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ABSTRACT 

A scheme is presented for estimating the ultrawide-bandwidth position and typing 
of scattering centers on a target using sparse-band measurements. The algorithm 
determines a set of matrices that best describe the measured data, then the fitted data are 
used to interpolate between and extrapolate outside of the measurement bands. A modal 
decomposition approach is used to estimate the position and typing of the scatterers. 
Standard pulse-compression techniques are applied to obtain a highly defined range 
profile of the target; application of these techniques is followed by extended coherent 
processing to generate superresolved two-dimensional images. The effectiveness of the 
new algorithm is confirmed by computer simulations; it is tested further using static-range 
data on a canonical test object. 
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1.  INTRODUCTION 

In 1990 Cuomo and others [1,2] developed a bandwidth extrapolation (BWE) technique that allows 
the prediction of data samples that lie outside wideband radar measurements. The potential for BWE to 
resolve closely spaced scattering centers or to enhance the features on a target buried in noise has been 
demonstrated [1,2]. For radar applications BWE improves the range resolution of compressed radar pulses 
by a factor of two to three. Although BWE demonstrably improves range resolution, the technique has 
inherent drawbacks. It is based on the assumption that radar returns from a complex target may be 
represented by a collection of point scatterers, each point scatterer having a constant amplitude over the 
range of frequencies under consideration; however, the constant-amplitude pointlike signal-processing 
model that characterizes BWE is sufficient only for wideband radars in which the bandwidth is small 
compared with the center frequency. Over ultrawide frequency bands, where the radar bandwidth is 
comparable with the center frequency, the amplitude of each scattering center may vary as a function of 
frequency. Physical scatterers such as spheres, edges, flat plates, and surface joins exhibit significant 
amplitude variations as a function of frequency [3]; therefore, ultrawide-bandwidth (UWB) signal models 
must be robust enough to describe this more general scattering behavior. 

At sufficiently high frequencies UWB radar data may be modeled by a sum of damped sinusoids. 
From this damped sinusoid (or more precisely, a set of such sinusoids) the time delay and decay/growth are 
crucial to determining the position and typing of each scatterer embedded in a data set; the wider the 
bandwidth of the observation data set, the more precisely these typing parameters can be determined. Cost 
and hardware limitations are major drawbacks in building true UWB radars; to achieve potential UWB radar 
resolution, a UWB coherent-processing technique has been proposed in [4] to coherently combine 
sparse-band data obtained from, for example, a set of independently-operating conventional wideband 
sensors. The technique is based on an autoregressive (AR) signal model that does not consider the zeros of 
the transfer function that describes a radar return; in practice, using the AR signal model often limits the 
accuracy of the estimate of the sinusoid-damping factor. 

This report presents a state-space technique for single- and sparse-band data, with the latter defined 
as state-space UWB processing. Unlike the UWB processing described in [4], state-space UWB processing 
is based on an autoregressive moving average (ARMA) that provides an enhanced sinusoid-damping factor 
and a better representation of UWB radar returns. The UWB processing proposed here uses the poles and 
zeros of the transfer function that best describes a radar return. 

The remainder of this report is organized as follows. Section 2 presents a mathematical model for 
damped signals and describes the single-band state-space technique. Section 3 describes mathematical 
expressions for the signal parameters and presents simulated and static-range experiments to estimate the 
signal parameters and predict the data samples that lie outside the measurement band. The so-called 
state-space UWB technique is presented in Section 4, with radar-imaging examples included to demonstrate 
the practicability of the method. The conclusions of the study are presented in Section 5. 



2.   SINGLE-BAND STATE-SPACE FORMULATION 

2.1    DATA FORMULATION 

This subsection considers the data sequence y(k) that comprises uniformly spaced samples of p 
complex sinusoids corrupted by white noise w(k). Signal measurements at N frequencies may be modeled 
as 

^-X-^^^l«   ;*«!,...*. CD 

where a-t and a,- denote the amplitude and decay/growth associated with the iA scattering center, 
respectively. The parameter x- denotes the time delay of the i* scatterer, which is related to the range 
parameter rt by xt = (2r,.)/c, where c is the speed of light The *A element of the frequency vector is 
related to the carrier frequency fr by /* = A + (*- l)4/\ where A/ is the sampling frequency. In this 
report the primary interest is in estimating the parameters embedded in the data sequence y(k). In the 
state-space method the decay/growth and time-delay parameters can be easily computed from the 
eigenvalues of an open-loop matrix. Once these parameters are accurately estimated, the amplitudes a- can 
readily be derived from the state-space matrices using a modal decomposition method. The state-space 
formulation for the single and dual bands that are studied in detail in this report may be seen as an 
input-output relationship between the noise w(k) and the data sequence y(k). The best way to derive the 
state-space matrices is to rewrite Equation (1) as a difference equation and study its transfer function. The 
next subsection presents the difference equation that best describes the input-output relationship between 
y(k) and w(k) and that allows the state-space formulation for the single band. 

2.2    TRANSFER FUNCTION OF THE ARMA MODEL 

The input-output relationship for the general ARMA is given by the difference equation 

m q 

y(k) =   X d^k - 0 + X bJW{k ~j) + bQw{k)    ' (2) 

< = 1 7=1 

where w(k) and y(Jfc) are the input and output, respectively. The transfer function H(z) of the system 
described by Equation (1) may be defined by 

„(7s _ Y(z) _ -Bo(z> (3) 

where 



4>(*) = ^E^' (4) 

and 

w = *o+IV~y • (5) 

The roots of the polynomial A0(z) are the poles of the system; the roots of B0(z) determine the zeros. An 
interesting and popular special case of the ARMA model that is described by Equation (2) is the AR 
model. The input-output relationship for the AR model may be written as 

m 

y(k)=  £^(*-/) + V(*)    • (6) 

y = i 

The transfer function of the AR model is therefore given by 

where A0(z) is defined by Equation (4). As the AR model is a special case of the ARMA, the state-space 
representation will be carried out on the ARMA model in this report, unless specified otherwise. The next 
subsection presents the state-space method for the ARMA model. 

