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Abstract 

Parallel computing is fast becoming an inexpensive alternative to the standard super-computing approach for 
solving very large scale problems that arise in scientific and engineering applications. Science and engineering 
applications involved in product design and analysis are subjected to competitive and regulatory constraints 
such as the need to shorten design cycles, reduce product cost, meet increasingly stringent government regu- 
lations, improve quality and safety, and reduce environmental impact. These constraints have increased the 
need for accurate product and component simulation and demand analysts for simulations of unprecedented 
scale and complexity making it impossible to perform simulation in a sequential fashion using computers of 
conventional architecture. With single RISC-based microprocessor performance improve every year, com- 
puter hardware industry is providing high-performance parallel architectures which are built on commodity 
parts and compatible with workstation systems. One such computer architecture is symmetric multiproces- 
sors (SMP). Furthermore, PC's to large computer systems are rapidly becoming symmetric multiprocessor 
machines. These architectures offer the level of computational performance and increased memory capacity 
needed for large-scale computing. Because the underlying architecture is different than traditional unipro- 
cessor or vector supercomputers, this increased performance is most fully available to programs designed to 
take advantage of the new architecture design. 

The present work employs some of the major elements of these new computers which are promising parallel 
computer architectures of the future, and describes some recent developments in the finite element analysis 
of process modeling and manufacturing applications of composites that are designed to exploit these major 
elements for large scale engineering applications. The work includes finite element computational schemes, 
data structures and interprocessor communication strategies for the implementation of large scale practical 
advanced manufacturing simulations with particular emphasis on isothermal resin transfer molding (RTM) 
process manufacturing simulations on the symmetric multiprocessor. For process modeling studies thin shell 
composite mold configurations are used to illustrate the validity of the present implementation of: i) the 
traditional explicit control volume-finite element, and (ii) a recently developed and new pure finite element 
implicit methodology in conjunction with a diagonal preconditioned conjugate gradient solver for parallel 
computations on the SGI Power Challenge and the SGI Origin2000 symmetric multiprocessor machines. 
The techniques developed are applied to large scale problems to demonstrate the practical applicability to 
realistic industrial size problems. 

The results indicate that the current generation SMP's with medium to large number of processors can 
be effectively used as a supercomputer (Massively Parallel Platforms) for large scale complex geometries in 
scientific and engineering problems. The recently developed and new pure finite element implicit methodol- 
ogy is shown to be physically accurate and computationally superior compared to the explicit control-volume 
finite element algorithm (explicit CV-FE) on different SMP platforms (SGI Power Challenge and SGI Ori- 
gin2000). For large scale problems, explicit CV-FE based modeling/analysis become impossible to analyze 
within Reasonable Time or realistically impossible even with parallel processing for large scale problems. 
In view of such considerations, as an illustration, a large complex finite element mesh of 809,505 elements 
and 405,327 nodes has been successfully analyzed using the pure finite element implicit methodology and 40 
processors within a Reasonable Time of 4.72 hrs. The proposed parallel approaches have excellent parallel 
efficiency and scalability when compared to other relevant results published in the literature with the highest 
degree of portability of the software code to wide range of parallel architectures. 
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Composite Process Modeling 
Applications 

1.1 Introduction 
In this research the implementation of a finite element-control volume explicit mold filling technique that is 
traditionally advocated and a pure finite element implicit mold filling technique for isothermal resin transfer 
molding process technology for composites manufacturing is described. The computational complexity of 
these applications are, at a minimum, similar or comparably more than other finite element applications 
such as non-linear static structural analysis, dynamic structural analysis or fluid flow analysis. In fact 
the computational complexity of mold filling finite element algorithms is somewhat more complicated as it 
involves fluid flow front tracking computations in addition to time stepping and flow calculations. Because 
of these reasons, this application is selected for parallel implementation studies. 

