been studied in term rewriting

Kucherov G., Rusinowitch M. Patterns in Words versus Patterns in Trees: A Brief Survey and New Results 209

theory, with relation to the theory of tree languages. Some other problems, such as tree matching, have received
much attention in the area of algorithm development. Applied to words, those problems have been studied in
the area of word combinatorics and formal language theory, including the recent research stream on pattern
languages. Again, the matching problem for words has been subject of intensive studies in the algorithmics area.
We found it interesting that all these problems can be expressed uniformly as classical problems on languages
specified by patterns. • v

We attempted to give a brief survey of considered problems, putting the stress on comparing the tree and
the word case. Moreover, we gave several new results for the word case. We showed that all problems are easier
on the tree case than their counterparts for the word case. In particular, except for the matching problem, all
problems are decidable in the tree case and undecidable in the word case. For the word case, we gave a special
attention to the linear case, where the problems become decidable but, as we have showed, remain of high
algorithmic complexity.

References

[Ang80] D. Angluin. Finding patterns common to a set of strings. J. Comput. System Sei., 21:46-62, 1980.
[BEM79] D.R. Bean, A. Ehrenfeucht, and G.F. McNulty. Avoidable patterns in strings of symbols. Pacific J. Math.,

85(2):261-294, 1979.
[Cas94] J. Cassaigne. Motifs evitables et regularitis dans les mots. These de doctorat, Universite Paris VI, 1994.
(CHI99] R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching and subset matching in deterministic o(nlog3n)-

time. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, Baltymore, Mary-
land, January 17-19, 1999, pages 245-254. ACM, SIAM, 1999.

[CJ97] H. Comon and F. Jacquemard. Ground reducibility is EXPTIME-complete. In Proceedings, Twelth Annual
IEEE Symposium on Logic in Computer Science, pages 26-34, Warsaw, Poland, 29 June-2 July 1997. IEEE
Computer Society Press.

[Com88] H. Comon. Unification et disunification. Theories et applications. These de Doctorat d'Universite, Institut
Polytechnique de Grenoble (France), 1988.

[CR95] M. Crochemore and W. Rytter. Squares, cubes, and time-space efficient string searching. Algorithmica,
13:405-425, 1995.

[Cur93] J. Currie. Open problems in pattern avoidance. American Mathematical Monthly, 100:790-793, 1993.
[DJ90] N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer Science, volume B, chapter 6: Rewrite

Systems, pages 244-320. Elsevier Science Publishers B. V. (North-Holland), 1990. Also as: Research report
478, LRI.

[DJK91] N. Dershowitz, J.-P. Jouannaud, and J. W. Klop. Open problems in rewriting. In R. V. Book, editor,
Proceedings 4th Conference on Rewriting Techniques and Applications, Corno (Italy), volume 488 of Lecture
Notes in Computer Science, pages 445-456. Springer-Verlag, 1991.

[Fil88] G. File. The relation of two patterns with comparable languages. In R. Cori M. Wirsing, editor, Proceedings of
the 5th Annual Symposium on Theoretical Aspects of Computer Science (STACS '88), volume 294 of Lecture
Notes in Computer Science, pages 184-192, Bordeaux, France, February 1988. Springer.

[GJ79] M. Garey and D. Johnson. Computers and Intractability. A guide to the theory of NP-completeness. W.
Freeman and Compagny, New York, 1979.

[GP99] G. Gottlob and R. Pichler. Working with ARMs: Complexity results on atomic represen-
tations of Herbrand models. In Proceedings of LICS'99, 1999. to appear, available from
http://www.dbai.tuwien.ac.at/staff/gottlob/arms.ps.

[GS84] F. Gecseg and M. Steinby. Tree automata. Akademiai Kiadö, Budapest, Hungary, 1984.
[HH92] D. Hofbauer and M. Huber. Computing linearizations using test sets. In M. Rusinowitch and J.-L. Remy,

editors, Proceedings 3rd International Workshop on Conditional Term Rewriting Systems, Pont-a-Mousson
(Prance), pages 145-149. CRIN and INRIA-Lorraine, 1992.

[H082] C. M. Hoffmann and M. J. O'Donnell. Pattern matching in trees. Journal of the ACM, 29(l):68-95, 1982.
[HÜ79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-

Wesley Publishing Company, Reading, Mass., USA, 1979.
[JK89] J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in theories without constructors. Information

and Computation, 82:1-33, 1989.
[JSSY93] T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Inclusion is undecidable for pattern languages. In Svante Carls-

son Andrzej Lingas, Rolf G. Karlsson, editor. Automata, Languages and Programming, 20th International
Colloquium, volume 700 of Lecture Notes in Computer Science, pages 301-312, Lund, Sweden, 5-9 July 1993.
Springer-Verlag.

[KMPS95] L. Kari, A. Mateescu, G. Paun, and A. Salomaa. Multi-pattern languages. Theoretical Computer Science,
141:253-268, 1995.

[KNRZ91] D. Kapur, P. Narendran, D. J. Rosenkrantz, and H. Zhang. Sufficient completeness, ground-reducibility and
their complexity. Ada Informatica, 28:311-350, 1991.

210 Perspectives of System Informatics'99

[KNZ87] D. Kapur, P. Narendran, and H. Zhang. On sufficient completeness and related properties of term rewriting
systems. Ada Informatica, 24:395-415, 1987.

[KP98] G. Kucherov and D. Plaisted. The complexity of some complementation problems, submitted, 1998.
[KR95a] G. Kucherov and M. Rusinowitch. Complexity of testing ground reducibility for linear word rewriting systems

with variables. In Proceedings 4th International Workshop on Conditional and Typed Term Rewriting Systems,
Jerusalem (Israel), volume 968 of Lecture Notes in Computer Science, pages 262-275. Springer-Verlag, 1995.

[KR95b] G. Kucherov and M. Rusinowitch. Undecidability of ground reducibility for word rewriting systems with
variables. Information Processing Letters, 53:209-215, 1995.

[KT92] G. Kucherov and M. Tajine. Decidability of regularity and related properties of ground normal form languages.
In M. Rusinowitch and J.-L. Remy, editors, Proceedings 3rd International Workshop on Conditional Term
Rewriting Systems, Pont-ä-Mousson (France), pages 150-156. CRIN and INRIA-Lorraine, 1992.

[KT95] G. Kucherov and M. Tajine. Decidability of regularity and related properties of ground normal form languages.
Information and Computation, 118(1):91-100, April 1995.

[Kuc91] G. A. Kucherov. On relationship between term rewriting systems and regular tree languages. In R. V. Book,
editor, Proceedings 4th Conference on Rewriting Techniques and Applications, Como (Italy), volume 488 of
Lecture Notes in Computer Science, pages 299-311. Springer-Verlag, April 1991.

[LM87] J.-L. Lassez and K. Marriot. Explicit representation of terms defined by counter examples. Journal of
Automated Reasoning, 3(3):301-318, 1987.

[MS94] A. Mateescu and A. Salomaa. Nondeterminism in patterns. In P. Enjalbert, E.W. Mayr, and K.W. Wagner,
editors, Proceedings of the 11th Annual Symposium on Theoretical Aspects of Computer Science (STACS'94),
Caen, France, February 1994, volume 775 of Lecture Notes in Computer Science, pages 661-668. Springer-
Verlag, 1994.

[Ner95] J. Neraud. Detecting morphic images of a word: On the rank of a pattern. Ada Informatica, 32:477-489
1995.

[NP92] M. Nivat and A. Podelski, editors. Tree Automata and Languages. Studies in Computer Science and Artificial
Intelligence 10. North-Holland, 1992.

[Pic99] R. Pichler. The explicit represent ability of implicit generalizations, submitted, april 1999.
[Pla85] D. Plaisted. Semantic confluence and completion method. Information and Control, 65:182-215, 1985.
[RR92] R. Ramesh and I.V. Ramakrishnan. Nonlinear pattern matching in trees. Journal of the ACM, 39f2V295-316

April 1992. ' '
[Shi82] T. Shinohara. Polynomial time inference of pattern langages and its applications. In Proceedings of the 7th IBM

Symposium on Mathematical Foundations of Computer Science, Mathematical Theory of Computations/The
Complexity of Algorithms, pages 191-209, 1982.

[VG92] S. Vägvölgyi and R. Gilleron. For a rewriting system it is decidable whether the set of irreducible ground
terms is recognizable. Bulletin of European Association for Theoretical Computer Science, 48:197-209, 1992.

[Zim84] A.I. Zimin. Blocking sets of terms. Math. USSR Sbornik, 47:353-364, 1984. Original version in russian
published in 1982, 119 (3), 363-375.

Extensions:
A Technique for Structuring Functional-Logic Programs

Rafael Caballero, Francisco J. Löpez-Fraguas *

Departamento de Sistemas Informäticos y Programaciön
Universidad Complutense de Madrid, {rafa,fraguas}<3sip.ucm.es

Abstract. Monads are a technique widely used in functional programming languages to address many
different problems. This paper presents extensions, a functional-logic programming technique that consti-
tutes an alternative to monads in several situations. Extensions permit the definition of easily reusable
functions in the same way as monads, but are based on simpler concepts taken from logic programming,
and hence they lead to more appealing and natural definitions of types and functions. Moreover, extensions
are compatible with interesting features typical of logic programming, like multiple modes of use, while
monads are not.

1 Introduction

Functional-Logic programming, FLP in short, aims to integrate of functional and logic programming, allowing
the use of techniques from both paradigms into the same declarative framework (see [Han94] for a survey).
Moreover, the combination of ideas of the two worlds gives rise to new features specific to FLP. This work
should be seen as a contribution in this direction, for it presents a new technique, the extensions, that can be
used as an alternative to the functional technique of monads when programming in a functional-logic language.

The concept of monad comes from category theory, and it has been widely used in functional programming
to structure functions, pointing out the essence of the algorithms represented while concealing the data flow
and the associated computations [Wad90,Wad92,Wad95].

In several FLP frameworks such as Escher [Llo95], Curry [Han98] or our working language, Toy [CLS97],
monads can be used directly, yielding the same benefits as in the case of functional programming. However,
FLP has a wider range of programming mechanisms, including logical variables, and it should be questioned
whether it is possible to define a specific FLP technique to address the same kind of problems from a different
point of view. In the rest of the paper we describe such an alternative, the FLP extensions. Although lacking the
theoretical background and wide range of applications of monads, extensions present some specific advantages,
such as:
• Extensions can replace monads in several different situations, allowing the same expressiveness but using much
simpler concepts.
• Multiple modes of use are allowed by extensions, which is not so easy to achieve when defining monads in an
FLP context.
• In the case of adding new features to functions, monads enforce the evaluation of both the old and the new
values simultaneously. Conversely, extensions can use the new feature only where it is required, thus avoiding
unnecessary computations.

2 The FLP framework: A succinct description of Toy

All the programs in the next sections are written in the purely declarative functional-logic language Toy,
which is a concrete realization of CRWL, a theoretical framework for declarative programming (see [GH+96]).
We present here only the subset of the language relevant to this work. A more complete description'and a
number of representative examples can be found in [CLS97].

A Toy program consists of datatype, type alias, infix operator definitions, and rules for defining functions.
Syntax is mostly borrowed from Haskeil [HAS97], with the remarkable exception that variables begin with
upper-case letters whereas constructor and function symbols use lower-case.

• Work partially supported by the Spanish CICYT (project TIC98-0445-C03-02/97 "TREND") and the ESPRIT Work-
ing Group 22457 (CCL-II).

-?!? Perspectives of System Informatics'99

infixr 20 :/:
data expr = val real expr :/: expr

eval : expr —f real
eval (val A) = A
eval (A :/:B) = (eval A)/(eval B)

Fig. 1. Monadic variations of the basic evaluator

Our first example of a program written in Toy may be seen in figure 1. This program is the Toy version
of the evaluator for simple expressions presented by P. Wadler in his article [Wad95], and will be our starting
point in order to compare monads and extensions. The evaluator itself is represented by function eval which
takes an expression E as the only input parameter, and returns the real number resulting from evaluating E
An expression can be either a real number r, represented as val r or a quotient between expressions Cl and e2
represented as d :/:e2. '

In general, each function f in Toy is defined by a set of conditional rules of the form

f ti ...<„ = e <= ey == e[, ..., ek == e'k

where fa ...tn) forms a tuple of linear (i.e. with no repeated variable) constructor terms, and e & e' are
expressions No other conditions (except well-typedness) are imposed to function definitions. Rules have a
condition«1 reading: f h . .t can be reduced to e if all the conditions ex == e[, ...,eh== e'k are satisfied.
The condition part is omitted if k = 0 (as in our previous example eval). The symbol == stands for strict
equality, which is the suitable notion for equality when non-strict functions are considered. With this notion a
condition e -= e' can be read as: e and e' can be reduced to the same constructor term.

Toy can introduce non-deterministic computations by different means, but we only need one of them for
this discussion, namely the occurrence of extra variables in the right side of the rules like in

zJList = [0|L]

Although in this case z_list reduces only to [0|L], the free variable L can be later on instantiated to anv list
Iherefore, any list of integers is a possible value of z_list.

Computing in Toy means solving goals, which take the form

ei == e[, ..., ek == e'k

giving as its result a substitution for the variables in the goal making it true. Evaluation of expressions (required
for solving the conditions) is done by a variant of lazy narrowing based on a sophisticated strategy, called demand
driven strategy which uses the so-called definitional trees [Ant92] to guide unification with patterns in left-hand
sides of rules (see [LLR93]). For instance, using the evaluator defined above we may try the goal:

eval (val 16 :/:val 4 :/:val 1 :/: val 8) == R

which yields R ==0.5.

As an aside, we remark that the current version of our language does not incorporate lambda abstractions

Zt^TnZZT^ er' f Synta£tic
1
facilities are ™* in the functional programming literature, and

we have included them in some of our examples in order to fairly represent the monadic approach. For testing

techSqTes pe^e imPlementation> we ^ ^Pfr needed to 'lift' such constructions using well-known

3 Funcional-Logic monads

W^lL86^^ rSent *? TTlaÜOnS °f the baSiC eValuat0r' followinS the lines of Wadler's paper [Wad95]
We also recall briefly some of the basic concepts concerned with monads, which will be useful when comparing

Caballero R., Löpez-Fraguas F. J. Extensions: A Technique for Structuring Functional-Logic Programs 213

monads and extensions. However, we will not delay very much at this point, assuming that the definition and
usefulness of monads are well-known, and referring to the cited article for a deeper discussion of these issues.

To convert a function f::A -» B to monadic form we change its type to f::A -». m B, meaning that function /
accepts a parameter of type A and returns a value of type B, with an associated computation represented by m.
The structure of the function will be based on the functions unit:: A .-* m A (also known as result) and (*)::m A
-* (A -> m B) -> m B (usually called bind) and indicates how the value B is constructed, avoiding any explicit
reference to the computation m. Only unit and * (and perhaps some auxiliary functions) will 'know' what m is
actually, and how to deal with it. If we want to add some extra capabilities to the original code of / later, we
only need to look for an appropriate data constructor m' that captures the essence of the modification. Then
we redefine the type of the function to f::A -> m' B, define the new versions of * and unit and, perhaps, make
a few local changes in the code of the function itself, but always keeping the same basic structure.

Figure 2 shows two 'classical' variations of the original evaluator.

type state = int

type m A = state —» (A,state)

unit:: A —> m A
unit A X = (A,X)

infixr 30 *
(*): :m A ->■ (A -» m B) -tiB
(*) M K S = let (A.S2) = M S

in K A S2

tick : : m 0
tick X - (O.X+1)

eval:: expr —> m real
eval (val A) = unit A

eval (A :/:B) =
eval A * AR1. eval B * AR2.
tick * A(). unit (R1/R2)

type output = string

type m A = (output,A)

unit:: A —> m A
unit A = ("",A)

infixr 30 *
(*)::m A -+ (A -4 m B) ->■ m B
(X,A) * K = let (Y,B) = K A

in (X++Y.B)

out::output -+ m ()
out X = (X.O)

eval:: expr .-+ m real
eval (val A) = out(line(val A) A)

* A() .unit A
eval (A :/:B) =

eval A * AR1. eval B * AR2.
out (line (A :/:B) (R1/R2))

* AO.unit (R1/R2)

Fig. 2. Monadic variations of the basic evaluator

The first variation, is based on the very useful state monad, taken from [Wad95] and adapted to Toy syntax,
which is used to count the total number of divisions performed while evaluating the expression. The second
variation produces a trace of the evaluation. This last variation uses a function line which produces a step of
the trace and may be defined as:

line T R = "eval(" ++showterm T ++")<== " ++number_to-string R++"\n"

assuming suitable definitions for showterm and number_to.string. The infix operator ++ is the standard function
for concatenation of lists. It can be seen that the basic structure of eval is kept almost unaffected. If We had
modified the initial code directly, this would have been more difficult to achieve.

4 FLP extensions

In the previous section we have sketched how the monadic approach can be adopted in TOy. Now it is time to
present the alternative provided by our FLP extensions.

JLÜ ; Perspectives of System Informatics'99 .

4.1 An informal introduction to extensions /'

The idea of FLP extensions is quite simple, and constitutes itself a good example of mixing the resources of
logic and functional programming:

Suppose we would like to add a new capability of type Cto a given function f::A -» B. Then, all we need
to do is to extend the type of the function to fr.A -> B -> C, meaning that the old returned value is now an
output parameter, while the new value is introduced as the result of the function.

Consider the initial basic evaluator and suppose we want to enrich the capabilities of the function

eval::expr -* real

by associating a new value of type C to the currently returned real number. Then, we extend the function with
the new feature, changing its type to

eval::expr -> real -► C

Of course the definition of eval also needs to be modified, acknowledging that the result of the evaluation is no
longer the result of the function, but an output parameter.

In order to hide the way the values of type C are composed we define a combinator

(*)::C->C4C

Hence the second rule for eval will have the shape

eval (A :/:B) R = eval A R'l * eval B R2 ...

with the values R, Rl,, R2 standing for the result of the evaluation of A :/: B, A and B respectively. The problem
of constructing the new result of the function seems to be solved: eval A Rl and eval B Rl are actual values
of type C related to the 'old' values Rl and R2, and therefore can be combined by using *. If later we change C
by C we only need to change the definition of * but not the basic structure of eval.

However, we still need to associate the value R1/R2 with the result of the evaluation R. This will be performed
by function unit, which must 'identify' R and R1/R2. In order to generalize the definition to other situations
both values R and R1/R2 will be input parameters of unit. The logical way of adding unit to the definition of
eval is simply by using *:

eval (A :/:B) R = eval A Rl * eval B R2 * unit (R1/R2) R

This means that unit should return a value of type C and, since we said above that the result of the functions
was already properly constructed by eval A Rl * eval B R2 , the value of unit must be a truly unit value
with respect to the operation *. Therefore given a unit element e of type C, we can define unit as

unit::real -> real -> C
unit A A = e

where the repeated variable is just a 'syntactic sugar' of

unit A B = e <J= A==B

That is, unit returns e if the strict equality A==B succeeds.' This produces the desired identification between
the result R and R1/R2.

4.2 Extensions of the basic evaluator

The 'extension counterpart' of the monadic variations presented in the previous section may be seen in figure 3
The type C of our discussion is represented respectively by the types trans and output, while the unit elements
are id and " ", where the standard function id is defined as usual:

id X = X

Further details about these examples may be found in section 5.

Caballero R., Lopez-Fraguas F. J. Extensions: A Technique for Structuring Functional-Logic Programs 215

type state = int

type trans = state —> state

unit:: A -+ A — > trans
unit A A = id

infixr 30 *
(*)::trans —¥ trans -^ trans
(*) M K S = K S2 <= M S =«= S2

tick :: trans
tick = (1+)

eval:: expr —^ real —» trans
eval (val A) R = unit A R

I :

eval (A :/: B) R =
eval A Rl * eval B R2 *

unit (R1/R2) R * tick

type output = string

unit:: A —> A -» output
unit A A = ""

infixr 30 *
(*):: output —>■ output —¥ output
M * K = M -H- K

out::output
out = id

eval:: expr —► real —» output
eval (val A) R = unit AR*

out (line (val A) A)
eval (A :/:B) R =

eval A Rl * eval B R2 *
unit (Rl / R2) R *
out (line (A :/:B) R)

Fig. 3. Extensions, of the basic evaluator

4.3 Definition of extension

A FLP extension is a tuple (b, unit, *) where b is an specific type, unit is a function of type A -»• A -¥ b and
definition unit A A = e, e G b, and where * is a function of type b -> 6 -» b such as (e, *) is a monoid.

Now it can be proved easily that the variations of figure 3 are actually extensions. For example, the pair (
" " >++) used in the output extension is known to satisfy the properties of monoids. The proof for the other case
is quite straightforward. Although this definitions lacks the theoretic background of the definition of monad,
the structure of monoid is enough to prove some simple assertions about the functions defined using * and unit
in the same line as that of [Wad95].

5 A comparative survey

So far we have presented two 'classical' variations of the basic evaluator, using both extensions and monads.
Now we can present a first comparative study of the two techniques. In the following points we show some of
the advantages of using extensions that can be checked directly in the examples.

• The definitions of types for extensions are simpler than in the case of monads. Indeed, we do not need to
worry about how to combine the old and the new value, while monads need to define a suitable type constructor
m. For example, in order to add the output trace to the basic evaluator, we have defined the type

type output = string

while the monadic version needs also define

m A = (A, output)

• As a consequence of the previous point, functions unit and * admit simpler definitions. For instance

(*):: output —¥ output -> output
M * K = M ++K

indicates that the result of combining two outputs is the concatenation of both of them. Observe, in particular,
the symmetrical aspect of the type of (*). This definition seems more readable than the monadic variation:

(*) :: m A ->• (A -> m B) ->■ m B
(X,A) * K = let (Y,B) = K A in (X++Y.B)

216 .. - Perspectives of System Informatics'99

• The symmetrical definition of * also entails some practical consequences, as it allows the programmer to
change the order of the combined values. Thus we do not need to end the sequence with a unit expression, as
in the case of monads. For instance, take the second rule for eval in the output monad:

eval (A :/:B) = eval A * AR1. eval B *
AR2. out (line (A :/:B) (R1/R2)) *
A(). unit (R1/R2)

It would better to change the order of unit and out, writing instead

eval (A :/:B) = eval A * AR1. eval B * AR2. unit (R1/R2)
*AR. out (line (A :/:B) R)

avoiding the unnecessary repeated calculation of RI/R2 and separating the side effect from the main computa-
tion, but this is not possible without changing the definition of out. However the definition of * for extensions
allows us to write

eval (A :/:B) R = eval A Rl * eval B R2 * unit (R1/R2) R
* out (line (A :/:B) R)

where R1/R2 is computed only once.

• The separation between the old and the new values also benefits the definitions of auxiliary functions such as
tick or out. For example, as tick must increase the state we need only write

tick = (1+)

instead of the monadic definition

tick X = (0,X+1)

These straightforward definitions also avoid the useless dummy variables and values () that appear in the
monadic definitions.

Of course, extensions have some disadvantages like any other programming technique. We can point out the
following drawbacks:

• Monads are a more abstract technique. They are based upon deep theoretical results and can be applied
to a number of different areas beyond programming, such as type inference or semantics, while extensions are
hitherto just a specific methodology of FLP.
• Some monads cannot be thought of in terms of extensions, because they are not meant to add new values
to a previously given function. For instance, lists may be seen as a monad (see [Wad95]), while they cannot be
defined in terms of extensions.

Therefore, extensions cannot be applied to the same situations as monads. And, can monads substitute
extensions? In Section 6 we will present some applications of extensions that cannot be accomplished by monads,
hence showing that neither of both techniques may be subsumed into the other one. .-■..'

6 Other features of extensions

Extensions and monads look quite similar, but actually they can be used to solve different problems. We have
pointed out in Section 5 some limitations of extensions. Now we are going to show how extensions can be used
in two situations where monads cannot be readily applied. ;

6.1 Avoiding unnecessary computations

Monads (as well as extensions) allow one to increase the capabilities of functions while keeping their basic
structures unaffected. Of course, these extra features also entail extra computation time. The efficiency of the
two techniques is quite similar (both in time and space) when the extra features are computed. However the
situation changes remarkably in the points of the program where still only the old value of the function is
required. This may be specially extreme when dealing with the state monad (or extension).

Imagine for example that we need a variation of the evaluator of expressions that not only computes the
resulting real number but also maintains an ordered list with the numbers that appear in the expression. Such
variation may be seen in figure 4 using monads and extensions

Caballero R., Lopez-Fraguas F. J. Extensions: A Technique for Structuring Functional-Logic Programs 217

type state = [real] type state = [real]

tick :: real -4 m 0 tick :: real -4 trans
tick A S = ((), insert A S) tick A = insert A

eval:: expr -4 m real eval:: expr -4 real -4 trans

eval (val A) = tick A * AO.unit A eval (val A) R = tick A * unit A R
eval (A :/:B) = eval A * eval (A :/:B) R = eval A Rl *

AM.eval B * eval B R2 *
AR2. unit (R1/R2) unit (R1/R2) R

Fig. 4. Evaluator yielding an ordered list, using monads (left) and extensions (right)

with the function insert defined as usual. Functions *, unit and types m A and trans have not been included
for they are those of the state variations we showed before (figures 2 and 3). Here function tick is used to insert
an element in the ordered list, while the initial state is the empty list. For example, using extensions we may
try

eval (val 8 :/:val 4 :/:val 2) R [] == L

which returns the values

R ==4
L== [2,4,8]

However, it is possible that we might still need to evaluate expressions just to get the result, dismissing the
list. In this case, the insertion of all the elements in the list is an unnecessary overweight that should be avoided.
Using extensions this can be done by simply not providing the initial state [] to the goal. Then the result of
evaluating the expression is computed as usual, but the state is returned as a 'chain of actions' not evaluated
yet, as is witnessed by the goal

eval (val 8 :/:val 4 :/:val 2) R == L

that returns

R == 4
L == (insert 8 * id) * ((insert 4 *id) * (insert 2 *id) *id) *id

Thus the actual insertion in the list is not carried out, and we can define a function eval' as

eval' Expr = R eval Expr R ==

Note that this cannot be done by using monads, because the two values, the numeric result and the list are
actually parts of a single value. Effectively, if we do not provide the initial state to the monadic variation, a
goal like

eval (val 8 :/:val 4)

yields an expression of the shape

L == (tick 8 * AO.unit 8) * ARl.(tick 4 * AO.unit 4) *
AR2.unit(Rl/R2)

because functions tick, unit and * cannot be reduced until a initial state is provided. Thus we can either
compute both the result and the ordered list, or neither.

The use of the function eval' whenever the list is not required can speed up the program considerably.
Checked with a expression of 300 numbers, we have found out that the differences of time between eval' and
eval using extensions, can vary from 0'38s to 5'10s. And, despite the big chain of insert and id functions that
eval' must construct, the space required is also less than in the case of actually performing the insertions with
eval.

218

6.2 A parser for free

Consider the boolean expressions defined as

Perspectives of System Informatics'99

infixr 20 : /\:
inf ixr 15 : \/ :

data expr = val bool | expr : /\ : expr | expr : \/ : expr

Suppose that we decide to define a evaluator evalb for this expressions, returning not only the result of the
evaluation, but also a suitable representation of the expression. The code for such function may be seen in the
figure 5, using monads (left side) and using extensions (right side), and is a simple application of the output
feature presented before.

evalb:: expr -» m bool

evalb (val A) = out (conv A)
A _. unit A

evalb (A : \/ : B) =

out "(" * A(). evalb A *

A Rl. out " or " * A().
evalb B * AR2. out ")" *
AO. unit (Rl 'or' R2)

evalb (A : /\ : B) =
out "(" * A(). evalb A *
A Rl. out " and " * AO.
evalb B * AR2. out ")" *
A(). unit (Rl 'and' R2)

evalb:: expr —> bool —► output

evalb (val A) R = out (conv A)
unit AR

evalb (A : \/ : B) R =
out "(" * evalb A Rl *
out " or " *
evalb B R2 *
unit (Rl 'or' R2) R * out ")"

evalb (A : /\ : B) R =
out "(" * evalb A Rl *
out " and " *
evalb B R2 *
unit (Rl 'and' R2) R * out ")"

]
Fig. 5. Boolean evaluator with output, using monads and extensions

defiSdCaTnS °r 3Bd "^ ^ defined M USUaI ^ funCti0nal P^Sramming, while function conv may be easily

conv true = "T"
conv false = "F"

For example, using the monadic variation, we may try

evalb (val true : /\ : (val false : \/ : val true)) == R

which returns

R == ("(T and (F or T))» , true)

fflr^3^^rd,M!Siy •! ?W exPress!ons usinS the «ew variation, we decide that representations
like (T and (F or T)) are definitely nicer and more readable than

evalb (val true : /\ : (val false : \/ : val true))

Vn^lZt Tf hke t0 defin,e a Ti1011 °f 6Valb aCCepting StrinSS «anting expressions as input parameter
Does it mean that now we need to define a parser for boolean expressions? The answer is no, if we use extensions

SÄ^Ä^Ä^ SWd ^ a**™ « ~ - - - • P- withouTSng

evalb Expr R == "(F and (F or T))"

 Caballero R., Lopez-Fraguas F. J. Extensions: A Technique for Structuring Functional-Logic Programs '219

which succeeds with

Expr == val false :/\ : (val false : \/: val true)
R == false

This nice outcome of extensions is an example of the generate & test techniques, very usual in logic programming.
Therefore, ours is actually a recursive top-down parser of the grammar rules expressed in evalb by means of
output (for terminals) and recursive calls of evalb (for non-terminals).

But, why is it not possible to use the monadic variation in this case? It is due to the combination of the
string representation and the output value, which is a free variable. For example, the goal

evalb Expr == ("(F and T)",R)

loops. We must recall that strict equality does a 'careful matching' as we showed before. In the example, this
means generating the outer constructor of both " (F and T)" and R by means of evalb Expr. But getting an
outer constructor for R entails generating a whole expression, and by using the second rule of evalb, infinite
expressions may be generated. These expressions, all of which have an or in their representations, when finally
compared with (F and T), fail.

7 Conclusions

We have shown throughout this paper that extensions are a suitable mechanism to solve a number of problems
when working in a functional-logic language. Although lacking the deep theoretical background of monads,
extensions can be used as an alternative to define easily reusable code. The concepts used are simple, and were
already known in each declarative paradigm, such as the use of arguments in logic programming to return
output values, or the definition of higher order combinators (e.g. *) in order to connect different computations
in sequence. The novelty of our approach is that it combines techniques of both main declarative streams,
yielding a new mechanism that allows us to address problems, as the addition of new features to functions, in
a simple and appealing way. Specifically, extensions avoid the necessity of lambda abstractions, provide a more
symmetric definition of the combinator * - from the point of view of types - and lead to nicer and more natural
definitions of types and auxiliary functions.

In spite of all the resemblances, extensions and monads are different techniques, each one with its own
particularities and limitations. An advantage of extensions is that they provide functions with the possibility
of multiple modes of use, therefore defining functions that can be reused in a wider sense than in the case of
monads. Another advantage is that the state extension allows one to dismiss the stateful computations whenever
they are not interesting, hence saving both time and space.

References

[AEH94] S. Antoy , R. Echahed, M. Hanus. A Needed Narrowing Strategy. 21st ACM Symp. on Principles of Programming
Languages, 268-279, Portland 1994.

[Ant92] S. Antoy. Definitional Trees, In Proc. ALP'92, Springer LNCS 632, 1992, 143-157.
[CLS97] R. Caballero-Roldan, F.J. Lopez-Fraguas and J. Sanchez-Hernandez. User's Manual For Toy .

Technical Report D.I.A. 57/97, Univ. Complutense de Madrid 1997. The system is available at
http://mozart.sip.ucm.es/incoming/toy.html

[GH+96] J.C. Gonzälez-Moreno, T. Hortalä-Gonzälez, F.J. Löpez-Fraguäs, M. Rodriguez-Artalejo. A Rewriting Logic
for Declarative Programming. Procs. of ESOP'96, Springer LNCS 1058, 156-172, 1996. (A extended version to
appear in the Journal of Logic Programming). '

[Han94] M. Hanus. The Integration of Functions into Logic Programming: A Survey. J. of Logic Programming 19i20.
Special issue "Ten Years of Logic Programming", 583-628, 1994.

[Han98] M. Hanus (ed.). Curry, an Integrated Functional Logic Language, Draft, February 1998. Available at
http://www-ir.informatik.rwth-aachen.de/ hanus/curry/report.htlm

[HAS97] Report on the Programming Language Haskell: a Non-strict, Purely Functional Language. Version 1.4, Peterson
J. and Hammond K. (eds.), January 1997.

[LLR93] R. Loogen, F.J. L6pez-Fraguas,M. Rodriguez-Artalejo. A Demand Driven Computation Strategy for Lazy Nar-
rowing. Procs. of PLILP'93, Springer LNCS 714, 184-200, 1993.

[Llo95] Lloyd, J.W. Declarative Programming in Escher. Technical Report CSTR-95-013, Departament of Computer
Science, University of Bristol, June 1995.

[Pey87] S.L. Peyton-Jones. The implementation of functional languages, Prentice Hall, 1987.

220 ■ Perspectives' of System Informatics'99

[PW87] S.L. Peyton-Jones, P. Wadler. Imperative functional programming, 20 Annual Symposium on Principles of
Programming Languages, Charleston, South Carolina, 1993.

[Wad90] P. Wadler. Comprehending Monads, Proc. ACM Conf. on Lisp and Functional Programming, 1990.
[Wad92] P. Wadler. The essence of functional programming, Proc. ACM conference on the Principles of Programming

Languages, pages 1-14, 1992. -
[Wad95] P. Wadler. Monads for functional programming. In J. Jeuring and E. Meijer editors, Lecture Notes on Advanced

Functional Programming Techniques, Springer LNCS 925. 1995

Database Programming

Current Directions in Hyper-Programming

R. Morrisont, R.C.H. Connor11, Q.I. Cutts11, A. Dearie*,

A. Farkas+, G.N.C. Kirbyt, R. McGettrick* & E. Zirintsist

'School of Mathematical and Computational Sciences,
University of St Andrews, North Häugh, St Andrews, Fife, KY16 9SS, Scotland

{ron, graham, vangelis}@dcs.st-and.ac.uk
'Department of Computer Science, University of Glasgow,

Glasgow G12 8QQ, Scotland
{richard, quintin}Sdcs.glasgow.ac.uk

; *Department of Computing Science and Mathematics,
University of Stirling, Stirling, FK9 4LA, Scotland

. {al, rmc}@cs.stir.ac.uk
+Vision Systems Ltd,

Adelaide, S.A., Australia
Alex.Farkas@vsl.com.au '•

Abstract. The traditional representation of a program as a linear sequence of text forces a particular style of program
construction and development. Tools such as editors, compilers, linkers and file managers are required to translate
and execute these linear sequences of text. At some stage in the execution sequence the source text is checked for
type correctness and its translated form is linked to values in the environment. When this, and any other form of
program checking, is performed early in the execution process confidence in the correctness of the program is raised
During program execution, other tools such as symbolic debuggers and run-time browsers are used to inspect the
running state of programs. Relating this run-time state to the linear text is often problematical.
Within our research into persistent systems we have developed a technique that allows the persistent environment to
participate in the program construction and development process. The technique allows the representations of source
programs to include direct links (hyper-links) to values, including code, that already exist in the environment. By
analogy with hyper-text, where a piece of text contains hyper-links to other pieces of text, this source representation
is called a hyper-program.
Hyper-programming achieves our two objectives of being able to link earlier than before, at program composition
time, and through the use of hyper-links to values in the environment to represent sharing and thus closure and
through this the run-time state of a program. This paper reviews our work on hyper-programming, discusses the
advantages of the technique and proposes some current research areas. These include presenting a single
representation of data and code throughout the software process; adapting hyper-programming to persistent contexts
that do not enforce referential integrity, such as the WWW; and implementing and using hyper-programming in
standardised languages and inter-operability mechanisms.

1 Introduction

Figure 1, taken from [MCC+95], shows an example of a Napier88 hyper-program. The program source, which is
itself a persistent object, comprises text and hyper-links to other objects in the persistent store.

The first hyper-link is to a persistent first-class procedure value writeString which writes a prompt to the user. The
program then calls another procedure readString to read in a name, and then finds an address corresponding to that
name. This is done by calling a procedure lookup to find the address in a table data structure linked into the hyper-
program. The address is then written out. Note that the code objects {readString, writeString and lookup) are denoted

222 Perspectives of System Informatics'99

using exactly the same mechanism as data objects (the table)1 and all of these are external to the hyper-program but
within the persistent environment.

persistent store

procedure

writeString

~J ("enter nane: ")

let name = C~~^_) ()

let address =f_

^("address

C_~~~) (addre ss

is: ")

QlookupJ)

J, name)

procedure

Figure 1. A Napier88 Hyper-Program

A requirement for hyper-programming is the presence of an external value space to which bindings can be
constructed during program composition. The external source may be provided by a persistent store, a file system or
any other mechanism such as the WWW. No matter which external source is used, a fundamental change in the nature
of the source program has taken place since it now contains both text and hyper-links to values in the environment. This
non-flat representation of the program source challenges our traditional notions of what constitutes a computer program.
The reason for the name hyper-program is the analogy with hyper-text which is also non-flat and contains both text and
hyper-links to other hyper-text.

The major issue in building hyper-programming systems concerns the semantics of the hyper-links, such as:
• what can a hyper-link refer to?
• what guarantees can be made about a hyper-link's referent data?
• how are hyper-links typed and when does type-checking occur?

The degrees of freedom regarding what a hyper-link can refer to depend upon the programming language
semantics and the measure of openness is the system. Normally hyper-links will be able to refer to all language first
class values values. Second class entities, not in the value space such as types, may also be conveniently hyper-linked
dependmg on the flavour of the language. Update may be accommodated through hyper-links by linking to locations
which may or may not be first class values. More interesting is the extent to which hyper-links may refer to values
created independently of the system, such as Web pages and DCOM objects. Furthermore the open-ness of the system
can be extended by making the hyper-program representation open for other tools to manipulate.

Referential integrity in a hyper-programming system means that once a hyper-link is established it is guaranteed by
the system to exist arid to be the same value when the hyper-link is executed. While this guarantee may be provided by
a strongly typed persistent object store, it may also be expensive to provide in a distributed system. Variations therefore
include the hyper-link being valid but not necessarily referring to the original value, and the hyper-link referring to a
copy of the original. This may only be a problem where object identity is important such as in sharing semantics A
hyper-program may therefore display a range of failure modes from not failing to failure from the hyper-link beine no
longer valid. &

The final issue is how hyper-links are typed, if at all. We will assume that for the present that they are The
mteresting aspect of type checking is that the contract between the program and the referenced value may now take on a
different agreement procedure. Instead of the program asserting the type of the hyper-link and the type checking system
ensuring that the hyper-link has the correct type when it is used, the reverse may be used. That is the hyper-link knows
its own type and therefore when it is used the program can be made to confonn to this type. Statically this removes the
need for type specifications for hyper-links in hyper-programs and dynamically it means that the program mav be in
error rather than the hyper-link. , J

LmtticsoShe S^SS !n thJS deSCriPti0n °f the hyPer"'inkS haV£ been aSS0Ciated With the °bJeCtS f0f Clarity °n,y' and m n0t P^ of the

Morrison R. et al. Current Directions in Hyper-Programming 223

This paper reviews our work on hyper-programming, discusses the advantages of the technique and proposes some
current research areas. These include presenting a single representation of data and code throughout the software
process; adapting hyper-programming to persistent contexts that do not enforce referential integrity, such as the WWW;
and implementing and using hyper-programming in standardised languages and inter-operability mechanisms.

2 Motivations & Previous Work

Our work on hyper-programming is motivated by a belief that programming language systems could provide better
support for the software engineering process than they do at present. In particular, consider the traditional compose-
compile-link-execute cycle of program development as illustrated in Figure 2.

process g—^tnnl | conceptual form I I interchange form

/ denotes optional

Figure 2. The Traditional Compose-Compile-Link-Execute Cycle

In precis, a program is composed using a text-editor; compiled using a compiler, which may also link in other
source text; linked with other pre-compiled code; and finally executed where it may link to persistent data such as files.
During execution, other tools such as symbolic debuggers and run-time browsers may be used to inspect the running
state of the program. Thus there are four main processes: composition, compilation, linking and execution each with
their appropriate tools such as text-editors, compilers, linkers, debuggers and browsers. Each tool operates on a
particular translated version of the program such as source text, object code or executable code.

There are two obvious questions that may be asked about the compose-compile-link-execute cycle. They are:
• why are there so many processes and translated forms of the program? and
• what level of detail should the user see?

For the systems programmer the processes and translated forms provide the necessary level of control over the
cycle. The translated forms allow common tools, such as optimisers, to be used even where the original forms are from
disparate sources. The processes are necessary for manipulating the translated forms.

From the applications programmer's point of view, the processes and translated forms often constitute noise in the
execution cycle and a distraction from the task of constructing the system. Modern programming environments, such as
Code Warrior [Met99], attempt to hide this level of detail from the applications programmer. Hyper-programming is a-
further step in this direction and the paper explores how effective the concept can be in different environments.

2.1 Constructing Hyper-programs
The primary motivation for hyper-programming is to allow the user to compose programs interactively [FDK+92,

KCC+92], navigating the environment and selecting data items, including code, to be incorporated into the programs.
This removes the need to write access specifications for extant data items that are used by a program. For example, in a
file system it may be a path name, and in a persistent object store it may be a path to an object from a root of
persistence.

Our first attempts at constructing a hyper-programming system were conducted in the Napier88 persistent

224 Perspectives of System Informatics'99

programming environment. The strongly typed persistent object store guaranteed referential integrity of the hyper-links.
Existing languages that allow a program to link to persistent data items, including files, at any time during its execution
require it to contain code to specify the access path and type for each data item. The access path defines how the data is
found by following a particular route through the persistent store starting from a root of persistence. The type specifies
the expected type of the data at that position. When a program is compiled the compiler checks that subsequent use of
the data is compatible With this expected type. When the program is executed the run-time system checks that the data is
present at the declared position and that it does have the expected type.

This mechanism gives flexibility because a program can link to data in the store at any time during its execution.
However in many cases the programmer knows that a particular data item is present in the store at the time the program
is written and the programming system could obtain all the information in the access specification by inspecting the
data item at that time.

In a hyper-programming system the programmer has the option of linking existing data items into a program by
pointing to graphical representations rather than writing access specifications. There are two advantages to this early
composition-time linking. Firstly, errors that may occur in programs due to the access specification being invalid at the
time of execution are completely avoided. This may occur where the store topology has changed and the access path no
longer exists, even if the object does; where the object has been deleted; or where the object has been replaced by one of
a different type. In all cases the contract between the program and the persistent store has been broken and the program
may not execute safely.

In the hyper-programming system the hyper-link is direct to the object and is guaranteed to be valid, at the time of
the program execution, by the persistent store's referential integrity. Thus if the topology of the store changes, the link
will still be valid; the object may not be deleted since the hyper-program still has access to it; and it may not change its
type.

Figure 3 shows an example of the user interface that mjght be presented to the user by a hyper-program
editing/browsing tool. The editor window (top-left) contains embedded buttons representing hyper-program links; when
a button is pressed the corresponding object is displayed in a browser window (lower region).

Figure 3. User Interface to a Hyper-Program Editor

The hyper-links to persistent values are placed in the hyper-program by selecting each value with the store
browsing tool and then pressing the Link button. In Napier88, the system asks the programmer whether to link the
program to the value itself or to the store location that currently contains the value. The editor then inserts the link at the
current text position, represented by a light-button.

 Morrison R. etal. Current Directions in Hyper-Programming 225

2.2 Safety and Efficiency /
Hyper-programming can provide improved safety in several ways. One of these is that it allows some program

checks to be performed earlier than normal, subsequently giving increased assurance of program correctness. This is
possible because data items accessed by a program may be available for checking before run-time. Referential integrity
then ensures that the checked data remains available at run-time.

Checking can be performed at several stages in the program development process in existing systems, the
principal opportunities are at compilation-time when a program is translated into an executable program, and at run-
time when the executable program is executed. Categories of checking include checking programs for syntactic
correctness and type consistency, and checking persistent data access.

2.2.1 Checking Persistent Data Access

In conventional strongly typed persistent systems a program contains an access specification for each persistent
data item used. These access specifications are checked at run-time: at that time the system verifies that each data item
is present in the store, with the previously declared access path and type.

A program execution will fail if the store does not contain a route to a data item corresponding to the access path
specified in the program. Thus even if it is known at the time of writing that a particular program will execute correctly,
it cannot be predicted when it may fail on some future execution.

The use of hyper-programs as source representations allows the checking of access specifications to be performed
before run-time. Each link in a hyper-program denotes a data item that exists in the store at the time the hyper-program
is composed. The process of checking the access path is moved from run-time to program composition time. The access
path is established incrementally as the programmer manipulates the graphical representations of the data in the store to
locate the required data item. Once the path has been established the data item at the end of it is linked into the hyper-
prögram and the path need not be followed again at execution time. The hyper-program will be unaffected if the access
path is then removed.

The access path part of the access specification is established during hyper-program composition. The other part,
the type specification of the data item, is checked when the type consistency of the hyper-program is verified at or
before compilation-time. The system checks that the type of the data item denoted by the link is compatible with the use
of the link in the program.

Creating direct links from a hyper-program to values in the store, with the attendant safety benefits described
above, is only applicable where values are present in the store at hyper-program composition time. Added flexibility can
be gained by using links to denote mutable locations in the store. Linking a location into a hyper-program involves the
same processes as for linking a value, with the difference that the value associated with the link changes when the
location is updated. Updates to the location may occur at any time after the composition of the hyper-program. Strong
typing ensures that the type of any value assigned to a location is compatible with the type of its original contents. This
allows the type checking of persistent locations to be performed at compilation-time. The values in locations associated
with the links in a hyper-program can vary but their types will always remain compatible. Where a link denotes a
location, that location is linked directly into the executable program produced from the hyper-program, so that updates
to the location also affect the executable program.

2.3 Experience
The benefits of hyper-programming described in [FDK+92, KCC+92, MCC+95] may be summarised as:

• being able to perform program checking early
• support for source representations of all object closures
• being able to enforce associations from executable programs to source programs
• availability of an increased range of linking times
• increased program succinctness ■
• increased ease of program composition

3 Current Work

3.1 Options for Further Development
Hyper-programming as described in the previous section is implemented in Napier88 [MBC+96] and using a

persistent form of Java, PJama [ADJ+96]. Both implementations are based on the use of a closed-world, single-
language, programming environment. The principle advantage of this is the degree of control that can be exercised over
the data and code within the environment. In particular, a type system can be enforced over the entire lifetime of the

226 Perspectives of System Informatics'99

data and code, and referential integrity can be guaranteed by the environment implementation. Thus, once established, a
reference between two components will never become accidentally invalid.

The use of such an environment offers various benefits, as discussed previously, at the cost of limiting flexibility.
There are thus two main avenues for further development of the hyper-programming concept:

• to further pursue the benefits of using a closed-world system, accepting the limitations that this implies; and
• to investigate how far the closed-world restrictions may be relaxed to increase flexibility, while retaining at least

some of the original benefits of hyper-programming.
Sections 3.2 to 3.4 describe three areas of research based on a closed-world platform: hyper-code, in which a single

uniform representation of code and data is presented throughout the programming life-cycle; support for application
evolution based on tracking relationships between system components using referential integrity; and statically
checkable dependant types. Some other areas in which a closed-world could be exploited, although not discussed
further here, include:

• version control, configuration management and documentation systems [MCC+95]; and
• debugging, profiling and optimisation [CCK+94b].

Sections 3.5 and 3.6 examine two ways in which the hyper-program platform constraints may be usefully relaxed:
constructing programs over an unreliable network such as the World Wide Web; and hyper-programming using
commercially significant languages and inter-operability standards, such as C++ [Str86], CORBA rOMG981 DCOM
[Mic96]etc.

3.2 Hyper-Code

One of the original motivations for persistent programming was to remove the conceptually unnecessary
distinction between short-term and long-term data [ABC+83]. This was followed by the recognition that code and data
can usefully be treated in a uniform way [AM85]. Hyper-programming itself involved a further unifying step in which
source programs themselves became persistent data, along with the compilers, editors and other tools with which they
were manipulated [KCC+92]. There has thus been a progression of attempts to encompass ever more of the disparate
entities that comprise a Persistent Application System (PAS) within a unified framework.

Visual interaction with persistent data, such as that provided by generic object browsing systems [BOP+89, Coo90,
DB88, GR83, KD90, OHK87, ZDK+99], has proved to be a convenient and natural way for database users to address
informal queries over the contents of a database. The users of such tools can browse freely around the data structures
and values of a database, avoiding the necessity to write down algebraic expressions to perform the equivalent accesses.
Where appropriate it is also possible to perform updates or invoke more complex methods over the objects depicted on
the screen. Such tools are greatly preferred to a traditional query-based approach for simple queries and updates to
persistent data such as held in object-oriented databases.

The advantages of this style of access are comparable to the advantages of a modern iconic operating system
interface over a traditional command-line based approach. In addition, however, a more general programming algebra is
required so that more complex and longer-running queries may be handled. This rather frustratingly gives rise to two
quite separate mechanisms for manipulating the same values within a system, with the choice of mechanism being
somewhat arbitrary for tasks in the middle ground between trivial and complex.

Current work on hyper-code aims to complete the progressive integration of PAS entities [CCK+94c], by
presenting the programmer with a single representation form for all code and data throughout all stages of the
programming process. These stages include at least object store browsing, program construction, execution, debugging
and maintenance. The single representation form is based on source code, the argument being that all other forms of
code and data are used for pragmatic implementation-driven reasons, rather than being conceptually necessary. Since
the representation must be able to accommodate closures, by necessity it is a hyper-program form that can include direct
links.

Hyper-code provides the basis for a new style of editor that includes three unifying concepts, the combination of
which makes the editor the only mechanism that is required for interaction with the database system. The three
important unifying concepts are:

1. Data of any type supported by the system may be browsed and edited in a uniform manner. This includes a
uniform treatment of procedure closures; a drawback of previous browsers is that they could not adequately
handle procedures.

2. Source code is treated not as a fundamental building block within the programming system, but instead as a
transient text-based view of a value. The source does not have a conceptual permanent existence within the
system, but is apparently generated from any value that may be browsed.

3. As a further consequence of the generic treatment of procedure values and source code, the artificial distinction
between source and executable values within a running system is completely removed.

The major difference between this and other browsers is therefore in the uniform treatment of the executable and

Morrison R. etal. Current Directions in Hyper-Programming 227

source code forms of procedures, and hence programs. Furthermore, the manipulation of code made possible by the
unification strategy is sufficiently general to subsume the usual process of program editing, compilation and linking
which is normally associated with the manipulation of code bodies within a system. In constructing a program, the
programmer writes hyper-code. During execution, during debugging, when a run time error occurs or when browsing
existing programs, the programmer is presented with, and only sees, the hyper-code representation. Thus the
programmer need never know about those entities that the system may support for reasons of efficiency, such as object
code, executable code, compilers and linkers. These are maintained and used by the underlying system but are merely
artifacts of how the program is stored and executed, and as such are completely hidden from the programmer.

A consequence of the above is that the hyper-code editor is the only interfacing tool required to perform queries of
any complexity against the database, or to introduce new data and program to it. The programmer may thus concentrate
on the inherent complexity of the application rather than on that of the support system.

3.2.1 Hyper-Code Operations

The previous hyper-programming implementations in Napier88 [Kir92] and Java [ZDK+99] approach this ideal,
but fall short in two ways. Firstly, the programmer is aware of a distinction between the source and compiled versions
of code entities; and secondly, code and data entities are manipulated differently, using an editor and an object browser
respectively. Hyper-code removes these distinctions. In the first case, the occurrence of system activities such as
compilation and linking is hidden, since they are implementation details—the view presented to the programmer is one
of source level interpretation. In the second case, all interaction with the hyper-code system is via a single hyper-code
editor that fulfils the functions of both the browser and editor in the previous systems. The hyper-code editor supports
only the following operations:

• evaluate: this executes a selected fragment of hyper-code and returns the result, if any, as a new hyper-code
fragment; ,/.

• explode: this expands a selected link in a hyper-code fragment to show more detail, which is itself expressed in
the form of hyper-code;

• unexplode. this contracts an exploded link back to its original form;
• edit: this includes all conventional editing facilities;
• get root: this returns a selected persistent root, as a hyper-code fragment.

When composed, these operations are sufficient to support all program construction, execution and persistent
object browsing activities. Note that various system activities are implicit in the operations. For example, the
implementation of the evaluate operation involves syntax checking, compilation and invocation of the selected code
representation.

The semantics of the hyper-code operations can be defined in terms of four abstract operations, which are reflect,
reify, execute and transform. As shown in Figure 4, these operate on two distinct domains: the domain of persistent
hyper-code entities and the domain of hyper-code representations. The former domain contains all of the first class
values defined by the programming language, together with various non-first-class entities for which it may be useful to
have representations, such as types, classes and executable code. Only the latter domain, that of hyper-code
representations, is made explicit to the programmer.

Hyper-Code Entities Domain

Reflect

Hyper-Code Representations Domain

Ä- ^^ ^^P — ■=-
2__=r-

fe. \ V
Reify . > hyper-code

representation

Execute [Transform *

Figure 4. Hyper-code Domains and Abstract Operations

The reflect and reify abstract operations simply map between the hyper-code entities and their representations.
The execute operation takes place within the hyper-code entities domain: it involves the execution of an executable
entity, potentially with side-effects on the domain. Correspondingly, the transform operation takes place within the
representation domain, involving the manipulation of hyper-code representations. The hyper-code operations can be
understood in terms of the abstract operations as follows:

• evaluate first reflects a hyper-code representation to a corresponding hyper-code entity. If that entity is

228 Perspectives of System Informatics'99

executable it is executed. If the execution produces a result entity, or if the original entity is non-executable, that
entity is reified to produce a result representation.

• explode and unexplode both reflect a hyper-code representation to a corresponding hyper-code entity, and then
reify that entity to produce a more or less detailed result representation, respectively.

• edit involves transformation of an existing or null hyper-code representation into a new representation.
• get root involves reification of a hyper-code entity to produce a representation.

It should be stressed that the abstract operations are purely definitional: only the hyper-code representations
domain and the hyper-code operations are visible to the programmer;

3.2.2 Hyper-Code Representations

The operations and domains described in the previous section may be applied to an implementation of hyper-code
in any suitable language. The precise form of the hyper-code representation (HCR) will vary depending on the syntax of
the chosen language, but will be guided by the following criteria that will apply for alllanguages:

• The HCR must accommodate new programs written in the normal way. This implies that the representation must
include pure text as a special case.

• The HCR must support hyper-program links, for the reasons already discussed.
• The HCR must support detailed views of linked entities, to arbitrary levels of detail, in order that the hyper-code

editor may subsume the functions of an object browser.
• Since there must only be a single HCR, the detailed views of entities must themselves comprise text and hyper-

program links in the same form as could be constructed by the programmer.
• Furthermore, the detailed views should be self-contained and syntactically valid. Thus, for any detailed view of

an entity, it should be possible to copy its representation, paste this into a new window, and evaluate it without
error. The result of this evaluation will depend on the semantics of the language.

Currently we have designed HCR forms for PJama and ProcessBase2, and we are in the process of implementing
them. Figure 5 shows an example in ProcessBase, in which unexploded links to values are denoted by rounded white
rectangles, and unexploded links to types by rounded black rectangles. Exploded links are denoted by shaded
rectangles, with the internal details depending on the particular entity. The example shows the definition of a procedure
newPerson, which takes a name and an age as parameters, and returns a view (record) containing them and a unique id
number. The id is obtained by calling another procedure to increment a shared location, and then dereferencing that
location.

lot newPerson <- fun (newName : string , newAge : iinW') ->

begin
view [name- ; string ; age, id :

wmMi loo (()) := 'O 1 0

view (name <- newName; age <- newAge; id <- '()]
end

Figure 5. Example of Hyper-Code Representation in ProcessBase

Our current HCR design for PJama is similar to that in Figure 5, although it is less elegant due to the relatively
high number of non-first-class entities to which it must support iinking (methods, array elements, fields, types classes
and interfaces—compared with only types in ProcessBase).

3.3 System Evolution

Hyper-programming is also the basis for providing new solutions to the problem of schema editing which requires
location and translation of affected queries and data [CCK+94a]. The essential elements are at hand in the hyper-
programmmg, system. The schema may keep a record of which programs (queries) and data are associated with
particular parts of the schema via secure links. The programs always have hyper-program source and therefore source
code and data translation is possible.

The schema evolution mechanism transforms the programs and data affected by a schema edit. This is achieved as
follows:

• Locate, from the schema, all affected programs and data.
• For each program which may be affected, obtain its hyper-program.

2 A simple persistent language being developed as part of the Compliant Systems Architecture project [MBG+99a, MBG+99b].

 Morrison R. etal. Current Directions in Hyper-Programming 229

• Locate the points in the hyper-program which access the changed part of the schema and edit the hyper-program
to reflect the hew logical schema structure. This will involve establishing new links both to and from the
changed part of the schema.

• Update the old program With the new one.
• Update the affected data with new versions.
The extent to which this process can be automated depends upon the complexity of the schema change incurred.

The essential point is that all interrogation and manipulation of schema, program and data occurs within a single
integrated environment, and may therefore be represented as a meta-level program within that environment.

The mechanism relies heavily upon the self-contained nature of the persistent environment. As all the data and
code is held in the same environment as the schema, it is possible to keep not only links from the schema to the data it
describes but also reverse links from the schema to programs which bind to particular points of it. The hyper-
programming concept makes it possible to map between executable and source representations. The fact that these
representations are themselves values within the persistent environment, along with the provision of a compiler in the
Same environment, makes this strategy possible.

3.4 Dependent Types
In addition to data access checking as described in Section 2.2.1, language systems also perform other kinds of

checking at run-time, some of which can be performed earlier in a hyper-programming system. An example of this is
dependent type checking [CAB+93]. '','-".

A dependent type is a type that depends on a value. In general this requires dynamic type checking. To determine
whether two dependent types are compatible, the language's type checker takes account of the associated values as well
as their structure. An example of a dependent type is the generic type map [ALP+91], instances of which are asso-
ciations between sets of values. The type of a particular map is dependent on the identity of the procedure that defines
equality over the key set. Because of this it is not generally possible to type-check at compilation-time a program that
contains map operations, as the map values themselves must be tested.

In a hyper-programming system the value on which a dependent type depends may be linked directly into a
program, and may thus be available for checking at compilation-time. This makes it possible for the system to check
operations on dependent types at compilation-time rather than planting code in the executable program to perform the
checking at run-time. The system may also provide tools that allow the programmer to verify the type compatibility of
selected values before they are linked into the hyper-program.

More generally the programmer may perform arbitrary checks on data values before linking them into a hyper-
program, by writing and executing other programs that compute over them. If the checks succeed, the code that
performs the checking can then be omitted from the main hyper-program, since the links to the original values are
guaranteed to remain intact.

3.5 Internet Programming
The potential association between the concept of hyper-programming, and the Web, is obvious. The source format

of hyper-programs is similar to hyper-text, and the Web provides a well-known hyper-text system over the global
autonomous network. The clear appeal, therefore, is to somehow extend the paradigm to make it work in this context.

This appeal, however, is fraught with serious technical difficulty, and it would be over-ambitious and pre-emptive
to attempt to document it fully in this paper. We therefore restrict the discussion to an elaboration of the problems
involved, and outline strategies which we believe may eventually provide solutions.

Problems exist in the following categories:
• how can program source be represented?
• how can typed data be integrated with the http protocol?
• how could data deriving from other web sources be integrated in a typed computation?
• how can the potential failure of references be made tolerable?

3.5.1 Program Source

To be properly compatible with the Web, it is necessary to represent hyper-programs in HTML. In hyper-
programming prototypes, program source is represented in a proprietary format, manipulated only by specially written
editor/browser software. This allows the presentation of the program source to the programmer to be strongly associated
with the programming language definition. It should be mentioned that one of the known (and unsolved) problems of
hyper-programming is how standard language treatments, such as the definition of typing and semantics, can be applied
to a non-text-based program representation. In the context of the Web, however, a solution to this problem is forced.
The presentation of an HTML document to a user is a significant abstraction over its textual representation. The
meaning of a hyper-program should clearly be based on the programmer's view: the problem is therefore how the

™ Perspectives of System Informatics'99

meaning of a program can be defined when the textual representation of the source is different from this view
Two approaches to overcome this problem are based on the definition of a two-level programming algebra and the

use of linguistic reflection as a language definition technique. This approach is based upon the use of compile-time
reflection, as defined in [SFS+90]. A subset of HTML is defined as the core programming algebra, making it relatively
straightforward to define the semantics of both standard language features and hyper-links within programs A hyper-
text based view of programs, as presented to the programmer in both specialist program editors and standard browsers
can be defined (using the terminology of [SSS+98]) as a reflective sub-language, which is used to generate the HTML-
based textual form during static analysis by the programming system. The same treatment may be extended to give a
consistent definition of the implicit transformation of free variables,-as performed by the Napier88 hyper-programming

Using linguistic reflection as a definitional framework gives a well-defined formal framework in which hyper-
programs can be described using relatively conventional definition techniques. Furthermore, and this is indeed the main
motivation, it gives a framework wherein the core definition of hyper-programs is indeed text-based, thus allowing their
transportation around the various text-based protocols of the Internet, without resorting to ad-hoc translation techniques.

3.5.2 Typed Data

Given a persistent programming language which can be used to program over embedded URLs, the next step is to
consider how a URL can be used to refer to typed data, even supposing that the URL refers to data generated by the
same programming system. The problem in turn decomposes into three further issues, These are:

• unifying the global persistent namespace with those namespaces used in the Web;
• unifying the representation of the typed persistent data with that commonly used on the Web, namely HTML;
• introducing type system primitives which allow the integration of remote, unreliable, and autonomous data with

an otherwise static type system. '.'■'' '

3.5.3 Importing Data

The foil potential of a web-based hyper-programming system would only be met if it were possible to include links
to data which had been generated by some system other than the particular programming language in use Once again
mis is an enormous issue and can not be addressed in this short space. There are two simple solutions: the first is to read
the data as text or MIME, and restrict the typing of such links according to its transmitted classification. This results in a
type safe language but does not really address the spirit of the problem. The other simple solution is to publish the
format used for the system's own typed data, and ensure it is possible to generate that externally. Once again this is not
really a solution to the problem.

