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Abstract

This report summarizes the work completed in the year June 1998-May 1999 for the prin-
cipal investigator’s Young Investigator Program grant, the last scheduled year for this three
year grant. The report is divided into five chapters covering new analytical solutions for dy-
namic cracks in orthotropic composites. Each chapter stands alone and has been submitted,
accepted or prepared for publication in a refereed journal. First, closed form solutions for
uniformly loaded semi-infinite cracks in orthotropic materials are presented. Next, solutions
regarding the stress intensity factor at the tip of propagating cracks in orthotropic materi-
als are presented. In addition, closed form, dynamic Green’s functions solutions are given
for semi-infinite cracks in orthotropic materials. Previously, in last year’s report, numerical
Green’s function solutions were presented for this case the first time. These newer, closed
form solutions are much easier to produce and implement in more complex solutions. The
problem of having a crack in transversely isotropic material rotated with respect to the crack
front is also solved with some effort. The methodology used in finding all these solutions may
be used in other problems including penetration mechanics. Such applications are currently
being explored. Finally, experimental investigation of the application of these solutions to
dynamic crack initiation in composites under impact conditions is being completed. It is
expected that a report on that work will be submitted in six months with the final report for
this contract. (All funds for the grant have been expended. A six month no cost extension

has been granted.)
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Chapter 1

A New Method for Examining
Dynamically Loaded, Semi-infinite
Stationary Cracks in Orthotropic
Materials

Co-authored with C. Rubio-Gonzalez and accepted for publication in the Journal of Mechanics
and Physics of Solids

The elastodynamic response of an infinite orthotropic material with a semi-infinite crack
under impact loads is examined. Three loading modes are considered, i.e., opening, in-plane
shear and antiplane shear. Solution for the stress intensity factor history around the crack
tip is found. Laplace and Fourier transforms along with the Wiener-Hopf technique are
employed to solve the displacement formulation of the equations of motion. The asymptotic
expression for the stress near the crack tip is analyzed which lead to a closed-form solution
of the dynamic stress intensity factor for each loading mode. It is found that the stress
intensity factors are proportional to the square root of time as in the isotropic case. Results
for orthotropic materials are shown to converge to known solutions for isotropic materials

derived independently.



1.1 Introduction

Several problems have been examined in dynamic fracture mechanics for isotropic materi-
als. In fact, there are many closed form solutions for stationary and propagating cracks in
isotropic materials under dynamic loading (Freund 1990, Chen and Sih 1977). The stationary
semi-infinite crack under uniform step loading in the crack faces was considered first by Maue
(1954). The equivalent propagating case was studied by Baker (1962). For orthotropic mate-
rials the available solutions are fewer in number, finite cracks under impact loading have been
analyzed by Kassir and Bandyopadhyay (1983), Shindo and Nozaki (1991), Rubio-Gonzalez
and Mason (1998) using integral transform methods. These authors reduce their problems to
a Fredholm integral equation in the Laplace transform domain which is solved numerically.
The stress intensity factor is recovered in the time domain by numerical Laplace inversion
of this solution. Although this approach can be used to solve problems with non-symmetric
loads (Rubio-Gonzalez and Mason 1998) it is restricted to finite cracks and numerical solu-
tions. With the growing use of composites in many engineering applications it is desirable
to have closed form solutions for fundamental problems in cracked orthotropic materials.
The semi-infinite crack is a fundamental problem because cracks under dynamic loads can
usually be considered semi-infinite for a short duration of time immediately after loading. In
the present work the semi-infinite crack problem under impact loads in orthotropic material
is analyzed, a closed form solution for the dynamic stress intensity factor is obtained for
each loading mode, i.e., opening, in-plane shear and antiplane shear. Following the example
of Baker (1962), Laplace and Fourier transforms are applied to the displacement equations
of motion and combined with the Wiener-Hopf technique to find expressions for the stress
ahead of the crack tip and the displacements on the crack faces. Asymptotic analysis of the
stress near the crack tip leads to expressions for the stress intensity factors Ki(t), Kr(t),

and KHI(t).



1.2 Governing Equations, in-plane problems

Consider the plane problem of an infinite orthotropic medium containing a semi-infinite
crack, Figure 1.1. Let E;, w; and v;; (,5 = 1,2,3) be the engineering elastic constants
of the material where the indices 1, 2, and 3 correspond to Cartesian coordinates (z,y, 2)
chosen to coincide with the axes of material orthotropy. The crack faces are along the
negative z—axis and the origin of the zy axes is the crack tip. Uniform tractions are applied

to the crack faces in directions depending upon the problem considered.

o, HY) y

(a) (b)

Figure 1.1: Schematic of the semi-infinite crack geometry. (a) Normal loading, (b) In-plane
shear loading.

Restricting the problem to two dimensions with wave propagation limited to the z — y
plane by setting all the derivatives with respect to z to be zero, it is readily shown that the

displacement equations of motion (Nayfeh 1995) reduce to

%u  O%*u o%v 1 0%u
Cua—xg + 3_y5 +(1+ 612)_—8:1:6:1/ = 'c_‘%gﬁ?’ (1.1)
v 0% 0%u 1 0%
@ + ng—a—zp + (1 + 012)‘axa' Y = Eg‘a‘t_é'a (1'2)

where u and v are the z and y components of the displacement vector and ¢y, ¢12 and co2

are non-dimensional parameters related to the elastic constants by the relations:

c = B

H pa2[l — (Eo/ E\)vE)
Co2 = (EZ/E1)011, (1-3)
Cipg = V12C2 = V210C11,




for generalized plane stress, and by

C11

C22

C12

A

,ule(l — Vo3V32),

E

M122A(1 — N13Vs1),

E; E,
ule(Vm + 7, Vi3V32),

1- Vi2Vo1 — VogV3p — V3113 — ViaVe3V31 — V13lo1V32,

stresses are related to the displacements by the equations:

O . ou te ov
o = tug, 12 By’
s = Crg 22 By’
Tay Ou Ov

M2 B_y oz’

1.3 Normal Impact

taking only the upper half plane y > 0, the corresponding boundary conditions are

oy(2,0,t) = —o0oH(t) for —oco<z<0,

Tay(2,0,8) = 0 for —o0o<z< o0,

v(z,0,t) = 0 for >0,

at infinity and zero initial conditions are assumed.

6

(1.4)

for plane strain. In the orthotropic solid, ¢; = 1/ 12/ p represents the velocity of the in-plane

shear wave propagating along the the principal material axes and p is the mass density. The

(1.5)

In the case of normal tractions to the crack faces, figure 1.1(a), a spatially uniform pressure

of magnitude oy is assumed to be suddenly applied at ¢ = 0. Exploiting symmetry and

where H(t) is the Heaviside step function. In addition, the conditions of zero displacements

The method of solution of the governing equations presented here follows that described
in Freund (1990) for the isotropic case with some significant differences; displacement poten-

tials are not used and no assumptions are made about the form of the unknown functions.



In equations (1.1) and (1.2), the time variable may be removed by application of the Laplace
transform
0o 1
* — t -pt t 1) = _/ * pt t .
ro)= [ swerta, jo=5-[ @) et (1.7)
where Br denotes the Bromwich path of integration which is a line parallel to the imaginary
axis in the p-plane. Applying relations (1.7) to equations (1.1) and (1.2) and assuming

zero initial conditions for the displacements and velocities, the transformed field equations

become
azu* 6211,* 32‘11* p2 .
an‘ -+ ayz -+ (1 + Clz)éz—ay- —_ Egu = (, (18)
62,0* 82,0* 62u* p2 .
922 + Cco9 ayz + (1 + 612) amay - EU = 0, (19)

where the transformed displacement components, ©v* and v*, are now functions of the vari-
ables z, y, and p. The application of the Laplace transform to the boundary conditions (1.6)
gives

o,(z,0,p) = —0011—) for —oco<z<0,

Toy(2,0,p) = 0 for —oo<z<o0, (1.10)

v*(z,0,p) = 0 for z>0.

To obtain a solution of the differential equations (1.8) and (1.9) subject to conditions

(1.10), the Fourier transform is applied in this work,

Fe)= [ j(a) e da, f(z) = 5‘% [ Py = as, (1.11)

rather than the double sided Laplace transform. It is assumed that the displacements in the

Laplace transform domain have the form

o .
u*(z,y,p) = %LMA(S,y,p)e_’sx ds, (1.12)
v (z = L ["B —isz g 1.13
9,9) = o- | Bls,y,p)e™ ds, (1.13)

where A and B are the Fourier transforms of the Laplace transform of the displacements,

u* and v*, respectively, and are yet to be determined. Substituting these transforms into




equations (1.8) and (1.9), the functions A
ordinary differential equations

2

(c118® +p?/P)A - @A

and B are found to satisfy the simultaneous

W + (]- + 012)3.5'(_15 = 0, (1'14)
B dA
(32 +p2/cf)B — 622352- -+ (1 + Clz)is-@ = 0. (115)
The solution of these equations which vanishes for y — oo is
A(s,y,p) = Ails,p)e™™Y + Az(s,p)e ™,
B(s,9,p) = —tAis,p)e™™ — Z2Ay(s,p)e, (1.16)
where A; and A, are arbitrary functions and o;(s,p) stands for the functions
24 2/.2 A2
C11s +p/cs_7j .
a;(s,p) = , j=1,2 1.17

with 72 and 72 being two distinct roots of the quadratic equation

co2¥* + [(cdy + 2c12 — c11022)8% — (L + c22)P?/2]y? + (c118® + p? /) (s® + p?/c?) = 0. (1.18)

It can be shown that for many materials the roots ; and 7, are real and positive and the

expressions for the displacements in the Laplace transform domain become:

1

o0 .
ut = —/ (A1€7MY + Aje™"Y)e ™ (s, (1.19)
21 J-
—1 [ —isT
vt o= —/ (a1 A1€7™Y + ap Ape™7Y) ds. (1.20)
27 J-—
And, using (1.5) the corresponding expression for Tgy 1S glven by
* _& % -MNY —v2y) ,—isT
Toy = o [(a1 +71)Ase + (a2 + 72)Age™"]e ds. (1.21)
—00
Applying the second condition of (1.10) to equation (1.21) yields
Az(s,p) = —,31A1(8,p),
a+n
= — 10 1.22
b P———" (1.22)
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Therefore, the expressions for the transformed components of displacement become

1 00

C@un) = o [T € = B ) Ay (s, p)e ds, (1.29
—q OO A .

v*(z,y,p) = 5—7%/_00((116‘7‘”—ﬁ1a26"72y)—Lj?le"’sx ds, (1.24)

and the associated stress components are given by

—'L 8, —
a; = Mu/ [01182—041")’1012)8 ny (0113 —0272012)ﬂ16_72y] ( p) zsxc(‘i 25)
—1 A S, —i
oy = ,u12/ [(c125° — auyican)e™¥ — (c1a5? — agyacss) fre™ ™) (S p)e *7dd,.26)
o= T (o e — e (s, e, (127

Introducing the functions

E(s,p) = %(01 — Brag) Ai (s, p), (1.28)

F(s,p) = “m[cms — 171622 — Pi(c128° — aayaca)], (1.29)
£ = 011(1 + C1z—)tN1 n Nz) {(012 +Ci2 — C11022)(012N1N2 - 011)

—cp2[c12 NI NG + ¢11(NZ + Ny N, + N2}, (1.30)

Nf,z = 2—22—{011022 — 2¢12 % (11622 — ¢f5 — 2¢12)? — dcyrc0] 2}, (1.31)

where the velocity ¢; = \/ci1¢s represents the dilatational wave speed along the r—axis and
in view of the first and third boundary conditions in (1.10), equations (1.24) and (1.26) yield

the following pair of dual integral equations for the determination of the function E(s,p)

0y(,0,p) = ”;ig _Flsp) E(s,p)e ™= ds = 20 — 00 <z < 041.32)
T —00 g2 + p2/cg p
—7 00 .
v*(z,0,p) = 2—7:/ E(s,p)e™%ds = 0 0<z < oo. (1.33)

Let v*(z,p) be the unknown Laplace transform of the vertical displacement on the
negative r—axis, and o’ (x,p) be the unknown Laplace transform of the normal stress on

the positive z—axis, so that

for z>0

. _J0 . _J o¥(z,p) for >0
v'(2,0,p) = { v*(z,p) for <0 oy(z,0,p) = { —op/p for z<0. (1.34)




Then the Laplace transform of the normal stress and the vertical displacement on the whole

boundary y = 0 is given by,

ipé [©  F(s,p) = Jp
E(s,p)e™"* ds = ——H(~z)+ 0% (z,p), 1.35
o [ i B “H(-2) +ol(on),  (139)
5—% /_ 0:01’*3(5,19)6"“c ds = vi(z,p), (1.36)

and, by Fourier transform inversion, these equations give

. F(S,p) _ 2]
Zﬂlgf\/—;‘;——}_—mE(s,p) = —E;+E+($), (137)
—iE(s,p) = V_(s), (1.38)
where
S.(s) = /()wa;(x,p)eiswdx, (1.39)
V_(s) = /_0 v* (z,p)e*dx, (1.40)

(7)) ewda = -2
—o \ P ips’

From the physics of the problem it is reasonable to assume that the function o (x, p)
and v*(z,p) are exponentially bounded at infinity and this ensures the existence of their

Fourier transform (1.39) and (1.40). In particular it is shown by Noble (1958) that

if 0% (z,p)| < Mie*" as £ — +oo then  E.(s) is analytic in Im(s) = A > A_ = Ay,
and if [v* (z,p)| < Mye?® as z — —co then  V_(s) is analytic in Im(s) = A < Ay = A,.
1.3.1 Wiener-Hopf technique

Eliminating E(s,p) from (1.37) and (1.38) yields a Wiener-Hopf equation

F(s,p)
Vs? +p?/c

which contains only the two unknown functions ¥ (s) and V_(s), and now the Wiener-Hopf

2 _ Y1(8) = p2€

- V_(s) (1.41)

technique can be applied as follows. Suppose that the function L(s) is defined and factored




as

1) = 253 - uﬁ\/F—ﬁr—%— (142)
then equation (1.41) becomes
2 La(s) = B4(5) L (5) = L (9)V-(5) (1.43)
Assume that the function D(s) can be decomposed as
s L+(5) = Ds) = Dy(s) + D-(s) (1.44)
then equation (1.43) becomes
Dy(s) = £4(8)Le(s) = L_(s)V_(s) — D—(s) = W(s). (1.45)

The first member of this equation is analytic in the upper half of the s—plane Im(s) =
A > max(\j, ;) < 0 and the second member is analytic in the lower half of the s—plane
Im(s) = A < 0. Therefore, the regions of analyticity overlap. After determining W(s),
solutions for X, (s) and V_(s) can be found.

After algebraic manipulation it can be shown that the function F'(s,p) is given by

1
£y cu\/cusz +p?/ct (1 + 1) (1 + ci2)
(cnns® +p?/c3) [622(’)’% +73) + 11721 + crz)ea + 5% (cr2 + Elo — Cr1622) — 022172/03]} .

F(s,p) {022012’)’%73 — N72(l + cio)chs” +

The only zeros of F'(s,p) are of the form +ip/cg where cg is the Rayleigh wave speed. This
can be seen by substituting s = ip/v in F(s,p), letting F(s,p) = 0 and dividing by the

non-zero factors, then F'(ip/v,p) = 0 reduces to

C22 ( C11C22 — 012 _ . P_Z_
cn Coo c2 c? 01102

which is the Rayleigh function for orthotropic materials (Ting, 1996). The roots of this

function are v = Fcg.
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Im(s)

\iK/CS

i P / Cd\\
.

™ Re(s)

ip/cd

-ip/Cs\

Figure 1.2: Branch cuts for F'(s) in the s—plane.

Consequently, the first step in factoring L(s) is to define

F(s)= ;% (1.46)
thus F'(s) = 1 as s — oo, (the constant £ in (1.29) was chosen to make this possible). The
function F'(s) is regular and F'(s) # 0 in the s—plane cut as shown in figure 1.2. The only
singularities are the branch points shared with 4, and .. It is readily shown that the branch

points of ; and 7y, are

for s = +—,

for ~y; s = =+

It is well-known that factorization is accomplished most directly for functions that ap-
proach unity as |s| — oo and that have neither zeros nor poles in the finite plane; F(s) is
an example of such a function. Therefore, using Cauchy’s integral formula it can be shown

that (Freund 1990)

Fals) = exp{i [, el dz},

2mi z—3s
where I'_ (I';) is the contour enclosing the branch points +ip/cq, +ip/cs, (—ip/ca, —ip/cs).

Using the fact that F'(3) = F(s)
- . — l/Cs (4
Fi(s) = exp -——1/ tan™! (Im[}f(zpw)]) dwis .
T J1/eq Re[F(ipw)]) wF 5

12




Returning to the factorization of L(s) it is found that

~

L_(s) F(s)(s*+p*/c})
L) Ly(s) wad s2 + p?/c2 (147)
PO )6+ ip/er)(s — ip/en) s
pd \/Ze-i—ip/cd\/s——ip/cd (1.4)

therefore
(s —ip/cr) 2

L_(s) = pppé—F—===F_(3). 1.49
(9 = g =B (o (1.49)
Li(s) = ystip/ea 1 (1.50)

(S + ip/cR) ﬁ'+(3) )

Decomposition of D(s) follows easily,

D(s) = 2 Li(s) = 2 [L+(5) 1O, L;io)] —Dy(s)+D_(s)  (151)

with

D.(s)=2 [L+(S) — L+(0)] ., D_(s=2 lm] . (1.52)

P 8 14 8

Each side of equation (1.45) is analytic in one of the overlapping half planes, and the sides
coincide on the strip of overlap. Consequently each side of (1.45) is the analytic continuation
of the other into its complementary half plane; so that the two sides together represent one
and the same entire function W(s). The entire function will be determined by its behavior
at |s| — oo which is related with the behavior of physical quantities near = 0. First note
that Ly(s) ~ s7%/2 and L_(s) ~ s'/2 as |s| — oo, therefore, D, (s) and D_(s) in (1.52)
are bounded in their respective planes of analyticity and vanish at infinity. Furthermore,
o’ (z,p) is expected to be square root singular as  — 0% and v* (z, p) is expected to vanish as
z — 0~ to ensure continuity of displacement. Consequently from the Abel theorem (Noble,
1958) relating asymptotic properties of transforms

lim /%0’ (x,p) ~ Jim 5254 (s)

lim Jof 0 (2,9) ~ lim |5V (s)

13



for some g > 0. Therefore, it is expected that &, (s) ~ 572 and V_(s) ~ s™17% as |s| = oo,

thus the products £, (s)L.(s) and L_(s)V_(s) vanish at infinity. Therefore, each side of

(1.45) vanishes as |s| — oo in the corresponding half planes. According the the Lliouville’s

theorem, a bounded entire function is constant. In this case, W (s) is bounded in the finite

plane and W(s) — 0 as |s| = oo so that the constant must be zero; thus, W(s) = 0. By

using then (1.45) and (1.52), the functions of interest are given by

B D, (s) _ 0ol L, (0)
Zi(s) = Li(s)  pis [L+(3) 1} .
V() = D_(s) _ 001 L,(0)

L_(s) pisL_(s)

1.3.2 Stress Intensity factor

(1.53)

(1.54)

To find the stress intensity factor, an asymptotic expression for the normal stress near the

crack tip is sought. The Abel’s theorem relating asymptotic expressions between a function

and its Fourier transform is the following (Noble 1958)
lim \/—x—a+(a: p) = Jim e ”/4\/7 . (s).
z—0
Clearly, the behavior of £, (s) as s — oo is needed. Note that
1
L+(s)—$—1/5 as s— 00
and since F, (0) = F_(0) = y/F(0) = &\/F(0,p) then

L(0) =

p
vV ipcd\/F(Oa p)
therefore
1

54(5) = 7 D
(ip)3/2 s1/2 Ja \/17(—07))

Using this relation and the definition of the stress intensity factor in (1.55) gives

as s —r 0Q.

Ki(p) = lim V3ro o}(e,p) = lim e™/*v/2s £(s)
00\/_2 p
p*? \/ea\[F(0,p)

14

(1.55)

(1.56)

(1.57)

(1.58)




It is readily shown that

VF(0,p) = p\/ csc@ (1.59)

so that
2¢s€ 1

1/ €22 5572_

and by Laplace inversion the dynamic stress intensity factor in the time domain for this

Ki(p) = 0o (1.60)

loading mode is

Ky (t) = 200, 25 V1 . (1.61)

For the isotropic case and with plane strain conditions, substituting By = E; = E,
V1o = 3 = o3 = v and 12 = E/2(1 + v) in equations (1.4) and the results in (1.30) it is
found that ¢z = 2(1 —v)/(1 —2v) and £ = 1/(1 —v) and equation (1.61) reduces to the well
known result for isotropic materials (Freund 1990)

Ki(£) = 200 6‘18 _ 3')’)/ T VA

1.4 In-Plane Shear Loading

Consider the crack geometry illustrated in figure 1.1(b). The crack faces are subjected to
suddenly applied, spatially uniform shear traction of magnitude 7. Exploiting asymmetry

and examining the half space y > 0, the corresponding boundary conditions are

Toy(2,0,t) = —1H(t) for —oco<z<O,
oy(2,0,t) = 0 for —o0<z <00, (1.62)

u(z,0,t) = 0 for z>0,

where H(t) is the Heaviside step function. In addition the condition of zero displacements

at infinity and zero initial conditions are assumed.
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The method of solution is similar to that used for normal impact. Applying Laplace

transform to boundary conditions (1.62) gives

T;y(x, 0,p) = —7fp for —oco<z<0,
oy(z,0,p) = 0 for —o00<z< o0, (1.63)

u*(z,0,p) = 0 for z>0.

Assuming the displacement field (1.12) and (1.13) yields the same system of ordinary differ-
ential equations (1.14) and (1.15) whose solution is given by equations (1.16) where o; are
defined by (1.17) and -y; are obtained from the solution of (1.18). Using (1.19), (1.20) and
(1.5) indicates that oy is given by

—~isz

i e
oy(z,y,p) = M12/ [(s%c12 — a171C22) A1 MY + (5%C10 — 01372 C20) Ane™ Y] ds. (1.64)
Applying the second condition of (1.63) to equation (1.64) yields
A2(S7p) = ",32141(3;1)),
B, s°c1a — a171Co2 (1.65)

s2¢io — Q2Y2C22

Therefore, the expressions for the transformed components of displacement become

w@un) = 5 [~ foe ) Ay (s,p)e ds, (1.66)

Al (S,p)
S

—q o0 .
v*(z,y,p) = 57—:—/_00(0116"7”’ — [acge™ 1Y) e % ds, (1.67)

and the associated stress components are given by

Oy = #12 / [(c115” — ary1c12)e™™Y — (c118? — apyaciz) o™ "] =222 ( .2) e™**dg,.68)
- A -

gy = wm/ (01282—a1’71622)(6_7”’—6"”’2”)——1(3’]3)6_’"(15, (1.69)
2T —00 S

By = T e )™ — o+ e s ple s (.10

w T o U T 2 T Y2) P2 15, D . .

