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Abstract 

This report summarizes the work completed in the year June 1998-May 1999 for the prin- 

cipal investigator's Young Investigator Program grant, the last scheduled year for this three 

year grant. The report is divided into five chapters covering new analytical solutions for dy- 

namic cracks in orthotropic composites. Each chapter stands alone and has been submitted, 

accepted or prepared for publication in a refereed journal. First, closed form solutions for 

uniformly loaded semi-infinite cracks in orthotropic materials are presented. Next, solutions 

regarding the stress intensity factor at the tip of propagating cracks in orthotropic materi- 

als are presented. In addition, closed form, dynamic Green's functions solutions are given 

for semi-infinite cracks in orthotropic materials. Previously, in last year's report, numerical 

Green's function solutions were presented for this case the first time. These newer, closed 

form solutions are much easier to produce and implement in more complex solutions. The 

problem of having a crack in transversely isotropic material rotated with respect to the crack 

front is also solved with some effort. The methodology used in finding all these solutions may 

be used in other problems including penetration mechanics. Such applications are currently 

being explored. Finally, experimental investigation of the application of these solutions to 

dynamic crack initiation in composites under impact conditions is being completed. It is 

expected that a report on that work will be submitted in six months with the final report for 

this contract. (All funds for the grant have been expended. A six month no cost extension 

has been granted.) 
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Chapter 1 

A New Method for Examining 
Dynamically Loaded, Semi-infinite 
Stationary Cracks in Orthotropic 
Materials 

Co-authored with C. Rubio- Gonzalez and accepted for publication in the Journal of Mechanics 

and Physics of Solids 

The elastodynamic response of an infinite orthotropic material with a semi-infinite crack 

under impact loads is examined. Three loading modes are considered, i.e., opening, in-plane 

shear and antiplane shear. Solution for the stress intensity factor history around the crack 

tip is found. Laplace and Fourier transforms along with the Wiener-Hopf technique are 

employed to solve the displacement formulation of the equations of motion. The asymptotic 

expression for the stress near the crack tip is analyzed which lead to a closed-form solution 

of the dynamic stress intensity factor for each loading mode. It is found that the stress 

intensity factors are proportional to the square root of time as in the isotropic case. Results 

for orthotropic materials are shown to converge to known solutions for isotropic materials 

derived independently. 



1.1    Introduction 

Several problems have been examined in dynamic fracture mechanics for isotropic materi- 

als. In fact, there are many closed form solutions for stationary and propagating cracks in 

isotropic materials under dynamic loading (Freund 1990, Chen and Sih 1977). The stationary 

semi-infinite crack under uniform step loading in the crack faces was considered first by Maue 

(1954). The equivalent propagating case was studied by Baker (1962). For orthotropic mate- 

rials the available solutions are fewer in number, finite cracks under impact loading have been 

analyzed by Kassir and Bandyopadhyay (1983), Shindo and Nozaki (1991), Rubio-Gonzalez 

and Mason (1998) using integral transform methods. These authors reduce their problems to 

a Fredholm integral equation in the Laplace transform domain which is solved numerically. 

The stress intensity factor is recovered in the time domain by numerical Laplace inversion 

of this solution. Although this approach can be used to solve problems with non-symmetric 

loads (Rubio-Gonzalez and Mason 1998) it is restricted to finite cracks and numerical solu- 

tions. With the growing use of composites in many engineering applications it is desirable 

to have closed form solutions for fundamental problems in cracked orthotropic materials. 

The semi-infinite crack is a fundamental problem because cracks under dynamic loads can 

usually be considered semi-infinite for a short duration of time immediately after loading. In 

the present work the semi-infinite crack problem under impact loads in orthotropic material 

is analyzed, a closed form solution for the dynamic stress intensity factor is obtained for 

each loading mode, i.e., opening, in-plane shear and antiplane shear. Following the example 

of Baker (1962), Laplace and Fourier transforms are applied to the displacement equations 

of motion and combined with the Wiener-Hopf technique to find expressions for the stress 

ahead of the crack tip and the displacements on the crack faces. Asymptotic analysis of the 

stress near the crack tip leads to expressions for the stress intensity factors Ki(t), Kn{t), 

and Kiu(t). 



1.2    Governing Equations, in-plane problems 

Consider the plane problem of an infinite orthotropic medium containing a semi-infinite 

crack, Figure 1.1. Let Eh ß{j and i/y (i,j = 1,2,3) be the engineering elastic constants 

of the material where the indices 1, 2, and 3 correspond to Cartesian coordinates (x,y,z) 

chosen to coincide with the axes of material orthotropy. The crack faces are along the 

negative z-axis and the origin of the xy axes is the crack tip. Uniform tractions are applied 

to the crack faces in directions depending upon the problem considered. 

o.HW 
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Figure 1.1: Schematic of the semi-infinite crack geometry, (a) Normal loading, (b) In-plane 
shear loading. 

Restricting the problem to two dimensions with wave propagation limited to the x - y 

plane by setting all the derivatives with respect to z to be zero, it is readily shown that the 

displacement equations of motion (Nayfeh 1995) reduce to 

d2u     d2u     ,, , d2v 1 d2u .     . 
Clldx-2 + df+{1 + Cl2)d^dy-   =   #,W (L1) 

d2v d2v     ., . d2u 1 d2v . 
^ + c22^ + (l + c12)^^   =   ^w, (1.2) 

where u and v are the x and y components of the displacement vector and cn, ci2 and c22 

are non-dimensional parameters related to the elastic constants by the relations: 

CU ^[1-(E2/E1)u
2

2y 

c22   =   (E2/E1)cn, (1-3) 

Ci2     =     ^12C22 = ^2lCu, 



for generalized plane stress, and by 

Cn = ^k(1_z/23r/32)' 

Cl2     =      V(^21 + TT^13^32), (1-4) 

A     =    1 — ^12^21 — ^23^32 — ^31^13 ~ ^12^23^31 — ^13^21^32; 

for plane strain. In the orthotropic solid, cs = \J[ivilp represents the velocity of the in-plane 

shear wave propagating along the the principal material axes and p is the mass density. The 

stresses are related to the displacements by the equations: 

ax du dv 
      =    CU—+ C12-X-, 
A*i2 ox dy 
ov du dv ... _N 
-^   =   ci2—+ c22^-, (1.5) 
fi12 ox dy 
rxy du     dv 

fi12 dy     dx' 

1.3    Normal Impact 

In the case of normal tractions to the crack faces, figure 1.1(a), a spatially uniform pressure 

of magnitude a0 is assumed to be suddenly applied at t — 0. Exploiting symmetry and 

taking only the upper half plane y > 0, the corresponding boundary conditions are 

ay(x, 0,t)   =   -a0H(t)    for    - oo < x < 0, 

T^a^O,*)   =   0       for    - oo < x < oo, (1.6) 

v(x,0,t)   =   0       for   x > 0, 

where H(t) is the Heaviside step function. In addition, the conditions of zero displacements 

at infinity and zero initial conditions are assumed. 

The method of solution of the governing equations presented here follows that described 

in Freund (1990) for the isotropic case with some significant differences; displacement poten- 

tials are not used and no assumptions are made about the form of the unknown functions. 



In equations (1.1) and (1.2), the time variable may be removed by application of the Laplace 

transform 
r°° 1     r 

f*(p)=       f(t)e-^dt,    /(*) = — /   /'(p)e*eft, (1.7) 
JO 2TTI JBT 

where Br denotes the Bromwich path of integration which is a line parallel to the imaginary 

axis in the p-plane. Applying relations (1.7) to equations (1.1) and (1.2) and assuming 

zero initial conditions for the. displacements and velocities, the transformed field equations 

become 

d2u*     d2u*     „ . d2v*     p2  „ .„ „. c"ä?+ v-+(1+Ci2)äsr;r = 0- (1-8) 

dV       8V   ,,       , SV    p2 , . „x 

lw+c"W + (1 + Cl2)9^-y-tv   = °' (1'9) 

where the transformed displacement components, u* and v*, are now functions of the vari- 

ables x, y, and p. The application of the Laplace transform to the boundary conditions (1.6) 

gives 

o*(x, 0,p)   =   —<To-    for     — oo < x < 0, 
" p 

i~xy(x,0,p)   =   0        for     -oo<a;<oo, (1.10) 

v*(x,0,p)   =   0       for   x>0. 

To obtain a solution of the differential equations (1.8) and (1.9) subject to conditions 

(1.10), the Fourier transform is applied in this work, 

/OO 1 TOO 

f{x) eIS* dx,    /(*) = —/    F(s)e-"xds, (1.11) 
-co Z7T J-oo 

rather than the double sided Laplace transform. It is assumed that the displacements in the 

Laplace transform domain have the form 

1    r°° 
u*(x,y,p)   =   —        A(s,y,p)e-*sx ds, (1.12) 

Z7T J-oo 

1      f°° 
v*(x,y,p)   =   —l_^B{s,y,p)e-"*ds, (1.13) 

where A and B are the Fourier transforms of the Laplace transform of the displacements, 

u* and v*, respectively, and are yet to be determined.  Substituting these transforms into 



equations (1.8) and (1.9), the functions A and B are found to satisfy the simultaneous 

ordinary differential equations 

2      2   2   A     d
2A . ,„  .      s. dB 

(cns2+p2/c2)A- — + {l + cl2)is—   =   0, (1.14) 

2        2 / 2\ - &B      >- s.  dA (s2+p2/c2
s)B-c22j1- + (l + c12)is—   =   0. (1.15) 

The solution of these equations which vanishes for y —y oo is 

A(s,y,p)   =   Al(s,P)e-"^y + A2{s,p)e-^y, 

B(s,y,p)   =   Z!^i41(5>p)e-nv_!^i42(5>p)c-7a»> (L16) 

where Ax and A2 are arbitrary functions and ctj(s,p) stands for the functions 

cns2+p2/c2-7?       . 
*i(«'P)=        (l + Cl2)7.    J'    ^ = 1'2 (!-17) 

with 72 and 7I being two distinct roots of the quadratic equation 

C2274 + [(c?2 + 2c12 - cllC22)s2 - (1 + c22)p
2/c2]72 + (cns2 +p2/c2)(s2 +p2/c2) = 0. (1.18) 

It can be shown that for many materials the roots 71 and 72 are real and positive and the 

expressions for the displacements in the Laplace transform domain become: 

1    r°° 
u*   =   —J_   {Are-™ + A2e-™y-%sx ds, (1.19) 

v*   =   T- /    (ai^ie"7iy + a2A2e~™) ds. (1.20) 

And, using (1.5) the corresponding expression for r*y is given by 

ßl2 I00 [(ai + 7i)^ie-7iy + (a2 + 72M2e-™]e-is:E ds. (1.21) 
J—00 

Applying the second condition of (1.10) to equation (1.21) yields 

M(s,p)   =   -ßiAx{s,p), 

A   =   2L±21. (1.22) 
Q!2 + 72 

8 

~      -00 
xy 2TT 



Therefore, the expressions for the transformed components of displacement become 

1   r°° 
u*{x,y,p)   =   — ]_J,e-™ - ß1e-^y)A1(s,p)e-isx ds, (1.23) 

v*(x,y,p)   =   -1 f°° (aie-ny - ßla2e-^y)^^.e-
Ux ds, (1.24) 

and the associated stress components are given by 

a!   =   ^^ j_J(cns2 - al7ici2)e-™ - (cns2 - a272c12)Ae-™]^^e-"*<ä,.25) 
2TT 

-oo 

"/il2    rco 

y 2TT 

-oo 
xy 2TT 

/_ J(CI2S
2
 - c*l7lc22)e-™ - (c12s

2 - a272c22)/ö1e-T^]^&^e-i-d(ä,.26) 
/oo 

(ai + 7i)[e"7l!' - e-^^A^s^Je-^ds. (1.27) 

Introducing the functions 

E(s,p)   =   -(ai-Aa2),4i(s,p), ^ 28) 

F("S,P>>   =   ~ (ai - /?lQ;2)^
Cl252 ~ ai7lC22 ~ ^fc12*2 ~ a272C22)], (1.29) 

^   =   ^TXX37ÄrX^M^ci2 + ci2-ciic22)(c12A^1iV2-c11) Cn(l + c12)(iVi + JV2) 

-c22[c12JV2JV2 + cn(N* + NXN2 + iV2)]}, (1.30) 

Nh2    =    ^{CllC22 - C2
2 - 2C12 ± [(ciiC22 - c2

2 - 2c12)
2 - 4cnc22]1/2},     (1.31) 

where the velocity cd = ^/c^cs represents the dilatational wave speed along the z-axis and 

in view of the first and third boundary conditions in (1.10), equations (1.24) and (1.26) yield 

the following pair of dual integral equations for the determination of the function E(s,p) 

a;M,P) = ^/°°       F^Pl    E(slP)e-^ds   =   -^        - oo <x< 0,(1.32) 
ZTT    J-oo    ^S2+p2/c§ V 

—i  f°° 
v*(x,0,p) = —j^E(s,p)e-isxds   =   0       0<:r<oo. (1.33) 

Let v*_ (x,p) be the unknown Laplace transform of the vertical displacement on the 

negative rr-axis, and a*+{x,p) be the unknown Laplace transform of the normal stress on 

the positive a;—axis, so that 

„»f./iflu!0 for   z>0 ,, j a*Jx,p)   for   x > 0 ,^ nj. 
V MP) ~ { *.(x,p)   for   *<o       ay^0^ = {-a0/P     for   x < 0. <L34) 

9 



Then the Laplace transform of the normal stress and the vertical displacement on the whole 

boundary y = 0 is given by, 

ifint f°°       F(s,p)      _,     ,    ;sx  , a0 2, Jlj^fhE^-'"ds = -?*(-*>+«*.p>. 
/oo 

E(s,p)e~lsx ds   =   v*_(x,p), 
-00 

—l   r°° 

2TT 

and, by Fourier transform inversion, these equations give 

Wut ,F0
{S,Pl   E{s,p)   =   --^ + E+(a), 

-iE(s,p)   =   V_(«), 

where 

J-00 \  p 

E+(s)   =    /    a*+(x,p)eisxdx, 
•f 0 

y_(s)   =    /    u*(ar,p)e"sdx, 
J—00 

1.35) 

1.36) 

1.37) 

1.38) 

1.39) 

1.40) 

■a°le**ds   =   --^ 
p  y ips 

From the physics of the problem it is reasonable to assume that the function a^_(x,p) 

and v*_{x,p) are exponentially bounded at infinity and this ensures the existence of their 

Fourier transform (1.39) and (1.40). In particular it is shown by Noble (1958) that 

if |a^(a;,p)| < Miex~x as x —> +00 then      S+(s) is analytic in Im(s) = A > A_ = Ai, 

and if \v*_(x,p)\ < M2e
x+X as x —> —00 then      V-(s) is analytic in Im(s) = A < A+ = A2. 

1.3.1    Wiener-Hopf technique 

Eliminating E(s,p) from (1.37) and (1.38) yields a Wiener-Hopf equation 

s-^-^Äf-« (L41) 

which contains only the two unknown functions £+(s) and V-(s), and now the Wiener-Hopf 

technique can be applied as follows. Suppose that the function L(s) is defined and factored 

10 



as 

1(,) = iS=^^M (   ' 
then equation (1.41) becomes 

^L+(s) - X+(s)L+(s) = L-{s)V-{8). (1.43) 
ips 

Assume that the function D(s) can be decomposed as 

^L+(s) = D(s) = D+(s) + D.(8) (1.44) 
ips 

then equation (1.43) becomes 

D+(s) - E+(s)L+(s) = L„(s)V-(s) - D.(s) = W(s). (1.45) 

The first member of this equation is analytic in the upper half of the s—plane Im(s) = 

A > max(Ai, A2) < 0 and the second member is analytic in the lower half of the s—plane 

Im(s) = A < 0. Therefore, the regions of analyticity overlap. After determining W(s), 

solutions for E+(s) and V-(s) can be found. 

After algebraic manipulation it can be shown that the function F(s,p) is given by 

F{s,p)   =    ,  {c22Ci2lhl - 7i72(l + cl2)c\2s
2 + 

£x/^i7^+p7c?(7i + 72)(1 + C12) L 

(cns2 + p2/c2
s) [c22(7i + 7§) + 7l72(l + ci2)c22 + s2(ci2 + c\2 - cnc22) - c22p

2/(%]} 

The only zeros of F(s,p) are of the form ±ip/cR where cR is the Rayleigh wave speed. This 

can be seen by substituting s = ip/v in F(s,p), letting F(s,p) = 0 and dividing by the 

non-zero factors, then F(ip/v,p) = 0 reduces to 

[C22   fcnC22 ~ C2
12        V

2' 1- 
V2        V2 V2 

0 
Cll   V C22 <%)   \ cl        C\\ CHCs 

which is the Rayleigh function for orthotropic materials (Ting, 1996).   The roots of this 

function are v = ±CR. 

11 



Im(s) 

i p / es 

l p / cd\ 

Re(s) 

W p / Cd 

-i p / cs 

Figure 1.2: Branch cuts for F(s) in the s-plane. 

Consequently, the first step in factoring L(s) is to define 

F(S)- F^py (1.46) 
s2+p2/c2

R 

thus F(s) ->• 1 as s -> oo, (the constant £ in (1.29) was chosen to make this possible). The 

function F(s) is regular and F(s) ^ 0 in the s-plane cut as shown in figure 1.2. The only 

singularities are the branch points shared with 71 and 72. It is readily shown that the branch 

points of 71 and 72 are 

ip 
s   =   ±- 

8     =     ± 
%P = ± — 

C11 cs cd 

for  71; 

for  72; 

It is well-known that factorization is accomplished most directly for functions that ap- 

proach unity as \s\ ->■ 00 and that have neither zeros nor poles in the finite plane; F(s) is 

an example of such a function. Therefore, using Cauchy's integral formula it can be shown 

that (Freund 1990) 

I J_ /   lo&F(z) 
\ 2m Jr±    z — s 

where T_ (r+) is the contour enclosing the branch points +ip/cd, +ip/cs, (-ip/cd, -ip/cs). 

Using the fact that F(s) = F(s) then 

~   . . . -1  /-i/c»        ! flm[F(ipw)]\    dw 
F±(s) =exp{ — /      tan-1   —-/   [\     ±w        F1  7T hia \Re[F{ipw)]    w T 

12 



Returning to the factorization of L(s) it is found that 

F+{s)F-(s){s + ip/cR){s - ip/cR) 
=     Atef 

y/s + ip/cdsjs - ip/cd 

(1.47) 

(1.48) 

therefore 

L-(s)   =   /ii2^   , =F_{s). 

L+(s)   = 

sjs - ip/a 

yjs + ip/cd       1 

(s + ip/cR)p+(s)' 

(1.49) 

(1.50) 

Decomposition of D(s) follows easily, 

D(s) = ^L+(s) 
ips 

<70 

p 

L+(s)-L+(0) | L+(0) 
zs zs 

= D+(S) + D_(S) 

with 

£>+(*) 
P 

L+(s)-L+(0) 
is D-(s) 

P 

Mo) 
zs 

(1.51) 

(1.52) 

Each side of equation (1.45) is analytic in one of the overlapping half planes, and the sides 

coincide on the strip of overlap. Consequently each side of (1.45) is the analytic continuation 

of the other into its complementary half plane; so that the two sides together represent one 

and the same entire function W(s). The entire function will be determined by its behavior 

at \s\ —> oo which is related with the behavior of physical quantities near x = 0. First note 

that L+(s) ~ s-1/2 and L_(s) ~ s1/2 as \s\ -> oo, therefore, D+(s) and £L(s) in (1.52) 

are bounded in their respective planes of analyticity and vanish at infinity. Furthermore, 

a*+{x,p) is expected to be square root singular as x —» 0+ and v*_(x,p) is expected to vanish as 

x —y 0~ to ensure continuity of displacement. Consequently from the Abel theorem (Noble, 

1958) relating asymptotic properties of transforms 

lim x^2a*Jx,p) ~ lim s1/2£+(s) 

lim \x\-qv*Jx,p) ~  lim |s|1+91[/_(s) 
x-}0~ s-*—oo 

13 



for some q > 0. Therefore, it is expected that £+(s) ~ s~l/2 and V-(s) ~ s~1-9 as |s| ->• oo, 

thus the products E+(s)L+(s) and L_(s)V_(s) vanish at infinity. Therefore, each side of 

(1.45) vanishes as \s\ ->■ oo in the corresponding half planes. According the the Lliouville's 

theorem, a bounded entire function is constant. In this case, W(s) is bounded in the finite 

plane and W(s) -t 0 as \s\ -> oo so that the constant must be zero; thus, W(s) = 0. By 

using then (1.45) and (1.52), the functions of interest are given by 

L+(SJ   "   T^sj-     pis L+(s)      . 
(1.53) 

V_(s)   =   ^M = ^I^±M. (1.54) 
L_(s)       p is L-{s) 

1.3.2    Stress Intensity factor 

To find the stress intensity factor, an asymptotic expression for the normal stress near the 

crack tip is sought. The Abel's theorem relating asymptotic expressions between a function 

and its Fourier transform is the following (Noble 1958) 

lim ^o*Ax,p)=   lim e-™/\[^ Z+(s). (1.55) 

Clearly, the behavior of S+(s) as s ->• oo is needed. Note that 

L+(s) = —rp:    as     S -> OO 

and since F+(0) = F_(0) = yßw = fy/F(0,p) then 

P L+(0) 

therefore 

(ip)W si/2 ^F{Q,p) 

Using this relation and the definition of the stress intensity factor in (1.55) gives 

K}(p)   =    lim V2^a*Jx,p)=   lim e'^^ypls £+(s) (1.57) 

cr0\/2 p 

P3/2  y/ciyjF^p) 

14 

(1.58) 



It is readily shown that 

so that 

y/F{0,p)=p\ 
CsCd£ 

KXP) = °O, 
2cs£    1 

(1.59) 

(1.60) 

and by Laplace inversion the dynamic stress intensity factor in the time domain for this 

loading mode is 

Kj(t) - 2*0^: St- 
c4 
/C22 

(1.61) 

For the isotropic case and with plane strain conditions, substituting E\ = E2 = E, 

v\i = ^i3 = ^23 = v and fi12 = -E/2(l 4-i/) in equations (1.4) and the results in (1.30) it is 

found that c22 = 2(1 - v)/(l - 2v) and ^ = 1/(1 - v) and equation (1.61) reduces to the well 

known result for isotropic materials (Freund 1990) 

KT{t) = 2a0 

sjcd{\ - 2v)/<n 

(l-i/) 

1.4    In-Plane Shear Loading 

Consider the crack geometry illustrated in figure 1.1(b). The crack faces are subjected to 

suddenly applied, spatially uniform shear traction of magnitude r0. Exploiting asymmetry 

and examining the half space y > 0, the corresponding boundary conditions are 

rxy(x,0,t)   =   —T0H(t)    for    - oo < x < 0, 

cry(x, 0,t)   =   0       for    — oo < x < oo, 

u(x,0,t)   =   0       for   x > 0, 

(1.62) 

where H(t) is the Heaviside step function. In addition the condition of zero displacements 

at infinity and zero initial conditions are assumed. 
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The method of solution is similar to that used for normal impact.  Applying Laplace 

transform to boundary conditions (1.62) gives 

T^y(x,0,p)   =   -To/p   for    -oo<a;<0, 

a*(x,0,p)   =   0       for    - oo < x < oo, (1.63) 

u*(x,0,p)   =   0       for   x > 0. 

