
AFRL-IF-RS-TR-1999-71
Final Technical Report
April 1999

TASK-BASED AUTHORIZATIONS

Odyssey Research Associates, Inc.

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. C929

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

_j

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

""«"»a.**,«

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1999-71 has been reviewed and is approved for publication.

APPROVED: sW V

JOSEPH V. GIORDANO
Project Engineer

FOR THE DIRECTOR:

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

TASK-BASED AUTHORIZATIONS

Roshan K. Thomas
Ravi Sandhu
Souvik Das

Contractor: Odyssey Research Associates, Inc.
Contract Number: F30602-95-C-0285
Effective Date of Contract: 28 September 1995
Contract Expiration Date: 30 May 1998
Short Title of Work: Task-Based Authorizations

Period of Work Covered: Sep 95 - May 98

Principal Investigator: Roshan K. Thomas
Phone: (607)257-1975

AFRL Project Engineer: Joseph V. Giordano
Phone: (315)330-4199

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored by
Joseph V. Giordano, AFRL/IFGB, 525 Brooks Road, Rome, NY
13441-4505.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

SÄT"'"^1"?" '".■""' l°"ftim "' in,™a,i™i! =s,i™,e
J
d to average, hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed and comnletinu and ™ipwi„„

'"„l?f ° ' "! ™"!?."; Send comments regerdmg this burden estimate or «ny other «pact of this collection ef information, including suggestions for reducing this bürden, to WashiZ H S « Ci S "'"„IT
Operations and Reports. ,2,5Jef.,rs.n Davis Hi,hv,ay,We,204. Arlington, VA 2^^

1. AGENCY USE ONLY ILeave blank}

4. TITLE AND SUBTITLE

TASK-BASED AUTHORIZATIONS

2. REPORT DATE

 April 1999
3. REPORT TYPE AND DATES COVERED

Final Sep 95 - May 98

6. AUTHOR(S)

5. FUNDING NUMBERS

Roshan K. Thomas, Ravi Sandhu, Souvik Das

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Odyssey Research Associates, Inc.
33 Thornwood Drive, Suite 500
Ithaca NY 14850

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington VA 22203-1714

Air Force Research Laboratory/IFGB
525 Brooks Road
Rome NY 13440-4505

11. SUPPLEMENTARY NOTES

C
PE
PR
TA
WU

F30602-95-C-0285
62301E
C929
02
02

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1999-71

Air Force Research Laboratory Project Engineer: Joseph V. Giordano/IFGB/(315) 330-4199

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) ~ ~

In this project we developed a new paradigm for access control and security models called task-based authorization controls
(TBAC). This new authorization control paradigm is particularly suited for emerging models of computing, especially
distributed computing and information processing activities with multiple points of access control and decision making.
TBAC articulates security issues at the application and enterprise level. As such, it takes a "task-oriented" or
"transaction-oriented" perspective rather than a perspective based upon traditional subject-object distinctions. In TBAC,
access mediation involves authorizations at various points during the completion of tasks in accordance with the application
logic associated with the overall governing process. In contrast, the subject-object view typically divorces access mediation
from the larger context in which a subject performs an operation on an object. By taking a task-oriented view of access
control and authorizations, TBAC lays the foundation for research into a new breed of "active" security models. TBAC has
broad applicability to access control, ranging from fine-grained activities such as client-server interactions in a distributed
system, to coarser units of distributed applications and workflows that cross departmental and organizational boundaries.

14. SUBJECT TERMS ~ "

Defensive Information Warfare, Computer Security, Security Policy

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

IS. NUMBER OF PAGES

80
16. PRICE CODE

20. LIMITATION OF
ABSTF«ACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

TABLE OF CONTENTS

1. SUMMARY 1

2. METHODS, ASSUMPTIONS, AND PROCEDURES 2

2.1 INTRODUCTION 2
2.1.1 Assumptions and Motivation for task-based authorizations 2
2.7.2 Overview of task-based authorizations 3
2.1.3 Project goals and scope 4

2.1.3.1 Goals and key research directions 5
2.1.3.2 Non-goals 5

2.2 SECURITY REQUIREMENTS AND MODELS 6
2.2.7 Abstractions in security requirements 6
2.2.2 TBA: bridging enterprise and system-oriented security models 7

2.3 AUTHORIZATION IN TASKS AND WORKFLOWS 9
2.3.1 Abstracting the authorization layer in activities and workflows 9

2.4 TBAC AS AN ACTIVE SECURITY MODEL FOR AUTHORIZATION MANAGEMENT 10

3. RESULTS AND DISCUSSION 16

3.1 THE MODELING AND SPECIFICATION OF AUTHORIZATIONS 16
5.7.7 A Family of TBAC Models 16
3.1.2 The Model TBAC0 17

3.1.2.1 Components of an authorization-step 17
3.1.2.2 Processing states and life-cycle of authorizations 19
3.1.2.3 Basic dependencies to construct authorization policies 21
3.1.2.4 Formal characterization of TBAQ, 22
3.1.2.5 An order-processing example 23

3.1.3 The model TBACi to support composite authorizations 26
3.1.4 The model TBACj and constraints 27

3.2 VISUAL LANGUAGES AND AUTHORIZATION MODELING 29
3.2.7 Motivation to use visual languages 29
3.2.2 A two-tiered visual-language framework for TBA 30
3.2.3 Basic icons to visualize authorization steps and their meanings 31
3.2.4 Visual sentences and authorization policies 32
3.2.5 Syntactic Aspects of the visual language for TBA 34

3.3 PROTOTYPE ARCHITECTURE AND IMPLEMENTATION 37
3.3.1 High-level Design and Architecture 38
3.3.2 The Policy Editor Subsystem 39

3.3.2.1 Design goals and framework 39
3.3.2.2 Policy management APIs 42

3.3.3 The Authorization Server Subsystem 42
3.3.3.1 High-level architecture 42
3.3.3.2 Client-server communications 44

3.3.4 Software Documentation 45
3.3.4.1 Software requirements 45
3.3.4.2 Location and organization of files 45
3.3.4.3 Using the policy editor 46
3.3.4.4 Configuring the authorization manager 55
3.3.4.5 Communicating with the authorization server 55

MESSAGES OF TYPE INVOKE 57

MESSAGES OF TYPE GRANT OR DENY 58
MESSAGES OF TYPE REQUEST_AUTH 58

3.3.4.6 Integration with the workflow system 58

4. CONCLUSIONS 62

4. REFERENCES 63

ii

LIST OF FIGURES

FIGURE 1. SUBJECT-OBJECT VERSUS TASK-BASED ACCESS CONTROL 4
FIGURE 2. A HIERARCHY OF SECURITY MODELS 6
FIGURE 3. TBAC AS THE BRIDGE BETWEEN ENTERPRISE SECURITY AND ACCESS CONTROL 7
FIGURE 4. ABSTRACTING AUTHORIZATIONS FROM WORKFLOWS 10
FIGURE 5. AN AUTHORIZATION-STEP AS AN ABSTRACTION THAT GROUPS TRUSTEES AND

PERMISSIONS 11
FIGURE 6. SUBJECT-OBJECT VERSUS TBAC VIEWS OF ACCESS CONTROL 12
FIGURE 7. TBAC AS AN ACTIVE SECURITY MODEL 13
FIGURE 8. A FRAME WORK FOR A HIERARCHY OF TBAC MODELS 16
FIGURE 9. BASIC COMPONENTS OF AN AUTHORIZATION-STEP 17
FIGURE 10. THE BASIC LIFE-CYCLE OF AN AUTHORIZATION-STEP 19
FIGURE 11. DETAILED PROCESSING STATES OF AN AUTHORIZATION-STEP 20
FIGURE 12. AN ORDER PROCESSING EXAMPLE 23
FIGURE 13. A TWO-TIERED APPROACH TO USING VISUAL LANGUAGES FOR TBA 30
FIGURE 14. BASIC ICONS 31
FIGURE 15. CONVEYING COMBINATIONS OFMEANINGS THROUGH SECONDARY ICONS 32
FIGURE 16. VISUAL SENTENCESES IN POSITIONAL GRAMMAR 35
FIGURE 17. THE CALENDAR METAPHOR AND ITS VISUAL LAYOUT 36
FIGURE 18. HIGH LEVEL ARCHITECTURE OF PROTOTYPE IMPLEMENTATION 38
FIGURE 19. AN ER DIAGRAM SHOWING RELATIONSHIPS BETWEEN EDITOR ABSTRACTIONS40

FIGURE 20. AN ER DIAGRAM OF THE STRUCTURE OF A POLICY SENTENCE 40
FIGURE 21. POLICY EDITOR ARCHITECTURE 41
FIGURE 22. HIGH-LEVEL ARCHITECTURE OF THE AUTHORIZATION SERVER 43
FIGURE 23. MESSAGES FOR CLIENT-SERVER COMMUNICATION 44
FIGURE 24. DIRECTORY/FOLDER ORGANIZATION OF FILES 45
FIGURE 25. THE OPENING SCREEN OF THE EDITOR 47
FIGURE 26. CREATING A NEW POLICY 48
FIGURE 27. DEFINING ENTITIES FOR A NEWLY CREATED POLICY 48
FIGURE 28. SELECTING A POLICY TO OPEN 50
FIGURE 29. BROWSING AN OPENED POLICY 50
FIGURE 30. VIEWING THE ENTITIES OF AN OPEN POLICY 51
FIGURE 31. VIEWING THE SENTENCES OF AN OPEN POLICY 52
FIGURE 32. VISUALIZING POLICIES 53
FIGURE 33. THE HELP FACILITY TO VISUALIZE SENTENCES 54
FIGURE 34. DELETING A POLICY 55
FIGURE 35. EXECUTOR INTERFACE TO INVOKE, GRANT, AND DENY AN AUTHORIZATION

STEP 56
FIGURE 36. REQUESTOR INTERFACE TO TO USE AN AUTHORIZATION 57
FIGURE 37. CREATING A SIMPLE WORKFLOW WITH A WORKFLOW AUTHORING TOOL 59
FIGURE 38. DEFINING AN AGENT FOR A TASK IN A WORKFLOW 60
FIGURE 39. INVOKING AGENTS AT RUNTIME 61

in

LIST OF TABLES

TABLE 1. SALES ORDER AUTHORIZATION STEPS AND THEIR COMPONENTS 25
TABLE 2. POLICY MANAGEMENT APIs 42
TABLE 3. FOLDERS AND THEIR CONTENTS 46

IV

1. Summary
This research project on task-based authorization controls (TBAC) was undertaken at
Odyssey Research Associates from September 19951 to April 30, 1998.
Work on the project is divided into the following four tasks:

• Task 1: Model Development (Months 1-5)

• Task 2: Language Development (Months 6-10)

• Task 3: Architecture and Implementation Study (Months 11-12)

• Task 4: Development of proof-of-concept prototype

This final report documents the work undertaken on all of the above four tasks. Specific
issues addressed in this report include the modeling and specification of authorizations
and authorization policies. Various abstractions and modeling constructs are developed
for this purpose. We then discuss the use of visual languages for modeling
authorizations. Finally, we present the high-level architecture and other details of our
prototype implementation, which we then follow with documentation of software.

1 In previous reports, we have referred to this project as TBA.

2. Methods, Assumptions, and Procedures

2.1 Introduction

In this introductory section, we discuss the assumptions and motivation for this project,
as well as our basic project goals and research directions.

2.1.1 Assumptions and Motivation for task-based authorizations

Organizations are increasingly seeking ways to cut costs and achieve greater efficiency in
various business functions and processes. This trend has sparked great interest in
business process reengineering as well as automation and computerization. As paper-
based information processing systems become computerized, the related authorization
procedures will inevitably have to be automated and managed efficiently. The TBAC
approach described in this report was motivated by this anticipated need to model and
automate authorization and related access controls.

An authorization is an approval act, which manifests itself in the paper world as the act of
signing a form. Typically, in the paper world, an authorization enables one or more
activities and related permissions. The person granting the authorization usually takes
responsibility for the actions that are authorized by the authorization. An authorization,
as represented by a signature, also has a lifetime associated with it during which it is
considered valid. Once an authorization becomes invalid, organizations require that the
associated permissions no longer be available. The implementation of TBAC ideas will
lead to systems that provide tighter just-in-time, need-to-do permissions. The TBAC
approach also leads to access control models that are self-administering to a great extent,
thereby reducing the administrative overhead typically associated with fine-grained
subject-object security administration.

From the standpoint of research in security models, the motivation for this project comes
from the recognition of the limitations of traditional security and access control models.
Given these limitations, our objective has been to develop a new paradigm for access
control and security models, which we term task-based authorization controls (TBAC).
Initial ideas formulated for TBAC were reported in earlier papers by Thomas and Sandhu
[3,4]. TBAC is particularly suited for emerging models of computing, including
distributed computing and information processing activities with multiple points of
access, control, and decision making. It has broad applicability to access control, ranging
from fine-grained activities such as client-server interactions in a distributed system, to
coarser units of distributed applications and workflows that cross departmental and
organizational boundaries.