The more ambitious goal is to attempt to analyse arbitrary data resulting from an http request for appropriate
structural content and, if it is suitable, integrate it into a typed computation. The outline of our approach is for the
programmer to specify a required type for the binding during the composition process. The URL is duly fetched and
translated into a semi-structured format according to a number of ad-hoc rules, probably also governed by the
programmer Having achieved a semi-structured representation of the data, the programmer's asserted type is used to
derive a subset of the data which corresponds to the same structure. This data is extracted and incorporated into the
ongoing computation. An estimation of how well the data fits the expected type is also generated, and may be either
returned to the user of the program or used within the running program.

Although we have evidence that the outline given above is possible to engineer, and furthermore gives a viable and
understandable programming system, each of the steps described presents its own major problems and the production of
such an integrated programming system is still beyond current understanding.

3.6 An Open C++/DCOM Hyper-programming Environment

In this section we report on an attempt to apply the hyper-programming model in the context of an open system
We chose a DCOM/C++ system for the experimentation for a number of reasons. Firstly, both C++ [Str86] and DCOM
[Mic96] are being used by a large number of programmers to build systems in the real world. Secondly having
programmed with DCOM and C++, we felt there was a high degree of accidental complexity associated with this style
of programming that was not intrinsic in the problem domain. We hoped that hyper-programming might be used to
simplify the construction of DCOM programs. Finally we were influenced by the HIPPO work of Connor [CSM98] and
sought to discover if C++/DCOM programs could be written which had the same flavour as Hippo programs If this was
possible, the power of the many C++ libraries and environments could be used cheaply construct Web utilities In
addition to creating a hyper-programming environment for a commercial system, a deliberate attempt was made to
maximise the use of freely available software and to avoid writing new software whenever possible.

idaStr'weStaioT ^ V™™* ^ * ""^ drCumvented when ^ document is XML- whi<* we perceive to be a rapidly emerging

Morrison R. et al Current Directions in Hyper-Programming 231

3.6.1 Hyper-Program Construction

A DCOM/C++ hyper-program is constructed using two tools: a text editor and a binder. These are used to specify
the hyper-program text and the hyper links respectively. The output from these tools is fed into a pre-processor which
unifies the source and the links into standard C++ prior to presentation to the gnu-C++ compiler. The pre-processor also
creates files and directories for cache maintenance and in some circumstances pre-fetches Web pages.

3.6.2 Editing Environment

The first tool requirement was for a text editor capable of incorporating hyperlinks and suitable for editing
programs. Web editing tools such as Netscape Composer and FrontPage do not support the editing of programs since
they are intended as HTML composition tools. Consequently Emacs [Sta81] was used with a (then) freely available
extension called Hyperbole [Alt98]. Hyperbole supports the inclusion of hyperlinks into documents. In particular, these
links can refer to Uniform Resource Locators (URLs), i.e. web pages, and can be clicked on with the mouse. A
Hyperbole user works with buttons embedded within textual documents. These buttons may be created, modified,
moved or deleted. Each button performs a specific action, such as linking to a file or executing a shell command. Figure
6 shows a C++ hyper-program being edited with the Emacs/Hyperbole environment.

emacs ©dime .cs.stir.ac.uk

| Buffers Files: Tools Jgdit Search HyperProg' Help

Create riyper-link
Modify hyper-link

l'^J3i:Xl

void main (char** argv, int arge)

■- -: : BOOL end = FALSE;
■;■-■ BOOL is_found = FALSE; : Delete hyper-link

OLECHAR *line; ***********************^
IHTML*h = 1 :
iühile(SUCCEEDED(h->at_end(Activate-Button-at-Point

if«SUCCEEDED(h->f Back-to-Prior-Location [

printf("D
break;

}

if(FAILED (h->nextj
break;

Button-File '■
Documentation
Quit

found)) U is.fcund))

if(end) .
: printf C "didn't find fe", argv[1]);

Figure 6. Emacs and Hyperbole

3.6.3 The Hyper-Program Source Code

This program shown in Figure 7 contains a C++/DCOM hyper-program that finds the telephone number of a
member of the Computer Science Department at Glasgow University. It does this by scanning an HTML page denoted
by the hyperlink telephonedirectory. The program creates a binding denoted by h of type IHTML* to this Web page.
The IHTML class shown in Figure 8, permits a supports a number of operations including the findJn Jim method
which searches lines of the page looking for the sub-string specified in the parameter. If a match is found the line is
returned. It also contains a predicate at end indicating that the end of the page has been reached.

232 Perspectives of System Informatics'99

void main (char** argv, int arge)

{
BOOL end = FALSE;
BOOL is_found = FALSE;
OLECHAR *line;
IHTML*h = <(telephonedirectory)>;
while(SUCCEEDED(h->at_end(&end)) && ! end) {

if ((SUCCEEDED(h->find_in_line(argv[l,&line,S:is_found)) && is found))
{

printf(" Details are %s \n\r" , line);
break;

}
if(FAILED(h->next_line())) .

break;
}
if(end)

printf(* didn't find %s", argv[l]);
}

Figure 7. A C++/DCOM Hyper-Program

interface IHTML : iunknown
{

HRESULT display_line();
HEESULT openURLf[in, string] char* filename);
HRESULT next_line();
HRESULT find_in_line([in, string] char* name,

[string, out] OLECHAR** line,[out] int* isfound);
HRESULT at_end{[out] int *i) ;

}

Figure 8. MIDL Definition of the IHTML Interface

The code shown in Figure 7 is standard DCOM/C++ except for the line,

IHTML*h = <(telephonedirectory)>;
which has to be replaced with standard C++, as described above this task is performed by the pre-processor. The

code sequence into which this hyper-link is expanded depends on the binding style specified in the binder. This is
described the next section.

3.6.4 Creating Bindings

Using the Hyperbole environment, bindings can be made to any Web based data. However, this does not address
the need to specify attributes associated with those links such as programming language type, external data type, the
location of the data being bound and binding time. To allow hyper-programmers to specify and view bindings, a Web
interface to a binder has been created and is shown in Figure 9.

The binder permits users to specify a name for a hyper-link. This is used to match the hyper-links entered in the
editor with bindings specified in the binder. The next field is the type of the object in the programming language
context. In the current implementation this field contains a string which is used to specify the programming language
type of the target object. This field is strictly unnecessary since it could be automatically generated but makes the
generated code more readable. The next field, HD, is used to specify the type (interface) of the object being linked to. In
the example shown in Figure 9, the link is to an object of type IHTML, shown in Figure 8. The CLS1D field is used to
specify a class library containing executable code implementing the class specified in the HD field. For DCOM
aficionados, this is used to find by a class moniker to locate the class object. The URL field specifies the location of the
data to which the link refers.

The last field is used to specify the time at which the binding is resolved. There are currently two options
supported: compile time and run time. These settings change the behaviour of the pre-processor and cause different
code to be generated. When the compile-time option is chosen the pre-processor pre-fetches a copv of the target and
stores it locally. In this case the code generated contains fewer run-time checks since the data will always be accessible.
When run-time binding is employed, failure at run-time is possible and consequently the generated code needs to be
more sophisticated. The code generated for the example program shown in Figure 7 is given in the next section.

Morrison R. etal. Current Directions in Hyper-Programming 233

FIta Mit lAvm G» -'Rooknurtui 'options Dlfvclary

Back] l'-trw«»)!:)4«IL*' . Effit; Ritfaudj ITV

ESS
: wot'* Ne*?: vm*t*t ODM?; DtfiUnattanv • infei

!
PJ^gtf _CreMjiQn.'M»x^ficai|.jM; n1>j - 25 '^

; ■:^p^;^^
; "T*?!™*" 1

:.*•*•.• "&•■=-•«'■') . •. • • - 1

> 'pL&D: J uitfiti.,gv*»«-"»>»ftf 1

1<RL: f*^***.« »i«"« */i'mu»vi^.-.i »1

Hlr^Ttoat C«JWi«id*(iTSl« -J } .." .!

..". ^ R-tM 1 *■*«*{.." :•■ i

'-zi»il' Neiaeata c r** •■ "*' * "" - ~' ;"" " Cl^j '

Figure 9. Entering Details into the Binder

3.6.5 Binding Times and Errors

The code generated depends on the binding time specified in the binder. Figure 10 shows a slightly simplified
version of the code generated for the hyper-program shown in Figure 7 if construction time (eager) binding is specified.
This code assumes that the binder has loaded the Web page into the local cache (home/sag/cache). The dynamic case is
similar but requires additional code to fetch the page across the network. The code generated is straightforward DCOM
code.

void main(int arge, char** argv)
{

OLECHAR *line = 0;
IHTML* h = 0;
IClassFactory *pcf = 0;
HRESULT res = S_OK;
IMoniker *pmk = 0;
IBindCtx *pbc = 0;
Check(CreateBindCtx(0, &pbc), "CreateBindCtx failed");
Check(CreateClassMoniker (CLSID_CWebObject, &pmk), "CreateClassMoniker failed");
Check(BindToObject(pbc,0,IID_IClassFactory, (void**)spef), "BindToObject failed");
Check(pcf->CreateInstance(0, IID_IHTML, (void**)&h), "Create Instance failed");
Check(h->openURL("/home/sag/cache/www.des.gla.ac.uk/contact/index.html"),

"Open URL failed");
BOOL end = FALSE;
BOOL is_found = FALSE;
while(SUCCEEDED(h->at_end(Send)) && ! end) {

if ((SUCCEEDED(h->find_in_line(argv[l,&line,&is_found)) £& is_f ound)) {
printf(" Details are %s \n\r" , line);
break;

}
if(FAILED(h->next_line()))

break;

}
if(end)

printft " didn't find %s", argvfl]);
h->Release () ;
pcf->Release();

Figure 10. Simplified DCOM code generated for Figure 7

3.6.6 Future Directions

All the examples and screen shots discussed this far describe a system that has been implemented at the University
of Stirling. However, this code represents the start rather than the end-point of what we are trying to achieve. We stated
earlier that we were seeking an integration of C++/DCOM with hyper-programming and the ideas embodied in the
Hippo system. We now describe how we can use what we have implemented to date to achieve this.

—- Perspectives of System Informatics'99

void main (char** argv, int arge)

BOOL end;
IPersonSet *s = <(telephonedirectory)>;
while(SUCCEEDED(s->at_end(send)) && lend) {

Person person;

if(SUCCEEDED(s->next_person(.person) && !stremp(person.name,argv[l]))) (
printf<"Telephone number of %s is %s\n",argv[_],person.phone no);
break; —

}
}
if (end) printf("didn't find %s\n",argv[l]);

Figure 11. A Strongly Typed C++ Hyper-Program

The program shown in Figure 7 treats the Web data as an HTML file not as a typed entity. We would like to be
able to re-write the hyper-program as shown in Figure 11. In this example, rather than treating the data as HTML text
we have typed it as a set of objects of type Person. This requires a number of refinements to the mechanisms already
implemented. First the HTML file must be typed as a set of Person. To achieve this, a MIDL interface definition of a
set of Person is created as shown in Figure 12. This type is structurally similar to the IHTML interface given earlier
with the line type bemg replaced with records of type Person. Since the IPersonSet interface inherits from IHTML it
may use the IHTML interface to assist in the extraction of records of type Person from the text file.

typedef struct { OLECHAR *name; OLECHAR *phone_no; OLECHAR *nickname; } Person;

interface IPersonSet : IHTML
{

HRESULT nextjperson([out] Person* current);

Figure 12. MIDL Definition of Person Set Interface

Some mechanism must be provided to convert the textual data retrieved over the Web into typed objects (in this
case of type Person). This task is encoded in the library providing the implementation of IPersonSet Whilst this
implementation could be hand coded, a more desirable approach would be to generate it automatically from a
specification. There are two basic approaches to this: (i) use the MIDL as a specification for the Web format and (if) use
the Web format as a specification to generate the MIDL.

If the first approach were employed, a tool could be engineered which took the MIDL interface and a URL as
parameters and attempted to find records of the appropriate type in the file. In the case of the URL used in the examples
in this Section, the fields are all comma separated making this task easy. This is similar to the construction of indices in
database systems and the importation of records using Wizards in Microsoft Excel and Access. Once the index was
created, generic code could be used to traverse the data and return records each time next_person was called An
alternative approach is to generate the IDL from the Web source. This approach is particularly attractive if the Web
source is encoded in a structured or semi-structured manner, for example, using XML [BPS98]. In both cases generic
code needs to exist which may be specialised to operate over records of an appropriate type. This may be achieved
using the parametric polymorphism provided by the implementation language or using tools such as those suggested bv
Sheard and Stemple [SSF92] or Kirby [KCM94]. SS y

4 Conclusions

Our original motivation for hyper-programming was to allow the user to compose programs interactively
navigating the environment and selecting data items, including code, to be incorporated into the programs We further
believed that programming language systems could provide better support for the software engineering process than
they do at present, in particular, with regard to the traditional compose-compile-link-execute cycle of program
development. r &

From our early implementations of hyper-programming we summarised that the attendant benefits of the concept

• being able to perform program checking early
■ support for source representations of all object closures

are:

Morrison R. et ah Current Directions in Hyper-Programming 235

• being able to enforce associations from executable programs to source programs
• availability of an increased range of linking times
• increased program succinctness
• increased ease of program composition
Here we have developed the hyper-programming notion to presenting a single representation of data and code

throughout the software process using hyper-code. Furthermore we have explored techniques for adapting hyper-
programming to persistent contexts that do not enforce referential integrity, such as the WWW; and implementing and
using hyper-programming in standardised languages and inter-operability mechanisms, such as C++ and DCOM.

5 Acknowledgements ,

We wish to acknowledge the work of Vivienne Dunstan on hyper-code and her contribution to the concepts
presented here. We also acknowledge the support of EPSRC under grant GR/L32699 "Compliant Systems
Architecture" and the EC Working Group Pastel EC22552.

6 References

[ABC+83] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R. "An Approach to Persistent
Programming". Computer Journal 26,4 (1983) pp 360-365.
URL: http://www-ppg.dcs.st-and.ac.Uk/Publications/1983.html#approach.persistence

[ADJ+96] Atkinson, M.P., Daynes, L., Jordan, M.J., Printezis, T. & Spence, S. "An Orthogonally Persistent Java™".
ACM SIGMOD Record 25,4 (1996) pp 68-75.

[ALP+91] Atkinson, M.P., Löcluse, C, Philbrow, P. & Richard, P. "Design Issues in a Map Language". In Bulk
Types & Persistent Data, Kanellakis, P. & Schmidt, J.W. (eds), Morgan Kaufmann (1991) pp 20-32.

[Alt98] Altrasoft "Hyperbole". (1998) URL: http://www. altrasoft. com/hyperbole, html

[AM85] Atkinson, M.P. & Morrison, R. "Procedures as Persistent Data Objects". ACM Transactions on
Programming Languages and Systems 7, 4 (1985) pp 539-559.

[BOP+89] Bretl, B., Maier, D., Otis, A., Penney, J., Schuchardt, B., Stein, J., Williams, E.H. & Williams, M. "The
GemStone Data Management System". In Object-Oriented Concepts, Databases and Applications,
Kim, W. & Lochovsky, F. (eds), ACM Press and Addison Wesley (1989) pp 283-308.

[BPS98] Bray, T., Paoli, J. & Sperberg-McQueen, CM. "Extensible Markup Language (XML) 1.0". W3C (1998).
URL: http://www.w3.org/XML/

[CAB+93] Connor, R.C.H., Atkinson, M.P., Berman, S., Cutts, Q.I., Kirby, G.N.C. & Morrison, R. "The Joy of Sets".
In Database Programming Languages, Beeri, C, Ohori, A. & Shasha, D.E. (eds), Springer-Verlag,
Proc. 4th International Conference on Database Programming Languages (DBPL4), New York City, In
Series: Workshops in Computing, van Rijsbergen, C.J. (series ed), ISBN 3-540-19853-9 (1993) pp 417-
433. URL: http://www-ppg.dcs.st-and.ac.uk/Publications/]993.html#joy

[CCK+94a] Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C. & Morrison, R. "Using Persistence Technology to Control
Schema Evolution". In Proc. 9th ACM Symposium on Applied Computing, Phoenix, Arizona, Deaton, E.,
Oppenheim, D., Urban, J. & Berghel, H. (eds) (1994) pp 441-446, Technical Report ESPRIT BRA Project
6309 FIDE2 FIDE/94/97.

URL: http://www-ppg.dcs.st-and.ac.Uk/Publications/1994.html#schema.evolution
[CCK+94b] Cutts, Q.I., Connor, R.C.H., Kirby, G.N.C. & Morrison, R. "An Execution Driven Approach to Code

Optimisation". In Proc. 17th Australasian Computer Science Conference (ACSC'94), Christchurch, New
Zealand (1994) pp 83-92, Technical Report ESPRIT BRA Project 6309 FIDE2 FIDE/94/99.
URL: http://www-ppg. des. st-and. ac. uk/Publications/1994. html#code. optimisation

[CCK+94c] Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C, Moore, V.S. & Morrison, R. "Unifying Interaction with
Persistent Data and Program". In Interfaces to Database Systems, Sawyer, P. (ed), Springer-Verlag,
Proc. 2nd International Workshop on User Interfaces to Databases, Ambleside, Cumbria, 1994, In Series:
Workshops in Computing, van Rijsbergen, C.J. (series ed) (1994) pp 197-212.
URL: http://www-ppg.dcs.st-and.ac.Uk/Publications/1994.html#unifying.interaction

[Coo90] Cooper, R.L. "On The Utilisation of Persistent Programming Environments". Ph.D. Thesis, University of
Glasgow (1990).

236 Perspectives of System Informatics'99

[CSM98]

[DB88]

[FDK+92]

[GR83]

[KCC+92]

[KCM94]

[KD90]

[Kir92]

[MBC+96]

[MBG+99a]

[MBG+99b]

[MCC+95]

[Met99]
[Mic96]

[OHK87]

[OMG98]

[SFS+90]

Connor, R.C.H., Sibson, K. & Manghi, P. "On the Unification of Persistent Programming and the World-
Wide Web". In Proc. Workshop on the Web and Databases (WebDB'98), EDBT'98, Valencia Spain
(1998).

Dearie, A. & Brown, A.L. "Safe Browsing in a Strongly Typed Persistent Environment". Computer
Journal 31, 6 (1988) pp 540-544.
URL: http://www-ppg. dcs.st-and. ac. uk/Publications/1988. html#safe. browsing

Farkas, A.M., Dearie, A., Kirby, G.N.C., Cutts, Q.I., Morrison, R. & Connor, R.C.H. "Persistent Program
Construction through Browsing and User Gesture with some Typing". In Persistent Object Systems,
Albano, A. & Morrison, R. (eds), Springer-Verlag, Proc. 5th International Workshop on Persistent Object
Systems.(POS5), San Miniato, Italy, In Series: Workshops in Computing, van Rijsbergen, C.J. (series ed)
ISBN 3-540-19800-8 (1992) pp 376-393.
^^V. http://yvwrw-ppg.dcs.st-and.ac.Uk/Publications/1992.html#browsing.gesture
Goldberg, A. & Robson, D. "Smalltalk-80: The Language and its Implementation". Addison Wesley,
Reading, Massachusetts (1983).

Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearie, A., Farkas, A.M. & Morrison, R. "Persistent Hyper-
Programs". In Persistent Object Systems, Albano, A. & Morrison, R. (eds), Springer-Verlag, Proc. 5th
International Workshop on Persistent Object Systems (POS5), San Miniato, Italy, In Series: Workshops in
Computing, van Rijsbergen, C.J. (series ed), ISBN 3-540-19800-8 (1992) pp 86-106.
URL: http://www-ppg.dcs.st-and.ac.uk/Publications/1992.htmlUpersistent.hyperprograms

Kirby, G.N.C., Connor, R.C.H. & Morrison, R. "START: A Linguistic Reflection Tool Using Hyper-
Program Technology". In Persistent Object Systems, Atkinson, M.P., Maier, D. & Benzaken, V. (eds),
Springer-Verlag, Proc. 6th International Workshop on Persistent Object Systems (POS6), Tarascon,
France, In Series: Workshops in Computing, van Rijsbergen, C.J. (series ed) (1994) pp 355-373.
URL: http://www-ppg.dcs.st-and.ac.uk/Publications/1994.htmlUstart
Kirby, G.N.C. & Dearie, A. "An Adaptive Graphical Browser forNapier88". University of St Andrews
Technical Report CS/90/16 (1990).
URL: http://www-ppg.dcs.st-and.ac.uk/Publications/l990.htmmnapier.browser
Kirby, G.N.C. "Reflection and Hyper-Programming in Persistent Programming Systems". Ph.D. Thesis
University of St Andrews. Technical Report CS/93/3 (1992).
URL: http://www-ppg.dcs.st-and.ac.uk/Publications/J992.htmlUthesis.gk
Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearie, A., Kirby, G.N.C. & Munro, D.S.
"Napier88 Reference Manual (Release 2.2.1)". University of St Andrews (1996).
URL: http://www-ppg.dcs.st-and.ac.uk/Publications/1996.htmlUnapier.ref.man.22J
Morrison, R., Balasubramaniam, D., Greenwood, M., Kirby, G.N.C, Mayes, K, Munro, D.S. & Warboys,
B.C. "ProcessBase Reference Manual (Version 1.0.4)". Universities of St Andrews and Manchester
(1999). URL: http://www-ppg.dcs.st-and.ac.uk/Publications/1999.htmlUProcessBase.manual
Morrison, R., Balasubramaniam, D., Greenwood, M., Kirby, G.N.C, Mayes, K., Munro, D.S. & Warboys,
B.C. "A Compliant Persistent Architecture". Submitted to Software—Practice and Experience, Special
Issue on Persistent Systems (1999).

Morrison, R., Connor, R.C.H., Cutts, Q.I., Dunstan, V.S. & Kirby, G.N.C. "Exploiting Persistent Linkage
in Software Engineering Environments". Computer Journal 38, 1 (1995) pp 1-16.
URL: http://www-ppg.dcs.st-and.ac.Uk/Publications/1995.html#exploiting.linkage
Metrowerks Inc "Metrowerks CodeWarrior". (1999) URL: http://www.metrowerks.com/
Microsoft Corporation "DCOM Technical Overview". (1996).

O'Brien, P.D., Halbert, D.C & Kilian, M.F. "The Trellis Programming Environment". ACM SIGPLAN
Notices 22, 12. Proc. International Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA'87), Orlando, Florida (1987) pp 91-102.
"The Common Object Request Broker: Architecture and Specification, Revision 2.2". Object Management
Group (OMG) (1998). UKL:fip://ftp.omg.org/pub/docs/formal/98-07-01.pdf

Stemple, D., Fegaras, L., Sheard, T. & Socorro, A. "Exceeding the Limits of Polymorphism in Database
Programming Languages". In Lecture Notes in Computer Science 416, Bancilhon, F., Thanos, C &
Tsichritzis, D. (eds), Springer-Verlag, Proc. 2nd International Conference on Extending Database
Technology (EDBT'90), Venice, Italy, Goos, G. & Hartmanis, J. (series ed), ISBN 3-540-52291-3 (1990)
pp 269-285. v '

Morrison R. etal. Current Directions in Hyper-Programming 237

[SSF92] Stemple, D., Sheard, T. & Fegaras, L. "Linguistic Reflection: A Bridge from Programming to Database
Languages". In Proc. 25th International Conference on Systems Sciences, Hawaii (1992) pp 844-855.

[SSS+98] Stemple, D., Stanton, R.B., Sheard, T., Philbrow, P., Morrison, R., Kirby, G.N.C., Fegaras, L., Cooper,
R.L., Connor, R.C.H., Atkinson, M.P. & Alagic, S. "Type-Safe Linguistic Reflection: A Generator
Technology". To Appear: The FIDE Book, Atkinson, M.P. (ed), Springer-Verlag (1999), Technical Report
ESPRIT BRA Project 3070 FIDE FIDE/92/49.

[Sta81] Stallman, R.M. "EMACS: The Extensible, Customizable Self-Documenting Display Editor". ACM
SIGPLAN Notices 16, 6 (1981) pp 147-156.

[Str86] Stroustrup, B. "The C++ Programming Language". Addison-Wesley (1986).

[ZDK+99] Zirintsis, E., Dunstan, V.S., Kirby, G.N.C. & Morrison, R. "Hyper-Programming in Java". In Advances in
Persistent Object Systems, Morrison, R., Jordan, M. & Atkinson, M.P. (eds), Morgan Kaufmann, Proc.
8th International Workshop on Persistent Object Systems (POS8) and 3rd International Workshop on
Persistence and Java (PJW3), Tiburon, California, 1998, ISBN 1-55860-585-1 (1999)
URL: http://www-ppg. des. st-and. ac. uk/Publicatiom/1999. html#java. hyperprograms

Integration of Different Commit/Isolation Protocols

in CSCW Systems, with Shared Data

Lars Frank

Department of Informatics, Copenhagen Business School,
Howitevej 60, DK-2000 Frederiksberg, Denmark

Phone:+45 38 15 2400,
Fax:+45 38152401,
frank@CBS.DK.

Abstract. Traditional database systems use ACID properties (Atomicity, Consistency, Isolation and Durability) to
implement recovery and concurrency control. However, this implementation is not always appropriate in distributed
real time systems and in systems with long-lived transactions. For example, long-lived transactions may be active for
days, and at the same time other transactions may need access to data, locked by the long-lived transactions.
Therefore, extended transaction models have been developed. Xhese transaction models only implement semantic
ACID properties. That is, from an application point of view the system should function as if the traditional ACID
properties were implemented.
Multi user word processing, CAD and CASE systems may both be distributed and have long-lived transactions.
Therefore, extended transaction models may be useful in Computer Supported Cooperative Work (CSCW), where
users work with shared data. In this paper we will try to integrate the research in extended transaction models with the
CSCW research, which for many years have been aware of the shortcomings of the traditional ACID properties.
In the transaction model in this paper the global atomicity property is implemented by combining the possibilities of
either forcing the remaining updatings of a transaction to be executed or compensating the already executed
updatings of the transaction. The global consistency property may be managed by the CSCW system and/or by
human beings supported by tools. The global isolation property is implemented by using countermeasures to the
missing isolation of the updating transactions. The global durability property is implemented by using the durability
property of the local CSCW/DBMS systems.
In the extended transaction model described above we will incorporate some of the most promising CSCW
commit/isolation features known from the scientific CSCW literature.

KEYWORDS: CSCW, distributed groupware, collaborative writing, semantic ACID properties, concurrency control
long-lived transactions '

1 Introduction

CSCW systems may be grouped in synchronous and asynchronous groupware systems.
In synchronous groupware systems all modifications can be observed real-time by all members of the

collaboration. These WYS1WIS (What You See Is What I See) systems (Stefik et al., 1987) do not have a well-defined
transaction concept, and, therefore, the ACID properties of such systems are not will defined either Anyway
synchronous systems do have consistency problems, and, therefore, the tools of our transaction model may improve the
situation.

In asynchronous groupware systems (e.g. Koch, 1995 and Jones, 1995) a user may first modify his/her local
version of the database/document. When the modifications of the user are ready to be published to the other users a
global updating transaction is executed, and in this situation the semantic ACID properties of our transaction model
may be important.

In synchronous groupware systems traditional locks can normally not be recommended as they slow down the real
time mteraction of the users. In asynchronous systems locking cannot be recommended either, when some of the
transactions are long-lived (Gray and Reuter, 1993). The problem is that locking long-lived transactions exclude other
users from making updatings, and this may not be acceptable. Therefore, traditional locking is normally not used in
CSCW systems, which for many years have used different countermeasures that can reduce the problems occurring
when traditional locking cannot be used for concurrency control.

The objective of this paper is to illustrate how to integrate different commit/isolation protocols to facilitate the
selection of the right combinations of properties/tools for a CSCW system in a specific application area.

The paper is organized as follows: Section 2 will describe the transaction model used in this paper, i.e. we will give

 Frank L. Integration of Different Commit/Isolation Protocols 239

an overview of how the global semantic ACID properties can be implemented. In section 3 we will illustrate how to
integrate different commit/isolation protocols for CSCW systems. Concluding remarks are presented in section 4.

Related work: The systematic analysis of countermeasures, described in Frank and Zahle (1998), was not possible
until the isolation property was decomposed into disjunctive isolation anomalies by Gray and Reuter (1993) and
Berenson et al. (1995).

For many years, extensive research has been made in CSCW systems with shared data in order to bypass the
problems of traditional concurrency control. (For example Ellis and Gibbs, 1989; Pacull et al., 1994; Koch, 1995; Jones,
1995 and Salcedo et al., 1997). This paper may be viewed as a supplement to this field of research, where we use the
disjunctive consistency problems of Gray and Reuter (1993) to describe in more detail the properties of the different
commit/isolation protocols.

The commit/isolation protocols may be described by rules. Therefore, the commit/isolation protocols may be
implemented by using the flexible CSCW systems as described in e.g. Georgakopoulos et al. (1994) and Rusinkiewitz
et al. (1995), where the rules of the transactions are defined by there activity type. In other words, it is possible to
change the commit/isolation protocol by changing the activity type of the transactions.

2 The Transaction Model

In the following, we will give an overview,of how the global semantic ACID properties are
implemented in our transaction model.

2.1 The Atomicity Property
An updating transaction has the atomicity property and is called atomic if either all or none of its updatings are

executed. In this paper we use the single pivot transaction model (Mehrotra et al., 1992; Zhang et al., 1994 and Frank,
1999) for atomicity implementation. In this transaction model the global transaction is partitioned into the following
types of subtransactions that are executed at different locations:

1. The pivot subtransaction that manages the atomicity of the global transaction, i.e. the global transaction is
committed globally when the pivot subtransaction is committed locally. If the pivot subtransaction aborts, all'the
updatings of the other subtransactions must be compensated or not executed.

2. The compensatable subtransactions that all may be compensated. Compensatable subtransactions must always
be executed before the pivot subtransaction is executed in order to allow them to be compensated if the pivot
subtransaction cannot be committed. Compensation is achieved by executing a compensating subtransaction.

3. The retriable subtransactions that are designed in such a way that the execution is guaranteed to commit locally
(sooner or later). Retriable subtransactions are executed after the local commit of the pivot subtransaction, because they
have the pivot subtransaction as parent and are initiated by the pivot subtransaction.

Example
When a primary copy of an object is updated, created or deleted, the secondary copies may be updated with

global atomicity by using retriable subtransactions. Suppose all users in a CSCW system have their own local
workspace copy of a database, where a primary copy of the database is used to serialize and distribute the updating
transactions. In this situation an updating user can send compensatable subtransactions to the other users via the
primary copy location. All the updatings of the compensatable subtransactions must be marked as compensatable. If
the other users can accept the updatings from the compensatable subtransaction, they send an accept message to the
primary copy location. If the primary copy location recefves accept messages from all the involved users, a pivot
subtransaction can commit the updatings globally by committing the updatings in the primary copy location. After
this, retriable subtransactions initiated by the pivot subtransaction are sent to all the users to de-mark the
compensatable mark of the updatings committed at the primary copy. The same retriable subtransactions may also
try to upgrade any other compensatable marked updatings to the new object version.

2.2 The Consistency Property
A database is consistent if the data in the database obeys the consistency rules of the database. Consistency rules

may be implemented as a control program that rejects transactions, which do not obey the consistency rules. '
In CSCW systems consistency rules may be managed by the CSCW system if they are described and initiated by a

user (See e.g. Decouchant et al., 1996).

240 Perspectives of System Informatics'99

2.3 The isolation Property

' A database where all the transactions have the consistency property may still be inconsistent, if the isolation
property is missing. A transaction is executed with the isolation property if the updatings of the transaction only are
seen by other transactions after the updatings of the transaction have been committed.

In our transaction model the global semantic isolation property is managed by using countermeasures against the
isolation anomalies that occur when transactions are executed without the isolation property. In designing
countermeasures it is possible to use local locking, but all locks should be released immediately after a subtransaction
has been committed/aborted locally in order to avoid blocked data (Data is blocked if it is locked by a subtransaction
that loses the connection to the parent transaction),

If the isolation property is not implemented, four different types of isolation anomalies may occur. And if none of
these isolation anomalies can occur, the execution of the transactions is serializable (Gray and Reuter, 1993 and
Berenson et. al., 1995). In the following we will describe the tree isolation anomalies that are important in CSCW
systems:

1. The lost update anomaly is by definition a situation where a first transaction reads an object for update
without using locks. Subsequently, the object is updated by another transaction. Later, the first transaction (based
on its earlier read value) updates the object and commits.

In our transaction model all the local users have there own copy of the database and reading/updating the
local database copy functions as reads for update without locks. In such a situation it is possible for conflicting
transactions to update the same object, and only the updating of the last transaction will survive.

2. The dirty read anomaly is by definition a situation where a first transaction updates an object without
locking the object or committing the update. After this, a second transaction reads the object. Later, the first
update is aborted (or compensated). In other words, the second transaction has read a version of the object that
was never committed and therefore never really did exist.

In our transaction model the dirty read anomaly may happen when the first transaction updates an object by
using a compensatable subtransaction that is distributed to all the local databases of the users. Later, these
distributed updatings are removed by using compensating subtransactions. If a local user reads the object before
it is compensated, the data read will be dirty and may result in a wrong decision.

3. The non-repeatable read anomaly ox fuzzy read is by definition a situation where a first transaction reads
an object without using locks. This object is later updated and committed by a second transaction before the first
transaction has been committed. That is, if the first transaction rereads the object, the attributes of the object are
changed. In other words, the second transaction may read something that is not true when the transaction
commits, and this may result in a wrong decision.

In our transaction model this may happen when the first transaction reads an object in the local copy of the
database. Later the same object may be updated by a retriable subtransaction without the local user noticing the
update, which may cause the local user to make wrong decisions.

2.4 The Durability Property

Transactions have the durability property if the updatings of the transactions cannot be lost after they have been
committed. For global atomic transactions the global durability property will automatically be implemented as it is
ensured by the durability of the local databases (Breibart et. al., 1992).

3 Integration of the Commit/Isolation Protocols

In major projects group structures, roles, and activities may change during a project. Therefore, according to e g
Koch (1995) and Jones (1995), it should be possible to change the commit/isolation procedure while the project is
running. v J

All the commit/isolation protocols described in this section have a precisely defined commit time, after which an
update decision cannot be annulled automatically. This is practical from an implementation point of view and it also
suits most structured working situations. However, working groups (and individuals) do not always work in a structured
way, and, therefore, it may be important to be able to undo already committed updatings. In this situation it is practical
to have a common transaction model (like our transaction model) to manage the transaction back out independent of the
commit/isolation protocols used by the transaction that should be backed out.

In this section we will illustrate how to integrate our transaction model with some of the existing commit/isolation
protocols described in the scientific literature.

Frank L. Integration of Different Commit/Isolation Protocols 241

3.1 The Reread Counter-measure
Transactions that use this countermeasure (Frank and Zahle, 1998) read an object twice by using short duration

locks for each reading. If a second transaction has changed the object between the two readings, the transaction must
abort itself after the second read. In asynchronous CSCW systems the reread countermeasure may be used to protect
against the lost update anomaly in the following way: After a user has updated his/her local workspace, both the old
version (or the version id.) and the new version of the changed objects are sent to the primary copy location, where the
primary copy of these objects are read. If the primary copies of the objects are the same versions as the user's old
versions, then the primary copy objects are modified to the user's new versions. Otherwise, the updatings of the user are
rejected, and the committed primary copy version of the objects may be displayed for the user in a special color as a
"non-repeatable read" warning. Later, the user may upgrade his/her updatings to the new object versions and retry to
submit the updating transaction. In real time WYSIWIS systems it may be very confusing if different users delete,
change and/or move the same sentence/figure element independently (Greenberg and Marwood, 1994). In this situation
the reread countermeasure can prevent the problem in the following way: At first, new updatings are executed at the
location of the updating user as compensatable updatings. Later, a pivot subtransaction updates the primary copy if it is
unchanged. Finally, the committed updatings of the pivot subtransaction are propagated to the other users. However, if
the primary copy vas changed by another user, the pivot updatings are rejected and compensated in the location of the
updating user. ,

3.2 The Version Tree Protocol
If different parallel versions of an object exist, they may be implemented by a version tree (Koch, 1995), where the

different parallel versions are children of the same parent object. The following example illustrates how version trees
may be integrated in our transaction model.

Example
Insertion of a new subtext (character string) into an object is implemented as a new object, which is a child of

the original object. In other words, different transactions can create different versions of the same parent object by
storing different child objects related to the same parent object. The child objects are identified by the id of the
parent object in combination with the id of the updating transaction (and possibly a sequence number, if the
updating transaction creates many child objects). A field value in the child object marks the insertion as
"compensatable" if the insertion is not committed globally. A compensatable insertion can easily be committed
globally by de-marking the corresponding "compensatable" mark. However, in this situation other compensatable
marked updatings to the same object must be upgraded to the new version of the object as described in the next
subsection. A computer program can do this, but the upgraded transactions should be marked with "non-repeatable
read anomaly" until a human brain has accepted the upgraded insertion as a semantic correct insertion to the new
version of the object. If a human cannot accept the upgraded insertion, the corresponding transaction must be
compensated.

3.3 The Operational Transformation Protocol
The objective of the distributed OPperational Transformation (dOPT) Algorithm described in Ellis and Gibbs

(1989) is to implement concurrency control in real time groupware systems. The algorithm was first implemented in the
GROVE system (Group Outline Viewing Editor) described in Ellis et al., 1990 and 1991. Later, the method of
operational transformation has been improved in Nichols et al. (1995); Ressel et al. (1996); Sun et al. (1998) and gun
and Ellis (1998).Operational transformation prevents lost updatings by transforming a second conflicting updating to
another type of updating that cannot overwrite the first'updating. The GROVE system uses a conflict matrix that
describes how each type of conflict in text updatings may be transformed. By using operational transformation the dirty
read anomaly cannot occur either, because an aborted object is only known to the user who made the aborted updating.
After a compensatable subtransaction has been committed globally, operational transformation may be used to upgrade
automatically other compensatable subtransactions to the new version of the object. Other upgrading techniques are
described in e.g. Neuwirth et al. (1992).Operational transformation does not deal with the non-repeatable read anomaly.
Therefore, other countermeasures may be used to prevent these anomalies (see e.g. subsection 3.6).

3.4 The Linearization Protocol
Linearization (Herlihy and Wing, 1990, and Pacull and Sandoz, 1993) is both a commit and an isolation protocol.

The main idea of the protocol is that the possibility to read, update or annotate the central copy of a document is passed
along from one to another on requests. When a user has his/her turn, it is possible to read new updated versions of
requested central copy objects, and/or it is possible to overwrite the central copies of the objects with the user's
modified object versions. In the main version of this protocol the user only uses short duration locks.
By integrating the reread countermeasure it is possible to prevent lost updatings. If another user has changed the central

242 - Perspectives of System Informatics'99

copy of an object, it should be possible to upgrade updatings to the new version. The dirty read anomaly cannot occur.
The problems of the non-repeatable read anomaly may be prevented by rereading and control of all the data that has
been changed since the last time the user had exclusive update rights. If this is done, the protocol may produce
serializable executions. However, this is not realistic, and, therefore, it is also important to integrate countermeasures
against the non-repeatable read anomalyin the protocol. This protocol may be integrated in our transaction model in the
following way: At first, new updatings are executed at the location of the updating user as compensatable updatings.
Later, when the user has access to the primary copy, the pivot subtransaction is executed. Finally, the copies of the other
users are updated by using retriable subtransactions. Altogether, we evaluate the Linearization Protocol and its
possibilities for integration with other isolation countermeasures to be good. In our View, the main problem of this
protocol is how to get the users to collaborate in such a way that they do not spoil each other's updatings, when they
have the updating rights. In DUPLEX (Pacull et al., 1994), an implementation of the Linearization Protocol has solved
the problem in the following way:
• The document is decomposed into independently editable parts.
• The decomposition is dynamic and based on document structure; it reflects both document state and each author's

. current responsibility and involvement on different parts.
• ■ Authors are allowed to choose the type of control (exclusive, pessimistic, optimistic, etc.,) that they wish on the

document parts they are concerned with.
We believe that these rules are very important in order to manage most asynchronous groupware systems in a

consistent way. Therefore, we recommend integrating these rules, into the previous described asynchronous protocols
wherever it is possible.

3.5 The Read Uncommitted Protocol

In this protocol we will use our transaction model in the following way: At first, new updatings are executed at the
location of the updating user as compensatable updatings. Later, a pivot subtransaction updates the corresponding
primary copy, and if the primary copy is changed by another user, the pivot updatings are rejected and compensated in
the location of the updating user. The primary copy of the database is used to serialize the updating transactions in order
to prevent the lost update anomaly. However, this protocols accept both the dirty read anomaly and the non-repeatable
read anomaly. The reason is that in CSCW systems with shared data it may be best to have access to "dirty" and "non-
repeatable read" data as early as possible, because the alternative only allows access to "old information", and old
information may be very old if the updating transactions are long-lived. This protocol has very poor write availability if
different long-lived transactions want to update the same data. The protocol almost corresponds to the "read
uncommitted" isolation level (ANSI, 1992), where write locks do not exclude reading transactions. However, the ANSI
protocol does not deal with primary and secondary copies. The protocol has resemblance to the commit/isolation
protocol of the SEPIA hypertext authoring system described in Haake and Wilson (1992), because this system uses the
real "read uncommitted" isolation level of the relational DBMS SYBASE. The main difference is that the users of
SEPIA do not have their own database copy, but this is not a major difference when the users normally can read what
they want as write locks do not exclude readings. By using SEPIA it is possible to use the "SEPIA Activity Spaces" for
content, planning, argumentation, etc. as countermeasures against the other consistency problems.

3.6 The Group Awareness Countermeasure
The group awareness interaction and cooperation rules suggested in Koch (1995) may prevent the dirty read

anomaly and the non-repeatable read anomaly. However, group awareness may also have more social and innovative
purposes than countermeasures against consistency problems.

In tightly coupled WYSIWIS systems (e.g. Haake and Wilson, 1992), where the users share the same view an
additional communication channel (e.g. audio/video links) is almost necessary in order to prevent consistency problems
In some situations Greenberg and Marwood (1994) recommend using the additional communication channel to both
prevent lost updatings and if a warning comes too late the additional channel may be used to repair the lost data.

4 Conclusions

This paper has illustrated how distributed semantic ACID properties can be implemented in distributed CSCW
systems by using the single pivot transaction model and countermeasures against the different consistency problems that
occur when only semantic ACID properties are implemented.

It is not possible to select one protocol as the best, because some protocols are more suitable for large projects and
others for small projects, etc. However, our analyzes of the different commit/isolation protocols have illustrated that
countermeasures agamst lost updatings, and the rest of the isolation anomalies may be integrated in such a way that it is
possible to tailor commit/isolation protocols for the different phases of a given project. We have also illustrated that it

Frank L. Integration of Different Commit/Isolation Protocols 243

may be important to use a common transaction model for all the commit/isolation protocols supported by a CSCW
software product, because this model allows the upgrade- and back out tools for transactions to be designed in such a
way that they can accept changes in the commit/isolation protocol used in the different phases of a CSCW project.

References:

ANSI X3.135 (1992), American National Standard for Information Systems - Database Language-SQL.

Berenson, H., Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O'Neil and Patrick O'Neil (1995), A Critique of ANSI
SQL Isolation Levels, Proc ACM SIGMOD Conf, pp. 1 -10.

Breibart, Y., H. Garcia-Molina and A. Silberschatz, 'Overview of Multidatabase Transaction Management' (1992),
VLDB Journal, 2, pp. 181-239.

Decouchant, D., V. Quint and M. R. Salcedo (1996), Structured and Distributed Cooperative Editing in a Large Scale
Network, In Rada, 1996.

Ellis, C. and S. Gibbs (1989), Concurrency Control in Groupware Systems, SIGMOD Record. Vol. 18, no. 2, ACM
Press, New York, pp. 399-407.

Ellis, C, S. Gibbs and G. Rein (1990), Design and Use of a Group Editor, Engineering for Human Computer
Interaction, G. Cockton (ed.), North-Holland, Amsterdam, pp. 13-25.

Ellis, C, S. Gibbs and G. Rein (1991), Groupware- Some! Issues and Experiences, Communications of the ACM. Vol.
34, no. 1, pp. 38-58.

Frank, L. (1999), 'Atomicity Implementation in Multidatabases with High Performance and Availability', Proc of the
2nd International Symposium on Cooperative Database Systems (CODAS'99), Springer-Verlag pp 103-
114.

Frank, L. and Torben Zahle (1998). Semantic ACID Properties in Multidatabases Using Remote Procedure Calls and
Update Propagations, Software-Practice & Experience, Vol.28 (1), pp. 77-98.

Georgakopoulos, D., M. Hornick, P. Krychniak, F. Manola (1994), Specification and Management of Extended
Transactions in a Programmable Transaction Environment, Proc. of the 10>h IEEE Int. Conference on Data
Engineering.

Gray, J. and Andreas Reuter (1993), Transaction Processing, Morgan Kaufman.

Greenberg, Saul and David Marwood (1994), Real Time Groupware as a Distributed System: Concurrency Control and
its Effect on the Interface, Proceedings of International Conference on Computer Supported Cooperative
Work, pp. 207-217. ACM Press.

Haake, J. and B. Wilson (1992), Supporting Collaborative Writing of Hyperdocuments in SEPIA, Proceedings of
International Conference on Computer Supported Cooperative Work, pp. 138-146. ACM Press.

Herlihy, M. and J. Wing (1990), A correctness condition for concurrent objects, ACM Transactions on Programming
Languages and Systems, 12, pp. 463-492.

Koch, M., (1995), Design Issues and Model for a Distributed Multi-User Editor, Computer Supported Cooperative
Work (CSCW) 3, pp. 359-378.

Jones, S., (1995), Identification and use of guidelines for the design of computer collaborative writing tools, Computer
Supported Cooperative Work (CSCW) 3, pp.- 379-404.

Neuwirth, C, Ravinder Chandhok, David S. Kaufer, P. Erion, James H. Morris and D. Miller (1992), Flexible Diff-ing
in a Collaborative Writing System, Proceedings of 4th International Conference on Computer Supported
Cooperative Work, ACM Press, pp. 147-154.

Nichols, A., P. Curtis, M. Dixon and J. Lamping (1995), High-Latency, Low Bandwidth Windowing in the Jupiter
Collaboration System, la. Proceedings ofUIST'95,1/10.

Pacull, F. and Alain Sandroz Andre" Schiper (1993), R-linearizability: An extension of linearizability to replicated
objects, Proceedings of the 4lh IEEE Workshop of Future Trends of Computing Systems.

Pacull, F., Alain Sandroz and Andre Schiper (1994), Duplex: A Distributed Collaborative Editing Environment in Large
Scale, Proceedings of International Conference on Computer Supported Cooperative Work, pp. 165-173
ACM Press.

Rada, R. (Editor) (1996), Groupware and Authoring, Academic Press.

Ressel, M., D. Nitche-Ruhland and R. Guzenbauser (1996), An Integrating Transformation-Oriented Approach to
Concurrency Control and Undo in Group Editors. In Proceedings of ACM Conference on Computer

244 Perspectives of System Informatics'99

supported Cooperative Work, pp. 288-297.

Rusinkiewiecz, M., W. Klas, T. Tesch, J. Wasch and P. Muth (1995), Towards a Cooperative Transaction Model - The
Cooperative Activity Model, Proceedings of the 21st VLDB Conference.

Salcedo, M. and Dominique Decouchant, (1997), Structured Cooperative Authoring for the World Wide Web
Computer Supported Cooperative Work (CSCW) 6, pp. 157-174.

Stelik, M., D. G. Bobrow, G. Foster, S. Lanning and D. Tatar (1987), WYSIWIS revised: Early experiences with
multiuser interfaces, ACM Transactions on Office Information Systems, 5(2), pp. 147-167.

Sun, C. and C. Ellis (1998), Operational Transformation in Real-Time Group Editors: Issues, Algorithms, and
Achievements, In Proceedings of ACM Conference on Computer Supported Cooperative Work.

Sun, C, X. Jia, Y. Zang, Y. Yang and D. Chen (1998), Achieving Convergence Causality-Preservation in Real-time
Cooperative Editing Systems, ACM Transactions on Computer-Human Integration, 5/1, pp. 63 -108.

Zhang, A., M. Nodine, B. Bhargava and O. Bukhres (1994), 'Ensuring Relaxed Atomicity for Flexible Transactions in
Multidatabase Systems', Proc ACMSIGMOD Conf, pp 67-78.

A General Object-Oriented Model for Spatial Data

Sima Asgari and Naoki Yonezaki

Department of Computer Science
Tokyo Institute of Technology

{sima,yonezaki}Qcs.titech.ac.jp

Abstract. Spatial data models have been extensively studied during the last decade. However, require-
ments of a spatial database system regardless of any specific application, have not yet received much
attention.
In this paper, a general Object-Oriented spatial data model is introduced. This model considers a spatial
database system in general, without focusing on specific features or applications, and presents a new
classification method for spatial objects into maps. The concept of map as denned here, is an appropriate
definition for objects with arbitrary set of spatial components. This concept is similar to the one of a map
in the real world. Map definition is followed by the definition of map hierarchy and operations on maps
which can be used to answer queries that might be too complicated otherwise.

1 Introduction

On the threshold of 21st century, topics such as urban planning, land use, city and road planning and car
navigation have received much attention. The spatial data related to these applications have specific features,
such as high volume and complex structure. Modeling spatial data is a basic step in designing a spatial database
system.

Research which has been carried out so far, mostly consider specific features of a spatial database system [7,
12], or discuss spatial data modeling from the point of view of a specific application [3]. Furthermore, most of the
database systems which have been designed for spatial purposes have been built above the relational approach[10,
11]. However, relational approach is not powerful enough to be used as the basis for spatial database systems.

A recent approach is to build a spatial database system around an Object-Oriented paradigm [14,4,16,13,
5,8]. Object-Oriented benefits comply with the requirements of spatial systems.

Spatial objects have always been considered as individual objects in the literature, and the only categorization
which has been considered is the classification of objects with the same structure into classes. Furthermore, in
order to avoid complex operations, it has always been assumed that a spatial object has only one geometric
attribute. Therefore, arbitrary categorization of spatial (geometric) properties has received no attention.

This paper presents an Object-Oriented spatial data model which considers a spatial database system in
general without considering any particular features or requirements of an specific application. It introduces
the concept of the map as an arbitrary class of spatial objects and defines various operations on maps. The
categorization of objects into maps allows us to create a structure of data in an efficient hierarchical way, define
operations such as Join and Zoom on maps which have significant effect on the usability of the database system
and replying a wide range of queries. The benefits of Object-Oriented paradigm provide high flexibility for the
data model. Therefore, new features can be added to the model. Furthermore, the data model is general enough
to be used as the basis for a multipurpose spatial database system.

In the presented data model, the representation and manipulation of data is based on Frame logic (F-logic)
[9]. Since F-logic features are not sufficient for our purpose, additional features have been introduced where
necessary.

This paper is divided into 6 sections. The following section introduces the spatial data types and their related
operations. Section 3 explains new feature that has been added to the logic and its interaction with already
existing features. In section 4 we introduce the concept of map and the partial order between maps. Operations
on maps are given in section 5. Section 6 summarizes and concludes the paper.

246 Perspectives of System Informatics'99

2 Data types and Operations

Objects1 in a spatial database system have geometric and descriptive(non-geometric) attributes. Descriptive
attributes might be numbers, character strings or booleans. Various types of geometric attributes have been
denned in the literature[7,14]. We employ the main types point, line and region.

The smallest definable geometric attribute is a point which can be represented by its coordinates in the
Euclidean plane. 2 Given two distinct points p1 and p^, a line segment is defined which connects the two
points. A connected graph consisting of a set of line segments is defined as a line. A region is defined by the
definition of its border line.

We assume that a geometric object is an object with only one geometric attribute. This assumption simplifies
the definition of geometric operations. For more complicated cases where various geometric attributes have to
be assumed, the concept of map will be considered.

A geometric object is defined as follows:

Definition 1. An object is a Geo-Object if it has one and only one geometric attribute from types point, line
or region.

Various operations on geometric data have been defined in the literature [14,7]. We have defined a set of
spatial operations. However since the whole set of operations does not fit into the limits of this paper, only the
Adjacency operation is introduced here. 3

Predicate Adjacent{\\) specifies if two Geo-Objects are adjacent. We define Adjacency for two points, two
lines, two regions or one line and one region.

Definition 2. Letpx{xi,y{) andp2(x2,y2) be two Points. px \\ p2 iff
(\xi-x2\<e)A(\yi-y2\<e),

where s is the minimum possible distance between two Points.

Definition 3. Let 01 and 02 be two Lines, 01 |[02
(01 not Intersects 02) A (3pl : Point On 01 A 3p2 : Point On 02 such that pi || p2)

Definition 4. Let 01 be a Geo-Object of type Line and 02 be a Geo-Object of type Reaion
01 || 02 iff 01 || Border{02).

Definition 5. Let 01 and 02 be two Geo-Objects from type Region, 01 || 02 iff
Border(01) |j Border(02). '

3 The logic

F-logic has been used as the logical basis for our data model. F-logic is a formalism for defining, querying and
manipulating database schema[9]. .
Hierarchy of classes and individual objects in F-logic, is represented by an IS-A hierarchy, which might be a class
membership or a subclass relationship. For example Tokyo is a member of the object class City and Student is
a subclass of the object class Person.

Since IS-A hierarchy is not sufficient for defining the relationship between objects in a spatial data model
we propose an expansion of F-logic whereby the PART-OF hierarchy is added to the logic. To date, many
Object-Oriented data models have been designed with the purpose of capturing more of the meaning of an
application environment[6,1]). However, the concept of PART-OF hierarchy has not been considered by these
data models.

Figure 1 displays a simple example of a spatial data model. The hierarchy of objects in this figure is expressed
by PART-OF relationship.

1 The concept of an object and its attributes is considered in the same way as objects in Object-Oriented programming

3 ™e r?Cept °f elevation wiU not be considered in this paper, therefore two dimensional space suffices our needs
The full set of operations will be included in the full paper.

Asgari S., Yonezaki N. A General Object-Oriented Model for Spatial Data 247

Country

Prefecture (State)

Museum River Street Hospital School

Fig. 1. A sample spatial data model

3.1 PART-OF relationship

Part-whole relationship has already been studied in detail[2,15]. We study this relationship from the point of
view of a spatial data model. PART-OF relationship between Geo-Objects is defined as follows:

Definition 6. Let 0\ and 02 be Geo-Objects with Ri and R2 as their geometric attributes,
Ox PART-OF 02 iff Ri C R2.

We recognize four various interpretations for PART-OF relationship:

- We say object Ox is a WRP - PART - 0F(whole requires part) part of object 02 if Oi is an inseparable
requirement for 02 and 02 can not exist without Ox (Water-Storage is WRP - PART - OF City).

- Object Oi is a PRW - PART - 0F(part requires whole) part of object 02 if Ox can not exist without
being part of 02 (a Movie-Theater is PRW - PART - OF City).

- A PART - OF relationship is called strong S - PART - OF if it is WRP - PART - OF and PRW -
PART - OF (City-Government is S - PART - OF City).

- A PART - OF relationship is called weak W - PART - OF if it is neither WRP - PART - OF nor
PRW - PART - OF (Gold-Mine is W - PART - OF City).

3.2 IS-A, PART-OF interrelationship

Figure 2 represents the general form of interrelationship between IS-A and PART-OF relationships. However
this interrelationship does not hold for all types of PART-OF.

PART-OF

. \

IS-A IS-A

3 : .

PART-OF
-*1

Fig. 2. IS- A, PART-OF interreh itionship

The following cases of interrelationship between IS-A and PART-OF relationships can be derived from Figure
2. In what follows ':' represents class membership and '::' denotes subclass relationship.

1. Vg, s, r, If (r :: s V r : s) A (q WRP-PART-OF s), then
3 P ((p :: q V p : q) A (p WRP - PART - OF r)) ,

2. Vp, q, s, If (p :: q V p : q) A (q PRW - PART - OF s),then
3r((r :: s V r : s) A (p PRW - PART - OF r)).

3. Cases 1 and 2 also hold for strong part of (5 - PART - OF).

248 Perspectives of System Informatics'99

4 Object Categorization

Defining geometric objects and relationships IS-A and PART-OF, result in categorization of objects. Object
Country, for instance, can be defined as a whole having objects City, River, Road, Lake, Sea and Mountain as
its parts. The PART-OF hierarchy, arranges the above set of objects in a hierarchical category.

A map is defined as a type of object which may have other objects as its components. A map may as well
have descriptive attributes. For example, map of a country can have attribute 'name' to represent the name of
the country.

Definition 7. A map is an object with a set of Geo-Objects or maps as its geometric components.

By recursive definition of maps, we can create higher levels of hierarchy. The relationship between a map
and its object components is a PART-OF, however a map is corresponded to its simple attributes1 by e sign.
For example (Hospital PART-OF city) and (population e city).

4.1 Partial Order of maps

The set of all maps, M is partially ordered and the relation < is defined based on the information which can be
retrieved from each map.

The concept of equality of maps can be defined as follows:

Definition 8. Let mx andm2 be maps, P,0,0' be Geo-Objects or maps and D,D' be attributes
mi = m2 iff
VD, (De mi &De m2) A (VO PART - OF mi , 30' PART - OF m2 A
VO' PART -OFm2 ,30 PART - OF mi) such that
VP,(PPART-OFO &P PART-OFO')A\/D',(D'e O & D' e O')

The partial order < means that the maps present different hierarchies of the data and some are more detailed
than others: Map m2 is more detailed than map mi (mi < m2), if it contains the same objects of mx and some
other objects which are PARTs-OF objects inrnj.

Definition 9. Let mx and m2 be maps, P,P',0,0' be Geo-Objects or maps and D,D'be attributes
mi < m2 iff
VD, (De mi ^De m2) A \/0,if O PART - OF mx then30' PART - OF m2 such that
VP, (P PART -OF O =>P PART - OF 0')h VD', (D1 e O =» D' e 0')A
3P' PART - OF 0[such that P' -^PART - OF O

Figure 3 displays partial order< between maps.

m2 m3

Fig. 3. Partial ordering of maps (ml < m2 < m3)

5 Operations on maps

After the concept of map is defined, operations can be introduced to manipulate maps. Some of the operations
which have been already defined on objects can be expanded to maps and some new operations can be introduced
as well. A set of map operations has been formally defined and will appear in the full paper. Zoom and Join
operations will be discussed here in brief.
1 By a simple attribute we mean an attribute that is not an object

Asgari S., Yonezaki N. A General Object-Oriented Model for Spatial Data 249

Join operation joins two maps mi and m2 and creates a single map m which contains all of the components
of mi and m2. It is required for the two maps to be adjacent. The operation may accept specific conditions
to determine if adjacent objects from the same type, must be unified into one object or can remain as
separate objects.

T

,OL.

Definition 10. (Map Join): Let Mi be a map consisted of objects Oi,02, —,On having types Ti,T2,.
and M2 be a map consisted of objects 0[,0'2, —,0'k having types Tl,T2, .—T'k

and 30,(1 <i<n) and 30^(1 < j < k) such that:
Oi and O'j are from the same type (Tj = T'j) and 0i\\0p
The unconditional Join of maps Mi and Mi is the map M consisted of all of the objects Oi,...,On,0[,..
The conditional Join of two maps Mi and M2 is the map Mc consisted of objects
Oi,...,Oi-i,Oi+i,...,On,Oi,...,Oj_1,Oj+1,...,'Ok,0
where, O = Oi U O)

For instance, two maps West-Germany and East-Germany can be joined into one map called Germany. If
no conditions are considered, city objects West-Berlin and East-Berlin will remain as separate objects in
the new map, however by the condition to join the two country maps over the two city objects, they will
also be joined into one city. Figure 4 displays an example of Join.

Pig. 4. Join maps ml and m2

We define zooming operation on maps, based on our definition of partial order of maps.
Since maps can be recursively defined, a map can be consisted of other maps. Zooming a map on one of its
components will return as a result the next detailed level of that component from the hierarchy of partial
order. The zoom can be continued until the last(most detailed) level of hierarchy has reached.

Definition 11. (Zoom): Let Mi be a map consisted of objects 0\, O2,.-.., On and M% be a map consisted of
objects 0[,0'2,...,0'n such that Mi < M% and let each 0[be consisted of objects Pa,...,Pik , zooming map
Mi on Oi will return the components of 0\ from map M2 ■

Figure 5 illustrates zoom operation. Only part 0{ from map M2 is displayed in the figure.

Zoon^4(Ml)

Fig. 5. Zoom of map m on component o4

250 Perspectives of System Informatics'99

6 Conclusion

In this paper, a general Object-Oriented spatial data model was presented that has the potential to model
various types of data related to a spatial database system. F-logic was used as the logical basis for the data
model and new features were added to the logic. Object hierarchy PART-OF and the interrelationship between
PART-OF and IS-A hierarchies were defined.

Considering geometric objects with more than one geometric attributes has drawbacks such as complicated
process and flat(non hierarchical) structure of objects. Therefore, we assumed that a geometric object has only
one geometric attribute and defined the concept of map for arbitrary classification of objects with geometric
attributes of various types. Definition of map and PART-OF relationship between maps create a hierarchy of
data similar to the hierarchy between objects in the real world. This hierarchy is introduced as partial order.
Another benefit of using maps is the possibility to reuse basic geometric objects in forming maps.

Various operations on maps were defined. Partial order between maps provides the basis for a formal defi-
nition for zooming process. Zoom is one of the specific and crucial features of a spatial database system which
up to now has not been formally defined and has been considered as an implementation task. However, intro-
ducing a formalism for zooming in modeling phase enables us to design the zooming process and determine the
portion of data that should be displayed in every step of zooming. Data security in spatial database systems
is a very important concern. To build a secure spatial database system, data must be carefully structured in a
hierarchical way. The formalisms presented in this paper for map hierarchy, partial order and zoom operation
are rich enough to handle data security matters. i

Other operations were defined that can be used to extract complex combinations of data from maps or even
construct new maps. Map operations are applied on maps and act on the map and its components at the same
time. In another words, an operation on a map can be automatically inherited by its components and it does
not have to be applied on each component separately. The designed data model is a rich collection of database
formalisms, conventions and operations.

References

1. Serge Abiteboul and Richard Hull. IFO: A Formal Semantic Database Model. ACM Transactions on Database
Systems, 12(4), 12 1987.

2. Allesandro Artale, Enrico Franconi, Nicola Guarino, and Luca Pazzi. Part-whole relations in object-centered systems:
An overview. Data and Knowledge Engineering, (20), 1996.