1.2 Resin transfer mold filling 

Computational developments in manufacturing simulations are becoming important in process modeling 
and optimization of composite manufacturing process such as Resin Transfer Molding (RTM). Composite 
structures made of these materials are increasingly being used in the military, automotive, aerospace and 
electronic industries due to their excellent properties such as the high stiffness to weight ratio, long fatigue 
life, increased corrosion resistance and ability to manufacture complicated consolidated parts. Resin transfer 
mold filling process involves the injection of the resin matrix into a mold cavity filled with fiber mat. After 
the resin cures, the finished part is removed from the mold. The process is schematically illustrated in 
Fig 1.1. The Resin Transfer Molding is also emerging as a technology for manufacturing large components 
of fiber reinforced composite structures. As the part of the Coinanche helicopter structural component, a 
composite keel beam, Fig 1.2, shows such a complex geometry as an illustration. 
Manufacturing of such large composite structures poses significant challenges and computational difficulties. 
The resin transfer molding process is in general a complex flow phenomenon involving a non-isothermal 
polymer resin flowing through a mold cavity filled with fiber preform and can involve multiple phase flow 
regions and are further complicated by the resin kinetic reactions during the thermal curing of the resin. 
For preliminary design studies, isothermal simulations provide a good design and is the focus of the present 
study. Thus a number of trial runs are involved in obtaining a successful part. It is almost impractical 
and/or ineffective to conduct large scale simulations on traditional computing platforms. These trials runs 
are expensive (as related to computational time and memory requirements) for large complex geometric parts, 
Fig. 2.16, which involves hundreds of thousands of degrees of freedom is typically illustrative application for 
conducting an analysis to accurately capture flow fronts inside the mold. Parallel computing is a viable 
alternative to reduce the computational times and to overcome the memory requirements for handling such 
problems. Literature shows that the finite element method forms the basis of the resin flow simulations inside 
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2. Insertion of preform 

3. Mold filling and curing 

4. Part removal 

Figure 1.1: Resin transfer molding process 

the mold cavity and have been mostly carried out by various researchers [35-39] for fairly small structural 
components on traditional computing platforms. 

1.2.1    Isothermal filling 

Governing Mold Filling Equations: Thin composite sections 

For 3-D geometries governed by Darcy's law, the following assumptions are made: 

1. The polymer resin is incompressible. The viscosity is taken to be constant during the whole process. 
The simulation assumes that the resin remains at a constant temperature and there is no signifi- 
cant difference in the resin temperature during the simulation, thereby representing isothermal filling 
conditions. 

2. The flow is governed by Darcy's law, and the Reynolds number is small so that the inertia terms in 
the equation of motion can be neglected. 

These assumptions agree with the earlier works [3, 2, 7] involving two-dimensional models. 

It is assumed that the flow is pressure driven and the average velocity components are related to the pressure 
gradients by Darcy's law given as 

Ü=--VP (1.1) 

where VP represents the pressure gradient, and \i represents the effective viscosity. The flow satisfies the 
continuity equation 

V . u = 0 (1-2) 



Figure 1.2: Schematic of Commanche keel beam 

INJECTION PORTS 

FLOW FRONT 
BOUNDARY 

Figure 1.3: General partially filled mold cavity 

Using Eq.(l.l) in the above continuity equation, an equation governing the pressure distribution in a complex 
3-D configuration is obtained as 

V. 
K. 

VP   = 0 

and the permeability matrix, which depends on the fiber arrangement, is defined as 

[*] = 
xy ft-xx      ■"■: 

K-yx     K-yy 

■"■zx     "-zy 

Kx 

Kz 

yz 

(1.3) 

(1.4) 

By employing local element level permeabilities, the variation of the permeabilities throughout the mold 
geometry can be appropriately taken into account. For macroscopic mold filling simulations it is assumed 
that the permeability matrix is known a priori. The boundary conditions for the above modified Laplacian 
equation for the pressure are zero pressure at the flow front and zero pressure gradient in the direction normal 
to the mold wall at the mold surface since no leakage is assumed at the mold walls. The conditions at the 
injection ports can be either injection flow rate conditions or injection pressure conditions. In mathematical 
notation: _ 



At mold surface: 
At resin front: 
At mold inlet: 

f£ = 0onr1 
P = 0 on r2 
p = p0 (prescribed pressure), or 
q = q0 (prescribed flow rate) 

dP/dn = 0 

po or to 

Figure 1.4: Schematic mold geometry and the applied boundary condition 

Figure 1.4 shows a schematic of the mold geometry and the applied boundary conditions. 