TBAC articulates security issues at the application and enterprise level. As such, it takes
a "task-oriented" perspective rather than the traditional subject-object one. Access
mediation now involves authorizations at various points during the completion of tasks,
in accordance with some application logic governing overall processes. In contrast, the

subject-object view typically divorces access mediation from the larger context in which
a subject performs an operation on an object.

By taking a task-oriented view of access control and authorizations, TBAC lays the
foundation for research into a new breed of "active" security models. We consider
traditional subject-object security models as "passive", since they merely store basic
access control information, such as who has which permissions to what objects, and use
this information in a context-independent fashion to answer basic access control requests.
An active security model, on the other hand, recognizes the overall task context in which
security requests arise and takes an active part in the management of security as it relates
to the progress within such tasks.

TBAC will have both broad applicability and significant impact in areas such as the
automation of mission-critical command and control scenarios (where authorization
sequences need to be carefully controlled), the security management of complex
operations in high-assurance client-server environments, and forms-based workflow
applications such as logistics management, distributed planning and claims processing.

2.1.2 Overview of task-based authorizations

Figure 1 (a) and (b) shows the fundamental difference between subject-object and task-
based views of access control and security. In the subject-object view, the basic entities
are subjects, objects, and permissions possessed by subjects to gain access to the various
objects. This can be represented in an access control matrix. An access control request
thus seeks an answer to a question typically posed as

• Is subject s allowed access a to object o?

Contrast this with a task-based view where we seek an answer to a question such as

• Can authorization a be granted to a subject when participating in task f.

Notice the shift in emphasis from the permissions of individual subjects to objects to the
authorizations for subjects within tasks. This change represents a paradigm shift in the
way we think of security and access control.

'S
Subjects

T-H
1

w o w
o

USER-A R RW

USER-B W R

(USER-A, FILE-1,R)

(USER-B,0BJECT-2,R)

Task

(a) An access control matrix and corresponding access control tuples

U A uthorization function

(b) A grid of tasks and authorizations

Figure 1. Subject-object versus task-based access control

In a task-based approach to security, there are three basic entities:

• Tasks and sub-tasks: these represent strands of activity.

• Authorizations: these are approval steps that occur at one more points in the lifetime
of various tasks and sub-tasks.

• Dependencies: these are relations between authorizations and their encompassing
tasks and represent authorization policies.

We are thus interested in how authorizations are modeled and managed as they occur
during the lifetimes of various tasks in an information system. These tasks may span the
entire workflow/task spectrum. As such, these tasks may be completely automated
repetitive processes, or at the other end of the spectrum, represent complex collaborative
activities involving humans and automated agents. In the context of TBAC, when we
refer to authorizations, we mean the analog of signatures in the paper (forms) world. We
see the act of signing a form as an act of authorization (authorization-step). Of course,
authorization-steps may be completely automated such as through an automated agent, so
long as a human is held responsible for the authorization.

2.1.3 Project goals and scope

We now discuss the goals and scope of this project.

2.1.3.1 Goals and key research directions

In approaching the modeling, specification, and management of authorizations, this
project addresses, in a broad sense, four independent but related security objectives;
confidentiality, integrity, availability, and accountability. An authorization should be
granted only if doing so would not leak confidential information and the associated
authorized activity does not adversely affect the integrity of the application or enterprise.
Authorizations should be granted in accordance with deadlines and expirations in order to
assure availability. Finally, tasks and authorizations should be aligned to the
responsibility and accountability structures in the application or enterprise, in order to
satisfy accountability.

The key research directions that we have investigated during the course of this project
include the following:

• TBAC as an active security model;

• modeling and specification of authorization policies;

• use of visual languages to specify authorization requirements and policies; and

• application of TB AC to distributed enterprise computing and workflows.

During the course of the project, we have investigated several issues concerning the
modeling and management of authorizations associated with tasks and the day-to-day
activities in an enterprise, including

interaction of application logic, access control, and task authorizations;

time and space distribution of tasks involving multiple users, computing resources,
and administrative and trust domains;

authorization for groups of related tasks;

authorization exceptions and failures;

dependencies between authorizations and tasks; and

architectures to implement TBA.

2.1.3.2 Non-goals

The following two area are non-goal areas for the TBAC project.

Authentication: We do not address the issue of authentication, as it is outside the scope
of the TBAC model. Users granting authorizations, as well as those receiving
authorizations, are assumed to be authenticated elsewhere in the system. TBAC should
be seen as a technology for authorization management that is part of an overall enterprise
security solution that includes authentication, certificate-based trust management, and
other relevant security infrastructure technologies.

Auditing: We also do not address issues related to auditing and audit analysis of
authorizations, as our focus is on the modeling and specification of authorizations.

However, our approach to TBAC recognizes the accountability and responsibility
structures in an enterprise. As such, our approach can be enhanced to provide appropriate
hooks for the future incorporation of enterprise-oriented auditing schemes and tools.

2.2 Security Requirements and Models
In this section, we discuss how TBAC relates to the overall scheme of security
requirements and security models.

2.2.1 Abstractions in security requirements
Several levels of abstraction exist when approaching and articulating security
requirements and specifications. For example, LaPadula and Williams [2] identify the
following stages of requirements:

1. Trust objectives. The basic objectives to be achieved by a system.

2. External interface requirement. The system's interface to the environment as
expressed in terms of the security requirements.

3. Internal requirements. Requirements that must hold within the system's internal
components.

4. Rules of operation. Rules that explain how internal requirements are enforced.

5. Functional design. A functional description of the behavior of system components.

The security requirements of a system at stages 1 and 2 above are at a much higher level
of abstraction than those at stages 3, 4, and 5. In fact, the higher stages specify what
needs to be done and these requirements get refined into detailed executable
specifications that deal with how things are to be done. The higher stages thus involve
people-oriented policies and requirements while the lower ones are more computer-
oriented.

What needs to be done

(Policy-oriented)

2 Computer-based processing
STAGES OF models
ELABORATION

T
How to do it? models

(Computer-oriented)

3 Internal access control
models

4 Internal implementation

Figure 2. A hierarchy of security models

Given the above stages of elaboration, one can derive a hierarchy of security models such
as that shown in Figure 2. As expected, models at the highest level capture
organizational policy and requirements that pertain to security and in fact are unaware of
the existence of computers. However, at the next stage, these requirements are applied to
the interface between the organization and the computer system, and are captured by
computer-based processing and policy models. These models recognize and incorporate
the abstractions necessary for computer-based processing. Computer policy models, in
turn, are implemented by lower level internal access control models that are specific to
the abstractions in individual computers; these models, in turn, map to more concrete
implementation models, and so on.

Having presented a hierarchy of security models, we next discuss how TBAC relates to
such a hierarchy.

2.2.2 TBA: bridging enterprise and system-oriented security models

Enterprise
Perspective

Workflow
and Task
Perspective

Systems
Perspective

Enterprise security policy,
requirements, and models

Task-based authorization

Access control models

agents,
responsibilities,
conversations,
activities

tasks,
authorizations,
authorization-dependencies

subjects,
objects,
permissions

Figure 3. TBAC as the bridge between enterprise security and access control

Figure 3 shows TBAC as the bridge between high-level enterprise security policies and
models, and low-level access control models. Traditional access controls and security
models, as found in many operating systems and database management systems, have
been intensely studied and developed over the last two decades. More recently, a few
researchers have started approaching security from the enterprise rather than the system
(computer) perspective. Task-based authorizations are unique in this context, as they
attempt to link policy and enterprise security requirements to internal requirements and
security enforcement.

At this point, it is helpful to understand the motivation for an enterprise-oriented view of
security requirements. Traditional approaches to multilevel security, such as those based

on the Bell and LaPadula (BLP), have always taken the view that security is concerned
with the internal protection of resources within a computer system. While this is an
important requirement, it is becoming clear that these models are primarily machine-
oriented and, as such, cannot model, other than in some very limited ways, what security
means in the broader context of an enterprise and its mission. After all, a computerized
information system is put in place to help achieve organizational objectives. Even if we
talk about security in the narrow sense of protection of resources or data in a database,
this should be traceable and justifiable with respect to an enterprise security policy,
which, in turn, must be mapped to overall organizational objectives.

Recent efforts at enterprise-oriented security modeling have started from enterprise
models and investigated how security requirements can be elicited. For example, Dobson
et al. [1] identify the following key abstractions as a basis for modeling enterprises:

• Agents

• Responsibilities

• Conversations

• Activities

• Resources

Agents are the people in the enterprise or socio-technical system. Agents hold
responsibilities. In fact, in Dobson's view, an enterprise can be seen as a network of
responsibilities and a clear understanding of responsibilities is the key to capturing
organizational requirements. An agent who is a responsibility holder will inherit a set of
obligations that must be discharged in order to fulfill the responsibility. Obligations, in
turn, may require agents to execute activities. In other words, obligations form the link
between the responsibilities that agents hold and the activities they are allowed to
execute. As well, resources are what enable an agent to perform various activities.

Enterprises are not static entities; rather, they are constantly evolving. One can again
understand some of these dynamic aspects by looking at responsibilities. An agent, m
fulfilling a certain responsibility, may transfer a subset or all of the related obligations to
another agent. In Dobson's framework, the responsibility itself can never be transferred.
However, the transfer of an obligation to a second agent may result in the creation of new
responsibilities. The second agent now becomes a responsibility holder while the
original agent becomes a responsibility principal for this new responsibility relationship.
As an enterprise evolves, its responsibility relationships change. In fact, the perceived
need for this change often triggers corporate restructuring.

The model also introduces the notions of conversations and authorizations. To elaborate,
the creation of responsibilities and obligations requires authorization actions. In general,
authorization actions, agreements, contract negotiations, and so on are mediated by a
process. This process consists of mediation acts called conversations.

It is important to note that concepts such as roles and transactions are missing from the
above discussion. This is because the above concepts are an attempt to devise a minimal

set of abstractions from which all others can be derived. Thus the notion of a role can be
modeled as a collection of responsibilities. A transaction can be seen as a structuring
mechanism to decompose and manage activities.

Let us now see how the above enterprise modeling constructs lead to better elicitation and
understanding of enterprise security requirements for computer-based information
systems. To start with, it should be noted that associated with every responsibility, a
responsibility holder needs to do certain things, needs to know certain things, and needs
to record certain things for later audit. The things to do are the obligations and these need
to be mapped to functional requirements on the information system. This, in turn, will
elicit security requirements for these functional requirements. The "need to know"
requirements can help identify security access classes. Similarly, the "need-to-record"
requirements will lead to security requirements on the data capture, logging, and audit
mechanisms of the information system.

Consider next how conversations lead to security requirements. Conversations at the
enterprise level map to business processes, workflows, and protocols in information
systems. There might be policies and rules regarding which agents can participate in
which conversations. This will lead to access control requirements between processes (or
subjects) representing agents and protocol steps. Conversations may also manipulate
resources leading to access control requirements between workflows and protocols, and
between information structures such as databases. Lastly, conversations may be used to
negotiate and acquire access rights. All these have ramifications on security
requirements and the design of appropriate security mechanisms.

To summarize, TBAC can form a bridge between enterprise-oriented security models and
low level computer-oriented ones. This is possible because TBAC recognizes the
abstract notions of responsibility, conversations (processes) and authorizations present in
enterprise models and business processes, and maps them to a more suitable model that is
amenable to automation and computer-based processing. These notions represent
appropriate boundary objects between enterprise security models and system security
models.

2.3 Authorization in Tasks and Workflows
In this section, we discuss the relationship between authorizations, tasks, and workflows.

2.3.1 Abstracting the authorization layer in activities and workflows
There are, essentially two perspectives or levels of abstraction in modeling tasks or
activities in an organization, as shown in

Figure 4. The enterprise perspective sees activities as business processes. These are
abstract descriptions of basic business functions. Below this business process layer, there
exists a workflow layer. Workflows are more concrete and detailed manifestations of the
business processes that are amenable for computerization.

Authorizations

Figure 4. Abstracting authorizations from workflows

Given the above two-tiered structure of activities, task-based authorizations address
security at the workflow layer. Our goal is not to reinvent workflow modeling concepts.
Rather, given any workflow processing requirement, we want to model and reason about
the authorizations that are embedded in the workflow as well as the relationships between
various authorizations and tasks. The edges between the authorization steps in the shaded
oval in

Figure 4 are meant to convey the fact that authorizations do not stand in isolation.
Rather, they are interrelated to each other by various dependencies (explained in Section
3.1.2.3). As mentioned before, we think about authorizations as the analog of signatures
in the paper (forms) world. When we mention the term "authorization-step," we are
referring to a single (primitive) authorization act, which is the equivalent of a single
signature on a form. In Section 3.1.2, we will describe in more detail the attributes
(components) that make up an authorization-step.