2.3    STATE-SPACE REPRESENTATION 

State-space signal modeling provides an alternative representation of a linear-rational system that is 
popular in linear system and control theory. In this formulation the input-output description of the ARMA 
model, instead of being given by Equation (1), is given by the state-space equations 

x(k+\) = Ax(k) + Bw(k) (8) 

and 

y(k) = Cx(k) + w(k)    , (9) 

where x(k) e Rp * ! is the state and A e Rp x p, B e Rp x J, and C e R1 x p are constant matrices. The trans- 
fer function of the state-space formulation is obtained by taking the z-transform of Equations (8) and (9) 
and evaluating the ratio Y(z) to W(z) as follows: 



X(z) = (zI-A)   BW{z) (10) 

and 

Y(z) = CX(z) + W(z)   . 

Inserting Equation (10) into Equation (11) obtains 

(ID 

thus, 

Y(z) = C(zI-A)~lBW(z) + W(z)    ; 

H(z) = C(zl-A)   B+\ 

(12) 

(13) 

where / is an identity matrix. Equation (13) shows that the ARMA model for a discrete-time process y(k) 
in state-space notation is related to the transfer function such that the poles of the model [i.e., the roots of 
the polynomial A0(z), which is defined by Equation (4)] are the eigenvalues of the open-loop matrix A. 
Furthermore, the zeros [i.e., the roots of BQ(z), which is given by Equation (5)] are the eigenvalues of the 
matrix {A - BC ). The transfer function for a given system is unique; however, the triplet {A, B, C ) depends 
on the transformation that gives rise to the transfer function. Generally speaking, for a given transfer 
function the triplet (A,B,C) of a minimal realization is a unique modulo of a similarity coordinate 
transformation. Interesting choices of coordinates lead to canonical or companion forms; one of these 
forms is the left canonical, where the open-loop matrix A is given by 

A = 

dx    1 0 ... 0 

d2   0 1 ... 0 

dm   , 0 0 ... 1 m — 1 

rf     0 0 ... 0 m 

(14) 

where the values for df are given by Equation (4). This form directly relates the state-space model to the 
transfer function parameters. The matrices B and C may also be derived from the left-canonical form; 
interested readers are referred to [5]. Besides the companion forms, the state-space matrices may also be 
derived from information embedded in the data vector throughout an impulse-response sequence. The 
following subsection gives a procedure for estimating the triplet (A, B, C ) from a given data vector. 



2.4    STATE-SPACE IDENTIFICATION 

Let the impulse response of the ARMA model be represented by Equation (13). To identify the 
state-space matrices (A, B, C ) from the impulse response, the matrix (zl-A)~ is expanded into an infinite 
series. It can be shown that 

(zI-A)~l = Iz~1+Az~2+Az~3 + ...    . (15) 

Inserting Equation (15) into Equation (13), one obtains 

Y(z) = 1 + CBz~l + CABz~2 + CA2Bz~3 +...    . (16) 

Referring to the definition of the z -transform, Equation (16) may be written as 

Y{z) = y(0) +y(l)z~1 +y(2)z~2 +... +y(k)z~k +...    . (17) 

By comparing the coefficients of the z~k terms of Equations (16) and (17), the following sequence is 
obtained: 

y(0) = 1 (18) 

y(l) = CB (19) 

y(2) = CAB (20) 

y(k) = CAk'lB (21) 

Then the relationship between the impulse response of the model and the state-space parameters for any 
positive value of k is defined by 

y(k) = CAk~lB   . (22) 

Equation (22) indicates that a Hankel matrix H formed from an impulse-response sequence such that 



H = 

y(2)y(3)y(4) 
y(3) yW y(5) (23) 

can be factored. The decomposition of H into a product of two matrices is given by 

H = 

C 
CA 

CA2 

\B AB A2B ...\    ' 
(24) 

or equivalently, 

H = QT   ,where (25) 

a. = 

c 

CA2 (26) 

and 

r " [B AB A2B 
(27) 

In linear system theory Q and r are known as the observability and controllability matrices. Despite 
the infinite dimensions of H [which is defined by Equation (23)], Q. and r can be truncated to p columns 
and p rows, respectively. Consequently, H has finite rank r < p. For a given set of measurements the Hankel 
matrix H is, of course, always finite. In this case H may be considered to be an operator constructed from 
a set of measurements y(k) that maps the past input vector w~ to the future output y+. In the remaining 
portion of this subsection a method is proposed to compute the Hankel matrix, together with a scheme to 
derive the state-space matrices from a finite set of samples. 



Let a set of measurements be defined by 

y= [y(l)y(2)y(3)...y(Ao] 
(28) 

and assume that it is desirable to derive the corresponding state-space matrices. The first step in computing 
the triplet (A, B, C ) is to form the Hankel matrix from the available data samples. Therefore 

H = 

yd) 
v(2) 

y(2) 

yO) 
yO) 
v(4) 

y(L) 
y(L+\) 

(29) 

y(N-L)    y(N-L + l)y(N-L + 2) ...y(N-\) 
y(N-L + l)y(N-L + 2)y(N-L + 3)...   y(N) _ 

where the correlation window length L = (2JV/3) is the smallest integer < (2N/3). The Hankel matrix 
given in Equation (29) may be partitioned into signal and noise subspaces by means of a singular-value 
decomposition. Computing the singular-value decomposition of H and rearranging its singular values 

{CT;} in decreasing order gives 

H [Vsn fa] 
2     0 sn 

0   2. 

y sn 

r n 

(30) 

where die subscripts sn and n denote the signal and noise subspaces, respectively, and the asterisk refers 
to conjugate and transpose. The matrices Us„ and U„ are the signal and noise components of the 
left-unitary matrix \usn C/J , respectively. Further, Vsn and Vn, respectively, denote the signal and noise 
components of the nght-unitary matrix \ysn vl»md E^« and Zn ^ diagonal matrices with the signal and 
noise singular values as entries on thei/mam diagonal, respectively. To increase the accuracy of the 
state-space matrices, the Hankel matrix H may be truncated by suppressing the noise-singular values and 
their associated unitary matrix components. It is well known that a/J-rank matrix that best approximates 
Equation (30) in the spectral norm sense is obtained by retaining only the dominant components, i.e., 

H usn^sny sn 
(31) 

The approximation of the error between H and H in the spectral norm sense is given by 