3. Adrijana Car and Andrew U.Frank. Modelling a Hierarchy of Space Applied to Large Road Networks. International
Workshop on Advanced Research in Geographic Information Systems IGIS'94 (Lecture Notes in Computer Science)
884, 1994. A

4. A. Chance, R. Newel, and D. Theriault. An object-oriented GIS - Issue and solution. EGIS'90, Amesterdam, 1990.
5. M.J. Egenhofer and A. Frank. Object-oriented modelling in GIS: inheritance and propagation. AutoCarto 9 Con-

ference, Baltimore, 4 1989.
6. Michael Hammer and Dennis Mcleod. Database Description with SDM: A semantic Database Model. ACM Trans-

actions on Database Systems, 6(3), 9 1981.
7. Ralf hartmut Guting. Geo-Relational Algebra: A Model and Query Language for Geometric Database Systems.

International Conference on Extending Database Technology EDBT'88'(Lecture Notes in Computer Science) 303
1988. '

8. Z. Kemp. An object-oriented model for spatial data. Symposium on Spatial Data Handling, Zurich, 2, 199
9. Michael Kifer, Georg Lausen, and James Wu. Logical foundations of Object-Oriented and Frame-Based Languages

Journal of ACM, 42(4), 7 1995.
10. T. Larue, D. Pastre, and Y. Viemont. Strong integration of spatial domains and operators in relational database

systems. SSD'93, Singapore.
11. S. Morehouse. The Architecture of ARC/INFO. Auto-Carto 9 Conference, Baltimore, 19, 1989.
12. J.A. Orenstein. Spatial Query Processing in an Object-Oriented Database System. Proc. of the ACM SIGMOD

Conference, 1986.
13. J.A. Orenstein. An object-oriented approach to spatial data processing. Symposium on Spatial Data Handlinq

Zurich, 2, 1990. '
14. Michel Scholl and Agnes Voisard. Object-Oriented Database Systems for Geographic Applications: an Experiment

with 02. Geographic Database Management Systems (Workshop Proceedings), 1991.
15. Monique Snoeck and Guido Dedene. Generalization/specialization and role in object oriented conceptual modeling.

Data and Knowledge Engineering, (19), 1996.
16. M.F Worboys, H.M. Hearnshaw, and D.J. Maguire. Object-oriented data modelling for spatial databases. Interna-

tional Journal of Geographic Information Systems, 4(4), 1990.

Object-Oriented Programming

Twin - A Design Pattern for Modeling Multiple Inheritance

Hanspeter Mössenböck

University of Linz, Institute of Practical Computer Science, A-4040 Linz
moessenboeck@ssw.uiii-linz .ac.at

Abstract. We introduce an object-oriented design pattern called Twin that allows us to model multiple inheritance in
programming languages that do not support this feature (e.g. Java, Modula-3, Oberon-2). The pattern avoids many of
the problems of multiple inheritance while keeping most of its benefits. The structure of this paper corresponds to the
form of the design pattern catalogue in [GHJV95].

1 Motivation

Design patterns are schematic solutions to recurring software design problems. They encapsulate a designer's
experience and makes it reusable in similar contexts. Recently, a great number of design patterns has been discovered
and published ([GHJV95], [Pree95], [BMRSS96]). Some of them are directly supported in a programming language
(e.g. the Prototype pattern in Self or the Iterator pattern CLU), some are not. In this paper we describe a design pattern,
which allows a programmer to simulate multiple inheritance in languages which do not support this feature directly.

Multiple inheritance allows one to inherit data and code from more than one base class. It is a controversial feature
that is claimed to be indispensable by some programmers, but also blamed for problems by others, since it can lead to
name clashes, complexity and inefficiency. In most cases, software architectures become cleaner and simpler when
multiple inheritance is avoided, but there are also situations where this feature is really needed. In such situations, one
has to find a work-around if one is programming in a language that does not support multiple inheritance (e.g. in Java,
Modula-3 or Oberon-2). The Twin pattern — introduced in this paper — provides a standard solution for such cases. It
gives one most of thejjenefits of multiple inheritance while avoiding many of its problems.

The rest of this paper is structured according to the pattern catalogue in [GHJV95] so that the Twin pattern could in
principle be incorporated into this catalogue.

1.1 Example

As a motivating example for a situation that requires multiple inheritance, consider a computer ball game consisting of
active and passive game objects. The active objects are balls that move across the screen at a certain speed. The passive
objects are paddles, walls and other obstacles that are either fixed at a certain screen position or can be moved under the
control of the user.

The design of such a game is shown in Fig. 1. All game items (paddles, walls, balls, etc.) are derived from a
common base class Gameltem from which they inherit methods for drawing or collision checking. Methods such as
drawO and intersects?) are abstract and have to be refined in subclasses. checkQ is a template method, i.e. it consists of
calls to abstract methods that must be implemented by concrete game classes later. It tests if an item intersects with
some other and calls the other item's collideWithQ method in that case. In addition to being game items, active objects
(i.e. balls) are also derived from class Thread. All threads are controlled by a scheduler using preemptive multi-tasking.

252 Perspectives of System Informatics'99

for (all items x)
if (intersects(x))

collideWith(x);

Gameltem

draw()
boot intersects(otherItem)
collide With(otherltem)
clickf)
checkO

2

Thread

run()
suspendO
resumeO
sleepO

-F
Paddle

drawQ

Wall

draw()

Ball

draw()
move()
clickO -

run() -

if (suspended) resume()P
else suspendO;

while (true) { "H

drawO; moveO; drawO;
}

Fig. 1. Class hierarchy of a computer ball game

The body of a ball thread is implemented in its runß method. When a ball thread is running, it repeatedly moves and
draws the ball. If the user clicks on a ball, the ball sends itself'a suspendO message to stop its movement. Clicking on
the ball again sends a resumeO message to make the ball moving again.

The important thing about this example is that balls are both game items and threads (i.e. they are compatible with
both). They can be linked into a list of game items, for example, so that they can be sent drawQ and intersectsQ
messages. They can also be linked into a list of threads from which the scheduler selects the next thread to run. Thus,
balls have to be compatible with both base classes. This is a typical case where multiple inheritance is useful.

Languages like Java don't support multiple inheritance, so how can we implement this design in Java? In Java, a
class can extend only one base class but it can implement several interfaces. Let's see, if we can get along with multiple
interface inheritance here. Ball could extend Thread and thus inherit the code of suspendO and resumeO- However, it is
not possible to treat Gameltem just as an interface because Gameltem is not fully abstract. It has a method checkß,
which contains code. Ball would like to inherit this code from Gameltem and should therefore extend it as well. Ball
really has to extend two base classes.

This is the place where the Twin pattern comes in. The basic idea is as follows: Instead of having a single class
J5fl//that is derived from both Gameltem and Thread, we have two separate classes Ballltem and BallThread, which are
derived from Gameltem mi Thread, respectively (Fig. 2). Ballltem and BallThread are closely coupled via fields so
that we can view them as a Twin object having two ends: The Ballltem end is compatible with Gameltem and can be
linked into a list of game items; the BallThread end is compatible with Thread and can be linked into a list of threads.

Gameltem

drawQ

clickf)
check()

~zs

Thread

if (suspended)
twin.resumeO;

else
twin.suspendO;

twin object

run()
suspendO
resumeO
sleepO

—zsr-

Ballltem

draw()
moveO
cliekO

twin

twin
BallThread

run() while (true) {
twin.draw();
twin.moveO;
twin.draw();

}

TS

Fig. 2. The class Ball from Fig.l was split into two classes, which make up a twin object

Twin objects are always created in pairs. When the scheduler activates a BallThread object by calling its method runß,
the object moves the ball by sending its twin the messages moveO and drawQ. On the other hand, when the user clicks

Mössenböck H. Twin —A Design Pattern for Modeling Multiple Inheritance 253

on a ball with the mouse, the Ballltem object reacts to the click and sends its twin the messages suspendQ and resumeQ
as appropriate.

Using only single inheritance, we have obtained most of the benefits of multiple inheritance: Active game objects
inherit code from both Gameltem and Thread. They are also compatible with both, i.e. they can be treated both as game
items (draw, click) and as threads (run). As a pleasant side effect, we have avoided a major problem of multiple
inheritance, namely name clashes. If Gameltem and Thread had fields or methods with the same name, they would be
inherited by Ballltem and BallThread independently. No name clash would occur. Similarly, if Gameltem and Thread
had a common base class B, the fields and methods of B would be handed down to Ballltem and to BallThread
separately—again without name clashes.

2 Applicability

The Twin pattern can be used
• to simulate multiple inheritance in a language that does not support this feature. ,
• to avoid certain problems of multiple inheritance such as name clashes.

3 Structure

The typical structure of multiple inheritance is described in Fig.3.

Parentl Parent2
vl v2

MIO M20

^ ^
1

Child

v3

MIO
M20
M3()

Fig. 3. Typical structure of multiple inheritance

It can be replaced by the Twin pattern structure described in Fig.4.

Parentl

vl

MIO

—Z>T

Childl

v3

MIO
M3Q

Parent2

v2

M20
z j\

twin
Child2 < *

twin
M20

Fig. 4. Typical structure of the Twin pattern

254 Perspectives of System Informatics'99

4 Participants

Parentl (Gameltem) and Parent2 {Thread)
• The classes from which you want to inherit.

Childl (Ballltem) and Child2 (BallThread)
• The subclasses of Parent! and Parent2. They are mutually linked via fields. Each subclass may override methods

inherited from its parent. New methods and fields are usually declared just in one of the subclasses (e.g. in Childl).

5 Collaborations

• Every child class is responsible for the protocol inherited from its parent. It handles messages from this protocol and
forwards other messages to its partner class.

• Clients of the twin pattern reference one of the twin objects directly (e.g. ballltem) and the other via its twin field
(e.g. ballltem.twin).

• Clients that rely on the protocols of Parentl or Parent2 communicate with objects of the respective child class
(Childl or Child2).

6 Consequences

Although the Twin pattern is able to simulate multiple inheritance, it is not identical to it. There are several problems
that one has to be aware of:

1 Subclassing the Twin pattern. If the twin pattern should again be subclassed, it is often sufficient to subclass just one
of the partners, for example Childl. In order to pass the interface of both partner classes down to the subclass, it is
convenient to collect the methods of both partners in one class. One can add the methods of Child2 also to Childl
and let them forward requests to the other partner (Fig.5).

Parentl Parent2

vl v2

MIO M2()
zp, ^ >

Childl
win

Child2

/

4 J^
v3

twin
M20

MIO
M20 --.
M30

- - twin.M2() H

^ 1
i Sub

MIO
M20

Fig. S. Childl.M2Q forwards the message to Child!. M2()

This solution has the problem that Sub is only compatible with Childl but not with Child2. If one wants to make the
subclass compatible with both Childl and Child2 one has to model it according to the Twin pattern again (Fig.6).

MössenböckH. Twin - A Design Pattern for Modeling Multiple Inheritance 255

Parentl Parent2

vl v2

MIO M2()
A f r 1 N

Chfldl twin Child2 ■4 ?
v3

twin
M2()

Ml()
M30

Ä

\ ^ /
c ^

GiandChüdl
gtwin ^

SrandChild2 j *"

MIO M2()
\ /

Fig. 6. The subclass of Childl and Child2 is again a Twin class

2 More than two parent classes. The Twin pattern can be extended to more than two parent classes in a straightforward
way. For every parent class there must be a child class, All child classes have to be mutually linked via fields (Fig.7).

Parentl Parent2 Parent2

vl v2 v3

MIO M20 M30
z\ z ̂ Ä

(tw3 N
Childl Child3 « :
v4

twl

twl

tw2-<^

"Iw3

M3()

MIO
M40

Child2

M20
J

Fig. 7. A Twin class derived from three parent classes

Although this is considerably more complex than multiple inheritance, it is rare that a class inherits from more than
two parent classes.

7 Implementation

The following issues should be considered when implementing the Twin pattern:

1 Data abstraction. The partners of a twin class have to cooperate closely. They probably have to access each others'
private fields and methods. Most languages provide features to do that, i.e. to let related classes see more about each
other than foreign classes. In Java, one can put the partner classes into a common package and implement the private
fields and methods with the package visibility attribute. In Modula-3 and Oberon one can put the partner classes into
the same module so that they have unrestricted access to each others' components.

2 Efficiency. The Twin pattern replaces inheritance relationships by composition. This requires forwarding of
messages, which is less efficient than inheritance. However, multiple inheritance is anyway slightly less efficient
than single inheritance [Str89] so that the additional run time costs of the Twin pattern are not a major problem.

256 : Perspectives of System Inforrnatics'99

Acknowledgements

The technique described in this paper was discovered by Robert Griesemer in the implementation of a game program in
Oberon. It was also described—although not as a design pattern—in [Tem93] and [Moe93].

References

[BMRSS96] Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal M.: Pattern-oriented Software Architecture: A System of
Patterns. Wiley 1996.

[GHJV95] Gamma E, Helm R., Johnson R., Vlissides J.: Design Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley 1995.

[Moe93] MössenböckH.: Objektorientierte Programmierung in Oberon-2. Springer 1993.
[Pree95] Pree W.: Design Patterns for Object-Oriented Software Development. Addison-Wesley 1995.
[Str89] Stroustrup B.: Multiple Inheritance for C++. Proceedings EUUG Spring Conference, Helsinki, May 1989.
[Tem93] Tempi J.: A Systematic Approach to Multiple Inheritance Implementation. SIGPLAN Notices 28 (4): 61-66

1

A Partial Semantics for Object Data Models
with Static Binding

(Extended Abstract)

Kazem Lellahi1 and Rachid Souah2

LIPN, UPRES-A 7030 C.N.R.S, Universite Paris 13, 93430 Villetaneuse France.
E-mail :kl«lipn.univ-parisl3.fr', Fax : (33)148260712

2 LRI, U.R.A. 410 C.N.R.S, Universite Paris 11, 91405 Orsay cedex France.
E-mail :souah@lri.fr, Fax : (33)169156586

1 Introduction

A database can be usually seen as a collection of records. In object oriented models [6,1] records, called objects,
have a special field and may have other additional fields. The value of the special field is assumed to give
a unique identification of the object in a context. The context of an object is its class which is a named
collection of objects with the same type. Other additional fields of records are methods. Classes are organized
in an inheritance hierarchy. In the absence of a standard formal object data model, various models have been
proposed [7,5,2]. The ODMG group carried out an effort of standardization and proposed an object data
language 0DL, and an object query language 0QL [4]. However, no formal model has emerged with the same
authority as the relational model. In this paper we provide a formal semantics for most common object concepts
in different existing object models. In doing so, we follow the relational database tradition; namely the clear
separation between schema, domain and instance. We consider a class as a named collection of partial functions
with the same domain. The result of each function on an object is a calculation or a value which is an element
of some type. Type expressions are obtained from basic types and class names, using two constructors set and
®. However, the semantics of ® in this paper is not the usual cartesian product of types but a semantics more
suitable for dealing with partial functions and null values.

2 The Data Model

2.1 Database Schema

In what follows, by an inheritance relation over a set X, we mean a finite binary relation which is irreflexive
and has no cycle. Clearly the transitive and reflexive closure of any inheritance relation is a partial order.
An inheritance relation is represented either (1) as ä finite subset R of X x X or (2) as a set-valued function
R: X -> V/(X), where Vf(X) is the set of finite subsets of X. The correspondence between the two representation
is x R y <=> y G R(x). We use the same symbol, say R, for both representations, and we denote by R(x) the
elements related to x via R. Similarly, we consider a finite ternary relation over (X,Y, Z) alternatively (1) as a
finite subset R of X x Y x Z, or (2) as a function R: X -> Vf(Y x Z).

Definition 1 A ternary relation R over (X,Y, Z) is said to be XY-functional to Z if it satisfies: Wx e X Vj/ €
YVzeZVz'eZ (R(x,y,z) A R(x,y,z')=> z = z').

Let A, M and C be enumerable non empty and pairwise disjoint sets, that we call set of attribute names, method
names, and class names respectively. Let C be a non empty finite set of class names, and ß a non empty finite
set of type names, that we shall call basic. We assume that types are built as follows:

Tc ::= ß | C | Tc §> Tc | set Tc
Elements of Tc are called object-types (or types for simplicity). In the sequel, TQ will denote the set of non
empty sequences of elements of Tc, and inheritance relations will commonly be denoted by isa.

Definition 2 We say S — (C,isa,att,meth) is an object-oriented database schema (or a schema for short) if:

- C is a finite non empty subset of class names,
- isa is an inheritance relation over C,
- att is a finite ternary relation over (C,A,Tc), which is CA-functional toTc,
- meth is a finite ternary relation over (C,M,T^), which is CM-functional to T£,

such that for every c in C, one of the sets isa(c), att(c) or meth(c) is not empty.

258 Perspectives of System Informatics'99

We call each c = (c,isa(c),att(c),meth(c)) a class of S with name c, each (a,t) in att{c) an attribute of c
with name a and type t; and each (m,txt2 .. .tk) in meth(c) a method of c with name m and profile t^ ...tk.
The above definition implies that classes of a schema have distinct names. Thus, a class can be recognized
by its name. The transitive and reflexive closure of isa is denoted by <isa. We read c isa c' as c inherits c'
and c <jsa c' as c is o subclass ofc'. The functionality of att and meift means that overloading of attributes
or methods is not allowed within a class, but allowed in distinct classes. Therefore, in the whole schema, an
attribute (a,t) or a method {m,tit2...tk) of c should be seen as (c,a,t) or (c,m,tit2...tk) respectively. Single
inheritance as well as multiple inheritance are allowed. Definition 2 says that if a class has no attributes and
no methods, it must at least inherit another class, and if a class does not inherit any other class and has
no methods (or attributes) it must have at least one attribute (or method). Following usual notation, we shall
denote an attribute by a : t and a method by m : h...tk-i —► tk, or by m :—>t (methods without parameters).
The standard class declaration of the opposite Fig-
ure correspond in our setting to

isa(c) ={ci,... ,cm}
att{c) ={(auti),... ,(on,tn)}
meth(c) = {(m1,t\...tli),...,(mp,tl..tlp)}

Thus, a finite set of such declarations forms a
schema iff the resulting functions isa, att and
meth satisfy the conditions of Definition 2. Fig-
ure 1 will be our running example throughout the
paper.

class c inherit Cl . ..Cm

attributes :
ai : *i; ••• * Otn '. tn

methods :
mi *i,...)**i- -I-»**!

rtip ■*?,... -I-»**,

class Pers
attributes :

name : string
ssn : int

class Emp inherit Pers
attributes :

charge : string
hired -date : int
salary : int

methods :
bonus: —t int
seniority: int —► int

class Dir inherit Emp
attributes :

appoint .date : int
methods :

seniority: int —>■ int

class Prof inherit Emp
attributes :

supervise : set Stud
teaches : set Course
charge : set Proj

methods :
bonus: int —> int

class Stud inherit Pers
attributes :

supervisor : Prof
takes : set Course

class Proj
attributes :

name : string
budget: int

class Course
attributes :

name : string
level: string®int
preq : set Course

class Tutor inherit Stud, Emp
methods :

bonus: —> int

Fig. 1. An example of schema

2.2 Inheritance and Overloading Problem

Inheritance provides a mechanism allowing to relate together properties of classes. When c <isa c', each object
of c may be seen as an object of c', thus properties of c' may be considered also as properties of c. But this
consideration can cause a name conflict in c. For instance, in our example, the attribute charge : string in Emp
causes name conflict with charge : set Proj in Prof. A similar name conflict will happen for methods seniority
in Emp and seniority in Dir although they have the same type. One way to avoid such name conflicts is to
rename inherited attributes or inherited methods whenever conflict may arise. Since our next discussion will
not vary if we talk about attributes or methods, we shall do the discussion for attributes only.

 Lellahi K., Souah R. A Partial Semantics for Object Data Models with Static Binding 259

Definition 3 Let c and c\ be two classes of a schema of S such that c <jSQ c\. We say (ci,ai,t\) does not
conflict with the class c if for every attribute (c2,a2,t2) ofS, we have c\ <isa c2 whenever c <isa c2 and a\ = a2.

■

In our example attribute charge of Emp conflicts with Prof but does not conflict with Dir. Similarly, the
method seniority of Emp conflicts with the class Dir. Now. we can express our renaming procedure as follows:

Renaming procedure : For every class c and every superclass a of c, if a property (i.e. attribute or method)
p of c\ conflicts with c then rename p in c.

Our formal way for renaming will be prefixing. In practice, instead of prefixing names, new names may be
introduced. We stress that the renamed attribut has the same type as the original one. As a consequence, our
notion of inheritance does not impose any covariance or contravariance conditions. This is in contrast to the
sub-typing in object programming languages [1,3].

3 The Type System

3.1 Concrete Types

Let us add to our type system a new type with one element, called unit. Thus:
Tc"=ß I C\ T®T | setT, T::= To I unit

Each basic type name t is assumed to denote a set p] of values that we will call concrete type of t. The concrete
type of each class name is supposed to be a special enumerable set oid, which is disjoint from all other basic
concrete types. The elements of oid are called object identities. Now, we consider a symbol ± that denotes an
element outside the concrete basic types and the concret type oid. The concrete types of all other types are
defined recursively as follows:

-lunit} = {±}, -[aett] = Vf([t])
- [*i ®*a] = ([*i] x [fe]) + ([<i] x [unit]) + ([unit] x p2J)

where x and + are the usual cartesian product and the usual cartesian coproduct of sets. Elements of ft] will
serve to define the stored part of a database. It is important to note that the semantics of <g> is not the usual
cartesian product semantics. This special semantics of <g> will allow us to deal with null values and later on with
partial functions. In the context of databases the special symbol ± can be seen as the value null. Another role
of the symbol X is to express the undefmedness of functions. If we denote [t]± — p] + [unit] then the following
theorem relates <8> to the usual cartesian product:

Theorem 1 For all types t\ andt2, pi]U x p2]j_ and pi <&t2}± are isomorphic. ■

3.2 Classes as Types

In any type system, basic and user-defined types come with their operations. In our setting if S — (C, isa, att, meth)
is a database schema then every class (c,isa(c), att(a),meth(c)) can be seen as a special user-defined type. The
name c of the class is the name and also a sort of this user-defined type. Operations of c are:

- if (c, a, t) is an attribute then a: c -» t is an operation over c;
- if c <isa c' and (c',a,t) is an attribute that does not conflict with c, then a: c~¥ t is an inherited operation

over c;
- if c <isa c' and (c', a, t) is an attribute which conflicts with c, then (c')a: c -> t is a renamed operation over

- if (c, m, t\... tk) is a method then m: c ® t\ ® ... ® tk-i -> ffc is an operation over c;
- if c <iSa c' and (c', rn,t\... tk-itk) is a method that does not conflict with c then m: c®ti®t2 ■ ■ .<8>£*-i -> tk

is an inherited operation over c;
- if c <iSa d and (c',mtfa —**-i*fc) is a method which conflicts with c then the renamed method (c')m-. c®

*i ® *2 • • • ® tfe-i -> tk is an operation over c;
- if c <iSa c' then isac'c : c -> c' is an operation over c.

Thus, we can see a schema as a set of type specifications.

260 Perspectives of System Informatics'99

3.3 Functional Terms

In an object data model, calculations appear in two ways. On the one hand they serve to define the dynamic
part (i.e. methods) of the database, and on the other hand they perform arithmetique computation. In our
approach each calculation is a term of an algebra. This algebra acts on partial functions and is defined by the
following rules:

h ■ t -* ti fz:t->t2
fst: ti ® t2 -th snd:ti®t-2^>t2 <fufi>: i->■ h ® t2

ter* : t -4 unit ' undef* : unit -+ t

Functional terms of a given schema are outputs of these rules whenever inputs are operations of the schema or
operations of basic types.

Example 1 Suppose int and string are basic types, and add* denotes the prefix notation of the usual operation
+. The following are functional terms:

- name: Stud-tint, name: Prof -> string, (Emp)bonusJ: Prof—► int
- <name, supervisor.name>: Stud -¥ string ® string,
- <fst.(Emp)bonus,<snd,ter*.100* >>.add* : Prof ®int—Vint. ■

4 The Semantics

4.1 Database Instance

We see an instance of a database as a finite set of persistent objects and a code for each method. As usual an
object is a pair (i, v) where i e oid and v 6 [*]. According to our recursive construction of [t], such a value may
have a complex structure. Thus, v may refer itself to other object identities. The value v referring to an object
identity j is an indication for saying that the type expression t has used a class name in its construction. But,
since we have interpreted every class name by the same set oid, we are now unable to say what class name has
caused the appearence of j in v. However, we need this lost information. Indeed, if a persistent object refers to
another object the later must be also persistent.

Definition 4 For every type expression t, every value v of[t] and every class name c of the schema S, the set
ref(v : t, c) is defined recursively as follows :

- ref(v :t,c) — 0, for every basic type t;
- ref(v : c',c) =0,ifc'^c and ref(v :c,c) = {v};
- ref(v : set t, c) = ref{vx : t, c) U ... U ref(vn : t, c), where v = {Vl,... , vn};
- ref(v : tt ® t2,c) = ref{vi : *i,c) U ref(v2 : t2,c), where v = {vi,v2). ■

The set ref(v : t, c) is the set of all object identities which appear in v because of the presence of c somewhere
in the type expression t.
A functional term e : h —► t2 denotes a partial function e : fa] —> p2]. But we see e as a function
|ej : l*ij —■»• Itajx such that e(x) = ± means "e is undefined on x°. Note that, 1 appears only in the codomain
of[e].

Definition 5 A database instance over a schema S = (C,isa,att,meth) is a function S that associates

1. with every class name c of C a finite subset 5{c) of oid, such that:
- ifc <isa c' then ö(c) Cö(c'),
-ifc and c' have no common subclass and no common superclass then 6(c) n 5{c') = 0-

2. with every attribute (c, a,t), a finite function ac
s : [c] —+ Mx such that: ' ,

-def(a$)C6(c),
- for all i e 6(c) and c1 e C, ref(ac

s(i) : t,c') C 6(d);
3. with every method (c, m, 11... tk-i tk) of S, a functional term

mc
s:c®ti®...®tk-i ->*fc. _

 Lellahi K., Souah R. A Paxtial Semantics for Object Data Models with Static Binding 261

In this, definition each class name is seen as a persistant root. There is an explicit distinction between stored
and computed part of the database. The stored part is defined by clauses 1 and 2 and the computed part by
clause 3. The second clause of Definition 6 implies that: a persistent object cannot refere another object unless
that object is persistant. This is actually the principle of persistence seen earlier. The first clause of Definition
6 requires that 5(c) C 5(d) whenever c <jsa d. This means that: the semantics of inheritance is set inclusion.

4.2 Semantics of rules

In order to define the semantics of the rules we recall some practical notations:

- For two sets Tu T2, IlJ
lTi: Ti x T2 ->Ti (i = 1,2) denote projections and inflTz :Ti->T1+T2 coprojections.

When T2 = {1} we write defTl: Ti -» 2\ + {±} and undef1: {1} -> Ti + {-L} instead of uiflU} and
in^K

- For /,-: A -> Ai (i = 1,2), the function < /i,/2 >: A ->• Ax x A2 is defined by < /i,/2 > (x) = (fi(x),f2(x)).
Similarly for gf. Ai-t A (i = 1,2) the function [gi, g2]: A\ + A2 —> A is defined by:
[Sij^K») = if (x = imy) then gi(y) else if (x = in2z) then g2(z) .

- If fi-. Ai-^Bi (i = 1,2) then /i + f2: Ax + A2' -+ A\ + A2 is an abbreviation for [in?1B2 o /i, mf1 Bs o f2].
- For every set T the function tev.T -> {1} is the unique function from T to {±}, id: T -4 T is the identity

function. An element a of T is seen as a function a: {±} -» T, where a(JL) = o.

Now, we define the semantics of the rules as follows-:

lid*] = -- def o id = def U-g] -- = [lg], undef] o I/I [<f,g>] =< I/I, M >

[fat] = = [n[tint*\ jjltiJlunith _j_ jjluniqitil {sndj _ rjjlh'lltil jjlunitnt2h + jjlhiiunit}

[ter*] — def o ter [undef *\ = undef

The apparent complexity of the above semantics is due to our concern for treating null values and undefinedness
rigorously.

4.3 Semantics of functional terms

Functional terms are obtained recursively from a schema S using rules. The basis of the recursion consists of
constants, basic type and class operations.
Semantics of basic operations: In our type system a binary operation of a basic type looks like op* : t®t —>
t. Thus, its semantics is (op*} :[t®t] —> [f]j_. Since the semantics of t ® t is [t] x \t] + {±} x [t] + [t] x {1},
one of the two arguments of [op*] may be undefined (i.e. equal to 1). We assume that the result of [op*} is 1
whenever one of its arguments is ±. Formally,

lop*} = op + [nlunitm,nlmunH\
where op : [t] x [i] —> ft] is a usual binary operation on fi].
The rest of the semantics will be generated from a database instance S.
Semantics of inheritance relationships: We expressed c <isa d syntactically as the operation isac'c' : c -»
d of c (Section 3.2). According to Definition 6, 8(c)-C 5(d). This inclusion corresponds to a partial function
isac/ : [c] —> [c'Jx. Therefore we define: psac>c'| = iscf/'.
Semantics of attributes: Attributes of a class act on objects of that class, in the following sens:

- for every attribut (c,a,t) in 5, [a]c = aj,
- for all classes c, d, if c <isa d then for every attribute (c',a,t) which does not conflict with c, [ajc =

{isac'c'.a] (= [faf',undef] o [isac-c'l),
- for all classes c, c', if c <isa d then for every attribute (d,a,t) which conflicts with c, [(c')olc = \isac'c'.a}.

The second (third) of the above clauses says: the semantics of a as an inherited (renamed) attribute of c is the
semantics of a as an attribute of d but restricted to objects in c.
Semantics of methods: Contrary to attributes, methods operate on objects according to the designer's/
user's choice for early or late binding. In early binding a method operates in the same way on all objects of a
class, but in late binding the operation on an object, depends on the way that the object is shared by other
classes. The following semantics of methods suit only for early binding.

- For every method (c,m,ti...tk) in <S, [m]c = fm£].

262 Perspectives of System Informatics'99

- For all classes c, d, if c <isa c' then for every method (c', m,ti...tk) which does not conflict with c,

!mY = / psac'c'.m] (= [[m]c\wufe/] o [wa^]), t/ * = 1
\l<fst.isac'c',snd>.ml if k>l

- For all classes c, c', if c <isa c' then for every method (c',m,ti. ..tk), which conflicts with c,

[(c>r=(paC'C'-™J,, i/* = l
\l<fst.isac'c,snd>.m], if k>l

5 Concluding remarks

We have introduced a formal object-oriented data model with partial semantics. We have considered a partial
map as a total map I->FU {!}, where ± is supposed to be outside Y. This point of view suits better
to database theory. We have considered a database as a set of partial functions. Each function represents an
attribute or a method, and 1 represents null value (or value undefined). A similar aproach have been proposed in
[8] with a categorical point of view, but without considering methods and binding modes. This paper investigates
with methods and static binding. We have endowed the type system with an algebra of functions by means
of rules. These rules are similar (but, not equivalent) to those presented in [2], because they both contain a
common mathematical structure. But, contrary to [2] our semantics for this structure is the universe of sets
and partial maps. For this reason we have introduced a particular semantics for ®, whereas they use the usual
cartesian product x.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2. P. Buneman, S. Naqvi, V. Tannen, and Limsoon Wong. Principle of programming with complex objects and collection

types. T.C.S., 149:3-48, 1995.
3. G. Castagna. Object-Oriented Programming. A Unified Foundation. Birkhäuser, 1997.
4. R. Cattel. The Object Databases Standard: ODMG-93, Release 1.2. Morgan Kaufmann, 1996.
5. M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. SIGMOD Conference, pages 393-402, 1992.
6. W. Kim.. Modern Database Systems. The Object Model, Interoperability, and Beyond. Addison-Wesley, 1995'
7. C. Lecluse and P. Richard. The o2 data model. In Francois Bancilhon, Claude Delobel, and Paris Kanellakis, editors

Building an Object-Oriented Data-base System, The Story of02. Morgan Kaufmann, 1992.
8. S.K. Lellahi and N. Spyratos. Towards a categorical data model supporting structural object and inheritance LNCS

NO 504, pages 86-105, 1991.

Heterogeneous, Nested STL Containers in C+

Volker Simonis and Roland Weiss

Wilhelm-Schickard-Institut für Informatik, Universität Tubingen
Sand 13, 72076 Tübingen, Germany

{simonis,weissr}@informatik.uni-tuebingen.de

Short talk in the field of Generic Programming

1 Motivation

The incentive to write a nested, heterogeneous container in C++ surfaced in the SUCHTHAT project [11]. Therein
we are working on the implementation of a SuchThat compiler. The first prototype's back-end [14], as well as
many of the other components, were implemented in Scheme [8]. One of Scheme's main advantages is the
powerful list data structure, which can hold arbitrary data types1. This allows the user to build nested lists,
e.g. to represent a parse tree or symbol table.

Our current focus is on merging Tecton [7] with SuchThat. Due to severe performance problems with our first
prototype we have switched to C++ as implementation language. The STL provides basic containers that suit
most simple needs and exhibit very good runtime behavior. The containers' major drawback for our purposes
is the inability to hold objects of different types and that they do not support nesting.

We will show that exploitation of C++'s newest technologies, like templates and run-time type information.
(RTTI), lead to a powerful data structure based on the STL. We think that the different paradigms of generic,
object oriented and functional programming, which often are seen as adversaries, can instead complement each
other.

2 Approaches

We observed a trade off between syntactic elegance and runtime performance. This made us come up with two
fundamentally distinct approaches.

The first one, the more conservative, relies on an abstract base class that provides polymorphic behavior
with easy to use parameterized standard elements. The nseq class uses template template arguments (see [1],
14.3.3) for maximal flexibility.

The second approach builds on the semantics of chameleon objects [12]. It is outperformed by the first one
regarding runtime but excels in usability.

2.1 Specification of the Problem

We informally state with the following three requirements what we call a heterogeneous, nested sequence S.

1. Every STL sequence container should be applicable as underlying implementation container of S (flexibility
property).

2. S should be able to hold arbitrary objects (heterogeneity property).
3. Any nested sequence S should be able to hold other nested sequences recursively (nesting property).

2.2 Classical Polymorphism

The well established way in C++ to provide polymorphic behavior uses inheritance. The heterogeneous container
holds pointers to a base class and the G++ runtime system will dispatch methods based on the polymorphic
type. Our base class BaseElem declares the virtual functions BaseElem* clone() and BaseElem* create() to
support the virtual constructor idiom (see [2], 20.5).

Instead of letting the user write wrapper objects for every type he uses, we deliver the template class ElemO
that inherits from BaseElem. The signature is template <class valT> class Elem : public BaseElem. This

1 Of course, this holds true for any untyped language.

. 264 Perspectives of System Informatics'99

wrapper class does all the tedious work a user usually has to do on his own: define constructors and destructors
as well as various auxiliary methods (e.g. I/O functions). She must only instantiate the template class. This
works for basic types and classes, e.g. Elem<int> i or Elem<string> s("test").

Let us examine the class nseq, which should fulfill the problem specification given in section 2.1. The
heterogeneity property can be obtained by keeping pointers to the base class BaseElem in the sequence. If we
want to comply to the nesting property, nseq must be derived from BaseElem itself. Furthermore, in order to
use STL containers, nseq must also be a subclass of such a container. These considerations lead to this signature
of a nested list:

class nlist : public list<BaseElem*>, public BaseElem

This works fine, but it does not fulfill the flexibility property, because the implementation container is
hard-coded. You cannot provide different containers, as the class nlist is a subclass of the STL container
instantiation list<BaseElem*>. To gain the desired additional level of abstaction, we use template template
arguments, a very novel C++ feature, nseq becomes a template class, whose template argument is a container
which is a template class itself. Therefore, a simple template would not suffice. The final class header for nseq
reads: ^

template Ctemplate <class valT> class containerT>
class nseq : public containerT<BaseElem*>, public BaseElem

The clone ()-function has a boolean parameter shallow, which is of importance for nested sequences only
It controls if either a shallow or a deep copy of the container is made. A shallow copy creates a new container
with pointers to all top-level elements. A deep copy creates'a new container, recusively holding copies of the
containers and atoms in the source sequence.

Working with our nseq class is quite simple. An instance of a nested deque is created with nseq<deque>
nd. We can use all of deque's member functions to add elements to our container, e.g. nd. push back (new
Elem<int>(4711)). The sequence can be walked with the STL container's iterators, but only at the top-most
level. You can recursively descend into nesting layers, if the member function bool is_atom() returns false
which is the case for elements that are nested sequences. When you walk a nseq and want to operate on the
elements, you have to perform a dynamic cast on BaseElem. The following code example shows how the first
level of a nested sequence is walked with the container provided iterator and every integer entry is replaced bv
its square power. J

for (nseq<list>::iterator iter = nl.beginO); iter != nl.endO; ++iter)
if (intp = dynamic_cast<Elem<int>*>(*iter))

*intp = intp->getValue() * intp->getValue();

Figurel compares the layout of nseq<vector> and vector<int>2. It shows that we get a memory overhead
of two pointers (eight bytes) for every element, regardless of the wrapped object's type. The first one points
to BaseElem. This indirection is needed to use C++'s polymorphic mechanism. The second pointer holds the
address of the element's virtual table.

vector<int> nseq <vect ar>
int 4 int 4 int 4 FBEI BEIem\ BEIem*4 | pointer to ,.

■ Elem<int>
T~Z]

| vtable*4 /int 4
object of size
n and type T

Figurel. Layout comparison of a standard STL container and a nested sequence.

2.3 Chameleon Objects

!Ü [12la.rW technique for Pr°viding a generic, type-safe wrapper class is presented. This goal is achieved
through the unpararnetenzed class Value. Contrary to the class itself, all its methods, like the constructor
and a set of overloaded operators, are parametrized, i.e. template functions. Thus, any object of arbitrary
type can be assigned to a Value object due to the parameterized assignment operator template<claSs T> T
operator=(const T&). In turn, a Value object can easily be reassigned to an object of its initial type because
of the parameterized conversion operator template<class T> T& operator TQ.

2 We assume that sfeeof(int) = 4 and sizeof(pointer) = 4, which is true for most contemporary 32bit architectures.

Simonis V., Weiss R. Heterogeneous, -Nested STL Containers in C++ 265

The Value class guarantees strict type safety by signaling any attempt to assign a Value object to another
object of incorrect type by throwing an exception3. To achieve this functionality, the Value class keeps all
information about the wrapped object in a private, static data member inside a member function, parameterized
with the same type.

Since all used data types are known at compile time, the compiler can instantiate the corresponding methods
and data objects. In fact, for every data type used in conjunction with a Value object, a full set of operators
and methods is instantiated by the compiler. The type checking of any operation concerning a Value object
is performed by these methods at run time. Because of their ability to change their internal type at any time,
Value class instances are called chameleon objects.

Given this Value class, we can now construct heterogeneous containers based on the standard STL con-
tainers by instantiating such a container for Value with list<Value> polyCont. Thereafter, objects of arbi-
trary type can be inserted into the container, e.g. polyCont.push_back(12), polyCont.push_back(0.9) and
polyCont.pushJback(string("hello")). Because, as stated above, Value objects can hold objects of any
type, even containers can be inserted as elements into a Value parameterized container, thus obtaining nested
containers.

The extraction of elements from the container is straightforward, too. If we know the the desired ele-
ment's type, we can simply query it. Given the list polyCont from the previuos example, we can write int
i=polyCont.front() to get the first element of the list. More care must be taken if the type of the desired
element is unknown. Since overloading the typeidQ operator is not allowed in C++ (see [1], 13.5), the Value
class defines a method typeidQ, which returns the type information for the currently wrapped object. With
this information and Value's parameterized method template<class T> T& getValue(), one can access every
element of the nested, polymorphic container. This is shown in the following sample code:

// double sin(double); a function with this signature must exist
void apply(list<Value> &cont) {

for (list<Value>:: iterator it = cont.beginO; it != cont.endO; ++it) {
if (it->typeld() == typeid(list<Value>)) apply((list<Value>)*it);
else if (it->typeld() == typeid(int)) *it = (int)*it * (int)*it;
else if (it->typeld() == typeid(double)) *it = sin(*it);

}
}

3 Performance Tests

The results of the performance tests are presented in Figure2. We compared the original STL list and vector
containers against their nested counterparts based on our implementations. The tests consisted of two parts,
container creation and element access. They were all performed for int and std:: string data types. The
containers were filled in a loop using push_back(T&). Access was measured by iterating over the created container
and mutating its elements.

The charts show the overhead introduced by our containers for the fiat, homogeneous case, where of course
their additional features are not used. The price you have to pay for nesting and heterogeneity is a runtime
penalty ranging from 1.3 to 1.9 for complex objects (std:: string in our tests) and 2.9 to 13 for built in types
(int).

Furthermore, we want to note that due to the extensive use of the new operator in our element classes, the
tests depend heavily on the applied memory allocation scheme. Therefore our source code includes the smart
memory allocator presented in [5], which speeds up the tests significantly compared to the default new operator.

Our classes make heavy use of new C++ language features like RTTI and templates. We were able to compile
our code at the time of this writing with egcs 1.1 [3], the EDG front-end [4] and IBM VisualAge C++ 4.0 [6],

4 Results

We presented two distinct approaches to the problem of implementing a nested, heterogeneous container in C++.
The classical one shows better runtime performance. Its overhead, compared to a standard STL container, arises
from the pointer indirection, which is necessary for the polymorphic approach, and the virtual table pointer in
the Elemo class (see Figurel). This generic wrapper frees the user of boring work. One drawback is the pointer
semantics, uncommon in the value semantics of STL containers. It also forces the user to handle most aspects
of memory management.
3 Type identity is defined as name identity here.

266 Perspectives of System Informatics'99

Figure2. All tests ran on a Pentium II, 333 MHz, 128MB machine under Windows NT 4 and were compiled with egcs
1.1.1. The container size is 400000 elements. ':'

The container based on chameleon objects offers syntactic elegance that equals untyped data structures,
like those present in Scheme. Operations on elements are inherently type-safe, type violations are signalled by
exceptions. All this is made possible by the seamless integration of STL containers with the Value class. It hides
much of the details of casting and type checking from the user, which is still visible in our classical approach.
No efforts must be taken by the user to adapt objects for storage in the nested container. The beauty of this
approach is bought at the cost of increased runtime.

Our classes leave it up to the programmer to choose either faster executing code or more elegant source
code.

5 Future Work

We currently focus on implementing a flat-iterator, which behaves like a simple sequence iterator and
traverses all elements in a nested sequence in depth first order. This iterator enables us to use STL algorithms
on our nested sequences.

Another interesting question will be the use of different memory allocators and the implementation of garbage
collection ([10]) for the objects stored in the containers. We believe this task can be addressed efficiently and
transparently for the user through the introduced element classes Elemo and Value, respectively.

Finally, one can think of a reference counting mechanism, implemented also through the mentioned element
classes, which can lead to a dramatical performance increase, especially in situations where deeply nested
containers are heavily copied for read only purposes.

References

1. ANSI/ISO Standard: Programming languages - 6^+, ISO/IEC 14882, 1998. .
2. Marshall Cline: C++ FAQ LITE - Frequently Asked Questions,

http://www.cerfnet.com/~mpcline/c++-faq-lite.
3- Cygnus Solutions: egcs project home page, http://egcs.cygnus.com.
4. Edison Design Group: The C++ Front End, http://www.edg.com/cpp.htna.
5. Sasha Gontmakher and Ilan Horn: Efficient Memory Allocation, Dr. Dobbs Journal, p. 116-119, January 1999
6. IBM: IBM VisualAge C++, http://www.software.ibm.com/ad/visualage_c++.
7. D. Kapur and David R. Musser: Tecton: a framework for specifying and verifying generic system components,

Rensselaer Polytechnic Institute Computer Science Technical Report 92-20, 1992.
8. Richard Kelsey, William Clinger, and Jonathan Rees (editors): Revised" Report on the Algorithmic Language

Scheme, 1998.
9. David R. Musser, Atul Saini: STL Tutorial and Reference Guide, Addison-Wesley Publishing Company 1996

10. Gor V. Nishanov, Sibylle Schupp: Garbage Collection in Generic Libraries, Proceedings of the International Sym-
posium on Memory Management 1998, p. 86-97, Richard Jones (editor), 1998

 Simonis V., Weiss R. Heterogeneous, Nested STL Containers in C++ 267

11. Sibylle Schupp: Generic programming — SuchThat one can build an algebraic library, Ph.D. thesis at the Wilhelm-
Schickard-Institut für Informatik, Eberhard-Karls-Universität Tübingen, 1996.

12. Volker Simonis: Chameleon Objects, or how to write a generic type safe wrapper class, accepted for publication in
C++ Report, SIGS Publications, 1999.

13. David Vandevoorde: C++ Solutions, Addison-Wesley Publishing Company, 1998.
14. Roland Weiss: ScmToCpp: a configurable, intelligent back-end for SuchThat, Internal Report at the WSI für Infor-

matik, Universität Tübingen, 1998.

Data Flow Analysis of Java Programs
in the Presence of Exceptions

(extended abstract)

Vladimir I. Shelekhov and Sergey V. Kuksenko

Ershov Institute of Informatics Systems, Siberian Division,
Russian Academy of Sciences,

Acad. Lavrentjev pr., Novosibirsk 630090, Russia
vshelQiis.nsk.su, sergicQiis.nsk.su

Introduction

Java [7] is a new programming language that integrates many useful features of modern languages such as C++
and Oberon-2. Exceptions are elaborated as a quite natural mechanism highly integrated with other parts of
the Java language. Exceptions may be thrown by the methods of the standard Java classes, and a user program
may catch and handle them. It is clear that exceptions will be widely used in Java programs.

Exceptions pose new challenge to developers of data flow analyses. An exception, raised in a method body,
induces a control flow other than the main control flow from the method call. So, at the end of the method
body, a proper analysis must separate the data flow calculated for the raised exception from the main data flow.
Now, a typical data flow analyser either ignores exceptions or, in the best case, mixes data flow for the raised
exception with the main data flow. The only known approach of truly analysis of programs with exceptions is
described in [1].

Data flow analysis implemented in the static error checker OSA (Oberon-2/Modula-2 Static Analyser) [2]
ignores exceptions in Modula-2 programs. Of course, OSA analysis is not correct for exceptions. Nevertheless,
there was almost no problem with it so far because exceptions are rarely used in real programs. For the OSA
analysis of Java programs to be true, a proper analysis of the exception handling is needed. In Java programs, the
catch clauses would be rarely executed and therefore difficult for testing. So for non-trivial exception handling,
it is highly probable for the static analyser to find errors induced by exception handling.

In our data flow analysis, the implicit control flow for the raised exceptions is represented explicitly. The
hypergraph representation, previously applied for the statements of Oberon-2/Modula-2 programs, is used for
the new control flow structures of analysed Java programs.

1 Data Flow Analysis Overview

The static error checker OSA (http://www.xds.ru/osa/) checks programs for run-time errors by analysing
the source code. The powerful data flow analysis used in OSA is able to detect various kinds of Modula-2 and
Oberon-2 dynamic semantics violations, which are usually found during debugging and testing stages of program
development.

All known to us source code checkers (e.g. for the C/C++ languages) that detect run-time errors may
produce only long lists of warnings due to weakness of analysis they perform. In order for a source code checker
to be useful in practice, it must be able to recognize definite errors for really complicated erroneous situations. It
is shown [2] that at least the context-sensitive data flow analysis with approximation of definite def-use relations
must be done in such a static error checker.

OSA includes the following analyses:

- context-sensitive and context-insensitive data flow analyses;
- approximation of the definite def-use relations along with the possible ones;
- calculation of variable values: points-to must- and may-aliasing analyses for reference variables and propaga-

. tion of value ranges for variables of scalar types;
- calculation of branch reachability for conditional statements;
- refinement of variable definitions through conditions for the branches of conditional statements;
- approximation of previous instances of heap variables and local variables of recursive procedures.

OSA analysis is structured as a sequence of the following analysis phases:

 Shelekhov V. I., Kuksenko.S. V. Data Flow Analysis of Java Programs 269

- context-insensitive analysis phase;
- context-sensitive analysis phase;
- variable value calculation phase;
- backward analysis of unused values of variables;
- error analysis phase.

Except the fourth phase, all analyses are forward. Data flow analysis is implemented as abstract interpretation
of a program [5]. Data flow representation is based on the SSA form [3]. At every program point, a Def context
is calculated as a result of the interpretation. A Def context is the set of variable definitions that are valid at
the program point. The Def context produced by the first phase for the entry of each method is used as upper
approximation in the second analysis phase.

In data flow analysis, the control flow is represented by a structure different from the traditional control
flow graph. A program statement is a hyperleg that is a construct with one entry and possibly more than one
exit. For example, a loop body with the break and return statements is represented as a hyperleg with at least
the following three exits:

- for normal loop body end; ,
- via break statement;
- via return statement.

, •*■

The whole program is represented as a hierarchical hypergraph [4]. The control structures of statements of
the program source code are preserved in the hypergraph representation.

'2 Java Subset Implemented

There are Java language features which implementation in data flow analysis is impossible or highly ineffective.
The finalize methods are ignored. The order of the static initializations of classes in the OSA analysis may
be other than declared by the Java semantics. OSA cannot analyse programs with classes that are defined
dynamically in the process of execution of a Java program. The Java subset implemented excludes threads;
their implementation is now in the development stage. Runtime exceptions (null dereference, division by zero,
etc.) are handled by the OSA analysis only if they were recognized as definite; possible exceptions are ignored
because their implementation would be ineffective and as a rule useless. Of course, OSA analysis would be not
correct if an algorithm specially exploits runtime exceptions. So full processing of runtime exception may be
turned on by an OSA user. The Java subset implemented currently in OSA is almost the same as in [1].

3 Structures for Exception Handling Analysis

Unlike the approach [1], the implicit control flow for the raised exceptions is represented explicitly in our data
flow analysis. The difficulty is that the additional control flow structures must be constructed dynamically in
the process of data flow analysis.

For each throw statement, an exception branch is introduced. An exception branch has a label and a Def
context in the point of the throw statement. A label is the set of types of exceptions that raised by this exception
branch. When a throw statement is interpreted in data flow analysis, the exception branch associated with this
throw statement is attached to the current exception plateau. A plateau is the place where exception branches
are collected for their further processing. There are three kinds of exception plateaus:

- catch plateau inserted after the try block and before the first catch clause;
- finally plateau inserted before the finally block;
- end method plateau placed in the end of method body.

Each exception branch reached the end method body is placed into the end method plateau. When the
interpretation of the method body has completed, this exception branch is connected with some additional
exception exit of the method. So a method body is represented in data flow analysis by the following hyperleg:

270 Perspectives of System Informatics'99

where exiti,...,exitfc are exception exits. An exception exit has a label (the same as for exception branch) and
a Def context.

A method call is represented by the hyperleg of the same structure as for method body. Each call exit begins
some branch of a program. An exception exit of a method call begins some exception branch which label is the
same as for the exit. In the end of the interpretaion of a method call, the exception branch associated with an
exception exit of the call is attached to the current exception plateau.

4 Implementation of Exception Handling .'

After the interpretation of a try block has completed, the catch plateau of the try statement is interpreted.
For each exception branch included to the plateau, the branch label is matched to parameters of catch clauses,
according to the Java language semantics. As a result, the exception branch is attached either to some catch
clause or to the plateau of the innermost enclosing construct. If more than one exception branch is attached to
some catch clause, the merge statement for the entering Def contexts would be inserted before the catch clause.
If the branch label is partially matched to the parameter of any catch clause, the branch label is splitted, and
the new exception branch is created with the part of the label that not matched to the catch clause parameter.
This exception branch would be matched to the rest of catch clauses.

In the inner program representation, a finally block is represented as an independent procedure whose calls
are inserted into all appropriate places of the try statement. Such decision guarantees that different data flows
in the try statement would be never mixed. For each exception branch of the finally plateau, the call of the
finally block is dynamically inserted; in accordance with the Java language semantics, the main exit of this call
is labeled with the exception branch label.

After interpretation of a method body has completed, the end method plateau is interpreted. For all
exception branches of the end method plateau, the method exits are dynamically constructed so that the
following conditions true: .

- the label of each exception branch is a subset of the union of labels of method exits;
- for each exception branch and for each method exit, the exit label either a subset of the branch label, or

branch and exit labels do not intersect.

These conditions guarantee that data flows of two exception branches with different labels would be never
mixed. If several exception branches are connected with on6 method exit, a merge statement for the entering
Def contexts would be inserted to produce the target Def context for the exit.

For a method call, data flow analysis calculates all methods that may be invoked by this call. For each
invoked method and for each exception exit in this method, the call must include exit with the same label as
for the method exit. If this is not true, the new exit with the needed label is created for the call.

5 Related Work

The only known data flow analysis approach that properly handles exceptions is described in [1]. In that article,
data flow information (the conditional points-tos) may be additionally labeled with exceptions. This is a natural
but not trivial extension of the context-sensitive Landi-Ryder pointer aliasing algorithm [6].

The problem of fast static calculation of possible uncaught exceptions in SML programs was solved [8]. A
program call graph and exception flows are estimated from sets of equations and constraints. According to
the Java language, this problem is actual only for runtime exceptions that are unchecked. The analyser OSA
produces messages for uncaught runtime exceptions only if they were recognized as definite.

Shelekhov V. L, Kuksenko S. V. Data Flow Analysis of Java Programs 271

6 Conclusion

Unlike the approach [1], the implicit control flow for the raised exceptions is represented explicitly in our data
flow analysis. Actually, this is an application of the hypergraph representation (previously used for statements)
to the method body and method call constructs. So far the control flow structures of the analysed program are
constructed before data flow analysis. Here the new control flow structures for exception flows are constructed
dynamically under control of data flow analysis.

Our realization of the exception handling by means of the extension of the control flow mechanism appears
to be considerably less complicated than in [1].

Authors are grateful to Dmitry Leskov for many useful critical notes concerning this paper.

References

1. R. Chatterjee, B.G. Ryder, and W.A. Landi. Complexity of Concrete Type-Inference in the Presence of Exceptions.
LNCS 1381, Proceedings of European Symposium on Programming, April, 1998.

2. S.V. Kuksenko, V.l. Shelekhov. The Static Source Code Checker of Run-time Errors. Will appear in Program-
mirovanie, 1996, no. 6. (in Russian) '

3. R. Cytron, J. Ferraiite, B.K. Rosen, M.N. Wegman, and F.K. Zadek. Efficient Computing Static Single Assignment
Form and the Control Dependence Graph, ACM Trans. Prog. Lang. Sys., 1991, vol. 13, no. 4, pp. 451-490.

4. Shelekhov, V.l., Invariant of the Programming Language, in Sredstva i instrumenty programmirovaniya (Program-
ming Tools), Novosibirsk: Institute of Informatics Systems, Siberian Division, Russian Academy of Sciences, 1995,
pp. 6-22. (in Russian)

5. Cousot, P. and Cousot, R., Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints, Rec. 18th ACM Symp. on Principles of Programming Languages, ACM,
1977, pp. 55-56.

6. Landi, W. and Rider, B.G., A Safe Approximate Algorithm for Interprocedural Pointer Aliasing, Proc. ACM SIG-
PLAN'92 Conf. on Prog. Lang. Design and Implem., SIGPLAN Notices, 1992, vol. 27, no. 7, pp. 235-248.

7. J. Gosling, B. Joy, G Steele. The Java Language Specification. Pre-Release Version 1.0, Draft 5.2 - July 3, 1996
8. Kwangkeun Yi, Sukyoung Ryu. Toward a Cost-Effective Estimation of Uncaught Exceptions in SML Programs.

LNCS 1302, Static Analysis, 4th International Symposium, SAS'97. Proceedings. 1997. pp. 98-113.

Late Adaptation of Method Invocation Semantics

Markus Hof

Department of Computer Science (System Software)
Johannes Kepler University Linz, Austria

hofQssw.uni-linz.ac.at

Abstract. In distributed object systems, one has the possibility to make method invocations on objects
located on other host. During such an invocation, data is sent to another host and back. However, the
system tries to hide this and simulate a standcard method invocations close as possible. Some systems
[Voyager] try to offer other invocation semantics, e.g. asynchronous method invocation. We try to go a
step further and offer the actual invocation as first class abstractions. The programmer can build his own
abstractions by either implementing his own or by combining existing abstractions. Wiijh this system, he can
build arbitrary invocations semantics, e.g. synchronous method invocation with transactional semantics,
which also logs all method invocations.

1 Overview

Today's highly interconnected systems put more and more emphasis on the exploitation of the advantages
inherent to a network, i.e. increased fault tolerance, better availability, and easier scalability. However, network
systems have their disadvantages as well, and it is not easy to actually exploit their advantages. Independent
failure modes, which have to be handled when dealing with several computers, increase the complexity of software
development. Additionally, networked systems are often heterogeneous and highly dynamic. The configuration
of available computation resources may change on a moments notice. To cope with these problems different
approaches have been proposed. A common approach is to put part of the additional complexity into the object
system, i.e., to hide it from the developer, by extending the notion of objects and classes.

However, distributed object systems, e.g. Object Management Group's OMG [OMG], Microsoft's DCOM
[Micro], or JavaSoft's Remote Method Invocation [RMI98] use a fix scheme of a point-to-point request/response
communication model. While appropriate for a subset of applications using distributed objects, this model
inhibits exploiting the advantages of distributed objects for other domains. Other work has been done to widen
the application domain for distributed objects by introducing new kinds of method invocation semantics, e.g.
Voyager [Voyager] which introduces asynchronous method invocation. This paper describes a novel approach
to widen the application domain for distributed objects even further. We claim that introducing new special
cases as done e.g. in Voyager is not sufficient. There are an infinite number of possible desirable kinds of method
invocation, e.g. asynchronous vs. synchronous, unicast vs. multicast, replicated, transactional, logged, or atomic.
We claim that just as any other aspect of a distributed system, the "invocation style" should be a first class
abstraction. One should be able to compose abstractions and use the most adequate ones according to the
application needs.

1.1 Distributed Object Methology

A client sees an object as a reference into memory, some data fields, and a set of type bound procedures
(methods). An application does not have to distinguish between local and remote objects.

The application has transparent access to all objects regardless of their actual location. For every accessed
remote object, the system automatically generates a so-called istub object. A stub object is the local represen-
tative (placeholder) of an object located on another site. It offers exactly the same interface as its associated
actual object, but redirects incoming requests to the actual object. The request (object ID, invoked method, and
actual parameters) is transformed (marshalled) to a byte stream, which is sent from the stub to the skeleton.
This stream includes all information needed to reconstruct the receiver object, the called method, and the actual
parameters. This mechanism is similar to the RPC mechanism [BiNeS4,Tan95], except that a receiver object is
passed along with each new invocation.

 Hof M. Late Adaptation of Method Invocation Semantics 273

1.2 Code Generation for Stub and Skeleton

Stub and skeleton code is generated automatically from the interface definition of the given class. Typical stub
and skeleton code consists of three parts:

1. Marshalling of all input parameters
2. Activation of the transport mechanism in order to signal the actual object the intercepted method invocation.
3. Unmarshalling of output parameters and the return value

Logically seen we introduce one new additional layer (see Fig. 1). A method invocation, which is not handled
locally, is intercepted by its corresponding stub method. Each stub method is tailored to its method and is mainly
concerned with marshalling. After the marshalling is done, the stub code calls, regardless of the invocation mode,
the global invocation handler. This handler chooses and activates the previously assigned invocation mode. The
structure of the invocation modes is explained in the next section.

client: obj.Mlstub(): jf HandleInvoke():
/ marshall parameters/ Invoke remote method with

obj.Ml() HandlelnvokeO / appropriate invocation mode
unmarshall parameters

Fig. 1. Control flow on method invocation

In our current prototype implementation, we achieve this behaviour without introducing a new layer by
using an array of invocation abstractions. Each stub knows the method to be used and chooses the correct
one through an index into an invocation array. With help of this mechanism we avoid the additional layer and
achieve a faster dispatch.

2 Generating Invocation Modes

We offer the programmer a class hierarchy of invocation abstractions, invocation is the abstract base class.
Whenever an object is to be exported (made public to other hosts), the programmer must specify the desired
invocation modes for every method of the object he exports. One can have an individual invocation configuration
for each object of a class or reuse a configuration for all objects of the same class.

To export an object one has to call the procedure Export that is part of a library. One has to specify the
host on which the given object is exported, the name of the object and the desired invocation abstractions. As
a result of this operation, the system generates 'on-the-fly' the necessary skeleton code to access this object (see
example below).

invoke := lnvocations.GetClasslnfo("className");
//... modify abstractions to current needs >'■'■■
Export(objectl, host, namel, invoke);
//... modify abstractions if necessary
Export(object2, host, name2, invoke);

When a client imports an object, it calls the procedure llmport. One has to specify the name the object
and the host where it resides. An appropriate request is sent to the server host. The server host sends back two
kinds of information. First, the invocation abstractions of the exported object and second, the actual object
data. With help of the received invocation abstractions the necessary stub code is generated and the actual
object is generated.

lmport(obj, host, name);

The necessary invocation information is generated with a call to iGetClassInfo, which uses meta-programming
facilities to collect it. It returns the default invocation information for a class. If an object is exported with this
information, one gets the following default behaviour:

274 Perspectives of System Infornaatics'99

1. Methods are called synchronous with the standard semantics of method calls.
2. Parameters of a pointer type are copied using deep-copy semantics.
3. If a method returns a pointer value, the referenced object is copied to the caller.

These three standard behaviours can be changed as described in the following three sections.

2.1 Changing the Invocation Mode

By default, all method invocations are handled as standard method invocations, i.e. synchronous. However, one
can change the behaviour as needed by composing your own invocation abstractions. Either one can create a
new abstraction that suits the current necessities, or one can compose one with help of existing abstractions
using the decorator pattern [Garn95]. Let+s look at some examples:

1. A asynchronous invocation abstraction, which uses replication and logs the invocations:

VAR
mylnvoke: Invocation;

mylnvoke := LogMode(ReplicationMode(ASynclnvocation()));

2. A synchronous invocation with transaction semantics: '

VAR
mylnvoke: Invocation;

mylnvoke :— TransactionMode(Synclnvocation());

3. After generation of the desired invocation abstraction one can assign it to the desired method(s) and assign
it to an exported object:

invoke.Method("name of method", mylnvoke);
Export(obj, host, name, invoke);

If one wants to implement an own transaction invocation one has to create a new subclass of the class
llnvocation and overwrite the method

PROCEDURE (invocation) lnvoke(obj:PTR; id:LOI\IGINT; s:Stream):Stream;

The method will be called whenever a method that uses this invocation abstraction is activated, lobj is
the invoked method, üd contains a unique number defining the called method and is contains the marshalled
parameters. The method has to return the linearized return value and output parameters.

