
AFRL-SN-RS-TR-1999-48, Vol I (of two) 
Final Technical Report 
May 1999 

MCARM/STAP DATA ANALYSIS 

Research Associates for Defense Conversion, Inc. 

Vincent Cavo 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

19990629 085 
AIR FORCE RESEARCH LABORATORY 

SENSORS DIRECTORATE 
ROME RESEARCH SITE 

ROME, NEW YORK 

^QtTAXJTj, m8**:cm 4 



This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS). At NTIS it will be releasable to the general public, 
including foreign nations. 

AFRL-IF-RS-TR-1999-48, Vol I (of two) has been reviewed and is approved for 
publication. 

APPROVED: /^0**&^ ^  ^//cz^Ca^ 
TODD B. HALE, Capt, USAF 
Project Engineer 

FOR THE DIRECTOR: 

ROBERT G. POLCE, Acting Chief 
Rome Operations Office 
Sensors Directorate 

If your address has changed or if you wish to be removed from the Air Force Research 
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by 
your organization, please notify AFRL/SNRT, 26 Electronic Parkway, Rome, NY 13441- 
4514. This will assist us in maintaining a current mailing list. 

Do not return copies of this report unless contractual obligations or notices on a specific 
document require that it be returned. 



REPORT DOCUMENTATION PAGE OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour par response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining tlw data needed, and completing and reviewing 
the collection of information. Send comments regarding this burta estimate or eny other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information 
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Weshington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 

4. TITLE AND SUBTITLE 

2. REPORT DATE 

 May 1999 

3. REPORT TYPE AND DATES COVERED 

Final       Apr 96 - Feb 98 

MCARM/STAP DATA ANALYSIS, Volume I (of two) 

6. AUTHORIS) 

Vincent Cavo 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Research Associates for Defense Conversion, Inc. 
10002 Hillside Terrace 
Marcy NY 13403 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES) 

Air Force Research Laboratory/SNRT 
26 Electronics Parkway 
Rome NY 13441-4514 

5. FUNDING NUMBERS 

C    -    F30602-96-C-0053 
PE   - 62702F 
PR   - 4506 
TA   - 11 
WU - 2K 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

N/A 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

AFRL-SN-RS-TR-1999-48, 
Volume I (of two) 

11. SUPPLEMENTARY NOTES 

Air Force Research Laboratory Project Engineer: Captain Todd Hale/SNRT/(315) 330-1896 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

The Multi-Channel Airborne Radar Measurement (MCARM) program was initiated to gather real airborne data. Both 
monostatic and bistatic data were collected, under varying environmental conditions and in different geographical areas. This 
report documents the construction, maintenance, and use of the MCARM data via the Internet. The main objective of this 
access is to permit and promote research in the area of Space-Time Adaptive Processing. Use of real airborne data will 
permit researchers to better test different signal processing algorithms and hypotheses. 

A query form and query engine permits a user to search the data repository. The data repository is comprised of 570 data 
files and occupies approximately 27 gigabytes of magnetic disk storage. 

14. SUBJECT TERMS 

MCARM, STAP, Adaptive Processing, Signal Processing, Data Processing 
15. NUMBER OF PAGES 

86 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF 
ABSTRACT 

UL 
Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 238.18 
Designed using Perform Pro, WHSIDI0R, Oct 94 



Table of Contents 

Section  Title Page 
Glossary of Terms iv 
1.0 Executive Summary 1 
2.0 Introduction 2 
3.0 Background 3 

3.1 CREST 3 
3.2 IE 2000 3 

4.0 Tasks/Technical Requirements 5 
4.1 CREST Structure and Architectural Analysis 5 

4.1.1 CREST Environment Replication 5 
4.1.2 IE 2000 Replication 6 

4.2 CREST Enhancement and Modification For Monostatic MCARM Data 7 
4.2.1 Develop Internet/WWW Procedures 7 
4.2.2 Make Data Accessible Via Internet 8 
4.2.3 Develop RLSTAP/MCARM Needs Assessment 9 

4.2.3.1 Design, Develop and Implement Interface 9 
4.2.3.2 Perform Interface Testing 10 
4.2.3.3 Present RL With Interface Alpha Release 10 
4.2.3.4 Provide Interface Technical Support 10 

4.3 CREST Enhancement and Modification For Bistatic MCARM Data 10 
4.3.1 Develop Internet/WWW Procedures 11 
4.3.2 Make Data Accessible Via Internet 11 

4.4 MCARM Internet Accessibility 11 
4.4.1 Modify CREST Home Page 11 
4.4.2 MCARM Data Structure Integration 13 
4.4.3 CGI Query Interface 13 
4.4.4 Data Dictionary For Variable Translation 14 
4.4.5 Perform RLSTAP Needs Assessment 14 
4.4.6 Design, Develop And Implement RLSTAP/MCARM Interface 14 
4.4.7 Present RL With Initial RLSTAP/MCARM Approach 14 

4.5 Provide Technical Support 15 
4.6 Other Relevant Supporting Tasks 17 

4.6.1 Mapping 18 
4.6.2 Internet Security 19 
4.6.3 Documentation 19 

4.7 Availability Assessment Of Hosting MCARM Data On The Rome Laboratory 19 
HPCC (Option I) 
4.7.1 Introduction 19 
4.7.2 Background 20 

4.7.2.1 Intel Paragon 20 
4.7.2.2 MCARM Data 21 

4.7.2.2.1 MCARM DATABASE 22 



4.7.3 MCARM Data HPCC Repository Assessment 23 
4.7.4 Implementation Plan 23 

4.7.4.1 Implementation Tasks and Schedule 24 
5.0 Recommendations/Conclusion 25 

IX 



Section  Title Page 

List of Figures 

Figure 4.1.1-1 MC ARM Web Hierarchy 6 
Figure 4.4.1-1 MCARM Home Page 12 
Figure 4.5-1 Daily Access Log 16 

List of Tables 

Table 4.2.1-1 MCARM Internet User Accounts 8 
Table C-l Software Tools 46 

Appendices 

Appendix A - MCARM Data Variables Description 27 
Appendix B - Common Gateway Interface (CGI) Source Code 34 
Appendix C - Software Tools 45 

ni 



Glossary of Terms 

Term Definition 

CATIS 
CGI 
CORBA 
COTS 
CPI 
CREST 
DoD 
ESRI 
GMTI 
GPS 
HiPPI 
HTML 
HTTP 
HPCC 
IE 2000 
I/Q 
MCARM 
MHPCC 
NCSA 
OMG 
OSF 
POWER 
PRF 
RDT&E 
RISC 
RLSTAP/ADT 

RSTER 
SCSI 
SP2 
STAP 
TCP/IP 
UTM 
VIFF 
VRML 
WWW 

Computer Aided Tactical Information System 
Common Gateway Interface 
Common Object Request Broker Architecture 
Commercial Off-The-Shelf 
Coherent Processing Interval 
Common Research Environment for STAP Technology 
Department of Defense 
Environmental Systems Research Institute 
Ground Moving Target Indicator 
Global Positioning System 
High Performance Parallel Interface 
Hyper Text Markup Language 
Hyper Text Transfer Protocol 
High Performance Computer Center 
Image Exploitation 2000 server 
In-phase and Quadrature Phase 
Multi-Channel Airborne Radar Measurement 
Maui High Performance Computer Center 
National Center for Supercomputing Applications 
Object Management Group 
Open Software Foundation 
Performance Optimized With Enhanced RISC 
Pulse Repetition Frequency 
Research Development Test & Evaluation 
Reduced Instruction Set Computing 
Rome Laboratory Space-Time Adaptive Processing/Algorithm 
Development Tool 
Radar Surveillance Technology Experimental Radar 
Small Computer Systems Interface 
Scalable POWERparallel 2 
Space-Time Adaptive Processing 
Transmission Control Protocol/Internet Protocol 
Universal Transverse Mercator 
Khoros Visualization Image File Format 
Virtual Reality Modeling Language 
World Wide Web 

IV 



1.0 Executive Summary 

The Multi-Channel Airborne Radar Measurement (MCARM) program was initiated to gather 
real airborne data. The MCARM data collection process involved the acquisition of both 
monostatic and bistatic data under varying environmental conditions and in different 
geographical areas. Real airborne data permits researchers to better test different signal 
processing algorithms and hypotheses. Making the data available via the Internet permits 
researchers throughout the United States and in other countries to participate in experimentation. 

This Final Report documents the data acquisition process, via the Internet, assesses the quality of 
the data, and discusses some possible analysis that can be performed by researchers. The format 
of the MCARM data is publicly provided. However, except for some sample files, access to the 
data is restricted and available to only authorized personnel. 

The Final Report for this effort is divided into two parts. To facilitate comprehension, the report 
is divided into a data acquisition part (Part I) and data analysis part (Part II). Each part addresses 
the relevant Statement of Work (SOW) tasks. 



2.0 Introduction 

The Multi-Channel Airborne Radar Measurement (MCARM) program was initiated to gather 
real airborne data. The MCARM data collection process involved the acquisition of both 
monostatic and bistatic data under varying environmental conditions and in different 
geographical areas. 

As a direct result of this effort, the MCARM data files have been made available to researchers 
via the Internet. The current MCARM data repository resides on a SparcServer 630 MP. The 
data repository consists of 570 preprocessed data files; all are available via the Internet through 
Hyper Text Transfer Protocol (HTTP). A query form and query engine permits a user to search 
the data repository on any valid MCARM parameter. 

The data repository occupies approximately 27 gigabytes of magnetic disk storage. A data search 
on a particular parameter may take four minutes or more. The search time is dependent upon the 
system and network load. Access to the MCARM data is restricted except for some publicly 
available files. 

This part of the Final Report documents work performed in making the MCARM data available 
via the Internet. This effort makes data available by replicating and building upon the Common 
Research Environment for STAP Technology (CREST) environment, the Image Exploitation 
2000 (IE 2000) server and data base engine, and the MCARM data. 

The Final Report for this effort is divided into two parts. To facilitate comprehension, the report 
is divided into a data acquisition part (Part I) and data analysis part (Part II). Each part addresses 
the relevant Statement of Work (SOW) tasks. 



3.0 Background 

This section discusses background information pertinent to this effort. More specifically, the 
section addresses the CREST environment, the IE 2000 system, and the MCARM data. 

3.1 CREST 

In essence, the CREST environment is a radar data repository and the accompanying software 
and hardware tools needed to process data within the repository. The environment provides the 
means to enable STAP researchers to develop and process algorithms using the Rome 
Laboratory Space-Time Adaptive Processing (RLSTAP) tool. Meanwhile, the CREST Data 
Library provides data that can be used to test the algorithms. The CREST environment is 
dependent on the Internet for communications and upon the resources of MHPCC for data 
processing. 

The RLSTAP/Algorithm Development Tool (ADT) is a user-friendly software environment for 
STAP simulations, processing and analysis. This tool represents a complete radar environment 
consisting of simulated and measured data, a full library of signal processing routines, and a 
flexible graphical interface. The RLSTAP/ADT is a Unix X-Windows client application 
currently running on Sun (SunOS 4.1.3, Solaris2.4) and RS6000 (AIX V3.2) platforms. The tool 
permits a user to prototype and perform experiments graphically. A user can either test 
algorithms with their own data or use the CREST Data Library to acquire RSTER data. 
Experiments requiring extensive computing power can be batched remotely to the MHPCC. 
(The computing power at the MHPCC is supplied by an IBM POWER parallel SP2 System 
comprised of 400 Power2 nodes linked by a high performance switch. The MHPCC offers a 100 
gigaflop capability for 100 billion floating point operations per second.) 

The CREST environment executes over the Internet via TCP/IP. The Data Library currently 
utilizes the WWW http protocol while the Remote-RLSTAP/ADT uses TCP/IP based 
applications. The client environments utilize low bandwidth message transfers to the servers at 
the MHPCC. 

3.2 IE 2000 

A number of server concepts were borrowed from the Imagery Exploitation (IE) 2000 during the 
construction of the CREST Data Library. The IE 2000 is a software facility developed by Rome 
Laboratory to provide an experimental digital image exploitation test bed for development and 
evaluation of functions, techniques, software, and hardware to support imagery exploitation. 
"The facility is composed of image processing hardware and software that provide the digital 
image exploitation environment required for supporting the development of automated target 
detection, identification, location, as well as the experimental production of advanced target 
materials. The facility was developed using an open system architecture." 



The facility allows digital image interpretation on multisensor/multispectral digital imagery 
using low cost soft copy workstations. The system also uses geographic information, 
cartographic data, and an intelligence data base as aids to the analyst. The available hardware 
and software provide a full range of digital image processing tools such as image enhancements, 
warping, image registration, mensuration, etc. This facility represents the future in soft copy 
Reconnaissance Technical Unit's image interpretation functionality and capability. 

The IE 2000 facility is equipped with twelve Sun Workstations, a Sun SPARC 1000 Server, a 39 
gigabyte Alphatronix Optical Disk Jukebox, a VAX 11/785 Computer running Combat CATIS, 
Kodak PhotoCD production capability, high resolution image scanners, color printers and a wide 
range of operational public and state-of-the-art COTS image exploitation applications software. 
All image processing hardware is on a local area network with future planned fiber optic 
connectivity to other facilities throughout Rome Laboratory. 

In brief, the IE 2000 is a good example and template of the environment for which the CREST 
Data Library would operate. The IE 2000 provided an excellent 'lessons-learned' baseline. 
Also, the IE 2000 was developed at Rome Laboratory and it is owned by the Air Force. These 
reasons provided justification to model the CREST Data Library after the IE 2000. 



4.0 Tasks/Technical Requirements 

This section describes the tasks outlined in the SOW, which pertain to the data acquisition 
process. Specifically, it addresses the work that had to be performed to make the MCARM data 
available via the Internet. 

4.1 CREST Structure and Architectural Analysis 

The CREST/RLSTAP ADT tool has taken many years to develop. At the time of this writing, a 
new contract has been awarded to incorporate new and advanced technology within this 
environment. As such, the environment is very dynamic, fluid and complex. The interfacing of 
new user data, as the MCARM data, is not often easy or straightforward. For example, the 
MCARM data must first be converted to the internal VTFF format and the header parameters 
properly mapped before the data can be utilized within the RLSTAP/ADT tool. Additionally, 
some researchers may resist the use of the RLSTAP/ADT processing paradigm. These 
researchers may instead choose procedures and mechanisms that they may be more accustomed 
and familiar with, such as the use of MCARM data in conjunction with Matlab. 

A careful and thorough analysis of the CREST structure and architecture was performed at the 
outset of this effort. As a result of the analysis, it was concluded that the integration of the 
MCARM data within the CREST environment did not make sense at that time. The integration 
would have several adverse affects: 1) it would hinder ongoing development of CREST; 2) 
cooperation between the CREST/MCARM teams would be problematic due to the need for 
gradual integration (the MCARM data required further processing and receipt of the data from 
Westinghouse was incremental); 3) RL would lose control of the data; and 4) it would extend the 
amount of time required to create a MCARM data repository accessible via the Internet because 
of interaction between the CREST/MCARM teams. Consequently, it was more prudent to create 
a separate data repository that is accessible from CREST via a hypertext link or vice versa. 

4.1.1 CREST Environment Replication 

The current MCARM data repository replicates the CREST environment and architecture as 
much as is deemed appropriate. Any items that complicated the user interface, made 
visualization by the user more difficult, or were being altered at the time of implementation were 
eliminated. The main objective in constructing the user interface for the MCARM data was user- 
friendliness. For example, a user may download a given file by simply placing the cursor (via a 
pointing device) over the desired file and selecting it (e.g. by depressing a mouse button). (The 
file will begin to download after the appropriate authorization, if any.) User can also 
geographically display any particular flight path used during the data acquisition process. 
(Presently only flight number five can be geographically displayed.) 

The architecture used to implement the MCARM data repository is depicted below: 



NAVIGATION HIERARCHY 

Home Page 

Seal-Time MCARM MCARM 

 —p 
Whafs New Help Datalibrary ResearchProgram Wrafa New Heir» Datalibrary Reaearch Program 

Accounta Assistance FAOa Documentation Images Paitidpanta     Accounta Assiataiice FAQs Documentation Images Partidponta 

Briefinga        Data     Objective   Technical Overview Brieringa        Data ICD 

Figure 4.1.1-1 MCARM Web Hierarchy 

Users navigate the MCARM hierarchy (i.e. the Web pages) by simply selecting any 'leaf or 
page. Each 'leaf within the hierarchy represents a link to a particular page within the above 
structure. Users perform most functions through this point-and-click mechanism while accessing 
the MCARM data via the Internet. 

The above graphically depicted hierarchy is displayed in the 'beginner' mode (see Home Page) 
or within the frames mode. In the 'beginner' mode, users must scroll the page until the above 
graphical hierarchy is displayed before the MCARM Web pages can be navigated. In the frame 
mode (i.e. Frames is selected from the Home Page), the browser window splits to display the 
hierarchy at the bottom and the selected page at the top. In this mode, users must first select the 
branch of interest (Real-Time MCARM or MCARM) before the appropriate hierarchy is 
displayed. Then the appropriate page can be selected by moving the mouse cursor over the 
desired text (e.g. Accounts, Images, Briefings). Note that if a 'leaf is not selected multiple page 
selections will be displayed (e.g. selection of Help will display a page containing the selections 
Accounts, Assistance, and FAQs). This requires more steps to arrive at the desired page. 

4.1.2 IE 2000 Replication 

Client-server concepts were borrowed from the IE 2000 for the implementation of the CREST 
Data Library. CREST Data Library makes existing radar data widely accessible via the Internet 
to researchers. For the purposes of MCARM, the inherent client/server nature of the Internet was 
adequate for the dissemination of its data. A number of free software tools were identified and 
acquired through the Internet to manage and control access to the MCARM data. Due to time 
constraints, the sophisticated object-oriented design planned for the CREST Data Library (i.e. 
Object Management Group's (OMG) Common Object Request Broker Architecture (CORBA)) 
was not implemented. It was not clear what benefit the object-oriented design would provide for 
the MCARM data access. However, it was clear that complexity would be a direct outcome. 
Thus, the Internet MCARM implementation used basic concepts already provided by the Web. 



