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Wave Equation Solution for Electromagnetic Field Incident on 

Planar Conducting Arrays 

Peter Loschialpo 

Abstract-A  new wave equation solution is presented for 

analyzing planar periodic patch or aperture arrays having 

complex conductivity with an arbitrary distribution. The 

approach extends prior developments in photonic band-gap 

theory by including the conductivity mechanism. The wave 

equation is written in the form Schrödinger's equation. 

Solutions are obtained in the spectral domain for the 

radiated field in terms of a summation of plane waves. The 

method provides valuable physical insights not readily 

obtainable using conventional solutions for periodic arrays. 

Incident and radiated fields are related in a single 

mathematical expression. This expression shows how each 

radiated field mode is coupled to the others via mutual 

capacitive and inductive terms. The theory may be readily 

extended to multiple layers. 

I. INTRODUCTION 

Due to their wealth of applications, two-dimensional, 

planar, periodic conducting arrays have received considerable 

attention [1-9]. They have recently been used in the design 

Manuscript approved May 18,1999. 
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of reflectors for lightweight spacecraft antennas[8]. The 

design exploits resonances in order to separate multiple, 

closely separated frequency bands. Accurate predictions in 

the presence of grating lobes is necessary for design of 

frequency scanning antennas [9] which are designed to 

efficiently couple energy into the first order grating lobe. 

These periodic structures may also be used as filters or 

polarizers. They can be applied over a wide range of the 

electromagnetic spectrum, from the visible to the microwave 

band. 

The typical approach to analyzing such structures, 

reviewed in detail by Mittra [2] and Chan [3],, uses the 

electric field integral equation (EFIE) relating the incident 

electric field to the current density in the conducting 

patches. Using method of moments techniques, current density 

is expanded as a sum of basis functions and it's coefficients 

are found by the solution of a matrix equation. The field 

radiated by the patches is subsequently calculated from the 

current distribution. In a similar approach, Usoff [6] and 

Munk [7] treated the current array as a sum of infinitesimal 

current filaments. These current filaments are written in a 

matrix equation as a function of the voltage induced on the 

filaments by the incident electric field. After a matrix 

inversion to solve for the currents, the electric field 

radiated by the array is calculated from the current. 



Conductivity is assumed to be constant within a patch for 

these approaches. 

A different method is described which offers 

potentially valuable new physical insights as well as 

accurate predictions. In a similar manner used to investigate 

photonic devices [10-11], the wave equation is written in a 

form analogous to Schrödinger's equation. In this case, the 

planar array has a periodically varying distribution of 

conductive patterns. The complex conductivity, or surface 

admittance, is expanded as a sum of exponential basis 

functions. Patterns may have an arbitrary shape and 

conductivity distribution, continuous or discrete, provided 

enough modes are included. This enhances design flexibility. 

Expressing the radiated fields as a sum of plane waves, a 

solution is derived in the spectral domain consistent with 

boundary conditions at the array and the surrounding 

dielectric regions. The solution relates the incident and 

radiated fields in a single mathematical expression, with the 

field modes coupled to each other by terms which may be 

identified as capacitive and inductive. This enables a direct 

examination of the strength of the interaction between field 

modes. It can enable a designer to more efficiently couple 

more energy into a particular mode of interest. The theory is 

extendible to multiple layers in a straightforward fashion, 

using the generalized scattering matrix approach. 



The method of analysis is discussed in detail in Section 

II for a conducting planar array imbedded in a multilayered 

dielectric medium. A plane wave is incident to the dielectric 

stack at an arbitrary direction. The derived matrix equation 

can be solved by matrix inversion for the radiated field 

modes. These are then used to calculate transmission and 

reflection due to the dielectric stack containing the array. 

Validation measurements, made for array patterns on a single 

layer dielectric are discussed in section III. 

II. THEORETICAL ANALYSIS 

The analysis of the interaction of a planar periodic 

array of conducting shapes with an incident electromagnetic 

wave is in investigated through a wave equation in the form 

of Schrödinger's equation, used in the development of 

photonic band-gap theory. The complex admittance distribution 

leads to a matrix solution which is more complicated than 

that for the photonic band-gap theory. Field modes are 

coupled to on another by capacitive and inductive terms 

containing the Fourier transform coefficients of the 

admittance. 