Introducing the functions

C(s,p) = (1-B2)A(s,p), (1.71)
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Vst +p*/c
G(S, p) = —

A= pyyy (et ) = Baloz+ml (1.72)
cué
622N1N2 (173)

where ¢ and N, ; are given in (1.30) and (1.31) and in view of the first and third boundary
conditions in (1.63), equation (1.66) and (1.70) yield the following pair of dual integral
equations for the determination of the function C (s,p),

— oo .
M _G.._(_S’L. C('g,p)e_zsx ds = —T—O — < r< m1-74)

Toy(%,0,0) =
4 ) 2 J-oo /52 +p2/c2 P

1 oo .
u*(z,0,p) = E;/mC(s,p)e"m ds = 0 0<z<oo, (1.75)

Let u* (z,p) be the unknown Laplace transform of the displacement on the negative
z—axis, and 77} (z,p) be the unknown Laplace transform of the shear stress on the positive

z—axis, so that

. _Jo for >0 . _ | m5(z,p) for >0
u'(2,0,p) = { u* (z,p) for <0 T2y(2,0,p) = { —1/p for z<0. (1.76)

Then, the Laplace transform of the shear stress and the displacement on the whole boundary

y=0is
—H127M o0 G(57p) » —1 To *
THen [ TSP s ple it ds = —2H(—z)+7h(2), 1.77
[ el ot i) +ri@), ()
1 *© —isT — *
?‘2;/—00 C(s,p)e ™ ds = u(x) (1.78)

and by Fourier transform inversion, these equations give

—mn-——-—%c/’(s,m = —2 Ty (179)
C(s,p) = U-(s) (1.80)
where
To(s) = /OOOT_’l*_(x)ei”dx (1.81)
Us) = [ w (o) (1:82)

/" 0\ gisgy = 0
-0 \ P ips




Eliminating C(s, p) from (1.79) and (1.80) results in a Wiener-Hopf equation
70 G(S,p)

— =Ty (s) = ——
ips +(5) = pen ,——_s2+p2/c§

which contains only the two unknown functions, T4 (s) and U_(s), and can be solved using

U_(s) (1.83)

the Wiener-Hopf technique as in the normal impact analysis. The result is

D.(s) — Ty (s)L4(s) = L_(s)U-(s) - D_(s) =0 (1.84)
where
(s —ip/cr) A
L_(s) = —ppbé—==ou—2G_(s), 1.85
(s) p fm () (1.85)
B \Js+iples 1
L+(S) - (3+'1:p/CR) G.{.(S), (186)
and
D(s) = %L+(s) = % [L+(5) ;8L+(0) + L“;EO)] = D, (s) + D_(s), (1.87)
with
B [L@-LO] . 7 [L0)
D)= 2 [ LO] g b -2 [0
where
A — G(Svp)
G8) = e (1.88)
It can be shown that G(s) — 1 as s — oo. Thus, the solution of (1.84) is
_ Di(s) _ m1[L4(0)
T (s) = OB [ ) 1] (1.89)
U(s) = 2=0) _71L:(0) (1.90)

L_(s) pisL_(s)
with Ly (s) defined in (1.85) and (1.86) and G(s) given by

Gz(s) = exp {——1/11/63 tan~" <Im[(§’(ipw)]) dw } .

T J1/eq Re[G(ipw)]) wF &

To calculate the stress intensity factor 7' (s) as s — oo is needed. First, note that

1
L+(s)=§/—2 as s— o0
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and since G (0) = G_KO) = 4/G(0) = £,/G(0,p) then

L.(0) = P .
H0= o

Therefore,

T, (s) = as s — oo.
L4(s) = v N

Using (1 55) and the definition of the stress intensity factor gives

Kip) = lim v2rz 7i(z,p) = Jm e~"/1\/2s T, (s)

z—0t

‘To\/§ b '
P2 /6:\/G(0,p)

It can be shown that

so that

and by Laplace inversion

K11(t) = 2794/2¢sn/m V2.

(1.91)

(1.92)

(1.93)

(1.94)

(1.95)

(1.96)

For the isotropic case and with plane strain conditions n = 1/(1—v) and equation (1.96)

reduces to the well known result for isotropic materials (Freund 1990)

2¢;
K]’[(t) = 27’0 —m \/}—'J

1.5 Antiplane Shear

Consider a semi-infinite crack in orthotropic material shown in figure 1.3, subjected to an-

tiplane shear loading of magnitude 79. The governing differential equation for two dimen-

sional antiplane motions of homogeneous, orthotropic, linearly elastic solids is (Nayfeh 1995)

fi— O*w 82 — iéﬂ_w
a2 * YT

19
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where
C
,32 = *C% and Cp = \/044/p.

Again, the principal material axes of orthotropy are chosen to coincide with the (z, y, z) axes,
such that the in-plane and antiplane motions are not coupled. In terms of the engineering
constants, Cyy and Css are given by Cyy = pss and Css = p3;. The non-zero stresses are

related to the displacements by the equations

ow ow
Tz — Css—— z = Caa—.
T: 55 Ty 44 By

= (1.98)

Exploiting symmetry and examining the upper half-plane y > 0, the boundary conditions

for this loading mode are given as

Ty2(2,0,t) = —1H(t) for z<0 (1.99)
w(z,0,t) = 0 for z>0. (1.100)
o H(t) e
K _® &
CEENOREEO X
1. H(Y)

Figure 1.3: Schematic of the semi-infinite crack geometry. Antiplane shear loading.

The method of solution is very similar to that used for the in-plane problems. Applying

Laplace transform to the governing equation gives

82’111* a2,w* p2 .
o2 + -'5;/-2— - gw =0 (1.101)

,82
and to the boundary conditions gives

Ty:(2,0,p) = —mo/p  for 1z <0 (1.102)

w*(z,0,p) =0 for z>0. (1.103)
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Assuming a displacement field of the form

w*(z,y,p) = o / (s,y,p)e™"" ds, (1.104)

and inserting it into (1.101) results in the ordinary differential equation

2

it (562 + p*/c2)A = 0.

The solution of this equation which vanishes for y — oo is
A(31y7p) = AI(S,p)e—'yya

with
v =1/B%s? + p*/c}. (1.105)

Therefore, the non-zero displacements and stresses are

1 foo )
w*(z,y,p) = 2—7;/ Ai(s,p)e e 7 (s, (1.106)
—00
—7 o0 .
7 (z,y,p) = ;?:’5/ s Ai(s,p)e” e 7 ds, (1.107)
—00
—C’
(@) = 2 [y Ausple e ds. (1.108)

Applying the boundary conditions (1.102) and (1.103) yields a system of dual integral

equations for the determination of the function A;(s,p)

1
%/ Ay(s,p)e e ™ ds = 0 for x>0,
044/ v Ai(s,p)e e % ds = —m/p for z<0,

or on the whole boundary y =0

1

2m
-C

44/ v Ai(s,p)e Ve " ds

/ Ai(s,p)e e ¥ ds = —w’(z,p),

—%H(—-x) +73(z, p).

By Fourier transform inversion

Ai(s,p) = W(s), - (1.109)
—CuvAi(s,p) = _%+T+(S): (1.110)




where

0 )
W_(s) = / w* (z, p)e**®dz,

—00

00 .
T.(s) = / 7y (z, p)e* dz.
0
Eliminating A; from equations (1.109) and (1.110) gives the Wiener-Hopf equation

To _
z'ps T+(S) = O44’)’W_(S). (1111)

Using the Wiener-Hopf technique as in the previous problems it is found that

T, (s) = —%2,—18- [ﬁjg - 1] (1.112)
where
1
L+(8) 7+(3), L_ (3) = C447—(8)’
and

V+(8) =/Bs+ip/ch,  v-(s) =+/Bs —ip/c.

To find the stress intensity factor Ty (s) as s — oo is needed. This is given by

7’0\/;—5—0—};

Ti(s) = “(ap)? 512

as §— oo. (1.113)

Therefore, the dynamic stress intensity factor is

. T0V2 o
Kin(p) = ;3/2 Ben,

and in the time domain

Ki11(t) = 2191/28ch/mV/1. (1.114)

For transversely isotropic materials with fibers along the z—axis, Css = p12 and Bep, =

W12/ p = cs, this equation becomes

K[H(t) = 27'0\/265/71'\/5.

For isotopic materials, the same expression for K;;;(t), with the shear wave velocity ¢; =

\/ 1/ p is found.
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Stress Intensity Factor, Semi-infinite crack
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Figure 1.4: Stress intensity factor history for a semi-infinite crack in different materials, real

time.

1.6

Graphite | E-Glass | Boron | Epoxy | Steel
Epoxy Epoxy | Epoxy
Ci1 20.77 8.38 32.67 | 3.91 3.5
Co2 2.18 2.29 3.12 3.91 3.5
C12 0.49 0.52 0.79 1.91 1.5
w2 (GPa) 7.48 5.5 6.4 1.96 | 76.92
p (Kg/m?) 1600 2100 1990 | 1260 | 7840
(caz/c11)Y* 0.57 0.73 0.56 1 1

Table 1.1: Mechanical properties used for the analysis.

Results and Conclusions

Closed form expressions of the dynamic stress intensity factors Ky(t), K(t) and Ky (t)

have been determined for semi-infinite cracks in orthotropic materials under the three loading

modes, i.e., opening, in-plane shear and antiplane shear loadings, respectively. The method of

solution differs from that typically used in the isotropic case. The displacement formulation

of the equations of motion is solved without the use of Helmholtz potentials. It has been

shown that the orthotropic formulation includes the isotropic results as special cases. That is,

for each loading mode the dynamic stress intensity factor for isotropic materials is recovered
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Semi-infinite Crack, Normal and Shear Loading
6 T T T T

K%, orthotropic
X ofientation

K“Ito orthotropic
y orientation

/ K'Ioo orthotropic -

both directions _ .~~~
- K,/v, isotropic

Dynamic SIF

- Klloo isotropic

t (ms)

Figure 1.5: Stress intensity factor history K;(t) and Kj;(t) for a semi-infinite crack in differ-
ent materials. The isotropic case corresponds to epoxy and the orthotropic to graphite-epoxy.
from the orthotropic expressions with the proper substitution of the elastic constants.

Figure 1.4 shows the stress intensity factor history for the opening mode for different
materials. The material properties used are shown in table 1.1. As in the isotropic case,
the stress intensity factors are proportional to the square root of time; hence there is no
equivalent quasi-static problem for the semi-infinite crack under uniform loadings and there
is no long-time equilibrium value. It can be seen that the fiber reinforcement of epoxy leads
to an increase of the stress intensity factor for a given time, i.e., K;(t) for graphite-epoxy
composite is greater than the corresponding Kj(t) for epoxy at a given time t. Figure 1.5
shows the stress intensity factors Kj(t) and Kp;(t) for isotropic (epoxy) and orthotropic
(graphite-epoxy) materials, note that with same load amplitude the stress intensity factor
Ki(t) is greater than K (t) at a given time. In both cases, the introduction of fibers results
in an increase in the stress intensity factor.

It is interesting to note that K;(t) for a composite with fibers parallel to the z—axis
and for a composite with fibers parallel to y-axis is the same. This result is contained in

equation (1.61) since the ratio £/,/cs2 is invariant to the replacement of ¢y by ¢1; and ey

24




Finite Crack, Orthotropic Material, Uniform Load
T T T

05k coeee ................ ............. —_— Using FFT |t 4
: : --- Kassir Solution
------ Semi-inf. crack

Figure 1.6: Comparison of the stress intensity factor K;(t) for a semi-infinite crack and a
finite crack of length 2a in orthotropic material, the latter is a numerical solution obtained us-
ing integral transform methods by Kassir and Bandyopadhyay (1983) and by Rubio-Gonzalez
and Mason (1998) using FFT for Laplace transform inversion. Ky = g9+/7a.
by cgz. This result does not hold for the in-plane shear loading however, since K;(t) for the
fibers oriented along the y—axis is less than that for fibers oriented along the z—axis by a
factor of (cyp/c11)Y4. This factor is given in Table 1.1 for the materials examined here.
Integral transform methods have been applied to solve dynamic problems dealing with
finite cracks in orthotropic materials. Figure 1.6 shows the stress intensity factor for a finite
crack of length 2a in orthotropic material under uniform impact loading, this is an approxi-
mated solution obtained by Kassir and Bandyopadhyay (1983) and by Rubio-Gonzalez and
Mason (1998) using a more suitable technique for numerical inversion of the Laplace trans-

form. It is known that for short times the finite crack behaves like a semi-infinite crack.

As illustrated in the figure, the closed form solution derived here agrees with the numerical

solution for short times (cst/a < 2) as expected.
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Chapter 2

Dynamic Stress Intensity Factor for a
Propagating Semi-infinite Crack in
Orthotropic Materials.

co-authored with C. Rubio-Gonzalez

The elastodynamic response of an infinite orthotropic material with a semi-infinite crack
propagating at constant speed is examined. Solution for the stress intensity factor history
around the crack tip is found for the loading modes I and II. Laplace and Fourier transforms
along with the Wiener-Hopf technique are employed to solve the equations of motion. The
asymptotic expression for the stress near the crack tip is analyzed which lead to a closed-form
solution of the dynamic stress intensity factor. It is found that the stress intensity factor for
the propagating crack is proportional to the stress intensity factor for a stationary crack by
a factor similar to the universal function k(v) from the isotropic case. Results are presented

for orthotropic materials as well as for the isotropic case.

29




2.1 Introduqtion

Problems of crack propagation at constant speed can be classified into three classes depending
on the boundary conditions [5]. The first class is the steady state crack growth. Here, the
crack tip moves at constant speed for all the time and the mechanical fields are invariant
with respect to an observer moving with the crack tip. The second class of problems is the
self-similar crack growth subjected to time-independent loading. In this case, the crack tip
moves at constant speed from some initial instant, and certain mechanical fields are invariant
with respect to an observer moving steadily away from the process being observed. The third
category of problems corresponds crack growth due to time-dependent loading usually in the
form of crack face pressure or normally incident stress pulse.

The prototype problem of the first category is the two dimensional Yoffe problem [15] of
a crack of fixed length propagating in an isotropic body subjected to uniform remote tensile
loading. Even though this mathematical problem is not a realistic model of a physical
situation because of the feature that the crack closes at one end at the same rate at which
it opens at the other end; it is important because some field quantities are independent
of the fictitious crack length 2a, in particular the angular variation of the near tip stress
field. Propagating finite cracks under steady state conditions have also been considered
for orthotropic materials by several authors using different techniques. Kassir and Tse [6]
through an integral transform technique reduced the related boundary value problem to a
system of dual integral equations. Piva and Viola [11] solved the same problem through a
complex variable approach reducing the equations of motion to a first order elliptic system of
the Cauchy-Riemann type. More recently, Lee, et al [8] obtained higher order expressions for
the stress and displacements around the tip of a crack propagating in orthotropic materials.
In that work a power series representation of complex potentials was used. Atkinson {1}
studied the steady-state propagation of a semi-infinite crack in aelotropic materials by means
of the Cauchy integral formula. In all of these works the emphasis was in the angular

variation of the stress field near the crack tip. Kousiounelos and Williams [7] analyzed the
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problem of a dynamically propagating crack in a highly orthotropic fiber composite infinite
strip subjected to constant displacement mode I loading. The basic assumption was to
neglect the strain along the fibers and simplify substantially the mathematical treatment.
Using Fourier transforms and the Wiener-Hopf technique they obtained expressions for the
dynamic stress intensity factor and dynamic energy release rate under this simplified model.

The Broberg problem (3] is the prototype of the second category. In self-similar problems
attention is focused on the symmetric expansion of a crack at constant rate from zero initial
length. A thorough discussion of the analysis of self-similar mixed boundary value problems
in elastodynamics was presented by Willis [14]. He considered problems in both two and
three space dimensions as well as isotropic and anisotropic materials.

The prototype of the third category is the Baker problem [2] for isotropic materials. He
considered a transient problem in which a semi-infinite crack extends at constant velocity
after a step stress loading on the crack faces is applied at time ¢ = 0. This type of loading
induces a transient traction distribution on the crack plane ahead of the crack tip. If the
material is of limited strength, the crack will begin to extend at some later time, t = {o, after
the application of the load, where t, is the delay time for the process. Freund [4] showed
that the stress intensity factor is independent of the time delay and that it has the form of
the stress intensity factor for a stationary crack subjected to the same stress wave loading

multiplied by the stress universal function k;(v), i.e.
Kl(t, ’U) = k[('U)K](t, 0) 4 (21)

Furthermore, Freund [4] also demonstrated that the relation (2.1) holds for crack propagation
at non-uniform speed being v the instantaneous crack tip velocity and K/(,0) the stress
intensity factor for the crack as it had been at the instantaneous position for all time.
Note the importance of the universal function of the crack tip velocity k;(v) in problems of
arbitrary loading and non-uniform crack speed, even though k;(v) could have been obtained
in the solution of a less general problem like that of a semi-infinite crack propagating at

constant velocity and under a step loading (Baker problem).
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The extension of the Baker problem to orthotropic materials under mode I and mode II
loading is the aim of this work. That is, the problem to be examined consists of an unloaded
crack propagating at constant velocity v in an undeformed unloaded orthotropic material
that remains at rest. At some time, ¢ = 0, uniform stress is applied to the crack faces. The
resulting history of the stress intensity factor at the crack tip is a function of the velocity
as well as the material propgrties and time, K; = Kj;(t,cij,v) where ¢ =I, II. As will be
shown here, the dynamic stress intensity factor for the stationary semi-infinite crack due to
Rubio-Gonzalez and Mason [12] is recovered letting v = 0. In [12] it was shown that

Ki(t,0) = 20, 2635( ) Vi, (2.2)

C22

Ki(t,0) = 27'0\/20517(0)/% VT, (2.3)

which represent one of the few available closed form solutions for the dynamic stress intensity
factors for cracks in orthotropic materials. Making use of these results, it will be possible
to write K;(t,v) and Kjs(t,v) in the form of (2.1) and consequently derive expressions for
the universal functions of the crack speed kr(v) and k;;(v) in orthotropic materials. The
motivation to achieve this task is that k;(v) and kj;(v) may be useful in more general

problems as in the case of isotropic materials.

2.2 Governing Equations, in-plane problems

Consider the plane problem of an infinite orthotropic medium containing a semi-infinite
crack, Figure 2.1, propagating at constant velocity, v along the z'—axis. Let E;, p;; and
vi; (1,5 = 1,2,3) be the engineering elastic constants of the material where the indices 1,
2, and 3 correspond the Cartesian coordinates (z',y’, 2’) chosen to coincide with the axes of
material orthotropy. The crack faces are parallel to z'—axis.

Restricting the problem to two dimensions with wave propagation limited to the z' — 3/’

plane by setting all the derivatives with respect to z to be zero, it is readily shown that the
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Figure 2.1: Schematic of the semi-infinite crack propagating at constant speed.

displacement equations of motion [9] reduce to

0Pu, 0%u, 0y 1 Bzuz
engoz + v +(1+c12)ax,ay, =z e (2.4)
o%u 0%u, 0?u, 1 8%u
ax,g +C223 2+ (1—1-612)a By = 2 6t2y’ (2.5)

where u, and u, are the z and y components of the displacement vector and c;;, ¢12 and ¢y,

are non-dimensional parameters related to the elastic constants by the relations:

c By
1 = )
2|l — (B2 Eqy)vd))
c2 = (Ba/Ey)en, (2.6)
Cl2 = V12022 = V21011,
for generalized plane stress, and by
E
cy = uqzlA (1 — va3vs),
E,
Cpp = 1 — v3v31),
22 o A( 13V31)
E1 E2
= == 2.7
C12 N12A(V21 + E, V13V32), (2.7
A = 1—vvy — VosVsy — V3113 — Vialozla) — V13V21V32,

for plane strain. In the orthotropic solid, ¢; = 4/ 12/ p represents the velocity of the in-plane
shear wave propagating along the the principal material axes and p is the mass density.
A new coordinate system (z,y) is attached to the propagating crack tip, the relation

between the fixed and moving coordinates are

z=z —ut y=1q.
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Steady-state conditions are not assumed, consequently the motion equations in the moving

coordinates are

v?\ %u, O%ug o%u, 1 [0%u, 0uy
() 5+ G ey = 2 (% -ugg).  es
v?\ 0%u, 0%, Puy, 1 (B d%u,
(1 - c—§> a2 + 022——'—ay2 + (1 + 012)_—3:1:33/ = 'cg < a2 - 2U8x3t ) (2-9)

The stresses are related to the displacements by the equations:

e Py, T

oy Oug Ouy

— = —, 2.10
o C12 o + C22 By ( )
Toy _ O  Ouy

U2 oy Oz

2.3 Normal Impact

A spatially uniform pressure of magnitude op is applied suddenly on the crack faces at
t = 0. Exploiting symmetry and taking only the upper half plane y > 0, the corresponding

boundary conditions are

0y(%,0,t) = —0oH(t) for —oco<z <0,
Toy(2,0,8) = 0 for —oco<z<o0o, (2.11)

uy(2,0,t) = 0  for >0,

where H(t) is the Heaviside step function. In addition the condition of zero displacements
at infinity and zero initial conditions are assumed.

The method of solution of the governing equations presented here follows that described
by Baker [2] for the isotropic case with some significant differences; displacement potentials
are not used. In equations (2.8) and (2.9), the time variable may be removed by application

of the Laplace transform

FE =10 e d f0=5 [ FE) e, (212)

= om
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where Br denotes the Bromwich path of integration which is a line parallel to the imaginary
axis in the p-plane. Applying relations (2.12) to equations (2.8) and (2.9) and assuming

zero initial conditions for the displacements and velocities, the transformed field equations

become
v 0% Ol Puy 1 ou’
(011——3) 32+331—2-+(1+Cl2)86 CQ(PU "2Upa > = 0, (2.13)
o%u* azu* a2u* 1 au
(1—22) 8x2y+c2282+(1+a2)33 —25( py. ) = 0, (2.14)

where the transformed displacement components, u; and wuy, are now functions of the vari-
ables z, y, and p. The application of the Laplace transform to the boundary conditions

(2.11) gives
o,(z,0,p) - ——00:—) for —oco<z<0,
Ty(2,0,p) = 0 for —oo<z < o0, (2.15)
u;(az, 0,p) = 0 for z>0.

