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ABSTRACT 

Transmitted signals with high time bandwidth products tend to resolve 

multiple reflecting structural elements or highlights on the body that is being 

illuminated. This thesis develops a Kaiman filtering approach to estimating the 

position and velocity of the multiple highlights on a single body undergoing complex 

motions. First, a general Kaiman filter for direct recursive estimation of the 

spreading function is derived. Second, an algorithm which tracks peak locations 

within the spreading function is derived via an extended or linearized Kaiman filter. 

The ability of the Kaiman filter to track kinematic properties of a multihighlight 

scatterer is related to the transmitted signal's mean squared bandwidth, mean squared 

duration, and time-frequency content through the Cramer-Rao lower bound on 

estimation errors for time scale and time delay. It is shown that the ability of the 

Kaiman filter to track peak locations within the object scattering function and 

recursively update these peak locations depends strongly on the use of signals with 

high time-bandwidth products. Finally, a performance monitor which provides a 

sound, monitorable performance measure of the tracker is introduced via the 

innovations spectrum.   This performance monitor admits the ability of dynamic 

model updating for adaptive signal processing. This work sets a groundwork for 

further research into the application areas of image feature tracking, robotic vision, 

high resolution radar and sonar, and medical imaging. 
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Chapter 1 

INTRODUCTION 

1.1 Motivation 

In many applications, the propagation of a signal through a medium is used to derive 

information about the medium and about objects in the medium. This method has been 

used in RADAR, SONAR, and medical imaging as well a multitude of other applications. 

A primary, often undesirable effect which manifests itself in this process is the 

phenomenon of scattering. In the detection problem, (which is of primary concern in this 

thesis) a signal is transmitted into the medium, reflects (scatters) from the object to be 

detected and is received back at the receiver. The signal also scatters from the other 

objects in the medium, the medium itself, and travels along multiple paths in the medium, 

causing multiple transmitted signal replicas to arrive at the receiver at different times 

(delay spread)[l-3].   For high resolution signals [4], the target can be made up of 

multiple scatterers. In this case the signal may "over resolve" the target and lead to 

"splitting loss" [2].  In narrowband systems, the problem of fading [2] is prominent for 

distributed targets or spread channels. All of the above effects give the appearance(from a 

detection point of view) of multiple detections. The problem is then for a signal 

processor to determine which of the returns (if any) are from the target. The process of 

scattering manifests itself in a variety of forms including the multipath phenomenon and 

the scattering functions of any objects in the medium - including the object to be 

detected(in the case of RADAR and SONAR). 



Recently proposed [4,6,7] wideband processors such as the wavelet transform domain 

(WTD) estimator-correlator (EC) attempt to overcome this by modeling the multi- 

highlight structure of an object as a spreading function. The multi-path phenomena is 

also treated as the channel spreading function. In the narrowband case, the spreading 

function specifies how the transmitted signal is "spread" in delay and Doppler. In the 

wideband case, the spreading function specifies how the transmitted signal is "spread" in 

delay and time-scale. Spreading functions are two-dimensional random functions and 

their second order statistics are given by scattering functions[8]. Because scattering 

functions can be related to the random scattering and propagation models, scattering 

functions are used as prior statistics for implementation of model based signal processors 

such as the WTD EC. 

The WTD EC exploits the processing gain of high resolution (i.e. high time- 

bandwidth product) signals and uses an estimate of the target and channel scattering 

functions as prior statistics for implementation of the estimator branch of the processor 

[9]. The critical issue in the performance of the WTD EC is the accuracy of the 

scattering function that is used in the processor. A method of updating the scattering 

function estimates as new data becomes available is required. To accomplish this update, 

a Kaiman filter approach will is used that exploits the innovations approach [10-14]. 

This method produces a mean-square sense optimal recursive scattering function 

estimation algorithm and provides a technique for monitoring convergence of the 



estimates. Furthermore, the innovation method allows one to establish the validity of the 

underlying models. 

1.2 General Statement of the Problem - Objective 

The main objective of this thesis is to develop a complete algorithm for recursive 

scattering function updating and estimation. By complete, it is meant that starting with 

the transmitted signal, its shape, its parameters (i.e. duration and bandwidth), develop a 

Kaiman filtering algorithm which illustrates the effects of these parameters on the filter's 

ability to perform recursive estimation. In the course of developing the Kaiman filter the 

following will be accomplished: 

1. Derive the Kaiman filter for recursive scattering function updating and 

estimation. 

2. Relate the Kaiman filter quantities to physical properties of the signal and 

scatterer. 

3. Place the Kaiman filter in the context of a model based signal processor, thus 

illustrating the connection between tracking and detection. 

4. Using simulations, show the effects of signal parameters on the ability of the 

Kaiman filter to track kinematics. 



The first goal of this thesis is to derive the Kaiman filter for WTD scattering function 

estimates based on the innovations approach. This derivation will show how new 

information (innovation) will be used to form a new estimate of the scattering function 

based on the previous estimates and the innovations. It will be necessary to derive a 

WTD state equation for the system under investigation as well as a WTD measurement 

equation of the spreading function, as this is the quantity observed. This will be done 

within the framework of a wavelet transform based detection algorithm. 

The next objective of the thesis is to investigate relationships between the Kaiman 

filter parameters (e.g. measurement error) and the properties of the transmitted signal. 

The goal here is to establish the relationship between signal parameters and the Cramer- 

Rao lower bound on the error variance associated with observations of time-scale and 

time-delay. 

The third objective of the thesis is to provide an implementation of the recursive 

updating algorithm. The results and performance of the algorithms will then be evaluated 

for selected examples. Another goal here is to illustrate, via the examples, the 

relationship between the physical problem (target position as a function of time) and the 

wavelet domain (time/time-scale) representation of the physical problem. Here the 

method of deriving the state equation and more importantly the state transition matrix 

from the physical problem is achieved. This critical step will illustrate the path from 

physical problem to scattering function prediction updating in the WTD. 



Finally, the last objective is to show simulation results which highlight the 

transmitted signal parameter effects and how changes in the measurement error variance 

(related to the Cramer-Rao lower bound) [15-17] affect the Kaiman Filter. Here, a 

possible performance monitor for the Kaiman Filter algorithm, in the form of monitoring 

the "whiteness" of the innovations sequence[18] will be introduced. 

1.3 Original Contributions 

The main contribution of this thesis is the theoretical background, and algorithm 

development for using a Kaiman filter to track the locations in the time delay scale plane 

of multiple reflections which arise from a single distributed abject which is illuminated 

with a high resolution pulse. This differs from conventional tracking/track association in 

that in these fields, each track represents a different object, here, all tracks lie on the same 

object. This algorithm can be used produce target spreading function estimates for use in 

model based signal processors such as the wavelet transform domain estimator-correlator. 

In the course of the development of the main theme of the thesis the following 

contributions were also made. 

1. Derivation of the Cramer-Rao Lower Bounds on variances of estimation errors of 

time-delay and time-scale for a random amplitude scatterer using a wavelet transform 

detection scheme. 

2. Derivation of an extended Kaiman Filter for tracking kinematic properties of a 

physical system using wideband probing signals. 



3. Relating the parameters of the transmitted signal to the ability of the Kaiman filter to 

track the kinematics of the physical system. 

4. Presentation of the results of simulations which illustrate all of the above 

contributions. 

The main original contribution is the development of a unified approach to model- 

based signal processing that connects scattering function models, recursive model 

updating algorithms via Kaiman filtering theory, wavelet transform implementation of 

the EC and signal design by CRLB analysis. 

1.4 Assumptions 

In this section, assumptions made in the thesis are discussed. The major assumptions 

are the noises present on the system are uncorrelated and Gaussian and that the scattering 

is uncorrelated. This is not always a necessary assumption and references are provided 

for those who wish to extend the work here to colored noises. Although multipath 

environments and their properties are discussed, in the examples, the medium has a single 

propagation path that is isovelocity.   It is assumed that the initial estimates are within a 

region of convergence for the Kaiman filter.   Lastly, it is assumed assume in the 

kinematic portions of the development that the velocities are small (or analogously that 

the sample rate is high) so that the overall data rate is high enough for the Kaiman filter 

to track. This assumption is made since the primary goal of the thesis is to illustrate the 

effects that the transmitted signal (or signal design issues) have on the ability of the 



Kaiman filter to track.   Also, spreading and scattering function models and wideband 

representation (i.e. time-scale representation) of the return are assumed to be valid. It is 

also assumed that all signals are finite energy, square integrable functions so that they can 

be represented in the wavelet transform domain. It is also assumed that covariances of 

received echos and noise are positive definite functions that uniquely define a 

reproducing kernel Hubert space (RKHS). Positive defmiteness is also used to establish 

existence of inverse kernels [64]. In summary, it is assumed that all continuous signals 

and stochastic processes belong to separable L2 Hubert spaces with appropriate inner 

products. Because any infinite dimensional separable Hubert space is linearly isometric 

to b continuous and discrete representations are equivalent. Both representations are 

used within the thesis (Section 2.4.1). 

1.5 Related Research 

Many areas of application have reference to tracking, multiple target tracking, or 

contour tracking.   In this section, the goal is to present related fundamental research in 

the areas of wideband spreading and scattering and to introduce related areas of current 

research where the features of an "object" is investigated. The definition of "object" 

depends on the application. First, the areas of research which encompass wideband 

spreading and scattering are introduced. This research is related to work in the thesis in 

that it provides a starting theoretical foundation on which to derive the Kaiman filtering 

algorithms. Much of the work done in this area has been to characterize time-varying 

propagation channels with multiple propagation paths. This leads naturally a discussion 



of spread spectrum systems and RAKE receivers as these systems attempt to recombine 

energy lost in multiple propagation environments.  In this case the "object" to be tracked 

is the channel itself so that an optimum recombination can be performed. The 

relationship to the work in the thesis is that multiple paths are tracked for recombination. 

In multipath recombination, the paths appear as discrete points separated in delay. In 

applications such as feature tracking in image processing, entire continuous curves which 

appear in a video stream are tracked. This has applications in robotic lip reading, or 

tracking a person moving through a crowd: a security application. Finally, another large 

area of interest in tracking is track association and multiple target tracking where the 

problem is to maintain tracks of multiple independent objects. All of these areas are 

related to the thesis through tracking theory (Kaiman filtering). This section points out 

the similarities and more importantly the differences between the existing body of work 

and the work in this thesis. 

In this thesis, the problem of recursively estimating the parameters of a physical 

system through the use of probing signals is investigated. In proposing an algorithm 

using a Kaiman filtering approach, many areas of current research in the realm of 

wideband signal processing [19-24] are applicable. Estimation as related to narrowband 

spreading functions has received extensive coverage in the literature [16,43]. These 

narrowband spreading function characterizations have been used for the characterization 

of time-varying propagation and scattering channels. Also, narrowband source 

localization and characterization has received considerable attention. 



Characterization of these channels using wideband signals and concepts of wideband 

spreading functions has received recent attention [24-27]. However, in order to 

understand the underlying principles of wideband spreading, one must also investigate 

the properties of the wideband ambiguity functions of the transmitted signal [28-32]. 

The main problem in this thesis is to make recursive estimates of the properties of a 

physical system (i.e., position and velocity) called the state variables. One time 

estimation of physical parameters has been investigated using linear inverse techniques 

[33]. The problem of identifying and localizing an object in a changing environment 

using wideband inverse techniques, has also been thoroughly investigated [24]. The open 

problem of tracking changes in peak location within the measurement of the wideband 

spreading function, and relating these to the kinematics of an object using a model based 

approach is investigated in this thesis. In the area of model based signal processing the 

idea has been to include models within the signal processor to optimize system 

performance. The work of Candy [88,89] has been to use a model (environmental) based 

approach for detection and localization of acoustical sources. The work in the thesis 

differs in that the models used for tracking appear in the state transition matrix of the 

tracker. These models are of the kinematics of the object which is undergoing rotation, 

translation, or both. 

This formulation of the wideband spreading function estimate is based on wavelet 

transform techniques which have received extensive recent attention [34-40]. In the case 

under investigation, a measurement is taken by using a wideband matched filter [4] which 
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produces a range-scale map which indicates the "position" of the object in time-delay and 

time-scale.   These channel scattering function representations are exploited by spread 

spectrum communications for recombining the energy arriving at an antenna via multiple 

propagation paths. 

In spread spectrum communications systems, a RAKE receiver structure has been 

used to recombine spread spectrum signals that propagate through slowly fluctuating 

channels [76]. In these systems, the arrivals of signals at an antenna are only (in most 

practical applications) separated in time delay (i.e., different propagation paths having 

different lengths produce multiple arrivals of a transmitted signal). The techniques 

proposed in this thesis can be used to extend this work by making the processes 

recursive/adaptive in nature for two dimensions. This has application in acoustical 

systems where time-scale can become appreciable [76]. 

The closest areas of research to which this work can be compared is in the two areas 

of contour and feature tracking in image processing and in multiple target tracking and 

track data association. 