(32) 

where the subscript s denotes spectral. Therefore if ap is very large with respect to cp+ x, H is a good 
approximation for H; moreover, H is obtained in factored form by 



H = u„?,j%, = nr (33) 

The observability and controllability matrices Q and f may be computed from Equation (33). By using 
the balanced coordinate method proposed in [6], the observability and controllability matrices are obtained 

by choosing 

"       usnZjsn 
(34) 

and 

1/2 r = TV* 1        ^sn   v sn 
(35) 

respectively. Ideally Ö would have the exact observability matrix structure, and the open-loop matrix 
A e Cp x p is the solution to the following matrix equation: 

Q-rlA = fi_ri     , (36) 

where 

fi-rl   = 

CA 

CA2 

CAS 

CA N-L 

(37) 

and 

n_w = 

C 
CA 

CA2 

CA N-L-l 

(38) 

The matrices Q_ri and Q_rj are obtained by deleting the first and last rows of the observability matrix Q., 
respectively. From Equation (36) the following open-loop matrix is then obtained: 



A = (Q%/ Ü-r/)~ ä*-rl ß-rl     - (39) 

The open-loop matrix defined by Equation (39) may also be derived from the controllability matrix f. It is 
not difficult to see that A satisfies 

AT_ci = r^i, (40) 

where 

-d =   [ B AB AB ... AL
'

2
B] 

(41) 

and 

-cl  = AB   A2B   A3B    ...   AL   XB 
(42) 

It is clear that Equations (41) and (42) are obtained by deleting the first and last columns, respectively, of 
the controllability matrix f [which is defined by Equation (27)]. By solving for the open-loop matrix, 
Equation (40) gives, equivalently to Equation (39), 

A = f_clf*_c/ (f_c/f*_c/ ) 
-l (43) 

The state-space matrix C may next be computed from the observability matrix, which is described by 
Equation (26). Thus 

C = Q(l,:) (44) 

From Equation (44) it is easy to see that C is the first row of Q. For tfie state-space impulse response to 
match the data vector y [which is given by Equation (28)], the matrix B must be computed by a 
least-squares method. To ease the least-squares computation of B, define a new controllability matrix by 

C 
CA 

CA2 

Q.N = (45) 

CA N-l 

10 



where N is the number of samples. Then use the above equation, together with the matrix B, to match the 
data. Mathematically, then, 

ClNB=/   , (46) 

where y is the data vector and the superscript T denotes transpose. By using the pseudoinverse method, 
Equation (46) gives 

B = {h*NhN)~lä*Ny
T   . (47) 

A similar equation to the one defined above can be derived for C. To compute C from the data set using a 
least-squares on a controllability matrix, B must be rewritten as 

£ = f(:,l)   . (48) 

In this case it is clear that B is given by the first row of f. Now the new controllability matrix may be 
defined by 

fv=L,D„2D     ^-IDI    • (49) 7N~ \BABA2B...AN~1B\ 

Next the state-space impulse response [which is defined by Equation (22)] is matched to the data. 
Mathematically this may be written as 

CTN = y   . (50) 

Finally, by using the pseudoinverse method, Equation (50) becomes 

C = yf*N (fNT*N )
_1    . (51) 

It is significant that two expressions for the open-loop matrix A may be computed from the 
observability matrix by using Equation (39) or from the controllability matrix by using Equation (43). 
When C is computed using Equation (44), B must be obtained from Equation (47); however, when C is 
computed from the above equation, B must be obtained from Equation (48). 

The state-space method can be used to identify target features embedded in the data set for a finite 
length of measurements once the triplet (A,B,C) is defined. Furthermore, Equation (22) may be used to 
extrapolate the data beyond the band of observations. The next section presents a technique based on a 
modal decomposition approach that allows identification of target features and extrapolation of available 
data. 

11 



3.  SINGLE-BAND MODAL DECOMPOSITION 
AND STATE-SPACE EXTRAPOLATION 

3.1    OVERVIEW 

Generally speaking, the modal decomposition approach may be defined as a transformation method 
that allows a new state-space representation of a linear system by keeping invariant the eigenvalues of the 
original system. This method is often referred to as the similarity transformation in control theory and may 
be described as follows. 

Assume that the eigenvalues of A [which may be defined by Equation (39) or (43)] are distinct; thus, 

xw-^V-xJ   • (52) 

It is well known that the eigenvalues (X,), which determine the decay/growth of the system output, and the 
eigenvectors (mt), which give the shape of the response, satisfy 

Ami = ■kimi   ;  j = 1}    p    . (53) 

Form with the p eigenvectors a modal matrix M such that 

M = [Wl m2 ... „J    . (54) 

It is then not difficult to see from Equations (52) through (54) that 

AM = MA   , (55) 

where 

A = Äag[ X1 X2 ... Xp ]    • (56) 

Then suppose that 

x(k) = Mz{k)   , (57) 

where z{k) is the new state variable. Expressions equivalent to Equations (8) and (9) may be written as 

z(k + 1) = Az(ifc) +M~1Bw(k) (58) 

and 

13 



y(jfc) = CMz(k)+w(k)    , 

respectively. It is easy to see from Equation (55) that A is given by 

A = M~lAM   . 

(59) 

(60) 

The entries on its main diagonal are exactly the eigenvalues of the open-loop matrix A; therefore, the 
modal decomposition approach carries information that may characterize the target, and this seems to be a 
potential candidate for identifying scatterers embedded in the data set. The eigenvalues (X,) carry typing 
and position information about the target features. Their magnitudes and phases are related to the 

decay/growth and time-delay parameters by 

a, = . iQgN 
A/ 1, ...,P 

(61) 

and 

X|       2*A/   ' 1,...,/» 
(62) 

respectively. In Equation (61) 11 denotes the magnitude of the inserted variable and A/ is the sampling 
frequency; in Equation (62) <(>,. refers to the phase of the eigenvalue (X,). By following the steps defined by 
Equations (16) through (21) and using the modal decomposition approach, the estimated samples may be 

written as 

y(k) = CMAk  lMlB   ;k>0 (63) 

The above equation is identical to Equation (22); it gives good estimates of the available samples, 
consistent with Equation (32). The amplitudes of the signals related to the scatterers may be derived from 

Equation (63) as follows. 