Begin with a thin, planar array of conducting elements. 

The elements lie in the plane z = zL  and repeat periodically 

with distances dx  and dy . The repeating elements may have any 



shape and admittance distribution (see Fig. la). Figure lb 

shows this array imbedded in a dielectric slab " m" having a 

uniform scalar permittivity, Em. Slab "m" is one of a series 

of M-l slabs. Free space surrounds multilayered dielectric on 

both sides. Subregions of slab "m" on the left and right side 

of the conducting array are identified as "a"  and "b", 

respectively. 

The wave equation for the electric field in any of the 

dielectric regions can be written as 

-V2E + V(V • E) - i(o\i~J = 0)2fioeE . (1) 

In the above equation, CO  is angular frequency, \IO  is the 

free-space magnetic permeability, J  is the current density, 

and E is the total vector electric field. MKS units are used. 

Harmonic time dependence is assumed for all fields and 

currents, so E(r,t) = E(r)e~l(0t. Because the conducting elements 

are infinitesimally thin, the z  component of current density, 

J3,   is zero. The x  and y  components are given by Ohm's Law 

written in the form: 

J^x^=—^5—• (2) 
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Here ö(z~zL)  is the dirac delta function and conductivity can 

be identified as S(z-zL)/ Rs(x,y). Rs(x,y)  is the surface 

impedance in the z = zL  plane of the array. Note the similarity 

of Eq.s (1-2) with the wave equation used in photonic band- 

gap theory [10-11]. The periodically varying permittivity 

distribution is analogous to the conductivity in Eq.(2). 

The electric field is next examined in detail for 

dielectric region "m".  Subscripts w m"  which apply to the 

field components in this region are not written, though are 

implicitly understood. Each vector component of the field may 

be written as the sum of an "incident" field, E,(r), and a 

"radiated" field, x¥l
ab(r),   due to the array currents. 

£i(r) = Ei(r) + X"(r)   (i   = 1, 2, 3 ) (3) 

Subscripts " a"  and " b"  apply to the two subregions of 

dielectric slab "m"  on either side of the array. The 

subscript i  =1, 2, 3 refers to the three vector components 

JC, y,   and z. 

The incident field is assumed to be a plane wave. It is 

written as 

E,(r) = (Ei+e+ik^iz+ZL) + E^^-^e^r _ (4) 



In Eq. (4), kT  is the component of the wave propagation 

vector parallel to the array. It is given by kT = klx + k2y.  The 

component perpendicular to the array is given by 

koj = \ßl-k?-k% ,   where ßl = sm((o/c)2  and the free space speed 

of light is given by c. 

The form for the radiated field components for the two 

subregions " a   " and " b   ■ is found by noting previous work 

[7]. Munk showed that the field radiated by a periodic array 

of linear current elements can be written as a sum of plane 

waves. The same is true for any current distribution which 

can be expressed as a sum of linear current elements. The x 

and y  components of the radiated field are then written as: 

mo (7) = y w        +W-V + Yf  e-*c,<^y<*r-ö).r (5a) 
X1,2VV  ZJ\    G(l,2)+ G(l,2)- J 

C 

Wb f7s _ Y(wb    /^'(Z+Zi) -i- w"    e-'^
(z-Zi)y^-c)-? (5b) 

*l,2\r>-ZJ
K

     G(l,2)+ 0(1,2)- ' G(l,2)+ 
G 

G  is the reciprocal lattice vector of the array. It is 

given by G = GiX + G2y    and its components are G1>2 = 27tnl2 Idxy, 

where n12 = 0, ±1, ±2, ... The summation over G   is taken over 

both components G, and G2 . The component of the propagation 

vector perpendicular to the array for these radiated modes 

is: 
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köj=)ßl-(k1-Gl)
2-(k2-G2)

2 (6) 

The incident field coefficients in Eq. (4) are related 

by the reflection coefficients at the z = zm  boundary. This 

allows Eg. (4) to be written in terms of the coefficients for 

the negative traveling wave alone. 

E,,2(r) = (E1>2_V2) + ^E^y^^-^e^ (7) 

W*) s e"h'{Z~ZL) + Ro(l,2)-e
+i^Z+ZL'2Zm) (8) 

i^(12)_ and R09_  are the reflection coefficients (copolarization 

and cross polarization) at the zm  dielectric boundary for the 

X  and y     incident field components. The coefficients, E^- in 

Eq. (7) are the input variables to the final solution. 