First in the area of image feature tracking, Blake [77] provides an analog in the sense 

that two dimensional (2D) image features are tracked as they move in an image using a 

model of the motion. This is a tracking algorithm which predicts how features within an 

image will appear in successive images based on a model which is used to predict the 

motion [78-81]. Conditional density tracking uses learned dynamical models, together 
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with visual observations, to propagate a random set over time. The results of this work 

have been applied to trackers for non rigid motion such as lip motion tracking for speech 

recognition. This work differs, however, from the work in the thesis in that intensity 

values are used to make up the feature rather than coherent maps. Also, the work in the 

thesis relates the transmitted signal parameters to measurement errors and ties these to 

tracker performance. The measurement errors are less clearly defined in the image 

tracking case and vary from case to case. Researchers at Carneige-Mellon [82, 83] have 

used a map correlation technique to track landmark features for mobile autonomous robot 

navigation/vision systems. Here a normalized correlation technique has been used to 

correlate masks of features with masks extracted from robot images, the features are 

"tracked" based on a maximized correlator output. Image feature tracking, however, 

does not depend on transmitted signals and detector outputs. Visibility of a feature in an 

image is analgous to detection, the difference lies in the fact that, in this thesis, one of the 

main points is to relate transmitted signal parameters to tracking performance. A related 

area of research where the transmitted signal parameters do matter is in radar 

tracking/track association. 

In the area of radar tracking, track association, and data association for multiple target 

tracking, much work has been done [85-90]. Data/track association are concepts which 

have been used to group measurements with the appropriate track.  In the case of 

multiple sensors, the data association is done to group the measurements from various 

sensors with the appropriate target. Work has been done to incorporate certain target 

characteristics into the tracking to improve the data association [91].  All of this work, 
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however, uses a separate tracker for each object to be tracked, therefore providing an 

innovations sequence (in the case of Kaiman filtering) for each target. In this thesis, a 

single object, which has multiple highlights is tracked. The highlight motion is predicted 

according to a state transition which updates the position of each highlight according to a 

kinematic motion under the assumption of rigid body motion. This method provides a 

single innovations sequence which gives a measure of tracker performance. This is 

significantly different than using multiple trackers to track multiple objects and updating 

each separately. 

Having reviewed the related research, the next subject is to determine the work to be 

done and its relationship to the existing body of related research. In this thesis, an 

algorithms for tracking the peak values and peak locations within a wideband spreading 

function are derived. This extends the work in the area of spreading function 

representations by giving a recursive spreading function estimation algorithm. It will be 

shown that a model based recursive algorithm for tracking the kinematic properties of 

multiple highlights on a body can be derived and implemented for several models. This 

extends work in image feature tracking (as points on a feature can be treated as multiple 

highlights). Also, work in track association can be extended by not only tracking the 

overall object trajectory, but by implementing (for high resolution radar) a "sub-tracker" 

which tracks the body's highlight structure. The outputs from this filter can be inputs (in 

the form of range profiles) tol multiple target tracking algorithms [85,87]. The following 

section provides an outline of the thesis. 
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1.6 Thesis Overview 

This thesis is divided into six chapters including the introduction. The next chapter 

contains an overview of the theory necessary for completion of the work in the rest of the 

thesis. This overview begins with a background on Kaiman filtering and its applications. 

The discussion then proceeds to cover the background necessary for understanding 

wideband systems, signals, and scattering phenomena. Since a major application of the 

work in the thesis is to improve the performance of the WTD EC, the background 

required to understand and extend the EC will be covered. 

Chapter 3 is devoted to wideband signal analysis in the context of deriving the 

Cramer Rao lower bound on variances of estimation errors for time-delay and time-scale 

for wideband signals. Here, the derivation relates the lower bound on estimation error 

variances to the signal shape and signal parameters. This is important as these quantities 

will surface in the derivation of the Kaiman filter in the next chapter. 

Chapter 4 contains the area most important in the thesis. Here, the WTD Kaiman 

filter scattering function predictor/corrector is derived and analyzed. The parameters of 

the wavelet transform domain Kaiman filter (WTDKF) are investigated in detail and 

related to the overall performance. These parameters are related to those derived in 

Chapter 2 (the CRLB) and to transmitted signal parameter. 
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In chapter 5, two examples are presented which highlight the theoretical results 

derived in the previous chapters. The first example is of two spheres rotating about a 

central point. The Kaiman filter attempts to track the angle one of the spheres makes 

with the perpendicular to the line of sight, and the normal velocity of the sphere as it 

moves through an arc. The second example is a highlight moving in a straight line, and 

the filter attempts to track the normal velocity and the time-delay to the scatterer. This 

chapter present results which tie together the signal duration and bandwidth, the Cramer- 

Rao lower bound, and the convergence of the Kaiman filter. 

Chapter 6 contains the conclusions which may be derived from the work contained in 

the thesis. Here, suggestions for further research are also presented. 



Chapter 2 

BACKGROUND 

2.1 Introduction 

The purpose of this chapter is to provide the necessary background and 

introduction to topics that are fundamental to the development later in the thesis. 

This chapter will provide an entry point at which to define notation used throughout 

the thesis. Finally, this chapter provides a discussion of previous research 

fundamental to the development of the work developed in later chapters. 

Section 2.2 provides an introduction to the fundamental concepts of the wavelet 

transform. As the formulation of the Kaiman filter is in the wavelet transform 

domain, this background will provide the necessary framework to understanding the 

concepts of spreading and scattering functions in the wavelet transform domain 

(WTO). 

Section 2.3 is devoted to the concepts of the WTS wideband spreading function 

and the second moment of the spreading function, the real non-negative scattering 

function. 

Section 2.4 contains a review of the WTD estimator-correlator (EC). This is 

included as the recursive scattering function updating algorithm was motivated by the 
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search for an optimal recursive algorithm for updating the spreading function estimate 

in the WTD EC. 

Section 2.5 contains a review of the Kaiman filter, extended Kaiman filter (KF) 

and the KF recursive estimation algorithm. 

2.1 Wavelet Transform Analysis 

This section is to introduces the fundamental concepts in wavelet analysis in the 

context of signal analysis. It is intended as an overview of the concepts of time- 

frequency and time/time-scale analysis and signal resolution properties. In this 

section some of the assumptions common to wavelet analysis which will impact later 

discussions are reviewed. 

2.1.1  Time-Frequency Analysis 

The concept fundamental to the science of signal processing for much of the 

last century has been the Fourier transform. It has been the basis for many texts [42]. 

Basically stated, the Fourier transform (FT) is a correlation function. The FT 

correlates a time signal with a complex sinusoid at the desired frequency (2.1). 

X(co) = F{x(t)} = (x(t),e-j6)t)= ]x(t)e-Jmt dt (2.1) 
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where <•,•> represents an inner product on the space of square-integrable functions, 

L2(R). The simultaneous measurements of time and frequency are incompatible since 

frequency cannot be measured instantaneously. Therefore, (2.1) represents the 

average frequency content over the length of the signal, and gives us no information 

about when precisely the frequency occurred [35]. 

To extend the usefulness of the Fourier transform, it can be extended by 

looking at a windowed portion of the signal and applying a possibly complex window 

g(t) time-limited to[-T<t<0] to the signal and then take the Fourier transform. 

Therefore, the windowed signal contains only the information in x(t) on the interval 

[t-T,t]. Taking the Fourier transform of the combined window-signal gives the 

windowed Fourier Transform (WFT). 

X{f,r) = (xw(0,e~jm } = Jx(t)g(t - T)e-jat dt {22) 
-00 

X contains both time and frequency information. X contains information about the 

frequency content of x(t) near t-x. The tradeoff here is that the shape, length, and 

dimensionality of the window determines the relative frequency and time resolution 

properties of the WFT. This is known as the uncertainty principle [35,42]. 
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2.1.2 Time-Scale Analysis 

Time-Scale analysis is often associated with the continuous wavelet transform 

(CWT). In the CWT a time compression or dilation operation is integral to the 

process. The amount of compression or dilation is referred to as time-scale.   The 

CWT is a generalization of the WFT in the sense that the desired signal is correlated 

with a set of "wavelets". The CWT of a signal x(t) with respect to a mother wavelet 

v|/(t) is [36] 

1    °° 
X(s,T) = Wwx(s,T) = {x,y/sz) = -= \x{t)y —1 dt 

(2.3) 

One can see that the window in the WFT has been replaced by the mother wavelet VJ/. 

The mother wavelet must satisfy the admissibility condition [36]. Figure 2.1 is 

provided to visualize the time scale operation. 

-0.» -0.4 -0.2 0.2 0.4 0* 0.8 

Figure 2.1: Morlet Mother Wavelet With Original and Compressed (s=0.5) Versions 
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Here the relative delay has been set to zero for simplicity. Since the compression of 

the mother wavelet contains more cycles per unit time, it measures higher frequency 

content in the correlation process. Dilation of the mother wavelet measures lower 

frequency content since fewer cycles are in the same time interval. 

Secondly, an important concept in wavelet analysis is the reconstruction of the 

original signal also known as the inverse wavelet transform (IWT). First, however, a 

few conditions must be satisfied. 

If the original signal is to be reconstructed, as said before the mother wavelet must 

satisfy the admissibility condition [36] 

V        I    \<o\ (2-4) 
which implies that the mother wavelet must have zero average value, that it is an 

oscillatory and bandpass function. 

If the above condition is satisfied, the reconstruction formula (IWT) is given by [36] 

*(0 = — Jj0V*for)V,,r(O-V" (2-5) 
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2.2.2 Wavelet Transform Domain Spreading/Scattering Functions 

In this section, the concepts of WTD spreading functions and the second 

moment of the spreading function, the scattering function are introduced. The 

spreading function will be a function of both time-scale , s, and time-delay ,x. The 

spreading function is a set of complex random variables which indicate how the 

transmitted signal "spreads" [43,44] in scale and delay. The total scattering function 

is a group theoretic convolution of the scattering caused by individual scattering 

mechanisms[8,45,46]. 

The purpose of this section is to introduce, qualitatively, the physical 

phenomena of spreading functions and their relationship to the quantitative estimates 

made on them using the wavelet transform. 

In a typical detection problem, a probing signal is transmitted into a medium 

and reflected by motionless as well as moving objects in the medium. These 

reflections are received at some receivers) and processed. In a complicated 

environment such as the ocean and atmosphere, the medium itself can cause spread in 

delay and Doppler. This effect is referred to as multipath. To illustrate the 

phenomena, an example of a reflecting object in a multipath medium is given. If a 

high time-bandwith signal (see Chapter 3) is used, the individual reflectors on the 

target can be resolved. Therefore, each reflecting feature causes an individual return 

to be "seen" at the receiver. This reflector is referred to as a multi-highlight reflector. 
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The return from the target can be further complicated if the medium contains a 

multipath. Figure 2.2 shows the geometry for a multi-highlight object in a multipath 

environment. 

Figure 2.2: Transmitted Signal Scatters Over Two Paths 

Figure 2.2 shows that in this example, the transmitted signal reaches the target over 

two separate paths. The difference in length of these two paths causes the signal to 

arrive at the target at different times. Upon reaching the target, the signal is further 

scattered by reflecting from each highlight on the target as seen in Figure 2.3. 
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Individual Reflections 

x\ x2 T3 

Figure 2.3: Target Scatter for a Multi-Highlight Target 

Now, mathematical representations of the above physical phenomena are given. 

First, a model of the echo received at the receiver in Figure 2.2 must be introduced. 

This has been discussed widely in the literature [26,33,47]. The modeled echo is in 

the form of an inverse wavelet transform 

r(t) = \w(x)[U(x)f{t)]dß{x) + n{t) CM) 

where w(x) is either the narrowband or wideband spreading function, d|u(x) is the left 

invariant Haar measure on either the Heisenberg (narrowband) or Affine (wideband) 

group G, U(x) is a unitary representation of the corresponding group, f(t) is the 

transmitted signal, and the vector x represents either (x,§) or (x,ß) where x is time 

delay, <|> is Doppler shift, and ß is time scale. [U(x)f(t)] is given by the following 
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[U(x)f(t)] = zf(t - r) em^        narrowband 

[U(x)f(t)] = -j=f 
iß 

(t-r} 
yß J 

wideband 
(2.7) 

Now, in order to obtain an estimate of the spreading function, the wavelet transform 

of (2.1) is taken using the transmitted signal as the mother wavelet, this gives 

J r(t)[U(x)f(t))*dt = Uw(x')[U(x)At)W(x')f(t)]*dju(x')dt 

+ \\n(t)[U(x')f(t)fdn(x')dt 
(2.8) 

Rewriting (2.3) 

w(x)= \\w{x')K{x,x')djLi(x,)dt (2.9) 

where K is the auto-ambiguity function of the transmitted signal. 

Equation (2.4) shows that the estimate of the spreading function is in the form of a 

convolution of the true spreading function with the auto-ambiguity function of the 

transmitted signal. If the spreading function is within the range space of the wavelet 

transform, then K is a reproducing kernel for the spreading function. This shows that 

the properties of the transmitted signal have an effect on estimates of the spreading 

function. 
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An estimate of the spreading function (as calculated using (2.9)) of the object 

shown is Figure 2.3 is given as the wavelet transform of the received data under the 

condition of no noise and that the reflections are mutually independent. If the 

wavelet transform of a return from the object in Figure 2.3 is taken four highlights 

spread in delay and each falling on a time-scale of 1 are expected. Figure 2.4 shows 

the theoretical wavelet transform of the return from the object with the transmitted 

signal as the mother wavelet. 

Delay (s) 

Figure 2.4: Object Spreading Function Estimate 

For this illustrative example, four copies of the original signal's auto-ambiguity 

function, spread in delay, and lined up on a scale of 1 are obtained. Now, to get the 

total wideband spreading function, a group theoretic convolution of the target 

spreading function with the channel (multipath) spreading function must be 

performed. Completing the group theoretic convolution for this example, assuming a 



25 

channel scatter as seen in Figure 2.5, the overall spreading function estimate in 

Figure 2.6 is calculated. 