Let 

M    = (64) 

Inserting Equations (54), (56), and (64) into Equation (63) obtains 

14 



p .*-! y(k) =  £ (C«,)(v,B)X, ;k=l,...,N   . (65) 
; = 1 

By using the signal model described by Equation (1), it is not difficult to see that the signal amplitudes are 
related to the state-space matrices by 

^.ICmZp   .lml ,   _ m 

<>.,■>" 

where fx and A/ denote the first frequency component of the frequency vector and the sampling 
frequency, respectively. As the signal parameters are accurately estimated, the state-space matrices can be 
used to extrapolate the data set to other frequency bands. 

Suppose that the state-space model is used to extrapolate the available data set in the forward 
direction. The first Nx extrapolated samples may be obtained by using 

yf(k) = CMAN+k-1M-1B    ;i= 1,2, ...,#!   , (67) 

or equivalently, 

yj(k) = CAN+k-lB    ;*- 1,2,...,^   , (68) 

where/and N denote forward and the number of available samples, respectively. To extrapolate the data in 
the reverse direction, the state-space matrices Ar, Br, and Cr may be derived from the flipped data 
\y(N) y(n-l) y(l)l ^ used m Equation (67). Thus the first Nx backward-extrapolated samples 
may be written as 

yb(k) = C^X+k'lKlßr   ; * = L2,...,#x   , (69) 

or equivalently, 

yh(k) = C^-%   ;*=1,2,...,^   , (70) 

where b refers to backward, and Mr and Ar denote the modal and eigenvalue matrices of Ar. The modal 
approach of the backward-extrapolation equation that is defined by Equation (70) is a direct consequence 
of Equation (68); it is obtained by replacing the constant matrices A,M,B, and C of the forward 
extrapolation by ArJMr,jB,., and Cr, respectively. The state-space method is well suited for target 
identification and data extrapolation. The entries on the main diagonal of A or Ar carry information about 
the decay/growth and the range location of the scatterers, and Equation (67) or (68) can be used for data 
extrapolation. 

15 



To test the feasibility of the technique and judge its practicability, the state-space method will be 
applied to simulated and static-range radar data. The next subsection presents examples from simulated and 
static-range radar data in order to analyze the performance of the single-band algorithm. 

3.2    SIMULATED AND STATIC-RANGE EXAMPLES 

Examples from simulated and static-range radar data confirm the single-band state-space algorithm. 
In the simulated examples the targets are four-point scatterers. The measurement noise w(k) is complex 
white Gaussian noise with variance, which is defined by peak signal-to-noise ratio (SNR): 

SNR = 201og(—)    , (71) 

where a2   denotes the signal variance. In the static-range example, the target is a monoconic model of a 

reentry vehicle with grooves, a slip-on ring, and seams. 

3.2.1    Example 1 (Simulated) 

The full-bandwidth synthetic data are generated using Equation (1) over the frequency range 3 to 
10 GHz, with a sampling rate of 20.057 MHz. The SNR is 40 dB, and the signal parameters are defined in 

Table 1. 

TABLE 1 
Signal Parameters 

Scattering 
Centers 

Decay/Growth (a) Time Delay (T ) Amplitude (\a\) 

1st -0.9231 x 10"9 2 x 10"9 1 

2nd -0.2308 x 10"9 6 x 10"9 1 

3rd -0.3077 x 10-9 1 x 10"8 1 

4th 1 x IQ"17 14 x 10"9 1 

To test the feasibility of the algorithm, 200 independent trials were performed using the signal 
parameters defined above (SNR = 40 dB). For each trial the focus is on a segment of the data, with 
101 samples in the frequency range 5.5 to 7.5 GHz. To estimate the signal parameters, Akaike's information 
criterion (AIC) [7] is used to identify the number of scattering centers. For each trial the AIC detects the 
four signals embedded in the data sets. Figures 1(a) and 1(b) show good agreement between the average of 
the estimates and the data for the in-phase (I) and quadrature (Q) channels, respectively. The average 
estimates of the signal parameters are given in Table 2. Figures 2(a) and 2(b) show the forward- and 
backward-extrapolation of the average estimates of the I and Q channels, respectively. 
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Figure 1. Comparison of the fitted model (blue) and the truth data (red) for a four-point target for 200 independent 
trials with SNR = 40 dB for each run. (a) Average of the I channels, and (b) average of the Q channels. 

TABLE 2 
Average Estimates of Signal Parameters for 200 Trials Conducted 

for Example 1 (SNR = 40 dB) 

Scattering 
Centers 

Decay/Growth (a) Time Delay (x) Amplitude (\a\) 

Estimates % Error Estimates % Error Estimates % Error 

1st -0.9118 xlO-9 1.22 1.98 x 10"9 1.0 0.997 0.3 

2nd -0.2084 x 10"9 9.71 5.8 x 10~9 3.33 1.03 3.0 

3rd -0.3318 xlO-9 7.83 1 x 10~8 0 0.995 0.5 

4th 0.51 x 10~16 4.1 13.8 x 10-9 1.43 1 0 
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Figure 2. BWE (blue) of a four-point target for 200 independent trials with SNR = 40 dB for each run. (a) Average of 

the I channels, and (b) average of the Q channels. 

3.2.2     Example 2 (Simulated) 

Example 1 was repeated, decreasing the SNR to 20 dB. In each trial the AIC detects the four signals 
that are used to generate the data set. Figures 3(a) and 3(b) compare the average of the models and the data 
for the I and Q channels, respectively. The algorithm filters a great deal of noise, giving results that follow 
more closely a data set with higher SNR. Table 3 presents the average estimates of the signal parameters for 
200 independent trials. The forward- and backward-extrapolation for the average of the I and Q channels 
are shown in Figures 4(a) and 4(b), respectively. 
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Figure 3. Comparison of the fitted model (blue) with truth data (red) for a four-point target for 200 independent trials 
with SNR = 20 dB for each run. (a) Average of the I channels, and (b) average of the Q channels. 