Assuming the displacement field (1.12) and (1.13) yields the same system of ordinary differ- 

ential equations (1.14) and (1.15) whose solution is given by equations (1.16) where a.j are 

defined by (1.17) and jj are obtained from the solution of (1.18). Using (1.19), (1.20) and 

(1.5) indicates that a* is given by 

v*y(x,y,p) = —7T- /    [(s2c12-aaiC22)A1e-™ + (s2c12-a2'y2C22)A2e-™] ds. (1.64) 
Z7T   J—oo S 

Applying the second condition of (1.63) to equation (1.64) yields 

A2(s,p)   =   -ß2A1(8,p), 

ß2   =   t12""l7lC22- (1-65) 
S2Ci2 - CK272C22 

Therefore, the expressions for the transformed components of displacement become 

1    r°° 
u*{x,y,p)   =   —       (e~™ - ß2e-^y)A1(s,p)e-tsx ds, (1.66) 

Z7T J — 00 

v*(x,y,p)   =   ^ r (aie-™ - ß2a2e-™)Al^p\~™* ds, (1.67) 
Z7T J-OO S 

and the associated stress components are given by 

J—oo s 

j°° (c12s
2 - axllc22){e-™ - e-™)Al^S,PK-isxds, (1.69) 

J-00 s 

_*     
°x     = 

2K    j-00 

-iß\2 
00 

00 

y 2TT 
/oo 

_J(ai + 7i)e_™ - (a2 + ^2)ß2e-'r2y}Al(s,p)e-isxds. (1.70) 
* -^12 

Introducing the functions 

C(s,p)   =   (l-ÄMi(a,p), (1.71) 
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< G(s,p)   =   Vs2 + PVC« [(ai + 7i) _ ß2{a2 + 72)]; (1.72) 
(1 - p2J?7 

77   =   -^- (1.73) 

where £ and JVli2 are given in (1.30) and (1.31) and in view of the first and third boundary 

conditions in (1.63), equation (1.66) and (1.70) yield the following pair of dual integral 

equations for the determination of the function C(s,p), 

u*(x,0,p) = ^-        C(s,p)e-lsx ds   =   0       0<:r<oo,        (1.75) 

Let u*_(x,p) be the unknown Laplace transform of the displacement on the negative 

rc-axis, and r+(x,p) be the unknown Laplace transform of the shear stress on the positive 

x—axis, so that 

*/      ~     N f0 for     S>0 */      n     \ f   T+(xiP)     for     X > ° /i7fi\ 
«*(*.M = {„1(a;,p) for x<0 *M'rt-{4/p for *<0. (1-76) 

Then, the Laplace transform of the shear stress and the displacement on the whole boundary 

y = 0 is 

^r     ,G(«'P)      C(a>p)e-*"cfa   =   -^(-z)+ <(*), (1.77) 
27T      J-OO    Js2+P2/C2

s P 

1     r00 

-W    Cfopje-"* <fe   =   «!.(«) (1.78) 
27T J-oo 

and by Fourier transform inversion, these equations give 

-^ H1,PLC{S'P) = -ä+T+(S) (1-79) 
yjs2+p2/c2

s 
lPb 

C(s,p)   =   U-{s) (1.80) 

where 

J-oo \  P   ) 

roo 
T+(s)   =    /    r*+(x)elsxdx (1.81) 

J o 

U-(s)   =    f°  u*_{x)eisxdx (1.82) 
J — 00 -00 

eisa;rfa;   =   -— 
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Eliminating C(s,p) from (1.79) and (1.80) results in a Wiener-Hopf equation 

IPS ^/S2+p2/c2 
(1.83) 

which contains only the two unknown functions, T+(s) and U-(s), and can be solved using 

the Wiener-Hopf technique as in the normal impact analysis. The result is 

D+(s) - T+(s)L+{s) = L-(s)U-(s) - £L(s) = 0 (1.84) 

where 

T   ( \                   As ~ iVJcR) n  t \ -M*)   =   ~A*i2g   / ===G-(s), 

L+(s) 
y/g + ip/ 

^s - ip/cs 

cs     1 

(s + ip/cR)G+(s)' 

and 

with 

where 

D(s) = ^L+(s) = * 
ips p 

L+(S)-L+(0) + L+(0) 
is is 

D+(s) 70 

P 

L+(s)-L+(0) 
is 

and     D-(s) = — 
P 

= D+(s) + D-(s), 

L+(0)" 
is 

G(s) 
G(s,p) 

s2+p2/c2
R 

It can be shown that G(s) -» 1 as s —> co. Thus, the solution of (1.84) is 

T+(s)   = 

U-(s)   = 

D+(s) =     TQ 1 

L+(s) p is 
MO) 

[L+(s) 
D_(s)     T0 1 L+(0) 
L_(s)      p isL-(s)' 

with L±(s) defined in (1.85) and (1.86) and G±(s) given by 

G±(s) = exp < — / 
7T   7l 

1  f^Cs      _i /lm[G(ipw)]\    dw 

l/cj   an     VRe[G(ipu;)]y ^Tj 

(1.85) 

(1.86) 

(1.87) 

(1.88) 

(1.89) 

(1.90) 

To calculate the stress intensity factor T+(s) as s —>■ oo is needed. First, note that 

£+(s) = -1/2   ^    s "* °° 
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and since G+(0) = G_(0) = )/5(Ö) = fy/G{0,p) then 

Therefore, 

T+(s) 

L+(0) = 

-To        1 

P 

Vwc~s\jG(0,p) 

p as   s —>■ oo. 
iip)m *1/2 y/c;y/G{0,p) 

Using (1.55) and the definition of the stress intensity factor gives 

K*jr(p)   =    lim V2^TUX,P)=   lim e~i7r/4^ T+(s) 

TO V5 p 

P3/2   y/Zy/Gfrp) 

It can be shown that 

so that 

and by Laplace inversion 

y/G{0,p) 
V 

Kh(p) = TofiOin -7 
p 3/2' 

(1.91) 

(1.92) 

(1.93) 

(1.94) 

(1.95) 

Kn(t) = 2r0^/2csr//7r y/i. (1.96) 

For the isotropic case and with plane strain conditions r/ = 1/(1 — v) and equation (1.96) 

reduces to the well known result for isotropic materials (Freund 1990) 

Kn{t) = 2r01 
2c, 

TT(1 - u) 
yft. 

1.5    Antiplane Shear 

Consider a semi-infinite crack in orthotropic material shown in figure 1.3, subjected to an- 

tiplane shear loading of magnitude r0. The governing differential equation for two dimen- 

sional antiplane motions of homogeneous, orthotropic, linearly elastic solids is (Nayfeh 1995) 

0- 
,d2w     d2 

+ 
w 1 d2w 

dx2   '   dy2      c\ dt2 ' 

19 
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where 

ß2 = -^     and      ch = y/Cu/p- 

Again, the principal material axes of orthotropy are chosen to coincide with the (x, y, z) axes, 

such that the in-plane and antiplane motions are not coupled. In terms of the engineering 

constants, C44 and C55 are given by C44 = //23 and C55 = /i3i. The non-zero stresses are 

related to the displacements by the equations 

dw dw 
Txz — ^55 IT- Tyz — G44 —. (1.98) 

Exploiting symmetry and examining the upper half-plane y > 0, the boundary conditions 

for this loading mode are given as 

ryz(x,0,t)   =   -T0H(t)      for     x < 0 (1.99) 

w(x,0,t)   =   0      for     x > 0. (1.100) 

x0H(t) 
Ay 

® 55 ® 

x0H(t) 

Figure 1.3: Schematic of the semi-infinite crack geometry. Antiplane shear loading. 

The method of solution is very similar to that used for the in-plane problems. Applying 

Laplace transform to the governing equation gives 

and to the boundary conditions gives 

Ty-z(x,0,p) = -T0/p      for     x<0 (1.102) 

w*(x,0,p) = 0      for     x>0. (1.103) 

20 



Assuming a displacement field of the form 

1    f°° 
w* 

I      roo 
(x,y,p) = —       A(s,y,p)e-lsx ds, (1.104) 

Z7T J-oo 

and inserting it into (1.101) results in the ordinary differential equation 

The solution of this equation, which vanishes for y ->■ oo is 

A{s,y,p) = Ai(s,p)e-™, 

with 

7=^2s2+p2/c2_ (L105) 

Therefore, the non-zero displacements and stresses are 

1    r°° I    r°° 
w*(x,y,p)   =   — /    A1(s,p)e-^e-lsx ds, (1.106) 

Z7T J-oo 

^(*,V,p)   =   -^TIj Ms,p)e-"ye-^ ds, (1.107) 

—CJAA   r°° 
r*yz{x,y,p)   =   -j£±J    TAfapie^e^da. (1.108) 

Applying the boundary conditions (1.102) and (1.103) yields a system of dual integral 

equations for the determination of the function Ai(s,p) 

-?- f°° Al{s,p)e-iye-isx ds   =   0    for      x > 0, 
Z7T J-oo 

—OAA   r°° 
—— /     ^y A1(s,p)e-^ye-lsx ds   =   -r0/p    for      a; < 0, 

2n     J-OO 

or on the whole boundary y = 0 

^-[°° A1(s,p)e-^e-isx ds   =   -w*_(x,p), 
Z7T J-oo 

^ f° T Ax{8,p)e-^e** da   =   -^tf(-z)+<(*,?). 
27T     ./-oo P 

By Fourier transform inversion 

A1(stp)   =   W.(s), (1.109) 

-CulA^p)   =   -^- + T+(s), (1.110) 
zps 
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where 

V_(s)   =    f    w*_(x,p)eisxdx, 
J—oo 

T+(s)   =    /    Tl(x,p)eisxdx. 
Jo 

Eliminating Ax from equations (1.109) and (1.110) gives the Wiener-Hopf equation 

^-T+{s) = CulW-(s). ips 

Using the Wiener-Hopf technique as in the previous problems it is found that 

TO I 
T+(s) = M0)_! 

p is L-k-(s) 

(1.111) 

(1.112) 

where 

and 

L+(s) = 
7+00' 

L_(s) = C447_(s), 

7+(«) = yßs + ip/ch,       7-00 = \jßs ~ *P/
C

A- 

To find the stress intensity factor T+(s) as s —> oo is needed. This is given by 

l+{s) = — ,, vo/0—77^-     as     s —>■ oo. 
(tp)3/2    SX/2 

Therefore, the dynamic stress intensity factor is 

(1.113) 

p° 
v^ 

and in the time domain 

Km(t) = 2Toj2ßch/nVi. (1.114) 

For transversely isotropic materials with fibers along the rc-axis, C55 = ßu and ßch = 

\lß\2/p = cs, this equation becomes 

Km{t) = 2T0y/2cs/7rVi. 

For isotopic materials, the same expression for Kni{t), with the shear wave velocity cs = 

W/i/p is found. 
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Stress Intensity Factor, Semi-infinite crack 
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Figure 1.4: Stress intensity factor history for a semi-infinite crack in different materials, real 
time. 

Graphite 
Epoxy 

E-Glass 
Epoxy 

Boron 
Epoxy 

Epoxy Steel 

Cll 20.77 8.38 32.67 3.91 3.5 

C22 2.18 2.29 3.12 3.91 3.5 

Cl2 0.49 0.52 0.79 1.91 1.5 
MW  (GPa) 7.48 5.5 6.4 1.96 76.92 
P (Kg/m3) 1600 2100 1990 1260 7840 

(c22/cn)1/4 0.57 0.73 0.56 1 1 

Table 1.1: Mechanical properties used for the analysis. 

1.6      Results and Conclusions 

Closed form expressions of the dynamic stress intensity factors Ki(t), Kn(t) and Kin(t) 

have been determined for semi-infinite cracks in orthotropic materials under the three loading 

modes, i.e., opening, in-plane shear and antiplane shear loadings, respectively. The method of 

solution differs from that typically used in the isotropic case. The displacement formulation 

of the equations of motion is solved without the use of Helmholtz potentials. It has been 

shown that the orthotropic formulation includes the isotropic results as special cases. That is, 

for each loading mode the dynamic stress intensity factor for isotropic materials is recovered 
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6 
Semi-infinite Crack, Normal and Shear Loading 
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Figure 1.5: Stress intensity factor history Kj(t) and Ku(t) for a semi-infinite crack in differ- 
ent materials. The isotropic case corresponds to epoxy and the orthotropic to graphite-epoxy. 

from the orthotropic expressions with the proper substitution of the elastic constants. 

Figure 1.4 shows the stress intensity factor history for the opening mode for different 

materials. The material properties used are shown in table 1.1. As in the isotropic case, 

the stress intensity factors are proportional to the square root of time; hence there is no 

equivalent quasi-static problem for the semi-infinite crack under uniform loadings and there 

is no long-time equilibrium value. It can be seen that the fiber reinforcement of epoxy leads 

to an increase of the stress intensity factor for a given time, i.e., Ki(t) for graphite-epoxy 

composite is greater than the corresponding Ki(i) for epoxy at a given time t. Figure 1.5 

shows the stress intensity factors Ki(t) and Ku(t) for isotropic (epoxy) and orthotropic 

(graphite-epoxy) materials, note that with same load amplitude the stress intensity factor 

Ku(t) is greater than Kj(t) at a given time. In both cases, the introduction of fibers results 

in an increase in the stress intensity factor. 

It is interesting to note that Ki(i) for a composite with fibers parallel to the a;—axis 

and for a composite with fibers parallel to y-axis is the same. This result is contained in 

equation (1.61) since the ratio Üs/cm. is invariant to the replacement of C22 by Cn and Cn 
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Finite Crack, Orthotropic Material, Uniform Load 
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Figure 1.6: Comparison of the stress intensity factor Ki(t) for a semi-infinite crack and a 
finite crack of length 2a in orthotropic material, the latter is a numerical solution obtained us- 
ing integral transform methods by Kassir and Bandyopadhyay (1983) and by Rubio-Gonzalez 
and Mason (1998) using FFT for Laplace transform inversion. K0 = a^y/im. 

by c22- This result does not hold for the in-plane shear loading however, since Kn{t) for the 

fibers oriented along the y—axis is less than that for fibers oriented along the a;—axis by a 

factor of (C22/C11)1/4. This factor is given in Table 1.1 for the materials examined here. 

Integral transform methods have been applied to solve dynamic problems dealing with 

finite cracks in orthotropic materials. Figure 1.6 shows the stress intensity factor for a finite 

crack of length 2a in orthotropic material under uniform impact loading, this is an approxi- 

mated solution obtained by Kassir and Bandyopadhyay (1983) and by Rubio-Gonzalez and 

Mason (1998) using a more suitable technique for numerical inversion of the Laplace trans- 

form. It is known that for short times the finite crack behaves like a semi-infinite crack. 

As illustrated in the figure, the closed form solution derived here agrees with the numerical 

solution for short times (cst/a < 2) as expected. 
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Chapter 2 

Dynamic Stress Intensity Factor for a 
Propagating Semi-infinite Crack in 
Orthotropic Materials. 

co-authored with C. Rubio-Gonzalez 

The elastodynamic response of an infinite orthotropic material with a semi-infinite crack 

propagating at constant speed is examined. Solution for the stress intensity factor history 

around the crack tip is found for the loading modes I and II. Laplace and Fourier transforms 

along with the Wiener-Hopf technique are employed to solve the equations of motion. The 

asymptotic expression for the stress near the crack tip is analyzed which lead to a closed-form 

solution of the dynamic stress intensity factor. It is found that the stress intensity factor for 

the propagating crack is proportional to the stress intensity factor for a stationary crack by 

a factor similar to the universal function k(v) from the isotropic case. Results are presented 

for orthotropic materials as well as for the isotropic case. 
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2.1    Introduction 

Problems of crack propagation at constant speed can be classified into three classes depending 

on the boundary conditions [5]. The first class is the steady state crack growth. Here, the 

crack tip moves at constant speed for all the time and the mechanical fields are invariant 

with respect to an observer moving with the crack tip. The second class of problems is the 

self-similar crack growth subjected to time-independent loading. In this case, the crack tip 

moves at constant speed from some initial instant, and certain mechanical fields are invariant 

with respect to an observer moving steadily away from the process being observed. The third 

category of problems corresponds crack growth due to time-dependent loading usually in the 

form of crack face pressure or normally incident stress pulse. 

The prototype problem of the first category is the two dimensional Yoffe problem [15] of 

a crack of fixed length propagating in an isotropic body subjected to uniform remote tensile 

loading. Even though this mathematical problem is not a realistic model of a physical 

situation because of the feature that the crack closes at one end at the same rate at which 

it opens at the other end; it is important because some field quantities are independent 

of the fictitious crack length 2a, in particular the angular variation of the near tip stress 

field. Propagating finite cracks under steady state conditions have also been considered 

for orthotropic materials by several authors using different techniques. Kassir and Tse [6] 

through an integral transform technique reduced the related boundary value problem to a 

system of dual integral equations. Piva and Viola [11] solved the same problem through a 

complex variable approach reducing the equations of motion to a first order elliptic system of 

the Cauchy-Riemann type. More recently, Lee, et al [8] obtained higher order expressions for 

the stress and displacements around the tip of a crack propagating in orthotropic materials. 

In that work a power series representation of complex potentials was used. Atkinson [1] 

studied the steady-state propagation of a semi-infinite crack in aelotropic materials by means 

of the Cauchy integral formula. In all of these works the emphasis was in the angular 

variation of the stress field near the crack tip. Kousiounelos and Williams [7] analyzed the 
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problem of a dynamically propagating crack in a highly orthotropic fiber composite infinite 

strip subjected to constant displacement mode I loading. The basic assumption was to 

neglect the strain along the fibers and simplify substantially the mathematical treatment. 

Using Fourier transforms and the Wiener-Hopf technique they obtained expressions for the 

dynamic stress intensity factor and dynamic energy release rate under this simplified model. 

The Broberg problem [3] is the prototype of the second category. In self-similar problems 

attention is focused on the symmetric expansion of a crack at constant rate from zero initial 

length. A thorough discussion of the analysis of self-similar mixed boundary value problems 

in elastodynamics was presented by Willis [14]. He considered problems in both two and 

three space dimensions as well as isotropic and anisotropic materials. 

The prototype of the third category is the Baker problem [2] for isotropic materials. He 

considered a transient problem in which a semi-infinite crack extends at constant velocity 

after a step stress loading on the crack faces is applied at time t = 0. This type of loading 

induces a transient traction distribution on the crack plane ahead of the crack tip. If the 

material is of limited strength, the crack will begin to extend at some later time, t = £0, after 

the application of the load, where to is the delay time for the process. Freund [4] showed 

that the stress intensity factor is independent of the time delay and that it has the form of 

the stress intensity factor for a stationary crack subjected to the same stress wave loading 

multiplied by the stress universal function kr(v), i.e. 

KI(t,v) = kI(v)KI(t,0). (2.1) 

Furthermore, Freund [4] also demonstrated that the relation (2.1) holds for crack propagation 

at non-uniform speed being v the instantaneous crack tip velocity and Ki(t, 0) the stress 

intensity factor for the crack as it had been at the instantaneous position for all time. 

Note the importance of the universal function of the crack tip velocity ki(v) in problems of 

arbitrary loading and non-uniform crack speed, even though ki(v) could have been obtained 

in the solution of a less general problem like that of a semi-infinite crack propagating at 

constant velocity and under a step loading (Baker problem). 
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The extension of the Baker problem to orthotropic materials under mode I and mode II 

loading is the aim of this work. That is, the problem to be examined consists of an unloaded 

crack propagating at constant velocity v in an undeformed unloaded orthotropic material 

that remains at rest. At some time, t = 0, uniform stress is applied to the crack faces. The 

resulting history of the stress intensity factor at the crack tip is a function of the velocity 

as well as the material properties and time, Kt = Ki(t,Cij,v) where i =1, II. As will be 

shown here, the dynamic stress intensity factor for the stationary semi-infinite crack due to 

Rubio-Gonzalez and Mason [12] is recovered letting v = 0. In [12] it was shown that 

Kj(t,0)   =   2aox^^rVi, (2.2) 

Kn(t,0)   =   2TO72CS77(0)/7T ^ (2.3) 

which represent one of the few available closed form solutions for the dynamic stress intensity 

factors for cracks in orthotropic materials. Making use of these results, it will be possible 

to write Kj(t,v) and Kn{t,v) in the form of (2.1) and consequently derive expressions for 

the universal functions of the crack speed ki(v) and kn(v) in orthotropic materials. The 

motivation to achieve this task is that k^v) and kH(v) may be useful in more general 

problems as in the case of isotropic materials. 

2.2    Governing Equations, in-plane problems 

Consider the plane problem of an infinite orthotropic medium containing a semi-infinite 

crack, Figure 2.1, propagating at constant velocity, v along the x'-axis. Let Ei, faj and 

Uij (i,j = 1,2,3) be the engineering elastic constants of the material where the indices 1, 

2, and 3 correspond the Cartesian coordinates (x1, y', z') chosen to coincide with the axes of 

material orthotropy. The crack faces are parallel to a;'—axis. 

Restricting the problem to two dimensions with wave propagation limited to the x' — y' 

plane by setting all the derivatives with respect to z to be zero, it is readily shown that the 
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Figure 2.1: Schematic of the semi-infinite crack propagating at constant speed. 

displacement equations of motion [9] reduce to 

d2ux     d
2ux d2uy 1 d2ux 

Cu-d^ + W + {1 + Cu)d^ = #.-&> {2A) 

d2uy 92uy d2ux     _    ld2uy 

-^+ C22W { + 12)~ww - *.-&' (2-5) 

where ux and uy are the x and y components of the displacement vector and Cn, c\2 and c22 

are non-dimensional parameters related to the elastic constants by the relations: 

P 
Cn   =   fx12[l-(E2/E1)u

2
2y 

c22   =   {Ei/EJcn, (2.6) 

Cl2     =     ^12C22 = ^2lCli, 

for generalized plane stress, and by 

cn   =   —V(l - ^23^32), 
/*12A 

C22     =      T-(l- ^13^3l), 

C12   =   —^>2i + -^13^32), (2.7) 

A    =     1 - ^12^21 - ^23^32 - ^31^13 - ^12^23^31 ~ ^13^21^32, 

for plane strain. In the orthotropic solid, cs = Jp\2/p represents the velocity of the in-plane 

shear wave propagating along the the principal material axes and p is the mass density. 

A new coordinate system (a;, y) is attached to the propagating crack tip, the relation 

between the fixed and moving coordinates are 

x = x' — vt y = y'. 
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Steady-state conditions are not assumed, consequently the motion equations in the moving 

coordinates are 

/■    v2\d2u,      Pu, ,,. ,    .a2«,       l /a2«,      a2
%\ 

The stresses are related to the displacements by the equations: 

<JX <J u,x 

=    CU— I-C12 
A*i2 ox ay 
Oy dUx 8Uy . , 
—   =   ci2^—+ c22^, (2.10) 
/x12 öa; dy 
T^   _   du^     du^ 
/i12 dy      dx ' 

2.3    Normal Impact 

A spatially uniform pressure of magnitude a0 is applied suddenly on the crack faces at 

t = 0. Exploiting symmetry and taking only the upper half plane y > 0, the corresponding 

boundary conditions are 

<jy(x, 0, t)   —   -a0H(t)    for     - oo < x < 0, 

Txy(x,0,t)   =   0       for    - oo < x < oo, (2-H) 

uy(x, 0,t)   =   0       for   x > 0, 

where iJ(t) is the Heaviside step function. In addition the condition of zero displacements 

at infinity and zero initial conditions are assumed. 

The method of solution of the governing equations presented here follows that described 

by Baker [2] for the isotropic case with some significant differences; displacement potentials 

are not used. In equations (2.8) and (2.9), the time variable may be removed by application 

of the Laplace transform 

/•oo 1 t 

f*ip) = I    f{t) e"pt dt,    fit) = — /   /'(p) e* dt, (2.12) 
JO 2,in JBr 
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where Br denotes the Bromwich path of integration which is a line parallel to the imaginary 

axis in the p-plane. Applying relations (2.12) to equations (2.8) and (2.9) and assuming 

zero initial conditions for the displacements and velocities, the transformed field equations 

become 

d ul     du |2„,* |2„,* 

,Cu~Z Cllä^ 
d2 ul • d2u* 

+ c22^-v + (l + ci2) 

82u, 
dxdy 

d2ut 
*(*-*>£ 0,    (2.13) 

A; 2vp-^L)    =   0,    (2.14) 

-<7o-    for    — oo < x < 0, 
P 

for    — oo < x < oo, 

for   x > 0. 

(2.15) 

\ c2/ 9rr2 ' ~" dy2 ' v~ ' "^'dxdy c2 \f ™y ^ dx t 

where the transformed displacement components, ux and uy, are now functions of the vari- 

ables x, y, and p. The application of the Laplace transform to the boundary conditions 

(2.11) gives 

a*y(x,0,p) 

r:y(x,0,p)   =   0 

u*y(x,0,p)   =   0 

To obtain a solution of the differential equations (2.13) and (2.14) subject to conditions 

(2.15), the Fourier transform is applied, 

/oo 1       roo 
f(x) eisx dx,    f(x) = — /    F(s) e'isx ds. (2.16) 

-oo Z7T J-oo 

It is assumed that the displacements in the Laplace transform domain have the form 

1   r°° 
u*x(x,y,p)   =   — j_^A(S,y,p)e-*sx ds, (2.17) 

1   r°° 
u*y(x,y,p)   =   — J_ooB(s,y,p)e-tsx ds, (2.18) 

where A and B are the Fourier transforms of the Laplace transform of the displacements, 

u*x and u*, respectively, and are yet to be determined. Substituting these transforms into 

equations (2.13) and (2.14), the functions A and B are found to satisfy the simultaneous 

ordinary differential equations 

en - -T   s  + 
s , 

2vpis     p2 

c2        c2 

V r,     2vpis     p2 

2 Is  + -IT + ~1 

A     d
2A     „ ,. dB A-^ + (1 + Cl2)^   =   °' 

d2B     „ .. dA 
B-Cn—- + (i + c12)is—   =   0. 

dy2 dy 

(2.19) 

(2.20) 
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The solution of these equations which vanishes for y —> oo is 

A(s,y,p)   =   A1{s,p)e-™ + A2(s,p)e-™, 

B(s,y,p)   = l-^-A1(s,p)e-^y - l^A2{s,p)e-™, 
s s 

(2.21) 

where A\ and A2 are arbitrary functions and aj(s,p) stands for the functions 

.     .   . (cu-|g)»' + *f+ g~T*       .     ,, 
*P) =    (l + c12fa-       ■    > = 1'2 

with 7i and 7! being two distinct roots of the quadratic equation 

(2.22) 

C227 + 
vz 

-T - C22   cn - -x   + cf2 + 2c \P" 2upis 1 
^-(i+^-(i+«*)sr h* + 

u2\   2     2upis     p: 

en ö    *   + + v2\   2     2wpzs     p2 

c*/ c2.        c2 = 0.(2.23) 

It can be shown that for many materials the roots 71 and 72 are real and positive and the 

expressions for the displacements in the Laplace transform domain become: 

u: 

* 
uv    = 

^- f°° (Aie-™ + A2e-™)e-isx ds, 
2TT J-00 
 i    roo p—isx 

— /    {a^e-™ + a2A2e~™) ds, 
Zir J-00 s 

(2.24) 

(2.25) 

and using (2.10) the corresponding expression for T*  is given by 

<y = -^ £j(ax + 71)^"™ + (a2 + -y2)A2e-™]e-isx ds. 