2.4 TBAC as an active security model for authorization management
We use the concept of active security models to characterize models that recognize the
overall context in which security requests arise and take an active part in the management
of security as it relates to the progress and emerging context within tasks (activities).
Before we elaborate further on TBAC as an active security model, let us discuss some of
the basic ideas in the TBAC approach.

10

Authorization-step

Figure 5. An authorization-step as an abstraction that groups trustees and permissions

One of the most fundamental abstractions in TBAC is that of an authorization-step. It
represents a primitive authorization processing step and is the analog of a single act of
granting a signature in the forms (paper) world. From the standpoint of modeling, it is an
abstraction that groups trustees. In the paper world, a group of individuals may be
potentially allowed to grant a certain type of signature. For example, all sales clerks may
be allowed to sign sales orders. However, a single instance of a signature may be granted
by only a single individual. For example, sales order numbered 1208 is signed by sales
clerk Tom. Similarly, in TBAC, we associate an authorization-step with a group of
trustees called the trustee-set. One member of the trustee-set will eventually grant the
authorization-step when the authorization-step is invoked and processed. We call this
trustee the executor-trustee of the step. The permissions required by the executor-trustee
to invoke and process the authorization-step make up a set of permissions called
executor-permissions. In the paper world, a signature also implies that certain
permissions are granted (enabled). Similarly, we model the set of permissions that are
enabled by every authorization-step. These permissions comprise the enabled-
permissions set. Collectively, we refer to the union of the executor-permissions and
enabled-permissions as the protection-state of the authorization-step. Finally, the
authority granted by a signature is good for only a limited period of time. Similarly, we
associate a period of validity and a life-cycle with every authorization-step.

From the standpoint of access control models, Figure 6 illustrates how the TBAC view of
access control differs from classical subject-object access controls. In the latter, a unit of
access control or permission information can be seen as an element of the cross product
(X) of three domains (sets); the set of subjects, S, the set of objects, O, and the set of
actions, A. In TBAC, access control involves information about two additional domains;
usage and validity counts, U, and authorization-steps, AS. These additional domains
embed task-based contextual information.

We use the term trustee to refer to any one of the following: user, process, agent, service
or daemon.

Classical subject-object

access control P c S X O X A

TBAC view of access

control PcSXOXAXUXAS

TBAC extensions

Figure 6. Subject-object versus TBAC views of access control.

In our further discussions, it is useful to be aware of the distinction between an
authorization-step class (definition) and an authorization-step instance in a particular
workflow instance such as authorize-review in patent workflow instance with identifier
1234 started at 9AM on Dec 1, 1996. We use the term authorization-step loosely to mean
authorization-step class or authorization-step instance, as determined by the context.
When the context is ambiguous, we will be appropriately precise.

Every authorization-step maintains its own protection state. The initial value of a
protection state is the set of permissions that are turned on (active) as a result of the
authorization-step becoming valid. However, the contents of this set will keep changing
as an authorization-step is processed and the relevant permissions are consumed. With
every permission, we associate a certain usage count. When a usage count has reached
its limit, the associated permission is deactivated and the corresponding action is no
longer allowed. Conceptually, we can think of an active permission as a check-in of the
permission to the protection-state, and a deactivation of a permission as a check-out from
the protection state.

12

workflows,
authorizations
dependencies,
task instances

types,
domains,
roles

types

1 1 1

Type-based access control

Al

w

A2

X

Y r

PROTECTION
STATES
subjects,objects,
permissions

Instance and usage based access control

Figure 7. TBAC as an active security model

This constant and automated check-in and check-out of permissions as authorizations are
being processed is one of the central features that make TBAC an active model. Further,
the protection states of individual authorization-steps are unique and disjoint. What this
means is that every permission in a protection state is uniquely mapped to an
authorization-step instance and to the task or sub-task instance that is invoking the
authorization. This ability to associate contextual information with permissions is absent
in typical subject-object style access control models.

The distinction between type-based and instance and usage-based access control is also a
significant feature of the TBAC model. Type-based access control is used to encapsulate
access control restrictions, as reflected by broad policy and applied to types. Instance and
usage-based access control, on the other hand, is used to model and manage the details of
access control and protection states (permissions) of individual authorization instances,
including keeping track of the usage of permissions.

Figure 7 summarizes the concepts, features, and components that make TBAC an active
security model. These include the following:

• the modeling of authorizations in tasks and workflows, as well as the monitoring and
management of authorization processing and life-cycles as tasks progress;

• the use of type-based, instance and usage-based access control;

• the maintenance of separate protection states for each authorization-step;

• dynamic runtime check-in and check-out of permissions from protection states as
authorization-steps are processed.

13

To elaborate more on how these concepts are used for the active management of
authorizations, consider a simple check-voucher processing example that involves the
following sequence of authorization steps (for brevity, we show only the name of the
authorization step and the trustee/role that can grant the authorization):

1. authorize_prepare_voucher {clerk}

2. authorize_approve_voucher {supervisor}

3. authorize_issue_check {clerk}

Thus the processing of the voucher involves three phases, namely prepare, approval, and
issue. Each phase involves an authorization. As soon as the prepare phase is initiated at
the task or workflow layer, there will be an invocation of the first authorization to prepare
the voucher (authorization-step 1). This authorization is requested by a clerk, say C. At
this point, TBAC will utilize type-based access control and an access decision function to
check that entities of type "clerk" are allowed to do the "authorize-prepare" operation on
vouchers. If this check succeeds, TBAC will proceed to check-in (or activate) the
required permissions so that the specific clerk, C, (who, in this case, is the executor
trustee) can do the prepare operation. These permissions are checked into the protection
state of step 1. As mentioned earlier, we call these permissions executor-permissions, as
they permit the executor to process the authorization. As soon as clerk C is done with
preparing and authorizing the voucher, we consider the authorize_prepare_voucher
authorization to be valid. TBAC will now do two things. First, TBAC will require that
previously checked-in executor permissions be checked-out (deactivated) from the
protection state of the authorization-step. Next, TBAC may check-in other permissions
so as to enable the processing of other activities, including the next authorization-step
(step 2), which involves authorization for the approval of the voucher by someone in the
role of a supervisor. These permissions make up the enabled-permissions. During the
processing of this second authorization, the supervisor may consume these checked-in
enabled-permissions permissions and, as a result, eventually lead to them being checked-
out, and so on. Eventually, when step 1 becomes invalid, all enabled-permissions that are
still checked-in (active) will be deactivated (checked-out). Finally, when the third
authorization-step authorize_issue_check is invoked, the organizational policy may
dictate a separation of duties requirement. In other words, the clerk that is the executor-
trustee of the third step will have to be different from the clerk that was the executor-
trustee of the first authorization, authorize_prepare_voucher. However, the scope of such
a requirement may be limited to only these three authorizations and not to the rest of the
authorizations in a workflow. To facilitate such requirements, TBAC supports notions
such as start-conditions and scope specifications that model these kinds of constraints
(discussed in Section 3.1.4 below).

In summary, TBAC differs from traditional passive subject-object models by associating
the dimension of tasks with access control. First, there is a notion of protection states,
representing active permissions that are maintained for each authorization step. The
protection state of each authorization step is unique and disjoint from the protection states
of other steps. Each authorization-step corresponds to some activity or task within the
broader context of a workflow. Traditional subject-object models have no notion of

14

access control for processes or tasks. Second, TBAC recognizes the notion of a life-cycle
and associated processing steps for authorizations. Third, TBAC dynamically manages
permissions as authorizations progress to completion. This again differs from subject-
object models where the primitive units of access control information contain no context
or application logic. In addition, TBAC understands the notion of "usage" associated
with permissions. Thus, an active permission resulting from an authorization does not
imply a license for an unlimited number of accesses with that permission. Rather,
authorizations have strict usage, validity, and expiration characteristics that may be
tracked at runtime. In a typical subject-object access control model, a permission
associated with a subject-object pair implies nothing more than the fact that the subject
has the permission for the object. There is no recognition or monitoring of the usage of
that permission. Finally, TBAC can form the basis of self-administering security models
as security administration can be coupled and automated with task activation and
termination events.

15

3. Results and discussion

3.1 The Modeling and Specification of Authorizations

3.1.1 A Family of TBAC Models

Rather than formulating one simple monolithic model of TBAC, we have chosen to
formulate a family of models. Before discussing the models, we first lay out a
framework to guide us in designing the family of models.

Our framework consists of formulating a simple model of TBAC called TBACo and
using this as a basis to build other models.

_ 3 consolidated

TBAC,

composite-
authorizations

:oTBAC2

constraints

tasks,
authorization-steps,
dependencies

Figure 8. A framework for a hierarchy of TBAC models

Figure 8 shows our framework. TBACo is a base model and is thus at the bottom of the
lattice. It provides some basic facilities to model tasks, authorization-steps, and
dependencies relating various authorization-steps. TBACo is a very general and flexible
model and is thus the minimum requirement for any system incorporating task-based
authorizations. The advanced models TBACi and TBAC2 include (inherit) TBACo but
add more features. TBACi incorporates the notion of composite authorizations
(discussed in Section 3.1.3) whereas TBAC2 adds constraints. Finally, TBAC3 is the
consolidated model that includes TBACi and TBAC2 and by transitivity TBAC0.

Formulating such a family of models has many benefits. Researchers and developers can
compare their system implementation of TBAC concepts with this family of models. A
family of models also gives developers the opportunity and flexibility to choose
conformance points for their implementations and can thus serve as a guide and evolution
path for additional features. We discuss each of these models in turn below.

3.1.2 The Model TBAC0

We will now describe the model TBACo in detail. We describe the various attributes or
components that make up every authorization-step, followed by its life-cycle, and lastly
the dependencies that are used to model authorization policies.

3.1.2.1 Components of an authorization-step

Figure 9. Basic components of an authorization-step

Every authorization-step has to specify a variety of components, as shown in Figure 9.
We now describe briefly each of these components:

• Step-name: this is an identifier.

• Processing-state: The current processing state indicates how far the authorization-
step has progressed in its life-cycle (discussed in Section 3.1.2.2).

• Protection-state: The protection-state defines all potential active permissions that can
be checked-in by the authorization-step. The current value of the protection-state, at
any given time, gives a snapshot of the active permissions at the time. Associated
with every permission is a validity-and-usage specification. The validity-and-usage-
specification specifies the validity and usage aspects of the permissions associated
with an authorization-step. It will thus specify how the use of the permissions will
relate to the authorization remaining valid (or becoming invalid).

• Trustee-set: This contains relevant information about the set of trustees that can
potentially grant/invoke the authorization-step such as their user-identities and roles.

• Executor-trustee: This records the member of the trustee-set that eventually grants the
authorization-step.

• Task-handle: This stores relevant information such as the task and the event
identifiers of the task from which the authorization-step is invoked.

Let us now formalize these concepts.

Definition 1. We define a permission, p, as a tuple (s,o,a,u,as) where s stands for the
subject or trustee and o represents an object for which the subject is given the right to
perform action a u times within an authorization-step instance as. A permission is

17

always associated with an authorization-step instance and its associated protection state.
If P is the set of permissions, then

PcSxOxAxUxAS

where S is a set of subjects/trustees

O is a set of objects

A is a set of action names

U is the usage and validity specification; a non-zero integer
indicating the number of uses left (the special symbol °° is used to
indicate unlimited uses) and a flag v indicating if the last use will
make the authorization-step invalid.

AS is the set of authorization-step instances.

Definition 2. For each authorization-step instance, as, there is an associated protection-
state SSas defined by

SS: AS -» 2P

SSas = {(s,o,a,u,as') e P I as' = as }

Definition 3. Each authorization-step instance, as, has a name. The following maps
define additional attributes for each authorization-step.

Current Processing-state, CPS : AS -> PS, where PS is a set of all
processing states

Protection-state, SS : AS -> 2P

Trustee-set, TS : AS -> 2s

Executor-trustee ET : AS -» S, ETas e TSas
Task-handle TH : AS -» T, where T is a set of tasks

We also state informally two properties:

Property 1. Executor Assignment. For every authorization-step, as, the executor-trustee
(ET) component is null until as transitions into the "started" processing state.

Property 2. Non-replaceable Executor. Once an executor trustee is assigned to an
authorization-step, it is fixed for the entire lifetime of the step.

Property 3. Disjoint Protection States. The protection states associated with various
authorization-steps are disjoint; as a result, every authorization-step instance has a unique
protection state. Thus, given a set of authorization-steps ai, &2, •■•^k, and their respective

18

protection states, pi, p2, ...pk, the intersection of two or more of these states will be
empty. Formally, for any pi and pj, i is not equal to j, pi n pj = ((>.