Time Scale 

Time Delay (s) 

Figure 2.5: Channel Spreading Function Estimate 

Time Scale 

1400 

Time Delay 

Figure 2.6: Overall Spreading Function Estimate for a 4 Highlight, 2 Multipath, 

Example. 
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As seen in figure 2.6, fading due to interactions between the highlights cause the 

result that all of the peaks are not at the same level. If there were no fading 

interactions, eight distinct peaks would be present. Through the use of high time- 

bandwidth (TW) product signals, this fading effect can be lessened, as the individual 

peaks are sharper hand have smaller main-lobe areas [30]. 

2.2 Estimator-Correlator Review 

In this section, a brief review of the WTD estimator-correlator (EC) [6,7,48,49] is 

provided. Although the thesis is not about the EC, the motivation behind the Kaiman 

filter scattering function updating algorithm lies within the domain of the EC. A 

major application of the work in the thesis is the WTD EC, and the WTD EC will be 

used in a few of the examples pertaining to performance analysis of the KF. 

In an active system, a known signal, f(t) is transmitted into a channel. It is reflected 

and received back at the transducer as r(t) with 

r(t) = y(t) + n(t) (2.10) 

Here, y(t) is the "total signal" containing all of the multipath and multihighlight 

components of the echo, and n(t) is colored non-stationary Gaussian reverberation. It 

is assumed that the "total signal" y(t) is again given by (2.7)[47]. Where w(x) is either 

the narrowband or wideband spreading function, d|Li(x) is the left invariant Haar 
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measure on either the Heisenberg (narrowband) or Affine (wideband) group G, U(x) 

is a unitary representation of the corresponding group, f(t) is the transmitted signal, 

and the vector x represents either (t,<|)) or (x,ß) where x is time delay, <|> is Doppler 

shift, and ß is time scale. [U(x)f(t)] is again given by the following 

[U(x)f(t)] = fit - v) em~T)       narrowband 

l    ft-A 
[U(x)f(t)] = -=f   wideband 

iß (2.11) ß 

Equation (2) is a weighted integral of all delayed and time-scaled replicas of the 

transmitted signal with the spreading function being the weight. This weighted 

integral can be used to model both continuously time-frequency/time-scaled spread 

signals or discretely distributed multipaths and highlights. The total signal model 

given by (2.6) can be derived from the physics of propagation and scattering from 

distributed targets. The delay-Doppler spreading function model has been widely 

used in radar astronomy, sonar, and multipath communication [76,77]. Of primary 

interest in this work is detection and characterization of scattering objects that have a 

rich and stochastic highlight structure. It is also significant that (2.7) is in the form of 

an inverse time-frequency/time-scale transform. This suggests that a natural 

implementation of wideband EC is the CWTD implementation. Next, the derivation 

of the CWTD EC is reviewed. 

The EC computes the detection statistic / using 
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l = (y,r)i <212> 
'Rn 

where y is the CME of y and <;*>R0 denotes inner product on the reproducing 

kernel Hilbert space (RKHS) whose non-stationary noise covariance function Ro(t,x) 

is the reproducing kernel for that Hilbert space. 

In the Gaussian case, CME estimates of y(t) can be obtained from the orthogonality 

principle [47] 

<y-y,r>H = 0 
(2.13) 

where <»,*>H denotes an inner product defined by 

<x,y>H = E[\x(t)y\t)dt] 
(2.14) 

For the multipath model of (2.1) 

<y,r>H = cf \\S{x,x')K(x,x'W{x'W{x) (2.15) 
GG' 

where 

K(x, x') = cf {U(x)f, U(x' )f)H (2.16) 
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is the reproducing kernel for the space spanned by <g,U(x')f> where Cf is the 

admissibility constant defined by (2.4). 

Equation (2.12) contains S(x,x') the inhomogeneous scattering function defined by 

S(x,x') = E{w(x)w*(x')} (2-17) 

The orthogonality condition (2.10) itself is satisfied if 

j>(0 = 1 \S(x,x')^r(z)Ql(v,z) [U(x')f(vj\*) 
GG' (2.18) 

dv dz\U(x)f{t)]dp(x')dfi{x) 

where Qi(v,z) is the inverse covariance kernel for the detection hypothesis Hi. That 

is 

J öi (v, z)Rx (z, t)dz = S(v -1) (2 19) 

and 
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Rl(z,t) = E[r(z)r (t)] (2.20) 

2.3.1 EC - Continuous & Discrete Representations 

In this thesis, both the discrete and continuous representations of the EC are used 

equivalently. In this section, the relationship between the two forms of the EC 

detection statistic are reviewed. 

It has been shown that from the log likelihood function the detection statistic in the 

form of (2.12) is obtained and that the signal estimate is an integral equation (2.6). 

By vectorizing the received data r, signal s, and noise n from equation (2.10) an 

equivalent discrete form of the EC can be formed as follows: 

Consider discrete data, 

r=y+n (H^ 

r = n (H0) 
(221) 

Where y is the signal vector containing all multipath and multihighlight components 

and n is the noise vector. 

The data covariance is given by 
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E{rrH) = ^-Ky>+Rnn 

^0 - Rnn 

(2.22) 

Assuming Gaussian signals and noise, the detection statistic is proportional to 

exrX-r^Ri'V) under Hi and exp^Ro^r) under Ho. Therefore, the detection statistic is 

given by 

l = rHml-R?)r (2.23) 

This can be written as 

l = rHR{\Rx -R0)Rölr 

= ((Rl-R0)Rl-
lr)HRölr 

= yHRölr (2.24) 

Where y is the conditional mean total signal estimate. This estimate is correlated 

with the optimally filtered data vector Ro"'r. 
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The matrix difference (Ri-Ro) is equivalent to the signal covariance Ryy. Since the 

signal and interference are uncorrelated, Ryy=E{yrH}=RSy and R^Efrr"} and the 

optimal signal estimate can be written as 

y = RwRrr
lr yrlvrr ' (2.25) 

D    ]?~^r 
yy   if 

Now to get back to the continuous representation, define the expansion 

x(t) = xts{t) 
(2.26) 

For a scalar process x(t), X is a random vector and £    is a deterministic vector of 

orthonormal functions that make up a complete orthonormal set. The inverse 

relationship is given by 

x = \x{t)s\t)dt <2"27) 

Orthonormality gives 
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js(u)£H(u) du = je (u)e\u) du = I (2-28) 

Where I is the identity matrix. The scalar representation of the signal vector is 

therefore 

y(t)=y{t)e(t) (229) 

= £t(t)RyyR;lr 

By orthonormality, 

itf= je(vy(v)Rjdv 

where 

Combining (2.29 ), (2.30 ) and (2.31) gives 

P(t) = W Wyys'ivW' OO^V (z))r(z)dxdv 

(2.30) 

r= \r{z)e\z)dz (2.31) 

(2.32) 
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2.3.2 EC - WTD Implementation 

The WTD implementation of the EC follows if the Frobenius-Shur-Godement 

theorem [36] is used to compute the inner product (2.12). Equation (2.12) can also be 

written in the form [7] 

l = ly(t)iiQ0(t,z)r(z)dzJdt 
(2.33) 

where Qo is the inverse covariance kernel for the detection hypothesis Ho (noise 

only) and 

r0(t) = \Q0(t,z)r(z)dz (234) 

similarly 

rx{t) = \Ql{t,z)r(z)dz 
(2.35) 

Thus, the detection statistic can be written as 

l = \y{t)rQ\t)dt (2.36) 
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Then, according the FSG theorem, 

«/(i^o> = J(MtfM/D (r*.P(*)f])'<W*) (2.37) 

by using equations (2.34), (2.35) and (2.37), (2.36) becomes 

/ = cf j| j S(x, x') W}r(x')dM(x')) {fV?r(x)f d»{x) 
G\G' 

(2.38) 

where 

W) r(x) = \\r{z)Qx (v, z)[U(x)f(v)]*dv 

= jrl(v)[U(x)f(v)Ydv 
(2.39) 

and 

Wj r(x) = jjr(z)QQ(v,z)[U(x)f(v)]*dv 

= h(v)[t/(*)/(v)]Vv 
(2.40) 



36 

For the wideband case, equations (2.39) and (2.40) are the weighted wavelet 

transforms of r(t) under the appropriate hypothesis (corresponding to Qo and Qi). The 

final result is 

l=jw(x)^r(x))*dju(x) 
G 

(2.41) 

with admissibility constant [36] 

Cf. | \mtdm 
-00 \CO\ 

(2.42) 

the mean square estimate of the spreading function w(x) given by 

w(x) = jS(x,x') W}r(x')d/i(x') (2.43) 

This estimate of the spreading function is important for target characterization. 

Equations (41) and (43) describe the wavelet transform domain implementation of the 

EC.   The processing, shown in Figure 1 is straight forward. The first step is to 

optimally filter [3] the data under the Ho and Hi hypothesis. Then, using the 
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transmitted signal replica as the mother wavelet, correlate the wavelet transform of 

the filter outputs. This generates generalized range/scale maps, of which the Hi 

filtered map is convolved with the generalized scattering function (a priori - from 

models). The output of this operation is then correlated with the Ho filtered map. For 

wide-sense stationary uncorrelated scattering (WSSUS) the correlation is coherent 

energy summation. However, if the WSSUS assumption is not made, and the 

generalized scattering function S(x,x') contains highlight correlation information, 

coherent highlight integration may be possible. 

2.4 Kaiman Filtering - A Brief Review 

In this section, the concepts involved in the development of the Kaiman filter are 

investigated. The topic is approached from the standpoint of model based signal 

processing. The purpose of this section is to provide the necessary background and 

references for the more complete derivation of the recursive scattering function 

estimator developed later in Chapter 4. 

The problem that the Kaiman filter has been developed to solve is to reconstruct 

estimates of a state, say x(t), from a set of noisy measurements y(t) [51]. There are 

many forms of the Kaiman filter [52-54], the predictor-corrector form [51] of the 

filter will be the focus. This allows a model-based approach to the signal processing. 

The major features of the Kaiman filter are presented in the next section. 
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2.4.1    The Kaiman Filter Predictor-Corrector Algorithm 

The Kaiman filter algorithm requires the use of several quantities that will be 

reviewed throughout this section. Referring to the algorithm in Figure 2.7, individual 

steps of the algorithm can be followed. First, at time t, the previously filtered 

estimate x(t-l|t-l) and error covariance P(t-l|t-l) exist. The goal is to make the best 

estimate of the current state based on the previous estimates (t-1 samples). This is the 

prediction phase of the algorithm. Using the state-space model, the state estimate 

x(t|t-l) and the error covariance P(t-l|t-l) are predicted. Once the prediction phase is 

completed, the innovations covariance Re and the Kaiman gain K(t) are calculated. 

When a measurement y(t) is available, the innovations, or new information [11,51,55] 

is determined. The old state estimate x(t-l|t-l) is used to form the new, or corrected, 

state x(t|t), and covariance P(t,t). The error, or innovation, is the difference between 

the measurement y(t|t-l) and the prediction. The innovation is weighted by the 

Kaiman gain to correct the old state estimate x(t|t-l). The error covariance is 

similarity corrected. Then, the algorithm is cycled at time t+1. Figure 2.7 depicts the 

entire algorithm [51]. 



39 

(        Initialize ) 

Prediction 

x(0|0), P(0|0) 

" 
Innovation 

e(t),R.{t) 

Measurement 
y(t) t -> t+1 

1' 

Gain 
K(t) 

" 
r* o Correction 

i{t\t),P(t\t) 

s^                  C.10              ^^ 

( Stop ) 

Figure 2.7 Kaiman Filtering Algorithm 

Candy [51] provides an example of the algorithm through two time steps which 

provides insight into the operation of the filter and the calculation of the individual 

quantities. The example is reproduced here.. 
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Example 4.1 This example illustrates the calculations performed in the algorithm in 

the above section given initial estimates. The calculations are carried out for times 

t=l and t=2. State noise in this example is zero. 

f = l Start Time 

jc(l|0) = ^(0)ic(0,0) 

P(l\0) = A(0)P(0\0)A'(0) 

Re(l) = C(l)P(\\0)C'(l) + Rv(l) 

^(i) = p(i|0)C(i)^;1(i) 
*(1) = ;K1)-C(i)jc(i|0) 

jc(l|l) = jc(l|0) + A-(l_g(l) 

P(l\l) = [I-K(l)C(l)]P(\\0) 

Estimate x(l|0) using state transition A 

Estimate error «»variance P using state 
transition A 

Calculate Innovations Covariance at t=l 
Using Measurement Matrix C 

Calculate Kaiman Gain K at t=l 
Use Measurement y at t=l to calculate 
innovations e 

Calculate Updated State Estimate at t=2 

Calculate Error Covariance Estimate at t=2 

t = 2 Increment Time 

je(211) = A(l)x(l,l) 

P(2\l) = A(l)P(l\\)A'(l) 

Re(2) = C(2)P(2\\)C'(2) + Rv(2) 

K(2) = P(2\1)C'(2)R;
1
(2) 

e(2) = y(2)-C(2)x(2\\) 

*(2|2) = jc(2|l) + £(2)e(2) 

P(2|2) = [/-£(2)C(2)]P(2|1) 

Estimate x(2|l) using state transition A 
Estimate error covariance P using state 
transition A 

Calculate Innovations Covariance at t=2 
Using Measurement Matrix C 

Calculate Kaiman Gain K at t=2 
Use Measurement y at t=2 to calculate 
innovations e 

Calculate Updated State Estimate at t=2 

Calculate Error Covariance Estimate at t=2 

This is simply a brief review of the operation of the Kaiman filter. Chapter 4 

provides a detailed derivation of the Kaiman filtering algorithm used as well as a 

detailed analysis of all of the quantities involved. In this problem tracking of the 
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Kinematic properties of a system using probing signals as the measurements of the 

state will be done. The state of the system will be derived as well the measurement 

equation.  The main focus will be on the problem of designing a signal that provides 

the resolution necessary for the Kaiman filter to track. Also discussed is how 

quantities which arise within the Kaiman filter derivation can be used to provide 

performance monitoring of the entire system. 