TABLE 3 
Average Estimates of Signal Parameters for 200 Trials Conducted 

for Example 2 (SNR a 20 dB) 

Scattering 
Centers 

Decay/Growth (a) Time Delay (t) Amplitude (}a\) 

Estimates % Error Estimates % Error Estimates % Error 

1st -0.9182 xl(f9 0.53 1.92 xlO-9 4.0 0.934 6.6 

2nd -0.2073 x 10~9 10.18 5.73 x 10~9 4.5 1.11 11.0 

3rd -0.343 x 10~9 11.47 1.17 x 10"8 17.0 0.987 1.30 

4th 0.87 x 10~16 7.7 13.6 x 10"9 2.86 1.04 4.0 
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Figure 4. BWE (blue) of a four-point target for 200 independent trials with SNR = 20 dB for each run. (a) Average of 

the I channels, and (b) average of the Q channels. 

3.2.3    Example 3 (Static-Range Radar Data) 

Data were collected for this third experiment on the monoconic reentry vehicle, which is illustrated 
in Figure 5; for a complete description of the target, interested readers are referred to [4]. The data are very 
good quality, i.e., they have very high SNR. The measurements were taken from 4.64 to 18 GHz using a 
40-MHz step size. The target viewing angles relative to nose-on ranged from -5 to 95 deg in 0.25-deg 
increments. 

Demonstration of the state-space processing technique considered a segment of a radar pulse in the 
12- to 18-GHz range, corresponding to an aspect of 20 deg. To test the practicability of the algorithm, the 
radar pulse was reduced to a 2-GHz-wide band, as illustrated in Figures 6(a) and 6(b). Figures 7(a) and 7(b) 
show good agreement between the data and the state-space extrapolation for the I and Q channels. In 
practice, for an extrapolation interval roughly equal to the data band on either side, the predicted samples 
do not carry useful information when the extrapolation factor becomes large. This fact is due to the error 
that occurs in the estimate of the decay/growth parameter a. The strong dependence of the eigenvalue (X) 
on a reflects the exponential decay or growth of the response outside the band of observation. 
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Figure 5. Test target for UWB processing experiments, a monoconic model of a reentry vehicle 1.6 m long, with a 
spherical nosetip of 0.22-cm radius. The nose section is made from a solid piece of machined aluminum with three 
grooves, two near the front of the model and one at the midbody. 
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Figure 6. Static-range data of a monoconic target at 20-deg aspect for the (a) I channel and (b) Q channel. 
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Figure 7. Comparison of the extrapolated data (blue) from a 2.0-GHz-wide (14.0 to 16.0 GHz) data set and the true 
data (red) for a monoconic reentry vehicle at 20-deg aspect for the (a) I channel and (b) Q channel. 

Depending on the magnitude of the eigenvalues (|X|), the extrapolation dies out for \X\ < 1 and 
increases rapidly for \X\ > 1 when the extrapolation factor is large. In the following example the state-space 
BWE processing technique is applied to a 1.0-GHz-wide subband data set in order to elucidate the 

limitations of BWE. 

3.2.4    Example 4 (Static-Range Radar Data) 

The radar pulse in the Example 3 was then reduced to a 1.0-GHz-wide data set in the range of 14.5 to 
15.5 GHz. The state-space BWE technique is used to demonstrated the degradation of the predicted 
information for an extrapolation interval roughly three times the 1.0-GHz data subband on either side. 
Figures 8(a) and 8(b) compare the extrapolated model and the true full-band data for the I and Q channels, 
respectively. In these figures the extrapolated model grows in amplitude, and the extrapolation does not 
replicate the true data beyond a segment of 1.0-GHz on each side of the available data set. 

The extrapolation may be sustained either by normalizing the eigenvalues (Xy) or by providing data 
over a larger (perhaps sparse) band. If one normalizes the eigenvalues determined from the open-loop matrix 
A onto the unit circle, the extrapolated data clearly will not capture the exponential behavior of the 
embedded scattering centers; however, providing data over a second band (perhaps widely spaced) provides 
a much larger frequency span over which to estimate the frequency decay/growth. The additional band is 
also crucial to improving the accuracy of the a values. In the following sections a state-space technique is 
described that allows interpolation or extrapolation outside two mutually cohered subband measurements. 

The state-space method is formulated first. 
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Figure S. Comparison of the extrapolated data (blue) from a 1.0-GHz-wide (14.5 to 15.5 GHz) data set and true data 
(red) for the monoconic reentry vehicle at 20-deg aspect for the (a) I channel and (b) Q channel. 
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4.  SPARSE-BAND STATE-SPACE FORMULATION 

4.1     SPARSE-BAND REPRESENTATION 

Suppose that two data sets are mutually cohered, i.e., that there are no phase and range biases between 
them as defined in [4]. Suppose also that the data set defined by Equation (28) in the frequency domain 
corresponds to the frequency response of the target over an arbitrary bandwidth. To generate the sparse-band 
measurements, let the first and last Nx samples of the data be the entries of the first and second bands, 

respectively. Mathematically, 

V\ = \y(l) yV) y(3) ... yiN$ (72) 

and 

^2 = ^(N-Ni + 1) yiN-Ni + 2) y(N-N1 + 3) ... y(JV)] (73) 

where N is the total number of samples, which is defined by Equation (28). An input-output description of 
the data set that includes yx, the data gaps, and the second data vector y2 can be described by an ARMA 
model. A state-space formulation of this special data set may also be defined by Equations (8) and (9). 

To estimate the missing samples and the target parameters buried in the data subsets, the state-space 
matrices ( A , B , and C ) must be computed. The next section presents a method to compute the 
state-space matrices for the UWB system described by Equations (8) and (9). 