2.2 Changing the copy-mode for individual parameters

Method can have pointer parameters. This implies, if the method is executed remotely, that the referenced
objects have to be transferred from the client to the server and back. Either one can makea deep copy, actually
generating a copy of the referenced object on the other host, or one can make a shallow copy. A pointer parameter
copied in shallow copy mode is not transferred to the server. Instead, the object is automatically exported with
an anonymous name. On the server side, before the server method is invoked, a corresponding import statement
is executed automatically (see Fig. 2).

2.3 Changing the copy mode of the return value

Methods can return pointer values. This implies, if the method is executed remotely, that the referenced object
has to be transferred from the server to the client host. As with pointer parameter (section 2.2) one has the
possibility to make a deep or a shallow copy, i.e. the procedure returns either the actual object (deep copy) or
another stub object (shallow copy).

Hof M. Late Adaptation of Method Invocation Semantics 275

Client _P^

stub Network
skeleton

Fig. 2. Shallow copy of parameter

3 Conclusions

A method invocation that is not handled locally is intercepted by its corresponding stub method. Each stub
method is tailored to its method. The stub is concerned mainly with marshalling. The actual invocation is
delegated to the procedure lHandlelnvocation (see Fig. 1). When called, lHandlelnvocation decides on the
actually used invocation mode:

Handlelnvocation (rec: PTR; id: LONGINT; data: Stream) : Stream;
info := ... Invocation information for the object rec
invoke := invoke mode for method id in info
data := invoke.lnvoke(rec, id, data)
RETURN data

An actual implementation of Invoke will do some invocation specific statements (open/close transaction...)
and delegate the invocation to the decorated invocation mode, e.g. for the invocation mode resulting from the
statement

invoke := LogMode(TransactionMode(Synclnvocation()));

the actual sequence of invocation modes is as shown in Fig. 3.

Invoke

LogMode
next

TransactionMode
next

Synclnvocation

Invoke:
log invocation;

next.Invoke();

Invoke:
do transaction stuff;
next.InvokeO;
do transaction stuff;

Fig. 3. Example abstraction sequence

The invocation mode is defined only at runtime when an object is exported. Each time one exports an object,
one can choose other invocation abstractions.

276 Perspectives of System Informatics'99

References

Implementing Remote Procedure Calls. ACM Transactions on Computer Systems, [BiNe84] Birrelllll A., Nelson B.
vol. 2, Feb. 1984

[Tan95] Tanenbaum A.: Distributed Operating Systems. Prentice Hall 1995
[Micro] Windows DNA http://www.microsoft.com/dna/default.asp
[OMG] Object Management Architecture http://www.omg.org/library/omal.htm
[Voyager] Objectspace Voyager http://www.objectspace.com/voyager
[RMI98] Remote Method Invocation specification

http://java.sun.eom/products/jdk/l.l/docs/guide/rmi
[Gam95] Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns Elements of Reusable Object-

Oriented Software. Addison Wesley, 1995

Object-Oriented Development Framework
for Creating Distributed Programs Using Java

Scripkin A. E.

Yaroslavl State University,
Chair of theoretical informatics

Russia, 156010 Kostroma, Samokovskaya, 7, 299
Tel: (0942) 53-55-15
scripkinSkmtn.ru

The development of a new object-oriented language named Java and its successful application in the Internet
technologies stimulates interest to use it as a tool for creating parallel and distributed programs [1], [2], [3].
The main advantages of the Java language are platform independent code that allows to run programs on any
hardware without recompilation and perfect realization of object-oriented paradigm that allows to design the
architecture of complex program systems very closely to the language of realization. The standard Java library
includes low-level tools for creating multi-threaded processes and calling methods of remote objects. Those tools
may serve as a base of a class library for developing distributed programs.

In this work we offer a high-level development framework for creating distributed programs. Suggested
approach is based on the recursive-parallel methodology [6]. Distribution models are represented in the form
of Java classes which are called distribution stencils. Each class has a definite meaning and a set of abstract
methods. Each of those methods must be redefined by the developer to suitable one for his task. The distribution
itself is performed by final methods of stencils, thus hiding parallelization details from an application developer.

The development framework is based on two main hierarchies. A class hierarchy of the distribution stencils
representing models of parallel execution, and an interface hierarchy of parameter blocks. Implementation of
some interface from parameter block hierarchy is responcible for dividing task into subtasks. The base of all
distribution stencils is an Activation class.

abstract public class Activation implements Runnable {
public Activation(ParamBlock pb) i

param = pb;
// ...

}

abstract public void run();

public void join() throws InterruptedException {
II ...

}

protected ParamBlock param;

}

The activation and all its subclasses receive task data as a reference to the interface ParamBlock or some
subinterface. A concrete subclass of activation must know how to interact with this interface to divide the task
into subtasks and retreive data objects for calculations. The abstract method run is the main method where the
calculation on a current subtask is performed. It was usually overridden by subclasses to implement a certain
distribution model. The method join of the Activation class performs synchronization of the executed activation
and the current thread.

The classes RPDihotomy and RemoteLoad extend the class Activation for realization the recurcive-parallel
paradigm. The method run of the class RPDihotomy performs recursive-parallel dividing of the task using the
binary tree scheme. A subtask is divided from the root to the leafs of the tree and then the results are collected
from the leafs to the root. If the current subtask is small enough, the run method calls the abstract method Leaf
which performs sequential calculations. Otherwise it retrieves left and right subtasks using methods of interface
RPDivider realized by the current parameter block. When the abstract method Init performed the preparation
of two subtasks two new activations of the same class as the original one are created and started in parallel with
the appropriate subtask as a parameter block. When two activations are finished the abstract method Merger
is called for uniting the results of two subtasks.

2?8 Perspectives of System Informatics'99

public abstract class RPDihotomy extends Activation
{
public RPDihotomy(RPDivider pb) {

super (pb).;
}

abstract protected void Init(RPDivider pbl, RPDivider pb2);
abstract protected void Leaf();
abstract protected void Merger(RPDivider pbl, RPDivider pb2);

public void run() {
RPDivider param = (RPDivider)this.param; ■ - ■
if(param. getSizeO > param.getThresholdC)) {
RPDivider pi = param.firstHalfO;
RPDivider p2 = param.lastHalfO;
Init(pl,p2);
try {
RPDihotomy al =

(RPDihotomy)Cluster.newActivation(getClassO ,pl);
RPDihotomy a2 =

(RPDihotomy)Cluster.newActivation(getClassO,p2);
al.join();
a?.join();
Merger(pl,p2);

>
catch(InterruptedException e) {
}
catch(Throwable e) {

II...
}

}else
LeafO;

}
}

The class RemoteLoad is used to effectively organize sequential calculations. Its method run performs a
subtask in one iteration of a sequential cycle while data objects for next iteration are downloaded on the
background.

public abstract class RemoteLoad extends Activation {

public RemoteLoad(RemoteRef pb) {
super(pb);

}

abstract void Init();
abstract void Body(Object data);

public void run() {
RemoteRef param = (RemoteRef)this.param;
Object curdata = nextdata =

Cluster.loadObject(param.getDataRef()) ;
Cluster.waitData();
InitO;
for(int i=l; Kpb.getSize; i++) {
nextdata = Cluster.loadObject(param.getDataRef());
Body(curdata);
Cluster.waitData();

Serif hin A. E. Object-Oriented Development Framework for Creating Distributed Programs Using Java

curdata = nextdata;

279

Architecture of parallel environment is represented by abstraction of computing network resource called cluster
(Fig.l). Each station in the network can access the cluster using his sequrity rights and distribute its task among
the Java-VMs contained in the cluster. Cluster is a full graph which vertices are Java-VMs executed on stations
in the network and ribs are communications between VMs. Vertices and ribs have weights. Weight of a rib
indicates abstract connectivity characteristic and weight of a vertice indicates characteristic of VM's loading.
If there is no communication between two VMs we assume the maximum possible weight to the rib connecting
them.

ActivationServer

ActivationServer

Cluster

ActivationServer

Pig. 1. The structure of distributed Java virtual machine

Each activation executed on a particular Java-VM has access to an instance of the Cluster class. This
instance is the only way for the activation to communicate with the parallel environment. So internal details of
distributing is encapsulated in the abstraction of cluster. Cluster manages a list of currently available Java-VMs,
proceeds communication errors and returns application errors to the user console. Activation that has failed to
start on one Java-VM may be redirected to another one or executed on the local host in time-sharing mode
without any effect to application program. Activation can call newActivation method of the Cluster instance
and this instance will call remotely (using Java RMI [4]) a method of an instance of ActivationServer on a
chosen remote host. ActivationServer is executed on each VM in the cluster and responcible for creating and
starting activations and returning results to calling VM. Distribution of program classes code is performed by
RMIClassLoader from RMI library, creation of class instance is performed using Java core reflection mechanism
[5].

References

1. Pascale Launay, Jean-Louis Pazat. A framework for parallel programming in Java. IRISA. Publication interne N
1154.

2. Pascale Launay, Jean-Louis Pazat. Generation of distributed parallel Java programs. IRISA. Publication interne
N 1171.

3. V. Ivannikov, S. Gaissaryan, M. Domrachev, V. Etch, N. Shaltovnaya. DPJ: Java class library for development of
data-parallel programs. Institute for system programming, Russian academy of sciences. 1997.

4. Java remote method invocation specification — revision 1.42. Javasoft. 1997.
5. Java core reflection — API and specification. Javasoft. 1997.
6. Badin N.M., Brodsky G.M. Sokolov V.A. Language tools of recursive-parallel programming. Actual problems of

modern mathematics: Novosibirsk, NGU, 1997, Vol. III.

Artificial Intelligence

Component-Based Framework for Constraint Programming
(Preliminary Version)

Krzysztof R. Apt

CWI
P.O. Box 94079, 1009 AB Amsterdam, The Netherlands

and
Dept. of Mathematics, Computer Science, Physics & Astronomy

University of Amsterdam, The Netherlands

Abstract. We propose here a simple framework for constraint programming in which the programming
process consists of a few easily identified components. This provides a basis for a component-based frame-
work for constraint programming.

1 Introduction

1.1 Motivation

Constraint programming is an alternative approach to programming in which the programming process is limited
to a generation of requirements (constraints) and a solution of these requirements by means of general or domain
specific methods.

The ongoing research in the area of constraint programming led to an identification of various techniques
and methods that by now are pretty well understood (see, e.g., Tsang (1993)). However, the expositions of these
techniques are usually long and detailed. This conceals the fact that constraint programming can be explained
in simple terms, on less than ten pages. To substantiate this claim we present here constraint programming
in a tutorial-like fashion by emphasizing the fact that its main ingredients can be explained within a simple
framework.

The main idea behind component-based approach to programming is that the programming process is limited
to a configuration of existing, previously developed components. This view of programming obviously facilitates
program development, modification and verification.

We argue here that the techniques used in constraint programming could be put together to create a
component-based framework for this form of programming. In such a framework' the constraint programming
process could be limited to an appropriate configuration of existing components and to a specification of some
simple atomic actions.

1.2 Preliminaries

Let us begin by introducing the relevant concepts.
Consider a finite sequence of variables X ~Xl,...,xn where n > 0, with respective domains V:=DU. Dn

associated with them. So each variable Xi ranges over the domain D*. By a constraint C on X we mean ä subset
of Di x ... x Dn. If C equals Dt x ... x Dn then we say that C is solved.

By a constraint satisfaction problem, CSP in short, we mean a finite sequence of variables X •= Xl x
with respective domains V~Du...,Dn, together with a finite set C of constraints, each on a subsequence of

Apt K. R. Component-Based Framework for Constraint Programming 281

X. We write such a CSP as (C ; T>£), where VS :- xx eDi,.. .,xn £ Dn and call each construct of the form
x e D a domain expression. To simplify the notation we omit the "{ }" brackets when presenting specific sets
of constraints C.

Consider now a CSP (C ; V£) with V£ :— Xi G Di,...,xn £ Dn. We say that an n-tuple (di,...,dn) S
Di x ... x Dn is a solution to (C ; VE) if for every constraint C € C on the variables x^,..., xim we have

(djj,...,djm) £ C.

If a CSP has a solution, we say that it is consistent and otherwise we say that it is inconsistent. For further
discussion it is useful to introduce the following simple notion. Take a sequence of variables X := ari,..., xn

with the corresponding sequence of domains V := Di,...,Dn and consider an element d := (di,...,d„) of
Di x ... x Dn and a subsequence Y := xix,..., Xie of X. Then we denote the sequence (dtl ,...,die) by d[Y] and
call it the projection of d on Y.

So, given a CSP V a tuple of values from the corresponding domains is a solution to V if for every constraint
C of V the projection of this tuple on the sequence of the variables of C satisfies C.

Consider now two CSP's V\ and V2 with the same sequence of variables. We say that V\ and V2 are equivalent
if they have the same set of solutions. This definition is rather limited as it cannot be used to compare CSP's
with different sequences of variables. Such situations often arise, for example when new variables are introduced
or some variables are eliminated.

To this end we extend the above definition of equivalence as follows. Consider two CSP's V\ and Vi and a
sequence X of common variables. We say that V\ and Vi are equivalent w.r.t. X if

- for every solution d to V\ a solution to V2 exists that coincides with d on the variables in X,
— for every solution e to Vi a solution to V\ exists that coincides with e on the variables in X.

Using the earlier introduced notion of projection, we can define this notion of equivalence in a more succinct
way: V\ and V2 are equivalent w.r.t. X iff

{d[X] I d is a solution to V\} = {d[X]\ d is a solution to V2}.

Clearly, two CSP's with the same sequence of variables X are equivalent iff they are equivalent w.r.t. X, so
the latter notion of equivalence is a generalization of the former one. When transforming CSP's one often tries
to maintain equivalence w.r.t. to the initial sequence of variables.

Finally, given three CSP's V,Vi and V2 with the same sequence of variables, we say that the union ojV\
and V2 is equivalent to V if

- every solution to V is a solution to either V\ or to V2,
— every solution to V\ or to V2 is a solution to P.

In the presentation below we use, often informally, a proof theoretic framework of Apt (1998) that allows
us to write transformations of CSP's in a succinct way. In this framework the proof rules act on CSP's. Various
relevant concepts such as: an application of a rule to a CSP, a CSP closed under a set of rules, and derivation
can be made formal. In particular, the rules that preserve equivalence are called sound. All rules here presented
are easily seen to be sound.

2 A General Framework

We begin by formulating a general framework for constraint programming that we shall use to explain its specific
aspects.

First, we formulate our initial problem as a CSP. This in itself can be a non-trivial problem. In particular,
at this stage we have to take decisions concerning the choice of variables, domains and constraints. This stage
of constraint programming is called modelling and in contrast to programming in other programming styles it is
more time consuming and more involved. Modelling is more an art than science and a number of rules of thumb
and various heuristics are useful at this stage —see for instance Section 8.4 "Different Problem Modelling" in
Marriott & Stuckey (1998).

Subsequently, we apply to the formulated CSP the following procedure:

282 Perspectives of System Informatics'99

SOLVE:

done:=false;
WHILE NOT DONE DO

PREPROCESS;

CONSTRAINT PROPAGATION;
IF HAPPY

THEN
done:=true

ELSE
SPLIT;

PROCEED BY CASES
END

END

where PROCEED BY CASES leads to a recursive invocation of SOLVE for each newly formed CSP.
The SOLVE procedure represents the basic loop of constraint programming. In what follows we briefly explain,

in an informal way, the meaning of all the subsidiary procedures used in SOLVE. AS the notion of constraint
propagation is central to constraint programming we defer the discussion of it to the end of the section. At this
stage it suffices to know that constraint propagation transforms a given CSP into another one that is equivalent
to it.

2.1 PREPROCESS

The aim of this procedure is to bring the given CSP into a desired syntactic form. The resulting CSP should
be equivalent to the original one w.r.t. to the original set of variables.

Typical examples are the transformation of Boolean constraints into ones in disjunctive normal form and
the transformations that rewrite constraints over reals so that in each constraint each variable appears at most
once. The latter is done by introducing auxiliary variables, which explains why we need a more general notion
of equivalence.

2.2 HAPPY

Informally, HAPPY means that the goal set for the initial CSP has been achieved. What goal it is depends of
course on the applications. The following contingencies are most common:

- a solution has been found,
- all solutions have been found,
- a "normal form" has been reached from which it is straightforward to generate all solutions,
- inconsistency was detected,
- best solution w.r.t. some quality measure was found,
-all best solutions w.r.t. some quality measure were found,
- (in the case of constraints on reals) all interval domains are reduced to sizes smaller than some fixed in

advance e.

In general, HAPPY can be viewed as a test applied to the current CSP in which some additional parameters
are also taken into account.

2.3 SPLIT

If after termination of the constraint propagation the current CSP is not in the desired form, that is the test
HAPPY fails, this CSP is split into two (or more) CSP's the union of which is equivalent to the current CSP. In
general, such a split is obtained either by splitting a domain or by splitting a constraint.

In the following two examples a split of a domain is represented by a rule that transforms a domain expression
into two domain expressions separated by means of the "j" symbol.

 Apt K. R. Component-Based Framework for Constraint Programming 283

- Labelling.
Assume that the domain D is non-empty and finite. The following rule can then be used:

x € {a} | x € D - {a}

where a € D.
Bisection.
Assume that the domain is a non-empty interval of reals, written as [a..b]. We can then employ the following
rule: '

x £ [a..b]

x € [a..*p] | x £ [*±*..&]

In turn, the following two examples, also written as rules, illustrate a split of a constraint.

Disjunctive constraints.
Suppose that the constraint is a Boolean disjunction. The constituents of,this disjunction can be arbitrary
constraints. We can then apply the following rule:

■Ci VC2

Constraints in "compound" form.
The idea is that such constraints are split into syntactically simpler compounds that can be dealt with
directly. Suppose for example that we know how to deal directly with polynomial equations on reals and
that the constraint in question is p(x) = \a\, where p(x) is a polynomial in the variables x and ä is a constant.
Then we can use the following rule:

p(x) = |o|
p(x) = a | p(x) = -a

Each split of a domain or of a constraint leads to a replacement of the current CSP by two CSP's that
differ from the current one in that the split domain, respectively the split constraint, is replaced by one of the
constituents.

For instance, the above rule dealing with labelling leads to the replacement of a CSP

{C ; V£,x£D)

by two CSP's,
(C ; ve,xe{a})

and
(C ; VE,x<ED-{a}\.

2.4 PROCEED BY CASES

The SPLIT procedure yields two new CSP's. They are then dealt with by means of the PROCEED BY CASES
procedure.

The order in which these new CSP's are considered depends on the adopted search technique. In general, due
to the repeated use of the SPLIT procedure a binary tree of CSP's is generated. The purpose of the PROCEED

BY CASES procedure is to traverse this tree in a specific order and, if needed, to update the current CSP with
some newly gathered information (in the case of search for the best solution).

Two most known of these techniques are backtracking and —when searching for the best solution— branch
and bound. Backtracking and branch and bound, when combined with appropriate instances of the CON-

STRAINT PROPAGATION procedure form more complex forms of search methods that are specific for constraint
programming. Two best known techniques are forward checking and look ahead.

_?§i Perspectives of System Informatics'99

2.5 CONSTRAINT PROPAGATION

At this stage let us return to the CONSTRAINT PROPAGATION procedure. In general, this procedure replaces
a given CSP by a "simpler" one, yet equivalent. The idea is that such a replacement, if efficient, is profitable,
since the subsequent search resulting from the repeated calls of the SPLIT and PROCEED BY CASES procedures
is then performed on a smaller search space.

What "simpler" denotes depends on the applications. Typically, it means that the domains and/or constraints
become smaller. The constraint propagation is performed by repeatedly reducing domains and/or reducing con-
straints while maintaining equivalence. The stopping criterion is a local consistency notion, that is, a constraint
propagation algorithm terminates once the final CSP satisfies a specific local consistency notion.

Let us consider some examples. The first two deal with reducing domains and the other two with reducing
constraints.

Hyper-arc Consistency This notion of local consistency was introduced in Mohr & Masini (1988) The name is
taken from Marriott & Stuckey (1998).

Definition 1.
- Consider a constraint C on the variables Xi,...,xn with the respective domains Du...,Dn, that is C C Dx x

• ■ • x Dn. We call C hyper-arc consistent if for every i e [l..n] and a G Dt there exists d£ C such that
a = d[xi],

- We call a CSP hyper-arc consistent if all its constraints are hyper-arc consistent. G

Intuitively, a constraint C is hyper-arc consistent if for eyery involved domain each element of it participates
in a solution to C. In case all constraints are binary, hyper-arc consistency reduces to the more known notion
of arc consistency introduced earlier in Mackworth (1977).

Consider now a constraint C on the variables Xl,.. .,xn with the respective domains Du...,Dn. Choose a
variable xt and perform the following operation on its domain Df.

remove from £>, all values that do not participate in a solution to C.

The idea is that the removed values cannot be present in any solution to the considered CSP. We can
formalize this operation by means of the following proof rule:

HYPER-ARC CONSISTENCY
 (C ; X! eDi,...,xnePn)
(C; xx efli n-i €Di„1,xi£D'i,xi+1 € Di+1,.. .,xn e Dn)

where C is a constraint on the variables xx,.. .,xn, i e [l..n], and

D'i:={aeDi\3deCq = d[xi]}.

One can easily show that a CSP is hyper-arc consistent iff it is closed under the applications of the HYPER-
ARC CONSISTENCY rule.

Linear inequalities over integers Assume that the domains are non-empty intervals of integers, written as [a b]
and the constraints are linear inequalities. For the constraints of the form x < y we can apply the following
rule: , °

 (x<y ; xe [lx..hx],ye [ly..hy])
(x<y;x€ [lx..min(hx>hy - l)],y G [max(ly,lx + l),hy])

The idea is that x < y and y < hy imply x < hv - 'l. This in conjunction with x < hx implies that
x < min(hx, hy - 1), and analogously with the variable y.

For example, this rule allows us to transform the CSP

(x<y ; xe [50..200],ye[0..100])
into ■

(x<y; xe[50..99],ye[51..100]>
which has smaller domains.

The rule for the general case for arbitrary linear inequalities can be found, e.g., in Apt (1998).

Next, consider the reduction of constraints. We illustrate it by means of two examples. In each of them a
new constraint is introduced. This can be viewed as a reduction of a constraint. Namely, an introduction of
a new constraint, say on the variables X, leads to an addition of a new conjunct to the conjunction of used
constraints on X (if there is none, we can assume that a "universal" true constraint on X is present) The new
conjunction is then semantically a subset of the old one.

 Apt K. R. Component-Based Framework for Constraint Programming 2_5

Path Consistency This example deals with the notion of path consistency introduced in Montanari (1974). Let
us recall the definition. We need an auxiliary notion first.

Definition 2. We call a CSP V normalized if for each subsequence X of its variables there exists at most one
constraint on X in V.

Given a normalized CSP and a subsequence X of its variables we denote by Cx the unique constraint on
the variables X if it exists and otherwise the "universal" relation on X that equals the Cartesian product of the
domains of the variables in X. □

Every CSP is trivially equivalent to a normalized CSP. Indeed, for each subsequence X of the variables of
V such that a constraint on X exists, we just need to replace the set of all constraints on X by its intersection.
Note that the universal relations Cx are not constraints of the normalized CSP.

Given a subsequence x, y of two variables of a normalized CSP we introduce a "supplementary" binary
relation Cy<x defined by

Cy<x := {(b,a)\ (a,b) eCx,y}.

The supplementary relations are not parts of the considered CSP as none of them is defined on a subsequence
of its variables, but they allow us a more compact presentation. We now introduce the desired notion.

Definition 3. We call a normalized CSP path consistent if for each subset {x,y,z} of its variables we have

Cx,y = {(a,b)\3c((a,c)eCX:ZS(c,b)£Cz,y)}.

D

In other words, a normalized CSP is path consistent if for each subset {x, y, z) of its variables and the pair
(a, b) G Cx<y there exists c such that (a, c) G CXtZ and (c, b) G CZtV.

We now characterize this notion of local consistency in terms of rules. In the rules below we omit the domain
expressions. We assume here that x, y, z is a subsequence of the variables of the considered CSP.

PATH CONSISTENCY 1

*^x,yi ^y,zi ^x,z

^x,yi^y,zi^x,z

where the constraint C_ on the variables x,y is defined by

C'x,y ■= Cx,yn{(a,b) | 3c((ö,c) € CXtZ,(b,c) G Cy<z)},

PATH CONSISTENCY 2

^x,yi ^y,zi ^x,z

^x,y,Cy<z,C'xz

where the constraint C'xz on the variables x, z is defined by

C'Xlt := CX:Z n {(a, c) | 3b ((a, b) 6 Cx,v, (b, c) e Cv,z)},

PATH CONSISTENCY 3

l^x,yi ^y,z> (sx,z

^-'x,yj ^y,zi ^x,z

where the constraint C'yz on the variables y, z is defined by

c'y,z ■= cv,z n {(M I 3o ((a,b) € CX}y,{a,c) G Cx,i)}.

One can show now that a normalized CSP is path consistent iff it is closed under the applications of the
PATH CONSISTENCY rules 1, 2 and 3. ,

_286 Perspectives of System Informatics'99

Resolution rule This last example deals with (propositional) clauses, that is, disjunctions of literals. Let d and
C2 be clauses, L a literal and L the literal opposite to L, that is =ix = x and x = -<x.

Consider now the following proof rule called the resolution rule:

(d V L,C2VL; VE)
(d V L,C2 vL,Ci VC2 ; VE)

It introduces a new constraint, the clause C\ V C2.

In general, as noticed in Dechter & van Beek (1997), various general techniques drawn from the fields of
linear algebra, linear programming, integer programming, and automated theorem proving can be explained as
a reduction of constraints.

The above examples dealt with atomic reduction steps in which either a domain or a constraint is reduced.
The constraint propagation algorithms deal with the scheduling of such atomic reduction steps. In particular,
these algorithms should avoid useless applications of these atomic reduction steps.

In Apt (1999 a) it is shown that the constraint propagation algorithms can be explained as instances of four
algorithms that deal with chaotic iteration. This allows us to limit the presentation of these algorithms to a
specification of the atomic reduction steps. A similar work on this subject was carried out by Benhamou (1996)
and Telerman & Ushakov (1996).

The examples of hyper-arc and path consistency illustrate how the known notions of local consistency can
be couched in the proof theoretic framework and how the corresponding well-known constraint propagation
algorithms can be automatically derived from the appropriate proof rules.

The other two examples show the generality of this proof theoretic framework. This suggests that the
presentation of the desired constraint propagation algorithms can be limited to either a specification of the
desired notion of local consistency or to a presentation of the appropriate proof rules. In both situations the
proposed proof theoretic framework is sufficiently general for our purposes.

3 Example: Boolean Constraints

Let us illustrate now the above account of constraint programming by means of an example. It will clarify
what choices one needs to make when solving specific CSP's. These choices will be reflected in specific decisions
concerning the subsidiary procedures of the generic SOLVE procedure.

Suppose that we wish to find all solutions to a given Boolean constraint satisfaction problem. In this case
the constraints are identified with (the solutions to) the propositional formulas and the domains are subsets of
the truth set represented by {0,1}. Then we could consider the following selection of the procedures discussed
above.

PREPROCESS

We bring each Boolean constraint to one of the following forms:

- x = y,
- ->x = y,
-xAy = z,
- x V y = z.

Consequently, for PREPROCESS we choose the transformation rules that transform each Boolean constraint
into a set of constraints in the above form. An example of such a transformation rule is

x A 4> = z
x hy~z,(j) = y

where x, y, z are Boolean variables and where <j> is a Boolean expression that does not contain y. -

HAPPY

We choose the test: all solutions have been found.

SPLIT

We use the labelling rule discussed in Subsection 2.3. We need to be, however, more precise as this rule is
parametrized by a variable the choice of which is of relevance, and by a value the choice of which is not relevant
here.

Apt K. R. Component-Based Framework for Constraint Programming 287

We use here a well-known heuristic according to which the variable that occurs in the largest number of
constraints (the "most constrained variable") is chosen first.

PROCEED BY CASES

We want to find all solutions, so we choose here the backtracking search.

CONSTRAINT PROPAGATION

Finally, we determine the actions of the constraint propagation algorithm. We do this by choosing specific
domain reduction steps. They are based on the simple observation that for the Boolean constraints in one of the
forms considered in the definition of the PREPROCESS procedure, if the values of some variables are determined
then values of some other variables are determined, as well. For example, for the constraint x A y = z, if we
know that z is 1 (i.e., true), then we can conclude that both x and y are 1. This is expressed by means of the
following rule:

{x Ay = z ; x£Dx,yEDy,z£ {!})
(; xeDxn{l},yGDyn{l},ze{l})

where the absence of the constraint x A y = z in the conclusion indicates that this constraint is solved (that is,
satisfied by all combinations of domain values).

We can abbreviate it to a more suggestive form, namely

x A y = z,'z=l~¥x = l,y = 1.

In total there are six such rules for the constraint xAy — z and twenty rules for all constraints considered in
the definition of the PREPROCESS procedure. They are presented in Table 1. The resulting proof system BOOL
is very similar to the one discussed in Codognet & Diaz (1996).

EQU 1 x = y,x = \-^y — l
EQU Si = !/,y = l-J3: = l
EQU 3 x = y,x = 0~^y-0
EQU 4 x = y,y = 0->x = 0

NOT 1 -iar = y, x = 1 -> y = 0
NOT 2 ->x = y,x-0^y = l
NOT 3 -.a: = y, y = 1 -> x = 0
NOT 4 ^x = y,y = Q-^x-l

AND 1 x A y - z,x — \,y = \ -^ z - = 1
AND 2xAy = z,x-l,z-0-^y- = 0
AND 3xAy = z,y = l,z = 0-^x~ = 0
AND 4 x Ay = z,x = Q-+ z = 0
AND 5 x A y = z,y = 0-+z = 0
AND 6xAy-z,z = \-^x = \,y- = 1

OR 1 xW y = z,x-l-i-z = l
OR 2 xV y = z,x = 0,y = 0-* z = = 0
OR 3 xV y = z,x = 0,z = l->y = = 1
OR 4 xWy-z,y = 0,z = l-^x- = 1
OR 5 xVy = z,y = l->z = l
OR 6 xV y-z,z = Q-^x = Q,y- = 0

Table 1. Proof system BOOL

To read properly such formulas it helps to remember that 0 and 1 are domain elements, so atomic formulas
of the form x = 0 and x = 1 are domain expressions while all other atomic formulas are constraints.

One can prove (see Apt (19996)) that this proof system characterizes the notion of hyper-arc consistency
for Boolean constraints in the sense that a Boolean CSP is closed under the rules of BOOL iff it is hyper-arc
consistent.

This completes the description of a sample procedure using which we can find all solutions to a Boolean
constraint satisfaction problem. From this presentation it is clear that the resulting program can be obtained by

288 Perspectives of System Informatics'99

putting together various predefined components and by limiting the programming process to the specification
of the rules that constitute the PREPROCESS procedure and to the presentation of the proof system BOOL.

4 Concluding Remarks

In the above discussion many aspects of constraint programming have been omitted. Still we hope that this brief
introduction sheds some light on the subject and that it provides some insights into the claim that constraint
programming is amenable to component-based programming.

Acknowledgements

We would like to thank Eric Monfroy for many useful discussions on the subject of this paper and Andrea
Schaerf for helpful comments.

References

Apt, K. R. (1998), 'A proof theoretic view of constraint programming', Fundamenta Informaticae 33(3), 263-293. Avail-
able via http://www.cwi.nl/~apt.

Apt, K. R. (1999a), 'The essence of constraint propagation', Theoretical Computer Science. In press. Available via
http://www.cwi.nl/"apt.

Apt, K. R. (19996), 'A logical analysis of Boolean constraints'. Submitted for publication. Available via
http://www.cwi.nl/~apt.

Benhamou, F. (1996), Heterogeneous constraint solving, in M. Hanus & M. Rodriguez-Artalejo, eds, 'Proceeding of the
Fifth International Conference on Algebraic and Logic Programming (ALP 96)', Lecture Notes in Computer Science
1139, Springer-Verlag, Berlin, pp. 62-76.

Codognet, P. & Diaz, D. (1996), 'A simple and efficient Boolean constraint solver for constraint logic programming'
Journal of Automated Reasoning 17(1), 97-128. '

Dechter, R. & van Beek, P. (1997), 'Local and global relational consistency', Theoretical Computer Science 173(1), 283-
308.

Mackworth, A. (1977), 'Consistency in networks of relations', Artificial Intelligence 8(1), 99-118.
Marriott, K. & Stuckey, P. (1998), Programming with Constraints, The MIT Press, Cambridge, Massachusetts
Mohr, R. & Masini, G. (1988), Good old discrete relaxation, in Y. Kodratoff, ed., 'Proceedings of the 8th European

Conference on Artificial Intelligence (ECAI)', Pitman Publishers, pp. 651-656.
Montanari, U. (1974), 'Networks of constraints: Fundamental properties and applications to picture processing', Infor-

mation Science 7(2), 95-132.' Also Technical Report, Carnegie Mellon University, 1971.
Telerman, V. & Ushakov, D. (1996), Data types in subdefinite models, in J. A. C. J. Calmet k J. Pfalzgraf, eds,'Artificial

Intelligence and Symbolic Mathematical Computations', Lecture Notes in Computer Science 1138, Springer-Verlae
Berlin, pp. 305-319. 5'

Tsang, E. (1993), Foundations of Constraint Satisfaction, Academic Press.

Multi-Agent Optimal Path Planning for Mobile Robots
in Environment with Obstacles

F.A. Kolushev and A.A. Bogdanov

St. Petersburg Institute for Informatics and Automation of
Russian Academy of Science, St. Petersburg, Russia,

glotQmail.convey.ru, alexb8homepage.ru

Abstract. The paper describes a problem of multi-agent path planning in environment with obstacles.
Novel approach to multi-agent optimal path planning, using graph representation of environment models is
described. When planning the path of each robot, the graph model of environment is dynamically changed
for path correction and collision avoidance. New algorithm applies changes of robots' paths and speeds to
avoid collisions in multi-agent environment.

1 Introduction

Problems of multi-agent robot systems control have got significant importance. Each multi-agent robot system
has some transport subsystem, which consists of several mobile robots. The problem of controlling such mobile
robot group can be divided into two main parts:

- Optimal global (general) task decomposition into subtasks, and their optimal distribution between separate
robots in the group.

- Path planning, control and movement correction for each mobile robot.

New approach to path planning and motion programming for mobile robots is proposed. The method is
based on graph optimization algorithms. Novelty of the developed multi-agent path planning algorithm is as
follows:

- All mobile robots are considered as dynamic obstacles.
- Graph representation of common environment models is used for path planning.
- Each edge of the graph has two weights: distance and motion time (speed).
- Weights of edges can be modified during path planning.
- The quickest path is planned (time optimization). ■-, ,
- Expert rules for speed and path correction are synthesized to provide collision avoidance.

The algorithm is formulated in terms of the optimal find-path problem on a graph, where the graph edges
are labelled with some values. It is usually possible to transform common environment models (e.g. vector or
grid model) to the corresponding graph representation. Thus, the algorithm can be applied, for example, on
visibility graphs and grid environment models.

2 Background

The problem of path planning for various types of mobile robots was widely investigated by many researchers [5,
8-11], but almost all of them consider the problem of path planning for a single mobile robot. The problem of
path planning for a group of mobile robots was investigated in [10,11], but the proposed algorithms did riot
provide path optimality in any sense. In [6] there was introduced an approach to control a group of mobile
robots by means of the global task decomposition into several subtasks, with non-intersected paths of the robots.
This is not possible for many practical tasks, like manufacturing, traffic control, etc. Therefore, a problem of
adaptation of known optimal path planning algorithms for multi-agent robot systems exists [1,2].

Planning mobile robot motions in a multi-agent robot system has a number of peculiarities and some
additional difficulties. They are related to necessity of taking into account not only possible obstacles (including
unknown ones) in a working space, but also movement of other robots, while planning the path of each agent-
robot. It seems logical to divide the problem of path planning and control of mobile robots-agents in a working
zone into two subproblems.

290 Perspectives of System Informatics'99

- Path planning and optimization for each agent-robot individually, taking into account other robots move-
ment. This problem can be solved by modifying algorithms of path planning and optimization in an envi-
ronment with obstacles. At this stage, full knowledge of the environment is supposed (i.e. the environment
does not contain unknown obstacles).

- Unforeseen collisions avoidance and the planned paths correction in case, when information about the
environment is incomplete, or robot paths deviate from the planned ones. There are two basic alternatives
to solve this problem. First is to correct the paths by means of various path local correction algorithms.
Shortage of this approach is non-optimal agent-robot motions. The second method is complete or local-
optimal path re-planning, when new obstacles discovered or collisions occurred.

It should be mentioned, that cooperation between individual agent-robots is necessary to solve the path planning
and optimization problem. Each agent-robot has to share information about its planned path and actual motions
with other agent-robots. Maintaining the planned paths database and motion coordination could be performed
by the special agent-supervisor. The agent-supervisor maintains information about environment and each agent-
robot motions. Information about environment is collected by agent-robots, equipped with sensors. The path
planning system of each agent-robot can use information from the agent-supervisor. In some cases the agent-
supervisor plans paths for all the agents-robots and transmits the planned paths to them.

Solution of the second problem would be more reasonable to be assigned to local control systems of agents-
robots, thus the accident-free realization of the robots tasks is ensured even in case of malfunctioning commu-
nication of the agents. To solve this problem, an agent-robot should have its own sensor system, which must
be able to provide distinguishing static obstacles and moving robots. Besides, sensor systems of robots can be
applied to correction of the environment model for more accurate path planning.

3 Environment Models

There is a lot of widely known environment models, for example, grid (occupancy cell), vector (obstacles are
represented by polygons), graph (visibility graph, Voronoi diagram, etc.) [3] and their modifications. Special
types of environment model, for example, analytic-predicate, semantic, etc., exist as well [1,12].

Each environment model has certain advantages and disadvantages for path planning purposes, for instance:
Grid model is simple to be used, corrected and updated with data, gathered by different robots. But it requires

high memory expenses, it also has high data redundancy and lack of accuracy. Some of these drawbacks can be
eliminated by using more comprehensive grid model [8]. '

Vector models feature high precision, low memory expenses, but it is difficult to plan a path, using this type
of models, it is also difficult to update the environment model with data from robots' sensor systems, since
sensor information is usually presented in discrete form and, hence, needs to be transformed into the vector
form.

Graph models are more suitable for path and motion planning problems. As a rule, graph model only
consists of possible paths, i.e. information about obstacles is excluded during the graph constructing. Grid
and Vector models can be mapped onto the graph model. There are known various algorithms for solving
optimization problem on the graph, for example, Dijkstra algorithm, A*, D*-algorithm [5], etc. The possible
paths in vector environment model can be represented by a visibility graph. The visibility graph is a graph,
which nodes represent vertices of polygonal obstacles, and its edges represent straight possible paths, connecting
the obstacle vertices, i.e. lines of "visibility". Once the static graph is constructed, target and starting points
are added and the visible edges, connecting them with other graph nodes, are computed. To plan paths, graph
model will be further used. Graph of possible paths can be obtained from both vector and grid environment
models. Moreover, graph of admissible paths can be constructed on the base of agent-robots' experience of
motion. Information about agent-robots' motions can be stored separately, or in the graph nodes.

In summary, the advantages of using a visibility graph, or graph of possible paths for motion-planning are in
fact, that it is a simple, well-understood method, which yields optimal paths in 2D, or 3D configuration space.

4 Graph Environment Model

The graph environment model, used for multi-agent optimal path planning is described below. Points (places)
in the environment and admissible (possible) paths between them are represented by the graph, nodes of which
represent certain places in the environment and edges represent admissible paths. Each edge of the graph has a

 Kolushev F. A., Bogdanov A. A. Multi-Agent Optimal Path Planning 291

weight, that is adequate to path length, travel time, or difficulty of traveling etc. between corresponding nodes.
Note, that the graph by creation only consists of admissible paths.

Let us consider a graph G{V, E) with M nodes. All nodes are numbered. Each node i has M* > 1 adjacent
nodes (vertices) ii,i2,..., iM> • Besides, all graph nodes are characterized with a weight W{. Weight W{ of a node
i (i = 1,2,..., M) corresponds to the value of minimized functional (for example, distance, or motion time).
To each edge of the graph, connecting nodes i and j, there are assigned two characteristics: Sij — distance in
space between these two nodes and kj — motion time, depending also on motion speed. In summary, any such
graph possesses the properties, as follows:

Each Node of graph is characterized by:

1. Coordinates of a point in the environment space.
.2. Value Wi of functional to be minimized (distance, time, etc.).
3. Set of adjacent nodes ü, i2,..., iMi •
4. Additional characteristics needed for multi-agent path planning, such as set of agent-robots, moving through

the node, and the corresponding set of time moments.

Each Edge of graph is characterized by: -

1. Distance Sij between nodes i and j.
2. Weight of the edge % corresponds to time of motion from node i to j. This value is variable and may be

changed while planning the path. '
3. Additional characteristics. For example, the edge may have two different weights Uj and Iji, that depend on

direction of motion between i and j. It allows to simulate 3-D environment or bi-directional roads.

5 Multi-agent path planning algorithm

Let us introduce some definitions: the shortest path is a path of minimal length, the quickest path is a path of
minimum motion time.

Let there is required to find a node sequence, which denotes the shortest path from the start point to the
target point. Before the path planning, all weights Uj of the graph edges have to be initialized as follows:

V=f, : (i)
where V is an average speed of the agent-robot. This is done, assuming that robots move along the paths with
some average (economy) speed, and to take into account possibility of braking and acceleration as well.

The weights of the graph nodes must be initialized with a maximum possible value oo. The start node must
be initialized by the start time value W0 = t0. According to known edge weights, and using one of optimization
algorithms, for example Dijkstra's algorithm, the shortest path is found then. During path planning, weights of
nodes change and get equal to the moments of time, at which the agent-robot passes through these nodes. Note,
that in fact, taking into account the above described initialization method, the algorithm finds the quickest
path, but in case of one path planning, the shortest and the quickest paths are the same.

When planning paths of several robots, let us consider the path of each robot not only in environment
Cartesian space (as it was done for a single robot path planning). Let us plan the path in the time-space
continuum in order to take into account other robots movement. Such approach allows to avoid collision of
separate agent-robots, simultaneously moving in the time-space continuum. Hence, paths are planned not in 2D
planar environment, but in 3D time-space environment, taking into account movement of all other agents-robots.
Let us note here, that if one-agent path planning is performed in 3D Cartesian environment, the multi-agent path
planning is performed in 4D space — with concern of time (schedule of robots movement). The described below
algorithm uses this approach and plans agents-robots paths sequentially (path by path), and when planning the
next robot path, all already planned paths are taken into account to eliminate collisions.

According to the described approach, the main differences of the developed multi-agent optimal path planning
algorithm from the one-agent one are as follows: ,

- to each graph node i (i = 1,2,..., M) there is assigned not only its weight Wi, but the node additionally
stores two sets: moments of time, when other agents-robots move through this node i (let iji is a time when
robot j passes through node i), and IDs of these agents-robots as well.

- The graph (in particular, weights of the edges) can be changed, when planning a path of each robot to avoid
collisions.

292 ,_ Perspectives of System Informatics'99

For multi-agent path planning the one-agent path planning algorithm must be supplied with a number of
expert rules, which provide collision-free planning. Collision avoidance is performed by means of the graph
correction — changing edge weights. This results either in path Correction (a robot is forbidden to move on the
edge, occupied by another robot), or change of robot's speed (robot is forced to move faster, or slower on some
edges in order to free up the way for others, the paths of which are planned earlier and, hence, already known).
Besides, if D*-algorithm is used as a basic path optimization algorithm, the distance between two nodes can
be changed. Changing the distance corresponds to environment model correction.

Initialization of graph node weights Wt (i = 1,2, ...,M) is the same as in the one-agent path planning
algorithm, and it is performed before each robot path planning. When planning a path for any robot, graph
node weights are changed just as in the one-agent path planning algorithm:

w. (Wi + i^iWi + i^xWi,
H I Wii,if(Wi + liii)>Wij ■ W

The only difference is that this rule is supplied with expert rules of avoiding collisions in the graph nodes, which
correspond to crossroads, and expert rules of avoiding collisions on the graph edges, which correspond to the
straight roads (we assume one-way simultaneous movement, i.e. no two robots can move simultaneously on the
same graph edge in different directions).

5.1 The Expert Rules

1. Avoiding collisions in the graph nodes (crossroads)
if Wi + la. = tki3-, (A — 1,2,..., n), where n is a number of robots,
then lüj - lHj + e, where e is a value, that defines minimum time interval between different robots passing
the same crossroads. This value must provide safe crossroads passage. Hence, it depends on robot sizes and
speeds. Weight W^ of node ij is computed then according to formulae (2). This means the increase of time
of the robot motion on the graph edge from node i to ij by e time units, and corresponds to the robot speed
change. The speed is piece-wise constant on the path, and is computed for each edge, connecting nodes i
and j as

^ = T"- (3)
2. Avoiding collisions on the graph edges (straight roads)

X(.Wi < tki) A [(Wi+lu,) < tHj], (A = 1,2,. ..,n), then
if tu > tuj, then this is a case, when two robots will move in opposite directions, and the robot, which
path is being planned, will pass through the edge before robot A. No collision happens, hence, change of the
edge weight is not necessary. The weight of the next node Wi- is computed as (2).

else if (tki < tki.) A]tki < ' t^-ti-^'"' ^ ***i]> then collision is possible: robot A will follow the
robot, which path is being planned, and hit it on the edge. To avoid collision, it is necessary to change the
edge weight for the current robot (i.e. to change the motion time by increasing speed):

, _ (Wi-tkij-e)(tkij-tki)
Hij - —-— , (4)

tu — tuj — e v ;

Then the node weight W^ is computed according to (2).
else robot A will follow the robot, which path is being planned, but its speed is insufficient to hit the
currently computed robot on the edge. Then the edge weight is not to be changed, and the node weight Wi.
is computed as (2) J

if (Wi > tki) A {(Wi + ltij) > thij], (k = 1,2,..., n), then
if hi > tkij, then this is a case, when two robots move in opposite directions, and robot A will pass through
the edge earlier, than the robot, path of which is being planned, drives onto the edge. There is no need in
this case to change the edge weight, since no collision is to occur. Then the node weight Wt. is computed
as (2). '

else if (tki < tki.) A |ifci < ■■■ ' t^-tL-i«. "' ^ ***,-]» then collision is to happen: the robot, which path

is being planned, will follow robot A on the edge, and hit it due to high speed. To avoid the collision, it is
necessary to decrease speed of the robot, which is being computed, i.e. to increase its time of motion on this
edge according to (4), then the node weight is determined as (2).

 Kolushev F. A., Bogdanov A. A. Multi-Agent Optimal Path Planning 293

else the robot, which path is being planned has insufficient speed to catch and hit robot k before the
crossroads. The node weight Wis then is computed as (2).
if (Wi< tki) A[(Wi + liij)>tkij],(k = 1,2,...,n), then
if tk% < tkij, then collision is possible: robot k will follow and hit the robot, which path is being planned,
before the crossroads. To avoid the collision, the speed of the current robot obviously should be increased.
For this to be achieved, the edge weight is to be changed according to (4), then the node weight is computed
as (2).
else if tki > tkij, then collision can not be avoided: robot k will have been moving on the edge in the
opposite direction, when the robot, which path is being planned, drives onto the edge. To avoid collision,
the motion through the edge from node i to node ij must be forbidden for the current robot. To reach this
goal, let us change the weight of the edge as follows:

/«,•■= oo . (5)

Then the node weight W^ is computed according to (2). Let us note, that at further path constructing
this edge will not be included into the path due to its infinite weight. Therefore this type of collisions is also
avoided.
if (Wi > tki) A {(Wi + kij) < tkij], (k = 1,2,...,n), then tki < ifcii and the collision is possible (it is the
only possible case, since U^ > 0): the robot, which path is being planned, will follow and hit robot k before
the crossroads. To avoid the collision, it is necessary to change the edge weight according to (4), and then
the node weight is computed as (2).

6 Summary

Using graph of possible paths makes developed algorithms of robot path planning abstract to environment
model, thus improving their application capacity.

These algorithms provide global optimality while path planning according to various given optimum criteria:
least motion time, least path length, etc.

Multi-agent path planning algorithm also provides robots collision avoidance. That algorithm automatically
plans safe robot paths, which do not intersect each other in time-space continuum. Simulation results approve
effectiveness of synthesized algorithms.

Finally, let us note, that the described multi-agent algorithm implies sequential path planning for each of
robots (path by path), and when planning the next robot path, all already planned paths are taken into account
to eliminate collisions. Therefore, path of the first robot in the sequence is planned with the one-agent algorithm,
path of the second robot is planned with concern of the first robot's path, when planning path of the third
robot, paths of first two are taken into account, etc. And the described algorithm provides optimality of all
planned paths. It means, that currently planned path is optimal of all possible at this stage. However, the paths
(and, hence, their lengths and motion times) depend on the order of planning, i.e. there is a question, which
robot path should be planned first, which is to be second, etc. This problem is not significant, if relation of
possible paths quantity on the graph to the number of robots is big enough. But if the described expert rules
correct the graph (edge weights) too frequently while path planning, then the choice of the right sequence of
robots for path planning may have significant influence on the general robot team performance. This problem
is still open, and it is a question of a separate research to investigate it.

References

1. Bogdanov, A. A., Kolushev, F. A., Optimal Path Planning and Adaptive Neural Control of Robots. Proc. of Int.
Conf. on Informatics and Control, St .-Petersburg, June 9-13, 1997, pp. 600-605.

2. Kolushev F.A., Bogdanov A.A., Timofeev A.V., Path Planning and Correction of Mobile Robots Motions in Multi-
Agent Robotics Systems. Int. Scientific Issue "Intelligent Autonomous Systems", Ufa State Aviation Technical
Univ, 1998, pp.132-139

3. Maron O., Lozano-Perez T., Visible Decomposition: Real-Time Path Planning in Large Planar Environments. AI
Memo 1638, January 1996

4. Stenz A., Map-Based strategies for Robot Navigation in Unknown Environments Proc. AAAI 96 Planning with
incomplete information for Robot Problems.

5. Stenz A., The focussed D* algorithm for real-time replanning. Proceedings of the International Joint Conference
on Artificial Intelligence, August 1995.

_??J Perspectives of System Informatics'99

6. Brummit, B.L., Stenz, A., Dinamic Mission Planning for Multiplay Mobile Robots, Proc. IEEE International
Conference on Robotics and Automation, May, 1996

7. Saffiotti A., Ruspini, E. H., Konolige, K., Robust Execution of Robot Plans Using Fuzzy Logic. Fuzzy Logic in
Artificial Intelligence IJCAI 93, pp. 24-37

8. Yahja, A., Stenz, A., Singh, S., Brumitt, B. L., Framed-Quadtree Path Planning for Mobile Robots Operating in
Sparse Environments. Proc. IEEE Conference on Robotics and Automation, May 1998.

9. Bugman, G., Denham, M. J., Taylor, J. G., Sensor and memory based path planning in the egocentric reference
frame of an autonomous mobile robot. Reserch Report NRG-94-01, January, 1994.

10. Harinarayan, V.J. Lumelsky, Sensor-based motion planning for multiplerobots in an uncertain environment. IEEE
International conference on intelligent robots and systems, pp 1485-1492, 1994

11. Kant, S. Zucker, Towards efficient planning: the path-velocity decomposition. International Journal of Robotics
Research, 5: 72-89, 1986.

12. Kasinski, A., Skrzypczynski, P., Cooperative Perception and World- Model Maintenance in Mobile Navigation
Tasks. DARS III, ppl73-182, 1998

Approach to Understanding Weather Forecast Telegrams
with Agent-Based Technique *

Irina Kononenko, Ivan Popov, and Yuriy Zagorulko

Russian Research Institute of Artificial Intelligence
Lavrentiev str., 6, Novosibirsk, 630090, Russia

irinaQmail.nsk.ru, popovQiis.nsk.su

Abstract. The paper describes an experimental system for understanding short texts from a limited
problem domain (weather forecast telegrams written in Russian). A semantics-oriented and text type
specific approach to analysis is proposed which gives preference to lexical-semantic and topical coherence
mechanisms in their relation to the domain structure. The system is implemented with both classical means
for knowledge representation and processing and methods of object-oriented and agent-based technique.

1 Introduction

The paper describes an experimental system for understanding real short texts from a limited problem domain,
cf. previous work in [1,2]. The goal of the analysis is to explicate the informational content of the input text
by a semantic network (tree), which is used as a basic knowledge representation language suitable for further
transforming to represent information in any other terms. The choice of formal means and the underlying
linguistic approach are based Upon the following principles: a) the understanding system is both the domain and
genre (text type) specific; b) the analysis procedure is semantics-oriented; c) information of different linguistic
levels (lexical, syntactic, semantic, pragmatic) is processed simultaneously due to the object-oriented paradigm
using class hierarchy with multiple inheritance; d) special means to represent linguistic indeterminate units are
utilized; e) the declarative descriptions with a system of agents provide a local bottom-up parsing procedure.

The presented experimental system is implemented with the help of the software environment SemP-A that is
an advanced version of SemP-TAO system [3]. SemP-A is based on an integrated knowledge representation model
which combines both classical means for knowledge representation and processing (such as frames, semantic
networks with binary relations etc.) and methods of object-oriented and constraint programming. Important
features of the environment are the ability to operate with objects, that can have attributes with imprecisely
defined values, and the utilization of the agent-based technique as a main means for definition of logical inference
and data processing.

Each agent reacts only to related events (e.g. appearance of new objects of certain class or changing values
of their attributes or setting new relations between objects). Actuation of the agent can lead to creating new
objects or changing state of the existing ones. This, in turn, causes activation of other agents associated with
the new or modified objects and so on. Unlike the production systems that use an expensive pattern-matching
routine, the activation of agents is based on the associative event-driven mechanism that significantly increases
efficiency of the inference and control processes.

2 Text corpus and problem domain

The texts under consideration are weather forecast telegrams sent by local forecasters to the central meteoro-
logical offices (M-texts). An example of M-text is given below in literal translation from Russian:

weather tomsk region 19/08/98=
variable cloudiness in morning local fogs over south parts locally small short rains thunderstorms wind
south south-west 7-12 m/s temp at night 8-13 at day time 8-23 tomsk night 10-12 day 21-23=

An M-text contains a sequence of prognostic statements with parametric semantics (an "object - parameter
- value" scheme). The estimations are given in terms of parametric Features grouped around meteorological
Elements (Precipitation, Cloudiness, WeatherPhenomena, Wind, Temperature, Inflamability) within topically

* This work is supported by Russian Foundation for Basic Research (grant N 99-01-00495)

296 Perspectives of System Informatics'99

coherent text fragments. Each topical fragment contains a sequence of estimations for the same Element. The
correspondence between Elements and their Features is represented by the Element-Feature relation, the third
argument of the relation presenting basic parameters of the Element:
Element-Feature(Element: "Wind", Features: { "WindDirection", "WindVariation",
"WindSpeed", "WindGust"}, DefaultFeatures: "WindDirection", "WindSpeed").

Estimations are time- and site-specific, i.e. they are made with respect to certain Temporal and Locative
objects. The territory and the date mentioned in the heading part of the text arc basic Loc and Temp objects
of the domain. The objects of estimation in elementary statements are related to the basic Loc and Temp
objects as their parts: e.g. LocValue local and TempValue in morning in the fragment in morning local fogs.
Circumstantial Values may be implicit in the fragment and are in this case recovered from the previous context:
e.g. over south parts locally small short rains | thunderstorms.

The output semantic representation of the topical fragment wind south south-west 7-12 m/s from the example
above is given in section 5, Fig. 4.

3 Approach to text understanding ,

Our approach to text understanding takes into account not only the domain structure but the text pragmatics
as well. The telegram genre causes main peculiarities of the text corpus. Texts are extremely concise - they
are written in "telegraphic style". On the one hand, the semantic units (Elements, Features, Loc and Temp
Values) are reduced as they can be easily recovered due to the strong semantic and topical coherence and regular
word order. On the other hand, grammatical and syntactic elements are regularly omitted (lack of prepositions,
conjunctions, or even inflexions). Means of text segmentation are absent (there"are no punctuation marks and
capital letters). Abbreviations are widely used. Texts bear a lot of mistakes as a result of their spontaneous
production.

Previously, our experiments in different problem domains [1] involved local morphological and syntactic
processing. The specificity of the M-text corpus results in a strong semantic bias of our approach to analysis.
According to it, lexical semantics of words and word collocations is defined in terms of "orientations" as pointers
to the domain system of concepts. The semantic orientation indicates a set of Features that can be represented
by a lexeme on the surface level. The topic orientation relates a lexeme to the set of Elements whose description
admits this lexeme. For example, the vocabulary unit variable is the Value of "CloudAmount" or "WindDirec-
tion" Features and topically corresponds to "Cloudiness" or "Wind" Elements. This information is stored in
the slots Orientation and TopicOrientation of the vocabulary entry of the lexeme.

The semantics-oriented approach admits processing syntactic non-regularities resulting in proper output se-
mantic structures. Several types of semantic units (features, values, locations, etc.) that appear in text fragment
under analysis are combined into topical and semantic structures using orientations and word order information.
Topical mechanisms provide the recovery of reduced semantic objects.

4 Class hierarchy

Fig. 1 shows a part of our class hierarchy and illustrates interaction between lexical units and concepts of the
problem domain. The hierarchy takes into account the peculiarities of the text corpus: it lacks classic grammar
classes (no verbs, nouns, etc. and no morphological characteristics). The base class Object has the only slot
State with two possible values: "working" means that object is to be processed and "workedjout" means that
the object is no longer subject to any further processing.

The lexical hierarchy includes classes for words, numbers and signs. The base class LexObject contains
common lexical information for the vocabulary look-up. A chain of LexObjects is produced by a special LexSe-
quence relation.

The text hierarchy is also reduced, as there are no paragraphs, sentences and clauses. The only text-
structure class is Topic used in the process of decomposition of the input chain into the sequence of topically
coherent fragments. Sem Word objects are related to Topic by a special Topical relation.

The semantic hierarchy corresponds to lexical level of the domain concepts. SemObjects are characterized
with orientation slots. SemWords are elements of the future semantic tree bound with SemTree relations.
The auxiliary words (AuxWord) are opposed to the Sem Word class as they serve to modify meanings or even
to refine classes of SemWords but are never present in the resulting structure.

Kononenko I., Popov I., Zagorulko Yu. Approach to Understanding Weather Forecast Telegrams 297

Fig. 1. Class hierarchy

5 Agents and analysis procedure

The analysis procedure is performed by a set of agents, which may be classified according to their functions in
the process.

The first group of agents interacts with the input chain to execute the lexical processing. Agents react to
the current portion of the chain, delimit and create LexObject nodes, refine their classes (LexSigns, LexNumbers
and Lex Words), fill their slots and insert them into the network. A special agent performs the vocabulary look-up
for class and slot values information. The LexSequence relation joins the node being inserted into the network
to the previous one.

The agents of the second group perform the presemantic processing. They react to the appearance of
instances of Number or AuxWord classes. The AuxWord subclasses require different types of processing and
their contribution may be different. For example, Preposition with locative orientation serves to disambiguate
words like west and to refine its class as a LocValue (over west regions vs. wind west). Fig. 2 presents the
results of lexical and presemantic analysis for the fragment wind south south-west 7-12 m/s. The collocations
have been assembled, Number orientation specified, interval composed and refined as NumericValue.

X.exSequence„ .*-"

—■+Q—+Q-; *~*i ►Q-V
tvitiu flint in i Mm in — wem :

Element Value \ Collocation WordScparator Value /

ll 7 - n)\ m I ., 'I
Y^fuBiber I,exSign Number,/ ^ensure WordSepHrntor Collocation/ /

Fig. 2. Lexical and presemantic processing

The third group of agents realizes the topical analysis. Agents simulate the left-to-right "reading" of the
lexical chain, interact with nodes of the Sem Word class , the AuxWord nodes being simply passed by in case their
states are "worked_out" (otherwise the topical processing stops and waits until the nodes are presemantically
processed). The topical relation is created between the "working" Topic and a Sem Word node provided that
their TopicOrientation values conform. The topical shift (creation of a new Topic node) may be provoked by
a new Sem Word if its TopicOrientation does not agree with that of the "working" Topic, e.g. thunderstorms |
wind south south-west 7-12 m/s. Circumstantial Sem Words provoke a subtopic hypothesis (text fragment with
a more precise description of the same Element) that may be later rejected. Fig. 3 demonstrates the results
of topical analysis for our example: the new Topic node has been generated on meeting the Element node and
further bound with Sem Word nodes by Topical relations.

The fourth group of agents performs the semantic analysis, which involves three types of actions. Several
agents deal with specification of semantic orientations of Values and Features. Special agents react to situations
of semantic reduction in order to recover missing units. A few agents are intended to realize the bottom-up pro-
cess of constructing the semantic tree by finding out the semantically dominant counterpart for any Sem Word
node and creating SemTree relation between them. All the semantic agents are able to work under the condition

298 Perspectives of System Informatics'99
DTon Topic

Topic.1. -—-"W"T

©-»►Q-M§-fr0-^Q-»»©r*
Element Value Value NumericValue
"Wind" "Southern" "Southweslem" "7..12m/sec"

Fig. 3. Topical analysis

that Topic related to the SemWord nodes under analysis is "worked_out", i.e. the topical fragment construc-
tion is completed. Consider our example wind south south-west 7-12 m/s and its resulting semantic structure
presented in Pig. 4.The indeterminate Values south, south-west ("WindDirection" vs. "WindVariation") and
7-12 m/s ("WindSpeed" vs. "WindGust") have been disambiguated. The basic Features ("WindDirection" and
"WindSpeed") have been recovered due to the DefaultFeatures information of Element-Feature relation and
the corresponding SemTree relations set up. Of the two competing Values to be attached to the recovered
"WindDirection" Feature node the first one has been chosen by a special condition on the word order. Note
that semantic trees of all the topical fragments of the text will be further connected p the basic Locative and
Temporal units immediately or via their local circumstantial units (if any).

Topical '

SemTrfiß—-—■**:

[Topic
"* "Wind"

v Element

Feature p3

"WindDirection" 1
"I Fenture T
J "WindVariation" (_

|| Feature
„Jj "WindSpeed"

Value Jt.
"Soul hem" \^^

\ Value /
g '"Southwestern" '

•*v NumericValue
„JT "7. I2m/sec"

Fig. 4. Semantic analysis

It is necessary to emphasize that all agents work simultaneously. While lexical agents are processing the input
chain and creating lexical nodes, topical agents are assembling them in coherent text fragments. The progress of
topical analysis is being provided by presemantic agents that are creating the required conditions in the lexical
chain. At the same time the completely analyzed topical fragments are subject to semantic processing.