3.1.2.2 Processing states and life-cycle of authorizations

As mentioned earlier, an authorization is not static; rather, it has a lifetime and a life-
cycle associated with it. To better understand the execution aspects of authorizations, it
is useful to consider the processing states that every instance of an authorization-step
goes through during its life-cycle.

abort-f,
term-f

 -^ .- -^ / use

f dormant J * f invoked J ► (valid) ► (invalid)
^-—_-^ invoke ^ term-s \^__^/ revoke, \^______^/

last-use

reinstate

revoke

Figure 10. The basic life-cycle of an authorization-step

A simple view of this life-cycle is to consider every authorization-step instance as going
through five states, namely dormant, invoked, valid, invalid, and hold, as shown in Figure
10. An authorization is dormant when it has not been invoked (requested) by any task.
Once invoked, an authorization-step comes into existence, and will be processed. If this
processing is successful, the authorization-step enters the valid state. Otherwise, it
becomes invalid. In the valid state, all associated permissions with the authorization are
activated and thus available for consumption. From the valid state, an authorization-step
will undergo further processing and eventually reach the end of its lifetime and enter the
invalid state. Furthermore, a valid authorization-step may be put on hold temporarily.
When this happens, all permissions associated with the authorization-step are inactive
and cannot be used to gain any access until this hold is released and the validity
reinstated. Eventually, when an authorization becomes invalid, it ceases to exist, and is
deleted from the system.

To get a more detailed description of what happens to an authorization during its lifetime,
one can derive a more elaborate state diagram such as that shown in Figure 11. This
more elaborate state diagram recognizes the dimension of use of permissions. A
permission that is in the protection state of an authorization-step is consumed if any
action that is enabled by the authorization-step requires the permission. Every operation
request thus decrements the use count of the permission. Once the use limit is reached an
action will no longer succeed as TBAC ensures that the required permission is no longer
available.

19

Figure 11 is a direct refinement of Figure 10. The aborted and started states of Figure 11
are a refinement of the invoked state of Figure 10. Similarly, the valid, hold and invalid
states of Figure 10 are each refined into a pair of corresponding used and unused states in
Figure 11.

start-f a r

V. dormanty start

«, v y

Figure 11. Detailed processing states of an authorization-step

revoke

We describe each of the processing states below.

• Dormant: An authorization-step is in this state if it has not been invoked by any task.
Equivalently, the dormant state can be viewed as one where the authorization-step
does not as yet exist. In particular, the protection state of the authorization-step is
empty.

• Started: Once an authorization-step has been successfully invoked, it enters this state
where processing begins.

• Aborted: The aborted state is in many ways similar to dormant except that a failed
attempt to start the authorization-step was made in this case.

• Valid-unused: Once an authorization-step has been started, subsequent successful
processing will make it transition into the valid-unused state.

• Valid-used: If an authorization was in a valid-unused state, and it is subsequently
used or consumed, then it enters the valid-used state. Depending on policy, an
authorization may be used multiple times before it enters the invalid state.

20

• Invalid-unused: This state is entered if certain conditions for an authorization to be
valid are not met upon termination or if the authorization had entered the valid-
unused state and was subsequently revoked.

• Invalid-used: This state is entered either as a result of a last-use transition from the
valid-unused state or as a result of a revoke or last-use event (transition) from the
valid-used state.

• Hold-unused: In this state, the unused authorization is temporarily suspended. All
associated permissions will thus be inactive.

• Hold-used: The authorization is temporarily suspended. All associated permissions
will thus be inactive.

We can explain some of the semantics associated with the various states and transitions
by considering the sample authorization-step below.

authorize_prepare_voucher {clerk}

In this example, an authorization to prepare a voucher is requested by a user in the role of
a clerk. When this step is invoked and an instance of this authorization-step is created, a
type-check is made to ensure that the "prepare" permission is allowed between the
voucher and clerk type. If this check succeeds, the step transitions into the started state
and the executor-permissions are checked-in (activated) into the protection-state.
Between the started and valid-unused or invalid-unused states, there are no changes in the
protection state. Once the step reaches the valid-unused state, the executor- permissions
are checked out and the enabled-permissions are checked into the protection state.

These enabled-permissions will allow other actions to continue in the overall workflow.
At some point, the authorization-step will become invalid and any remaining permissions
in the enabled-permissions set will be checked out (deactivated).

3.1.2.3 Basic dependencies to construct authorization policies

In the previous sections, we discussed authorization-steps. However, in any application
or workflow logic, authorization steps do not stand in isolation. Rather, security policy
often requires dependencies between them. We now discuss various dependencies and
constructs that relate authorization-steps to each other and constrain their execution and
behavior. These dependencies can thus be used to formulate enterprise-oriented
authorization policies. Such policies will mandate the propagation of authorizations from
one employee to another. This is captured neatly by specifying (as policy) the
authorization-steps that are part of enterprise workflows.

We specify dependencies in terms of existential, temporal, and concurrency relationships
that hold between events (or states resulting from the occurrence of events). Given an
authorization-step A, we use the following notation for the various states of A:

• Ad: the dormant state

• As : the started state

21

Afl : the aborted state

A"" : the valid-unused state

Av+: the valid-used state

A'" : the invalid-unused state

A,+ : the invalid-used state

A"": the hold-unused state

Ah+: the hold-used state

We list the dependency types and their meanings (interpretations) below:

1. Als""e,-> A2s,a,e2: If Al transitions into statel, then A2 must also
transition into state2.

2. AIs""6' < A2s,a'e2: If both Al and A2 transition into states statel and
state2 respectively, then Al's transition must occur
before A2's

3. Als'ate # A2s,a,e : Al cannot be in state 1 concurrently when A2 is in
state2.

4. Alstete' III A2s,a,e2: Al must be in statel whenever A2 is in state2.

The first two dependency types —> and < express existential and temporal predicates and
as such are best inteipreted as predicates between transition events that lead to changes in
the processing states of authorization-steps. They were originally proposed by Klein [8]
to capture the semantics of database transaction protocols. The other dependencies
express concurrency properties.

In a later subsection, we will illustrate the use of these dependencies with an order-
processing example. Let us now formalize the concept of dependencies:

Definition 4. We define a dependency type as one of the following: —>, <, #, or III. We
define DT, the set of dependency types, as {—>, <, #, III}.

Definition 5. We define a dependency instance Jas a tuple {al, dt, a.2) for which an
assignment relation holds from al to a2. If D is the set of dependencies, then

DcASxDTxAS.

3.1.2.4 Formal characterization ofTBACo

We now formally define model TBACo as follows.

Definition 6. The TBACo model consists of the following:

• AS, a set of authorization steps;

• SS, a set of protection states;

22

• P, a set of permissions;

• D, a set of dependency instances;

• astep: SS —> AS, a function mapping each protection-state to a single authorization-
step; and

• pstate: AS —> SS, a function mapping each authorization-step to a single protection
state.

3.1.2.5 An order-processing example

Figure 12 shows a typical order-taking workflow scenario in a data-flow-like notation.
The circles represent sub-tasks (sub-processes) within an overall order-taking task. Each
subtask uses one or more documents/records as input and, in turn, may produce other
documents as outputs. The various authorization-steps at the various sub-tasks are
underlined.

Production
order

Order receipt

L) Delivery
slip

L^_J Al. Auth-order-entry \ info

A2. Auth-cust-infQ-updt

Customer
bill

Internal order
form

A5, Auth-cust-acct A§. Auth-billing

Figure 12. An order processing example

A typical order cycle is initiated at a merchant by the arrival of an external order from a
customer and this is processed by the Receive-order sub-task. The Check-customer-info
sub-task is then invoked to check if data on the order form is consistent with the
customer's existing record and the latter is updated if necessary (such as when the
address is out of date). Next, we check if the number of ordered items are available in
stock. If this is not the case, the Produce-items sub-task is invoked to request the
production of more items. On the other hand, if the inventory is adequate to meet the

23

order, a customer account is created for this order, and an order confirmation is sent to
the customer. Next, a delivery slip is created to accompany the delivery and finally the
customer is billed for the order.

We illustrate below the authorization-steps and dependencies in the above order-taking
workflow application. There are eight authorization-steps:

• Al: auth-order-entry. This step activates the required permissions to file the external
order, to create an internal order from the external order, and to write into the internal
order.

• A2: auth-cust-info-updt. Involves the permissions required to update the existing
customer record.

• A3: auth-item-availability. This step should succeed only if the inventory (quantity
on hand) is adequate to satisfy the order. This requirement forms a start condition for
the step. For a discussion on start conditions, see Section 3.1.4.

• A4: auth-production. This is an authorization for the production of more items. It
gives permissions to create and to write a production order.

• A5: auth-cust-acct. This authorizes creating and writing a new customer account for
an order.

• A6: auth-order-confirm. This authorizes an order receipt to be created and sent to the
customer, thereby confirming the order.

• A7: auth-delivery. This authorizes delivery of the items and includes the permissions
to create, write, and mail the delivery slip.

• A8: auth-billing. This authorizes billing the customer and activates permissions to
create, write, and mail the bill.

The table below summarizes the values of the various components of each authorization-
step. For brevity, we do not show the task-handles (TH). Permissions that are part of the
protection-state are named by labeling them with the prefix "p" followed by the object to
which the permission applies. We also use some notations to specify the validity and
usage characteristics of the protection state. These determine how many times the
permissions in the protection state can be used, and how this use can make the
authorization-step invalid.

To specify usage, we attach in brackets the number of times the permission can be used.
Thus,

p-read-int-order (n) specifies that the internal order can be
read at the most n times during the lifetime of the
corresponding authorization-step.

24

We attach validity specifications as follows;

Al.

A2.

A3.

A4.

A5.

A6.

A7.

A8.

p-read-int-order (n,v)

STEP-
NAME
(SN)
auth-order-
entry

auth-cust-
info-updt
auth-item-
availability

auth-
production
auth-cust-
acct
auth-order-
confirm

auth-
delivery

auth-billing

specifies that the authorization-step
becomes invalid after n usages of this permission.

Table 1. Sales order authorization steps and their components

TRUSTEE-SET
(TS)

order-entry-clerk

account-clerk

inventory-clerk

prod-manager

account-clerk

order-confirm-
clerk

shipping-clerk

billing-clerk

EXEC
UTOR-
TRUSTEE
Tom

Smith

Bob

Anne

Krista

Bill

John

Mary

EXECUTOR
PERMS
(EP)
p-read-ext-order

p-read-cust-rec

p-read-qty-on-
hand

ENABLED-
PERMS
(SS)
p-file-ext-order (1)
p-create-int-order (1)
p-write-int-order (l,v)
p-write-cust-rec (l,v)

p-read-
inventory-rec
p-read-checked-
order

p-debit-qty-on-hand (1)
p-create-checked-order (1)
p-write-checked-order (1 ,v)

p-read-checked-
order

p-read-checked-
order

p-read-cust-acct

p-create-prod-order (1)
p-write-prod-order (l,v)
p-create-cust-acct (1)
p-write-cust-acct (1 ,v)
p-create-order-receipt (1)
p-write-order-receipt (1)
p-mail-order-receipt (l,v)
p-create-delivery-slip (1)
p-write-delivery-slip (1)
p-mail-delivery-slip (l,v)
p-create-cust-bill (1)
p-write-cust-bill (1)
p-mail-cust-bill (l,v)

In the examples in the above table, we have specified that all permissions in the various
protection states are one-time permissions. In general, this may not be the case (for
example, we may allow multiple reads or browsing, but only a single write or update) It
is also important to note that the subjects in the enabled-permissions are different from
executor-trustee.

To elaborate on the entries in this table, consider the first authorization-step Al auth-
order-entry. The entries in the table say that authorization Al is to be granted by a trustee
(user) in the role of an order-entry clerk. To process the authorization, the order-entry-
clerk would need read permission for the external order form. Once the clerk grants the
authorization, he activates (checks-in) permissions to file (archive) the external-order to
create a new internal order, and to write into the internal order. These permissions are

25

now available to other designated subjects in the system. Once the write permission is
used (as a result of the internal order being filled out), the authorization becomes invalid.
The other authorization-steps can be similarly elaborated.

Given the above authorization-steps, one can infer some sample policy governing the
authorizations. Some of the policy requirements include the following:

• Authorization to update customer record can be granted only after receiving the
successful authorization for order-entry. This can be expressed by the dependency

Auth-order-entryv+ < Auth-cust-info-updts

• Authorization confirming the availability of the items has to be granted before
authorizations for order-confirmations, delivery, creation of customer accounts, and
billing. We thus have

Auth-item-availabilityl+ < Auth-order-confirms

Auth-item-availabilityl+ < Auth-cust-accts

Auth-item-availability'+ < Auth-deliverys

Auth-item-availability,+ < Auth-billings

• If authorization for availability cannot be granted, then authorization for the
production of more items must be granted. This can be specified by the existential
dependency:

Auth-item-availability'" —> auth-productions

• Authorization for order-confirmations, creation of customer accounts, delivery-slips,
and billing cannot be valid when there is a valid authorization to produce more items.