2.5  Application of the Target Scattering Function Algorithm in the WTD EC 

In this section the applicability of the Kaiman filtering algorithm in an adaptive 

model based signal processor, namely, the WTD EC is discussed. The WTD EC uses 

an estimate of the wideband spreading function of the target (and channel) in the 

calculation of the EC detection statistic. The output of our Kaiman filter will be an 

estimate of the target portion of the spreading function for use in the estimator branch 

of the EC. This is illustrated in Figure 2.8. 
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Wavelet Transform 
Target Area 

Input Signal 
-Signal 

EC Detection 
Statistic 

Figure 2.8: Application of Kaiman Filter to WTD EC 

In this case, an attempt to update the target spreading function estimate based on the 

kinematics of the problem would be done. The EC detector output would be 

maximized on a ping to ping basis, and provide performance monitoring of the 

overall system. 



Chapter 3 

ESTIMATION ERRORS - THE CRAMER-RAO LOWER BOUND 

3.1   Introduction 

In this chapter, the Cramer-Rao (C-R) bound [16,17] for the minimum variance of 

joint estimates on time-scale and time-delay is derived for wideband echoes that are 

processed with a wideband (wavelet transform) matched filter. The C-R bound on 

Doppler shift for narrowband signals is well known [16], but the extension to the more 

general case of high time-bandwidth signals and time-scale is not. The typical measure 

of resolution of a signal is the width at the -3dB points on a transmitted signal's auto- 

ambiguity function. This measure is meaningful, however, only in the absence of noise. 

When noise of any kind is present, the resolution of the signal is limited not only by the 

main lobe width (a function of time bandwidth product (TW)), but also by the signal to 

noise ratio. Therefore, in order to accurately speak of resolution, the C-R bound must be 

used, as it is a measure of the coupled effect of noise and main lobe width. 

3.2 The Auto-Ambiguity Function - Resolution 

Resolution is the property by which one can distinguish (in both time-scale and time- 

delay) between separate returns in a range-scale map. Since in this thesis, the detection 
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and estimation problem is under consideration, this is a good place to lay out the problem 

in context. 

3.3 The Detection and Estimation Problem - No Noise 

In this problem, a high resolution signal (large TW) is transmitted into a medium in 

which it is desired to resolve two independent point scatterers which are separated by a 

distance d (Figure 3.1) moving with normal velocities vl and v2. 

Transmitter/Receiver 
V1 

1—-I 

Figure 3.1: Problem Geometry 

As seen in Figure 3.1, the first object is a distance r from the transmitter/receiver (Tx/Rx). 

Both objects are moving with normal (toward or away from the Tx/Rx) velocities vl and 

v2. A high TW signal is transmitted into the medium (homogenous/infinite) and reflects 
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from the objects. This causes the total echo to contain two echoes each of which is time- 

scaled (compressed or expanded depending on the direction of the motion). Now, the 

data is match-filtered using the transmitted signal as the mother wavelet, a range - scale 

map of the echo (Figure 3.2) is produced. 

Time-Scale 

Range (m) 

Figure 3.2: Range-Scale Map 

where each of the peaks in the figure represents the delay and time-scale location of the 

individual scatterers. Now if the signal has less resolution and the scatterers are close 

together, as is seen in Figure 3.3, the location of the actual peak becomes increasingly 

ambiguous as the signal ambiguity function becomes less sharp. 
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Scale 

Delay 

Figure 3.3: Ambiguity Main Lobes Begin To Overlap 

As seen in Figure 3.3, when the resolution is low, the ability to distinguish individual 

scatterers in the range-scale plane is reduced. In Figure 3.4, it is seen that two scatterers 

that are closer in range are indistinguishable as the ambiguity functions overlap. 

Scale 

Delay 

Figure 3.4: Scatterers Become Indistinguishable 
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In summary, the higher the TW product, the smaller the main lobe area [6], thus 

increasing the ability to distinguish individual scatterers. The addition of noise in any 

form further complicates the ability to estimate the position of the scatterers in the time- 

scale plane. 

3.4  Detection and Estimation - Additive Noise 

Now the effects of adding noise of any kind to the problem are investigated. Plotting 

the ambiguity function for multiple delay hypothesis and for a single scale hypothesis s0, 

a plot seen in Figure 3.5 is obtained. 

Scale 

to 
Delay 

Figure 3.5: Ambiguity Function Without Noise for Scale Hypothesis so 
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Adding noise to the time-series that produced the ambiguity function has the effect that 

the actual delay (i.e., the delay to) is much more difficult to estimate (Figure 3.6).   The 

estimated delay in not equal to the actual peak. This effect is exaggerated at lower 

signal-to-noise ratios and broader ambiguity function main lobes. It is the bound on the 

variance of this estimate that is the desired quantity. This bound is called the Cramer- 

Rao lower bound [56]. 

x estimated 

Scale 

to Delay 

Figure 3.6: Ambiguity Function With Noise Added 

In summary, it is desired to calculate a bound on the variance of estimates that can be 

made on the location of a scatterer in the scale-delay plane. This bound, the C-R bound, 
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will include the coupled effects of ambiguity main lobe area and signal-to-noise ratio. 

This is a useful quantity for both signal design and detector performance analysis. 

3.5 C-R Lower Bound Derivation 

In this section the C-R bound starting with the general wideband representation of a 

received echo with noise added is derived. In order to simplify the derivation it is 

assumed that the noise is uncorrelated with the signal, that it is white, and is Gaussian 

distributed. 

3.5.1 Wideband Representation of the Echo 

Assuming that the scatterer is a slowly fluctuating point target moving with 

constant velocity through a homogenous, infinite medium. The echo from the 

scatterer received at the receiver (Figure 3.1) is modeled as [4,6,7,16] 

r(t) = JE~tbJ~sf{s{t - r)) + n(t) 
(3.1) 

here Et is the transmitted signal energy, b  is a zero mean, complex, Gaussian 

random variable, and E{|b2|}=2ab
2- n(t) is an independent, zero-mean, white, 

Gaussian process with covariance given by 



E[n(t)n(t)] = N0ö(t-u) 
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(3.2) 

From Equation (3.1), s and x are the non-random scale and delay parameters to be 

estimated and for which the C-R bound will be calculated. 

3.5.2    The Detector 

In order to continue the derivation, it is necessary to define the detector structure 

being used (i.e., define the detection statistic as a function of s and x). In this 

case, a wideband matched filter operation (wavelet transform) given by 

00 

L(s, T) = J r(t)4sf* (s(t - r))dt 
-00 

(3.3) 

is performed. Where L is the detection statistic, s is the hypothesized time scale, x 

is the hypothesized time delay and r(t) is given by (3.1). The next step is the 

derivation is to derive the likelihood function. This has been done in [16] and the 

result stated here 

In A(s, T) = J-_A_ Ji(5, If \ (3.4) 
N0 N0 + Er 

j^M2! 

Here N0 is the noise energy and Er is the total echo energy. 
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Having obtained equations (3.3) and (3.4), the next step is to investigate the 

Fisher information matrix [57,58]. 

3.5.3    The Fisher Information Matrix 

In order to estimate the non-random parameters s and T, the Fisher information 

matrix must first be derived. The lower bounds on the estimates (C-R bounds) are 

given by the diagonal components of the inverse of the Fisher information matrix. 

The Fisher information matrix is derived in detail in [16] the results are stated 

here. For a given likelihood function the elements of the information matrix are 

given by the following 

Jtj=-E a2lnA 
dctjdcij (3.5) 

Where InA is given by (3.4) and a* and Oj are s and x respectively. As these are 

non-random parameters, the expectation in (3.5) is over r(t) and n(t). Using (3.5) 

the individual elements of the information matrix are given by [56,57] 

Jn=-E dMnA 

dr2 
(3.6) 
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J22 ~ ~E 
d2lnA 

ds2 (3.7) 

J\l ~ «^21 ~ ~E 
d2lnA~ 

dsdr 

Inserting (3.4) into (3.6),(3.7), and (3.8) produces 

(3.8) 

Ju=-E 2c Re 
dL dL*     T d

2L* 
+ L- 

dr dr        dr2 (3.9) 

J22 ~ ~E 2c Re 
dL dL*    T d

2L* 
+ L- 

ds ds        ds2 (3.10) 

«^21 - «^12 - ~E 2c Re 
dL dL*     r d2L* 

+ L- 
ds dr        dsdr 

(3.11) 

where 
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C = 
N0 N0 + Ec 

(3.12) 

It is now necessary to evaluate each of the equations (3.9), (3.10), and (3.11) 

separately. As the algebra is intense, only the term Jn will be derived (Appendix 

A) in detail. The other terms have very similar derivations. 

The individual terms as given by (3.9), (3.10), and (3.11) with (3.3) substituted 

for L are given in final form as: 

Jn=s< 

2    7\ ( CO (3.13) 

J22 = -2cEr v   J   4      ' 
(3.14) 

As can be observed in equation (3.13), the Jn term is a function of mean squared 

bandwidth indicated by the bar and the J22 term is proportional to a quantity at, 

called the alpha moment [30].  By inverting these quantities, the C-R bounds on 

time-delay and time-scale are calculated. In the next section, illustrative 

examples of these quantities as a function of signal duration, bandwidth, and 

signal to noise ratio are given. 
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3.6 Examples of the C-R Lower Bound 

In this section, example calculations of the CRLB for time delay and time scale are 

presented. In order to see the effects of changing various transmitted signal parameters, a 

few simplifying assumptions are made here. The first major assumption is that the 

estimation errors of time-scale and time-delay are uncoupled [16]. In order for this to be 

true, the signal envelope must be real and the signal must be symmetric about the 

frequency axis [59]. Making these assumptions, only the Jn and J22 terms are needed to 

calculate the C-R bounds. This simplifies the calculations as the cross terms Ji2 are not 

needed any longer. It is a research issue to investigate further the signal design problem 

in terms of estimation error decoupling. The C-R bounds, making the above 

assumptions, can be written as [60]: 

var[r-f] = (2c£'r) -1 

n-i 
fr.,Y      fm\ CO 

\sj 

CO 

\sj 

(3.15) 

And 

\ar[s - s] = (2cE r) -1 An1 (cot)—+at 

-1-1 

(3.16) 

As expected, the bounds are functions of signal parameters as well as signal to noise 

ratio. The following sections contain examples of the CRLB for time-scale and time- 
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delay to illustrate the dependance on signal parameters. Also, it is well known that the 

alpha moment appearing in equation (3.16) above is not only a function of signal 

parameters, but also a function of the signal shape. The alpha moment is larger for 

signals which have their higher instantaneous frequency content located at the end points 

of the signal [61,62]. This has an effect on the CRLB, and therefore, two signal types 

will be used to illustrate the point. A VFM signal which has a time-frequency plot as 

given in Figure 3.7 and a roof-top FM (RTFM) which has a time-frequency plot as 

plotted in Figure 3.8 will be used for the examples to follow. 

Frequency ,800 

(Hz) 
1750 

1700 

1353 

1500 j i 

Figure 3.7: Time Frequency Plot for VFM Signal 
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Time 
Figure 3.8: Time Frequency Plot for Roof-Top Signal 
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3.6.1 CRLB for Time Delay 

In this section plots of the CRLB for time delay are given. These plots are only given 

for the VFM signal as the CRLB for time delay is independent of signal shape. It is also 

seen that the CRLB for time-delay is a function only of mean squared bandwidth and 

signal to noise ratio. Figure 3.8 is a plot of the CRLB for time delay as a function of 

mean squared bandwidth. 
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Figure 3.9: CRLB for Time Delay for Varying SNR as a Function of Bandwidth 

Figure 3.9 confirms the expectation raised in section 3.2, that is, as the SNR is decreased, 

progressively worse estimates on the time delay are made. Also, increased bandwidth 

can recover some of the loss due to signal to noise ratio, this is a positive argument for 

using wideband signals for estimation of range. Figure 3.9 shows that as the bandwidth 

is increased, the CRLB is lowered. This trend shows that for a fixed signal to noise ratio, 

statistically speaking, by using signals with the higher frequency components at the ends 

of the signal in time, better estimates of range can be made in the detection problem. 

How these progressively worse estimates affect the ability of the Kaiman filtering routine 

to converge is the subject of Chapter 5. 
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3.6.2 CRLB for Time-Scale 

In this section the more complex issue of the CRLB for time-scale estimation errors is 

investigated. In this case, the CRLB is not only determined by the transmitted signal 

parameters such as duration, bandwidth, and center frequency, but also on the alpha 

moment, which is itself a function of the signal shape [61-63]. This section will present 

examples that illustrate this fact. In this section, the CRLB for time-scale will be 

calculated for a variety of transmitted signal parameters and for the two signals 

envelopes: VFM and RTFM.   It is a simple matter to derive the alpha moment 

analytically for the VFM and RTFM using the equation [60, 61, 62] 

r 

at=-)t2(D2(t)dt (3-17) 
T _r 

2 

If the inverse of the alpha moment (which is proportional to CRLB) it is seen that, as 

expected, the CRLB for time scale is lower when the instantaneous frequency content is 

higher at the endpoints of the signal. Figure 3.10 is a plot of the CRLB for time-scale as 

a function of duration for the VFM and RTFM for equal mean square bandwidths of 1000 

Hz. 
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Figure 3.10: CRLB for VFM and RTFM vs. Duration 

As can be seen in Figure 3.10, the CRLB is lower for the VFM for the same mean 

squared bandwidth and durations. This indicates that better estimates can be made if the 

higher frequency components are pushed out to the ends of the signal (in time). 