4.2    SPARSE-BAND IDENTIFICATION MATRICES 

Suppose it is necessary to compute the state matrices for the sparse-band system described in the 
previous section. The following Hankel matrices may be formed from the data sets yx and y2: 

H* = 

yd) y(2) 

y(3) 

y(3)       -   y(Ly) 

y{A) ...y(Ii + l) 

yiNx-Lx)   y(^1-I1 + l)y(^1-I1+2)...y(^1-l) 

y(Nx -I, + 1) y(Nx -Lx + 2) y(Nx -L, + 3) ...   y(Nx) 

(74) 

and 
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H2 = 

y(N-Nl + l)y(N-Nl + 2)y(N-N1 + 3) ...   yiN-N^LJ 
y(N-Nl + 2)y(N-Nl + 3)y(N-N1 + 4) ... y(N-N1 + Lj + 1) 

(75) 

yiN-LJ    yiN-Li + 1) y(N-Lx+2) ... y(N-l) 

yiN-^ + l) y(N-L1 + 2) y(N-L1+3) ... y(N) 

respectively. To achieve high resolution, the parameter Lx, which denotes the correlation window length, 
is given by (2N1)/3 .To carry out the sparse-band state-space identification method, Hx and H2 must be 
stacked to form the dual-band Hankel matrix, H . Depending on the stacking method, a subaperture 
processing methodology is denned that provides the potential for robust parameter estimates from noisy 

data when H is given by 

H = (76) 

and an extended aperture processing is defined that provides the potential for true UWB resolution when 

H is defined by 

H = [Hl #2] (77) 

Because it has potential for the highest resolution, the extended aperture method described above will be 
used in this report, unless otherwise specified. A singular value decomposition carried out on H allows 
the separation of the noise from the signal space. By following the steps described in Section 2.4 for the 
single-band case, a p-rank approximation to the extended aperture H may also be defined by Equation 
(33) In this case ß and f denote the sparse-band observability and controllability matrices, 
respectively; thus, Q. and f are defined by Equations (34) and (35), respectively. The sparse-band 
open-loop matrix A is obtained from the observability matrix Q as defined by Equation (39). A may 
also be derived from the controllability matrix f . Using Equation (43) obtains, equivalently, 

A = f_clf*_cKf_c/f*-c/) 
-1 (78) 

where f_ci and f_c/ are obtained by deleting the first and (I, + 1) -th columns and the Lx -th and 
2L -th columns of f , respectively. The state-space matrix C may be computed mathematically from 
Equation (44); however, to match the samples of the state-space impulse response to the corresponding 
sparse-band data points, B must be computed using a least-squares method. One way to compute B is to 

define a new observability matrix by 
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«AT = 

c 
CA 

N,-l 
CA  ' 

N-N, 
CA       l 

N-N, + l 
CA       ' 

. CAN~l . 

(79) 

where #x and AT are defined by Equations (72) and (73), respectively. The data sets yt and y2, together 
with QN , can be used in a least-squares sense to obtain 

B = (Cl*NnNf
lä*N[yx y2] (80) 

It is not difficult to see that Equation (80) is identical to Equation (47). An expression that is analo- 
gous to B (which is defined above) may be derived for C . Equation (80) does not hold when computing 
C using a least-squares method. B must be computed from Equation (48). Next form a new controllability 

matrix fN , which may be written as 

'N- [ rv = B   AB 
N,-l N-N, AT-AT. + l 

A l    B   A       'fi   A B iN-X
B] (81) 

The entries of f# as they are defined above are matrix elements; that is, when they are premultiplied by 
C their products can match the sparse-band data set in a least-squares sense. Finally, using Equation (51) 

obtains 

C = = lyl yyr*N(TNT*N) (82) 

The remarks made earlier regarding the single band also hold for the sparse band. When C is 
computed from the last equation, B must be derived from the controllability matrix r as defined by 
Equation (48). Further, if C is given by Equation (44), B must be obtained from Equation (80). Thus for 
well-defined state-space matrices, the triplet (A ,B,C) may be used to interpolate between the two bands 
and to extrapolate beyond, as well as to identify target features as described in Section 3.1 for the 
single-band case. The next section presents simulated and static-range radar data to test the feasibility of the 
UWB algorithm. 
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4.3    SIMULATED AND STATIC-RANGE EXAMPLES 

To illustrate the limitations of the single-band processing technique and to confirm the UWB 
state-space technique, the simulated and static-range radar examples were repeated for the single-band case. 

4.3.1     Example 5 (Simulated) 

This example repeats the 200 independent trials of Example 2, which are now applied to sparsely 
located dual bands. For each trial the bandwidth of the synthetic pulse is reduced to two 1-GHz-wide bands 
spaced 5-GHz apart. Over the bands, the average for the I and Q channels for the 200 trials are shown in 
Figures 9(a) and 9(b), respectively. 

Figures 10(a) and 10(b) compare the average of the lower subband using only the data for 
extrapolation and the full-band data sets for the I and Q channels, respectively. Because of the poor estimates 
of the signal parameters, particularly the a values over the limited bandwidth, the extrapolations shown m 
these figures do not mimic the true UWB channels. Table 4 gives the percentage error between the estimated 
and the true signal parameters. 

c 
JC 
O 

-    Data 

_L 
5        6        7 8 

Frequency (GHz) 

(a) 

5        6       7        8        9 

Frequency (GHz) 
(b) 

10 

Figure 9. Average data samples for 200 independent trials of a four-point target with SNR = 20 dB for each run; 

(a) I channel, and (b) Q channel. 

28 



5        6        7        8 

Frequency (GHz) 
(a) 

9       10 4        5        6        7        8 

Frequency (GHz) 
(b) 

Figure 10. Comparison of the average of 200 independent trials for the lower-band extrapolations (blue) and truth 
data (red) for a four-point target with SNR = 40 dB for each run; (a) I channel, and (b) Q channel. 

TABLE 4 

Average Estimates of Signal Parameters Over 200 Trials Conducted 

for Example 5, Lower-Band (SNR = 20 dB) 

Scattering 
Centers 

Decay/Growth (a) Time Delay {%) Amplitude (|a|) 

Estimates % Error Estimates % Error Estimates % Error 

1st -0.17 xlO-9 81.6 14.01 x 10~9 6.01 0.85 15.0 

2nd 0.08 x 10"9 65.34 5.95 x 10"9 0.83 0.83 17.0 

3rd -0.1296X10"9 57.88 1.04 x 10"8 4.0 0.94 6.0 

4th 13.34 x 10~9 huge 15.68 x 10~9 12.0 0.47 53.0 
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Conversely, Figures 11(a) and 11(b) show comparison using only the data from the upper-subband 
extrapolation and the UWB data sets for the I and Q channels, respectively. Over the full band the I and Q 
channels of the extrapolated and the true data match closely in magnitude, but not in phase. The deviations 
in phase of the extrapolations from the full-band channels is primarily because of error in the estimation of 
the time-delay parameters and the corresponding phases associated with the amplitudes of the scattering 
centers. Table 5 shows the percentage error between the estimated and true signal parameters. 