To obtain a solution of the differential equations (2.13) and (2.14) subject to conditions

(2.15), the Fourier transform is applied,

Fe)= [~ f() € ds, f(@) = L [ sy et s (2.16)

2n J-

It is assumed that the displacements in the Laplace transform domain have the form

* 1 —isx
w(o,yp) = 5[ Als,yp)e ™ ds, (2.17)
* 1 s —isz
u(e,y,p) = 5= [ Bls,y,p)e ds, (2.18)

where A and B are the Fourier transforms of the Laplace transform of the displacements,
uy and uy, respectively, and are yet to be determined. Substituting these transforms into
equations (2.13) and (2.14), the functions A and B are found to satisfy the simultaneous

ordinary differential equations

v\ ,  2upis  p? d’A . dB

[(011 - —C§> s+ 7 + = & A-— W +(1+ clz)zs;l—y— = 0, (2.19)
v2\ , 2upis p? d’B . dA

[(1 - E) s° + Cg + C_g- B - C2Zd_'g/2 + (1 + 012)23-@ = 0. (220)




The solution of these equations which vanishes for y — oo is

A(s,y,p) = Al(s,p)e“71y+A2(s, p)e~ 1Y,

B(s,9,0) = ——Ai(s,p)e™ = =2 Ay(s, p)e ™, (2:21)

where A; and Aj are arbitrary functions and (s, p) stands for the functions

(s,p) = (cn-%)s+ 28+ 5 -
A (1 + c12)7; ’

=1,2 (2.22)

with 72 and 72 being two distinct roots of the quadratic equation

’U2 ’U2 2 2upts
oY+ |5 —cmlon— |+t 2| -1+ 022)’p_ — (1+c2) : 7+
c2 c2 02 c

S S S S
v?\ ,  2vupis p? v? 2upis  p?
- = =[{t1-=) s —| =0(22
[(011 C? s° + Cg + Cg Cg s+ Cg + Cg ( 3)

It can be shown that for many materials the roots -y; and -, are real and positive and the

expressions for the displacements in the Laplace transform domain become:

00 .
uy = —21?/ (A1e7MY 4 Age™ )™ ds, (2.24)
—o0
. —F [ N _ e—isx
uy = -2—-7-(-/ (alAle 71y+0€2A26 ’yzy) S dS, (225)
—00

and using (2.10) the corresponding expression for 77, is given by

o0 .
Toy = —;—:/ [(a1 + 71)A1e7"Y + (a2 + 72) Age™"¥]e ™" ds. (2.26)
—00

Applying the second condition of (2.15) to equation (2.26) yields

A2(3ap) = “_IBIAl(S:p)y
a;+m
= —— 2.27
Z Qo + Yo ( )

Therefore the expressions for the transformed components of displacement become

ur(z,y,p) = /_oo(e‘“y — Bie™ ) A, (s, p)e ™ ds, (2.28)
o0

1

2m

— A _

uy(z,y,p) = __z_/ (oe™MY — ,Blaze‘””’)Me—m ds, (2.29)
27 J—0 S
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and the associated stress components are given by

—1 - ? —1isT
o, = M12 / {(0115 — oyyicp2)e” MY — (0113 — 0pYaC12) Bre” ™Y (s p)e dg.30)
—1 - ’ —isT
a; = Mlz/ [01282 —0171022)6 Y — (01282 —02’72622),516 m] (s p)e 0(‘2-31)
oy = _21::2 /_ (a1 +71)[e™™¥ — e Y] A, (s, p)e™"*"ds. (2.32)
Introducing the functions
1 .
E(S,p) = ;(al - ﬂ1a2)Al(sap)a (233)
0
F(s,p) = _(5-1_——,21—012)2[61232 — a1m1c2e — Bi(c128® — aayaca))s (2.34)
2 Qupi 2
By(v) = J (1 - 3’-) Pl L (2.35)
cz Cd Cd

o) = L

(on = B0+ o) (M + NI = )
(612N1N2 —c11 + ’02/63) — 022[612N12N22 -+ (Cn - ’UZ/CE)(]VI2 + N1N2 + Ng(EBG)

(cla + c12 — crican + cpv®/c5)

1
N12,2(”) E{—'vz/(ﬁ + caa(en — vz/cg) - C%z —2c2 [(U2/C§
—022(011 — ,02/03) -+ 6%2 + 2012)2 — 4(322(611 — U2/C§)(1 - ’U2/C§)]1/2}, (237)
where the velocity ¢; = y/c11¢, represents the dilatational wave speed along the z—axis and

in view of the first and third boundary conditions in (2.15), equation (2.29) and (2.31) yield

the following pair of dual integral equations for the determination of the function E(s,p)

* _ 1128 [ F(s,p) —isz _ _0% _
0y(,0,p) = el iy E(s,p)e ™% ds = > co<z <0, (2.38)
Uy (7,0,p) = 2——7:/ E(s,p)e™%ds = 0 0<z<oo. (2.39)

Let u;_(z,p) be the unknown Laplace transform of the vertical displacement on the
negative z—axis, and o7 (z,p) be the unknown Laplace transform of the normal stress on

the positive z—axis, so that

. _fo0 for z>0 . _ | ot(z,p) for >0
uy(2,0,p) = { uy_(z,p) for <0 oy(2,0,p) = { —og/p for z <. (240)
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Then the Laplace transform of the normal stress and the vertical displacement on the whole

boundary y = 0 is given by

ipé [ F(s,p) ies G0y, .

21 J— 64 E(s,pe ds = D H( :13) + 0+(5L'7P), (2.41)
—Z e —1isT *

o /_oo E(s,p)e™ ds = uy_(z,p), (2.42)

and by Fourier transform inversion, these equations give

it S B, p) = — 24 3,(), (2.43)
—iE(s,p) = V_(s), (2.44)
where
Ti(s) = /Oooaj_(a:,p)eis"”da:, (2.45)
V(s) = /_° u_(z,p)ede, (2.46)

/0 (——_ao) dody — _ 90
o \ D ips
From the physics of the problem it is reasonable to assume that the function o7 (z,p)

and uy_ (z,p) are exponentially bounded at infinity and this ensures the existence of their

Fourier transform (2.45) and (2.46). In particular it is shown in [10] that

if |0% (z,p)| < Mie** as £ — 400 then  ¥.(s) is analytic in Im(s) = A > A_,

and if |u}_(z,p)| < Mae™+* as x — —oco then  V_(s) is analytic in Im(s) = A < A,.
2.3.1 Wiener-Hopf technique

Eliminating F (s, p) from (2.43) and (2.44) yields a Wiener-Hopf equation

— —X(s ) Mlsz(S )

o V_(s) (2.47)

which contains only the two unknown functions ¥, (s) and V_(s), and now the Wiener-Hopf
technique can be applied as follows. Suppose that the function L(s) is defined and factored

as

L(s) =

= o T2 (2.48)




then equation (2.47) becomes

2 La(s) = Z4(6)La(s) = L-(GIV-(5), (2.49)
Assume that the function D(s) can be defined and decomposed as
i L+(s) = D(s) = Dy (s) + D_(s), (2.50)
then equation (2.49) becomeé
D (s) = £4(s)L4(s) = L-(s)V_(s) — D—(s) = W(s). (2.51)

The first member of this equation is analytic in the upper half plane Im(s) = A > A_ and the
second member in the lower half plane Im(s) = A < A;. Therefore, if Ay > A_ the regions
of analyticity overlap. Using the Liouville’s theorem to determine W (s), solutions for £, (s)
and V_(s) can be found.

The only zeros of the function F'(s,p) are of the form s = ip/(dcg + v) where cp is the
Rayleigh wave speed. This can be seen by substituting s = ip/(c + v) in F(s,p), letting

F(s,p) = 0 and dividing by the non-zero factors, then F'(ip/(c + v),p) = 0 reduces to

C22 [Cr1Co2 — 612 0_2 o =0
2 2 2
C29 C Cs Cncs

which is the Rayleigh function for orthotropic materials [13]. The roots of this function are

¢ = *cp.

Consequently, the first step in factoring L(s) is to define

Py =L (;’p) (2.52)
R
where
2 2 . 2
Or = (1 - 32—) 2+ 2 P (2.53)
cq ch ch

It can be shown that F'(s) — 1 as s — oo, (the function £(v) in (2.34) was chosen to make

this possible). The function F'(s) is regular and F'(s) # 0 in the s—plane cut as shown in




Im(s)

N Jp/ s

ip/(cd+v)

N\ Re(s)
A
\\i p/ (cd-v)

-ipl (Cs—\k

Figure 2.2: Branch cuts of F(s) in the s—plane.

figure 2.2, the only singularities are the branch points shared with 7; and +,. Where the

branch points of ; and v, are

ip —1
for ~y; s = , p’
Cs+vV Ci—v

1 —1

for -y s = p p

ci+v cg—v’

It is well-known that factorization is accomplished most directly for functions that ap-
proach unity as |s| — oo and that have neither zeros nor poles in the finite plane; F'(s) is
an example of such a function. Therefore, using Cauchy’s integral formula it can be shown

that [5]

A 1 log F'(z
Fy(s) = eXP{%/ri ———zg_(s) dz}

where F'(s) = F'.(s)F_(s) and T'_ [I'}] is the contour enclosing the cut between the branch

points +ip/(c, + v) and +ip/(cq + v), [—ip/(cs — v) and —ip/(cq — v)]. Using the fact that

F'(3) = F(s) one can write

Fi(s) — e {__1 /1/cs¢v - <Im[ﬁ‘(ipw)]) dw } .

T 1o Re[F(ipw)]) wF 2
From equations (2.35) and (2.53) note that

2 Qi 2 ) )
R s i (R (SR
c5 c3 lox Cd Cd Cd Cd

2 2 - 2 . .
0 = (1—-'”7) P ke Y [(l—i)s+£] [(1+1)3—E] = 0405
Cr Cr Cr CRr Cr Cr Cr
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Returning to the factorization of L(s) we have

L(s) = é—;% = N12€'F—1(gc)lol (2.54)
therefore
L) = wmatg2F-(s) (2.56)
+

Lo(s) = g—%f(s) (2.57)

and
D(s) = P2L4(5) = 2 [L+(3) i"sLJf(O) + ino)] —Di(s)+D_(s) (258

with
Du(s) =2 [L+(3) Z,‘SL+(°)] . D=2 F#] . (2.59)

Each side of equation (2.51) is analytic in one of the overlapping half planes, and the sides
coincide on the strip of overlap. Consequently each side of (2.51) is the analytic continuation
of the other into its complementary half plane; so that the two sides together represent one
and the same entire function W (s). The entire function will be determined by its behavior
at |s| — oo which is related with the behavior of physical quantities near z = 0. First
note that L,(s) ~ s7*/2 and L_(s) ~ s'/? as |s| — oo, and, D,(s) and D_(s) in (2.59)
are bounded in their respective planes of analyticity and vanish at infinity. Furthermore,
o’ (z,p) is expected to be square root singular as x — 0% and u;_(z, p) is expected to vanish
as £ — 0~ to ensure continuity of displacement. As a result, from the Abel theorem [10]

relating asymptotic properties of transforms, we know

lim z'/2

z—0+ Uf‘,_(x,p) ~ sl_ifgo 81/22+(S),

. —q, % ~ T 1+q

lim |z[™%%(z,p) ~ lim_|s|""V_(s),
for some ¢ > 0. Therefore, it is expected that ¥, (s) ~ s7%/2 and V_(s) ~ 57177 as |s| — oo,
thus the products X4 (s)L.+(s) and L_(s)V_(s) vanish at infinity. Therefore, each side of
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(2.51) vanishes as |s| = oo in the corresponding half planes. According the the Liouville’s
theorem, a bounded entire function is constant. In this case, W (s) is bounded in the finite
plane and W(s) — 0 as |s| — oo so that the constant must be zero; thus, W(s) = 0. By

using (2.51) and (2.59), the functions of interest are then given by

_ Di(s) _ 001 [Li(0)
Bue) = T =2 [ G 1] (2.60)
V.(s) = 2= _201L:O0) (2.61)

L_(s) pisL_(s)
2.3.2 Stress Intensity factor

To find the stress intensity factor, an asymptotic expression for the normal stress near the
crack tip is sought. The Abel’s theorem relating asymptotic expressions between a function

and its Fourier transform is the following [10]

. * : —iT S
Jim vz o4 (@,p) = lim e /2 24, (2:62)

Clearly, the behavior of ¥, (s) as s — oo is needed. Note that

Ly(s) = Y220/ 1

1—uv/cg s'/?
and since F,(0) = F_(0) = +/F(0) = 2,/F(0,p) then

L(0) =

as s§— o0

P
Vibea[F(0,9)

therefore
—0o0 1 1-v/cg

by =
)= P i /s P

Using this relation and the definition of the stress intensity factor in (2.62) gives

as s — oo. (2.63)

Ki(p) = zgr(r)l+ Vrz o} (z,p) = sginoo e"™%\/25 T, (s) (2.64)
— 00\/—2_ 1-— C/CR D (2 65)

p3/? \/1 —c/cq \/c_d\/F(O,p)




it is readily shown that

VF(O0,p)=p ﬂz (2.66)

CsCq

so that

1- C/ Cr 2cs§ 1
Ki(p)=o 2.67
i 0,/1—c/cd \I Ve p3/? (267)
and by Laplace inversion the dynamic stress intensity factor in the time domain for this

loading mode is
1—v/cr |2¢é€(v)

V1—v/cqg \ TVC2

Denoting £(0) the function £ evaluated at v = 0, equation (2.68) can be rearranged

_1-v/er [€0) [, [20£00)
K[(t,’l)) = WJ f(O) [2 o\i P \/Ejl (269)

The expression in brackets corresponds to the dynamic stress intensity factor for a stationary

K[(t, ’U) = 20’0

(2.68)

semi-infinite crack in orthotropic materials derived in {12}, and the remaining factor will be
kr(v), the universal function of the crack tip speed that relates the stress intensity factor for

stationary and propagating crack. That is

1—v/cg |£(v)
\/1—v/cq £(0)’

The expression for kr(v) can be approximated, for 0 < v < cg, by

kr(v) = Ki(t,v) = kr(v)K1(t,0) (2.70)

1—v/cg

V1—v/cq

kr(v) ~ (2.71)

as in the case of isotropic materials.

2.4 In-Plane Shear Loading

Consider the crack geometry illustrated in figure 2.1(b). The crack faces are subjected to

suddenly applied, spatially uniform shear traction of magnitude 7y at time ¢ = 0. Exploiting

asymmetry and examining the half space y > 0, the corresponding boundary conditions are
Toy(2,0,t) = —ToH(t) for —oo<z<0,
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oy(z,0,t) = 0 for —oo<z <00, (2.72)
uz(z,0,t) = 0 for z>0,
where H(t) is the Heaviside step function. In addition the condition of zero displacements
at infinity and zero initial conditions are assumed.

The method of solution is similar to that used for normal impact. Applying Laplace

transform to boundary conditions (2.72) gives
73,(2,0,p) = —m/p for —o0<z <0,
oy(z,0,p) = 0 for —o0<z< o0, (2.73)
ui(z,0,p) = 0 for z>0.
Assuming the displacement field (2.17) and (2.18) yields the same system of ordinary differ-
ential equations (2.19) and (2.20) whose solution is given by equations (2.21) where o; are

defined by (2.22) and ; are obtained from the solution of (2.23). Using (2.24), (2.25) and

(2.10) indicates that oy is given by

—zsw

i
a;(a:,y,p) = M12/ [(s Cio — Q1Y1C9)Are” 7“”+(s C1g — Q3YaCan) Age™ '”y] ds. (2.74)
Applying the second condition of (2.73) to equation (2.74) yields
Aax(s,p) = —BAi(s,p),
8, = s%c1a — umicy (2.75)

s?c1g — Q272C22

Therefore, the expressions for the transformed components of displacement become

ﬁ;(m‘,y,p) = —217;/_00( MY _ Boe” V) A (s, p)e 7 ds, (2.76)
u,(z,y,p) = % /_ Z(ale‘m’ — ﬂzaze”m)%&p)e-m ds, (2.77)

and the associated stress components are given by
oy = “Zﬂlz/ [(0118 —armicp)e” ™ ~ (0113 — 2Y2C12) o™ W] ——— (S P) _mc@ 78)
o, = —wm / (c128® — aryicon)(e™™Y — e"’zy)Al—(j’B)-e“'”ds, (2.79)
Toy = —MZ/ [(q + 7)™ — (g + 72) Bae Y] A1 (s, p)e " ds. (2.80)
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Introducing the functions

¢

C(S7P) = (1 - :32)A1(37p)v (281)
G(s,p) = ﬁ[(% +7) — Ba(az + 1)}, (2.82)
8,(v) = \i (1 - 1;;) 52+ 2’;’?3 + g;, (2.83)
. @284

where £ and N 2 are given in (2.36) and (2.37) and in view of the first and third boundary
conditions in (2.73), equation (2.76) and (2.80) yield the following pair of dual integral

equations for the determination of the function C(s, p),

* B2 [ G S,p) —isT T
Toy(2,0,D) = 217r . (os C(s,p)e ™% ds = —-pg —oo<z<0, (2.85)
1 foo .
uy(z,0,p) = _2—7—1"/ C(s,p)e™®ds = 0 0<z<oo. (2.86)
—00

Let u}_(z,p) be the unknown Laplace transform of the displacement on the negative
z—axis, and 7} (z,p) be the unknown Laplace transform of the shear stress on the positive

x—axis, so that

. |0 for z>0 . _J mi(z,p) for >0
u;(2,0,p) = { ui_(z,p) for z<0 72y(2,0,p) = { —1/p for z<O0. (2.87)

Then, the Laplace transform of the shear stress and the displacement on the whole boundary

y=0is
v/ G(S,p) —~isz — _Tog_ *
o Jooo 0, C(s,p)e ds = > H(-z)+ 73 (z), (2.88)
1 OO —iST . *
o /_oo Cls,p)e™ ds = up_(z) (2.89)

and by Fourier transform inversion, these equations give

NlZnG(;;p)C(3>p) = “%+T+(3) (2.90)
C(s,p) = U-(s) (2.91)
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where

To(s) = /0 "t (2)e"dx (2.92)

U_(s) = /_ ooou;_(a:)emda: (2.93)

/° 7o) gisrgy = 10
—co \ P : ips

Eliminating C(s, p) from'(2.90) and (2.91) results in a Wiener-Hopf equation

G(s,p)
0,

— — T4 (s) = —pa U_(s) (2.94)

ips

which contains only the two unknown functions, T’ (s) and U_(s), and can be solved using

the Wiener-Hopf technique as in the normal impact analysis. The result is

Dy (s) — T4 (s)L4(s) = L_(s)U—(s) — D_(s) = 0 (2.95)
where
L(s) = —un€2C(s) (2.96)
o 1
Li(s) = 65 Ge) (2.97)
and
D(s) = 2 Lu(s) = [L“f(s) i‘SL*“(O) + L;io)] = D, (s) + D_(s), (2.98)
with
_TQ L(S)'—L (O) __'T() L_(O).
D+(s)_;l+ i3+ ], and D_(S)——;[-;.s },
where
G(s) = G?;p), (2.99)
and
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It can be shown that G(s) — 1 as s — co. Thus, the solution of (2.95) is

_ Dy(s) _ 71 [Ly(0)
() = T = [L+(8) 1] (2.100)
U(s) = 208 _n1Li(0) (2.101)

L(s) pisL(s)
with L (s) defined in (2.96) and (2.97) and G+ (s) given by
1/esFv (s
Gi(s) =exp 1/ tan™! (Im[(;}(zpw)]) dwis .
1/ca¥v Re[G(ipw)]) wF 5
To calculate the stress intensity factor, T’y (s) as s — oo is needed. First, note that

Ly(s) = Lov/e 1

1—v/cg s1/2

as s§— 00

and since G, (0) = G_(0) = y/G(0) = 2,/G(0, p) then

p

L.(0) = )
0= a0

Therefore,
-7 1 1-v/cg

(ip)3/2 31/2,/ —v/cg \/c_s,/G(O )

Using (2.62) and the definition of the stress intensity factor gives

T (s) = as s — 0. (2.102)

Kp(p) = lim V2rz 7i(z,p) = lim e~ ™4\/25 T\ (s) (2.103)
70v2 1—v/cg P

_ ‘ 2.104
T o o

_ b
\/G(0,p) = i (2.105)

It can be shown that

so that

. — 1 1-v/c

and by Laplace inversion the dynamic stress intensity factor in the time domain for this

loading mode is

’U/CR
Ky(t,v) = 270 v/ 2¢sn(v) /7 V. (2.107)
J1-v cs
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Graphite | E-Glass | Boron | Epoxy
Epoxy Epoxy | Epoxy

e 20.77 | 838 | 32.67 | 3.91
o 2.18 929 | 312 | 3.1
Cio 0.49 052 | 079 | 1.01
12 (GPa) | 7.48 5.5 64 | 1.96

p (Kg/m®) | 1600 | 2100 | 1990 | 1260

Table 2.1: Mechanical properties used for the analysis.

Denoting 7(0) the function n evaluated at v = 0, equation (2.107) can be rearranged as

_ 1-w/er [n(v) /2 .
Ku(t,v)—\/l__;/_c?|n(0) [2 0/2¢sn(0)/ \/Z]. (2.108)

The expression in brackets corresponds to the stress intensity factor for a stationary semi-

infinite crack in orthotropic materials under impact shear loading derived in [12], and the
remaining factor will be kr;(v), the universal function of the crack tip speed that relates the

stress intensity factor for stationary and propagating crack. That is

k[[(’v) = 1- U/CR ’I](’U) Kn(t, 'U) = k[[(’U)KH(t,O) (2109)

J1—v/c, \1(0)’

The expression for k;r(v) can be approximated, for 0 < v < cg, by

1—v/cr

V1—v/cs

k”('v) ~ (2110)

as in the case of isotropic materials.

2.5 Results and Conclusions

Closed form expressions for the dynamic stress intensity factors K;(t,v) and Kjr(t,v) due
to suddenly applied uniform loads on the crack faces have been determined for semi-infinite
cracks propagating at constant velocity v in orthotropic materials. The results presented here
are consistent with those for stationary cracks, i.e. for v = 0, K;(¢,0) and Kj;(¢,0) developed

in a previous work by Rubio-Gonzalez and Mason [12] for semi-infinite cracks in orthotropic
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materials subjected to spatially uniform step loads on the crack faces are obtained. Using
these results it has been possible to find expressions for the universal function of the crack

tip speed kj(v) and kjr(v) which may be written in approximated manner as

ki(v) =~ A-vfer
V1—v/cq
k) ~ 1-v/cr

Note that these equations conserve the same form as those for isotropic materials [5], where
the wave speeds ¢; and cg should be computed and understood properly for orthotropic
materials with the planes of orthotropy assumed here.

Figures 2.3 and 2.5 illustrate k;(v) and krr(v) for different materials for which the
properties are given in Table 2.1. They also show that for orthotropic materials the functions
kr(v) and kr7(v) given by equations (2.70) and (2.109) may be approximated by the simplified
expressions (2.71) and (2.110), respectively as usually it is for isotropic materials. They are
very close each other for several materials. In fact, the factor 1/&(v)/€(0) is close to one over
a large interval of speeds as shown by figure 2.4. It can be shown that £(v)/£(0) = n(v)/n(0)
and therefore Figure 2.4 applies to the in-plane shear loading too.

It was assumed tacitly in the method of solution of the equations of motion that the crack

speed propagation is subsonic, v < cg, in order to maintain elliptic differential equations.
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Figure 2.3: Comparison of the universal function k;(v) and its
(2.71) for different materials in mode I loading.
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Factor (&(v) / £(0) )"2 for different materials
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Figure 2.4: Factor /&(v)/£(0) for different materials. Graphite-epoxy x or y means that the
fibers are parallel to the z— or y—axis, respectively.
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Chapter 3

Dynamic Stress Intensity Factor due
to Concentrated Normal Loads on
Semi-infinite Cracks in Orthotropic
Materials.

Co-authored with C. Rubio-Gonzalez and submitted to the Journal of Composite Materials

The transient elastodynamic response due to concentrated normal impact load on the
faces of a a semi-infinite crack in an orthotropic material is examined. In contrast to earlier
papers where numerical approximations were used, a closed form solution for the stress
intensity factor history around the crack tip is found here. Laplace and Fourier transforms
together with the Wiener-Hopf technique are employed to solve the equations of motion in
terms of displacements. Even though the problem has characteristic length, it has been shown
in previous works that the Wiener-Hopf technique can be applied. The asymptotic expression
for the stress near the crack tip is analyzed which leads to the dynamic stress intensity factor
in mode I. Similarly to the isotropic case, it is found that the stress intensity factor has a
singularity and discontinuity when fhe Rayleigh wave emitted from the load arrives at the
crack tip. Results are presented for orthotropic materials as well as for the isotropic materials.
The closed form solution is given by simple integral and algebraic expressions and does not
exhibit the spurious oscillations seen in earlier numerical solutions.

Keywords: stress intensity factor, dynamic fracture, orthotropic materials.
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3.1 Introduction

The growing use of composites in many engineering applications demands the fundamen-
tal understanding of the response of cracked orthotropic bodies under impact loads. The
behavior of finite cracks with concentrated loads on its faces in orthotropic materials has
been analyzed by Rubio-Gonzalez and Mason (8, 9] using integral transform methods. In
that work, the problem is reduced to a Fredholm integral equation in the Laplace transform
domain which is solved numerically, and the stress intensity factor is recovered in the time
domain by numerical Laplace inversion. Although this approach can be quite accurate, the
solution obtained is approximated and restricted to finite cracks. It would be desirable to
have an exact solution for the stress intensity factor in cracks in orthotropic materials sub-
jected to impact concentrated loads that can be used as a Green’s function in dynamic crack
problems in orthotropic materials.