However, as is seen in Figure 3.11, this effect is lessened as the total bandwidth gets 

much higher. 
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Figure 3.11: Time Scale CRLB for 5kHz Bandwidth VFM and RTFM 

3.7 Conclusions 

The CRLB for time-delay and time-scale for the case of wideband signals has been 

derived and their dependence on the transmitted signal's parameters have been 

investigated. As expected, it has been shown that as the effective duration is increased, 

the ability to estimate time-scale is increased. Also, as the mean squared bandwidth is 

increased, the ability to estimate time-delay is improved. It was shown that the CRLB for 

delay and scale can be related to the parameters of the transmitted signal and to the alpha 

moment. The alpha moment is a function of signal bandwidth as well as signal shape. 
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The important conclusion is that the CRLB for the variance on estimation errors made on 

time-scale and time-delay can be related to the time-bandwidth product of the transmitted 

signal. This is an important signal processing issue as it has been shown that processing 

gain (in the detection problem) is proportional to time-bandwidth product for point 

scatterers. The purpose of this derivation and analysis in terms of the overall thesis is 

that the CRLB for delay and scale dictates a minimum variance on the errors associated 

with estimating time-delay and time-scale. These quantities will be used in the next 

chapter in the form of a measurement equation in the Kaiman Filter. In the forthcoming 

development, the performance of the Kaiman filter will be shown to be tightly tied to the 

measurement error covariance matrix. As it will be shown, the elements within the 

measurement error covariance matrix are the variances predicted by the CRLB . This 

relationship is critical, as the best possible performance achievable in the Kaiman filter 

depends on (among other things) the CRLB for time-scale and time-delay. Having 

shown that the CRLB is tied to the transmitted signal parameters, a complete concept can 

be formed, tying realistic measurement quantities to expected Kaiman filter estimator 

performance. 



Chapter 4 

Wavelet Domain Scattering Function Predictor/Corrector Kaiman 
Filtering 

4.1 Introduction 

As discussed in Chapter 1, two approaches to updating the a priori scattering 

function information are investigated in the thesis. The first, to be discussed in this 

chapter is the direct recursive estimation of the spreading function based on spreading 

function estimates using a Kaiman filter. Upon completion of the derivation it was 

found that the complexity of the results (i.e., four dimensional state transition and 

measurement equations) pointed to approaching the problem using a simplified 

approach. The simplified approach is the tracking of peak locations within the 

spreading function using an extended Kaiman filter. This approach is more easily 

implemented, and can be used to update spreading function estimates by updating the 

scattering function found in Equation (2.40). The simplified approach is introduced 

at the end of Chapter 4, and in implemented in Chapter 5. 

This chapter contains the derivation and analysis of the Kaiman filtering approach 

to scattering function recursive estimation and updating. Presented here are the 

results of the derivation of the Kaiman filter for WTD scattering function estimation 

and updating based on the innovations approach [11,51]. The parameters of the 

Kaiman filter (e.g., the criterion and quality) are analyzed in terms of the WTD 

observables (e.g., spreading and scattering functions) and the performance parameters 

of the Kaiman filter are compared to and analyzed with the performance measures of 
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the WTD EC. It is shown that relationships exist between the scalar figure of merit 

derived in Chapter 2 and the criterion of the Kaiman filter (i.e. the trace of the error 

covariance). It is also shown that the EC detection statistic error function is related to 

the Kaiman filter error covariance. 

4.2 Innovations Approach to the Kaiman Filter 

In this section, the Kaiman filter for recursive scattering function updating using the 

innovations approach outlined by Kailath [11] is derived. The general introductory 

theory of the Kaiman filter operation was given in Section 2.2. 

4.2.1 State Equation 

The first relationship required in the derivation of the Kaiman filter is referred 

to as the state equation [51]. Here, a state equation in terms of the spreading 

function will be given as 

w(x) = A{x - \)w(x -1) + u(x -1) (4.1) 

Here, x is given as xeR2 or x=[x s] where x is the variable of time delay and s 

is the variable of time-scale. The state equation gives the relationship 

between the x-1 (previous scale and delay) and the current scale and delay x. 

The relationship (1) therefore, gives the relationship of the new spreading 

function w(x) to the previous spreading function w(x-l) where the (x-1) 
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portion of the expression indicates the previous s and t (i.e. if x=[s x] then x- 

l=[st-i Tt-i]. This is accomplished by a known variable A called the state 

transition matrix. The state transition matrix is an appropriately dimensioned 

matrix which is derived from the physics of the problem (see Section 5.2 and 

5.3 for specific examples). For the purposes of the derivation it is sufficient to 

state that the state equation (1) models the system under investigation in 

general. A is an appropriately dimensioned matrix called the state transition 

matrix. Here, q is the state noise which is assumed to be zero mean and white 

with covariance Rq and q is uncorrelated with w, the spreading function. 

The next step in the derivation is to arrive at a measurement equation. 

4.2.2 The Measurement Equation 

In order to begin the Kaiman filter derivation, it is first necessary to find (for our 

EC processing structure) the proper representation of the measurement equation of 

the general form 

wm(x) = C(x)w0(x) + n(x) (4.2) 

here wa is the observed spreading function, C is a matrix operating on the desired 

variable, and n is a noise process. The subscript m denotes the fact that this is an 
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observed (measured) variable and the subscript o denotes that this is the desired 

variable or the variable to be estimated from the observations. 

As seen in Section 2.3 in the outline of the WTD EC, the measurement 

equation under reverberation limited conditions is given by: 

r(t) = y(t) + n(t) (4 3) 

where r(t) is the received data, y(t)is the signal with reverberation, and n is a colored 

noise process. Recall Section 2.1 that y(t) for the EC is given by: 

y(t) = \w(x)[U(x)f(t)]dM(x) (44) 
G 

where w(x) is the spreading function of Section 2.3, U(x) is a unitary operator 

operating on either the Heisenberg (narrowband) or affine (wideband) group, f(t) is 

the transmitted signal and ja(x) is the left invariant Haar measure for the appropriate 

group. 

Substituting (4.4) into (4.3) and taking the wavelet transform of both sides: 

jr(t)[U(x)f(t)]*dt = J|w(x') [U(x')f(t)] [U(x)f(t)f dM(x') dt + jn(t)[U(x)f(t)]*dt   (4 5) 

In the first integral on the right hand side the time dependent terms can be grouped 

together in the time integral pulled into the G integral resulting in 
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\r{t)[U(x)f{t)Ut = jw(x') |f[t/(x)/(0] [U(x)f(t)]' dt \i^x) + jn(t)[U(x)f(t)]'dt(^) 

Recognizing that the time integration in the first term on the right hand side of (4.6) 

represents the reproducing Kernel which spans the space of signals admissible f(t), 

(4.6) can be written as 

*„(*) = ROO K(*>*)   4"(*') + \n(t)[U(x)f(t)Ut (4.7) 

Noting that the second term is the wavelet transform of the received noise, for brevity 

where the subscript wf denotes the wavelet transform with f(t) as the mother wavelet. 

The measurement equation is beginning to take shape. It is now necessary to show 

that the integral operator (really a convolution integral) can be written as a matrix 

operator. In general, an operator can be represented as a matrix operator with respect 

to a set of basis functions [64]. For this convolution integral, the matrix operator 

representation is valid. 

Using a simple one dimensional example to illustrate the method, an example of 

converting a convolution integral to a convolution sum is given.   Starting with a 

simple form (for illustrative purposes) with a convolution integral [65] 

y(t)= jh(T)x(t-r)dt (49) 
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Now, for this example x(t) is a general time series and h(t) is the impulse response of 

a linear filter. Equation (4.9) can be written as a convolution sum for discrete data as 

y{n)=^x[k]h[n-k] 
k=-P 

(4.10) 

where n is the time index and k is the delay index. To show that this can be written as 

a matrix operator, simply write Y=y[n] n=l,2,3... and X=x[n] n=l,2,3, and show 

that for windowed (i.e. finite duration) signals: 

y[2] 

An] 

h[l-(-p)] h(l-(-p+l) - h[l-(p) 

h[2-(-p) 

h\n-{-p) ... h[n-p] 

JC[1] 

42] 

x[n] 

(4.11) 

By carrying out the, multiplication it is seen that each term in the vector y[n] is 

obtained from the matrix multiplication in (4.11) (which results in the sum 4.10) for 

each term. So in matrix notation (4.11) can be written as 

Y = hX (4.12) 

By an analogous derivation for the 2 dimensional convolution integral 

Wy(Xl) 

Wy(X2) 

w«(*,) 

KM) 
KM) 

K(xj,x[) 

K(xt,x[)' 

Kix^x'j) 

wx(x[) 

wx(x'2) 

wx(x\) 

(4.13) 
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Therefore, the integral operator can be written as the matrix operator K(x,x') and it 

follows that the measurement equation is in the correct form (4.2) as 

v»V = K(x,x') w^x') + n^(x) (4 14) 

This completes the derivation of the measurement equation for our wideband 

spreading function. Equation (4.14) coupled with (4.1) enables the continuation of 

the innovations approach of the derivation as given by Kailath [11]. 

4.2.3 Kaiman Filter Derivation - Innovations Approach 

The problem is posed here as 

Given a noisy set of measurements wm(i) i=l ,2,3... X (X being the current state X=[s 

x] characterized by (4.13), find the linear minimum (error) variance estimate of the 

state characterized by (4.1). That is, find the best estimate of w0(X) given the 

measurement data up to time (time delay/time-scale pair) x where Wa(x)=[wm(l) 

wm(2) wm(x')]. Here WJx) is the set of observations of the spreading function. 

The minimum (error) variance criterion is given by 

J(X\x) = E$'0(X)w0(X)\Wm(x)} 
(4.15) 
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or using the standard conditional mean notation and noting that ~ denotes estimate 

w0(X\x) = E{w0(X)\Wm(x)} (4.16) 

which states that the estimate of the true spreading function at the "time" given data 

up to X is equal to the expected value of the true spreading function conditioned on 

the measurement of the spreading function. Thus, the criterion is written as 

J(X | x) = E{w'0(X | JC)w0(X | x) = trace{P{X\ x))  (4.17) 

Where p  is the estimated error covariance. 

There are three special cases of the state estimation problem: 

1. The 1-step predicted estimate. 

2. The filtered estimate. 

3. The fixed lag smoothed estimate. 

The "filtered" estimate $ (JC | JC) is of interest here as this is the form which gives 

recursive estimates in a prediction/correction form. It is given by 

w0(x\x) = E{w0(x) | Wm (x)} „ j g. 

First, the dynamic form on the estimator is chosen and the estimator is constrained to 

be linear. 
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In the dynamic case, the linear estimator [51] is 

Wm{N) = RWoWm(N)Km~l(N)Km = ^Mv(ämm (4.19) 

where: 

Wm{N) = [w\\)-M/{N)^ (419a) 

Is the batch minimum variance (MV) spreading function estimate and 

(4.19b) 
Wm=[wm(l)...wm(N)]> 

is the batch measurement and KMV is the Kaiman gain. 

This is a "batch" minimum variance solution to the state estimation problem, since all 

p-vector data {wm(l)... wm(N)} are processed in one batch. However, for the 

purposes of the thesis, a recursive solution to the estimation problem of the form: 

Wnew ~ Wold + KEnew (4.20) 

is needed. 

In order to achieve the recursive solution, it is necessary to transform the covariance 

matrix   K>m to be block diagonal, since 
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E{wm(l)wm(l)}    -    E{wm(\)wm (N)} 

E{wm(N)wJ(\)}   -   E{wm(N)w^(N)} 

^(1,1)   -   Km(lN) 

i?w (N,l)   -   i?w (JV.tf) 

(4.21) 

Having Km be block diagonal implies that all of the off-diagonal matrices 

Ky (ij) = °  for i*j. This in turn implies that all of the wm(x) must be uncorrelated 

with or orthogonal to w'm(x). 

Therefore, a sequence of independent p-vectors (e(x)} can be constructed such that 

E{e(x)e'(k)} = 0   forx*k 

The sequence e(x) can be constructed using the orthogonality property 

(4.22) 

[wm(x) - E{wm(x) \wm{x- l)}]lWm(x -1) (4.23) 

Defining the innovation or new information as: 

e(x) = wm(x)-w0(x\x-l) (4.24) 

with the orthogonality property that 

cov(wm(X),e(x)] = 0   forX<x-\ (4.25) 

Since e(x) is a time-uncorrelated p-vector sequence 
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Re(X) = 
Re(\)   -   Re(N) 

(4.26) 

for each R^i) e Rpxp. 

The correlated measurement vector can be transformed into an uncorrelated 

innovation vector though a linear transformation, say L, given by, 

W=Le       LeR pnxpn 
(4.27) 

where L is a non-singular transformation matrix and e:=[e'(l)... e'(N)]'. 