1.2.2    Traditional Explicit Filling: Control Volume-Finite Element (CV-FE) Ap- 
proach 

Various techniques exist to identify the filled regions which are determined based on the filled finite element 
nodes. In principle, all of these techniques involve updating the location of the flow front at each time step 
using the Darcy velocity field and the computed mass fluxes into the discretized mold regions. 
This method involves associating a parameter called the fill factor with each node that is associated with a 
control volume region. The fill factor indicates whether a given control volume region is full or empty. In 
the explicit CV-FE approach, the transient mold filling problem is treated as a quasi-steady state problem 
and the time increment employed allows for only one region to be completely filled during a single time 
increment step. In certain conditions, several control volume regions may be filled simultaneously if their fill 
time steps are the same as the minimum time increment. 

Space discretization 

The governing equation for the pressure distribution is given as: 

V • (—VP ] = 0 
.A* 

Invoking the traditional Galerkin weighted residual formulation, we have 

f w [v • (—VP) <m = o 

From the application of the Green-Gauss theorem, which states that, 

/ u (V • v) dti = I u(v-n) dT- / (Vu-v) du 
Jn Jv JO 

the above Eq.(1.6) can be written as: 

i W— (VP • n) dC- f W — VP dÜ = 0 
r      M R/n M 

(1.5) 

(1.6) 

(1.7) 

(1.8) 



Letting 

W = Nt 

P = NiPi (1-9) 

where Ni are the finite element spatial shape functions and Pt are the nodal values of the pressure, Eq.(1.8) 

reduces to: , .      „ 
/ VN. fL VN dÜ  Pi=     Ni— (VP • n) dT (1.10) 

Ja V 1 Jr     V 
This discretized system of equations can be written as: 

KSP  =  q (1.11) 

where .        „ 
Ks = / BT—B du with B = VAT (1.12) 

Ja       I* 

and 
q= f NT-(VP-n) dF (1.13) 

Front tracking 

The solution of the pressure field with the associated boundary conditions requires the solution over the 
entire flow domain, which is changing continuously throughout the mold filling process modeling process. To 
avoid difficulties involving changing flow calculation domains and converging/diverging flow fronts, the Finite 
Element - Control Volume (FE-CV) method, in which the computational grid is fixed and is based on the 
mold geometry is employed in this work. This technique uses a single fixed grid throughout the simulation. 
The FE-CV technique that is employed for the computation of pressures, flow fields, and tracking of flow 
fronts is briefly described next. 
For the present study, three-noded triangle and four-noded quadrilateral elements are employed. The normal 
finite element shape functions are used in the computation of the finite element matrices of each element. 
In addition, each node is also associated with a specific control volume region. The finite volume region is 
obtained by joining the mid points of each of the line segments of the element edges and the body centroid 
of the elements. Each finite volume region associated with a node has one-fourth of the volume in the case 
of a quadrilateral element and one-third of the volume in the case of a triangular element. The continually 
changing flow domain is determined based on the conservation of mass principle applied to each finite volume 
region. The mass conservation principle is based on the fact that the net mass flow into a finite volume 
region is equal to the amount of mass absorbed and accumulated in the fiber bundles within the finite volume 
region. In this formulation, each node in an element is associated with a sub-finite volume region that is 
local to the element. The total finite volume region associated with a node involves contributions from the 
elements sharing a given node and can be determined based on the elemental connectivities. The net mass 
flux entering a finite volume region associated with a node is computed based on the flux at each face of 
the finite volume region; the computations are based on the pressure gradients and the associated Darcy's 
velocity field. The net mass flow rate entering the finite volume associated with a node within an ith element 
is determined from the surface integrals defining the finite volume and can be represented as 

qt=  f u-ndS (1-14) 

where the velocity field u is determined from the pressure gradients and nodal pressures within the element. 
The 3-D velocity field is given by 