Equations similar to (7) and (8)  apply to the field in 

subregion nb"  radiated by the array. 

w*>a e'ikö^ZL)+Rö^yikö/z+ZL~2zm) (io) 
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R and R-      are the reflection coefficients at the z = zm 
G(l,2)- G®- 

boundary which relate the negative to the positive traveling 

modes. 

Equations analogous to the radiated field in subregion 

nb"  also apply to the field in subregion na"  radiated by the 

array. In this case, Rö{12)+  and Rö<s+  are the reflection 

coefficients at the z = zm+l  boundary which relate the positive 

to the negative traveling radiated modes. 

M,2V; Z-lK TC(1.2)+V'C(1,2)    G®+ G(2,l)+ ' 

c      (z) = e
+ikö^-z'-)+R.      e-'W^-

2^'> (12) 

The above reflection coefficients for the X  and y     field 

components of the incident and radiated fields are related to 

the well-known reflection coefficients for a multi-layer 

dielectric parallel and perpendicular to the plane of 

incidence by: 

_^u(fe1-G1)
2+/g1|(Ä:2-G2r (13a) 

_(R,l-RJ(kl-Gl)(k2-G2) 

*»*   (A.-G.f + ^-G,)2 (13b) 
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Coefficients for the radiated fields W-        and Y-   on 
G(l,2)+ G(I,2)- 

either side of the array are related by using the boundary 

condition that the transverse electric field is continuous 

across the lattice. 

wb     = n w     + Y    w 11 A \ 
G(l,2)-     C(l,2) C(I,2)+  ^G(2,l) C(2,l)+ V14) 

The dielectric internal reflection factors 11-  and Y-      are 
G(l,2)        AG(2,1) 

for notational convenience and are defined below in Eq.s 

(15a-b). 

°M~ SöS^Ö2(zL)-R^_e^ (15b) 

The constant aöm =k^3(zL ~zm)  is the phase shift for a given 

mode away from the array. Equations (9), (11), and (14) allow 

the field radiated by the array to be expressed by a single 

pair of field amplitude coefficients , Y?  and *¥-    ,   in 
G1+ G2+ 

region "m" on either side of the array. 
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To derive a matrix equation for the radiated field 

amplitude coefficients, *F?J+ and Yf2+, the incident and 

radiated fields given by Eq.s (7), (9), (11), and.(14) are 

substituted into Eq. (1). The resulting equation is then 

integrated term-by-term over z  from zL-A to zL + A, where A 

is a vanishingly small number. The nonvanishing terms due to 

the discontinuity at the array lead to an equation which can 

be solved to obtain the desired radiated field amplitude 

coefficients. The method is outlined below. 

The integral of the first term in Eq. (1) is 

r*%*-*p d¥^(jr) 

* 

(16) 
zL-A 

After some algebra, the integral is written in the form 

zt+A 

Jv^=C£vw^+^^>^- (iv) 
%-A O 

The dielectric reflection-based coefficients  in Eq.    (17)   are 

defined as 

-2>tt«_..x   .   ,-, ,* 2i«, r*,„=<1-1W    ^> + nöo,2)<1-iW*   *>-WW«   fc (18a) 

r®     -_p     p~2ia&-«-n       R     e2UXe" + Y      (l-R-      e2i"öm). (18b) 

-11- 



The second term of the wave equation is evaluated by- 

consideration of Gauss's law, V»E = p/e, and the continuity 

equation, V»J = —£-. These lead to 
dt 

Q)£\ ax     ay 
(19) 

Current density components are related to the transverse 

field and surface resistivity by Eq. (2). Since the surface 

admittance of the array, Ys(x,y) = 1/Rs(x,y),   is a periodic 

function, it can be expanded as a sum of exponential basis 

functions. 