6 Conclusion

Several questions of M-texts processing have been left out of the scope of this paper. Nevertheless, we hope that
we have managed to demonstrate basic principles of our approach including semantics orientation, text type
consideration and processing different types of information in parallel. The use of agent-based technique allows
increasing efficiency of data processing control in comparison to production systems. This is achieved by using
the associative event-driven mechanism instead of an expensive pattern matching routine.

Meteorological telegrams, with their text specificity and lucidity of structure of underlying problem domain,
appeared to be a good testing ground for experiments and development of the agents mechanism. The most
interesting perspective seems to be the analysis of abbreviations and mistakes. Disambiguation of deviating
lexical units implies local multivariant processing that can be efficiently realized within the framework of event-
driven approach.

References

1. Kononenko I., Sharoff S. Understanding Short Texts with Integration of Knowledge Representation Methods. In:
Perspectives of Sysem Informatics, Lecture Notes in Computer Science; Vol. 1181, Springer, (1996), pp 111-121

2. Narin'yani A.S. Automatic Text Understanding - New Perspective. In: Dialogue'97. Computational Linguistics and
its Applications. Moscow, 1997, pp. 203-208.

3. Zagorulko Yu.A., Popov I.G. Object-Oriented Language for Knowledge Representation Using Dynamic Set of Con-
straints. In: Knowledge-Based Software Engineering. (Proc. 3rd Joint Conf., Smolenice, Slovakia). -Amsterdam-
IOSPess, 1998, pp.124-131. '

Constraint Programming

A Control Language for Designing CSP Solvers
(Regular talk)

Carlos Castro1 and Eric Monfroy2

1 LORIA-INRIA, BP 101, F-54602 Villers-les-Nancy Cedex, Prance
Carlos.Castro01oria.fr

2 CWI, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands
Eric.MonfroyQcwi.nl

Abstract. We propose a control language for designing single constraint solvers as well as their collabo-
rations. Based on the notions of constraint filter, separator, and sorter, we define basic strategy operators
that allow us to specify single solvers and their collaboration in a uniform way. We exemplify the use of
this language by specifying some techniques for solving constraints over real numbers.

1 Introduction

In the last twenty years, much work has been done on solving Constraint Satisfaction Problems (CSPs) [9].
The existing constraint solvers have been successfully applied for solving real-life problems. We could say that
constraint solving over a particular domain is well-understood In the case of solvers based on propagation, either
the control is left at the implementation level, or the strategy is fixed. For example, to be completely formal when
adding strategies to Chaotic Iteration, we must prove that the algorithm and the strategy really compute the
same fixed-point as Chaotic Iteration alone [1]. Arc-consistency algorithms, originally developed just for binary
constraints, use fixed strategies and fixed data structures, thus, it is not possible to change the strategy [11,4].
Solvers based on other techniques, such as Gröbner bases and the simplex method, use a dedicated strategy.
Finally, the deductive approach used in COLETTE allows a fine control of the; computation, the strategy being
a parameter, but there is no solver collaboration and some features are hidden in the implementation language
(such as AC properties and term manipulation) [6].

Given that the development of constraint solvers is, in general, an expensive and tedious task, the interest
for reusing existing solvers is obvious [18]. Even more important, when dealing with problems that cannot be
tackled or efficiently solved with a single solver, we definitively realise the interest of integrating several solvers,
working, in general, over different domains [16,3,10,17,15]. This is called Collaboration of Solvers [12]. In order
to make solvers collaborate, the need for powerful strategy languages to control their integration has been
well recognised [13,14,2]. The existing approaches consider a fixed domain (linear constraints [3], non-linear
constraints over real numbers [15,10,8]), a fixed strategy, and a fixed scheme of collaboration (sequential [15,8],
asynchronous [10]). In the language Bali, the collaboration is specified using control primitives. The constraint
system is a parameter, but the control capabilities for specifying strategies are not fine enough [14].

In this paper, we propose a control language for specifying single constraint solvers and their collaborations.
Based on [5], a solver is viewed as a strategy that specifies the order of application of elementary operations
expressed by transformation rules. In this framework, different domains mainly mean the definition of different
transformation rules, and different heuristics mean different strategies. Extending this idea, we consider the
collaboration of solvers as a strategy that specifies the order of application of single or component solvers.

Our main motivation is to provide a general framework for defining single constraint solvers in a formalism
that allows to specify high level operations on constraints as well as syntactical transformations normally

300 Perspectives of System Informatics'99

hidden in the current implementations of constraint solvers. Our interest is to define this framework in a way
that allows its natural extension for specifying the collaboration of solvers, since the design of constraint solvers
and the design of collaboration of solvers require similar methods (strategies are often the same: don't-care,
fixed point, iteration, parallel, concurrent, ...) In other words, we propose a language for writing single solvers
and collaboration at the same level, making explicit things that are generally hidden in the implementations:
strategies, properties of the operators (AC,...)

We have already used our control language to design several solvers with several strategies, among them, a
simplex algorithm, Gröbner bases computation, and a solver for constraints over finite domains. However, for
lack of space, we only present one example in this paper: a solver for constraints over real numbers. For the
same reason, we do not include in this paper two strategy operators of our language, mainly designed to make
solvers collaborate [7]. •

This paper is organised as follows: Section 2 presents some standard definitions. In Section 3, we introduce
the basic components of our control language. The language itself is presented in Section 4 and illustrated in
Section 5 with the design of solvers for constraints over real numbers. In section 6, we conclude the paper.

2 Definitions

Definition 1. A constraint system is a 4-tuple (E,V,V,£) where:

- E is a first-order signature given by a set of function symbols Ts, and a set of predicate symbols Vs,
- V is a E-structure (its domain is denoted by \V\),
- V is an infinite denumerable set of variables,
- Cisa set of constraints: a non-empty set of (27, V)-atomic formulae, called atomic constraints, closed under

conjunction and disjunction. The unsatisfiable constraint is denoted by 1 and the true constraint is denoted
by T. The set of atomic constraints is denoted LAI-

An assignment is a mapping a : V -> \V\. The set of all assignments is denoted by ASS%. An assignment
a extends uniquely to an homomorphism a : T(E, V) -> \V\. The set of solutions of a constraint c G C is the
set Solv(c) of assignments a G ASS% such that a(c) holds. A constraint c is valid in V (denoted by V \= c)
if Solv(c) - ASS%. We denote by Var(c) the set of variables from V occuring in the constraint c. Finally, we
introduce the notion of solver.

Definition 2. A solver for a constraint system (E,V,V,C) is a computable function S : C -> C such that

1. VC G £, Solv{S{C)) C SOI-D(C) (correctness property)
2. VC G C, SOI-D(C) C SOIT>(S(C)) (completeness property)

A constraint C is in.solved form with respect to 5 if 5(C) = C. Given a constraint system (27, V, V, C) and
a solver 5 over (27, V, V, £'), such that £' C C, we extend 5 to (27, V, V, C) in the following way: \/C GC\C,
*b(G) = G.

3 Filters and Sorters

We now define the basic components of our strategy language: filters to select specific parts of a constraint, and
sorters to classify the elements of a list w.r.t. a given ordering. We introduce the notion of filter for two main
reasons. A solver can, in general, be tried on several parts of a constraint [5]. Second, when dealing with solver
collaborations, in general, a single solver is not able to treat the complete constraint [13]. In both cases, we want
to identify the sub-parts of the constraint the solver is actually able to handle. Once we have identified these
parts, we generally want to choose some of them based on a given criterion1. Thus, we introduce the notion of
sorter that is associated to a notion of strategy.

We consider that the equality = is purely syntactical. Thus, we say that C is a syntactical form of C, denoted
by C « C, if C = C modulo the associativity and commutativity of A and V, and the distributivity of A on V and
of V on A. In other words, a filter returns an equivalent constraint when we block the associative, commutative,
and distributive properties of the operators. We denote by SF{C) the finite set of all the syntactical forms of
a constraint C: ST{C) = {C'\ C K C}2. We say that C G £ is a sub-constraint of C, denoted by C[c>], if:
1 Minimum Domain criterion, for example, when dealing with finite domains.
2 The ACD theory defines a finite set of quotient classes that we can effectively filter.
2

 Castro C, Monfroy E. A Control Language for Designing CSP Solvers 301

- 3Ci,C2 G C, UH,LJ2 G {A, V}, C = C1uiC'w2C2

- or 3d e£,(J€ {A, V}, C = CiuC'
- or 3d € C, u G {A, V}, C = C'wCi
- or C = C

A couple (C", C) such that C" is a sub-constraint of C and C" « C is called an applicant of C. We denote
by £.4 the set of all the lists of applicants, and by jßC the set of all the lists of constraints. Generally, we will use
LA to denote a list of applicants, and LC to denote a list of constraints. We denote by V{C x C) the power-set
of all the sets of couples of constraints. Finally, Atom(C) denotes the set of atomic constraints that occur in C:
{c\c G C,At and C[c]}.

Definition 3. Let (27,X>, V,£) be a constraint system. A filter (j) on (S,V,V,C) is a computable function
#:£-»• V(£ X C) such that:

VC G C,(t>{C) = {{Cf\ &),..., (Cfn,Cn)}, where

- Vi G [l,n], C sä C* (Cl is a syntactical form ofC),
- Vie[i,n],qc/i]

The elements of 4>{C) are called candidates. Given the filters <j> and <f>' on (27, T>, V, £), we say that:

- <£ is selective if VC £ £, <£(C) = {(C/i, Ci),..., (Cfn, Cn)} such that
Vi,j G [l..ra] x [l..n], Atom(Cfi) n Atom(Cfj) = 0.

- 0 is sta&Ze if VC G £, </>(C) = {(C/Y,C),..., (Cfn,C')}
- <£ and 4>' are rftsjoint if VC G £, <f>{C) = {(C/i,Ci),..., (C/„, C„)}, and -

<f>'(C) = {(Cfi, C{),..., (Cf^,CJ}, such that V(i,i) G [l..n] x [l..m],
Atom(Cfi) n Atom(C/j) = 0.

Example 1. Consider the constraint system (27, P, V, £) s.t. the predicate G is in 27, and that £ contains some
domain constraints, i.e. X G Dx, where Dx (the domain of X) specifies the values the variable X can take.
We now define a filter for these domain constraints:

VC G C, <j>DomiC) = {(c, C)|C[C] and 3X e V, c = (X e Dx)}

<f>Dom is stable and selective. We denote by Coom the elements of C-At resulting of the application of this filter.
We will re-use this notation in other examples.

Example 2. We now consider patterns of constraints. The utility of this filter will be clarified in Section 5.
We want to filter sub-constraints that are the conjunction of a domain constraint, an atomic constraint, arid a
conjunction of domain constraints, i.e. , an atomic constraint, and all the domain constraints of the variables
occuring in it.

VC G C, <AZ)ACAZ)»(C) C £} and ^ACADS(C) is defined as follows:

1. Patterns:
(C", C) G &McAD.(C) => C" = iXEDx) AC AyeVar(e)\W r € DY

*ceCAt\CDomAC'eSF(C)
A C^,,] A X G Varic)

2. Context-free:
((C, Ci) G <f>DACADsiC) A (C, C2) G &McAD.(C)) =» Ci = C2

3. Commutative-free:
(X G DX A C A C'{, d) G <t>DAcADSiC) \ r„ _ „„
A (X G Dx A c A C2', C2) G <?WABS(C) J ^ °J ~ °2

Items 2 and 3 are not mandatory, but they reduce the number of applicants. This definition does not provide
uniqueness to the filter. Depending on our needs, we can consider (1) adding requirements to define one set
of applicants per constraint, (2) removing Item 2 and 3, or (3) selecting one of the set corresponding to the
definition.

Definition 4. A sorter Sorter, w.r.t. a partial ordering -<, for a constraint system (27,£>,V,£) is a computable
function Sorter : ^ x7>(£ x C) -t LA such that V{(C/il,Ch),..., (Cfa,Cin)} G V(C x C):

1. Sorteril,{iCfil,Cil),...,iCfin,Cin)}) = [iCf1,C1),...>iCfn,Cn)}

302 Perspectives of System Informatics'99

2. Vfc G [1, n], 3j G [1, n], Cfif = Cfk and Ctj = Ck

3. VjG[l..n-l],C/,^C/i+1

Remark 1. We consider that a sorter is determinist i.e., if L is a set of applicants, each application of a sorter
on L will always return the same list of applicants.

Example 3 (MaxDom and MinDom sorters). ^Dom is an ordering based on the width of the domain involved
in the domain constraints. For atomic domain constraints, MaxDom and MinDom are straight-forward, but we
may need to consider these orderings for more complex constraints (e.g., patterns of constraints issued from
filters). MaxDom and MinDom use the width of domains of variables. Let X G Dx be a domain constraint, we
consider the generic function w which gives the width of a domain. We define the function width as follows:

- if c G Coom and c = X G Dx, then W(c) = u(Dx),
- ifce£At\ £-Dom, then W(c) - -1
- if C = c A C" or C = cV C" and c € ZUt, then W(C) = W(cj.

^Ü0TO is now defined by: VC,C" G £, C <Dom C if W(C7) < W\C). The sorter MinDom (resp. MaxDom) is
defined using the <Dom ordering (resp. >Dom, the reverse ordering of <Dom)-

4 The Strategy Language

Given a solver S, a filter <j> and a partial order •<, we now define several application mechanisms for applying
solvers to constraints. We assume that a solver is applied only once on a given set of constraints. In the following,
we consider given a constraint system CS = (27, V, V, C). Most of the application mechanisms are based on the
same technique when applied to a constraint C:

1. A set SC of candidates is built using the filter <f> on C.
2. The set SC is sorted using <: we obtain LC = [(CfuCi),..., (Cfn, C„)], a sorted list of candidates, where

(C/i,Ci) is the "best" constraint w.r.t. <
3. The solver S is applied on one/several element of LC.
4. Sub-constraints modified by S are replaced in their corresponding syntactical form of C.

4.1 Basic Solver Compositions

The following operators are standard and analagous to function compositions. They are used to design solvers
with "basic" functions, or create solver collaborations with "complex" solvers. Let R and S be two solvers on
(17,1), V,£). Then, VC € C we define:

- S°(C) = C (Identity)
- S;R(C) = R(S(C)) (solver concatenation)
- Sn(C) = S"-1; S(C) if n > 0 (solver iteration)
- S*(C) = Sn(C) such that Sn+x(C) = Sn(C) (solver fixed-point)
- (S,R)(C) = S(C) or R(C) (solver don't-care)

Property 1. S;R, Sn, S*, and (S,R) are solvers.

4.2 Filtered and Random Application of a Solver

We first define two operators to apply a solver on specific components of a constraint. The first one takes the
component randomly whereas the second one selects it with respect to a given criterion.

Don't Care Application of a Solver Given a solver S, a filter <f>, and a constraint C, dc(5,4>) restricts the
use of the solver S to one sub-constraint, chosen randomly, of a syntactical form of C (obtained using the filter

VCeC,dc(S,4>)(C) = C, where

-[(C/i.Ci),-.., (Cfn,Cn)] = 4>(C)
- if there exists i G [l..n] such that S(Cft) # Cft , then C = d{CU ^ S(Cft)}, otherwise C == C.

 Castro C, Monfroy E. A Control Language for Designing CSP Solvers 303

Best Application of a Solver Given a solver S, a partial order < on C, a filter <f>, and a constraint C,
best(S,<,<f>) restricts the use of the solver S to the best (w.r.t. the partial order X) sub-constraint of a
syntactical form of C (obtained using the filter <^>) that S is able to modify:

VC eC,best(S, <, 4>){C) = C, where

-[(Cfi,C1),...,(Cfn,Cn)] = Sorter(<,<t>(C))
- if there exists i € [l..n], such that S{Cfi) ^ Cfu and Vj e [l..n] (S(C/j) ^ Cft => i < j) then C =

(7i{C/i •->■ S(C/;)},otherwise C' = C.

4.3 Concurrent and Parallel Applications of Solvers

We now define two operators to apply several solvers on a constraint. The first one chooses only one result
depending on a given criteria. The second one composes the final result based on each application.

Concurrent Application of a Solver The operator pec provides a non-deterministic choice upon which we
act by introducing different methods: we do not care about which solver actually solved the constraint, but
we want the result to verify some property. A constraint property p on a constraint system (S,V,V,C) is a
function from constraints to Booleans (i.e., p : £ -* Boolean). Given a list of solvers [Si,.. .,Sn], a list of
orders on constraints [■<!,. ..,^n], a list of filters [<j>i,..., $«], and a propertyp, pcc(p, [Si,... ,Sn), [<i, ■ ••,;<«,
], [<j>i,..., <j>n]) applies once one of the solvers Si on a constraint that verifies the property p:

VC e C, pcc(p, [Si,..., Sn], bi,'. •• ,<n], 0i,..... <M)(Ö) = C, where

- for all i e [l..n] [(CfitUCi,i),..., (C/«>nw,Ci>mi)} = Sorter^,^(C))
- if there exists (i,j) e [l..n] x [l..mj] such that p(Si(Cfij)), and SJ(C/JJ) ^ Cfijthea'C = Cij{Cfitj H»

Si(Cfi,j)}, otherwise, C' = C. ' ' ■

Parallel Best Applications of Solvers Given a list of solvers [Si,... ,Sn], a list of orders on constraints
[^i>---i^n]) and a list of stable filters [cf>i,... ,(f>n] that are pairwise disjoint, bp([Si,... ,Sn],[^i,.. .,^„
], [<pi,..., 4>n]) applies n solvers Si,..., Sn on n sub-parts of one syntactical form of the constraint:

VCe£,bp([Si,...,Sn],[<1,...,^n},[<t>i,---,<Pn])(C) = C,where

- for all i e [l..n] [(C/M,C");.. •, (C/i>roi, C")] = Sorter{<u4>i{C))
- for all i € [l..n], if there exists j G [l..mj, such that Si(Cfi:j) ^ C/i,., and for all A; < j, Si(Cfik) = Cfih,

then oi = {Cfiti. (-)• Si(Cfitij)}, else a* = 0.
- C" = C'V where a = Uie[i..n]a'-

4.4 Properties of the component functions

In spite of its simplicity, the following property is essential: it allows one to manipulate component functions
and solvers at the same level, and thus to create solver collaboration with the same strategy language.

Property 2. best, dc, pec, and bp are solvers.

5 Example: Solvers for Constraints Over Real Numbers

We now design solvers for non-linear real constraints using real interval arithmetics. In the following, a CSP P
is any conjunction of formulae of the form f\x.eX{Xi € Dxi) A C where a domain constraint Xi € Dxi is created
for each variable X{ occuring in the set of constraints C, Dxi being an interval of real numbers. Constraints are
equalities of non-linear polynomials.

MaxDom partial ordering We instantiate the MaxDom sorter of Example 3: for all interval / = [a, b],
UJ(I) = b — a.

The split solver transforms a domain constraint into a disjunction of two domain constraints if the width of the
domain is greater than or equal to a "minimal" width e: split :£-»£. For all c = X £ Dx from C,

304 Perspectives of System Informatics'99

- if c G CDom such that width(c) > e, then split{c) = X eD'xVX eD'x where Dx = D'x U D'x
3,

- otherwise, split(c) = c.

A domain reduction function Consider the function 6_c which given a non-linear constraint c e CAt\CDom,
the domain Dx of a variable X e Var(c), and the domains of the other variables of Var{c), returns a smaller
domain for X s.t. c is box-consistent [19] w.r.t. X (i.e., Dx cannot be further reduced without loosing any
solution). We can now define the solver drf : C -)■ C. For all C 6 C, we compute *•/(<?) depending on the
syntactical form of C:

-HC = XzDxAcA AYeVar{cMX} YGDY where c£^t\ CDom, then,

dr/(C)-X6^ACAAy€VOT{c)\mFe'ßy
where D'x = b.c(c,Dx, {DY\Y e Var{c) \ {X}}),

- otherwise, drf(C) = C.

Solvers We now consider the solver box defined as follows:

box = best(drf,>:Dom,<t>DAcADs) >

When applied to a CSP C, box executes one step of reduction: one atomic constraint of C becomes box-consistent
with respect to the largest variable of the CSP. Let us now consider the following solver:

Box = box*

Box is the least fixed-point of box. When applied to a CSP Box returns an equivalent CSP that is box-
consistent. The strategy of this solver is to always reduce the variable with the largest domain i.e., a well-known
and commonly used strategy for interval arithmetics.

Solving CSPs is generally the iteration of two mechanisms: consistency (described above) and splitting. We
now describe the splitting mechanism which enables to extract the isolated solutions:

Split = he$t(split, _r_w, <I>D)

Applied to a CSP C, Split creates a disjunction of two sub-CSPs. We can now define the solver for solving
CSPs over non-linear constraints:

SFullLookAhead = (Box; Split)*

This strategy corresponds to a full lookahead approach: each time a domain is split, the consistency of the CSP
is recomputed. At a lower level, the strategy for applying basic solvers is a Max-Dom. The solving process is
neither depth-first nor breadth-first but Max-Dom first, i.e., we make one reduction step on one branch, and
then, we eventually choose to explore another branch.

6 Conclusions

We have presented the definition of a control language for solving CSPs. A key point in this work is the
introduction of the concepts of constraint filter, separator, and sorter. These operators allow us to show in the
strategy language the syntactical transformations generally hidden in the current solvers. Then, using these
operators, we have defined a set of constructors that allow to define single solvers as well as the collaboration
of solvers. We have exemplified the use of this language by the simulation of well-known techniques for solving
constraints over real numbers. To show the broad scope of potential applications of our control language
we have already designed several solvers that are considered of different nature (such as Simplex algorithm'
propagation based solvers, and Gröbner bases computation). We are currently working on the implementation
of this language in order to evaluate the real applicability of this framework.

References

1. K. Apt. The Essence of Constraint Propagation. Theoretical Computer Science, 1998. In Press.
2. F. Arbab and E. Monfroy. Heterogeneous Distributed Cooperative Constraint Solving Using Coordination A CM

Applied Computing Review, 1999. In Press.
3. H. Beringer and B. DeBacker. Combinatorial Problem Solving in Constraint Logic Programming with Cooperative

bolvers. In C. Beierle and L. Plümer, editors, Logic Programming: Formal Methods and Practical Applications
btudies in Comp. Sei. and Artificial Intelligence. North Holland, 1995. '

3 We generally also enforce that D'x D D'x = 0.

Castro C, Monfroy E. A Control Language for Designing CSP Solvers 305

4. C. Bessiere and J.-C. Regin. An arc-consistency algorithm optimal in the number of constraint checks. In Proc.
Workshop on Constraint Processing, ECAI'94, pages 9-16, Amsterdam, The Netherlands, 1994.

5. C. Castro. Building Constraint Satisfaction Problem Solvers Using Rewrite Rules and Strategies. Fundamenta
Informaticae, 34(3):263-293, June 1998.

6. C. Castro. COLETTE, Prototyping CSP Solvers Using a Rule-Based Language. In J. Calmet and J. Plaza, editors,
Proc. of AISC'98, volume 1476 of LNCS, pages 107-119, Plattsburgh, NY, USA, Sept. 1998.

7. C. Castro and E. Monfroy. A Strategy Language for Solving CSPs. In K. Apt, P. Codognet, and E. Monfroy,
editors, Proc. of The Third Workshop of the ERCIM Working Group on Constraints, ERCIM'98, Amsterdam, The
Netherlands, Sept. 1998. Also available as Technical Report 98-R-307 of the Laboratoire Lorrain de Recherche en
Informatique et ses Applications, LORIA, France.

8. L. Granvilliers. Consistances locales et transformations symboliques de contraintes d'intervalles. PhD Thesis, Uni-
versity of Orlans, France, 1998. In French.

9. A. K. Mackworth. Constraint Satisfaction. In S. C. Shapiro, editor, Encyclopedia of Artificial Intelligence, volume 1.
Addison-Wesley Publishing Company, 1992.

10. P. Marti and M. Rueher. A Distributed Cooperating Constraints Solving System. International Journal of Artificial
Intelligence Tools, 4(l-2):93-113, 1995.

11. R. Mohr and T. C. Henderson. Arc and Path Consistency Revisited. Artificial,Intelligence, 28:225-233, 1986.
12. E. Monfroy. Collaboration de solveurs pour la programmation logique ä contraintes. These de Doctorat d'Universite,

Universite Henri Poincare - Nancy 1, France, November 1996. Also available in english.
13. E. Monfroy. An Environment for Designing/Executing Constraint Solver Collaborations. ENTCS, 16(1), 1998.
14. E. Monfroy. The Constraint Solver Collaboration Language of BALI. In Proc. of FroCoS'98, Amsterdam, The

Netherlands, 1998. Kluwer Academic. In Press.
15. E. Monfroy, M. Rusinowitch, and R. Schott. Implementing Non-Linear Constraints with Cooperative Solvers. In

Proc. ofACMSAC'96, pages 63-72, Philadelphia, PA, USA, 1996. ACM Press.
16. G. Nelson and D. C. Oppen. Simplifications by Cooperating Decision Procedures. ACM, Transactions on Program-

ming Languages and Systems, l(2):245-257, 1979.
17. C. Ringeissen. Cooperation of Decision Procedures for the Satisfiability Problem. In F. Baader and K. Schulz,

editors, Proc. of FroCoS'96, pages 121-139. Kluwer Academic Publishers, 1996.
18. G. Smolka. Problem Solving with Constraints and Programming. ACM, Computing Surveys, 28(4es), Dec. 1996.

Electronic Section.
19. P. Van Hentenryck, D. McAUester, and D. Kapur. Solving Polynomial Systems Using a Branch and Prune Approach.

SIAM Journ. on Num. Analysis, 34(2), 1997.

An Algorithm to Compute
Inner Approximations of Relations

for Interval Constraints

Frederic Benhamou, Frederic Goualard, Eric Languenou, and Marc Christie

Institut de Recherche en Informatique de Nantes
2, rue de la Houssiniere

B.P. 92208
F-44322 Nantes Cedex 3

{benhamou, goualard, langueno, christie}<8irin. uni v-nantes. f r

Abstract. Interval constraint-based solvers are valuable tools to scientists and engineers since they ensure
many useful properties such as completeness of the result. However, their lack of soundness is sometimes
a major flaw. This paper presents an algorithm ensuring soundness by computing inner approximations
of real relations using only "traditional" numerical methods. A slight modification of the algorithm per-
mits handling constraint systems with one universally quantified variable. An application to declarative
modelling of camera movements is also described.

1 Introduction

Expressiveness, efficiency, and reliability of interval constraint-based tools [16, 2, 4] make them a solution of
choice for solving non-linear systems of equations such as the ones arising in robotics [13], chemistry [11], or
electronics [14]. Relying on interval arithmetic [12, 1], these tools ensure completeness (all solutions present
in the input are retained), and permit bracketing solutions with an "arbitrary" accuracy. On the other hand,
soundness is not guaranteed, while it is sometimes a strong requirement. For example, consider a civil engineering
problem [15] such as floor design where retaining non-solution points may lead to a physically unrealizable
structure.

This paper presents an algorithm whose output is a set of sound boxes of variable domains for some con-
straint system. Soundness is achieved by computing inner approximations of real relations using box consis-
tency [3]—a well-known, efficient, local consistency [10]—on the negation of the involved constraints. Next, a
slight modification of the algorithm is described, which permits solving constraint systems where one variable is
universally quantified. Its application to temporal constraints describing camera movements (virtual cameraman
problem [9]) is then presented along with some preliminary results.

The organization of the paper is as follows: Section 2 introduces the basics related to interval constraint
solving; Section 3 presents an extension of the theoretical framework given in Section 2 to support the notion
of inner approximation, along with the corresponding new algorithms; Section 4 describes modifications of
the algorithms of Section 3 permitting to consider constraint systems with one universally quantified variable-
Section 5 discusses the use of the algorithms for the "virtual cameraman problem"; finally, Section 6 synthesizes
the contribution of the paper, and points out future directions for improvement of the methods described
hereinafter.

2 Interval Constraint Solving

Finite representation of numbers by computers hinders exact solving of real constraints. Underlying real relations
must be approximated by considering one of their computer-representable superset or subset. This section
presents the basics related to the approximation of real relations the conservative way. Approximation by a
subset is deferred until the next section. The shift from reals to floating-point intervals is first described; the
notion of outer approximation of a real set based on intervals is then presented.

2.1 Preliminary notions

Let fi be the set of reals and F c 1 a finite countable subset of reals corresponding to floating-point numbers
m a given format [8]. Symbol oo is introduced to represent infinity, that is: Vg e F: - oo < g < +co, and

Benhamou F. at al. An Algorithm to Compute Inner Approximations of Relations 307

oo,+oo}. Hereafter, r and s (resp. g and h), possibly subscripted, are K C (-00 .. +00). Let F30 =FU{
assumed to be elements of ffi (resp. F°°_

Let £ = {(, [} (resp. U = {),]}) be the set of left (resp. right) brackets. Let B
totally ordered by the ordering -< [6]:) -< [<] -< (.

The set of floating-point bounds W is defined from B and F as follows:

JC U U be the set of brackets

F = F4 U F> where * = (Fx£U{<-oo,(),(+oo,(>})
,F> = (FxWU{<-oo.)),<+«>,)>})

Real bounds set W is defined likewise. Floating-point bounds are totally ordered by the ordering <: V/3i =
{g,oti),ß2- (h,a2) eW: ßi <i ß2 <=^> (g < h) V (g = h A ay -< a2). A similar ordering may be defined over
R*.

Rounding operations mapping real bounds to float bounds are defined as follows:

Bound downward rounding
W —>W>
ß 1—> max{7 e W | 7 < ß}

Bound upward rounding
[Ttl : I" —> P

/3 1—> min{7 £p | 7 > /?}

Bounds are used to construct intervals as follows: IQ = W x W is the set of closed/open floating-point
intervals (henceforth referred as intervals), with the following notations used as shorthands (((g, [), (h,])) =
[g .. h] = {r G K I g ^ r < h}, etc.). For the sake of simplicity, the empty set 0 is uniquely represented in I0 by
the interval (+00 .. —00).

In the rest of the paper, a Cartesian product of n intervals B = Ix x ■ ■■ x In is called a 60a;. A non-empty
interval I = (ßi,ß2) with ßi e F1 and ß2 € F is said canonical whenever ß2\v < (ßi\v)+, where ß\v is the
numerical part of bound ß, and g+ is the smallest float greater than g. A n-ary box B is canonical whenever
the intervals It,... ,/„ are canonical. Given a variable v, an interval I, and boxes B and D, let Dom^ü) € I0

be the domain of v in box B, and B\V<D the box obtained by replacing v domain in box B by its domain in
box D. The power set of a set S is written V{S).

2.2 Approximating a relation by a box

A constraint is an atomic formula involving variables of V& = {xi, x2,...}. Given a constraint c(xy,..., xn), pc

denotes the underlying real relation. For the sake of readability, relation pCi for some constraint a is written pt

whenever that notation is non-ambiguous. Let c be -ic, that is: pc = Rn \ pc-
A real relation p may be approximated conservatively by the smallest box (w.r.t. set inclusion) 0utero(/>)

containing it.
Discarding values of the variable domains for which a constraint c does not hold is done by contracting

operators, whose main properties are contractance, completeness, and monotonicity.
The outer-approximation operator 0C1C is a contracting operator for c that tightens variable domains using

the Outer0 approximation:

Definition 1 (Outer-approximation operator). Let c be a n-ary constraint, pc its underlying relation,
and B a box. A outer-approximation operator of c is a function OClc: I? —►' I£ defined by: 0C1JB) =
0utero(B n pc)

Proposition 1 (Completeness of 0C1). Given a constraint c, the following relation holds for,every box
B:(BDPc)COClc(B)

The implementation of outer-approximation operators is easily done only for a limited class of constraints
(primitives). The other constraints are solved by decomposing them into conjunctions of primitives. In order to
overcome the loss of domain tightening due to the introduction of new variables by the decomposition process,
Benhamou et al. [3] defined a new kind of operator (outer-box approximation operator OCb) which considers
constraints globally. The following relation between OCb and 0C1 does hold:

Proposition 2 (Completeness of OCb). Given a constraint c, and a box B: (B H pc) C Outer0(B n pc) C
0Cbc(ß).

Operators 0C1 and OCb narrow the domains of variables occurring in one constraint. Solving constraint
systems is done by an algorithm (0C2) which computes the greatest common fixed-point included in the initial
domains of all the contracting operators associated to each constraint (see details in [5]).

3°8 Perspectives of System Informatics'99

3 Inner Approximations

In order to compute only solution sets, the outer-approximation of a relation p c ln is replaced by the inner
approximation of p which is the subset of all the elements r e W for which the statement r e p may be checked
using only floating-point numbers.

Definition 2 (Inner approximation of a relation). Given a n-ary relation p, the inner approximation of
p is defined by:

lnner0(p) = {r G ln | Outer0({r}) C p)

Proposition 3 (Properties of the Inner approximation). The Inner approximation is monotone, idempo-
tent, and distributive w.r.t. the union and intersection of subsets ofW1.

The narrowing of variable domains occurring in a constraint is done in the same way as in the outer-
approximation case: an inner-approximation operator associated to each constraint discards from the initial box
all the inconsistent values. The result is a set of boxes.

Definition 3 (Inner-approximation operator). Let c be a n-ary constraint, and-B a box. A inner-appro-
ximation operator of c is a function IClc: I£ ->■ P(I£) defined by:

IClc(B)Clnner0(Bnpc)

Proposition 4 (Soundness of ICl). Given a constraint c and a box B, a inner-approximation operator IClc
for c is such that IClc(J3) C (B D pc)

Proposition 4 is an immediate consequence of Inner and Outer definitions.
Inner-approximation operators with stronger properties may be defined, provided some assumptions—namely

the ability to compute the "Outer" for constraint expressions—, are fulfilled. These operators are optimal in the
sense defined below.

Definition 4 (Optimal inner-approximation operator). Let c be a n-ary constraint, B a box, and IC1C an
inner-approximation operator for c. IC1C is said optimal if and only if IClc(B) = lnner0(B D pc)

Devising an inner-approximation operator for a constraint is not as easy as devising an outer-approximation
operator since interval techniques only permit to enforce some partial consistencies, that is, values which are
discarded are guaranteed to be non-solutions while no information is known about those which are kept. Al-
gorithm 1 (ICA1C) implements an optimal inner-approximation operator for every n-ary constraint c by using
OClc. Since values discarded by this operator are guaranteed to be non-solution of c—by completeness of OCl—,
they are guaranteed solutions for c.

Algorithm 1. ICA1C - Inner contracting algorithm for a constraint c

i ICAlc(in: B e I?; out: U 6 V(I?))
2 begin
3 D <r- OCl<r(J3)
4 U<-B\D
s if (D / 0 and ->Canonical(Z))) then
e (-Di.-Da) <- PlainSplit(£>)
7 ^<-WUICA1C(DI)UICA1C(JD2)
» endif
9 return (li)

ID end

The PUinSplit function vised in the algorithm splits in two interval, one of the non-canonical domains of D. In a typical implementation each
j non-canonical domain IB chosen in turn in a round-robin fashion at each call of PlainSplit.

Handling constraint systems using inner-approximation operators is done by Algorithm ICA2 (see Algo-
rithm 2): each constraint of the system is considered in turn together with the sets of elements verifying all the
previously considered constraints so far. The main difference between 0C2 and ICA2 lies in that each constraint
needs only be considered once, since after having been considered for the first time, the elements remaining in
the variable domains are all solutions of the constraint. As a consequence, narrowing some domain later does
not require additional work.

Benharnou F. at al. An Algorithm to Compute Inner Approximations of Relations 309

Proposition 5 (Property of ICA2). Let S = {Cl,...,cm} be a set of constraints, and B a box. Then,
\CA2(S, {B}) C lnner0(B n pi D • ■ • n pm).

Inclusion in Proposition 5 may be replaced by an equality provided the operators ICl used are all optimal.

Algorithm 2. ICA2 - Inner contracting algorithm for a A • • • A cm

i \CA2(in: S = {cu...,cm} CC, A eV(I%); out: UeV(lZ))
£ begin
3 if (S ^ 0) then
-j B <- 0
s foreach D € A do

e B<- BU\C1C1(D)
7 endforeach
s return (ICA2(<S\{ci},ß))
t- else

io return (,4)
i J endif
i2 end

4 Introducing Quantifiers

Given a n-ary constraint c(xi,... ,xn) and a box B = 7X x • • • x In, applying the inner-contracting operator
IC1C to B gives a set of boxes U = {B't,..., B'p} where each B< = Dx x • • • x Dn is a sub-box of B such that:
Vri € £>i,... ,Vrn £ Dn: c(r1;..., rn) does hold.

Therefore, solving a constraint of the form Mxk: c(xi,. ..,xn) consists in retaining only boxes B' = (Di x
■ • • x Dn) of U such that Dk = Ik-

Given v the universally quantified variable, Algorithm ICA3C described by Algorithm 3 narrows domains of
all variables occurring in a constraint c but v, and is an optimal inner-approximation operator for the constraint
Vu: c.

An efficient algorithm (ICAb3c) computing an inner-approximation operator for constraint c may be derived
from Algorithm 3 by replacing OClc by the outer-box approximation operator OCbe. Note that optimality is
then lost. In the same way, replacing IClCl by ICAb3Cl in ICA2 leads to Algorithm ICAb4 computing an inner
approximation for the constraint Vw: C\ A • • ■ A cm.

Algorithm 3. ICA3C - Inner contracting algorithm for Vw: c

i ICA3c(in:'J5eI?,veW; out: U e 7>(I?))
2 begin

s r> •«-bcicCB)
5 U*r-B\ D\V,B
e if (D ^ IS and -iCanonical1,(.D)) then
7 (D1)JD2)<HSplit1,(£)|1,,B)
s W<-WUICASC^I.^UICASCCJDZ,^)
a endif

ICI return (U)
li end

I The Splitv function used in the algorithm splits in two intervals one of the non-canonical domains of D. Domain Damn(v) is never considered for
splitting. In the same way, Canonical^ tests canonicity for all domains but the one of variable i>.

310 Perspectives of System Informatics'99

5 An Application to the "Virtual Cameraman Problem"

Jardillier and Languenou [9] devised the prototype of a declarative modeller allowing an artist to specify the
movements of a camera using the vocabulary proper to the field (panoramic shot, travelling,...). The movements
description is translated into a constraint system where the time Hs a universally quantified variable. To solve
a system of the form Vi: a A • • • A cm, they use Algorithm El A4 which computes an inner approximation by
decomposing the initial domain It of t into canonical intervals l\, ... , If, and testing whether c\ A • • • A cm does
hold for the boxes h x ■■■ x 1} x • • • x /„,..., h x ■■■ x If x ■■■ x In. These evaluations give them results in a three-
valued logic, namely [true, false, unknown). Boxes labeled true contain only solutions, boxes labeled false contain
no solution at all, and boxes labeled unknown are split recursively and re-tested until they may be asserted true
or false, or canonicity is reached. Retained boxes are those verifying: Vj € {1,... ,p}: eval{ClA...ACm}(/1 x • • • x
if x • • ■ x In) = true.

We have devised a new modeller, replacing EIA4 by ICAb4. Experimental evidences show that it is up to 40
times faster than the prototype described in [9] on a set of benchmarks. Moreover, ICAb4 splits the explored
space in bigger consistent chunks than EIA4, and avoids losing time splitting extensively non-solution areas.
Figure 1 compares graphically the splitting sequence for the explored space of circle2>2, a collision problem:
given points Br and B2 moving along circles of radius n and r2, find all the possible locations of a point A such
that Bi (resp. B2) is always at a distance greater than rft (resp. d2) from A. Constraints to solve are then of
the form: V0 £ [-v, +ir]: ^(n sin((9) - a;)2 + (r< cos(0) - y)2 $> di. In the figure, the darker the area, the later
its exploration was achieved. White areas stand for non-solution sets.

— SS040ms

EIA4 ICAb4

Fig. 1. Comparison of the solutions generation order for circle^ i

6 Conclusion

Unlike the methods used to deal with universally quantified variables described in [7], the algorithms presented
in this paper are purely numerical ones (except for the negation of constraints). Since they rely on "traditional"
techniques used by most of the interval constraint-based solvers, they may benefit from the active researches led
to speed-up these tools. However, they are for the moment limited to only one universally quantified variable
while the methods of [7] deal with many variables and quantifiers (existential and/or universal). To achieve such
a generalization is a major direction for future researches.

References

[1] Götz Alefeld and Jürgen Herzberger. Introduction to Interval Computations. Academic Press Inc., New York, USA,
1983.

[2] Applied Logic Systems, Inc. CLP(BNR) user guide and reference, 1996. Available at http://www.als com
[3] Pred§nc Benhamou, David McAllester, and Pascal Van Hentenryck. CLP (Intervals) revisited. In Proceedings of

the International Symposium on Logic Programming (ILPS'94), pages 124-138, Ithaca, NY, November 1994 MIT
Press.

 Benhamou F. at al. An Algorithm to Compute Inner Approximations of Relations 311

[4] Frederic Benhamou and Tourai'vane. Prolog IV: langage et algorithmes. In JFPL '95: IVemes Journees Francophones
de Program/nation en Logique, pages 51-65, Dijon, Prance, 1995. Teknea.

[5] Frederic Benhamou. Interval constraint logic programming. In Andreas Podelski, editor, Constraint programming:
basics and trends: 1994 Ch&tillon Spring School, Chätillon-sur-Seine, France, May 16-20, 1994, volume 910 of
Lecture notes in computer science, pages 1-21. Springer-Verlag, 1995.

[6] John G. Cleary. Logical arithmetic. Future Generation Computing Systems, 2(2):125-149, 1987.
[7] Hoon Hong. Collision problems by an improved CAD-based quantifier elimination algorithm. Technical Report

91-05, RISC-Linz, Johannes Kepler University, Linz, Austria, 1991.
[8] IEEE. IEEE standard for binary floating-point arithmetic. Technical Report IEEE Std 754-1985, Institute of

Electrical and Electronics Engineers, 1985. Reaffirmed 1990.
[9] Franck Jardillier and Eric Languenou. Screen-space constraints for camera movements: the virtual cameraman. In

N. Ferreira and M. Göbel, editors, Eurographics'98 proceedings, volume 17, pages 175-186. Blackwell Publishers,
1998. ,

[10] Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 1(8):99-118, 1977.
[11] Keith Meintjes and Alexander P. Morgan. Chemical equilibrium systems as numerical test problems. ACM Trans-

actions on Mathematical Software, 16(2):143-151, June 1990.
[12] Ramon Edgar Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1966.
[13] Bernard Mourrain. The 40 generic positions of a parallel robot. In M. Bronstein, editor, Proceedings of ISSAC93,

pages 173-182, Kiev (Ukraine), July 1993. ACM Press.
[14] Jean-Francois Puget arid Pascal Van Hentenryck. A constraint satisfaction approach to a circuit design problem.

Research Report CS-96-34, Brown University, December 1996.
[15] Jamila Sam. Constraint Consistency Techniques for Continuous Domains. PhD thesis, Ecole polytechnique föderale

de Lausanne, 1995.
[16] Pascal Van Hentenryck, Laurent Michel, and Yves Deville. Numerica: A Modeling Language for Global Optimization.

The MIT Press, 1997.

2

Constraint Programming Techniques
for Solving Problems on Graphs

Vladimir Sidorov1, Vitaly Telerman1, and Dmitry Ushakov2

1 A. P. Ershov Institute of Informatics Systems,
6, Acad. Lavrentjev pr., Novosibirsk, 630090, Russia,

Russian Research Institute of Artificial Intelligence,
6, Acad. Lavrentjev pr., Novosibirsk, 630090, Russia,

emai/:{sidorov,telerman,ushakov}@iis.nsk.su ']

Abstract. In this paper we examine a technology for solving problems on graphs in the constraint pro-
gramming framework called Subdefinite Models. We describe in brief the mechanism of constraint propaga-
tion underlying it. We present in details facilities for specification of graph problems as subdefinite models.
We discuss a class of graph problems with emphasizing on ones having not been discussed before.

1 Introduction

Constraint programming, a popular paradigm in computer science, allows one to solve a large class of problems
from different fields stated as Constraint Satisfaction Problems [1]. Subdefinite models apparatus, proposed
by Narin'yani [2] and developed in our works [3,4], is a powerful constraint programming framework. The
extension of this framework for solving problems on graphs is discussed in the paper. In section 2 the mechanism
of constraint propagation in subdefinite models enriched with facilities for representation and processing of
compound objects like, graphs is described. In the third section the specification of some graph problems in this
framework is presented.

2 Constraint Propagation Based on Subdefinite Models

2.1 Constraint Satisfaction Problem

Definition 1. A Constraint Satisfaction Problem (CSP) is a pair (V,C), where

- V is a (finite) set of variables/ each variable v £V has its domain Dv,

- C = |Jm=i Cm is a (finite) set of constraints, each constraint c € Cm has m arguments Argc : {1,..., m} ->
V and an m-ary relation over the arguments domains: Rc C DArgc{1) x ... x DArgc(m):

A solution of CSP (V, C) is an assignment of a value av e Dv to each variable v e V such that for all c £ C
(let c G Cm) {aArgc(1),..., aArgc{m)) € Rc.

Clearly, we do not have a universal algorithm for finding of all solutions of a given CSP. (In the case of
finite domains we deal with an NP-hard problem and there are universal algorithms, like "generate-and-test"
or "backtracking", for solving CSPs over such domains.) However, there are universal algorithms for finding of
an "approximation" of the set of all solutions of a CSP. The algorithms are known as "constraint propagation"
algorithms. To describe our variant of one of such algorithms, firstly, we should define some additional notions.

2.2 Subdefinite Extensions

Definition 2. Given a domain D, its subdefinite extension fSD-extensionJ is a domain (denoted by *D) with
the following properties:

- *D is a finite set of subsets of D,
- 0 and D are elements of*D,
- if 6! and d" belongs to *D, then d' n d" e *D.

Sidorov V., Telerman V., Ushakov D. Constraint Programming Techniques for Solving Problems on Graphs 313

Elements of an SD-extension will be denoted by bold letters. Any subset D' of D can be approximated in the
SD-extension *D as follows:

aPP*D(D')= P| d.
D'Cd£*D

Example 1. Let flbea finite domain. Then we consider *D — 2D, the set of all subsets of D, as an SD-extension
of the domain D.

The notion of the SD-extension allows one to apply a single constraint propagation algorithm not just to
finite domains, but also to infinite or continuous ones.

Example 2. Let TZ be the set of all real numbers. Consider its finite subset RQ. An Ra-bounded intervalx = [x,x]
(where x,x £ RQ U {-OO, +OO}) is defined as a set {x £ TZ | x < x < x}. The set of all i^-bounded intervals
will be denoted by XTZ(Ro). It is easy to see that XTZ(RQ) is an SD-extension of TZ.

Example 3. Let Z be the set of all integer numbers. Then one can build an SD-extension of Z either as in
example 1 (for a finite subset of Z), or as in example 2.

Example 4- Let Di,..., Dn be a set of domains, and let *Di,..., *Dn be their SD-extensions. Consider a com-
pound domain D = D\ x ... x Dn. One can build an SD-extension *D of the domain D, as follows:

*£> = *£>! x ... x *Dn.

It satisfies all the conditions from definition 2. Since elements of an SD-extension are sets, any element d € *D
will be considered hereinafter both as a tuple, d = (di,..., dn), and a set, d = di x ... x d„. We hope that
this notation will not confuse the reader.

Other examples of SD-extensions of different domains can be found in [4].

2.3 Filtering

Definition 3. Let D\,..., Dn be domains, *Di,..., *Dn be their SD-extensions, and R be a relation over them
(i. e. R C Di x ... x Dn). The filtering function,

TR : *£>i x ... x *Dn -> *£>! x ... x *Dn,

of the relation R in SD-extensions of domains is defined as follows:

jffi(di,...,dn) = app*DlX„.x.Dn(Rndi x ... xd„).

The meaning of the filtering function of the relation R is the following. Let dj be the set of admissible values
of variable a;,- (for i = 1,..., n) and values oixi,...,xn are connected by the relation R. The filtering function
JFR "filters" the set of admissible values for each variable, excluding values, which are known to be incompatible
in the sense of relation R with values of other variables.

Example 5. Let D\,...,Dn be finite domains, *Di = 2Di (i — l,...,n) be their SD-extensions, and R C
D\ x ... x Dn be a relation over domains. Then

^R(d1,...,dn) = (jri(findi x...xdn),...,7r„(Änd1x'...xd„)), ■ ■ ■

where ~Ki{X) is the i-th projection of relation X.

Example 6. Let 1Z be the set of all real numbers, and TR,(RQ) be the set of all J?o-bounded intervals (see
example 2) for some finite Ro C TZ. Consider the relation add C TZ3, where (x,y,z) £ add iff x + y = z. The
filtering function of add, F&fä, is defined according to definition 3 as follows:

•^add^y'55) = ([maxfe (z - y)~},min{x, (z - y)+}],

[max{y, (z - x)_},min{y, (z - x)+}],

[maxjz, (x + y)"}, min{z, (x + y)+}]).

Here

x+ = min{y e RQU {-OO, +OO} | x < y},

x~ = max {y e R0 U {-co, +00} | x > y}.

■ 314 . - Perspectives of System Informatics'99

where

It is easy to see that there are effective algorithms for filtering functions of other relations over real numbers
(like x * y = z , or "sin(x) = y", etc.) in interval SD-extension IK(Ro) of 11.

Example 7. Consider an arbitrary domain D, and its vector-domain A,

A = Dx...xD = Dn
s
 V '

n

for some positive integer n, and the domain of all integer numbers Z. Let *D be an SD-extension of the domain
D, A be the following SD-extension of the compound domain A (the same as in example 4):

*A = *Dx. x*D = (*D)n,

n ...

and *Z be an SD-extension of Z. Consider the following relation

index C Ax Z x D,

where (a,i, e) € index iff the t-th element of vector a is e, le.a = (eu..., en), and a - e. The filtering function
-'"index ot the relation index, is defined according to definition 3 as follows. For a =' (ai,.. aj G *A i G *Z
andeG*£>, , V ' ' n> ' fc '

•?7index(a'i'e) = (a')i',e'),

{(a1,...,ai_1,aine,ai+i,...,an), if in {1,.. .,n\ - U),
0, ifin{l,...,n} = 0, ,
a, otherwise

i' = i D app^({z | aj n e ^ 0}),

e^enapp.^djaj).
iei

One can easily extend the previous example to an indexation of a matrix. We omit the corresponding example
due to the limitation of the paper's size. However, we will use a relation

index2 C Dkxl xZxZxD,

and its filtering function

^index2 : (*£>)kXl **Zx*Zx*D-+ (*D)k*1 x*Zx*Zx*D

for an indexation of a matrix with the size k x I for positive integers k,l.

2.4 Subdefinite Models

Definition 4. Let (V, C) be a CSP. A subdefinite model of CSP (V, C) (where V = {vu.. .,vn}) is defined as
follows:

- for the domain Dv of each variable v G V, its SD-extension *DV is built; denote the compound domain
DVl x ... x DVn by Dv and its SD-extension *DVl x ...x *DVn by *DV ;

- for each constraint c G C (let c G Cm), a filtering function

FR. ■ *DArgc{l) x ... x *DArgc{m) -> *DArgc{1) X ... x *DArgc(m)

of its relation Rc is built.

To simplify the notation, instead of TRc we will consider the function

Tt : *DV -> *DV

defined as follows. Let Argc(j) = Vij for j = l,...m, and TR (dh,..., d;) =
= (eia,...,eim). Then T+(dx,...,dn) = (f\,..., fn), where

[Oj-.i^i^ii, otherwise.

Sidorov V., Telerman V., Ushakov D. Constraint Programming Techniques for Solving Problems on Graphs 315

The algorithm of constraint propagation in a subdefinite model of CSP (V, C) (where V — {v\,... ,vn}) is
defined as follows.

Definition 5 ((Constraint Propagation Algorithm)).
At the t-th step, we will denote

d^ G *Dy - the vector of subdefinite values of variables V,
Q(t) CC - the set of active constraints.

Step 0. Let d<0> = (DVl,.. .,DVn),
Q<-°y=c.

Step t + 1. IfQ® = 0, then STOP. Otherwise, choose c G Q® and let

d(t+i) = ^(dW))

Q(*+D = gW \ {c} u {d G C | (3t) ^(0 = «; and df ^df+1)}.

The properties of the constraint propagation algorithm are summarized in the following proposition (see [3]
for proof).

Proposition 1. In terms of the previous definition, the following assertions are valid:

1. Constraint propagation algorithm in subdefinite models always terminates. The number of its steps is less
than \C\ Sugy £(*Du), where L(*DV) is the length of the maximal decreasing (with respect to "C") chain of
different elements of *DV.

2. If a- (aVl ,...,aVn) is a solution of CSP (V, C), then a G d*, where d* is the vector of subdefinite values
of variables V at the last step of the algorithm.

3 Graph Problems as CSPs

For considering various kinds of problems on graphs we will discuss the representation of a graph structure in
a CSP. Below we briefly redefine the common notions of graph theory.

Definition 6. A directed weighted graph is a pair (V,E), where V is a finite set of vertices of the graph, and
EC.VxVx 72+ (where TZ+ is the set of all positive real numbers) is a set of edges of the graph. An element
(i,j,w) E E denotes an edge from vertex i to vertex j with weight w > 0. We suppose that there exists at
most one edge between two vertices, i. e. if (i,j,w) G E, (i',j',w') G E, i = j,1, and j - j', then w = w'. For
simplicity, we will suppose that V is a subset of natural numbers: V — {1,2,..., m}.

An undirected weighted graph will be considered here as a kind of directed weighted graph G = (V, E), where
the relation E is irreflexive and symmetric for the first and the second arguments, i. e. if (i,j,w) G E, then
(j,i,w) G E, and the edge (i,i,w) does not belong to E for any i and w.

The adjacency matrix of the graph G is a real non-negative matrix
M G Hmxm. An element mij of the matrix M is the weight of the edge from vertex i to vertex j. If m^ = 0
then there is no edge from vertex i to vertex j in the graph G. Clearly, the adjacency matrix of an undirected
graph is a symmetric matrix with zeros on the main diagonal.

3.1 Subdefinite Graph

Since we deal with subdefinite values in a CSP, consider the advantages of applying the subdefiniteness to the
graph representation.

Let a graph G = (V,E) be represented in a CSP by its adjacency matrix M. For this reason, we define an
SD-extension of the domain Tlmxm as (m(R0))

mxm (see example 2) for some finite real subset R0. In this case,
we can use subdefinite values (i?0-bounded intervals) for the representation of weights of edges. This means that
we deal with a graph, which has subdefinite edges. If the subdefinite weight of an edge contains 0, then this
edge can be absent in the graph. Otherwise, the edge exists in the graph, but its weight is subdefinite, i. e. only
partially known.

One can use only defined (precise) values in an adjacency matrix, of course, and therefore one can deal with
fully defined graph. However, the possibility of the representation of subdefinite graphs allows one to specify
and solve a much more broad class of graph problems. Below we consider various problems on graphs and their
representations as CSPs. Also we emphasize problems, which have not been discussed previously in the graph
theory.

— Perspectives of System Mormatics'99
3.2 A Path in a Graph

Definition 7. Given a directed weighted graph G = (V,E) and two of its vertices i,j eV,a path between i
and 3 p{i,3) is a sequence of vertices iui2,... ,ih where h = i, i, - j, and for all k = 1,. ..,1-1 there exists
an edge in the graph G between vertices ik and ik+1, i. e. there exists w>0 such that (t*,i'„+1,t_) G E The
weight of the path p{i,j) = tui2,..., it is the sum of weights of its edges.

Consider the specification of a CSP for searching a path in a graph. Let a graph G = (V,E) be represented
by its adjacency matrix M G Tlmxm. We can represent a path from vertex * to vertex j as a vector of vertices
P€Vm. The size of the vector is equal to m (the number of vertices of the graph), but only first I elements are
meaningful. The specification of the problem for searching a path in a graph is performed with the use of index
and index2 relations discussed in the previous section of the paper. The first element of vector P is equal to i:

index(P, l,j).

Each next element of P should be connected with the previous one by an edge. This condition is represented
by the following set of constraints. Let L

index(P, k,u)

for some k (1 < k < m), then

(index(P,A; + l,w),
index2(M, u,v,w),
w>0.

The constraints above are used to specify a CSP for searching a path in a graph. One can easily add to this CSP
other constraints expressing the weight of a path and find the path with minimal weight (see [5] to learn about
the constraint propagation algorithm for searching an optimal solution of a CSP). Here we want to emphasize
that one can solve problem of searching an optimal path in a graph with subdefinite (partially known) edges
or edges with subdefinite weights. For example, we have specified and solved the Travelling Salesman Problem
with subdefinite data using the tools described above.

3.3 A Spanning Tree of a Graph

Definition 8. Given an undirected weighted graph G = (V,E), its spanning tree is a graph S(G) = {V,E'),
where E' C E, and S{G) is a tree (a connected acyclic graph).

There is an equivalent definition of a tree in graph theory. In our terms it sounds as follows: an undirected
weighted graph G = (V, E) is a tree iff it is connected (i. e. there exists a path between each pair of its different
vertices), and \E\ - 2(|V| - 1).

We need two groups of constraints to specify a spanning tree. The first one is the condition E' C E. Let
graphs G = (V, E) and S(G) = (V, E') be represented by their adjacency matrices M and M' respectively. Then
the condition may be specified as follows:

m'ij = 0 or m'ij = m,ij

for all i,j = l,...,m.

The second group of constraints is a condition that S(G) has to be a tree. Since a tree is a connected
graph, we specify the existence of a path between each pair of different vertices in S(G). The corresponding
group of constraints was discussed in the previous subsection. The only we need to specify else is the condition
\E | - 2(m - 1). Clearly, \E'\ is equal to the number of positive elements of the matrix M'.

One of the popular graph problems is a building of a spanning tree of a given undirected weighted graph with
minimal sum of weights of its edges. We can easily specify and solve such problem as a CSP using constraints
defined above. Moreover, we can solve this problem with additional constraints on degrees of vertices-of the
spanning tree. In our terms, the degree of vertex i in the graph G represented by its adjacency matrix M is
equal to the number of positive elements in t-th row (or, equivalent^, in *-th column) of the matrix M Since
we can deal with subdefinite values, these degrees can be given as integer intervals. As far as we know such
kind of graph problems has not been discussed before in the graph theory. A detailed examples presentation
and obtained performances characteristics will be presented in the full version of the paper

SidoTOV V., Telerman V., Ushakov D. Constraint Programming Techniques for Solving Problems on Graphs 317

4 Conclusion

We have solved all the problems on graphs discussed in this paper using constraint programming environment
NeMo+ [6] developed in our institutes. The obtained results allow us to hope on successful application of
proposed techniques for solving a large class of graph problems.

Our future work will aim to extend the class of graph problems and to propose new constraint programming
techniques for its solving.

The authors are indebted to Sergei Sannikov, a student of Novosibirsk State University, who have taken part
of the coding of some of these problems in NeMo+, and to the referees for helpful comments on the paper.

References

1. Mayoh, B.: Constraint Programming and Artificial Intelligence: In: Mayoh, B., Tyugu, E., Penjaam, J. (eds.): Con-
straint Programming: Proceedings 1993 NATO ASI Parnu, Estonia. Springer-Verlag, Berlin Heidelberg New York
(1993) 18-53

2. Narin'yani, A. S.: Subdefiniteness and Basic Means of Knowledge Representation. Computers and Artificial Intelli-
gence, Bratislawa 2, No.5 (1983) 443-452 ;

3. Ushakov, D.: Some Formal Aspects of Subdefinite Models. Preprint Institute of Informatics Systems, Novosibirsk 49
(1998)

4. Telerman, V., Ushakov, D.: Data Types in Subdefinite Models. In: Calmet, ,J., Campbell, J. A., Pfalzgraf, J. (eds.):
Artificial Intelligence and Symbolic Mathematical Computation: Proceedings. Lecture Notes in Computer Science,
Vol. 1138. Springer-Verlag, Berlin Heidelberg New York (1996) 305-319

5. Telerman, V., Ushakov, D.: Constraint Satisfaction Techniques for Mathematical Programming Problems. In: Pro-
ceedings of International Conference on Interval Methods and their Application in Global Optimization, INTER-
VAL'98. Nanjing, China (1998)

6. Telerman. V., Sidorov, V., Ushakov, D.: Problem Solving in the Object-Oriented Technological Environment NeMo+.
In: Bj0rner, D., Broy, M., Pottosin, I. V. (eds.): Perspectives of System Informatics: Proceedings. Lecture Notes in
Computer Science, Vol. 1181. Springer-Verlag, Berlin Heidelberg New York (1996) 91-100

Extensional Set Library for ECL*PSe

Tatyana Yakhno, Evgueni Petrov

Institute of Informatics Systems, SB RAS
Dokuz Eylul University, Izmir, Turkey

email: {yakhno,pes}@iis.nsk.su

Abstract. Extensional Set (XS) library is an extension of ECLTS" which solves set-theoretic constraints
over extensional sets containing variables with numeric domains. To efficiently process such a class of sets
domains, XS library employs a constraint programming method called Subdefinite Computations. Within
that framework, a domain representation and an approximate unification algorithm are proposed. The
abilities of the library are illustrated by a geometric application.

1 Introduction

Because people usually express their knowledge in an implicit way employing partial information, the computer
needs a special knowledge representation in order to "understand" such partial specifications. Few years ago in
the field of Constraint Programming (CP), it has been proposed to simply add a control mechanism to these
specifications provided they are sufficiently formal.

During recent twenty years Constraint (Logic) Programming has developed a number of methods and tools
processing numeric data ranging from arc-consistency for finite domains [9] to box-consistency for interval
domains [12]. However, constraint programming systems which process sets are not very numerous [13,8,4,5,
14]. A related research area is program analysis which employs sets to automatically infer various properties'of
programs [6,2,1]. Finally, in the imperative environment, sets are most significantly supported in the language
SETL [11].

With respect to CP classification, Subdefinite (SD) compuatation are a consistency technique [10]. Given a
set of constraints, it produces a compact description of a set which contains all the solutions to the constraints.
In Section 3 SD computations are described in more details.

ECL'PSe is a CLP system. It allows users to program constraint satisfaction techniques directly at the
language level. The paper discusses these facilities (Section 2) and a technique of implementation of SD com-
putations in ECL'PS« (Section 3). Section 4 describes the Extensional Set library which solves constraints
over finite extensional sets employing the proposed implementation technique. Section 7 describes a geometric
application of XS library.

