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ABSTRACT 

This paper reviews a number of different moment-based methods for esti- 
mating the parameters of the K distribution. The K distribution is a model 
for the statistics of synthetic aperture radar (SAR) imagery that is formed 
from the product of two independent distributions, one representing the radar 
cross-section, and the other representing speckle that is a characteristic of co- 
herent imaging. A method for synthesizing correlated K-distributed random 
fields is reviewed. Moments of intensity, log intensity and amplitude statistics 
are used to compute measures which are inverted to give estimates of the mean 
and order parameters of the K distribution. A method based on the normal- 
ized logarithm of intensity is shown to give the best performance, confirming 
the results of Oliver (1993) and Blackneil (1994). The effect of correlation 
upon order parameter estimation and its role in the K distribution's underly- 
ing component pertaining to the radar cross-section is briefly considered. This 
work will be used to development target detection algorithms to find targets 
of interest in SAR imagery. 
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Estimating the Parameters of the K Distribution in the 
Intensity Domain 

EXECUTIVE SUMMARY 

An essential first step in the parametric approach to detection is to obtain an adequate 
model for the statistics of the background process or "clutter" so that it can be distin- 
guished from targets of interest. Targets of interest are then assumed to have a behaviour 
that is abnormal for the statistics of their local neighbourhood as described by the para- 
metric model. Given an adequate model for these statistics, the next step in detection is 
to estimate the parameters of the model that best fit a particular neighbourhood. The 
size of this neighbourhood should be as small as possible so that the probability of it being 
homogeneous is as large as possible and it is most similar to its center pixels or region of 
interest. There are countervailing pressures, however — the neighbourhood must also be 
large enough so that reliable estimates of the parameters are obtained. Consequently, the 
size of the neighbourhood must be carefully chosen. 

The final step in the detection process is to compare the center pixels or region of 
interest with the best-fitting model for the surrounding region and make a decision re- 
garding the likelihood that these pixels belong to the background or are abnormal for it 
and so should be considered to be a target of interest. This report is concerned with the 
first two steps in this detection process: the model for the statistics of synthetic aperture 
radar (SAR) imagery, and how the model parameters may be estimated from a sample of 
small size. 

In particular, this paper reviews a number of different moment-based methods for 
estimating the parameters of the K distribution. The K distribution is a model for the 
statistics of SAR imagery that is formed from the product of two independent distributions, 
one representing the radar cross-section, and the other representing speckle that is a 
characteristic of coherent imaging. A method for synthesizing correlated K-distributed 
random fields is reviewed. Moments of intensity, log intensity and amplitude statistics 
are used to compute measures which are inverted to give estimates of the mean and 
order parameters of the K distribution. A method based on the normalized logarithm of 
intensity is shown to give the best performance, confirming the results of Oliver (1993) 
and Blacknell (1994). The effect of correlation upon order parameter estimation and its 
role in the K distribution's underlying component pertaining to the radar cross-section is 
briefly considered. 

This work will be used in the development of model-based target detection algorithms 
to find targets of interest in SAR imagery. These algorithms will form part of the Analysts' 
Detection Support System (ADSS) which is designed to reduce the analysts' workload in 
the Broad Area Aerial Surveillance component of Joint Program 129. 
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1    Introduction 

An essential first step in the parametric approach to detection is to obtain an adequate 
model for the statistics of the background process or "clutter" so that it can be distin- 
guished from targets of interest. The targets of interest are assumed to have a behaviour 
that is abnormal for the statistics of their local neighbourhood as captured by the para- 
metric model. Given an adequate model for these statistics, the next step in detection is 
to estimate the parameters of the model that best fit a particular neighbourhood. The 
size of this neighbourhood should be as small as possible so that the probability of it being 
homogeneous is as large as possible and it is most similar to its center pixels or region of 
interest. The final step in the detection process is to compare the center pixels or region 
of interest with the best-fitting model for the surrounding region and make a decision 
regarding the likelihood that these pixels belong to the background or are abnormal for it 
and so should be considered to be a target of interest. This report is concerned with the 
first two steps in this detection process: the model for the statistics of synthetic aperture 
radar (SAR) imagery and how the model parameters may be estimated from a sample of 
small size. 

In the next section we will consider the K distribution which has been considered as 
a model for the statistics of SAR imagery. Next, section 3 will look at its correlation 
properties and section 4 will review a method for simulating a correlated K-distributed 
random field. Section 5 will review a number of moment-based methods for computing 
the parameters of the K distribution, which is followed by consideration of parameter 
estimation in the presence of correlated samples. Finally, section 6 considers the effect of 
correlation upon the variance of the estimators and section 7 presents the conclusions. 

2    Derivation and Properties of the K 
Distribution 

The K distribution can be shown to arise when a gamma-distributed surface cross- 
section is imaged with coherent radiation [26]. Indeed, the K distribution has been pop- 
ular for some time as a model of the single-point statistics of high resolution radar [35]. 
Physically, the K distribution can be justified in the following manner. It arises in the 
situation where the resolution cell is much larger than the radiation wavelength, and the 
resolution cell contains N randomly distributed scatters. If the number of scatterers N is 
distributed according to a negative binomial distribution so that it fluctuates from cell to 
cell, scattered coherent radiation from the cells would be K distributed [13]. Alternatively, 
the K distribution may be viewed as a limit process on a two-dimensional random walk of 
a finite number of steps of fluctuating lengths with the number of steps varying according 
to the negative binomial distribution [14,15,16]. For our purposes however, it is sufficient 
to state that when the cross section is gamma distribution (the continuum analogue of 
the negative binomial distribution), the resulting intensity under coherent radiation is K 
distributed [22,23,25]. 

As mentioned above, the K-distribution models the two components that go to make 
up the radar imagery: the radar cross-section and the noise due to speckle. We will now 
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see how these two components form the K distribution. We know that the radar cross- 
section of a cell determines the corresponding pixel's mean intensity and furthermore 
that it is deterministic and repeatable. However, because small changes in the geometric 
configuration of the scatterers in the cell change the phase relationships of the scattered 
radiation and hence the observed intensity, the radar cross section is best considered as 
a random distribution parameterized by its mean value. Consequently, the radar cross- 
section is modelled as a gamma-distributed random variable cr (for justification, see the 
references in the previous paragraph) given by the probability density function 

where T(-) is the gamma function, // = (cr) is the mean, and v is the order (normally, 
the gamma distribution is expressed in terms of a scale parameter 7 = fi/v and shape 
parameter a = v). The variance of er is ß2/v, so v is inversely proportional to the variance 
of the cross section. In the next subsection we will allow for the possibility that the cross 
section can be correlated from cell to cell, which reflects the correlation properties of the 

imaged scene. 

The observed intensity, the random variable x, is produced by the speckle random 
process with position dependent mean values given by the radar cross-section at each 
point. During imaging, an option is available to average a number of independent images 
of a scene (termed "looks") and this averaging has the effect of reducing the variance of 
the speckle. If each of the single-look pixels in an L-look resolution cell has the same 
constant radar cross-section then the L-look amplitude random variable (the square root 
of the intensity) will be Rayleigh distributed with 2L degrees of freedom. However, when 
the radar cross-section is gamma distributed (1), then the intensity of the multi-look pixels 
will be K-distributed assuming that speckle and radar cross-sections have very different 
scales and therefore can be treated separately [28, p. 130]. For L-look SAR imagery [3,29], 
the conditional probability density function of the intensity x due to multi-look averaged 
speckle process is given by 

^>-!(T)'iPi«'(-T) <2> 
so that the probability density function of x is given by the integral over all possible cross 
section realizations is 

/•oo 

Mx) = /     f*\M<r)fM der. (3) 
Jo 

Evaluating this integral gives the K distribution 

, , .      2 (LvxX^        1        „       (n  ILVX\ ... 

'-« = ;(—)   wmK-L{2i—) (4) 

where KV-L{-) is a modified Bessel function of the second kind of order v — L [36]. Note 
that it is usually assumed that the speckle is independent from cell to cell because small 
scale features are uncorrelated at spatially separated locations [31]. Note too that the K 



DSTO-TR-0839 

distribution is symmetric in L and v because the modified Bessel function is even in its 
order parameter, although non-integer values of L do not have physical meaning. 

The integral of (3) makes the above formulation of the K distribution cumbersome to 
deal with analytically. However, it is possible to formulate the K distribution of (4) by 
what is termed the product model. Let z denote L-look speckle random variable of mean 
(z) = 1 with probability density function given by 

, . .      LLzL-le~Lz 

/.«=       m      ■ (5) 

Then the product of random variables x = crz is K distributed with probability density 
function given by (4), where the random variable a is distributed as before in (1). This 
can be shown by evaluating the integral for the product of two independent probability 
density functions [11], 

/*(*) = r n/- (-) /»(*)• J-oo M      K°~' 

using the fact that a ^ 0. 

For this model to be a reasonable one, it is necessary that the speckle and radar 
cross-section have spatial fluctuations that are very different. As pointed out in [28], 
the effective point-spread function and sampling of the SAR sensor would in practice not 
make this the case, particularly in the intensity domain, and so the SAR image is normally 
resampled so that speckle has little correlation from pixel to pixel. If the contributions 
are not separable in the sense that multi-looking averages speckle without affecting radar 
cross-section fluctuations, then the result of multi-looking will not be K-distributed. 