4.2 CREST Enhancement and Modification For Monostatic MCARM Data 

Because of reasons stated previously in Section 4.1 it was determined that it would be more 
prudent to create a separate Web page for MCARM, which would be accessible from CREST. 
Hence, this section discusses work performed to create the MCARM Web site and permit access 
from/to CREST. 

4.2.1 Develop Internet/WWW Procedures 

Procedures were established to make the MCARM data available via the Internet/WWW. This 
entailed the creation of a framework for the data, the construction of Web pages, the acquisition 
of public domain software tools, the establishment of user access mechanisms, and the 
development of query software. 

A framework was created to permit access to MCARM and real-time MCARM data and 
information. This framework is depicted in Section 4.1.1 above. Then, HTML-based Web pages 
were constructed to permit access to the MCARM information and data. Construction of the 
Web pages involved the creation of image maps and graphics using public domain or system 
software tools. 

Public domain software tools were located and acquired for the construction, maintenance, and 
administration of the MCARM Web server. Software tools (e.g. compression and 
decompression, browsers, viewers, helper applications, data security, report generation, format 
conversion (e.g. Postscript to HTML), animation, Web administration, etc.) were acquired, for 
various platforms, for downloading purposes by MCARM Internet users. For example, the 'tools' 
directory (http://sunrise.deepthought.rl.af.mil/tools/) contains browsers, viewers, and utilities for 
Sun, Macintosh, and PCs. The PC software tools are for Windows for Work Groups, Windows 
NT, Windows 95, and Windows 3.1 clients. For the most part, the software tools 'xpaint', 
'mapedit', 'vi' and 'hotmetal' were used for the construction and maintenance of the Web pages. 
The latter two were used to create the HTML for the Web pages. 

Upon completion of the Web pages, user account mechanisms were put in place for the creation 
and management of user accounts. The purpose of these accounts is to restrict and control access 
to sensitive MCARM data. A prospective user requests an account by completing the appropriate 
online forms. Upon receipt, cognizant RL staff review the forms and an account request is either 
accepted or denied. For new accounts, a user is assigned a password and access privileges are 
setup. Table 4.2.1-1 below depicts the user accounts that were created during this effort. In some 
instances, changes also involve the creation of directory work areas for general and specific 
users. Software was written to receive and process the Internet forms data (see Appendix C - 
Accounts Request Form). 



Organization Individual 
AFIT Various Students 
Australian DoD Dr. Daniel Madurasinghe 
GEC-Marconi UK Requested 
Hanscom AFB Dr. McKee 
LeHigh Univ Prof. Rick Blum 
LeHigh Univ Zhongxiu Gu 
Mitre Dr. Suresh Babu 
Northrup Mr. Robert Warta 
RADC Dr. Braham Himed 
RL/OCSA Dr. Peter Zulch 
RL/OCSM Jim Michels/ Dennis Davis (Florida Contractor) 
RL/OCSS Dr. William Melvin 
SRC Dr. Harvey Shuman 
Swedish Defense Requested 
Syracuse Univ Prof. Tapan Sarkar 
Syracuse Univ Sheeyan Park 
Univ. New Mexico Prof. LeBlanc 

Table 4.2.1-1 MCARM Internet User Accounts 

Lastly, query software was written in C and an associated HTML query form was developed to 
permit MCARM data to be queried via the Internet. Through the query form a user may query 
the MCARM database for particular parameters and their associated value (e.g. a particular 
acquisition number.) It is also possible to specify a range of values for parameters. The query 
Web page also permits the display of geography and the associated flight paths. 

4.2.2 Make Data Accessible Via Internet 

To make the MCARM data available via the Internet it was necessary to: 1) identify, acquire, 
and install server software on an RL computer; 2) the appropriate security mechanisms had to put 
in place; 3) software had to be written to extract header information from the data; and 4) a data 
repository had to be constructed. As with CREST data, the MCARM data files were split into 
header and CPI components. This splitting of the data facilitates local searching and the 
transmission of the data over the Internet. Entire data files, both the header and CPI portions, are 
transmitted upon request. The header information is used only to qualify a search of the 
MCARM data repository. 

A National Center for Supercomputing Applications (NCSA) HTTP Web server was identified, 
acquired, compiled and configured for Internet access of the MCARM data. Initially, this took 
place on a Sun server computer ('isaiah'). Subsequently, it was moved to another Sun platform 



('sunrise' a SPARCserver 630 MP computer) due to disk storage, operating system, and 
administration reasons. 

Security mechanisms were established for the access of the MCARM data via the Internet. Two 
levels of security were implemented to access the data. First, a user had to obtain a user account 
and password. Secondly, a user had to provide the IP address of the computer from which the 
data would be accessed. The user account and password was validated when a request for 
controlled data was made. Meanwhile, the IP address of the target computer was checked before 
the data was transmitted. Both of these security checks have to be satisfied before any data is 
released. 

Upon completion of the above tasks an Internet browser (Netscape) was acquired to test the 
security mechanisms and MCARM data access via the World Wide Web. The initial tests, which 
proved successful, were performed with a limited amount of MCARM data. Some modifications 
to the software were required as the data repository grew. For example, the file naming 
convention had to be modified to retain compatibility with PCs. 

It was recognized in the beginning that a true data base management system (DBMS), in lieu of 
the CREST based IE2000 DBMS, would be required as the MCARM data repository grew in 
size. Hence, a DBMS framework was investigated for the data repository to improve 
functionality, ease of use, and maintainability. A DBMS would automatically handle the 
administration, access and location of data files on the server (i.e. the location of data on 
different disk drives would be transparent). 

4.2.3 Develop RLSTAP/MCARM Needs Assessment 

The ability to access MCARM data from within the RLSTAP tool was a definite requirement. 
However, the parameter names used within RLSTAP were different than the parameter names 
used within MCARM. Both data files were in Matlab format. Hence, what was needed was a 
translation capability to convert the parameter names used in the MCARM data to names that 
were compatible with RLSTAP. A procedure was required to perform the mapping, read the 
MCARM header information and generate the VIFF file required by Khoros (Khoros is the 
underlying visual tool used by RLSTAP). This procedure permits the use of MCARM data 
within RLSTAP. The purpose of this section is to further discuss this procedure. 

4.2.3.1 Design, Develop and Implement Interface 

All that is required to access MCARM data from within RLSTAP is to have the same parameter 
names within the header. Hence, once created, a parameter translation table can be used to map 
MCARM parameters to parameter names used by RLSTAP. This translation table was created to 
perform the parameter mapping. The translation required the addition of new parameters to the 
MCARM header and the mapping of existing parameters to those required by RLSTAP. These 
steps were required because no one to one mapping was possible between the MCARM header 
parameters and those required by RLSTAP. 



A procedure was then developed to utilize the parameter translation table, read the MCARM 
header parameters and create the VIFF file format for RLSTAP. Using this procedure, it is 
possible to read MCARM data into RLSTAP for utilization. The procedure was written by the 
developers of RLSTAP to expedite development of the interface. 

4.2.3.2 Perform Interface Testing 

A procedure to input MCARM Matlab data files into RLSTAP was tested and MCARM data 
files were read into RLSTAP for processing. Thus it was demonstrated that RLSTAP could read 
and process MCARM Matlab data files. The developers of RLSTAP developed the procedure 
with assistance from Research Associates for Defense Conversion staff. The RLSTAP 
developers had direct access to the RLSTAP software and had a unique understanding of its 
operation. 

4.2.3.3 Present RL With Interface Alpha Release 

An alpha release of the procedure to read and convert MCARM data files for RLSTAP 
processing was demonstrated and made available to RL. More work is required to encapsulate, 
enhance, and streamline this procedure. At present, although the procedure does function, it is 
very convoluted and time consuming. 

4.2.3.4 Provide Interface Technical Support 

Technical support was provided for the procedure to interface MCARM data with RLSTAP. 

4.3 CREST Enhancement and Modification For Bistatic MCARM Data 

At the outset, it was decided by RL that the bistatic MCARM data was too sensitive to be made 
available via the Internet. Hence, this data was not integrated within the MCARM Web pages. 
However, the structure of the MCARM Web site was designed to accommodate this data when 
deemed desirable. Support for this data type requires that the following items be satisfied: 

•S sufficient disk storage 
■S populate the bistatic data repository 
•S process bistatic header files 
•S change path to point to the right location. 

First it will be necessary to free up or acquire disk storage to house the bistatic data. Secondly, 
the bistatic data must be loaded into the appropriate directory (e.g. httpd/public/bistatic). Then 
the program 'matlab_hdr' must be executed against each bistatic Matlab formatted data file to 
create the header files (*.hdr). This program must be executed within the directory where the 
bistatic data files are to be contained. (Note: the program 'matlab_hdr' must be contained within 
the search path for executables. The program accepts single or multiple file names and/or 

10 



wildcards (e.g. *.hdr).) Once this is all completed, the contents of the text file 'env_path' must be 
modified to point to the appropriate location. 

4.3.1 Develop Internet/WWW Procedures 

The MCARM Web site was specifically designed so the same procedures can be used to access 
the monostatic or bistatic data. There is a restriction that only one of the data types can be 
processed at a time. This is due to the way in which the environmental path variables, 
CPI_PATH and HDR_PATH, are defined within the file 'eny_path' located in the 'htdocs' 
directory. To process one or the other data type the appropriate path must be specified within this 
text file to indicate the location of the data (monostatic or bistatic). None of the software needs to 
be compiled. All of the existing executables will still work. Hence, to search for bistatic data the 
'envpath' file would have to be altered to point to the bistatic data. The 'env_path' file can only 
be altered by the system administrator. Once altered, all users would be permitted to access only 
that type of data until a subsequent change is made. 

The tradeoff is that using this approach the same structure, software, and forms can be used for 
both the monostatic and bistatic data. Hence, for example, the porting to another platform of one 
data type would be straightforward. However, if there is a need to access both data types 
concurrently, then the software must be modified to handle multiple paths within the 'env_path' 
data file. 

4.3.2 Make Data Accessible Via Internet 

As stated in the previous section, the same structure, software, and forms can be used for Internet 
access of both the monostatic and bistatic data. As currently configured, the MCARM Web site 
makes no distinction between either data type. 

4.4 MCARM Internet Accessibility 

The MCARM server can be accessed via the Internet using any available Web browser (e.g. 
Netscape, Internet Explorer, et cetera). Some display peculiarities may occur depending upon the 
browser and its version. All of the MCARM data is stored in directories under the ServerRoot 
(i.e. /xbox/diskO/cavovn/httpd) while the Web pages are stored under the DocumentRoot (i.e. 
/xbox/diskO/cavovn/httpd/htdocs). Access to the MCARM server begins with the Home Page. 

4.4.1 Modify CREST Home Page 

Due to the uncertain state of the CREST Home Page during the time of this investigation it was 
determined that the best course of action was to create a separate MCARM Web Home Page. A 
more detailed explanation can be found in Section 4.1. 

The MCARM Web Home Page is depicted in the figure below. All information and data 
contained within the MCARM Web site is accessible via this page. Restricted data requires a 

11 



user account for access. A user account can be obtained by completing and submitting the 
appropriate online forms. These forms are accessible from the Home Page. 

Navigation through the MCARM Web pages can be achieved by moving the cursor over a text or 
image hypertext link (cursor arrow turns into a finger upon encountering a hypertext link) and 
clicking the mouse button. Where appropriate, some pages provide both the text and image links 
for compatibility with text only browsers. Please see the online User's Guide at URL 
http://sunrise.deepthought.rl.af.mil/user_guide.html for more information. 

m 

I^RS_riirtatic Data JMBfffBJffDj^t^Sv j1 

I    '•.««•-    ^^JJCIALU.S.GOVEaNMENTSXST^MFORAUTHQJWZEDUS&ONJUY.    ""  
;..->{   PO>OT|iä|^SS,ENt^R,l5füSNSFEH,:PM 

I'. '.:-gai^™B    BBWg-AKP MOSti 

I£ you have ang^Bfijpgjggiir questions ebout Ä'^fe^pÖS-Hömt Page, please < 

I-.^^97-M^MgARM j H I-        \..MEi:.^_>   ?i 

Figure 4.4.1-1 MCARM Home Page 

12 



4.4.2 MCARM Data Structure Integration 

The MCARM Web hierarchy is depicted in Figure 4.1.1-1. The MCARM data is contained in a 
'leaf of this hierarchy called the Data Library. The Data Library contains both the monostatic 
and bistatic data. Eventually, the Data Library will be contained within a DBMS. The DBMS 
will administer and control access to the MCARM data. These functions are presently performed 
by a system administrator with the aid of software, a Common Gateway Interface (CGI) query. 

The MCARM data is housed in two directories located within the directory 'public' contained 
under ServerRoot. The directories are named 'monostatic' and 'bistatic'. The bistatic directory is 
presently empty, see Section 4.3. However, both of the directories will have the same structure. 
Each directory will contain a header file for each data file. (As with the CREST data, the 
MCARM data is split into separate header and CPI data files.) A data file may reside in that 
directory or have a link (not to be confused with hyperlink) to the physical location on the system 
where it resides. The link mechanism permits data files to be scattered across file systems or disk 
drives when there is insufficient storage available in a single file system. The link mechanism 
also permits transparent access of data files from a single location via the CGI query software. 

4.4.3 CGI Query Interface 

CGI C software was written to permit access to the processed MCARM data repository (Data 
Library). An associated query form is also available. The query interface to the MCARM data is 
via this form. A user specifies the desired search criteria within the query form. Upon 
submission, the CGI software processes the request and returns the results of the search to the 
user. The CGI software is transparent to the user. Also, the CGI software automatically handles 
concurrent access by multiple users by making use of a user's process identification number. 

The CGI C code was designed with 'hooks' for the integration of a DBMS Data Manipulation 
Language (DML) when the time arrives. This software and the associated query form were 
specifically designed to provide a more natural user interface and query engine. 

Tests were conducted upon completion of the CGI software and its associated HTML form to 
transfer files via the Internet using a browser. The MCARM WWW Home Page became 
operational on July 1, 1996 with the successful completion of these tests. The MCARM Web 
server has been maintained, supported, enhanced and refined since that time. However, the name 
"www.mcarm.mil" was never registered with the DDN Network Information Center (NIC). This 
is awaiting local review and clearance. The MCARM Web page can be accessed using the IP 
address of the host computer or URL "http://sunrise.deepthought.rl.af.mil/". 

Subsequently, modifications were made to the CGI query software to incorporation a range 
capability. This modification permits the retrieval of multiple acquisition numbers instead of just 
a single acquisition number or data file. This modification required changes to the query form. 
Also, Mode information was incorporated within the MCARM Web pages for each flight. This 
information is accessible via the geographic display of each flight path. The selection of a flight 

13 



path of interest from the query form will display a new window showing a flight path 
geographically. From this window it is possible to display a graph of the modes (e.g. LPRF, 
MPRF, etc.) pertaining to this flight. 

4.4.4 Data Dictionary For Variable Translation 

RLSTAP and MCARM data files use different names for the radar parameters contained within 
the files. Hence, variable name translation must occur to use MCARM data within RLSTAP (see 
Section 4.2.3 for more information). 

4.4.5 Perform RLSTAP Needs Assessment 

The needs of RLSTAP users regarding the use of MCARM data were carefully assessed. It was 
determined that real airborne data provided by MCARM would be useful to RLSTAP users. 
Hence, an investigation was undertaken to determine how the MCARM data could be made 
accessible to RLSTAP users. To achieve this accessibility goal, three tasks had to be performed: 
1) MCARM parameters had to be translated to parameters required by RLSTAP via a translation 
table; 2) a procedure had to be written to utilize the translation table and read the MCARM 
header data; and 3) the data had to be converted to the VIFF format (see Section 4.2.3 for more 
information). 

4.4.6 Design, Develop, And Implement RLSTAP/MCARM Interface 

All that is required to access MCARM data from within RLSTAP is to have the same parameter 
names within the header. Hence, once created, a parameter translation table can be used to map 
MCARM parameters to parameter names used by RLSTAP. This translation table was created to 
perform the parameter mapping. The translation required the addition of new parameters to the 
MCARM header and the mapping of existing parameters to those required by RLSTAP. These 
steps were required because no one to one mapping is possible between the MCARM header 
parameters and those required by RLSTAP. 

A procedure was then written to utilize the parameter translation table, read the MCARM header 
parameters, and then perform the conversion to VIFF. Using this procedure, it is possible to read 
MCARM data into RLSTAP for utilization. The procedure was written by the developers of 
RLSTAP to expedite development of the interface with assistance provided by RADC staff. 

4.4.7 Present RL With Initial RLSTAP/MCARM Approach 

The RLSTAP/MCARM interface approach was presented to RL personnel for their approval 
before implementation. In fact, RL personnel were directly involved with the development of the 
interface from its inception. RL personnel provided invaluable contributions to the design of the 
interface. 

14 



4.5 Provide Technical Support 

Technical support was provided during the course of this effort as an integral part of the 
MC ARM system administration. The technical support entailed, among other things,: 

• resolution of problems encountered by Internet users (e.g. firewall, file formats, data 
communication, etc.), 

• modification or enhancement of Web pages to facilitate access and ease of use, 
correct browser page rendering problems, and improve capability and functionality, 

• monitoring of server usage (e.g. Perl 'accesswatch' program accessible via the 
Internet at URL http://sunrise.deepthought.rl.af.mil/usage_log.html or 
http://sunrise.deepthought.rl.af.mil/daily_log.html, see Figure 4.5-1 below) for 
resource balancing, security violations, et cetera, 

• investigation and correction of HTML problems (e.g. the overlay of flight paths and 
how they are displayed by different browsers), 

• maintained vigilance regarding the future direction of the Internet (e.g. HTML, 
Java/JavaScript, security, etc.), 

• provide support for the use of MC ARM data within RLSTAP. 

15 



^m*,%,   ^..| 

••BW* 

S'-;»»öa^*-"jIittp: //aünrisB'. oc. cl. af. mil/daiJ.y_log.litiia j 

?iJs9«t|lH^cSgJ WefcSiwrehj flaopfai ^tiwaroJ 
 ^  I 'iTlllll I      llll     I   IJI   I   I* III .11 .il      ^ I L 

m 

.«warf' IM 
j Ffed i 

ÖÜ1 

sum 

Accesses for MCARM Home Page 
March 16,1998 

Last updated : 11:59:05 pjn. 