Multiplying (4.26) by its transpose and take the expected value to obtain 

Rw(N) = LRe(N)L' (4.28) 

now, inverting: 

'\-l D-U\r\r-l R-'w.QD^VVipQDC (4.29) 

Similarly, 
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R^SK) = KAK)L' 
(4.30) 

Now, substitute these results into (4.19) to obtain 

KMVW = K,„y(K)Ky (K)Ky = [KAä)L'][(LTRe(ä)n(Le) 
(4.31) 

Simplifying yields 

KMV(X) = KM)K\K)e (4.31a) 

Since the e(x) are time uncorrelated, Re(N) is block diagonal. From the orthogonality 

properties of the innovations, e, it can be shown that K^iHD   is lower-block 

triangular, that is: 

KÄN) = Rwxe(x>x) 
0 

for 
X>1 

x = i 

x<i 
(4.32) 

substituting into (4.31) 

»WW: 

",(#,#) 

ÄW,*(U) 

RWxe(N,\)   -   R^e(N,N) 

R;\\) 0 

o R;\N) 

e(l)' 

e(N) 

(4.33) 

Any row of (4.32) can be written as 



74 

wx(x,x) = "LKAx>i)Re~l(i)e(i) (434) 
' o 

If the last term of the sum in (4.33) is extracted, from (4.18) 

wx(xyx) = %RwJx,tyi,{i)e(i) + RwJxtx)R;\x)e(x) 
i=l (4.35a) 

wd 

Or 

Wnew = wx(x,x) = w(x | x -1) + K(x)e(x) (4.35b) 

Where  K(X) = RwAx)(x,X)R;
1
 = P(X\X- 1)C'(X)R;\X)   is the Kaiman weight, C is the 

measurement matrix, and P{x \x-\)   is the updated error covariance estimate. 

Recall that 

*„(* | x -1) = K(x, x'K(x | x -1) (4.36) 

Using the measurement equation (4.14) and (4.24) the innovations sequence can be 

decomposed as 

e(x) = wm(x) - K(x,x')w0(x | * -1) = K(x,x')[w0(x) -w0(x\x-l)] + Wfn{x)    (4.37) 

e(x) = K(x,x')wJx | x -1) + Wfn(x) 
(4.38) 
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Consider the innovations covariance Re(x) using the expression, 

Re = K(x,x')P(x| x-\)K(x,x') + /^ (439) 

and 

/L. = E{w0(x)e'(x)} = E{w0(x)[K(x, x^w0(x \x-l) + W «(*)]'} 

or 

^, = £K(x)iv0(x | x - !)}£'(*, *') (4.40) 

Using the definition of w0 and substituting for w0 

R„öe=E{[io(x\x-l) + w0(x\x-\)]w0(x\x-l)}K(X,x') (4.41) 

So that 

*».. = E{[w0(x I * " 1)»0(* I * " !)]}£ (*, *') + E{[w0(x \x-\)w0(x\x- !)]}£ («, x')] (4.4 la) 

From the orthogonality property of the estimation error for dynamic variables, that is 

E{(Wm(X))w'0(x | * -1)} = 0       forX < x -1 (4.42) 

The first term in (4.41) is zero because of (4.42) therefore (4.41) becomes 
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RWoe=P(x\x-\)K(x,x') (4.43) 

Therefore, the Kaiman gain is 

K(x) = RWoe(X)R;\x) = P(x\x- l)K(x,x')R;l(x) ^ M) 

Before the corrected state estimate can be calculated, the predicted estimate is needed, 

that is: 

.       . (4-45) Wold = w0(x\x-l) = E{w0(x) | Wm(x -1)} 

Employing the state space model (4.1) and from the linearity properties of the 

conditional expectation, 

wx(x \x-l) = E{A(x - l)wx(x -1)} (4.46) 

write (4.46) as 

w(x | x -1) = A(x - 1)VV(JC -11 JC -1) 
(4.47) 

or 

Kid = "ei* \x-l) = A(x- \)w0(x -11 x -1) (4.48) 

The error covariance is given by 
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P(x\x-1) = A(x - l)?(x -l\x- V)A\x -1) (4-50) 

The corrected covariance p(x _ \ i x _ \j is calculated using the corrected estimation 

error and (4.35a) to obtain 

w(x | x) = w0(x) - w0(x | x) = w0(x) - w0(x I x -1) - K(x)e(x) (4.5 la) 

or 

w(x|x) = i?0(*|jf-l)-^(x)e(jc) (4.51b) 

Using (4.51b) the required covariance is calculated: 

P(x | x) = P(x | x -1) - *(*)£{e(x)>?;(x | x -1)} - £{Wo(x | x - l)e'(*)}*'(*) 
+ £(x)i^(x)r(x) t452) 

From the orthogonality property  E{w0 (JC | JC — l)e'(x)} = 0 the error covariance is 

now given by: 

P(x \x) = P(x\x-l)-K(x)K(x,x')P(x | x-1)-P(x | x- 1)£(JC,X')K'(X) 

+ K(x)Re(x)K'(x) (453) 

Factoring  p(x \x-\)  fr°m tne fifSt tw0 terms and using the expression (4.44) for 

K(x) in the last term 

P(x | x) = [/-K(x)K(x,x')\P(x\x-\)-P(x\x-l)r(x,x')K'(x) (4 54) 

+ P(x | *- l)K'(x,x')R;lRe(x)K'(x) 
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Observing that the last two terms cancel the error covariance is given by 

P(x | JC) = [/ - K(x)K(x,x')]P(x | JC -1) 
(4.55) 

This completes the derivation of the Kaiman filter algorithm for the wideband 

spreading function recursive updating. 

4.3 Analysis of Kaiman Filter Derivation Results 

In this section the major results of the previous section are discussed.   First the 

criterion, the mean square scattering function error will be analyzed. Second, the 

dimensions and possible uses of these quantities in a signal processing structure will 

be presented and an explanation of how the quantities are interrelated is given. Table 

4.1 contains the results of the Kaiman filter derivation for recursive scattering 

updating. 



79 

Table 4.1 Summary of the Kaiman Filter for Recursive Scattering Function 
Estimation and Updating. 

Prediction 

w0(x\x-l) = A(x-i)w0(x-l) + q(x-\)        (State Prediction) 

P(x | x -1) = A(x - l)?(x -11 JC -\)Ä 0 -1)      (Covariance Prediction) 

Innovation 

e(x) = wm(x) - wm(x | x -1) = wm(x) - K(x, x')wm(x \x-l)   (Innovation) 

Re = K(x,x')P(x\x-i)K (x,x') + Rw0^x) (InnovationCovariance) 

Gain 

K{x) = P(x | x -1)£ (x, x' )R;1      (Kaiman Gain/Weight) 

Correction 

w0(x I x) = w0(x \x-\) + K(x)e(x) (State Correction) 

P{x | x) = [I-K(x)K(x,x')]P(x\x-\)     (Covariance Correction) 

Initial Conditions 

H^(0|0) P(0\0) 

The rest of this chapter will be dedicated to the analysis of the quantities outlined in 

Table 4.1.1. All of the quantities outlined, however, most of our focus will be on the 

correction terms, the innovations, and the Kaiman gain. 
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4.3.1   Prediction Terms 

In this section the prediction relationships presented in Table 4.1 are discussed. The 

state prediction is simply the state equation (4.1). This equation gives the relationship 

between the values of the predicted spreading function at the current (x,s) conditioned 

on (x,s) at the last time t-1 (what, in the derivation, are referred to as x and x-1 

respectively). The predicted spreading function at these two "times" are related by 

the state transition matrix A. In words, the new estimate of the spreading function is 

the old estimate transformed by the state transition matrix A. A itself is derived 

directly from the physics of the problem (See Chapter 5). The state transition matrix 

in the WTD related the new scale and delay to the old is based on the motion of 

objects in the medium. 

The second item, the error covariance P , given in Table 4.1 has the same kind of 

relationship between new and old values as the state prediction via the state transition 

matrix. In this case the new value of the error covariance is the old value transformed 

using A as given in Table 4.1 

The assumptions made in the derivation pertaining to the prediction parts of the 

algorithm are as follows: 

1. A is a known matrix. 

2. The additive process noise is zero-mean and spectrally white with correlation 

matrix defined by: 
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,tf/„^   JÖK*)     x = x' E{q(x)q"(x')} = ^ , (4.56) 
u x ^ x 

A3.2 Innovations 

The innovations approach [55] is the heart of the derivation. In this section, the 

properties of the innovations or "new data" [51] and the innovations relationship to 

the scattering function updating algorithm are discussed. Also, the innovations 

sequence itself ,e(x), as well as the innovations covariance, Re(x) will be discussed. 

The first property used in the derivation of the Kaiman Scattering Function Algorithm 

is that the Mxl vector e(x) represents the new information in the observed data Wy(x). 

The innovations process has the following properties [66]: 

1.   The innovations process e(x), associated with the observed data wy(x) at "time" x 

is orthogonal to all past observations e(l) e(2)...e(x-l) given by 

E{e(k)Wm (*)} = o        l < k < {x -1) (4 57) 

2.   The innovations process e(x) consists of a sequence of vector random variables 

that are orthogonal to each other: 

(4.58) 
E{e(k)e'(k)} = 0 1 < Ar < (x -1) 
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3.   The sequence of vector random variables Wm(x). and the sequence of vector 

random variables e(x) have a one-to-one correspondence. This means that one 

can be obtained from the other by means of linear stable operators without the 

loss of information. The sequence of vector random variables defining the 

innovations process is obtained using a Gram-Schmidt orthogonalization 

procedure [67]. 

As seen in Table 4.1, the transition "matrix", A, and the measurement "matrix", K are 

actually a tensors. These matrices can be transformed to a more recognizable form 

size by realizing what these tensor notations mean and by using a lexiographic 

ordering scheme [68-70].   This can be done to transform the tensor-matrix form to a 

matrix vector form without the loss of information. However, the size of the resulting 

transformation matrix can be problematic for implementation. 

In the next section, an extended Kaiman filter which tracks the peak locations within 

the spreading function is introduced for the case in which direct measurements of the 

kinematic quantities are not available. In this derivation only the peak locations 

within the spreading function are tracked. Time-scale and time-delay are estimated 

from a delay-scale map. However, it is desired to track state variables that differ 

from the measurement variables. 
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4.4 Extended Kaiman Filter Derivation 

In this section, the extended Kaiman filter [71] to track a single highlight moving in a 

circular motion is derived. The state variable is a vector quantity containing the 

velocity vn and angle 9 as shown in Figure 4.1. 

M v° 

O   Tx/Rx 

Scatterer 

Figure 4.1: Circular Motion Geometry 

It is assumed that the highlight has an initial position given by the vector 

Xo 
V0 

Which are uncertain by the amounts av and ere. The true highlight "position" moves 

randomly about its unknown nominal location with standard deviations av and ae. 

The highlight is illuminated with a pulse and the time-scale and time-delay of the 



84 

return are measured using a wideband matched filter. This measurement has 

associated with it error due noise and an inherent error in the ability of the transmitted 

pulse to estimate the true time-delay and time-scale. This was discussed extensively 

in Chapter 3 in the form of the Cramer-Rao lower bound. The estimation errors on 

time-delay and time-scale are given by standard deviations aT and CTS. The derivation 

of the extended Kaiman Filter (EKF) is begun by first introducing the state equation 

Xk = Axk_x + Wk_x (4.59) 

where Wk-i is the state noise which is white, Gaussian, zero mean, and has a 

known variance. The matrix A is a state transmission matrix which relates past to 

future values of the state vector which is given as 

*h (4.60) 

Next a measurement equation is needed as in the previous sections, however, here, 

the state variables cannot be observed directly as the measured quantities are 

functions of the observed quantities. The measurement equation is given by 

*k =Hk(*k) + Vk (4.61) 

where 2k   is the measurement vector, Hk (xk ) is the measurement as a function 

of the state variables and Vk =[VS Ve]' the measurement noise, which is white, 
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Gaussian, zero mean, and has a diagonal covariance Rk with diagonal elements 

defined by the CRLB derived in Chapter 3. Our measurement equation is therefore 

given in terms of the kinematic variables, and observables as 

s(kj 

m 
*-vB(*) 1 

c + vn 

2dsin0(k) 
c 

+ 
Ye. 

(4.62) 

Now, to start the iteration, initial estimates of the state and the error covariance are 

needed. These are given by 

X0 — 
0« 

Pn = 
cr  Vn 0 

0      a2eQ 

First, this initial estimate is projected ahead to the first measurement 

(4.63) 

Now, using the state transition matrix derived in Section 5.3, the estimate of the 

variance on the estimate can be calculated. This is given as 

(4.64) 

PX{-) = AQPX (4.65) 

now, the update of the state variable estimate is given by 



xl(+) = xl(-) + Kl[Zl-Hl(xl)] 

which when 4.62 and 4.64 are substituted becomes 
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(4.66) 

A 

Ok 

\(~) 

**(-) 
+ £", 

sik 

Tk- 

c + vk(-) 
c-v. 

2d 
—sin0(-) 

(4.67) 

Now the Kaiman gain Kk is calculated. In the linear case it is a function of Hk, the 

measurement matrix. 

Using the vector Taylor series expansion 

    fiLT 

H(x + A3c) = H(x) + Ax + Higher Order Terms (4.68) 
dx 

Having made the assumption of negligible acceleration, the higher order terms are 

dropped. This is only possible if the observation interval is short enough to ensure 

second order effects are negligible. Dropping the higher order terms 

Sic 
(4.69) 

where 

8H_ 

dx 
= H (4.70) 
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and 

H,j = 
BH, 

Are the elements of the new measurement matrix which is given by 

H = 

8H*     dH* dHl 

dxx dx2 ax, 
8H2 dW2 • 

dx{ dx2 

• 

dx{ 

• * •           • 

•         • 

dHt 

dxj 

(4.71) 

Which in our case is a 2x2 matrix for the time-scale as a function of velocity and time 

delay as a function of the angle 9. 

