

US Army Corps of Engineers Construction Engineering Research Laboratory

CERL Technical Report 99/42 May 1999

Defense Supply Center Columbus Central Heat Plant Modernization

Plant Assessment

by

Michael K. Brewer John Salley Charles Schmidt Michael Caponegro Thomas E. Durbin Benjamin Rosczyk Christopher Dilks Paul H. Nielsen

The Department of Defense (DOD) owns a large number of aging district heating systems, typically consisting of a central heat plant (CHP) and a heat distribution system. Many of these systems are nearing the end of their useful life, and incur significant maintenance and repair costs to keep them operational. This study focused on the CHP at the Defense Supply Center Columbus (DSCC), Columbus, OH to help the installation meet long-term goals of reduced energy consumption and improved air quality. Condition assessment surveys were done at the DSCC CHP. Researchers evaluated the current state of the system, provided a list of modernization options, and proposed a modernization plan.

19990628 032

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

USER EVALUATION OF REPORT

REFERENCE: USACERL Technical Report 99/42, Defense Supply Center Columbus Central Heat Plant Modernization: Plant Assessment

Please take a few minutes to answer the questions below, tear out this sheet, and return it to USACERL. As user of this report, your customer comments will provide USACERL with information essential for improving future reports.

1. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

2. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

3. Has the information in this report led to any quantitative savings as far as manhours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

.

4. What is your evaluation of this report in the following areas?

e. Adequate Reference Material:

a. Presentation:

b. Completeness: '

c. Easy to Understand: -

d. Easy to Implement:

f. Relates to Area of Interest: -

g. Did the report meet your expectations?-

h. Does the report raise unanswered questions?

i. General Comments. (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

5. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

Name:	 		
Telephone Number:			<i>1</i>
r	 <u>, , , , , , , , , , , , , , , , , , , </u>		
Organization Address:	 		

6. Please mail the completed form to:

Department of the Army CONSTRUCTION ENGINEERING RESEARCH LABORATORY ATTN: CECER-IM-T P.O. Box 9005 Champaign, IL 61826-9005

REPORT D	Form Approved OMB No. 0704-0188		
Public reporting burden for this collection of gathering and maintaining the data needed, collection of Information, including suggestio Davis Highway, Suite 1204, Arlington, VA 22:	information is estimated to average 1 hour per and completing and reviewing the collection of ns for reducing this burden, to Washington Hea 202-4302, and to the Office of Management and	response, including the time for information. Send comments re adquarters Services, Directorate Budget, Paperwork Reduction I	reviewing instructions, searching existing data sources, egarding this burden estimate or any other aspect of this for information Operations and Reports, 1215 Jefferson Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave Blank)	2. REPORT DATE May. 1999	3. REPORT TYPE AND DAT Final	ES COVERED
 TITLE AND SUBTITLE Defense Supply Center Colum AUTHOR(S) Michael K. Brewer, John Salle Thomas E. Durbin, Benjamin 	ibus Central Heat Plant Moderniza ey, Charles Schmidt, Michael Cap Rosczyk, Christopher Dilks, and F	ntion: Plant Assessmen onegro, Paul H. Nielsen	5. FUNDING NUMBERS t MIPR SC0070060089
7. PERFORMING ORGANIZATION NAME U.S. Army Construction Engine P.O. Box 9005 Champaign, IL 61826-9005	(S) AND ADDRESS(ES) neering Research Laboratory (CEI	<i>۱</i> L)	8. PEFORMING ORGANIZATION REPORT NUMBER TR 99/42
 SPONSORING / MONITORING AGENC Defense Supply Center Colum ATTN: DSCC-WIC PO Box 3990 Columbus, OH 43216-5000 	Y NAME(S) AND ADDRESS(ES) Ibus		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
 SUPPLEMENTARY NOTES Copies are available from the 	e National Technical Information	Service, 5385 Port Roy	val Road, Springfield, VA 22161
12a. DISTRIBUTION / AVAILABILITY STAT	EMENT	- **	12b. DISTRIBUTION CODE
Approved for public release	; distribution is unimited.		
13. ABSTRACT (Maximum 200 words)			
The Department of Defense heat plant (CHP) and a heat significant maintenance and Center Columbus (DSCC), (improved air quality. Condi the system, provided a list o	(DOD) owns a large number of ag distribution system. Many of these repair costs to keep them operation Columbus, OH to help the installant tion assessment surveys were done f modernization options, and prop	ging district heating sys e systems are nearing the mal. This study focused tion meet long-term gose e at the DSCC CHP. Re osed a modernization p	tems, typically consisting of a central ne end of their useful life, and incur l on the CHP at the Defense Supply als of reduced energy consumption and searchers evaluated the current state of lan.
14. SUBJECT TERMS		· · · · · · · · · · · · · · · · · · ·	15. NUMBER OF PAGES
central heat plant maintenance & repair	heat distribution syste Defense Supply Cente	ms er, Columbus, OH	96 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICAT OF ASTRACT Unclassified	TION 20. LIMITATION OF ABSTRACT SAR
19319 / 340-01-200-3300			Prescribed by ANSI Std 239-18

otandaru i	0.11	1200	1110	
Prescribed	bv	ANSI	Std	23
200 102	~,		•••	
230-102				

Foreword

This study was conducted for the Defense Supply Center Columbus (DSCC), Columbus, OH, under Military Interdepartmental Purchase Request (MIPR) No. SC070060089. The technical monitor was Ed Poprock, DSCC-WIC.

The work was performed by the Energy Branch (CF-E), of the Facilities Division (CF), U.S. Army Construction Engineering Research Laboratory (CERL). The CERL principal investigator was Michael K. Brewer. Mark W. Slaughter is Chief, CECER-CF-E; and Dr. L. Michael Golish is Chief, CECER-CF. The CERL technical editor was William J. Wolfe, Information Technology Laboratory.

Dr. Michael J. O'Connor is Director of CERL.

÷*

Contents

SF	298	1
For	reword	2
1	Introduction	7
	Background	7
	Objectives	7
	Approach	7
	Mode of Technology Transfer	
2	CHP Assessment	9
	Coal Handling Systems	9
	Pneumatic and Electronic Controls	9
	Combustion Air Flow Systems	10
	High Temperature Hot Water (HTHW) Generators	10
	Multi-Cyclone Dust Collectors (MDC)	15
	Electrostatic Precipitators (ESP)	17
,	Pneumatic Ash Handling System	17
	HTHW Distribution System, Including Piping, Valves, Generator Pumps, and Distribution Pumps	19
	Water Treatment Systems	20
3	CHP and HTHW System Thermal Model	21
4	Development and Evaluation of CHP Modernization Options	22
	Plant Alternatives	22
	Basis for Life Cycle Costing for DSCC Project	22
	Full Load Alternatives	23
	Reduced Load Alternatives (Demolition)	24
	Reduced Load Alternatives (Demolition, Dry Pipe Conversion)	25
	Analysis Summary	25
5	Plant Modernization Plan	28
	Short Term	28
	Long Term	
	Plan Development	29

3

6 Conclusion	
Appendix A: Site Visit Data Sheets	A1
Appendix B: Nalco Metallurgical Analysis	B1
Appendix C: HEATMAP Data Output	C1
Appendix D: CHP Modernization Analysis Data Sheets	D1
Appendix E: LCCID Output	E1
Appendix F: Net Present Value Sensitivity Analysis	F1
Distribution	

List of Figures and Tables

Figures

1	Hole in No. 3 outlet duct	11
2	Rear grate seal shoes crystallized	11
3	Missing thermocouple, Unit No. 1	12
4	Overhead furnace wall tube, Generator No. 3.	13
5	Water soaked refractory, Unit No. 1	14
6	Hole in upper tube, MDC No. 1	15
7	Cracked lower tube, MDC No. 3.	16
8	Broken lower tube boot tabs, MDC No. 3	16
9	Roof leak in ESP	18
10	Warped plates and wires off center in ESP.	18
11	Gas conversion costs with decreasing load	26
12	Decentralized boiler costs with decreasing load	26
13	Decentralized furnace costs with decreasing load	27

Tables

1	Inspection and repair summary	19
2	Distribution Model Summary	21
3	Full load (Scenario 101) heating options.	24
4	Reduced load (Scenario 104) heating options	24
5	Reduced load (Scenario 105) heating options	25

5

1 Introduction

Background

The Department of Defense (DOD) owns a large number of aging district heating systems, typically consisting of a central heat plant (CHP) and a heat distribution system. Many of these systems are nearing the end of their useful life, and incur significant maintenance and repair costs to keep them operational. Typical system designs were developed when energy costs were low and when energy efficiency was not seen to be as important a factor as it is now. To meet long-term goals of reduced energy consumption and improved air quality, the DOD's energy supply infrastructure must be revitalized. The CHP at Defense Supply Center Columbus (DSCC), Columbus, OH, is one such facility in need of repairs. DSCC tasked the U.S. Army Construction Engineering Research Laboratory (CERL) to help the installation develop a modernization plan to efficiently effect CHP repairs and system improvements. 7

Objectives

The objectives of this study were to conduct condition assessment surveys of the CHP at the DSCC to determine the existing state of the system, and to provide modernization options to DSCC.

Approach

- 1. CERL was tasked to conduct site investigations and equipment inspections at DSCC. During site visits from 21-25 October 1996 and 25-27 November 1996, CERL and its contractor, Schmidt Associates Inc. (SAI) conducted operational tests and "cold iron" inspections. Site visits and meetings fiscal year 1997 (FY97) and FY98 have helped to refine the analysis to accommodate potential mission changes.
- 2. The assessment team reviewed plant machinery history, system schematics, technical manuals, and plant logs (Figures 1 to 10).

- 3. The team constructed a model of the CHP and HTHW system using HEATMAP and other analysis tools.
- 4. Historical data, condition assessments, and plant configuration information were analyzed and processed with existing CERL modeling tools.
- 5. A series of modernization options were outlined, and a modernization plan was proposed to implement the most desirable modernization alternative.

Mode of Technology Transfer

8

As part of this project, CERL has delivered the HEATMAP model as a turnkey hardware and software package to allow DSCC to manipulate the model parameters for utility planning purposes. CERL has also trained DSCC personnel on the use of HEATMAP.

2 CHP Assessment

During the 21-25 October 1996 site visit, CERL and SAI conducted flue gas analysis at various locations along the flue gas path to evaluate pollution control effectiveness. Inspections were conducted on the furnace grates, forced draft plenums, furnace tubes, generation bank, generator outlet duct, mechanical dust collectors (MDCs), and electrostatic precipitators (ESPs). Appendix A summarizes test data.

During the 25-27 November 1996 site visit, CERL inspected furnace tube failures in Unit #1. At DSCC's request, CERL contracted NALCO^{*} to conduct a tube failure analysis of the tube metal. Appendix B contains the NALCO metallurgical analysis report. NALCO reported that oxygen pitting and long-term overheating of the generator tubes were likely causes of tube failure.

Coal Handling Systems

DSCC reports excessive levels of coal fines in the storage pile runoff. The storage area does have a low curb around it, but does not have any runoff treatment. At an earlier point in time, DSCC had minimized runoff by using coal pile covers. No covers are in use now.

Pneumatic and Electronic Controls

The coal-fired units have a mix of electronic and electro-mechanical controls. The newer gas-fired unit has electronic and mechanical controls installed near the burner front.

DSCC is in the middle of an electrical system upgrade. CERL did not review the upgrade plan or inspect equipment installation.

^{*} NALCO Chemical Co., Naperville, IL 60563-1198.

Combustion Air Flow Systems

The forced draft fan (FDF) takes suction near the roof. The FDF inlet duct forms the outside surface of the generator outlet duct. This is meant to capture a small amount of heat from the flue gas stream. However, the common duct wall between the FDF inlet air duct and generator outlet air duct is corroding due to acid condensation in the outlet ducting. The duct wall has several holes with diameters of 3 to 5 in. due to the flue gas acid corrosion. At the generator outlet, the pressure is about -1.5 in WC. Although the FDF duct pressure in the vicinity of the holes was not measured, it would most likely not be as negative. Therefore, cooler FDF duct air would be drawn into the flue gas stream via the holes and further cool the gas and cause acid condensation on pollution control equipment (Figure 1). Researchers also observed that the Induced Draft (ID) and FD fan motors needed supplemental cooling with large floor fans.

High Temperature Hot Water (HTHW) Generators

Spreader Stoker

The Riley Stokers were inspected by J.W. Chappel from SAI. The rotor blades appear to be set correctly to distribute the coal evenly. However, Chappel recommends feeding coal to the stoker while in a maintenance shutdown to observe the throw of the coal without fire in the furnace. CERL and SAI can provide support in blade setting during shutdown if desired.

Traveling Grate

The grate in Unit #1 was satisfactory for firing in the 1996-1997 heating season. However, some of the components need repair or replacing such as bowed T-bars, bent rails, endclip seals, overgrate seal shoes (which need replacement due to crystallization), and worn skid shoes. The rear right thermocouple is also missing. The bent and worn components may cause the grate to bind as well as leak in tramp air (Figures 2 and 3).

Figure 1. Hole in No. 3 outlet duct.

Figure 2. Rear grate seal shoes crystallized.

Figure 3. Missing thermocouple, Unit No. 1.