The moments of the K distribution always lie between those of the negative exponential 
distribution and those of the log-normal distribution having the same mean and variance 
[13, p. 811]. The moments of the K distribution are given by 

V     ' L"»i/T(L)r(i/)      ' W 

so that the mean of the K distribution is given by ß, and its variance is 

var(x) = f (—— J . (7) 

In the case of small !/<l (about 0.1 or even smaller), K-distributed random variables are 
very "spiky". When v is large (about 10.0 and larger), K-distributed random variables do 
not exhibit this spikiness. 

The K distribution is less sensitive to the parameter v at large values of v, and as a 
consequence, the variance in estimates of v will increase with v, even though the estimated 
probability density function may not visibly vary. This behaviour can be seen in the graphs 
of figure 1. 

Oliver and Quegan [28, pp. 135-138] provide a comparison of four commonly used 
models for the statistics of SAR imagery and compare them with the K distribution model. 
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fx(x) 

Figure 1: The variability in the shape of the K distribution's probability density function 
decreases with increasing v. The probability density functions here are for L = 4 and 

M = l. 

These models are the log normal, exponential, Weibull and gamma probability density 
functions. Using homogeneous pieces of SAR imagery of a field and some woodland they 
examine using the Kolmogorov-Smirnov statistic the probability that the data from each 
sample follows each of these models after estimating their maximum likelihood parameters. 
In the case of the field, the observed probability density function had a variance that was 
lower than that predicted by the speckle model alone so fitting a K distribution proved 
impossible. Oliver and Quegan state that this would be expected to occur in roughly 
half the samples taken over regions of constant radar cross-section, and it is reasonable 
to assume in such circumstances that the region contains a constant radar cross section 
such that v — oo. (This should also be considered in the light of the K distribution's 
increasing insensitivity to v as v increases.) We will observe this behaviour later in this 
report when we come to moment-based estimators for the order of K-distributed samples. 
The best fitting distribution was the Weibull with a probability of 0.781, followed by a 
gamma distribution (0.683), an exponential distribution (0.572) and finally a log normal 
distribution (6.8 x 10-11). In the second case of a region of woodland SAR imagery, the 
goodness of fit was a stark contrast: the K distribution fitted with a probability of 1.000, 
followed by the Weibull (2.1 x 10~12), gamma (1.4 x HT54), log normal (6.6 x 10"106) and 
exponential distributions (0.0), according to the Kolmogorov-Smirnov statistic. 

3    Correlation Properties 

As mentioned above, the radar back-scatter is commonly correlated from one resolution 
cell to the next, but the speckle is usually modelled as being uncorrelated across cells. 
We can use the product model to determine the correlation function of the resulting K 
distribution in terms of the correlation coefficient of the radar cross-section Pa-(r) at lag r 
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[20]. To simplify notation for the time being we will assume that we are dealing with a one- 
dimensional array of random variables Xj so that the lag r is a scalar and we will mostly 
drop the r for convenience. If px(r) denotes the correlation coefficient of random variable 
x at lag r, then (ignoring the separate indices for directions on the two-dimensional grid 
of the image) 

Px(0 = 
COv(Xi,Xi+r) 

(8) 

var(a;;) 

\XiXi-{.r)       \Xi) 

(^)-(xiY 

After substituting the product model and the moments of the two probability density 
functions in (1) and (5), and using that z and a are independent of each other as well as 
that the autocorrelation sequence of the speckle random variable z is a Kronecker delta 
function Sr, we obtain 

^ = VTTTl^r) + s'^TTl- (9) 

Note that the correlation coefficient px(r) in (9) matches the single look case presented 
in [20] when the substitution L = 1 is made. It can be seen that the resulting correlation 
coefficient is composed of a spike at the origin, due to the presence of uncorrelated speckle, 
and the scaled correlation coefficient due to the correlated cross-section random variable. 

Oliver [25] has shown that sometimes the correlation properties of the textures in SAR 
imagery can be captured using a negative exponential model (along each axis) for the 
autocorrelation function (ACF) of the radar cross-section er. The ACF of er along one 
axis would thus be given by 

/9tr(r)=exp(-^). (10) 

The correlation length, determined by the decay rate T of this negative exponential model, 
then provides a single convenient quantity to describe the correlation properties. (Note 
that the correlation properties of SAR imagery are anisotropic, so two correlation lengths 
would really be required for the two dimensional field. This is easy to appreciate when 
one considers that the shadows of trees always fall on the side opposite the sensor.) 

The negative exponential model for the ACF arises from a Fokker-Planck rate equation 
used to model the radar cross-section [15,24,28]. This rate equation is the continuum 
analogue of a population model with birth, death and migration. The solution of the rate 
equation yields a gamma-distributed radar cross-section a, with the correlation coefficient 
given by (10) and 1/T the migration rate. Therefore there is some justification for using a 
negative exponential ACF in conjunction with the gamma-distributed radar cross-section 
model. 

Lombardo and Oliver [20] have shown that it is more accurate to derive the correla- 
tion length in the log domain (i.e. logarithm of the intensity). This would also be more 
convenient considering that the imagery is typically quantized to 8 bits after a log trans- 
formation. The relationship between the correlation coefficients pa in the intensity domain 
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Figure 2:    The mapping between the correlation coefficients pa  and p\0ga for v 

0.1,0.5,1,5 from (11). 

and piogo- in the log domain is given by the expression [20] 

Ploger «'-^E^^V^,) $M{u) 
k=Q 

k\     Y{v) 
^H + log(l-pCT))

2 (11) 

where ip^(-) and V'^(') are the digamma and trigamma functions, respectively. The 
curves in figure 2 indicate this relationship. The decorrelating effect of the log transfor- 
mation for smaller values of v can clearly be seen. Figure 3 is a plot of the effect that 
the log transformation has on the exponential ACF, and this effect is quite pronounced 
for small values of v. In the log domain, the correlation coefficient of the random variable 
log x is given by 

Piogx(r) = 
cov(log3;j,loga;j+r) 

var(log Xi) 

{\ogXi\ogxi+r) - {\0gXif 

{log2 Xi) - {\ogXiY 

which when evaluated gives that 

PlogxO") = 
^)(u) + ^)(L) 

P\og<r(r)+Sr 
4>W(L) 

^){v) + ^){L) 

(12) 

(13) 

(only the special case of L = 1 is presented in [20]). It can be seen that the two-component 
structure of the correlation has been preserved in the log domain: there is again a spike 
at the origin, and a weighted lag-dependent term due to the underlying cross-section. 
Therefore, as a consequence of the spike in (13) and the relationship between pi0g<r and pff 

in (11), very little of the correlation structure of the underlying radar cross-section will be 
visible from the random variable x in the logarithm domain. This can be seen in figure 4 
where the ACF of logx is plotted using (11) and (13), when the radar cross-section has a 
negative exponential ACF. 



DSTO-TR-0839 

Plogtri Per 
1 

'•A 
0.8 

0.6 

0.4 

\   \   \ 
^          ^ 

0.2 

V 

 Exp 

... 0.1 

_ 0.5 

 1 

Figure 3: The effect of mapping to the log domain upon a negative exponential A CF can 
be seen in this plot of the correlation in the log domain piog(T from (11) versus the lag r 
for each of v — 0.1,0.5,1,5. The outer-most curve is a plot of the correlation pa versus 
lag r for a negative exponential ACF for comparison with r = 5. 

4    Simulating Correlated K-Distributed Random 
Fields 

To be able to empirically test the performance of the estimators for the parameters of 
the K distribution when the samples are correlated as discussed later in this report, it is 
necessary to be able to generate imagery of known statistics with a range of correlation 
structures. The method used here to do this firstly computes a two-dimensional Gaussian 
random field with a desired ACF using the method of Dietrich and Newsam presented in 
[7,8]. It proceeds as follows. 

Let us assume that the Gaussian random field is to have an ACF given by pg(r; r) with 
parameter r (which could be a vector) and lag variable r G {0, M-1} x {0, N — 1}. We will 
discuss later how to determine p9(r;r) from the desired ACF Po-(r) of the K-distributed 
field. 

Let the size of the random field we wish to generate be M x N. To begin the method, 
firstly generate a two-dimensional array s of size (M +1) x (N +1) from p9(r; r) such that 

[s]iJ- = P«(r;r = {i,j}))        i = 0,...,M       j = 0,...,iV. 

Periodically extend s to form s' which is 2M x 2N so that any row i of s given by 
[ft,o, • • • , PI,N] becomes [pifl,... , pi<N, Pi,N-i, ■ ■ ■ , Pi,i] and similarly for any column i (with 
the order of indices reversed). If the ACF does not have horizontal and vertical lines of 
symmetry this procedure is incorrect. In such cases much more complicated steps are 
necessary here [6,8]. 
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(b) L = 2 

(c) L = 4 

Figure 4: The effect of mapping to the log domain of an intensity random variable x with 
an underlying radar cross-section a which is correlated with a negative exponential ACF 
(T = 5). The correlation in the log domain p\ogx from (13) is plotted against lag r for 
each ofv> = 0.1,0.5,1,5. The outer-most curve is a plot of the correlation pa versus lag r 
for a negative exponential ACF for comparison with r = 5. 
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Figure 5: A realization of a correlated Gaussian random field with A CF given by (14) with 
r = 4. 