In the present work a semi-infinite crack with impact concentrated loads on its faces
in orthotropic material is analyzed, an exact, closed-form solution for the dynamic stress
intensity factor is obtained for the opening loading mode. Laplace and Fourier transforms
are used along with the Wiener-Hopf technique to find the stress ahead of the crack tip and
the displacements of the crack faces. Asymptotic expression for the stress near the crack
tip leads to the stress intensity factor Kj(t). The equivalent problem for isotropic materials
was solved by Freund [2] by superposition of two different problems with no characteristic
fixed length. The superposed problems were solved employing the Wiener-Hopf technique.
Kuo and Chen [4, 5] have shown that the direct application of the Wiener-Hopf technique
may be used to solve that problem in a more straightforward manner. The latter approach

is used in this paper to extend the solution of Freund to orthotropic materials.
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3.2 Governing Equations

Consider the plane problem of an infinite orthotropic medium containing a semi-infinite
crack, Figure 3.1. Let E;, u;; and v;; (4,5 = 1,2,3) be the engineering elastic constants of
the material where the indices 1, 2, and 3 correspond to the directions (z,y, z) of a system
of Cartesian coordinates chosen to coincide with the axes of material orthotropy. The crack
faces are along the negative z—axis and the origin of the zy axes is the crack tip. The crack
faces are suddenly loaded by a pair of concentrated normal forces of magnitude og located a

distance [ away from the crack tip, as shown in Figure 3.1.

o, H(t) y

— X
e [
o, H(t) Y

r

Figure 3.1: Schematic of the semi-infinite crack geometry.

The problem is restricted to two dimensions with wave propagation in the z — y plane
only. By setting all the derivatives with respect to z to be zero, it is readily shown that the

displacement equations of motion [6] reduce to

v 0*u v 1 6%u
ug2 + 2 +(1+ clz)axay - 2o (3.1)
8%v &%y 0%u 1 0%
51:—2 + 0225:(/—5 -+ (1 + 612) 520y =S Zg—a-zz—, (32)

where u and v are the z and y components of the displacement vector and ¢, ¢12 and ¢y

are non-dimensional parameters related to the elastic constants by the relations:

c = E

H pi2[l — (Ez/Ey)v},)
c2 = (Eaf/Er)cn, (3.3)
Cl12 = VigCog = V21011,
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for generalized plane stress, and by

C11

C22

Ci2

A

Ey

u12A(1 — Vs3ls2),

E

M;)A(l — 13V31),

E; E,

ﬂle(VZI + E, Vi3V32), (3.4)

1 — viavo1 — VasV3 — V31Vi3 — Viglesls1 — Visla1Vse,

for plane strain. In the orthotropic solid, ¢; = 1/i12/p represents the velocity of the in-plane

shear wave propagating along the the principal material axes and p is the mass density. The

stresses are related to the displacements by the equations:

Gs _ 0w OV

oy Oou ov

i —_— — --—, 3-5
ta C12 3$ + Co9 ay ( )
Tay Ou Ov

—_— 4 —.
H12 Oy Oz

3.3 Method of Solution

Exploiting symmetry and taking only the upper half plane y > 0, the corresponding bound-

ary conditions are

0y(2,0,t) = —ooH(t)6(x+1) for —o0o<z<0,

Tey(2,0,8) = 0 for —oo<z< o0, (3.6)

v(z,0,t) = 0 for x>0,

where H(t) is the Heaviside step function. In addition, the condition of zero displacements

at infinity and zero initial conditions are assumed.

The method of solution of the governing equations presented here follows that described

in Kuo and Chen [4, 5] for the isotropic case with some significant differences. Displacement

potentials are not used and no assumptions are made about the form of the unknown func-

tions. In equations (3.1) and (3.2), the time variable may be removed by application of the
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Laplace transform

o) =[ CHe) e dt, f(t) = 51;1- [ 5w e (3.7)

where Br denotes the Bromwich path of integration which is a line parallel to the imaginary
axis in the p-plane. Applying relations (3.7) to equations (3.1) and (3.2) and using zero initial

conditions for the displacements and velocities, the transformed field equations become

62’11,* 62u* 62’0* p?.

—_— 1 — —=u* = .
C11 522 + ayz + ( + C12)axay cgu 0, (3 8)
62,0* az,v* azu* p2

1 — —=v* = 0, .
£ + Co2 By + (1 +c12) o0y~ & v (3.9)

where the transformed displacement components, v* and v*, are now functions of the vari-
ables z, y, and p. The application of the Laplace transform to the boundary conditions (3.6)

gives

1
0y(7,0,p) = —001—)6(33 +10) for —oo0<z<0,
To(2,0,p) = 0  for —o0o<z<o0, (3.10)

v*(z,0,p) = 0 for z>0.

To obtain a solution of the differential equations (3.8) and (3.9) subject to conditions
(3.10), the Fourier transform is applied,

1

Fo)= [ fe) = ds, f(z)= 5

/_oo F(s) e7" ds. (3.11)

It is assumed that the displacements in the Laplace transform domain have the form

u*(z,y,p) = 51;/ A(s,y,p)e " ds, (3.12)
* 1 o —isx
v (IL‘, y7p) = 57';/_003(3,3],]))6 dS, (313)

where A and B are the Fourier transforms of the Laplace transform of the displacements,

u* and v*, respectively, and are yet to be determined. Substituting these transforms into
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equations (3.8) and (3.9), the functions A and B are found to satisfy the simultaneous

ordinary differential equations

d’A dB
(01182 +p2/C§)A - =+ (1 + Clz)isd—y = O,

dy?
d’B . dA
(32 +p2/C§)B - ng'dy—,z‘ + (1 + Clz)ls-d—y— = 0.

The solution of these equations which vanishes for y — oo is

A(s,y,p) = Ai(s,p)e™¥ + Az(s,p)e™™,
—ia1

&
—~
»
=
)

i

Ay (s,p)e ™Y — Z%Az(s,p)e‘””,

where A; and A, are arbitrary functions and «;(s, p) stands for the functions

o) UL
7 (1+ci2)75

7=12

with 42 and 42 being two distinct roots of the quadratic equation

(3.14)

(3.15)

(3.16)

(3.17)

ooyt + [(2y + 2¢12 — €11€22)8% — (1 + c22)p? /P2 + (cu1s” +p?/c)(s* + p*/c2) = 0. (3.18)

It can be shown that for many materials the roots 7; and 7y, are real and positive and the

expressions for the displacements in the Laplace transform domain become:

1 o .
o= o= / (Are™Y + Age™"Y)e™" ds,
27 J -
—1 oo e—isz
v* = —-/ (01 A1€7"Y + @ Age™ ) ds,
271' -—00

and using (3.5) the corresponding expression for 7;, is given by

w .
Ty = o /_oo[(al +71)A1€™"Y + (0 + 72) AgeTY]e 77 ds.

27

Applying the second condition of (3.10) to equation (3.21) yields

A2(37p) = _ﬁlAl (Sap)7
o+
A as+ 72
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Therefore, the expressions for the transformed components of displacement become

u*(z,y,p) = 517—“/00 (7MY — Bre™"Y) A, (s, p)e™ " ds, (3.23)
v*(z,y,p) = ; / (ne™™Y — Prage~ 1) 1P A‘(s P) g-isz g, (3.24)
and the associated stress components are given by
0; = —;’/:2 /_ o:o[(cnsz.— 011’71012)6_7ly - (01182 - 01272612)ﬁ1€—72y]é(sigze_isz"@-%)
0; = -—;1;12 /_ 0:0{(01282 - 041')’1622)6_7”' - (01252 - sz’Yzczz)ﬂle”wy]Al_(jﬂe_isza(ﬂ'%)
Toy = _2'[;12 /_ o:o(al +7)[e7"Y — e A, (s, p)e” 7 ds. (3.27)

The following functions are introduced,

1

E(s,p) = ;(011 - Braa)Ai(s, p), (3.28)
\/8?2 +p?/ch
F(s,p) = “m‘)%[c1282 — apmicz — Bi(c12s® — aayacm)), (3.29)
-1
£ = cn(+ o) (Vi + IV ){(012 + c12 — €11622) (c12N1 N2 — ¢11)
—622[612N1 N2 + 011(N12 + N1N; + N22)]}, (330)
1

N12’2 = 2022 {611622 - 012 - 2012 + [(611622 bt 012 —_ 2012) — 4611622]1/ } (331)

where the velocity ¢g = /ci1¢, represents the dilatational wave speed along the z—axis. In
view of the first and third boundary conditions in (3.10), equation (3.24) and (3.26) now yield

the following pair of dual integral equations for the determination of the function E(s, p) -

o,(z,0,p) = i€ = Flop) E(s,p)e ™" ds = —-@5(:1: +1) — o0 < z B382)
2 S [s2 +p2/2 P
v*(z,0,p) = 2:7; /oo E(s,p)e™®ds = 0 0<z<oo, (3.33)

Let v* (z,p) be the unknown Laplace transform of the vertical displacement on the
negative z—axis, and 0% (z,p) be the unknown Laplace transform of the normal stress on

the positive z—axis, so that

. ] for >0 . _ | oi(z,p) for >0
v'(2,0,p) = { v*(z,p) for <0 oy(2,0,p) = { —(oo/p)0(z +1) for <0
(3.34)
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then we can write the Laplace transform of the normal stress and the vertical displacement

on the whole boundary y = 0 as

1 00 F .
Ll BB popeieds = ~Ls@+l)+os(nn),  (335)
2 —00 82 + p2/63 P
:_Z: *® ~1ST — *
E(s,p)e ™ ds = v*(z,p), (3.36)
21 J-
and by Fourier transform inversion, these equations give
. F(S,p) 0o —isl
it ——=F(s,p) = ——e " +X,(s), 3.37
12 \/m p +( ) ( )
—iE(s,p) = V_(s), (3.38)
where
S.(s) = /0 o* (z,p)e* dz, (3.39)
0 .
Vo(s) = / v* (z,p)e**®dx, (3.40)

From the physics of the problem it is reasonable to assume that the function o7 (z, p)
and v* (z,p) are exponentially bounded at infinity and this ensures the existence of their

Fourier transform (3.39) and (3.40). In particular it is shown by Noble [7] that
if [0% (z,p)| < Mie*® as x — +oo then  ,(s) is analytic in Im(s) = A > A_,
and if |v* (z,p)| < Mae™® as x — —oco then  V_(s) is analytic in Im(s) = A < 4.
3.3.1 Wiener-Hopf technique

Eliminating E(s,p) from (3.37) and (3.38) we obtain a Wiener-Hopf equation

F(s,p)
V82 +p?/ch

which contains only the two unknown functions ¥, (s) and V_(s), and now the Wiener-Hopf

_Z_;(le—isl — T4(s) = pot V_(s) (3.41)

technique can be applied as follows. Suppose that the function L(s) is defined and factored

as

oy = L=(8) _ F(s,p)
L( )— L+(S) _M12§\/m
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then equation (3.41) b‘ecomes
%e'is’LJr(s) —24(8)L4(s) = L_(s)V_(s). (3.43)
Assume that the function D(s) can be decomposed as
%e*i31L+(s) = D(s) = Dy(s) + D_(s), (3.44)
then equation (3.43) becomeé
D, (s) = Z1(s)L4(s) = L_(s)V_(s) — D_(s) = W (s). (3.45)

The first member of this equation is analytic in the upper half of the s—plane Im(s) = A > A_
and the second member is analytic in the lower half of the s—plane Im(s) = A < A,
Therefore, if A, > A_ the regions of analyticity overlap. Using the Liouville’s theorem to
determine W (s), solutions for 3, (s) and V_(s) can be found.

After algebraic manipulation it is found that the function F(s,p) reduces to

: 1
F(s,p) = Ca2c127372 — NY2(l + C12) 8% +
§v/ey/ens? + p?/ci(n + 7)1+ ciz) {

(cus® +p°/cd) [%2(’)’% +75) + MY2(1 + cr2)ean + 5 (c12 + ¢l — enea) — 622102/03]}

The only zeros of F(s,p) are of the form s = +ip/cg where cg is the Rayleigh wave speed.
This can be seen by substituting s = ip/v in F(s, p), letting F'(s,p) = 0 and dividing by the

non-zero factors, then F(ip/v,p) = 0 reduces to

C22 [ Cr1Co2 — 012
11 C22 C2 02 011(32

which is the Rayleigh function for orthotropic materials [10]. The roots of this function are

v = ﬂ:CR.
Consequently, the first step in factoring L(s) is to define

1:-1(3) _ F(s,p)

ooy (3.46)
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Im(s)
N p/cs
o
Be(s)

\
\\ip/cd

N
-i p/CS\

Figure 3.2: Branch cuts of F(s) in the s—plane.

It can be shown that F'(s) — 1 as s — oo, (the constant £ in (3.29) was chosen to make this
possible). The function F'(s) is regular and F'(s) # 0 in the s—plane cut as shown in figure
3.2, the only singularities are the branch points shared with v; and ;. Where the branch

points of v; and v, are

for v; s = i@,
Cs
ip -—:i:@

+ = .
/€11 Cs Cd

It is well-known that factorization is accomplished most directly for functions that ap-

for v; s =

proach unity as |s| =& oo and that have neither zeros nor poles in the finite plane; F(s) is
an example of such a function. Therefore, using Cauchy’s integral formula it can be shown

that [3]

271 Z2—8

Fi(s) = eXp{L/Fi log F(2) dz}

where F'(s) = F.(s)F_(s) and T'_ (T'y) is the contour enclosing the branch cut between

+ip/cq and +ip/cs, (—ip/cq and —ip/c,). Using the fact that F'(5) = F(s), one can write

Fi(S):exp{“__l / Y fan (Im[ﬁ (iPw)]) dw }

T J1/eq Re[F(ipw)) w:F%f-

Note that by making s = ip{ in this equation, Fi(s = ip¢) = F(¢) becomes a function only
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of (. That is

Fi(g) = exp { —1 / ;’ . tan™! [R(w)] —“’—C} (3.47)
where
Im[F(ipw)]
Rw) = ReFapw)
Returning to the factorization of L(s) we have
L(s) _  F(s)(s*+p/ch)
L(s) I(s) p12€ \/W (3.48)
Fy(s)F_(s)(s + ip/cr) (s — ip/cr)
= M2 3.49
rt \/s+ip/cd\/s—z'p/cd (3.49)
therefore
Lo(s) = mat— D (o) (3.50)

- \/s —ip/ca
L(s) = Yetiplea 1 (3.51)

(s+ip/cr) Fy(s)

Using the sum splitting formula [7] for the function D(s) defined in (3.44) along with the
result (3.51) it is found that

D (3) _ —l— /w+iAo D(Z) 0-0 1 /‘oo+i)\o (Z + ip/cd)1/2e—izl i (3 52)
+ 218 J—cotirg 2 — s P 276 J—ooting (z—s)(z+ip/er)Fy(2)
D_(s) = D(s)— Dy(s) (3.53)

where )g is such that A_ < Ag < A4

Each side of equation (3.45) is analytic in one of the overlapping half planes, and the sides
coincide on the strip of overlap. Consequently each side of (3.45) is the analytic continuation
of the other into its complementary half plane; so that the two sides together represent one
and the same entire function W (s). The entire function will be determined by its behavior
at |s| — oo which is related with the behavior of physical quantities near z = 0. First note
that L, (s) ~ s~ and L_(s) ~ s'/2 as |s| — oo, and, D.(s) and D_(s) in (3.52) and (3.53)

are bounded in their respective planes of analyticity and vanish at infinity. Furthermore,
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o* (z, p) is expected to be square root singular as z — 0% and vZ(z, p) is expected to vanish
as £ — 0~ to ensure continuity of displacement. Consequently from the Abel theorem [7]
relating asymptotic properties of transforms

lim 2120} (z,p) ~ lim s"*Z..(s)

. —q,* ~ : 1+q
Jim o] (5,p) ~ lim_[s/"V-(s)

for some g > 0. Therefore, it is expected that £ (s) ~ s7%/2 and V_(s) ~ s™17% as |s| — oo,
thus the products ¥, (s)L.(s) and L_(s)V_(s) vanish at infinity. Therefore, each side of
(3.45) vanishes as |s| — oo in the corresponding half planes. According the the Liouville’s
rtheorem, a bounded entire function is constant. In this case, W(s) is bounded in the finite
plane and W(s) — 0 as |s| — oo so that the constant must be zero; thus, W(s) = 0. By

using (3.45) and (3.52), the functions of interest are then given by

_ Dy (s)
2) = T (3.54)
Vo(s) = IL):((;) (3.55)

3.3.2 Stress Intensity factor

To find the stress intensity factor, an asymptotic expression for the normal stress near the
crack tip is sought. The Abel’s theorem relating asymptotic expressions between a function

and its Fourier transform is the following [7]

. * Y —inft [S
x1_1)1(1)1+ vz o (z,p) = Jim e \E T (s). (3.56)

Clearly, the behavior of ¥, (s) as s — oo is needed. Note from (3.51), (3.52) and (3.54)

that

-0 1 1 /oo+iA0 (z + ip/cg)/2e

— . ~ dz as s— 3.57
p sY22mi Josotire (2 +ip/cr)Fy(2) (8:57)

by making z = ip{ this equation becomes

m() = Tl L L o (ot le) e
+ - p1/2 812 2m% Jrp—ioo (<+1/CR)F+(C)
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where 79 is real and —1/cy < 79 < 0. Using this relation, the definition of the stress intensity

factor gives

Ki(p) = lim v2rz o}(z,p) = lim e/*v2s £,(s) (3.59)
ﬁff;"’ (o [ 1O ac}, (3.0

where |
19 = «(i?/iﬁ‘}%ffo- (a.41)

To perform the inversion of Kj(p) the Cagniard-de Hoop method can be applied. The
central idea of the Cagniard-de Hoop scheme [1, 3] is to convert the integral in (3.60) to a
form which allow inversion of the one-sided Laplace transform by observation. The path of
integration is modified to form a closed contour, figure 3.3, such that the integrand in (3.60)
is analytic inside of this contour. Applying Cauchy’s theorem, Jordan’s lemma and the fact

that I(C) = I(¢) one can write K}(p) as

900 (1 [0
ki) = S {2 [~ i) ac). (3.62)
Letting (I = —n this equation becomes
Kitp) = Y20 L [ tm{rn/0] Hn ~ e dn (3.9

and the inversion of the Laplace transform becomes obvious. Equation (3.63) is a product

of two transforms, so that K;(t) is a convolution of the inverse of the two transforms, i.e.

Z (1/ca —m)"? }
rae =225 [ e e L (369
where it has been used the result Fi(—¢) = F_(¢).

Note that for time ¢ > [/c;, equation(3.64) can be evaluated by complex integration as
shown by Freund [3]. It equals the sum of contributions from the pole at { = 1/cg and the
integral taken along a closed contour of infinitely large radius by using Cauchy’s theorem.

The final result for the intervals [/c; <t < l/cr and t > l/cp is

1[1_ (l/cR—1/~cd)
7 ' Wen — t/07RF(1er)
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KI(t) = 0y

H(1/cr —t/1)] . (3.65)
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\J

-1/¢cr <1/cd

Figure 3.3: Contour of integration to evaluate the integral in (3.60) in the {(— plane.

The second term in equation (3.65) becomes zero for ¢ > [/cg and the remaining first term is
the corresponding static solution for a semi-infinite crack under normal concentrated forces
applied on its faces. For the interval [/cq < t < l/c,, the stress intensity factor is obtained

by numerical evaluation of the integral in equation (3.64).

3.4 Results and Conclusions

The stress intensity factor K(t) computed according to equations (3.64) and (3.65) are
shown in figures 3.4 to 3.6 for different materials. The mechanical properties used for the
analysis are given in table 3.1.

Figure 3.4 shows Kj(t) for an isotropic material, in this case epoxy. The normalization
factor is the long time limit K;(oco0) = UOW and the normalized time is ¢st/l. The
behavior illustrated in the plot is the typical for isotropic materials as described by [3].
After the arrival of the dilatational wave generated by the load, the stress intensity factor
takes on a small negative value, reflecting the tendency of the crack faces to move toward
each other. The small negative value persists until the shear wave front arrives at time
t = l/cs. Thereafter, the stress intensity factor decreases rapidly to a negative square root

singularity at time ¢ = l/cg, which is the instant of the arrival of the Rayleigh wave traveling
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along the crack faces from the load to the crack tip. For time ¢ > I/cg, the stress intensity
factor takes on the constant value ag\/%, which is the equilibrium stress intensity factor
for the specified applied loading.

Figures 3.5(a) and 3.5(b) show the stress intensity factor history for a graphite/epoxy
composite with fibers parallel to the x—axis and y—axis, respectively. A similar behavior
is observed to that shown by the isotropic material. After the time ¢ = l/cq, K;(t) takes
a small negative value until t = [/c, and then decreases rapidly to a singularity at time
t = l/cg. After the arrival of the Rayleigh wave at the crack tip emitted by the load, K; (t)
takes its long time limit K7(o0) = 0y \/5/_7r_l The difference between K;(t) for isotropic and
orthotropic materials are in the small negative value; for the orthotropic case this value is
almost zero over an ample range of the interval [/cq < ¢t < [/c,. This fact explains why figures
3.5(a) and 3.5(b) are almost identical. That is, even though ¢, is different for the composite
with fibers parallel to the x—axis and to the y—axis, the arrival of the dilatational wave
front on the crack tip is almost imperceptible and K(t) exhibits no appreciable difference
in both cases.

Figure 3.6 shows the stress intensity factor history for E-glass epoxy composite. The
behavior of K 7(t) is very similar to that shown by graphite/epoxy. The difference is the
instant when the singularity occurs. Again a very small negative value is observed for Kj(t)
in the interval I/cq < t < l/c,. Under closed inspection, however, as shown in figure 3.6(b),
it is observed that the shape of the curve after the arrival of the dilatational wave front is
similar to that for isotropic material but with different scale.

Finite cracks can be considered as semi-infinite for a short period of time. Figure 3.7
shows the stress intensity factor history for a finite crack under impact concentrated loads
on its faces for orthotropic material obtained by Rubio-Gonzalez and Mason [8] using a
different method of solution that involves numerical solution of a Fredholm integral equa-
tion for the Laplace transform of the stress intensity factor followed by numerical Laplace

transform inversion. This numerical solution suffers from spurious oscillations, due to the
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Laplace transform inversion technique, at the discontinuity in K;(t) and at ¢t = 0. The
closed form solution is much simpler to evaluate because of its simple algebraic and integral
representation, equations (3.64) and (3.65), and does not exhibit spurious oscillations. The

two methods show a good agreement, (Figure 3.7(b)), in the appropriate time interval.
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Figure 3.5: Stress intensity factor history for a semi-infinite crack in graphite/epoxy com-
posite, concentrated loads. Fibers parallel to the (a) z—axis, (b) y—axis

Graphite | E-Glass | Boron | Epoxy
Epoxy | Epoxy | Epoxy
c11 20.77 8.38 32.67 | 3.91
Co2 2.18 2.29 3.12 3.91
C12 0.49 0.52 0.79 1.91
p12 (GPa) 7.48 5.5 6.4 1.96
p (Kg/m?) 1600 2100 1990 | 1260

Table 3.1: Mechanical properties used for the analysis.
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Chapter 4

Dynamic Stress Intensity Factor for
Semi-infinite Cracks in Orthotropic
Materials due to Concentrated Shear
Impact Load

co-authored with C. Y. Wang and C. Rubio-Gonzalez and accepted for publication in Inter-
national Journal of Solids and Structures

The transient elastodynamic response of an orthotropic material due to concentrated
shear impact loads on the faces of a semi-infinite crack is examined, and the solution for
the stress intensity factor history around the crack tip is found. Laplace and Fourier trans-
forms together along with the Wiener-Hopf technique are employed to solve the equations of
motion. Even though the problem has characteristic length, it has been shown in previous
works that the Wiener-Hopf technique can be applied. The asymptotic expression of stress
near the crack tip is analyzed, which leads to the dynamic mode II stress intensity factor.