AccessWa&hiooitstands »gather emrtmdcan 

Daily Access Statistics y 
:   t *        • ■_——■ —      -   - ■  '- 

Tödajväjafit have been a tdtalof 14 accesses by 5 unique hosts viewing an average of 2.8 pages related 
to MCARM Home Page. Of these, 8 (573.%) havebeenfrom OCSS,Rome Labs,«nd6 (42.9%) have 
been from outside hosts. 
Therehave been a total of 38 hits and 1 errors related to MCARM Home Page, accounting for 100% of 
totalserver hits and consisting of 6*67 kilobytes of information. TherehavebeenO.6 accesses per hour, 
andatthis rate, MCARM Home IttgewC jetl4 accesses today 

Summary Statistics 

Count     %oftotal 
: Accesses "from OCSS, Rome Labs 8 57.1%: 

Outside Accesses : 42.9?« 

'■Total Page Accesses .14 100Ä 

Total hits related to page -38. 100% 
. Total hits on server' 38 100% 

Hourly Statistics 

I 
Ayg Accesses/Hour [ 0,6 

Max Accesses/Hour |    7 
Mln Accesses/Hour I    0 

S3m;i 
AraAsroc/nav I14 

13" 

f?V; \^V.:.l |i, •SSsltSIM.'XtllM.',.-', :■. x.-'iUMiiJ'.'j K=5TO siJj 

Figure 4.5-1 Daily Access Log 

In addition to the above tasks, the computer system upon which the MCARM Web server resides 
(first 'isaiah' then 'sunrise') was administered. This administration involved the management 
and upgrade of system resources (e.g. secondary storage, hardware configuration, etc.), and 

16 



configuration of the operating system (SunOS 4.1.3) and the associated software (e.g. operating 
system software patches, X11R5 acquisition and installation, etc.). For example, some system 
administrative duties were: 

• the recompilation of software tools due to upgrades or system migration (e.g. xpaint 
had to recompiled for 'sunrise' since 'isaiah' was upgraded to the Solaris operating 
system), 

• HPCC Center link had to be modified (port 8001 reference removed), 
• establish a new MCARM data file naming convention, 
• hardware installation (e.g. installed an 8mm backup unit for 'sunrise' and two 9 

gigabytes disk drives for additional MCARM data), 
• upgrade of operating system software to correct problems1 (e.g. Several Sun patches 

were incorporated to correct a Netscape problem which causes Open Windows to 
crash. The patches installed made corrections to Open Look and the Unix OS.). 

In addition to these functions, it was also necessary to promote MCARM usage by promoting in- 
house training sessions and participating in work group sessions. For example, 

• an in-house MCARM working group meeting was held on December 12, 1996 to 
promote data access and utilization, 

• prepared and presented a talk about the MCARM Internet work at a CREST working 
group meeting. 

Both meetings were well attended. Hands-on assistance was provided for the access and 
processing of MCARM data in the December 12th meeting. 

4.6 Other Relevant Supporting Task 

A number of ancillary but supporting tasks were performed during the course of this effort that 
are not directly referenced in the SOW. These tasks are discussed in this section. 

The tasks completed are as follows: 

S investigated the use of Java and Javascript, 
•S support of frames, 
S display GPS Latitude/Longitude data points on cartographic reliefs, 
S investigated security issues and mechanisms, 
S developed an Internet User's Guide, 
S developed an Internet Programmer's Guide. 

1 Obtained and installed XI1 R5 Windows on 'isaiah' and 'sunrise' which was needed for the compilation of the 
many software tools. These software tools (e.g. 'xpaint') could not be compiled using the current XI1 R4 version of 
Windows. (Could not locate any Sun computers within the Surveillance Facility which had the necessary XI1 R5 
software libraries. Only 'magnum' came close. The current version of X Windows is XI1 R6 but it is not widely 
used.) 

17 



4.6.1 Mapping 

The use of Java and JavaScript was investigated for improved functionality and ease of use of the 
MCARM Internet data. The purpose of this investigation was to circumvent discovered HTML 
limitations and to stay abreast of Internet trends and future direction. 

One critical limitation that needed to be addressed was the display of mapping information from 
within a browser. A need existed to display flight path information with an associated map relief. 
Some acquisition files would then be displayed with the associated flight path. This capability 
permits the visual selection of data files. This method of data selection is more accurate and less 
haphazard. It was initially thought that Java or JavaScript could be used to circumvent this 
limitation. After a careful analysis, it was determined that Java would be needed. However, it 
was discovered that Java was not available for SunOS. Hence, an upgrade to the Solaris 
operating system would be required before this approach could be pursued further. 

JavaScript was implemented in a limited way as a result of the investigation (e.g. lower browser 
window banner). Also, the study of Java and JavaScript permitted more to be learned about 
frames. As a result, modifications were made to the MCARM Web pages to support a frame 
capability to facilitate ease of use. 

During this effort, a method was devised to overlay flight path information on a base map. A 
UTM Delmarva Digital Elevation Model (DEM) formatted map relief was obtained from USGS, 
via the Internet, for a proof of concept. (Other Eastern Seaboard maps where MCARM flights 
took place were also located.) Flight path latitude/longitude points had to be translated to the 
UTM base map projection. Flight number five was tested for overlay anomalies. Although 
helpful, this method permitted only limited rectification of flight paths, due to warping, with the 
associated geography. Hence, other methods were investigated to improve the rectification 
accuracy, such as the concepts of Server/Client Push/Pull and GIS systems. Essentially, the 
approach was to use these approaches to improve the overlay accuracy. 

The Push/Pull approach was quickly abandoned as not feasible. For cost reasons, public domain 
GIS packages were investigated for their overlay capability. GIS packages can readily create 
overlays of different map reliefs (e.g. Digital Line Graph (DLG), Digital Elevation Model 
(DEM), Land Use/Land Cover, et cetera). This overlay capability was attractive. The software 
package Grass, developed for the Army, was identified and acquired but it proved to be difficult 
to learn and use. Thus, a search began for other GIS systems. 

The investigation focused on identifying COTS mapping packages available and assessing their 
abilities. ESRI's Arc/Info was selected and evaluated (on paper). Subsequently, a demonstration 
copy of Arc/Info was found in Building 240 (Mr. Gerald Nethercott's Image Exploitation group). 
However, due to budget constraints, a copy of Arc/Info could not be acquired and the GIS work 
proceeded no further. 

18 



4.6.2 Internet Security 

The initial security mechanisms used involved user accounts and specific computer 
identification. However, it was strongly felt that this level of security would not be adequate for 
the MCARM data. Hence, other security issues and mechanisms regarding the access of 
MCARM data via the Internet were investigated. The focus was on security mechanisms used in 
secure HTTP. Specifically, these are Secure Socket Layer (SSL), user authentication, and digital 
signatures. More work on security is required especially if bistatic data is to be made available 
via the Internet. 

The SOCKS software tool was investigated for access of MCARM data through a firewall. 
SOCKS was investigated because several users were experiencing problems accessing the 
MCARM data from behind a firewall. The problem was that the IP address of the firewall was 
being sent instead of the IP address of the computer for which a user was authorized. SOCKS 
circumvents this problem. 

4.6.3 Documentation 

It was felt that documentation was needed to assist new and existing users with the access and 
utilization of the MCARM Internet data. Additionally, detailed information was needed to assist 
in the administration of the Web site. Consequently, an Internet User's Guide (located at 
http://sunrise.deepthought.rl.af.mil/user_guide.html) and a Programmer's and System 
Administrator's Guide (located at http://sunrise.deepmought.rl.af.mil/progranimer_guide.html) 
were developed. For example, the Programmer's and System Administrator's Guide will permit 
an administrator to perform the following duties: 

• Modify and Configure the NCSA MCARM Web server, 
• Add new MCARM data files for Internet access, 
• Add or modify user accounts, 
• Establish data access privileges, 
• Maintain and enhance security mechanisms. 

4.7 Availability Assessment Of Hosting MCARM Data On The Rome Laboratory HPCC 
(Option I) 

4.7.1 Introduction 

The current MCARM data repository resides on a SparcServer 630 MP. The data repository 
presently consists of 570 preprocessed data files all of which are available via the Internet 
through the Hyper Text Transfer Protocol (HTTP). A query form and query engine is available 
to permit a user to search the data repository on any valid MCARM parameter. 

19 



The problem is that the data repository is large, about 27 gigabytes, at present, and a data search 
can take/oHi- minutes or more for just one parameter (e.g. acquisition number). Depending on 
the system and network load, this time may become even larger. Compounding the problem 
further is the fact that the search time will definitely increase as the repository grows in size. 

Hence, the purpose of this effort was to study, assess, and evaluate the creation of a Multi- 
Channel Airborne Radar Measurement (MCARM) data base on the High Performance Computer 
Center's (HPCC) Intel Paragon. Its goal was to significantly improve performance by replicating 
the Common Research Environment for STAP Technology (CREST) environment, Image 
Exploitation 2000 (IE 2000) server and data base engine, and the MCARM data repository on the 
Intel Paragon computer. This effort's primary objective was to create a detailed implementation 
plan for the performance of this work. 

4.7.2 Background 

The purpose of this section is to discuss background information that is pertinent to this effort. 
More specifically, this section will address the Intel Paragon and the MCARM data. 

4.7.2.1 Intel Paragon 

The Intel Paragon is located in the High Performance Computing Facility at Rome Laboratory in 
Rome, New York. The facility's mission "...is to support the unclassified RDT&E efforts of all 
components of the Department of Defense (DoD) by providing interactive remote and local 
access to hardware, software, and user services with special attention to applications and 
missions direct input of digitized sensor data."2 The Intel Paragon may be accessed via the 
Internet as 'romulus.hpc.rl.af.mil.' The system will soon be connected to the New York NYNET 
network via a high-speed ATM link. The Intel Paragon operates from behind a firewall. 

The Intel Paragon XP/S is a 321-node scalable computer. The compute partition is comprised of 
304 MP nodes, each with 64 MB RAM and three i860 processors. Of the 304 nodes, 272 are 
general compute nodes configured in a 16x17 rectangle, and 32 are equipped with HiPPI 
daughter cards, each capable of 70 MB/s sustained throughput. Through the HiPPI, the Paragon 
can take in 2.2 GB/s of sensor data. 

The disk subsystem is comprised of eighty gigabytes of disk organized into 20 RAIDs. The disk 
subsystem is capable of sustaining over 100MB/s into the compute partition. The bulk of the disk 
space is available for data storage; user file systems are located on a network of workstations. 
Five Sparc 20 workstations are available to users of the Paragon as development platforms for 
cross compilation. 

1 See URL htQ)://www.rl.af.mil/Tour/HPC/RLHPC.html 

20 



The Paragon's operating system is a version of UNIX OSF/1 developed by Intel. FORTRAN, C 
and C++ compilers are provided, including native compilers on the Paragon, and cross-compilers 
on Sun workstations. The Kuck and Associates signal processing libraries are available for all 
development languages. 

4.7.2.2 MCARM Data 

The MCARM program was designed to collect multi-channel clutter data from an airborne 
platform. The Westinghouse owned BAC 1-11 was used as a platform for the L-Band radar data 
collection system that was built on a combination of Westinghouse internal funds and MCARM 
program funds. The system consists of an L-band active aperture antenna, multiple IF receivers, 
high dynamic range A/Ds, a high speed magnetic tape recorder, a signal/data processor, a multi- 
mode controller, and operator console. The data was collected at a variety of pulse repetition 
frequencies (PRFs) over various terrains including mountains, rural, urban, and land/sea interface 
clutter. Some Westinghouse IR&D testing of Ground Moving Target Indication (GMTI) data 
were collected with and without foliage to evaluate FOPEN. Mono-static data was collected at 
PRFs of 7kHz (High PRF), 2kHz (Medium PRF), and 500 Hz (Low PRF). Bistatic data was 
collected at 23 kHz (High PRF) and at 313 Hz (Low PRF). Westinghouse collected the MCARM 
data during several Delmarva and East Coast fly-overs that terminated in Florida. 

There were 11 flight tests that collected multi-channel data. They are labeled sequentially from 1 
to 11. The last two, 10 & 11, were actually done on the same physical flight, but were given 
different names because flight 10 was the last bistatic flight and flight 11 was a mono-static 
land/sea interface flight. There was also 2 safety of flight tests that did not collect data, although 
the radar was tested during the second. These two flights were successful in evaluating the 
performance and flight envelope of the BAC 1-11 with the external MCARM radome/antenna. 

During the MCARM flight test, data was collected simultaneously from a multi-channel sub- 
aperture architecture and a low side lobe sum and delta analog beam former. The multi-channel 
architecture was tested using two separate sub-aperture configurations each having 22 degrees of 
freedom. The analog beam former is useful for comparisons to adaptive beam forming as well as 
main lobe plus auxiliary configurations. One of the sub-aperture configurations optimized the 
number of azimuthal degrees of freedom (16) as well as giving up to 2 elevation degrees of 
freedom. The other configuration was used for all the bistatic data measurement. 

Preliminary mono-static data reduction has shown main beam clutter to noise ratios over 80 dB 
and outstanding adaptive cancellation ratios of up to 70 dB. While preliminary results indicate 
what appears to be up to 20 dB of residual uncancelled clutter in some of the analyses, good 
calibration data was collected on a ground range and in the air at the Paxtuent (Pax) River test 
range. This calibration data showed excellent array performance and can be used to evaluate 
possible limitations to adaptive cancellation such as channel to channel stability and aircraft 
effects. This is precisely why this program was necessary as adaptive sensors are emerging to 
meet the challenges of future air surveillance threats. The ground range data showed up to -58 
dB RMS side lobe performance for an analog beam former and localized closed loop adaptive 
nulls  of -90  dB  with respect to peak.  This  data was  augmented by  airborne pattern 

21 



measurements, which showed -47 dB RMS side lobes for the analog beam former. These 
measurements show the degradation due to aircraft effects that STAP should be able to 
overcome. 

4.7.2.2.1 MCARM DATABASE 

The MCARM database is comprised of preprocessed airborne radar datacubes. Each acquisition 
data file consists of a single coherent processing interval (CPI). The data files have undergone 
the following preprocessing steps: baseband conversion, decimation, digital in-phase and 
quadrature phase (I/Q) conversion, pulse compression, and channel balancing. Each 
preprocessed datacube, and its associated "header" variables, are provided in MATLAB format. 
Header variables include transmit pointing direction, number of interpulse periods, pulse 
repetition frequency, aircraft platform inertial navigation data, global positioning system (GPS) 
data, etc. In addition, header variables have been added (e.g. PRF) to facilitate processing and 
maintain compatibility with CREST and RLSTAP. A complete description of these variables can 
be found in Appendix A. 

The original 'raw' data files, before the preprocessing step, are approximately 15 megabytes in 
size. These data files have been archived onto rewriteable optical storage media. The processed 
data files are contained on hard disk drives and occupy approximately 27 gigabytes of storage. 
The data files double in size after the preprocessing step is performed. Approximately, 55 
gigabytes of storage is required to contain all of the processed 'raw' data files. 

The preprocessed multidimensional measured radar data is stored in the variable named "CPU", 
referred to as the datacube. The format for this datacube is contained in the datacube figure 
below. At the present time, the database contains 561 Matlab formatted data files. 

Channels 

Pulse  X { 
{ 

1 2 3 4 ... Nc 

Range  Cell  1 
Range  Cell 2 

Range  Cell Nr 

Range  Cell  1 
Range  Cell 2 

Pulse 2 

Range  Cell KTr 

{ 
Range  Cell  1 
Range  Cell 2 

Pulse !N"p 

Range  Cell INTr 

22 



4.7.3 MCARM Data HPCC Repository Assessment 

The CREST/RLSTAP ADT tool has taken many years to develop. At the time of this writing, a 
new contract has been awarded to incorporate new and advanced technology within this 
environment. As such, the environment is very dynamic, fluid and complex. The interfacing of 
new user data, as the MCARM data, is not often easy or straightforward. For example, the 
MCARM data must first be converted to the internal VIFF format and the header parameters 
properly mapped before the data can be utilized within the RLSTAP/ADT tool. Additionally, 
some researchers may resist the use of the RLSTAP/ADT processing paradigm. These 
researchers may instead choose procedures and mechanisms that they may be more accustomed 
and familiar with, such as the use of MCARM data in conjunction with Matlab. 

The focus of the Intel Paragon rehosting of the MCARM data was the replication of the CREST 
and IE 2000 environments. The goal of the rehosting is to replicate the Internet functionality 
currently available on the 630MP SparcServer on the Paragon. Its aim is to borrow the client- 
server concepts of the IE 2000 for the implementation of the CREST Data Library and its 
architecture. Following the performance of a thorough investigation of CREST and the IE 20000 
it was felt that the inherent client/server nature of the Internet was adequate for the dissemination 
of the MCARM data, without the introduction of additional complexity. Hence, it was 
determined that the Paragon Internet MCARM implementation could make use of basic concepts 
provided by the Web. 

4.7.4 Implementation Plan 

A number of options were considered for the implementation of the MCARM data repository on 
the Intel Paragon, namely: 

• Host the data repository on the Paragon 
• Utilize the data processing ability of the Paragon. 

An initial assessment indicated that the first option was not feasible. First, the Paragon could not 
afford to set aside the amount of disk storage that would be required to house the MCARM data 
repository. (The Paragon has about 80 gigabytes of disk storage. About 54 gigabytes would be 
required for the MCARM data repository.) Secondly, there would be a significant increase in the 
network traffic to the Paragon, assuming that the data repository would not be hosted there. 
Thirdly, access to the MCARM data repository, through the Internet, would be more difficult 
because the Paragon lies behind a firewall. Taking all of these factors into consideration it was 
deemed more feasible to implement the second option. 

As it is presently configured, the MCARM data repository is split into distinct header and data 
files due to the size of the processed data (about 30 megabytes). A query of the data repository, 
using the Common Gateway Interface (CGI) C-based query engine, uses only the header files for 
query qualification. The header files are searched to identify data files that meet the search 
criteria specified by the user.  Once the appropriate data files have been identified a simple file 

23 



naming association is used to identify the appropriate data files. Thus, any query of the 
MCARM data repository requires that the data files be searched for the established criteria. 