Ui = -vKijPj i = 1,2,3 (1.15) 

Note that the Darcy's velocity field and the pressure gradients are computed within the element and are 
continuous within a given element.  This implies that the flow rate computed based on the velocity fields 



Control volutne 

Element 

Figure 1.5: Velocity and flow computation for the control volume 

satisfies the continuity condition or the local mass conservation condition. This is in contrast to some of the 
earlier Finite Element/Control Volume techniques in 2-D RTM simulations where the pressure gradients and 
hence the flow rates were determined across the elements [1-4], even when the elements employed were C0 

continuous. This also permits use of traditional finite elements as opposed to the non-conformal elements as 
in Trouchu et al. [8] for this purpose. 

The continually changing flow front and the filled flow domain is determined from a parameter called the 
fill factor Ff that is associated with each node. The parameter Ff represents the status of the finite volume 
and indicates if a given finite volume region is full or empty. If a finite volume region is empty (has not yet 
been filled with resin), the associated fill factor Ff is zero, and a finite volume that is filled completely with 
the resin is given a fill factor Ff of 1. The resin front exists in finite volume regions where the fill factor 
Ff is between 0 and 1, and the factor Ff is set to the volume fraction of the finite volume that is filled 
with resin. For these nodes with the associated finite volumes, the pressure is zero at the flow fronts and 
the corresponding nodes. Hence, the solution process in the RTM simulation involves solving for both the 
pressure field derived from the continuity equation and the factor Ff. Numerous techniques can be employed 
for the update of the fill factor Ff. The so-called explicit filling techniques determine the fill regions and 
time based on the actual flow rates and the finite volumes associated with each node. In this work, the 
advancement of the fill factor, hence, the flow front, is based on an explicit algorithm. In this approach, the 
mold filling process is regarded as a quasi-steady process, which assumes a steady-state condition at each 
time step. At each time step, the pressure distribution is computed both based on the boundary conditions 
and the fill factor conditions. The velocity field, hence, the flow rate computed from the pressure field, is 
used to update the new front location, fill stage, and time of simulation. The selection of the time step for 
each of the quasi-steady states is based on the following consideration. At any time, the time increment used 
allows only one finite volume region to be completely filled (under certain conditions, more than one control 
volume can be filled). This restriction of the time increment ensures the stability of the quasi-steady state 
approximation. Thus the computational methodology can be briefly summarized as follows. 

Solution strategy 

The various computational steps involved in the traditional explicit CV-FE methodology for the update of 
the filled regions and flow front advancement are summarized below: 

1. Compute the local coordinates of elements. 

10 



2. Compute the local material properties of elements. 

3. Compute control volumes (fJc„) around all the nodes. 

4. Form Ks and q using Eqs.(1.12) and (1.13), respectively. 

5. Apply boundary conditions on Ks 

• Boundary conditions based on injection, vent pressures, and injection flow rate. 

• Boundary conditions based on the fill factor F. These are applied at nodes where F < 1.0. 

6. Solve Kij * Pj = qt for pressure P, where Ki, is the modified Ka after the application of boundary 
conditions. 

7. Compute the local velocity field using Darcy's law. 

« = -—VP (1-16) 

(Pictorially shown in Fig. 1.5 for 3-noded triangular element). 

8. Compute the flow rate contributions from each of the surrounding nodes and determine the total flow 
rate into a control volume region associated with the node (Fig. 1.5). 

■/.- 
■ndS (1.17) 

9. Determine the time required to fill each of the control volume regions ü%
cv. 

AU = (1 - Fi) x ^L (1.18) 
Qi 

10. To ensure the stability of the quasi-steady state approximation, select as the time increment the 
minimum of all the computed times in Step 9. The minimum time step is the quasi-steady state time 
step increment at this stage and ensures stability with the smallest empty region completely filled 
during this time increment. 