Furnace Tubes

Several tubes in Unit #1 have failed during attempted startup in the 1996-1997 heating season. As noted in the NALCO analysis, widespread oxygen pitting is suspected. The tube sample also showed signs of low level, long-term overheating.

In generator #3, the wall tubes on the right side appear to have been overheated. Some of the tubes have moved away from the wall. Lower portions of some of the wall tubes have metal surface patterns uncharacteristic of normal tubes. The metal irregularities could be due to excessive metal temperatures (Figure 4). At least 25 tubes on the left furnace look newer than the rest of the furnace.

During FY97, DSCC implemented tube repairs to units #1 and #3 to correct the tube failures discovered in FY96.

Figure 4. Overhead furnace wall tube, Generator No. 3.

Furnace Casing and Refractory

Large sections of the refractory have become wet from the water leaks in unit #1. It is likely that moisture has migrated into the casing insulation as well (Figure 5). Major portions of the refractory were replaced as part of the retubing in FY97.

Generation Tubes

The tubes were externally inspected from the top and the bottom. The tubes appear to be in good condition.

In the back pass of Unit #3, the refractory has failed in spots. The backwall and part of the side wall tubes are pushed out from the wall. Some of the header plugs are weeping and may need new seals at the next maintenance shutdown. The generation bank tubes also need air lancing to remove debris.

Figure 5. Water soaked refractory, Unit No. 1.

Multi-Cyclone Dust Collectors (MDC)

MDC #1 needs major repairs. Researchers observed a lot of flyash in the east hopper. It was not determined whether the ash was there due to an operational oversight or system malfunction. The bottom portion of the lower tubes is severely worn. The back row of spinners was also clogged with wet ash deposits. The MDC inlet dampers were not working. These dampers allow the operator to remove part of the MDC from service during low loads to keep the flue gas velocity high enough for proper dust collection. Several of the upper tubes were severely worn. The wear was so severe that a hole had developed in Tube E3. Many of the spinners are severely worn as well. At the MDC exit, wet ash has collected on top of the tube sheet. Rope packing is needed in MDC outlet expansion joint to reduce flue gas condensation in that stagnation area.

MDC #3 also requires major repairs. Several of the top tubes and spinners were worn (Figure 6). Dust collector C2 spinner is installed backward. Lower tube C3 is severely cracked and is likely to fall out soon (Figure 7). Maintenance personnel should be aware of the falling object hazard when entering the hopper to inspect or repair the MDC. At least four of the lower tube boots have broken tabs and are falling out of place (Figure 8).

Figure 6. Hole in upper tube, MDC No. 1.

Figure 7. Cracked lower tube, MDC No. 3.

Figure 8. Broken lower tube boot tabs, MDC No. 3.

The MDC is one of the simplest pollution control devices for coal boilers. As the first cleanup device, it removes the greatest amount of particulate. A correctly designed and operated MDC can clean the flue gas of most stoker boilers to compliance standards at steady state condition.

Electrostatic Precipitators (ESP)

The ESPs are in need of major repair or replacement. Moisture is entering the ESP via roof leaks (Figure 9). The plates are bowed and warped. Plate spreader bars have been installed to mitigate the bowing. However, the plates have continued to be overheated, which has been causing further warpage. The overheating may be caused by glowing ash deposits. If the oxygen level in the flue gas is above 9 percent, the carbon in the flyash will continue to burn and generate heat as it is collected on the plates. Oxygen levels of 11 to 12 percent were measured during the November 1996 site visit.

The warping and bowing prevents the wires from being centered between the plates (Figure 10). The ESP must have the wires within 1/2-in. of the mid-point of the gap between the plates. Many of the wires on the ESP are out of position 2 in. or more.

If the ESP plates and wires are in correct alignment and the field controls are properly adjusted, the field voltage should be high enough to cause 50 sparks per minute. If the spark rate is too low, the field will not be strong enough to impart a charge to the dust particles. If it is too high, the electrical discharge will be inefficient and, in the presence of high oxygen, could cause ash fires in the ESP.

Pneumatic Ash Handling System

There were abnormally high levels of ash in some of the ash hoppers. It was not determined whether this was due to an operational oversight or system degradation. The ash silo was being repaired during the October 1996 visit.

Figure 10. Warped plates and wires off center in ESP.

HTHW Distribution System, Including Piping, Valves, Generator Pumps, and Distribution Pumps

Three of the mechanical rooms were visited. No major problems were noted in the cursory tour. The buildings are mostly served by HTHW to steam converters. A few buildings are served by HTHW to Low Temperature Hot Water (LTHW) converters or HTHW directly. The steam converters are more sensitive to temperature fluctuations. One of the purposes of the small gas-fired unit is to boost the temperature of the HTHW supply during certain conditions so that distant steam converters can produce the required pressure. CERL material engineers conducted a site visit 23 November 1998 to assess the serviceability of the HTHW distribution piping. The external inspection and water samples indicated that the piping is in fair to good condition and is not in danger of imminent failure. Table 1 summarizes inspection and repair status of the entire system.

Component	Inspected	Condition	Repair
Storage Pile	Nov-96	Coal fines in runoff	
Pneumatic and Electric Controls	NA		Upgrade in progress 96-97
Combustion Air System	Nov-96	Hole in FDF duct; Fan motors overheating	
Spreader Stoker	Nov-96	Static check satisfactory; Recommend coal throw check	
Traveling Grate	Nov-96	Repair and replace worn and bent grate components	
Eurnace Tubes	Nov-96	Overheated and pitted tubes	Retubed Units #1 and #3 FY97
Furnace Casing and Refractory	Nov-96	Moisture damage	Replaced during retubing FY97
Generation Tubes	Nov-96	Refractory in backpass of #3 has failed; Leaking header plugs	
Multi-Cyclone Dust Collectors	Nov-96	Broken and worn out tubes; Leaking seals	
Electro-Static Precipitators	Nov-96	Plates bowed and warped; Wires off-center; Leaks; High O, levels	
Pneumatic Ash Handling	Nov-96	High ash levels in hoppers	Repair in progress Nov 96
High Temperature Hot Water Piping and water chemistry	Nov-98	Water samples satisfactory; Water softener may be undersized or ineffective	

Table 1. Inspection and repair summary.

Water Treatment Systems

The water chemistry samples drawn by CERL indicated that hardness is being controlled. However, the pH is running too high at 11.5. The hot water system should maintain a pH of 9 to 10.5 to avoid copper corrosion in heat exchangers. The sulfite level should be controlled to 50-100 ppm. Although the samples were less than 50 ppm, some sulfite was lost due to air entrained in the sampling and shipping procedure.

3 CHP and HTHW System Thermal Model

A model was constructed of the CHP and HTHW system using HEATMAP and other analysis tools. Historical data, condition assessments, and plant configuration information will be analyzed and processed with existing CERL modeling tools. CERL delivered the HEATMAP model in October 1998 as a turnkey hardware and software package to allow DSCC to manipulate the model parameters for utility planning purposes. As part of the turnkey package, CERL trained DSCC personnel on the use of HEATMAP. A summary of the HEATMAP output is in Appendix C. A summary of the analysis data sheets are in Appendix D.

Preliminary thermal energy supply analysis has been done on the existing system. Table 2 summarizes the plant model.

Scenario	Annual Fuel (Mbtu/yr)	Peak HTHW Energy (Mbtu/hr)	System Losses (Mbtu/yr)	Piping Construction Cost (\$) **
Log estimates	124,659	78		•
101 – HTHW Current Loads	104,280	82.6	10,065	5,775,151
104 – HTHW Load reduced by demolition	60,210	48	3,019	5,595,247
105 – HTHW Load reduced by demolition, dry pipe conversion, and Bldg 41 &42 small boilers	33,288	25.7	3,302	5,091,478
106 – LTHW Current Load reduced by demolition, dry pipe conversion, and Bldg 41,42 and 27 small boilers	21,133	18.2	3,619	2,549,957

Table 2. Distribution Model Summary

* Closure not achieved on log reading. Instrumentation has lost calibration. Log estimates adjusted using fuel consumption.

* Construction costs from HEATMAP default tables. For a new system analysis, the estimating tables would be reviewed and modified to match expected construction practices.

4 Development and Evaluation of CHP Modernization Options

Plant Alternatives

Over 19 different repair alternatives were calculated over the course of the study. In general, the alternatives were combinations of central plants, decentralized systems, government labor, contracted labor, coal, interruptible gas, firm gas, government O&M, third party O&M, load reductions due to demolition, load reduction due to dry pipe fire protection, baghouse pollution control, and ESP pollution control. All of the data files were provided to DSCC throughout the project. However, to help develop a workable heat utility plan, only the more competitive options are summarized in this report. Additionally, the alternatives are grouped according to the heat loads they serve. DSCC expects to reduce the heating needs due to demolition and conversion to dry pipe fire protection conversion. CERL analyzed the cost of alternatives along a "glide path" from the current building heat load of 79.6 MBTU/hr to 37.5 MBTU/hr. Appendix D includes a data summary of repair alternatives for the CHP.

Basis for Life Cycle Costing for DSCC Project

Information/estimates were furnished by SAI and CERL. The most current version of the WinLCCID software was used for the calculations. A life cycle of 25 years was used with residual values for the central plant improvements as central plants have life expectancies of twice that of small commercial grade equipment. Appendix E shows the LCCID output.

OM&R costs for central plants were derived from industrial plants in Ohio, U.S. Army coal plant data, and DSCC cost data. Government manpower costs were derived from the most current wage grade pay scale for Columbus, OH. Central plant energy costs were estimated from 4-year averages of Redbook fuel data and HEATMAP analysis. SAI furnished new construction costs. Third party OM&R costs were scaled to that seen at Ohio industrial stoker plants. Energy rate information were provided by Bonnie Stillwagon, DESC (tel. [703] 767-8544). DESC is currently providing firm and interruptible gas to other Federal Government customers in the area (DOE). Based on the cost of interruptible natural gas to DOE from September 1996 to February 1997, and on an estimate of the cost from the city gate to the burner tip, the cost would be \$4.66/Mbtu. A price survey done in June 98 determined that Columbia Gas would charge \$1.50 per mcf (MBtu) to deliver gas to DSCC. Assuming the June 1998 city gate cost of \$2.80/mcf, the delivered cost to DSCC would be about \$4.30/mcf for interruptible gas. The utility, Columbia Gas (POC Patti Spangler, tel. [614] 460-2157), would charge a firm rate of about \$6.00/Mbtu. The cost for DESC-provided #2 fuel oil would be \$0.63/gal (\$4.53/Mbtu).

The mix of fuel usage was determined assuming that the plant would operate from October to April. For gas use, firing for most of the 6 months would be on interruptible gas with firing on #2 backup only for the few days (zero to 10 days) of a curtailment.

Decentralized boiler OM&R was estimated from decentralized studies and market surveys conducted for Fort Meade and Fort Drum. Since the boilers will be gas only, firm gas will need to be purchased. For decentralized furnaces, 286,650 Btu/hr hot air furnaces will heat the buildings. Three FTE's will remain to operate and maintain the decentralized furnaces. OM&R estimated at about \$100/year/unit.

Full Load Alternatives

Table 3 tabulates the top six options for the current load. This set of options assumes that that all the current buildings heated in 1997 will continue to need heating and that the government would operate the systems. Some of the buildings will continue to have wet pipe fire protection even though the material stored in them does not require heating. The peak building load is approximately 79 MBTU/hr.

The base case is to convert the coal stokers to gas and provide oil backup. Although coal is the status quo, significant capital must be invested in the pollution control system. Decentralized boilers have the least life cycle cost due to the large savings in labor and maintenance. However, the large capital investment has a long payback. The Army recommends energy conservation projects have savings to investment ratios (SIR's) above 3. Decentralization will save some energy by avoiding the line loses but the fuel bill will be higher due to the premium paid for firm gas.

Name	Capital Cost	Labor Cost	OM&R	Fuel	LCC NPV	SIR	DPP
Gas Conversion - Oil BU	1,500,000	594,168	169,813	450,046	18,450,230		
Coal - Baghouse	2,570,000	594,168	319,596	210,725	17,381,820	2.1	12
Coal -ESP	2,760,000	594,168	319,596	210,725	17,530,620	1.8	14
New Gas Unit - Oil BU	3,270,000	594,168	169,813	450,046	19,835,840	0.1	99
Decentralized - Boilers	4,764,176	130,663	100,100	520,443	15,441,100	2	9
Decentralized - Furnaces	8,957,231	130,663	27,100	492,239	17,782,330	1.1	21

Table 3. Full load (Scenario 101) heating options.

Reduced Load Alternatives (Demolition)

Table 4 tabulates the top 3 options for a reduced load. The coal-fired options were dropped as they will be even less competitive with a reduced load. Even though the fuel cost may drop for the coal options, the labor, and operations and maintenance costs will not drop proportionately to the fuel usage decline. For the central plant, only one coal HTHW unit would be converted to gas. The full staff is left in the plant even though the work load would be significantly reduced by not burning coal. The peak building heating load will be approximately 60 MBTU/hr.

Two factors increase the competitiveness of the decentralized options. First, the demolition reduces the construction cost about 25 percent. Second, the annual costs of the decentralized options are dramatically less than those of the central plant option. At this load point, with a SIR of 4, using decentralized boilers is a viable alternative.