The results are presented for orthotropic materials as well as for an isotropic material.
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1 Introduction

The growing use of composites in many engineering applications demands a
fundamental understanding of the response of cracked orthotropic bodies to impact
loading. By using the integral transform methods, the dynamic behavior for a finite crack
under concentrated loads [1, 2] as well as for a semi-infinite crack under concentrated or
uniform normal loads [3, 4] on its faces in orthotropic materials have been analyzed by
Rubio-Gonzalez and Mason. In the former, the finite crack problem is reduced to a
Fredholm integral equation in the Laplace transform domain which is solved numerically,
and in the latter for the Weiner-Hopf technique was used to find the stress ahead of the
crack tip and the displacement on the crack faces. The asymptotic expression for the

stress near the crack tip leads to the stress intensity factor K(¢).

Many solutions for various loadings of cracks in orthotropic materials have been
found by applying transforms to the displacement formulation of the equétions of motion.
Where previous researchers (for example, [5]) following this approach had solved the
resulting dual integral equations using the method of Sneddon [6, 7], Rubio-Gonzalez
and Mason [3] solve the same equations by converting the dual integral equations to a
Weiner-Hopf equation. Solution of that equation requires only a straight forward
application of the method of Noble [8]. In this paper, the problem of concentrated shear
impact loads on the faces of a semi-infinite crack in orthotropic materials is analyzed
using the same method. While it was been thought that the Weiner-Hopf technique could
not be applied to problems such as this [9, 10], this approach has recently been shown to
be valid in such cases [11]. Through Laplace and Fourier transforms combined with the

Weiner-Hopf technique, a solution for the stress ahead of the crack tip is sought. The




asymptotic expression for the stress near the crack tip leads to the mode II stress intensity

factor, K, (?).

2 Description of the problem

The plane problem of an infinite orthotropic body containing a semi-infinite crack

is considered in Figure 1. Let E,, u, andv, (i, j=1, 2, 3) be the engineering elastic

constants of the material where in the indices (1, 2, and 3) respectively stand for the
directions (x, y, z) of a Cartesian coordinate system chosen to coincide with the
orthotropic axes of material. The crack faces are suddenly loaded by a pair of
concentrated shear forces with a magnitude (g) located a distance (a) away from the crack

tip, as shown in Figure 1.

2.1 Equations of motion
The following problem is limited to a two-dimensional case with the inertial effect in
the x-y plane only. By setting all the derivatives with respect to z-direction to be zero, it is

readily shown that the displacement equations of motion [12] reduce to

. 32u+ d%u Fl4e )32v 1 9%
11 axz ay l2 ay C2 atz ’
82v 072 dw _ 1 a’v M

where u and v are the x and y components of the displacement vector. In the orthotropic
solids, c, = ,/ U, /p represents the velocity of the shear wave propagating along the

principle material axes in xy-plane and p is the mass density. Here also, we introduce the



velocity ¢, =./c, c,, which will appear later, representing the dilational wave speed
along the x-axis. The non-dimensional parameters c,,, ¢, and c,, are related to the

elastic constants by the following relations. For a generalized plane stress problem,

El
Cll = 2 ’
/ulz[l - (Ez/El)Vu]
Cn =(E2/El)cll » . _ (2)

Cp =VpCy =Vl -

For a plane strain problem,

1
¢, =——1-v,v,),
11 ‘25 237 32

E.
Cn = 2A(l_vlavsl)’

12

Cp =—'El_(vzl +’E_2V13V32) ’ 3
lule El

A=1- ViV = VuVu =V Vi = Vi ViuVy = ViV Vy s

Vi 'V .

E-:E , (i, =1, 2, 3).

Finally, the stresses are related to the displacements by the equations,

Oy _, 90U, 29V
My, " ox 5 dy ’
o Jdu av
) = —_—t _ 4
ﬂlz ClZ ax CZ2 ay . ( )
T, du Jdv
=2
U, Jdy Jx

2.2 Boundary conditions and Initial conditions




For the case shown Figure 1, the pair of spatially concentrated shear loads is applied
suddenly on the crack faces. Exploiting symmetry and limiting ourselves to upper half-

plane, y>0, the corresponding boundary conditions become

o,(x,0,1)=0, o0 X <400,
7,,(x, 0, )=—qH()é(x + a), o< x<0, &)
u(x, 0, )=0, 0<x<+oo,

where ¢ is the force per unit length in the z-direction of the opposed line loads acting on

the crack faces and H(t) is the unit step function. The dirac delta function, 6(x +a), has

the dimension of length™ . In addition, the displacement at infinity is zero, and the body

is stress free and at rest everywhere for £ <0.

3 Integrél transforms

3.1 Laplace transform

In equations (1), the time variable may be replaced by application of Laplace
transform

f'(s)=j}(t)e'“dt, f(t)=—17 f(s)e¥ds= 1. f(s)e%ds, (6)
0 27i Jue 2ri

O—ico

where Br denotes the Bromwich path of integration which is a line parallel to the
imaginary axis in the s-plane. Thus, using the Laplace transform representation, the

displacements have the form

u(x, Y, t) = 2;_1 ju‘(x’ Y S) e'ds ’
B

r

N

v(x, y, )= E;—ijv‘(x, y, §) e"ds.
Br




Applying the relations (7) to equations (1) and assuming zero initial condition, the

transformed domain equations become

d’n" " v st
arv’ v’ dtu" st .
axz +C22 ayz +(1+C12) axay c—2V =0.

Applying the relations (7) to equations (4), the transformed domain relations between

stresses and displacements become

o, —c Ju’ te av’
ﬂlZ ! ax . ay ’
o, Ju’ av’

y + , 9
R PR ®
T, _ du’ a'?v
K, Iy Tox

Finally, the application of the Laplace transform to the boundary conditions (5) gives,

0,(x,0,s)=0, o< X < +oo,
7,(x, 0, s)=—q/s8(x+a), ~o0<x<0, (10)
u'(x, 0, s)=0, 0<x<+oo,

3.2 Fourier transform

To obtain a solution of the differential equations (8) subject to conditions (10), the

Fourier transform is applied,
rs - iax 1 = ~iax
f@o=[f@mema, jw=—[f@e=do  a
- T J

It is noted that the boundary conditions (10) are explicitly defined only on half of the

range of x. Consequently, the Fourier transform can not be applied to these boundary



conditions. To remedy this situation, the boundary conditions must be extended to apply
on the full range of x. Two-unknown functions u_(x,s) and 7,°(x,s) are introduced.
The function u_"(x,s) is defined to be the x- direction displacement of the crack face,
y=0, for—o<x<0 and 0<t<eco, and to be identically zero for O0<x<+o and
0<t<oo. Likewise, the function 7, (x,s) is defined to be the shear stress in the x

direction on the plane, y=0, for 0<x<e> and 0<t<oo, and to be identically zero for

—00<x<0 and 0<t<oo . With these definitions, the boundary conditions (10) can be

rewritten as
0,(x,0,s)=0, for -co< x < oo,
7, (x,0,8)=—¢g/[sd(x+a)+ 1. (x,9), for o< x <0, (12)
u'(x,0,8) =u_"(x,s), for -0 < x <00,

Thus, the Laplace transformed displacements have the form

u'(x,y, s)=§_1...J-ﬁ'(a), y, s)e ' *dw ,
ey (13)
v,y s)=— |V (®, Y, s)e”’ dw .
@y 9= [F@ .9
Substituting these transforms into equations (8), the functions #" and V° are found to

satisfy the ordinary differential equations

au’ av’ 2

(4 ¢ ) — (¢, " + )" =0,

dy dy c, (14)
av’ .du’ st

Cp ——-—-——dyz —(1+c,2)ax-——dy _(w2+_cf)v =0.

The solution of equations (14) under the condition of zero displacement at infinity is



T (@,7,5)=A,(@,5)e™ +A,(@,5)e™ ,

~ 1 y (15)
A\ (w7 Y, S) =—l_'Z"l'Al ((0, s)e‘ﬂ)‘ —&AZ (w’s)e'hy ,
a

where A,(w,s) and A,(w,s) are arbitrary functions, and ¢,(@,s) stands for the
functions

cnw2 +,SI/C:2 —7 i2
(A+c,)y;

o (w,s)= , (@(=1,12), (16)

with 7,* and 7 ,” being two roots of the quadratic equation,
e}t +l(cy +2¢, — )0 —(14¢,) 8% [¢, 11 +(c, @ +57[¢*)(@® +57[c,?)=0.
17)
From (17), it is readily found that the functions %,(w) and },(w) are multiple

valued functions of @ in the complex @ -plane with branch points at @ =z=is/c,  and

o==i s/ c,c, =tis/c, , respectively. It can be shown that for many materials thaty,

and }, are real and positive. Thus, the expressions for the displacements in the Laplace

transform domain become

u =-él-Jl(Ale"" +A,e? Ye " dw ,
- (18)

—iax

e
a

do .

. _i ~ - -
v =-2—J. (a,Ae™™ +a,Ae™)
nJ.

Substituting these displacements into the constitutive law, (9), we obtain

—iax

o *

ic, ~., - - " ic, - —yay €
St 14 J.(A,e ™+ Ae)e " do+—= J. (a,7,Ae7" +a,7,A,e7”)—dw,
M, 2r J- 2 J-
o, ic,w (-, . s i ic,, (~ _ s €
2 =—LJ'(Ae W4 Ae™)e '“”‘da)+lJ. (a,7,Ae™ +a,7,Ae")—dw,
1 2 17177 24 2972
M., 2r J- 27 J- ()]




-

d

Ky

= _%[-J‘(y,Ale"" +7y,A,e7)e " "dw —Z—I—I(a,A,e"" +a,Ae™)e ™ dw .
—oo ﬂ- -

19)

Substitution of the expression for o, the second of equations (19), into the boundary
condition for © y , the first of equations (12), yields

Az (a),S) = _ﬁAl(w,S) s
= Cp@Y, = €@ _ Cp(c, @ +5’[c} -y ?)—c,(1+c,)’ (20)
CR0,Y, — clza)z Cp (cna’z + sz/cxz - 722) —Cp a1+ Cp )wz .

Using this result in the expression for shear stress, the third of equations (19), and the

expression for horizontal displacement, the first of equations (18), we obtain

0, ==L [l +7)e™ - @, +7)e ™ e do, v
L | @1) .
u. =_2_;Z_J'—£e-r|y —ﬂe-ny]Ale—iwdw.

Applying the remaining boundary conditions yields
——g—‘;—j[(a, +7,)- e, + YDA e do=~q[sd(x+a)+7, (x,5),

1 ¢ (22)
—27-"_['1 - BlAe™do =u_"(x,s) .

By Fourier transform inversion, these equations become

-, (e, +3,)- e, +1,)A =—q/se™ + 2 (@),

(23)
(1-PA =U_(@), '

where

T (w)= J‘TL',, (x,8)e'dx ,
: (24)

U_(w)= J.ou_'(x, s)e"™dx .




Eliminating A, from equation, (23), we obtain a Wiener-Hopf equation,

2,C R(aw,s)

12
Jo? +s%/c;?

where we have introduced the function

Jo' +sifc}
Rw,s)=—-————"7"—"

U (@)=—g/se™ +Z,(®), (25)

(1 —ﬁ)C [(al + 7’1 ) - ﬁ(az + 72 )] ’ (26)
C=- 1 {c,c,N’N,* —¢,*(1+¢,)N\N, +
c,(1+¢c,)N,N,(N,+N,) 27

¢, [c,(N?+N,)+c,(1+c,)NN, +(c, +c,’ —c e}

1
Nl.z2 = '27_{(‘:11622 - cl22 - 2012) x [(C“Cn - clz2 - 2012 )2 - 4cuczz]vz} . (28)

22

After algebraic manipulation, it is found that function R(@,s) can be written as

Jo' +5*fc}
R(@,s)=—
czz (1 + C12 )71 72 (71 + YZ )C
[c22 (712 + 722 ) + C22 (1 + clz )7172 + (CIZ + cl22 - cllc22 )wz - c22 sz/clz ]} *

{C12c22}’12 722 - szz (1 + sz )71y2w2 + (clla)2 + sz/csz )

(29)

From the physics of the problem, it is reasonable to assume that the function
7, (x,s) and u_"(x,s) are exponentially bounded at infinity, which ensures the existence
of their Fourier transform (24). In particular, it is shown by Noble [8] that if
|, (x,9)| < Me*™ as x—+eo then I (w)is analytic in Re(@)=24>2_, and if
| (x,5)| < M,e*** as x — —eo then U_(®) s analytic inRe(@)=4<2,.

The function R(w,s) is analytic everywhere in the complex plane except for at the
branch cuts of }, between @ =zisfc, and @==%is/c,; it is single valued in the @-

plane cut as shown in Figure 2. It can be shown that the only zeros of R(w,s) are of the

10



form *is/c, where c, is the Rayleigh wave speed. This can be seen by substituting
w=is/v inR(®,s), letting R(w,s)=0 and dividing by the non-zero factors, then

R(i s/v,s) =0 reduces to

2 2 2 2 2

Cpl CpCy—cy Vv v v v
,’—(———————z -4 -2 I-—— =0, (30)

Cll ch C.f C.r c: Cllc:

which is the Rayleigh wave function for orthotropic materials [13]. The roots of this

function are v=:*c,.

4 Wiener-Hopf technique
To solve the Weiner-Hopf equation, (25), we use the Weiner-Hopf technique as
follows. The function L(w) is defined and factored as

R(w,s)

L(w)=L, ()L (@)= )ulzc'—"—— ’
Jo© +sic,’?

then the Weiner-Hopf equation becomes

€2y

L (o)U (@)= ’Z/ z:)) + izg .

(32)
If the function D(@) can be written and decomposed as

_ q/se—iwa _
D(w) = ——L+ @) D, (w)+ D_(w), (33)

then the Weiner-Hopf equation, (32), is further reduced to
D (0)+Z,(w)/L,(w)=L (0)U_(w)-D_(w)=W(@) . (34)
The first expression for W(@) in (34) is analytic in the right half plane, Re(w) > A,

and the second expression is analytic in the left half plane, Re(w)<4,.If A_>21,, the

11




regions of analyticity overlap and by invoking analytic continuation, it is concluded that

W(w) is analytic and single-valued in the whole @-plane shown in Figure 2.
Furthermore, invoking the extended Louisville theorem, it can be shown [8] that if W(w)
is bounded and entire and W(w) — 0 as @ — o, then W(w)=0. Hence, we can solve for
the transform of stress ahead of the crack tip, X, (@), and displacement, U_(@) , behind,

I, (@)=-D (@)L, (@),

D_(w) (35)

U (w)= L@

Following this outline, the first step is to factor L(w), (31), by defining

R(a,s)

Flw)= .
(@ o +s*/c,’

(36)

Note that by making @ =is¢ in equation (36), then F(w@) is changed to a function only
of g,

R(isg,s)

F©o= )
© —s*c* +s%[c,’

@37

It can be shown that ﬁ‘(g) — 1 as ¢ — o, ( the constant C in (27) was chosen to make
this possible). The function F () is regular and F (¢)#0 in the ¢ -plane cut as shown in
Figure 3. The only singularities of F (¢) are the branch points shared with 1., (=1,2),
ie. ¢=%l/c, and ¢==1/c,. It is well-known that factorization of a function is

accomplished most directly for functions which approach unity as |g|—> oo and which

have neither zeros and nor poles in the finite plane. Indeed, F(¢) is an example of such a

function. Therefore, using Cauchy’s integral formula, it can be shown that [10]
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ﬁ;(g)=exP{ L l°§F (g‘f) dé‘} (38)

where I'_ is the closed counterclockwise contour enclosing the branch points

+1/c, and +1/c,, and also T, is the closed counterclockwise contour enclosing the

branch points ~1/c, and —1/c, .

Using the fact that F(¢)= F(¢), H(-n)=—H(1), then
- 1% d
li(g)=cxp{ H(n)—- } (39)
T Jyeq ntg

where H(7)=tan™ (Im—[lj-(lm]
Re[F(m)]
By making ¢ = @/ is in equation (39), then I:l (¢) is changed to F,(w).

Returning to the factorization of L(w), we now have

F (a)F (@)@ +is/c Y @—is[cy)

L@)=L (@)L (@)= p,C= Jo+is/c, \Jo—is/c “0)
Therefore,
L(@)= p, ¢ F (),
—is/c, @1)
L.(@)= (w+is/c;)

Jorise, "

Substituting equation (41) into equation (33) the function D(@) can be obtained,

D(@y= =938 _ OIS, glse™ 42)
L(w)  (w+is/c,) F.()

Through Cauchy’s integral formula, we obtain

13




D(a))——rj D(z)d q{l Jz+is/c, e dz} @3)

¢ 2 2m Je, (z— w)(z+is/c,) F,(2)

where C_ is the closed counterclockwise contour enclosing the branch points
+isfc, and +is/c,, and C, is the closed counterclockwise contour enclosing the branch
points —is/c, and —is/c, .

Thus, we can show that W(@)=0, and using equation (35), we can readily obtain

¥, () and U_(w). We only give X (@) here,

q F (o) (w+is/c,) Jztisfe, ™ .
S

X, (w)=-D (@)L (@)= o Ja;+1s/c o (z—w)z+is/c,) F,(2)

(44)
5 Stress Intensity Factor

To find the stress intensity factor, an asymptotic expression for the shear stress near
the crack tip is sought. A well-known result relating asymptotic expressions between a

function and its Fourier transform (Abelian theorems) [8] is
lim vx7,’(x,5) = lim e™" \[é2+(a)). (45)
x4 Q—r+ee ﬂ'

Thus, the usual definition of the stress intensity factor gives

K, (s)= lim N2t (x,5) = allrpﬂe""’” 20, (@) = lim ®(@) ,
O(w) = e ™20, () .

(46)

As @ — +, O(w) becomes

() = \Cq e-wj Lrise, e 4, @7

o (z+is/c,) F,(2)

and, by making z =is¢, equation (47) becomes
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,/ +1 id
<I>(a))=—“\/;2,—7q—l‘._’- e b ~—dg, as @ —> +eo. (48)
s 2m Jr, (G +1/cy) F.(6)
Thus,
. 1
K = —J3al L dct 49
#(8) «/—q{Zng(G) g} “49)
where

Jo+l s
g(g) = ctle, e

T (g+Ye) (o) s

Note that g(¢)=g(g), and g(¢)— 0 as || o in the left half plane. Also, note that

171 (-¢)= E (¢) . Consequently, equation (49) can be written as the real integral

~lecgq

Sl T,

K (s)= —«/iq{-l— irn[g(n)]dn}
(50)

T iy \ (e, ~mE@) s
where 77" is a positive real number.

Applying the inverse Laplace transform to K(s), using the convolution formula and

letting 77°a = ¢, the stress intensity factor K, (f) can be written as follows

1 t/a I/C _n
K,(0)=—qJ2Tmi——| 1 B N7 O (51)
! { j m[(l/ck—n)Jt/a—nE(n)) "} |

The integrand of (51) has a first order singularity at ¢=1/c, and branch points at

¢=1/c,, ¢=1/c, and ¢=¢,=t/a , which is shown in Figure 4. Here, pay attention to

those points at ¢ =1/c,, ¢=1/c,, ¢=¢, =t/a and ¢=1/c, , which are critical of the

integrand of (51) as shown in the Figure 4.
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For t/a<1/c,, no waves generated by the applied loads have arrived at the crack
tip, hence the stress intensity factor K, () is identically zero.

For 1/¢,<t/a<1/c,, a direct evaluation procedure for the stress intensity factor
K, (¢) can not be applied to the integral. It has to be obtained by numerical evaluation.

For t/a>1/c,, the integrand of (51) is analytic in the entire C-plane cut along
1/c,<Re({)<t/a, Im()=0, except for the pole point at ¢ =1/c, . In this case, the

path of integration can be closed around the right side of the branch cut shown in Figure

4. The integral, (51), takes the form

K (0= 1/l/c - 1 1
o 2mJ_ reo (I/cy "g)\/t/a F(g)

where I'(¢,) denotes a closed counterclockwise contour embracing the branch cut of the

(52)

integrand. Cauchy’s integral formula can now be applied to show that value of the integral
in (51) is equal to the value of the integral taken along a closed counterclockwise circular

path of indefinitely large radius, (), in {-plane shown in Figure 4. Therefore,

_ 12
(e, ~1/c,) if 1/¢c,<tla<llc,
=1-{U/c,~t/a)"F.(1/c,) . (53)

0 if t/a>1/c,

K,®
—q+2/7a
The first term on the right side of (53) is the contribution from the closed contour of the
large radius and the second term is the residue contribution. In addition, The first term in

(53) is the corresponding static solution for a semi-infinite crack under shear concentrated

forces applied on it faces, K, (t) = —qJ 2/ ma .
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6 Results and Discussion

Using equations (52) and (53), the stress intensity factor K, (f) can be calculated.

The computed results are shown in Figure 5-8 for several materials, and the mechanical
properties [14] used for the analysis are given in Table 1. The following tips should be
taken into account when performing the numerical evaluation of the integral in (51).

(1) Theoretically, R(w,s)in equation (26) can include either the factor
m or W , and we should have F(¢)=1as¢— o. However,
experience shows that if the factor m is selected in R(@,s), it is difficult to
numerically make F ©)= ﬁ(g)ﬁ_(g) at points in the regions close to [1/c, ,1/c, ] and
[—1/c,, =1/c,], where ﬁ‘(g), F (¢) and ﬁ;(g) are respectively calculated using equations

(37) and (38). This is true even though ﬁ(g) =1 and F ©= 171 (g)f?_ (¢) at points very

far from [1/c, ,l/c, ] and [-1/c,, —1/c,]. For the problem with concentrated normal
loads [3], the factor ,/w’ +s*[c,’ should be selected inR(w,s), while the factor

W should be selected in R(w,s) for the problem in this paper. Otherwise,
' there may be large errors in the calculations.

(2) 1t is best to adopt the formula E ©= F (g)/ 13; (¢) to indirectly calculate the

values of F (¢) along [1/c, ,1/c, ] because F (¢) is not analytic along [1/c, ,1/c, 1. At

¢ =1/c, the value of E (I/c,) can be directly obtained by using the equation (39).
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The numerical results presented correspond to isotropic and orthtropic materials.
Properties of transversely isotropic materials with fibers parallel and perpendicular to the
x-axis are considered in the orthtropic case.

For isotropic materials, as mentioned in [3], note that the mechanical parameters
make 3, =7, and further lead to f =1 and R(@,s) not defined. Consequently, in order
to obtain the results for thé isotropic case from the orthotropic formulation, we let
E =E, E,=(1-¢6E, v,=v,,=v and u, =E,/2(1+v) where E and v correspond
to the isotropic properties and € is a small quantity with € << 1.

Figure 5 shows K (#) for an isotropic material in the plane-strain case. The
normalization factor is the long time limit K, (e) = —g+/2/ma and the normalized time is
¢, t/a. The behavior illustrated in Figure 5 is as expected from the surface displacements

in the calculated solution of Lamb’s problem where a concentrated shear load is applied
on a half-space [15]. Horizontal displacements on the surface, generated by the point
load, arrive at the crack tip with the arrival of the dilatational wave causing a rapid
increase in the stress intensity factor. In addition, the results in Figure 5 are very similar
to that of the problem in [2], before the arrival of the second dilatational wave, shear
wave and Rayleigh wave, where a finite crack in infinite orthotropic body is impacted by
two pairs of concentrated shear loads. After the arrival of the dilatational wave, a rapid

increase in K (r) is observed, and then the stress intensity factor gradually decreases

until the shear wave front arrives at t=a/c, . Thereafter, the stress intensity factor
decreases rapidly to a negative square root singularity at ¢ = a/c, , which is the instant of

the arrival of the Rayleigh wave traveling along the crack faces from the point of
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application of load. For timet > a/c, , the stress intensity factor takes on the constant
value —q4/2/ma , which is the equilibrium stress intensity factor for the specified loading.