Auth-productionv"or v+ # Auth-cust-acctv"or v+

Auth-productionv"orV+ # Auth-deliveryVorV+

Auth-productionv"orV+ # Auth-bilIingVorV+

3.1.3 The model TBACj to support composite authorizations

Having discussed TBACo, we next discuss TBAQ and TBAC2. The model TBACi
supports the notion of composite authorizations. A composite authorization is an
abstraction that encapsulates two or more authorization-steps. This is convenient when
an authorization-step is too fine-grained a unit to express authorization requirements at a
high (abstract) level.

For example, consider the authorization to transfer funds from one bank account to
another. Such an action typically requires two authorizations. The first authorization is
for withdrawal of funds from the source account and the second to deposit funds into the

26

target account. However, it is useful for modeling purposes to think of a more composite
abstraction called "authorize-transfer" that consists of the individual authorization-steps.

Thus a composite-authorization consists of a set of component authorization-steps. These
component authorization-steps can be related to other steps within the same composite-
authorization through various dependencies. In other words, the authorization-steps of a
composite-authorization are not visible externally to other authorization-steps outside the
composite-authorization. The motivation for this restriction comes from a desire to
follow sound software-engineering principles, especially those related to encapsulation
and information hiding. Thus, to the external world, a composite-authorization is a single
abstraction.

Collectively, the above properties and restrictions impose different semantics during the
lifetime of a composite-authorization. In particular, we have to reexamine the notions of
when we consider a composite-authorization to be started, valid, and invalid. We
approach these issues by associating a critical-set of component authorization-steps with
every composite-authorization. The critical-set is a subset of the component
authorization-steps. We consider a composite-authorization to have started when any
member of the critical-set has reached the started state. To be considered valid, all steps
in the critical-set have to reach their respective valid states. On the other hand, a
composite-authorization is considered invalid as soon as any step in the critical-set
becomes invalid.

In addition to the validity associated with the critical-set, a composite-authorization may
declare other non-critical-sets of authorization-steps to capture additional states of
validity. However, these other sets can become valid only when the critical-set itself is
valid and can remain valid only as long as the critical-set remains valid. Collectively, the
critical-set along with the non-critical sets, define progressive states (checkpoints) of
validity. The specification of a critical-set within a composite-authorization should thus
be done with careful thought to some minimal notion of validity that ensures consistency
with authorization policies for the enterprise.

3.1.4 The model TBAC2 and constraints
As mentioned earlier, TBAC2 supports more advanced notions of constraints. Thus
TBAC2 would be more suitable for an organization that finds TBAC0 to be too open-
ended or not having tight enough controls.

We classify constraints as static or dynamic constraints. Static constraints are those that
can be defined and enforced when authorization-steps are specified. Dynamic
constraints, on the other hand, are those that can be evaluated only at runtime, as
authorization-steps are being processed.

In TBAC2, the basic structure of an authorization-step has two components in addition to
those present in TBAC0. We describe these below:

27

• Start-condition (SC). This component can be used to specify a rich set of
constraints that govern whether an authorization-step can make a transition into the
started state. We are currently investigating both static and dynamic start conditions.

• Scope (SP). This component controls the visibility of an authorization-step with
respect to other authorization-steps when formulating and enforcing authorization
policies. Thus scope can be used to control if an authorization-step is visible to an
entire workflow, a task, or other finer units such as sub-tasks.

We are currently investigating other static constraints for authorization-steps such as:

• Constraints on processing state: This constraint can be used to remove certain
processing states (such as hold) from the life-cycle of a step.

• Constraints on protection state: This can be used to constrain the permissions that
are allowed in the protection state (i.e. activated by the step).

• Constraints on trustee-set: This can be used to constrain the type as well as the
instances of the trustees that can belong to this set. For example, we may want to
constrain that the trustee be of type role and limited to instances of project managers
and supervisors.

• Constraints on executor permissions: This can be used to specify what permissions
are not allowed to be among the executor permissions.

The most obvious examples of dynamic constraints are those involving dynamic
separation of dut.es/roles and coincidence of roles. Consider the following four
authorizations (for brevity we show only the step name and the trustee-name specified in
terms of roles).

A1: auth_prepare_check {clerk}

A2: auth_approve_check {supervisor}

A3: auth_issue_check {clerk}

A4: auth_reapprove_check {supervisor}

To prevent fraud and implement various checks and balances, the enterprise policy may
dictate that the clerks performing steps Al and A3 be distinct (separation of duties) while
the supervisors for steps A2 and A4 may be the same. However, since any clerk or
supervisor in the enterprise may be allowed to first perform Al and A2 respectively
these constraints can be evaluated only at runtime. TBAC2 allows for the specification of
such dynamic constraints. These dynamic constraints are evaluated by looking at the
history of the executor trustees in the authorizations that have been invoked TBAC2 also
allows considerable modeling flexibility by allowing the reach of such dynamic
constraints to be influenced by other static constraints such as scope. Thus we may
specify that a dynamic separation of duties requirement holds across the scope of a sub-
task, task, or other coarser unit. By keeping track of the executor trustees of invoked
authorizations and combining the notions of dependencies and scope, the TBAC2 model

28

can be used to provide a much more powerful and general approach to specifying
separation of duties requirements than transaction control expressions (proposed in [13]).

3.2 Visual languages and Authorization Modeling
One of the novel research directions that we are pursuing in this project is the use of
visual languages [6] to specify authorization-steps and authorization policies. We start
our discussion on this aspect of our research by giving a brief introduction to visual
languages.

A visual language allows us to construct pictorial representations of conceptual entities
and operations. A visual language environment is thus a tool through which one can
compose iconic, or visual, sentences that convey meaning. Users express their requests
as visual sentences that consist of spatially organized icons on a screen. This is in
contrast to typical graphical user interfaces (GUIs) that provide a limited set of icons with
predefined meanings and a restricted set of iconic commands.

The visual language research for our project is being undertaken in collaboration with
researchers the Universities of Pittsburgh and Salerno. These researchers have jointly
developed the Pittsburgh-Salerno Iconic System (PSIS) [6], which lets users design,
specify, and interpret custom visual languages for different applications. The system
consists of two major subsystems. The first is the visual-language compiler, which lets
the user input, translate, and execute visual sentences. The second subsystem is the
visual-language generator, which, given user-supplied visual sentences, generates the
grammar and the related semantic functions.

3.2.1 Motivation to use visual languages

Visual languages overcome the limitations of GUIs and allow users to visually reason
and communicate. Users can program and query using visual icons and constructs that
are intuitively meaningful, especially in relation to the metaphors and mental models with
which the user is familiar. Tools based on visual languages reduce the time and expense
required for user training. As well, communicating requests and ideas in an intuitive
visual fashion reduces errors that users make with typical text-based interaction.

From the security standpoint, we are motivated to explore visual languages to exploit
their advantages when applied to security modeling and security tools. Visual languages
will allow us to

• To move away from system-centric approaches to security modeling and specification
to a paradigm that is more enterprise and metaphor-oriented.

• To create enterpise-oriented, user-friendly security administration and monitoring
tools.

As discussed earlier, the historical development of security models has focused on the
protection of system-centric resources and abstractions. As is perhaps inevitable, many
security modeling and administration tools reflect this view. Current approaches to
security administration consist of setting access control permissions and other low-level

29

information. Our goal is to move towards a policy-based approach to security modeling
and administration. However, when dealing with policy we must confront the issue of
how to capture the intuitive meanings embedded in policy statements. This requirement
makes visual languages attractive. Another advantage of visual languages is that it
allows us to design interaction modes for end users that are aligned with the mental
models and metaphors with which the user is familiar.

3.2.2 A two-tiered visual-language framework for TBA

Figure 13 shows our two-tiered framework for applying visual languages for task-based
authorizations [7]. The bottom-tier approaches visual languages from the need to specify
the various components of authorization-steps. Thus our goal is to seek an appropriate
"specification metaphor." We have chosen the visual metaphor of a combination lock
for this purpose. The version of the combination lock that we are considering consists of
multiple wheels. Each wheel corresponds to one component of an authorization-step. A
user is guided to specify an authorization-step by being asked to set each wheel of the
combination lock. When all the wheels have been set, the authorization-step is fully
specified.

The top tier in our framework utilizes appropriate metaphors and composite icons to
convey the basic idea of an authorization along with other additional meanings
(adjectives). We have chosen the forms-signature metaphor for this tier. Thus the main
icon at this tier conveys the notion of a signature (along with the act of signing) on a
paper form. Additional meanings (such as if an authorization is valid, invalid, used, or
unused) are conveyed by secondary icons attached to the main icon.

Tierl

Domain
metaphor

Forms-signatures metaphor

Tier 2

Specification
metaphor

Combination lock metaphor

Figure 13. A two-tiered approach to using visual languages for TBA

30

3.2.3 Basic icons to visualize authorization steps and their meanings

We now discuss in more detail the icons for expressing authorization-steps and
authorization policies. They are shown in Figure 14. The primary (main) icon is one that
depicts an act of authorization (approval) and consists of the picture of a pen

superimposed on the picture (icon) of a paper form LX The remaining icons are
secondary icons and are used to convey additional meanings for an authorization when
attached to a primary icon. The additional meanings are related to whether an
authorization-step is valid, invalid, put on hold, unused, and used.

Icon Meaning

[HOLD

®

Authorization (approval
on a form

Valid

Invalid

Valid and put on hold

Unused

Used

Figure 14. Basic icons

We may associate a combination of these additional meanings with an authorization-step.
For example, an authorization-step may be both valid and unused. In this case, all the
relevant secondary icons are attached to the primary icon. Figure 15 illustrates all
combinations that are allowed (make sense) in our model. These correspond to the
processing states of an authorization-step, discussed in an earlier section.

31

Valid unused Valid used

Invalid unused Invalid used

Valid unused-hold

\

4^<
[HOLD

\

(HOLD

© ff)

Valid used-hold

Figure 15. Conveying combinations of meanings through secondary icons

3.2.4 Visual sentences and authorization policies

Having discussed how we van visually specify an authorization-step and its states, we
now turn our attention to the specification of authorization policies. Our goal is to
provide a visual representation for each of the dependencies presented in Section 3.1.2.3.
In other words, we should express them through visual iconic operators in a way that will

32

be intuitive to the end user. It is difficult to express the whole meaning of a dependency
through a single icon. At the same time, the primary icons for individual authorization-
steps should be part of the visual metaphor chosen for the dependencies. Basically, we
should convey temporal and coexistence relationships among authorization steps. Thus
the Signed Paper metaphor needs to be combined with other metaphors to express the
dependencies. We have done this by using a combination of the "Calendar" and the
"Color" metaphor, altogether with the "Signed paper form metaphor" as described below.

There is a picture representing a calendar, which can be seen as a composite icon of our
language, and will be used to convey the temporal dependencies among authorization
steps. We can imagine many different layouts for this icon. Let us consider a calendar
formatted as a grid, where the icons for the single authorization steps are placed inside
the cells of the grid, and each cell can host more than one icon. Thus, we will express
authorization policies through iconic sentences with icons that can include the calendar
icon and the primary icon for single authorization steps (signed paper forms).

The Alstate < A2state2 dependency rule can be represented through an iconic sentence
having the calendar, and the icon for authorization step Al placed on a calendar cell
corresponding to a date prior to the one where we put the icon for A2. The states state 1
and state2 according to the "Signed Paper Form" are encoded in the layouts of the icons
for Al and A2.

The two dependency rules '#" and 'III', specified in Section 3.1.2.3, are implemented by
inserting the two icons for Al and A2 in the same calendar cell. We differentiate among
them by using the "Color" metaphor. We color the calendar cell border with one of the
two colors red and green for the "'#', and 'III' dependencies, respectively. Alternatively,
we can color the two icons for Al and A2 both green for '#' and one green and the other
red for 'III'.

If we need to differentiate between the 'III' and the '-^' dependencies, we can add the '->'
symbol between the two icons for Al and A2.

We notice that it is possible to combine several dependency rules within one iconic
sentence. For instance, we could have three icons on the same calendar foil to describe
the three dependency rules "Al < A2", "Al < A3", and "A2 < A3" altogether. Consider
another example: if A2 and A3 were put in the same calendar cell with the green border,
we would express the dependency rules "Al < A2", "Al < A3", and "A2 III A3", provided
that Al was in a calendar cell corresponding to a date that is prior to the one containing
A2 and A3. B

In order to control the consistency of these rules, we use an underlying syntax-driven
mechanism that allows only feasible placements. Thus, if we have stated the rule "Al <
A2", the editor should not allow placing the icon for A2 in a date prior to the one for Al
on another calendar icon. We can use several calendar icons, in which the year can
determine a temporal dependency (<) among the icons placed on different calendar icons.

33

The user is allowed to expand each single authorization placed in a calendar cell to access
the Wheel locks based visual language, in order to set or modify some of the components
for that authorization.

3.2.5 Syntactic Aspects of the visual language for TBA
The iconic sentences described in the previous sections need to obey to some syntactic
rules, regarding not only the symbols that we use, but also their spatial relationships. In
our first tier Visual language, a visual sentence is a spatial arrangement of authorization
step icons, and operator icons that represent the dependency rules.