Option	Name	Capital Cost	Labor Cost	OM&R	Fuel	LCC NPV	SIR	DPP
3.40	Gas Conversion - Oil BU	1,895,000	594,168	184,899	325,846	17,135,530		
8.40	Decentralized - Boilers	3,640,000	87,369	76,937	380,284	11,358,890	4.7	4
9.40	Decentralized - Furnaces	6,051,209	87,369	30,986	364,919	12,661,800	2.2	8

Table 4. Reduced load (Scenario 104) heating options.

Reduced Load Alternatives (Demolition, Dry Pipe Conversion)

Table 5 tabulates the top 3 options for a reduced load. For the central plant, only one coal HTHW unit would be converted to gas. The full staff is left in the plant even though the work load would be significantly reduced by not burning coal. The load is reduced even more as almost 1 million sq ft of building space are allowed to go cold once the fire protection system is converted to a dry pipe system. Some consideration must be given to heating the lavatory areas with small heating systems. The cost of converting the fire protection is included in the option capital cost.

These options also include the cost of installing small boilers at Buildings 41 and 42. For this set of options, the fixed costs associated with the central plant make it uneconomical when compared to decentralized plants. There is not enough load and load density to make the central plant viable. CERL also analyzed a set of scenarios that included the cost of a small boiler in Building 27. However, those calculations show that decentralized systems are still the best alternative with a greatly reduced heating load.

Ontion	Name	Capital Cost	Labor Cost	OM&R	Fuel	LCC NPV	SIR	SIR
3.50	Gas Conversion - Oil BU	3,030,584	594,168	184,899	208,051	17,395,280	0.0	0.0
8.50	Decentralized – Boilers	3,495,584	87,369	48,643	233,521	10,752,480	19.3	1
9.50	Decentralized – Furnaces	4,694,067	87,369	23,186	226,197	11,242,330	5.7	3

Table 5. Reduced load (Scenario 105) heating options.

Analysis Summary

With the present building load, it is desirable to select the option with the lowest first cost as the other alternatives do not have a satisfactory payback. CERL and Schmidt cost estimates show that converting to gas in at least one of the coal fired units is less costly than installing a baghouse or new ESP. Not repairing or replacing the ESP is not a prudent course of action if the central plant is to be maintained.

If the long-term plan is to demolish excess space and install dry pipe fire protection, decentralized heating is the most life cycle cost effective. The savings in labor and fuel will rapidly payback the capital cost differential. The difference in cost between decentralized boilers and furnaces is not large. An assessment of each building's comfort needs should be done to determine which system best serves the occupants. The total costs for the decentralized boiler option was slightly lower as the existing HTHW/Steam converter mechanical rooms were assumed to be satisfactory locations for the package boilers. Much of the building steam heat system was assumed to be serviceable for the new boilers. Individual gas furnaces will require more gas piping in the building. However, point-of-use gas furnaces and gas radiant heaters may best serve the building heating needs. The effect of the change in load on alternative costs is shown in Figures 11-13.

Figure 1. Gas conversion costs with decreasing load.

Figure 12. Decentralized boiler costs with decreasing load.

Figure 13. Decentralized furnace costs with decreasing load.

These figures indicate that, if the expected load reduction occurs, decentralized heating will be the most economical heating strategy. However, converting all of the existing buildings to decentralized heating is not currently cost effective.

5 Plant Modernization Plan

Based on the results of the study, CERL and its contractor, Schmidt and Associates, recommend a heat utility modernization schedule be developed. The team recommends short- and long-term actions to modernize the heating systems.

Short Term

Until a demolition schedule is agreed upon, the central plant will need to be maintained. The current pollution control system is need of repair. Plant records have shown that one coal boiler and the smaller gas boiler have carried the load though a whole winter. If a gas curtailment occurs, two coal boilers will be needed to meet a peak load of 80 MBTU/hr. If some buildings were allowed to have minimal heating, one boiler might be able to meet the load. DSCC's planners need to determine a reasonable schedule for funding of the demolition of the excess buildings and conversion of the remaining building to decentralized heating. It is likely that the central plant will need to operate at least two to five more heating seasons. If continued operation of coal is desired, repairs to the MDC should be conducted this summer as a minimum to reduce the cost risks associated with emission compliance. SAI has estimated that the cost to replace the MDC alone is about \$80K in the context of a larger repair project. The cost of doing that one repair may be much higher as the mobilization costs will not be spread over as many work items. If a conversion of one boiler to gas with oil backup can be effected quickly, that will greatly reduce the emission compliance risk while waiting for the demolition and dry pipe conversion to occur.

Long Term

The long range goal should be to decentralize if the demolition and dry pipe conversion will occur. If the current load will be maintained, then the coal-fired units should be converted to gas with oil backup.

Plan Development

CERL and its contractor, SAI, can provide detailed information on implementing the most desirable modernization alternative once it is clear what load must be served. To develop construction specifications the Louisville District Corps of Engineers Office can be consulted. They can provide a variety of design, contracting, and construction services to implement the heating system modernization.

The CERL technical point of contact for this project is Michael Brewer, (217) 352-6511, X-7375 (voice), (217) 373-3430 (fax). The mailing address is:

Commander and Director U.S. Army Construction Engineering Research Laboratory ATTN: CF-E/M. Brewer PO Box 9005 Champaign, IL 61826-9005

6 Conclusion

- 1. This study conducted condition assessment surveys of the CHP at the DSCC to determine the existing state of the system.
- 2. The results of the surveys were analyzed, and alternative modernization options were derived from this information.
- 3. A modernization plan was proposed to implement the most desirable alternative, and to train DSCC personnel in the use of the proposed hardware and software.

Appendix A: Site Visit Data Sheets

Utility Modernization Analysis	Site General Data
Notice to users: This spreadsheet is to assist a base or command engineer assess energy supply options. It contains data extracted from site visits, HI LCCID program files and historical cost data. For more information Utilities Division, USACERL, Champaign, IL 61826-9005 (800)872-2	the economic viability of several EATMAP analysis, EIS files, about the analysis contact the 2375 ext 5505.
Input Section Fill in all shaded boxes	
Installation Name: Detense Supply Center Columbus, OH	
Installation POCs Ed Poprock	
Project Title Plant Modernization at DSCC	
Project Description	
Estimated Cost Form #/	Work Order
Design Status (0-100%) Status of 139	01 (0-100%)
Designer	
Design POC	
Design Completion Date Projected Project	t Start Date
Note to user: Calculated fields are in blue text. Data input fields the field comments and links before overriding a calculated field	s are in black or red text. Check I.

A1

Utility Modernization	Analysis	Si	te General Data
Site Information			
Utility Rate Information:			
Natural Gas Utility Rates:		4	through
Cooling Rate 0.60	0 \$/therm	from	through
Firm Boller Rate			
Electric I Itility Bates:			
Summer Demand	\$/kW	from	through
Ratchet	%	from	through
Winter Demand	\$/kW Energy	/ Ratio	
Energy 0.03	12 \$/kWh Smr. E	l/Gas: 1.524	Wntr El/Gas: 1.524
	Deman	d/Gas0.000	0.000
Fuel rate Information:			
#2 Oil (\$/gal) 0.63 \$/MB	10 4.53 Coal S	pec:	
#6 Oli (\$/gal) \$/MB			·
Gas (\$/cof) 0.43 \$/MB	4.30 Int		
Gas (\$/ccf) 0.60 \$/MB	U 6.00 Firm		
Annual Degree Days: Heati	ng <u>5,702</u> C	ooling 809	•
	- Deview demand aba	rea actaulations to d	latermine apprepriate
NOT	: Review demand cha	rge calculations to u	le months
NOTE: 1	The above rates should	include any applicat	le taxes and surcharges.
Chillers Chiller #	Chiller # Chiller	# Chiller #	
Capacity			tons (circle one)
Туре			(cent., recip., screw, absorb)
Manufacturer			
Age		·····	
Condition			
Primary Fuel			
Distribution System Leng	th feet	Diameter of Main	inches
Type of Distribution System	n: Direct Buried, Above	Ground, or Shallow	Trench (circle one)
Distribution System is	: Loop, Branched, or (Combination (circle o	one)
		·····	
		4	
		· · · · · · · · · · · · · · · · · · ·	

Utility Modernization Analysis	Site General Data	
Technology Considerations		
YES/NO		
Is it replacement in kind? y		
Different Technology Considerations: YES/NO	Fuels Considered: Primary Alternate	
Central Energy Plants V	Natural Gas Y Y	
Decentralized system Y	Fuel Oil Y Y	
Standalone Satellite Plants and Distribution Y	Coal Y	
Satellite Plants with Common Distribution	Wood	
Other	Other	
Describe Other		
Heating	Cooling	
LTHW In Bldg	Electric	
HTHW CHP	Engine Driven Chillers	
Steam In Bidg	Absorption	
Distribution System Type: YES/NO	Distribution System Type: YES/NO	
Above Ground Y	Above Ground	
Shallow Irench N	Shallow Trench	
Master Planning Coordination: Are the projects compatible with CURRENT infrastructure projects? Are the projects compatible with PLANNED infrastructure projects?		
Condition Batings:		
Is the Installation Status Benort (ISB) used to rate the central plants?		
Is the Installation Status Report used to rate the distribution systems?		
Is anything being done to	reevaluate ISR readings?	
Plant Personne	I: Telephone/Fax	
Plant Engineer Ed Poprock	(614) 692-6703, FAX 3093	
Plant Foreman	(614) 692-2717,3645	
Plant Operator		
Plant Maintenance		
Heating/Cooling Mechan	ical Shop: Telephone/Fax	
Chief		
Foreman Art Inompson		
Maintenance		
Utility Bills		
Gas Co Rep Patti Spangle Columbia Gas	614) 460-2157	

A3
Utility Moderniza	tion Ana	lysis			Heat Plant Data
Existing Equipment					<u></u>
Plant Data					
Plant Peak Load	[lbs/hr or MBb	ou/hr (circle one	e)	
Plant No-Load Load		ibs/hr or MBb	u/hr (circle one	e)	
Reported M/LL Bate (Daily Ave)		gallons			
Plant Annual Coal Lise	4617	Tons	13500	Btu/lbs	124659 MBTU/yr
Plant Annual Steam Prod		Ki bs stm	180	Days Oper	0.0% Ave Eff
Plant Annual Steam 1100.	180	lbs/br or MBT	U/hr (circle on		
Fear Flain Capacity					
Plant Annual Oil Lico	r	Gallone	139.000	Btu/gal	
Plant Annual On Use		calions	0.1	MBTI /ccf	0 MBTU/vr
Plant Annual Gas Use	L		0.1		
	1.1	11-1-40	11-1-10		
Boilers				r	libs/br.or MRTU/br.(circle.ope)
Capacity	/0	40	70		(unter tube fire tube)
Type	W1	WI	VV I		
Convection Heating Surface	6993		6993		112
Water Wall Surface	1238	582	1238		π2
Total HS	8231	2441	8231		
MAWP Pressure	500	500	500		
Oper Pressure					
Safety Set Press					
Manufacturer	IBW	Geo. Marker	Erie City		
Built	1962	1995	1962		
NBPVII No.	M2913	FCW-11-941	M2911		
Last Inspection Date				1	
Condition					
Grate	Riley				
Burner Data					
Primary Fuel	Coal	N. Gas	Coal		
Alternate Fuel	none	none	none		
Controls					
Safety Viv			•		
WS Internal		SI. Scale			
FS Intermal		No Hot Spt			
•					
					1

Water Treatment System	
Water Treatment Equipment and Chemicals used or Contractor (please list)	
Makeup Rate	0 gallons/day 0 lbs/hr (ave) 0.00 gpm //0! Peak #DIV/0! No/Low Load
Water Treatment Beds Regeneration Bed Types Number of Beds Bed Diameter (in)	Manual/Auto Zeolite Softner/H-OH IX X-Area (ft2) 0.00 Max rate 0.00 gpm
Vessel Ht. (in) Resin Cap (18-24K/ft3)	Bed Ht. (est)0 Bed Vol (est)0.00 ft3
Water Analysis Hardness Conductivity TDS	ppm microMho ppm