^(^y) = ZFöe"'Ö'*r" (2°) 
& 

Equation (2) is substituted into Eq. (19). Both surface 

admittance and the radiated field components are expressed as 

a sum of the exponential basis functions. The result, after 

integrating across the array over z, is 

12- 



Zl+A 

j fv(v.E)i *=-EEyöi^-Gu)[(5;^-G;)£A^)) 

+(*,, - Gu - C^2)[(i(*y - Gj - G^a
öjCÖJ(zL)) (21) 

+((*, -Gl-G^2++(k2-G2-G^a
öl+)Rö0+e-2ia^] 

In a similar way, the integral of third term of the wave 

equation is found by substitution of Eq. (2). 

z'-A G   & (22) 

+(W      C      (7^ + R     Wa      e-2to^.V,(ö+ö>n/r'? 

Because the transverse components of the electric field 

are continuous across the array, the integral of the fourth 

term of the wave equation is zero. 

The z-integrated wave equation is arrived at by adding 

Eq.s (17), (21), and (22) for the individual terms. 

Summations in the resulting equation are carried out over 

both G  and G'.   To obtain a form which can be solved for the 

radiated field amplitudes, the resultant equation is first 

multiplied by -iei(cr~ki),?, then integrated over the x  -   y  plane. 

The exponential basis functions are orthogonal, allowing for 
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one of the summations to vanish. A general equation for the 

radiated electric field amplitudes is found. 

G,3 

+((*, -G^ + (k2 - G2)E^)^_e2ia^]YÖ 

+(*,,2 ~ Gia)l[( £(*, - Gj)V&J+C&J(zLj) 
7-1 (23) 

+^[(Eia_s0ih2)(zL)+JWA,-^ )yö 
KG.3 

This general equation can be put in a matrix form and solved. 

Considerable simplification is obtained, however, in cases 

where the coupling between the JC and y  components of the 

electric field can be neglected. Then the number of matrix 

elements is reduced by a factor of four, enabling much faster 

solutions. 

For the remaining analysis, neglect the coupling between 

the x  and y   field components. Equations (15a-b) and Eq.s 

(18a-b) reduce to 

n    = 
CG(l,2)(Zl) 

G(l,2)   o    / \ 
G<1.2)^' (24) 

X-      =0 

14- 



and 

-2ia=    ,x   .   T-r /1 r» 2iar. ^»a-V^e —) + nö(U)(l-^2)_e   -) 
(25) 

7?     =0 
C(l,2) 

Equation (23) simplifies to 

+(*u -^afE^^C^^zJF^] • (26) 

+f^.2-W^+|^U2)+^(U)(zjyö.öJ = o 
G.3 

Equation (26) represents a set of 2N equations, where N  is 

the product of the number of x  and y  reciprocal lattice 

vectors. Their solution yields the modes y/°öl+   and ^2+ which 

comprise the x  and y  components of the radiated electric 

field. An examination of Eq. (26) shows how each mode is 

coupled to the other modes through a capacitive term, 

proportional to  , and an inductive term, proportional to 
(oek- 

G,3 

C,3 

The equation shows how the amplitude of a particular 

mode is affected by parameters such as dielectric 

reflections, incident wave direction, and pattern shape. For 

numerical solution, Eq. (26) is written in the form of a 

matrix equation. 
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(<ü2A + <uB + cWx = ft)2D + F. (27) 

For either the x  or y   field components, elements of the 

square matrices A, B, and C are identified as 

A     =-^-C   Y 
G,G'        U G',i  G-G' 

KG,3 

BG,G=TGi5ö,G- • (28) 

CW=-^-«>-GSCG,?G-G- 
^0,3 

Elements of the column matrices D, F, and X are 

Dö=-fLEt-SoAzL)Yö 
C,3 

\2 ; Fc=-r-^-Gi?Ei-S<>ML)Yc- (29) 
^0.3 

G G,i+ 

Equation (29) can be solved using standard matrix 

inversion techniques. The column matrix X contains the 

amplitude coefficients for the electric field Floquet modes 

radiated by the conducting array. These modes are plane 

waves. They are linked together by the coefficients for the 

array conductivity, Yd_& .   Together with the incident field 

added in phase, and including the reflections at dielectric 
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boundaries, reflection and transmission coefficients are 

calculated in a straightforward manner. 

III. EXPERIMENTAL VALIDATION 

Accuracy of the theoretical analysis has been verified 

by a series of experimental measurements. Transmission 

measurements for a number of test devices exhibit a variety 

of striking characteristics, including resonances, which are 

well reproduced by calculations. 