Figure 12 illustrates the UWB sparse-band data fit using the state-space processing applied to the 
lower and upper bands. Parameter estimates are illustrated in Table 6. A comparison between Tables 1 and 
6 reveals very good agreement between the estimates and the true signal parameters. Figures 12(a) and 12(b) 
show the excellent performance of the algorithm over the entire 7-GHz band for the average of Ihe I and Q 
channels, respectively. 
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Figure 11. Comparison of the average of 200 independent trials for the upper-band extrapolations (blue) and truth 
data (red) for a four-point target with SNR = 40 dB for each run; (a) I channel, and (b) Q channel. 
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TABLE 5 

Average Estimates of Signal Parameters Over 200 Trials Conducted 

for Example 5, Upper-Band (SNR = 20 dB) 

Scattering 
Centers 

Decay/Growth (a) Time Delay (T ) Amplitude (I a\) 

Estimates % Error Estimates % Error Estimates % Error 

1st -0.4104 x 10"9 55.5 2.1 x 10~9 5.0 0.927 7.3 

2nd -0.2667 x 10~9 15.55 6.05 x 10~9 0.83 1.13 13 

3rd -0.3723 x 10"9 21.0 1.18 xlO"8 18.0 1.08 8 

4th 0.89 x 10"15 88.0 13.87 x 10"9 0.93 1.16 16 
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Figure 12. Comparison of the average of 200 independent trials of the UWB fitted model (blue) and truth data (red) 

for a four-point target with SNR = 20 dB for each run; (a) I channel, and (b) Q channel. 
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TABLE 6 

Average Estimates of Signal Parameters over 200 Trials Conducted 

for Example 5, Sparse-Band (SNR = 20 dB) 

Scattering 
Centers 

Decay/Growth (a) Time Delay (x) Amplitude (M) 

Estimates % Error Estimates % Error Estimates % Error 

1st -0.9193 x 10"9 0.41 1.97 X 10"9 1.5 0.95 5.0 

2nd -0.2281 x 10~9 1.17 5.97 x 10"9 0.5 1.05 5.0 

3rd -0.3273 x 10~9 6.37 1.03 x 10"8 3.0 0.97 3.0 

4th 0.27 x 10~15 1.7 14.02 xlO-9 0.14 1.1 10.0 

43.2    Example 6 (Simulated) 

To test the feasibility of state-space UWB processing, the 200 independent trials of Example 1 were 
repeated, applied now to sparsely located dual bands. For each trial the bandwidth of the synthetic pulse was 
reduced to two 1-GHz-wide subbands 5-GHz apart. Figures 13(a) and 13(b) illustrate over the subbands the 
average of the data for the I and Q channels, respectively. Table 7 shows that the average estimates of the 
signal parameters match closely the entries of Table 1. Figures 14(a) and 14(b) show good agreement 
between the average of the predictions and the data for the I and Q channels, respectively. 
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Figure 13. Average data samples for 200 independent trials of a four-point target with SNR = 40 dB for each run; 
(a) I channel and (b) Q channel. 

TABLE 7 

Average Estimates of Signal Parameters for 200 Trials Conducted 

for Example 6, Sparse-Band (SNR = 40 dB) 

Scattering 
Centers 

Decay/Growth (a) Time Delay (x) Amplitude [\a\) 

Estimates % Error Estimates % Error Estimates % Error 

1st -0.9225 x 10~9 0.07 2 x 10"9 0 1.01 1.0 

2nd -0.2267 x 10~9 1.78 6 x 10"9 0 0.98 2.0 

3rd -0.3154 xlO-9 2.50 1 x 10"8 0 1.1 10.0 

4th 0.36 x 10"14 2.6 14 x 10"9 0 1 0 

33 



5       6      7        8 

Frequency (GHz) 

(a) 

9      10 5       6      7        8 

Frequency (GHz) 

(b) 

10 

Figure 14. Comparison of the average of 200 independent trials of the UWB fitted model (blue) and truth data (red) 
for a four-point target with SNR = 40 dB for each run; (a) I channel (b) Q channel. 

4.3.3    Example 7 (Static-Range Radar Data) 

The static-range experiment of the monoconic target presented in. Example 3 was considered in order 
to demonstrate the UWB state-space processing technique. The radar pulse was reduced to two 1-GHz-wide 
subbands, as illustrated in Figure 15(a). Figure 15(b) illustrates the compressed pulses for the two subbands, 
which are treated separately (i.e., 1-GHz resolution), and the full-band measurements. Most of the target 
features remain unresolved by the two subbands; the full-band compressed pulse resolves all the significant 
features on the target. Figure 16 illustrates the results of applying the sparse-band processing technique to 
the upper and lower data sets. Figure 16(a) shows good agreement between the data and the state-space 
interpolations and extrapolations. Figure 16(b) illustrates comparisons between the sparse-band target 
response and the true radar measurements. The model misses very few features on the target. 

The last three examples show good performance with the state-space sparse-band processing using 
simulated and static-range radar data; however, enhanced performance can be achieved if the above results 
are used as initial conditions for an iterative algorithm, which fine-tunes the signal parameter estimates as 
defined by Equations (61), (62), and (66). Accordingly, the next section presents an iterative state-space 

UWB algorithm. 
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Figure 15. (a) Sparse-band measurements used to predict a monoconic reentry vehicle's response over the fall band 
from 12 to 18 GHz. (b) Compressed pulses for the sparse- and full-band data sets. 
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Figure 16. Comparison of full-band data (red) and the sparse-band model (blue) for a monoconic reentry vehicle at 
20-deg aspect for the (a) I channel and (b) compressed pulses. 
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4.4    ITERATIVE METHOD FOR STATE-SPACE ESTIMATION AND INTERPOLATION 

4.4.1 Method 

This section presents an iterative approach that refines the state-space matrices of the dual band and 
improves the fitted data in the vacant bands. This iterative method uses the state-space matrices of the 
sparse-band algorithm as an initialization. At each step in the iteration, the algorithm evaluates the error 
energy between the measured and the estimated data in the lower and upper subbands. This error energy 
may be defined by 