17:10

85.6

67

251

14

8.5%

0.11%

92.0%

171.0

171

409

364

6.7

505.8

35600

340

426

-1.5

-2.5

1.6

334

350

7.6

0.2

0

394

-1.0

7.6

0.2

369

-1.0

7.9

0.2

0

364

-2.15

0

22

376

-1.4

8.5

0.1

368

-2.6

0

0.1

58

371

-0.86

8.3

0.1

31

365

-2.7

0

26

375

-0.7

7.8

0.1

24

370

-1.5

-0.07

0

11.1%

Boiler Data Sheet Utility Modernization Analysis Boiler Test Data (Unit #3) - DSCC, Columbus, OH **Enerac ESP Inlet** 25-Nov-96 16:20 16:30 16:40 16:50 17:00 Time 84.3 84.2 84.9 85 Combustion Eff(%) 84.4 Amb Temp (F) 65 66 65 65 65 254 262 265 283 265 Stack Temp (F) O2 (dry) 12.0% 11.8% 11.9% 10.4% 11.1% 26 25 23 29 16 CO(ppm) 7.9% 9.1% 8.5% 7.9% CO2 7.7% Combustibles 0.11% 0.11% 0.11% 0.11% 0.11% Boiler outlet (in WC) 108.0% 105.0% 80.0% 91.0% Excess Air % 104.0% 182.0 182.0 237.0 210.0 189.0 NO (pm) 0 0 4 0 NO2 (ppm) 0 NOx (ppm) 189 182 182 237 213 399 461 433 385 399 SOx (ppm) Plant/Gage Readings 369 369 373 Flue Gas Temp (F) 371 371 8.3 7.6 7.6 7.5 7.6 Oxygen % 505.4 505.6 503.7 H2OFlow(Klbs/hr) 490.3 502.3 26800 28500 28600 33900 34800 Btu Out(KBtu/hr) 343 342 364 364 H2O Temp In (F) 367 426 427 427 423 426 H2O Temp Out (F) -0.08 -0.06 -0.12 -0.08 -0.08 Furn Press (in WC) -1.5 -1.5 Last Pass (in WC) -1.1 -1.1 -1.1 -1.7 -2.6 -2.6 ID Fan Inlet (in WC) -1.6 -1.6 2.5 2.6 1.4 19.8 1.6 Opacity 335 HW Inlet (psig) 328 330 333 335 HW Outlet (psig) 345 346 349 350 346 **Generator Outlet Data** 8.3 Oxygen % 8.1 8.1 8.3 9.6 0 0 0.1 0 Combustibles % 0 20 21 22 23 27 CO(ppm) 397 408 391 394 396 Temperature (F) -0.71 -0.86 -1.4 Static Press(in H2O) -0.65 -0.7 Mechanical Collector Input 8.5 8.1 8.4 6.3 8.8 Oxygen % 0.1

CO(ppm)

Combustibles %

Temperature (F)

Combustibles %

Temperature (F)

Static Press(in H2O)

Oxygen %

CO(ppm)

Static Press(in H2O)

Mechanical Collector Output

0

32

374

-0.64

8.6

0.1

30

368

-1.4

0.1

32

374

-0.71

8.8

0.1

369

-1.55

30

Utility Modernization Analy	Boiler Calc. Sheet I		
Boiler Test Data	Fuel (Btu/lb) 13500		
ESP Outlet			
Ave. Enerac Data 25-Nov-96	Calculated		
(ESP Inlet) Time 16:45	Excess Air 63.90%		
Combustion Eff(%) 84.7	Eff w/o rad 84.99%		
Amb Temp (F) 66	Rad Loss 1.50%		
Stack Temp (F) 263	Eff w/rad 83.5%		
O2 (dry) 11.4%	Fuel Curve		
CO(ppm) 22	Btu/lb 12048		
CO2 8.3%	Excess Air 65.0%		
Combust 0.11%	Eff w/o rad 83.5%		
Boiler outlet (in WC)	Rad Loss 1.5%		
Excess Air % 96.7%	Eff w/rad 82.0%		
NOx (pm) 195			
NOx (pm) 196			
SOx (ppm) 414			
Ave. Plant/Gage Readings			
Flue Gas Temp (F) 370	• • •		
Oxygen % 7.6			
H2OFlow(Klbs/hr) 502.2			
Btu Out(KBtu/hr) 31367			
H2O Temp In (F) 353			
H2O Temp Out (F) 426			
Furn Press (in WC) -0.08			
Last Pass (in WC) -1.3			
ID Fan Inlet (in WC) -2.1			
Opacity 4.92			
HW Inlet (psig) 333			
HW Outlet (psig) 348			
Ave. Generator Outlet Data			
Oxygen % 8.3			· · ·
Combustibles % 0.1			
CO(ppm) 19			
Temperature (F) 397			
Static Press(in H2O) -0.89			
Ave. Mechanical Collector Input			
Oxygen % 8.0			
CO(ppm) 0.08			
Combustibles % 28			
Temperature (F) 373		·	
Static Press(in H2O) -0.89			
Ave. Mechanical Collector Output			
Oxygen % 8.3			
CO(ppm) 0.12			
Combustibles % 19			
Temperature (F) 367			
Static Press(in H2O) -1.98			

Boiler Data Sheet

~~

Enerac ESP Inlet	25-Nov-96					
Time	16:00	16:10	16:11	16:13	16:15	
Combustion Eff(%)			86.1%	82.2%	79.9%	
Amb Temp (F)			66	66	66	
Stack Temp (F)			124	204	232	
O2 (dry)			15.6%	12.6%	12.9%	
CO(ppm)			10	18	28	
CO2			3.0%	4.7%	4.6%	
Combustibles			0.00%	0.04%	0.11%	
Boiler outlet (in WC)						
Excess Air %			259%	135%	141.0%	
NO (pm)			79	143	172	
NO2 (ppm)			0	1	0	
NOx (ppm)			79	143	172	
SOx (ppm)			46	267	351	

Plant/Gage Readings

Flue Gas Temp (F)	366	369			
Oxygen %	9.3	6.9			
H2OFlow(Klbs/hr)	484.8	489.3			
Btu Out(KBtu/hr)	25100	26700			
H2O Temp In (F)	368	367			
H2O Temp Out (F)	422	426			
Furn Press (in WC)	-0.03	-0.09			
Last Pass (in WC)	-1.1	-1.0		-	
ID Fan Inlet (in WC)	-1.4	-1.4			
Opacity[1.2	1.4	 	·	
HW Inlet (psig)	326	328			
HW Outlet (psig)	341	346			
Generator Outlet Data					
Oxygen %	8.6	8.3			
CO(ppm)	0	0			
Combustibles %	24	17			
Temperature (F)	384	388			
Static Press(in H2O)	-0.63	-0.57			

, , , , , , , , , , , , , , , , , , ,				
Mechanical Collector Input				
Oxygen %	8.5	8.3		
CO(ppm)	0	0		
Combustibles %	29	25		
Temperature (F)	370	370		
Static Press(in H2O)	-0.55	-0.57		
Mechanical Collector Output	ıt			
Oxygen %	8.8	8.7		
CO(ppm)	0	0.1		
Combustibles %	27	30		
Temperature (F)	365	366		
Static Press(in H2O)	-1.3	-1.2		

Boiler Calc. Sheet I Utility Modernization Analysis Fuel (Btu/lb) 13500 **Boiler Test Data** 25-Nov-96 Calculated Ave. Enerac Data 65.40% (ESP Inlet) Time 16:09 Excess Air Eff w/o rad 85.25% Combustion Eff(%) 82.7% Amb Temp (F) 66 Rad Loss 1.50% 187 Eff w/rad 83.8% Stack Temp (F) O2 (dry) 13.7% Fuel Curve 13500 MBtu/gal CO(ppm) 19 CO2 4.1% Excess Air 65.0% Eff (w/o rad) Combust 0.05% 83.6% Boiler outlet (in WC) Rad Loss 1.5% 178.3% Excess Air % Eff (w/rad) 82.1% 131 NOx (pm) NOx (pm) 0 NOx (pm) 131 SOx (ppm) 221 Ave. Plant/Gage Readings 368 Flue Gas Temp (F) 8.1 Oxygen % H2OFlow(Klbs/hr) 487.1 Btu Out(KBtu/hr) 25900 H2O Temp In (F) 368 H2O Temp Out (F) 424 Furn Press (in WC) -0.06 Last Pass (in WC) -1.05 ID Fan Inlet (in WC) -1.4 Opacity 1.3 HW Inlet (psig) 327 HW Outlet (psig) 344 Ave. Generator Outlet Data 8.5 Oxygen % CO(ppm) 0.0 21 Combustibles % Temperature (F) 386 Static Press(in H2O) -0.60 Ave. Mechanical Collector Input Oxygen % 8.4 CO(ppm) 0.00 Combustibles % 27 370 Temperature (F) -0.56 Static Press(in H2O) Ave. Mechanical Collector Output 8.8 Oxygen % CO(ppm) 0.05 Combustibles % 29 Temperature (F) 366 -1.25 Static Press(in H2O)

Boiler Data Sheet

Enerac ESP Inlet	26-Nov-96					
Time	8:40	8:50	9:00	9:10	9:20	9:3
Combustion Eff(%)	83.4	83.4	82.1	82.7	82.6	82.
Amb Temp (F)	47	46	46	45	45	4
Stack Temp (F)	267	272	275	277	278	28
O2 (drv)	11.7%	11.4%	12.2%	11.7%	11.8%	11.7
CO(ppm)	25	25	25	27	31	2
"coźl	8.0%	8.2%	7.6%	8.0%	7.9%	8.0
Combustibles	0.11%	0.11%	0.11%	0.11%	0.11%	0.10
Boiler outlet (in WC)						
Excess Air %	121.0%	115.0%	133.0%	121.0%	123.0%	121.0
NO (pm)	209.0	221.0	224.0	239.0	225.0	229
NO2 (ppm)	8	9	13	15	15	1!
NOx (ppm)	216	230	237	254	239	243
SOx (ppm)	426	447	408	427	416	42
Plant/Gage Readings	340	346	342	344	348	34
File Gas Temp (F)	71	8	69	7	7.7	7.
	510	5107	511.6	5123	510.7	513.
	35100	35500	35000	35300	35400	3560
	326	330	323	322	326	32
	422	422	420	421	422	42
Euro Press (in WC)	-0.09	-0.09	-0.07	-0.06	-0.1	-0.0
Last Pass (in WC)	-1.3	-1.6	-1.8	-1.8	-1.8	-1.
ID Ean Inlet (in WC)	-2.9	-2.2	-2.3	-2.3	-2.4	-3.2
Opacity	25	30	34	34	31	28
HW Inlet (psig)	299	301	298	296	303	, 30
HW Outlet (psig)	312	319	315	312	320	318
Generator Autlet Data				×		
Oxygen %	7.8	8.5	8.4	8.5	8.4	8.6
Combustibles %	0.1	0.1	0.1	0.1	0.1	0.1
CO(ppm)	20	26	31	21	24	28
Temperature (F)	343	347	343	341	345	344
Static Press(in H2O)	-1.3	-1.4	-1.4	-1.45	-1.5	-1.45
Mechanical Collector Input			_			
Oxvaen %	7.7	8.7	8.4	8.7	8.6	8.4
CO(ppm)	0.1	0.1	0.1	0.1	0.1	0.1
Combustibles %	32	31	35	35	30	32
Temperature (F)	363	367	363	365	367	368
Static Press(in H2O)	-1.3	-1.4	-1.4	-1.5	-1.5	-1.45
Mechanical Collector Output						
Oxygen %	8.5	8.9	8.7	8.7	8.7	. (
CO(ppm)	0.1	0.1	0.1	0.1	0.1	0.1
Combustibles %	30	31	30	35	29	34
Temperature (F)	350	353	351	349	351	351
Statia Brace/in H201	-27	-3.0	-3.0	-3.5	-3.1	-3.1

Utility Modernization	Analysis	Boiler Calc. Sheet I		
Boiler Test Data	Fuel (Btu/lb) 13500	· · · · · · · · · · · · · · · · · · ·		
Ave. Enerac Data26-N	ov-96 Calculated			
(ESP Inlet) Time	9:05 Excess Air 64.33%			
Amb Temp (F)	82.8 Eff w/o rad 86.63%			
Amb Temp (F)	46 Rad Loss 1.50%			
Stack Temp (F)	275 Eff w/rad 85.1%			
O2 (drv)	11.8% Fuel Curve			
CO(ppm)	27 MBtu/gal 12048			
"coź	8.0% Excess Air 64.0%			
Combust	0.11% Eff (w/o rad) 85.2%			
Boiler outlet (in WC)	Rad Loss 1.3%			
Excess Air % 1	22.3% Eff (w/rad) 83.9%			
NOx (pm)	225			
NOx (pm)	13			
NOx (pm)	237			
SOx (ppm)	424			
Ave. Plant/Gage Readings				
Flue Gas Temp (F)	345			
Oxygen %	7.3			
H2OFlow(Klbs/hr)	511.5			
Btu Out(KBtu/hr)	35317			
H2O Temp In (F)	326			
H2O Temp Out (F)	422			
Furn Press (in WC)	-0.08			
Last Pass (in WC)	-1.7			
ID Fan Inlet (in WC)	-2.6			
Opacity	30.33			
HW Inlet (psig)	300			
HW Outlet (psig)	316			
Ave. Generator Outlet Data				
Oxygen %	84			
Combustibles %	0.1			
CO(ppm)	25			
Temperature (F)	344			
Static Press(in H2O)	-1.42	,		
Ave, Mechanical Collector Input				
Oxygen %	8.4			
CO(ppm)	0.1			
Combustibles %	33			
Temperature (F)	366			
Static Press(in H2O)	-1.43			
Ave. Mechanical Collector Output		· ·		
Oxygen %	8.8			
CO(ppm)	0.1			
Combustibles %	32			
Temperature (F)	351			
Statia Procedin H2O	-3.1			