Take the discrete Fourier transform of VÄMNs' to give s', 

2M-12N-1 
2m(k-l)(s-l)     27rz(l-l)(t-l) 

s' = T{s'} = 
VWN E E[«V 2N 

k=0     1=0 

Set any negative elements of s' to zero (these will normally be due to precision errors for 
large classes of ACFs [6]) and take the square root (element by element) of the result 
to obtain si. Next, generate a IM x 2N two-dimensional array e of independently and 
identically distributed (iid) complex Gaussian random variables of zero mean and variance 
1. Compute the discrete Fourier transform of the element by element product (denoted 
by <g>) of s i and e 

2 

e = T{s\ ®ej 
2 

and the real and imaginary components of the upper left-hand M x N subarray of e, 
denoted by es, will be Gaussian with the desired ACF. Figure 5 shows an example of such 
a realization with Exponential ACF given by 

pg(r;T = {j,k})=e-V^/T (14) 

where r = 4. 

The next step is to realize the gamma-distributed random variables a of the radar 
cross-section from realizations of the Gaussian distributed random fields esi,i = l,... ,n, 
generated above. The random array S of random variables a can be realized by 

i=l 

which gives a gamma distribution with order v = n/2 and mean /j, = n by (1) (in fact, S 
is Chi-squared distributed with n. degrees of freedom). Figure 6 shows one realization of 
a correlated gamma-distributed field that results from this process. 
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Figure 6: A realization of a correlated gamma distributed random field of v — 2.5 with the 
n = 5 underlying Gaussians having ACF given by (14) with r = 4. 

The relationship between the correlation coefficients of the gamma and Gaussian ran- 
dom variables used to form them is given by the square of pg [5]. This can be shown in 
the following manner. Prom [11, p. 160], the probability density function of a bivariate 
normal distribution is given by 

fxy(x,y) 
2TT 

^ ■?. 

exp 
2\1 (x2 - 2pgxy + y2) 

2(1-Pi 

where the correlation between x and y is given by 

(xy) = Pg- 

Let two new random variables be formed by 

(15) 

u = Ex' and v = Ey? 
i=i *=i 

where the random variables x* and yi obey (15) and are independent for varying i. Then 
u and v will be gamma distributed according to (1) with u = rc/2 and ß = n. Using laws 
of expectation it is reasonably straight forward to show that the correlation of u and v is 
given by 

(uv) =4i/(^ + i/) (16) 

confirming [2], and that the correlation coefficient of the resulting gamma-distributed radar 
cross-section is given by 

* 
(17) 

10 
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Armstrong and Griffiths [2] showed that the bivariate gamma probability density func- 
tion for the random variables u and v is given by 

fviv(u,v) = 
2H-ipr1(l-P2

9)I» «^M-G^ä) /*-i 
Pgy/Wj' 

W     J 
(18) 

where Ifc(-) is a modified bessel function of the first kind of order k. They then state that 
the joint moments of u and v are given by 

<)2m(i       n2\v+2m 
((uvn=   (1jy J>; 2i[T(u + i + m)f 

r(iz) 

which can be simplified [1,10] to 

^9V{i + l)v{v + iy (19) 

4m(1 _ &m+v [r(^(+^
2 2Fl(m + v,m + u,„,ft, (20) 

where 2-Fi(-) is the Gaussian hypergeometric function. In the special case of m = 1, this 
simplifies to (16) above.1 

To obtain non-half integral values of order i/, a nonlinear transformation can be applied 
to the elements of S, which in the simplest case of n = 2 is given by [2] 

a-ij = -2 log 
IV) 

v'a '■■ 

«7 1'.-* /f 
(23) 

where [S]ij = <Tij, the elements of the transformed S' with desired order v' and mean 
fj,' are given by [S']ij = cr'^, and 7 is the incomplete gamma function. It was observed 
through simulation that the random variables that result from (23) obey the correlation 
relationship given in (17) and joint probability density function in (18) [2], although this 
was not proven. Armstrong and Griffiths were not able to determine analytically the 
effect of (23) on the resulting correlation, but state that (19) and (20) are still valid from 
simulation. 

The last stage in producing the correlated K-distributed random field is to multiply 
each element of £' by an iid random variable z with probability density function given by 
(5), i.e. gamma distributed with mean of 1 and order parameter L (the number of looks). 
Figure 7 shows a realization of the resulting K-distributed random field. 

^he relationship between the correlation coefficient pg of the underlying Gaussian-distributed random 
variables and p&, the correlation coefficient of the gamma-distributed random variables is given in [28, p. 
147] as 

p*=v{(l+p2
g)"

+22Fi(l + i>,l + v,u,pa
B)-l}. (21) 

This expression is incorrect — the first addition occurring in the term (1 + p\) should be a subtraction. 
This can be seen by observing that (21) simplifies to 

PT 
q+pg) 2s2+j/ 

(l_p2)2+,V^ 

which after correcting the sign gives the expression in (17). 

{p\ + v)-v, (22) 

11 



DSTO-TR-0839 

200 

150 

100 

100    150 200    250 

(a) intensity domain 
(b) log intensity domain 

(14) with 71i mthL-2-"~ M <">d the underlying Gaussian* having ACF given by 

funI"°beTr,11 f.0? "" "-,""-'»* *- ■* all possible autocorrelation 

effect of the Inform onfte H™" " b°™™ "° "^ reIafasl* f<* "» 

5    Estimators 

5.1    Maximum Likelihood 

of rll™"x-7x 6Stima1 f°r the PrmeterS ° °f a diStributi0n fr0m a ™*» aom vanables X - (xx,... ,xn) 1S given by maximizing the likelihood function 

Lx(0) = fx(xu ... ,xn:6) 

12 



DSTO-TR-0839 

where fx (x\,... , xn : 9) is the joint probability density function of X with 9 its parameter 
vector which may be regarded as a random variable dependent upon the data xi,... ,xn. 
If xi,... ,xn are independent and their probability density function is given by fx(x), 
then the likelihood function becomes 

n 

Lx(e)=HfXi(xi:9). 
i=l 

For the case of the K distribution, we have that 9 = (fi, v) and the probability density 
function is given by (4). Note that L, the number of looks, is known a priori. Maximizing 
the likelihood function is equivalent to maximizing the log likelihood function, which for 
the case of independent samples from a K distribution is 

n   ( 1 
logLxG", v) = $3 ( - loga* + «(£ + ")QogL + logxi + logt/ - log/*) 

t=i V A 

+ log \KL_V M^y-J ] - logr(L) - logl» + log2 j .   (24) 

This maximum likelihood estimate for the parameters ß and v of the K distribution 
(24) has no closed form and requires a two-dimensional search for its solution. This is 
computationally too expensive for the applications of interest. The next least expensive 
approach is to take local estimates for \i by computing the mean in a window and using a 
one-dimensional search for v [12]. However, this is still too expensive computationally, and 
method of moments based approaches offer a speedier alternative. We consider moment- 
based methods in the following subsections. 

5.2    First Moment Estimate for Mean Parameter 

The mean parameter /i of the K distribution can be estimated directly from the data 
using the first moment or sample mean 

1   n 

£ = -$>< (25) 
1=1 

and this estimate is unbiased and has normalized variance [3] 

var(/i)      v + L + 1 
(26) 

fj,2 nuL 

which is simply the variance of the distribution reduced by a factor of n. 

Figure 8 plots the histogram of estimated mean values using (25) from 1000 simulations 
with a range of order v values and differing sample sizes. It is clear that the estimate is 
unbiased. By 49 samples, there is a reasonably close degree of clustering around the 
true mean except for small values of v = 0.1, which require much larger sample sizes. 
Note that the effect of multi-looking at a fixed sample size is roughly proportional to an 
equivalent number of samples with a lesser degree of multi-looking treated independently 

13 
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Figure 8: Plots of the histogram of estimated mean using the sample mean (25) for the 
cases ofv- 0.1, v = 1.0 and v = 10.0 with 9, 25, 49, 81 and 121 samples and L = 1,2,4 
/oo&s calculated over 1000 simulations with p = 1. Tae mean o/ iae itföfl mean estimates 
occurs at the value designated by a vertical line. 
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for v ^ 1.0 {e.g., two-look with a sample size of 25 is roughly equivalent to single-look 
with a sample size of 49). Figure 9 plots the normalized variance of the sample mean 
over the 1000 simulations against the theoretical variance of the sample mean from (26) 
with which there is a good correspondence. Figure 10 plots the normalized variance of the 
mean estimate against the actual order parameter of the simulations. The uncertainty in 
the mean estimates with decreasing v is clearly visible. 