Obviously, the dilatational wave has an important effect on K, (f) under applied

concentrated impact shear loads, unlike applied concentrated impact normal loads where

the dilatational wave has a minimum effect on K, (¢) [1, 3]. The stress intensity factor for

an isotropic material in the plane-stress case is identical to the plane-strain case except for
differences in the dilatational wave speed.

Figure 6(a) and 6(b) show the stress intensity factor history for a graphite-epoxy
composite in the plane-strain state with fibers parallel to the x-axis and y-axis,
respectively. Both figures are similar to the results for the isotropic material shown in

Figure 5, except that there is a more uniform plateau from ¢ =a/c, to t=afc, and a

steeper drop at ¢ =a/c, . In Figure 6(b) the plateau is lower than in Figure 6(a) and the
duration of the plateau is longer due to the dramatic difference in ¢, for these two cases.
The Rayleigh wave speeds are approximately the same; the shear wave speeds are exactly
the same.

As expected, the behavior illustrated in Figure 6(b) is the same as that for the
corresponding case of Rubio-Gonzalez and Mason [2] before the second set of waves
arrives crack tip. The behavior illustrated in Figure 6(a) cant be directly compared with
that of the corresponding case of Rubio-Gonzalez and Mason [2] because in that work the
second dilatational wave arrived at the crack tip before the arrival of the first shear wave

and Rayleigh wave leading to very different loading conditions. To the knowledge of the
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authors, this is the first presentation of results for this case that are not disturbed by

reflected or secondary waves.

Figure 7 and 8(a) show the plane strain stress intensity factor history for the E-Glass
Epoxy and Boron Epoxy composites, respectively. In both of cases the fibers are oriented
along the x-axis. Figure 7 and 8(a) are very similar to Figure 6(a). Figure 8(b) shows the

singularity at ¢ = a/c, more clearly. The singularity can be quite difficult to capture using

the method of Rubio-Gonzalez and Mason [2] because the shear and Rayleigh wave

speeds are nearly equal. Here, equation (53) gives K|, (¢) explicitly.

7 Conclusions

(1) For impact concentrated shear loads on a semi-infinite crack in an orthotropic
material, the arrival of the dilational wave at the crack tip makes an important
contribution to the dynamic stress intensity factor K, (t) , unlike in mode I loading where
dilatational wave had a minimum effect on K, (¢).

(2) The long time value, K, (e)=—q4/2/ma , is independent of the mechanical
properties of the orthotropic material, however the curve shape and magnitude of K, (¢)
from ¢t =afc, to t=afc, is very dependent on the mechanical properties of materials.

(3) From the results given here for an isotropic material and orthotropic materials, we

can conclude that the normalized K, (¢) from ¢t =a/c, to t =a/c, is less than 1 except
at a singularity at ¢ = a/c, . In addition, under similar conditions, when fibers are parallel

to the crack direction K, (¢) is generally greater than when the fibers are perpendicular to

the crack direction.
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(4) Finally, the method outlined here can easily be extended to solve the problem of a
semi-infinite crack under more general impact shear loads on the faces of a semi-infinite
crack. Alternatively, the solution presented here can be used as a Green’s function to

solve more general problems. Both methods should yield the same results.
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Table 1 Mechanical properties used for the analysis

Isotropic Graphite E-Glass Boron

material Epoxy Epoxy Epoxy
E, (Gpa) 200 156.75 45 207
E, (Gpa) 200 10.41 12 19
Vi 0.3 0.31 0.19 0.21
Vs 0.3 0.49 0.19 0.21
U, (Gpa) 76.92 7.07 5.5 6.4
p(Kglm?) 7840 1580 2100 1990

Y (2)
qH(1)
X (1)

is/c,

iS/Cd

*—
- —
qH (1) ‘ ‘
a

Figure 1 Schematic of the semi-infinite crack under concentrated shear impact loads
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Figure 2 Branch cuts in the ®-plane
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Figure 3 Branch cuts in the {-plane
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Figure 4 Branch cuts in the {-plane and Integral path
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Figure 5 Stress intensity factor history in an isotropic material under concentrated shear foads
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Figure 6(a) Stress intensity factor history in Graphite Epoxy under concentrated shear loads
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Figure 7 Stress intensity factor history in E-Glass Epoxy under concentrated shear loads
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Chapter 5

The Dynamic Stress Intensity Factor
and Strain Energy Release Rate for a
Semi-infinite Crack in Rotated
Transversely Isotropic Materials due
to Uniform Impact Loading

co-authored with C.Y. Wang and submitted to International Journal of Fracture

The transient elastodynamic response of a rotated transversely isotropic material under
uniform normal impact loading on the faces of a semi-infinite crack is examined. Three
loading modes are considered, i.e., opening, in-plane shear and anti-plane shear. Their
solutions for the stress intensity factor history around the crack tip are respectively found.
Laplace and Fourier transforms together along with the Wiener-Hopf technique are employed
to solve the equations of motion. The analyzed asymptotic expression of stress near the crack
tip leads to a closed-form solution of the dynamic stress intensity factor for each loading
mode. It is found that the stress intensity factors are proportional to the square root of
time as in the isotropic case. Results for rotated transversely isotropic materials converge
to known solutions for un-rotated orthotropic materials, un-rotated transversely isotropic
materials and isotropic materials as special cases. For shear loading on a penny crack in a
transversely isotropic material, the analysis is used to find approximate strain energy release

rates.
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1. Introduction

There are many closed-form solutions for stationary and propagating cracks in isotropic
materials under dynamic loading [1, 2]. The stationary semi-infinite crack under uniform step
loading in the crack faces was first considered by Maue [3]. The equivalent propagating case was
studied by Baker [4]. Many solutions for various loadings of cracks in orthotropic': materials have
been found by applying transfof.ms to the displacement formulation of the equations of motion.
Previous researchers [5, 6] following this approach had solved the resulting dual integral
equations using the method of Sneddon {7, 8]. For a semi-infinite crack under concentrated or
uniform loads in orthotropic materials, Rubio-Gonzalez, Mason and Wang [9, 10 and 11] solve
the same equations by converting the dual integral equations to a Wiener-Hopf equation.
Solution of that equation requires only a straightforward application of the method of Noble [12].
The Wiener-Hopf technique was used to solve the equation, find the stress ahead of the crack tip
and find the displacement on the crack faces. The asymptotic expression of stress near the crack

tip leads to the stress intensity factor K(z).

The growing use of composites in many engineering applications demands a fundamental
understanding of the response of cracked orthotropic bodies to impact loading. In this paper, the
problem of uniform normal impact loading on the faces of a semi-infinite crack in a rotated
transversely isotropic material is analyzed using the same method as [9, 10, and 11]. While it has
been thought that the Wiener-Hopf technique could not be applied to problems such as this [1,
13], the approach has recently been shown to be valid in such cases. Through Laplace and
Fourier transforms combined with the Wiener-Hopf technique, a closed-form solution for the

stress ahead of the crack tip is sought. The asymptotic expression of stress near the crack tip

leads to the stress intensity factor K(z).



The analysis is motivated by investigations of dynamically loaded penny shape cracks in
orthotropic (or composit;a) materials. Because of the orientation of the composite fibers, or
principle axes of the orthotropic material, the penny shaped crack problem is not axisymmetric
and can not be solved using an axisymmetric approach. As an approximation, in this work,
attention is focused on regions very near the crack front where a plane strain apbroach becomes
an accurate approximation. Thg:fe, the problem can be reduced to that of a semi-infinite crack in
a rotated orthotropic material for short times. This is only approximate because the effects of
waves generated at other points on the crack front are neglected. Thus the exact solutions
presented here for semi-infinite cracks offer only an approximate solution for the penny shaped
crack. The solution is useful, however, in developing intuition about the most probable location
of crack initiation for the penny shaped crack and, consequently, can give qualitative predictions

of the final shape of the crack after finite duration loading.

2 Equations of motion

The quasi-three-dimensional problem of an infinite transversely isotropic body with a

semi-infinite crack is considered in Figure 1. The body is initially stress free and at rest. A

Cartesian (x,, x,, x;) coordinate system is chosen to coincide with the principle axes of material.
The transversely isotropic material has a symmetry plane on x, =0 and an axis of symmetry
along x,. Another right-handed rectangular (x, y, z) coordinate system is introduced in the body,
oriented so that the z-axis coincides with the crack edge. The y-axis is identical with the X, -axis,
consequently, the coordinate system (x, y, z) is related to the (x,,x,,x;) coordinate system by a

rotation with 8 around the x, -axis. The crack faces are suddenly loaded by uniform traction, as



shown in Figure 1. Let E,, G, and v, (i, j =1, 2, 3) be the engineering elastic constants of the
material where in the indices (1, 2, and 3) respectively stands for the directions (x,, x,, x,).

The problem is assumed to be two-dimensional and to include inertial effects. However,
because of the constitutive law, the out of plane displacement (in the z-direction) can not be
neglected and a coupling exists between in-plane and out-of-plane deformation. Hence, three
components (i, v and w) of the qdisplacement vector exist in the (x, y, z) coordinate system and

are independent of z, that is,

u=u(x,y),
v=v(x,Y), | 2.1)
w=w(x,y).

In the (x,x,,x;) coordinate system, the non-dimensional stiffness matrix for the a

transversely isotropic material is

¢, ¢, ¢ 0 O 0
¢, ¢, ¢; 0 O 0
c3; €3 ¢; 0 O 0
C=l0 0 0 ¢ © 0 2.2)
0 0 0 0 cg 0
0 0 0 0 0 "%
L 2

where C has only five independent constants. The non-dimensional parameters ¢, have the

following relations with the engineering elastic constants for plane strain conditions

_E(l-v,vy) _E;(1-vy,) _Ey(vy, +v3v5) _Ew,
th = » C33 = » Cp = » Ci3 =——"»
G, (1+v,)A G,,A G(l+v,)A G,,A
Css =_C_;_li, A=(1-v, —2v,vy, ), Gy, =_El_, Yo _Yu ST g (g3
G, Al+v,) E, E 2




Next, by a coordinate transformation involving a rotation about x,, the non-dimensional

¢

stiffness matrix C in the (x,,x,,x;) coordinate system is changed to a new non-dimensional

stiffness matrix D in the (x, y, ) coordinate system [14],

dll dlZ dl3 0 dlS O

d12 d22 d23 O d?j 0

D = d13 d23 d33- O d35 (24)
0 0 0 d, 0 d,

dlS d25 d35 O dSS O

} 0 0 0 d, 0 dg

where the thirteen different constants in D are given as

d,, = ¢, c0s* 0 +2(c,, +2cs )cos® Osin 6 +cyysin 6,

d,, =c;,c08*0+c,sin’ 6,

d,; = c,5c08* 6 +(c,, + 3y —4css )cos® Gsin® O +¢ysin 6,

dys =(c;, = €3 — 255 )cos’ Gsin @ +(c;; — 5, + 255 JcosFsin’ 6,
d,=c¢,,

d,; =cp,sin*0+c;cos? 8,

d,s =(c,, —cy3)sinfcosf,

dy, = ¢,y sin® @ +2(c,; +2cq5 )cos? Osin® 6 + ¢y, cos* 9,

dys =(cy3 — Cay +2¢55 )08’ Gsin 6 +(c;, — ¢;3 —2¢s5 )cosFsin> 4,

d, =§(C” —c,, )sin® @ +ccos? 6,

d =%(c“ —€,, —2cqs )cosfsing




4 2 i . 4
dys = C45€08" 0 +(c;y —2¢3 +C33 — 2c55 )cos” Osin” 0 + c45sin” 0,

¢

dg = %(Cn —¢p,)cos? @ +cyssin’ 6,

Note that for the case 8 =0 the material is isotropic in the plane,

d,=c¢,,d, =¢p,d)3 =¢5,d15=0,d =, dy =€p3,dy5 =0,

(2.5)
dyy = Cyy,dys =0,dyy =C55,d g = 0,ds = C55,dgs = (¢ —¢i)/2-
For 8 =90° the material is orthotropic in the plane,
dyy = Cy, diy =Cp3y di3 = €130 415 =0, dyy =€y, dyy =€y, dys =0, (2.6)

dy =€, dys =0,dy =(c;y -y )[2,d4s =0, dgs =cs5, dgg = Cs5.
Due to the two-dimensional assumption, equation (2.1), all the derivatives with respect to z

are zero. Thus, in the (x, y, z) coordinate system the equations of motion [16] become

d%u d%u v azw d'w  Jd™u
dll ) d ayz +(d +du)&x® d +d ayz =C—zat—2—,
d%u 32 d*v ’w I
dg+dy)——— E¥y +dg +a’22 > —+(dy +d25) 3y Zatz , 2.7
‘92 32 2 32 32 0’)2
dis ax‘j+ g +(d, +d25) ey +dgs 0_;: +d,, ay"z"=cz(;t”2.

s

where u, v and w are the x, y and z components of the displacement vector. In the rotated
transversely isotropic solids shown in Figure 1, ¢, = «/_G_;_/? represents the velocity of the shear
wave propagating in x,x,-plane (¢, = \/a c, is the velocity of the dilatational wave propagating
along x,-direction in x,x,-plane which will be used later) and p is the mass density. When
=0 or §=90", d;s =d,; =d, =0 and the third equation becomes uncoupled from the first

two equations, when 0<6<90, this coupled system is required.

Finally, the stresses are related to the displacements by the equations,



1. oW A ov
2 =d, —+d (—+—),
T, W A oV
% =g, 2t d (S + D,
G, “o * “(ay+ax)
o, 0 N oW
L =d,—+d, —+d,.—,
G, 12 5 + 223}) 25 > 28
2 =d,—+d,—+d;;—,
G, "a& "y i
o A N ow
t=d.,—+d,,—+d;.—,
(;l2 13 2 + 233y+ 35 2
T N o oW
—Z =d . —+d,.—+d..—.
G, 157 + zsa-,y'*' 5575

3 Normal Impact

For the loading shown Figure 1, the spatially uniform normal traction with magnitude o, is

suddenly applied on the crack faces. Exploiting symmetry and limiting ourselves to upper half-

plane, y>0, the corresponding boundary conditions are

oy(x,O,t)=—ooH(t), -~ x<0,

7..(x,0,)=0 —00 < X < oo,

"y( ) 3.1)
7,(x,0,)=0 oL X < 400,

v(x,0,t)=0, 0<x <400,

where H(t) is the unit step function.

The displacement at infinity is zero, and the body is stress free and at rest everywhere for

t<0.

3.1 Laplace transform

In equations (8), the time variable may be removed by application of the Laplace transform




* —st 1 * st - 1 AL st
fr@=[roed, fO=0=] f@etds=o[f (e ds,  GLD

where Br denotes the Bromwich path of integration which is a line parallel to the imaginary axis

in the s-plane. Thus, using the Laplace transform representation, the displacements have the form
1 . st

u(x, y, 1) =——~7J.u (x, y, s)e'ds,
2”1 Br

v(x, y, )= —— _[V'(x, y, 8) e”ds, (3.1.2)
270 Jue

w(x, y, 1) = ——1—_—J‘w'(x, y, §) e"ds .
27tl Br

Applying the relations (3.1.2) to equations (2.7) and assuming zero initial condition, the

transformed domain equations become

2%’ 2\’ I 2w’ 2*w" %’

dy E% +d668y +(dg +d,,) Yy +ds Ew +d ayz - — =0,
%’ I’ " W' s
(dg +dy,) Dy +dg % 52 +dy,y—5— > ———+(dy +dy)—— EYy Csz =0, (3.1.3)
%’ 2%’ I o"zw' w" stw'
ds > +d460_’ —+(dy +d25) EWy +dg, +d44_5y—2__?=0'

Applying the relations (3.1.2) to equations (2.8), the transformed relations between stresses

and displacements become



»

T ‘ [ 3 - &‘
—g—=d4éa;; +d66(%+ =)
1
T, ' A’ N
"é—=d44 ay +d46(ay +"ax—),
12
o, A N
—2-=d +d +d s
G12 12 ax 22 8}7 25 & )
(3.1.4)
o, A’ N ow"
Gx _dll ax +d12 %} -*:dls ax ’
12
o, A’ N ow'
GZ =dy, o +dy EY +dss x
12
7. A’ N ow'
X _=d —+d d..—.
G12 15 & + 25 é’ + 55 &

The application of the Laplace transform to the boundary conditions (3.1) gives,

ay*(x, 0,t)=-0ay/s, -00<x<0,
T ) X, 0: z =0 » 0oL X< +00
"’,( ) (3.1.5)
T, (x, 0,1)=0, —c0< X< 400,
vi(x 0, )=0, 0<x< 400,

3.2 Fourier transform

To obtain a solution of the differential equations (3.1.3) subject to conditions (3.1.5), the

Fourier transform is applied,
for=[rwema,  jw=—[F@e=do (32.1)

It is noted that the boundary conditions (3.1.5) are defined only on half of the range of x.
Consequently, the Fourier transform can not be applied to these boundary conditions. To remedy
this situation, the boundary conditions are extended to apply on the full range of x. Two-

unknown functions v_"(x,s) and o0,"(x,s) are introduced. The function v_"(x,s) is defined to




be the y-direction displacement of the crack face, y=0, for —o<x <0 and 0<t <o, and to be
identically zero for 0 <x <+eo and 0<? <. Likewise, the function 6, (x,s) is defined to be
the shear stress in the x-direction on the plane, y=0, for 0 <x<eo and 0<?<oo, and to be

identically zero for —o<x<0 and 0<?<eo. With these definitions, the boundary conditions

(3.1.5) can be rewritten as

a),*(x, 0, s)=—6—°H( —x)+6+*(x,s) , ~00L X< +09,
s
7, (% 0,5)=0, -oo<x<+oo, (322)
7,, (% 0,5)=0, ~o0<x <00,
v'(x, 0, s)=v_"(xs), 00K X< +00
Thus, the Laplace transformed displacements have the form
. 1 (.. iox
u(x,y, s)=——ju (w, y, s)ye"da
27 J-
vi(x, y, s)=—1—J"\7'(a), y, s)e  dw , (3.2.3)
27 J

w'(x., ¥y, ) =7217J.v”v'(a), y, 8)e " dw .

Substituting these transforms into equations (3.1.3), the function #°, ¥* and %" are found

to satisfy the ordinary differential equations

" 24" e - I’
—(duwz'*'sz/csz)u +dg ERE ~(dg +dp,)0i———d,@*F " +dg P =0,

A ., T P
—(d66+d12)ax~g—(d66w2+s2/c:2)v +d22—ayi——(d46+d25)ax 5 =0 (3.2.4)

2

2ot 20’ ) W’

. o
_dlsa) u +d46W—(d46+d25)a)l'§y——(d55a)2+s2/csz)w +d44 &})2 =0.

This system of equations can be rewritten as

10



(d O d, o 0 ~(dg +d,, )% 0 e
0 d,, 0 |——+|—-(d+d,)oi 0 —(dys +dys)ad |—+
22 2 66 46 25 ay
(d 0 dy 0 —(dys +d )00 0 (3.2.5)
(—d, 0* —s?[c, 0 ~-d,0°
0 —d 0 —s[c 0 * =0,
\ -d @* 0 —dssa)’—sz/cf}

where U' = (@', ¥, w")". This is a second order system of ordinary differential equations with

constant coefficients having solutions of the form
U’ =A,s)e™”, y>0. (3.2.6)
where A(@, s) =(4,,4,,4,)"

The solution of equation (3.2.6) under the condition of zero displacement at infinity is

3
B'(@,,9)=Y A@5)e™,

Viw,y= iimﬂi (@,5)A,(@,5)e™, 3.2.7)

¥ (@,y,9)= iﬁ, (@,9)A;(@,5)e™™.

i=l

where A, (@,s) is arbitrary function, and a,(@,s), f,(®,s) stand for the functions

(dyg +dy )(d66yi2 -d,»’ —Sz/csz)_(dse +d12)(d46712 )
(@n?,” ~dg@” =5*[¢,)Xd s, ~d1s0™)+(dgs +d,, g +d )0y, (3.2.8)
(dgs +d,,)2 0% +(dy ¥, —des® =52 [c,*Yd o7, —dy0* —5%[c,?)
(@Y, ~de@® —5%[¢,*)d o 7:: —d\s0*)+(dg +d,,)d o +d,5)0%Y,

o (w,s5)=

Bi(w,s)=

with y,2 , y22 and y32 being the eigenvalues of the sixth order equation

dgy’ —d,@* —s*[c,’ (dg +d,) 00y d 7 —d 0
det (d“ +d|2 )ai}’ dzzyz —d“w2 —SZ/CJZ (d46 +d25)ai}’ =O. (3-2.9)
d46y2 _dlsa)z (d46 +d25 )ai}, d4472 _d55w2 —SZ/Csz

This determinant is further expanded as

11



relyelypidog (3.2.10)
a a a

where
a=d,(d —dedy),

b=(dpd, —d, +dypde +d,dg)s[c +(—d, d, +d,dyd,,
~2d,dpd o +2d ydyd o +2d,yd, —dy dg —2dd yd e +dpdd )0,

c=A(dy +dy +dg)st[c,! +(=d)} +d,dy —d,s* +d,dy -
2d,5d s —2dpsd g — d g +dppdes —2dpd g +d ydeg +dgsdg) 05,
+(~d,s’dy, +2d,d dys —d,yd,s" +2d,,dd y —2d,,dyid  —dyd
—d,,}ds +d, dypds +2d,dysd +dy dydg —2d,dsd 0],

d = (dgo® +5*[c)s*[c,* +(dy, +ds)0%s?[c,? +(d,dss —dys)0*],
From (3.2.10), it is readily found that the functions y,(®w), y,(®) and y,(w) are multiple
valued functions of @ in the complex @ -plane with branch point at @ =%is/k,, w=2is/k,

and w =tis/k, , respectively, which are the roots of the equation given by d=0, i.e.

(d” +52[c s [c.* +(d,, +dg5) 0*s?[c, +(d, dgs —d\ )o*]1=0, (3.2.11)
S0 K =‘\/:il_csl’ Ky =4/dgsCy, and x, =\/2:Csl’
where

2(d11d55 _dlsz)

d, = ,
du +d55 +\/d112 +4d152 '2d11d55 +d552
d. = 2(dudss "dlsz)
2 — .
dn +dss “\/d112 "'4‘1152 _Zdndss +d552
_ 0 _ o_ ®u~C%2 . _ 0 _
Note that for the case =0, k, =.lcssc,, K, =, ——=c,=c, and k, =,[c;, c,. The

0 0 0 . .
parameters, k', , K,, and x, , are the shear wave speed in x, x, -plane, the shear wave speed in

12




x,x,-plane and the dilatational wave speed along x,-direction in x,x,-plane, respectively; for
the case 0 =90°, K, =.Jcg¢,, K‘sz” =1/c55c, and x,° =.Jc,c, .
Later we will be interested in the behavior of these functions for @ — . In this case,

7} > o'N, 2 (i=1,2,3), where N;? are the roots of the following equation

A A

NPt SN (3.2.12)
a a a

where
a=dy(d, —dedy),

b=-d,’d,, +d,dyd, —2d,d,dg+2d,d,d g +
2d12d462 "dzszdss - 2d12d44d66 +d22d55d66 ’

c= "(—dlszdzz + 2d12d15d7.s "dnd252 + 2d12d15d46 _2d11d25d46 "'dud%2
- d122d55 +d11d22d55 + 2d15d25d66 + dlld44d66 - 2dlzdssd% )’

“i =d (dndss - dlsz) ’
Similarly, as@ — «, a,(@,s) and f§;(@,s) become

(dss +d25)(d66Ni2 "dn)"(dss +d12)(d46Ni2 —dys) i
(@pN.? —dg ) d N2 —dy5)+(des +d,y)(dys +dos)N,” @ ’
(dss +d12)2Ni2 + (d“N,.Z -d“)(an,.z "dse)
(@, N2 —d)d N —dys) +(dg +di)d s +dos)N,

a,(w,s)—>o;” =

(3.2.13)

ﬁi (@,5) > 'B.'” =

It can be shown that for many materials that the roots of (3.2.10), 3,, 7, and %, are real

and positive and the expressions for the displacements in the Laplace transform domain become

13



u. = El_”—j(Ale"rly ‘+ Aze"72." + Aae'rl" )e—iakdw ,

V= %J(}’,alAle"” + YzazAze‘ny + 73“3‘438-7” )e—mda) s (3.2.14)

W -Z_tl_J-(ﬁlAle-m +ﬂ2A2e-rzy +ﬂ3A3e—r3y )e-imdw .