Utilizing the Paragon for its rapid data processing ability offered several tradeoffs. The header 
files could be hosted on the Paragon or transmitted to the Paragon whenever a query of the 
repository was performed. The former case had the disadvantage that the appropriate header 
files would have to be updated whenever the MCARM data repository was updated but it 
significantly reduced the network traffic. In the latter case, the header files would have to be 
transmitted to the Paragon whenever a query was performed. This would adversely affect the 
network bandwidth and slow performance. The header files presently require about 75 
megabytes of storage; a number that could easily double. The transfer alone could take several 
minutes and consume a significant portion of the communication bandwidth. 

After careful consideration, it was decided that the best approach would be to host only the 
header files on the Paragon. Using this approach, the search criteria would be transmitted from 
the SparcServer to the Paragon for qualification. The Paragon would then return the results of 
the query to the SparcServer. The communication between the SparcServer and the Paragon 
would be implemented using sockets. In this case, only the query results would have to be 
transmitted back to the SparcServer. The worst case scenario, which should be extremely rare, is 
that the entire data repository qualifies the search. Several minutes may be required to transmit 
the results back in this case. Otherwise, the results of the query should be available in a matter 
of a few seconds. In addition, this approach would not incur any additional cost. No hard disk 
drives would have to be acquired to host the MCARM data repository on the Paragon. 

4.7.4.1 Implementation Tasks and Schedule 

The following diagram provides a summary of the implementation tasks and the anticipated 
scheduling for the HPCC Intel Paragon implementation. 

Tasks 1 2 3 4 5 6 
Rehost Header Files 

«— > 

Develop Sparc/Paragon Sockets Interface 4_ w ^ p. 

Software Testing 
M w ^ W 

Interim Report 4-—► 

Key: 
A - Monthly Status Reports 

Development of the Sparc/Paragon sockets interface would entail the modification of the CGI 
software contained in Appendix B. 

24 



5.0 Recommendations/Conclusion 

Within this report RADC discussed the MCARM Web server, the MCARM data repository, and 
its access via the Internet. This report also discussed the implemented data structure and the 
established Internet access mechanisms. Also included within this report is the documentation 
needed to utilize and maintain the MCARM data repository and Internet Web site. 

Following is a list of items that should be considered regarding the future direction of the 
MCARM Web server. The objectives of these items are to improve functionality and to maintain 
the state-of-the-art of the MCARM Web server: 

• Operating System Upgrade 

The current operating system, SunOS 4.1.3, is no longer supported. Software tools needed to 
maintain, and enhance the MCARM Web server are difficult to find or non-existent (e.g. 
Java, VRML, 3-D, etc.). Hence, a migration to the Solaris 2.x operating system should be 
seriously considered. The migration will have the following benefits: 

■S  supported operating system with a future migration path 
S  portable and standards compliant OS (Solaris is based on System V Release 4 (SVR4) 

of the Unix OS. Solaris runs on platforms ranging from PCs to supercomputers) 
S  improved functionality 
•/  availability of more software tools (public domain and COTS) 
S  availability of Java (this is where the industry is going for cross-platform 

compatibility and improved Web pages). 

• Acquisition and Implementation of Java/VRML 

This is clearly where the Internet is headed. Java will eventually replace HTML with respect 
to Web page presentation and cross-platform compatibility. Java permits Web pages to be 
more dynamic, engaging and interactive. Java should obviate the need for the Common 
Object Request Broker Architecture (CORBA), being used or promoted by CREST, for 
client-server applications in a heterogeneous distributed environment. 

• Investigate MCARM Data File Size (compression/decompression) 

Determine what can be done to reduce the size (approx. 30MB) of the processed Matlab data 
files. The file size problem is due to the addition of imaginary data and the way Matlab 
handles this data type when the original 'raw' files are loaded for processing. The size of 
these files makes transmission difficult and time consuming. One possibility may be the 
transmission of algorithms, with the associated data, which may then be processed 
automatically (e.g. via Java) on the target computer. This would permit better compression of 
the source data and expansion of the file size on the target computer. 

25 



• Acquisition and Implementation of Mapping Software 

We have flight paths that cover most of the U.S. Eastern Seaboard. A need exists to display 
the flight paths over the appropriate geographic areas for more accurate visual selection of 
acquisition data. Also, a COTS GIS package permits a number of overlays to coexist. A 
number of maps types are available from a number of sources, for free, but we lack the 
software tool needed to construct the proper map reliefs showing elevation, roads, land usage 
and cover, et cetera. The public domain tool GRASS (developed by the Army) is inexpensive 
but hard to learn and difficult to use. In addition, it is being phased out, is no longer 
supported and is being replaced by COTS tools. 

• Implement Better Security Mechanisms 

The initial security mechanisms used involved user accounts and specific computer 
identification. However, it is strongly felt that this level of security will not be adequate for 
the MCARM data in the future. This is especially true if bistatic data is to be made available 
via the Internet. Hence, other security issues and mechanisms regarding the access of 
MCARM data via the Internet should be investigated. Specifically, these are Secure Socket 
Layer (SSL), user authentication, and digital signatures. 

• More work is required to encapsulate, enhance, and streamline the MCARM/RLSTAP 
procedure. At present, although the procedure does function, it is very convoluted and time 
consuming. The development of interface software and the integration of this software into 
RLSTAP will significantly improve this interface. 

Also, within this report, RADC has provided recommendations for the implementation of the 
MCARM data repository on the Rome Laboratory HPCC or Intel Paragon. After a careful and 
thorough analysis it has been determined that the best alternative available is to develop a 
communication link between the present Internet MCARM data server (SparcServer 630MP) and 
the Paragon computer. The communication link would be established through the use of socket 
communication. This approach affords: the most cbst-effective and efficient utilization of the 
subject hardware; it would not incur additional cost for disk drive hardware; and does not raise 
security concerns. In this approach, the Paragon would function as a 'back-end processor' to 
accelerate the database search process. This approach does, however, raise communication 
bandwidth concerns which require further investigation. 

26 



Appendix A - MCARM Data Variables Description 

Each acquisition contains the following MATLAB variables listed in alphabetical 
order. (See the MATLAB Reference Guide for information about how to load 
MATLAB formatted files into the MATLAB environment.) Variables marked n.a. (not 
applicable) can be ignored since they apply to other modes of the Westinghouse 
radar that were not used for data acquisition. 

AcquisitionNumber 

ApplyRxMatchOn 
AttenChannels 

BeamSteeringType 

BlockSize 
CPU 

CfarThresholdl 
CfarThreshold2 
CfarThreshold3 
ChannelMatchCoeffs 
ChannelSumOn 
ChannelPerCPI 
CheckROs 
ClutterFrequency 

This integer should agree with the acquisition number 
portion of the filename. 
n.a. 
These floating point values are the receiver 
attenuation settings for each of the MCARM channels for 
the beam position 
This integer in conjunction with RcvrMode determines 
the mode of the radar. 
n.a. 
Baseband, Digital I/Q, Pulse Compressed, Channel 
balanced samples of multi-channel coherent processing 
interval (CPI) radar data. This data is in the form of 
an S row by M column matrix of integer values, where S 
is the number of samples per CPI and M is the number of 
receiver channels. For MCARM data, S equals 
RangeCellsPerIPP * IppsPerCpi For MCARM data, M is 
always 24. Channels (columns) 1 and 9 are the outputs 
of the sum and delta manifolds respectively. The other 
22 channels are array subaperature outputs that depend 
on which array configuration was used. The sample 
values integers representing 12 bit, signed A/D 
converter samples with two additional bits added as the 
least significant bits. Bit 0 is the range zero bit 
that is 1 only during the first A/D sample of each IPP. 
Bit 1 is the A/D saturation bit that is 1 only if the 
input is outside of the A/D input range. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
For MCARM data this value is always 24 
n.a. 
For MCARM data this value is normally 0, however, it 
represents a frequency shift in hertz applied to the 
transmit pulse. The purpose of this is to allow the 

27 



ClutterTestOn 
ComputeRxMatchOn 
CpisPerAquisition 

DiqDecimation 

DiqOn 

DisplavChannelSelec 
DisplaylppOrRgSelec 
Displays election 
DolphdB 
EnvelopeDetectSelec 
FlightNumber 
FTAAHARSCompassRead 
FTAAHARSPitch 
FTAAHARSRoll 
FTAAHARSValidity 
FTABAPressureAlt 
FTADataValid 

FTAGPSGroundSpeed 

FTAGPSGroundTrack 
FTAGPSLatitude 

FTAGPSLongitude 

FTAGPSTime 

radar to move the doppler frequency of the main lobe 
clutter to zero, 
n.a. 
n.a. 
This integer is the number of CPI data acquisitions 
included in the file. Currently only one CPI is 
recorded per file and is stored in variable CPU. 
Future enhancements will allow multiple CPIs, with 
different PRFs, to be recorded. In that case variables 
CPU, CPI2, etc. will be stored in the data file. When 
there are multiple CPIs, associated header variable 
values will be represented as vectors 
(e.g. IppsPerCpi(l) for CPU, IppsPerCpi(2) for CPI2, 
...IppsPerCpi(n) for CPIn) 
This integer indicates the amount of oversampling that 
exists in the data relative to a 0.8 usec range cell. 
Typically this value will be 4, indicating that data 
was sampled at 0.2 usec intervals and can be decimated 
4 to 1 to obtain one sample per range cell. 
A value of zero indicates that the data is real A/D 
sample data. A value of 1 indicates that I/Q 
processing was performed prior to writing this file, 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
This variable indicates the flight number, 
n.a. 
n.a. 
n.a. 
n.a. 
Target plane barometric pressure altitude in feet. 
Indicates the validity of target plane navigational 
data. A value of one indicates that the data is valid. 
A value of zero indicates that the data is invalid or 
that navigation data is not being received. 
Target plane ground speed in knots calculated from GPS 
data. 
Target plane ground speed true North heading in 0.1 
Target plane latitude or Rome Laboratory Multiple 
Target Simulator (MTS) latitude in degrees. 
Target plane longitude or Rome Laboratory Multiple 
Target Simulator (MTS) longitude in degrees. 
Target plane current time from GPS data in milliseconds 
from midnight GMT. 

28 



FTAGPSAltitude 

FTARAHeight 

FftOn 

FftWeightSelect 

Filterlncrement 
FilterRangeGate 
FilterStart 
FilterStop 
GPSAltitude 

GPSLatitude 
GPSLongitude 
GPSNavDataValid 

GPSSystemTime 

GPSTimeOfXmit 

GPSTimeValid 

GPSVelocityEast 

GPSVelocityNorth 

GPSVelocityVert 

GatesToDump 
GatesToRecord 
GuardThresholdl 
GuardT'hreshold2 
HoleSize 
INUAltitude 

INUAltitudeDelta 

Target plane altitude from GPS data in feet above mean 
sea level. 
Target plane radar altimeter reading in feet, but was 
not in use during MCARM data acquisition 
For MCARM data, this value is normally zero. If 
nonzero, it indicates that the radar performed Doppler 
processing of the data. 
For MCARM data, this value is normally zero. If 
nonzero, it indicates that the radar applied weighting 
to the data prior to Doppler processing, 
n.a. 
n.a. 
n.a. 
n.a. 
MCARM platform altitude from GPS data in feet above 
mean sea level. 
MCARM platform latitude from GPS data in degrees. 
MCARM platform longitude from GPS data in degrees. 
Binary coded status from GPS data. A value of 8192 
(2A13) indicates valid data.   Other values indicate 

GPS errors. 
MCARM platform current time from GPS data in seconds 
from midnight GMT. 
Value is normally zero. If used, it is an (16-bit) 
integer representing the time that the GPS data was 
transmitted measured in 64 microsecond periods since 
system initialization. 
A value of zero indicates that the GPSSystemTime value 
is valid. 
The east component of MCARM platform from GPS data in 
knots. 
The north component MCARM platform velocity from GPS 
data in knots. 
The vertical component MCARM platform velocity from GPS 
data in knots where positive indicates upward 
direction. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
MCARM platform altitude in feet from INU data. The 
altitude is calculated from inertial navigation data 
and subject to long term error. 
This integer is the time when attitude data was sampled 
by the INU relative to the time when velocity data was 

29 



INUDataValid 

INUDriftAngle 

INUGroundSpeed 

INULatitude 

INULongitude 

INUPitch 

INUPlatformAzimuth 

INUPlatformRoll 

INUVelocityTime 

INUVelocityX 

INUVelocityY 

INUVelocityZ 

INUWanderAngle 

IppsPerCpi 

ManifoldSwitch 

McarraMesaMode 
MesaOptions 
MesaProcessing 
ModeName 

sampled by the INU measured in 14.75 microsecond 
periods. The time when the velocity data was sampled 
is recorded in INUVelocityTime. 
A value of zero indicates that INU data is valid. A 
nonzero value indicates invalid INU data. 
The angle between the MCARM platform center line and 
the ground velocity direction in radians from INU data. 
MCARM platform ground speed in feet per second from INU 
data. 
MCARM platform latitude in radians from INU data. 
Positive angles are north of the equator. 
MCARM platform longitude in degrees from INU data. 
Negative angles are west of the prime meridian. 
MCARM platform pitch in radians from INU data. 
Positive angles are nose up. 
This value is the angle between the navigation system's 
inertial x-axis and the MCARM platform center line in 
radians from INU data. 
MCARM platform roll angle in radians from INU data. 
Positive angles are right wing down. 
This integer is the number of 64 usec periods since 
initialization of MCARM platform INU system. 
MCARM platform velocity along the navigation system's 
inertial x-axis in feet per second from INU data. 
MCARM platform velocity along the navigation system's 
inertial y-axis in feet per second from INU data. 
MCARM platform velocity along the navigation system's 
inertial z-axis in feet per second from INU data. The 
z-axis is vertical relative to the center of the earth 
with positive values up. 
This value is the angle between the navigation system's 
inertial x-axis and true north in radians from INU 
data. 
This integer value is the number of pulses (inter-pulse 
periods) that occurred during this acquisition. The number of 
pulses recorded is IppsPerCpi NumSpaceChargePulse. 
Normally 0. A value of zero indicates that channel 1 
is switched to the test manifold during the transmit 
pulse. A value of 1 indicates that channel 1 is 
switched to an auxiliary input during the transmit 
pulse. 
This integer value will be zero for all MCARM data. 
n.a. 
n.a. 
This is a MATLAB string variable containing the name 
assigned to the mode of the MCARM radar when this data 

30 



was recorded. 
ModuleMapChannel This variable is a 1 by 24 vector of binary encoded 

integers. Each element of the vector corresponds to a 
MCARM receiver channel. Element ModuleMapChannel(i) 
Indicates which of the 32 T/R modules in the MCARM 
array are connected to receiver channel i. Each element 
of ModuleMapChannel should be treated as a 32 bit 2's 
complement integer where each bit corresponds to a T/R 
module. The MSB corresponds to module 31 and the LSB 
corresponds to module 0. A bit value of one indicates 
that the corresponding module is connected and zero 
indicates that it is not connected. Typically elements 
1 and 9 have the value -1, i.e., all bits are 1. This 
is because channels 1 and 9 are the sum and difference 
manifolds and are connected to all modules. 

NoiseLevelTestOn n.a. 
NumRangeGateZero This integer represents the number of range cells (0.8 

usec) during an inter-pulse period (IPP) during which 
the receivers are not being recorded. When this value 
is zero, the receivers are being recorded during the 
entire inter-pulse period, including during the 
transmit pulse. 

NumSpaceChargePulse This integer value represents the number of inter-pulse 
periods at the beginning of a coherent processing 
interval (CPI) that were not recorded. The intent of 
this feature is to delay recording so that all range 
ambiguous echo pulses are being recorded. The number 
of pulses recorded is IppsPerCpi - NumSpaceChargePulse. 

Passthru n.a. 
PcWeightSelect Normally 0. If nonzero, it indicates that the radar 

applied weighting to the data prior to pulse 
compression. 

PlaybackControl n.a. 
PrfCombineOn .a. 
Prf Pulse repetition frequency. 
PulseCompressSelect A value of one indicates that I/Q processing was 

performed prior to writing this file. 
PulseToPulseSelect n.a. 
PulseWidth This value is the width of the transmit pulse, which 

is 0.8 usec per range cells. 
QuickLookOn n.a. 
RangeCellsPerIPP This integer is the number of range cells recorded 

during this CPI. 
RangeGateFilter n.a. 
RangeGatelncrement n.a. 
RangeGateSelectOn n.a. 

31 



RangeGateStart 
RangeGateStop 
Rawdata 
RcvArrayWeight 
RcvAzBWShape 

RcvAzPointAngle 
RcvAzPointlndex 

RcvElPointAngle 

RcvElPointlndex 

RcvError 
RcvFrequency 

RcvrMode 

RecordOn 
Rxtest 

RxExpectedWeight 
RxSensitivityTstOn 
RxStabTestOn 
StcOn 
Steer Array 
TxExpectedWeight 
TxPowerTestOn 
TxStabTestOn 
WESTINGHOUSE 

WaveForm 

XmitArrayWeight 
XmitAzBWShape 

XmitAzPointAngle 
XmitAzPointindex 

XmitElPointAngle 

XmitElPointlndex 

n.a. 
n.a. 
Indicates which data file is being processed 
n.a. 
This integer indicates which array tuning file was used 
for receive beam shape and steering. 
n.a. 
This integer is the beam position index selected for 
the receive mode. 
n.a. (Elevation steering is determined by azimuth 
steering.) 
n.a. (Elevation steering is determined by azimuth 
steering.) 
n.a. 
The receiver center frequency used during receive mode 
in MHz. 
This integer in conjunction with BeamSteeringType 
determines the mode of the radar. 
n.a. 
Indicates which test file was used for channel 
balancing 
n.a. 
n.a. 
n.a. 
n.a. 
Steering vectors to be used for Flights 5-11 
n.a. 
n.a. 
n.a. 
This is a MATLAB string variable containing a 
postflight entered comment describing the data 
acquisition in the file. 
This integer indicates the transmit waverforn type. A 
value of 0 indicates continuous wave transmission, 1 
indicates 14.4 usec LFM transmit pulse, 2 indicates 
50.4 usec LFM transmit pulse, 3 indicates 100 usec LFM 
transmit pulse. 
n.a. 
This integer indicates which array tuning file was used 
for transmit beam shape and steering. 
n.a. 
This integer is the beam position index selected for 
the transmit mode. 
n.a. (Elevation steering is determined by azimuth 
steering.) 
n.a. (Elevation steering is determined by azimuth 

32 



steering.) 
XmitFrequency The transmitter center frequency used during transmit 

mode in MHz. 