Applying the second condition of (2.15) to equation (2.26) yields 

(2.26) 

A2(s,p) 

ßi 

-/Mi(s,p), 

«i+7i 
oi2 + 72 

Therefore the expressions for the transformed components of displacement become 

(2.27) 

1   r°° 
u*x(x,y,p)   =   —       (e-^y - ß1e-^y)A1(s,p)e 

Z7T J-00 

u*y(x,y,p) 

ds, 

2TT 

/oo 

(aie 
-00 

~™ - ß1a2e-^y)A^S,PK-i8X ds, 

(2.28) 

(2.29) 
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and the associated stress components are given by 

<   =   4^ r f(Clls2 - «i7ici2)e-^» - {cns2 - cc2^c12)ß1e-^]^^-e-isxd(Si.30) 
Zn    J-oo s 

y Z7T     J-oo S 
/oo 

(«i + 7i)[e"7iy - e-^y]Al{s,p)e-lsxds. (2.32) 
-oo 

T*.     = 
-A*12    ^ 

X2/ 27T    ./-OO 

Introducing the functions 

E{s,p)   =   -(oi-Äa2)Ai(s,p), (2.33) 

F(s,p)   =   -7 1 r-[ci2S2-o;i7iC22-Ä(ci2S2-«272022)], (2.34) 
(«i - Aas)? 

öd(«)   = 1 l-£W^ + £ (2-35) cd / cd cd 

^   =    (cn - ,Vc*)(l + CIK^^iV2)(l - ,74){(C" + Cl2 " CllC22 + C^2/Cl) 

(cnNM - en + ,2/c2) - c22[c12iV1
2;V2 + (cn - t;2/c2)(iV2 + J^JV, + Nftfijfi) 

N2
lt2(v)   =   ^-{-v2/c2 + c22(cn-v2/c2

s)-c2
2-2c12±[(v2/c2

s 

-022(011 - v2/c2) + c\2 + 2c12)
2 - 4c22(cn - u2/c2)(l - v2/c2)}1'2},        (2.37) 

where the velocity Q = y/cncs represents the dilatational wave speed along the a;—axis and 

in view of the first and third boundary conditions in (2.15), equation (2.29) and (2.31) yield 

the following pair of dual integral equations for the determination of the function E(s, p) 

ißuZ f°°   F(s,p) iM        _      a0 °*y(
xAp) = ^[     ^-E(s,P)e-isx ds   =   -^        - oo< x < 0,    (2.38) 

" ZTT    J-00 üd P 

—i  r°° 
u*Jx,0,p) = —        E(s,p)e-*sx ds   =   0       0 < x < 00. (2.39) 

y 2n J-00 

Let u*_(x,p) be the unknown Laplace transform of the vertical displacement on the 

negative re—axis, and a+(x,p) be the unknown Laplace transform of the normal stress on 

the positive a;—axis, so that 

*/■      n      \ f   0 for      I>0 */      n      \ f   &X(X>P)      f°r      X > 0 fn  An\ u*v(x,0,p) = {    »  f     v    , .       al(x,0,p) = <    +v ,J   , - (2.40) yV '      \ u*_(x,p)   for   x<0 yK '      \ -CTo/p     for   x < 0.        v      ' 
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Then the Laplace transform of the normal stress and the vertical displacement on the whole 

boundary y — 0 is given by 

ifint f°°   F(s,p) iM. a0 I     ^^ E(s,p)e-isx ds   =   -^H(-x) + a*+(x,p), (2.41) 

/OO 

J5(S,p)e-^o!s   =   u*y_(x,p), (2.42) 
-oo 

and by Fourier transform inversion, these equations give 

ißut^^-E^p)   =   -^ + S+(S), (2.43) 
tfd pis 

-iE(s,p)   =   V-{s), (2.44) 

where 

/•OO 

E+(s)   =    /    a*+(x,p)eisxdx, (2.45) 

y_(s)   =    /°  u*  fopje^da;, (2.46) 
J—oo 

J-oo \   P   J IPS 

From the physics of the problem it is reasonable to assume that the function a+(x,p) 

and u*(x,p) are exponentially bounded at infinity and this ensures the existence of their 

Fourier transform (2.45) and (2.46). In particular it is shown in [10] that 

if |a^.(a;,p)| < Miex~x as x —> +oo then      S+(s) is analytic in Im(s) = A > A_, 

and if \u*_(x,p)\ < M2e
x+X as x —> —oo then      V-(s) is analytic in Im(s) = A < A+. 

2.3.1    Wiener-Hopf technique 

Eliminating E(s,p) from (2.43) and (2.44) yields a Wiener-Hopf equation 

£--X+(s)=^^V-(s) (2.47) 
ips Vd 

which contains only the two unknown functions £+(s) and V-(s), and now the Wiener-Hopf 

technique can be applied as follows. Suppose that the function L(s) is defined and factored 

as 
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then equation (2.47) becomes 

£L+(S) - Z+(s)L+(s) = L_(s)V4s). (2.49) 
ips 

Assume that the function D{s) can be defined and decomposed as 

^-L+{s) = D(s) = D+(s) + D_(s), (2.50) 
ips 

then equation (2.49) becomes 

D+(s) - E+(s)L+(s) = L_(s)V_(s) - D_(a) = W(s). (2.51) 

The first member of this equation is analytic in the upper half plane Im(s) = A > A_ and the 

second member in the lower half plane Im(s) = A < A+. Therefore, if A+ > A_ the regions 

of analyticity overlap. Using the Liouville's theorem to determine W(s), solutions for £+(s) 

and V- (s) can be found. 

The only zeros of the function F(s,p) are of the form s = ip/{±CR + v) where CR is the 

Rayleigh wave speed. This can be seen by substituting s = ip/(c + v) in F(s,p), letting 

F(s,p) = 0 and dividing by the non-zero factors, then F(ip/(c + v),p) = 0 reduces to 

lc22 /cuc22-cf2     c
2" 

1- 
c2     c2 c2 

= 0 
en V       c22 c2J \       c2     c2/\|       cnc2

s 

which is the Rayleigh function for orthotropic materials [13]. The roots of this function are 

c = ±cR. 

Consequently, the first step in factoring L(s) is to define 

F(s) = ^ (2.52) 

where 

fa=(l-^)S> + ^ + £. (2.53) 
V      C

R/ C
R       

C
R 

It can be shown that F(s) —> 1 as s —> oo, (the function £(v) in (2.34) was chosen to make 

this possible). The function F(s) is regular and F(s) ^ 0 in the s—plane cut as shown in 
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i p / (Cs+V) 

i p / (cd+v)\ 
Re(s) 

\l p / (Cd-V) 

\ 
-i p / (Cs-v)\ 

Figure 2.2: Branch cuts of F(s) in the s-plane. 

figure 2.2, the only singularities are the branch points shared with 71 and 72.  Where the 

branch points of 71 and 72 are 

ip —ip 
for 7!| 

for 72; 

s   = 

s   = 

cs + v     cs - v 
ip —ip 

cd + v'   cd-v' 

It is well-known that factorization is accomplished most directly for functions that ap- 

proach unity as \s\ —> 00 and that have neither zeros nor poles in the finite plane; F(s) is 

an example of such a function. Therefore, using Cauchy's integral formula it can be shown 

that [5] 

^(s) = eXP{2^/rd 

log F(z) 
dz 

IT±     Z — S ) 

where F(s) = F+(s)F_(s) and T_ pT+] is the contour enclosing the cut between the branch 

points +ip/(cs + v) and +ip/(cd + v), [-ip/(cs - v) and -ip/(ca — v)]. Using the fact that 

F(s) = F(s) one can write 

F±(s) = exp < — / tan 
[   7T   Jl 

From equations (2.35) and (2.53) note that 

ed   =   A (1 

1  ^i/csTv      _x nm[F(ipw)}\    dw 

i/cdTv \Re[F(ipw)]J w^lf 

\ 

OR    =        1 

3 M2+   ,2 
2vpis     p2 

-d, -d 

u   \   9     2vpis     p2 

T )s + —r~ + ^2 C
RJ C

R       
C
R \ CRJ CR 

V \ ip 

CRJ CR 
e+

Re-R. 
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Returning to the factorization of L(s) we have 

L-^=fhJw« 

=    A*12^ 
F+(S)F_(s)ö+^ 

#*I 

(2.54) 

(2.55) 

therefore 

L-(s)   =   Vn^F_(s) 

L+(s) e+
d 

KP+(s) 

and 

with 

D(s) = ^L+(s) = ^ 
ips p 

L+(8)-L+(0) + L+(0) 
zs IS 

D+{S) = a i+(s) - £+(0) 
IS 

D-(.) = * 
P 

D+(s) + D_(s) 

L+(0Y 
is 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

Each side of equation (2.51) is analytic in one of the overlapping half planes, and the sides 

coincide on the strip of overlap. Consequently each side of (2.51) is the analytic continuation 

of the other into its complementary half plane; so that the two sides together represent one 

and the same entire function W(s). The entire function will be determined by its behavior 

at \s\ —> oo which is related with the behavior of physical quantities near x = 0. First 

note that L+(s) ~ s-1/2 and L_(s) ~ s1/2 as \s\ -> oo, and, D+(s) and D_(s) in (2.59) 

are bounded in their respective planes of analyticity and vanish at infinity. Furthermore, 

a+(x,p) is expected to be square root singular as x —>■ 0+ and u*(x,p) is expected to vanish 

as x —> 0~ to ensure continuity of displacement. As a result, from the Abel theorem [10] 

relating asymptotic properties of transforms, we know 

lim x1/2a*Jx,p) ~ lim s1/2E+(s), 

lim \x\-qv*Jx,p) ~  lim  \s\1+qV-(s), 

for some q > 0. Therefore, it is expected that £+(s) ~ s-1/2 and VI(s) ~ s_1~9 as |s| —>• oo, 

thus the products E+(s)L+(s) and L_(s)V_(s) vanish at infinity.   Therefore, each side of 
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(2.51) vanishes as \s\ —>■ oo in the corresponding half planes. According the the Liouville's 

theorem, a bounded entire function is constant. In this case, W(s) is bounded in the finite 

plane and W(s) —> 0 as \s\ —> oo so that the constant must be zero; thus, W(s) = 0. By 

using (2.51) and (2.59), the functions of interest are then given by 

~M0) y (o)   =   D+(s) =    go 1 

+K) L+{s) p is [L+(s) 
-1 (2.60) 

V-W   =   ^ = ^LJ^\. (2.61) 
L-(s)       p isL-[s) 

2.3.2    Stress Intensity factor 

To find the stress intensity factor, an asymptotic expression for the normal stress near the 

crack tip is sought. The Abel's theorem relating asymptotic expressions between a function 

and its Fourier transform is the following [10] 

lim y/xarl(x,p)=   lim e-
iw/\[^ E+(s). (2.62) 

Clearly, the behavior of £+(s) as s —>• oo is needed. Note that 

L+{S) =   1 - v/cR s& 

and since F+(0) = F_(0) = y/P(Ö) = <fy/F(0,p) then 

L+(0) = P 

therefore 

v  f \        -°"o     1    1 ~ V/CR p .       . 

^^^/rr^^M  "'^ (2'63) 

Using this relation and the definition of the stress intensity factor in (2.62) gives 

KUp)   =    lim V2irxal(x,p)=   lim e~i7r/*\/2s £+(s) (2.64) 

a0V2 1 - c/cR p 
=    —Trt—/  < (2.65) 

P3/2  y/l-c/ciy/cjy/Ffrp) 
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it is readily shown that 

so that 

ä=V3 
K*j(p)=a0 

1 - c/cR 2cs£    1 

(2.66) 

(2.67) 
Jl-c/cd\ Vc£ P3/2 

and by Laplace inversion the dynamic stress intensity factor in the time domain for this 

loading mode is 

1 - v/cR KI(t,v) = 2a0- 
2cs£(v) Vt. 

Jl-v/cd\ *V^ 
Denoting £(0) the function £ evaluated at v = 0, equation (2.68) can be rearranged 

(2.68) 

K!(t,v) 
1 - v/cR 

^/W^N m 
*(«) 

2<7n 

\ 

2cse(o) 
7T-V/C22 

St (2.69) 

The expression in brackets corresponds to the dynamic stress intensity factor for a stationary 

semi-infinite crack in orthotropic materials derived in [12], and the remaining factor will be 

ki(v), the universal function of the crack tip speed that relates the stress intensity factor for 

stationary and propagating crack. That is 

1 - v/cR ki(v) = e(o)' 
KI(t,v) = kI{v)KI{t,0) 

yjl-v/cd\ 

The expression for ki(v) can be approximated, for 0 < v < cR, by 

1 - v/cR 

(2.70) 

ki(v) 
^1 - v/cd 

(2.71) 

as in the case of isotropic materials. 

2.4    In-Plane Shear Loading 

Consider the crack geometry illustrated in figure 2.1(b). The crack faces are subjected to 

suddenly applied, spatially uniform shear traction of magnitude To at time t = 0. Exploiting 

asymmetry and examining the half space y > 0, the corresponding boundary conditions are 

Txy(x, 0,t)   =   —r0H(t)    for    — oo < x < 0, 
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(Ty(x,0,t)   =   0       for    -oo<x<oo, (2.72) 

ux(x, 0,t)   =   0       for   x>0, 

where H(t) is the Heaviside step function. In addition the condition of zero displacements 

at infinity and zero initial conditions are assumed. 

The method of solution is similar to that used for normal impact.  Applying Laplace 

transform to boundary conditions (2.72) gives 

r*y{x,0,p)   =   -TQ/P   for    -oo<a;<0, 

o*y(x,0,p)   =   0       for    - oo < x < oo, (2.73) 

u*x{x,Q,p)   =   0       for   rr>0. 

Assuming the displacement field (2.17) and (2.18) yields the same system of ordinary differ- 

ential equations (2.19) and (2.20) whose solution is given by equations (2.21) where CXJ are 

defined by (2.22) and 7,- are obtained from the solution of (2.23). Using (2.24), (2.25) and 

(2.10) indicates that a* is given by 

<(x,y,p) = -^ r [(s2Ci2-a17ic22)A1e^^ + (52c12-a272c22)A2e-^^]^ ds. (2.74) 
" Z7T   J-oo S 

Applying the second condition of (2.73) to equation (2.74) yields 

A2(s,p)   =   -foAi(s,p), 

ß2   =   ^-ai7ic22 (275) 

s2ci2 - a272c22 

Therefore, the expressions for the transformed components of displacement become 

1       f00 

u*x(x,y,p)   =   —       (e-™ - ß2e-^y)A1(s,p)e-lsx ds, (2.76) 
Z7T J-oo 

<(x,y,p)   =   ^ r (aie-™ - ß2a2e-™)^^-e-isx ds, (2.77) 
" Z7T J-oo S 

and the associated stress components are given by 

-00 2TT 
r [(cuS

2 - aaic12)e-™ - (cns2 - a2l2cl2)ß2e-™]^^e-isxd&.7&) 
J—oo s 

a*   =   Z^r(ci2S2_0;i7iC22)(e-71,_e-72y)^(£iP)e-^S) (279) 
" Z7T      J-00 S 

r*xy   =   ^J™J(al+j1)e-™-(a2 + 'y2)ß2e-™}A1(s,p)e-isxds. (2.80) 
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Introducing the functions 

C(s,p)   =   (l-ß2)A1(s,p), (2.81) 

—0 
G(s,p)   = '     Kai + 7i)-ft(a2 + 72)], (2.82) 

»,(")   = 
\ 

i_^s2+2H? + g_ {m 
c%J cj Cf 

where £ and JVli2 are given in (2.36) and (2.37) and in view of the first and third boundary 

conditions in (2.73), equation (2.76) and (2.80) yield the following pair of dual integral 

equations for the determination of the function C(s,p), 

r:y(x,0,p) = 1^1 r   ^^ C(s,p)e-is* ds   =   -^        - oo < x < 0,    (2.85) 
Z7T   J — oo us p 

1   r°° 
u*x(x,0,p) = —        C(s,p)e-lsx ds   =   0       0 < x < oo. (2.86) 

Z7T ./-oo 

Let ux_(x,p) be the unknown Laplace transform of the displacement on the negative 

x—axis, and r+{x,p) be the unknown Laplace transform of the shear stress on the positive 

x—axis, so that 

*/n\      f0                for   rr > 0         * /    «   \      f Tl(a;,p)   for   a; > 0 ,.„„> 
u*(x,0,p) = ^     w      v    ,          ^n       r*(a;,0,p) = ^    +v ,   '   ,              _ (2.87) 

t w*_(a;,p)   for   x < 0         I2/V         '      [ -TO/P     for   a; < 0. v       ' 

Then, the Laplace transform of the shear stress and the displacement on the whole boundary 

y = 0 is 

f=f  ^ C(s,p)e-* ds   =   -!»»(-,)+ ,-<*), (2.88) 
Z7T    J — oo t/s P 

h l-ooc{s'p)e~isx ds = ul-{x) (2-89) 

and by Fourier transform inversion, these equations give 

Vi2V^r^C(s,p)   =   -2- + T+(8) (2.90) 

C(s,p)   =   U.(s) (2.91) 
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where 

roo 

T+(S) =     r*+{xy 
JO 

U-(s)   =   f  K_(x)e 
J—oo 

tsxdx 

%sxdx 

(2.92) 

(2.93) 

£.(?)<■ "dx   = 

-oo 

ips 

Eliminating C(s,p) from- (2.90) and (2.91) results in a Wiener-Hopf equation 

T- - T+(s) = -HuV—ä U-(s) 
ips os 

(2.94) 

which contains only the two unknown functions, T+(s) and U-(s), and can be solved using 

the Wiener-Hopf technique as in the normal impact analysis. The result is 

D+{s) - T+(s)L+(s) = L-(s)U-(s) - D-(s) = 0 (2.95) 

where 

L-{8)   =   -/^^G--(s), 

L+(a) Of     1 
o£G+(sy 

and 

with 

where 

and 

D(s) = ?LL+(8) = ^ 
L+(S)-L+(0)  | L+(0) 

zs «s 

£>+(«) 
?0 

P 

L+(S)-L+(0) 
is 

,     and     D-(s) = — 
P 

= D+{s) + D.(s), 

L+(0) 
is 

G(s) = 
G(s,p) 

eR  ' 

es = 
\ 

v2\   „     2wms     p2 

— 1 sl 4- ' 
^2 S2 + ^^ + 
"s . ■'s v-d'+w+ä 

(2.96) 

(2.97) 

(2.98) 

(2.99) 

s-^ = 9te: 
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It can be shown that G(s) ->■ 1 as s -> oo. Thus, the solution of (2.95) is 

L+(s) p is 

n M = ^£) = U>IM0) 
K) L.(s)      pisL-.(s) 

L+(s) 
(2.100) 

(2.101) 

with L±(s) defined in (2.96) and (2.97) and G±(s) given by 

G±(s) =exp{zl /1/c-%an-x (MG(iPW)]\ J^ 

To calculate the stress intensity factor, T+(s) as s -> oo is needed. First, note that 

\/l - v/cs   1 L+(s) = l^v^^ M   s^°° 
and since G+(0) = G_(0) = >/5(Ö) = fy/G(0,p) then 

MO) = p 

>/*PcJ>/G(0,p) 

Therefore, 

r+w=p^,-!;;#M ^s" °°-    (2-io2) 

Using (2.62) and the definition of the stress intensity factor gives 

K*H(p)   =    lim y/2irx rl(xtp) =   lim e"il/4^sT+(s) (2.103) 

T0\/2 l-v/cR p 

P3/2  y/l-v/Cy/c-iy/GiOtP)' 

It can be shown that 

(2.104) 

so that 

y/G(0,p) = -?—, (2.105) 
Csy/V 

K*n(p) = royß^l -^ ] ~ v/c* , (2.106) p   v1 ~ v'Cs 

and by Laplace inversion the dynamic stress intensity factor in the time domain for this 

loading mode is 

Kn(t, v) = 2r0 
1
~

V
I

CR
 ^2csrj(v)/n >/i. (2.107) 
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' 
Graphite 

Epoxy 
E-Glass 
Epoxy 

Boron 
Epoxy 

Epoxy 

Cll 20.77 8.38 32.67 3.91 

C22 2.18 2.29 3.12 3.91 
C12 0.49 0.52 0.79 1.91 

M12  (GPa) 7.48 5.5 6.4 1.96 
P  (Kg/m3) 1600 2100 1990 1260 

Table 2.1: Mechanical properties used for the analysis. 

Denoting 77(0) the function 77 evaluated at v = 0, equation (2.107) can be rearranged as 

Kn(t,v) = 
1 - V/CR T](v) 

2roy2cs77(0)/7r Vi (2.108) 

The expression in brackets corresponds to the stress intensity factor for a stationary semi- 

infinite crack in orthotropic materials under impact shear loading derived in [12], and the 

remaining factor will be kn(v), the universal function of the crack tip speed that relates the 

stress intensity factor for stationary and propagating crack. That is 

1 - v/cR kn(v) 
Tj(y) 

Kn{t,v) = kn(v)Kn(t,0) 

The expression for kn(v) can be approximated, for 0 < v < CR, by 

1 - v/cR 

(2.109) 

kn(v) 
y/T^Zfc 

(2.110) 

as in the case of isotropic materials. 

2.5     Results and Conclusions 

Closed form expressions for the dynamic stress intensity factors Ki(t,v) and Kn(t,v) due 

to suddenly applied uniform loads on the crack faces have been determined for semi-infinite 

cracks propagating at constant velocity v in orthotropic materials. The results presented here 

are consistent with those for stationary cracks, i.e. for v = 0, Ki(t, 0) and Kn(t, 0) developed 

in a previous work by Rubio-Gonzalez and Mason [12] for semi-infinite cracks in orthotropic 
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materials subjected to spatially uniform step loads on the crack faces are obtained. Using 

these results it has been possible to find expressions for the universal function of the crack 

tip speed kj(v) and kn(v) which may be written in approximated manner as 

1 - v/cR ki(v) 

kn(v) 

y'i - v/cd 

1 - v/cR 

\/l - v/cs 

Note that these equations conserve the same form as those for isotropic materials [5], where 

the wave speeds cs and Q should be computed and understood properly for orthotropic 

materials with the planes of orthotropy assumed here. 

Figures 2.3 and 2.5 illustrate ki(v) and kn(v) for different materials for which the 

properties are given in Table 2.1. They also show that for orthotropic materials the functions 

ki(v) and ku(v) given by equations (2.70) and (2.109) may be approximated by the simplified 

expressions (2.71) and (2.110), respectively as usually it is for isotropic materials. They are 

very close each other for several materials. In fact, the factor y£(v)/£(0) is close to one over 

a large interval of speeds as shown by figure 2.4. It can be shown that £(u)/£(0) = ri(v)/r](ti) 

and therefore Figure 2.4 applies to the in-plane shear loading too. 

It was assumed tacitly in the method of solution of the equations of motion that the crack 

speed propagation is subsonic, v < CR, in order to maintain elliptic differential equations. 
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Figure 2.3:   Comparison of the universal function ki(v) and its approximated expression 
(2.71) for different materials in mode I loading. 
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Factor (5(v) / 5(0) )1/2 for different materials 
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Figure 2.4: Factor j£(v)/€(0) for different materials. Graphite-epoxy x or y means that the 
fibers are parallel to the x— or y—axis, respectively. 
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Figure 2.5:  Comparison of the universal function ku(v) and its approximated expression 
(2.110) for different materials in mode II loading. 
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Chapter 3 

Dynamic Stress Intensity Factor due 
to Concentrated Normal Loads on 
Semi-infinite Cracks in Orthotropic 
Materials. 

Co-authored with C. Rubio-Gonzalez and submitted to the Journal of Composite Materials 

The transient elastodynamic response due to concentrated normal impact load on the 

faces of a a semi-infinite crack in an orthotropic material is examined. In contrast to earlier 

papers where numerical approximations were used, a closed form solution for the stress 

intensity factor history around the crack tip is found here. Laplace and Fourier transforms 

together with the Wiener-Hopf technique are employed to solve the equations of motion in 

terms of displacements. Even though the problem has characteristic length, it has been shown 

in previous works that the Wiener-Hopf technique can be applied. The asymptotic expression 

for the stress near the crack tip is analyzed which leads to the dynamic stress intensity factor 

in mode I. Similarly to the isotropic case, it is found that the stress intensity factor has a 

singularity and discontinuity when the Rayleigh wave emitted from the load arrives at the 

crack tip. Results are presented for orthotropic materials as well as for the isotropic materials. 

The closed form solution is given by simple integral and algebraic expressions and does not 

exhibit the spurious oscillations seen in earlier numerical solutions. 

Keywords: stress intensity factor, dynamic fracture, orthotropic materials. 
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3.1    Introduction 

The growing use of composites in many engineering applications demands the fundamen- 

tal understanding of the response of cracked orthotropic bodies under impact loads. The 

behavior of finite cracks with concentrated loads on its faces in orthotropic materials has 

been analyzed by Rubio-Gonzalez and Mason [8, 9] using integral transform methods. In 

that work, the problem is reduced to a Fredholm integral equation in the Laplace transform 

domain which is solved numerically, and the stress intensity factor is recovered in the time 

domain by numerical Laplace inversion. Although this approach can be quite accurate, the 

solution obtained is approximated and restricted to finite cracks. It would be desirable to 

have an exact solution for the stress intensity factor in cracks in orthotropic materials sub- 

jected to impact concentrated loads that can be used as a Green's function in dynamic crack 

problems in orthotropic materials. 