Substituting these expressions for displacements, (3.2.14), into the constitutive law, (3.1.4),

we have

T, 1 ) ) e
E = | (mAe™ +myAe™ +mAje ) e dw,
G, 27 J-
T, L[, _ e
Z=—— | (nAe™™ +n,4,7" +n,Ae™) e ™ dw, (3.2.15)
G, 27 J-w
6, o[
o - - - —i

2= | (kA +kAe™ +kAje™ ) e dw,
G, 27 J-o :

where

m; =(d s —dg0’0; +d B i,
n, =(dg —dgw’a, +d B )y;
ki=d,+ dzzyizai +dyp;.
Substitution of expression forr;y,'t;z , the first and second of equations (3.2.15), into the
boundary condition for 7,7, , the second and third of equations (3.1.5), yields

m A +m,A, +myA, =0, (3.2.16)
mA, +nA, +n,A, =0.

These equations can be rewritten as

A, =2 (0,94, A, =2, (@,5)4,,

mn, —m.n mn, —m,n (3.2.17)
ll(w’s)= 1°%3 3% ,lz(w,s)=_ 1°%2 2 l.
msyn, —m,n, msyn, —m;,n,

As w —» o, we have

14



PR O R Wl L N WO S N (3.2.18)

m; n, —m, ny m; n, —m, n,

where m,(w,s) = wm,” and n,(w,5) > wn,~ as @ —> .

Using this result in the expression for normal stress, the third of equation (3.2.15), the

expression for vertical displacement, the second of equations (3.2.14), and the remaining

boundary conditions, we obtain -

"%ff_:,(kl + Ak, + k)i e do = -0, [sH(-x)+0, (x,5),

{ (3.2.19)
57—:—]: (1) + QY A + YA, e ie "™ dw = v (x,s).
By Fourier transform inversion, these equations become
=G,k +7Mk, +A,k;)04,i = -0, /ins + 2, (w,s), (3.220)
(047, + 07,0 +03732,)04i = V_(@,5).
where
2. (w,5)= J‘of (x,8)e' " dx ,
° (3.2.21)

V(w,s5)= J v_(x,5)e™dx .

Eliminating A, from equation, (3.2.20), we obtain a Wiener-Hopf equation,

F(w,s)

GnLx V_(@,5)=0,[ios -, (@,s), (3.2.22)
12 lm 0

where the following functions are introduced

Fa.s) = 1/(02 +52 /K7 (ky + Ak, + A.k,) ,

X + oLy, +oy;,)

(3.2.23)

4 = k™ + A7k, + A7k
: a N, +a,” N,A™ +a," N, A" ’

(3.2.24)

15



and %, is dependent of @ and the material parameters. Its complete expression is given in the

Appendix.

0 - 2(0" —l)

41

Here, note that the case of 6 =0, g, (it is a limit value), and 6 =90°,

% _ (c11€3 _Clsz)[C33 + ¢, N\N,N;(N, +N, + N,)]
¢, €53 (N, + N, )(N; + N,)(N; +N,)

Z : (3.2.25)

where N, are shown in equation A.5 of the Appendix. xlo and ;(190 are the limit values of ¥, at
6 =0 and 8 =90, respectively.

For w =0, after lengthy algebraic manipulation of equation (3.2.23), we have

2 c 2
FO,)=——3¥u__5% S

KX ¢ KX €4

(3.2.26)

From the physics of the problem, it is reasonable to assume that the function ¢, (x,s) and

v_"(x,s) are exponentially bounded at infinity, which ensures the existence of their Fourier

transform (3.2.1). In particular, it is shown by Noble [12] that if

O': (x, S)I < Mleg"‘ as x > +oo

then X, (@)is analytic in Re(w)=¢& > ¢_, and if |v_*(x, s)| <M, as x — —o then V_(@) is
analytic inRe(w) =¢ < ¢, .

This function, F(a@,s), is analytic everywhere in the complex plane except on at the branch
cuts of 3, at @ =+is/k,,, @ ==%is/k,, and @ ==is/k, .1t is single valued in the @ -plane cut
as shown in Figure 2. For general anisotropic materials, the Rayleigh wave equations are given
by Nayfeh [15]. We found the algebraic equations, F(w,s)=0 (letting @ =is/v) and equation
(3.2.10) for } are the same as the Rayleigh wave equations because F(@,s)=0 is equivalent to

1,=1,=0,=0 which are the necessary boundary conditions used when deriving the

16




Rayleigh wave equations. The system of Rayleigh wave equations is dependent on the "material

properties” referring to the transformed properties through the rotation of the azimuthal angle 6.

Therefore, the Rayleigh wave speed ¢, is varying with the azimuthal angle 6. In general,

finding the critical value of ¢, requires numerical calculation because of the complexity of the

system of Rayleigh wave equations for géneral anisotropic materials [16]. It is true, however,

that the only zeros of F(w,s) an;, of the form *is/c, .

3.3 Wiener-Hopf technique
The Wiener-Hopf technique can be outlined as follows, the function L(@) is defined and
factored as

L (o) p F(w,s) (3.3.1)
I VY4 ’ o
L+(a)) ,wz_l_sz/xdz

thus, the Wiener-Hopf equation, (3.3.1), becomes

L(w) =

L (w)V (w)= k) L (0)-2,(w,5)L,(w) . 3.3.2)

If the function D(w) can be decomposed as

D(w) = [L (w)m)L (0) Lw(:))] D, (w)+ D_(w), (3.3.3)
with
D.(@) = [M} D_(w) =ﬁ[&],
s i s iw

Then the Wiener-Hopf equation, (47), is further reduced to

D (w)-Z, (o)L (@)=L (0)V_(w)-D_(w) =Q(w). (3.3.4)

17




The first member of (3.3.4) is analytic in the right half plane of Re(w) >¢_ and the second
member in the left half plane Re(w) <&, . If £_ > ¢, , the regions of analyticity overlap and by
invoking analytic continuation, it is concluded that Q(w) is analytic and single-valued in the
whole @-plane shown in Figure 2. Furthermore, invoking the extended Liouville »theorem, it can
be shown [12] that if Q(w) is "bounded énd entire and Q(w) = 0as @ — «, then Q(w)=0.
Hence, we can solve for the transform of stress ahead of the crack tip, Z, (@), and displacement,

V_(w), behind,

5@ =222 To ) B,

L(w) sio| L(®)

_ (3.3.5)

V@-2@_o[LO]

L(w) sio|L (w)

Following this outline, the first step is to factor L(w), (3.3.1), by defining
Fo)=—2128 (3.3.6)
* +5/c,

It can be shown that F(@) — 1 as @ — eo, (the constant %, in (3.2.24) was chosen to make
this possible). The function F (@) is regular and F (w) #0 in the w-plane cut as shown in
Figure 2, the only singularities are the branch points shared with 3, (i=1, 2),ie. o= tis/k,,
o =tis/k,, and w=t%is/k, . It is well known that factorization of a function is accomplished
most directly for functions that approach unity as @ — e and that have neither zeros and nor

poles in the finite plane. Indeed, F(w) is an example of such a function. Therefore, using

Cauchy integral formula, it can be shown that [1]
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F(o) =F,(0)F (0)

A 7 337
£, (w)=exp{ L[ logf@) dz}’ (3:3.7)
2midr, z—@

where R_ is the closed counterclockwise contour enclosing the branch points
+is[k, , +is/k,,and+is/k,, and also R, is the closed counterclockwise contour enclosing
the branch points —is/k,,, —is/k,, and-is/k, .

Returning to the factorization of L(w), we have now

F (@)F (o) @+is/cyX@—is/cy)

L(w) =L, (w)L_(@) =Gy, X, . . (3.3.8)
Jo+is/k,Jo-is/k,
Therefore,
(@—isfcg) a
L (0)=G,x,——==F (0),
Jo-is/k,
(3.3.9)
Jo+is/k,
L, ()= .
(@+is/cy)F, (@)
Note that as @ —ee, F (0)—>1, F (0)—>1, L+(a))=%, L (@)=G,x,Wo and
a
L= 7 CRA , and using equations (3.3.5), we can readily obtain X (w) and V_(@)
sk SE (OWi
as @ — oo, i.e.
O,C
(@) >~ e (3.3.10)
(siy o, [x,E.(0)
V_(0) = 9oCr 3.3.11)

G, (siw)y Kk AF,.(0)
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3.4 Stress Intensity Factor
To find the stress intensity factor, an asymptotic expression for the stress near the crack tip

is sought. A well-known result relating asymptotic expressions between a function and its

Fourier transform (Abelian theorems) {12, 17] is

lim/x0," (x,5) = lim ™" 1,9& (@). (3.4.1)
X W00 T

v () in314 20077
lim——=——=lime""" —=V_(w) (34.2)
x—0 _\/; W—yo0 !’7[

Hence, the definition of the stress intensity factor gives

Jroc,

—_— (34.3)
7 fxc, F, (0)

K;(s)=lim 2mxo,” (x,5) = lim e \20%, (w) =
X0, W0

. . A JF (O,
Note that F,(0)=F_(0) =\/F ) =CR—(S)—, consequently, equation (3.4.3) can be
0y

written as

K/(s)=

V20,
: 3.4.5
sV2\[ic,|JF (0,5) G4
2

Using equation (3.2.26), F(0,s) = L. T} , it readily shown that
‘ KaZh Ca

K;(s)= ‘/é;/fo ’Cdxl . (3.4.6)
S (o]

Applying the inverse Laplace transform to K;(s), the stress intensity factor K(f) can be

written as follows

¢, x
K (=20 ,C /Nt = 20, fF 24" (3.4.7)
T Cll
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where

C, = F-C-"-ZL (3.4.8)
T ¢y,

Thus, the stress o, (x,0,1) can be expressed as

K, @)

349
g 349

For 6 =0, i.e. for the case of transversely isotropic material, C, reduces to

2 -1
c = /ﬁ_—Z(c"z ) (3.4.10)
T ¢

2(1-v)
1-2v)

o.y (x)O’ t) =

By using ¢, = , equation (3.4.10) further reduces to the well-known result for isotropic

materials [13], i.e.

o e, d-2v/x

¢ =y (3.4.11)

For 6 =90°, i.e. for the case of orthotropic materials, C, reduces to

%0 _ |2 CXmgo
C, =, |——. (3.4.12)
T ¢,

where x,” is shown in (3.2.25). Tables 2 and 3 show that the numerical values of C,” for
orthotropic materials are same as those obtained by using formulation in [10], hence, equation
(3.4.7) also reduces to the result for orthotropic materials as expected for 8 =90°. Thus, the

value of C,° and C,” can be accurately calculated by using (3.4.10) and (3.4.12), or can be

evaluated by using (3.4.8) and letting 6 =¢ and 6 =90° —¢, £ << 0. Satisfactory agreement of

the present solution with known solutions is found.
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From (3.4.2), we have

. . ¥
lim Y= O i J2ze* 22y () =—2 K, (s) (3.4.13)
-0 Jx @30 N G,

thus, the displacement v(x,0,f) can be expressed as

2 X
,0,8) = —K,(t 3.4.14
v(x0,1) ann’m (®) (34.14)

For a finite crack extension 9, the following Irwin’s crack-closure integral (the definition

of the strain energy release rate for single mode at once ) can be evaluated [18, 19]

o, (x,0)v(d - x,0) K.?
G,(t) =i y dx = ——1 3.4.1
@) =lim f . o (3.4.15)

without ambiguity by using

J"’ 6—xdx=ﬁr(1/2)

=T (3.4.16)
S 2 Q2 2

Equation (3.4.15) further reduces to the well-known result for isotropic materials [20], i.e.

_— 2 2
G,(t) = %{L (B.4.17)
4 In-plane Shear Impact

Consider the crack geometry illustrated in Figure 2. Figure 3 schematically shows the same

crack with a spatially uniform shear traction of magnitude 7, applied suddenly on the crack

faces. Exploiting symmetry and limiting ourselves to upper half-plane, y>0, the corresponding

boundary conditions become
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(7 (x,0,)=—7,H(2), -00<x<0,

c,(x0,0=0 cco<x< oo ,

4.1)
Tyz(x, 0,t)=0 ~00LX <400,
u(x,0,t) =0, O<x<+oo,

where H(t) is the unit step function. The displacement at infinity is assumed zero, and the body is
stress free and at rest everywhere for 1<0.
A method of solution similar to that that used for normal impact can be used. Applying the

Laplace transform to boundary conditions (4.1) gives

Ty (£,0,0==7,/s, ~e0<x<0,
O"x,O,t =0, o0 < X < 400,
’.( ) 4.2)
T, (x,0,t)=0, —c0 L X < 400,
u'(x,0,t)=0, 0< x <400,

The displacement field given by (3.2.3) yields the same system of ordinary differential

equations, (3.2.4), whose solution is given by equations (3.2.7) where a,(w,s) and f,(@,s) are

defined by (3.2.8) and 7, are obtained from the solution of (3.2.10).
Substitution of the expressions for 0'; s z';z , the first and third of equations (3.2.15), into the

boundary condition for 0'; , z';z , the second and third of equations (4.2), yields

mA, +myA, + myA; =0,

(4.3)
kA, +k,A, +K,A; =0.
These equations can be rewritten as
A =2 (@,94,, A =71 (@94,
A (@, s) = mky —msk, A (@,5) = - mk, —m,k, 4.4
mk, —m,k, msk, —m,k,

As @ — oo, we have
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o0 ©0 y o0 o0

m; k, —m, k, my, k, —m, ky

where m (@,s) > om,”, n(®,s) > on” and k,(@,5) >k, ,as0 —> .
Using this result in the expression for shear stress, the second of equation (3.2.15), the
expression for horizontal displacement, the first of equations (3.2.14), and the remaining

boundary conditions, we obtain

_%Fnl + Z'f’nz + A"zlns A e " do= —7% /S H(-x) + T+‘ (x,5),

(4.6)
1 n n —iax *
—-Jﬂ‘(’l+/'l1 +A,))A e dw =u_(x,s).
27 J-
By Fourier transform inversion, these equations become
-G, (n + A'n, + A n)A =—1, [iws + T, (@,5), @7
A+ A" + A =U_(@,5). '
where
T, (®,s) = .[:1.'+ (x,5)e’™dx, “s)
U_(w,s)= J:u_* (x,5)edx.
Eliminating A, from equation, (4.7), we obtain a Wiener-Hopf equation,
G(w,s 1
Gutr—29)_y_(@,5)=-2-T,(@,5), “9)
Jo? +s*/x, ias

where the following functions are introduced

2 2 2
Glas) = ,/w +s /K‘sl (n, + 4n, + A,n,) 4.10)

A+ 4 +4,)

L ne_ o e
_n +A4 n, +

1+ A7+ 20"

s (4.11)

2
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where %, is dependent on 6 and material parameters and its expression is shown in the

Appendix. Here, note that for 0=0, ;(20 = M , and for € =90°,
n
2" =4 (4.12)

where
g =(Cyy €y — €13 )ess[Cyy + €, NN, N, (N, + N, + N3],
h=c, {cylc,yN\N,N; +cs (N, + N, +N,)]+
N N,N,[—c,;> =2¢p5¢55 +¢,,C55 (N, N, + N3N, + N3N,
and N, are shown in equation A.5 of the Appendix. 7, and ;(290 are the limit values of %, at
6 =0 and 8 =90°, respectively.

Also, for @ =0, after lengthy algebraic manipulation of equation (4.10), we have

2

G(0,5)=—L (4.13)
Kslx2cs

where

24/Css

P+ Jeg) + (Joss —Dcos26

Equation (4.9) contains only the two unknown functions, T, (@,s) and U_(@, s), and can be

solved using the Wiener-Hopf technique as in the normal impact analysis of section 3. The result

is

D, (w)-X,(@)L,(w)=L (@)U_(w)-D_(w)=0, (4.14)
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(w—isfcg) A

AamiaAd 2 ,
Jo-is/k, -@
L.(@) 1/a)+ is/k,

L (0)=G,2,

- (@+is/cy)G, (@)
A G(w,s)
G(w)=——""2
®+5%[c,”
and
D(w) = .T—"L+ ()= E[L*(w),_ L. + Lf © ] =D, (w)+D_(w), 4.15)
las S 1 110

with

D, ()= T_O[M] ., D_(0) = 7_0[&] . (4.16)

S 1Q S 110}

Hence, we can solve for the transform of stress ahead of the crack tip, T, (@), and displacement,

U_(w), behind,

T, @ =222 . L [1— L+(O)],

L(w) siw L (w) @17
U @=2@ _ % [LO '
B L(w) sio|L (w)|

It can be shown that G(a)) — las @ — oo (the constant ¥, in (4.11) was chosen to make this

possible). Hence, éi (w) is given by

G(w) =G, (0)G_(w)

- ; 4.18
é, (a))=exp{ 1. log G(w) dz}, (4.18)

2mdr, z7—@
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where R_ is the closed counterclockwise contour enclosing the branch points
+is[k, , +is/k,and+is/k,, and also R, is the closed counterclockwise contour enclosing

the branch points —is/x ,, —is/x,, and-is/k,, .

Note that as @ —> o, G+(w)->1 , G_(a))—>1 , L+(w)=—Jl_—_, L_(a))-—-‘anz«/E and
w
L ©O)= C"A , and using equation (4.17), we can readily obtain T, (w) and U_(w)
sk, 16, (OWi
as @ — oo
1,C
T, (@) = - sk, (4.19)
(i)Y Nwx, G, (0)
U_(@) - ’°;R — (4.20)
G2, (sio)2 k126, (0)
From equations (4.7) and (4.4), the coefficients, A,, A, and A,, as @ — o become
A= f"U_(w) A, =f"U_(w) and A, = £/ U_(w) 4.21)
n= e
thre _f]ll - 1 n __ 21 and f3” — }'2

14 A" 0 _1+,1{"°+ - _1+21"°°+ ue

Substituting (4.21) into (3.2.7), the dual transformed displacement, wh ) (0,0,5),as @ —> o0

becomes
" (@,0,5) > W (@) = fU_(®) (4.22)

where f, = ﬂlwfl” +:62N 2” '*‘ﬁsm 3"

From Abelian theorem [12, 17],

lin(}\/;”r;(x, s) = lim (,:"""“\/-E-T+ (). (4.23)
x— W—yoo T
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* b4
lim 2= ) _ lim e/ —zw—U_((o) (4.24)
x—0 \/; w00 J;

u* %
fim= ) i iy 207 g (4.25)

x—0 _\/; W—yoo J;

Using (4.21) and the definition of the stress intensity factor gives

V27,c,

1 (4.26)
572[4G. 0

K; (s)= lim N2met,’ (x,5) = lim ¢4 20T, (@) =
x—0, W—>+oo

A A = ,/G 0, .
Note that G,(0)=G_(0) = \/G(O) = CL——(——Q, consequently, equation (4.26) can be
)

rewritten as
. NoY
K, (s)= 2 . 4.27)
T s ke AJG,5)
. . s’p . .
Using equation (4.13), G(0,s) = p , it readily shown that
sl ZCs
* \/_2_0' C
Ky (s)= Y550 [2ek2 (4.28)
s 4

Applying the inverse Laplace transform to K(s), the stress intensity factor K,(f) can be

written as follows

_2__ cst
T p

C, = ’20512 : (4.30)
T p

Thus, the stress 7 - (x,0,1) can be expressed as

K, () =2z,Cyilt =274t , (4.29)

where
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K, @)

Tone 4.31)

For @ =0, i.e. for the case of transversely isotropic material, C,, reduces to

c,= ,ﬁ?ﬁin;l) , 4.32)
T ¢ ,

2(1-v)
(1-2v)

7, (x0,1) =

By using ¢, = , equation (4.32) further reduces to the well-known result for isotropic

materials [13], i.e.

. 4.33
z(l-v) @33
For 8 =90°, i.e. for the case of orthotropic materials, C,, reduces to
90
201 4.34)

where x,” is shown in (4.12). Tables 2 and 3 show that the numerical values of c,” for
orthotropic materials are same as those obtained by using formulation in [10], hence, equation

(4.26) also reduces to the result for orthotropic materials as expected for 6 =90°.

From (4.24), we have

N2z (x) i34 2 (0/ 2 *
x-—)o—_-Tx_— li m‘\/% J;z_ U (w) Glz,% K” (S) (4'35)

thus, the displacement u” (x,0,¢) can be expressed as

2 X
T(x,0,8) = J—K t 4.36
u (x ) Glzzz o 11() ( )

Similarly, from equation (4.25) the displacement w" (x,0,£) can be expressed as
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2f x
wi(x,0,t)=—=24_ | =K, (t 4.37
(x,0,6) e 2‘/27: (@ (4.37)
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5 Anti-plane Shear Impact

Consider the crack geometry illustrated in Figure 1. Figure 4 schematically sﬂhows the same

crack with a spatially uniform shear traction of magnitude 1, applied suddenly on the crack

faces. Exploiting symmetry and limiting ourselves to upper half-plane, y>0, the corresponding

boundary conditions become

1yz(x,0,t)=—1oH(t), ~0 < x <0,

a),(x,O,t)=O —o L X < 4oo, 5.1)
1xy(x,0,t)=0 ~o K X< +oo,

w(x,0,t)=0, 0<x<+o0,

where H(t) is the unit step function.
The displacement at infinity is zero, and the body is stress free and at rest everywhere for
t<0.

The method of solution is similar to that that used for normal impact. Applying the Laplace

transform to boundary conditions (5.1) gives

Tyz‘(x,O,t)=—1'0/s, -~ <x<0,
. x,0,t)=0, ~0 < X< 400,
y*( ) (5.2)
T,y (x,0,)=0, ~00 < X < +o0,
w (x,0,t)=0, 0< x < +oo.

Assuming the displacement field given by (3.2.3) yields the same system of ordinary

differential equations, (3.2.4), whose solution is given by equations (3.2.7) where a(@,s) and

f.(@,s) are defined by (3.2.8) and 7, are obtained from the solution of (3.2.10).
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Substitution of expression fora;,'t:y, the second and third of equations (3.2.15), into the

boundary condition for ¢, 7, , the second and third of equations (5.2), yields

n A, +n,A, +n;4,=0

(5.3)
kA, +k,A, +k A, =0
These equations can be rewritten as
A, =" (@, 94, A =2 (@,5)A,,
A @,y = s 1 g gy T2 T ey oD
nik, —n,k, nik, —nyk,
As @ — oo, we have
A (@2,5) = A" = n1:k3: _”3:k1: L AT (g, 5) — AT = n1:k2: _"2:1‘1: (5.5)
ny k, —n, ks ny k, —n, ks

wherem,(@,s) = om,”, n(®,s) >on~ as @ —>.