The iteration can now be completed by calculating the Kaiman gain Kk 

Kk = Pk (-)//[ (xk (-))[Hk (xk (-))Pk (-)//[ (xk (-)) + Rk TK4n) 

and the error covariance is given by 
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Pk(+) = [I-KkHk(x(-Wk(-) (4.73) 

This completes the iteration of the extended or linearized Kaiman filter. This is the 

form of the algorithm used in the remainder of the thesis to implement the examples. 

4.5 Conclusions 

In this chapter, a Kaiman filter for updating and estimating wideband spreading 

functions using the innovations approach has been calculated. Through the use of the 

extended or linearized Kaiman filter, the algorithm that tracks the kinematics of the 

problem using measurements of time-delay and time scale in a wideband range-scale 

map is derived. In the next chapter, the extended Kaiman filter will be implemented 

for objects undergoing various types of motion. The ability of the Kaiman filter to 

maintain a track on the peak locations within the spreading function of the object will 

be investigated for signals with varying bandwidths and durations. 



Chapter 5 

Recursive Kaiman Scattering Function Estimation - Implementation 

5.1 Introduction 

This chapter introduces, via two examples, the implementation of the recursive 

scattering function updating algorithm. The first example will be of two rough spheres 

attached by a non-scattering rod. The spheres and rod rotate as a single object in the 

plane which contains the transmitter/receiver. The second example consists of a set of 

point scatterers linearly arranged and moving with a constant velocity and with only 

transverse motion with respect to the observer. For both of these examples, these state 

and measurement Equations (4.1) and (4.2) will be calculated explicitly, and the effects 

of transmitted signal parameters on KF performance will be presented and explored in 

detail. 

5.2 Example 1: Two Rotating Rough Spheres 

For this example, the geometry of the scatterers is as shown in Figure 5.1. 

/^     ""N   ^_^--Q     Sphere2 

Spherel   O^^^—* Q 

\~)    Observer 
Figure 5.1: Example 1 Geometry 
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The system consists of two rough spheres connected by a non-reflecting rod which is 

rotating with angular frequency ©. The system will be illuminated with a high resolution 

VFM pulse with various durations and bandwidths which correspond to the measurement 

error variance bounds (CRLB) given in Table 5.1. 

Table 5.1: Transmitted Signal Parameters 

Signal Duration (s) Bandwidth (Hz) var[5 - s] var[r - r] 

VFM1 .25 1000 le-1 le-1 

VFM2 .5 1000 le-2 le-1 

VFM3 1 1000 le-3 le-1 

VFM5 1 1 le-1 le-1 

VFM6 1 100 le-1 le-2 

VFM7 1 1000 le-1 le-3 

It is also known that the signal to noise ratio affects the CRLB for both time-scale and 

time delay as discussed in Chapter 3. However, the final effect on the Kaiman filter is 

the same as changing the transmitted signal parameters. The final effect being that the 

convergence as a function of measurement error is guided by the error covariance 

regardless of the effects. However, it should be noted that the signal to noise ratio's 

effect on the CRLB is multiplicative as discussed in Chapter 3, and therefore is an 

important factor.  As most realizable systems are reverberation or peak transmitted 

power limited, it is the signal parameters over which the system designer has the best 
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control, and therefore present the more interesting (and useful) results of the Kaiman 

filter response as a function of transmitted signal parameters. 

The pulse has sufficient time-bandwidth product to resolve the rough spheres in time and 

frequency. By taking the auto-wavelet transform of the signal, the auto-ambiguity 

function of the SEE pulse is produced. This is shown in Figure 5.3. 

t203 

I0C0 - - 

SCO - - 

Mag. 
aoo " ~ 

403 - - 

200 - - 

J *>AVftW>!W»~i  ■; 

1000 1503 

Delay (Samples) 

Mag 

Time-Scale (Samples) 

Figure 5.3: Auto-Ambiguity Function of a Is 1000Hz VFM 

5.3 Derivation of the State Transition Matrix 

In this section, the equation of state for the system presented in section 5.2 is derived. 

By considering a few assumptions about the system. First, neglecting the effects of 

acceleration. In this, it is assumed that the system is rotating slowly enough to neglect 

angular acceleration, but fast enough to produce a measurable scaling of the return. 

Second, a reference point is chosen such that when the rod connecting the spheres is 
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perpendicular to the line of sight to the sensor, the relative delay is zero. The scale at this 

point is a maximum due to the fact that the component of velocity of the spheres is 

parallel to the line of sight, making it a maximum, thus producing the maximum scale. 

When the rod connecting the spheres is parallel to the line of sight, the component of 

tangential velocity parallel to the line of sight is zero - producing zero scale. Here the 

delay (+ and -) is a maximum. Figure 5.4 shows the details. 

1000m 

SONAR 

/       / 

c p 
/      \v 18m 

/     / 

y = — cos(&0+cot) 

r = — sin(#0 + cat) 

Figure 5.4 Scale and Delay as a Function of Position or Time 
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Now knowing each scale and delay as a function of time, the state transition matrix is 

derived. 

In the x-y plane, it is known [72] that the coordinate transformation, in this case a 

rotation, is given by the following: 

cos#   -sin# 

sin 0    cos# 
old 

(5.1) 

where 9=9o+cot. 

The trick is to derive a similar expression for the new scale and delay. This is done by 

writing down the following equation: 

= [G] 
old 

(5.2) 

Where G is a 2x2 matrix. The following are also used: 

s     = ■ new 

1-^ 
C . d 
v;   v = -cos(90+cot) 

1-- 
c 

^w = -(/•+ -sin(0o+6tf)) 
c       2 

1 + - d 
sou =—:S   v = -cos(0o) 

1 —— l 

c 

roW=-(>" + -sin(#0)) 
c        2 

(5.3a) 

(5.3b) 

(5.3c) 

(5.3d) 



Using (5.3a-d) in 5.2 and solving for G 
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1 + - 
adcos(a>t) 

2(c-a)—cos(a>t0)) 

1 + - 
dsin(cot) 

2(r + -sin(G)t0)) 
old 

(5.4) 

Equation (5.4) is the form needed for the state transition matrix. In order to show that 

this is the correct state transition matrix, the actual and noiseless state predicted scales 

and delays are plotted in Figure 5.4 

Scale 

l.Oi -*~—^ 
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• 

1.015 v 

..01 ■ 

\  ■ 

\ 
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0 042 0.04 OOS 0.09 0.1 0.12 0.14 O.iB 

Delay 

0 0.02 004 0.03 003 0.1 0.12 0.14 0.10 

Time Time 

Figure 5.5: Expected and Predicted Values of Scale and Delay vs. Time 

Figure 5.5 shows that the state transition matrix produces the desired results, producing 

the new scale and delay at time t, given the measurement at time t-1 - meaning the 
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previous measurement. Now, for the purposes of the simulation the state equation is 

used: 

■wTW_i(x)^A{t,t-\)wTA(x) 

(5.5) 

This gives the value of the spreading function at time T conditioned on the previous 

value at T-l. The state noise is considered to be zero mean, white, Gaussian noise with a 

known covariance Rw. 

5.4 Rough Rotating Spheres - Data Creation Algorithm 

In this section, the algorithm used to produce the data necessary for the examples in 

this chapter is discussed. It is desired to track time-scale and time-delay, and therefore 

two data sets are produced. First, the time-scale and time-delay for the model portion of 

the algorithm is created. Second, the measurements of the actual system (i.e. the data) 

are calculated. Here, the noisy measurements are produced that are statistically correct 

having variances of white Gaussian noise added which correspond to the predicted CRLB 

for the transmitted signal used. Not only are the measurements noise, but inaccuracies in 

the model are introduced via the measurements. The idea here is that the model does not 

accurately represent the actual system. For example, in the examples to follow, the 

distance, d, between the spheres is larger for the simulated measurement data that for the 

model. In this way, the ability of the Kaiman filter to track measured data is tested. 

Also, the point is found at which inaccuracies in the measurements (as a function of 

transmitted signal duration and bandwidth) inhibit the ability of the Kaiman filter to 

estimate the actual time-delay and time-scale as a function of time. Figures 5.6 and 5.7 
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give the plots of time-scale and time-delay for the measured and model portions of the 

data creation algorithm. 

Theta (rad)°* 

Time (s) 

Figure 5.6: Theta as a function of time for Measurement and Model 
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Figure 5.7: Velocity as a function of time for Measurement and Model 
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Changing only the distance between centers, significant differences in the model and 

measurement quantities can be produced for both time-delay and time-scale (theta and 

velocity). 

By using the above algorithm, various aspects of tracking, detection, and signal 

design can be related. This is accomplished by observing that the TW improves 

processing gain [4] (lowering measurement inaccuracies). Work in Chapter 3 showed 

that longer durations and higher bandwidths lower the CRLB for estimates that can be 

made on time-delay and time-scale. This, in turn, as illustrated in the following section, 

affects the ability of the Kaiman filter to track. 

5.5 Rotating Spheres - Results 

The results of the processing for the rotating spheres example which was discussed 

above are now given. First, the results for time-delay measurements which correspond to 

the angle theta (as seen in Figure 5.8-5.10) are given. 

It is desired to show the effect of changing the mean-squared bandwidth of the 

transmitted signal on the Kaiman filter's ability to track. Beginning with Figure 5.8 

which contains plots of three quantities vs. time. These are the model theta, the actual 

(measured) theta, and the updated or filtered theta, the quantity of interest. 
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Figure 5.8: Theta Vs. Time: Transmitted Signal VFM 1 (Duration Is, BW 1000 Hz) 
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Figure 5.9: Theta Vs. Time: Transmitted Signal VFM 1 (Duration Is, BW 100 Hz) 
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Theta (rad) 

Time (s) 
Figure 5.10: Theta Vs. Time: Transmitted Signal VFM 1 (Duration Is, BW 1 Hz) 

As seen from the above series of plots, the bandwidth of the signal determines the 

convergence. Figure 5.8 shows that the filtered estimates reflect what is going on in the 

actual kinematics. However, as the bandwidth is decreased, the filter follows the model 

completely and no longer tracks the actual kinematics. This is entirely due to the 

effective bandwidth of the VFM signal, as all other parameters have been kept constant. 

The series 5.5-5.7 is interpreted as follows. First the higher bandwidth VFM has enough 

resolution to accurately track the spheres as they rotate as seen in Figure 5.8. Second, 

Figure 5.8 shows that a lOx reduction in bandwidth causes the filter to diverge (i.e. ignore 

the measurements). Lastly when the bandwidth is reduced essentially to a tone, the noise 

of the measurements is very large and at first fluctuates wildly, until the gain is so small 

that the measurements are ignored completely. 
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5.6 Linear Highlight Motion - Results 

In this section, the results of Kaiman filtering algorithm operating on a different 

kinematic system are presented. In this system, a highlight in linear motion. For the 

simplicity of illustration, the results for the single highlight are given. 

5.6.1   Linear Motion - State Transition Matrix Derivation 

In this section, the state transition matrix for a single highlight, moving with constant 

velocity v0 in a straight line is derived. The geometry for this scenario is given in Figure 

5.8. 

d 

0- 

Figure 5.11. Linear Highlight Motion Geometry 
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The state transition matrix is derived as before in Section 5.3. However, in this instance, 

the normal velocity is constant and therefore An=l. The quantity to track which changes 

with time is the relative delay. This is given by the standard geometric/trigonometric 

relationships. The result for the state transition matrix is 

new 

1 0 
0    vo(^ + 1)sin^o 

■A old 
(5.6) 

where x0 is the one way delay time from the transmitter/receiver to the highlight at xo and 

90 is the angle the trajectory the highlight makes with a perpendicular to the line of sight. 

This example differs from the previous example in that the extended Kaiman filter for 

the delay is not necessary. Here delay appears as both a measured and modelled 

parameter. This changes only one quantity in the Kaiman filter derivation, which is the 

element of H22. Here, H22 =1 since the measured quantity is simply the quantity to track. 

For this example, all of the parameters used in the first example are also used in this 

example. The signals used are the same, with changes in duration and in bandwidth. 

The algorithm for production of data is the same, however the parameter changed to 

produce model vs. measured data is the angle 9o. This again causes the modeled velocity 

(normal) and delay as a function of time to differ from the measured. 
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5.6.2   Linear Highlight Motion, Velocity Tracking 

This section presents the results for the velocity tracking portion of the simulation. 

Three results are presented. First, given in Figure 5.12 a plot containing three curves. 

These are: in green, the filtered output, red is the actual trajectory, blue is the modeled 

normal velocity. In this case the measurement accuracy is such that the Kaiman filter 

tracks immediately to the data. 
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Figure 5.12: Velocity vs. Time Transmitted Signal: VFM 1 
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The next plot, Figure 5.13, shows how the filter begins to lose the track as the 

measurement error is increased. 
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Figure 5.13: Velocity vs. Time: Transmitted Signal: VFM2 

The last plot shows how the filter rejects the new data and tracks to the model. 
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Figure 5.14: Velocity vs. Time: Transmitted Signal: VFM3 
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5.6.3   Linear Highlight Motion: Delay (Range) Tracking 

In this section the results of the delay portion of the simulation are given. Again, the 

three plots given correspond to the signals given in Table 5.2. It is seen that as the 

bandwidth is increased, for a fixed SNR, the ability of the Kaiman filter to track the delay 

can be directly related to the transmitted signal's bandwidth. In Figure 5.14 it is seen that 

the Kaiman filter tracks to the received data. This is due to the fact that the measurement 

error is very small, and therefore, the filter "believes" the data. 