In the present work a semi-infinite crack with impact concentrated loads on its faces 

in orthotropic material is analyzed, an exact, closed-form solution for the dynamic stress 

intensity factor is obtained for the opening loading mode. Laplace and Fourier transforms 

are used along with the Wiener-Hopf technique to find the stress ahead of the crack tip and 

the displacements of the crack faces. Asymptotic expression for the stress near the crack 

tip leads to the stress intensity factor Ki(t). The equivalent problem for isotropic materials 

was solved by Freund [2] by superposition of two different problems with no characteristic 

fixed length. The superposed problems were solved employing the Wiener-Hopf technique. 

Kuo and Chen [4, 5] have shown that the direct application of the Wiener-Hopf technique 

may be used to solve that problem in a more straightforward manner. The latter approach 

is used in this paper to extend the solution of Freund to orthotropic materials. 

56 



3.2    Governing Equations 

Consider the plane problem of an infinite orthotropic medium containing a semi-infinite 

crack, Figure 3.1. Let E{, ßij and ify (i,j — 1,2,3) be the engineering elastic constants of 

the material where the indices 1, 2, and 3 correspond to the directions (x, y, z) of a system 

of Cartesian coordinates chosen to coincide with the axes of material orthotropy. The crack 

faces are along the negative x—axis and the origin of the xy axes is the crack tip. The crack 

faces are suddenly loaded by a pair of concentrated normal forces of magnitude o"0 located a 

distance / away from the crack tip, as shown in Figure 3.1. 

Figure 3.1: Schematic of the semi-infinite crack geometry. 

The problem is restricted to two dimensions with wave propagation in the x — y plane 

only. By setting all the derivatives with respect to z to be zero, it is readily shown that the 

displacement equations of motion [6] reduce to 

1 82u d2u     d2u     . . d2v 
dx2     dy2 dxdy 

d2v d2v     ., . d2u 
+ C227T^ + (1 + Cl2)- 

C2 dt2 ' 

1 d2v 

(3.1) 

(3.2) 
dx2  ' ""dy2 ' v" ' "^'dxdy c2dt2' 

where u and v are the x and y components of the displacement vector and en, c\2 and c22 

are non-dimensional parameters related to the elastic constants by the relations: 

E1 
en 

f,12[i-(E2/E1yl2y 

c22   =   (E2/E1)cn, (3.3) 

Cl2 ^12C22 = ^2lCn, 
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for generalized plane stress, and by 

Cll      =       T-(l - ^23^32), 

C22   =    r(l - ^13^31), 
^12^ 

C12     =      ^T-(^21 + -^13^32), (3-4) 
/Xl2A Üi 

A     =     1 - ^12^21 - ^23^32 - ^31^13 ~ ^12^23^31 ~ ^13^21^32, 

for plane strain. In the orthotropic solid, cs = \Jp12lp represents the velocity of the in-plane 

shear wave propagating along the the principal material axes and p is the mass density. The 

stresses are related to the displacements by the equations: 

ax du dv 
— =   en-£- + 012-5-, 
/ii2 ox dy 
Oy du dv ,    . 
— =   ci2^- + c22^-, (3.5) 
A*i2              ox          dy 
Txy du     dv 

A»i2 dy     dx' 

3.3    Method of Solution 

Exploiting symmetry and taking only the upper half plane y > 0, the corresponding bound- 

ary conditions are 

<Ty(x, 0, t)   =   -a0H(t)S(x + 1)    for    - 00 < x < 0, 

Txy(x,Q,t)   =   0       for    -oo<:r<oo, (3.6) 

v(x,0,t)   =   0       for   x > 0, 

where H(t) is the Heaviside step function. In addition, the condition of zero displacements 

at infinity and zero initial conditions are assumed. 

The method of solution of the governing equations presented here follows that described 

in Kuo and Chen [4, 5] for the isotropic case with some significant differences. Displacement 

potentials are not used and no assumptions are made about the form of the unknown func- 

tions. In equations (3.1) and (3.2), the time variable may be removed by application of the 
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Laplace transform 

/•(?)=/    f(t)e-ptdt,    f(t) = ^-      r(p)e^dt, (3.7) 
JO 2.1TI JBr 

where Br denotes the Bromwich path of integration which is a line parallel to the imaginary 

axis in the p-plane. Applying relations (3.7) to equations (3.1) and (3.2) and using zero initial 

conditions for the displacements and velocities, the transformed field equations become 

d2u*     d2u*     ., . d2v*     p2  „, . C»!*+W + {1 + Cl2)a^-T  = °' (3'8) 

öv     av   „     ,av   p2 , __ + C22_ + (1 + Cl2)____„.   =   0, (3.9) 

where the transformed displacement components, u* and v*, are now functions of the vari- 

ables x, y, and p. The application of the Laplace transform to the boundary conditions (3.6) 

gives 

otix, 0,p)   =   — a0-5(x + 1)    for    — oo < x < 0, y p 

T*y(x,0,p)   =   0       for    -oo<x<oo, (3.10) 

v*(x,0,p)   =   0       for   x > 0. 

To obtain a solution of the differential equations (3.8) and (3.9) subject to conditions 

(3.10), the Fourier transform is applied, 

f{x) elsx dx,    f{x) = — /     F(s) e~lsx ds. (3.11) 
-oo Z7T J-oo 

It is assumed that the displacements in the Laplace transform domain have the form 

1    f°° 1    r°° 
u*ix,y,p)   =   — J^Afay^e-»* ds, (3.12) 

1    r°° 
v*ix,y,p)   =   —        Bis,y,p)e-"x ds, (3.13) 

ZTT J-OO 

where A and B are the Fourier transforms of the Laplace transform of the displacements, 

u* and v*, respectively, and are yet to be determined.  Substituting these transforms into 
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equations (3.8) and (3.9), the functions A and B are found to satisfy the simultaneous 
t 

ordinary differential equations 

(CllS
2+p2/c^-0 + (l + c12)zS^   =   0, (3.14) 

(s*+p2/c2)B-c22^ + (l + c12)is^   =   0. (3.15) 

The solution of these equations which vanishes for y -» oo is 

A(s,y,p)   =   A1(s,p)e-^ + A2(s,p)e-^y, 

B(s,y,p)   =   :^A1(s,p)e-^ -^A2(s,p)e-^, (3.16) 

where A\ and A2 are arbitrary functions and ctj(s,p) stands for the functions 

with 7i and 7^ being two distinct roots of the quadratic equation 

C2274 + [(c?2 + 2c12 - cnc22)s
2 - (1 + c22)p

2/c2]72 + (ens2 + P2/c2
s)(s

2+p2/c2) = 0. (3.18) 

It can be shown that for many materials the roots 71 and 72 are real and positive and the 

expressions for the displacements in the Laplace transform domain become: 

1   f°° 
u    = 

Z7T ./-oo 
r {Aie-™ + A2e-™)e~isx ds, (3.19) 

J—00 
 0      TOO p—lSX 

v*   =   -1 /    (a^e-^ + a^e-™) ds, (3.20 
27T 7-oo S 

and using (3.5) the corresponding expression for r*y is given by 

T*  = -£* f° [{a, + TiMxe-™ + (a2 + l2)A2e-™]e-is* ds. (3.21) 
" Z7T J-00 

Applying the second condition of (3.10) to equation (3.21) yields 

(3.22) 

M*>P) =   -faAi(s,p), 

ßi 
Oi\ +7i 

OL2 +72 
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Therefore, the expressions for the transformed components of displacement become 

1   r°° 
u*(x,y,p)   =   ±       (e~™ - ß1e-^)A1(s,p)e-lsx ds, (3.23) 

Z7T J-oo 

v*(x,y,p)   =   Zl T (aie-^y - ß1a2e-^)^^-e-isx ds, (3.24) 
2/K J-oo S 

and the associated stress components are given by 

< =   ^ f°° Ifai*2 - «i7ici2)e-™ - (ens2 - o^c^Ac^^^e"**«^) 
Z7T     J-oo - S 

< =   ^ f°° [fas2 - «i7iC22)e-™ - (c12s
2 - a272C22)/?ie-^J']^^e-"M^26) 

y Z7T     J-oo S 

r*xy   =   ZM J°°jai+ll)[e-^y - e-^v]Al(s,P)e-isxds. (3.27) 

The following functions are introduced, 

E(s,p)   =   -(a1-ß1a2)A1(s,p), (3.28) 
Ö 

I Q£   ..]_   n-j2 If**' 

F(s,p)   =   —f- ■=—^[ci2s
2-a17ic22-/5i(c12s

2-0!272c22)], (3.29) 
(«i - ßia2)Z, 

Cll(l + Ci2)(iVi+iV2) 

-c22[c12JV2iV2 + cu(N* + N,N2 + iV2)]}, (3.30) 

^12   =   7^-{cnC22 - c2
2 - 2c12 ± [(cnc22 - c2

2 - 2c12)
2 - 4CHC22]1/2},    (3.31) 

lc22 

where the velocity ca = ,/cn~cs represents the dilatational wave speed along the x—axis. In 

view of the first and third boundary conditions in (3.10), equation (3.24) and (3.26) now yield 

the following pair of dual integral equations for the determination of the function E(s,p) 

27T    J-oo    ^Jsl+pZ/c2, P 

 A    roo 
v*(x,0,p) = —        E{s,p)e-lsx ds   =   0       0<x<co, (3.33) 

2ir J-oo 

Let v*_ (x,p) be the unknown Laplace transform of the vertical displacement on the 

negative rc-axis, and a*+(x,p) be the unknown Laplace transform of the normal stress on 

the positive x—axis, so that 

*,    n   N      f° for   x>0 ,, v      j a*+(x,p) for   x>0 
v(xAp) = {v._{Xjp)   for   X<Q       °yMP) = {-{aM5(x + l)   for   x < 0 

(3.34) 
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then we can write the Laplace transform of the normal stress and the vertical displacement 

on the whole boundary y = 0 as 

ij^T     /F,{S,Pl , E^p)e~iSX ds   =   ~S(x + l) + a*+(xlP)t (3.35) 27T    J-oo    y/s2+p2/c2
d P 

/oo 
E{s,p)e-lsx ds   =   v*_{x,p), (3.36) 

-oo 

-I   roo 

27T J-oo 

and by Fourier transform inversion, these equations give 

V*irf   .    ""'    E(8,p)   =   --^ + £+(S), (3.37) 
^s2 + p2/&d V 

-iE(s,p)   =   y_(s), (3.38) 

where 

/•OO 

E+(s)   =    /    a*+(x,p)elsxdx, (3.39) 
J 0 

V-(s)   =    f°  v*_(x,p)eisxdx, (3.40) 
J—oo 

From the physics of the problem it is reasonable to assume that the function a^(x,p) 

and v*L(x,p) are exponentially bounded at infinity and this ensures the existence of their 

Fourier transform (3.39) and (3.40). In particular it is shown by Noble [7] that 

if |<7+(x,p)| < Miex~x as x -» +oo then      E+(s) is analytic in Im(s) = A > A_, 

and if |v* (x,p)\ < M2ex+X as x —»■ —oo then      VL(s) is analytic in Im(s) = A < A+. 

3.3.1    Wiener-Hopf technique 

Eliminating E(s,p) from (3.37) and (3.38) we obtain a Wiener-Hopf equation 

P ^Js2+p2/c2
d 

which contains only the two unknown functions £+(s) and V-(s), and now the Wiener-Hopf 

technique can be applied as follows. Suppose that the function L(s) is defined and factored 

as 
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then equation (3.41) becomes 

—e-islL+{s) - E+(s)L+(s) = L_(s)V_(s). (3.43) 

Assume that the function D(s) can be decomposed as 

^e-islL+(s) = D(s) = D+(s) + £>_(s), (3.44) 
P 

then equation (3.43) becomes 

D+(s) - E+(s)L+(s) = L_(s)V_(s) - £>_(s) = W{s). (3.45) 

The first member of this equation is analytic in the upper half of the s—plane Im(s) = A > A_ 

and the second member is analytic in the lower half of the s—plane Im(s) = A < A+. 

Therefore, if A+ > A_ the regions of analyticity overlap. Using the Liouville's theorem to 

determine W(s), solutions for £+(s) and V-(s) can be found. 

After algebraic manipulation it is found that the function F(s,p) reduces to 

F(s,p)   = ,   {c22Ci2lhl - 7i72(l + ci2)c?2s
2 + 

ex/cir vciiS + pi°^+72)(i+ci2) 
(CnS2 + p2/c2) [c22(7l + 72) + 7l72(l + Cl2)c22 + S2(C12 + c\2 - CiiC22) - C22p

2/c2] } 

The only zeros of F(s,p) are of the form s = ±ip/cR where c« is the Rayleigh wave speed. 

This can be seen by substituting s = ip/v in F(s,p), letting F(s,p) = 0 and dividing by the 

non-zero factors, then F(ip/v,p) = 0 reduces to 

C22 fcuc22 - cf2 _v^\    -,_^_^   -,_   v<1   _ Q 

en V       c22 c2J \|        c2      c2/\|        CnC2 

which is the Rayleigh function for orthotropic materials [10]. The roots of this function are 

V = ±CR. 

Consequently, the first step in factoring L(s) is to define 

p(s)=/I'jL ■ (3-46) s2 + p2/cR 
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Im(s) 

\ 
ip/c 

Re(s) 

\l p / Cd 

\ 
-i p / cs 

Figure 3.2: Branch cuts of F(s) in the s-plane. 

It can be shown that F(s) —> 1 as s —>• oo, (the constant £ in (3.29) was chosen to make this 

possible). The function F(s) is regular and F(s) ^ 0 in the s-plane cut as shown in figure 

3.2, the only singularities are the branch points shared with ji and 72. Where the branch 

points of 71 and 72 are 

for 71; 

for 72; 

%p 
s   =   ±—, 

Co 

s   =   ± 
ip = ±^ 

/Cu cs cd 

It is well-known that factorization is accomplished most directly for functions that ap- 

proach unity as \s\ —> 00 and that have neither zeros nor poles in the finite plane; F(s) is 

an example of such a function. Therefore, using Cauchy's integral formula it can be shown 

that [3] 
logF(*) 

F±(s) = exp 
2iri JT- 

dz 
/r±    z — s        j 

where F(s) = F+(s)F_(s) and T_ (r+) is the contour enclosing the branch cut between 

+ip/cd and +ip/cs, {-ip/cd and  -ip/cs). Using the fact that F(s) = F(s), one can write 

-1   /-1/c*      _j /Im[F(ipw)]\    diü 

7T A/cd \Re[F(ipu;)]/ wT 

Note that by making s — ip( in this equation, F±(s — ip() = F±(C) becomes a function only 
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of C That is 

>±(c)=exp{±/;;;ta„-[*H]^} w 

where 
^ lm[F(ipu,))m 

'     Re[F(ipw)] 

Returning to the factorization of L(s) we have 

L«   =   Ljsj = ^    ^2+p2/cl (3-48) 

=   ^Ms)F(s)(s + ip/cR)(s-iP/cR) (349) 

y s + ip/cdy/s - ip/cd 

therefore 

L.(.)   =   te?<iÄF.W, (3.50) 
y's - zp/crf 

T   . . y/s + ip/cd    1 
-k+(s)   =    / —,—7 -   / v- (3.51) 

Using the sum splitting formula [7] for the function D(s) defined in (3.44) along with the 

result (3.51) it is found that 

D+{s)   =   _L rW° miz = 2-L p       ^i*»Lfi'^     J,, (3.52) 
27ri J-oo+i\o z - s p 2ni J-oo+i\0 [z — s)(z + ip/cR)F+{z) 

D-(s)   =   D{s)-D+(s) (3.53) 

where Ao is such that A_ < A0 < A+. 

Each side of equation (3.45) is analytic in one of the overlapping half planes, and the sides 

coincide on the strip of overlap. Consequently each side of (3.45) is the analytic continuation 

of the other into its complementary half plane; so that the two sides together represent one 

and the same entire function W(s). The entire function will be determined by its behavior 

at \s\ —> oo which is related with the behavior of physical quantities near x = 0. First note 

that L+(s) ~ s-1/2 and L_(s) ~ s1/2 as \s\ -»■ oo, and, D+{s) and D_(s) in (3.52) and (3.53) 

are bounded in their respective planes of analyticity and vanish at infinity.  Furthermore, 

65 



o*+{x,p) is expected to be square root singular as x -> 0+ and v*L(x,p) is expected to vanish 

as x -» 0~ to ensure continuity of displacement. Consequently from the Abel theorem [7] 

relating asymptotic properties of transforms 

lim xx'2a*Ax,p) ~ lim s1/2^) 

lim \x\-qv*_(x,p) ~   lim  |s|1+9V_(s) 

for some q > 0. Therefore, it is expected that £+(s) ~ s_1/2 and y_(s) ~ s~l~q as |s| ->• oo, 

thus the products S+(s)L+(s) and L-(s)V-(s) vanish at infinity. Therefore, each side of 

(3.45) vanishes as \s\ -> co in the corresponding half planes. According the the Liouville's 

theorem, a bounded entire function is constant. In this case, W(s) is bounded in the finite 

plane and W(s) ->■ 0 as \s\ -> oo so that the constant must be zero; thus, W(s) = 0. By 

using (3.45) and (3.52), the functions of interest are then given by 

S+(S)   =   £±M (3,4) 

V.W   =   £g- (3-55) 

3.3.2    Stress Intensity factor 

To find the stress intensity factor, an asymptotic expression for the normal stress near the 

crack tip is sought. The Abel's theorem relating asymptotic expressions between a function 

and its Fourier transform is the following [7] 

that 

\im ^ a*Jx,p) =   Mm e-™/\[^ Z+{s). (3.56) 
X-+0+ + s->+oo V 7T 

Clearly, the behavior of E+(s) as s -» oo is needed. Note from (3.51), (3.52) and (3.54) 

■..     -ob i   i   r°°+iXo (z + ip/cdy/2e-izl , ,     * 
£+(s) = —-—TT:  / ———T. dz as    s -> oo (3.57) 

p   sl/22niJ-oo+iXo(z + ip/cR)F+(z) 

by making z = ipC, this equation becomes 

E-i-fs) = —TT^ 77T  / — —— d(  as   s ->■ oo (3.58) 
^+W pl/2    S^2iriJro-ioo   (C + l/cÄ)F+(C) 
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where r0 is real and — l/c^ < To < 0. Using this relation, the definition of the stress intensity 

factor gives 

KUp)   =    lim y/2nx aUx,p) =  lim e~iw/4V2s~ E+(s) (3.59) 

where 

(C + l/cÄ)F+(C) 

To perform the inversion of Kj(p) the Cagniard-de Hoop method can be applied. The 

central idea of the Cagniard-de Hoop scheme [1, 3] is to convert the integral in (3.60) to a 

form which allow inversion of the one-sided Laplace transform by observation. The path of 

integration is modified to form a closed contour, figure 3.3, such that the integrand in (3.60) 

is analytic inside of this contour. Applying Cauchy's theorem, Jordan's lemma and the fact 

that I(() = 7(C) one can write Kj(p) as 

K'M = ^ { \ /_;" Im [/(C)] «* *;} ■ (3.62) 

Letting Q = —rj this equation becomes 

K*I(P) = zßr:t fIm [1{~v/l)] H{r] - llCd)e~vn dv- (3-63) 

and the inversion of the Laplace transform becomes obvious. Equation (3.63) is a product 

of two transforms, so that Ki(t) is a convolution of the inverse of the two transforms, i.e. 

™--^CHmz$ä^}*     (3-64) 
where it has been used the result F+(—£) = JF-(C)- 

Note that for time t > l/cs, equation(3.64) can be evaluated by complex integration as 

shown by Freund [3]. It equals the sum of contributions from the pole at C = 1/c/j and the 

integral taken along a closed contour of infinitely large radius by using Cauchy's theorem. 

The final result for the intervals l/cs < t < 1/CR and t > 1/CR is 

*'<*>=Ws i-„, (1/;*~tl ,g(i/c»-«/o (l/cR-t/l)l'2F-(l/cR) 
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lm(Q 

Figure 3.3: Contour of integration to evaluate the integral in (3.60) in the £— plane. 

The second term in equation (3.65) becomes zero for t > l/cR and the remaining first term is 

the corresponding static solution for a semi-infinite crack under normal concentrated forces 

applied on its faces. For the interval l/cd <t< l/cs, the stress intensity factor is obtained 

by numerical evaluation of the integral in equation (3.64). 

3.4      Results and Conclusions 

The stress intensity factor Ki(t) computed according to equations (3.64) and (3.65) are 

shown in figures 3.4 to 3.6 for different materials. The mechanical properties used for the 

analysis are given in table 3.1. 

Figure 3.4 shows Ki(t) for an isotropic material, in this case epoxy. The normalization 

factor is the long time limit Ä/(oo) = a0J2/iTl and the normalized time is cst/l. The 

behavior illustrated in the plot is the typical for isotropic materials as described by [3]. 

After the arrival of the dilatational wave generated by the load, the stress intensity factor 

takes on a small negative value, reflecting the tendency of the crack faces to move toward 

each other. The small negative value persists until the shear wave front arrives at time 

t = l/cs. Thereafter, the stress intensity factor decreases rapidly to a negative square root 

singularity at time t = l/cR, which is the instant of the arrival of the Rayleigh wave traveling 
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along the crack faces from the load to the crack tip. For time t > 1/CR, the stress intensity 

factor takes on the constant value cr0y2/Trl, which is the equilibrium stress intensity factor 

for the specified applied loading. 

Figures 3.5(a) and 3.5(b) show the stress intensity factor history for a graphite/epoxy 

composite with fibers parallel to the x—axis and y—axis, respectively. A similar behavior 

is observed to that shown by the isotropic material. After the time t = l/cd, Ki(t) takes 

a small negative value until t — l/cs and then decreases rapidly to a singularity at time 

t = 1/CR. After the arrival of the Rayleigh wave at the crack tip emitted by the load, Ki(t) 

takes its long time limit ÜT/(oo) = aoy/2/irl. The difference between Ki{t) for isotropic and 

orthotropic materials are in the small negative value; for the orthotropic case this value is 

almost zero over an ample range of the interval l/cd < t < l/cs. This fact explains why figures 

3.5(a) and 3.5(b) are almost identical. That is, even though cd is different for the composite 

with fibers parallel to the x—axis and to the y—axis, the arrival of the dilatational wave 

front on the crack tip is almost imperceptible and K[{t) exhibits no appreciable difference 

in both cases. 

Figure 3.6 shows the stress intensity factor history for E-glass epoxy composite. The 

behavior of Ki(t) is very similar to that shown by graphite/epoxy. The difference is the 

instant when the singularity occurs. Again a very small negative value is observed for Kj{t) 

in the interval l/cd < t < l/cs. Under closed inspection, however, as shown in figure 3.6(b), 

it is observed that the shape of the curve after the arrival of the dilatational wave front is 

similar to that for isotropic material but with different scale. 

Finite cracks can be considered as semi-infinite for a short period of time. Figure 3.7 

shows the stress intensity factor history for a finite crack under impact concentrated loads 

on its faces for orthotropic material obtained by Rubio-Gonzalez and Mason [8] using a 

different method of solution that involves numerical solution of a Fredholm integral equa- 

tion for the Laplace transform of the stress intensity factor followed by numerical Laplace 

transform inversion.  This numerical solution suffers from spurious oscillations, due to the 
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Laplace transform inversion technique, at the discontinuity in K[(t) and at t = 0. The 

closed form solution is much simpler to evaluate because of its simple algebraic and integral 

representation, equations (3.64) and (3.65), and does not exhibit spurious oscillations. The 

two methods show a good agreement, (Figure 3.7(b)), in the appropriate time interval. 
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Figure 3.4:   Stress intensity factor history for a semi-infinite crack in isotropic material, 
concentrated loads. 
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Graphite-epoxy composite, fibers parallel to x-axis 
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Figure 3.5: Stress intensity factor history for a semi-infinite crack in graphite/epoxy com- 
posite, concentrated loads. Fibers parallel to the (a) a;—axis, (b) y—axis 

Graphite 
Epoxy 

E-Glass 
Epoxy 

Boron 
Epoxy 

Epoxy 

Cll 20.77 8.38 32.67 3.91 

C22 2.18 2.29 3.12 3.91 

C12 0.49 0.52 0.79 1.91 
//12   (GPa) 7.48 5.5 6.4 1.96 
P (Kg/m3) 1600 2100 1990 1260 

Table 3.1: Mechanical properties used for the analysis. 
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Figure 3.6: Stress intensity factor history for a semi-infinite crack in E-glass/epoxy compos- 
ite, concentrated loads, (b) Under closer inspection. 
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Figure 3.7: Comparison between the stress intensity factor for a finite crack of length 2a [8] 
and a semi-infinite crack under concentrated loads in orthotropic materials. 
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Chapter 4 

Dynamic Stress Intensity Factor for 
Semi-infinite Cracks in Orthotropic 
Materials due to Concentrated Shear 
Impact Load 

co-authored with C. Y. Wang and C. Rubio- Gonzalez and accepted for publication in Inter- 

national Journal of Solids and Structures 

The transient elastodynamic response of an orthotropic material due to concentrated 

shear impact loads on the faces of a semi-infinite crack is examined, and the solution for 

the stress intensity factor history around the crack tip is found. Laplace and Fourier trans- 

forms together along with the Wiener-Hopf technique are employed to solve the equations of 

motion. Even though the problem has characteristic length, it has been shown in previous 

works that the Wiener-Hopf technique can be applied. The asymptotic expression of stress 

near the crack tip is analyzed, which leads to the dynamic mode II stress intensity factor. 