Coal Boilor	~			Flue Gas Loss	365	
HHV Combustion Fuel C H2 O2	Btu/lb 13500 Eff % lb/lb AF 70.41% 4.83% 8.28%	T amb (F) 343.8 86.63% Ib/Ibmol 12 2 32	Flue gas (F) 80 Ibmol/Ib AF 0.05868 0.02415 0.00259	Dry Gas 0.07896 Stochiometric Ibmol/Ib AF Balance C for stocime conditions.	Water Vapor 0.03977 Excess Air Ibmole/Ib AF H2 and S etric Balance	Unacctd. Total Loss 0.01500 13.37% Dry gas loss includes sensible heat in water vapor. Water vapor loss include fuel moisture and H2 formation. 1.5%
N2 S H2O (liq) Ash Total Air	1.41% 1.01% 8.05% 6.08% 100.07%	28 32 18 MW	0.00050 0.00032 0.00447 Mole Fract	02, N2 at conditions.	Solution balan equation for si and then calcu	unaccounted in coal.
N2 O2 Incremental Excess Air %	79.00% 21.00% Excess Air		De Ore Frenk	0.25319359 0.06730463	recalculates fl properties 0.04330 64%	ue gas products and
Flue Gas O2 CO (ppm) CO2 Combustible NOx (ppm) SOx (ppm) H2O N2 SO2	8.37% 25.00 not meas s 0.10%	% Gas Vol (dr 8.37% 0.00% 0.10% 0.00% 0.00%	Dry Gas Fract 0.08367 0.00003 0.00100 0.00000 0.00000	0.05750 0.02862 0.25357 0.00032 0.42470	Assume 29 loss to ash forms CO2	% carbon (98% C)
Gas CO2 SO2 H2O N2 O2	Polynomial Coa a 10.34 7.7 8.22 6.5 8.27	eff 0.00274 0.0053 0.00015 0.001 0.000258	deg F deg K c -195500 0.0000083 0.00000134 -187700	293.8 418.62963 cp 10.3715009 10.0641952 8.51763047 6.91862963 7.30696976	cp ave (Btu/lbl 10.3715009 10.0641952 8.51763047 6.91862963 7.30696976	Ibmole/Ib fuel Btu/Ib fuel deg f 0.05750 0.59637686 0.00032 0.00317651 0.02862 0.24379351 0.41635825 2.88062852 0.04330 0.31635543 Sum 4.04033082
Table 3-18 371, 1934	and USBM Bull 4	US Bureau of 77, 1948.	Mines Bull			

Boiler Data Sheet

Enerac ESP Inlet	26-Nov-96					
Time	8:00	8:10	8:20	8:30	9:40	
Combustion Eff(%)	84.6	84.0	84.2	83.8		
Amb Temp (F)	51	50	48	48		
Stack Temp (F)	263	272	273	273		
O2 (dry)	10.9%	11.0%	10.8%	11.1%		
CO(ppm)	27	25	28	29		
CO2	8.7%	8.6%	8.8%	8.5%		
Combustibles	0.11%	0.11%	0.11%	0.11%		
Boiler outlet (in WC)						
Excess Air %	104%	106%	101%	108%		
NO (pm)	218	201	204	209		
NO2 (ppm)	5	0	4	4		
NOx (ppm)	223	201	207	212		
SOx (ppm)	438	493	482	492		
Plant/Gage Readings					345	
Flue Gas Temp (F)					7.4	
					510.8	<u> </u>
					35200	
					324	
					421	
H2O Temp Out (F)					-0.09	
Furt Press (in WC)					-17	
ID Ean Inlat (in WC)				<u> </u>	-3.3	
Opacity					30	
					299	
HW Outlet (psig)					315	
Generator Outlet Data						
Oxvaen %			T		8.4	
Combustibles %					0.1	
CO(mag)				i	30	
Temperature (F)					345	
Static Press(in H2O)					-1.45	
Mechanical Collector Input						
Oxvgen %					8.6	
CO(ppm)					0.1	
Combustibles %					36	
Temperature (F)					369	
Static Press(in H2O)					-1.45	
Mechanical Collector Outpu	t					
Oxygen %					9.1	
CO(ppm)					0.1	
Combustibles %					35	
Temperature (F)					352	
Static Press(in H2O)					-3.2	

Utility Modernization Analysis Boiler Calc. Sheet I Fuel (Btu/lb) 13500 **Boiler Test Data** Calculated 26-Nov-96 Ave. Enerac Data (ESP Inlet) 8:32 Excess Air 64.75% Time Eff w/o rad 86.57% Combustion Eff(%) 84.2 Amb Temp (F) 49 Rad Loss 1.50% Stack Temp (F) 270 Eff w/rad 85.1% Fuel Curve O2 (dry) 11.0% 27 MBtu/gal 13500 CO(ppm) Excess Air CO2 64.0% 8.7% 0.11% Combust Eff (w/o rad) 85.2% Boiler outlet (in WC) Rad Loss 1.3% 104.8% 83.9% Excess Air % Eff (w/rad) NOx (pm) 208 NOx (pm) 3 211 NOx (pm) SOx (ppm) 476 Ave. Plant/Gage Readings Flue Gas Temp (F) 345 Oxygen % 7.4 H2OFlow(Klbs/hr) 510.8 Btu Out(KBtu/hr) 35200 H2O Temp In (F) 324 H2O Temp Out (F) 421 Furn Press (in WC) -0.09 Last Pass (in WC) -1.7 ID Fan Inlet (in WC) -3.3 30.00 Opacity HW Inlet (psig) 299 315 HW Outlet (psig) Ave. Generator Outlet Data Oxygen % 8.4 Combustibles % 0.10 CO(ppm) 30 Temperature (F) 345 Static Press(in H2O) -1.45 Ave Mechanical Collector Input 8.6 Oxygen % CO(ppm) 0.10 Combustibles % 36 369 Temperature (F) Static Press(in H2O) -1.45 Ave Mechanical Collector Output 9.1 Oxygen % CO(ppm) 0.10 35 Combustibles % Temperature (F) 352 Static Press(in H2O) -3.20

Boiler Data Sheet

Boiler Test Data (Unit #3) - D	SCC, Columbu	ıs, OH		,		
Enerac ESP Outlet	26-Nov-96					
Time	8:14:33	8:15:23	8:21:18	8:30:02	8:40	8:50
Combustion Eff(%)	96.9	97.6	98.1	97.6	97.2	97.1
Amb Temp (F)	51	51	50	49	47	46
Stack Temp (F)			259	258	259	261
O2 (dry)	10.5%	10.5%	10.6%	10.2%	10.6%	10.8%
CO(ppm)	24	20	20	29	26	26
CO2	7.8%	9.0%	8.9%	9.2%	8.9%	8.8%
Combustibles	0.00%	0.00%	0.00%	0.03%	0.05%	0.06%
StackDraft(neg"H2O)	1.3	1.5	1.5	1.8	1.9	1.8
Excess Air %	94%	96%	97%	91%	98.0%	101.0%
NOx (ppm)	142	187	193	206	222	245
SOx (ppm)	0	0	36	77	113	142
Time	9:00	9:10	9:20	9:30	9:40:06	
Combustion Eff(%)	96.7	96.7	96.5	96.3	96.4	
Amb Temp (F)	44	43	43	42	42	
Stack Temp (F)	263	263	267	265	266	
O2 (dry)	11.2%	10.8%	10.8%	11.1%	11.0%	
CO(ppm)	26	26	29	26	26	
CO2	8.4%	8.7%	8.7%	8.5%	8.6%	
Combustibles	0.07%	0.07%	0.08%	0.09%	0.09%	
StackDraft(neg"H2O)	1.9	2.3	2.3	2.3	2.8	
Excess Air %	109.0%	102.0%	102.0%	108.0%	105%	
NOx (ppm)	239	255	247	229	242	
SOu (nom)	161	176	107	200 1	209	

HTW Plant Data

Utility Modernization Analysis

Auxiliary Equipment (ESP #2)

Precipitator #2	Г	25-Nov-96				
Time	16:00	16:10	16:20	16:30	16:40	16:50
Primary Volts x 10	36	30	36	18	26	26
Primary Amps x 10	3.7	2.8	3.7	0.97	1.9	2.2
Secondary kV1	0	0	0	0	0	0
Secondary Amps	0.25	0.21	0.25	0.09	0.14	0.18
Secondary kV2	0	0	0	0	0	0
Sparks/Min x 10	0.0	0.0	0.2	0	0.6	0.8
Arcs/Min x 10		0.0	0	0	0.4	0

Time	17:00	17:10
Primary Volts x 10	16	30
Primary Amps x 10	0.79	2.7
Secondary kV1	0	0
Secondary Amps	0.07	0.24
Secondary kV2	0	0
Sparks/Min x 10	1.6	1.8
Arcs/Min x 10	0	1.4

Precipitator #2	Г	26-Nov-96				
Time	8:40	8:50	9:00	9:10	9:20	9:30
Primary Volts x 10				34	32	30
Primary Amps x 10				2.5	3.1	2.3
Secondary kV1				0	0	0
Secondary Amps				0.16	0.25	0.25
Secondary kV2				0	0	0
Sparks/Min x 10				0.6	0.6	0.6
Arcs/Min x 10			1	0.2	. 0	0.2

HTW Plant Data Utility Modernization Analysis Auxiliary Equipment (ESP #2) -- Average Values 25-Nov-96 Precipitator #2 Average 16:35 Time Primary Volts x 10 Primary Amps x 10 27 2.35 Secondary kV1 Secondary Amps 0 0.18 Secondary kV2 0 Sparks/Min x 10 Arcs/Min x 10 0.6 0.3 26-Nov-96 Precipitator #2 Average Time 9:20 32 Primary Volts x 10 Primary Amps x 10 2.6 Secondary kV Secondary Amps 0 0.22 0 0.6 Secondary kV2 Sparks/Min x 10 Arcs/Min x 1 0.1

Boiler NDT Data Sheet

Boiler Test Data (Unit #3) - DSCC, Columbus, OH Boiler Tube Testing

<u>Rea</u>	<u>r Wall</u>	Rie	<u>ght Wall</u>	Left Wall				
top (straight)	elbow (bend)	top	bottom	top				
0.103		0.113	0.112	0.106				
	0.148	0.112	0.115	0.108				
0.101		0.117	0.109	0.106				
0.108		0.111	0.111	0.124				
0.097		0.110	0.108	0.126				
0.109		0.112	0.109	0.110				
	0.146	0.112		0.110				
0.108		0.111		0.108				
0.106								
0.106								
0.109								
	tt Colibration factor - 0.253							

NOTES: 1. The rear wall tubes above are identified as follows -- left-to-right, the thicknesses are for every fifth tube, starting with the second tube from the left.

The right wall is the wall to the right when looking from the front to the rear of the generator. "Top" measurements were taken about 5-feet high for every tenth tube going from right to left and starting with the second tube from the right. "Bottom" measurements were taken about 2-feet high for every tenth tube starting with the tenth tube from the right, the top and bottom measurements thus being staggered.

Left wall measurements were taken about 5-feet high going from left to right, starting with the second tube from the left.

 Comments regarding physical condition of HTW generator. Grate: T-Bar warped; edge seal leaks; chain wear right side sprockets; some skidshoe wear excessive. Convection pass: tubes OK. Air heater: four holes in duct wall, Upper W and N, Lower N and E. MDC: exit OK; top tubes worn; spinners worn; C2 spinner backwards; lower C3 broken almost all around; boot tab broken D2, A6, B7 and E7.

Utility Modernization Analysis	Boiler NDT Calc Sheet
Boiler Test Data	
Boiler Tube Testing Minimum 0.097 Min (psig) P 935 Ave. 0.11215152 Ave (psig) P 1,108	
Tube TypeSA 178 grAStress Factor (ASME Code)11800Temp (F)600Tube OD (in)2.25e factor0	
	· · · ·

Utility Modernizatio	n Ana	lysis		Boiler ND	T Calc Sheet
Boiler Test Data	. <u></u>				······································
Boiler Tube Testing			1		
Minimum	0.092	Min (psig) P	879		
Ave. 0.1	0992308	Ave (psig) P	1,082		
					•
	178 grA				·
Temp (F)	600		·····		
Tube OD (in)	2.25	• • • • • • • • • • • • • • • • • • •			
e factor	0				
·					
			· · ·		······································
		ł		L	
	0.400		1 002	1	
	3366667	Ave (nsig) P	1,003		·····
	0000007		1,000		
Tube Type SA	178 grA				
Stress Factor (ASME Code)	11800				
Temp (F)	600				
e factor	2.25				
		·			
171,11,11,11,11,11,11,11,11,11,11,11,11,	•				
	ļ				
		·····	· · · · · · · · · · · · · · · · · · ·		
		······································			·
www.uumuumuumuumuumuumuumuumuumuumuumuumuum					
					l

Pip	e Scl	nedule [·]	Thickne	ss Co	rectior	<u>)</u>		
		Tem	perature	400				
		St	d Temp	70	· .			
Size	So	ched 40 Sc	ched 80	S	ched 40 S	Sched 80		
	3	0.216	0.300	•	0.212	0.295		
	4	0.237	0.337		0.233	0.331		
	5	0.258	0.375	9	0.254	0.369		
	6	0.280	0.432		0.275	0.425		
	8	0.322	0.500		0.317	0.492		
	10	0.365	0.593		0.359	0.583		
	12	0.406	0.687		0.399	0.676		
	14	0.438	0.750		0.431	0.738		
	16	0.500	0.843		0.492	0.829		

·				
Thicknes	ss Test	ina		
	da 17-19 (rossover	Cold Wall (in)	
	<u>ug 17-18 c</u>	10330761	0.280	
Pipe Size	400 5	d Temp	70	
Air Tomp	35	u remp		
All Temp	00			
Location Th	ickness C	orrected Note	tes	
Top 12	0.311	0.306		
1:30	0.302	0.297		
Side 3	0.287	0.282		
4:30	0.307	0.302		
Bottom 6	0.306	0.301		
		0.000		
Top 12	0.317	0.312		
1:30	0.315	0.310		
Side 3	0.309	0.304		
Dining sovere	ly corroded	from exposu	ire to weather Schedule 40 specified	
r iping severe	ly conoueu			
an 🕷 Ale	· · · · ·			
• • •			A CARACTER AND	
				1.1
Sec. 5.1				
~ 100				
Sec. 1		1000 00000		

	ee Toet	ina				
THICKNE	55 1051	niy			 	
Site Bl	da 12. S en	d	Cold	d Wall (in)		
Pipe Size	<u>6</u>	-		0.280		
Pipe Temp	420 S	d Temp	70			
Air Temp	34	•				
•						
Location Th	hickness C	orrected Not	es			
Top 12	0.330	0.324				
1:30	0.301	0.296				
Side 3	0.313	0.308				
4:30	0.288	0.283				
Bottom 6	0.235	0.231				
7:30	0.281	0.276				
Side 9	0.273	0.268				
10:30	0.301	0.296				
		0.000				
	- Statistics				 	
·						

Thickness Testing Cold Wall (in) Bldg 30 S side Site 0.280 Pipe Size 6 407 Std Temp Pipe Temp 70 34 Air Temp Thickness Corrected Notes Location Top 12 0.278 0.273 0.284 0.279 1:30 Side 3 0.303 0.298 0.000 Top 12 0.280 0.275 0.252 0.248 1:30 Side 3 0.300 0.295 0.000 0.000 Piping only moderately corroded from exposure to weather. Schedule 40 specified. Not allowed to remove asbestos from bottom of pipe.