Notes: 

1. Inertial Navigation Unit (INU) data is sampled before and after each 
acquisition. For this reason, each variable is a 1 by 2 vector. Time delay 
between samples can be calculated from INUVelocityTime as follows: 

(INUVelocityTime(l,2) - INUVelocityTime(l, 1)) * 64 usec 

2. When the target plane navigational data is not being recorded and the Rome 
Laboratory Multiple Target Simulator (MTS) is being received, the MCARM 
radar inserts the latitude and longitude coordinates of the MTS in place of 
the target plane latitude and longitude. 

3. Geographic boresight angle of the MCARM radar, i.e., relative to true north, 
is calculated as follows: 

(INUPlatformAzimuth - INUWanderAngle)* 180/pi - 90    (degrees) 

where east is +90 degrees. 

33 



Appendix B - Common Gateway Interface (CGI) Source Code 

/* 
# 
# 
# 
# MCARM Inquiry Form 
# 
# 
# created 12/5/95 author: V.N. Cavo 
# last modified on 7/24/95 
# 
# 6/18/96 - Modified software to display the Matlab compressed file (.gz) instead of the just 
# the CPI suffixed file. The compressed file contains the header information. The 
# environment variable for CPI_PATH was not changed. It now points to the location 
# of the compressed Matlab files. 
# 
# 7/24/96 - Modified software to incorporate value range capability. Also, corrected a bug 
# where an erroneous error was received when no match was found. 
# 
# 11/20/96 - Took message blink out and updated below message. 
# 
# Note: read_hdr.c routine must be compiled with query_form.c 
# cc query_form_new.c read_hdr_new.c -o query_form_new 
# The query_form executable must then be placed in 'cgi-bin' where 
# it is invoked by 'query_new.html' upon query submission. 
*/ 
#include <stdio.h> 
#include <time.h> 
#include <stdlib.h> 
#include <ctype.h> 

#define PERMS 0666 
#define STRLEN 5000     /* Define stdin buffer size parameter */ 
#define MAX_PAIRS 1000  /* Define number of name/value pairs parameter */ 
#defme P ATHLEN 100     /* Define environment variable HDRP ATH length */ 
#define TEXTSIZE 500   /* Concatenated file name string */ 
#define MODULO_OP 4     /* Number of files per line to display */ 

struct pairs { 
char *name; /* Parameter name */ 
char *value; /* Parameter value */ 
short int condition;   /* Criteria True(=l) or False(=0) condition */ 

} pairbuf[MAX_PAIRS], search[MAX_PAIRS];   /* allow for MAXPAIRS name/value 
pairs */ 

34 



struct triples { 
char *name; /* Parameter name */ 
char *from; /* Parameter from value */ 
char *to; /* Parameter to value */ 
short int condition; /* Criteria True(=l) or False(=0) condition */ 

} criteria[MAX_PAIRS]; /* allow for MAX_PAIRS name/from/to triplets */ 

int pairidx=0, searchidx=-l, getpid(), no_rec_found=0, none_flag=0; 
char cmd[MAX_PAIRS], list_name[PATHLEN]; /* System call command string */ 
FILE *fopen(), *fd, *fd_env, *fd_cpi; 
extern short int read_hdr(); 

main(argc, argv) 
int arge; 
char*argv[]; 
{ 

char 
buffer[STRLEN],*ptr,*ctime(),datebuf[26],line[PATHLEN],buff[PATHLEN],*fgetsO,hdr_p 
ath[PATHLEN],cpi_path[PATHLEN]; 
register int len, clen, i, j, startptr, counter; 
long clock, timeO; 
unsigned short boolean=l; /* Set logical operator 1 (AND) 0 (OR) */ 

/* get system date and time for timestamp */ 
clock=0; 
time(&clock); 
ptr = ctime(&clock); 
stmcpy(datebuf,ptr,26); 
printfC'yosW.datebuf); 

/* Open the output file */ 
if((fd = fopen(7tap/query_search'7V)) = "W) { 

fr>rintf(fd,"main: Cannot open temporary file 7tmp/query_search"); 
exitO; 

/* Open the environment file and get HDR_PATH and CPI_PATH */ 
/* Could not set HDRJPATH and CPI_PATH in CGI environment. Hence, next best 

thing was 
to read these environment variables from a file to preclude recompilation. 
Note: CGI environment is different then user environment (i.e. env > /tmp/envjpath 
puts CGI env into target file. That is, CGI sends its own environment to server. */ 

if((fd_env = fopen(7xbox/disk0/cavovn/httpd/htdocs/envj3ath","r")) = '\0') { 
fprintf(fd,"main: Cannot open temporary file 

'/xbox/diskO/cavovn/httpd/htdocs/envjath"); 
exit(); 

35 



} 
/* Set the Header and CPI path environment variables */ 
fgets(line,PATHLEN,fd_env); 
strcpy(hdr_path,(strpbrk(line,"=")+l)); 
for(i=0;hdr_path[i] != NULL;i++) /* Get rid of newline character */ 

if(hdr_path[i] = V) 
hdr_path[i] = '\0'; /* Replace newline with NULL character */ 

fprintf(fd,"HDR_PATH = %s\n",hdr_path); 
fgets(line,PATHLEN,fd_env); 
strcpy(cpi_path,(strpbrk(line,"=")+l)); 
for(i=0;cpi_path[i] != NULL;i++) /* Get rid of newline character */ 

if(cpijpath[i] = V) 
cpi_path[i] = '\0'; /* Replace newline with NULL character */ 

fprintf(fd,"CPI_PATH = %s\n",cpi_path); 
fclose(fd_env); /* Close the environment file */ 
/* Create the header and CPI directory links */ 

/*        sprintf(cmd,"unalias rm;cd /xbox/diskO/cavovn/public_html;rm -f cpi hdr",hdr_path); 
/* delete Header/cpi path link */ 

sprintf(cmd,"unalias rm;cd /xbox/diskO/cavovn/public_html;rm -f cpi hdr"); /* delete 
Header/cpi path link */ 

system(cmd); 
sprintf(cmd,"cd /xbox/diskO/cavovn/public_html;ln -s %s hdr",hdr_path); /* Header 

path link */ 
system(cmd); 
sprintf(cmd,"cd /xbox/diskO/cavovn/public_html;ln -s %s cpi",cpi_path); /* CPI path 

link */ 
system(cmd); 

/* 
Process environment variables 

*/ 
/* process POST(recommended) method only */ 
if(strcmp(getenv("REQUEST_METHOD"),"POST"))exit(); 
/* ignore url encode forms */ 
/* Output of a form being processed? */ 
ifCstrcmpCgetenvC'CONTEN^TYPE'O/'application/x-www-form-urlencoded")) 

exitO; 
/*        Some variables and constructs are described as being 'URL-encoded'. In a URL 

encoded string an escape sequence consists of a percent character ("%") 
followed by two hexadecimal digits, where the two hexadecimal digits form 
an octet. An escape sequence represents the graphic character which has the 
octet as its code within the US-ASCII coded character set, if it exists. If 
no such graphic character exists, then the escape sequence represents the 
octet value itself. 

36 



/*        strcpy(line,getenv("HTTP_ACCEPT")); 
printf("HTTP_ACCEPT = %s\n",line);*/ 

/* get stdin length from environment variable */ 
#ifdef OLD /* support for non-CGI server (e.g. NCSA 1.0a5 or earlier) which used 

command-line arguments */ 
clen = atoi(argv[l]); 

#else   /* get string from environment variable */ 
clen = atoi(getenv("CONTENT_LENGTH")); 

#endif 

if(clen>STRLEN){ 
printf("Buffer overrunW); 
exit(); 

} 
/* 

Output the HTML information 
*/ 
/* print the CGI required header information */ 
/* specify full document and MIME type - Note: blank line required */ 

/*        printf("Content-type: text/html\n\n");*/ 
/*        printf("Content-type: application/x-gzip\n\n");*/ 

/* print document title and initial heading */ 
printf("<HTML>\n"); 
printf(,,<HEADxTITLE>MCARM Inquiry Form Response</TITLE></HEAD>\n"); 
printf("<BODY><Hl><IMG 

SRC=\7icons/mcarm_small.gif\">MCARM<BR>InquiryResponse</Hl>\n"); 
gets(buffer); /* get the stdin input user response buffer - from HTML Form */ 
/* Bug - strlen function reports 1 more character than reported by environment 

variable 
CONTENTJLENGTH. Unexpected results occur if value returned by strlen 

used! 
Work around is to use value reported by CONTENT_LENGTH. The function 

strlen may be 
counting the terminating NULL character, contrary to documentation. */ 

len = strlen(buffer); 
/*        if(len != clen) printf("len=%d, clen=%d\n",len,clen); */ 
/*        printf("%s\nlen=%d\n",buffer,len); */ 

buffer[clen] = '&'; /* Terminate last name/value pair */ 
buffer[len] = '\0'; /* Terminate buffer string */ 
/* Replace'+' and hexadecimal special characters */ 
for(i=0;i<len;i++) { 

if(buffer[i] =='+') buffer[i] =''; 
if(buffer[i] ='%') { /* hex special character? */ 

buffer[i] ='?'; /* prepare for packing */ 
buffer[i+l] = '?*; 

37 



buffer[i+2] ='?'; 
} 

} 
/* Pack the buffer to remove redundant blanks */ 
pack(buffer, len); 
/* */ 

/* Split the buffer into name/value pairs */ 
/* */ 
len = strlen(buffer); /* Get new string length */ 
startptr = 0; 
for(i=0;i<len;i++) { 

if(buffer[i] == '&') { 
buffer[i] = '\0'; /* set ampersand to null */ 
split(buffer,startptr,i); 
startptr = i+l; 
if((++pairidx) > MAX_PAIRS) break; 

} 
} 
/* */ 
/* */ 

/* Process the form information */ 
/* */ 

/* */ 
/* Print timestamp and header information */ 
fprintf(fd,"%s\n\n", datebuf); 
/* Process user supplied information and perform some error checking */ 
for(i=0;i<pairidx;i-H-) { 

for(j=0;pairbuf[i].value[j] != '\0';j++) /* Convert all characters to uppercase */ 
if(islower(pairbuf[i].value[j])) 

pairbuf[i].value[j] = toupper(pairbuf[i].value[j]); 
if(((i % 3) = 0)) /* Parameter NONE specified during parameter name/value 

pair cycle? */ 
if((!strcmp(pairbufli].value, "NONE"))) 

none_flag = 1; 
else 

none_flag = 0; 
/* Push the parameter value onto data base stack - place holder for DBMS */ 
if(!strcmp(pairbuf[i].value, "AND")) /* Set boolean to AND */ 

boolean = 1; 
else if(!strcmp(pairbuf[i].value, "OR")) /* Set boolean to OR */ 

boolean = 0; 
/* Save parameters if not 'NONE' or NULL */ 
else if(strcmp(pairbufli].value, "NONE") && strcmp(pairbuf[i].value, "\0")) { 

if(none_flag) { 
/* Some parameter 'NONE' set to a value */ 

38 



printf("<H3><BLINK><I>ERR0R - PARAMETER 'NONE' 
SET TO VALUE</Ix/BLINK></H3>\n"); 

printf("<H3><BLINK><I>PLEASE TRY 
AGAIN</Ix/BLINK></H3>\n"); 

break; 
} 
else { 

search[++searchidx].name = pairbuf[i].name; 
search[searchidx] .value = pairbufp]. value; 

/* printf("Name = %s, Value = %s\n", search[searchidx].name, 
search[searchidx] .value);*/ 

} 
} 
/* Parameter FROM value empty? */ 
else if(((i % 3) = 1) && (none_flag == 0) && !strcmp(pairbuf[i] .value, 

"\0")) { 
printf("<H3><BLINK><I>ERROR - PARAMETER 'FROM' VALUE 

EMPTY</Ix/BLINKx/H3>\n"); 
printf("<H3><BLINKxI>PLEASE TRY 

AGAIN</Ix/BLINK></H3>\n"); 
break; 

} 
} 
/* */ 
/* */ 

/* Develop the search criteria */ 
/* */ 
/* */ 
fprintf(fd,"Boolean = %d\n", boolean); 
if(searchidx >= 1) { 

fprintf(fd, "There are %d search conditions to satisfy\n\n", ((searchidx +l)/2)); 
for(i=0;i<=searchidx;i++) { /* Output the non NONE values used for DB 

search */ 
rprintf(fd,"%s = %s\n", search[i].name, search[i].value); 

} 
fbrintfTfd ,,\n**************************************\n,,V 
est_criteria(search, searchidx, criteria); 
i=0; 
while(criteria[i].name !=NULL) { 

fprintf(fd,"%s = %s, %s\n", criteria[i].name, criteria[i].from, 
criteria[i].to); 

/* Perform error checking */ 
if(criteria[i].to = NULL) criteria[i].to = "0.0"; 
if(atof(criteria[i].to) < atof(criteria[i].from)) { 

/* TO value equal zero? */ 
if(!(criteria[i].to = "0.0")) { 

39 



printf("<H3><BLINK><I>ERR0R - TO VALUE LESS 
THAN FROM VALUE</I></BLINK></H3>\n"); 

printf("<H3><BLINK><I>PLEASE TRY 
AGAIN</Ix/BLINK></H3>W); 

} 
} 

/* printf("Name = %s,From = %s,To = %s\n",criteria[i] .name, 
criteria[i].from, criteria[i].to);*/ 

} 

/* */ 
/* */ 
/* Search the header files     */ 
/* */ 
/* */ 
sprintf(list_name,"%ilist",getpid()); /* Create the list output CPI file name */ 
sprintf(cmd,"/tmp/%s",list_name); 
hdr_search(criteria,hdr_path,cpi_path,fd,cmd,boolean); 
/* */ 
/* */ 
/* Output the search results   '*/ 
/* */ 
/* */ 
system("cat /tmp/query_search » /tmp/query_search_cum"); 
system("cat /tmp/query_search | /usr/lib/sendmail -t 

cavov@magnum.oc.rf.af.mil"); 
fclose(fd); /* Close the query search file */ 
/* 
Bug: using ! after > causes file to be created but not written to. Just use > 
*/ 
/*        sprintf(cmd,"ls /xbox/diskO/cavovn/data | grep mat > 

/tmp/%s",list_name);*/ 
/*sprintf(cmd,"ls /xbox/diskO/cavovn/httpd/data | grep mat > 

/tmp/%s",list_name); 
system(cmd);*/ 

/* printf("<H3><BLINK><I>MATCHING MATLAB 
FILES</I></BLINKx/H3>\n"); */ 

printf("<H3><I>MATCHING MATLAB FILES</I></H3>\n"); 
printf("<P><STRONG>Please note that files ending with suffix 'gz' were \ 
compressed using the utility 'gzip'. You will need 'gunzip' to uncompress \ 
them.</STRONGxBRxBR>\n"); 

/* printf("<FORM METHOD=\"POST\">\n"); 
printf("<SELECT NAME=\"MCARM_Query_Results\" SIZE=10>W); 
printf("<OPTION SELECTED>None\n"); */ 
sprintf(cmd,"/tmp/%s",list_name); 

40 



if((fd_cpi = fopen(cmd,"r")) = '\0') { 
if(no_rec_found) { /* Matching records or files found? */ 

printf("main: Cannot open '%s' file\n", list_name); 
exit(); 

} 
} 
else { 

counter = 0; 
printf("<PRE>"); 
while((fgets(line,PATHLEN,fd_cpi)) !=NULL) { 

for(i=0;line[i] != NULL;i++) /* Get rid of newline character */ 
if(line[i] = V) 

line[i] = '\0'; /* Replace newline with NULL 
character */ 

counter = counter + 1; 
strcpy(buff,(strrchr(line,V,)+l)); /* Strip off path information */ 
if(counter%MODULO_OP = 0) 
{ 

printf("<A 
HREF=\7~cavovn/cpi/%s\">%s</A>\n",buff,buff); 

} 
else 
{ 

printf("<AHREF=\7~cavovn/cpi/%s\">%s</A> 
",buff, buff); 

} 
/* printf("<OPTIONxA 
HPvEF=\7~cavovn/cpi/%s\">%s</A>",buff, buff); */ 
/* printf("<OPTION><A 
HREF=\7~cavovn/cpi/%s\">%s</A><BR>",buff, buff); */ 

} 
printf("</PRE>"); 

/* printf("</SELECT>\n</FORM>\n"); */ 
} 
if(!no_rec_found) { /* No matching records or files found? */ 

printf("<B><BLINK><I>NOMATCH</I></BLINKx/B>\n"); 
} 
else { 

printf("<BxI>%d Data Files Found</I></B>\n",no_rec_found); 

} 
/* printf("<H3><BLINKxI>Thank you. Please select compressed Matlab file 
to download.</I></BLINK></H3>\n"); */ 

printf("<H3><I>Thank you. Please select compressed Matlab file to 
download.</Ix/H3>\n"); 
/* printf("<H3><BLINK><I>Select <EM>Back</EM> pointer to return to 
query.</Ix/BLINKx/H3>\n"); */ 

41 



printf("<H3><I>Select <EM>Back</EM> pointer to return to 
query.</I></H3>\n"); 

fclose(fdcpi); 
} 
else { 

printf("<H3><BLINK><I>NOTHING TO 
SEARCH</I></BLINKx/H3>\n"); 

} 
printf("<a 

href^"nttp://suririse.oc.rl.af.mil:80/~cavovn/forais/query_new.html\"><img align=\"left\" 
src=\7icons/point_ll .gif\" alt=\"Back\"x/a>\n"); 

printf("</BODYx/HTML>\n"); 
system(7xbox/disk0/cavovn/bin/netscape 

http://sunrise.oc.rl.af.mil/flight_path5.htmr'); 
/* 

Cleanup 
*/ 
/*        sprintf(cmd, "rm -f /tmp/%s" ,list_name); */ 

system(cmd);    /* Remove the created list file */ 
} 

split(buf,begin,end) 
char buflSTRLEN]; /* stdin buffer */ 
int begin; /* beginning index pointer for name/value pair */ 
int end; /* end index pointer for name/value pair *'/ 
{ 

register int i; 

for(i=begin;i<end;i++) { 
if(buf[i] = '=•) { 

buf[i] = '\0'; /* set equal to null to terminate name */ 
pairbuf[pairidx].name = &buf[begin]; 
pairbufjpairidx] .value = &buf[i+1 ]; 
return; 