The results are presented for orthotropic materials as well as for an isotropic material. 
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1 Introduction 

The growing use of composites in many engineering applications demands a 

fundamental understanding of the response of cracked orthotropic bodies to impact 

loading. By using the integral transform methods, the dynamic behavior for a finite crack 

under concentrated loads [1, 2] as well as for a semi-infinite crack under concentrated or 

uniform normal loads [3, 4] on its faces in orthotropic materials have been analyzed by 

Rubio-Gonzalez and Mason. In the former, the finite crack problem is reduced to a 

Fredholm integral equation in the Laplace transform domain which is solved numerically, 

and in the latter for the Weiner-Hopf technique was used to find the stress ahead of the 

crack tip and the displacement on the crack faces. The asymptotic expression for the 

stress near the crack tip leads to the stress intensity factor K(t). 

Many solutions for various loadings of cracks in orthotropic materials have been 

found by applying transforms to the displacement formulation of the equations of motion. 

Where previous researchers (for example, [5]) following this approach had solved the 

resulting dual integral equations using the method of Sneddon [6, 7], Rubio-Gonzalez 

and Mason [3] solve the same equations by converting the dual integral equations to a 

Weiner-Hopf equation. Solution of that equation requires only a straight forward 

application of the method of Noble [8]. In this paper, the problem of concentrated shear 

impact loads on the faces of a semi-infinite crack in orthotropic materials is analyzed 

using the same method. While it was been thought that the Weiner-Hopf technique could 

not be applied to problems such as this [9, 10], this approach has recently been shown to 

be valid in such cases [11]. Through Laplace and Fourier transforms combined with the 

Weiner-Hopf technique, a solution for the stress ahead of the crack tip is sought. The 



asymptotic expression for the stress near the crack tip leads to the mode II stress intensity 

factor, K„(t). 

2 Description of the problem 

The plane problem of an infinite orthotropic body containing a semi-infinite crack 

is considered in Figure 1. Let E., /i9 andv,., (i, j = l, 2, 3) be the engineering elastic 

constants of the material where in the indices (1, 2, and 3) respectively stand for the 

directions (x, y, z) of a Cartesian coordinate system chosen to coincide with the 

orthotropic axes of material. The crack faces are suddenly loaded by a pair of 

concentrated shear forces with a magnitude (q) located a distance (a) away from the crack 

tip, as shown in Figure 1. 

2.1 Equations of motion 

The following problem is limited to a two-dimensional case with the inertial effect in 

the x-y plane only. By setting all the derivatives with respect to z-direction to be zero, it is 

readily shown that the displacement equations of motion [12] reduce to 

d2xx    <?2u    n       ,<?2v      1  <?2u c»^+^+(1+ci2)^r^' 
<?2v d\_ ,d2u _   1  <?2v 

where u and v are the x and y components of the displacement vector. In the orthotropic 

solids, cs = -jMn/P represents the velocity of the shear wave propagating along the 

principle material axes in xy-plane and p is the mass density. Here also, we introduce the 



velocity cd = ■yjc^cs, which will appear later, representing the dilational wave speed 

along the x-axis. The non-dimensional parameters cn, cn and c^ are related to the 

elastic constants by the following relations. For a generalized plane stress problem, 

E, 
c„ = 11    ßn[\-{E2|Ex)y]^]

, 

cB =(£,/£,)<:„, (2) 
cn — vncn — vllcn . 

For a plane strain problem, 

cn - V" "»"M ) » 

C22 =   E>   (1 
flnA 

■ Vj3V31) , 

ca 

E2 

"•" j-, "13 "32/' (3) 

Z\—1       "12 "21 *23*H *31M3 M2 ^23*31        "l3 "21 "32   ' 

v..    v.. 
-^=Tr,ay=i, 2,3). 
Hy      is,. 

Finally, the stresses are related to the displacements by the equations, 

Ox _       ÖU ÖW 

fin      " dx     n dy ' 

-7L = c123- + c22—, (4) 
^,2 ox dy 

v„     du    dv 
* -     ■ + - 

jul2     dy    dx 

2.2 Boundary conditions and Initial conditions 



For the case shown Figure 1, the pair of spatially concentrated shear loads is applied 

suddenly on the crack faces. Exploiting symmetry and limiting ourselves to upper half- 

plane, y>0, the corresponding boundary conditions become 

Oy(X,  0, t) = 0, -oo<x<+oo, 

Txy (x, 0, t) = -qH(t)8{x + a), - ~ < x < 0, (5) 

u(x, 0, t) = 0, 0<*<+°°, 

where q is the force per unit length in the z-direction of the opposed line loads acting on 

the crack faces and H(t) is the unit step function. The dirac delta function, 6(x + a), has 

the dimension of length'1. In addition, the displacement at infinity is zero, and the body 

is stress free and at rest everywhere for t < 0. 

3 Integral transforms 

3.1 Laplace transform 

In equations (1), the time variable may be replaced by application of Laplace 

transform 

/•(*)= (7(0 e-dt,       f(t) = -^T\f\s)eads = -^T ff'is) e«ds, 
Jo lit I   JBT lit I   Jff-f~ 

(6) 

where Br denotes the Bromwich path of integration which is a line parallel to the 

imaginary axis in the s-plane. Thus, using the Laplace transform representation, the 

displacements have the form 

u(x, y, t) = —-7-   u(x, y, s) e"ds , 

v(x, y, t) = —^   v'(x, y, s) e"ds . 
in i JBr 



Applying the relations (7) to equations (1) and assuming zero initial condition, the 

transformed domain equations become 

<?V    d2u     n        JW     s2    .    n c"^+^+(1+Cl2W"7u =0' 
(8) 

d v c? v     „        x<? u      5 2   * 2 
U 

ok2       ZZ
 dy1     x      ,z/ <&<?y    c 2 +C22-Tl- + (1 + Ci2)^3 Tv  =0- 

s 

Applying the relations (7) to equations (4), the transformed domain relations between 

stresses and displacements become 

* 

= Cu 
du 
dx 

+ cn 
dv' 

dy ' 
* 

= ca 

du 
dx ■+

C22 
dy ' 

C du 
= -:—+ dv' 

(9) 

jln      dy      dx 

Finally, the application of the Laplace transform to the boundary conditions (5) gives, 

o*y(x, 0 , s) = 0 , -<*><x<+°°, 

T'V(X, 0, s) = -q/sö(x + a), -oo<x<0, (10) 

u(x, 0, s) = 0, 0<*<+°°. 

3.2 Fourier transform 

To obtain a solution of the differential equations (8) subject to conditions (10), the 

Fourier transform is applied, 

It is noted that the boundary conditions (10) are explicitly defined only on half of the 

range of x. Consequently, the Fourier transform can not be applied to these boundary 



conditions. To remedy this situation, the boundary conditions must be extended to apply 

on the full range of x. Two-unknown functions u_'(x,s) and t+'(x,s) are introduced. 

The function u_'(x,s) is defined to be the x- direction displacement of the crack face, 

y=0, for-~<x<0 and 0<t<°°, and to be identically zero for 0<*<+«> and 

0<t<oo. Likewise, the function i+\x,s) is defined to be the shear stress in the x 

direction on the plane, y=0, for 0 < x < °° and 0 < t < °°, and to be identically zero for 

-oo < x < 0 and 0 < t < °° . With these definitions, the boundary conditions (10) can be 

rewritten as 

ö*(x, 0,s) = 0, for-°o<x<°°, 

zxy'(x,0,s) = -q/sd(x + a)+ t+'(x,s), for -°o<x<°°,        (12) 

u(x,0,s) = u_\x,s), for -<*> < x < <*>. 

Thus, the Laplace transformed displacements have the form 

1   f" u\x, v, s) = —   u(0), y, s) e-"°xdco , 
2K J-. (13) 

v*(x, y, s) = -^- f v*(*>, y, s)e-ia*da) . 

Substituting these transforms into equations (8), the functions u* and v* are found to 

satisfy the ordinary differential equations 

——(\ + c22)ox— (cn6>2+—)u = 0, 
dy dy    . C' (14) 

d2v     ,.        .   .du      .   2     s
2 ._.    _ 

c^—-^-(l + cjö*— (<» +—)v =°- 

The solution of equations (14) under the condition of zero displacement at infinity is 



vi'(co,y,s) = Al(co,s)e~riy + A2(co,s)e'ny, 
irr ict (15) 

w\ü),y,s) = -^-Al(co,s)e-ny 2-A2((0,s)e-™ , 
co co 

where  A,(öJ,J)   and  A2(co,s)   are arbitrary functions, and  0,(0,5)  stands for the 

functions 

a^^Sii^lKzlL ,      (i = i,2), (16) 

with 7,2 and } 2  being two roots of the quadratic equation, 

c*}4 +Kcl2
2 +2cB -c,,^)^2 -(l + cB)*Vc.a]>a +(cHffl2 + *2/0«a2 + s2/c,2) = 0 . 

(17) 

From (17), it is readily found that the functions   } ,(ä)) and }2(co) are multiple 

valued functions of co in the complex co -plane with branch points at co = ±w / cs and 

co = ±isj^c^cs =±isjcd, respectively. It can be shown that for many materials thaty, 

and } j are real and positive. Thus, the expressions for the displacements in the Laplace 

transform domain become 

u =— f(A*~m + Vw)«","<*fl>. 

v*=—f (aIAc_m+a,VrW)-—da>• 

Substituting these displacements into the constitutive law, (9), we obtain 

:_ = -i£lL f (Ae"m +A,e-w)e"f6K^ö>+— [ (a./.A«""' +a2r2A2e"w) </fi>, 
27T.L. 2;r.L. tf> 

o 

Mi 

°y = _!£n^_ nAie-™ +A2e-n>)e-**d0)+!£2L C (aj.A^ + a ,y .A^™)—dco, 
IK J— IK J-~ CO Mn        I* 



2- = -— f (YAe~™ +y2A2e-ny)e-lmdo)-— f (a,A,e~w +a2A2e-ny)e-'ado, 
L.       2/rJ~ 2%J-~ 

z 

Ma 

(19) 

Substitution of the expression for o'y, the second of equations (19), into the boundary 

condition for o *, the first of equations (12), yields 

A2(co,s) = -ßAl(ü),s), 

c^aj.-c^ ^c^jc^O)2 +s2jc2 -Y2)-cn{\-\-cn)(D2 (20) 
c12a2y2 - ci2o)2    cn (cna)2 + s2/cs

2 -y2)- ca (1 + c12 )0)2 ' 

Using this result in the expression for shear stress, the third of equations (19), and the 

expression for horizontal displacement, the first of equations (18), we obtain 

V =-:TL f Ka> +ri)*"w "ß&i +Y2)e-™]Ale-i°*da), 
27Ü J~o 

u =— f [e~ny -ße-ny\A,e-'mdco. 
2n J~, 

Applying the remaining boundary conditions yields 

-^JKal+Yl)-ß(a2+y2)]Ale-i°'dcD = -q/sö(x + a) + T;(x,s), 

— f [l-ß]Ale-"mdco = u_\x,s). 
2n J— 

By Fourier transform inversion, these equations become 

-fiuKat +} ,)-/5(a2 +?2)]A, =-q/se-iaa +E+(ffl), 

where 

E+(6>)= \T+\x,s)eia*dx, 
Jo 

U_(a>)= [u_'(x,s)ei0*dx. 

(21) 

(22) 

(23) 

(24) 



Eliminating A, from equation, (23), we obtain a Wiener-Hopf equation, 

^C7M={/.(ffl)a-?/«*+I+(ffl), (25) 

where we have introduced the function 

R(o),s) = -^^SIL[(ai +/i)_ß(a2 +r2)], (26) 

Cnd + c^NMW+Ny1222 (27) 

CnMN? + N2
2) + c22(l + cl2)NiN2 +(cI2 + c12

2 -c,,^)]}, 

^u2 =^-fe.^ -c»  ~2cl2)±[(cuc22 -cn
2 -2c12)

2 -4cuc22]
V2} . (28) 

After algebraic manipulation, it is found that function R(cö,s) can be written as 

R(oy,s) = —   >'+''/*.'        {Cl2c22r,
2r2

2 -c12
2(i+cI2)rl72^ +(Cll*>2 +*2/0 

c22(i+c12)x,r2(r,+r2)c 
[c22(r,

2+y,2)+cna+cI2)yIr2 +(ca +cI2
2 -cuc22)<y2 -C^^/C,

2
]} . 

(29) 

From the physics of the problem, it is reasonable to assume that the function 

t+(x,s) and u_'(x,s) are exponentially bounded at infinity, which ensures the existence 

of their Fourier transform (24). In particular, it is shown by Noble  [8]  that if 

\r+'(x,s)\<Mle
x-x   as   JC->+°O   then   S+(ö;)is analytic in   Re(0)) = A>A_, and if 

I« '(x,s)\ < M2e
x+X as x -> -«> then £/_(fiO is analytic inRe(fi)) = A < A+. 

The function R(a),s) is analytic everywhere in the complex plane except for at the 

branch cuts of >,. between 0) = ±is/cs and a) = ±is/cd; it is single valued in the co- 

plane cut as shown in Figure 2. It can be shown that the only zeros of R(a,s) are of the 
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form ±is/cR where cK is the Rayleigh wave speed. This can be seen by substituting 

a = is/v in R(co,s), letting R(co,s)=0 and dividing by the non-zero factors, then 

R(i s/v, s) = 0 reduces to 

c, 
1-^-^1-^ = 0, (30) 

C22CI1        CI2 V 

c c2 , 

which is the Rayleigh wave function for orthotropic materials [13]. The roots of this 

function are v = ±cR. 

4 Wiener-Hopf technique 

To solve the Weiner-Hopf equation, (25), we use the Weiner-Hopf technique as 

follows. The function L(co) is defined and factored as 

im = L+(co)L_(co) = MnC     f(ffl'J>   2  , (3D 
Jco2+s2/cs 

then the Weiner-Hopf equation becomes 

L_W.M==?^+Ä (32) 
L+(co)      L+(co) 

If the function D(cü) can be written and decomposed as 

£>(ö)) = _£/££— = D+ (co) + D_(co), (33) 
L+(co) 

then the Weiner-Hopf equation, (32), is further reduced to 

D+ (a) + S+ (co)/L+ (co) = L_(co)U_(co)-D_(<a) = W(co). (34) 

The first expression for W(co) in (34) is analytic in the right half plane, Re(ft)) > A_, 

and the second expression is analytic in the left half plane, Re(<s;) </l+.IfA_>A+,the 

11 



regions of analyticity overlap and by invoking analytic continuation, it is concluded that 

W(ct)) is analytic and single-valued in the whole CD-plane shown in Figure 2. 

Furthermore, invoking the extended Louisville theorem, it can be shown [8] that if W(co) 

is bounded and entire and Wifli) -» 0 as a -» °°, then W(ct))=0. Hence, we can solve for 

the transform of stress ahead of the crack tip, L+ (a), and displacement, U_ (a), behind, 

Z+(fl» = -0+(ffl)I+(fl», 

Ü <„)=*<«> • (35) 

L_(a) 

Following this outline, the first step is to factor L(fi>), (31), by defining 

R(co,s) 
Q)2 +S2/cK 

FW- r.r. • <36> 

Note that by making 0) = isc, in equation (36), then F(ca) is changed to a function only 

of g, 

It can be shown that F(g) -> 1 as ^ -» ~, (the constant C in (27) was chosen to make 

this possible). The function F(g) is regular and F(g) * 0 in the g -plane cut as shown in 

Figure 3. The only singularities of F(g) are the branch points shared with } ., (i = 1, 2), 

i.e. g=±l/cs and g=±l/cd. It is well-known that factorization of a function is 

accomplished most directly for functions which approach unity as \c\ -> °° and which 

have neither zeros and nor poles in the finite plane. Indeed, F{g) is an example of such a 

function. Therefore, using Cauchy's integral formula, it can be shown that [10] 

12 



where T_ is the closed counterclockwise contour enclosing the branch points 

+ l/cd and +l/cs, and also T+ is the closed counterclockwise contour enclosing the 

branch points - \jcd and — 1/c,. 

Using the fact that F(?) = F(g), H{-rf) = -H(r[), then 

F±(^) = exp{-if^)-^:}, (39) 

where H(TJ) = tan ' — / ,n  . 
{RC[F(7J)]J 

By making g = co/is in equation (39), then F±(g) is changed to F±(co). 

Returning to the factorization of L(a)), we now have 

««) = LM)L («) - /l^'*i<°*» + 'f'*'-l*J .        (40) 
^jco +1 s/ci T]CO -1 s/cs 

Therefore, 

Ja-is/c, 

T (ü) + is/cR) 
L+{co) = \      ,'"F+(a)). 

^0) +1 s/cs 

(41) 

Substituting equation (41) into equation (33) the function D{co) can be obtained, 

L+(0)) (eo + is/cR) F+(co) 

Through Cauchy's integral formula, we obtain 

13 



2mJc+z-a) s  2mJc±(z-QJ)(z + i 

i f    yz+.-./c,    ^_ 
2;n Jc± (z - ft>)(z + i s/cR) F+ (z) 

where C is the closed counterclockwise contour enclosing the branch points 

+isjcd and +is/ct, and C+ is the closed counterclockwise contour enclosing the branch 

points -is/cd and -is/ct. 

Thus, we can show that W(co)=0, and using equation (35), we can readily obtain 

£+(fti) and £/_(«). We only give X+(ft)) here, 

~,  v, ,  x    qFAu))(0)+is/cK) C       Jz + is/c,       e*"   . 

(44) 

5 Stress Intensity Factor 

To find the stress intensity factor, an asymptotic expression for the shear stress near 

the crack tip is sought. A well-known result relating asymptotic expressions between a 

function and its Fourier transform (Abelian theorems) [8] is 

lim Vx*+* (*, s) = lim e4"* J—E+ (ft)). (45) 

(46) 

Thus, the usual definition of the stress intensity factor gives 

K'(s) = \im-427är\x,s) = lime""4V2ä)E+(ß)) = lim <&{co), 
" v   '        x->0+ <»-»■(- «-»+~ 

<SKß>) = e~'*/4V2flJI+(fl>). 

As ft) -> +«o, <£(ftO becomes 

^^^fÖL^. (47) 
s   2m Jc+ (z + i s/cR) F+ (z) 

and, by making z = isg, equation (47) becomes 
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0(<y) = — 
V2<7  1   f JS+Vcs   e'* 

rfJr*(C + 51'2 2mJr+(?+l/cR)F+(^) 
d£, as öJ -> +00. (48) 

Thus, 

*»=-V2J^Jr^)^|, (49) 

where 

8(0 = 
Vr^T »'<" 

(ff+VOF^ff)*1 

Note that g(£) = g(f), and g($) -> 0 as |$| -»°° in the left half plane. Also, note that 

F+ (-£) = F_(g). Consequently, equation (49) can be written as the real integral 

--JIW 

(50) 

„c     {(l/cR-Tj)F_(V) *    J 
drj, 

where t] is a positive real number. 

Applying the inverse Laplace transform to K^(s), using the convolution formula and 

letting Tj'a = t, the stress intensity factor Kn(f) can be written as follows 

K„(t) = -q<sj2/mi -if* im 
It Jl/cj 

( W^n 
(l/cR-Tj)^t/a-7]F_(T]) 

dr] (51) 

The integrand of (51) has a first order singularity at g = l/cR and branch points at 

c, = l/cd, c, = l/cs and g = g0=t/a , which is shown in Figure 4. Here, pay attention to 

those points at c, = l/cd, g - l/cs, £ = £0 =t/a and c, = l/cR , which are critical of the 

integrand of (51) as shown in the Figure 4. 
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For t/a<l/Cj,no waves generated by the applied loads have arrived at the crack 

tip, hence the stress intensity factor Kn (t) is identically zero. 

For 1/cd<tIa<\lc,, a direct evaluation procedure for the stress intensity factor 

Kn (0 can not be applied to the integral. It has to be obtained by numerical evaluation. 

For t/a>l/cs, the integrand of (51) is analytic in the entire £-plane cut along 

l/cd <Re(£)<f la, Im(Q=0, except for the pole point at c, = l/cR . In this case, the 

path of integration can be closed around the right side of the branch cut shown in Figure 

4. The integral, (51), takes the form 

Kii(t) = .^i     VEZi      *      ^,, (52) 

where r(£0) denotes a closed counterclockwise contour embracing the branch cut of the 

integrand. Cauchy's integral formula can now be applied to show that value of the integral 

in (51) is equal to the value of the integral taken along a closed counterclockwise circular 

path of indefinitely large radius, (Q), in £-plane shown in Figure 4. Therefore, 

(l/cR-Uc,)m 

*„<0  =1_ 
-iM na 

if \lc.<tla<\lcc 
(\lcR-tla)mF_{\lcR) * *. (53) 

0 if  tla>\lcR 

The first term on the right side of (53) is the contribution from the closed contour of the 

large radius and the second term is the residue contribution. In addition, The first term in 

(53) is the corresponding static solution for a semi-infinite crack under shear concentrated 

forces applied on it faces, Kn (t) = -q^Jlfm . 
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6 Results and Discussion 

Using equations (52) and (53), the stress intensity factor K„(t) can be calculated. 

The computed results are shown in Figure 5-8 for several materials, and the mechanical 

properties [14] used for the analysis are given in Table 1. The following tips should be 

taken into account when performing the numerical evaluation of the integral in (51). 

(1)   Theoretically,    R(co,s)'m   equation   (26)   can   include   either   the   factor 

Jet)2 +s2/c/   or Jo)2 +s2/c2 , and we should have  F(g) = 1 as £-»oo. However, 

experience shows that if the factor Jet)2 +s2/cd
2 is selected in R(co,s), it is difficult to 

numerically make F(g) = F+(g)F_(g) at points in the regions close to [l/cd ,1/c, ] and 

[-l/cs, -l/cd ], where F(g), F_(g) and F+(g) are respectively calculated using equations 

(37) and (38). This is true even though F(g) = 1 and F(g) = F+(g)F_(g) at points very 

far from [l/cd ,1/c, ] and [-1/c,, -1/cJ. For the problem with concentrated normal 

loads [3], the factor Ja)2 + s2/cd
2 should be selected in R(co,s), while the factor 

^co2 +s2/c2 should be selected in R(co,s) for the problem in this paper. Otherwise, 

there may be large errors in the calculations. 

(2) It is best to adopt the formula F_(g) = F(g)/P+(g) to indirectly calculate the 

values of F_(g) along [l/cd ,1/c, ] because F_{g) is not analytic along [l/cd ,1/c, ]. At 

c, = l/cR the value of F_ (l/cR) can be directly obtained by using the equation (39). 
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The numerical results presented correspond to isotropic and orthtropic materials. 

Properties of transversely isotropic materials with fibers parallel and perpendicular to the 

x-axis are considered in the orthtropic case. 

For isotropic materials, as mentioned in [3], note that the mechanical parameters 

make }, = j 2 and further lead to/5 = 1 and R(co,s) not defined. Consequently, in order 

to obtain the results for the isotropic case from the orthotropic formulation, we let 

Ex = E, E2 = (1 -e)E, vl2 = vn = v and /ixl = E2/2(l + v) where E and v correspond 

to the isotropic properties and £ is a small quantity with e «1. 

Figure 5 shows  Kn(t)   for an isotropic material in the plane-strain case. The 

normalization factor is the long time limit Ku (°°) = -q^Jlfm and the normalized time is 

cd t/a. The behavior illustrated in Figure 5 is as expected from the surface displacements 

in the calculated solution of Lamb's problem where a concentrated shear load is applied 

on a half-space [15]. Horizontal displacements on the surface, generated by the point 

load, arrive at the crack tip with the arrival of the dilatational wave causing a rapid 

increase in the stress intensity factor. In addition, the results in Figure 5 are very similar 

to that of the problem in [2], before the arrival of the second dilatational wave, shear 

wave and Rayleigh wave, where a finite crack in infinite orthotropic body is impacted by 

two pairs of concentrated shear loads. After the arrival of the dilatational wave, a rapid 

increase in Kn(t) is observed, and then the stress intensity factor gradually decreases 

until the shear wave front arrives at t = a/cs. Thereafter, the stress intensity factor 

decreases rapidly to a negative square root singularity at t = a/cR, which is the instant of 

the arrival of the Rayleigh wave traveling along the crack faces from the point of 
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application of load. For timct>a/cR, the stress intensity factor takes on the constant 

value -q^ljim., which is the equilibrium stress intensity factor for the specified loading. 

Obviously, the dilatational wave has an important effect on Kn(t) under applied 

concentrated impact shear loads, unlike applied concentrated impact normal loads where 

the dilatational wave has a minimum effect on Kt(t) [1,3]. The stress intensity factor for 

an isotropic material in the plane-stress case is identical to the plane-strain case except for 

differences in the dilatational wave speed. 