2 ECL*PSe

ECL*PSe is an abbreviation for ECRC Common Logic Programming System. It is a Prolog-based system whose
aim is to serve as a platform for creating various extensions of logic programming. ECL'PS6 offers two data
types, meta-term and delayed goal, which significantly simplify this process. Using meta-attributes and delayed
goals, an application can organize additional information and control flows in its own way, independently of
Prolog standards.

A meta-term consists of two or more terms, the first term visible to "everyone", called Prolog value of
the meta-term, and the others, called meta-attributes, visible only to few tools which convert meta-terms to
standard Prolog data and vice versa. A meta-term is written like T{namel:Tl,...} where T is its Prolog value, Tl
is its meta-attribute namel, etc.

Formally, a delayed goal is a Prolog goal whose execution has been delayed. A delayed goal represents
an action that should be done in the future. There are three major operations with delayed goals: creation,
scheduling for execution, and execution of all scheduled goals. A delayed goal is written like 'GOAL' (G) where G
is the goal that has been delayed and 'GOAL' is a label indicating that fact.
0 This project is supported by grant 98-06 from Institut Franco-Russe A. M. Liapunov d'informatique et de

mathematiques appliquees.

Yakhno T., Petrov E. Extensjonal Set Library for ECL'PSe 319

3 SD Computations

SD computations has been introduced by A. S. Narinyani in early 1980's and are intensively studied by our
colleagues from A. P. Ershov Institute of Informatics Systems and Russian Research Institute of Artificial
Intelligence.

Let us take some signature without function symbols, with predicate symbols {Q,...}, variables {x, y,...},
constants {a,...}, and some interpretation of this signature. A symbol and its interpretation identically are
typed identically.

A constraint is an atomic formula. A constraint satisfaction problem (CSP) is a finite set of constraints. A
solution to a CSP C is such a valuation of the variables under which each constraint in C holds. The value a of
a variable x is extensible to a solution of CSP C, if there is a solution to C which maps x to a.

Given a CSP C, SD computations produce for each variable x a set of values which contains all the values
of a; extensible to a solution of C. Observing the traditions of CP, such a set of values is called a domain of x.
A variable and its domain are denoted by the same small latin letter.

SD computations pay much attention to domain representation because it is, in fact, a question of effec-
tiveness. Simpler domains are less informative, but on the other hand they- are processed faster. A domain
representation is a function (■)* which widens an arbitrary domain up to the closest representable one. -

A constraint Q(x y ...) defines the following transformations of x, y, ... *

x <-Pri(<3r\x xy x ...)*, (1)

y<-Px2(Qnxxyx. ..)*,.... (2)

which are called calculation functions (Prj is projection on i-th coordinate, x is Cartesian product). The
calculation function (1) reads x,y, ... and writes x, the calculation function (2) reads x,y, ... and writes y, etc.

Each CSP defines a network of calculation functions which is similar to networks of constraints proposed by
other authors [9]. The network contains nodes of two types, variables and calculation functions, and naturally
splits into star-like segments. The center of each star is a calculation function, and its rays reach the variables
it reads and writes.

If the domain of a variable x changes, then the calculation functions that read x propagate this change to
the neighbours of x. Using the data-driven control mechanism, subdefinite computations propagate this wave
of domain updates through the network of calculation functions until the wave expires.

Implementation in ECL*PSe In what follows we briefly describe how data types from Section 2 are applied
to implementation of SD computations. Let C 9 Q(xy...) denote the CSP to which SD computations are
applied. Each variable x occurring in C is turned into a meta-term xfsdivarda,, Fs)} whose meta-attribute sd
stores the domain of x (the term T^) and a list of calculation functions reading x (the list Fs).

Each predicate symbol Q of arity n is associated with an (n + l)-ary Prolog predicate compute-q whose
intended meaning is . ■ '

q(l,Tx,Ts,...) <=$■ x = Pri(<5nx xy x ...)*,
q(2,T«,Ty,...) <=* y~Pr2(Q n x xyx ...)*, ...

where the terms TX,1V, etc. denote the domains of x, y, etc.
Calculation functions of the form (1), (2), etc. are turned into delayed goals 'GOAL'Ccomput-qd.z.j/,...)),

'GOAL' (comput_q(2,a;,y,...)), etc. Figure 1 shows an encoding for a calculation function.

4 Brief introduction to XS library

Extensional Set (XS) library is an extension of ECL*PSe which solves set-theoretic constraints over extensional
sets containing variables with numeric domains. The particular constraint solver for numeric data (at present,
Interval Domain library [15]) is a parameter to XS library. The only requirement of such a solver is that it offer
access to lower and upper bounds of numeric domains and creation of numeric domain variables.

Generally speaking, XS library computes sets of ground tuples. A tuple is a term constructed of numbers
and numeric domain variables with the help of functors (x/n) (n > 1). Each set variable is associated with a set

1 In the Cartesian products, a constant a is replaced with {a}*. If a is not finitely representable, then {a}* is larger
than {a}.

32Q . Perspectives of System Informatics'99

q(l. X, Y, ...):-

make_suspension(q(l, X, Y, ...), 3, F),

extract(Y, Y_dom, Y_goals),

assign(Y, Y_dom, [F|Y_goals])

), 3, F), X [1]
'/. [2]
'/. [3]

'/. [2*n]
, Changed), */, [2*n+l]

'/. [2*n+2]
'/. [2*n+3]
7. [2*n+4]
'/. [2*n+5]

extract(X, X_dom, X_goals),
compute_q(l, X_dom, -Y_dom,
(var(Changed) -> true ;

assign(X, X_dom, []),

schedule_voken(X_goals),
wake

).

Fig. 1. A simplified code of a calculation function

domain. A set domain consists of two ground sets of tuples I C u. If this domain is associated with a variable
x, then I C x C u.

Each constraint over sets is enclosed in curly braces and states either equality or inclusion (for two sets), or
membership (for a tuple and a set). A set inside such a constraint is specified either by a set domain variable,
or by a list of (not necessarily ground) tuples, or by an expression built of such variables and lists. Besides that!
cardinality of a set can occur in constraints over numeric data.

Equality Keeping two sets equal, XS library modifies set domains (if at least one of the sets is specified by a
set domain) and numeric domains (if at least one of the sets is specified by a list of non-ground tuples containing
numeric domain variables).

Equality of a set domain variable and a list of tuples is maintained by two delayed goals which transfer
information between the set domain and numeric domains inside the tuples (if any). Enforcing equality of two
set domain variables, XS library intersects their domains and unifies the variables themself; no delayed goals
are generated.

The following example shows the effect of stating equality of two sets:

[eclipse 17] :

{ k(0,l),x(l,2),x(2>4)] = [x(0,X0),x(M,XN),x(2)X2)] }.
N = 1
XO = 1
XN = 2
X2 = 4
yes.

Enforcing equality constraint between two sets fails, if XS library is able to determine that the sets are
different. For example, the following query fails:

[eclipse 18]: A setdom [] .. [x(0,l) ,x(l,2)] , { A = [x(N,N) ,x(M,M)] }.
no (more) solution.

Inclusion Likewise keeping equality between two sets, keeping set A included into set B updates set and numeric
domains involved into specification of A, B. For example:

[eclipse 21]: A setdom [] .. [x(0,D ,x(l,2) ,x(2,4)] ,
{ [x(0,l),x(l,XD] subseteq A }.

A = A-C[x(0,l),x(l,2)]..[x(0,l),x(l,2),x(2,4)]}
XI = 2
yes.

Set expressions A set can be specified by a set expression, e.g.

[eclipse 22]: { A\/[0,N] = [0,1,2] }, { A A [0,1] = [] }.
N = 1
A = A{[2]}
yes.

 Yakhno T., Petrov E. Extensional Set Library for ECL/PS6 321

Membership The fact of presence (absence) of a particular element in a set is stated by membership constraint.
The constraint { X in A } ({ not X in A }) tells XS library "not to let the tuple X out of (into) the set A".

Relating a tuple and a set of tuples by membership constraint, one is able to model application of a function
to an argument as follows:

app(F, I, FI):- { x(I, FI) in F }.

The typical usage of (app/3) is illustrated by the following problem taken from [7]): given integer rri < n,
find such a function / that /(») = i - 1, if i e [m + 1, n], and f(i) = f(f(i + 2)), if * e [0, m}. The specification
is as follows:

findall(x(I, FI), (between«), N, I), FI ** 0 .. N), Up),
{ F = Up },
foralKl: 0..M, app(F, I) *== app(F, app(F, 1+2)))),
forall(I:M+l..N, app(F, I) *== 1-1).

For example, if M = 6andN = 9, then the solution is F = F{[x(0, 6), x(i, 6), x(2, 6), x(3, 6), x(4, 6),
x(5, 6), x(6, 6), x(7, 6), x(8, 7), x(9, 8)]}. In the general case, XS library spends approximately 0(m2 +
n) operations on each instance of this problem.

5 Representation of Set Domains

Sets are so-called content addressable structures. In an imperative environment, data of that kind usually is
represented by hash tables which make access to data having specified content possible in nearly constant time.
However, in logic programming, this approach is likely to be hard to stick to.

XS library transforms lower and upper bounds of set domains to balanced binary trees of ground tuples.
Tuples in such a tree are arranged with respect to ■< defined recursively as follows:

1. t -< u, if t, u are numbers, and t < u,
2. t -< u, if t is a number, u is a tuple,
3. t -< u, if t, u are tuples, and t is shorter than u,
4. t -< u, if t =x(... ti...), u =x(.. .m ...) are of the same length, and U = Ui for i € [1, k — 1], £& -< Uk-

The order -< agrees well with unification in the following sense. Let t be a non-ground tuple. Let I (respectively
u) be the ground tuple obtained from t by replacing each variable v in t with the lower (respectively upper)
bound of the domain of v. It is easy to see that, if a -< I or u -< a for some tuple a, then unification of a and t
will fail.

Such a representation of set domains is advantageous twofold. First, because lower and upper bounds of
domains are sorted, all operations on set domains take linear amount of time (with respect to the sum of sizes
of involved upper bounds). Second, because -; and unification agree, retrieving from a set all the instances of
a non-ground tuple usually requires to scan only small part of the set. For example, if X is a constant, Y is a
variable and S is the rectangle [0,N] X [0,7], then XS library enforces the constraint { x(X, Y) in S} in 0.03,
0.05, and 0.07 seconds for N=400, 800, and 1600.

6 Approximate Set Unification

The Set Unification problem can be stated as follows: given two sets of terms (of some signature), find a
substitution which makes the sets identical. The Set Unification problem has been proved NP-complete. Besides
that, even if two sets are unifiable, their most general unifier sometimes is not enough "informative", e.g, the most
general unifier of {0,1} and {x, y} is the identity substitution {x/x, y/y} which bypasses the fact of unification.
In order to be efficient, (constraint) logic programming systems usually restrict the class of processed sets [13,
8,5].

XS library reduces unification of sets, each specified by a list of tuples, to unification of set domain variables
which are related to these lists by special predicates (st/2) and (ts/2). The predicates approximate calculation
functions of the following relation a between finite sets and lists:

a- {(s> 01 s - {h,---,tn},l - [h,...,tn],ti are ground tuples(i £ [l,n])}.

Though computing precisely the calculation functions of a seems to be intractable, some larger domains
can be computed efficiently. Suppose, the lower and upper bounds of the set domain are I, u, and for each

-^ Perspectives of System Informatics'99

i e [1, n] the tuple t{ is ground iff i < k. In the notation each non-ground tuple is treated as the set of its ground
instances. °

Current version of XS library recomputes the lower and upper bounds I, u of the set domain as follows (the
predicate (ts/2)): v

-1<-IU fa,...,«*},

-«<-«n({tlf...,tk}uu;U+1tO,
- if \l\ = n, then n(-L

That procedure may compute a larger set domain than the corresponding calculation function would do. For
example, if n = 4, tx = 1, t2 = 99, t3 = 99, U is a variable with the domain [0,9],i = {9},« = [0 9]u{99} then
after a call to (ts/2), I will be {1,9,99} and u will be unchanged. It is easy to check, that the true calculation
function will set I and u to {1,9,99}.

The non-ground tuples tt (i e [k + l,nj) are iteratively recomputed according to the following rules (the
predicate (st/2)): v

- if a £ I, a £ tia for a unique ia 6 [k + 1, n], then tia <- a,
- U <r- ti n U,
- if \l\ = n, i € [1, n], i ^ j, ti is ground, then tj <- tj \ {ti}.

The computations stop when the tuples stop changing. And again, the above procedure may compute a larger
numeric domain for some variable than the corresponding calculation function would do.

7 Full Minimum Steiner Trees

We turn to Minimum Steiner Tree (MST) problem because it consists of non-trivial numeric and combinatorial
parts. The problem is stated as follows. Given a set R of required vertices, find the shortest tree among trees
spanning RuS,S being any set of (Steiner) vertices. The sets R, S are subsets of Euclidean plane, R is finite
Finding the MST is an NP-complete problem [3].

We focus on finding the MST among trees spanning R U S, S having cardinality |Ä| - 2, and call it a full
MST. Let R and S be sets of required and Steiner vertices. The leaves and inner vertices of the full MST form
respectively R and S. Each inner vertex is incident to 3 edges which meet at the angle of TT/3. Thus a full MST
is a binary tree with an extra vertex attached to its root.

Let R =--{Pu--k-jPk}, S = {pfc+i.-.-.P2*-2}, Pi = (Xi,yt). The topology of the full MST is specified by
finite sets {{i, h)}i=k+1 and {(i, ri)}i=ft+1 of arcs mapping each inner vertex to its left and right childs. Because
trees are acyclic, the sets {h}2^ and {rj^ of left and right childs are disjoint, each containing exactly
k - 2 elements. Note that points in S can be numbered so that, for all i, lt <i,n< i.

The topology of the full MST meets the following mixture of constraints over set-theoretic and numeric data.

findall(x(I, _), between(K+l, 2*K-2, I), L),
findalKxCl, _), between(K+l, 2*K-2, I), R),
term_variables(L, Lchilds),
term_variables(R, Rchilds),

forall(I:K+1..2*K-2, app(L, I) *=< 1-1),
forall(I:K+1..2*K-2, app(R, I) *=< I-i),
i Lchilds A Rchilds = ■[]>,
Lchilds *== K-2, # Rchilds *== K-2,

Functions L, R map a vertex to its childs. Lists Lchilds, Rchilds specify the sets of respective childs
For each arc (i,j), let (aj,Pj) be the polar coordinates of Pj w.r.t Pi. Then, for each inner vertex, there hold

the following constraints. •

forall(I:K+1..2*K-2, (

app(X, app(L,D) *== app(X,I)+app(Rh,app(L1I))*cos(app(Al(app(L,I))),
app(Y, app(L,I)) *== appCY.D+appCRh.appCL.DJ+sinCappCAl.appa.l))),
app(X, app(R,I)) *== app(X,I)+app(Rh,app(R,I))*cos(app(Al,app(RJI))),
app(Y, app(R.I)) *== app(Y,I)+app(Rh,app(R)I))*sin(app(Al,app(R,I))),
app(Al,app(L,I)) *== app(Al,I)+pi/3,
app(Al,app(R,I)) *== app(Al,I)-pi/3

))

 Yakhno T., Petrov E. Extensional Set Library for ECI/PSe 323

Functions X, Y map a vertex to its coordinates; functions Al, Rh map a vertex to its polar coordinates w.r.t.
its ancestor. Choose p2fc-2 and pi to be the root and the extra vertex attached to it. That gives the last two
constraints. .

app(X, 2*K-2) *== app(X,l)+app(Rh,2*K-2)*cos(app(Al,2*K-2)),
app(Y, 2*K-2) *== app(Y,l)+app(Rh,2*K-2)*sin(app(Al,2*K-2))

The constraints describing the topology and coordinates of Steiner vertices define a space of feasible trees
which can be explored by some search algorithm in order to find the full MST. Figure 2 shows an example of
the full MST computed by XS library for \R\ = 16.

XVXYX

Fig. 2. A Full Minimum Steiner Tree

8 Conclusion

The above paper presents XS library for logic programming system ECI/PSe, a tool solving set-theoretic
constraints over extensional sets containing numeric domain variables.

The library is based on Subdefmite computations. To solve constraints over numeric data, XS library employs
an external solver (currently, Interval Domain library) which is a parameter to XS library. Such an approach
seems more reasonable than equipping XS with its own solver for numeric constraint satisfaction problems.
In order to efficiently process numeric domain variables in set specifications, XS library employs an approxi-
mate unification algorithm. This set unification algorithm makes processing non-ground sets efficient which is
the second advantage of XS library. Further development of the library is directed toward efficient low-level
implementation of operations on set domains.

We extend our thanks to A. V. Zamulin, Yu. A. Zagorul'ko from A. P. Ershov Institute of Informatics
Systems, T. P. Kashevarova, A. S. Narin'yani from Russian Research Institute of Artificial Intelligence for
invaluable comments and discussion.

References

1. Alexander Aiken and Edward L. Wimmers. Solving systems of set constraints. In IEEE Symp. on Logic in Comput.
Sei., June 1992.

2. L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are the monadic class. In Proc. of the LICS'93, 1993.
3. Nicolos Christofides. Graph theory: an Algorithmic Approach. Management Science. Academic Press, Imperial

College, London, 1975.
4. Agustino Dovier and G. Rossi. Embedding extensional finite sets in CLP. In Proc. 3rd Int. Logic Programming

Symp., Vancouver, Canada, 1993.
5. Carmen Gervet. Conjunto: Constraint logic programming with finite set domains. In M. Bruynooghe, editor, ILPS'94:

Proc. 4th Int. Logic Programming Symp., pages 339-358, 1994.
6. N. Heintze and J. Jaffar. A decision procedure for a class of set constraints. In IEEE Symp. on Logic in Comput.

Sei., July 1991.
7. S. V. Konyagin, G. A. Tonoyan, I. F. Sharygin, I. A. Kopylov, M. B. Cevryuk, M. L. Sitnikov, O. A. Baiborodin,

V. P. Burichenko, G. V. Golovin, D. O. Orlov, L. B. Parnovski, T. A. Sokova, I. V. Stetsenko, V. V. Titenko, and
S. A. Filippov. International Mathematical Contests. Moskva: Nauka, 1987.

8. Bruno Legeard and E. Legros. Short overview of the CLPS system. In Proc. PLILP'91, Passau, Germany, August
1991.

9. Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):99-118, 1977.
10. Alexander S. Narinyani. Subdefiniteness and basic means of knowledge representation. Computers and Artificial

Intelligence, 2(5):443-452, 1983.
11. J.T. Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Schonberg. Programming with Sets. An Introduction to SETL.

Texts and Monographs in Computer Science. Springer-Verlag, 1986.

324 Perspectives of System Informatics'99

12' ~f cf VaaHentenryck, Laurent Michel, and Yves Deville. Numerica: a Modelling Language for Global Optimization.
The MIT Press, Cambridge, MA, 1997.

13. Clifford Walinsky. CLP(2T): Constraint logic programming with regular sets. In Giorgio Levi and Maurizio Martelli
editors, ProcMh Int.Conf. on Logic Programming, pages 181-196, Lisbon, Portugal, June 1989. The MIT Press

14. Tatyana M. Yakhno and Evgueni S. Petrov. LOGICALC: integrating constraint programming and subdefinite models
In Practical Application of Constraint Technology, pages 357-372, Westminster Central Hall, London, UK, April

15. Tatyana M. Yakhno, Vyatcheslav Z. Zilberfaine, and Evgueni S. Petrov. Applications of ECLTS6: Interval Domain
library. The ICL Systems Journal, pages 35-50, November 1997.

Artificial Intelligence II

Information Technologies:
Revolution at the Beginning of the 21st Century

Alexander Narin'yani ;

Russian Research Institute of Artificial Intelligence,
RO.Box 111, Moscow, 103001, Russia

narin9artint.msk.su

Abstract. Every science and technology come through bifurcation points — radical changing paradigms,
some revolutions which approach are not realized sometimes even on the eve of beginning the new phase of
development. The appearance of a computer itself fifty years ago became one of such points of bifurcation,
which had alternated all spectrum of high technologies of the second half of the twentieth century. But
having became one of leading industries, the information technologies are coming now very close to the
first in their short history radical revolution which will completely change "unshakable" foundations of the
modern apparatus of the Information Technologies.

Half a century history of the modern Information Technologies (IT) is full of contrasts. On the one hand we see
the swift development of hardware with its unbelievable gradient of upgrowth — about dozen times per year,
which is impossible for any other field of industry. On the other hand — incompatible to this rapid progress
conservatism of the basic principles which has been leading to more and more dramatic contrast between the
IT technical possibilities and their current actual level.

During their short history the Information Technologies have been developing on the basis of the central
principle of Algorithm and four closely interrelated key corner-stones: .

- Sequential deterministic process
- Modern Object-Oriented software technology
- Von Neumann architecture of Computer
- Traditional computational mathematics.

The given key principles seem even more unshakable now than five decades ago. Their procrustean bed has
became so habitual that is supposed to be natural and the only one possible, in spite of its inborn defects which
in many cases are close to absurd.

It is obvious that the real world organization is completely different. Each its component — an elementary
particle, a cell in organism, a human in community, a planet or galaxy —- is an active autonomous entity which
participates in a parallel, asynchronous, decentralized process of interaction to other active entities of the same
level.

The modern organization of IT is perfectly opposite to this natural order: it is trying to control any system
from a unique center with imperative directions which define who and in what order should act.

This dead-end paradigm blockades development of all main IT constituents: the computer architecture and
software technology, organization of data and their flows in communication nets, management and control of
complex systems. Multiple attempts of its reforming have not led to a radical change of the trajectory. During
the last decade we have often heard that IT development has reached a stage which doesn't promise new "big

326 Perspectives of System Informatics'99

jumps" (except the hardware techniques) — its task is limited to development of the accumulated experience
and expansion of its application sphere.

But it is not true at all. A feeling of "current foundations for ever" is very typical for neighborhood of
bifurcation points: let's remember the very beginning of 60s when programming in code seemed the main
principal form of IT for all visible perspective. But it vanished for ever just in a few years.

Now we are very close to a bifurcation which will be global to the whole IT complex. Qualitatively novel
technologies have been formed and they are developing very fast. They are based on non-algorithmic data-driven
process, which is naturally parallel and non-deterministic. The approaching revolution will ensure complete
change of current paradigm up to radical reform of the computational mathematics apparatus, which has been
comparable by its unshakableness only with geography.

To estimate the IT perspective of the next century beginning we need to consider' (at least roughly) possible
directions of development of the following three aspects of the whole picture:

A. Evolution of the knowledge apparatus, the very core of means of the IT intellectualization
B. Influence of this process on the further intellectualization of IT
C. Novel generations of applications being defined by the progress of A and B.
The minimal volume of this material is limiting its content with a "dotted" and very subjective discussion

of those three aspects through outlines of some their principal constituents. Of course, the theme of this paper
needs a list of many hundred references, — because of that I should limit it with a few own publications
illustrating some points in this discussion.

1 Evolution of the knowledge apparatus

The knowledge based technology is still very young and only reaching the threshold of real formation. It has
ahead a difficult task of generalization of its accumulated reserve of ideas and experience, which should be
transformed into unique and powerful apparatus.

In this course of integration the traditional components are beginning to be completed with new methods
of constraint programming, in particular, with subdefmite models (nedoopredelennye or N-models in Russian)
which cover all principal data types and ensure incorporation of more and more powerful means of automatic
solution of computational and logic-combinatorial problems in the knowledge apparatus.

I am sure that the knowledge apparatus has one more — strategic — horizon. During long history of the
mathematics it was the object of very polar judgments: from admiration and worship, as the ultimate truth,
to sharp criticism which accuses the queen of sciences in sojourn behind of border of abstraction, very far from
problems of the real world. Seventeen years ago I proposed a NE-factors term [1,2] for notation of a complex
of features which are typical for the human knowledge about the real world but represented rather poor in
formal systems (incompleteness, imprecision, subdefinitehess, incorrectness, and many others). It is possible to
presuppose that NE-factors will form something like the periodical system of elements for the future real world
knowledge apparatus.

During this period the subdefiniteness was investigated rather thoroughly that led to creation of theory and
technology of mentioned above N-models [3]. But other NE-factors, which are closely interconnected and play
no less important role in applications, have remained practically undeveloped (minority) or unknown at all. It
seems that investigation of individual NE-factors with construction of adequate formal means as well as their
organization in unique complex will play for IT no less revolutionary role than transition from the alchemy to
the modern chemistry.

2 Information technologies — change of epochs

The development of the knowledge apparatus exerts constant influence on forming IT new generations from the
basic level up to means of intellectualization. Let's consider briefly some of main tendencies in this domain.

2.1 End of the Algorithm Era

The Algorithm was the fundament of the programming techniques for computers of von Neumann architecture
from the very beginning. Nevertheless from the middle of 60s many attempts to develop alternate approaches
has taken place. First of all it was related with research in Artificial Intelligence and on parallel programming
for multiprocessor computers [4].

 Narin'yani A. Information Technologies: Revolution at the Beginning of the 21st Century 327

But qualitative progress here is ensured by the apparatus of N-models and the most recent works on the
constraint programming because they are based on a decentralized, multi-agent data-driven computational
process which allows implementing any software system in form of a structured model which integrates an
hierarchical complex of autonomous active components. As the following step in this radical transformation it
is possible to transit to event-driven process, which should substantially arise the level of associative machinery
organizing the computer work.

2.2 Technology of Active Objects

An important direction of the current IT progress is development of the object-oriented philosophy. But for
the present this approach forms only the base of the future technology by bringing an oo-program more and
more near to structured Model but leaving the algorithmic character of the control of its realization without
any change.

At the same time the development of data-driven and event-driven control forms the next generation of
IT on the basis of active autonomous objects, which should integrate multi-agent architecture, the constraint
programming and the N-model apparatus. Just this fact will allow IT to build systems of any complexity
ensuring naturalness and reliability of their functions. ■

2.3 Novel computational mathematics

The modern computational mathematics operates with a few hundred of different methods of solution for
isolated classes of particular problems representing separated islands in the ocean of real calculation tasks. This
world order is only one possible from the point of view of islanders, which have never heard of existence of
continents.

The fundament of N-model and constraint programming apparatus is a special universal process, which
extracts the whole space of solutions of a problem and can work with both definite and subdefinite algebraic
systems in which subdefiniteness may be referred to values of parameters as well as to relations over them.

This radically changes the very paradigm of calculations. Allowing taking off principal restrictions of tradi-
tional methods it ensures a jump in expanding the spectrum of solvable problems and quality of obtained results.
The novel computational apparatus makes possible to solve reverse, regression and optimization problems for
which in many cases there are no standard numerical methods. Very often it raises in dozen times the efficiency
of calculation in correspondence to the best-known algorithms.

2.4 Model but not Algorithm

The novel IT paradigm is oriented to the Model and direct interaction with it. This for ever resolves the crucial
conflict of Model and Algorithm: in 10-15 years the Algorithm's fate will repeat the fate of assemblers and
programming in machine code: loss of today's key positions and a modest place in a thin base level of the
computer technology of the near future [5].

For many classes of application this paradigm has already proved its advantages which allow the user to
work with his model directly without any traditional go-betweens in form of methods, algorithms and programs.
And it makes possible to combine within the same Model any combinations of different formal apparatus —
algebra, logic, sets, etc.

Not being related with the algorithmic mentality the new organization of the computing process in the form
of compressing the Model space on the base of data-driven control is intrinsically decentralized, parallel, non-
deterministic and asynchronous which makes it naturally and easily transportable to multiprocessor computers.

2.5 Parallelism

During last decades unsolvability of the problem of parallelization for imperative programs has been forming
an insuperable barrier in the way of wide propagation of multi-processor computers. By now the software and
hardware have switched their places: the level of automatization of hardware design and low cost of chips allow
mass production of computers with any number processors but parallel software has kept to be a hard problem
which is solvable only by high class specialists and only in some special cases. In the new IT paradigm the
parallelism stops to be a bottleneck but becomes a natural feature of whole software, in particular, of future
programming technologies and operation systems. '

328 Perspectives of System Informatics'99 _^

2.6 Computer of non von Neumann architecture .

The same paradigm demands a fundamental reconstruction of von Neumann computer architecture.
As it has been said above the data-driven (in perspective, event-driven) organization radically changes the

data processing itself by making it decentralized and independent of number of processors. It diffuses the frontier
between the hardware and software, that permits, in particular, to use maximal number of hardware components
for supporting all constituents of the computation flow.

That qualitatively transforms "by vertical" the whole fundament of IT by ensuring multi-level parallelism
of asynchronous computational process on all its layers from element base up to operational system and data
flows in communication nets.

Thus we can see a perspective of breaking of "unshakable foundation" of the Information Technologies:
Algorithm, the modern computational mathematics, von Neumann architecture, deterministic and sequential
process are going away forever to the history and making way for Model, multi-agent architecture and associative
selforganization of nondeterministic decentralized parallel process.

!

3 New generation of applications

The new trends, which have been discussed in the previous section, radically change the technological basis
in all spheres of applications. This concerns first such domains as Economy and Finance, CAD, engineer and
scientific calculations, management, control of compiles technological processes, flows in distributed nets and
many others.

3.1 Economy and Finance

The main natural task of the computer economy is the development of models, which adequately describe
connections and relations of economic parameters. But today the use of calculations demands from the specialists
to care in the first place about adaptation of their models to possibilities of computational methods rather than
about their likeness to the original. With formation of new paradigm the traditional barrier between "natural"
and "virtual" modeling will become more and more transparent both for economy and finance [6]. This allows
resolving optimization, backward, regression and many other problems on real models with real — subdefinite —
parameters, which allow incomparably higher quality of tactic and strategic solutions.

3.2 Scheduling and resource planning

The N-models also ensure a qualitative jump in that sector of applications, which play, a key role in automati-
zation of management functions. Now the schedule ceases to be rigid and determined but turns into a corridor
which permits maneuvering with resource and temporal parameters in process of plan implementation. The
resource and temporal parameters participate as equal in a unique computational model, which makes creation
and optimization of the plan much more natural, simple and efficient. Obviously, changing the temporal scale
(hours, minutes, seconds,...) it is possible to adapt this apparatus to control of complex industrial objects and
processes, personal activity scheduling, and other fields of applications.

3.3 Active object-oriented DBMS

The transition from relational to object-oriented DBMS is moving substantially slower in correspondence to
the prognosis of the beginning of 90s. This delay is related with inertia of evolution of the large DB as well as
with difficulties of development of the object-oriented approach itself in symbiosis with traditional imperative
programming. The adaptation of the data-driven technology will allow transforming the modern relational
DBMS into an intelligent active object-oriented System of the next generation. Its powerful virtual processor
will ensure the user a wide spectrum of novel possibilities of interaction with complex data integrating hundreds
of tables and thousands of autonomous functions which realize computations and control of consistency of the
information, ability to use of incomplete and imprecise data, etc.

 Narin'yani A. Information Technologies: Revolution at the Beginning of the 21st Century 329

3.4 CAD and CAO

For these sectors of applied systems the transition from Algorithm to Model radically changes scale and quality
of the problem solution process. By creating a model of object its designer obtains an ability to solve any
computational problem related to construction of products of the corresponding type. No less principally the
new IT paradigm will transform functions of the complex enterprise management. This is related not only with
the qualitative progress of its main constituents — CAD, DBMS, scheduling, finance planning, but also with
all advantages of novel decentralized architecture.

3.5 Natural Language and Voice

This sector has no direct relation to those components of new stage of IT development, which were discussed
above. But it closely concerns the nearest perspective of IT because the Natural Language is the principal form
of information practically within all spheres of activity.

Almost for thirty years the problem of computer NL-text understanding was at a deadlock but during the last
decade radical changes have taken place here as well: the problem of NL front-end for data bases is practically
solved on the basis of semantically-oriented approach [7] which has begun to'prove its ability to solve also the
problem of the automatic understanding NL-texts within a restricted object domains.

Simultaneously the voice recognition technology is becoming usable to more and more wide spectrum of
applications. But in the meantime these technics are oriented to purely "phonetic" approach which repeats a
mistake similar to "syntactical" methods of the text analysis. Only complex integration of the phonetic recogni-
tion and meaning-oriented text analysis can solve the problem of mass user-computer NL-interface forever: the
text understanding will allow arising many times a quality of the voice recognition means and the transition
from printed text level to spoken language will make the natural language communication with computer really
natural [8].

The applications we have discussed in this section allow estimating the scale of global radical transformation
of the IT in the nearest perspective. This estimation will be much more complete if we add to this brief survey
other important applied directions, such as intellectualization of Internet and communication, GIS, powerful
heterogeneous expert systems, datamining, virtual reality, dynamic models, and many other domains.

I hope that in this brief survey I have managed to represent a general outline Of the perspective of the twenty
first century IT which will be qualitatively new by all its basic conceptions and at the same time completely
real and close by the dates of its carrying out into the life.

Now the crucial question is clear: either we will be able to organize this coming revolution as well designed,
strategically planned and orderly implemented process or it will go through usual "vegetative", blind and slower
evolution leading to far from optimal edifice of the new IT era.

References

1. Narin'yani A. S. Sub-definite models and operations over subdefinite values. Preprint No. 400, Computer Center of
the Siberian Div. of the USSR Acad. Sei., Novosibirsk, pp. 338-353, 1982 (in Russian).

2. Narin'yani A. S. Sub-definiteness in knowledge representation and processing. Technical Cybernetics, Moscow, No.
5, pp. 3-28, 1986 (in Russian).

3. Narin'yani, A. S., Telerman V.V., Ushakov D.M., Shvetsov I.E. Constraint Programming and Subdefinite Models.//
Information Technologies 7, M, 1998, p. 13-22 (in Russian).

4. Kotov V.E., Narin'yani, A. S. Theory of parallel Programming. In: "Advances in Information Systems", v.6, Plenum
Press, New York-London, 1976

5. Narin'yani A. S. Model or Algorithm: New Paradigm of Information Technology.// "Information Technologies", 4,
., 1997, pp.11-16 (in Russian). '

6. Naprienko V.G., Narin'yani, A. S. Subdefinite Models — non-traditional approach to mathematic research in Econ-
omy.// "Information Technologies" 4, ., 1999 p.15-23 (in Russian).

7. Narin'yani A. S. The Problem of understanding NL-queries to Database is solved. In: "Proc. of the Dialogue'95
International Workshop", Kazan, May 31-June 4 1995 p.206-215 (in Russian).

8. Narin'yani A. S. Voice Natural Language Pront-nd is Possible. Now In: "EISNET Goes East and IMACS Workshop
on Integration of Language and Speech. Proceedings". Nov. 9 - 11; Moscow, 1996 p.111-139

Approach to Development of a System
for Speech Interaction with an Intelligent Robot

G.B.Cheblakov, F.G.Dinenberg, D.Ya.Levin, I.G.Popov, and Yu.A.ZagoruIko

Russian Research Institute of Artificial Intelligence
&; Institute of Informatics Systems

Novosibirsk
zagorQiis.nsk.su

Abstract. We consider an approach to the development of a speech control system for a robot. The robot
is working in an environment containing several rooms; it can perform user commands and answer questions
of the following types: Where are you? or What do you see in the room? The system includes the following
components: speech input subsystem, linguistic processor to translate English commands into a formal
representation, the robot (simulated by a program) and a speech synthesizer to voice the robot's messages.
The speech input and output subsystems are based on standard commercially available software packages.
The linguistic processor and robot simulator are implemented with the help of two original instrumental
systems - Lingua-F and SemP-TAO. An outline of the Lingua-Voice project is also given.

Introduction

Although the problem of controlling technical devices by means of speech is not new, it is still important. It
has become of particular importance recently, as speech recognition systems have become available.

Modern projects have demonstrated a trend to use natural language (NL) in all aspects of interaction with
the robot. At the specification stage, NL is used to state instructions to the robot or a qualitative description
of the desired situation, while during execution of a command the robot produces detailed messages about its
current actions. As stated in [1], the main advantage of using the natural language for robot control is its ability
to express information with varying degree of detail and at different abstraction levels, which is difficult to
achieve with a formal language.

One of the first programs understanding natural language was the famous system of Winograd [2], Another
well-known system, SHAKEY [3], was a mobile robot without a manipulator; it could understand simple natural-
language commands. The paper [4] proposed a system to control a remote robot with the help of a limited
vocabulary of words in a natural language.

The purpose of project KANTRA [1,5] is to create a system for speech communication with an autonomous
mobile robot that has two manipulators and is designed to perform complex assembly work.

An approach to the development of an NL interface for a system controlling a mobile service robot working
in a room was examined in [6]. Another similar system [7] includes a well-developed NL interface that enables
the human operator to use NL to describe scenes (e.g., rooms in a building, objects in the rooms, spatial
relationships between objects, etc.) as well as commands and scenarios of robot's actions in the environment
(e.g., go to a room, carry an object from one place to another, clean the room).

The Russian Research Institute of Artificial Intelligence (RRIAI, Moscow-Novosibirsk) and the Institute of
Informatics Systems (Novosibirsk), together with the Institute of Applied Knowledge Processing Systems (FAW,
Ulm), are working on a speech control system for an intelligent robot.

The robot controlled by the system is working in a building containing several rooms. It executes user
commands expressed in English, e.g., Go to room 5 or Transfer the computer from the first room to the second
room. In addition, it can answer some questions, e.g., Where are you? or What is located in the room?

This paper presents the architecture and scheme of operation of a system for speech control of an intelligent
robot. We give a detailed description of the world in which the robot is working, the robot's abilities and the
control language. Implementation characteristics of the main components of the system are presented; the paper
contains numerous examples.

1 Architecture and Operation of the System

The problem of robot control with spoken natural-language commands is divided into the following subtasks:

 Cheblakov G. V. et al. Approach to Development of a System for Speech Interaction 331

- speech recognition;
- translation of command text into a formal representation;
- execution of the command and the corresponding modification of the robot's world;
- visualization of command execution results; ••
- generation of the robot's response and its transformation into a voice message.

It is important also to ensure a closed loop in the operation of the speech control system: reception of a
command, its analysis, execution, and return to the reception of the next command.

To perform these functions, the system includes the following components:

- a speech entry subsystem containing a microphone, a sound card, and a software speech recognizer;
- a linguistic processor that receives the text of command in a natural language (English) from the speech

recognizer and translates it into a formal representation;
- a command execution subsystem (the robot simulator);
- a speech synthesizer that voices the robot's messages.

The speech entry subsystem is based on a commercially available package, ViaVoice by IBM, which produced
quite satisfactory results after some necessary adjustment. Speech synthesis uses a standard software component,
Microsoft Concatenated Text-to-speech Engine.

The linguistic processor is constructed with the Lingua-F [8] instrumental system that uses a semantics-
oriented approach to the analysis of -NL texts that was proposed by A. S. Narin'yani [9]. ,

The subsystem of command execution and the environment emulating the robot's world were implemented
with the help of SemP-TAO [10]. SemP-TAO is an integrated software environment for knowledge representation
and processing that was developed for the construction of intelligent systems requiring description of subject
domains with complex structure and semantics, as well as a combination of logical inference and calculations
over imprecise values.

The functional overview of the system in Fig. 1 demonstrates the complete cycle of execution of a command
given to the robot.

A command pronounced by the operator is transmitted to the voice recognition system that transforms a
phonetic representation into the textual sentence. Then, this text is processed by a linguistic processor that
translates the sentence into certain sequence of formal commands. For interpretation, formal commands are
transported to the simulator - a subsystem which simulates the robot's behavior. According to the commands,
the simulator performs all prescribed actions which generally results in a transformation of the simulated
environment - the world of robot. Such transformations are visualized on the screen of computer by special
program that enables an operator to check robot actions and states of its environment. If a command assumes
certain explicit answer, then a subsystem of command interpretation generates an appropriate text; this text is

. then transformed into speech form and is pronounced.
When processing of a command is completed, the operator can input the next command.

2 Intelligent robot and its control language

In this section we consider the robot's world, the robot's features and abilities as well as the robot control
language.

2.1 Robot's world and robot's abilities

The robot's world consists of several rooms which may contain some objects. The classes of objects such as
furniture and equipment are distinguished.

Relations are used to define position of objects with respect to each other. Examples of such relations are:
to the left, to the right, below, above, inside, at the center, etc.

In this model of the world the robot is both an object and a subject. As an object, it has the properties of
equipment. As a subject, it should be able to move furniture and equipment from one room to another and to
answer questions of the following types: Where are you? What do you see there? Is there a table?.

Therefore, the main functions performed by the robot are following: find, take, put, move, go, etc.
These functions correspond to a set of operators. The set of operators is divided into two levels. The first

level is constituted by the operators accessible to the user. These are used to state the instructions for the robot.
The second level is constituted by the operators that are used to implement operators of the first level.

332
Perspectives of System Informatics'99

*,.

Spoken
commands
to robot

Voice
recognizer

Textual
commands
to robot

Linguistic
processor

' User
(operator)

)

Grafical
images
of states

Visualizer
of states]

Formal
description
of states

I
Formal

epresentation
of commands

Spoken
reaction
of robot

Speech
synthesizer

Textual
reaction
of robot

Command execution subsystem
(Robot simulator)

1

Fig. 1. The functional overview of the system

Cheblakov G. V. et al. Approach to Development of a System for Speech Interaction 333

The first-level operators are Bring, Take away, Move, Go To, Where Is, What Is In. The second-level
operators consists of the following operators: Find, Take, Free, Put, Say.

There is a separate operator scheme for each operator; it determines the conditions, the order (plan) and
the results of execution of the operator. In contrast to the systems STRIPS and ABSTRIPS [11,12] that use
linear operator schemes, in our system recursive operator schemes are utilized.

For example, the following scheme corresponds to the second-level operator Find:

Find ($this) {
if locations of $this and the robot are identical, then

save current location of the robot in variable $location;
return $location as a result;

else
mark current room as already examined;
if the next room has not been examined yet, then

save location of the next room in variable $new_location;
Go to ($new_location);
Find ($this); '<

else
Say ($this, "not found");

}

Now we describe the scheme for the first-level operator Bring:

Bring ($this){
save current location of the robot in variable $here;
$location:=Find ($this);
Move ($this, $location, $here);

}

2.2 Formal language for robot control

Formal language for robot control is developed on the base of the operator schemes described above. It was
called FOROL (the FOrmal RObot Language).

This language includes the operators Wherels, GO, and MOVE. Arguments of these operators may be objects
and rooms.

The description of an object has the following form:
OBJECT(name: name-of-object, color: colorLO/_object),

here name-of-object is the name of the object, and color-of-object is the color (may be not given).
The description of a room in FOROL has the following form: ,
ROOMfnumber: number-oj-room),

here number-0$-room is an integer which denotes the number of room.
We now give a description of the syntax and semantics of the operators of the language.
The operators Wherels has the following form:
Wherels (what: object, where: room).

Here object is the description of an object whose location must be determined or confirmed, and room describes
a room.

Note that one or both arguments in the operator Wherels can be omitted. The semantics of the operator
Wherels depends on which arguments are given, and which are omitted. Consider each case separately.

If only first argument is given, then execution of the operator results in searching for an object with given
characteristics and issuing a written or spoken message on its location. If several objects satisfy the description,
then the information on the first object is output. In case of failure, the corresponding message is issued.

If only second argument is given, then the characteristics of all objects found in room are output.
If both parameters are omitted, then the characteristics of all objects found in the current room are output.
The operators GO has the following form:
GO(to: room),

here room describes a room to which the robot should go.
In according to this operator the robot must go to the specified room. If this is impossible, the corresponding

message is output.

— Perspectives of System Informatics'99

The operators MOVE has the following form:
MOVE(what: thing, from: rooml, to: room2)

Here thing is the description of the object that should be moved from rooml to room2. The values of the
characteristics of the object are identical to those in the operator Wherels, with the exception that Robot
should not be used for the name of the object.

We note that only the first argument of the operator MOVE is required always. All the other arguments are
optional. The semantics of the operator MOVE as well as Wherels depends on which arguments are given.

So, if all of three arguments are given, then the object thing must be moved from rooml to roomS.
If only two arguments what and from are given, then the object thing should be moved from rooml to the

room where the robot is. ;
If two arguments what and to are given, then thing should be found and moved to room2.
Finally, if only argument what is given, then the object thing should be found and moved to the room where

the robot is situated.
In all versions of MOVE, a suitable message is issued in the case of failure. For example: Green chair is not

found, Room 200 does not exist, Computer is already in room 5, etc. ,
Note that the FOROL language includes a small set of operators, but due to a great power of the operators,

this set suffices to describe all the tasks which should be performed by the robot. !

3 Linguistic Processor

The linguistic processor (LP) was constructed with the help of a current modification of the Lingua-F software
environment that was developed in the 80s [8]. Lingua-F supports construction of an LP that translates the
text of an NL communication into a formal representation using the FOROL language. Lingua-F supports all
stages of LP construction:

- forming a vocabulary;
- writing production rules for lexical and base analysis of the input text and rules for generation of the output

representation;
- compilation of the rules and the vocabulary;
- debugging and testing of the linguistic processor on a comprehensive data bank of various NL messages to

the robot.

Lingua-F has a facility for saving a stand-alone LP that can exist on its own and can be used in other
software packages.

The LP thus constructed is included in the speech control system of the robot as a component. A natural-
language text is placed at the input of the LP, and the corresponding formal representation is generated at
the input. The transformation of the text into a formal form is based on a semantics-oriented approach that
enables one to analyse the input text based on the semantics and pragmatics of the subject domain in which
the communication with the robot occurs. [

The linguistic processor consists of two components: the vocabulary containing the lexicon of NL requests
to the robot and the production component. Consider the two components in more detail.

3.1 The vocabulary and types of NL requests

In the current version of the system an operator uses two types of NL requests to the robot: a directive
(command) and an inquiry (question). At the semantics-oriented approach, the words that are included in the
requests are subdivided into significant words which are reflected in a formal representation, and insignificant
ones ignored at an analysis.

We distinguish the following types of significant words used when addressing to the robot:

- verbs which define moving of objects, e.g., bring, transfer, move;
- verbs which initiate movement of robot, e.g. go;
- verbs and interrogative words and collocations which define search of an object, e.g. where, find, search

what room; '
- objects, e.g., chair, box, table, computer;
- numerals which can be used in requests, e.g., one, first;
- adjectives which define colours, e.g., red, white, brown, green;

 Cheblakov G. V. et al. Approach to Development of a System for Speech Interaction 335

- locations, e.g., room;
- prepositions, e.g., from, to;

In addition, requests can include insignificant words, like: number, a, an, the, situated.
Using the above mentioned words one can compose directives: Go to ..., Move something from ... to ... and

inquiries: Where or What room is located ..., etc. An order and a number of components of a request as well
as word order within each component is generally not fixed. The word order is defined by a grammar of the
particular natural language. The rules of analysis and synthesis are constructed so that to minimise a feeling of
language restrictions for an operator.

We give below several examples of NL requests with corresponding formal irepresentations. These examples
demonstrate some degrees of a lingual flexibility, one of which in particular is a defining of a room number.
Having either digital or literal spelling, a room number can be defined by both quantitative and ordinal numeral
and, accordingly, located in a postposition or preposition to the word room.

First, we consider the directives that are divided into types MOVE and GO:
a) In a directive of the type MOVE: Transfer the blue armchair from the first room to room number 4- a

transposition of the locative components is admitted: ... to room number 4 from the first room. In addition, a
similar command will be analysed correctly when formulated with an ellipsis:' Transfer the blue armchair from
the first room to 4-' In ah cases the directive will be translated into:

MOVE(what: THING (name: armchair, color: blue),
from: ROOM(number: 1), to: ROOM(number: 4))\
b) A directive like Go to the second room! has completely transparent translation:
GO (to: ROOM(number: 2)).
The system distinguishes questions that meet the user informational needs of both the location of various

objects and the presence of objects in the specified place:
a) A question Where is the robot? can also be formulated as to a partner in communication: Where are you?

Its formal representation is:
Wherels(what: OBJECT(name: robot));
b) In addition to a question on the robot it is possible to ask about any object Where is the red box? or What

place is the red box located in? The directive Find / Search the red box! is interpreted as an indirect question
on the location of the object:

Wherels(what: OBJECT(name: box, color: red));
c) Questions on the presence of any objects in the room where the robot is What is (located) here / there /

in this room? are translated into:
Wherels(what: ?, where: ?);
d) Questions intended to detect any objects in the specified place Is something in room 5?, What is located

/ situated in room 5? are formally represented as:
Wherels(what: ?, where: ROOM(number: 5));
e) Alternative question Is computer in the room number 2? corresponds to:
Wherels(what: OBJECT(name: computer), where: ROOM(number: 2)). :

3.2 Production Component

The production component of the linguistic processor translates the incoming NL phrase in several steps: lexical
analysis, base analysis, and generation. ,

The rules of lexical analysis divide the entry string into lexical tokens which, after accessing the dictionary,
are replaced by the corresponding dictionary entries. Multiple components that are elements of a composite entry
are combined into a single component. Such a composite entry often serves to resolve ambiguities. Defining a
usage context of a word, i.e., creating a composite entry, makes it possible to link several meanings to a single
word.

For instance, consider the word room in several contexts: a) room 1 (or the first room), b) in what room. In
the first case, the word room is a locating component, while in the second it denotes a question of type Wherels.
Creation of the composite entry what room, synonymous with the word where, ensures correct parsing.

In the base analysis stage, the parsing tree reflecting the predicate-actant structure of the phrase is con-
structed. First, we construct the second actant, which is the object group consisting of a noun (the object)
and an adjective, e.g., green armchair. Next, we construct actants of two types, from and to, which are the
locative components represented by nouns with prepositions, e.g., from room number two. Finally, the predicate

——— Perspectives of System Informatics'99

is concatenated with the second actant (e.g., bring is concatenated with green armchair) and all locative groups
if any. If the parsing succeeds, the whole phrase is reduced to a single component

The generation rules transform the tree representation of the phrase resulting from the base analysis into
the output representation in FOROL. y

4 The Lingua-Voice system: towards a cooperative processor for spoken language
understanding

In this section, we shortly summarize the presented results and outline our next project related to a voice
recognition field.

The speech control system described in the paper has been fully implemented and tested, demonstrating;
stable operation in a large number of tests.

The integrated object-oriented environment SemP-TAO enabled us to represent the robot's world in a natural
manner specify and implement an extensible formal language for robot control, support visualization of the
states of the world, and provide a convenient user interface.

It should be noted that the system is not just a prototype version of the speech control system that will be
connected to the real device. The integrated model of the robot is a good base for experiments and extensions
directed at the study of a broad range of knowledge representation and processing problems. The FOROL
language, for example, served as a base for more powerful robot control language, including additional tools to
work with spatial relationships and advanced facilities for description of rooms and objects. Implementation of
this language will make it possible to work on the development of a robot control system using both formal
communication means and a richer natural language.

The system described in this paper can also be used as a solid testing ground for research of the use of a
spoken language for communication with a wide spectrum of applications. In this respect, it has given a rise to
a new project called Lingua-Voice which we outline below.

The idea of the Lingua-Voice project is to technologically fulfill a gap between an output of a standard voice
recognition system and an input of an application.

Today, industrial speech processors produce rather raw output which, in the best case, can include a simple
post-processing basedon a user-defined context-free grammar. In fact, a voice recognition system itself supports
only a small part of job needed to provide a really comprehensive communication with applications. In particular
voice processing systems presented today in the software market are responsible for selection (from a dozen of
phonetic hypotheses) of "the most probable" word, taking into account some universal phonetic and statistic
data, not the information related somehow to the world of application or to linguistics.

We are certain that the approach described in [8] for automatic text processing based on orientation to
a restricted subject domain and simultaneous processing of many variants is especially adequate for spoken
language (SL) understanding.

Our new project called Lingua-Voice concerns the following principles:

- Multi-variant processing,
- Automated specification and adjustment of a SL-processor to application,
- Specialized agents for SL-processing,
- Closer integration of voice and linguistic processing.

This development leads us to a construction of a software architecture and environment which are shortly
characterized below. Their general structure is presented at Fig. 2 (where »Voice recognizer" and "Linguistic
processor" functionally correspond to similar components shown at Fig. 1).

The Lingua-Voice system is based on a version of the Lingua-F support environment which has recently
been implemented by M.Zhigalov and D.Shishkin.

The Lingua-Voice system starts with initiation of a certain voice recognition engine: ViaVoice Dragon or
whatever. After the engine has completed its work, the whole set of phonetic variants is "extracted" from its
inner memory and transmitted to further processing modules. This data has the following structure:

W = <w1 = {h1,1;hi,2;:.;hi,ni},...,ws = {hSti;hsx,-;hatn,}>

Cheblakov G. V. e.t at Approach to Development of a System for Speech Interaction 337

Lingua-Voice system

Specification of
lexical and statistical

information

Specification of
processing actions

Spoken commands to
application

Lingua- Voice processor

Voice recognizer!

Lexical KB

Statistical KB

Primary
recognizer

Ey :4:

'Corrector'

Ä

LPropessing modules.

Syntactical
constraint filter

BHsiW

Linguistic processor

Multi-variant
semantic proc.

▼
Formal

representation
of commands

Dialogue
with a user

Fig. 2. General structure of the Lingua-Voice

338 Perspectives of System Informatics'99

where wt is a cluster of words detected for the i-th potential word. (This picture is obviously simplified for
continuous speech.) We call clusters subdefinite words and W-structures subdefinite phrases to note a relationship
between the issues considered here and classical works of A.Narin'ani on processing of non-complete information.

In the general case, the purpose of a concrete Lingua-Voice processor is to organize the application of
specialized processing agents to such a vector W. If no correct variants are found, the process is considered to
be failed; if a unique variant is found, it is passed over to the application; if the result is ambiguous, then, in
order to refine it, a kind of a dialog is initiated.

To exemplify these agents, we mention here

- statistical corrector,
- syntactical filter,
- semantic filter and
- multi-variant analyzer.

Thus, statistical corrector uses lexical and statistical knowledge entered through the special user-friendly
environment of the Lingua-Voice system during an adjustment of a concrete processor. These data enables us to
efficiently rearrange and refine too universal "probability estimations" elaborated by a voice recognition engine;
in some cases, corrector is able to extend the set of hypotheses by additional words due to a priori denned
contextual statistical associations.

The work of the above mentioned components can be illustrated by an artificially simplified example of processing a
phrase:

Take this box and put it on the sixteenth table

The result of application of corrector can be illustrated by a table (abridged):

Input words ViaVoice output Lingua-Voice corrector output

take date, eight eight - 22%, eighty - 13%, take - 9%J...
this this, if
box box, boxes
and then, ten, am can - 10%, an - 10%, am - 10%, and - 10%, ...
put put, but ...
it
on one, what one - 15%, what - 15%, would - 12%, on - 12%, ...
the ...
sixteenth ... thirteen, sixteen, thirty, sixty
table

Pay attention that the ViaVoice engine has not detected the words take, and and on: they have been reconstructed
by the Lingua Voice corrector. :

For our example, the syntactical filter transforms a configuration {this} + {box, boxes} into {this} + {box}
Since the considered domain restricts the quantity of tables by twenty, semantic filter refines the subdefinite word

{thirteen, sixteen, thirty, sixty} to {thirteen, sixteen}.

The first results of constructing the Lingua-Voice system are rather encouraging. Along with "The robot" we
have in mind an application related to the Internet communication. Also, the development of the Lingua-Voice
for the Russian language is very important and challenging.

References

1. Stopp E., Gapp, K.-P., Herzog, G., Laengle, T., Lueth, T.C.: Utilizing Spatial Relations for Natural Language Access
to an Autonomous Mobile Robot. KI-94: Advances in Artificial Intelligence, (Proc. of 18th German Conf on Art
Int., Berlin), Heidelberg: Springer, 1994, pp.39-50.

2. Winograd T. Understanding natural language. New York: Acad. Press , 1972.

 Cheblakov G. V. et cd. Approach to Development of a System for Speech Interaction 339

3. Nilsson N.J. Shakey the Robot. Technical Note 323, Artificial intelligence Center, SRI International, Menlo Park
CA, 1984.

4. Sato T. and Hirai S. Language-Aided Robotic Teleoperation System (LARTS) for Advanced Teleoperation. IEEE
Journal on Robotics and Automation (RA), 3(5), 1987, pp. 476-480.

5. Luth T.C., Langle Th., Herzog G., Stopp E., and Rembold V.. KANTRA: Human-Machine Interaction for Intelligent
Robots using Natural Language. 3rd IEEE Int. Workshop on Robot and Human Communication, RO-MAN'94,
Nagoya, Japan, 1994, pp.106-111.

6. Torrance M.C. Natural Communication with Robots. Master's thesis, MIT, Dep. of Electr. Eng. and Comp. Science,
Cambridge, MA, 1994.

7. Tanaka T., Yamafuji K., Miyagava W., Watanabe H., Takahashi H. and Ulyanov S.V. Intelligent Locomotion control
system of the Mobile Robot for Service Use, 2nd Int. Conf. on Mechatronics and Machine Vision, Hong Kong, 1995,
pp. 107-112. '

8. Trapeznikov S.P. The System for the Development of Linguistic Processors // Artificial Intelligence 11: Methology,
systems, applications. (Amsterdam: North Holland, 1987. -pp.332- 339.

9. Narin'yani A.S. Interaction with a limited object domain - ZAPSIB project. // Proc. of int. conf. Computational
Linguistics-1980. -Tokyo, 1980. ;

10. Yu.A.Zagorulko, I.G.Popov. Object-Oriented Language for Knowledge Representation Using Dynamic Set of Con-
straints // Knowledge-Based Software Engineering, (Proc. 3rd Joint Conf., JSmolenice, Slovakia). -Amsterdam:
IOSPess, 1998. -pp.124-131.

11. Pikes R., Nilson N. STRIPS: A new approach to the application of the theorem proving to problem solving // Proc.
2nd Joint Inter. Conf. on Artificial Intelligence, London, 1971. -pp.608-619.

12. Sacerdoti E.D. Planing in a hierarchy of abstraction spaces. -Artificial Intelligence, v. 5. -pp.115-135.

Analysis of Sign Languages: A Step Towards
Multi-Lingual Machine Translation for Sign Languages

Susantha Herath1, Chie Saito1, Ajantha Herath2

1 Aizu University, Aizu-Wakamatsu 965-80, Japan
2 Gifu University, Gifu 500, Japan

Abstract. Many different sign languages are in use to communicate, especially among the hearing im-
paired people. Translation of one sign language to another is a difficult problem that need efficient solution.
Processing of signs is different from the processing of words in natural languages. Sign languages use shapes
and movements to express meaning. The objective of our research project is to develop a multi-lingual ma-
chine translation system for sign languages. As a first step towards acheiving this objective we analyzed
three sign languages. This paper outlines the current research results. ■

1 Introduction

Many different sign languages are in use in many different parts of the world. People who are using different
sign languages communicate with the help of a translator. People with no hearing disabilty and unfamilier with
the sign language may need interpreters of sign languages to communicate with hearing impaired people. With
the recent advances in communication and transportation technologies, there is an increasing demand for such
interpreters and translators for the disabled. The problem of translation of sign languages can be eliminated by
using a universally accepted standard sign language. Developing a machine translation system for sign languages
is another solution. This paper presents the results of the later approach.

1.1 Sign Languages

Sign Language (SL) is one of the methods used by the hearing impaired people to communicate with others. SL
is not unique. The formation of a SL is influenced by the environment, customs, regions of a country and the
natural language used in that country. Thus, the signs can be different in from one SL to another. Signs express
meaning through shapes and movements. This way of communication is different from the words and sentences
used in natural languages. It is observed that different sign languages share common signs between them. For
example, the signs for victory and failure are the same in any SL [1]. A sign can have a different meaning in a
different SL; for example, the promise sign in Japan is the same as the friend sign in Sri Lanka.

There were attempts to develop a standard universal sign language for all. However, these attempts were
not successful enough to develop a universally accepted or truly international SL. In 1971, the international
sign form called Gestuno was developed by the World Federation of the Deaf [2]. Its vocabularv is based on the
European SLs and some European countries have adopted Gestuno. It is mainly used at international meetings.
However, Gestuno is not widely accepted in the world for day to day use. Translators perform the much needed
help to establish communication between different SL users [3].

Until the 1960s, SL was not considered to be a language, and it was used only for educating for hearing
impaired. In the 1980s, the Sign Linguistics was born and SL began to be researched from a linguistics point of
view [4].

The term signs include gestures in its general meaning. When used in SL linguistics, the term signs mean
the components of SL which are equivalent to a word in a natural language.

Three SLs, American Sign Language (ASL), Sri Lankan Sign Language (SSL) and Japanese Sign Language
(JSL) are analyzed in this paper. Section 2 of this paper discusses the methodology used to compare sign
languages. Section 3 outlines the implementation and experimental results. Section 4 gives the conclustion.

2 Methodology

2.1 The basic idea

Analaysis of SLs is a basic requirement in developing a SL machine translation system. To discover the rules
for translating a sign from one SL into another enables the development of the translation system. Also, it

Herath S., Saito C, Herath A. Analysis of Sign Languages 341

is necessary to analyze the relationships between SLs for developing the system. Some of these rules and
relationships between SLs will be discussed in this section.

In natural language processing, the basic unit is a word in analysis. Similarly, the analysis of a sign leads to
the analysis of a SL. The structure of a sign can be defined by morpheme and phoneme. These morphological
and the phonological analysis are the objects of mainstream research [4]. Following section focuses on the
phonological analysis.

2.2 Phonological analysis

In phonological analysis, the parameters of a sign are defined. It is considered that four parameters correspond
to the phoneme of a sign language [4]. William C. Stokoe introduced composition parameters, DEZ (designator),
TAB (tabulations) and SIG (signation). DEZ represents hand shapes, TAB represents locations on the body
and SIG represents hand movements. Battison [4] added the fourth one, OBJ (the orientation of the palm).
These four parameters are considered to be the, components of a sign. We analyze the signs according to these
four articulatory parameters.

3 Implementation . ; . •

3.1 Vocabulary

Signs common to all three SLs are picked up from existing books [5] [6] [7]. Table 1 shows the total number of
signs for the SLs.

Table 1. Number of signs

in books selected comparable
verbs nouns no.

ASL 1167 650
25 81 10 SSL 1051 441

JSL 15293 3941 (To talslie)

Selected vocabulary in Table 1 shows the number of signs after eliminating the signs representing strong
religious meaning, or unique cultural characteristics, country names and signs with complex movement. The
vocabulary of SSL is the smallest of three, and it is picked up as the basic SL. Among selected signs, only 116
signs are comparable among 3 SLs. They are divided into three categories, verbs, nouns and numbers.

3.2 Computerizing signs

For computers to recognize signs, they must be coded for parameters. Figure 1 shows the code form, mainly
divided into two, the right hand and the left hand. The right hand part begins from r and the left hand part
begins from I. Same components are applied to both hands.

right hanc left hand

r Ij2j3 4 J5 6 7 8 1
i

DEZ
T

ORI A

B

SIG

Fig. 1. Code Form

As default, the right hand is considered as the preferred hand and the fingers are open. The complete code
is given in the Lab. report [8].