Several grammar models for visual languages have been developed. Among these, we
focus on Positional Grammars and Relational Grammars.

In positional grammars, each icon represents a token, and it is characterized not only by
its name, but also by its position in the 2D space. In our model, an icon carries many
other attributes, but they are used only for semantic analysis. In traditional context-free
grammars, the only possible spatial relation between two tokens was the horizontal
concatenation. In positional grammar, we can define many types of spatial relations.
Simple examples of spatial relations are Hor, which is the traditional horizontal
concatenation, and Ver, which represents the vertical concatenation of symbols. More
sophisticates relations can be Dia, which stands for diagonal concatenation, and Overlap,
in which two icons can be placed in the same position in the 2D space. Thus, the parser
needs information to decide which direction of the Two-dimensional space to move in
order to scan the next symbol. A production rule of a Positional Grammar has a single
non-terminal symbol on its left hand side, whereas on the right hand side it has a
sequence of terminal and non-terminal symbols, separated by spatial relations. A
positional sentential form of a Positional Grammar is an alternate sequence of symbols
and spatial relations, where each symbol can either be a terminal or a non-terminal, that
can be derived from the starting non-terminal symbol by applying some of the
productions in the grammar. A sentence of the Visual language generated by a Positional
Grammar is a Positional Sentential form where each symbol is a terminal, and hence it is
an icon. To obtain the final layout of a sentence, the sentence needs a positional
evaluation. In what follows, we give some simple examples of the definitions given
above.

Suppose we have the following Positional Grammar (N, T, POS, S, P), where,

N = S, A, B, is the set of non-terminal symbols,

T = a, b, c, is the set of terminal symbols, which represent icons,

POS = Hor, Ver, Dia, is the set of spatial relations defined for this grammar,

S is the starting non-terminal symbol,

P is a set of productions. The productions we have defined for this grammar are:

34

1. S:=AHorB

2. A:= a Ver A

3. A:=a

4. B:=bDiac

5. B:=b

According to the definition we have given to the three spatial relations, the given
grammar generates the following visual sentences:

c c
ab, ab ab, ab

a a

Figure 16. Visual sentenceses in positional grammar

Obviously, the number of Visual Sentences that can be generated with this grammar is
infinite. In fact, we can have an infinite number of 'a' vertically arranged in each type of
sentence. We have shown the sentences after they have been processed by the Positional
Evaluator. In what follows, we show the derivation of the last Visual Sentence, from the
symbol S to the final Positional Sentential form:

1 2 3
S ==> A Hor B => a Ver A Hör B => a Ver a Hor B ==> a Ver a Hor b Dia c

The last Positional Sentential form is also a sentence, since it contains only terminal
symbols. From this, we derive the Visual Sentence by performing a positional
evaluation.

Relation grammars present many similarities to Positional Grammars. The Positional
Evaluation rules are replaced by relational predicates. The Production Rules are also
similar, but the Spatial Relations are relational predicates.

For our Visual language, we will use Positional Grammars. We will provide a syntactic
structure only for the first tier Visual Language. We could also provide a Positional
Grammar for the Visual language, based on wheel locks. This would be very
straightforward since the spatial arrangement of wheel locks does not convey any
information. Thus, the grammar will reduce to a traditional string grammar with only
horizontal concatenation.

35

Let us now define the Positional Grammar of the Visual language for TBA. Although we
have provided several solutions to the problem, in what follows we have provided a
grammar with very basic spatial relations. The grammar does not use the Overlap spatial
relation.

In representing the calendar, we have different design choices. We will choose to
represent it as a set of icons, each representing one cell of a grid. In the future, since we
are considering implementing a more sophisticated set of spatial relations, we could
reduce the whole calendar to one icon. We can enter new spatial relations in PSIS by
defining the way they relate two symbols, by comparing their coordinates in the 2D
space, according to a given formula. We will enter such formula in a library function.

Suppose we want to represent a calendar with the twelve months on the columns and up
to thirty-one days on the rows. Actually, we may not be interested in this granularity of
the calendar. What is important is to convey some temporal relationships. So, for
simplicity, let us consider the calendar for the month of January only; we will need thirty-
one icons for its visual representation. The layout of this calendar is sketched below:

MON 1 8 15 22 29

TUE 2 9 16 23 30

WED 3 10 17 24 31

THU 4 11 18 25

FRI 5 12 19 26

SAT 6 13 20 27

SUN 7 14 21 28

Figure 17. The calendar metaphor and its visual layout

36

To this set of icons, in which we could also include the dummy icons for the days of the
week, we need to add the icons used for describing the single authorization steps. Since
we will be using the color metaphor in conjunction with the Calendar and the Signed
Paper form, each cell of the calendar will still be a composed icon. The latter can have
just the number indicating the day, or in addition the icon for an authorization step, or
two icons in the same cell with a colored cell's border to represent the dependencies. As
said above, we can also use a combination of colored authorization steps, using the red,
green, and yellow color.

The grammar productions for the example above are given in the following:

Auth_Policy
AuthJStep
CAL
Month
Grid
Week_Col
Day_Grid
Weekl

Week5
Dayl

Print 1
AuthJDep
Cannot
Must
Imply
Red_Step
Green_Step

- Auth_Step I CAL Hor Auth_Policy I CAL Ver Auth_Policy;
= A1 IA2 1;
= Month Ver Grid;
= January 1996 1 ;
= Week_col Hor Day_Grid ;
= Sun Ver Mon Ver Ver Sat;
= Weekl Hor Week2 Hor Week3 Hor Week4 Hor Week5;
= Dayl Ver Day2 Ver Ver Day7;

= Day29 Ver Day30 Ver Day31;
= Print 1 Ver Auth_Dep I Print 1;

:= blank Hor 1 Hor Blank;
= blank Hor AuthJStep Hor Blank ICan I Cannot I Must I Imply
= Red_Step Hor blank Hor RedjStep;
:= Green_Step Hor blank Hor Green_Step;
= Green Step Hor => Hor Green_Step;
= Red_Al IRed_A2 ;
= Green_Al I Green A2 ... •

As for the blank non-terminal, since we have subdivided each calendar cell as a
composed icon with six elementary icons, it will be a blank icon. Thus, for example, the
'III' dependency will be expressed through the following cell:

1
IG_A1
1

1
G.

1
_A2I

1

3.3 Prototype architecture and implementation

There are basically two broad objectives that have guided our development efforts in
TBAC. The first is to model, from an enterprise perspective, various authorization
policies that are relevant to organizational tasks and workflows. This requires a set of

37

user-friendly tools to help a security officer model and specify policies. Our second
objective is to seek ways in which these modeled policies can be automatically enforced
at runtime when the corresponding tasks are invoked.

To meet the above objectives, we developed two subsystems as part of our prototype.

1. Policy editor. This subsystem provides the tools and services required to
interactively specify, modify, store, as well as retrieve authorization policies.

2. Authorization server. This is a server system that is capable of retrieving policies
constructed by the policy editor and using such policies to provide runtime
authorization enforcement.

In the next section, we discuss the high-level design and architecture of these subsystems.

3.3.1 High-level Design and Architecture

Figure 18 shows a high level architecture of our prototype. The shaded boxes indicate
modules

T I'

Proxy Authorization |
Manager ^"^ *k

I ! Client-side workflow!
I subsystem H '

l'\ J

4*"
I I
I I

Authorizatioi
server
(manager)

Policy base

Policy
editor

Workflow

w

Workflow definition
 authoring tool

workflow Definition
Repository

OPERATING SYSTEM

Figure 18. High level architecture of prototype implementation

that we are building while the unshaded boxes indicate commercial off-the-shelf (COTS)
components. The philosophy behind the design of this architecture has been to not
reinvent the wheel and to ensure that our development can be integrated with commercial
systems. Hence we have not re-designed any workflow engine or a workflow
management system (WFMS). Rather, we are building our authorization manager and
policy editor on top of a commercial WFMS (Novell's Workflow extensions built on top
of the Groupwise platform).

38

The basic idea is to use a policy editor to create and store the policies of individual
applications (which are also called policies) in some persistent way in a policy base.
When a client participating in a workflow requires an authorization, this request is
communicated to a client-side proxy of the authorization manager. The proxy then sends
the request over to the authorization manager (AM). The AM will then service the
authorization request according to specified policy of the task and workflow from which
the authorization originated.

3.3.2 The Policy Editor Subsystem

3.3.2.1 Design goals and framework

The policy editor is being built with the following design goals:

1. Ease of use.

2. Platform independence.

3. Support for distributed and nomadic computing.

4. Reusability beyond TBAC project.

Our policy editor framework caters to the typical enterprise setting. In particular, we
assume that there will be a chief security officer or security administrator that is
responsible for specifying and maintaining security policies using a policy editor. Our
editor framework recognizes the following abstractions.

Organization

Organization-unit/Department

Policy

Policy-type

Sentence

Entity

Relation

Attribute

Let us elaborate on these further. As mentioned before, the term "policy" is used to refer
to the security policy for an individual application or workflow type. However, such a
policy always belongs to a policy-type. Examples of policy-types include authorization
(such as for TBAC), audit, access control, and authentication. This is analogous to word
processors that consider documents to belong to a type such as MSDOS-text, rtf, MS-
Word etc. Every policy is made up of one or more sentences. A sentence models a
single policy statement or expression. A sentence in turn consists of a triple of the form:
(entity 1, relation, entity2). Figure 19 and Figure 20 collectively show how these various
abstractions are related.

39

organization ~< organization unit

Policy Typ»

Figure 19. An ER diagram showing relationships between editor abstractions

Relation
types

Figure 20. An ER diagram of the structure of a policy sentence

40

Figure 21 illustrates our software architecture for the policy editor. We use a three-tiered
approach to policy representation and processing. Basically, a policy has three
representations

• External Policy

• Intermediate Policy

• Internal Policy

We use the term external policy to collectively refer to the way a policy is represented
externally, manipulated, and finally output by an editing tool. This will obviously depend
on the user interface approach taken. In a text-based editor, this might be pure text
tokens; in a graphical user, it might be graphical controls and icons; and in a visual
language, it might be icons and iconic operators. The internal policy is a policy format
that is used to store policies (policy sentences). Ideally, this would be a format that is
readily amenable to efficient storage and query processing. For the TBAC project, our
internal policy management is done using ODBC-compliant relational databases. Finally,
the intermediate policy is a format that is independent of both the external and internal
policy formats. The intermediate policy is used by the runtime authorization server and
reasoning engine to enforce policies and to check the consistency of policy sentences.
This kind of architecture provides the runtime server system with complete independence
from editing tools and storage machines such as databases. This enables the latter to be
supplied by third party vendors and increases the plug-and-play capabilities of the
system.

Visual-language
based editor

GUI-based
editor

External
policy

Generic
policy editor
framework

PAPI APIs

Intermediate
policy

Internal
policy

Policy-base

Figure 21. Policy Editor Architecture

41

3.3.2.2 Policy management APIs

Table 2 below summarizes the basic policy management APIs (PAPIs) that evolved
during the course of the design of the policy editor. These APIs can collectively be used
to define, store and retrieve authorization policies and are used internally to organize and
implement the source code of the editor. They are designed to be general enough to
accommodate other policy types, such those involving auditing, authentication, and
access control. Our hope is that these APIs lead to a foundation for a general policy
editor framework.

Table 2. Policy management APIs

API function name Parameter 1 Parameter 2 Parameter 3

Get_all_depts_in_organization in: org_name out: deptjist

Get_policies _in_dept in: dept_name out: policyjist

Get_no_of_sentences in: policy_id

Get_sentence_id_list in: policy_id out: sentence_id_list

Get_sentence in: policy_id in: sentence_id out: sentence

Verify_sentence in: policy_id in: sentence_id out: status

Save_sentence in: policy_id in: sentence out: status

Open_policy in: poIicy_id

Save_policy in: poIicy_id

Define_meta_type in: metajype in: type_name

Get_policy_type in: policy_name out: policy_type

Get_all_policy_types in: org_name

Get_all_policies_of_type in: policy_type out: policyjist

Get_policy_entities in: policy_type out: entity_list

Get_policy_relations in: policy_type out: relation_list

Get_no_of_entities in: policy_type out: no_of_entities

Get_no_of_rel ations in: policy_type out: no_of_relations

3.3.3 The Authorization Server Subsystem

We now describe the authorization server subsystem in more detail.

3.3.3.1 High-level architecture

Figure 22 shows the high-level architecture of the authorization server. The authorization
server module is not a single monolithic unit of software. It consists of

• One Authorization Manager (AM)

42

• Several Case Managers (CM)

• Several Step Managers (SM)

To/From WFMS

WFMS

Step Manager

Authorization Manager

AM

CM
MD

- Authorization
Manager

- Case Manager
- Message

Dispatcher

Figure 22. High-level architecture of the authorization server

The AM is more of a passive element in the whole runtime architecture. It is responsible
only for routing messages from the WFMS to the various CMs. Whenever a message is
received by the AM, it creates a request handler (with all requisite parameters) for that
particular message. This request handler then communicates with individual CMs (if
they already exist) or creates CMs (if need be) and then communicates with them. Each
such request handler is a separate thread within the AM. These individual threads are
also responsible for sending responses (from the CMs) to the WFMS. So, basically, the
AM is an overseer or coordinator process in the whole runtime module.