5.3    Maximum Likelihood Using Approximation to K Dis- 
tribution 

Oliver [27] presents a maximum likelihood estimate for the parameters of an approx- 
imation to the K distribution. (I will refer to it as the approximate maximum likelihood 
estimator for convenience.) He derives an approximate probability density function for 
the K distribution in the limit of large L, 

fx(x)*Mx)(l + £; (l +1/-2^(1 + 1/) + ^)) (27) 

and then computes the likelihood function for (27). After differentiating with respect to 
/j, we obtain the maximum likelihood estimate 

-ll + u- u±-4 
L I (xY 

£«<*)[ l + T[l + i>-i>i-£ (28) 

to first order in 1/L. Note that in this case the estimate of \i is not simply given by the 
sample mean of the data. Then, taking the log of the likelihood function for (27) and 
differentiating with respect to v leads to 

log v + 1 - log A - ^°)(i>) = -(logs) + ^ - -^ (l + 20 - 1(1 + 2i>)(x) + 2-^(x2)) . 
Li Zi±j   \ LI LL J 

(29) 

Eliminating ß then gives 

log v - </>(°) (j>) + V- (|p - 1 j = log (x) - (log x) + ± (30) 

to first order in 1/L. A numerical search is required to determine the estimate v where the 
expectations on x are determined from the sample. This is very similar to the moments of 
logarithm of intensity that we will consider shortly, and it serves to motivate that work. 

The approximate bias and variance in the order parameter to first order in 1/L and 
1/n is given by 

{>-»)*-2n(l-l^)(v))(1-l(1 + "+l-vlu(v))) (31) 

and 

var(t>) _ i/ipW(v)-l + l/L 
v2     ~ nv(l-vij)W(i/))2 (32) 

15 
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Figure 9: The normalized variance of the estimated mean using the sample mean (25) as 
it varies with sample size computed over 1000 simulations with (i = 1 for L = 1,2,4.  The 
theoretical (26) and calculated values of the normalized variance of the mean estimates are 

16     shown for three different values of the order parameter. 
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Figure 10: The normalized variance of the mean estimates using the sample mean (25) as 
it varies with v computed over 1000 simulations with /z = 1 for L = 1,2,4. 
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respectively. The approximate bias and variance in the mean parameter to first order in 
1/L and 1/n is given by 

<*-">W2aMl-W))    ' (33) 

and 

var(ß)      v + L + 1 
rs_f 

/j,2 nvL 

respectively. 

(34) 

Simulations of K-distributed random variables showed that the mean estimate of (28) 
is unreliable in practise. The variability of the second moment estimate in (28) caused the 
estimate of the mean to frequently be negative, and this frequency grew with increasing v, 
making it unreliable. For this reason, simulation results for this estimator are not reported 
further here. The discrepancy between the first and second moments of the approximate K 
distribution in (27) and those of the K distribution in (6) would explain this observation. 

Figure 11 plots the histogram of estimated order values using (30) from 1000 simu- 
lations for three different values of the order u and a range of sample sizes and looks. 
Figure 12 plots the absolute value of the relative bias of the order estimate against the 
actual order parameter of the simulations. Clearly the order estimate is biased for all 
but the smallest values of the order parameter in the range. The absolute value of the 
relative bias is particularly pronounced in the central range of v (figure 12) and the dip 
which follows is due to a sign change in the bias (z> — u), visible in figure 11. Note that 
increasing the number of looks has the effect of reducing the bias in the lower range of v. 
(Note that the approximation was derived for the case of large L.) A vertical line in each 
of the histograms of figure 11 is used to indicate the 5%-trimmed mean of the order esti- 
mates computed over 1000 simulations. In some cases the vertical line is off-scale because 
of the extremely large values of the order parameter that can sometimes occur in regions 
where the radar cross-section is close to being constant. As discussed in section 2, these 
can be interpreted as regions where v = oo. The proportion of the simulations in which 
this occurred is indicated by one minus the number in the upper right hand corner of each 
histogram of figure 11. This method failed to obtain a positive finite order estimate v in 
20-30% of the cases other than for v = 0.1, and these cases must be interpreted as v = oo 
according to the estimator. (The test for interpreting v as oo included: negative values of 
v, situations where no value for v was found in a fixed number of iterations when solving 
(30), and values of v that were > 105.) The predicted relative bias (31) is an extremely 
poor match (figure 12). 

Figure 13 plots the normalized variance of the order parameter estimate computed 
during the 1000 simulations for each sample size and number of looks against the theoret- 
ical variance of the order from (49). The predicted normalized variance is a poor match. 
Figure 14 plots the normalized variance of the order estimate against the actual order 
parameter of the simulations. The normalized variance is very large across much of the 
range of u, but the decrease that is apparent for large v must be offset against the large 
relative bias in this range (figure 12). 
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Figure 11: Plots of the histogram of estimated order using the approximate maximum 
likelihood estimator (30) for the cases of v = 0.1, v = 1.0 and v = 10.0 for 9, 25, 49, 81 
and 121 sample sizes and L = 1,2,4 calculated over 1000 simulations with fi = 1. TTie 
5%-trimmed mean of each of the 1000 order estimates occurs at the value designated by a 
vertical line. The number in the upper right-hand corner of each histogram indicates the 
proportion of the 1000 simulations that gave a reasonable order estimate (0 < v < 105,) 
indicating a varying radar cross-section under the K distribution model. 
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Figure 12: The absolute value of the relative bias of the estimated order using the ap- 
proximate maximum likelihood estimator (30) as it varies with v computed over 1000 
simulations with /x = 1. This is plotted against the predicted absolute value of the relative 
bias (33). 
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Figure 13: The normalized variance of the estimated order using the approximate max- 
imum likelihood estimators (30) as it varies with sample size computed over 1000 sim- 
ulations with ß — 1 and L = 1,2,4. The theoretical (32) and measured values of the 
normalized variance of the order estimates are shown for three different values of the or- 
der parameter. 

21 



DSTO-TR-0839 

var(i>) 

I 

n 
9 

...25 

-49 

 81 

121 

169 

... 225 

0.2    0.3  0.4 0.5 0.6 0.70.80.91. 2.     3.   4.  5. 6. 7. 8. 9.10. 

(a) L = 1 

.25 

.49 

.81 

. 121 

. 169 

.225 

0.2    0.3  0.4 0.5 0.6 0.70.80.91. 2.     3.   4.  5. 6. 7. 8. 9.10. 

(b) L = 2 

.25 

.49 

.81 

. 121 

. 169 

.225 

4.  5. 6. 7. 8. 9.10. 

(c) L = 4 

Fipure i^: The normalized variance of the estimated order using the approximate maxi- 
mum likelihood estimators (30) as it varies with v computed over 1000 simulations with 
H = l and L = 1,2,4. 
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5.4    Raghavan's Method 

Raghavan [32] estimates the parameters of the K distribution by determining the max- 
imum likelihood estimates of a gamma distribution and transforming these estimates into 
the closest matching K distribution parameters. The maximum likelihood parameters of 
a gamma distribution can be computed from simply the sample and geometric mean of 
the data. His approach is as follows (see also [17]). 

Firstly, Raghavan shows that it is possible to compute the maximum likelihood esti- 
mates for the parameters of a gamma distribution directly from the ratio of the sample 
(or arithmetic) mean to the geometric mean of the data, defined by 

Qn =   "^=1   1- (35) 
(Ilfcl**)" 

His argument is then that if the gamma distribution is very similar to the K distribution 
(for at least some of its parameter values), then the expected value of gn for the K distri- 
bution should give reasonable estimates of its parameters. The expected value of gn for 
the K distribution (assuming samples X{ are independent) is given by 

<*> = i (^\V\ (t-^- W^><.7 i)    -AiLi-ifr-i vlli=ia;j/' • >-—x x™     I I a;' m 
n-l 

r(L-i + i)r(,-i + i)/r(L-i)r(,-i)y i 
r(£-*)rc-i)     I     mm      J       lfz/>-       (36) 

n 

which differs from the expression in [32] because Raghavan uses the probability density 
function for a single look amplitude random variable rather than the multi-look intensity 
random variable used throughout this report. So by computing gn from (35), an estimate 
of v for the K distribution can be found by solving (36) numerically. A plot of (gn) for a 
range of v is shown is figure 15. The high slope of this figure for small values of v indicates 
that accurate estimates of v are possible if the variability of gn is small. Conversely, for 
larger v, the slope is very small, so accurate estimates will be difficult (if not impossible) 
to obtain. 
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(Q) 

Figure 15: A plot of (g) versus v for n = 4 (smooth curve) and n — 100 (dashed curve) 

in the single look case (L = 1). 

This variability can be examined using the second moment of gn which is given by 

(&) = ^ 
£ Xi 

lLxi+Y,lL,XiXJ 
i=l 

s.i=l 
t=l j=l 

3+i 

n n^ 

i=i t=i 

r,2\2^ 
1 

n 
2    o ~-~     2 +££ 

1 

-l n si 4=1 }3 *?~lfl?   ii** 
*;=i 
kfr 

1 1 1 
n-1 

Ä-2 
+ n(n-l)< 

1 
^-i 

(r(i - f)r(^-f)) 

2  /        \ n-2> 
>    /   1   \ 

^ 

(n-i)(r(L-- + i)r(i/-- + i)) + 
n(T(L)T{u))n 

T(L - -)r(L - - + 2)rv - -)r(" - - + 2)) 
n n n n        ) 

(37) 

which again differs from [32] for the reasons expressed above. Plotting (^)/(p„) versus 
v for different values of n shown in figure 16 indicates that for a sample size of 25, the 
variance of gn is less than 5 percent of the square of its mean approximately for all v > 1.5. 
Unfortunately, this also corresponds to the region of small slope and so inaccurate inversion 
of g to estimate v will result. 