342 Perspectives of System Informatics'99

1. DEZ (Hand shape)

There are 20 hand shapes and 8 shape aspects. In Figure 1, the columns 1 to 3 represent a code for DEZ
parameter. The first half, a pair of 1 and 2, represents a hand shape, and the second half, 3, represents a
shape aspect. The column 1 shows the number of standing fingers, and the column 2 represents the code
identity. For example, code 23 means two fingers are standing (2) and belongs to third hand shape (5) (the
V shape, the index and the middle fingers are standing).

2. ORI (Orientation of the palm in relationship to the body)
The columns 4 and 5 represent a code for ORI parameter. There are 6 orientations of the palm in relation
to the body; up, down, front, back, inside and outside. The column 5 shows direction of the fingertips.

3. TAB (Initial location)

The column 6 shows a code for TAB parameter. Signing space in relation to the body is divided horizontally
into six positions from above the head to below the waist.

4. SIG (Movement)

The columns 7 and 8 are for SIG parameter. In column 7, seven hand movements are identified, one static
and six dynamic movements where the oblique movements are also includes. Column 8 for representing 11
movement aspects. These were selected carefully according to Stokoe's classification [4].

For an example, according to the above process, the ASL sign for read is coded as r233rr42w 1512ur50n.

3.3 Automatic code generator

The automatic code generator is'developed on SunOS 4.1.4. for efficient data input. Figure 2 shows the basic
screen of generator. The screen is divided into two, information part and coding part. At information part, user

äMippBvg IsllEl
Information part

feljct SL|» B3-K> SSLIO JSLlÖTStl

]C0D£ (Rlatrt) ti I I I I I I I (Left) :] I I IMKteH

01 3_shopo
llThutb
12 Irdax
13 WaUla
14 Mr*
IB LlttlB
210ftapo
22 Y.shepo
23V„*me
24 Hl_staoa

0 Ho expect
1 pout
2 Closa batui
3 Bond fingst
4 Bend flnaart
6 Bend e littli
6 Cross f ingsoi
1 Touch Thutb

iU
t Ihsida
o Outslds
r TDUard recoil
s Touard signer

u Upside
d Dcwrard
i Inside
o Outside
r Tonerd recoil
s ToiBPd sip«

. 1 [her haod
2lfcw fa»
3 Later fico (
4 fr-ouncl neck
5 Frmt af erw
6 Under mist

U static
1 tCrn)
2 ICdoui.)
3 -»Cto rlBht)
fl *-(to left)
5 to milovw
6 to sinner

Coding part
S

1 Bj

5 n tfe n No ospBct
HepMt sme
trau arc
Era« circle

h CrxHi rimd
u Tuist wrist
f Finger «ovm
t Touch tha otl
p Pick up clott

Chanae the

Fig. 2. Automatic code generator

selects the target SL from ASL, SSL or JSL and inputs a meaning of sign from the keyboard. Result of coding
appears in this part. At coding part, 14 lists correspond to the columns of Figure 1. Figure 2 shows only the
right hand part. A sign is coded;by clicking twice in one of the each list. This work makes three code databases
for each SL, like

go : rl20ru55w 1120ru55w
look : r233rr25n
read : r233rr42w 1512ur50n

3.4 Structured comparison

Using the database described in section 3.3, coded signs are compared for parameters, DEZ, ORI, TAB and
SIG on commonality, similarity and difference of SLs. In commonality, all numbers or characters of a code
are completely the same. In similarity, only the first half code is the same . In difference codes are completely
different. Table 2 shows examples in DEZ parameter.

Out of all 116 signs are compared, only 50 signs involve both hands.

Herath S., Saito C, Herath A. Analysis of Sign Languages 343

Table 2. Examples

Commonality
(adopt)

Similarity
(bread)

Difference
(wear)

ASL 510 512 232
SSL 510 510 510
JSL 510 515 110

4 Experimental results .1

4.1 Commonality

Figure 3 shows the percentage of commonality in the SLs. In the graph of the right hand, the range of values is
10% to 60%. About 10% of the signs are common to three SLs in any parameter. DEZ, ORI and SIG parameters
show a low rate of commonality. TAB is by far the highest about 35%. Wiith respect to two SLs, in any SL
combination, its rate is higher about 5% to 20% than that of three SLs. The graph of the left hand shows a
similar tendency to the right hand.

S 80

£
£ o u

10
to
«0

THE LEFT HAND

"3 same
_-■.- -ASL & SSL
--*- -ASL & JSL
---X- SSJ & JSL

ORI TAB

parameter
SIG

80

70

60

50

40

30

20

10

0

THE RIGHT HAND

"3 same
—»-- -ASL & SSL
--*- -ASL&JSL
---X- SSJ & JSL

DEZ ORI TAB SIG

partcn eter

Fig. 3. Classification rate of commonality

4.2 Similarity

Figure 4 shows the percentage of similarity between SLs. Commonality value also a subset of similarity. In the
right hand, 12% of the signs are judged to be similar, in all three SLs, in all parameters. DEZ rate is high as
well as TAB, except between SSL and JSL. However, the rate of commonality between them is high. DEZ and
ORI rates increase 20% compared to the rate of commonality, while TAB and SIG rates increase only about
5%. The rate of SIG is the lowest, and it is a little different from the commonality rate.

The left hand is almost the same as the right hand, but in the SIG parameter, the value shows high
comparatively.

4.3 Consideration

For the DEZ parameter, there is a 55% of similarity between ASL and JSL, so it can be applied to a SL
translation system that the hand shapes of sign are the same between these two SLs.

344
Perspectives of System Informatics'99

80
ffi /o =» *-*
<0

60 rm~
£ 50
(0

o 40
0!

30
L.
C o 20

■•-'

eo
o 10

THE LEFT HAND

—.-*-*

£ DE2

■■—ASL&SSL
•■*-- ASL&JSL
-X— S5J&JSL

0RI TAB
parameter

SIG

80
B«
m 70

■#->

(D 60 •*—
fc 50
(0

o 40
0)

E 30
c o 20
ID
o 10

IIM
(0 0
<D

THE RIGHT HAND

—*—ASL&SSL
---*-- ASL&JSL
--X---SSJ&JSL

DEZ 0RI TAB
parameter

S16

Fig. 4. Classification rate of similarity

r^^SXtS^l^ °RI Parameter indiCat6S a bW rate ^ a^ ^ S° " *"»***
All graphs show that the commonality of the TAB parameter has a high rate. In any SL, 70% of signs are

rthloosLon^,, ^ CheSt brUSe the handS are PlaCed ™*™*™*y * front of chesyt and vllü^y ShS n this position alows receivers to recognize signs clearly. Since the 70% of TAB parameters is all the same from

f tranTtmng' V nTf t0 Sh°W " high rSte °f TAB Parameter- When a ^gn translates to Jthe stuZ a translation system, the location in relation to the body will not be changed at a high rate §

ruleI0clnnotPbTrundr' ^ ^^ °' ^ ^ *"* ^^ *** ValUe' but °ther ^hs show low val™ ^

4.4 The verb category

The above analysis applied to all the signs. Now, the analysis turns to a comparison by parts of speech and the
four parameters. One hundred and sixteen signs are classified into three categories, verbs, nouns and numbers
Only verbs are considered here. The verb category has 25 signs out of which 18 signs use the both handf

SJST ? °WS the rrSUlt °f ^ ComParison of «** by the four parameters. It is similar to the results for
That S ™^hty, except the similarity rate of SIG is higher than the others. The reason for h s resS

detfJon nJT m0VeTYn rtUral langUage and th6ir C°nCePtS are almost the same in any language Th
description of a sign for verb also has a similar concept and this is reflected in the similarity of SIG parameter

5 Conclusions *

SnVtti0nShiPS betTn SLS *** foUnd by comParinS SLs according to parameters and categories 40% of

Z:«Z:™TZ:T:P°* the body in ihree«sLs'6o% °f hand <&*» - ***>* -^-S
reLa?ch butt fL K^ £T ^^ *° find SOme rules" The hand movement also needs further
research but in the verb category, 25% are similar in the three SLs. Analysis of the verb category proves thS

STÄ"" rf^-m the SpeCified Categ0rieS" lt is effective t0 find the rules and iSS£S^ SLs by category. Classing categories correctly, and comparing categories is meaningful *
There was no special relationship ox similarity between any pair of SLs among 3 SLs investigated Thi«,

Ä^Ä^ C°Untry' U-S-' Sri Lanka - JaPan> h- ™ — Ä^StS

ee

>
c

9B

80

70

60

50

40

30

20

10

0

 Herath S., Saito C, Herath A. Analysis of Sign Languages

THE LEFT HAND

345

- v.

\

>-

=

Ik

* ' l"'*

--•--ASL&SSL

---A-- ASL&JSL

■

- -X- - -SSJ & JSL

'
DEZ ORI TAB

parameter
SIG

JS 95
« an

THE RIGHT HAND
u \-
>
c 70

60
i

50 '

40 >

30

20

10

0

L.

E

"•- o

~ 'S.

K" s*-.
-,■■*

^

(0
I-
c o
(D o

—■—ASL&SSL

---*-- ASL& JSL

—X--SSJ & JSL
"f—

i i

« DEZ ORI TAB
j parameter

SIG

References

Fig. 5. Classification rate of similarity in the verb category

1. Masao Itou, Shigeru Takemura, sekainoshuwa nyumon-hen, 1997.
2. World Federation of the Deaf, GESTUNO, Zen-nihon roua renmei, 1995
3. O.Van Itallie and C.G.Draper, Computer Aided Learning of Sign Language,

http://science.cqu.edu.au/mc/Staff/Owen-VanJtallie/ Research/MuItimedia/Sign_Language/default.HTM 1997
4. Kazuyuki Kanda, smiwa-gaku kougi, hukumura press, 1994
5. Tom Hunphires and Carol Padden, Learning American Sign Language, Prentice-Hall, Inc. 1992
6. National Institute of Education, Sri Lankan Sign Dictionary 1-5. 1989-1996
7. Shuwa komyunikeisoun kenkyu-kai, Shin shuwa jiten, chuou houki, 1998
8. Chie Saitou, GR report of $1021028, Human Interface Lab. of University of Aizu. 1998
9. Shigeru Takemura, shuwa Koseido, 1996

Model & Program Checking

Introducing Mutual Exclusion in EstereF

Klaus Schneider and Viktor Sabelfeld

University of Karlsruhe, Department of Computer Science
Institute for Computer Design and Fault Tolerance (Prof. Dr.-Ing. D. Schmid)

P.O. Box 6980, 76128 Karlsruhe, Germany
email: {Klaus.Schneider,Viktor.Sabelfeld}@informatik.uni-karlsruhe.de

http://goethe.ira.uka.de/

Abstract We show how the synchronous programming language Esterel can be extended by a new statement to im-
plement mutual exclusive sections. We also show how the thereby extended Esterel language can be translated back to
standard Esterel and we prove the correctness of this transformation. Additionally, we show that the translation fits well
into different verification approaches.

1 Introduction

Synchronous languages like Esterel [1,3] allow to describe multithreaded systems where the threads run in a synchronous
manner. The synchronization of threads is for free since it is achieved directly by the semantics of the language: Most of
die statements of synchronous languages do not consume time. Instead, consumption of time must be explicitely enforced
by special statements, as e.g. the pause statement of Esterel. As it is only possible to consume a multiple of a logical unit
of tune, all threads of a system ran synchronously to each other1.

There exists techniques to translate a multithreaded Esterel program into a single-threaded program [2] such that it
can be translated into standard sequential programming languages as C. Therefore, Esterel designs can be conveniently
translated to software parts of embedded systems. Moreover, there are techniques to directly map Esterel designs to
register-transfer circuits [2]. It has been shown that the results of this hardware synthesis are almost optimal [8,9] such
that additional optimizations are usually not necessary. For this reason, Esterel can also be used as a good basis for
hardware synthesis.

To summarize, Esterel can be used as basis for hardware-software codesign where Esterel allows to describe the
system mdependent of the later realization in hardware or software. Hence, Esterel is a good language for designing the
digital part of embedded systems. However, from the viewpoint of software engineers, the communication mechanisms
provided by Esterel are rather poor: the only way for threads to communicate with each other is to broadcast globally
visible signals. Instead, software engineers are often used to implement communication via shared memory. Clearly this
presupposes that we have critical sections of code that are executed in a mutually exclusive manner.

It is not surprising that a lot of different communication principles can be implemented with the basic broadcasting
principle provided by Esterel. In particular, the communication over shared variables is, of course, possible The problem
is, however, that the mutual access to these variables must be guaranteed by the programmer, since there are no semaphore
constructs m Esterel. Nevertheless, these can be implemented in Esterel, but we feel that especially the imitation of mutual
exclusion is an error prone task.

The critical section problem was first formulated by Dijkstra [4]: One considers n (n > 2) processes that communicate
with each other through shared variables. Each process has a critical code section and a noncritical code section. The

* This work has been financed by the DFG priority program 'Design and Design Methodology of Embedded Systems-
Note however, that the real amount between different synchronization points of time may differ, i.e. the synchronization points need
not be equidistant. •> r

Schneider K., Sabelfeld V. Introducing Mutual Exclusion in Esterei 347

solution of the 'critical section problem' must satisfy the mutual exclusion property: avoid simultaneous execution of
critical sections in two or more processes. In addition, the following fairness condition must be satisfied: each critical
section that can be executed will not be ignored infinitely many times. We say a solution of the 'critical section problem'
is safe iff it fulfills the mutual exclusion property, and it is called to be fair iff it fulfills the fairness property.

In 1968, Dijkstra described [5] a safe and fair solution for two processes. Lamport [6] presented in 1974 the correct
solution for n processes, called the bakery algorithm. This algorithm uses unbounded counters, and can therefore not be
implemented by a finite state machine. The first finite state solution for n processes was described by Peterson [7] in 1983.
In principle, we could choose Peterson's algorithm for the solution of our problem.

We preferred however another solution since this allowed us to separate the mutual exclusion problem from the
remaining program statements: To implement the mutual exclusion, we introduce an explicit arbitration process that
schedules the different critical sections that could be executed next. It is important that the arbitration is safe, i.e. at
each point of time, at most one process is granted access to the critical section, and fair. As it is not straightforward to
implement such an arbitration process, we have extended the Esterel language by a new region statement for establishing
critical sections.

To implement the arbitration process, we use a modification of the DMA arbitration controller given by Dill [10]. This
modification is finite state: For n processes, we obtain An + 2 boolean valued signals, where only 2n of these signals
are state variables. The state number grows proportional to 0(n2"), but what is.more important: The representation
by OBDDs for symbolic model checking is polynomial [10], so that this implementation lends itself well for verifying
such programs by symbolic model checking. We show in this paper how programs with the new region statement can be
translated to standard Esterel programs and we prove the correctness of this translation. The translation involves mainly
the parallel execution of a fair arbitration process and interfacing the critical sections with a simple protocol. It is our
aim to develop a translation that leads to a simple verification afterwards. In terms of model checking, this means that the
arbitration process should have a good BDD representation. Hence, we do not work with queues or other higher order
data types here.

The paper is organized as follows: in the next section, we present the syntax and meaning of our new statement for
establishing critical sections. We also present the basics of the translation of these programs back to standard Esterel.
After that, we prove the correctness of the translation. This is done twofold: on the one hand, we prove the correctness by
means of model checking techniques. This shows that our arbitration process has a good BDD representation such that
Esterel programs with critical sections can be directly verified by model checking techniques. On the other hand, we prove
the correctness by a paper-and-pencil proof that leads to an interactive proof rule that can be used to eliminate critical
sections for proving a given specification.

2 Extending Esterel by Mutual Exclusion

To express mutual exclusion, we extend the Esterel language by a region statement designed for declaring critical program
sections that can only be executed exclusively from each other. The syntax of the region statement is as follows, where
ident is a name and statement is an arbitrary (extended) Esterel statement:

region ident statement end region ;

We say that the region statement region A S end region belongs to the region A and consists of the body S. A program
can contain many region statements belonging to the same region. The meaning of the statement is as follows: If some
region statements region A Si end region for i — 1,..., k are to be executed in parallel, only one body Sj of the region
statements is chosen for execution while the remaining statements have to wait. The body Sj of this selected region
statement is then executed, while all other region statements are suspended until the execution of Sj terminates. After
termination of Sj a new choice among the remaining region statements is made and so on.2 Hence, at each point of time,
at most one body Sj, 1 < j <n of a region statement belonging to the region A can be active (mutual exclusion). Note
that execution of the body Sj of the selected region statement starts at the same point of time where the region statement
is executed, i.e., entering the region statement does not consume time.

It is important to require additionally that the access to the region A is fair, i.e. if a region statement region A Sj
end region is started, then we guarantee that its body Sj will be executed after some time. In other words, we avoid that
one of the region statements must wait forever and is never granted to execute its body. Clearly, to assure this, we must
assume that all bodies Sj of the region statements terminate in each case. For example, suppose we have k stores storey
for i = 1,..., k, three modules Produce^, Consumeu and Duplicate^ for alH = 1,..., k, and wish to implement the

2 To avoid obvious deadlocks, we forbid nested region statements that belong to the same region.

348 Perspectives of System Informatics'99

., k. To this end, we can use now the following region statements mutual excluded access to the stores storeu i = 1,.
with identifiers Alt..., Ak and run them in parallel:

- region Ai Producet end region
- region Ai Consumei end region
- region A{ Duplicate^ end region

Although Esterel does not provide statements for mutual exclusive execution of threads directly, the Esterel statements
are powerful enough to implement such a behavior. To see this, we show now how our region statements can be translated
to standard Esterel: Let /^region A Si end region for i = 1,..., „ are all the region statements belonging to the region
Amw extended Esterel program 5(Äx ,...,#„). Then, we replace S^,..., Rn) by the following statement:

trap trm in
signal Qi,...,Qn,fA,ai,...,anin

S (Pi,..., P„); exit trm
II

arbitrateA(gi,. ..,Qn, fA,au...,an)
end signal

end trap

where Pi

weak abort
sustain gt

when immediate a*;

emit/A

The statement exit trm is used to löave the external trap statement in case when S terminates. The statement p behaves
as follows: Firstly, the wish of 'region A St end region' to access the critical region A is signaled by emitting the request
stgnal Qi. The additional Esterel thread arbitrateA(ßl,..., ßn,fA, Ql a„) conects an &ese requests ^ decides

which one of the region statements is allowed to enter the critical section. This decision is broadcasted via the signal m
which allows the statement Rt to enter the critical section. After that, St is executed and no further grants are given by
the arbitration thread before $ terminates. The termination of S(is signaled by emitting the release signal fA of region
A which indicates that Ri leaves the region A. This instructs the arbitration thread to make new choices and emit new
access signals ay.

The arbitration thread can immediately select one of the regions and hence, the emission of 6i can be immediately
aborted in JJ. The abortion is however weak which means that even if Pt is immediately selected, there will be an emission
ol Qi for at least one point of time. Note further that the request signal Qi is emitted as long as P, is not allowed to enter
its critical section 5j.

The above replacement of the region statements by standard Esterel statements is straightforward and the code size
remains more or less the same. However, tiie correctness of the replacement is based on a correct Esterel implementation
of the arbitration process. Hence, the correctness of the translation depends clearly on a sound implementation of the
arbitration process that is given in the next section.

3 Esterel Implementation of the Arbitration Process

In this section, we present a possible implementation of the arbitration process that can be used for a translation of
our extended Esterel language back to standard Esterel. The basic idea of this arbitration process goes back to a DMA
controller given by David Dill [10]| However, the circuit given by Dill makes arbitration decisions at any point of time
since it assumes that a single unit of time is sufficient for accessing the shared resource. However, this does not hold in
our case and therefore, we need to adapt the arbitration.

Now, what does the arbitration process have to do? It has to choose one of all requesting threads, i.e. among the indices
i where the corresponding request signal ßi is present at the current instant. The decision is then signaled via emitting
a grant signal a*. After getting access, the region section i executes its critical section, and hence the arbitration thread
must await the termination of 5, (signaled by fA). The next arbitration decision can be made when the release signal U
is emitted by Pj. 6 Jil

The Esterel implementation of the arbitration process for a region A with n region statements is given in Figure 1
there are n inputs QU ..., Qn that are emitted by the region statements for requesting access to the shared resource The
arbitration process emits one of the n outputs ax,..., an for allowing access to one of the processes

We will now «plain how the arbitration process works without going into details of the Esterel language For this
reason we translate the Esterel program to a finite state machine by means of the Esterel semantics [2]. It is however
reasonable to present an intermediate result of the translation andnotthefinal one. In particular, we consider a combination
of parallel running interacting finite state machines for the subsequent Esterel threads of the arbitration process given in

Schneider K., Sabelfeld V. Introducing Mutual Exclusion in Esterei 349

modulearbitrateA(ei, - • •, Qn, fA, oi,...,an):
\ti,... ,tn,pi,... ,pn,arbin

"loop
abort sustain t\ when arb;

abort sustain t„ when arb
end loop

//rotating tokens for daisy chain

loop
weak abort halt when QI A t\;
weak abort sustain pi when -igi

end loop

/ /setting persistence
11 for process 1

loop
weak abort halt when Qn A tn;
Weak abort sustain pn when -IQ„

end loop

//setting persistence
/ /for process n

loop
weak abort

loop emit arb;
present V"=i(*» A P«)
then present

case #1 A fi A pi do emit ai;

case ^„ A tn A pn do emit an;
end present

else present
case QI do emit ai;

case Qn do emit an;
end present

end present;
pause

end loop
when V"=i en
weak abort halt when /A

end loop
end signal

end module

//give acknowledge
//when arbitration is
/ /required

Fig. 1. Implementation of the arbitration process in Esterel

350 Perspectives of System Informatics'99

Figure 1. These finite state machines are given in Figure 2. Moreover, we define for i € {1,..., n} the output signals a{

as a* := arb A & A fa APiV static A A}=i ->Qj), where static := A"=1 fa -> -nPj).
It is to be noted that this translation is based on the formal semantics of Esterel and is therefore sound wrt. the seman-

tics of Esterel. To see the principle of the translation, we list the translation of a subsequent thread that sets the persistence
flag p* •

ÄQkAtk)

f
>

■ r
loop

weak abort
hält

whenßfc Atk\
weak abort

sustain pk
when -'Qk

end loop

Qk Atk

loop
weak abort

halt
when QkAtk;
weak abort

sustain pk
when ->£fc

end loop

-'Qk

< J t J

Qk

In the thread for setting the persistence flag pk, there are two progräm locations where the control flow rests for the next
point of time. These locations are indicated by a hat in the above finite state machine. It is easy to see that the above finite
state machine matches with the corresponding one given in Figure 2. The others are obtained similarly.

To formally reason about the function of the entire arbitration thread, we derive now transition equations of the boolean
state variables according to Figure 2:

init(ti) := 1
init(V) ~ 0
init(pfc) := 0
)ri\t(arb) :— 1

next(ii) := (arb -> tn) A (-^arb -» t{)
next(ifc) := (arb ->• tk-i) A (-^arb -*• tk)
next(pk) := gk A (pk V tk)
next(arö) := (~,arb A fA) V (arb'A -> V"=i Qj)

static := A"=1 fa -» -iPj) ak := arb AgkA (tk APkV static A A*!* ->Qj)

Qn/\tn

Vn
j=i es

V?=i Qs
-fA

Fig. 2. Transition diagram for the finite state machine of the arbitration process

Schneider K., Sabelfeld V. Introducing Mutual Exclusion in Esterel 351

The state variables tk describe a ring of n states ti,...,tn where transitions are made from tk to t(fc mod „j+1 whenever
an arbitration decision can be made. This models a round robin schema, i.e. there is a rotating token associated with the
region statements: we say a region statement Rk 'has the token' whenever we are in state tk. Note that at each point of
time, exactly one ofthe boolean state variables t\, ...,tn is present.

There are two reasons why a statement Rk may be granted access to the critical region: If au holds, then we have
arb AgkAtkApk or arb AgkA static A /\. ~a ->QJ . Both cases exclude each other: First assume arb A gk Atk Apk holds.
This means that in particular, tk A Pk holds, and hence static can not hold, so that the second case can not hold either. On
the other hand, assume arb AQkA static A [\^~\ ->Qj holds. Then, static holds, that implies tk -)■ ->pfe. Thus tkApk can
not hold which would be necessary to satisfy the first case.

Therefore, there are two different reasons for an arbitration decision: firstly, the access may be granted by static
priorities. If static holds, then the region statement Ri with the smallest index i is granted to execute its body. Secondly,
if the region statement Rk that currently has the token (tk = 1) has set its persistence flag (pk = 1), the static priorities
are ignored and Rk is immediately granted access to the critical section. The persistence flags pk are used to establish the
fairness of the arbitration: whenever Rk request for accessing the region (gk = 1) the request remains until it is satisfied.
Hence, there will be some time where region statement Rk receives the token and this event sets the persistence flag pk.
If Rk is not granted to access the region at this point of time, the token will rotate another round. However, if the request
has not been satisfied when the token returns again (this implies static = 0, since We then have tk A Pk), then we know
that Rk has been ignored at least for the last n arbitration decisions and will therefore be immediately granted access to
the region. This assures the fairness of the arbiter.

While a region statement executes its body statement, no further arbitration decisions are to be made. For this reason,
we stop the rotation of the token during this time. This is done by introducing a further boolean state variable arb that
is false iff one of the region statement executes its body statement. Arbitration decisions are only to be made when arb
holds. Initially, arb holds since none of the region statements is in the critical section. Then, we are waiting until one of
the processes requests for the access. If this is the case, one of these region statements is allowed to execute its body.3

Therefore, arb is unset and remains false until the termination signal /A is emitted by the region statement that has been
granted access to the critical region.

4 Verifying the Arbitration Process

Note that the implementation given in Figure 1 is only a fixed version of an arbitration process that can be replaced by
any other that satisfies the following requirements that we present in temporal logic [11]:

Exclusive: At each point of time, at most one Rk may enter the critical region:

n / n \
/\ G [or* -» /\ -.cy
k=i \ j=i,^fc /

Only Requested: Only statements are granted to enter the critical region that request for an access:

f\ G (ak -»• arb A gk)
*=i

Immediate Grant: Whenever arbitration decisions can be made and there are requests, then there will also be a grant:

/\{aj -+X-iQj)

U=»
AG A Qi -»■ fe U <*j

i=l

->G

satisfied request persistent request immediate decision

Fairness: The arbitradon is fair, if we assume that all bodies S* terminate and if all entering requests persist either until
they are granted (or forever):

V aj -> XFfA

^=i J
AG A ~,FG \ßi A "^

termination persistent request fairness

3 We will prove below that whenever arb and some of the Qi hold, then also one access is' granted at the same point of time, i.e. one
ai holds.

352 Perspectives of System Informatics'99

The latter condition is very subtle and is therefore explained in more detail. The first assumption is that each body of
each region statement terminates in any case. Clearly, if this did not hold, we would not be able to guarantee the fairness.
The second assumption is that once a region statement requests for accessing the critical region, it insists on requesting
until it receives a grant to enter the critical section.4 The assumption uses a weak until operation which means that the
assumption does also hold when the region statement is never granted access to the critical region. The fairness condition
proves however that this will not happen.

To verify the above specification for an arbitration process for n region statements, we used the linear time temporal
model checker implemented at our institute [12,13]. We found it more than difficult to express the fairness condition
in CTL, so that the use of the LTL frontend was really necessary. The Exclusive and Only Requested conditions of our
specification have been checked within a second, so that we do not list detailed runtimes for them. The experimental
results that we obtained for the Immediate Grant and Fairness conditions are given in Figure 3 (SUN Sparc 10,300 MHz,
Solaris 5.7,640 MByte main memory).

Runtime: [x25 Seconds]
Fairness

. . .'': Immediate Grant
Storage: [x2500 BDD nodes]

■ Fairness
■ Immediate Grant

30 35 40
Region Statements

Fig. 3. Runtimes for the verification of the arbitration process

The automatic verification is in this case completely sufficient: we are able to verify the fairness of more than 40
region statements in less than one third an hour. Therefore, we see that the implementation of our arbitration process lends
itself well for model checking techniques. We therefore believe that also Esterel programs with mutual exclusive regions
can be verified efficiently with model checking techniques.

5 Interactive Proofs

The correctness can also be proven by means of a theorem prover such as the HOL system [14]. Again, the most com-
plicated condition to prove is the fairness condition. The proof of the fairness runs in the following lines: First of all, it
follows from the termination of the body statements that for any k the region statement Rk will receive the token infinitely
often, i.e. we have (1) GFtk for any k. Now, assume there exists some k such that (2) FG(ßfc A ^ak) holds, i.e., after some
point of time t0 it holds forever that the region statement Rk requests for the critical region, but is never allowed to enter
it. As Rk will receive the token infinitely often (as any region statement does), it will also receive the token after t0. Let
t0 + h be the first point of time after t0 when Rk receives the token. Then, it follows that the persistence flag pk of this
region statement Rk is set at t„ + h. As gk holds always after t0 by (2), Pk remains true after t0 + tx by definition of Pk.
4 It is easy to see that the P« 's of section 2 implement this.

Schneider K., Sabelfeld V. Introducing Mutual Exclusion in Esterei 353

However, by (1), Rk will receive the token also infinitely often after t0 + h, so let t0 + h+12 be the first time after i0 + h
when Rk receives the token again. By definition of the grant signals, this will immediately grant Rk access to the region
(as now arbAgkAtkApk holds). Therefore, we obtain a contradiction, so that (2) must be false and the arbitration is fair
for any number of threads. The other properties are easily proved by a simple consideration of the implementation of the
thread arbitrate A '■ The present statements allow only one grant at a time.

As a result, we can now establish a proof rule for the verification of Esterel programs with region statements. This rule
can be used interactively to transform verification goals with Esterel statements with region statements into other goals
that do no longer contain these region statements. The rule is simply the following, where Q\,..., gn, JA, oti,..., an are
disjoint signals that do neither occur in S(Ri ,...,Rn) nor in #:

£(£!,..., I?n)M

ALxG(Qfc-»ö*)A
S(Plt...,Pn)t= G

G

(VLi^)->x[(A?=1-W) U/A]]A
[(V"=1 <*i) "> K/A] -> A;=X -FG [Qj A -.a,]]

/

The rule is to be read as follows: Given that our task is to prove that an Esterel program S(Ri,... ,Rn) that contains the
region statements R\,..., Rn belonging to the same region A satisfies the property # which may be given in a first-order
temporal logic formula as described in [15]. Then, it is sufficient to prove that the Esterel program S (Pi,..., Fn) satisfies
the property $, where we can use as additional assumptions the above listed properties. The rule simplifies the proof task
since it encodes the semantics of the region statements by replacing them with corresponding specifications. Note further
that in the reduced goal, no arbitration process occurs, since we already know that it is correct. In fact, the arbitration
process has been replaced with the new assumptions that can therefore be viewed as an declarative form of our arbiter.

6 Conclusions and Future Work

We have shown how the synchronous language Esterel can be extended by a new statement so that mutually exclusive
regions are provided by the syntax. We have moreover shown how the thereby extended Esterel language can be translated
back to standard Esterel by surrounding the critical code sections by a simple protocol, and adding a separate arbitration
thread for each critical section. Also, we have proved the correctness of this arbitration thread by means of model checking
the temporal logic specifications for some numbers of threads, and also by a paper-and-pencil proof for arbitrary numbers
of threads. In particular, we have proved that the solution is safe, i.e., at any point of time any critical section is executed
by at most one thread, and fair, i.e., no thread must wait infinitely long for accessing the critical section (provided that any
thread releases the section after a finite amount of time).

Note, however, that this does not mean that there are no deadlocks. Clearly, when we only have one critical section,
i.e., if all region statements refer to the same critical section, then we can state that the program is free of deadlocks. In
case, we have more than one critical section, it is however obvious, thai! deadlock may occur, as given by the following
simple program:

region A region B
pause; pause;
region B region A

end region end region
end region end region

In a first step, the left hand thread requests for an access to the section A, while the right hand thread request for an access
to the section B. If there are no other requests, the arbitration thread for section A will grant the left hand thread above the
access, and analogously, will the right hand thread receive a grant to access section B. At the next point of time, however,
the left hand thread above requests for section B, while the right hand thread requests for section A. Both requests can
not be granted since both arbitration threads are now not in arbitration mode since both sections A and B are already
accessed.

354
Perspectives of System Informatics'99

i.e.
To circumvent these problems, we plan to extend the region statements so that multiple requests are possible at once

, we allow statements of the following form: ^4 » <u«= po^ioie ai once,

region Ax,..., An S end region

The protocol code P, for replacing such statements Rt is similar to the one given here, but the arbitration is now more
comphcated,_smce we must now consider all regions in a single arbitration process. If we then forbid nestings of these
extended region statements, we can again find deadlock free arbitration threads similar to the solution of the generalized
dining philosophers problem as given in [16]. ««u^cu

References

1. G. Berry and G. Gonthier. The Esterel synchronous programming language: Design, semantics, implementation. Science of
Computer Programming, 19(2):87-152, 1992. oc«e«ce uj

2. G. Berry. The constructive semantics of pure Esterel, May 1996
3. G. Berry. The foundadons of Esterel. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and Interaction: Essays in

Honour of Robin Milner. MIT Press, 1998.
4. E. W. Dijkstra. Solution of a problem in concurrent programming control. Comm. ACM, 8(9)569 1965
5. EW Dijkstra^ Cooperating sequential processes. In F. Genuys, editor, Programming Languages, Academic Press, New York,

p.4j-llZ, I960. . . : .

6. L. Lamport. A new solution of Dijkstra's concurrent programming problem. Comm. ACM, 17(8)'453-455 1974
7' ?(l):56-65rSl,983A *" ^^ ^ Lamp°rt'S concurrent programming problem. ACM Transactions on Progr. Lang, and Systems,

8' ?oo?UrS^G" Berry-,°Ptimized contr°ller ^thesis using Esterel. In International Workshop on Logic Synthesis, Lake Tahoe,
1993. IEEE Computer Society Press.

9. H. Toma, E. Sentovitch, and G. Berry. Latch optimization in circuits generated from high-level descriptions. In IEEE/ACM
International Conference on Computer Aided Design (ICCAD). ACM/IEEE, IEEE Computer Society Press 1996

10. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell Massachusetts 1993
11. E.A. Emerson Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B

pages 996-1072, Amsterdam, 1990. Elsevier Science Publishers.
12. K. Schneider. CTL and equivalent sublanguages of CTL*. In C. Delgado Kloos, editor, IFIP Conference on Computer Hardware

Description Languages and their Applications (CHDL), pages 40-59, Toledo,Spain, April 1997. IFIP, Chapman and Hall
13. K. Schneider Model checking on product structures. In G.C. Gopalakrishnan and P.J. Windley, editors, Formal Methods in

Computer-Aided Design, vol. 1522 of Lecture Notes in Computer Scienc, pages 483-500, Palo Alto, CA, November 1998. Springer
Verlag. °

14. M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving Environment for Higher Order Logic Cambridge
University Press, 1993.

15. K. Schneider and T. Kropf. The C@S system: Combining proof strategies for system verification. In T. Kropf, editor Formal
Hardware Verification - Methods and Systems in Comparison, volume 1287 of Lecture Notes in Computer Science, pages 248-
329. Springer Verlag, state of the art report edition, August 1997.

16. K.M. Chandry and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1988.

Experiences with the Application of Symbolic Model Checking
to the Analysis of Software Specifications

Richard J. Anderson, Paul Beame, William Chan, and David Notkin

Department of Computer Science and Engineering,
University of Washington

Box 352350, Seattle, Washington 98195-2350, USA +1-206-543-1695
{anderson, beame, wchan, notkin}@cs.washington.edu

Abstract

Symbolic model checking is a powerful formal-verification technique which has been used to analyze many
hardware systems. In this paper we present our experiences in applying symbolic model checking to software
specifications of reactive systems. We have conducted two in depth case studies: one, using the specification of
TCAS II (Traffic Alert and Collision Avoidance System II), and the other using a model of an aircraft electrical
system. Based on these case studies, we have gained significant experience in how model checking can be used
in to analyze software specifications, and have also overcome a number of performance bottlenecks to make the
analysis tractable.

The emphasis of this paper is the uses of model checking in the analysis of specifications. We will discuss
the types of properties which we were able to evaluate in our case studies. These include specific errors we were
able to identify, as well as general properties we were able to establish for the systems. We will also discuss,
in more general terms, the potential uses of symbolic model checking in the development process of software
specifications.

Keywords

Formal methods, formal verification, symbolic model checking, binary decision diagrams, software specification,
finite state representations.

1 Specification of reactive systems

Reactive systems are central to modern technology. Examples of their deployment range from air traffic control
systems to advanced medical devices. Since they are often deployed in safety critical applications where their
malfunctioning could cause significant injury or loss of life, their correct implementation is of great importance.

In studying the problem of how to better design these systems, we concentrate on the specification level.
Correct specification is particularly important, since it is widely recognized that errors introduced early in
system design are the most difficult and expensive to fix. We restrict attention to specifications which are
represented as finite state machines, using languages such as Statecharts or RSML.

The broad goal of the work is to develop techniques that allow us to increase our confidence in specification.
This includes being able to show that specifications obey general design rules, as well as satisfy particular
domain dependent properties. We are interested in incorporating these techniques into the development process
of the specification - using them to debug the specification as it is being created, as opposed to just using them
in a validation phase to verify the specification when it is complete.

2 Model checking technology

Model checking is a formal verification technique based on state space exploration. Given a state transition
system and a property, model checking algorithms exhaustively explore the state space to determine whether
the system satisfies the property. Properties are often expressed in a temporal logic such as CTL (Computation
Tree Logic) [9]. An important aspect of model checking is that when a formula is discovered to be false, a
counter example is provided. This helps with the understanding of the source of the error, which could be in
the model, the translation, or even in the formula being evaluated.

356 Perspectives of System Informatics'99

A natural concern about model checking, is that since the entire state space must be explored, the run
time of algorithms is at least proportional to the size of the state space, which is potentially enormous. The
breakthrough, which has allowed model checking to be applied to systems with much larger state spaces, was
to use an implicit representation of that that space, and to use symbolic techniques for exploration [4,16].
Instead of visiting states one at a time, symbolic model checkers visit sets of states in each step. The underlying
representation which is generally used is the Binary Decision Diagram (BDD) [2]. In many practical cases, the
size of the BDDs needed to represent the sets of states used in the model checking algorithm is small. The size
of the BDDs used generally determine the performance of the algorithms. Much of the technical model checking
literature deals with the issue of managing BDD size.

Model checking was first used in the analysis of hardware designs, and is now recognized as an important
formal tool to use when building hardware systems. When we started our work on applying model checking to
software, it was an open question whether or not model checking would yield interesting results on software.
There was a belief by some researchers that software specifications lacked the requisite structure to allow model
checking to succeed. However, there have been a series of case studies by ourselves [5,6] and other researchers [1,
10,14,19] reporting positive results for applying model checking to software. The impetus for the work was to
determine «/model checking could be used to analyze software specifications, but now the issue has shifted to
determining how to get the most leverage in using model checking the design process.

3 Application of model checking to software

The question of the feasibility of model checking can be phrased in a number of ways. We distinguish between
these to emphasize that the issue is not "does it work or not", but "how can the technology be most effective."

Modeling the system. The first step in model checking is to translate from the specification language (in our
case R.SML [15] or Statecharts [11]) to the representation of the model checker (we used SMV [16]). When
this is done, the basic model can be constructed, and a reachable state space is computed. It is possible
that the initial step could fail because of BDD size explosion, so a negative result could be reached prior to
evaluating any formula. In our case studies, we had to do a substantial amount of work to reach the point
where the initial construction of the model was feasible.

Evaluation of Properties. The second step in establishing feasibility of model checking is to show that there
are non-trivial properties which can be evaluated. The standard test (to claim a positive result for model
checking), is to find previously undiscovered bugs in the specification under analysis. Note that this changes
the emphasis to falsification - the desire is to show the specification does not work. The absence of falsifying
examples is not verification. We believe that this will be one of the major uses of model checking: as

• a debugging tool for identifying errors. This will be an important tool to improving overall quality by
augmenting the ways that errors can be found. We discuss below various types of properties which can be
evaluated.

Range of Properties. The next question is what range of properties can be evaluated. There are limitations
on BBD based symbolic model checking which have ramifications on the types of properties which can be
checked. For example, BDDs Ho a poor job of representing multiplication, which limits our ability to check
properties which involve complicated arithmetic.

Performance. The performance question is often the issue between a check being feasible and infeasible.
For example, our first successful check (of a trivial property) took 13 hours. This was later reduced to
just minutes by modifying the algorithm. In many situations, the tolerable wait for a result is probably
measured in minutes (because of interactive use, or because of a group of checks being performed at once
The performance of the algorithm is directly correlated with the size of the intermediate structures which
are generated.

Ease of use. The long range goal is to develop model checking technology so that it can be used by engineers
who are not experts in model checking. Our work has not reached the stage where this can be assessed Our
success in the case studies required modifying the underlying model checking algorithms.

Development process. Our view is that the critical question is how to use model checking while developing
specifications. One can imagine a development methodology where a set of invariants are maintained as
components of a system are designed. Components can initially be modeled at a high level of abstraction -
either by specifying their desired behavior, or by using non-deterministic devices.

 Anderson R. J. et al. Experiences with the Application of Symbolic Model Checking 357

4 Case studies

We have conducted two major case studies where we applied symbolic model checking to software specifications.
The first study was our TCAS study [5], and the second involved a model of an aircraft electrical system [6].
The second study was done in collaboration with engineers from the Boeing Corporation. These studies both
involved large, real world specifications, written by other people. Size was an important issue, since we wanted
to validate the technique on specifications of commercial scale, as opposed to just on toy problems.

4.1 TCAS

TCAS II is an airborne collision avoidance system required by the United States Federal Aviation Administra-
tion (FAA) on most commercial aircraft that enter U.S. airspace. The TCAS-equipped aircraft is surrounded
by a protected volume of airspace. When another aircraft intrudes into this volume, TCAS II generates warn-
ings (traffic advisories) and suggests possible escape maneuvers (resolution advisories, or RAs) in the vertical
direction to the pilot.

The system requirements specification of TCAS II, a 400-page document, was written in RSML. The first
obstacle to analysis was its sheer size. As a first attempt we decided to try'to verify a portion of it, namely
a state machine called Own-Aircraft , which occupies about 30% of the specification. Own-Aircraft has close
interactions with another state machine called Other-Aircraft , which tracks the state of other aircraft in the
vicinity and possibly generates RAs. Up to thirty other aircraft can be tracked. From the RAs given by all the
instances of Other-Aircraft , Own-Aircraft derives a composite RA and generates visual and audio outputs to
the pilot.

We were able to evaluate various properties of the specification, including some which revealed errors in the
specification1. One example was testing the following:

AG ((Composite-RA = Climb
& Composite-RA-Evaluated-Event)

-> Displayed-Model-Goal >= 1500)

A pilot receives two different outputs from TCAS when being given instructions on avoiding another aircraft:
an action (Climb or Descend), and a desired altitude rate of change. The query is checking that when the pilot
is instructed to climb, the rate of altitude change is positive. There was a fairly complicated counterexample to
this, which involved an intruder aircraft changing its climb rate in adjacent time intervals. Further discussion
of the properties we were able to check is given below.

We now mention a'few of the major steps in the analysis. We made significant use of non-determinism in our
analysis. This means that some of the state machines were represented as machines which could make arbitrary
transitions, instead of the transitions made in the specification. Using non-deterministic machines means that
the analysis is conservative with respect to safety properties. Using non-determinism allowed us to apply model
checking in an incremental fashion: we only needed to have portions of the system translated in order to check
properties, and we could refine our translation in response to results of the model checker. (This was important,
since it allowed us to catch errors in our translation). There were portions of the system, involving multiplication
and division in the transition relation which we were not able to model. We replaced these by non-deterministic
operators, which gave a superset of possible transition. Again, this was done so that we could evaluate properties
without having a complete model of the system.

State machines are a natural model for reactive systems which interact with the outside world. The inputs to
the system are external events. In TCAS, an example of an external event is a transponder signal received from
another aircraft. State machines also generate internal events which are used to communicate between different
submachines. There has been much discussion of the semantics of these different types of events [13,18,12].
One issue is whether the internal events can be active when there are external events received. The TCAS
model (using RSML) uses the synchrony hypothesis, which is that all internal events are processed between
external events. One way of viewing this is that internal events are infinitely faster than external events. (This is
reasonable for systems such as TCAS, where the separation of external events is measured in seconds). To model
synchronization, a state variable stable is introduced to keep track of when there are active internal events.
The handling of synchronization has a major impact on the performance of the model checking algorithms.

A major difference between the TCAS specification and many hardware specification is that some of the
transition rules in TCAS depend on arithmetic operations. Examples include comparing altitudes to determine

1 We were working with a preliminary version of the specification (Version 6.00, March 1993). We do not know if the
issues are present in later versions of the specification.

~ Perspectives of System Informatics'99

separation, and estimating positions based upon velocities and accelerations. Arithmetic involving addition and
comparison can be handled, provided that it is represented at the bit-wise level, and the bits are interleaved
appropriately. However, multiplication operations are not amenable to BDD representation [3], and this did limit
the portions of the specification that we could analyze. Proper handling of multiplication is an open problem In
other work, we have attempted to integrate constraint solving and model checking to handle transitions based
on multiplications [7].

4.2 Aircraft Electrical System

Our second case study was an analysis of a Statecharts model of the electrical power distribution (EPD) system
on the Boeing 777 aircraft. We stress that the Statecharts model was developed for research purposes and does
not represent the actual requirements used to develop the on-board system. As such the model bv intent did not
include all the logic necessary for a complete specification. The model was intended as a high-level abstraction
of the electrical system, which included only the logic necessary to accomplish the goals of a wider airplane
system analysis [17].

The purpose of the EPD system is to distribute AC and DC power to other airplane systems. It comprises
separate interconnected distribution systems including main AC power, backup AC power, DC power, standby
power, and flight controls power. Electrical power is distributed from power sources to power busses via a
number of relayed circuit breakers. Failures of the power sources or circuit breakers are automatically detected
and isolated. We focus on the pbrtion of the Statecharts that models the main and backup AC distribution
subsystems.

One of the requirements of the electrical system was that it supports a degree of redundancy - components
should remain powered in spite of several failures. Checks contingent on a number of failures could easily be
represented in the logic, so we were able to evaluate various fault tolerant properties.

Two properties we checked were "Not only should the busses be powered when there are no failures, they
should be powered by different sources" and "The main busses should in fact tolerate one failure in the power
sources or circuit breakers using the formulas

AG ((Stable & No-Failures)
-■> Separate-Sources)

and

AG ((Stable k At-Most-1-Failure) -> main)

respectively. Both of these properties failed for essentially, the same reason: there was a subtle modeling flaw in
specifying the circuit breaker. The failure of a circuit breaker and its subsequent, recovering were represented as
boolean variables, and not as events, so a transistion was not made inside the circuit breaker after its recovery,
and it was left in an incorrect state. The scenerios to trigger the error were moderately involved. For example,'
in the second example it involves a failure in a circuit breaker, a change in inputs to induce a state change in
its controller, the circuit breaker's recovery, and a subsequent failure in one of the power sources.

5 Uses of model checking

The prime use of model checking'is as a debugging tool. Specific properties are tested, and when a violation is
found, a counter example is given. In contrast to verification, model checking is used to find errors, not prove
correctness. Model checking can be used in conjunction with other testing methods (such as simulation) to gain
confidence that errors have been found and eliminated.

A fundamental question in applying model checking is "What to check?". Our experience is that the prop-
erties of interest divide into two broad classes: domain dependent, which require understanding of the domain,
and domain independent, which can be considered as "design rules" for specifications.

5.1 Domain dependent properties '

A key to our success in the two case studies was access to experts on the systems that we were working with
We would not have been able to identify the properties to evaluate for the TCAS study without this expertise
Issues such as looking checking the consistency of the outputs to the pilot (advisor and climb rate) would not
have occurred to us. The understanding of counterexamples also required significant domain knowledge It was

 Anderson R. J. et al. Experiences with the Application of Symbolic Model Checking _^^ 359

necessary to thoroughly understand the counterexamples in order to determine the type of the error. We do not
believe that it will be possible to reduce the role of the domain expert in the model checking process.

In our study of the aircraft electrical system, we also worked with domain experts (the designers of the
model). In this study, the properties to test were more accessible. We had a document which outlined a set of fault
tolerance requirements. These were phrased in terms of probability of failure, but there was a correspondance
between this and bounding the number of simultaneous failures. Expertise was still necessary in order to clarify
several of the properties that had to be tested. Model checking turned out to be an excellent tool to use for the
evaluation of,fault tolerance, since the number of failures could be included in the precondition of the property
being checked.

5.2 Domain independent properties

Domain independent properties can be viewed as design rules that specifications should satisfy. An example of
a property that is quite easy to check is whether the state transitions are deterministic: is it the case that every
state can have at most bne transistion enabled at a time. This can be tested by defining a property which tests
for simultaneoulsy active transitions in reachable states. The reason why it is generally argued that deterministic
transitions are important is that if there is a choice in the behavior, then different implementations may behave
differently. A related property is "function consistency". If a function is defined in terms of cases, it is natural
require that the cases are mutually disjoint. Discussions of other domain independent properties can be found
in our papers [5,6].

6 Performance

Both of our case studies involved large specifications which generated models which were close to the maximum
size which could be evaluated with a model checker. In the TCAS study, the model had a global state space
with 227 Boolean variables, 10 of which are for events, 36 for the states of Own-Aircraft , 19 for the states of
Other-Aircraft , 134 for altitude and altitude rates, 22 for inputs other than altitude and altitude rates, and
6 for other purposes. The size of the state space is about 1.4 x 1065. The size of the reachable state space is
at least 9.6 x 1056. In the electrical system study, there are 33 two-state machines, 23 Boolean inputs, and 34
events, for a total of 90 Boolean state variables, or about 1027 global states, of which at least 1015 are reachable.

Our general experience is that the performance question is between feasibility and infeasibility as opposed
to optimizing performance. Most of our successful checks ran in under 10 minutes using about 10 megabytes of
memory. Unsuccessful checks were usually terminated after several hours. Failing computations generally had
excessively large internal (BDD) representations.

Our initial attempts to check formulas in both the TCAS and the EPD studies were unsuccessful. In both
cases we were forced to make significant changes to model checking algorithm, and to our methods of translating
from the state machine model to the representation for the model checker. More detailed descriptions of our
performance enhancements can be found in our papers: [5,8,6]. Our methods for addressing the performance
problems have included: '

Bitwise arithmetic The order of variables in a BDD can influence it's size. We needed to interleave the
variables corresponding to the bits of binary data. This was done by a transformation which was applied
when compiling to the source language of SMV.

Search Order We found it necessary to modify the search algorithms used by SMV. One modification involved
storing information during a forward search to make generation of counter examples more efficient. The
choice between forward search and backwards search was often important.

Short circuiting This technique reduced the number of BBD's generated by stopping the iterations before a
fixed point was reached.

Making exclusive events explicit This allowed backwards search to be performed much more efficiently
reducing the size of BDD's.

Partitioning strategies One of the ways to reduce the size of the BDD for the transition relation is to
decompose it several BBD's with disjunctive or conjunctive partitioning [4].

Abstraction One abstraction technique that we applied was to identify portions of the system the were not
relevent to a check (with a conservative analysis), and remove that part of the system to reduce the size of
the model. One of the keys to making this work well is to be able to identify false dependencies.

360 Perspectives of System Informatics'^

Synchronization Our representation of state machines distinguihed between macrosteps (for outside events)
and rnicrosteps (for internal events). Inside a macrostep, all internal events would be executed, so the next
macrostep could not start until no more internal events could be generated. We discovered that performance
could be greatly improved if we made the synchronization process as regular as possible, even at the expense
of increasing the number of states, or the lengths of event chains.

7 Conclusions

The goal of our work has been to show that symbolic model checking can be used in the analysis of software
specifications. We have conducted case studies on real specifications, and have had success in identifying errors in
the specifications that were not previously known. We have also developed techniques improve the performance
of the model checking algorithms, and allow checks to be made which were previously intractable We are
optiministic about the future of model checking in the software development process. There is still much work
to do in refining the algorithms and developing tool support for software model checking, but there is a growing
body of evidence that model checking is applicable in the software domain as well as in the hardware domain

References

L I'^nftHnr T J' ^Töm^lT? m0<M ^^ 0f event-driven "ystem requirements. IEEE Transactions on Software Engineering, 19(l):24-40, January 1993.

2' 35(5=67^691; A^SMSf alg°rithmS ** ^^ fUnCti°n "^P^km. IEEE Transactions on Computers,

3' L?' Kiyant; °.n th6 CTP!eXi<? of VLSI implementations and graph representation of boolean functions with
applications to integer multiplication. IEEE Transactions on Computers, 40(2):205-213, February 1991

4. J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic model checking for sequential
circuit verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits, 13(4):401-424, April 1994

5. W Chan, R J. Anderson P. Beame, S. Burns, F. Modugno, D. Notkin, and J. D. Reese. Model checkig arge
software specifications. IEEE Transactions on Software Engineering, 24(7):498~520 July 1998
W. Chan, R J. Anderson, P.,Beame, D. H. Jones, D. Notkin, and W. E. Warner. Decoupling synchronization from
logic for effiaent symbohc model checking of Statecharts. In Proceedings of the 1999 International ConferenceTn
Software Engineering: ICSE 99, Los Angeles, USA, May 1999. To appear inference on

?' LS^'2" J' AnlerSOn']
R Beame' and D- Notkin- Combining constraint solving and symbolic model checking for a

dass of systems with non-hnear constraints. In O. Grumberg, editor, Computer Aided Verification, 9th International

Zl\[ZT'S^IZ^ ' 1254 °f LeCtUre NOtBS iH COmPUUr SCimCe' Pag" 316 327' Haifa Is-i
8' r^11^' R; J' Ande™n'R Beame> and D- Notkin. Improving efficiency of symbolic model checking for state-based

oTZwa^Zr dA 7ng' edit°r' If™ 98: Pr0Ceedin9S °f the ACM SIGS0FT ^ernattnal SympoZrn on Software Testing and Analyse, pages 102-112, Clearwater Beach, Florida, USA, March 1998. Published as
Software Engineering Notes, 23(2). **° ruuuhnea as

9. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems usine
temporal logic specifications. ACM Transactions on Programming Languages and Systems, 8(2):244 26"! IPS

6

10' w°7Z and V' D! yit0," !onnalizing sPace shuttle software requirements. In Proceedings of the ACM SIGSOFT
Workshop on Formal Methods in Software Practice, pages 40-48, January 1996

U" ?un^9t7
StateChartS: A ViSUal f°rmalism for comPlex systems' Sci™™ of Computer Programming, 8(3):231-274,

12- 1^^ ACM ~ « ***« peering

13. D. Hard, A. Pnueli, J. P. Schmidt, and R. Sherman. On the formal semantics of Statecharts (extended abstract) In
Proceedings: Symposium on Logic in Computer Science, pages 54-64, Ithaca, New York, UsHSeWsTS'

Co^EDA^eZ^^ ^Proceedings: The European Bestand Test
conference. ED AC, The European Conference on Design Automation. ETC, European Test Conference EUROAVC
The European Event in ASIC Design, pages 142-149, Paris, France, February/March 1994. IEEE BUROASW>

loJ^Zlt^7Em^ ^Vf B- J Mto Soft— requirements analysis for real-time
1« v \ L iST a m , Transactions on Software Engineering, 17(3):241-258, March 1991
16. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers 1993

"' U JJ!we aQd 7;,E'a
Wf ?6r- LeSS°nS leained fr0m a trial ««^cation <* requirements modeling using Statecharts

KSTÄ ^national Conference on Retirements Engineering, pages 86-93,SColorido Spt"^

 Anderson R. J. et al. Experiences with the Application of Symbolic Model Checking 361

18. A. Pnueli and M. Shalev. What is in a step: On the semantics of statecharts. In T. Ito and A. R. Meyer, edi-
tors, Theoretical Aspects of Computer Software, International Conference TACS'91, volume 526 of Lecture Notes in
Computer Science, pages 244-264, Sendai, Japan, September 1991. Springer-Verlag.

19. J. M. Wing and M. Vaziri-Farahani. A case study in model checking software systems. Science of Computer
Programming, 28(2/3):273-299, April 1997.

Formal Verification of a Compiler Back-end
Generic Checker Program*

Axel Dold and Vincent Vialard

Universität Ulm
Fakultät für Informatik
D-89069 Ulm, Germany

fax: ++49 +731 50-24119
{dold|vialardjöki.informatik.uni-ulm.de

Abstract. This paper reports on a non-trivial case-study carried out in the context on the German cor-
rect compiler construction project Verifix. The PVS system is here used as a vehicle to formally represent
and verify a generic checker routine (run-time result verification) used in compiler back-ends. The checker
verifies the results of a sophisticated labeling process of intermediate language expression trees with in-
stances of compilation rule schemata. Starting from an operational specification (i.e. a set of recursive PVS
functions), necessary declarative properties of the checker are formally stated and proved correct.

Keywords: formal verification, checker-based program verification, generic specification

1 Introduction

The German project Verifix on compiler verification aims at developing innovative methods for the construction
of correct realistic compilers for practically relevant source languages and concrete target architectures. Correct
execution of source programs depends on the correctness of the binary machine code executable, thus either the
final executable has to be verified or the compiler used is to be shown correct [3].

A realistic state-of-the-art compiler is a large and complex program system consisting of many hard, highly
optimizing algorithms which are difficult to verify since mathematical inductive arguments often fail. For ex-
ample, the code generation phase of a compiler often uses clever routines for register allocation, instruction
scheduling or pipeline optimizations. For this reason, a more practical modular approach is taken: we use a
checker-based approach to program verification, which works if partial correctness suffices (i.e. rather no result
than a wrong result). It is often much easier to check the correctness of a given result at run time than to verify
the generating algorithm and its implementation. In our case, for instance, we would rather check that every
assigned register is free and available than totally verify the sophisticated register allocation algorithm. Thus,
one can concentrate on the verification of (in general) small checking (filter) routines built into the code in
order to establish partial correctness of the entire program. Of course, this only makes sense if the verification
of the checker is indeed easier than the verification of the program whose results are checked [4,6]. Checkers
have been used to ensure type correctness properties of a C subset compiler [7] and to verify the compilation of
synchronous languages to C [9], but not yet to "verify" totally a machine code generation procedure.

In this paper the PVS specification and verification system is utilized to formally verify the specification of
such a checker program to be used in the back-end part of a compiler. The back-end translates linear intermediate
code (i.e. sequence of assignments of expressions) into linear assembly code. This back-end is to be generated
from a set of local translation rule schemata and additional components such as optimized register allocators and
schedulers. The rule schemata were independently verified with respect to source and target language semantics

The part of the compiler we are to check gets as input an intermediate language expression tree and outputs
a labeled expression tree. The labels consist of the rule used to compute the node, assignments of the register
and numerical variables to actual registers and values respectively, as well as the schedule number of the rule

Our formalization is generic with respect to the languages and translation rules. It is realized as a parame-
terized PVS theory. The specification being written in an operational style is executable within the prover It
has been applied to a small realistic example of translation from the intermediate language MIS to DEC Alpha
assembly code.

We present these results as follows: the next section gives a brief introduction to PVS. Sect. 3 outlines the
principle of generator-based back-end generation. In Sect. 4 the PVS formalization of the checker is presented

* This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) project Verifix

 Dold A-, Vialard V. Formal Verification of a Compiler Back-end Generic Checker Program 363

and declarative correctness properties are stated, formalized and proved correct. AU PVS theories and proof
scripts are available from the authors upon request.

2 A Brief Introduction to PVS

The PVS system [8] combines an expressive specification language with an interactive prover/proof checker. The
PVS specification language builds on classical typed higher-order logic with the usual base types, bool, nat,
among others, the product type constructor [A,B] and the function type constructor [A->B]. The type system of
PVS is augmented with dependent types and abstract data types. The special type TYPE designates an unspecified
type, and TYPE+ an unspecified non empty type. A distinctive feature of the PVS specification language are
predicate subtypes: the subtype {x: A I P(x)} consists of exactly those elements of type A satisfying predicate
P. Predicate subtypes are used, for instance, for explicitly constraining the domains and ranges of operations in
a specification and to define partial functions. Sets are identified with their characteristic predicates, and thus
the expressions pred[A] and set [A] are interchangeable. For a predicate P of type pred[A] , the notation (P)
is just an abbreviation for the predicate subtype {x:A I P(x)}.

In general, type-checking with predicate subtypes is undecidable; the type-checker generates proof obliga-
tions, so-called type correctness conditions (TCCs) in cases where type conflicts cannot immediately be resolved.
A PVS expression is not considered to be fully type-checked unless all generated TCCs have been proved. PVS
only allows total functions, hence it must be ensured that all (recursive) functions terminate. For this purpose,
a well-founded ordering or a measure function is used. The definition of a recursive function f generates a TCC
which states that the measure function applied to the recursive arguments decreases with respect to a well-
founded ordering. A built-in prelude and loadable libraries provide standard specifications and proved facts for
a large number of theories (we use for instance the f inite_set type, the upto and subrange subtypes of nat,
the empty? predicate over sets, the choose function to extract an element from a set, etc...). Specifications
are realized as possibly parameterized PVS theories and theory parameters can be constrained by means of
assumptions. When instantiating a parameterized theory, TCCs are automatically generated according to the
assumptions.

Proofs in PVS are presented in a sequent calculus. There exists a large number of atomic commands (for
quantifier instantiation, automatic conditional rewriting, induction, etc...) and built-in strategies generating
proofs for the easiest subgoals automatically.

3 Back-end Generation by Term Rewriting

The back-end of a compiler is the part of the program in charge of the final translation from a low-level
intermediate language to assembly or machine code (this phase is usually called code generation). Its main task
is to generate sequences of target level instructions to compute the value of intermediate language expressions.
The state-of-the-art code generators are themselves generated from a set of optimized translation rules schemata
and include complex mechanisms for optimal rule selection, register allocation and operation scheduling.

The rule schemata are local translation rules associating a sequence of assembly code to an expression
subtree, the latter being arbitrarily complex depending on the level of resource and time optimization. They are
parameterized by use of variables in place of registers and constants, and the set of registers or register variables
used in input, output and temporary storage (in the generated code) are given. These rules are mechanically
proved correct with respect to the semantics of the intermediate and target languages independently from the
whole process in PVS using a user defined strategy [1].