Results of experimental validation studies are presented 

for four test panels. For three panels the patterns were 

highly conductive. Correspondingly, the surface resistivity 

entered in the computations was chosen small enough to have 

no significant effect on the output. The test panels are 

approximately square with a length of 30 cm on each side. 

Measurements were performed in a transmission tunnel which 

contains two antennas for transmission and reception of 

microwave radiation inside a box lined with absorber 

material. A baffle following the transmitting antenna 

collimates the incident wave. Figure 2 displays a schematic 

of the experimental arrangement. Incident energy is normal to 

the array panel with the electric field polarized in the x 

direction, parallel with one edge of the square patterns. 

Measurements were made using a Hewlett Packard 85IOC network 
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analyzer. Effects of spurious reflections, such as those off 

the wall, were minimized by suitably gating the signal in the 

time domain. 

The first panel was fabricated from a commercial 

photosensitive printed circuit board. After etching, a 

pattern of thin copper squares remained on the 0.145 cm thick 

dielectric backing. The periodicity of the pattern is 1.0 cm 

in each direction and the copper square size is 0.9 cm. 

Electric permittivity (normalized to free space) of the 

dielectric was measured and found to have a real part of 4.4 

and an imaginary part less than 0.1. Transmission was 

measured with the copper square pattern facing the incident 

wave. Matrix calculations included 129 modes in the direction 

of the incident field and 17 modes perpendicular to it (2193 

unknowns). Resulting curves for both experiment and 

computation are shown in Fig. 3. As expected, the test panel 

acts as a low pass filter, with transmission decreasing with 

increasing frequency. Calculated and measured transmission 

differ by at most 0.05 over the entire frequency range. The 

frequency at which the wavelength of a plane wave propagating 

in the dielectric, XD,   is equal to the array period, dx, is 

noted on the graph. This is the frequency above which the 

lowest order secondary modes, (nj,n2) = (±1,0) and (0,±1), can 

propagate in the dielectric, as can be seen from Eq. (6). 

Physically, the array constrains these modes to have a 

periodicity which is a multiple of dx   in the jc  direction, 
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implying the x  component of the propagation vector is 2nldx . 

The vector sum of the x  component and the z   component (must 

be real) of the propagation vector must have a magnitude of 

2nlXD.  This only is possible ±fXD<dx.   In the literature, 

these secondary modes are known as a grating lobes. Because 

of the total internal reflection by the dielectric slab, the 

grating lobes are trapped inside the dielectric until the 

frequency is above the point at which the free space 

wavelength, XFS,   is less than dx. The (±1,0) and (0,+l) 

grating lobes then propagate away from the panel in a 

nonspecular direction. In general, higher order modes 

propagate when kö$l   as given by Eq. (6), is real in the medium 

of interest. 

A second test sample consists of an array of aluminum 

foil squares with a periodicity of 2.0 cm in each direction. 

The array is taped to a 0.01 cm thick paper backing. Total 

dielectric thickness, tape plus paper, is approximately 0.02 

cm. Lengths of the squares' edges are 1.5 cm. For 

computations, the small effect of the paper backing was 

included by using a real permittivity of 5.1, found by 

earlier measurements. The tape was neglected. Calculations 

included 65 modes in the direction of the incident field and 

17 modes perpendicular to it. Calculated and measured values 

of transmission are graphed in Fig. 4 (solid lines and 

circles). The panel is a low pass filter below the resonant 
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frequency, 0)  = 9. OxlO10 rad/s. The primary mode, (0,0), is the 