In section 5.7 we will consider a mathematically equivalent estimator in the log domain, 
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{QDHQU? 

J   v 

Figure 16: A plot of (^)/(^n)   versus v for different sample sizes in the single look case 
(L = l). 

which is the approach that seems to have gained greater acceptance. As a consequence, we 
will not examine the performance of an estimator for v based on (36) here through simu- 
lation. However, the above analysis serves to foreshadow the problems that plague other 
estimators of the order parameter. They are firstly, the variance of a measure (in this case 
Q) with v, and secondly, the highly nonlinear process of inverting the measure to determine 
the estimate v. We will consider the latter problem in more detail in section 5.9.2. 

5.5    Second and Fourth Moments 

Another approach to estimating v uses the second and fourth moments [17]. The ratio 
of the fourth moment to the square of the second moment from (6) is given by 

(z4)       (L + 2)(L + 3)(i/ + 2)(i/ + 3) 

<*2> 
2\2 L{L + l)v{v + 1) 

(38) 

which can be solved analytically for z>, the estimate of v, using sample estimates (xf) and 
(xj) for the two moments. The parameter /z would be estimated by (x{), the sample mean. 
(The form of this is different in [17] again due to the moments used there being for the 
K distributed amplitude random variable rather than the intensity random variable that 
is used here). This estimator's dependence upon the fourth moment makes it unsuitable 
for small sample sizes because of higher moment's higher variability. Raghavan [32] points 
out that any ratio of moments of order 2m and m could achieve a similar estimator for v 
but of course the variability of the estimates worsen with increasing m. As a consequence, 
(38) seems to have nothing to offer over a method based on the first and second moment, 
which we consider next. 
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5.6    First and Second Moments 

The next approach we consider here uses the ratio of the second central moment to 
the square of the first moment [17,27] which for the K distribution is given by 

(x2)-(x)2 = 1 1 (39) 

(x)2 Ln       v1 

So if we define the measure V to be2 

. (x$)-(xi)2 
V 4 ±~±L i±!£_ (40) 

(xi)2 

from the sample moments, then an estimate v can be determined from 

F = (1+ !)(! +I)-1. (41) 
L v 

This estimator was termed the contrast by Oliver because it is the ratio of the variance 
of the sample to the square of its mean. We would expect there to be less variability in 
this estimate than the one from (38) because of the smaller variance of sample estimates 
of first and second moments as compared with second and fourth moments. (Note that in 
[17] the ratio of these moments for the K distributed amplitude random variable requires 

a numerical search to determine P.) 

The approximate bias and error in the order parameter is given by [27] 

1\ /l      1       5 
<»-■<>■»—   l + ^; + T + £ <42> n \       v) \v     L     Lv 

and [3] 

i/2 n(l + L)V      *A"     L     Lu)\u ^L ^ Lv) 

respectively to first order in 1/n. 

Figure 17 plots the histogram of estimated order values using (41) from 1000 simu- 
lations for various values of the order v and differing sample sizes for L = 1,2,4. For 
small sample sizes (25 and less), and large order [y = 10.0), figure 17 shows that roughly 
30-70% of the estimates of v (one minus the number in the upper right hand corner of 
each histogram) are deemed to be due to a constant radar cross-section (i.e. v — oo). 
(The test conditions to determine this were the same as for the approximate maximum 
likelihood estimator (30): a negative value of u, or one larger than 105.) This improves 
with multi-looking, so that for four looks, and sample sizes of 49 and larger, the proportion 
of constant radar cross section estimates drops to below 10%. A trimmed mean was used 
for the same reason as discussed for figure 11 in section 5.3. 

Figure 18 plots the absolute value of the relative bias of the order estimate against the 
actual order parameter. There is a clear bias in the order estimate from V, and this bias is 

2The measure V expressed in terms of the moments of the K distribution as in (39) is not a random 
variable but we can only estimate it from sample moments, so strictly speaking the measure in (40) and 
(41) is an estimate, so by convention V in these equations should be denoted by V. 
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Figure 11: Plots of the histogram of estimated order using measure V (41) for the cases 
of v = 0.1, v = 1.0 and u = 10.0 for 9, 25, 49, 81 and 121 sample sizes and L = 1,2,4 
calculated over 1000 simulations with \i = 1. T/ie 5%-trimmed mean of each of the 1000 
order estimates occurs at the value designated by a vertical line. The number in the upper 
right-hand corner of each histogram indicates the proportion of the 1000 simulations that 
gave a reasonable order estimate (0 < v < W5) indicating a varying radar cross-section 
under the K distribution model. 
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Figure 18: The absolute value of the relative bias of the estimated order using measure V 
(41) as it varies with v computed over 1000 simulations with ß = 1 with sample sizes of 
25,49,81,121, and L — 1,2,4. These are plotted against the predicted absolute value of 
the relative bias (42). 
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only in agreement with that predicted by (42) for very small values of the order parameter 
{y « 0.1), at least over the small sample sizes up to 121 pixels. Relative bias decreases 
with increasing number of looks, and shows a complicated bi-modal trend with increasing 
order in the single look case that is not accounted for by theory (42). However, the trend 
with v in the multi-look cases is more consistent with theory, although still larger than 
that predicted. 

Figure 19 plots the normalized variance of the order parameter estimate computed 
during each of the 1000 simulations against the theoretical normalized variance of the 
order from (43). The only time the predicted normalized variance (42) matches that 
measured is for v = 1.0. In the case of v = 10.0, the normalized variance is much larger 
(off the scale for all but the highest sample sizes in the four-look case), and smaller than 
that predicted in the case of v = 0.1. Multi-looking improves the normalized variance of 
the estimate i>, which can be seen also in figure 20, with the normalized variance of the 
order estimate against the order parameter. 

5.7    Normalized Logarithm of Intensity 

The approximate maximum likelihood estimator for the order parameter in (30) is 
dominated by the expected value of the log of the data. Consequently, Oliver [27] has 
suggested an estimator for the order parameter v in these terms. The mean value of the 
logarithm of the intensity x is given by 

(log x) = log (x) - log v + V>{0) (i/) + </>(0) (L) - log L (44) 

from the probability density function of the K distribution. In situations where there is 
no prior knowledge of the parameters or moments, we estimate (log x) and (x) from the 
sample data. Rearranging, using sample moments we obtain 

log (Xi) - (log Xi) = log v - t/>(°) (0) + log L - V(0) (L) (45) 

which can be solved for i>, the estimate of v. The texture measure U, termed the normalized 
logarithm of intensity, is therefore defined to be 

U±]og{xi)-{logxi). (46) 

So then 

U = log i> - V>(0) (z>) + log L - ^(0) (L). (47) 

Raghavan's method is mathematically equivalent to this approach because taking the log 
of the geometric mean is the same as computing the sample mean of log of the data. 

The approximate bias and variance in the order parameter to first order in 1/n by this 
estimate is 

<y-y>*2n(l-^(0(,)) (48) 
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Figure 19: The normalized variance of the estimated order using measure V (41) as it 
varies with sample size and L = 1,2,4 each computed over 1000 simulations with /z = 1. 
The theoretical (43) and calculated values of the normalized variance of the order estimates 
are shown for the three different values of the order parameter in each plot. 
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Figure 20: The normalized variance of the estimated order using measure V (41) as it 
varies with v computed over 1000 simulations with fj, = 1, varying sample sizes and L = 
1,2,4. 
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and 

var(*>) „ v^l){v)-l + u^){L) + {l-u)/L 

respectively. 

Figure 21 plots the histogram of estimated order values using (47) from 1000 sim- 
ulations using various values of the order v and differing number of samples from the 
distribution for L = 1,2,4. A trimmed mean was used for the same reasons as discussed 
for figure 11 in section 5.3. When v = 10.0 in the single look case, 30-60% of the samples 
were deemed to be due to a constant radar cross-section. This proportion decreased with 
increasing looks to be less than 10% in the four-look case for sample sizes of 49 and above. 
The effect at v = 1.0 only occurred to any significant extent (> 2%) when the sample size 
was extremely small (9 samples) for L - 1. This performance is slightly better than that 

of the measure V (figure 17). 

Figure 22 plots the absolute value of the relative bias of the order estimate against the 
actual value of the order parameter. A relative bias is only appreciable for larger values 
of v in the range, and the peak moves to the right as the number of looks increases. The 
number of looks has a small reducing effect upon the relative bias. The predicted relative 
bias (48) is a poor match with the measured value for v in the upper range, although for 
larger sample sizes (81 samples and above) in the lower range of v {v < 0.6) it may be a 
decent match but it is not possible to be sure from the scale of the graph. 

Figure 23 plots the normalized variance of the order parameter estimate computed 
during the 1000 simulations against the theoretical variance of the order from (49). The 
measured normalized variance matches the predicted normalized variance (49) even for 
small sample sizes (25 samples) in the case of v = 0.1, and for larger sample sizes (> 81 
samples) for v = 1.0. The match between predicted and measured normalized variance 
improves with increases in the number of looks, which also improves the measured nor- 
malized variance of v overall. The normalized variance in the case of v = 10.0 is off scale 
for all but the largest sample size in the four-look case. 