} 

} 
} 

pack(buf,length) 
charbuf[STRLEN]; 
int length; /* string length in bytes */ 

{ 
chartemp[STRLEN]; 
int i j=0; 

for(i=0;i<length && buf[i] != '\0';i++) { 

42 



} 

if(buf[i] =='?') continue; /* Ignore hexdecimal symbol */ 
else if(buf[i] !='') 

temptj++]=buf[i]; 
else { 

if(buf[i+l] = ") 
continue; 

else 
tempD++]=buf[i]; 

} 
} 
temp[j] = '\0'; /* Null terminate temporary buffer */ 
strcpy(buf,temp); /* Copy packed string into processing buffer */ 

est_criteria(inbuf, count, outbuf) 
struct pairs inbuf[MAX_PAIRS]; 
int count; 
struct triples outbuf[MAX_PAIRS]; 
{ 

intij; 

j = 0; 
for(i=0;i<count;i=i+2) { 

outbuf[j].name = inbuf[i].value; /* Get the parameter name */ 
outbuf[j].from = inbuf[i+l].value; /* Get the from value */ 
outbuf[j++].to = inbuf[i+2] .value; /* Get the to value */ 

} 
} 

hdr_search(criteria,hdrjpath,cpi_path,fd,cpi_file,boolean) 
struct triples criteria[]; 
char hdr_path[],cpi_path[]; 
FILE *fd; 
char cpi_file[MAX_PAIRS]; 
unsigned short boolean; 
{ 
FILE *fd_hdr; 
char hdr_list[PATHLEN], cmd[MAX_PAIRS], line[PATHLEN], buff[PATHLEN], 
file_name[TEXT_SIZE]; 
int i, len; 

sprintf(hdr_list,"%ihdr_list",getpid()); /* Construct the header directory list output 
file name */ 

/* Imbedded newline in HDR_PATH caused must grief and havoc. Causes system 
'cmd' not to work! */ 

sprintf(cmd,"ls %s | grep \"\\.hdr\" > /tmp/%s",hdr_path, hdrjist); 

43 



system(cmd); 
sprintf(cmd,7tmp/%s",hdr_list); 
fprintf(fd,"HDR_SEARCH%sW\hdr_path); 
fprintf(fd,"HDR_SEARCH%s\n'',cmd); 
if((fd_hdr = fopen(cmd,"r")) = '\0') { 

printf("hdr_search: Cannot open '%s' file\n", hdr_list); 
exit(); 

} 
while((fgets(line,PATHLEN,fd_hdr)) !=NULL) { 

fprintf(fd,"HDR_SEARCH %sW\line); 
for(i=0;line[i] != NULL;i++) /* Get rid of newline character */ 

if(line[i] = V) 
line[i] = '\0'; /* Replace newline with NULL character */ 

sprintf(file_name,"%s/%s",hdr_path,line); /* Construct header absolute file 
name*/ 

match */ 

/* 

/* read_hdr routine returns 0 if no match, 1 if match */ 
if(read_hdr(criteria,file_name,boolean)) {/* Search header file for criteria 

strncpy(buff,line,(strcspn(line,"mat")-l)); 
sprintf(cmd,"ls %s/%s*CPI* » %s",cpi_path, buff, cpi_file); */ 
sprintf(cmd,"ls %s/%s*.gz » %s",cpi_path, buff, cpi_file); 
++no_rec_found; /* Increment number records found counter */ 
system(cmd); 

} 
len = strlen(buff); 
for(i=0;i<len;i++) buff[i] = '\0'; /* Clear the buffer */ 

} 
fclose(fd_hdr); /* Close the header list file */ 
sprintf(cmd,"rm/tmp/%s",hdr_list); 
system(cmd);    /* Remove the created header list file */ 

44 



Appendix C - Software Tools 

Software tools were acquired or written to facilitate the construction, operation and 
maintenance of the MCARM Web pages. In all instances, only public domain software was 
identified and acquired to contain cost and to insure portability. In some cases, C programs 
had to be written to fulfill special requirements. This appendix documents these software 
tools and provides source listings for the developed code. 

45 



Tool Description 

accountjrequest Request a new MCARM account 
accesswatch Perl program to display daily or to date access statistics to track site 

usage 
column C program to replicate text columns 
commentsform Process user MCARM comments 
gcc C/C++ compiler 
gifmerge Used to merge GIF 89a files for animation creation 
giftrans Translates GIF 87 to GIF 89a files for animation creation 
grass Geographic Information System (GIS) mapping software 
gunzip, gzip Decompression/Compression software 
hotmetal HTML editor 
mapedit Image map creation/editor 
matlab_hdr C program to read and extract header information from the 

MCARM Matlab files. Creates distinct header files needed for 
searching the data base. 

mpeg_play MPEG player 
mpeginfo MPEG information 
netscape Internet browser 
perl Programming langauge interpreter 
queryform Query the MCARM data base 
xamm X-Windows animation display tool 
xemacs X-Windows visual editor 
xpaint X-Windows paint program used to create image maps, logos and 

animation 
xplay X-Windows audio player 
XV X-Windows image viewer used for image viewing, translation, and 

manipulation 

Table C-l Software Tools 

46 



/* 
# 
# 
# 
# MCARM Account Request Form 
# 
# 
# created 4/30/96 author: V.N. Cavo 
# 
*/ 
#include <stdio.h> 
#include <time.h> 
#include <stdlib.h> 
#define STRLEN 10000  /* Define stdin buffer size parameter */ 
#define MAX_PAIRS 10000  /* Define number of name/value pairs parameter */ 

struct pairs { 
char *name; 
char *value; 

} pairbuf[MAX_PAIRS];   /* allow for MAXJPAIRS name/value pairs */ 

int pairidx=0; 
FILE *fopen(), *fd; 

main(argc, argv) 
int arge; 
char *argv[]; 
{ 

charbuffer[STRLEN], *ptr, *ctime(), datebuf[26], line[80], *fgets(); 
register int len, clen, i, j, startptr; 
long clock, time(); 

/* get system date and time for timestamp */ 
clock=0; 
time(&clock); 
ptr = ctime(&clock); 
strncpy(datebuf,ptr,26); 
printf("%s\n",datebuf); 
/* 
*/ 
/* process POST(recommended) method only */ 
if(strcmp(getenv("REQUEST_METHOD"),"POST"))exit0; 
/* ignore url encode forms */ 
if(strcmp(getenv("CONTENT_TYPE"),"application/x-www-form-urlencoded")) 

exit(); 
/* get stdin length from environment variable */ 

47 



#ifdef OLD /* support for non-CGI server (e.g. NCSA 1.0a5 or earlier) which used 
command-line arguments */ 

clen = atoi(argv[l]); 
#else   /* get string from environment variable */ 

clen = atoi(getenv("CONTENT_LENGTH")); 
#endif 

/* print the CGI required header information */ 
/* specify full document and MIME type - Note: blank line required */ 
/* printf("Content-type: text/html\n\n");*/ 

. /* print document title and initial heading */ 
printf("<HTML>\n"); 
printf("<HEADxTITLE>MCARM Account Request Form 

Response</TITLE></HEAD>\n"); 
printf("<BODY><Hl>Account Request Response</Hl>\n"); 
gets(buffer); /* get the stdin input user response buffer */ 
len = strlen(buffer); 

/*        if(len != clen) printf("len=%d, clen=%d\n",len,clen); */ 
/*        printf("%s\nlen=%d\n",buffer,len); */ 

buffer [len] = '&'; /* Terminate last name/value pair */ 
buffer[++len] = '\0'; /* Terminate buffer string */ 

/*        printf("%s\nlen==%d\n",buffer,len); */ 
/* Replace'+' and hexadecimal special characters */ 
for(i=0;i<len;i++) { 

if(buffer[i] =='+') buffer[i] =''; 
if(buffer[i] ='%') { /* hex special character? */ 

buffer[i] ='?'; /* prepare for packing */ 
buffer[i+l] ='?'; 
buffer[i+2] ='?'; 

} 
} 
/* Pack the buffer to remove redundant blanks */ 
pack(buffer, len); 
/* */ 

/* Split the buffer into name/value pairs */ 
/* */ 

len = strlen(buffer); /* Get new string length */ 
startptr = 0; 
for(i=0;i<len;i++) { 

if(buffer[i] == '&') { 
buffer[i] = '\0'; /* set ampersand to null */ 
split(buffer,startptr,i); 
startptr = i+l; 
if((++pairidx) > MAX_PAIRS) break; 

} 
} 
/* */ 

48 



/* */ 
/* Process the form information */ 
/* */ 

/* */ 
if((fd = fopen(7tmp/account_request","w")) = '\0') { 

fprintf(fd,"Cannot open temporary file Vtmp/account_request"); 
exit(); 

} 
/* Print timestamp and header information */ 
fprintf(fd,"%s\n\n", datebuf); 
/* Print user supplied information */ 
for(i=0;i<pairidx;i++) { 

/* Push the parameter name onto data base stack */ 
/*        retquote(pairbuf[i].name); ++nargs; */ 

forC=0;pairbuf[i].value[j] != *\0'u++) 
if(islower(pairbuf[i].value[j])) 

pairbuf[i].valuejj] = toupper(pairbuf[i].value[j]); 
/* Push the parameter value onto data base stack */ 

/* retquote(pairbuf[i].value); ++nargs; */ 
fprintf(fd,"%s = %s\n", pairbuf[i].name, pairbuf[i]. value); 

} 
fbrintfffd "\n**************************************\n"Y 
fclose(fd); /* Close the temporary file */ 
system("cat /tmp/account_request» /tmp/account_request_cum"); 
system("cat /tmp/account_request | /usr/lib/sendmail -t cavovn@sunrise.oc.rl.af.mil"); 
printf("<H2><BLINK>Thank you for your MCARM account request. We will 

contact you within a few days at the supplied telephone number.</BLINK></H2/>\n"); 
close(fd); /* Close output file */ 
printf("</BODY></HTML>\nM); 

} 

split(buf,begin,end) 
char buf[STRLEN]; /* stdin buffer */ 
int begin; /* beginning index pointer for name/value pair */ 
int end; /* end index pointer for name/value pair */ 

{ 
register int i; 

for(i=begin;i<end;i++) { 
if(buf[i] == '=') { 

buf[i] = '\0'; /* set equal to null to terminate name */ 
pairbuf[pairidx].name = &buf[begin]; 
pairbuf[pairidx] .value = &buf[i+l]; 
return; 

} 
} 

49 



} 

pack(buf,length) 
charbuf[STRLEN]; 
int length; /* string length in bytes */ 
{ 

chartemp[STRLEN]; 
int i,j=0; 

for(i=0;i<length && buf[i] != *\0';i++) { 
if(buf[i] ='?') continue; /* Ignore hexdecimal symbol */ 
else if(buf[i] !='') 

temp[j++]= buffi]; 
else { 

if(buf[i+l] = ") 
continue; 

else 
tempD++]=buf[i]; 

} 
} 
temp[j] = '\0*; /* Null terminate temporary buffer */ 
strcpy(buf,temp); /* Copy packed string into processing buffer */ 

50 



/* 
# 
# 
# 
# Function to copy columns 
# 
# 
# created 7/26/96 author: V.N. Cavo 
# 
# This function comes in handy when it is necessary to copy columns 
# within a file (e.g. to create a script for renaming a large number 
# of files). 
# 
*/ 

#include <stdio.h> 
#include <string.h> 
#include <fcntl.h> 
#include <ctype.h> 

#define TEXT_SIZE 500 

main(argc, argv) 
int arge; 
char *argv[]; 
{ 

inti; 
char *fgets(), text[TEXT_SIZE]; 
FILE *fp; 

while (--arge > 0) /* process all of the specified files */ 
{ 

if((fp = fopen(*++argv,"r")) = '\0') { /* Open file for reading */ 
printf("Cannot open '%s' file\n", *argv); 
exit(); 

} 
while((fgets(text,TEXT_SIZE,fp)) !=NULL) { 

for(i=0;text[i] != NULL;i++) /* Get rid of newline character */ 
if(text[i] = '\n') 

text[i] = '\0'; /* Replace newline with NULL character 
*/ 

printf("%s %s\n", text, text); 

51 



/* 

# 
# 
# 

# MCARM Comments Form 
# 
# 
# created 1/23/96 author: V.N. Cavo 

# last modified on 2/18/97 - Modified e-mail address for sendmail 
# 
# cc comments_form.c -o comments_form 
# 
*/ 
#include <stdio.h> 
#include <time.h> 
#include <stdlib.h> 

#define STRLEN 10000  /* Define stdin buffer size parameter */ 
#define MAXPAIRS 10000  /* Define number of name/value pairs parameter */ 

struct pairs { 
char *name; 
char *value; 

} pairbuf[MAX_PAIRS];  /* allow for MAX_PAIRS name/value pairs */ 

int pairidx=0; 
FILE *fopen(), *fd; 

/*int query_prep(nargs)*/ 
/*int nargs;*/ 
main(argc, argv) 
int arge; 
char *argv[]; 
{ 

charbuffer[STRLEN], *ptr, *ctime(), datebuf[26], line[80], *fgets(); 
register int len, clen, i, j, startptr; 
long clock, time(); 

/* get system date and time for timestamp */ 
clock=0; 
time(&clock); 
ptr = ctime(&clock); 
strncpy(datebuf,ptr,26); 
printf("%s\n,,,datebuf); 

52 



/* 
*/ 
/* process POST(recommended) method only */ 
if(strcmp(getenv("REQUEST_METHOD"),"POST"))exit(); 
/* ignore url encode forms */ 
if(strcmp(getenv("CONTENT_TYPE"),"application/x-www-form-urlencoded")) 

exitO; 
/* get stdin length from environment variable */ 

#ifdef OLD /* support for non-CGI server (e.g. NCSA 1.0a5 or earlier) which used 
command-line arguments */ 

clen = atoi(argv[l]); 
#else   /* get string from environment variable */ 

clen - atoi(getenv("CONTENT_LENGTH")); 
#endif 

/* print the CGI required header information */ 
/* specify full document and MIME type - Note: blank line required */ 
/* printf("Content-type: text/html\n\n");*/ 
/* print document title and initial heading */ 
printf("<HTML>\n"); 
printf("<HEAD><TITLE>MCARM Comments Form 

Response</TITLE></HEAD>\n"); 
printf("<BODY><H 1 >Comments Response</H 1 >\n"); 
gets(buffer); /* get the stdin input user response buffer */ 
len = strlen(buffer); 

/*        if(len != clen) printf("len=%d, clen=%d\n",len,clen); */ 
/*        printf(,,0/os\nlen=%d\n",buffer,len); */ 

buffer[len] = '&'; /* Terminate last name/value pair */ 
buffer[++len] = '\0'; /* Terminate buffer string */ 

/*        printf("%s\nlen=%d\n",buffer,len); */ 
/* Replace'+' and hexadecimal special characters */ 
for(i=0;i<len;i++) { 

if(buffer[i] =='+') buffer[i] = ''; 
if(buffer[i] =='%') { /* hex special character? */ 

buffer[i] ='?'; /* prepare for packing */ 
buffer[i+l] ='?'; 
buffer[i+2] ='?'; 

} 
} 
/* Pack the buffer to remove redundant blanks */ 
pack(buffer, len); 
/* */ 

/* Split the buffer into name/value pairs */ 
/* */ 

len = strlen(buffer); /* Get new string length */ 
startptr = 0; 
for(i=0;i<len;i++) { 

53 



if(buffer[i] = '&') { 
buffer[i] = *\0"; /* set ampersand to null */ 
split(buffer,startptr,i); 
startptr = i+l; 
if((++pairidx) > MAX_PAIRS) break; 

} 
} 
/* */ 
/* */ 
/* Process the form information */ 
/* */ 
/* */ 
if((fd = fopen("/tmp/comments_search","w")) = '\0') { 

fprintf(fd,"Cannot open temporary file Vtmp/comments_search"); 
exit(); 

} 
/* Print timestamp and header information */ 
rprintf(fd,"%s\n\n", datebuf); 
/* Print user supplied information */ 
for(i=0;i<pairidx;i++) { 

/* Push the parameter name onto data base stack */ 
/*        retquote(pairbuf[i].name); ++nargs; */ 

for(j=0;pairbuf[i].value[j] != '\0';j++) 
if(islower(pairbuf[i] .value[j])) 

pairbuf[i].value[j] = toupper(pairbuf[i].value[j]); 
/* Push the parameter value onto data base stack */ 

/* retquote(pairbuf[i].value); ++nargs; */ 
fprintf(fd,"%s = %s\n", pairbuf[i].name, pairbuf[i].value); 

} 
fprintfffd "\j\**************************************\n"\- 
fclose(fd); /* Close the temporary file */ 
system("cat /tmp/comments_search »/tmp/comments_search_cum"); 
system("cat /tmp/comments_search | /usr/lib/sendmail -t 

cavovn@magnum.oc.rl.af.mil"); 
printf("<H2><BLINK>Thank you for your comments/questions. Be assured that they 

will receive prompt attention.</BLINK></H2/>\n"); 
close(fd); /* Close output file */ 
printf("</BODY></HTML>\n"); 

/*        retint(nargs/2); /* Push the number of name/value pairs onto stack */ 
/*        return(++nargs); /* Return total number of stack elements */ 
} 

split(buf,begin,end) 
char buf[STRLEN]; /* stdin buffer */ 
int begin; /* beginning index pointer for name/value pair */ 
int end; /* end index pointer for name/value pair */ 

54 



register int i; 

for(i=begin;i<end;i++) { 
if(buf[i] =='=•) { 

buf[i] = '\0'; /* set equal to null to terminate name */ 
pairbuf[pairidx].name = &buf[begin]; 
pairbuf[pairidx] .value = &buf[i+l]; 
return; 