Thickness Testing	
Site Bldg 30 Mech room Converter Cold Wall (in) Pipe Size Unk Unk Pipe Temp 237 Std Temp 70 Air Temp 86	
Location Thickness Corrected Notes Bottom 0.451 0.447 0.000	۰ ۲
Vessei corroded. Nameplate not readible. Recommend checking waterline thickness.	

Appendix B: Nalco Metallurgical Analysis

USACERL TR-98/42

DSCC COLUMBUS, OHIO

Nalco Metallographic Analysis No. 076564

CONTENTS A. Nalco Metallographic Analysis Report

Sampling Date: January 16, 1997

Specimen:

B. Photographs

Tube

Contour

1. 2.

з.

4.

5. 6. 7. 8.

Hot Water Boiler

As-received Boiler Tube Sections Photograph of a Split Section Showing the Internal Surface Deposit and/or Corrosion Product Layer Present on One Side of the

Close-up of the Smooth Internal Surface

Contour Close-up of a Depression Underlying the Deposit and/or Corrosion Product Layer Shown in Figure 2 Microstructure Consisting of Partially Spheroidized Pearlite in a Ferrite Matrix Micrograph Showing a Region of Nearly Complete Decarburization Micrograph Showing a Shallow, Oxide-filled Depression on the Internal Surface Micrograph Showing a Fairly Thick External Surface Oxide Layer

NALCO CHEMICAL COMPANY

Page 1 of 7

NALCO METALLOGRAPHIC ANALYSIS

Analysis No. 076564

FROM: DSCC COLUMBUS, OHIO

DESCRIPTION OF SAMPLE

Three sections of boiler tubing were received for metallurgical analysis, Figure 1. The sections were reportedly removed from a 300 psi hot water boiler. The sections have lengths of 20", 19", and 14-3/4". The outer diameter of each section is 1-1/4". The sections were submitted following failures in the top wall section of the boiler. No failure is present on any of the received sections.

The internal surface of each section contains a deposit and/or corrosion product layer on one side of the tube, Figure 2. A sample of the material overlying the surface was scraped and submitted for x-ray analysis. The results of this analysis will be forwarded upon completion. The surface contour is mostly smooth, Figure 3. The side of the section which contains the deposit and/or corrosion product exhibits scattered, mostly shallow depressions. The deepest measured depression reduced the wall thickness by 0.020", Figure 4.

The external surface is covered by a thin brown deposit which overlies a thick layer of thermally deteriorated metal (iron oxide). The surface contour appears mostly smooth.

MICROSCOPIC EXAMINATIONS

Seven specimens were cut from the sections at selected locations and prepared for microscopic examination. The microstructure in some locations examined consists of partially spheroidized pearlite in a ferrite matrix, Figure 5. Other locations, however, exhibited almost complete decarburization, Figure 6.

A series of nine microhardness measurements were conducted on the mounted specimens. The average Knoop hardness number was 108.

The internal surface profile is mostly smooth. Specimens removed from the side of the tube containing the deposit and/or corrosion product exhibited scattered, shallow, oxide-filled depressions, Figure 7. A moderately thick, dense iron oxide layer is present in places.

The external surface profile is smoothly undulating. A thick iron oxide layer is present in places, Figure 8. The maximum measured

NALCO CHEMICAL COMPANY

NALCO

Page 2 of 7

NALCO METALLOGRAPHIC ANALYSIS

Analysis No. 076564

FROM: DSCC COLUMBUS, OHIO

thickness of the oxide is 0.014", as measured using an optical microscope equipped with a calibrated video imaging system.

CONCLUSION

The received sections contain no failure. The internal surface of one side of each section contains a deposit and/or corrosion product layer. Scattered depressions are present on this side of the tube. Most of the metal loss is shallow, however, the deepest measured depression reduced the wall thickness by 0.020". The appearance of the attack most closely resembles oxygen corrosion.

Oxygen corrosion resulted from exposure of metal surfaces to waters containing dissolved oxygen. The resulting corrosion product shields the underlying metal and acts as a barrier to oxygen diffusion. As a result, a local area of reduced oxygen concentration develops [see (A) below]. A difference in electrochemical potential exists between regions of a metal in contact with waters containing different levels of dissolved oxygen. This difference in potential results in corrosion (B).

The presence of oxygen attack on only one side of each section indicates that the damage most likely occurred during an idle period or periods.

Specific interest was expressed in the composition of the material overlying the internal surface. A sample was scraped from the surface and submitted for analysis. Results of the analysis will be forwarded upon completion.

NALCO CHEMICAL COMPANY

Page 3 of 7

NALCO METALLOGRAPHIC ANALYSIS

Analysis No. 076564

FROM: DSCC COLUMBUS, OHIO

NALCO

Analysis indicated that the section experienced long term, mild overheating. Microstructural evidence indicated that metal temperatures between 850 and 1050°F were reached for an extended period. The reported overheating occurred due to excessive heat input relative to coolant flow rate. Three possible causes of excessive heat input relative to coolant flow rate are:

1. Excessive heat input with specified coolant flow.

2. Specified heat input with insufficient coolant flow.

3. Excessive heat input with insufficient coolant flow.

As a result of overheating, a significant amount of oxidation has occurred. The maximum measured external surface oxide thickness was 0.014". No bulging or other significant damage resulted from the overheat.

A. C. BIONDO

Words and concepts referred to in this report are discussed and illustrated in The Nalco Guide to Boiler Failure Analysis.

ACB:dmc 3/7/97

> NALCO CHEMICAL COMPANY ONE NALCO CENTER & NAPERVILLE ILLINDIS BOSGS-1198

NALCO CHEMICAL COMPANY ONE NALCO CENTER & NAPERVILE LLINDIS 60569-1198

NALCO CHEMICAL COMPANY ONE NALCO CENTER & NAPERVILLE, LLINOS 60669-1188

NALCO CHEMICAL COMPANY ONE NALCO DENTER & NAPERVILLE LUNOS BOSS-1198

B8

B9

Appendix C: HEATMAP Data Output

Trame (Sq.Ft) 140 28,071 140 28,071 151 28,071 153 176,571 154 21,751 155 270,501 154 21,751 155 28,515 154 28,516 155 28,516 155 28,516 155 28,516 155 28,516 154 26,501 154 26,301 154 26,301 154 26,301 154 26,401 155 26,501	Heating Heating Amusi Am	Heating Peak (kBtu/Hr) 658.3		•				
Mark 28,070 An 28,070 An 28,070 SN Peating 21,73 SN Peating 21,73 SN Peating 21,73 SN Peating 21,73 SN Peating 235,78 SN Peating 283,18 Venanted OR divisiond 214,30 Son scheduled 245,40 Sh 245,40	2 504.8 504.8 305.5 6 12,980.6 6 12,980.6 3 4,966.0 3 134.9 7 3,134.9	658.3	Hot water Annual rateh.vvr)	Hot water Peak (tethuter)	Process Annual (MRhi/Yr)	Process Peak (kBhuhtr)	Total Amnual MBhuYY	Total Peak (kBhu/Hr)
ish heating 2,802 div. heating 2,1,731 2, Shay heated wer/dry 7,35,754 et/heated OR dry/cold 283,18: dry and cold 174,301 tion scheduled 2,83,8 ison scheduled 2,47,900 ish	2 45.5 0 380.8 6 12,980.6 3 3,986.0 3 3,134.9 1 3,29 1	i	106.5	24.3	00	0.0	611.3	682.6
div. heating 21,730 is the 20,500 solution 20,500 solution scheduled 735,743 dry and cold 174,300 blom scheduled 24,900 blom scheduled 24,000 blom schedul	0 390.8 0 4,865.0 8 12,980.6 3 4,996.0 7 3,134.9 1 379.1	125.5	13.3	3.0	0.0	0.0	58.8	128.5
eh 270,500 e) Shay heated wet/dry 725,795 e) Seated OR dry/cold 229,195 dry and cold 174,307 Bion scheduled 26,38 Bion Scheduled 24,990 ish	0 4,865.0 6 12,980.6 3 4,996.0 7 3,134.9 4 379.1	530.8	82.5	18.8	0.0	0.0	473.3	549.6
2, Stay heated wet/dry 735,796 witheated OR dry/cold 233,185, 487, 301, dry and cold 174, 301, Bion scheduled 26,390 Bion Scheduled 247,901 Bion Scheduled 245,401	8 12,980.6 3 4,996.0 7 3,134.9	5.037.2	1,026.4	234.3	0.0	0.0	5,891.4	5,271.5
etheated OR dry/cold 283,183 dry and cold 174,301 lition scheduled 247,930 lition Scheduled 247,930 lition Scheduled 246,401	3 4,996.0 7 3,134.9 4 379.1	15,520.0	3,491.9	797.2	0.0	0.0	16,472.5	16,317.2
dry and cold 174,307 lition scheduled 28,381 lition Scheduled 247,901 listh 246,401	7 3,134.9	6,249.2	1,344.0	306.8	0.0	0.0	6,340.0	6,556.0
ltion scheduled 26,38 ttion Scheduled 247,90 tsh 246,40	379.1	3,344.2	661.4	151.0	0.0	0.0	3,796.3	3,495.2
ition Scheduled 247,900 iish 246,40		740.1	125.2	28.6	0.0	0.0	504.3	768.7
lish 246,40	0 4,458.5	4,641.7	940.7	214.8	0.0	0.0	5,399.2	4,856.5
	0 3,918.6	4.544.4	935.0	213.5	0.0	0.0	4,853.6	4,757.9
tish 56.211	8 991.8	1,420.1	266.8	60.9	0.0	0.0	1,258.6	1,481.0
indiv. heating 51.234	0 736.1	1.325.0	243.1	55.5	0.0	0.0	979.2	1,380.5
o dry and cold 176.94	8 3,182.4	3,391.1	671.4	153.3	0.0	0.0	3,853.8	3,544,4
o dry and cold 174.38.	3 3,136.3	3,345.6	661.7	151.1	0.0	0.0	3,798.0	3,496.7
1.721 IS	30.3	90.2	5.2	1.9	0.0	0.0	38.5	92.1
o drv S 1-6 and cold. S 130.63	8 2.349.5	2.564.3	495.7	113.2	.0.0	0.0	2.845.2	2,677.5
o dry and cold 174.38:	3 3,136.3	3.345.6	661.7	151.1	0.0	0.0	3,798.0	3,496.7
indiv. heating	3 5,093.6	5.259.2	1.074.7	245.4	0.0	0.0	6,168.3	5,504.6
a wet and heated 86.26	5 1.551.5	1.759.0	327.3	7.4.7	0.0	0.0	1,878.8	1,833.7
nd dry and heated 131.20	0 2.314.7	3.053.2	622.7	142.2	0.0	0.0	2,937.4	3,195.4
va drv and heated 152.00	0 2.681.6	3.496.6	721.4	164.7	0.0	0.0	3,403.0	3,661.3
ng wet and heated 196,93	5 3,474.4	4,446.5	934.6	213.4	0.0	0.0	4,409.0	4,659.9
AL: 3,652,20	00 64,352.3	74,887.8	15,416.2	3,519.7	0.0	0.0	79,768.4	78,407.5