Figure 24 plots the normalized variance of the order estimate against the actual order 
parameter value. The improvement in the normalized variance of the order estimate with 
increasing sample size and number of looks is apparent for v > 1.0. When v is smaller 
than this, sample size and number of looks has a much smaller effect on the normalized 
variance. 

Rather than using the sample mean as the estimate of the mean of the distribution, 
we can instead use the average of the logarithm of the sample using (44). This will also 
be more convenient in situations where the data is presented on a log scale. We obtain 
the estimate ß by substituting the estimate v into (44) with (x) replaced by ß, to give [3] 

log ß = (log x) + log v - </>(°) (i/) - V(0) (L) + log L. (50) 
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Figure 21: Plots of the histogram of estimated order using measure U (47) for the cases 
of v = 0.1, v = 1.0 and v = 10.0 for 9, 25, 49, 81 and 121 sample sizes and L = 1,2,4 
calculated over 1000 simulations with /i = 1. The h%-trimmed mean of each of the 1000 
order estimates ocurs at the value designated by a vertical line. The number in the upper 
right-hand corner of each histogram indicates the proportion of the 1000 simulations that 
gave a reasonable order estimate (0 < v < 105j indicating a varying radar cross-section 
under the K distribution model. 
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Figure 22: The absolute value of the relative bias of the estimated order using measure U 
(47) as it varies with v computed over 1000 simulations with ß = 1 and sample sizes of 
25, 49, 81, and 121, and L = 1,2,4. These are plotted against the predicted absolute value 

of the relative bias (48). 
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Figure 23: The normalized variance of the estimated order using measure U (47) as it 
varies with sample size computed over 1000 simulations with // = 1. The theoretical (49) 
and calculated values of the variance of the order estimates are shown for three different 
values of the order parameter. 
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Figure 24: The normalized variance of the estimated order using measure U (47) as it 
varies with u computed over 1000 simulations with fj, = 1 for a range of sample sizes and 
looks L = 1,2,4. 
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The normalized variances of this estimate is given by (to first order in 1/n) 

var(/i) _ 1 /,m, ,  ,   ,(1)/r.     ^
l\v)-l 

ß2 

+ (^(2)H X)2^(3)H + ^(3)(L) + 2^(1)(t/) + V,(1)(L))2})   (51) 

where V^(') and V^(') are *ne tetragamma and pentagamma functions, respectively. 

Figure 25 plots the histogram of estimated mean values using (50) from 1000 sim- 
ulations using various values of the order v and differing number of samples from the 
distribution. Simulations were performed using the correct value of v in (50), so the 
results presented here are the best possible for this estimator. To get a measure of its 
performance in most practical circumstances, the simulations should be performed using 
a value of v that is also estimated from the data. It seems from observation of figure 25 
that there is a bias in the estimate of the mean for small sample sizes and small values of 
v across all the looks considered. 

Figure 26 plots the normalized variance of the sample mean over the 1000 simulations 
against its theoretical value (51), indicating a good correspondence, except for small values 
of v {v = 0.1) where the normalized variance is larger than predicted. From these plots 
and figure 27, which plots the normalized variance of the mean estimate against the actual 
order parameter, it is clear that increasing the number of looks reduces the normalized 
variance of the estimates. 

5.8    Variance of Logarithm of Intensity 

The order parameter of the K distribution can be estimated from the variance of the 
logarithm of the sample data [3], which is given by 

(log2 x) - (log x)2 = V>(1) (u) + V(1) (L) (52) 

from its probability density function using laws of expectation. So if we define the measure 
Why 

W±(log2xi)-(logxi)
2 (53) 

called the variance of log estimator using sample moments of the logarithm of the data, 
then an estimate v of the order can be obtained from 

W = il>M(v) + il>w(L). (54) 

The normalized variances of this estimate is given by (to first order in 1/n) 

var(£)      1 
n 

-^-^)   ^(3)H+^(3)W + 2(^1)H+^1)(L))2).        (55) 
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Figure £5: P/ofs o/tfie histogram of estimated mean using normalized logarithm of intensity 
(50) and a priori knowledge of v for the cases of v = 0.1, v - 1.0 and f = 10.0 for 9, 
25, 49, 81 and 121 samp/e sizes and L = 1,2,4, each calculated over 1000 simulations 
with fi = 1. A vertical line indicates mean estimate of the mean ß obtained over 1000 

simulations. 
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Figure 26: The normalized variance of the estimated mean using normalized logarithm 
of intensity (50) as it varies with sample size computed over 1000 simulations, each with 
\i — 1 for L = 1,2,4. The theoretical (51) and calculated values of the normalized variance 
of the mean estimates are shown for three different values of the order parameter. 
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of sample sizes and looks L = 1,2,4. 
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Figure 28: Plots of the histogram of estimated order using measure W (52) for the cases 
of v = 0.1, v = 1.0 and v = 10.0 for 9, 25, 49, 81 and 121 sample sizes and L = 1,2,4 
calculated over 1000 simulations with fj, = 1. The h%-trimmed mean of each of the 1000 
order estimates occurs at the value designated by a vertical line. The number in the upper 
right-hand corner of each histogram indicates the proportion of the 1000 simulations that 
gave a reasonable order estimate (0 < v < 105j indicating a varying radar cross-section 
under the K distribution model. 
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Figure 28 plots the histogram of estimated order values using (52) from 1000 sim- 
ulations using various values of the order v and differing number of samples from the 
distribution for L — 1,2,4. A trimmed mean was used for the same reason as discussed 
for figure 11 in section 5.3. For v = 10.0 in the single look case across all sample sizes, in 
40-65% of the samples the measure indicated the samples were due to a constant radar 
cross-section. This proportion decreases for v = 10.0 as the number of looks increases. For 
the same sample size, order and number of looks, the proportion of constant radar cross- 
section determinations is always higher for measure W than for measure U (figure 21), 
which was itself lower than that of for measure V (figure 17). 

Figure 29 plots the absolute value of the relative bias of the order estimate against the 
actual order parameter value. The relative bias is small for u < 1.0 and increases above 
that value. Increasing the number of looks causes a small improvement in the relative bias 
in the higher order range (u > 1.0). 

Figure 30 plots the normalized variance of the order parameter estimate computed 
during the 1000 simulations against the theoretical variance of the order from (55). The 
measured normalized variance matches the predicted normalized variance (55) for the case 
of v = 0.1 even for small sample sizes. As the sample size and number of looks increase, 
there is a good correspondence in the u = 1.0 case as well. However, the v = 10.0 case is 
much larger than predicted. 

Figure 31 plots the normalized variance of the order estimate against the actual order 
parameter value. For v ^ 1.0, there is a great improvement in the normalized variance of 
the estimate v as the number of looks increase. When v < 1.0, even 25 samples can give 
reasonable estimates, especially in the multi-look cases (L = 2,4), although measure U 
(figure 24) looks to be slightly better overall, especially for u > 1.0. 

5.9    Discussion of Estimators 

5.9.1    Mean Parameter Estimation 

Three methods for estimating the mean have been presented: the sample mean (25), 
the maximum likelihood estimate for the approximate K distribution (28), and the moment 
estimate from the normalized logarithm of intensity (50). As discussed by Oliver [27] the 
sample mean estimate of the K distribution parameter fj, is unbiased and has error given 
by (26). However, the approximate maximum likelihood approach in (28) is biased (with 
bias given by (33)) and when compared to the variance of the estimator (34) it will become 
significant when a small number of independent samples are used because the bias is of 
order 1/n from (33) whereas the standard deviation from (34) is of order l/y/n [27]. 
Further, the bias is {x)/Ln and (x)/2Ln to first order in 1/L and 1/n in the limit of large 
v and small u, respectively 

The relative bias in the mean estimate from (50) using normalized logarithm of inten- 
sity is not given in the literature, but it can be seen empirically from figures 25-27 that 
it is small when compared with the normalized variance, except perhaps for the smaller 
sample sizes in the ^ = 0.1 cases which are off the scale in figure 25. 
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Figure 29: The absolute value of the relative bias of the estimated order using measure W 
(54) as it varies with v computed over 1000 simulations with /i = 1 with sample sizes of 
25, 49, 81 121 with looks L = 1,2,4. 
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Figure 30: The normalized variance of the estimated order using measure W (54) as it 
varies with sample size computed over 1000 simulations with p = 1. The theoretical (55) 
and calculated values of the normalized variance of the order estimates are shown for three 
different values of the order parameter. 
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Figure 31: The normalized variance of the estimated order using measure W (54) as it 
varies with v computed over 1000 simulations with fi = 1 for a range of sample sizes and 
looks L = 1,2,4. 
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Blacknell [3] has demonstrated that the sample mean (25) is a good approximation to 
the maximum likelihood estimate of the mean over a wide ranee of parameter values and 
provides a better performance than (50) using the mean and variance of the logarithm of 
the data. Comparing figures 9-10 with figures 26-27 confirms the superior performance fo 
the sample mean. In the later figures, an a priori value of v was used, whereas Blacknell 
used measure W (54) to compute v to use in (50), so here the performance of (50) is better 
than it would be in practical applications where v would need to be estimated, and the 
performance difference shown in [3] is more pronounced that that observed here. As can 
be seen from the normalized variance of estimators of the order parameter plots, the error 
in the order parameter is always larger than that of either mean estimate, so this error 
would accumulate to make the variance of the mean estimate from (50) much larger than 
that indicated in figures 26-27 and indeed larger than that of the sample mean estimate 
of (25). 