Figure 6(a) and 6(b) show the stress intensity factor history for a graphite-epoxy 

composite in the plane-strain state with fibers parallel to the x-axis and y-axis, 

respectively. Both figures are similar to the results for the isotropic material shown in 

Figure 5, except that there is a more uniform plateau from t = a/cd to t = a/cs and a 

steeper drop at t = a/cR . In Figure 6(b) the plateau is lower than in Figure 6(a) and the 

duration of the plateau is longer due to the dramatic difference in cd for these two cases. 

The Rayleigh wave speeds are approximately the same; the shear wave speeds are exactly 

the same. 

As expected, the behavior illustrated in Figure 6(b) is the same as that for the 

corresponding case of Rubio-Gonzalez and Mason [2] before the second set of waves 

arrives crack tip. The behavior illustrated in Figure 6(a) cant be directly compared with 

that of the corresponding case of Rubio-Gonzalez and Mason [2] because in that work the 

second dilatational wave arrived at the crack tip before the arrival of the first shear wave 

and Rayleigh wave leading to very different loading conditions. To the knowledge of the 
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authors, this is the first presentation of results for this case that are not disturbed by 

reflected or secondary waves. 

Figure 7 and 8(a) show the plane strain stress intensity factor history for the E-Glass 

Epoxy and Boron Epoxy composites, respectively. In both of cases the fibers are oriented 

along the x-axis. Figure 7 and 8(a) are very similar to Figure 6(a). Figure 8(b) shows the 

singularity at t = a/cR more clearly. The singularity can be quite difficult to capture using 

the method of Rubio-Gonzalez and Mason [2] because the shear and Rayleigh wave 

speeds are nearly equal. Here, equation (53) gives Kn(t) explicitly. 

7 Conclusions 

(1) For impact concentrated shear loads on a semi-infinite crack in an orthotropic 

material, the arrival of the dilational wave at the crack tip makes an important 

contribution to the dynamic stress intensity factor £„(0, unlike in mode I loading where 

dilatational wave had a minimum effect on Kl it). 

(2) The long time value, Ku(eo) = -qj2/mi, is independent of the mechanical 

properties of the orthotropic material, however the curve shape and magnitude of Kn(t) 

from t = a/cd to t = a/cR is very dependent on the mechanical properties of materials. 

(3) From the results given here for an isotropic material and orthotropic materials, we 

can conclude that the normalized K„(t) from t = a/cd to t = a/c„ is less than 1 except 

at a singularity at t = a/cR . In addition, under similar conditions, when fibers are parallel 

to the crack direction K„(t) is generally greater than when the fibers are perpendicular to 

the crack direction. 
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(4) Finally, the method outlined here can easily be extended to solve the problem of a 

semi-infinite crack under more general impact shear loads on the faces of a semi-infinite 

crack. Alternatively, the solution presented here can be used as a Green's function to 

solve more general problems. Both methods should yield the same results. 
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Table 1 Mechanical properties used for the analysis 

Isotropie 
material 

Graphite 
Epoxy 

E-Glass 
Epoxy 

Boron 
Epoxy 

£, (Gpa) 200 156.75 45 207 
E1 (Gpa) 200 10.41 12 19 

*n 0.3 0.31 0.19 0.21 

^23 0.3 0.49 0.19 0.21 
Mn (Gpa) 76.92 7.07 5.5 6.4 
Ptfg/m') 7840 1580 2100 1990 

qH(t) 

qH(t) 
Y(2) 

■a 

X (1) 

Figure 1 Schematic of the serni-infinite crack under concentrated shear impact loads 

i 

Im(Q   £=(a/is 

Re(Q 

-l/cs -l/cd l/cd          l/cs 

Figure 2 Branch cuts in the co-plane Figure 3 Branch cuts in the £-plane 
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Im(0   A Im(Q    * 

1 - 1/cd, branch point 
2 - 1/c,, branch point 
3-1/cR, pole point 
4 - t/a , branch point 

> Re(C) 

1 -- 1/cd, branch point 
2 - 1/c., branch point 
3 - 1/cB, pole point 
4 - t/a , branch point 

(a)For 1/c <tla<\lcB (b)For tla>\lcR 

Figure 4 Branch cuts in the £-plane and Integral path 
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Figure 5 Stress intensity factor history in an isotropic material under concentrated shear loads 
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Figure 6(a) Stress intensity factor history in Graphite Epoxy under concentrated shear loads 
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Figure 8(a) Stress intensity factor history in Boron Epoxy under concentrated shear loads 
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Chapter 5 

The Dynamic Stress Intensity Factor 
and Strain Energy Release Rate for a 
Semi-infinite Crack in Rotated 
Transversely Isotropie Materials due 
to Uniform Impact Loading 

co-authored with C. Y. Wang and submitted to International Journal of Fracture 

The transient elastodynamic response of a rotated transversely isotropic material under 

uniform normal impact loading on the faces of a semi-infinite crack is examined. Three 

loading modes are considered, i.e., opening, in-plane shear and anti-plane shear. Their 

solutions for the stress intensity factor history around the crack tip are respectively found. 

Laplace and Fourier transforms together along with the Wiener-Hopf technique are employed 

to solve the equations of motion. The analyzed asymptotic expression of stress near the crack 

tip leads to a closed-form solution of the dynamic stress intensity factor for each loading 

mode. It is found that the stress intensity factors are proportional to the square root of 

time as in the isotropic case. Results for rotated transversely isotropic materials converge 

to known solutions for un-rotated orthotropic materials, un-rotated transversely isotropic 

materials and isotropic materials as special cases. For shear loading on a penny crack in a 

transversely isotropic material, the analysis is used to find approximate strain energy release 

rates. 
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1. Introduction 

There are many closed-form solutions for stationary and propagating cracks in isotropic 

materials under dynamic loading [1, 2]. The stationary semi-infinite crack under uniform step 

loading in the crack faces was first considered by Maue [3]. The equivalent propagating case was 

studied by Baker [4]. Many solutions for various loadings of cracks in orthotropic materials have 

been found by applying transforms to the displacement formulation of the equations of motion. 

Previous researchers [5, 6] following this approach had solved the resulting dual integral 

equations using the method of Sneddon [7, 8]. For a semi-infinite crack under concentrated or 

uniform loads in orthotropic materials, Rubio-Gonzalez, Mason and Wang [9, 10 and 11] solve 

the same equations by converting the dual integral equations to a Wiener-Hopf equation. 

Solution ofthat equation requires only a straightforward application of the method of Noble [12]. 

The Wiener-Hopf technique was used to solve the equation, find the stress ahead of the crack tip 

and find the displacement on the crack faces. The asymptotic expression of stress near the crack 

tip leads to the stress intensity factor K{t). 

The growing use of composites in many engineering applications demands a fundamental 

understanding of the response of cracked orthotropic bodies to impact loading. In this paper, the 

problem of uniform normal impact loading on the faces of a semi-infinite crack in a rotated 

transversely isotropic material is analyzed using the same method as [9, 10, and 11]. While it has 

been thought that the Wiener-Hopf technique could not be applied to problems such as this [1, 

13], the approach has recently been shown to be valid in such cases. Through Laplace and 

Fourier transforms combined with the Wiener-Hopf technique, a closed-form solution for the 

stress ahead of the crack tip is sought. The asymptotic expression of stress near the crack tip 

leads to the stress intensity factor K(t). 



The analysis is motivated by investigations of dynamically loaded penny shape cracks in 

orthotropic (or composite) materials. Because of the orientation of the composite fibers, or 

principle axes of the orthotropic material, the penny shaped crack problem is not axisymmetric 

and can not be solved using an axisymmetric approach. As an approximation, in this work, 

attention is focused on regions very near the crack front where a plane strain approach becomes 

an accurate approximation. There, the problem can be reduced to that of a semi-infinite crack in 

a rotated orthotropic material for short times. This is only approximate because the effects of 

waves generated at other points on the crack front are neglected. Thus the exact solutions 

presented here for semi-infinite cracks offer only an approximate solution for the penny shaped 

crack. The solution is useful, however, in developing intuition about the most probable location 

of crack initiation for the penny shaped crack and, consequently, can give qualitative predictions 

of the final shape of the crack after finite duration loading. 

2 Equations of motion 

The quasi-three-dimensional problem of an infinite transversely isotropic body with a 

semi-infinite crack is considered in Figure 1. The body is initially stress free and at rest. A 

Cartesian (xx,x2,x3) coordinate system is chosen to coincide with the principle axes of material. 

The transversely isotropic material has a symmetry plane on x3 = 0 and an axis of symmetry 

along x3. Another right-handed rectangular {x, y, z) coordinate system is introduced in the body, 

oriented so that the z-axis coincides with the crack edge. The y-axis is identical with the x2 -axis, 

consequently, the coordinate system (x, y, z) is related to the (x1,x2,x3) coordinate system by a 

rotation with 0 around the x2 -axis. The crack faces are suddenly loaded by uniform traction, as 



shown in Figure 1. Let En Giy and viy (i, j = 1, 2, 3 ) be the engineering elastic constants of the 

material where in the indices (1,2, and 3) respectively stands for the directions (xx, x2, x3). 

The problem is assumed to be two-dimensional and to include inertial effects. However, 

because of the constitutive law, the out of plane displacement (in the z-direction) can not be 

neglected and a coupling exists between in-plane and out-of-plane deformation. Hence, three 

components (u, v and w) of the displacement vector exist in the (x, y, z) coordinate system and 

are independent of z, that is, 

u = u(x, y), 

v = v(x,y), 

w = w(x, y). 

(2.1) 

In the (xvx2,x:i) coordinate system, the non-dimensional stiffness matrix for the a 

transversely isotropic material is 

C = 

Ml       ^-12       M3 

'12       Ml 

-13       u13 

0 

0 

0 

0 

0 

0 

i.,3 

C33 

0 

0 

0 

0 

0 

C55 

0 

0 

0 

0 

0 

C55 

0      0      0 

0 

0 

0 

0 

0 
Cll       C12 

(2.2) 

where C has only five independent constants. The non-dimensional parameters c~ have the 

following relations with the engineering elastic constants for plane strain conditions 

Cil = 

£iCl-v13v31)        _£3(l-v12)        _£1(v12+v13V31j        _£,v13 
'  C33 ~ /-,     K '     12 —    s*i   /i \*    '     13 — 

Gn{ l + v12jA GI2A Gn(l + vn)A G12A 

c55=—^, A=(,l-v12-2v13v31), G12 = 
'12 2fl + v12>)    E3     Ex 

^i3__^3i_   £n__£i2__i (2.3) 



Next, by a coordinate transformation involving a rotation about x2, the non-dimensional 

stiffness matrix C in the (xl,x2,x3) coordinate system is changed to a new non-dimensional 

stiffness matrix D in the (x, y, z) coordinate system [14], 

D = 

"ll      "12      "13 

a12      «22      ^23 

p13 

0 
23 

0 

p33. 

0 

d,.    d«c    d M5 

0 
25 

0 

l35 

0 

0 

0 

0 

0 

M5 

p25 

d 35 

0 

*55 

0 

0 

0 

0 

0 

rf«6. 

(2.4) 

where the thirteen different constants in D are given as 

du =c11cos4ö + 2fc13 +2c55,)cos20sin20 + C33sin40, 

dn = cn cos2 6 + c13 sin2 6, 

dn = c13cos4#+(c11 +c33 -4c55/)cos20sin20 + c13sin40 , 

dl5 =(cu-Cj3 -2c55 Jcos3 6sin6 + (cI3 -c33 + 2c55 Jcos0 sin3 0, 

"22    ^n' 

cf23 = c12 sin2 6 + c,3 cos2 6, 

^25 = (C12 ~~ C13 )Sm # COS # , 

J33 = cn sin4 6 + 2fc13 + 2c55 jcos2 ösin2 6 + c33 cos4 0, 

^35 =^ci3 ~c33 +2c55 jcos3 OsmG+(cu -cn -2c55)cos6sin36, 

du =—(cu -c12 Jsin26 + c55cos20, 

d^ =—(cu -cn -2c55 jcosösinö, 



(2.5) 

(2.6) 

d55 = c55 cos4 0 + (cx, - 2c13 + c33 - 2c55 Jcos2 6 sin2 0 + cS5 sin4 0, 

^66 = T^C11 ~ C12 ^COs2 ö + C55 Sin 2 # » 

Note that for the case 0 = 0 the material is isotropic in the plane, 

du =cu,dn=cn,dn=cn,dX5 =0,J22 =clpJ23 =0,3,^25 =0, 

^33 = C33'rf35 =0,^44 =C55'rf46 = °> ^55 = C55 '^66 = (Cl 1 "^V2- 

For 9 = 90° the material is orthotropic in the plane, 

du = c33, dn = c13, J,3 = c,3, d,5 = 0, d22 = c„, ^23 = c12, ^25 = 0, 

d3i=cw d35 = 0, rf^ =(cn -cn)/2, d^ = 0, dS5=c55, d«, =c55. 

Due to the two-dimensional assumption, equation (2.1), all the derivatives with respect to z 

are zero. Thus, in the (x, y, z) coordinate system the equations of motion [16] become 

J   <?2u    J   <?2u    ,.        .  ,<?2v      ,   <?2w     .   <?2w      <?2u 
J1,^+^^+(^+dl2)^+rfl5^2"+^^I"=^"' 

,  J2u      .    <?2v ,   ,   d2v    .,    ,   .   .<?2w      <?2v ,0T. 

where u, v and w are the x, y and z components of the displacement vector. In the rotated 

transversely isotropic solids shown in Figure 1, cs = ^Gn/p represents the velocity of the shear 

wave propagating in X,JC2-plane (cd = yfc^cs is the velocity of the dilatational wave propagating 

along x2 -direction in xxx2-plane which will be used later) and p is the mass density. When 

0 = 0 or 6 = 90°, di5 = d25=d46=0 and the third equation becomes uncoupled from the first 

two equations, when 0<9<90°, this coupled system is required. 

Finally, the stresses are related to the displacements by the equations, 



*> -A    ^\uA   tda
J.*f\ 

= «46 T" + «66 (— + ~). G12 <?y ay    ax 

G12 oy ay    ax 

ö"v öu <?v <?w 
-PT ~ «12 3~ + «22 3— + «25 "T" . 
G12 Ä <?y <äc (28) 

er <& ÖV     .   <?w 

G12 otc ay      .   ax 

<J,      ,   aa     ,   av     ,   dw 
7^~ = d» 3: + d* 3- + «35 -57. G12 0% ay ax. 

T„      ,   ck     ,   av     ,   aw 

G12 ax ay ax 

3 Normal Impact 

For the loading shown Figure 1, the spatially uniform normal traction with magnitude o0 is 

suddenly applied on the crack faces. Exploiting symmetry and limiting ourselves to upper half- 

plane, y>0, the corresponding boundary conditions are 

oy(x,0,t) = -o0H(t), -oo<x<0, 

rxv(x,0,t) = 0 -oo<;c<+°o, 
(3.1) 

Tyz(x,0,t) = 0 -oo<x<+oo, 

v(*,0,t) = 0, 0<x<+o hoo . 

where H(t) is the unit step function. 

The displacement at infinity is zero, and the body is stress free and at rest everywhere for 

f<0. 

3.1 Laplace transform 

In equations (8), the time variable may be removed by application of the Laplace transform 



/*(')= rf(f)e-*dt,  /(t) = T^f /*(*)«-<fc = -irr*"/,(*)e-&, (3.1.1) 
Jo 2n i JBr 2n i J<T_,~ 

where Br denotes the Bromwich path of integration which is a line parallel to the imaginary axis 

in the s-plane. Thus, using the Laplace transform representation, the displacements have the form 

u(x, y, 0 = —7-   u'(x, y, s) e"ds , 
2Kl   JBr 

v(x, y, 0 = -V f V'(JC, y, i) c*&, (3.1.2) 
IKl    JBr 

w(x, y, t) = —-7-   w*(x, y, s) e"d.s. 
2Kl  JBr 

Applying the relations (3.1.2) to equations (2.7) and assuming zero initial condition, the 

transformed domain equations become 

.   <?V      .    <?V     .,        ,  JW      .   <?2W*      .    <?2w*     5V     . 

(rf«+^)l«r''66^+d!2lF+(''"+^)**"=0'      (31-3) 

s 

Applying the relations (3.1.2) to equations (2.8), the transformed relations between stresses 

and displacements become 



7 ,   dw*     ,  ,ä\i     av\ 

Gn ay ay      ox 

T ,   aw*     ,  ,a\x*    öV\ 

Cr12 ey ay     ox 

ö"        ,   öV     ,   ov*     ,   öw* 
—— — a,,—-—ha,,-——I-a.    /- 12    ->      ' "22    T    T"25     T.     ' 
Gn A ^y Ä ,(314) 

<Jr       ,  öV     ,   öV     .   dw* 
~F~ = dl ■ 17 + J'2 "A" 

+ rf«s -5-. G12 ca ay ox. 

<J-       ,   da       ,   öv*     ,   aw* 

G12 oa oy ox 

—^ = "1 s ~T~~ + "?-; -^- + "<;<; -X- • 
12 ox ay ox 

The application of the Laplace transform to the boundary conditions (3.1) gives, 

o*(x, 0,t) = -o0/s, -°o<cc<0, 

T   *(x, 0, t)=0 , -oo<x<+oo , 
(3.1.5) 

T^ (X, 0, t)=0 , -oo<CC<+°o , 

\*(x, 0, t)=0, 0<x<+ 00 

3.2 Fourier transform 

To obtain a solution of the differential equations (3.1.3) subject to conditions (3.1.5), the 

Fourier transform is applied, 

f{co)= \f{x)elmdx,       f(x) = -±- tf«o)e-imda) (3.2.1) 

It is noted that the boundary conditions (3.1.5) are defined only on half of the range of x. 

Consequently, the Fourier transform can not be applied to these boundary conditions. To remedy 

this situation, the boundary conditions are extended to apply on the full range of x. Two- 

unknown functions v_*(x,s) and o+\x,s) are introduced. The function v_*(x,s) is defined to 



be the y-direction displacement of the crack face, y=0, for -<» < x < 0 and 0 < t < °°, and to be 
t 

identically zero for 0 < x < -H» and 0 < t < °°. Likewise, the function o+* (x, s) is defined to be 

the shear stress in the x-direction on the plane, y=0, for 0 < x < ~ and 0 < t < °°, and to be 

identically zero for -°o < x < 0 and 0 < t < <*>. With these definitions, the boundary conditions 

(3.1.5) can be rewritten as 

*o ay (x, 0,s) = —-H( -x)+a+ (x,s), -oo<x<+oo, 
s 

T^ (X, 0, S)=0 , -oo<x<+oo , (3 2 2) 

T^(X, 0, S;=0 , -oo<X<+oo , 

v*fo 0, s)=\_*(x,s), -oo<x<+oo. 

Thus, the Laplace transformed displacements have the form 

u(x, y, s) = — I u*(fl>, y, s) e^dö) , 
2/r J~ 

V*(JC, y, s) = — fv*(6>, y, s) e^da) , (3.2.3) 
2;r J~ 

W*(JC, y, s) = —jw*(ö>, y, s)^""0^«» . 

Substituting these transforms into equations (3.1.3), the function ü*, v* and w* are found 

to satisfy the ordinary differential equations 

-(dna)2+s2/c2)u +d66—-T-(d66+dn)ca——dl5G)2w +d46—ir = 0, 
ay ay dy 

-(d«+dl2)ax^-(d«<o2+s2/c2)v*+d22^-(d«+dv)ax^ = 0,       (3.2.4) 

2_* .      d2VL*        ,, ,     N     .OW*        ,, 2,2/     2,~*   ,     ,      <?   W -dI5<y2u +rf   _—r-(d46+d25)fl»—-—(d550)2+s2/cs)w +d44—-r = 0. 
dy ay ay 

This system of equations can be rewritten as 
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(d«     0     d„ 
0     d22     0 

^46       0      dM 

f-dnco2-s2fc2 

0 
-dl5co2 

d2V 

dy7 

o -(^66 +da)ai 0 \ 

~^66« 

- (d<* +di2)ax 0 - (du + </„ )a* 
0 -(d^+d^ax 0 

0 -^15»
2       ^ 

2-s2/cs
2 0 p*=0, 

0 -rf556>2 -s2/c,: 

dCT 
dy 

(3.2.5) 

where U* =(«*, v\ iv*)T. This is a second order system of ordinary differential equations with 

constant coefficients having solutions of the form 

Ü* = A(fi>, s)e~», y > 0. (3.2.6) 

where A(fi),s) = (At,A2,A3)
T 

The solution of equation (3.2.6) under the condition of zero displacement at infinity is 

3 

u'(co, y,s) = ]T A,(6>, s)e~r,y, 
I=I 

3 

\*(co,y,s) = Y,^iO(i(o),s)Ai((o,s)e~r'y, 
i=i 

3 

w * (co, y, s) = £ ß, (a, s)Ai (co, s)e~ 

(3.2.7) 

-M 

where A,.(ö;,S) is arbitrary function, and at((ü,s), fi;(co,s) stand for the functions 

a{tos)-     <d« +dnXd«rt -^ -s1/',*)-^« +d12)(d46y
2 -dl5a>2) 

'    '       (.dnY2-d^co2-s2lcs
2)(d«Y?-dl5<D2)Hd«+dn)(d«+dt5)co2Yy 

ß {(a =)_   V« +dl2)
2a>2y2 +(d22y

2-d^co2-s'/c^Kd^y2-dna>2-s2/ct
2) 

'   '      (d22y
2-d^co2-s2/cs

2)(dA6y
2-d^Hdn+duXd^+dnWy2' 

with y,   , y2   and y3   being the eigenvalues of the sixth order equation 

det 
d^f ■dl%co d66f-dnü)2-s2/cs

2 (dn+dnWy 

(d^+dn)coiY d22y
2-d66o)2-s2/cs

2 (dA6+d25)oxy 
d,6y

2-d15co2 (d^+d^coiy d^y2-d550)2-s2/cs
: 

= 0. 

This determinant is further expanded as 

(3.2.8) 

(3.2.9) 

ll 



,6 . b _4 , c „,2 , d y*+-y't+-y'+- = 0 (3.2.10) 
a        a        a ' 

where 

2 
a = d22(d46  -d^d^), 

b = (d22du -dj +d22d66 + dA4d66)s
2/c2 +(-dl2

2d44 +dud22d44 

-2di5d22d46 + 2dl2d25d46+2dndA6
2 -d25

2d66-2dl2d44d66 +dnd55d66)0)2, 

c = -[(d22 +du +d66)s
4/cs*+(-dn

2 +dnd22 -d25
2 +dudu - 

2dl5d46 -2^25^46 ~d^ +d22d55 -2dnd66 +d4Ad66 + dS5d66)co2s2/cs 
2 

+ (-dl5 d22+2dl2dl5d25-dnd25 + 2dndl5d46-2dud25d46-dnd46 

1 A 
-dl2 d55+dud22dS5+2dlsd25d66+dnd44d66-2dl2d55d66)a) ], 

d = (d66a)2+s2/cs
2)[s4/cs

4+(du +d55)o)2s2/cs
2+(dud55 -dx

2)co% 

From (3.2.10), it is readily found that the functions y,(eo), y2(co) and y3(co) are multiple 

valued functions of co in the complex a -plane with branch point at co = ±IS/KS1 , co = ±is/ics2 

and co = ±i sJKd , respectively, which are the roots of the equation given by d=0, i.e. 

{d^co2 +S
2/c2)[s4/c;+(dn +d55)co2s2/cs+(dnd55 -d15

2)co4] = 0, (3.2.11) 

so KS1 = 4TxcsX, KS2 = Jd^csl, and Kd = <Jd^csl, 

where 

2{dud55-dx
2) 

4 = 
du + d55 + V^u  + 'Hs ~ 2^iirf55 + d55 

_ 2(dnd55-dl5 ) 
"2 —" 

^n  +4^i5  -2dud55+d55 

Note that for the case 0 = 0, JCSX° = <$c^cs, Ks2  = J— —cs = cs and Kd° = <$c^cs. The 

parameters, KSX , KS2   and K"^ , are the shear wave speed in x2x3 -plane, the shear wave speed in 

12 



xxx2 -plane and the dilatational wave speed along x2 -direction in xxx2 -plane, respectively; for 
t 

the case 6 = 90', K™ = Jc^cs, K,™ = Jc^cs and K™ = Jc^cs. 