<u>C3</u>

		96		HEAT	IMAP C	onsumer 103 - LT	·Load Su W	ummary		-	Page 1
Consumer rates Teams (Set P) Membra (Membra (Membra) Total (Set P) Total (Membra) Total (Set P) Total (Set	1						•				
Tech Institut Zi / Zi Solution Zi / Zi Solution Solutite Solution Solutite		Consumer name	(Sq Ft)	Annual Annual (MBturYr)	Heating Peak (kBtuA+)	Hot water Annual Annual	Hot water Peak	Process Annuel Annuel	Process Peak	Total	Total Peak
Demolship 2002 655 733 740 743 746 Demolship 2755 607 600 6073 1026 733 740 743 743 745 Consumer 40 28010 6003 6037 1026 733 700 6014 7733 6014 7733 6014 7733 6013 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6017 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 7733 6014 77333 6014 7733		after indiv. heating	21.730	390.8	N WY	200	(1) (1)	() I maw)	(Jumax)	(NIStury)	(KBtu/Hr)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		Demokah	2,802	45.5	125.5	13.3			0.0	473.3	549.6
Consumental Consumental Sity verticated Sity		Demoliah	270,500	4,865.0	5,037.2	1,026.4	234.3	00		5.801 4	128.5
Size vertication of constrained constrained of constrained		Consumer 40 Phis 47 Stav heated unitified	28,070	504.8	658.3	106.5	24.3	00	0.0	611.3	682.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Stay wetheated OR drv/cold	783 183	12,980.5	15,520.0	3,491.9	797.2	0.0	0.0	16,472.5	16,317.2
		wet to dry and cold	174.307	3,134.9	3 344 2	0.446.0	306.8	000	0	6,340.0	6,556.0
Demolion Scheduled 247,900 4,495.5 4,6417 6407 244.6 0.0 0.0 549.4 756.1 Demolion Scheduled 266,400 3,916.5 4,544.4 835.0 233.5 4,555.5 0.0 0.0 538.5 4,555.5 Demolion 56.216 31.230 736.1 1,255.0 241.3 0.0 0.0 0.0 538.5 4,757.5 Wet to dy and cold 115.33 3,135.3 3,345.1 661.7 151.1 0.0 0.0 378.6 4,777.5 Wet to dy and cold 117.333 3,135.3 3,345.1 661.7 151.1 0.0 0.0 378.2 3,44.1 Wet to dy and cold 117.333 3,135.3 3,345.5 661.7 151.1 0.0 0.0 0.0 378.2 574.4 Wet to dy and cold 117.333 3,135.3 3,345.5 661.7 151.1 0.0 0.0 0.0 378.2 574.4 Staning wat and levelid 131.200 2,314.5 1,47		Demolition scheduled	26,381	379.1	740.1	125.2	1.101		0.0	3,796.3	3,495.2
Demolecient 245,400 3918.6 4,544.4 835.0 213.5 0.0 0.0 0.0 4,533.4 4,793.6 Demolecient 52.310 391.8 4,544.4 835.0 213.5 0.0 0.0 0.0 0.0 0.0 4,543.4 4,793.6 Install inde, heating 51.22.1 736.1 1,420.1 238.3 51.2 53.1 56.1 53.3 50.0 0.0 0.0 0.0 1.0 4,65.3 4,61.0 Net to dry and cold 174,383 3,182.4 3,318.6 61.1 151.2 0.0 0.0 0.0 0.0 3,56.4 4,61.0 Wet to dry and cold 174,383 3,182.4 3,318.5 661.7 111.2 0.0 0.0 0.0 0.0 0.0 2,54.4 4,61.0 3,66.1 3,70.6 3,54.5 2,61.7 3,54.5 2,61.7 3,54.5 2,67.5 2,77.5 2,71.5 2,23.5 2,53.6 3,54.5 2,67.7 3,54.6 2,71.7 2,72.7 <t< td=""><td></td><td>Demolition Scheduled</td><td>247,900</td><td>4,458.5</td><td>4,641.7</td><td>940.7</td><td>214.8</td><td></td><td></td><td>5 04.3 5 200 2</td><td>768.7</td></t<>		Demolition Scheduled	247,900	4,458.5	4,641.7	940.7	214.8			5 04.3 5 200 2	768.7
Martine 55.216 90.1 1,420.1 266.8 60.0 0.0 1,230.5 Weit to dry and cold 175,96 3,86.1 1,325.0 2,43.1 55.5 0.0 0.0 1772.2 1,300.5 Weit to dry and cold 177,303 3,186.3 3,345.6 661.7 151.1 0.0 0.0 3792.2 1,300.5 Net to dry and cold 177,303 3,186.3 3,345.6 661.7 151.1 0.0 0.0 3792.2 1,300.5 Net to dry and cold 177,303 3,186.3 3,345.6 661.7 151.1 0.0 0.0 3,790.0 3,647.7 Net to dry and cold 177,303 3,186.3 2,346.5 661.7 151.1 0.0 0.0 3,790.0 3,647.7 Net to dry and cold 131.2.00 2,314.7 3,165.4 7,174.7 2,554.5 3,641.5 5,544.5 <td></td> <td>Demolah</td> <td>246,400</td> <td>3,918.6</td> <td>4,544.4</td> <td>935.0</td> <td>213.5</td> <td>00</td> <td></td> <td>7"885"0</td> <td>6.000.4</td>		Demolah	246,400	3,918.6	4,544.4	935.0	213.5	00		7"885"0	6.000.4
Wet to dry and cold 15/200 736/1 1,2250 243.1 555.5 0.0 0.0 979.2 1,300.3 Wet to dry and cold 17.4383 3,195.4 3,301.1 671.4 153.3 0.0 0.0 346.7 Wet to dry and cold 17.4383 3,195.6 671.7 151.1 0.0 0.0 346.7 Wet to dry and cold 17.4383 3,196.3 3,346.6 671.7 151.1 0.0 0.0 346.7 Wet to dry and cold 17.4383 3,196.3 3,346.6 671.7 151.1 0.0 0.0 346.7 Wet to dry and cold 17.4383 3,196.3 3,346.6 671.7 151.1 0.0 0.0 346.2 Shying dry and heated 131.250 2,314.5 1,074.7 245.4 0.0 0.0 2,445.2 Shying dry and heated 131.250 2,314.5 1,074.7 245.4 0.0 0.0 2,445.2 Shying wet and heated 131.250 2,314.5 7,153.0 2,017.4 2,454.4 0.0 0.0 3,692.2 Shying wet and heated 131.250 2,314.5 7,153.0 2,144.5 2,134.7 1,647.7 3,601.0 3,601.0 Shying wet and heat		Demolish	56,218	901.8	1,420.1	266.8	60.9	00		1.000.0	8.101.4
Wet to dy and cold 17,393 3,135.3 3,345.6 671.4 153.3 0.0 0.0 3,553.5 Plas 45 1,770 30.3 3,345.6 661.7 151.1 0.0 0.0 3,561.7 Plas 45 1,770 30.3 3,345.6 661.7 151.1 0.0 0.0 3,781.0 3,667.7 Plas 45 1,770 30.3 3,345.6 661.7 151.1 0.0 0.0 3,781.0 3,667.7 Plas 45 1,770 30.3 3,345.6 661.7 151.1 0.0 0.0 3,781.0 3,546.7 Plas 46 17,363 2,345.6 661.7 113.2 0.0 0.0 2,467.7 Plas 47 113.2 0.03.5 3,345.6 671.7 113.2 0.0 0.0 3,781.0 Staying 47 and heated 131,200 2,341.4 4,465.5 3,744.7 2,467.7 3,164.7 Staying 47 and heated 131,200 2,341.4 4,465.5 3,514.6 7,214.4 4,465.5 3,514.6 Staying 47 and heated 131,200 2,341.4 4,465.7 3,616.7 0.0 0.0 1,070.0 2,693.5 Staying 47 and heated 132,200 64,352.3		Insue from. reading	51,230	736.1	1,325.0	243.1	56.5	0.0	0.0	2,979	1 380 5
Plane 40 17,203 3,4953 6617 151.1 0.0 0.0 3,7840 3,460 We to dry S 1-6 and cold 17,720 3,0358 2,3455 661.7 151.1 0.0 0.0 3,7840 3,465 We to dry S 1-6 and cold 17,720 3,0358 2,3455 661.7 151.1 0.0 0.0 3,7840 3,465 We to dry S 1-6 and cold 17,333 3,1053 2,3455 661.7 151.1 0.0 0.0 3,7840 3,667.3 Shying wet and heated 131,200 2,3455 661.7 151.1 0.0 0.0 3,7840 3,661.3 Shying wet and heated 131,200 2,344.7 3,053.2 622.7 14,22 0.0 0.0 1,732.0 3,661.3 Shying dry and heated 152.00 2,346.5 72.1 42.2 0.0 0.0 2,373.4 3,165.7 Shying dry and heated 152.00 2,314.7 3,053.2 622.7 14,22 0.0 0.0 2,374.3 3,165.4 Shying wet and heated 152.00 2,314.7 3,053.2 622.7 14,22 0.0 0.0 0.0 2,374.3 3,165.7 ToTAL: 3,552.20 64,36.5 7,		Wet to div and cold	174 202	3,162.4	3,391.1	671.4	153.3	0.0	0.0	3.853.8	3.544.4
Wet to dry S 1:6 and cold, S 130,538 2,445 2,651 4,651 1132 0,0 0,0 345 821 Wet to dry and cold 114,383 3,136.3 3,345 661.7 151.1 0,0 0,0 2,645 2,645 Shying wet and heatbed 82,263 1,074.7 245.4 0,0 0,0 1,078.3 5,544.5 Shying wet and heatbed 131,200 2,314.7 3,156.3 7,214 164.7 0,0 0,0 1,078.8 5,544.5 Shying wet and heatbed 131,200 2,314.7 3,155.4 7,214 164.7 0,0 0,0 1,978.8 1,833.7 Shying wet and heatbed 131,200 2,314.7 3,155.4 7,214 164.7 0,0 0,0 1,978.8 1,833.7 Shying wet and heatbed 131,200 2,314.7 3,165.4 7,214 164.7 0,0 0,0 1,978.8 1,833.7 Shying wet and heatbed 132,200 8,316.8 721.4 164.7 0,0 0,0 2,993.9 2,964.9 TOTAL: 3,652.22 74.165.2 3,519.7 0,0 0,0 0,0 7,916.4 78,407.5 TOTAL: 3,652.22 64.75 3,519.7 0,0 <td></td> <td>Plus 46</td> <td>14,303</td> <td>5,051,5 2,05</td> <td>3,345.6</td> <td>661.7 2.2</td> <td>151.1</td> <td>0.0</td> <td>0.0</td> <td>3,798.0</td> <td>3,496.7</td>		Plus 46	14,303	5,051,5 2,05	3,345.6	661.7 2.2	151.1	0.0	0.0	3,798.0	3,496.7
Wet to dry and cold 174,383 3,136,3 3,3455 661.7 11.1.2 0.0 0.0 2,845.2 2,677.5 Shrying wet and heated 283,213 5,093.6 5,259.2 1,074.7 245.4 0.0 0.0 0.0 1,876.8 1,833.7 Shrying wet and heated 131,200 2,314.5 5,733.2 2,47.7 245.4 0.0 0.0 1,876.8 1,833.7 Shrying dry and heated 131,200 2,314.6 3,759.6 77.1 1,42.7 0.0 0.0 1,876.8 1,833.7 Shrying dry and heated 131,200 2,314.6 3,466.5 2,314.6 2,314.6 3,466.5 2,897.4 3,935.4 Shrying dry and heated 152,000 2,891.6 3,466.5 2,134.4 0.0 0.0 4,659.9 Shrying wet and heated 152,000 2,891.6 73,466.2 2,134.4 2,446.5 3,519.7 0.0 0.0 4,659.9 Shrying wet and heated 152,000 2,891.6 73,416.2 3,519.7 0.0 0.0 78,407.5 Shrying wet and heated 156,200 64,352.3 74,867.8 15,416.2 3,519.7 0.0 0.0 79,768.4 TOTAL: 3,652.200 64,352.3		Wet to dry S 1-6 and cold. S	130,636	2.005	2.04 2	8.2 406 7	0 , 1 , 1	00	0.0	36.5	9 2.1
Install Indiv. Iventing 283,213 5,063.16 5,256.2 1,074.1 245.4 0.0 0.0 5,788.3 5,704.6 7 Shaying wet and heated 86,256 1,561.5 1,769.0 327.3 7.4.7 0.0 0.0 5,168.3 5,504.6 5 Shaying dy and heated 152,000 2,891.6 3,065.2 6,22.1 14.2.2 0.0 0.0 2,937.4 3,195.4 5 Shaying wet and heated 152,000 2,891.6 3,465.5 834.6 213.4 0.0 0.0 0, 2,470.0 4,659.9 3,403.0 3,661.3 3,003.2 3,195.4 2,00 0.0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		Wet to dry and cold	174,383	3.136.3	3.245.6		113.2		0.0	2,845,2	2,677.5
Staying we and heated 86,265 1,551.5 1,759.0 327.3 74.7 0.0 0.0 1,878.8 133.7 74.7 0.0 0.0 1,878.8 133.7 142.2 0.0 0.0 1,878.8 153.7 155.0 357.4 3,195.4 74.4 5 5 5 7 142.2 0.0 0.0 2,937.4 3,195.4 75.4 10.0 0.0 2,937.4 3,195.4 75.4 10.0 0.0 74,409.0 4,659.9 10.1 0.0 0.0 74,409.0 4,659.9 10.1 0.0 0.0 0.0 1,470.0 3,559.9 10.1 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 1,470.0 1,559.9 10.1 0.0 0.0 0.0 0.0 1,470.9 1,559.9 10.1 0.0 0.0 0.0 1,470.9 1,559.9 10.1 0.0 0.0 0.0 1,470.9 1,559.9 10.1 0.0 0.0 0.0 1,470.9 1,559.9 10.1 0.0 0.0 0.0 1,470.9 1,559.9 10.1 0.0 0.0 0.0 0.0 1,470.9 1,559.9 10.1 0.0 0.0 0.0 1,470.9 1,559.9 10.1 0.0 0.0 0.0 1,470.9 1,559.9 10.1 0.0 0.0 0.0 0.0 1,470.9 1,559.9 10.1 0.0 0.0 0.0 0.0 0.0 1,470.9 1,559.9 10.1 0.0 0.0 0.0 0.0 1,470.9 1,559.9 10.1 0.0 0.0 0.0 0.0 1,470.9 1,559.9 10.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		Install indiv. heating	283,213	5,093.6	5,259.2	1.074.7	245.4			0.08/.5	3,496.7
ToTAL: 3,552,200 E4,352.3 74,867.6 15,416.2 3,519.7 0.0 0.0 2,937.4 3,195.4 73,954.3 195.4 164.1 0.0 0.0 0.0 3,403.0 3,651.3 3,195.4 75.407.5 146.5 721.4 164.1 0.0 0.0 3,403.0 3,651.3 3,652.200 54,352.3 74,867.6 15,916.2 3,519.7 0.0 0.0 79,788.4 78,407.5 10.7 0.0 0.0 79,788.4 78,407.5 15,116.2 3,519.7 0.0 0.0 79,788.4 78,407.5 10.7 0.0 0.0 79,788.4 78,407.5 15,116.2 3,519.7 0.0 0.0 79,788.4 78,407.5 10.7 0.0 0.0 79,788.4 78,407.5 15,116.2 3,519.7 0.0 0.0 79,788.4 78,407.5 10.7 0.0 0.0 79,788.4 78,407.5 10.7 0.0 0.0 79,788.4 78,407.5 10.7 0.0 0.0 79,788.4 78,407.5 10.7 0.0 0.0 79,788.4 78,407.5 15,116.2 15,11		Staying wet and heated	86,265	1,551.5	1,759.0	327.3	74.7	00		0,100.0	0.400.0
Starmer of and netered 152,000 2.581.6 3,466.5 721.4 164.7 0.0 0.0 3,403.0 3,661.3 751.4 10.1 152,000 4,659.9 10.1 10.0 0.0 10,0 4,659.9 10.1 10.1 10.1 10.0 0.0 10,0 4,659.9 10.1 10.1 10.1 10.0 0.0 79,768.4 78,407.5 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10		vizying dry and heated	131,200	2,314.7	3,053.2	622.7	142.2	0.0		2 937 4	1,000,1
Juryev ver and neared 190,930 3,4144 4,445.5 934.66 213.4 0.0 0.0 4,659.9 4,659.9 4,659.9 107AL: 3,652,200 64,352.3 74,887.8 15,416.2 3,519.7 0.0 0.0 79,766.4 78,407.5 10.7 10.7 10.1 10.0 10.0 19,766.4 78,407.5 10.7 10.1 10.0 10.0 10.0 10.0 10.0 10.0		Guyrang any and neated	152,000	2,681.6	3,496.6	121.4	164.7	0.0	00	3 403 0	0,130.4
101AL: 3,652,200 64,352.3 74,867.6 15,416.2 3,510.7 0.0 0.0 79,766.4 78,407.5		Suayang wat and neared	196,935	3,474,6	4,446.5	834.6	213.4	0.0	0.0	4,409.0	4,659.9
			3,652,200	64,352.3	74,887.8	15,416,2	3,510.7	00	000	79,766.4	78,407.5
									•		