Blacknell concludes the minimum normalized variance for the sample mean occurs 
when the samples are single look (L = 1). This seems to be in disagreement with the 
results presented here where increasing the number of looks has improved the estimates. 
There is a simple explanation for this. Blacknell and Oliver in their papers have fixed 
the number of samples available prior to the multi-look averaging whereas in the work 
reported here n is varied, the number of independent samples after multi-look averaging 
has taken place. That is, they fix N, the total number of independent samples available 
from all looks, and samples are averaged in groups of size L to form the L-look sample of 
size n = N/L. The approach of fixing n, the multi-look sample, rather than N is done 
here because of the band-width limited datalink application at which this work is aimed. 
In our application, the SAR image formation (including multi-looking) is performed on 
the aerial platform, and the complete intensity image is then downloaded to be further 
processed in a ground station over the datalink. Currently, the datalink does not have the 
capacity to download the individual SAR images that are formed prior to multi-looking. If 
channel capacity were not a limiting factor, then treating the individual looks separately 
to obtain more samples is justified. In other words, the improvements in the estimates 
with an increase in L is less than for the corresponding increase in n for N = nL fixed. 
We will see that this is true of the order estimates as well. 

The estimator in (28) proved to be unreliable in practice (section 5.3). The variation in 
second order moment estimate term in (28) frequently caused the resulting mean estimate 
to be negative, and this problem grew in proportion with v. 

To conclude, sample mean of the intensity data with the highest number of looks for 
a fixed sample size n is the best estimate of /i, the mean parameter of the K distribution. 

5.9.2    Order Parameter Estimation 

The order parameter estimate has asymptotic Cramer-Rao lower bounds for its vari- 
ance in the limit of large v, given by  [18] 

<CR = ~- (56) 

Blacknell [3] has derived an expression for the Fisher information matrix for the K distri- 
bution from which the exact Cramer-Rao lower bound can be computed numerically for 
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the case when the difference between L and v is an integer. The expressions however are 
very complicated so I refer the reader to the plots presented by Blackneil [3]. 

It can be seen from sections 5.2-5.8 that K distribution order parameter estimation 
consists of two steps: computing a measure, then inversion of a function of that derived 
measure to give the estimated order parameter. Some situations would not require both 
stages of the process to be performed — the measure might be sufficient on its own, 
e.g., segmentation could be done on the measure values directly. We saw that in section 5.4 
in the case of Raghavan's method that both steps introduce their own errors, and that 
these errors change across the range of v values encountered in practice. 

Joughin et. al [17] present an analysis based on simulation of the performance of 
Raghavan's method against two method of moments approach, one using the second and 
fourth moment (38), and the other the first and second moment (41), against the maximum 
likelihood approach. (Remember that the maximum likelihood approach requires a two 
dimensional search in the space defined by the parameters of the likelihood function (24) 
which is too expensive computationally for our application.) Raghavan's method is shown 
to be close in its performance to the maximum likelihood method. Prom this we can infer 
that using moments of the logarithm of the data would also perform well in estimating 
the order v. These issues were examined more thoroughly by Lombardo and Oliver [18] 
and Blackneil [3] in their consideration of estimators (41), (47) and (54). 

When estimating the order parameter v in the single look case, Blacknell shows that 
using the texture measure U (mean of logarithm of data) in (47) is better than the vari- 
ance of logarithm measure W in (54) and the contrast measure V in (41) for a wide range 
of parameter values. However, for v ^ 8.0, the contrast measure V is the best performer 
(closest to Cramer-Rao lower bound) when the number of looks is varied under the as- 
sumption that JV (the total number of independent samples prior to multi-look averaging) 
is fixed. Comparing figures 19-20 and figures 23-24, measure U is the best for fixed sample 
size n (the total number of independent samples after multi-look averaging). As in the 
mean estimate case, improvements in the estimates with an increase in L is less than for 
the corresponding increase in n for N = nL fixed. Lombardo and Oliver [18] show that 
in the limit of large v to first order in l/i/ (assuming n is sufficiently large), the relative 
variance in estimate i> from the three measures V, U and W is given by 

var(£)      i/2.n      10, 

u2 n v 
var(£)      Au2 .it2     ,      1. 

va^     ^U^     2^ Ibr^ 

v2 n [ 90   + 3i/ U       90 )h 

in the single look case. It can be seen that the contrast measure V is asymptotically optimal 
with increasing v, assuming that n is large enough for the first order approximation to 
be valid, whereas the other estimators are not indicating that there is still some merit in 
measure V over U in the limit of large v and n. When the number of looks is varied while 
estimating v for fixed JV = nL, measure U is the best over all values of v, and the number 
of looks at which this occurred was L = 1 for 0.1 ^ v ^ 1 and then L = v beyond this (it 
was computed numerically at integer values of v beyond v > 1) [3]. Overall, using measure 
U for v with single look data is the clear winner when JV is fixed. When n is fixed, U is 
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still the best measure, and the larger the L the better. Figure 32 shows how measure U 
is the best of the three, while figure 33 shows that increasing the number of looks does 
improve the estimate of the order for fixed n. Figures 34 and 35 show the same things for 
the relative bias. 

The Cramer-Rao lower bound in (56) for large v indicates that to maintain constant 
error in the estimate of the order parameter, the number of samples should be proportional 
to the square of the order parameter. The consequence of this is that with fixed values of 
n, a value of v is rapidly attained beyond which the estimate is meaningless [18]. Under 
realistic conditions with a small number of samples the statistical uncertainty in the data 
will occasionally lead to non-invertible results, e.g., a realization of contrast measure having 
value less than one. As discussed previously, I have interpreted such results as the measure 
indicating the presence of a constant radar cross-section [28]. 

Lombardo and Oliver [18] show that at least in the case of the contrast measure V, 
the bias and variance of the measure (before inversion to determine the estimate v) is 
well represented by theory. However, a first order expansion for the inversion process 
from the measures to give the bias of the resulting estimates v given in (42) and (48) is 
not sufficient to account for the nonlinearity of this inversion. They therefore derive the 
following improved approximation to the bias in the single look case, 

V: 

U: 

W: 

v 

n 
(1 + -)(1 + -) + v{l + -)(1 + -)(1 + -) 

2n(uipW(u)-l) 
1 + 

v    2H>(1)H-i)2 V 6 
(57) 

^V) + y+ nuij)^) {y) 

{»-*>) = 

(v-v) = 

(*-") = 

2*( 

by using a second order Taylor series expansion of each measure about its mean. (Figure 36 
indicates that at least for small samples size of n = 49 the predicted relative bias (57) 
is a poor match to measured behaviour.) For large values of v, Lombardo and Oliver 
report that there is still a mismatch between the predicted and measured order parameter 
estimate's normalized variance for which it does not account because it is unable to improve 
upon the predicted normalized variances (43), (49) and (55) already presented. Therefore 
knowledge of higher moments than second order of the texture measures V, U and W is 
required for accurate error prediction, ruling out the possibility of ever doing it for small 
n (see [30, p. 113]). Furthermore, the estimate i> is much more biased than the texture 
measures V, U, and W from which it was computed. 

Lombardo and Oliver point out that all three measures are proportional to \jv for 
large v. Therefore, they propose estimating the reciprocal t = \jv instead of v directly 
to address the problems mentioned above. Furthermore, because 1/v is the variance of 
the underlying gamma distributed cross section in the unit mean case (// = 1) (1) it could 
be argued that this is really the parameter of greater interest. In addition, it is intuitive 
that the mean and variance of the estimate t should go to zero as the texture contrast is 
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Figure 32: The normalized variance of the estimated order v as it varies with v computed 
over 1000 simulations with /J, = 1 in the cases of L = 1,2,4. All estimates were computed 
using 49 samples. The estimates shown here are computed using the measures V (solid 
line), U (dotted line) and W (dot-dashed line). 
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Figure S3: The normalized variance of the estimated order using U as it varies with u 
computed over 1000 simulations with fj, = 1 in the cases of L = 1,2,4. All estimates were 
computed using 49 samples. 

reduced (i.e. as v ->• oo). Finally, remember that the probability density function of the 
K distribution becomes increasingly insensitive to v as v increases (figure 1). 

The bias of the new estimate i can be obtained from the expressions for estimate u by 

(i-t) _  (u-u) 

i.e. by reversing the sign of the bias and substituting t = 1/v, and the variance of t by 

var(i)      var(z>) 

However, in this case there is no need to correct for the nonlinearity of the inversion process. 
Figure 37 plots the normalized variance of the estimate i against the order parameter using 
the U measure. As expected, the region of higher uncertainty in the estimate t now occurs 
when v is small (y < 1.0). However, for reasonable sample sizes (n ^ 49), the normalized 
variance of i is better behaved in this region then the normalized variance of v for v > 1.0. 
Finally, Oliver indicated that performance of order parameter estimates is improved if the 
samples are normalized by their means [27]. 