Later we will be interested in the behavior of these functions for co -»°°. In this case, 

y* -» co2N2 (/ = 1,2,3), where N2 are the roots of the following equation 

N6+LN*+1N>+± = 0 (3.2.12) 
a a a 

where 

a = dz2(d46 -d^d^), 

b = -dX2d^ + dxxd22d^ -2dX5d22d46+2dX2d25d46 + 

2dndA6  ~disd(A -2dndud(t> + d22dssd66' 

C = -irdXS2d22 + 2^,2^,5^25 ~ d\ldK    + 2dndl5dA6 ~ 2dUd2SdK ~ d\\dK 

-dn
2d55 +^„^22^55 +2^15rf25^66 + dl\dUdt6 ~2dnd55d66)> 

d=d66(.dud55-d15 ), 

Similarly, as<a -> °°, a,(ffl,s) and /5,(<0,.s) become 

,     ,        -       <<*« + d2s)id^2 -dn)-(d66+dn)(d«,N2 -d15)      1 
GC((0,S)—>CX;    = r ;: 5      T» 

(</22tf,.
2 -d^id^N2 -«/„) + («*„ + «*iaX«*« + «*2sW   "> 

„ -- (<*« +dn)2N2+(d66N
2 -du)(d22N

2 -rfw) 
Ai  '"     A' (</22N,2 -d^id^N2 -</„) + («/« + dX2)(d46+d25)N

2' 

(3.2.13) 

It can be shown that for many materials that the roots of (3.2.10), y ,, 7 2 and 7 3, are real 

and positive and the expressions for the displacements in the Laplace transform domain become 
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u =— f(A,e-w,+ A2e"''2V +A3e-ny)e-ia*dö), 

v* = ^- \(ylalAle-,v' +r2a2A2e-™ + y,aiAie-ny)e-imdco, (3.2.14) 

w* = — f {ßxAxe~™ + /S2A2e"m +y53A3e-''3VK,aÄ^. 
2# J— 

Substituting these expressions for displacements, (3.2.14), into the constitutive law, (3.1.4), 

we have 

~G '12 

T. 

G 

21. = -— f(m, A,e-r'y + m2A2e-™ + m3A3e~m) e-io*dco, 
?,2 2?T J-~ 

^- = -— [{nxAxe~™ +n2A2e~™ + n3A3e~ny) e-iaK da, (3.2.15) 
r12 2^" J-~ 

^- = -— f(*i V~r" + *2 V™ +k3A3e-™)e-imKdo), 

where 

mi = ^46 - rf«0*2«/ + d«ßi M> 

A:,. =rf,2+rf2271
2a(- +d25ßr 

Substitution of expression forr^,T*z, the first and second of equations (3.2.15), into the 

boundary condition for 7^,,T*Z, the second and third of equations (3.1.5), yields 

(3.2.16) 
mlAl +m2A2 +m3Ai = 0, 

n, A, + n2A2 + w3 A3 = 0 

These equations can be rewritten as 

A2=Xl {co, s)Al, A3 = X2 {co, s)At, 

A1{co,s)=m^-m>n> ,X2{eo,s) = -m^-m^ . (3-2,17) 

m3n2 

As co —»°°, we have 
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m3 n2   -m2 n3 m3 n2   -m2 n3 

where rtijico.s) ->com," and n((ct),5) -» <uw(~ as ö) ->~. 

Using this result in the expression for normal stress, the third of equation (3.2.15), the 

expression for vertical displacement, the second of equations (3.2.14), and the remaining 

boundary conditions, we obtain " 

—- r (*i +4*2 +A2k3)aAlie-ia*da)= -a0/sK(-x) + cr+\x,s), 

i   rx> 

—J_(a,r, +a2y2^ +a3r3A2)(üAlie-iaKdco = vt_(x,s). 

By Fourier transform inversion, these equations become 

-G12(k, + A,,k2 +X,2k3)©A1/ = -ao//ü05 + S+(a),s), 

(a,y, +a2y2^i + a.3y3X2)(oAli = V_(co,s). 

(3.2.19) 

(3.2.20) 

where 

(3.2.21) 

Z+(a),s)= fa+\x,s)eia*dx, 
Jo 

V_(0),s)= [v_\x,s)eimdx. 

Eliminating A, from equation, (3.2.20), we obtain a Wiener-Hopf equation, 

GnXx   1   F(a,S]      VAa>,s) = aJiax--L+(ü),S), (3.2.22) 
jaf + s1/*/ 

where the following functions are introduced 

x    Jo)2 + S2
IK? (k. + /L k2 + Äyk,) 

F(ü), s) = J '   d     '     n 2—^_Ü, (3.2.23) 
^i(«i/i+«2X2^+«3/3^2) 

A;,   + /L  A:2   +/L ^3 
^T, = ! — 3—* , (3.2.24) 

ax Nx + a2 N2Al  + a3 N^ 
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and X\ is dependent of 6 and the material parameters. Its complete expression is given in the 

Appendix. 

Here, note that the case of 6 = 0, X\  = -^—- (il is a limit value), and 0 = 90°, 

90 _ (cnc33 -c,3
2)[c33 + cuNlN2N3(Nl+N2 + N3)] (3 225) 

CnCnW+NJiNt+NJiNs+Nt) 

where AT,, are shown in equation A.5 of the Appendix, j^,0 and jfr90 are the limit values of %l at 

6 = 0 and 0 = 90°, respectively. 

For co = 0, after lengthy algebraic manipulation of equation (3.2.23), we have 

F(0,,) = -^-£0- = -*!_£». (3.2.26) 

From the physics of the problem, it is reasonable to assume that the function o+'(x,s) and 

\_'(x,s) are exponentially bounded at infinity, which ensures the existence of their Fourier 

transform (3.2.1). In particular, it is shown by Noble [12] that if a+*(x,s) < Mle
4-X as x -> +«> 

then E+(fij) is analytic in Re(ö)) = t, > £,_, and if v_*(x,s) <M2e^x asx->-« then V_(ffl) is 

analytic in Re(6J) = £ < £,.. 

This function, F(jn,s), is analytic everywhere in the complex plane except on at the branch 

cuts of } i at co = ±i S/KS1 , co=±i S/KS2 and a = ±i s/Kd . It is single valued in the a -plane cut 

as shown in Figure 2. For general anisotropic materials, the Rayleigh wave equations are given 

by Nayfeh [15]. We found the algebraic equations, F(a,s)=0 (letting 0) = is/v) and equation 

(3.2.10) for y are the same as the Rayleigh wave equations because F(o), s)=0 is equivalent to 

tyz=txy=oy=0  which are the necessary boundary conditions used when deriving the 
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Rayleigh wave equations. The system of Rayleigh wave equations is dependent on the "material 

properties" referring to the transformed properties through the rotation of the azimuthal angle 6. 

Therefore, the Rayleigh wave speed cR is varying with the azimuthal angle 6. In general, 

finding the critical value of cR requires numerical calculation because of the complexity of the 

system of Rayleigh wave equations for general anisotropic materials [16]. It is true, however, 

that the only zeros of F{a,s) are of the form ±is/cR . 

3.3 Wiener-Hopf technique 

The Wiener-Hopf technique can be outlined as follows, the function L(co) is defined and 

factored as 

L((0) = T^-7 = Gn Xx  (3.3.1) 

thus, the Wiener-Hopf equation, (3.3.1), becomes 

L_(fl»V (u)) = T±L+(a))-X+((0,S)L+(co) 
ICÜS 

(3.3.2) 

If the function D((0) can be decomposed as 

D((0)=^-L+((0) = ^- 
icos s 

L+(a))-L+(0) | LM 

ico 1(0 
= Z>+(ä>) + £>_(ä>), (3.3.3) 

with 

DM) = — 
L+(ö0-L+(0y 

1(0 
,D_(co) = ^ 

s i(o 

Then the Wiener-Hopf equation, (47), is further reduced to 

D+ (co) - E+ (co)L+ (a) = L_ (co)V_ (co) - D_ (a) = Q(ß>). (3.3.4) 
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The first member of (3.3.4) is analytic in the right half plane of Re(öJ) > t,_ and the second 

member in the left half plane Re(fij) < £+. If t,_ > £+, the regions of analyticity overlap and by 

invoking analytic continuation, it is concluded that Q.(co) is analytic and single-valued in the 

whole ö>-plane shown in Figure 2. Furthermore, invoking the extended Liouville theorem, it can 

be shown [12] that if Q(tfJ) is bounded and entire and Q(tfj) -^ 0 as co -> °°, then Q(ffl)=0. 

Hence, we can solve for the transform of stress ahead of the crack tip, E+(co), and displacement, 

r_(6j), behind, 

D (CO)      <T„ 

L+(co)    sico 
\\    L+(0) 

L+(fl» 

L_(co)    sico L_(0))_ 
• 

(3.3.5) 

Following this outline, the first step is to factor L{co), (3.3.1), by defining 

Pm=     F(6M)
2- (3-3.6) 

CO +s fcR 

It can be shown that F(co) -»1 as co -> ~, (the constant X\ m (3.2.24) was chosen to make 

this possible). The function F(co) is regular and F(co) ■*■ 0 in the dJ -plane cut as shown in 

Figure 2, the only singularities are the branch points shared with y ., (i = 1, 2), i.e. a =±IS/KS1 , 

CO = ±is/ns2 and G)=±is/Kd . It is well known that factorization of a function is accomplished 

most directly for functions that approach unity as co -> °° and that have neither zeros and nor 

poles in the finite plane. Indeed, F(co) is an example of such a function. Therefore, using 

Cauchy integral formula, it can be shown that [1] 

18 



F(Q)) = F+(ü))F_(0)) 

Jj_f loS#l 

'[2m'JA*   z-< 

-     , .   x   .   logF(ß)) , 1 (3-3.7) 
F±(6>) = exp<{—| \dz\, 

[2mjR±   z-G) 

where /?_ is the closed counterclockwise contour enclosing the branch points 

+is/ns}, +is/ns2 and+is/Kd , and also /?+ is the closed counterclockwise contour enclosing 

the branch points - is/nsl, - is/ks2 and - isJKd . 

Returning to the factorization of L(co), we have now 

m) = LmLSCO) = GnX^
a)Pfma;^a-iSlC').       (3.3.8, 

ja)+is/KdJa)-is/Kd 

Therefore, 

*  ,  x    ^-,       (fti — islcB) A ,  „ 
L_{(D) = GnZl \      J *' F_(a», 

JCQ-IS Kd 

i      .  . (3-3.9) 

Mfl» =     V    ,    V . 
(fl> + ij/cJt)F+(fl>) 

1 /— Note that as  6J-»oo,  F+(6>)->l,  F_(ß))->1,  L+(6>)=-j=,  L_(fi>) = Gnxxv(o   and 
Vtf> 

L+(0) = —T7—— , and using equations (3.3.5), we can readily obtain S+(öJ) and V_(ß) 
Ä/2F+(0)V* 

as O) —> oo, i.e. 

Z+«»)-> 3/  *°C* , (3.3.10) 
(S0/2AW^>+(0) 

V_(fi»-» g<£*    |/A • (3.3.11) 
GI2^(«ö>)/2K-/2F+(0) 
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3.4 Stress Intensity Factor 

To find the stress intensity factor, an asymptotic expression for the stress near the crack tip 

is sought. A well-known result relating asymptotic expressions between a function and its 

Fourier transform (Abelian theorems) [12, 17] is 

]imJx(T+\x,s) = lime-''*'4 J—Z+(fl>). (3.4.1) 

lim^ö- = lim e'*3'4 ^Ll V (a) (3.4.2) 

Hence, the definition of the stress intensity factor gives 

KUs) = lim SJvc(T+\x,s) = lim e^JtoaZAa) =    /2cT°c*—. (3.4.3) 

r~z—    cDjF(0,s) 
Note that  F+(0) = F_(0) = ->/F(0) =-0_^—Lt consequently, equation (3.4.3) can be 

written as 

V2o0 K-<»-*£M*- 
s2   c 

Using equation (3.2.26), F(0,s) = —, it readily shown that 

K:(s) = ^ß^. (3.4.6) 
S'      V   c„ 

Applying the inverse Laplace transform to £j(.s), the stress intensity factor K,(f) can be 

written as follows 

KI(t)=2cr0CI47=2a0SpC-f±L, (3.4.7) 
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where 

c_ fe.*L. (3A8) 

V   K   C, "11 

Thus, the stress oy(x,0,t) can be expressed as 

a (x,0,t) = ^M (3-4.9) 
V2^c    • 

For 8 = 0, i.e. for the case of transversely isotropic material, C, reduces to 

C,°=p^ÜfS.- (3.4.10) 

By using c,, =—  , equation (3.4.10) further reduces to the well-known result for isotropic 

materials [13], i.e. 

JcAl-2v),x 
(1-v) 

For 8 = 90°, i.e. for the case of orthotropic materials, C, reduces to 

i« 90 
90 _    2cj, C,    =   -~m—. (3.4.12) 

1 K     C, 

where x™ 1S shown in (3.2.25). Tables 2 and 3 show that the numerical values of C, for 

orthotropic materials are same as those obtained by using formulation in [10], hence, equation 

(3.4.7) also reduces to the result for orthotropic materials as expected for 8 = 90°. Thus, the 

value of Ct° and C,90 can be accurately calculated by using (3.4.10) and (3.4.12), or can be 

evaluated by using (3.4.8) and letting 8 = s and 8 = 90° - e, e « 0. Satisfactory agreement of 

the present solution with known solutions is found. 
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From (3.4.2), we have 
t 

HmV^v_V) = limV^e,,3/4 2^v m=^_K;{s) (3A13) 

thus, the displacement v(x,0,t) can be expressed as 

v(x,0,t) = -?— J^-K,(t) (3.4.14) 

For a finite crack extension 6, the following Irwin's crack-closure integral (the definition 

of the strain energy release rate for single mode at once) can be evaluated [18,19] 

f*<7v(x,0)v(£-x,0) K,2 

G7(0 = lim       y       '    -Aix=      ' (3.4.15) 

without ambiguity by using 

f/IEi&.£lW2.£ (3.4.16) 
Jo V    x 2    T(2)      2 

Equation (3.4.15) further reduces to the well-known result for isotropic materials [20], i.e. 

Gl(t)={l~y2)K'2 (3.4.17) 

4 In-plane Shear Impact 

Consider the crack geometry illustrated in Figure 2. Figure 3 schematically shows the same 

crack with a spatially uniform shear traction of magnitude ?0 applied suddenly on the crack 

faces. Exploiting symmetry and limiting ourselves to upper half-plane, y>0, the corresponding 

boundary conditions become 
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txy (x, 0, t) = -t0H(t), -oo<x<0 , 

o-},(X,0,t) = 0      ' -oo<X<+oo, 

ryz(x,0,t) = 0 -oo<x<+oo, 

u(x,0,t) = 0, 0<x<+°°, 

where H(t) is the unit step function. The displacement at infinity is assumed zero, and the body is 

stress free and at rest everywhere for t < 0. 

A method of solution similar to that that used for normal impact can be used. Applying the 

Laplace transform to boundary conditions (4.1) gives 

Txy\x,0,t) = -T0/S, -°°<X<0, 

ö"/(x,0,t) = 0, -oo<*<+oo, 

Tyz*(x,0,t) = 0, -oo<X<+oo, 

u*(x,0,t) = 0, 0 <*<+<*>. 

The displacement field given by (3.2.3) yields the same system of ordinary differential 

equations, (3.2.4), whose solution is given by equations (3.2.7) where a,.(6J,.s) and ßi(co,s) are 

defined by (3.2.8) and },. are obtained from the solution of (3.2.10). 

Substitution of the expressions fora'y, r*z, the first and third of equations (3.2.15), into the 

boundary condition for a*y, T*z, the second and third of equations (4.2), yields 

mlAl +m2A2 + miAi = 0, ("4 3") 
&,A, +k2A2 +k3A3 =0. 

These equations can be rewritten as 

A2 = % (to, s)A,, A, = % (to, s)A,, 

m3k2 — m2k3 m3k2 — m2k3 

(4.4) 

As O) —> °°, we have 

23 



m3 k2   -m2 k3 m3 fc2   -m2 k3 

where m,.(ü>,j)-4ß)m,~, n,.(a>,s) -> fi>n°° and fc;(ö),5) -»fc,~ ,as<y-»°°. 

Using this result in the expression for shear stress, the second of equation (3.2.15), the 

expression for horizontal displacement, the first of equations (3.2.14), and the remaining 

boundary conditions, we obtain 

_^11 r(nj +^rh +^n3)A, e-
i0*da)= -T0/sH(-x) + r+*(x,5), 

2# J-~ 

— f(l + 4" + A )\e~iaKd(0 = u_(x,s). 
In J-~ 

By Fourier transform inversion, these equations become 

- Gn (n, + M[ n2 + A n3) A, = - T0 /ifitf + T+ (ö), s), 

(1 + 4" +^7)A,=U_(ö),5). 

where 

T+(ffl>j) = rT+
,(^jy'^, 

JO 

U_(0),s)= f u.^x.^e'^dx. 
J—00 

#: 2 

(4.6) 

(4.7) 

(4.8) 

Eliminating A, from equation, (4.7), we obtain a Wiener-Hopf equation, 

GnXl   ,   ^      U-(a>,5) = A.-T+(ffl,*), (4.9) 
JW2+S2/KS

2 l™ 

where the following functions are introduced 

=V^+'V^+M+M) (410) 
^(1+4+4) 

00        1//°°      ">        1//°°      «° "i   +4   n2   +4  n3 ^4ll^ 

1 + ^"+^" 
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where %t is dependent on 0 and material parameters and its expression is shown in the 
t 

Appendix. Here, note that for 6 = 0, Xi  =        "    .and for e = 90° > 
cn 

^T' (4-12) 

where 

8 = (cncx -C13
2)C55[C33 +cnNlN2N3(Nl+N2+N3)], 

h = cu{c33[cuNlN2N3+css(Nl+Nz+N3)] + 

JV,tf2tf3[-cI3
2 -2c13c55 + cuc55(NlN2 + N,N2+N3Nl)]}, 

and AT,, are shown in equation A.5 of the Appendix. Xi   and X™ axQ tne limit values of £2 at 

0 = 0 and 6 = 90°, respectively. 

Also, for co = 0, after lengthy algebraic manipulation of equation (4.10), we have 

G(0,s) = -&— (4.13) 
KilXiC, 

where 

2V^7 
(l + 7c^) + (VcT-l)cos2Ö 

Equation (4.9) contains only the two unknown functions, T+(6J,s) and U_(ea,s), and can be 

solved using the Wiener-Hopf technique as in the normal impact analysis of section 3. The result 

is 

D+(ffl)-X+(ffl)L+(ö;) = L_(öj)U_(ffl)-D_(6J) = 0, (4.14) 

where 
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Jcö+Tsjic7 

(6> + /j/cR)G+(fl>) 

G(ö>) = 
G(ftJ,$) 

ü)2 +s2/cR 
2 * 

and 

£>(<y) = ^-L+(fl>) = ^- L+(6>)-L+(0) | L+(0) 

ico ico 
= D+(co) + D_(co), (4.15) 

with 

s 

L+(<y)-L+(0) 

ICO s 
MO) (4.16) 

Hence, we can solve for the transform of stress ahead of the crack tip, T+(<a), and displacement, 

U_(6J), behind, 

L+((D)     sico 
1- 

U_(6» = 
L_{(0)     sico 

_ To 

L+(P) 

'MO)' 
(4.17) 

It can be shown thatG(ö>) -41 as CO -» oo (the constant Xi in (4.11) was chosen to make this 

possible). Hence, G± (<») is given by 

G(co) = G+(co)G_(co) 

logG(6>) , ] (4.18) 
G±(fi>) = expJ—Tf 

[2;BJR±   z-co 
dz\, 
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where R_ is the closed counterclockwise contour enclosing the branch points 

+is/Ksl, +is/fis2 a.nd + is/nd , and also R+ is the closed counterclockwise contour enclosing 

the branch points - is/icsl, - is/ns2 and - is/nd . 

Note that as  <fl-»°°,  G+(G))->1, G_(<y)-»1,  L+(6>) = -j=,  L_(co) = Gl2x24cö and 

L+(0) =—p y" , and using equation (4.17), we can readily obtain T+(co) and U_(co) 
A/2G+(0)V/ 

as co —»°° 

T+(ö»-> v Z°C!  • (4-19) 
OfO^V^co)' 

U_ (ffl) -»  t0yR        V« • (4-20> 

From equations (4.7) and (4.4), the coefficients, Al, A2 and A3, as CO —» °° become 

A, = //'lUä» A2 = /2"U_(6»  and A3 = /3"U_(<y) (4.21) 

-rrOe r» OO 

where /" = 1 , /" = 4  and f» =.       ^ 

Substituting (4.21) into (3.2.7), the dual transformed displacement, w" (co,0,s), as co —» °° 

becomes 

wf (ö>,0, j) -> W_" (6?) = /„U_(co) (4.22) 

where /f/ = ß~tf +ß~f2" +ß3"ff 

From Abelian theorem [12,17], 

lim 4^cz* (x, ^) = lim e-''*'4, —r+ (co). (4.23) 
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liin^=-^i = Hm eixVA i^£/_(ß» ,:„ u- (*)    ,. 

VI *->0     „/v ß>->~ 4K 
(4.24) 

2*^ 

Vtf 
(4.25) 

Using (4.21) and the definition of the stress intensity factor gives 

K*„ (s) = lim SnxT+* (x, s) = lim e~""4 JläT+ (a) = 
V2i 70CR 

x->0. 
s%J^G+(0) 

(4.26) 

r^      C»JG(O,S) 
Note that  G+ (0) = G_ (0) = yG(0) = -^—-—-, consequently, equation (4.26) can be 

rewritten as 

K*u(s) = 
Sa0 

s^^;^jG(0,s) 
(4.27) 

s2P Using equation (4.13), G(0,5) = —, it readily shown that 
KslXzCs 

*>)=4^ (4.28) 

Applying the inverse Laplace transform to K*„(s), the stress intensity factor Kj,(t) can be 

written as follows 

Kn(t)=2x^41=2r0Vt J-^-, (4.29) 

where 

c„=. 
l/r    p 

(4.30) 

Thus, the stress i   (x,0,t) can be expressed as 
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*»{xM=it (431) 

For 0 = 0, i.e. for the case of transversely isotropic material, C„ reduces to 

„ o       2c, 2(c„-l) c//   =J • (4-32) 
V #      c, MI 

By using c„ =———— , equation (4.32) further reduces to the well-known result for isotropic 

materials [13], i.e. 

c''-ife    ■ (4-33> 

For 6 = 90°, i.e. for the case of orthotropic materials, C„ reduces to 

90 

C,r=A|^^. (4.34) 
K 

90 _    2cs^2 

where Xi    is shown in (4.12). Tables 2 and 3 show that the numerical values of C,,90 for 

orthotropic materials are same as those obtained by using formulation in [10], hence, equation 

(4.26) also reduces to the result for orthotropic materials as expected for 0 = 90°. 

From (4.24), we have 

ta^toÄ^p m = JL^K;{s) (4.35) 

thus, the displacement un(*,0,0 can be expressed as 

un(*,0,0 =-?— J-f-KB(t) (4.36) 

Similarly, from equation (4.25) the displacement w"(;c,0,0 can be expressed as 
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v,\xM=-2LL-J±Kg(!) (4.37) 
Gl7r, V 2/r 

5 Anti-plane Shear Impact 

Consider the crack geometry illustrated in Figure 1. Figure 4 schematically shows the same 

crack with a spatially uniform shear traction of magnitude tQ applied suddenly on the crack 

faces. Exploiting symmetry and limiting ourselves to upper half-plane, y>0, the corresponding 

boundary conditions become 

iyz(x,0,t) = -z0H(t), -oo<*<0, 

ay(x,0,t) = 0 -oo<*<+°o, 

Txy(x,0,t) = 0 -oo <*<+«>, 

w(*, 0, t) = 0, 0 < x < +oo, 

where H(t) is the unit step function. 

The displacement at infinity is zero, and the body is stress free and at rest everywhere for 

t<0. 

The method of solution is similar to that that used for normal impact. Applying the Laplace 

transform to boundary conditions (5.1) gives 

Tyi*(x,0,t) = -T0/s, -oo<X<0, 

<7v*(;c,0,t) = 0, -oo<x<+oo, 
y (5.2) 

T.v   (Jt,0,t) = 0, -oo<X<+oo, xy 

W*(X,0,t) = 0, 0<X<+oo. 

Assuming the displacement field given by (3.2.3) yields the same system of ordinary 

differential equations, (3.2.4), whose solution is given by equations (3.2.7) where a,(ca,s) and 

ßi(co,s) are defined by (3.2.8) and ji are obtained from the solution of (3.2.10). 
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Substitution of expression for<T*,r^, the second and third of equations (3.2.15), into the 
t 

boundary condition for a*, t*^,, the second and third of equations (5.2), yields 

nlAi + n2A2 + n3A3 =0 
Jfc,A, +k2A2 + k3A3 =0 

(5.3) 

These equations can be rewritten as 

A2 = /t[" (ft>, s) A,, A3 = X2" (0), s)Ax, 

3///,„ «A_ "1*3-"a*!    -,/#//„ ^_    n,k2-n2kx (5.4) 

Tt'tK'y *~" Tt-yK-i ^2   2 2   3 

As Cü —>°°, we have 

AfW)-*^" = ni^"n3?/l> A2'>,,)-^"~ =-\^^t      (5.5) 

where m, (<0, s) -> 6> m°°, nt (co, s) -» fl) n ~   as <fl -» °°. 