E = X |yi<*)-*i(*>|2+ X HV-hvf > (83) 

*=i '=1 

where yt(k) and y2(l) are the *th and /th samples of the first and second data sets, defined by 
Equations (72) and (73), respectively. Further, yy(k) and y2(l) denote the estimates of the measured 
samples y^k) and y2(l), respectively. Using the measured data together with the initial estimate of the 
vacant band samples, the algorithm computes a new set of matrices based on the composite UWB data set 
(i.e., the full-band data set), generates a new fitted UWB data set, and calculates the error energy that is 
defined by Equation (83). The initial samples in the vacant bands and the UWB fitted data in the two 
subbands are then replaced by the new fitted samples and measurements. The algorithm updates the 
matrices, generates UWB fitted data, and computes a new error energy. During this procedure the new 
error energy is compared with the old one; as long as the new error energy is smaller than the previous 
error energy, the UWB algorithm repeats these steps iteratively. When the last computed error energy is 
greater than the previous one the algornhm stops, and the previous UWB fitted data thus define the 
so-called UWB synthetic pulse. 

4.4.2 Example 8 (Static-Range Radar Data) 

In order to estimate the target response more accurately, the sparse-band static-range example of 
UWB processing presented in Example 7 was repeated using the error-energy equation to obtain an 
enhanced fit to the full-band result. Figure 17(a) shows excellent agreement between the I channels of the 
data and the sparse-band model after eight iterations. The iterative UWB algorithm exhibits excellent 
performance. Figure 17(b) shows dramatic improvement in the target response from the slip-on ring (which 
cannot be seen in Figure 5) to the base edge. Figure 17 also illustrates that the algorithm's compressed pulse 
matches closely the true target response. Figure 18 shows that the locations of the eigenvalues of the 
open-loop matrix A are consistent with the physical scattering centers on the target. The eigenvalue 
corresponding to the nosetip response is close to the unit circle, indicating a nearly constant radar cross 
section (RCS) over the full band. The grooves and slip-on ring have nonconstant RCS as a function of 
frequency, as predicted by the moment-method RCS calculation illustrated in Figure 19. The corresponding 
eigenvalues are either inside or outside the unit circle, depending on whether the scatterer response is 
decaying or growing with frequency. 

36 



12       13        14        15        16 

Frequency (GHz) 

(a) 

17 18 -1.5     -1.0    -0.5 0        0.5       1.0       1.5 
Relative Range (m) 

(b) 

Figure 17.  Comparison of the iterative UWB target response (blue) and full-band radar measurements (red) for a 
monoconic reentry vehicle at 20-deg aspect for the (a) I channel and (b) compressed pulses. 
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Figure 18. Iterative UWB eigenvalue estimates obtained using the sparse-band data sets illustrated in Figure 15(a). 
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The radar pulse in this example exhibits strong frequency-dependent behavior. The signal model of 
the scatterers on the monoconic target, instead of following Equation (1), follows the geometric theory of 
diffraction model as described in [8] and may be written as 

**)- £«$)V"Ä
+*(*)    ;*=!,.... N (84) 

; = 1 Vr 

The decay/growth for the major scattering centers can be computed indirectly using Equation (98); 
a,, may be obtained by matching the functions (/j///' and^*-1 at the highest extrapolated frequency. 

Mathematically, 

(tf-l)log(|X,,|) 
a,- = —!  (85) 

log 1+(JV-1) f\ 
The above equation was used to estimate the decay/growth parameters for the first, second, and 

midbody grooves on the monoconic target to be 04 = -1.1, cc2 = 2.3, and <x3 = 2.9, respectively. These 
estimates are consistent with the moment-method RCS calculations shown in Figure 19. 
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Figure 19. Moment-method RCS calculations for the three major grooves on the monoconic reentry vehicle, which 
was at a 20-deg aspect angle. All three grooves exhibit the expected f scattering behavior at low frequencies, with 

breakpoints that depend on the size of the groove. 
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Because of the large viewing aspect of the target measurements, radar images of the target were 
generated. Figures 20(a) and 20(b) show the lower- and upper-subband images, respectively, using 
conventional imaging techniques. Given the relatively poor resolution of these images, the scattering centers 
on the target cannot be identified. Figures 20(c) and 20(d) show the true and the estimated sparse-band 
processing target images, respectively. The sparse-band image is comparable with the full-band image: it 
shows great detail of the target where the features are clearly identified. All four images were generated 
using extended coherent processing [9], and target symmetry was used to process the data as if a range of 
viewing aspects had been sampled from -95 to 95 deg. 
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Figure 20. Comparison of two-dimensional radar images. The upper-left and -right images show the lower- and 
upper-subband images, respectively. The full-band image at the lower left uses actual radar measurements over the 
full 12-to-18-GHzfrequency range. The sparse-band image in the lower right uses the sparse-band measurements with 
the iterative UWB prediction. 
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5.   CONCLUSIONS 

This report has presented a sparse-band state-space signal-processing technique to estimate signal 
parameters and predict data samples that he outside the measurement band using simulated and static-range 
data. The technique has been applied to single- and sparse-band data samples. The algorithm provides more 
accurate estimates than previous algorithms of the time delay, decay/growth, and amplitude associated with 
each scatterer embedded in the data vectors. Extrapolation of the available data by a factor of three shows 
that the single-band state-space technique predicts well the outer-band samples; however, estimation of the 
frequency decay/growth parameter a is strongly sensitive to the available bandwidth. When applied to 
widely spaced sparse-band data samples, the technique provides a considerable improvement in estimating 
a. The technique also shows that accurate UWB radar returns can be achieved when only a few segments 
of the total UWB measurements are available. The technique is cost-effective, as it can compensate for the 
vacant bands when data are collected on restricted regions. Another advantage of the method is the accurate 
estimation of the decay/growth parameters, which provide the typing information for the scattering centers 
that characterize a target. The technique can be applied to many fields whenever the data are available in 
sparse subbands, as in a frequency jump burst radar or mutually cohered radars. For a well-defined signature 
fusion algorithm, the state-space UWB processing can be applied to radars that operate independently when 
the radars are properly cohered using the techniques described in [4]. 
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