Using this result on the expression for normal stress, the secondary of equation (3.2.15), the
expression for horizontal displacement, the first of equations (3.2.14), and the remaining

boundary conditions, we obtain

_%1'2— (m1 +2':"m2 +ﬂ«£"m3 )A1 e da= —TO/S H(-X)+T+‘ (x,5),

—o0

(5.6)
1 m /i —iax et
P (B, + By + By YA e ™ dw = w_(x,5).
By Fourier transform inversion, these equations become
=Gy, (m +/’L{"m2 + l”m3)A1 = -To/inR(a),s), 5.7

B+ :Bzﬂ’{” + ﬂs/lgl YA =W_(@,5),

where

T, (w,s)= J:'r: (x,s)e ™ dx,

W_(@,s) = Ji w_ (x,5)e™dx.
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Eliminating A, from equation, (99), we obtain a Wiener-Hopf equation,

E(@,5)

Jo* +5% [k}

where the following functions are introduced

E(w,s)= ‘\/wz:*'sz/’(szz (m, + Aim, + A,m,)
2By + By + Bi4y)

1
G X5 W_(@,s)= lﬁ -T,(w,s), (5.8)

(5.9)

4= m~ +}{1’"”m2” + '””m;’ (5.10)
3 1+,1{1f°° 4 ’

where j, is dependent on € and material parameters and its expression is shown in the
Appendix . Here, note that for 6 =0, Z = 1/css ,and for =90, x,” = 1/"55 when using N,
shown in equation A.5 of the Appendix. z,) and y,” are the limit values of g, at =0 and

6 =90°, respectively.

For w = 0, after lengthy algebraic manipulation of equation (5.9), we have

2

EQ,s)=——3% (5.11)

K32x3 cs

where

(\/E; +Cs5)

q= ; .
JCss +Cs55in% 0 +cos? 0

Equation (5.8) contains only the two unknown functions, I', (@, 5) and W_(@, s), and can be
solved using the Wiener-Hopf technique as in the normal impact analysis. The result is
D, (0)-X,(w)L,(w)=L_(w)W_(w)-D_(w)=0. (5.12)

where
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(@—isfcg)

E (w),
Jo-is/k,
L.(w)= 1/(o+ is/k,,

L (w)=G,x,

(@+is/cy)E, (@)
A E(w,s)
E(@)=——"""—.
o +5/c,”
and
D(w) =.—T°—L+(w) = &[L+(w),_ L.© + Lf (0)] =D, (w)+D_(w), (5.13)
Las s 11400 110)]

with

D. (@) = %o [L+(w).—L+<0>], D.(@)="0 [L+(0)]'

iw s| iw
Hence, we can solve for the transform of stress ahead of the crack tip, I',(w), and

displacement, W_(w) , behind,

L (@)= 2@ _ % [1_ L+(0)},

L) sio| L.(@) (5.14)
W_(w) = D.@ _ 7% | L) |
- L(w) sio|L (®)]|

It can be shown that E(a)) — las @ — oo (the constant y, in (5.10) was chosen to make this
possible). Hence, Ei (w) can be given by
E@)=E,(@E_ (o)

N i 5.15
E,(w)= exp{ 1 - log E(@) dz}, ( )

2mdr, z—w

33



where R_ is the closed counterclockwise contour enclosing the branch points
+is/k,,, +is/k,and+is/k,, and also R, is the closed counterclockwise contour enclosing
the branch points —is/x,, —is/k , and -is/k, .

Note that as @ —ee, E (@) >1, E_(@)>1, L+(co)=%, L (®)=G,x,\Jo and
14

L.(0)= 7 RA , and using equation (108), we can readily obtainI’, (w) as @ — e
sk JE (OWi
1,C
I (@)—>-—— 2R - . (5.16)
(s))2 o, E,(0)
W_(@) - 1‘;" — (5.17)
G,, 2, 5iw) 2 k 2 E, (0)
From equations (5.7) and (5.4), the coefficients, A;, A, and A;, as @ — o become
A=gl'"W_(w) A, =gl'W_(w) and A, =gl"'W_(w) (5.18)
where
g‘m = 1 s g;ll - ’11'"“ and _m = ’1;”“

Ry Ry A e Sy Y L o o Y T
Substituting (5.18) into (3.2.7), the dual transformed displacement, & “(@,0,5), as @ — oo
becomes
i (@0,5) = UM (@) = g, W_ (@) (5.19)
mr V{4 mr

where g,, =8, +8, +8&;

From Abelian theorem {12, 17],

1in(}J§r+‘(x, 5) = lim e-""“\[f"tn (). (5.20)
x— W—roo T
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. %
li w_ (x) — lim ei)t3/4 Za)

m —W_(w) (5.21)
x—0 ,\/_; W—yoo _\/-7?
m* ) %
tim 2 ) = Jim ¢4 227 g () (5.22)
x—0 _\/; W—roo ‘/7?

Using (5.18) and the definition of the stress intensity factor gives

K}, (s) = lim 2mx7," (x,5) = lim e™"* 20T, (@) = —3/-—‘/—5—?161— (5.23)
o o 72 i, B, (0)

A A A 1‘E 0, .
Note that E, (0)=E_(0)=+E(0) =—C-5——-(—s), consequently, equation (5.20) can be
s

rewritten as

. J27
K. (s)= o .
m () s [k, JEQ©,5) G2

2

Using equation (5.11), E(0,s) =— p 4 it readily shown that
S2A3 cs
* ‘\/ET C
Ky (s)= 2550 |24 (5.25)
s q

Applying the inverse Laplace transform to Kj,(s), the stress intensity factor K(f) can be

written as follows

2
K (1) = 20,Cpalt = 20,4t ;9—;"—’ (5.26)
where
2c¢c
Cu=,— 4 . (5.27)
T q

Thus, the stress .- (x,0,1) can be expressed as
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Kfll (t)

5.28
o (5.28)

For 6 =0, i.e. for the case of transversely isotropic material, C, reduces to

C.0= 24/essc,
[/ | E——

/4

7, (x0,1) =

(5.29)

By using ¢, =1, equation (5.29) further reduces to the well-known result for isotropic materials

[13],i.e.
Cu’ === (5.30)

For 6 = 90°, i.e. for the case of orthotropic materials, C,, reduces to

’2 ,/c
C11190= _fin_si (5.31)

Tables 2 and 3 show that the numerical values of C,, for orthotropic materials are same as
those obtained by using formulation in [10], hence, equation (5.26) also reduces to the result for
orthotropic materials as expected for 6 =90°. From (5.29) and (5.31), C,,° is same as C el

which is because dy(0°) = dy(90°).

From (5.21), we have
* 3
2 . % .
im Y= O _ i 27 22y () =—2— K, (s) (5.32)

x—0 \/; W0 ,\/;[- G12 Z3

thus, the displacement w(x,0,t) can be expressed as

2 X
wil(x,0,¢) = J—K t 5.33
(x,0,8) GnZa o m ®) ( )

Similarly, from equation (5.22) the displacement u"(x,0,#) can be expressed as
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W™ (x,0,1)= é—gi,/{;K ® (5.34)

1213

6 Results and Conclusion

Closed form expressions of the dynamic stress intensity factors K,(t), K,(t) and K, (?)

have been determined for semi—inﬁnite cracks in rotated transversely isotropic materials under
the three loading modes, i.e. opening, in-plane shear and anti-plane shear loadings, respectively.
The stress intensity factors for the three modes are proportional to the square root of time; there
is no equivalent quasi-static problem for semi-infinite crack under uniform loadings and there is
no long-time equilibrium value. The method of solution in this paper differs from that typically

used in the isotropic case. The displacement formulation of the equations of motion is solved
without the use of Helmbholtz potentials. This allows solutions to be found. As §=0" and

6 =90°, we can use the formulae in [10] for the coefficient of stress intensity factor for the three
modes to check our result. The results of the comparison are shown in Tables 2 and 3. The
results found here are completely the same as those in Table 2, as expected. Thus, it has been
shown that the rotated transversely isotropic formulation includes the case of the crack located in
the transversely isotropic plane, the case of the fiber along the crack, and the case of isotropic
materials as special cases. That is, for each loading mode, the dynamic stress intensity factor for
these special materials is recovered from the rotated transversely isotropic expressions with the

proper substitution of elastic constants.
The calculated results for C,(0), C,(6) and C, (), where K. (¢,0)= 20',.C,.(0)\/; , are

shown in Figure 5-8 for several materials, and the mechanical properties [16] used for the

analysis are given in Table 1. In these figures, it can be seen that the fiber reinforcement of
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epoxy leads to an increase of the stress intensity factor for all three modes, i.e., the stress
intensity factors K(f) for Graphite-Epoxy, Eglass-Epoxy, and Boron-Epoxy composites are

greater than the corresponding K (¢) for epoxy at all rotation angles. For mode-I and mode-1I,

the coefficient of stress intensity factor increases as the rotation angle 6 increases, and at 8 =0°

and 6 =90° the coefficient of stress intensity factor reaches its minimum value and maximum
value, respectively.

Figure 7 shows the coefficient of stress intensity factor for mode-III with rotation angle 6.
The shape of the curve is different from those for mode-I and mode-II. Surprisingly, at 6 =0°
and 6 =90° the coefficients of stress intensity factor are same, which can be obtained by proper

substitution of elastic constants. This is because dg(0°)=d(90°), i.e. shear on the principle

axis is independent of rigid body rotation through 90°. Also at #=0° and 6=90" the
coefficient of the stress intensity factor has its minimum value. The point of the maximum value
for coefficient of stress intensity factor is between 8 =0° and 6 = 90°. The maximum value and
its corresponding rotation angle are clearly dependent on the material properties.

Figure 8 shows the coefficient of the stress intensity factors K, (), K, (t) and K, (¢) for
isotropic (epoxy) and orthotropic (graphite-epoxy) materials, note that with same load amplitude
the coefficient of stress intensity factor K, () and K, (¢) are greater than K,(#). By
comparison of both cases, it can be seen that the introduction of fibers results in an increase in

the stress intensity factor. This effect is more dramatic in the shear modes than in the normal

mode.

In terms of the penny shaped crack problem, these results offer some intuitive insights. If the

crack is loaded in mode I, Figure 5 leads us to expect the crack front to advance in the direction
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of the fibers, provided the toughness is constant in all directions. If, however, the crack is loaded
in shear, the problem is more complex because the crack front sees mixed shear mode loading.
There are components of both mode II and mode III loading along the crack front. Letting the

shear loading with magnitude, 7, be applied on the surface of the penny crack, and letting ¢ be

the angle of that shear loading relative to the principle axis of the material (fiber-orientation) as
shown in Figure 9. The shear loading at a point & on the crack front is given by a mode II and
mode III component,

1, =1,c08(¢ —6) 6.1
Ty =T, Sin(@—0) )

In this case, due to the presence of both modes at once, hence there are cross-influences.
For a finite collinear crack extension, , the following Irwin’s crack-closure integral (the

definition of the strain energy release rate for both modes at once) can be evaluated [18, 19]

5 I _ m _

G,,(t)=£i_r)ré J; T, (x,0)u" (6 :;0)+u 0 X’O)]dx 62)
ST (x,0)[w™ (5 -x,0)+w" (S -x,0)]

G,,,(t)=}$i_r}3J; n (% O ’;) W ©-x0, 6.3)

Using (3.4.16), and the 7_,(x,0), 7,,(x,0), u"(x,0), u™(x,0), w"(x,0) and w"(x,0) derived

above, G, (t) and G, (t) are expressed as

| 1 2 S
G, ()= K, + K, K 6.4
u () 26,7, n 26,1, B (6.4)

1 2 Su
G, t)=—K,," + K, K 6.5
m (2) 26,1, u 26,7, B (6.5)

where equations (6.4) and (6.5) further reduce to the known result for isotropic materials [20],

1.e.
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2 2
G,(n= .(_t._‘i_)_K_'.’_’_.. (6.6)
E
2
Gy (1) =9_’f_";ﬂ 6.7

Substituting the expression for K, (f)and K, (¢t)derived here, (4.29) and (5.26), the strain

energy release rates, G, (t) and G, (t), become

4et 7,0 4dct X
Gy(t)=————"— gy Ty Ty [, 6.8
un(t) G,T p  Gom Eututm 2.q (6.8)
4et T,°  4ct X
G )= s i + s T.T 3 69
/3 ( ) Glzﬂ' q Gn T f mnvmnvim xz pq ( )
The total energy release rate is given by
G O =Gy () + Gy (1), (6.10)
thus,
20 P
G,27r2 G, ()= cos“(p—0) 4 5in (p-6) +
4Cs1"0 t p q
(6.11)

COS(¢_0)Sin(¢—0)[glll __'_Z_z__'_f"" % ]
“Zapq X2Pq

For a given shear loading angle, ¢, G‘zn; G, (2) is a function of only 8. Thus, the
cs 0

. G, .

maximum energy release rate, max| —2*—G, ., (t) |, occurs at § =6 _(0<0_<zn))and 8, isa

gy 2 total c c c
4e,7,t

s

function of ¢ . The functions are periodic in ¢ and § with a period of 7 .

Figure 10, 11 and 12 show the normalized strain energy release rates for 0 <6 <180° and

0< ¢ <180’ in Graphite-Epoxy, Eglass-Epoxy and Boron-Epoxy, respectively. There are two
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different peaks for given ¢ in each of these figures, where the loading is most severe.

Meanwhile we also find valleys in these figures where the loading is least severe. The most

probable direction of propagation for each case and the corresponding value of the normalized
strain energy release rate are shown in Figures 13 and Figure 14. It is seen that 0, = -7;?+ ¢ for

each material, that is, the crack will most likely propagate in the direction perpendicular to shear

loading.
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Appendix
(1) Roots of the characteristic equation, (3.2.10)
The solutions of the cubic equation (3.2.10) of 32, ylz , yz2 and y32 , are related to a, b, c and d

by the following relations,

b d
R AR A (O — AR A AR =§- (A.1)

M 2 .
where these expressions, y;,”, can be given as

2 25%[c,” +(1+c5)@" +(1-c55)0* cos 20

2

o 2y —2¢,,)5%/c,” + (B, + B, cos20)w” - ,[B,
2 4cy Css

2 (2css—2c,;)5/c,” +(B, + B, cos20)” +.[B,
P 4cyiCss

and,
2
B, =—¢;;" —2¢,3¢55 + €655 +2¢;,Cs5,
2
B, =¢13" —¢1C33 +2¢,,C55 +2013C5,

B, =[2c¢4 .s‘z/c,2 =3 0% —2c,;C4 +c“(2s2/c,2 + 5 ®0° +2c,,0%) + B, cos? 201* —2¢, 55
4 4 2 2
8s /c, +4(c,, +cy + 2c55)w2s2/cx +(=c;3" +¢,,C33 + 30,1055 —2€)3C55 + 3C55C55 +

2
4(c,, —cj; Yw? (sz/c, + cssa)2 )cos 26 + (c,32 —€}3C33 + €} Cs5 +2€15Cs5 + C35€Css Yo* cos 40

As o =0, equation (3.2.10) becomes

y06 +b_0},04 +C_0y02 _I_.%_:O . (A.Z)
a a a

where
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2 2 _ _ 2
By = (A —do’ +dpds +dyd ) = 1~ e *chcss Culs) S
c c

s s

4 _ _ 4
¢y =~(dy +dyg +dgg) =0t 0" 20) 5
c 2 c

5 s

We note that the three roots are independent of 6.

(2) Solution of the characteristic equation for @ — o (3.2.12)
For any &, we have

2 l4cg +(1—-c55)cos20
N, = > ,

N o B, + B, c0s20 —2,/B, sin* §

2 ’

(A.3)
4cyiCss

N B, + B, c0s20 +2,[B, sin* @

3
4cyCss

where B, and B, are given above

) 2 2
B, =(c)3" —¢1y€3)(€13" — €133 +4cp5055 +4cs57)
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Note that for the case 8 =0,
N?=N,*=N,* =1, (A4)
and for the case 8 = 90°,

2
N =cs,

2 2 2 2
N2= — €3+ €33 —2C13Css —\/(013 =€ (€1 =€, Cy3 +4€5C55 +4Cs57) (A.5)
, = :

,

2¢),€55

2 2 2 2
N2=_ €13 +€,yC35 = 2C5C55 + \I(Clz =€y C33)(€)3” — € €33 +4C,5C55 +4C557)
, =

2¢)yC55

’

which are same as those in [10].

(3) Expression for %,

After much algebraic manipulation of equation (3.2.24), it is found that ¥, can be written as

pn=te (A6)
A

where

Ziw =(K,"K," —K,"K,”)-K,"N,N,N, + K" (N, + N, + N,)]+
a,{(-K,"[-K,"N,N,N,(N,*> + N,> + N, + N,N, + N,N, + N,N;) +
K,"(N] +N,* +N,’ + N,N,N, + N\N,(N, + N,)+ N,N;(N, + N;) + N;N, (N, + N,))]
+K,"[K,"N,>N,2N,2(N, + N, + N;) + K" (N,N,N,(N, + N, + N,) + 2N,N,N,(N,N, +
NN, +N,N,)+ N>N,> (N, + N,)+ N >N,> (N, + N,) + N,”N,> (N, + N,)1},

K = al(azK; +K,"K," XNINZNS(Nl +N,)(N, + N3N, +N3)),
and,
@, =dy(dy’ —dydes)

a, =d,d —dydg,

Kl” = _d122d44 +dndzzd44 _d15d22d46 +d12d25d46 +2d12d462 _Zdlzd«dse ’
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K, = dyydisdys ~dydysdes —dydas’ +dydydsg,
K,” ==d,d +d,\dyd g —disdpdes +ddydg,
K, =d,dde —d, dypsd

K" =d(d,dy —d,pd,s),

K™ =—d,’d +d, dypd —disdpde +dydysdg,
K,” ==dd,s +d,dys +d,d o —d,sd,

the expressions for N, are shown in equation (A.3) in the Appendix.

(4) Expression of %,

After tediously long algebraic manipulation of equation (4.11), it is found that ¥, can be

written as

g, =2 (A7)
V47

where

Xom = (L L, + L, L)-L,"N,N,N, + L" (N, + N, + N,)]+
BI(L,") NENSNF(N, + N, + N+ (L") N + N, + N +
N,N,N, + N,N,(N, + N,)+ N,N,(N, + N;)+ N;N,(N; + N,)]+
L"L,"[N,N,N,(N,N, + N,N, + N,N,) +
NN, (N, +N,)+N2N(N, + Ny) + NN, (N, + N
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Xaa ==L [1;%1\/,21\/2’1\/32 +L,"(N,N, + N,N, + N,N,)]+
L,"[L;"(N,N, + N\N; + N,N,) +b,[N,N,N(N, + N, + N; ) +
NN+ NN +N,’N,* 1N-bIL,"[-a,N,>N,>N,*(N,N, + NN, + N,N, )+
L[N,N,N,(N, + N, + N;)+2N,N,N,(N,N, + NN, + N,N,) +
NZN,2(N, +N,)+ NN (N, + N;)+ N,’N,> (N, + N1+ L[ L™
[NN,> +N>N,> + N>N,> + (N> + N,)N,N, + (N, + N,))N,N, +
(N,* + N,*)N;N, +2N\N,N;(N, + N, + N))1=b,[N’N,” + N'N;* + N,’N,’
+N.N,>N,(N, + N,)+ N,N,’N.>(N, + N,) + N,’N,N,* (N, + N,)1]+
L,"[-L,"[L," +b,N,N,N,(N, + N, + N,)]+ L,"[L;" +b,(N,> + N, + N,* +
N,N, + N,N, + N,N,)]],

and,
by =d,(d, —dyude),
b, =d,d,,
L™ =—(d,,) dy —dydydy +disdyd g —dydosd g —2d,d " +2d,,d,,dg)
L," =d,dd —dydysd g —dyd,” +d,dyde.,
L™ =dg(ddys —dppd,s)
L~ =-d,’d +d,dyd —disdpde +dpdysde
L™ =dd,, —d,d, —d,d e —dyde s
L™ =dd,

the expressions for N, are shown in equation (A.3) in the Appendix.

(5) Expression for %,

Finally, the expression for ¥, can be written as
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X === . (A.8)
X3

where

2 =—(M,") N,N,N,[-M " + ¢,N,N,N,(N, + N, + N;)]+ M "M ,"[-M ;" N,N,N, +
M,” (N, + N, + N,)+¢,[N >N, (N, + N,) + NN2(N, + N;) + N’ N,* (N + N,)
+N,N,N;(N,N, + N,N, + N,N)J1-(M,”)*[M,” (N, + N, + Ny)+¢, (N’ + N> + N’
+N,N,N, + N,N,(N, + N,)+ N,N,(N, + N,) + N;N,(N; + N,))],

Zag =—-M,"M," M =M (NN, + N,N, + N,N;)—c,(N,’N,” + N’N;* + N’N,")]+
(M,")[c,N’N,’N,;> + M ;" (N,N, + N\N, + N,N)I+(M,” )’ [-M ™ +
c,(N,>+N,> +N,> +N,N, + NN, + N,N,]
+N,N,N, + N,N,(N, + N,)+ N,N,(N, + N,) + N,N,(N, + N,))],

and,
€, =dy(dy —dyde),
¢, =d,dg,
M, =—d,,’d +d,dyd —disdyde +dp,dsd,
M,” =dg(dy,d,s —dydys)
M,” =—(d,’d,, —d,dpdy, +disdydg —ddysd g —2d,d " +2d,d 4dg)
M,” =d,,d,d —d,dyd g —d,d, +d;dude,
M =d,dg,
M =-d,,’ —d,dy, +2d,,dg),

the expressions for N; are shown in equation (A.3) in the Appendix.
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Figure 1 The semi-infinite crack in rotated transversely isotropic materials

under uniform normal impact loading
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Figure 4 Anti-plane shear loading
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Figure 5 Coefficient of stress intensity factor for Mode-I
for a semi-infinite crack in different materials
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Figure 6 Coefficient of stress intensity factor for Mode-II
for a semi-infinite crack in different materials
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for a semi-infinite crack in different materials
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Table 1 Material parameters

Graphite-Epoxy Eglass-Epoxy Boron-Epoxy Epoxy
E, (Gpa) 1041 12. 19. 5.21
E, (Gpa) 156.75 45. 207. 5.21
Vi 0.49 0.19 0.21 0.328
Vy 0.31 0.19 0.21 0.328
G,, (Gpa) 3.49 5.04 7.85 1.96
G,, (Gpa) 7.07 55 6.4 1.96
p(Kglm®) 1580 2100 1990 1260

Table 2 Coefficient of stress intensity factor for three modes

at 6=0° and #=90" in different materials by using of the formulation in [10]

(with proper substitution of elastic constants)

Graphite-Epoxy | Eglass-Epoxy | Boron-Epoxy Epoxy

I 26.65 27.37 31.02 24.45

6=0° II 37.68 34.43 39.20 34.38
I 36.70 32.10 33.79 28.18

I 34.56 29.36 32.35 24.45

=90 1 75.24 49.96 77.33 34.38
I 36.70 32.10 33.79 28.18

Table 3 Coefficient of stress intensity factor for three modes at 8 =0° and 6 =90° for several

materials by using of the formulation in the paper with 8 =0° and 6 =90°

Graphite-Epoxy | Eglass-Epoxy | Boron-Epoxy Epoxy

I 26.65 27.37 31.02 24.45

6=0° II 37.68 34.43 39.20 34.38
111 36.70 32.10 33.79 28.18

I 34.56 29.36 32.35 24.45

0=90° 11 75.24 49.96 77.33 34.38
I 36.70 32.10 33.79 28.18
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Figure 9 Penny shape crack in orthotropic (or composite) materials
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