Each CM is responsible for the management of the authorizations that are invoked from
individual cases (instances) of a workflow type (class). This is to say that in our scheme,
we envision that each workflow instance will have a separate set of authorization steps to
be processed during the course of its lifetime. Such a complete set of authorization steps
is managed by each CM. So, whenever a workflow instance invokes any authorization
step for the very first time, a unique CM is created by a request handler thread (from the
AM) to handle all possible authorization steps within that workflow instance. If such a
CM already exists, as a result of a previous invocation of an authorization-step within the
same workflow instance, the request for an invocation of an authorization step is simply
forwarded to that particular CM. The CM, on receipt of a message from the AM, creates
a request handler thread to handle that particular message. This thread then
communicates with a particular SM or, if need be, creates a particular SM and then
communicates with it.

The SM is the unit responsible for maintaining the state and progress of a particular
authorization-step instance within a single workflow instance. That is, it is the SM that

43

keeps track of the various components of a particular authorization step (for example,
current processing state, and use and validity counts). Each SM receives messages from
a request handler thread of a CM, evaluates certain rules before it performs the request,
and sends back responses to the thread regarding success or failure of the request.

In summary, we can say that the entire authorization module has a single global
authorization manager that can, at any instance of time, manage several case managers,
each of which, at any instance, can manage a number of step managers.

3.3.3.2 Client-server communications

invoke-auth

Auth-id/token

3 use-auth

4
m Perm-id/token

s enquire- status
mJ -

•4 6
Client status Authorization

server

Figure 23. Messages for client-server communication

Figure 23 shows the basic six messages that can be exchanged between a client and the
authorization server. For clarity, we do not show denials of requests or negative
acknowledgments. These numbered messages are discussed below.

1. Invoke-auth. This message is sent from the client to the server when the client
wishes to request an authorization. If the authorization can be granted, the server
returns a reply, which forms the second message.

2. Auth-id. This second message is sent from the server back to a client if the client's
previous request for an authorization can be granted. The server returns an
authorization identifier or token that will have to be presented in subsequent requests
by clients when they want to use the permissions in the authorization.

3. Use-auth. This message is sent from a client and used to present the authorization
identifier and a request to use a permission.

44

4. Perm-id. This is the message sent back from the server in response to a use-auth
message from a client.

5. Enquire-status. This message can be used by a client to enquire about the status of
an authorization (this feature has not been fully implemented).

6. Status. This is a reply to an enquire-status message and contains details about the
status of an authorization.

3.3.4 Software Documentation
In this subsection we discuss the configuration and management of the prototype as well
as the overall organization of the various software elements used to build the prototype.

3.3.4.1 Software requirements

The project has used the following software packages and development environments.

1. Object-oriented software development environment. We used the Visual C++
development tool to implement the authorization manager.

2. Java software development environment. This is required to build a policy editor that
will be web-based and platform independent. We have used Symantec's Visual Cafe
interactive Java development environment to build the policy editor as a Java applet.

3. Workflow management system (WFMS). The WFMS is used to develop some
workflow scenarios that involve authorization requests. We have utilized Novell's
Groupwise Workflow platform for this purpose.

4. ODBC-compliant Relational database management System (DBMS). The DBMS is
used by the policy editor and authorization server to store and to retrieve
authorization policies (policies). We have used Microsoft's SQL Server version 6.5
for this.

3.3.4.2 Location and organization of files

The source and binary files for the policy editor and authorization server are organized
into a directory called "Tba" as shown below in Figure 24.

RS Exploring - \\Seiver21\TechStaff\ProjectsVTas

[File •'• £dk£Yiew '■ Tools < Help J \V£M®^0
All Foldeis.-ii»V - I

$•{11 Task Based Authorizations--C081

j B"@ä Tba
EMU Policy Editor

! EHÜ1 Runtime

B-a Src
|jl--fl| Acl
SMli asm2
EB-ill CaseManager
Bill ExecutorGUI2
E-O RequesterGUI

c»ss

Figure 24. Directory/Folder organization of files

45

Table 3 summarizes the contents of each folder.

Table 3. Folders and their contents

Folder Name Description of Files

Tba This is the top folder

PolicyEditor This folder contains all code and JAVA classes for the editor.

Runtime This folder contains subfolders that hold the binary and source
code for the authorization server.

Binary This folder contains the executable files for the authorization
server, case manager and the executor and requestor interfaces
for communicating with the server.

Acl Source code for manipulating NT Access control lists

Asm2 Source code for the authorization'server

CaseManager Source code for the case manager

ExecutorGUI Source code for the GUI interface for executors of authorization
steps.

RequestorGUI Source code for the GUI interface for requestors of
authorization steps.

3.3.4.3 Using the policy editor

In this section we summarize the main features of the policy editor. As mentioned
previously, the policy editor is built in the JAVA language to enable platform
independence. As such it can be run as a JAVA applet. The main features the editor
provides is the ability to create, edit, and delete authorization policies. We will now
briefly describe these features.

Invoking the Policy Editor
The editor can be invoked through the applet viewer facility in Visual cafe or through a
standard web browser supporting JAVA applets. Once invoked, the editor displays the
main (opening screen) shown in Figure 25.

The editor provides the means for an end-user to interact with the backend policy
repository. The user can

• Create a new policy,

• Edit an existing policy, and

• Delete an existing policy.

46

Recall that each policy belongs to a particular policy type. The policy types are defined
a-priori to the system. Therefore, through the editor users can create, modify or delete
policies belonging to certain pre-defined policy types.

(11 Applet Viewer: PolicyEditor. class

i^&J$M£&äJXM$£&]
ME

l.'<.i.'i.«<>,f-•: ~^Zi^i$iä£vii!??iÜ&i

Policy Based Editor

iCreafe j Open j -Delete Exit

Figure 25. The opening screen of the editor

Each policy contains entities and sentences. The editor provides an easy and intuitive
way in which an end user can create, edit or delete entities and sentences of a particular
policy.

The initial screen of the applet (depicted in Figure 1) indicates the options available to the
user. At this point ,the user can either

• Click on the CREATE button to start creating a new policy, or

• Click on the OPEN button to open, browse, and edit an existing policy from the
database, or

• Click on the DELETE button to delete an existing policy, or

• Click on the EXIT button to exit from the editor.

47

EU Applet Viewer: PolicyEditor. class

;Policy,ased Editor *wf»8S

BBS

mm

 .7 i.?.Z..l. >. ..!f..*.s«'»SijÄ£fSs .-■''■.<"■ ■:■'■'/-■,:■'■■,■■■■■ .-s->-;,o "

f^ Policy Types - -V-* '' | Authorization jfH]'-"

 E Department Name*lf

■Policy Name

sPolicy D escriptiom

All

[

|Crintinu^>>€| .vg^Cancei;^]

Figure 26. Creating a new policy

I ^Applet Viewer: PolicyEditor.class

:.Applet^v;#-'---. .. :,*;-i.-v'v--,-v;\..-i.:-'. -V:

mmw

: Policy Name: travel-reimbursement ;- »ed'Ediio?°''CJ' X*pe: *ut^0''^at'°?^S|

jLvCreate;v f Open | Delete:

* ' * * "*^.** -."WÄ /<'^J f

^wMi&MMM?id

ami:;1

■ .. ■:; II T/.uiiöa:'üah

. •\:.:^V^?'. \:^5:T ^^>'t'V.^">.-.!?^!i?*(

»sti
-■;■ . xi*-.-,-;:*

,<>•«• ..,«<•■ •.;«fi

\m

Figure 27. Defining entities for a newly created policy

48

Creating a Policy
To create a policy, click the CREATE button. This will result in the screen shown in
Figure 26. To create a policy one has to indicate the type of policy to be created (for
TBAC, all policies created will be of the type "Authorization"). This has to be followed
by the department the policy belongs to, the name of the policy, and a short textual
description of the policy.

Opening and Editing a Policy
To access and edit an existing policy, press the OPEN button at the opening screen (main
menu). This will result in the screen shown in Figure 28. Select the policy type (this will
be Authorization for TBAC authorization policies) and a list of existing policies of the
chosen type will be displayed. Selecting a policy from the list and pressing the LOAD
POLICY button on the palette will result in the loading of the various entities and
sentences for that particular policy as shown in Figure 29.

The name of the opened policy (the order processing policy defined in Section 3.1.2.5) is
displayed on the left top corner of the screen. The user now has a choice of seeing the
various entities defined for the policy or the various sentences by clicking the ENTITIES
or SENTENCES buttons respectively. Selecting entities will result in the screen shown
in Figure 30 that displays all defined authorization steps for the policy. The user can now
add a new authorization-step to the policy, delete an authorization-step or change the
definition of a selected authorization-step. Also, the user can view the components,
namely the task-handle, enabled-permissions, executor-permissions, and trustee-set of an
authorization-step.

Alternatively, the user can select the sentences of the policy and this will result in the
screen shown in Figure 31 that displays the existing sentences defined in the policy. The
user may now add a new sentence, edit (change) an existing sentence or delete an existing
sentence. A user may also visualize the sentences in the policy by pressing the

49

■Applet Viewer PolicyEditor. class

App'et

::, Policy Name: <

>,
IS]

ised EditoPoH^ T*P?:Aulh™^ati?n

Policy Type

Audit

Policy Name

Authorization Older Processing Policy
^Load,Pblicyl

Figure 28. Selecting a policy to open

[^Applet Viewer: PolicyEditor.class

APPlet.; ; w

Policy Name: Ordei Processing Policy

mm\ feop^i p.^to

't Entities ?;vV

^Sentences,-

ISIsIEa

reed EditoPoB(* TyperAuthorizauon $&&*?.

' WO»*»"

^rW^^^W^^^^^MI^
;'';IB-^&^|| (ppp;

MM--

Figure 29. Browsing an opened policy

50

VISUALIZE button. As shown in screen Figure 32, the editor will then display the
visual language representations of the various policy sentences.

There is also a help facility that gives the meanings of the various composite icons used
in the visual sentences of policies. Click the HELP button on any screen displaying a
visual sentence and the help facility is invoked (see Figure 33). This facility allows a
user to scroll through the composite icons that are used to depict various states of
authorization steps.

Deleting a Policy
To delete a policy, click the DELETE button at the main screen. And select the policy to
be deleted (as shown in Figure 34).

I f|s Applet Viewer: PolicyEditor.class

Applet

SEI

Policy Name: Order Processing Policy jsedEditoP01"*7' pe:Authorization

\ Create 1 Open 1 ' Delete I Exit Älll^i^ÄH|!^Äiy
- ' ' ''

Add | ; Delete [Change | ■ Task Handles |

Entities

Sentences I j

Auth-item-availability
Auth-order-confirm
Auth-order-entry
Auth-production

I
Cnabled Permissions

' " I
Execului rVmiitiiuriY

Figure 30. Viewing the entities of an open policy

51

[f|| Applet Viewer: PolicyEditor.class [MIME

Warna Policy Based Editor

S^cnc«'

Sentences

iStel JBB, Pi IfpeYatoßi «S^piNaT

Auth-item-availabilit
Auth-pro auction
Auth-production
Auth-pro auction
Auth-pro auction
Auth-order-entry
Auth-item-availabilit
Auth-order-confirma
>< 1>7 In - ' :

INVALID USED
VALID UNUSEI
VALID UNUSEI
VALID USED
VALID USED
VALID UNUSEI
VALID UNUSEI
VALID USED

BEFORE
CANNOT C
CANNOT C
CANNOT C
CANNOT C
BEFORE
BEFORE
CANNOT C

Auth-billin
Auth-billin
Auth-billin
Auth-billin
Auth-billin
Auth-cust-
Auth-orde
Auth-prod

START ll
VALID UN|
VALID USJ|
VALID UNI
VALID US
START
START
VALID UN?

r'.Edit: '

Figure 31. Viewing the sentences of an open policy

52

lÜj Applet Viewerri'PoIicpEdrtor.cIass.;

/Applet •

Policy Based Editor

t-'ii-Jtn I Upi-n I DIILII-

Es Visualize

Sentences

Step Namel

Auth-production
Auth-production
Auth-production \ i
Auth-production B
Auth-order-entry
Auth- ite m- ava i I a b i r
A^th-order-confirm:

^x
4H,

%

Auth-item-availabilitp

:f^Äii^^^^^^^^^^^^^^^^^^^^s^^

I^^^^^B ^ÄS

ftfe^^i^ ,, .