As already stated, we want to avoid the verification of the specification, let alone the implementation, of the
rule selector/allocator/scheduler taking care of the labeling of the expression trees. This is possible by verifying
the output of the procedure at run time, aborting the compilation if ever an error occurs (giving the available
elements for the correction of the bug). The checking procedure must however be proven to detect any case
where the code that will further be generated from the labeled tree will not exactly implement the computation
of the translated expression.

Figure 1 gives an overview of the compilation process. As illustrated, the back-end generator must be partly
verified to make sure that the verified code it u*ies is not altered in any way, and that the components on
the correctness critical path are correctly connected. The generated back-end contains non verified code whose
results will be checked at run time by the verified checker.

The straightforward way to make sure that the labeling was correctly done is to extract the code of the labeled
tree according to the schedule, and show that this code implements the computation of the initial expression.

364 Perspectives of System Mormatics'99

(_J Unverified program

O Verified and correctly
Implemented program

FRONT-END
AND

GENERATION OF
INTERMEDIATE

CODE

(trusted)

Fig. 1. Overview of the compilation with detailed back-end principle

Tins is clearly unpracticable at runtime, as we would have to deal with the semantics of the languages But the
rule schemata were already proved correct, and thus the translation will be correct if the rules are "properly"
used. The proper use of a rule being hard to define formally, we will verify properties that are intuitively
needed and give elements to show that these properties actually imply a correct resulting code given a correct
implementation of the code extractor.

The labeling process actually represents a covering of the expression tree with instances of the expression
trees of the translation rules used, each of the rule trees being rooted at the node for which the rule is applied
(as the expression part of the rules may be a single unary operator as well as a complex expression)

The correctness requirements of this process are to make sure the covering is correct (every expression node
is covered with a rule node with a correct operator), to verify the schedule (subterms must computed before
their use), to verify the value passing from children to parent rule (output register of the'child rule is the same
as the corresponding input register of the parent rule - via assignment of register variables) and to verify that
the values computed are not overwritten before their use.

Let us continue with an example exposed in [10]. The source language statement V := V + 1 will be compiled
to the following MIS expression (the storage address of V being 8 relatively to the local pointer - which is stored
in register 1 on the DEC-Alpha):

intassign(local(intconst{8)), intadd(content(local(intconst(8))), intconst(l)))

and this expression will be compiled using the following rule schemata (remark the encoding size of constant
operators) r

rulel : intassign(local(intconstl6(i)),reg(X)) -» •;STQ(X,i,l) '
rule2 : intadd(reg(X),intconstl6(i)) -> Y; ADDI(X,i, Y,Q) '
ruleZ : content(local(intconstl6(i))) -> Y; LDQ(1, i, Y)

to the following DEC-Alpha code:

LDQ(1,8,3); ADDI(S, 1,3, Q); STQ(3,8,1)

Figure 2 sketches the problem of verifying value passing between the codes generated for a sub-expression
and the top operator. As one would expect, the three expression trees and the two assignments involved make
this verification somewhat complex. This lead us to define an operational formulation of this verification process
and similar specifications for the others properties. Process,,

These specifications are hardly usable as is in a proof context, thus more declarative properties have been

Mnre proofs ^ "* *** SUCC6SSfully checked These Pities shall be the basis for all

Dold A., Vialard V. Formal Verification of a Compiler Back-end Generic Checker Program 365

(inlassign) rule 1, sched 3, a(x)=2jV(i)=.8

rule 0 (local) { intadd) rule 2, sched 2, a(x)=>2, a(y)=2, v(i)=

rule 0 Qntconst(8)) (content) (lntconst(1)) ruleO

I ' v N rule 3, sched 1, a(y)=2, v(l)=8 •
rule 0[local J

rule 0 [intconst(8))

x (jntasslgnj

('opal) (reg(x) \

(intconst16(i)) (intadd)

Rulel
Input: x
output: -
temp: -

Rule 2
input: x

(regW) (lnteoÜst16(l))SÜS!':y>-

(content) Ruls3

| input:-

f local J °utPutV
—-r- temp:-

(intconst16(l))

Fig. 2. Verification of value passing

4 Formalization of the Checker

We tried to keep the specification as generic as possible by abstracting over the syntax and structures. We had
though to select a proper structure for the expression trees in order to be able to use induction in the proofs. We
defined the abstract datatype Tree (nodes have a value, a left and a right son, leaves are terminal) parameterized
by the type of the values of the nodes and P VS generated the induction theorems for this structure. We used this
type for both the labeled trees and rule trees encoding. The parameterization of our PVS theory is presented
in Fig. 3.

The four verifications described in the previous section are undertaken by four independent predicates
(functions of type [Node->bool]): covercheck?, schedulecheck?, valuecheck? and overwritecheck?. Some
of these predicates have a straightforward formulation with mutually recursive functions. Unfortunately, the
PVS system does not support mutual recursive functions due to termination problems. We therefore wrote
them using a single recursive function with a flag indicating which of the bodies is to be evaluated. Termination
of these functions is ensured by a measure function using a lexicographical ordering of the flag and the measure
functions of the bodies. Figure 4 presents the PVS code for the valuecheck? predicate.

As stated before, these operational formulations of the checkers with their flagged recursion schemes are
hardly usable in a proof context, and is therefore not very helpful to establish the correctness of the back-end.
To prove that the code to be generated from the labeled tree will actually implement the expression compiled, we
will have to induct on the number of code extraction steps and therefore need more usable declarative properties
about the resulting machine code. As these properties are not easily expressed, we identified the situations that
do cause an error:

— covering problem: the root of a rule tree does not match the operator of the referencing labeled node, or a
node from a rule rooted somewhere in the labeled tree does not match the operator of the labeled node it
covers (except if the rule node is a register and covered node is labeled with a rule)

— schedule problem: there is a node, labeled with a rule, having a schedule number smaller than the one of its
child node also labeled with a rule.

— input problem: there is a register node from a rule rooted somewhere in the labeled tree covering a node
not labeled with a rule, or covering a node with a rule whose output register variable is not assigned to the
same instance as the covering register.

— overwrite problem: there is a node, labeled with a rule and with a schedule number comprised between the
schedule numbers of two "communicating" rules using the value passing register as output or temporary
node.

If none of these situations is encountered, the values of the sub-expressions should be computed correctly, in
time, stored and retrieved in the proper registers, and the temporary storages should be made in a secure
manner. This should imply the correctness of the code generated. It will have to be established formally by
an induction proof on the structure of the initial expression with help of the correctness property of the rule
schemata.

To express these properties we need a function that retrieves the rule node covering a subnode of the
expression tree. The subset of nodes covered by a rule is defined by the predicate rule_covers_subtree? and
the function cover ing_op retrieves the operator from the rule tree covering a given node.

366
Perspectives of System Informatics'99

checker [

:TYPE+,

'/, Operator type and accessors
Dp :TYPE+,
RegVar :TYPE+,
NumVar :TYPE+,
val? :pred[0p],
val :[(Val?)->int],
reg? :pred[0p] ,
reg :[(Reg?)->RegVar],
num? :pred[0p] ,
num :[(Num?)->NumVar],
cbits :[(Num?)->nat],

nrule :nat,

'I, Labeled node type and accessors
:TYPE+,
:[Node->Dp],
:[Node->upto(nrule)] ,
:[Node->[RegVar->R]],
: [Node->[NumVar->nat]] ,
: [Node->natJ,

Node
oper
mum
areg
anixm
sched

7. Rule type and accessors
Rule
rtree
inp
out
tmp

'/. registers

'/, operators in expressions
'/. register variables
7, numerical variables
'/, value operator
'/, accessor for value

'/, register variable operator

'/, accessor for register variables
'/, numerical variable operator
'/. accessor for numerical variables

'/, size of the numerical variable

'/• number of translation rules

'/, labeled nodes
'/, operator
'/, rule number
'I, assignment of register vars
7, assignment of numerical vars
'/. schedule number

:TYPE+,
:[Rule->Tree[Op]],
:[Rule->finite_set[RegVar]],
:[Rule->at_most_one[RegVar]],
:[Rule->finite_set[RegVar]],

'/. translation rules
'/, operators tree of the rule
'/. input register vars of the rul«
'/. output register of the rule
'/. temporary register variables

rulemap : [subrange(l,nrule)->{r:Rule | node?(rtree(r))}] '/. rule list

] : THEORY

LTree : TYPE = Tree[Node]
RTree : TYPE = Tree [Op]
Asg : TYPE = [RegVar->R]

'/, labeled trees
'/. rule trees

7, register assignements

Fig. 3. Parameterization of the PVS theory

 Dold A., Vialard V. Formal Verification of a Compiler Back-end Generic Checker Program 367

The PVS predicate wrong-input presented in Fig. 5 encodes the input problem property for the rule rooted
at t. It will be usable in place of the corresponding checker function (Fig. 4) in the proof thanks to the lemma
presented in Fig. 6. We proceeded in a similar manner for the three other checkers.

The proofs were done by structural induction on the expression tree. The induction hypothesis being im-
plications, we had to write the checker functions in such a way that it is provable that the successful check of
a tree implies the same for its subtrees (in order to "trigger" the consequence part of the implication of the
hypothesis). These properties were themselves established by structural induction and sometimes needed other
inductive lemmas (i.e. nested induction).

The proofs are not trivial (a few weeks were invested into specification, correction, and proofs) but relatively
short (1000 interactive steps for the whole theory, including TCCs). They could be further automated, using
eventually user-defined strategies, but once established, thanks to the parameterization of the theory, it will not
be necessary to re-work them.

We encoded in PVS a subset of rule schemata for the translation from the MIS intermediate language to
DEC-Alpha and instantiated the checker theory for such verifications. The small example presented in the
previous section was successfully processed.

The proof of the global process will be achieved by induction over the schedule number of the successfully
checked labeled tree. We will consider a pair {code, tree) constituted of an assembly code sequence and an
intermediate language expression tree. The assembly code is considered to be evaluated prior to the expression,
bringing the machine in a state (values stored in registers and/or memory) in which the expression will then be
evaluated. We start with an empty code sequence and the initial labeled expression tree, and the pair will be
updated at each step to a new pair {code -H-code', tree') as follows:

- in the expression tree the selected node is replaced by a node labeled with its output register (according to
the substitution) with two leaves as sons.

— the assembly code part of the rule associated to the selected node (with its variables instantiated accordingly
to the assignments) is appended to the existing code sequence.

The equivalence between the two pairs will be established using the declarative properties that were shown to
be implied by a successful check along with the correctness properties of the translation rules. Intuitively, the
properties implied by covercheck? (t) will be used to show the correct use of the rules and the others the
proper storage and retrieval of the subterms values.

5 Conclusion

We described in this paper our approach to the problem of formally specifying a validation procedure of the
results of a compiler back-end. We defined a generic operational PVS specification for such a program and
proved declarative properties more usable for the global correction proof. The genericity of the specification
should allow an easy use of the theory for various intermediate languages and target machines.

The specification can be refined step by step into a PVS function close enough to the actual encoding of
the checker in order to prove its implementation correct (it is the approach taken in [2]). If the checker is to
be implemented in a higher level language, there must exist a correctly implemented compiler for it (this initial
compiler is part of the Verifix project [5]). '

References

1. A.Dold, T.Gaul, V.Vialard, and W.Zimmermann. ASM-Based Mechanized Verification of Compiler Backends. In
Uwe Glässer and Peter H. Schmitt, editors, 5th International Workshop on ASM, pages 50-67, 1998.

2. Axel Dold. Software Development in PVS using Generic Development Steps. In Dagstuhl Seminar on Generic
Programming (April 98), LNCS, 1998.

3. W. Goerigk, A. Dold, T. Gaul, G. Goos, A. Heberle, F.W. von Henke, U. Hoffmann, H.Langmaack, H. Pfeifer, H.
Ruess, and W. Zimmermann. Compiler Correctness and Implementation Verification: The Verifix Approach. In
P. Fritzson, editor, Poster Session of CC '96, IDA Technical Report LiTH-IDA-R-96-12, Link0ping, Sweden, 1996.

4. W. Goerigk, T. Gaul, and W. Zimmermann. Correct Programs without Proof? On Checker-Based Program Verifi-
cation. In ATOOLS'98 Workshop on "Tool Support for System Specification, Development, and Verification", ACS,
Malente, 1998. Springer Verlag.

5. W. Goerigk and U. Hoffmann. Rigorous Compiler Implementation Correctness: How to Prove the Real Thing Correct.
In FM-TRENDS'98, LNCS, Boppard, 1998.

— Perspectives of System Informatics'99

val check?(newrule?:bool,t:LTree,r:RTree,a:Asg) : RECURSIVE bool =
IF newrule? THEN
CASES r OF •/. new rule

leaf: ±, '/, - shouldn't be empty
node(vr,lr,rr):

CASES t OF
leaf: _, •/, - shouldn't cover a leaf
node(vt,lt,rt): '/. nor a register (continue verifying)

-.reg?(vr) A valcheck? (±, It, lr, a) A valcheck?(_L,rt,rr,a)
ENDCASES

ENDCASES
ELSE •/. old rule

CASES r OF
leaf : 55 - is a leaf

CASES t OF

leaf : T, '/, — and covers a leaf (ok, over)
node(vt,lt,rt) : */, — or covers a node (continue verifying)

IF rnum(vt) = 0
THEN valcheck? (J_, It, r, a) A valcheck? (_L, rt, r, a)
ELSE valcheck?(T,t,rtree(rulemap(rnum(vt))) ,areg(vt))
ENDIF

ENDCASES,
node(vr,lr,rr) : */. - is a node

CASES t OF
leaf : _]_, '/, — shouldn't cover a leaf
node(vt,lt,rt) : */, — covers a node, verify if a value is

IF rnum(vt) = 0 '/. required, and passed if necessary
THEN -.Reg?(vr)
ELSE Reg?(vr) A^empty?(out(rulemap(rnum(vt))))

Aa(Reg(vr)) = areg(vt) (choose(out(rulemap(rnum(vt)))))
A valcheck?(T,t .rtree(rulemap(rnum(vt))) ,areg(vt))

ENDIF '/• ... and continue verifying
A valcheck? (J_, It, lr, a) A valcheck? (_L, rt, rr, a)

ENDCASES
ENDCASES

ENDIF

MEASURE lex2(depth(t), bool2nat(-mewrule?)) V, either t decreases
'/, or newrule? becomes true

valuecheck?(t:LTree) : RECURSIVE bool =
CASES t OF

leaf: T, '/, real verification starts at the first node with a rule
node(v,lt,rt): IF rnum(v) = 0

THEN valuecheck?(lt) Avaluecheck?(rt)
ELSE valcheck?(T,t,tree(rulemap(rnum(v))),areg(v))
ENDIF

ENDCASES
MEASURE t by « '/. t is structurally decreasing

Fig. 4. Operational specification of the value passing checker

Dold A., Vialard V. Formal Verification of a Compiler Back-end Generic Checker Program 369

*/, t is labeled with a rule that covers a subtree tl with a register node
'/, but tl doesn't store a value in the proper register

wrong_input(t:LTree) : bool = ■
CASES t OF

leaf : _L,
node(vt,lt,rt) :

rnum(vt) /= 0
A3(tl: (rule_covers_subtree?(rtree(rulemap(rnum(vt))) ,t))) :

Reg?(covering_op(rtree(rulemap(rnum(vt))),t)(tl))
A(leai?(tl)

Vrnum(vaKtl)) =0
V empty? (out (rulemap(rnum(val(tl)))■))
Vareg(vt) (Reg(covering_op(rtree(rulemap(rnum(vt))) ,t) (tl)))

=£areg(val(tl)) (choose(out(rulemap(rnum(val(tl)))))))
ENDCASES

Fig. 5. Declarative characterization of the input problem

'/, If t is valuechecked then it does not have a subtree with an input
'/, problem

valuecheck_correct : LEMMA
V(t:LTree) :

value ehe ck?(t) => -i(3(tl: (subtree? (t))) : wrong_input(tl))

Fig. 6. Link between operational specification and declarative property

6. A. Heberle, T. Gaul, W. Goerigk, G. Goos, and W- Zimmermann. Construction of Verified Compiler Front-Ends
with Program-Checking. PSI'99 (this volume), 1998.

7. G.C. Necula and P. Lee. The Design and Implementation of a Certifying Compiler. In ACM SIGPLAN'98 PLDI,
pages 333-344, Montreal, Canada, 17-19 June 1998.

8. S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System. In Deepak Kapur, editor, GADE'll,
volume 607 of LNAI, pages 748-752, Saratoga NY, 1992. Springer-Verlag.

9. A. Pnuelli, M. Siegel, and E. Singermann. Translation Validation for Synchronous Languages. In S. Skyum
K.G. Larsen and G. Winskel, editors, ICALP 98, pages 235-246.

10. W. Zimmermann and T. Gaul. On the Construction of Correct Compiler Back-Ends: An ASM Approach. Journal
of Universal Computer Science, 3(5):504-567, 1997.

Construction of Verified Compiler Front-Ends
with Program-Checking

Andreas Heberle1, Thilo Gaul1, Wolfgang Goerigk2,
Gerhard Goos1, and Wolf Zimmermann1

1 Institut für Programmstrukturen und Datenorganisation
Universität Karlsruhe

Zirkel 2, D-76128 Karlsruhe, Germany
E-mail: {gaul,goos,heberle,zimmer}@ipd.info.uni-karlsruhe.de

2 Institut für Informatik und praktische Mathematik
Christian-Albrechts-Universität zu Kiel

Preußerstr.1-9, D-24105 Kiel
E-mail: wg@informatik.uni-kiel.de

Abstract This paper describes how program-checking can be used to establish the correctness of a com-
piler front-end which was generated by unverified compiler construction tools. The basic idea of program-
checking is to use an unverified algorithm whose results are checked by a verified component at run time.
The approach not only simplifies the construction of a verified compiler front-end because checking the
result of the analysis is much simpler to verify than the verification of a high sophisticated compiler front-
end. It even allows to define a notion of front-end correctness. Furthermore, we are still able to use existing
generators tools without major modifications. Additionally, this work points out the tasks which still have
to be verified and it discusses the flexibility of the approach.

1 Introduction

In order to construct a verified compiler we have to consider not only the transformation and code generation
phase which can be verified with respect to the source and target language semantics but also the analysis
of programs. Usually, work on constructing correct compilers ignores this analysis phase. All semantic defini-
tions of the source language are based on attributed structure trees obtained after semantic analysis see e e
[BMW92,Pet95,Die96,BD96], '5'

However, in order to construct a correct compiler, the correctness of the analysis phase must not be ignored.
This paper bridges the gap, i.e. we show how to construct a correct front-end. In fact, it is not trivial to define
the correctness of the analysis phase. Basically it maps a character sequence to attributed syntax trees. But
how to define correctness of this mapping?

It is common to define semantics of programming languages on abstract or attributed syntax trees. Hence, in
order to have a complete language definition, the relation between the source text and the attributed syntax
tree has to be specified. Usually, compiler writers prefer to use their own representation of attributed syntax
trees and base the dynamic semantics on them. For a correct compiler, it must be proven that the programming
language semantics used in the compiler preserves the programming language semantics. In this paper, we
assume that this is already being done. Hence, we have to ensure that the relation between source text and
attributed syntax trees is implemented correctly.

Instead of proving the correctness of the analysis phase, we check the correctness of the results produced
during the analysis dynamically. For simplicity, we assume that the static semantics is specified by an attribute
grammar, and the relation cf> between source text and attributed syntax trees is specified inductively over the
structure of the syntax trees. The basic idea of front-end checking is first to check the semantic analysis where
it is sufficient to check that for every attribution rule m.a «- f(mi,..., mk) in AG the corresponding attributes
of the attributed structure tree define an equality. Second, if the result of the semantic analysis was accepted
we check scanner and parser by checking whether the source text is related by <f> to the abstract syntax tree1'
Our approach allows the use of front-ends generated by unverified tools or front-ends implemented by hand
We do not assume anything about the implementation language of the front-end. Especially we do not assume

1 In the sequel we use symbol to denote'a character sequence, and token to denote the internal representation of a
particular symbol.

 Heberle A. et al. Construction of Verified Compiler Front-Ends with Program-Checking 371

that it is implemented in a language for which there exists a verified compiler. Of course, the checker itself has
to be verified.
In our case study we use the cocktail tool box [GE90] which generates C programs. Our implementation language
for the checker part is SATHER-K [GOO97], a type-safe object-oriented language with generic classes (similar to
templates in C++). The benefit of our approach is illustrated by the number of lines of codes which have to
be verified in order to prove the front-end implementation correct. The generated front-end of our case study is
implemented by 22.000 lines of C code while the checker consists of 1.300 lines of SATHER code.
The following section introduces the idea of program checking in general and discusses related work. In Sect. 3
we present an architecture for front-end checking and describe the particular components of the checker in more
detail. We examine the checking of semantic analysis, we describe the checker for scanner and parser, and we
discuss correctness properties of each component of the checker. In Sect. 4 we present an example and draw
conclusions in Sect. 5.

2 Basics and Related Work

Consider a program % with input x and output y. Let P(x) be a precondition of n and Q(x, y) a postcondition.
A program ir partially correct, iff for every x satisfying P{x) either ir refuses .x or w computes an output y such
that Q(x,y) (i.e. {P(x)} y := n(x) {Q(x,y)} in Hoare-Triple notation). The idea of program checking can be
summarized by the following function IT':

fun TT'(X : T) : T" is
y := ?r(a;);
if checkJK(X, y) then return y;
else abort

end

The boolean function check JK must imply the postcondition Q. The following theorem shows the validity of the
approach.

Theorem 1 (Program Checking). Letir(x :T) :T' be an unverified program without side-effects, check-.ir(x :
T,y : T") : bool be a side-effect free function satisfying {P(x)} z := check jir(x,y) {z = true => Q(x,y)}. Then,
it holds {P{x)}y:=Tr'(x) {Q(x,y)}

Proof. We sketch the proof. It can be formal using standard Hoare calculus. Since -K is side-effect free, the input
x remains unchanged. If 7r' does not abort, it returns y. The y returned is the same as the input in check-ir(x,y),
because checkjn{x,y) is side-effect free. Furthermore, when y is returned it must hold checkJK{x,y) = true.
Hence, it holds Q(x,y).

Hence, the only assumption on TC is the side-effect freeness. No further assumptions on 7r are made. The function
7r' therefore provides a bootstrapping approach to construct partial correct programs. It is useful to apply the
approach if the formal verification of checks is much easier than that of IT or the size of -K is much larger than
the size of check JIT. However, the difficulty is the assumption on the side-effect freeness of -K. We will call this
property of a program being side-effect free "wrap"-property.
Our checker approach is closely related to the work of M. Blum on result-checking [BK95,WB97] and the ideas
of [GG75]. A more detailed discussion of the theoretical aspects of our approach can be found in [GGZ98].
Program checking is already used in compiler construction for checking properties necessary to establish cor-
rectness of a transformation. Necula and Lee [NL98] describe a compiler which contains a certifier that auto-
matically checks the type safety and the memory safety of any assembler program produced by the compiler.
The certification process detects statically compilation errors of a certain kind but it does not establish full
correctness of the compilation. Nevertheless, this work shows that program checking can be used to produce
efficient implementations with consideration of safety requirements.

3 The General Approach

For correctness purposes (cf. Theorem 1) it is crucial that the compiler can not affect the behavior of the
checking components. Thus we have to introduce an interface which guarantees safe communication of the
compiler front-end and the checker. In Sect. 3.1 we discuss different implementations of the interface. Figure

372 Perspectives of System Informatics'99

n

Analyzer

Scanner

RE'

Token * ^. Parser

G'

Syntax
Tree Semantic

Analyzer
i

AG'

AAST
Interface

ok

Checker

Comparator
Symbol*

Unparser
AST

ok

AAST

SA
Checker

AG

error

error

Pigurel. A general architecture for checking compiler front-ends

1 describes our architecture for compiler front-end checking. The language specification defines an attribute
grammar AG which describes the static semantics of the programming language in question. The attribute
grammar AG' used for the generation of semantic analysis needs not to be the same than AG. The SA Checker
verifies the validity of attribute values. If the check does not reveal an error then the abstract syntax tree is
passed to the Unparser which uses the relation <f> to compute a sequence of symbols. This sequence of symbols is
taken as a reference the original file is compared with. Of course the comparison has to ignore white spaces and
comments. If the comparison succeeds the program was parsed correctly. Otherwise the program is rejected. In
fact, this does not mean that the program was compiled faulty. It just means that the checker was not able to
establish the correctness of the compilation. Of course it is our goal to build a checker which is able to check
the correctness of all compiled programs.

In Fig. 1 white boxes denote components which can be used without verification while grey boxes denote parts
which have to be verified in order to construct a correct front-end. In the following sections, we describe the
components in more detail.

The checker implements the following function where original is a, the character representation of the program,
PSL is its AIF representation, pSather is the corresponding SATHER representation, and reference is the symbol
stream produced by the Unparser.

Check:
p.Sather := parse_aif(p_SL)
if correctly_attributed(p_Sather) then

reference ;= unparse(p_Sather)
if not compare(reference, original) then syntactic error end

else semantic error
end

end

pa.rse.aif has to implement an injective total function from AIF to ASTSather and is not further discussed in
tins paper. The functions correctly-attributed, unparse, and compare are described in the next section.

 Heberle A. et al. Construction of Verified Compiler Front-Ends with Program-Checking 373

3.1 Safe Communication of Checker and Front-End

As Theorem 1 shows that a compiler must be free of side-effects. This can be ensured by strictly separating
the memory spaces of the compiler and its checker. If the operating system is assumed to be correct2 there are
several alternatives to make sure that it is impossible for the compiler to write in the memory of the checker.

- If the implementation language does not allow pointers to the memory, we are able to prove that the compiler
behaves safe.

- If checking and compiling are two parallel processes with different memory spaces the operating system
assures that memory of one process can not be altered by another process. Nevertheless, we have to verify
and implement the protocol on which the two processes communicate. In our implementation of this protocol,
compiler and checker communicate by mutual file access. The attributed structure tree is written to a file
in a general interchange format which is then translated to an internal representation. This representation
of the AST is reliable when the check has succeeded. The interchange format is defined in [HG98],

3.2 Checking Semantic Analysis

The general idea of checking semantic analysis is to interpret the attribute definition rules R of the language
specification AG as equations on the corresponding attributes. Instantiating these equations with the attribute
values computed by the compiler (using AG') leads to a set of equations. Semantic analysis worked correctly if
all these equations together with the conditions C on attribute values are fulfilled.
The definition of static programming language semantic is specified by an attribute grammar AG which is based
on a context free grammar G = (JV, T, P, Z) describing the AST. It associates a set A(X) of attributes with each
symbol X, in the vocabulary of G. We write X.a to indicate that the attribute a is an element of A(X). Each
node in the structure tree of a sentence in L(G) is associated with a particular set of values for the attributes
of some symbol X. These values are established by attribution rules R(p) = {Xi.a 4- f(Xj.b,...,Xk.c)} for
the production p : XQ ::= X\.. .Xn used to construct the tree. Each rule defines an attribute Xi.a in terms
of attributes Xj.b,...,Xk-c of symbols within the same production. In addition to the attribution rules, a
condition C(Xi.a,...,Xj.b) involving attributes of symbols occurring in p may be given. The computation of
the attributes may require a complicated computation order. For the checking we only consider the rules and
conditions as equations Xi.a = f(Xj.b,..., Xfc.c), where we insert the values of the attributes. For a particular
AST this leads to a set of equations EAST-

Definition 1 (Correctness of Semantic Analysis). Let EAST be for a particular AST the set of equations
implied by the attribute grammar AG. It holds:

correctly-attributed(AST) <s> Ve € EAST '• true(e)

The checker implements a tree traversal and a function equality which instantiates the equations and checks
their validity.
The checking of the attribution is much simpler than computing the attributes according to a special evaluation order.
Thus, the attribute grammar AG defined by the language designer may be different from the attribute grammar AG'
used for constructing the semantic analysis. While AG' has to have properties useful for generation, e. g. AG' has to be
ordered, AG needs only to be well-defined.

3.3 Checking the Correctness of Scanner and Parser

Semantic analysis together with scanning and parsing implements a function from character sequences to at-
tributed structure trees. It yields a unique AST for a particular program. After the checking of the attributed
structure tree it is safe that the computed attributes are consistent with the language specification.
We ignore the attributes of the AAST. The Unparser implements the relation cp defined by the language designer.
It produces a sequence of symbols, i. e. a sequence of character sequences representing the relevant units of a
program. The symbols of the reference sequence have to occur in the same order in the original program. But,
in the original program, there may exist additional white spaces and comments which can be ignored because
they do not carry semantical information.
2 Compiler verification does not deal with hardware verification or verification of the operating system. Though correct-

ness of the base system is essential for the correctness of the global system this is beyond the scope of our work.

374 Perspectives of System Informatics'99

The Comparator processes the sequence of symbols produced by the Unparser and compares it with the original
file. Informally spoken the comparator shifts a kind of window over the character sequence. The information
about the context of this window is used to determine the actions of the Comparator: ignore white spaces, add
white spaces, over read comments, report an error etc.
Some properties of existing programming languages require additional checking capabilities:

- Valid symbols which are prefix of other valid symbols require consideration of significant white spaces in
order to check the principle of the longest match.

- Priorities of operators are usually defined informally and are not represented in the abstract syntax. Thus
they have to be checked separately.

- Different notations of the same numbers have to deal with in any case since the actual values of constants
are processed during compilation3.

- Superfluous symbols, e. g.E ';' or the number of parentheses, can be ignored during the comparison.

Checking the principle of the longest match and the priorities of operators is mandatory for correctness. Treat-
ment of superfluous semantical information is not crucial for the correctness of the checker but improves its
quality. If superfluous symbols occur in the character sequence but not in the AST it is impossible to decide
whether the scanner and the parser were correct or not. This does not affect the correctness statement. It just
says that the checker does not accept valid ASTs.

Nevertheless, the quality of the checker can be improved by just adding information to the AST. We could
use information about the derivation tree of the syntactic analysis to improve the comparison. For example we
could save the number of reductions performed to accept a parenthesized expression in an attribute. During the
unparsing we create brackets according to the number saved in the tree.
With this simple strategy we are able to define correct checkers for many of the existing programming languages.
Though the checkers are not complete, we can improve them using more sophisticated comparison strategies. The
trick of generating a programming language instead of parsing it eliminates a lot of problems, e. g. ambiguities
of the grammar or special properties of the acception mechanism (LL or LR), which make scanning and parsing
quite complicated.

Definition 2 (Correctness of Unparsing). The unparser is correct iff

Vtype € NODETYPE : Unparse(type) = <j>{type)

4> is defined by the language specifier and is correct by definition.
The Comparator is allowed to ignore characters which do not carry information. Which characters carry infor-
mation depends on the actual programming language. Even white spaces may carry information in some special
cases. This has to be considered to establish correctness. In general, one has to prove that the comparator
accepts the same AST with or without this additional information.

Compare:
correct := true
while correct and not (reference.emtpy and original.eof) loop

if reference.emtpy or original.eof then
correct := false

else
correct ;= match (head(reference), original)
reference := tail(reference)

end — if
end — loop

Compare uses an auxiliary function match which implements a finite automata. The properties of this automata
are determined by the language report. For our source language match ignores superfluous white spaces and
comments and it maps different representations of the same number.

3 In order to preserve simplicity of our checker we decided to check correctness of the transformation of numbers
separately.

 ffe&erfe A. et al. Construction of Verified Compiler Front-Ends with Program-Checking 375

4 Example

Our example language defines simple expressions with variables, constants, addition, and multiplication. The
attribute grammar AG in Fig. 2 describes the abstract syntax of a simple language for expressions. The attribu-
tion computes the "expression is constant" attribute {b = loxb = 0). Multiplication has higher precedence than
addition. Addition is left-associative. The mapping 0 specifies the concrete syntax for the example language.
Usually, <f> defines a relation because, for convenience, the language designer allows ambiguous representations for
the same semantics. The left-hand side of figure 3 shows the AST representation of the expression a * (3+4) + b,

E :~ Ident {b := 0, id := STRING} cj>{Var) = Var.id
I IntConst {b := 1, value := INT} <j>{Value) = Val.value
I +(Ei, E3) {b := 61 A 62} <K+(£i, E2) = 4>{EX) ' +' 0(£fc)
I *(Ei,E2) {b := 61 A 62} 4>{*(EUE2) = <j>{Ei) ' *' <j>{E2)

Figure2. Attribute grammar and mapping (j> from abstract to concrete syntax

the right-hand side shows the set of equations derived from the attribution of the AST. The superscript, of an
AST node describes the attribute values computed by the semantic analysis. The subscript is a unique num-
ber which relates the AST node with an equation on the right. The function correctly-attributed instantiates
the equations corresponding to attribution rules of the abstract syntax with the attributes computed by the
semantic analysis and then checks the consistency of the formulae. The equations in our example are consis-
tent, cf. 3. Thus, semantic analysis worked correctly and the function unparse, derived from </>, is invoked. It

A 0: 0 = 0 A 0 — l.b A 6.b
j, °-b 1: 0 = 0 A 1 -- 2.b A 3.b

Äment6 2: 0 = 0 — Ident.b
3: 1 = 1 A 1 — 4.b A 5.b

Ident +' 4: 1 = 1 — IntConst.b
5: 1 = 1 -- IntConst.b

1,3 / \ 1,4 6: 0 = 0 — Ident.b
, IntConst IntConst, 4

A'
I

Figure3. AIF representation and attribute equations for a * (3 + 4) + b

traverses the AST and produces the stream "a", "*", "(", "3", "+", "4", ")", "+", "b". Since unparse considers
operator precedences the parentheses were inserted. Thus, the original expression is produced which establishes
the correctness of syntactic analysis.
We show how the checker reacts on erroneous parsers. Suppose, the parser had accidently ignored the parantheses
(or the lexer removed accidently the tokens), i.e the syntax tree in Fig. 4(a) would be produced by the erroneous
parser. The unparser produces the stream "a", "*", "3", "+", "4", "+", "b". In contrast to the above example,
parantheses are not included because of the priorities. The comparator recognizes that this stream differs from
the input text.
Assume now, the parser accidently exchanged priorities of "*" and "+". Then, it produces the syntax tree in
Fig. 4(b). The unparser produces the stream "a", "*", "(", "3", "+", "4", "+", "b", ")" which also differs from
the source text.

5 Conclusions

We addressed the problem of compiler verification for real-world compilers and languages with the focus oh
the analysis phase, and presented a concrete front-end verification framework. Our approach emphasizes the

376

x-0
A

Perspectives of System Mormatics'99
0

0,6
+" Ident6

0,a
Jdent

0 r \ 1,4
2* IntConst r

0,a
.Ident

IntConst,
1,3 1,3

IntConst

A

A
O.b

Ident.
6

IntConst.
1,4

(a) Wrong Parantheses
4 _5

(b) Wrong Precedences

Figure4. Erroneous Syntax Trees

C/Sather-K

Lines Byte

Binary Prog.

Byte

Generators COCKTAIL 110.000 2.4 MB 1.2 MB

Generated C Code

Impl. IS-Frontend
22.000 600 KB 300 KB

Checker (Sather-K)

500 (Parser) 14 KB

+100 (Compare) 3 KB

+700 (AST) 30 KB

200 KB

Tablel. Case study: Lines of program code to verify for a program-checked front-end

software engineering aspect, because it bridges the gap between the verification of such a complex software
system and its practical implementation, especially with generators.
The proposed compiler construction framework allows to implement verified front-ends down to correct machine
implementation. The main idea is to assure correctness of the implementation by introducing runtime program-
checkers that check the result of syntactic and semantic analysis. The result of such a 'checked' analysis-phase
is an attributed abstract syntax tree, that carries all the information needed for the transformation phase. We
want to stress here again, that this checking is independent of the interleaving of semantic and syntactic analysis.
Even if the syntactical structure is determined only after the semantic analysis, the checking can be performed
independently. Measurements in our case-study (see table 1) show the practicability of our approach. The
number of lines to verify is decreased by a factor of 80 compared to the generator source and 1:17 compared to
generated C code. In our case-study we compile a C-subset language IS [DGG+95,HH98] to DEC-alpha machine
code. !
Though we did not discuss the correctness of the transformation and code generation phase, this is part of our
work in the Verißx project. Verißx is a large scale case study in program verification with the major goal to
verify not only specification and high level implementation of compilers, but also to guarantee the correctness of
their final binary executables on hardware, cf. [GDG+96]. State of the art compiler construction uses complex
and high sophisticated algorithms in order to achieve efficient code. Assuring correctness by checking their
results enables us to use these algorithms in our verified compiler implementation and even to generate them
with available unverified compiler generators [DGVZ98].
Acknowledgements This work is supported by the Deutsche Forschungsgemeinschaft project Go 323/3-1
Verifix (Construction of Correct Compilers). We are grateful to our colleagues in Verifix.

References

[BD96] E. Borger and I. Durdanovic. Correctness of Compiling Occam to Transputer code. The Computer Journal
39:52-93, 1996.

 Heberle A. et al. Construction of Verified Compiler Front-Ends with Program-Checking 377

[BK95] Manuel Blum and Sampath Kannan. Designing programs that check their work. Journal of the Association
for Computing Machinery, 42(1):269-291, January 1995.

[BMW92] D. F. Brown, H. Moura, and D. A. Watt. Actress: an action semantics directed compiler generator. In
Compiler Compilers 92, volume 641 of LNCS, 1992.

[DGG+95] A. Dold, T. Gaul, W. Goerigk, G. Goos, A. Heberle, F. von Henke, U. Hoffmann, H. Langmaack, H. Pfeifer,
H. Ruess, and W. Zimmermann. Definition of the Language IS. Verifix Working Paper [Verifix/UKA/1],
University of Karlsruhe/Kiel/Ulm, 1995.

[DGVZ98] A. Dold, T. Gaul, V. Vialard, and W. Zimmermann. ASM-Based Mechanized Verification of Compiler
Backends. In Uwe Glässer and Peter H. Schmitt, editors, Proceedings of the 5th International Workshop on
Abstract State Machines, pages 50-67, 1998.

[Die96] Stephan Diehl. Semantics-Directed Generation of Compilers and Abstract Machines. PhD thesis, University
of the Saarland, Germany, 1996.

[GDG+96] W. Goerigk, A. Dold, T. Gaul, G. Goos, A. Heberle, F. von Henke, U. Hoffmann, H. Langmaack, H. Pfeifer,
H. Ruess, and W. Zimmermann. Compiler Correctness and Implementation Verification: The Verifix Ap-
proach. In P. Fritzson, editor, Proceedings of the Poster Session of CC'96 - International Conference on
Compiler Construction, pages 65 - 73. ida, 1996. TR-Nr.: R-96-12.

[GE90] J. Grosch and H. Emmelmann. A tool box for compiler construction. In Compiler Compilers, Third Interna-
tional Workshop, CC'90; Schwerin, FRG; Proceedings, volume 477 of LNCS. Springer-Verlag, 1990.

[GG75] J.B. Goodenough and S.L. Gerhart. Toward a Theory of Test Data Selection. SIGPLAN Notices, 10(6):493-
510, June 1975.

[GGZ98] W. Goerigk, T.S. Gaul, and W. Zimmermann. Correct Programs without Proof? On Checker-Based Program
Verification. In Proceedings ATOOLS'98 Workshop on "Tool Support for System Specification, Development,
and Verification", Advances in Computing Science, Malente, 1998. Springer Verlag.

[Goo97] Gerhard Goos. Sather-K — The Language. Software — Concepts and Tools, 18:91-109, 1997.
[HG98] A. Heberle and T. Gaul. Syntax einer Sprache zur textuellen Repräsentation von Graphen. Interner Bericht,

1998.
[HH98] Andreas Heberle and Dirk Heuzeroth. The formal specification of IS. Technical Report [Verifix/UKA/2

revised], IPD, Universität Karlsruhe, January 1998.
[NL98] G. C. Necula and P. Lee. The design and implementation of a certifying compiler. In Proceedings of the 1998

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 333-344,
1998.

[Pet95] M. Pettersson. Compiling Natural Semantics. PhD thesis, Linkoeping University, 1995.
[WB97] Hal Wasserman and Manuel Blum. Software reliability via run-time result-checking. Journal of the ACM,

44(6):826-849, November 1997.

Translating SA/RT Models to Synchronous Reactive Systems:
An approximation to Modular Verification

(Extended Abstract) * '

Claudio de la Riva, Javier Tuya and Jose R. de Diego

Computer Science Departament
University of Oviedo

Campus of Viesques, E-33203 Gijön (Spain)
[claudioItuyaIdediego]Qlsi.uniovi.es

Abstract. Integration of non formal methods, notations and tools with formal ones is a promising way of
linking scientific results to the daily work of practitioners. In this paper, we present a formal notation based
ma synchronous reactive execution semantics (Synchronous Reactive System) for graphical specifications
(SA/RT models). We use the Synchronous Reactive System as intermediate format to formally verify
graphical specifications using the SMV model checker. We deal with the state space explosion problem
using modular verification.

1 Introduction

Structured Methods [18], also known as Structured Analysis for Real-Time (SA/RT) are a widespread graphical
formalism that is adequate to model Reactive System and it is supported by a high number of commercial
CASE tools. But most of them lack analytical capabilities (usually limited to syntax checks such as balancing
or simulation).

The original (informal) definition of the semantics as proposed by Ward and Mellor is inspired in the
execution rules of Petri nets. In this paper, we shall use a more up-to-date, deterministic and causal semantics
similar to the one implemented in STATEMATE [9] or RSML [11]. The essential difference with regard to
Ward s approach is that more than one transition can be executed in parallel at each step.

Little work has been made in the model checking of this type of graphical specifications. In a previous work
[17] we have used SA/RT methods in conjunction with SMV [14], in which the model is executed as a set of
interleaved processes. In [6] and [7] Statecharts are used, but the semantics is not based on the concept of micro
and macro - steps and not use modular verification. Anderson et al. [2] have used SMV to verify requirements
written in RSML. They perform a manual translation and verify some interesting properties (safety, transition
and function consistency).

Most of the current approaches to verification of synchronous systems (see e.g. [10]) perform a first step
in which a global transition graph is elaborated and verification is performed on this global graph (the same
as the one that is produced by the compilation process in Esterel programs [4]). But the verification using a
precompiled transition graph does not resolve the state explosion problem, because if the system is composed
of different subsystems that are not tightly coupled, the total number of states increases exponentially. In such
cases, it is very important to partition the model and to perform separate verifications on each part of the model
(modular verification).

In the Section 2 we describe the computational model of Synchronous Reactive Systems which we use
as intermediate format to compile the graphical specification. In the Section 3 we sketch the procedure of
translation from Synchronous Reactive System into the language accepted by a model checker (SMV [14]), and
show how we can perform the modular verification. Finally, in Section 4 some conclusions and future work are
presented.

2 The Framework of Synchronous Reactive Systems

In this section, we present a brief introduction to the SA/RT models and we show the underlying computational
model that we denoted Synchronous Reactive System (SRS).

* This work has been funded by the "Comision Interministerial de Ciencia y Tecnologia" (Spain) under project EDIC
(TIC96-0652)

de la Riva C, Tuya J., de Diego J. R. Translating SA/RT Models to Synchronous Reactive Systems 379

2.1 SA/RT methods

SA/RT is a short name for Structured Analysis methods with extensions for Real Time. Using Structured
Methods we can view the model of the system as a leveled set of diagrams that include concurrent processes
and the communication between them. Each process communicates with others and with the environment using
data and control flows (in our model only control flows are needed and we shall denote them events). Each
process is decomposed into a diagram showing a more detailed view. The primitive control processes (processes
which not decompose in other) are specified using State Transition Diagrams (STDs).

2.2 State Transitions Diagrams

In the SA/RT methods [18], the behaviour of a primitive control process is defined using a State Transition
Diagram or STD. An STD contains all states that the process may reaches and all transitions that it may
performs. In the rest of this paper, we use the term "process" and "STD" indistinctly, due to there is a mapping
between a process and its STD,

Definition 1. An STD is a 5-tuple < £, so, 1,0, S > where

— £ is the set of states.
— so is the initial state of STD, s0 € £
— I is the set of input events that the STD receives
— O is the set of output events that the STD produces, I n 0 = 0
— 6 is the transition relation, 6 C (£, I,0, £)

Usually, we denote the transition r = (s,c,a,s') £ Ö using the notation s —>ca s', which means that STD
executes the transition r when it receives the input event c (see Remark 1), changing to state s' and producing
the set of output events a C O. In the context of individual transitions, we shall refer to the pair (c, o) like label
of transition and we shall refer to c like condition and a like action. All STD implicitly has a control variable or
control state TT, which denotes the local state of process (initially TT — SQ). A transition r = (s, c, a, s') is enabled
if (n = s) and the evaluation of c is true. The set of enabled transitions in a state s is denoted as enabled(s).

Remark 1. The original syntax from Ward [18] specifies that a condition in an STD must be composed only
of control flows (individual events). In order to achieve a higher expressiveness of the specification, we allow
the conditions to be formed by logical expressions of events of I, values of the states of other processes and the
proposition true (equivalent to the "blank" condition in the graphical model).

2.3 Synchronous Reactive Systems

An SRS consists of a set of STDs interacting over a set of input events and a set of output events. The events
that communicate STDs we denote them internal events due to this events are not observable out of the SRS.

The semantics adopted to describe the behaviour of SRS is related with the concepts of Berry's synchronous
hypothesis [4] (the system reacts instantaneously to external events) and the semantics of Micro/Macro Step
in STATE-MATE [9] and RSML [11]. Basically, we can view the execution of the SRS as infinite series of
macro — steps that produce sequences of output events in response to input events, and internally, the execution
can be viewed as a chain of micro — steps. At each one, the system will reacts to the input events producing
output events and internal events that initiate other micro — step until no more micro — step can be taken.

Definition 2. A Synchronous Reactive System (SRS) # is a 5-tuple
< A,GE,IE,OE,—>»> where

— A — {Mi, Mi, ■ ■ ■, Mn] is the set of STDs that compound $
— GE is the set of internal events that communicate the STDs in A,

G£ = (Üi,)n(lJoo

— IE is the set of input events that <? receives of the environment,

n

, IE = \Jli-GE .

— Perspectives of System Informatics'99

- OE is the set of output events that § produces to the environment,

0E=\J0i-GE

>" is the transition relation of $ which describes the semantics outline above and we shall define in the

The initial state of # is formed by the set of the initial states of the STDs in A, S0 = {s0, Sl s } An
state (global state) S of # is composed by the control states of the STDs in A, S = fa,..., *B).' We' denoted
by C ~ (S,IE,OE,GE) as the configuration of §. The set of all possible configurations of $ is denoted by
Global^). We shall describe the transition relation —yc Global^) x Globaim in basis to the following
inference rules (similar to [12]):

Advance RulesrApplies to an STD Mt if it has an enabled transition in a state of the current configuration
If the STD have multiples enabled transitions in the configuration, one of them is taken non-deterministically:

 fa ~ Si) A (3-ry : st —>cj. s'j £ SJ/TJ 6 enabled{sj))

((Ki,---,Si,...,nn),IE,OE,GE)~>»((nu...,s<i,...,„n),0,OEUai,0) (1)

If various STDs of SRS have enabled transitions, then each of them execute simultaneously:

fa = Si) A (3TJ : st —►£ s'i e Si/n e enabled(si))

fa = Sj) A (3TJ : Sj —>ls. s'j 6 SJ/T, € enabled(sj))
(fa, ...,Si,...,8j,..., 7rn), IE, OE, GE) —+v (2)

(fa 1 • ■■•,s'i,...,s'j,...,nn),0,OEUai U aj,0)

Stuttering Rule: If an STD M{ is in a state in the current configuration and it does not have any enabled
transition, then it consumes events but it does not produce events. This notation is adequate to represent the
concept of reactivity{m any state, there exist at least one transition to execute):

_s fa = Si) A (3-Ti : Sj —>£• s'j 6 Sj/n $ enabledjsj))

(fa,--.,8i,...,irn),IE,OEiGE) -+P ((ir1,...,si,...,irn),<2),OE,2>) (3)

The above rules show the execution of the SRS at level of micro - step. When all STDs Mx M in
the SRS only can to advance executing the rule 3, the SRS has reached to an stable configuration (no more
transitions can be taken).

At level of macro - step, the execution of SRS can be viewed like a sequence of stable configurations, where
at each one, the SRS receives input events IE and produces output events OE:

C = {S,IE,2>,e>)—>i.C' = (S'>0,OE,e>) (4)

where 5 and S' represent the global states of SRS before and after of the macro - step, C' is an stable
configuration and —>*> represents a chain of micro - steps:

C-^"C' = C—>'>Cy-^'>...—>»Cn—>'>C' (5)

3 Verification of SRS

The intermediate format presented in the later section is translated into the language accepted by the SMV
[14] model checker. In the SMV language, we can specify the operational model and check its desired properties
written m CTL Temporal Logic [5]. The execution of an SMV specification can be viewed as a sequence of steps
that change the values of variables according to the transition relation of the automata represented by the SMV
code. We shall outline the translation procedure of the semantics (—>•» and —►") to SMV and how we include
support for performing modular verifications.

de la Riva C, Tuya J., de Diego J. fl. Translating SA/RT Models to Synchronous Reactive Systems 381

3.1 Translating SRS into SMV

The execution of each macro - step consists of a first step, in which the changes produced in the environment
are perceived, and a sequence of micro - steps,until a stable configuration is reached. Since SMV executes
step by step, without any difference between steps, we must differentiate the first step from the others using a
special variable named MicroStep. The following pseudo-code reproduces the behavior of —>*>:

if MicroStep = 0 then
Allow changes in external inputs and set MicroStep = 1

else
if some transition can be executed then

Perform a micro-step by executing transitions
else

Set MicroStep = 0
end if

end if

We use a boolean variable for each event and a variable for representing the state of process (namely, 7r).
Changes of each variable representing an external input event ml e IE are performed by sentences that set the
event to a random value only when the value of MicroStep is 0. Otherwise its value will be set to 0 (external
input events can influence only the first micro — step):

next(inl) := case
MicroStep=0 : {0,1}:
1:0;

esac;

The execution of each micro - step (—»") follows a similar schema, but, since we need to know if some
transitions where enabled or not in order to decide whether to continue the chain of micro - steps or not, we
use an additional variable TP for each process, that represents the transition that will be executed. For instance,
if two transitions T\ and T% leave the state SO towards SI and S2, having conditions Cl and C2 respectively, we
first select the transition to be executed with a direct assignment (if no transition can be executed, then TP is
set to 0):

TP := case
MicroStep=l & pi=S0 & Cl : 1;
MicroStep=l & pi=S0 & C2 : 2;
1:0;

esac;

The SMV case sentence is deterministic: it selects the first row that has the condition true. If we want the
selection to be non-deterministic, we can do as shown in [17].

Output events and next states are set according to the value of this variable. For instance, if event outl £ OE
is sent as a consequence of the execution of transition T\ and also as a consequence of another transition T3, the
next value for outl will be:

next(outl) := case
TP=i I TP=3 : 1;
1:0;

esac;

The last term sets the value to zero for the same reason as in external input events.
The next state (assuming that variable pi holds its value) will be coded as:

next(pi) := case
TP = 1 : SI;
TP = 2 : S2;
1 : pi;

esac;

382 Perspectives of System Informatics'99

The chain of micro- steps finishes when no transition can be executed. For instance, if we have two processes
in the SRS, each one having its own variable (TPi and TP2) which indicates the transition executed, we shall
have:

next(MicroStep) := case

MicroStep=0 : 1; — environment has changed
TP1=0 & TP2=0 : 0; — end of macro-step
i : MicroStep;

esac;

3.2 Approach for Modular Verification

Due to the state explosion problem, when the size of the system grows, it is desirable to be able to perform local
verifications in separate components and deduce some global property for the whole model. This procedure can
be called Modular Verification and is based on the Abadi and Lamport composition theorem [1], also known as
rely-guarantee or assumption-commitment rules. If a model # can be decomposed into the parallel composition
of two (or more) components (SRSs) [#i||*2], we can perform the verification of local properties (<f>lt </>2) for
each component (#x or #2, respectively) assuming some kind of behavior for the other (abstracted) component.
For instance, we can prove that <j>2 is true for the component <2>2 assuming certain behavior fa of the abstracted
model $u and symmetrically for «Px. If we also prove that fa is true for #! (discharge the assumption) and
its symmetric {fa is true on #2), then property </>i A <t>2 will be true for the whole model <? provided that
assumptions are safety properties [1].

When we divide the model into different SRSs (each one groups several processes in the SA/RT model),
internal events that communicate them must be treated differently to the others. We name these Ghost Events
and at each micro - step we set their values to random ones. A safety property which is true in the component
will also be true in the whole model (the converse is not true, since this simplification introduces additional
computations that may not be present in the whole model).

When including ghost events, the termination of each macro - step (determined by the portion of code that
gives a value to the variable MicroStep) must be modified to take into account the fact that if at some step no
transition is enabled, the abstracted model may still be executing a transition that will send a ghost event at
the next micro - step. The end of the macro - step must include additional conditions to avoid finishing when
the next value of some ghost event has been sent. For instance, assuming that we have two variables (gl and
g2) representing ghost events, the above fragment will be:

next(MicroStep) := case

0:1; — environment has changed
next(gl)=0 & next(g2)=0

& TP1=0 & TP2=0 : 0; — end of macro-step
1 : MicroStep;

esac;

When we wish to specify some kind of assumption, we use a set of simple rules coded as sentences like:
ASSUME(cond,g,v), which states that if condition cond is true, then variable g must have the value v.
Assumptions are included in the portion of code that sets a value to the ghost event as shown below (recall that
the case sentence selects the first condition that is true):

next(g) := case
MicroStep=l & cond : v;
— other assumptions ...
MicroStep=l : {0,1}; -- possible change
1:0;'

esac;

3.3 Specification of properties

System properties must be checked at the end of each macro - step. It suffices to transform a formula AGU)
where <f> is another CTL formula or proposition, into '

AG(MicroStep = 0 -> <f>)

 de la Riva C, Tuya J., de Diego J. R. Translating SA/RT Models to Synchronous Reactive Systems 383

Due to a high number of properties of interest being input/output responses, which relate input with output
events, and the values of input events are maintained only at the first Micro-step, we also provide a predicate
WASO(f) which is true if / was true at some micro - step of the current macro - step. Using an additional
variable for each one, the translation is straightforward.

When we discharge an assumption (commitment) in the form ASSUME(cond,g,v), we use a CTL formula
that is checked at each micro — step like:

AG(MicroStep = 1 -> (cond -» g = v))

An essential property of this type of model is the absence of a kind of livelock situation in which the system
is executing an infinite chain of micro - steps (step termination). This situation is checked with the following
CTL formula:

AG(MicroStep = 1 -> AF(MicroStep = 0))

When we try to prove this property in a component that has some ghost events as input, an important risk
is that of falling into false infinite loops caused by an infinite sequence of these events. In that case, a common
assumption is to prevent a ghost event from appearing more than once (or more) in a macro - step: it suffices
to use a assumptions like ASSUME(WAS0(g), g,0).

4 Conclusions

The approach taken for modular verification of synchronous reactive system allows mitigate the effects of the
state explosion. Although a compilation of the synchronous model previous to its model,checking (as in [10])
is more efficient due to the elimination of all micro — steps and so, its corresponding states), the explicit
representation of all micro — steps allows us to state the adequate assumptions and prove them without any
distortion of the semantics of the whole model. The assumptions used are composed by a number of simple
rules whose translation into code is straightforward. Nevertheless, they must be obtained manually, which can
be a difficult task if the interface is complex. So, our present work is addressed to attaining these constraints in
a more automatic way.

We think that the use of modular verification might be essential when the model is composed of relatively
independent devices. The result in [15] and [8] confirm our idea that it is possible to (nearly) interactively
perform verifications of interesting properties of a system as we describe in [16], thus making model checking a
powerful tool for detecting bugs and for debugging the specification.

References

1. Martin Abadi and Leslie Lamport. Conjoining specifications. ACM Transactions on Programming Languages and
Systems, 17(3):507-534, 1995.

2. Richard J. Anderson, Paul Beame, Steve Burns, William Chan, Francesmary Modugno, David Notkin, and Jon D.
Reese. Model checking large software specifications. In Proceedings of the 4th ACM SIGSOFT Symposium on the
Foundation of Software Engineering, pages 156-166, 1996.

3. Albert Benveniste and Gerard Berry. The synchronous approach to reactive and real-time systems. Proceedings of
the IEEE, 79(9):1270-1282, 1991.

4. Gerard Berry and Georges Gonthier. The esterel synchronous programming language: Design, semantics, implemen-
tation. Science of Computer Programming, 19(2):83-152, 1992.

5. Edmund C. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Transactions on Programming Languages and Systems, 8(2):244-63, 1986.

6. Werner Damm, Hardi Hungar, Peter Kelb, and Rainer Schlör. Using graphical specifiction languages and symbolic
model checking in the verification of a production cell. In Lewerentz and Lindner [13], pages 89-107.

7. N. Day. A model checker for Statecharts (linking CASE tools with formal methods). Master's thesis. University of
British Columbia, Dept. of Computer Science, 1993. also published as Tech. Report 93-35.

8. Jose R. de Diego, Claudio de la Riva, Javier Tuya. Analisis empirico de SMV en la verificacion de Sistemas Reactivos.
In Jornadas Iberoamericanas de Ingenieria de Requisitos y Ambientes Software (IDEAS'98) pp. 145-156. 1998

9. David Harel and Amnon Naamad. The STATEMATE semantics of Statecharts. ACM Transactions on Software
Engineering and Methodology, 5(4):293-333, 1996.

10. Lalita J. Jagadeesan, Carlos Puchol, and James E. Von Olnhausen. A formal approach to reactive systems software:
A telecommunications application in ESTEREL. In Proceedings of the Workshop on Industrial-Strength Formal
Specification Techniques, 1995.

J

-5^ Perspectives of System Informatics'99

"' ^ZG' ?VeS°%^LR E- HeimdahliH°»y Hi,dreth> -d J°» D' Reese. Requirements specification for process
control systems. IEEE Transactions on Software Engineering, 20(9):684-707 1994

12. Erich Mikk, Yassine Lakhnech and Michael Siegel. Hierarchical automata as model of Statecharts. In Asian Computing
S^ence Conference (ASIAN'97) volume 1345 of Lecture Notes in Computer Science. Springer-Verlag 1987

13. Claus Lewerentz and Thomas Lindner, editors. Case Study "Production Cell", volume 1/94. Forschungszentrum
Informatik, Karlsruhe University, 1994.

14. Kenneth L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem. PhD thesis Carnegie
Mellon University, 1992.

15. Javier Tuya, Jose R. de Diego, Claudio de la Riva, and Jose A. Corrales. Dynamic analysis of SA/RT models using
SPIN and modular verification. In J. C. Gregoire, G..J. Holzmann, and D. A. Peled, editors, The Spin Verification
System, volume 32 of DIM ACS, pages 165-183. American Mathematical Society, 1997.

16. Javier Tuya, Claudio de la Riva, Jose R. de Diego, and Jose A. Corrales. CASE support for modular verification or
syncronous reactive systems. In S. Gnesi and D. Latella, editors, 2nd International Workshop on Formal Methods
for Industrial Critical Systems, pages 125-137, Cesena, Italy, 1997.

17. Javier Tuya, Luciano Sanchez, and J. A. Corrales. Using a symbolic model checker for verify safety properties
in SA/RT models. In 5th European Software Engineering Conference, volume 989 of Lecture Notes in Computer
Science, pages 59-75. Springer Verlag, 1995.

18. Paul T. Ward. The transformation schema: An extension of the data flow diagram to represent control and timing.
IEEE Transactions on Software Engineering, 12(2)1198-210, 1986.

nEPCIIEKTHBbl CHCTEM HHOOPMATHKH

TpeTbH Me^K^yHapo^Haa KOHcpepeHipra naMara A. II. Epinoea
6-9 HiojiH 1999 r., HOBOCHöHPCK

OTBeTCTBeHHbiit 3a BbinycK H. A. HepeMHbix

Tapa>K 200 3K3. 3aKa3 Ne

3AO PHI], "npafic-Kypbep"

Author Index

Anderson R. J. 355
Anlauff M. 27
Apt K.R 280
Asgari S 245
Basili V. 190
Beame P 355
Benharnou F 306
BogdanovA.A 289
Caballero R 211
Castro C. 299
Chan W. 355
Cheblakov G.B 330
Chelomin Yu.V. 133
Chkliaev D 123
Christensen N. H. 56
Christie M. 306
Ciobanu G 159
Connor R.C.H. 221
Cutts Q.I. 221
Dam M 178
Dearie A 221
Dekhtyar M.I. 165
Diego, J.R. de 378
Dikovsky A. Ya 165
Dinenberg F. G 330
Dold A 362
Farkas A 221
Frank L 238
Gaudel M.-C 12
Gaul T. 370
Gibson P. 105
Glück R 56, 62
Goerigk W. 370
Goos G 370
Goualard F 306
Gurov D 178
Heberle A 370

Herath A 340
Herath S 340
HofM 272
Hooman J. 123
Jones N.D 43
Kirby G.N. C 221
Kobilov S.S 162
Kolushev F.A 289
Kononenko I. S. 295
Korovina M.V. 7
Kucherov G 202
Kudinov 0. V. 7
Kuksenko S.V. 268
Kutter Ph.W. 27
Languenou E 306
Lanubile F 190
Laursen S 56
Lellahi K 257
Leuschel M 62, 67
Levin D. Ya 330
Lomazova LA 143
Löpez-Fraguas F. J. ... 211
Malec J 170
Man Lin 170
Martin J 67
McGettrick R 221
Mery D 105
Mössenböck H. 251
Mogensen T.M 86
Monfroy E 299
Morrison R 221
Nadjm-Tehrani S 170
Narin'yani A 325
Notkin D 355
Olariu F 159
Petrov E 318
Pierantonio A 27

Plümicke M. 100
Popov I. 295, 330
Raja N 149
Riva, C. de la 378
Rusinowitch M. 202
Sabelfeld V. 346
Saito C. 340
Sannella D 1
Schneider K. 346
Schnoebelen Ph 143
Scripkin A. E 277
Secher J.P 76
Shelekhov V.l. 268
Shull F 190
Shyamasuncar R. K. .. 149
Sidorov V. 312
Simonis V. 263
S0rensen M.H.B 76
Souah R 257
Stok, P. van der 123
Sünbül A 37
Telerman V. 312
Trichina E 185
Tuya J. 378
Ushakov D 312
Ustimenko A. P 136
Uvarov D.L 96
Valiev M.K 165
Vialard V. 362
Weiss R 263
Yakhno T. 318
Yonezaki N. 245
Zagorul'ko Yu. ... 295, 330
Zamulin A 12
Zimmermann W. 370
Zirintsis E. 221

IX