Range (m) 
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70 SO 90 100 
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Figure 5.15: Range vs. Time, Transmitted Signal: VFM4 
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Figure 5.16: Range vs. Time, Transmitted Signal VFM5 

Figure 5.16 shows that the Kaiman filter tracks to the data even though the measurement 

errors are beginning to get high. The filter finally breaks down and begins to track to the 

model in Figure 5.17. 
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Figure 5.17: Range vs. Time, Transmitted Signal VFM5 

5.7 Performance Monitoring 

In this section, a method of determining the performance of the Kaiman filter is 

introduced. This method includes the monitoring of the spectrum of the innovations 

sequence. The innovations sequence was discussed in detail in Chapter 4. It is known 

from this discussion, that for the optimal estimator [51] the innovations sequence is 

white. In this section, the results of calculating the innovations sequence for the sphere 

moving in circular motion are presented. For this example, plots of the Kaiman filter 

output for the velocity and for the angle theta are given. In the example chosen, the 
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Kaiman filter is able to track the true velocity, however, the delay portion of the filter 

does not converge to the true angle. This is shown in Figure 5.18. 
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Figure 5.18. Velocity and Angle Kaiman Filter Output, Model, and True 
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Figure 5.19: Innovations Spectrum for Optimum and Sub-Optimum Kaiman Filters 
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From the above Figure 5.19, it is seen that the "whiteness" of the spectrum of the 

innovations sequence is a good indicator as to the operation of the Kaiman filter. One 

can imagine a recursive model updating algorithm being incorporated into the state 

equation portion of the tracker in order to optimize the Kaiman filter in terms of 

broadening the spectrum of the innovations sequence and thus optimizing the Kaiman 

filter. 

5.8 Conclusions 

The above observations lead to the conclusion that the transmitted signal's 

parameters, i.e. duration, bandwidth, and even shape (as this too affects the CRLB as 

shown in Chapter 3) can affect the ability to track the highlights in time-scale and time- 

delay. It has been shown that the Kaiman tracking algorithm is easily reconfigured for 

different Kinematic scenarios. The main point of this work is to show that the issues of 

signal design, detection, and tracking can be intimately related. The above analysis 

shows that the theoretical calculations of the Cramer -Rao lower bound on the variance 

of the estimates that can be made have a direct impact on the Kaiman filters ability to 

converge to the actual scenario and to balance the model and measurement portions of the 

tracking algorithm. The above examples have shown that a model based 

detection/tracking algorithm can be designed for which there exist observables (i.e., 

innovations and Kaiman Gain) which provide a direct measure of the performance of the 

tracker. 



CHAPTER 6 

Summary, Conclusions and Further Research 

6.1 Summary of Results 

The primary focus of this thesis has been to derive, implement and investigate a recursive 

algorithm, based on a model based Kaiman filtering approach, to estimate and update the 

location of peaks in the wideband spreading function which correspond to the kinematic 

properties of an object. In this, primarily interest has been in the physical variables of 

position and velocity with the actual observables being time-scale and time-delay in a 

range-scale map produced by a wideband matched filter. Several original contributions 

were made in the completion of this task. 

The primary contributions made in this thesis are: 

• Derivation of the multidimensional Kaiman filter for total spreading function 

updating and estimation. 

• Reduction of the dimensionality of the above derivation to handle updating 

and estimation of the peak locations in a range-scale map. 

• Relating the state variables to the measured quantities in the extended Kaiman 

filter derivation. 

• Derivation of the Cramer - Rao lower bound for time-scale and time-delay for 

the wideband signal model and wideband detector. 

• Implementation of the Kaiman filter for spreading function updating and 

executing illustrative examples. 
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•   Provide a theoretical and experimental (through simulation) common thread 

which begins with the transmitted signal design, ambiguity properties of the 

transmitted signal and the estimation properties of the signal including the 

effects of noise (CRLB) and connects these properties to the eventual 

convergence issues of the extended or linearized Kaiman filter. 

The thesis began by introducing the necessary background for development of the 

Kaiman filtering algorithm. This included a cursory review of wavelet transforms, 

Kaiman filtering, and applications of the output of our filter to model based signal 

processors in the form of the wavelet transform estimator-correlator. 

Then, using the slowly fluctuating point target signal model, the Cramer-Rao lower 

bound on the estimation errors for time-scale and time-delay for wideband transmitted 

signals was derived. This contribution is important as this relates transmitted signal 

properties such as alpha moment, envelope shape in the time-frequency plane, bandwidth, 

and duration, to variances on errors associated with making estimates on time-delay and 

time-scale using a wideband matched filter detector. 

Having the relationships discussed in the previous paragraph, the Kaiman filter which 

tracks the kinematic properties of the system based on the measurements (estimates) 

made on time-delay and time-scale using the wideband probing signal can be discussed. 

Within the derivation of the Kaiman filter a measurement equation becomes an important 

quantity. In this case a matrix form of the wideband matched filter is the measurement. 
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Associated with the measurement equation, is a quantity referred to as the measurement 

error, this measurement error is assumed to be zero mean, Gaussian, and white with a 

known variance, namely, the Cramer-Rao lower bound is used. In this way, the 

transmitted signal parameters are related to the errors associated with the measurements, 

these errors can then be related to the ability to track the kinematic parameters of the 

physical system using the Kaiman filter. It should also be mentioned that the parameters 

of the detection process, such as signal to noise ratio also appear in the Cramer-Rao lower 

bound. 

Following the derivation of the total wideband spreading function predictor-corrector 

version of the Kaiman filter, the problem is reduced form a tensor-matrix problem to a 

matrix-vector problem by using a lexiographic ordering technique. In this way, an 

extended Kaiman filter that tracks only the highlights of interest (peaks in the range-scale 

map which are local phenomena for which the CRLB is valid). In this way state 

equations which predict the kinematics of multiple highlights can be derived, thus, 

reducing the dimensionality of the problem. In this way, a model updated state equation 

is used with a wideband matched filter measurement equation to predict kinematic 

properties based on the past measurements. 

Once the extended Kaiman filtering algorithm was derived, a computer 

implementation/simulation was made. Using the simulation, two data sets were 

produced. The first data set corresponded to the model. The second set corresponded to 

the physical system. These were intentionally made to be different to test the ability of 
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the Kaiman filter to track the physical system even though the model did not accurately 

reflect the physical processes. In other words, the ability of the Kaiman filter to balance 

the accuracy of the measured data to the expected values predicted by the model (state 

equation) was tested. In this way, it could be shown that the signals with wider 

bandwidth produces lower CRLB's on time-delay, and thus allowed us to have better 

estimates on time-delay. This in turn allowed the Kaiman filter to better track the 

physical position of the scatterer. Also, it was shown that longer duration signals 

produced lower CRLB's on time-scale. This in turn showed that the accuracy of 

estimates on time-scale could be better "believed" by the Kaiman filter. This in turn was 

used to show that the Kaiman filter could better track the true velocity of the scatterer. 

Interestingly, plotting curves of the CRLB for delay and scale showed that signal to noise 

ratio and duration or bandwidth could be "traded off' in the sense that if a lower SNR 

exists, a higher bandwidth or longer duration signal can be used to overcome the 

shortcoming. Figure 6.1 illustrated the topics covered and their interrelation. Using the 

above framework, each of the blocks in Figure 6.1 illustrates a starting point for further 

research. This is the topic of the next section. 
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Figure 6.1: Outline of Topics Covered and Their Interrelationship 

6.2 Recommendations For Further Research 

In this thesis several questions which are stand alone topics for further research have 

arisen.   In this section, avenues for pursuing these topics are discussed. 

In Chapter 3,  CRLB's for time-delay and time-scale were derived. Examples for the 

uncoupled estimated by making assumptions on the shape of the signal, and by using a 

real signal were produced. One important topic for further research is to do an exhaustive 

study of the full CRLB for any signal. This will involve the more difficult to interpret 
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cross term J12. As this is an important signal design issue, an extensive parametric study 

should be completed to show how the transmitted signal parameters affect coupled 

estimates. 

Next, the Kaiman filter should be implemented for a larger number of highlights for a 

more realistic object should be investigated. This should include an exhaustive study of 

the tuning parameters for tracking the highlight structure of a complex object. Included 

in this study should be a study of the robustness of the approach, as well as a study of the 

effects of errors in the initial estimates should be investigated. 

Stability issues should also be investigated along with the issue of efficient 

implementation for a larger number of highlights. Bierman [73] has extensively 

investigated the problem of efficient implementations for Kaiman filtering routines. 

Lastly, the cases for non-white and/or non-Gaussian measurement and state noises should 

be investigated. In this case, the noise in the measurements should include reverberation 

terms. This in itself is an important and self contained research topic, namely, deriving 

the CRLB for time-delay and time-scale under reverberation limited conditions. 

In the larger picture it would be desirable to further, in a fundamental sense, the 

multidimensional issues raised in Chapter 4.  Remembering that in Chapter 4, it was 

shown that the state equation and measurement equations contain four dimensional 

matrix multiplications. Mathematics, specifically tensor analysis coupled with operator 
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theory should be investigated deeply to gain better understanding of the relationships 

between these tensor/matrix operations and operator theory. In the case of the state 

equation, it was shown that each sub-matrix operating on a state variable was a state 

transition ofthat variable. The tensor relationship in the measurement equation is far less 

clear. Usually, to dispense with the higher dimensionality, assumptions such as wide- 

sense-stationary -uncorrelated scattering are invoked. Better mathematical 

understanding of these mechanisms may allow the relaxation of some of these 

assumptions and provide a more general solution to the wideband problems at hand. 

Further, work completed here should be used to highlight the importance algorithms for 

multi-feature/highlight object tracking. Future research should investigate the use of 

learning algorithms for application to model based signal processing. This would enable 

systems to learn from the environment and change their own operating parameters to 

better interact with the environment. These would be truly intelligent systems. In the 

future, autonomous systems should be developed to apply learning algorithms to update 

statistical models. Applications would include image tracking, dynamic, real-time, 

medical imaging displays, high resolution radar and sonar, and intelligent vision systems 

for industrial robots. The ideas begun in this thesis, if taken to their ultimate 

development would enable robotic systems to create a "mental image" of an object and 

track its motion based on the robot's "knowledge" of kinematics (i.e., range of possible 

motion). Using the kinematics in combination with the ability to follow object features 

through rotations and translations (i.e., various aspects over time) provides a robust 

tracking ability for future detection/estimation systems. 
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APPENDIX A 

Derivation of the Jn Term of the Fisher Information Matrix 

In this section a derivation of the Jn term of the information matrix is provided in 

order to illustrate the methods used in the derivation of all of the components. 

Beginning with the equation for the Jn term from Chapter 3 

Ju=-E 2c Re 
dL dL*     r d2L* 

+ L- 
dr dr        dr2 

(A.1) 

and the detector 

L(s,T)=]r(t)4~sf\s(t-T))dt 
-oo 

also needed is the echo model for r(t) as given by 

(A.2) 

r(t) = b^[U(x)f(t)] + n(t) (A3) 
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where Et is the transmitted energy and b is a random variable, white, Gaussian 

distributed, and zero mean. Also, n(t) is a zero-mean,white, Gaussian randon variable. 

Here 

[U(x)f(t)] = ^f(S(t-T)) 
(A.4) 

Substituting A(3)into (A.2), inserting the results into (A. 1) and taking the prescribed 

derivatives 

•Ai = 2c ,*  d * d 
2a2

bEtH[U(x)f(t)][U(x)f(u)] ^-[U(x)f(t)] ^-[U(x)f(u)]dtdu 
dt dr 

+ [2cjj N0S(t - u))JL[U(x)f(t)]* JL[U(x)f(u)]dtdu 
dz or 

(A.5) 

+ 2c 2cr2
bEt l\[U(x)f(t)][U(x)f(u)]*[U(x)f(t)f ±-[U(x)f(u)]dt du 

dr 

+ 2c 
* d4 

N0 ft S(t - u)[U(x)f(u)] -^r[U(x)f(u)]dt du 
dr 
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Now, the second and 4th term in (A. 5) cancel as we notice that 

[U(x)f(u)]*-^T[U(x)f(u)] =-±[U(x)f(t)f -f[U(x)f(u)] (A.6) 
dr dr dr 

If it is assumed that 

l[U(x)f(t)dt = l 
(A.7) 

With the 2   and 4  terms in (A. 5 accounted for, we are left with 

•/n=4cc^£,Re[ 

oo 

J[tf(*)/(0—[U(x)f(t)]*dt 
dr 

d 

+ 

JP/W/W] T-j[U(x)f(t)]dt 
-oo dr 

(A.8) 

Now, to reduce the first term in (A.8), we use Parsevals Relation to change to the 

frequency domain 

00      00 

J   J 4~sf{s{t-z))e-jmdt 
—00   —00 

-1* 

dr 
]4sf(s(t-T))e~Ja*dt 

-co 

da> (A.9) 

Using the substitutions, 

x = s(t -1) (A. 10) 
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Integrate Equation (A. 10) to obtain 

1  -Mir s I J \- F 

-oo   \SJ 
F f-1 

s 
(A.11) 

Which is, 

— \2 2        /^ 
= 5 

CO 

(A. 12) 

Now, turning our attention to the second term, it is seen that following the same 

procedure, that is using Parsevals relation and making the same substitution using (A. 10) 

r —2 2 Jn=co   -co (A. 13) 

Which is the same as for the narrow band case, this tells us that the CRLB for time scale 

is inversely proportional to the mean squared bandwidth. 
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