only propagating mode up to this frequency. At resonance, the 

amplitude of the primary radiated mode peaks with an 

amplitude and phase which nearly cancel the incident wave. An 

examination of the field modes has shown that is due to the 

coupling of the incident field to the evanescent fields which 

has a 90° phase shift at this frequency. A second 90° phase 

shift occurs in the coupling from the evanescent fields to 

the radiated field, resulting in the net 180° phase difference 

between the incident and radiated primary field. A 

substantial loss in transmission results, which is clear in 

the figure. For a given periodicity, we observed that the 

resonant frequency is dependent on pattern dimensions. The 

resonant behavior can be modeled as a circuit analog. Figure 

4 (dashed lines and x's) also shows the results of 

measurements and calculations for the same geometry, but with 

the conductive patterns cut from a sheet having a surface 

resistivity of 53 Qa.  As expected from circuit 

considerations, the resistivity dampens the resonant peak, 

but otherwise the shape of the curves are similar. Above CO  = 

9.4xl010 rad/s, XFS<dx  and the modes (±1,0) and (0, ±1) begin 

to propagate away from the panel. This follows from the 

arguments given in the previous paragraph. These modes 

propagate in a nonspecular direction with a polar angle given 

by cos6^köj/ßQ  and therefore to not contribute directly to the 

transmission coefficient. The excellent agreement with 
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measured data is also evident in Fig. 4. Resonances in the 

transmission spectrum have historically been referred to as 

Wood's anomalies, which were associated with the onset of 

propagation of grating lobes in slot arrays for the free 

space case [ 12]. The resonances here are analogous. 

The fourth panel consists of an a array on 1.5 cm 

aluminum squares with a 2.0 cm periodicity like in the 

previous figure. In this case, it is backed by a 0.54 cm 

thick Plexiglas sheet. Calculations included 65 modes in the 

direction of the incident field and 17 modes perpendicular to 

it. Calculated and measured results are compared in Fig. 5. 

The addition of a dielectric backing has resulted in two 

resonance peaks, one at 7.0xl010 and the other at 8.8xl010 

rad/s. The (±1,0) and (0,±1) modes are trapped by the 

dielectric in the frequency range from 6.2xl010 (AD = dx)   to 

9.4xl010 rad/s (Ara = «/,). Above 8.8xl010 rad/s, XD=-j=dx  and the 

(±1,±1) modes can propagate in the dielectric, but not in 

free space. These frequency intervals are indicated in the 

figure. Agreement is quite good between the measured and 

calculated results. Observed discrepancies have a number of 

possible causes. Calculations assume the planar array is 

infinite in extent. Yet, the baffle which limits the beam 

size is 20 cm in diameter, equivalent to 10 array periods for 

this panel. Departures of the incident beam wave front from 

the assumed plane wave can also be significant. 
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IV. CONCLUSION 

A new method for analyzing the electric field scattered 

by a planar periodic array of conductive elements in a 

stratified dielectric has been developed. The analogy of 

these structures with photonic devices was exploited in 

formulating the technique. Coupling between radiated field 

modes as well as with the incident field is given by a single 

equation which can be solved by matrix inversion techniques. 

Since mode coupling determines overall performance, this 

approach may lead to better understanding of scattering by 

these structures. Periodically varying conducting elements 

are expressed as a sum of exponential basis functions, 

allowing for arbitrarily shaped complex impedance 

distributions with a continuous or discontinuous profile to 

be used. This enables increased design flexibility. 

Theoretical predictions were made for a variety of 

configurations, from a computer program based upon this 

method. Accuracy of the method was demonstrated by comparing 

experimental transmission measurements with the model's 

predictions. Results were in excellent agreement with 

calculations. Frequencies at which grating lobes appear were 

noted. This method can be extended to multilayered periodic 
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structures, using the generalized scattering matrix approach, 

in a straightforward manner. 
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FIGURE  CAPTIONS 

1. (a) Thin, conducting array in the x  - y  plane with 

periodicity dx  and dy. (b) The planar array at z-zL 

imbedded in a multilayered dielectric medium (z, to zw). 

2. Experimental configuration used to measure the transmission 

coefficients. 

3. Comparison of calculated with measured values of 

transmission through an array of copper squares having a 

1.0 cm periodicity backed by a 0.145 cm thick dielectric 

sheet. 

4. Comparison of measured and calculated transmission for two 

different square arrays (aluminum and and 53 Q0), each 

with a 2.0 cm periodicity. Calculated and measured values 

for the periodic Al array are represented by solid lines 

and open circles. The resonant dip at 90xl09 rad/s is due 

to the coupling between the incident and evanescent fields 

which are 90° out of phase at this point. For the periodic 

resistive array, calculated and measured transmission are 

represented by dashed lines and x's. 

5. Comparison of calculated and measured transmission through 

an array of aluminum squares having a 2.0 cm periodicity. 

The array is backed by a Plexiglas sheet having a thickness 

of 0.54 cm. 
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Figure 4 
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Figure 5 
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