} 
} 

} 

pack(buf,length) 
charbuflSTRLEN]; 
int length; /* string length in bytes */ 

{ 
chartemp[STRLEN]; 
int i j=0; 

for(i=0;i<length && buf[i] != *\0';i++) { 
if(buf[i] ='?') continue; /* Ignore hexdecimal symbol */ 
else if(buf[i] !='') 

temp[j++]=buf[i]; 
else { 

if(buf[i+l] = ") 
continue; 

else 
tempCJ++]=buf[i]; 

} 

temp[j] = '\0'; /* Null terminate temporary buffer */ 
strcpy(buf,temp); /* Copy packed string into processing buffer */ 

55 



/* 
# 
# 
# 

# MCARM MATLAB Header Routine 
# 
# 

# created 2/6/96 author: V.N. Cavo 
# modified 2/8/96 by V.N. Cavo 

# 

# modified 6/18/96 - Changed code to generate only the header file. 
# 

# Compilation: cc matlabjidr.c -o matlabjidr 
# 
*/ 
#include <stdio.h> 
#include <time.h> 
#include <string.h> 
#include <fcntl.h> 
#include <ctype.h> 
/*#include <stdlib.h>*/ 

#define BUF_SIZE 9 
#define TEXT_SIZE 500 
#defme PERMS 0777 
#define REOF 0 

typedef struct { 
long type; /* type of form MOPT */ 
long mrows; /* row dimension */ 
long ncols; /* column dimension */ 
long imagf; /* flag indicating imaginary part */ 
long namlen;/* namlen length (including NULL - i.e. 1+ the name length)*/ 

} Fmatrix;   /* allow for MAX_PAIRS name/value pairs */ 

char *pname;    /* pointer to matrix name */ 
double *pr;     /* pointer to real data */ 
double *pi;     /* pointer to imaginary data */ 
FILE *fp; 
Fmatrix x; 
intmn; 
static int element_size[] = { 8,4,4, 2,2,1}; /* Element size in bytes: 64-bit double float, 32- 
bit float, \ 

56 



32-bit signed integer, 16-bit signed integer, 
16-bit unsigned \ 

integer, 8-bit unsigned integer */ 

main(argc, argv) 
int arge; 
char *argv[]; 
{ 

char *ptr, *ctime(), datebuf[26], *fgets(), text[TEXT_SIZE], 
hdr_filename[TEXT_SIZE], cpi_filename[TEXT_SIZE], cmd[TEXT_SIZE]; 

register int len, clen, i, j, startptr; 
long clock, time(); 
double real_data[BUF_SIZE], imag_data[BUF_SIZE]; 
int nitems, done=0, no_bytes, m, o, p, t; 
long float fValue, *ptf; 
int ivalue, *pti, fd_hdr, fd_cpi; 
double text_data[TEXT_SIZE], dvalue, *ptd; 
short svalue, *pts; 
unsigned short usvalue, *ptus; 
unsigned char cvalue, *ptc; 
unsigned int c; 
unsigned long word; 
FILE *fp_hdr, *fp_cpi, *fpw, *fp_temp; 

/* get system date and time for timestamp */ 
clock=0; 
time(&clock); 
ptr = ctime(&clock); 
strncpy(datebuf,ptr,26); 
printf("%s\n",datebuf); 
/* 
*/ 

while (~argc > 0) /* process all of the specified files */ 
{ 

done = 0; 
if(strstr(*++argv, ".mat") = NULL) {/* MATLAB file? */ 

printf("File '%s' not a MATLAB file - skipped\n\n", *argv); 
continue; 

} 
else if((strstr(*argv, ".gz") !=NULL) || (strstr(*argv, ".Z") NNULL)) /* 

Compressed MATLAB file? */ 
{ 

printf("File '%s' is a compressed MATLAB file -An", *argv); 
printf("Please decompress and try again (skipped)\n\n"); 
continue; 

57 



} 
else 
{ 

if((fp = fopen(*argv,"r")) = '\0') {/* Open file for reading */ 
printf("Cannot open '%s' file\n", *argv); 
exit(); 

} 
sprintf(hdr_filename,"%s.hdr",*argv); /* Construct the header file name */ 
/* Create the header file, if it doesn't exist; otherwise an error */ 
if((fd_hdr = open(hdr_filename, 0_RDWR | 0_CREAT | 0_EXCL, 

PERMS)) = -1) { 
printf("Cannot create '%s' header file\n", hdr_filename); 
exitO; 

} 
if((fb_hdr - fdopen(fd_hdr,"w")) == '\0') {/* Open file stream for writing 

"/ 
printf("Cannot open '%s' file streamVn", hdr_filename); 
exit(); 

} 
while(!done) /* Do forever */ 
{ 

nitems = fread(&x, sizeof(Fmatrix), 1, fp); /*Read the header record*/ 
if(nitems = REOF) { 

done =1; 
break;/*End of file?*/ 

} 
/* printf("Type = %d Namlen = %d\n", x.type, x.namlen);*/ 

pname = &datebuf[0]; 
nitems = fread(pname, sizeof(char), x.namlen, fp); /* Read the 

variable name */ 
if(nitems = REOF) { 

done =1; 
break;/*End of file?*/ 

} 
get_type(x.type, &no_bytes, &p, &t); /* Determine no. bytes to read 

& matrix type */ 
/* printf("%s =", pname);*/ 

if((strncasecmp(pname, "CPI",3) != 0) || !isdigit((unsigned 
int)pname[3])) {/* CPI data? */ 

fpw = fp_hdr; /* Set file pointer to write header data */ 
} 
else { /* CPI data found */ 

sprintf(cpi_filename,"%s.%s",*argv,pname); /* Construct the 
CPI file name */ 

/* Create the CPI file, if it doesn't exist; otherwise an error */ 

58 



0_EXCL, PERMS)) = -1) { 
if((fd_cpi = open(cpi_filename, 0_RDWR | 0_CREAT | 

for writing */ 

record*/ 

variable name */ 

/* 
/* 

printf("Cannot create '%s' CPI file\n", cpi_filename); 
exit(); 

} 
if((rp_cpi = fdopen(fd_cpi,"w")) = '\0') {I* Open file stream 

printf("Cannot open '%s' file stream\n", cpi_filename); 
exit(); 

} 
fpw = fp_cpi; /* Set file pointer to write CPI data */ 

} 
mn = x.mrows * x.ncols; 
nitems = fwrite(&x, sizeof(Fmatrix), 1, fpw); /*Write the header 

nitems = fwrite(pname, sizeof(char), x.namlen, fpw); /* Write the 

if(nitems = REOF) { 
done= 1; 
break;/*End of file?*/ 

} 
printf("mn=%i\n",mn);*/ 
printf("P=%i, T=%i\n",p,t);*/ 
if (!t) { /* Numeric information */ 

while(mn~ > 0) 

{ 
switch(p) { 

case 0: /* Print double precision (64-bit) 
floating point */ 

Read the variable name */ 

/* Write the variable name */ 
/* 

point */ 

defined as type 'long' so that 

ptd = &dvalue; 
nitems = fread(ptd, no_bytes, 1, fp); /* 

if(nitems == REOF) { 
done =1; 
break;/*End of file?*/ 

} 
nitems = fwrite(ptd, no_bytes, 1, fpw); 

printf("%e\n", *ptd);*/ 
break; 

case 1: /* Print single precision (32-bit) floating 

I* 
Note: variable 'rvalue' must be 

59 



create a float type. Defining 

will NOT work. The only other 

instead of function 'fread' as 

int and word as unsigned long. 

Read the variable name */ 

/* Write the variable name */ 
/* 

Read the variable name */ 

/* Write the variable name */ 
/* 

signed) */ 

Read the variable name */ 

bytes are properly loaded to 

'rvalue' (aka 'ptf) as just float 

choice is to use function 'getc' 

follows: 

for(i=0;i<no_bytes;i++) { 
c = getc(fp); 
word = word « 8; 
word = word | c; 

} 
where c is defined as unsigned 

*/ 
ptf = &fvalue; 
nitems = fread(ptf, no_bytes, 1, fp); /* 

if(nitems = REOF) { 
done= 1; 
break; /*End of file?*/ 

} 
nitems = fwrite(ptf, no_bytes, 1, fpw); 

printf("%e\n", *ptf);*/ 
break; 

case 2: /* Print 32-bit signed integer */ 
pti = &ivalue; 
nitems = fread(pti, no_bytes, 1, fp); /* 

if(nitems = REOF) { 
done = 1; 
break;/*End of file?*/ 

} 
nitems = fwrite(pti, no_bytes, 1, fpw); 

printf("%i\n", *pti);*/ 
break; 

case 3: /* Print short (16-bit) signed integer 

pts = &svalue; 
nitems = fread(pts, no_bytes, 1, fp); /* 

if(nitems = REOF) { 

60 



/* Write the variable name */ 
/* 

Read the variable name */ 

/* Write the variable name */ 
/* 

unsigned integer) */ 

Read the variable name */ 

/* Write the variable name */ 
/* 

floating point */ 

fp); /* Read the variable name */ 

done = 1; 
break; /*End of file?*/ 

} 
nitems = fwrite(pts, no_bytes, 1, fpw); 

printf("%i\n", *pts);*/ 
break; 

case 4: /* Print unsigned short (16-bit) integer 

ptus = &usvalue; 
nitems = fread(ptus, no_bytes, 1, fp); /* 

if(nitems = REOF) { 
done = 1; 
break;/*End of file?*/ 

} 
nitems = fwrite(ptus, no_bytes, 1, fpw); 

printf("%uW\ *ptus);*/ 
break; 

case 5: /* Print unsigned character (8-bit 

ptc = &cvalue; 
nitems = fread(ptc, no_bytes, 1, fp); /* 

if(nitems = REOF) { 
done = 1; 
break;/*End of file?*/ 

} 
nitems = fwrite(ptc, no_bytes, 1, fpw); 

printf("%u\n", *ptc);*/ 
break; 

} /* End of real data switch*/ 
if(x.imagf) { 

switch(p) { 
case 0: /* Print double precision (64-bit) 

ptd = &dvalue; 
nitems = fread(ptd, no_bytes, 1, 

if(nitems = REOF) { 
done =1; 
break; /*End of file?*/ 

} 

61 



fpw); /* Write the variable name */ 
/* 

floating point */ 

must be defined as type 'long' so that 

to create a float type. Defining 

NOT work. The only other choice is to 

of function 'fread' as follows: 

8; 

unsigned int and word as unsigned long. 

fp); /* Read the variable name */ 

fpw); /* Write the variable name */ 
/* 

fp); /* Read the variable name */ 

nitems = fwrite(ptd, no_bytes, 1, 

printf("%e\n", *ptd);*/ 
break; 

case 1: /* Print single precision (32-bit) 

/* 
Note: variable 'fValue' 

bytes are properly loaded 

'rvalue' (aka 'ptf) will 

use function 'getc' instead 

for(i=0;i<no_bytes;i++) { 
c = getc(fp); 
word = word « 

word = word | c; 
} 
where c is defined as 

*/ 
ptf = &fvalue; 
nitems = fread(ptf, no_bytes, 1, 

if(nitems = REOF) { 
done =1; 
break;/*End of file?*/ 

} 
nitems = fwrite(ptf, no_bytes, 1, 

printf("%e\n", *ptf);*/ 
break; 

case 2: /* Print 32-bit signed integer */ 
pti = &ivalue; 
nitems = fread(pti, no_bytes, 1, 

if(nitems = REOF) { 
done =1; 
break;/*End of file?*/ 

} 

62 



fpw); /* Write the variable name */ 
/* 

integer signed) */ 

fp); /* Read the variable name */ 

fpw); /* Write the variable name */ 
/* 

integer */ 

fp); /* Read the variable name */ 

fpw); /* Write the variable name */ 
/* 

unsigned integer) */ 

fp); /* Read the variable name */ 

fpw); /* Write the variable name */ 
/* 

nitems = fwrite(pti, no_bytes, 1, 

printf("%i\n", *pti);*/ 
break; 

case 3: /* Print short (16-bit) signed 

pts = &svalue; 
nitems = fread(pts, no_bytes, 1, 

if(nitems = REOF) { 
done = 1; 
break;/*End of file?*/ 

} 
nitems = fwrite(pts, no_bytes, 1, 

printf("%i\n", *pts);*/ 
break; 

case 4: /* Print unsigned short (16-bit) 

ptus = &usvalue; 
nitems = fread(ptus, no_bytes, 1, 

if(nitems = REOF) { 
done = 1; 
break;/*End of file?*/ 

} 
nitems = fwrite(ptus, no_bytes, 1, 

printf("%u\n", *ptus);*/ 
break; 

case 5: /* Print unsigned character (8-bit 

ptc = &cvalue; 
nitems = fread(ptc, nobytes, 1, 

if(nitems = REOF) { 
done = 1; 
break;/*End of file?*/ 

} 
nitems = fwrite(ptc, no_bytes, 1, 

printf("%u\n", *ptc);*/ 
break; 

} /* End of switch */ 
} /* End imaginary if */ 

} /* End while*/ 

63 



name*/ 

name*/ 

character */ 

NULLs*/ 

/* 

} 
else { /* Text information */ 

ptd = &text_data[0]; 
nitems = fread(ptd, no_bytes, mn, fp); /* Read the variable 

if(nitems = REOF) { 
done =1; 
break;/*End of file?*/ 

} 
nitems = fwrite(ptd, no_bytes, mn, fpw); /* Write the variable 

for(i=0;i<nitems;i++) { 
text[i] = (char)(text_data[i]); /* Force conversion to 

if(text[i] == NULL) text[i] = "; /* Eliminate redundant 

} 

} 

text[nitems] = '\n'; /* Terminate string */ 
printf("%s\n", text);*/ 
for(i=0;i<nitems;i++) text[i] = 0; /* Clear the array */ 

} /* End of text information else */ 
} /* Not done while */ 

} /* End of else*/ 
fclose(fp); /* Close the source read file */ 
fclose(fphdr); /* Close the associated header file */ 
fclose(fpcpi); /* Close the associated CPI file */ 
sprintf(cmd,"rm -f %s", cpi_filename); /* Quick fix - delete the CPI file*/ 
system(cmd); 

} /* End of outer while statement */ 
return; 

get_type(type, ptrbytes, p, t) 
long type; 
int *ptr_bytes, *p, *t; 
{ 

int i, value, m, o; 

i = 0; 
value = type; 
while(i<4) { 

switch(i){ 
case 0: 

*t = value%10; 
value = value/10; 
break; 

64 



} 
++i; 

case 1: 
*p = value%10; 
value = value/10; 
*ptr_bytes = element_size[*p]; 
break; 

case 2: 
o = value%10; 
value = value/10; 
break; 

case 3: 
m = value%10; 
value = value/10; 
break; 

65 



/* 
# 
# 
# 
# MCARM Inquiry Form 
# 
# 
# created 12/5/95 author: V.N. Cavo 
# last modified on 7/24/95 
#. 
# 6/18/96 - Modified software to display the Matlab compressed file (.gz) instead of the just 
# the CPI suffixed file. The compressed file contains the header information. The 
# environment variable for CPI_PATH was not changed. It now points to the location 
# of the compressed Matlab files. 
# 
# 7/24/96 - Modified software to incorporate value range capability. Also, corrected a bug 
# where an erroneous error was received when no match was found. 
# 
# 11/20/96 - Took message blink out and updated below message. 
# 
# Note: read_hdr.c routine must be compiled with query_form.c 
# cc query_form_new.c read_hdr_new.c -o query_form_new 
# The query_form executable must then be placed in 'cgi-bin' where 
# it is invoked by 'query_new.html' upon query submission. 
*/ 
#include <stdio.h> 
#include <time.h> 
#include <stdlib.h> 
#include <ctype.h> 

#define PERMS 0666 
#define STRLEN 5000     /* Define stdin buffer size parameter */ 
#define MAXPAIRS 1000  /* Define number of name/value pairs parameter */ 
#defme P ATHLEN 100     /* Define environment variable HDRP ATH length */ 
#defme TEXT_SIZE 500   /* Concatenated file name string */ 
#defme MODULOJDP 4     /* Number of files per line to display */ 

struct pairs { 
char *name; /* Parameter name */ 
char *value; /* Parameter value */ 
short int condition;   /* Criteria True(=l) or False(=0) condition */ 

} pairbuf[MAX_PAIRS], search[MAX_PAIRS];  /* allow for MAXPAIRS name/value 
pairs */ 

struct triples { 
char *name; /* Parameter name */ 

66 



char *from; /* Parameter from value */ 
char *to; /* Parameter to value */ 
short int condition; /* Criteria True(=l) or False(=0) condition */ 

} criteria[MAX_PAIRS]; /* allow for MAX_PAIRS name/from/to triplets */ 

int pairidx=0, searchidx=-l, getpid(), no_rec_found=0, none_flag=0; 
char cmd[MAX_PAIRS], list_name[PATHLEN]; /* System call command string */ 
FILE *fopen(), *fd, *fd_env, *fd_cpi; 
extern short int read_hdr(); 

main(argc, argv) 
int arge; 
char *argv[]; 
{ 

char 
buffer[STRLEN],*ptr,*ctime(),datebuf[26],line[PATHLEN],buffIPATHLEN],*fgets(),hdr_p 
ath[PATHLEN],cpi jpath[PATHLEN]; 
register int len, clen, i, j, startptr, counter; 
long clock, time(); 
unsigned short boolean=l; /* Set logical operator 1 (AND) 0 (OR) */ 

/* get system date and time for timestamp */ 
clock=0; 
time(&clock); 
ptr = ctime(&clock); 
strncpy(datebuf,ptr,26); 
printf("%s\n",datebuf); 

/* Open the output file */ 
if((fd = fopen(7tmp/query_search","w")) == '\0') { 

fprintf(fd,"main: Cannot open temporary file Vtmp/query_search"); 
exit(); 

} 
/* Open the environment file and get HDR_PATH and CPI_PATH */ 
/* Could not set HDRPATH and CPI_PATH in CGI environment. Hence, next best 

thing was 
to read these environment variables from a file to preclude recompilation. 
Note: CGI environment is different then user environment (i.e. env > /tmp/env_path 
puts CGI env into target file. That is, CGI sends its own environment to server. */ 

if((fd_env = fopen(7xbox/disk0/cavovn/httpd/htdocs/env_path","r")) = '\0') { 
fprintf(fd,"main: Cannot open temporary file 

Vxbox/diskO/cavovn/httpd/htdocs/envjpath"); 
exit(); 

} 
/* Set the Header and CPI path environment variables */ 

67 



fgets(line,PATHLEN,fd_env); 
strcpy(hdr_path,(strpbrk(line,"=")+l)); 
for(i=0;hdr_path[i] != NULL;i++) /* Get rid of newline character */ 

if(hdr_path[i] = '\n') 
hdrjpath[i] = '\0'; /* Replace newline with NULL character */ 

fprintf(fd,"HDR_PATH = %s\n",hdr_path); 
fgets(line,PATHLEN,fd_env); 
strcpy(cpi_path,(strpbrk(line,"=")+l)); 
for^Ojcpijathfi] != NULL;i++) /* Get rid of newline character */ 

if(cpi_path[i] = V) 
cpi_path[i] = '\0'; /* Replace newline with NULL character */ 

fprintf(fd,"CPI_PATH = %sW\cpi_path); 
fclose(fd_env); /* Close the environment file */ 
/* Create the header and CPI directory links */ 

/*        sprintf(cmd,"unalias rm;cd /xbox/diskO/cavovn/public_html;rm -f cpi hdr",hdr_path); 
/* delete Header/cpi path link */ 

sprintf(cmd,"unalias rm;cd /xbox/diskO/cavovn/public_html;rm -f cpi hdr"); /* delete 
Header/cpi path link */ 

system(cmd); 
sprintf(cmd,"cd /xbox/diskO/cavovn/public_html;ln -s %s hdr",hdr_path); /* Header 

path link */ 
system(cmd); 
sprintf(cmd,"cd /xbox/diskO/cavovn/public_html;ln -s %s cpi",cpi_path); /* CPI path 

link*/ 
system(cmd); 

/* 
Process environment variables 

*/ 
/* process POST(recommended) method only */ 
if(strcmp(getenv("REQUEST_METHOD"),"POST"))exit(); 
/* ignore url encode forms */ 
/* Output of a form being processed? */ 
ifCstrcmpCgetenvC'CONTENT^YPE'^/'application/x-www-form-urlencoded")) 

exit(); 
/*        Some variables and constructs are described as being "URL-encoded'. In a URL 

encoded string an escape sequence consists of a percent character ("%") 
followed by two hexadecimal digits, where the two hexadecimal digits form 
an octet. An escape sequence represents the graphic character which has the 
octet as its code within the US-ASCII coded character set, if it exists. If 
no such graphic character exists, then the escape sequence represents the 
octet value itself. 