5.9.3    Effect of Noise Upon Order Parameter Estimation 

Lombardo, Oliver and Tough [19] showed that the normalized logarithm measure U is 
extremely sensitive to small amounts of noise. They show that in the single look case, the 
change in the value of U with the addition of noise is approximately 

eu - + 7 + log v 
v 

(58) 

where 7 is the Euler constant, s is the signal-to-noise ratio (SNR) given by ///a where a 
is the variance of the noise (uncorrelated zero-mean Gaussian distributed), and v <^ I. 
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Figure 34: The absolute value of the relative bias of order estimated using measures V, U 
and W as it varies with v computed over 1000 simulations with /z = 1 for a fixed sample 
size of n = 49 for L = 1,2,4. 
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Figure 35: The absolute value of the relative bias of the estimated order using measure U 
in the L = 1,2,4 look cases as it varies with v computed over 1000 simulations with /i = 1 
with a sample size of n = 49. 
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Figure 36: The relative bias of the estimated order parameter (using measures V, U and 
W) as it varies with u computed over 1000 simulations with fj, = 1 in the single look case 
plotted against the predicted relative bias from (57). The estimates were all computed using 
49 samples. 
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Figure 31: The normalized variance of the estimate i using measure U as it varies with u 
computed over 1000 simulations with n = 1 for a range of sample sizes for L = 1,2,4. 
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Figure 38: Plot of the normalized change in the value of U that results from the addition 
of noise (59) as a function of v for the cases of SNR of 20 dB (long dashes), 30 dB (short 
dashes) and 40 dB (solid line). 

This equation is highly nonlinear, and for example with v = 0.1 a SNR of 300 dB would 
be required for a fractional bias of 0.01, although for larger v the required SNR is more 
reasonable. The full expression for the change in U is given by 

eu £ (!) 
r+v 

(?) 
r+1 

T(v) sinnu 1 ^-J (r + u)r\ 
\T=0 

(r + u)T(r + 2-i/) 
log(l + -), 

s 
(59) 

which is depicted in figure 38. They demonstrate that the contrast measure V is more 
robust to noise, because the fractional increase in V is approximately 2/s for large s. 
Therefore its systematic error is not significant compared to the bias due to small sample 
sizes. However its utility is limited because of its relative insensitivity to variations in the 
order parameter — the measure V has a large normalized variance when compared to that 
of the U measure. 

As a consequence, Lombardo et al. [19] proposed a new measure based on the contrast 
of the square root of intensity (i.e. amplitude) that is a compromise between the two. The 
new amplitude contrast measure Va is defined by 

Va 

(Xj) - (y/xlY 

{y/x~if 
(60) 

Then from the probability density function of the K distribution (4), the estimate u can 
be obtained by solving 

Va = 
LuV(L)2Y{u) 

T(L + l/2)2r(z/ + 1/2)2 (61) 

They show through simulation that this measure is much less sensitive to noise than the 
normalized log estimator U, i.e. its bias is smaller, but not as insensitive as the contrast 
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estimator V. Likewise, its variance lies between that of U and V, so its sensitivity to the 
order parameter is also a compromise between the two. If however, one is only interested 
in distinguishing between one region and another (e.g., a target from its background) then 
the problems associated with noise producing a bias in the normalized logarithm measure 
is not important because the bias is a monotonic function of v and the SNR, and the 
normalized variance of U is almost insensitive to noise as Va, whereas the normalized 
variance of the amplitude contrast measure Va is greater than that of U. Therefore one 
should adopt the amplitude contrast measure for texture segmentation only when noise is 
high — otherwise the normalized log measure should be used. 

5.9.4    A Combined Estimator for the Order Parameter 

Lombardo, Oliver and Tough [19] show that the triple of sample mean ß and the 
measures U and V form an approximate sufficient statistic for independent K distributed 
random variables, being exact for an approximation to the K distribution for the case of 
large L. This is reasonable given that U is a good measure for deriving the order in cases 
when v < 8.0, and V in the cases where v ^ 8.0 according to [3]. Consequently, these 
three statistics should form the basis of a feature vector to discriminate different textured 
regions of a SAR image. This motivates the modified estimator of Jahangir, Blacknell 
and White [12], which is defined to be a linear combination of normalized logarithm of 
intensity measure U and the contrast of the amplitude Va, 

M = aU + (l-a)Va (62) 

(xi) - (y/xl) \ 
= a({logXi) - log (xi)) + (1 - a) 

(V*i) 
where a = 0.8 was found to be the best compromise.    Prom the moments of the K 
distribution, 

M = a (log v - V>(0) (i>) + log L - V>(0) [L)\ + (1 - a) ( 
LvV{L)2T{uf 

r(L + i/2)2i> +1/2)2    ; 
(63) 

which is solved for v. The predicted variance of t for the new measure in the single 
look case to first order in 1/n can be found in (9) of [12]. The performance of this 
measure was shown to agree closely with the predicted value from (9) of [12] and to 
be indistinguishable from the maximum likelihood result over a wide range of t > 0.5. 
Simulation results are presented in figure 39 and comparison with figure 37 indicates that 
the performance improvement, if any, over measure U alone is hard to discern and so the 
additional complexity does not seem warranted. 

5.10    Recommendations 

Let us now summarize the discussion so far on parameter estimation for the K distri- 
bution. Firstly, the mean parameter is best estimated using the sample mean. In datalink 
bandwidth-limited applications where multi-looking is performed prior to transmission, 
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Figure 39: The normalized variance of the estimate i using measure M (63) as it varies 
with v computed over 1000 simulations with p, — 1 for a range of sample sizes and L = 
1,2,4. 
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imagery averaged across as many looks as possible is best. When there is no such lim- 
itation, it is best to treat the looks individually and have the corresponding increase in 
sample size. This behaviour is true of order parameter estimation as well. 

Next, before estimating the order parameter, the samples should be normalized by the 
mean estimate. The normalized logarithm of intensity measure U is the best measure from 
which to compute the order parameter estimate. Where possible, it is better to use the 
parameter t = l/v rather than v to characterize a sample because of its smaller variance. 
This might be appropriate in many classification applications. Furthermore, it may be 
sufficient to simply use the value of the measure U as a feature for classification and save 
the work of the inversion process in some applications. The fact that V and U form a 
sufficient statistic for the K distribution in the limit of large L suggests that using both 
as part of a feature vector for classification may give improved performance over using U 
alone. 

6    Effect of Correlation Upon Estimators 

The results presented so far on the variance of the estimators for the parameters of the 
K distribution assume that the samples are uncorrelated. When the samples are correlated, 
the variance of the estimates will be larger than is indicated by the same number of samples 
for an uncorrelated case. Consequently, more samples are required in the correlated case 
than the uncorrelated case to achieve the same variance on the estimators. We can see 
this from the following discussion for the estimate of the mean [33,34]. 

Let X = (xi,... ,xn) denote the vector of random variables that correspond to the 
random sample (in lexicographic order if the sample is taken from a random field). Next, 
let C denote the covariance matrix. Furthermore, let us assume that the sample is from 
a stationary spatial process, i.e. the correlation between two random variables Xj and Xj 
is dependent on only the spatial displacement between i and j. If the spatial process 
of the sample X is one-dimensional, C is a symmetric Toeplitz matrix because [C]ij = 
°'2px(H — j\)i where px.{s) is the correlation at lag s and a2 is the variance of each Xj. 
When the spatial process of X is two-dimensional of size p x q (i.e. , n = pq), then C is 
symmetric block Toeplitz with Toeplitz blocks, i.e. [C]ij^i = <?2px(i — k,j — I) where the 
paired indices ij and kl denote lexicographic order and i, k = 1,... ,p and j, I = 1,... , q. 
Then the variance on the estimate ß of the mean [/,, is given by 

var(A) = ^   £   (l-^)px(s) 
s=—n+1 

in the case of a one-dimensional spatial process, and 

2     9-1        p-l 

var 
s=-q+lr=-p+l FH 

in the case of a two-dimensional spatial process. Similar results can be obtained for the 
variance of the population variance estimator [33, p. 144]. 
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Consequently, it can be seen that the variance of the mean estimator is increased by 
the correlation at non-zero lags, weighted by the length of each lag. Methods exist to 
estimate var(/i) that take correlation into account [21]. 

7    Conclusion 

This paper has reviewed a number of different moment-based methods for estimating 
the parameters of the K distribution. The K distribution is a model for the statistics 
of SAR imagery that is formed from the product of two independent distributions, one 
representing the radar cross-section, and the other representing speckle that is a charac- 
teristic of coherent imaging. A method for synthesizing correlated K-distributed random 
fields has been reviewed. Moments of intensity, log intensity and amplitude statistics were 
used to compute measures which are inverted to give estimates of the mean and order 
parameters of the K distribution. A method based on the normalized logarithm of inten- 
sity was shown to give the best performance, confirming the results of Oliver (1993) and 
Blackneil (1994). The effect of correlation upon order parameter estimation and its role 
in the K distribution's underlying component pertaining to the radar cross-section was 
briefly reviewed. 
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