-^

\

S
MUST

Auth-production

1 'me | Help |

Figure 32. Visualizing policies

53

I Kg Applet Viewer: PolicyEdrtor.class BEB
§f^^^^»»i*0äÄ«Ä#i^^a^^«Ä *■ ."V',.* "_.,"*

Policy Based Editor

Eg Visualize

^Help

Sentences:

Step Namel ■

Auth-production f
Auth-production |i
Auth-production |:
Auth-production |.
Auth-order-entry |"-
Auth-item-availabiji
Auth-order-confirrri

K X

e
INVALID UNUSED

I I

This icon is uted to depict art '
authorization that is INVALID and
UNUSED

Closest |f^Ä?|i^:
1 . Z.. -

-III! ' -"■- ' ■■ '■ • ' '

Spil

Figure 33. The help facility to visualize sentences

54

jApplet Viewer: PolicyEditor.class EfätfEä
Applet

Policy Based Editor

! Create „ Open I 1 Delete Exit

Deleting Policies...

Order Processing Policy E

OK

Canc'vl

Figure 34. Deleting a policy

3.3.4.4 Configuring the authorization manager

Once the authorization server is installed, it needs to be configured. This is simple, and
involves editing the server.ini file in the bin folder. The server.ini has two entries: The
first is a TCP/IP port number where all traffic to the server will be directed to. The
second entry in this file is the IP address of the machine where the server resides. Once
these entries are supplied, they will be used by the authorization server and other client
programs that communicate with the server.

3.3.4.5 Communicating with the authorization server

All communications with the authorization server is accomplished through messages.
For the purposes of testing and demonstrating the server, we built two simple graphical
user interfaces (GUIs) that can be used to send messages to the server and receive
responses back. These interfaces are shown in Figure 35 and Figure 36. The executor
interface can be used by an executor trustee to invoke an authorization-step and to
subsequently grant or deny the authorization-step. Once an authorization has been
successfully invoked, the server returns an authorization confirmation number. The
executor is also free to distribute this confirmation number to other requestor trustees
who want to make use of the authorization. To make use of an authorization, a requestor
presents his/her name (also called the trustee name), the authorization step name, the

55

permission required, and the confirmation number received from an executor. Based on
these parameters, the authorization sever will determine if the permission can be granted,
and if so will dynamically issue a call to a backend system (such as NT server) to change
permissions on the object associated with the permission.

These executor and requestor interfaces are only meant to illustrate the basic capabilities
of the server. Developers and systems programmers who incorporate TBAC into their
environments may build more complex interfaces to communicate with the server or
alternatively formulate appropriate APIs to assemble and send the relevant messages to
the server. One can also communicate with the server by simply assembling messages
and making the appropriate network calls to send and receive messages over network
transport (such as using WINSOCK).

|&ExecutoiGUI2

WOÄ& |v. :^mS^ Wo^ld • i^^il^
&$&&gg$\

»pg*äH

Message Type [INVOKE^

! Step Name'

Task lei

Trustee Name

I

 _ £

irt Condition
[Permission^ ^ JNUl^^sjg«

M®m
.'.'KMNiSri

Figure 35. Executor interface to invoke, grant, and deny an authorization step

56

|& Dialog SI

WorHlowType

Message Type

Step Name

Start Condition

Confirmation Number

Response

Workflow Id

Task Id

Trustee Name

Permission Name

hx - --is-, ,'f- I"

REQUEST^AyTH ■;? kM^u.yfi ■■■■

jj| I. ..h
u I

Request Authl' ■

1 r Cancel - ll -,

Figure 36. Requestor interface to to use an authorization

Message formats

The authorization manager understands the following message types

1. INVOKE-0

2. REQUEST_AUTH - 1

3. GRANT-2

4. DENY-3

The general format of a message is the following:

ClientProcessId I WorkflowType I Wflowld I Taskld I MsgType I StepName I
TrusteeName I StartCondition I EnabledPermissionName I ConfirmationNumber I
IP_Address_Of_Client I

Not all these fields contain useful data at all times. Only some particular fields are used
during a particular type of message.

Messages of type INVOKE

Format:

WorkflowType I Wflowld I Taskld I MsgType I StepName I TrusteeName I
StartCondition

57

The client (either the Executor GUI or the Requester GUI) appends the following:

• Its own process id

• The "NULL" string value for the Enabled Permission Name

• The 0 value for the number

• The IP Address of the client itself

Messages of type GRANT or DENY

Format:

WorkflowType I Wflowld I Taskld I MsgType I StepName I TrusteeName

For messages of type GRANT The MsgType should be 2 and for GRANT it should be 3

The client (either the Executor GUI or the Requester GUI) appends the following:

• Its own process id

• The "NULL" string value for the Enabled Permission Name

• The "NULL string value for the Start Condition

• The 0 value for the number

• The IP Address of the client itself

Messages of type REQUEST_AUTH

Format

WorkflowType I Wflowld I Taskld I MsgType I StepName I TrusteeName I
StartCondition I EnabledPermissionName

The client (either the Executor GUI or the Requester GUI) appends the following:

• Its own process id

• The IP Address of the client itself

3.3.4.6 Integration with the workflow system

The authorization server is built in such a way that it can be integrated easily with
workflow management systems. The key functionality the authorization server expects
from a workflow management system is the ability to send and receive messages. A
secondary aspect of integration is the mechanism by which the interfaces for executor
and requestor trustees are invoked from running workflow instances. These will vary
from one workflow system to another.

58

For our prototype demonstration system, we have integrated the authorization server with
Novell's Groupwise Workflow Professional workflow facility running on top of Novell's
Groupwise messaging infrastructure. Figure 37 shows a simple workflow being defined
with the Groupwise workflow authoring tool. The executor and requestor interfaces are
incorporated into the workflow definition be attaching them as agents to tasks. This is
shown in

Figure 38. The agent definition involves giving a name for the agent and specifying
where the executable code (.exe file) for the agent resides. When the task is eventually
routed to the appropriate recipient, it shows up as a work item in the recipient's inbox and
task list. When the work item is selected from the task list, the user now has the option of
"agents" tab and running any agents that were attached to the work item. This is shown
in Figure 39. Thus, the executor of an authorization-step will have the appropriate
executor agent attached to the work item. Running the agent will result in the invocation
of the executor interface, which can be used to invoke, grant, and deny authorizations.

e WorkFlow Professional Author
HH

ii£ft

5$ ^ffit^ga&.ffS&jgfrrä

SI ... Jte^o^Pi
i-w*r..vü?^ i-'-TSssii ••= i ~-&-&-<*smb'*-n ■■■■■■■■—»>■■ ■•■- ■■■^■\.^,<-&<^)^£m&mmi

W PHCTPWMH ins

r^ämm^^mmm^mmm^m^m^^mmm^^^SS^^

fSm>

Figure 37. Creating a simple workflow with a workflow authoring tool

59

Figure 38. Defining an agent for a task in a workflow

60

* GroupWise WorkFlow Professional Work Item - COMPLETED

l>2&^§uJ3la3Hfe!-v''-Order/RrocessmgWorkflow«»! Ü

Sjs>

PÜ

mo

m
Süß s

to;

«lisp

HH iThi|;isia hew brijeftö'-process^öi^^

-'■»■..■ ;.',fÄiS:s.:,irV;'.'§raä'.s

i

^S)-:-!;!".:

>:-^££&&&»:J >i^w^;tA,':K.iif>gv.'.'y'il-V,>-;;ll*y^(flfl!»,i|jl;; "nf-'ii^'.•_' .hliii.^'..j^Ülu'

Figure 39. Invoking agents at runtime.

61

4. Conclusions
This final report documents our work on the TBAC project for the past two years of the
contract. To summarize, any model of TBAC must support the notions of tasks,
authorization-steps, and dependencies. With these concepts, one can model authorization
policies that are common in many routine tasks, workflows, and applications. TBAC
differs from traditional security models in that it is an active model, and as such, manages
authorizations and permissions as tasks progress in accordance with some application
logic. In TBAC models, permissions are dynamically activated and deactivated in
response to events that occur in tasks, thereby enabling better task-based, need-to-know
controls and security enforcement.

In future work, we hope to pursue the development of the entire family of TBAC models.
We have encountered many challenges and learned many lessons during the course of the
project. The greatest challenges arose from the integration of TBAC with the Windows
NT security management APIs. We also learned that setting up and integrating a
workflow system into an enterprise computing backbone is an arduous process with many
difficulties arising from security and network settings. We hope to apply the lessons
learned over the course of the project in building a more robust implementation in the
future. We also hope to prototype various workflow scenarios in military and DOD
applications, applying TBAC ideas to manage the various authorizations. During the
TBAC project, we considered the JFACC program as a testbed for such prototyping.
However, while JFACC has been investigating the use of workflows to manage the air
campaign process, no sufficient details of workflow requirements or models were
available from this domain in a timely enough manner to influence our work.

62

4. References

1. R. Strens and J. Dobson, How Responsibility Modeling leads to Security
Requirements. Proceedings of the Second New Security Paradigms Workshop, Little
Compton, Rhode Island, EEEE Press, 1993.

2. L.J. LaPadula and J.G Williams. Towards a Universal Integrity Model. Proceedings
of the IEEE Computer Security Foundations Workshop, New Hampshire, IEEE Press
1991.

3. R.K. Thomas and R.S. Sandhu. Towards a Task-based Paradigm for Flexible and
Adaptable Access Control in Distributed Applications. Proceedings of the Second
New Security Paradigms Workshop, Little Compton, Rhode Island, IEEE Press
1993.

4. R.K. Thomas and R.S. Sandhu. Conceptual Foundations for A Model of Task-based
Authorizations. Proceedings of the IEEE Computer Security Foundations Workshop,
New Hampshire, IEEE Press, 1994.

5. R.K. Thomas and R.S. Sandhu. "Task-based Authorization Controls (TBAC): A
Family of Models for Active and Enterprise-oriented Authorization Management,"
Proceedings of the IFIP 11.3 Workshop on Database Security, Lake Tahoe,
California, August 1997.

6. S.K. Chang et. al. Visual-Language System for User Interfaces, IEEE Software
March, 1995.

7. S.K. Chang, G. Polese, R. Thomas, and S. Das. "A Visual Language for
Authorization Modeling," Proceedings of IEEE Symposium on Visual Languages -
VL97, Capri Island, Italy, September 23-27, 1997.

8. J. Klein. Advanced Rule Driven Transaction Management. Proceedings of the IEEE
Compcon Conference, 1991.

9. D.E. Bell and L.J. LaPadula. Secure Computer Systems: Unified exposition and
multics interpretation. EDS-TR-75-306, Mitre Corporation, Bedford, MA March
1976.

10. M.H. Harrison, W.L. Ruzzo and J.D. Ullman. Protection in Operating Systems.
Communications of the ACM, 19(8), pages 461-471, 1976.

11. R.S. Sandhu. The Typed Access Control Model, Proceedings of the IEEE
Symposium on Research in Security and Privacy, Oakland, CA, May 1992 pages
122-136.

12. V. AtluriandW. Huang. An Authorization Model for Workflows, Proceedings of
the Fourth European Symposium on Research in Computer Security, Rome, Italy,
September pages 25-27, 1996.

13. R.S. Sandhu. Transaction Control Expressions for Separation of Duties, Proceedings
of the Fourth Computer Security Applications Conference, pages 282-286, 1988.

63

14. M. Rusinkiewicz and A. Sheth. Specification and Execution of Transactional
Workflows, In Modern Database Systems: The Object Model, Interoperability, and
beyond, W. Kim, Ed., Addison-Wesley / ACM Press, 1994.

15. D. Georgakopoulos, M. Hornick, and A. Sheth, An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure,
Distributed and Parallel databases, Vol. 3, pages 119-153, 1995.

16. M. Abrams, K. Eggers, L. LaPadula, and I. Olson. A Generalized Framework for
Access Control: An Informal Description, Proceedings of the 13' NIST-NCSC
National Computer Security framework, 1990, pages 135-143.

17. M. Abrams, J. Heaney, O. King, L. LaPadula, M. Lazear and I. Olson.
Generalized Framework for Access Control: Toward prototyping the Orgcon Policy,
Proceedings of the 14,h NIST-NCSC National Computer Security framework, 1991,
pages 257-266.

18. W. Boebert and R. Kain. A Practical Alternative to Hierarchical Integrity Policies,
Proceedings of the NBS-NCSC National Computer security Conference, 1985, pages
18-27.

•"■S. GOVERNMENT PR,NTING0FFICE:

64

JOSEPH V. GIORDANO
AFRL/IFSB
525 BROOKS RD
ROHE, NY 13441-4505

ODYSSEY RESEARCH ASSOCIATES
33 THORMMOOO DRIVE, SUITE 500
ITHACA, NY 14850

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 13441-4514

ATTENTION: DTIC-OCC
DEFENSE TECHNICAL INFO CENTER
8725 JOHN J. KINGMAN ROAD, STE 0944
FT. BELVOIRt VA 22060-6218

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DL-1

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