*/ 
/*        strcpy(line,getenv("HTTP_ACCEPT")); 

printf("HTTP_ACCEPT = %s\n",line);*/ 

68 



/* get stdin length from environment variable */ 
#ifdef OLD /* support for non-CGI server (e.g. NCSA 1.0a5 or earlier) which used 

command-line arguments */ 
clen = atoi(argv[ 1 ]); 

#else   /* get string from environment variable */ 
clen = atoi(getenv("CONTENT_LENGTH")); 

#endif 

if(clen>STRLEN){ 
printf("Buffer overrun\n"); 
exitO; 

} 
/* 

Output the HTML information 
*/ 
/* print the CGI required header information */ 
/* specify full document and MIME type - Note: blank line required */ 

/*        printf("Content-type: text/html\n\nM);*/ 
/*        printf("Content-type: application/x-gzip\n\n");*/ 

/* print document title and initial heading */ 
printf("<HTML>\n"); 
printf("<HEAD><TITLE>MCARM Inquiry Form Response</TITLE></HEAD>\n"); 
printf("<BODY><Hl><IMG 

SRC=\"/icons/mcarm_small.gif\">MCARM<BR>InquiryResponse</Hl>\n"); 
gets(buffer); /* get the stdin input user response buffer - from HTML Form */ 
/* Bug - strlen function reports 1 more character than reported by environment 

variable 
CONTENT_LENGTH. Unexpected results occur if value returned by strlen 

used! 
Work around is to use value reported by CONTENTLENGTH. The function 

strlen may be 
counting the terminating NULL character, contrary to documentation. */ 

len = strlen(buffer); 
/*        if(len != clen) printf("len=%d, clen=%d\n",len,clen); */ 
/*        printf("%s\nlen=%d\n",buffer,len); */ 

buffer [clen] = '&'; /* Terminate last name/Value pair */ 
buffer [len] = '\0'; /* Terminate buffer string */ 
/* Replace'+' and hexadecimal special characters */ 
for(i=0;i<len;i++) { 

if(buffer[i] ='+') buffer[i] =''; 
if(buffer[i] ='%') { /* hex special character? */ 

buffer[i] ='?'; /* prepare for packing */ 
buffer[i+l] ='?'; 
buffer[i+2] ='?'; 

} 

69 



} 
/* Pack the buffer to remove redundant blanks */ 
pack(buffer, len); 
/* */ 
/* Split the buffer into name/value pairs */ 
/* */ 
len = strlen(buffer); /* Get new string length */ 
startptr = 0; 
for(i=0;i<len;i++) { 

if(buffer[i] = '&') { 
buffer[i] = '\0'; /* set ampersand to null */ 
split(buffer,startptr,i); 
startptr = i+l; 
if((++pairidx) > MAX_PAIRS) break; 

} 
} 
/* */ 
/* */ 

/* Process the form information */ 
/* */ 
/* */ 

/* Print timestamp and header information */ 
fprintf(fd,"%s\n\n", datebuf); 
/* Process user supplied information and perform some error checking */ 
for(i=0;i<pairidx;i++) { 

for(j=0;pairbuf[i].value[j] != '\0';j++) /* Convert all characters to uppercase */ 
if(islower(pairbuf[i].value[j])) 

pairbuf[i].value[j] = toupper(pairbuf[i].value[j]); 
if(((i % 3) = 0)) /* Parameter NONE specified during parameter name/value 

pair cycle? */ 
if((!strcmp(pairbuf[i].value,"NONE"))) 

none_flag = 1; 
else 

none_flag = 0; 
/* Push the parameter value onto data base stack - place holder for DBMS ■*/ 
if(!strcmp(pairbuf[i].value, "AND")) I* Set boolean to AND */ 

boolean = 1; 
else if(!strcmp(pairbufli].value, "OR")) /* Set boolean to OR */ 

boolean = 0; 
/* Save parameters if not 'NONE' or NULL */ 
else if(strcmp(pairbuf[i] .value, "NONE") && strcmp(pairbuf[i] .value, "\0")) { 

if(none_flag) { 
/* Some parameter 'NONE' set to a value */ 

printf("<H3><BLINK><I>ERROR - PARAMETER 'NONE' 
SET TO VALUE</I></BLINK></H3>V'); 

70 



printf("<H3><BLINK><I>PLEASE TRY 
AGAIN</lx/BLINK></H3>\n"); 

break; 

} 
else { 

search[++searchidx] .name = pairbuf[i] .name; 
search[searchidx] .value = pairbuf[i] .value; 

/* printf("Name = %s, Value = %s\n", search[searchidx].name, 
search[searchidx] .value); */ 

} 
} 
/* Parameter FROM value empty? */ 
else if(((i % 3) == 1) && (none_flag == 0) && !strcmp(pairbuf[i] .value, 

"\0")) { 
printf("<H3><BLINKxI>ERROR - PARAMETER 'FROM' VALUE 

EMPTY</I></BLINK></H3>\n"); 
printf("<H3xBLINKxI>PLEASE TRY 

AGAIN</Ix/BLINKx/H3>\n"); 
break; 

} 
} 
I* *l 
I* */ 

I* Develop the search criteria */ 
/* */ 
/* */ 
fprintf(fd,"Boolean = %d\n", boolean); 
if(searchidx >= 1) { 

fprintf(fd,"There are %d search conditions to satisfy\n\n", ((searchidx +l)/2)); 
for(i=0;i<=searchidx;i++) { /* Output the non NONE values used for DB 

search */ 
rprintf(fd,"%s = %s\n", search[i].name, search[i].value); 

} 
fbrintfffd "\n**************************************\n"); 
est_criteria(search, searchidx, criteria); 
i=0; 
while(criteria[i].name !=NULL) { 

fprintf(fd,"%s = %s, %s\n", criteria[i].name, criteria[i].from, 
criteria[i].to); 

/* Perform error checking */ 
if(criteria[i].to == NULL) criteria[i].to = "0.0"; 
if(atof(criteria[i].to) < atof(criteria[i].from)) { 

/* TO value equal zero? */ 
if(!(criteria[i].to = "0.0")) { 

printf("<H3><BLINK><I>ERROR - TO VALUE LESS 

THAN FROM VALUE</I></BLINK></H3>\n"); 

71 



printf("<H3><BLINK><I>PLEASE TRY 
AGAIN</I></BLINKx/H3>\n"); 

} 
} 

I* printf("Name = %s,From = %s,To = %s\n",criteria[i].name, 
criteria[i].from, criteria[i].to);*/ 

} 

/* */ 
/* */ 
/* Search the header files     */ 
/* */ 
/* */ 
sprintf(list_name,"%ilist",getpid()); /* Create the list output CPI file name */ 
sprintf(cmd,"/tmp/%s",list_name); 
hdr_search(criteria,hdr_path,cpi_path,fd,cmd,boolean); 
/* */ 
/* */ 
/* Output the search results    */ 
/* */ 
/* */ 
system("cat /tmp/query_search »/tmp/query_search_cum"); 
system("cat /tmp/query_search | /usr/lib/sendmail -t 

cavov@magnum.oc.rf.af.mir'); 
fclose(fd); /* Close the query search file */ 
/* 
Bug: using ! after > causes file to be created but not written to. Just use > 
*/ 
/*        sprintf(cmd,"ls /xbox/diskO/cavovn/data | grep mat > 

/tmp/%s",list_name);*/ 
/*sprintf(cmd,"ls /xbox/diskO/cavovn/httpd/data | grep mat > 

/tmp/%s",list_name); 
system(cmd);*/ 

/* printf("<H3><BLINK><I>MATCHING MATLAB 
FILES</I></BLINKx/H3>\n"); */ 

printf("<H3xI>MATCHING MATLAB FILES</I></H3>\n"); 
printf("<p><STRONG>Please note that files ending with suffix 'gz' were \ 
compressed using the utility 'gzip'. You will need 'gunzip* to uncompress \ 
them.</STRONG><BR><BR>\n"); 

/* printf("<FORM METHOD=\"POST\">\n"); 
printf("<SELECT NAME=\"MCARM_Query_Results\" SIZE=10>\n"); 
printf("<OPTION SELECTED>None\n"); */ 
sprintf(cmd,7tmp/%s",list_name); 
if((fd_cpi = fopen(cmd,"r")) = '\0*) { 

if(no_rec_found) { /* Matching records or files found? */ 

72 



character */ 

printf("main: Cannot open '%s' fileVti", listname); 
exit(); 

} 
} 
else { 

counter = 0; 
printf("<PRE>"); 
while((fgets(line,PATHLEN,fd_cpi)) !=NULL) { 

for(i=0;line[i] != NULL;i++) /* Get rid of newline character */ 
if(line[i] = V) 

line[i] = '\0'; /* Replace newline with NULL 

counter = counter + 1; 
strcpy(buff,(strrchr(line,V')+l)); /* Strip off path information */ 
if(counter%MODULO_OP = 0) 
{ 

printf("<A 
HREF=\7~cavovn/cpi/%s\">%s</A>\n",buff,buff); 

} 
else 
{ 

printf("<A HREF=\7~cavovn/cpi/%s\">%s</A> 
",buff, buff); 

} 
/* printf("<OPTION><A 
HREF=\7~cavovn/cpi/%s\">%s</A>",buff, buff); */ 
/* printf("<OPTION><A 
HREF=\7~cavovn/cpi/%s\">%s</A><BR>",buff, buff); */ 

} 
printf("</PRE>"); 

/* printf("</SELECT>\n</FORM>\n"); */ 
} 
if(!no_rec_found) { /* No matching records or files found? */ 

printf("<BxBLINK><I>NOMATCH</Ix/BLINKx/B>\n"); 
} 
else { 

printf("<B><I>%d Data Files Found</Ix/B>\n",no_rec_found); 
} 

/* printf("<H3><BLrNKxI>Thank you. Please select compressed Matlab file 
to download.</lx/BLINK></H3>\n"); */ 

printf("<H3><I>Thank you. Please select compressed Matlab file to 
download.</Ix/H3>\n"); 
/* printf("<H3><BLINKxI>Select <EM>Back</EM> pointer to return to 
query.</Ix/BLINKx/H3>\n"); */ 

printf("<H3><I>Select <EM>Back</EM> pointer to return to 
query.</Ix/H3>\n"); 

73 



fclose(fd_cpi); 
} 
else { 

printf("<H3><BLINK><I>N0THING TO 
SEARCH</I></BLINK></H3>\n"); 

} 
printf("<a 

href=\''http://sunrise.oc.rl.af.mil:80/~cavovn/forms/queiy_new.html\"><imgalign=\"left\" 
src=\7icons/point_ll .gif\" alt=\"Back\"></a>\n"); 

printf("</BODY></HTML>\n"); 
system("/xbox/diskO/cavovn/bin/netscape 

http://sunrise.oc.rl.af.mil/flightjpath5.html"); 
/* 

Cleanup 
*/ 
/*        sprintf(cmd, "rm -f /tmp/%s" ,list_name); */ 

system(cmd);    /* Remove the created list file */ 
} 

split(buf,begin,end) 
char buf[STRLEN]; /* stdin buffer */ 
int begin; /* beginning index pointer for name/value pair */ 
int end; /* end index pointer for name/value pair */ 
{ 

register int i; 

for(i=begin;i<end;i++) { 
if(buf[i] = '=') { 

buf[i] = '\0'; /* set equal to null to terminate name */ 
pairbuf[pairidx].name = &buf[begin]; 
pairbuf[pairidx] .value = &buf[i+l]; 
return; 

} 

} 
} 

pack(buf,length) 
charbuflSTRLEN]; 
int length; /* string length in bytes */ 
{ 

chartemp[STRLEN]; 
int i,j=0; 

for(i=0;i<length && buf[i] != '\0';i++) { 
if(buf[i] =='?') continue; /* Ignore hexdecimal symbol */ 
else if(buf[i] !='') 

74 



} 

temp[j++]=buf[i]; 
else { 

if(buf[i+l] =' *) 
continue; 

else 
temp[j++]=buf[i]; 

} 
} 
temp[j] = '\0'; /* Null terminate temporary buffer */ 
strcpy(buf,temp); /* Copy packed string into processing buffer */ 

est_criteria(inbuf, count, outbuf) 
struct pairs inbuf[MAX_PAIRS]; 
int count; 
struct triples outbuf[MAX_PAIRS]; 

{ 
inti, j; 

j = 0; 
for(i=0;i<count;i=i+2) { 

outbuf[j].name = inbuf[i].value; /* Get the parameter name */ 
outbuflj ] .from = inbuf[i+1 ] .value; /* Get the from value */ 
outbuf[j++].to = inbuf[i+2] .value; /* Get the to value */ 

} 
} 

hdr_search(criteria,hdr_path,cpi_path,fd,cpi_file,boolean) 
struct triples criteria[]; 
char hdr_path[],cpi_path[]; 
FILE *fd; 
char cpi_file[MAX_PAIRS]; 
unsigned short boolean; 
{ 
FILE *fd_hdr; 
char hdr_list[PATHLEN], cmd[MAX_PAIRS], line[PATHLEN], buff[PATHLEN], 
file_name[TEXT_SIZE]; 
int i, len; 

sprintf(hdr_list,"%ihdr_list",getpid()); /* Construct the header directory list output 
file name */ 

/* Imbedded newline in HDR_PATH caused must grief and havoc. Causes system 
'cmd' not to work! */ 

sprintf(cmd,"ls %s | grep Y'W.hdrV > /tmp/%s",hdr_path, hdrjist); 
system(cmd); 
sprintf(cmd,7tmp/%s",hdr_list); 

75 



name */ 

match */ 

/* 

fprintf(fd,"HDR_SEARCH%s\n",hdr_path); 
fprintf(fd,"HDR_SEARCH %s\n",cmd); 
if((fd_hdr = fopen(cmd,"r")) = '\0') { 

printf("hdr_search: Cannot open *%s' file\n", hdr_list); 
exit(); 

} 
while((fgets(line,PATHLEN,fd_hdr)) !=NULL) { 

Q)rintf(fd,"HDR_SEARCH%sV,line); 
for(i=0;line[i] != NULL;i++) /* Get rid of newline character */ 

if(line[i] = V) 
line[i] = '\0'; /* Replace newline with NULL character */ 

sprintf(file_name,"%s/%s",hdr_path,line); /* Construct header absolute file 

/* readjidr routine returns 0 if no match, 1 if match */ 
if(read_hdr(criteria,file_name,boolean)) {/* Search header file for criteria 

strncpy(buff>line,(strcspn(line,"mat")-l)); 
sprintf(cmd,"ls %s/%s*CPI* » %s",cpi_path, buff, cpi_file); */ 
sprintf(cmd,"ls %s/%s*.gz » %s",cpi_path, buff, cpi_file); 
++no_rec_found; /* Increment number records found counter */ 
system(cmd); 

} 
len = strlen(buff); 
for(i=0;i<len;i++) buff[i] = '\0'; /* Clear the buffer */ 

} 
fclose(fdjidr); /* Close the header list file */ 
sprintf(cmd,"rm/rmp/%s",hdr_list); 
system(cmd);    /* Remove the created header list file */ 

ERNMENT PRINTING OFFICE:      1999-610-130-81126 

76 



MISSION 
OF 

AFRL/INFORMATIONDIRECTORATE (IF) 

The advancement and application of information systems science and 

technology for aerospace command and control and its transition to air, 

space, and ground systems to meet customer needs in the areas of Global 

Awareness, Dynamic Planning and Execution, and Global Information 

Exchange is the focus of this AFRL organization. The directorate's areas 

of investigation include a broad spectrum of information and fusion, 

communication, collaborative environment and modeling and simulation, 

defensive information warfare, and intelligent information systems 

technologies. 