C4

<u>C5</u>

		105 105	- HTW V	onsumer with dry p	Load Su ipe/dem	mmary olition			-	age 1
ler name	(Sa Fi	Heating Annual (MBtu/Yr)	Heating Peak (KBtu/Hr)	Hot water Annual (MBtuYr)	Hot water Peak (KBtu/Hr)	Process Annual (MBtu/Yr)	Process Peak (kBtu/Hr)	Total Annual (MBtu/Yr)	Total Peak (KBtu/Hr)	
ter 40 liv. heating fiv. heating	28,070 43,626 21,730	504.8 784.6 300.8	658.3 961.6 530.8	106.5 165.5 82.5	24.3 37.8	000	000	611.3 950.1 477.3	682.6 999.4 740.6	
Stay heated wel/dry threated OR dry/cold	735,796 283,183 283,183	12,980.6 4,996.0	15,520.0	3,491.9	797.2 306.8			16,472.5 6,340.0	16,317.2 6,556.0	
urv. reaurug wet and heated dry and heated wet and heated wet and heated	91,430 86,265 131,200 152,000 196,935	7.00.1 1,551.5 2,314.7 2,681.6 3,474.4	1,759.0 3,053.2 3,496.6 4,446.5	327.3 327.3 622.7 721.4 934.6	74.7 142.2 164.7 213.4	00000		3,403.0 4,409.0	1,300.5 1,833.7 3,195.4 3,661.3 4,659.9	
· · · · ·	1,730,035	30,415.1	38,000.2	8,039.5	1,835.4	0.0	0	38,454.6	39 83 2 6	
			· · · · ·	· • •	-		•			

Appendix D: CHP Modernization Analysis Data Sheets

	Utility Moderniz	ation Anal	ysis	10.0			Op	otion	List
							Fu	el incre	ase
Option	Name	Capital Cost	Labor Cost	OM&R	Fuel	LCC NPV	SIR	29% SIR	Salv K\$
1	Coal -ESP	2,760,000	594,168	532,935	215,913	21,436,330			1035
2	Coal - Baghouse	2,570,000	594,168	532,935	215,913	21,296,910			963.8
2a	Coal - Baghouse (OM&R adjusted)	2,570,000	594,168	318,000	215,913	18,161,720		0.3	963.8
3	Gas Conversion - Oil BU	1,500,000	594,168	163,000	455,804	19,473,490			562.5
3a	Gas Conversion - Oil BU (3rd Pty)	1,500,000	219,763	163,000	455,804	14,019,160	Base		562.5
3a-1	Gas Conversion - Oil BU (3rd Pty, 29% inc)	1,500,000	219,763	163,000	584,125	16,073,770		Base	562.5
3b	Gas Conversion - Oil BU (One unit, Dry Pipe)	2,150,584	594,168	163,000	224,822	16,294,400			806.5
3c	Gas Conversion - Oil BU (3rd Pty, Dry Pipe)	2,150,584	219,763	163,000	224,822	10,840,980	7.2		806.5
3c-1	Gas Conversion - Oil BU (3rd Pty, Dry Pipe, 29%)	2,150,584	219,763	163,000	287,380	11,842,610		9.1	806.5
4	New Gas Unit - Oil BU	3,270,000	594,168	163,000	455,804	20,855,950			1226
5	Coal - Baghouse - Gas BU	3,290,000	594,168	532,935	237,445	22,267,760			1234
6	Oil Conversion - Gas BU	2,320,000	594,168	163,000	479,716	20,300,770			870
6a	Oil Conversion - Gas BU (29% fuel price increase)	2,320,000	594,168	163,000	614,972	22,410,950			870
7	New Oil - Gas BU	4,040,000	594,168	163,000	479,716	21,644,820			1515
7a	New Oil - Gas BU (29% fuel price increase)	4,040,000	594,168	163,000	614,972	24,824,700			1515
8	Decentral - Boilers ** (Wet Pipe Fire Prot)	4,764,176	130,663	100,100	576,388	16,879,860			
8a	Decentral - Boilers ** (Dry Pipe Fire Prot)	3,495,584	87,369	47,943	280,551	9,613,835	3.2	3.5	
9	Decentral - Furnaces **(Wet Pipe Fire Prot)	8,957,231	130,663	27,100	576,388	19,646,960	0.3	0.1	
9a	Decentral - Furnaces ** (Dry Pipe Fire Prot)	5,691,778	87,369	13,900	280,551	11,124,770	1.7	1.9	
				·····					
•									
	ł								
	. I			I					
	Total [

	Utility M	loderniza	tion Ana	lysis		·····	Ор	tion List	
	Option	Production Peak Load MBTU/hr	Bldg Served Sq. ft.	Coal Fuel MBTU/yr	Gas Fuel MBTU/yr	Oil Fuel MBTU/yr	Elect MWhr/yr	Bidg Peak Loan MBTU/hr	
	1	80.8	3,652,200	106,669			514	78.4	
	2	80.8	3,652,200	106,669			514	78.4	-
	2a	80.8	3,652,200	106,669			514	78.4	
	3	80.8	3,652,200		102,904		.427	78.4	
Base Case	3a	80.8	3,652,200		102,904		427	78.4	
	3 a-1	80.8	3,652,200		102,904		427	78.4	
	3b	41.2	1,730,035		50,166		292	39.8	
	Зс	41.2	1,730,035		50,166		292	39.8	
	3c-1	41.2	1,730,035		50,166		292	39.8	
	4	80.8	3,652,200		102,904		427	78.4	
	5	80.8	3,652,200	96,001.92	10,290		427	78.4	
	6	80.8	3,652,200			102,904	427	78.4	
	6a	80.8	3,652,200			102,904	427	78.4	
	7	80.8	3,652,200			102,904	427	7 78.4	
	7a	41.2	3,652,200			102,904	427	7 78.4	
	8	78.4	3,652,200		93,845		427	7 78.4	
	8a	39.9	1,730,035	5 	45,241		292	79.4	
	. 9	78.4	\$ 3,652,200)	93,845		42	/ /8.4	
	9a	39.9	1,730,035	5 	45,241			2 <u>39.9</u> 0.0 0.0	
								0.0	
								0.0	
								0.0	
•							<u> </u>	0.0	
								0.0	
								0.0	
								0.0	
						1	<u> </u>	0.0]
	Total				Ļ	<u> </u>			J

D3

	Utility I	Moderniza	ition Ana	lysis			Op	tion List
		LCCID ECIP (Saving +/ Cos	-) Entries	••••	•		
	Option	Capital	Savings Labor	Savings OM&R	Coal MBTU/yr	Gas MBTU/yr	Oil MBTU/yr	Elect MWhr/yr
	. 1	2 760 000	-374 405	-369 935	-106 669	102 904		-89
· .		2 570 000	974 405	900,005	100,000	102,004		
	. 2	2,570,000	-374,405	-303,933	-106,009	102,904		-00
	2a	2,570,000	-374,405	-155,000	-106,669	102,904	. 0	-88
	3	1,500,000	-374,405	0	0	0	0	- 0
ase Case	3a	1,500,000	0	0	0	0	` <u>0</u>	· 0
0	3a-1	1,500,000	0	0	0	0	0	0
	3b	2,150,584	-374,405	0	. 0	52,738	0	135
,	3c	2,150,584	<u> </u>	0	0	52,738	0	135
	3c-1	2,150,584	0	0	0	52,738	0	135
	4 [°]	3,270,000	-374,405	. 0	0	o	0	0
	5	3,290,000	-374,405	-369,935	-96.002	92.614	o	0
÷	6	2.320.000	-374,405	0	0	102 904	-102 904	0
	6a	2 320 000	-374 405			102,004	-102 904	
	7.	4,040,000	-074,405		0	102,504	-102,904	
	7	4,040,000	-374,405		0	102,904	-102,904	0
	/a	4,040,000	-3/4,405		0	102,904	-102,904	0
	8	4,764,176	89,100	62,900	0	9,059	0	0
	8a	3,495,584	132,393	115,057	0	57,663	<u> </u>	135
	9	8,957,231	89,100	135,900	0	9,059	0	0
	9a	5,691,778	132,393	149,100	0	57,663	o	135
								0.0
								0.0
					· .		ł	0.0
		 -						0.0
								0.0
	1							0.0
				<u> </u>		· · · · ·		0.0
	1	· ·			†		f*	0.0
								0.0
					· · · · · · · · · · · · · · · · · · ·			0.0
				· ·				0.0
	1							0.0
	ł							0.0
	· }							0.0
	ŀ							0.0
	ł							0.0
	ŀ							0.0
	ŀ	~~~~~ <u> </u> ~						0.0
	L				<u> </u>			0.0

Appendix E: LCCID Output

E2 ·

E3

HTHW Unit #2 BTU Flow Rate vs. Outside Temperature

USACERL TR 99/42

E4

E5

Total BTU Flow Rate vs. Outside Temperature

Appendix F: Net Present Value Sensitivity Analysis

F3

F4

USACERL DISTRIBUTION

Chief of Engineers ATTN: CEHEC-IM-LH (2) ATTN: CEHEC-IM-LP (2) ATTN: CECC-R ATTN: CERD-L ATTN: CERD-M

Defense Supply Center Columbus (DSCC) ATTN: DCSS-WIC (2)

Defense Tech Info Center 22304 ATTN: DTIC-O (15)

> 23 05/99