Using this result on the expression for normal stress, the secondary of equation (3.2.15), the 

expression for horizontal displacement, the first of equations (3.2.14), and the remaining 

boundary conditions, we obtain 

_£k (7m, + %"m2 +;if m3)A, e-
iaKdü)=-T0/s}i(-x) + T+\x,s), 

IK J-~ 

— f(Ä + ßiK1 + ß*K' )Ale-iOKdco = vt'_{x,s). 
In J— 

By Fourier transform inversion, these equations become 

- G12 (m, + 7^m2 + M['m3 )A, = - T0 /icas + T+ (a, s), 

{ßx + ß2Ai" + ßX') A = W_ (O), s), 

(5.6) 

(5.7) 

where 

r+(G),s)=rT+(x,s)eie*dx, 
Jo 

W_ {w, s) = £ w _* (x, s)eia*dx. 
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Eliminating A, from equation, (99), we obtain a Wiener-Hopf equation, 
t 

fiitt   ,   ECy''?      W(6),j) = -^-r+(aM), (5.8) 
JO,2+S2/KS2

2 «» 

where the following functions are introduced 

^6?2 + 5 V r,2
2 (m, + ^m2 + X,m3) 

~   1///°°   ~   i///°°   °° 

l + ylT+^T 

where ^3 is dependent on 6 and material parameters and its expression is shown in the 

Appendix . Here, note that for 0 = 0, j3° = jc^, and for 6 = 90°, x™ = V^sT when usinS Ni 

shown in equation A.5 of the Appendix, x? md X™ ^e the limit values of £3 at 0 = 0 and 

6 = 90°, respectively. 

For co = 0, after lengthy algebraic manipulation of equation (5.9), we have 

E(0,s) = -^—2- (5.H) 
KslXl Cs 

where 

(V^T + Css) 
q = —j=—! ; ;—• 

V c55 + c55 sin 0 + cos 9 

Equation (5.8) contains only the two unknown functions, T+ (co, s) and W_ {co, s), and can be 

solved using the Wiener-Hopf technique as in the normal impact analysis. The result is 

D+(ffl)-Z+(ß))L+(flj) = L_(ÄJ)W,_(ßJ)-D_(flJ) = 0. (5.12) 

where 
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L_m=Gl2z3
(? 1SICR) E_m, 

L+(0)) 

Jco-is/Ks2 

Jco + is/ics2 

(a) + is/cR)E+(o)) 

E(a)) = 
E(a,s) 

co2 +sz/cR' 

and 

£>(6>)=-?o_L+(6>)=^- 
icos s 

L+(0))-L+(0) | L+(0) 

ico ICO 
= D+(o)) + D_(co), (5.13) 

with 

D+m=^ L+(OJ)-L+(0) 

ico 
,D_(0)) = ^ 

s 
MO) 

ico 

Hence, we can solve for the transform of stress ahead of the crack tip,  T+(öJ), and 

displacement, W_ (co), behind, 

r+(<y) = 
L+(co)     sico 

_ To 1- 

D (co)     rn 

L_{co)     sico 

L+(0) 
LAco) 

MO) 
LSco) 

(5.14) 

It can be shown that E(co) -41 as CO -> °° (the constant ^3 in (5.10) was chosen to make this 

possible). Hence, E±(co) can be given by 

E(co) = E+(co)E_(co) 

= exph   f log£(«) £±(ö>) 
[2^*Jfi±   z-ö) *  , 

(5.15) 
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where R_ is the closed counterclockwise contour enclosing the branch points 

+ is/nsl, +is/Ks2 and + is/Kd , and also R+ is the closed counterclockwise contour enclosing 

the branch points - is/nsl, -is/fcs2 and - is/Kd . 

Note that as a;->oo, £+(<2))->l , E_(o))-^\ , L+(ß>) = -j=, L_(co) = Gnxz4ä and 

c. 
L+ (0) = —p -f" , and using equation (108), we can readily obtainT+(a)) as co -> <*> 

r+(»)-> 3/ I°c* —• (5-16) 
(si/2^^E+(0) 

W_(fi»-» *0*«    ,, • (5.17) 
G12J3(-«'«)/2^2/2^+(0) 

From equations (5.7) and (5.4), the coefficients, A,, A2 and A3, as a> —»°° become 

A = g("W_(G>) A2 = gf W_(6»  and A3 = g™W_(fl» (5.18) 

where 

m l ,   /« i  and   /// ^3 . 

Substituting (5.18) into (3.2.7), the dual transformed displacement, ü"  (o),0,.s), as ö) —> <» 

becomes 

ui" (fl),0,f) -4 t/w(6?) = g//7W_(fl» (5.19) 

in , „/// . „/// where gm=g[" +g'i' +g'± 

From Abelian theorem [12, 17], 

limVrr+*0c,$) = lime"'1'4 J—r.(fl>). (5.20) 
x->0 <a-»«° \| ^f 
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* V 
,.      W_  (X)       .. ,^3/4 20)/2 ... ,    . 
hm       '    =* hm e'*3'4 —7=^ W_ (6?) 
«-»0   V*       •"*•• V^r 

u»--" w 
==limefc3,4^-U™(ffl) 

2o/ 

Using (5.18) and the definition of the stress intensity factor gives 

(5.21) 

(5.22) 

V2T. (T-Ä £* (ä) = lim -JÖJDCT* {x, s) = lim e-"'4 V2öJr+ (0) = ■    . 
sAJ^E+(0) 

(5.23) 

r^—   CRJE(0,S) , .    ,„„„v Note that  E+(0) = E_(0) = ^E(0) =-0_J:—i> consequently, equation (5.20) can be 

rewntten as 

Cw = V2r0 

s^Jic^jEiO,*) 
(5.24) 

s2    a Using equation (5.11), E(0,5) = —, it readily shown that 
KslXl Cs 

(5.25) 

Applying the inverse Laplace transform to lCnfs), the stress intensity factor K„ß) can be 

written as follows 

Km(t) = 2T0CmVt = 2r0Vt J-5^- 

where 

(5.26) 

r - iMl 
'"~v _ \lt    q 

(5.27) 

Thus, the stress t   (JC,0,0 can be expressed as 
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For 6 = 0, i.e. for the case of transversely isotropic material, CIU reduces to 

CaossN^Lm (5.29) 

By using c55 = 1 , equation (5.29) further reduces to the well-known result for isotropic materials 

[13], i.e. 

For 6 = 90°, i.e. for the case of orthotropic materials, Cw reduces to 

Cm»j2fü/fZ (5.31) 
V     it 

Tables 2 and 3 show that the numerical values of C,,,90 for orthotropic materials are same as 

those obtained by using formulation in [10], hence, equation (5.26) also reduces to the result for 

ft 90 
orthotropic materials as expected for 6 =90°. From (5.29) and (5.31), Cm   is same as Cm   , 

which is because d55(0°) = J55(90°). 

From (5.21), we have 

limV2^w* (*) = M^eMM^(ffl)        2    g;(f) (5 32) 

thus, the displacement wm(x,0,0 can be expressed as 

Similarly, from equation (5.22) the displacement xxm(x,0,t) can be expressed as 
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^M^MKiA,) i5M) 

6 Results and Conclusion 

Closed form expressions of the dynamic stress intensity factors Ky (t), K„(t) and Km (t) 

have been determined for semi-infinite cracks in rotated transversely isotropic materials under 

the three loading modes, i.e. opening, in-plane shear and anti-plane shear loadings, respectively. 

The stress intensity factors for the three modes are proportional to the square root of time; there 

is no equivalent quasi-static problem for semi-infinite crack under uniform loadings and there is 

no long-time equilibrium value. The method of solution in this paper differs from that typically 

used in the isotropic case. The displacement formulation of the equations of motion is solved 

without the use of Helmholtz potentials. This allows solutions to be found. As 6 = 0° and 

6 - 90°, we can use the formulae in [10] for the coefficient of stress intensity factor for the three 

modes to check our result. The results of the comparison are shown in Tables 2 and 3. The 

results found here are completely the same as those in Table 2, as expected. Thus, it has been 

shown that the rotated transversely isotropic formulation includes the case of the crack located in 

the transversely isotropic plane, the case of the fiber along the crack, and the case of isotropic 

materials as special cases. That is, for each loading mode, the dynamic stress intensity factor for 

these special materials is recovered from the rotated transversely isotropic expressions with the 

proper substitution of elastic constants. 

The calculated results for C,{6), C„(ß) and Cw(d), where Ki(t,6) = 2criC,(0)Ji, are 

shown in Figure 5-8 for several materials, and the mechanical properties [16] used for the 

analysis are given in Table 1. In these figures, it can be seen that the fiber reinforcement of 
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epoxy leads to an increase of the stress intensity factor for all three modes, i.e., the stress 
t 

intensity factors K(t) for Graphite-Epoxy, Eglass-Epoxy, and Boron-Epoxy composites are 

greater than the corresponding K(t) for epoxy at all rotation angles. For mode-I and mode-II, 

the coefficient of stress intensity factor increases as the rotation angle 6 increases, and at 0 = 0° 

and 9 = 90° the coefficient of stress intensity factor reaches its minimum value and maximum 

value, respectively. 

Figure 7 shows the coefficient of stress intensity factor for mode-Ill with rotation angle 6. 

The shape of the curve is different from those for mode-I and mode-II. Surprisingly, at 0 = 0° 

and 6 = 90° the coefficients of stress intensity factor are same, which can be obtained by proper 

substitution of elastic constants. This is because dS5(0°) = d5S(90°), i.e. shear on the principle 

axis is independent of rigid body rotation through 90°. Also at 6 = 0° and 0 = 90° the 

coefficient of the stress intensity factor has its minimum value. The point of the maximum value 

for coefficient of stress intensity factor is between 6 = 0° and 0 = 90°. The maximum value and 

its corresponding rotation angle are clearly dependent on the material properties. 

Figure 8 shows the coefficient of the stress intensity factors K, (t), K„ (t) and Km (t) for 

isotropic (epoxy) and orthotropic (graphite-epoxy) materials, note that with same load amplitude 

the coefficient of stress intensity factor K„(t) and K,„(t) are greater than K,(t). By 

comparison of both cases, it can be seen that the introduction of fibers results in an increase in 

the stress intensity factor. This effect is more dramatic in the shear modes than in the normal 

mode. 

In terms of the penny shaped crack problem, these results offer some intuitive insights. If the 

crack is loaded in mode I, Figure 5 leads us to expect the crack front to advance in the direction 
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of the fibers, provided the toughness is constant in all directions. If, however, the crack is loaded 

in shear, the problem is more complex because the crack front sees mixed shear mode loading. 

There are components of both mode II and mode m loading along the crack front. Letting the 

shear loading with magnitude, z0, be applied on the surface of the penny crack, and letting (ß be 

the angle of that shear loading relative to the principle axis of the material (fiber-orientation) as 

shown in Figure 9. The shear loading at a point 6 on the crack front is given by a mode II and 

mode III component, 

"      °       Y (6.1) 
T,,, =T0sin((p-e) 

In this case, due to the presence of both modes at once, hence there are cross-influences. 

For a finite collinear crack extension, 6, the following Irwin's crack-closure integral (the 

definition of the strain energy release rate for both modes at once) can be evaluated [18,19] 

^TXY(x,0)[nn(S-x,0) + na\S-x,0)] 

Jo 
G„(0 = lim f  '«rv"-"--   -    -—' -    """dx (6.2) 

<y->oJ0 

Gm it) = lim f 'nx '"" —^ '-^dx (6.3) 
<S->0 J0 

,.    f*T_(*,0)[wm(£-x,0) + wn(<y-x,0)] 

Using (3.4.16), and the t9(x,0), t„(jc,0), un(x,0), um(x,0), wn(x,0) and wm(x,0) derived 

above, G„ (t) and Gm (t) are expressed as 

G"{t)=-^rK"2+JrL-K>>K>i> <6-4> 2Gl2z2 2Gnx3 

GUI{t) = -±—Klu
2 +-JjL-KllKIIl (6.5) 

where equations (6.4) and (6.5) further reduce to the known result for isotropic materials [20], 

i.e. 
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Aw   2 
G„(t)- r-  

E 
(6.6) 

G„,(t) = 
(l + v)Km

2 

(6.7) 

Substituting the expression for K„ (t) and Km (t) derived here, (4.29) and (5.26), the strain 

energy release rates, G„ (t) and G,„ (f), become 

GnK  p     GnK \ZiPq 
(6.8) 

GW;(0=    ^       '" 
4c.r T,„      4ccf  „ | Xi 

GnK   q      GnK J ifi n't, in- lz2pq 
(6.9) 

The total energy release rate is given by 

Glolal(t) = GII(t) + GIII(t), (6.10) 

thus, 

G12^   r      ,A _ 

4csT0 t 

cos (<p-6)    sin \(p-6)  1 \. 

cos((p-6)sm.((p-6) 8 in. 
'xiPi 

+ fn. 
Xi 

]XiPq 

(6.11) 

For a given shear loading angle, cp, —^r~ Gw (0 is a function of only 6. Thus, the 
4CST0 t 

maximum energy release rate, max -—r°wW 
4csT0 t 

, occurs at 6 = 6C (0 < 0C <n)) and 8C is a 

function of (p. The functions are periodic in cp and 0 with a period of n . 

Figure 10,11 and 12 show the normalized strain energy release rates for 0 < 6 < 180° and 

0<9)<180o in Graphite-Epoxy, Eglass-Epoxy and Boron-Epoxy, respectively. There are two 
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different peaks for given <p in each of these figures, where the loading is most severe. 

Meanwhile we also find valleys in these figures where the loading is least severe. The most 

probable direction of propagation for each case and the corresponding value of the normalized 

71 
strain energy release rate are shown in Figures 13 and Figure 14. It is seen that 6C 

a~z + <P for 

each material, that is, the crack will most likely propagate in the direction perpendicular to shear 

loading. 
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Appendix 

(1) Roots of the characteristic equation, (3.2.10) 

The solutions of the cubic equation (3.2.10) of y2, y2, y2 and y2, are related to a, b, c and d 

by the following relations, 

^ ■> 1 O ■>■)■> « 2      2 22 2      2        C ,.... 
Y< +Yz +Y> = — • YxYiri, = —. Yx Yi +Y2Y3 +YYi =-■ (A.1) 

a a a 

where these expressions, y. , can be given as 

2 _2s 2/c2 + (1 + css )co2 + (1 - c5S )fi)2 cos 2d 
7l  ~ 2 

2 _ (2cS5 -2cu)s
2/c2+(Bl +B2cos28)a)2 -JB^ 

4c,,c55 

2    (2c55 - 2c„) s2/c,2 + (5, + 52 cos 28)co2 + JJi^ 
Yi = ~  

4CnC55 

and, 

2 
ß{ =—C,3    ""^C13C55 +CnC33 +2CnC55, 

2 

ß3 = [2c5Ss
2/c2 -c13 ö)2 -2cI3c55 + cn(2s2/c2 + ciiO)2 + 2c55a)2) +B2co2 cos2 2d]2 -2cuc 

[Ss4/cs
A +4(c„ +C33 +2c5s)0)2s2/c2 + (-c13

2 +cnCj, +3c„c55 -2c13c55 + 3c33c55 + 

4(c„ -c3i)co2(s2/c2 + c55ä>2)cos20 + (c13
2 -cnc33 +c„c55 +2c13c55 +C33c55)ö)4cos4ö 

As tu = 0, equation (3.2.10) becomes 

ro6+^ro4
+£Lro2

+^o. = 0 (A.2) 
a a a 

where 

a = d12(d^-dMd66) = ~C-(C--C-\ 

55 
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b0=(d22d44-dA6. +d22d66+d44d66)— =  

(A   ±A   +A  \s* _(-3cn+Ci2-2c55) s4 

c. 2 c. s 

d0-—T 
c. 

Three roots of equation (A.2) are given as, 

.0 s 
Yx 

V*»C/ 

o_  I      2        s _ s 
i(cu-cn)cs     cs 

o s s 

We note that the three roots are independent of 0. 

(2) Solution of the characteristic equation for a -» °° (3.2.12) 

For any 0, we have 

2 _ l + c55 +(l-c55)cos20 
TV.    — - , 

2    5. + ß, cos 20-2 JzT" sin 20 ,4 „x N2
2 = — - *-* , (A.3) 

4CUC55 

2 _B1+B2 cos20 + 2A/ß4"sin2 0 
tcuc55 

where  ß, and B2 are given above 

11 2 
XJ4 = (C,3    — cnC33Aci3    — cnc33 ""  ^C13C55 "*" **C55   )' 
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Note that for the case 0 = 0, 

//t
2 =//2

2 =//3
2 = 1, (A.4) 

and for the case 6 = 90°, 

+ cnc33 -2c13c55 - V(c,3
2 -cucayica

2 -cnc33 +4c,3c55 +4cS5
2) (A.5) 

N2=-^- 
2cucS5 

2 _-cB
2 +c„c33 -2c,3c5S +-y/(Ci32 -CiiC33)((cl3

2 -c„c33 + 4c,3c55 + 4c55
2) 

2c,,c55 

which are same as those in [10]. 

(3) Expression for %x 

After much algebraic manipulation of equation (3.2.24), it is found that Z\ can be written as 

Zi=— (A-6> 
Xu 

where 

Zu = (K2~K~ -K-K-)[-K6~NxN2N3 + K~(N, + N2+N3)] + 

a1{-K~[-K~NlN2N3(N
2+N2

2+N3
2+NlN2+NlN3+N2N3) + 

K"(N* + N2
3 + N3

3 + NXN2N3 + NXN2(NX + N2) + NXN3(NX + N3) + N3N2(N3 + N2))] 

+ K~[K~N2N2
2N3

2(Nl+N2 + N3) + K~(N1N2N3(Nl+N2 + N3) + 2NlN2N3(N1N2 + 

N1N3+N2N3) + N2N2
2(Nx+N2) + N2N3

2(Nl+N3) + N3
2N2(N3+N2))]}, 

Xu =al(a2K4"+K"K1~XNiN2N3(Nl +N2)(N2 +N3)(Nl +N3)), 

and, 

ax = d22(dA6  -d^dte), 

a2 = *M2**46 — ^25^66 ' 

K\     = ~dn  d44 + ^11^22^44 _ ^15^22^46 + ^12^25^46 + 2rf12^46    ~ 2^12^44^66 » 
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K2°° = dndi5d46 -dud25d^ -d^d^ ^d^d^d^, 

K~ =-di2
2dA6 + dnd22d46 -dX5dndK + dn

disd(*>> 

K~ = rf,2^l5^66 ~d\ld2Sd6(, > 

K5°° =d66(dnd25-dndl5), 

K6° = ~dndM> +d\\di2dM -d\sdnd(& +d\2d75d(A> 

the expressions for N( are shown in equation (A.3) in the Appendix. 

(4) Expression of %2 

After tediously long algebraic manipulation of equation (4.11), it is found that %2 can be 

written as 

Xid 

where 

X2n ^d^L- +L2~L~)i-L4~NlN2N3 +L5~(AT, + N2+N3)] + 

bl[(L~)2N2N2
2N3

2(N1+N2+N3) + (L3~)2[Nl
3 + N2

3+N3
3 + 

NlN2N3 + N.N^^ + N2) + NiN3(Nl + N3) + N3N2(N3 + N2)] + 

L~L~[N1N2N3(NlN2+NlN3+N2N3) + 

N2N2
2(AT, + N2) + N2N3

2(JV, +A^3) + N3
2N2 (N3 + N2)]], 
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and, 

X2d =-Ll"[LA-[b,Nl
2N2

2N3
2+L-(NlN2+N1N3 + N2N3)] + 

L3~[L~(N1N2+N1N3 + N2N3) + b2[NiN2N3(Nl + N2+N3) + 

N2N2
2 + N2N3

2 + N3
2N2

2]]]-bl[L~[-a2N
2N2

2N3
2(NlN2+NlN3+N2N3) + 

L~[NlN2N3(N1+N2+N3) + 2NlN2N3(NlN2+NiN3+N2N3) + 

N'NSiNt+NJ + N'NSW+NJ + NSNSiN.+N^ + LriL- 
[N2N2

2 + N2N3
2 + N3

2N2
2 + (N2 + N2

2)NlN2 + (N2 + N^N.N, + 

(N3
2+N2

2)N3N2+2NlN2N3(Nl+N2+N3)]-b2[N
3N2

3+Nl
3N3

3+N2
3N3

i 

+ N2N2
2N3(Nl+N2) + NlN2

2N3
2(N3+N2) + N2N2N3

2(Nl+N3)]] + 

Vt-VtV +b2N1N2N3(Nl +N2+N3)] + L~[L~ +b2(N2+N2
2+N3

2 + 

NiN2+NiN3+N2N3)]], 

h = d22(d46
2-di4d66), 

b2 = d^d^ , 

L,~ =-(^,2^44 -^„^22^44 +^15^22^46 "^12^25^46 -^\lA»A    + 2^12^44^66 ) » 

L2   = andean - d^d^d^ - dnd^  + d^^d^, 

Lf =d66(dnd25-di2di5), 

L~ =-dn
2dA6 +dnd22d46 -d^d^d^ +d12d25d66, 

Ls     — «15"22 — "12"25 — "12^46 ~"25^66 ' 

L6   = d^d^, 

the expressions for Nt are shown in equation (A.3) in the Appendix. 

(5) Expression for x^ 

Finally, the expression for %3 can be written as 
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*3=—     . (A-8) 

where 

*3„ =-(Ml~)2NlN2N3[-M"+c1NlN2N3(Nl+N2+N3)) + M-M-[-M-NlN2N3 + 

M4~(AT, + N2 + N3) + cl[N
2N2

2(Ni + N2) + N2N2(Ni + N3) + N3
2N2

2(N3+N2) 

+ NlN2N3(NlN2+NiN3+N2N3)]]-(M~)2[M~(Nl + N2+N3) + cl(Nl
3+ N2

3+N3
3 

+ tf,tf2tf3 + N,N2(Nl +N2) + JV.A^tf, + N3) + N3W2(N3 + tf2))], 

*„ =-M-M-[M- -M6"(NlN2+NlN3+N2N3)-c2(N
2N2

2+N2N3
2+N3

2N2
2)} + 

(M~)2[c2N
2N2

2N3
2 + M~(NlN2+NlN3+N2N3)] + (M2~)2[-M~ + 

c2(N
2 + N2

2 + N2 + iV,N2 + N,N3 + AT2W3] 

+ N{N2N3 + N.N^N, +N2) + tf.A^Ctf, +N3) + N3N2(N3 + N2))], 

and, 

c, = d22(d46 -d^da), 

C2 ~ "22"66 ' 

2 

^i" =-dnd46 +dud22dA6 -disd^dee +d12d25d66, 

M2° ~d66(dndis -dudis) t 

M3~ =-(^,2^44 -d^d^d^ + dl5d22dA6 - d^^d^-ld^^ +2dl2d4Ad66), 

M~ = dndi5dA6 ~dUd25d46 ~dUd46    +dUd44d66> 

M5°° =dud66, 

M6°° =-(dn
2 -dnd22 +2dnd66), 

the expressions for AT,, are shown in equation (A.3) in the Appendix. 
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Figure 1 The semi-infinite crack in rotated transversely isotropic materials 

under uniform normal impact loading 
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Figure 2 co -plane and branch cut 
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Figure 3 In-plane shear loading 
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Figure 4 Anti-plane shear loading 
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Figure 5 Coefficient of stress intensity factor for Mode-I 
for a semi-infinite crack in different materials 
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Figure 6 Coefficient of stress intensity factor for Mode-II 
for a semi-infinite crack in different materials 
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Figure 7 Coefficient of stress intensity factor for Mode-Hi 
for a semi-infinite crack in different materials 
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Figure 8 Coefficient of stress intensity factor for three modes 
for a semi-infinite crack in different materials 

The isotropic corresponds to Epoxy and the orthotropic to Graphite-epoxy 
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Table 1 Material parameters 

Graphite-Epoxy Eglass-Epoxy Boron-Epoxy Epoxy 
£, (Gpa) 10.41 12. 19. 5.21 
E2 (Gpa) 156.75 45. 207. 5.21 

v,2 0.49 0.19 0.21 0.328 
v„ 0.31 0.19 0.21 0.328 

Gl2 (Gpa) 3.49 5.04 7.85 1.96 
G„ (Gpa) 7.07 5.5 6.4 1.96 

p(Kglml) 1580 2100 1990 1260 

Table 2 Coefficient of stress intensity factor for three modes 

at e = 0° and 6 = 90° in different materials by using of the formulation in [ 10] 

(with proper substitution of elastic constants) 

Graphite-Epoxy Eglass-Epoxy Boron-Epoxy Epoxy 

0 = 0° 
I 26.65 27.37 31.02 24.45 
n 37.68 34.43 39.20 34.38 
ni 36.70 32.10 33.79 28.18 

0 = 90° 
i 34.56 29.36 32.35 24.45 
n 75.24 49.96 77.33 34.38 
m 36.70 32.10 33.79 28.18 

Table 3 Coefficient of stress intensity factor for three modes at 6 = 0° and 6 = 90° for several 

materials by using of the formulation in the paper with 6 = 0° and 6 = 90° 

Graphite-Epoxy Eglass-Epoxy Boron-Epoxy Epoxy 

0 = 0° 
I 26.65 27.37 31.02 24.45 
II 37.68 34.43 39.20 34.38 
m 36.70 32.10 33.79 28.18 

0 = 90° 
i 34.56 29.36 32.35 24.45 
ii 75.24 49.96 77.33 34.38 
in 36.70 32.10 33.79 28.18 
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Figure 9 Penny shape crack in orthotropic (or composite) materials 
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Figure 10 Normalized strain energy release rate for Graphite-Epoxy 
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Figure 11 Normalized strain energy release rate for Eglass- Epoxy 
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Figure 12 Normalized strain energy release rate for Boron- Epoxy 
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Figure 13 Maximum strain energy release rate as a function of shear loading angle, <p 
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Figure 14 Direction of maximum strain energy release rate, 6C, measured relative to the X, axis 
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