At- min [A*i At2.--At„]    n = number of nodes (1.19) 

11. Update the fill factors of the partially filled and unfilled nodal control volume regions using the asso- 
ciated total flow rate and the selected time step increment. 

F = f P* + A*x^-    ifFi < 1.0 (120) 
1     \ Fi otherwise 

12. Continue with the next step of the quasi-steady state process until filling is complete. That is, until 
all the control volumes have the fill factor equal to 1. 

1.2.3    Implicit filling technique: A Pure Finite Element Methodology 

The impregnation of the porous fiber medium during an RTM process is realistically a physical transient 
problem involving time dependent progression and distribution of the resin mass. The control volume-finite 
element methodology treats this problem as a quasi-steady state problem involving steady state solutions at 
discrete time intervals. The physical accuracy and computational effectiveness of the CV-FE modeling and 
simulation methodology are thus restricted by the quasi-steady state assumption and the subsequent time 
step restrictions required to ensure stability of the methodology. Furthermore, large finite element meshes 
and finer computational grids can heavily restrict the time step increments that can be employed and 



significantly impact the computational speed and costs for real time process simulations. It is imperative 
that the computational methodologies employed for the physical modeling and simulations be physically 
accurate and computationally efficient to provide for further enhancements towards faster real time process 
simulations. Driven by the needs for improved physical accuracy and faster computational speed of the 
process simulations, a pure finite element methodology is employed here based on an alternate form of the 
mass conservation equation [5, 6]. 

Conservation of resin mass 

In a mold-filling analysis, a fill factor can be implicitly defined to represent the amount of resin present inside 
the mold and its distribution at any time. Considering for a moment a general Eulerian mold domain fl 
with mass flux due to the incoming resin at the injection ports, at any instant, part of the mold cavity is 
filled with resin and the fill factor * is greater than zero. In the unfilled regions, there is no resin and the 
fill factor * is equal to zero. For convenience, the maximum value of the fill factor * is set to be one. 
At any instant in time, t, the mass of the resin inside the mold is given by 

mass = [ PV(t) du (1.21) 
JQ 

dm 
~dt 

where p is the density of the polymer resin and the definition of * which is the fill factor considers only the 
mold cavity filled with resin. From the continuity equation 

^+V-(pt;)=0 (1-22) 

the mass conservation equation at any instant of time for the resin is written as: 

= 2. [ p¥(t) <m = - [ pV(t)u ■ n dT (1.23) 
ot JQ Jr 

Assuming a constant density resin, the modified mass conservation equation for the resin at any instant of 
time reduces to 

|- / *(t) dÜ = - / ¥(t)u • n dT (1.24) 
ot JQ Jr 

Eq.(1.24) now forms the starting point for the development of the pure finite element methodology. 

Governing equations 

For the polymer resin flowing through a porous media as in RTM flows, the velocity field is governed by 
Darcy's flow field approximation and is dependent on the permeability of the resin and the resin viscosity. 
This velocity field is given by 

« = -— VP (1-25) 

where K is the permeability tensor of the fiber preform and is defined appropriately for two-dimensional 
and three-dimensional preform considerations. Using Darcy's approximation in the mass balance equation, 
Eq.(1.24) can be written as 

i/0*
Wdn = /r*

w(7VP)-ndr (L26) 

Employing Green's theorem, which states that 

[ divF= <f FndT (1-27) 
JQ Jr 

the mass balance equation involving the fill factor and the pressure field is obtained and given as 

I i •<*>dn=I *(,) (f vp)2 - * ■ L mv ■ (JVP) dn      a'28> 



This form of the mass balance equation involving the fill factor and the pressure field is the governing 
mathematical equation for the present finite element formulations. Since the pressure gradients are negligible 
in the unfilled and the partially filled regions (i.e., * < 1), only the completely filled regions where * = 1 are 
needed to be considered in the governing mass balance equation. With this consideration, the differential 

form of Eq.(1.28) is 

™=V.(KVP) (1.29) 
dt \II      ) 

The boundary and initial conditions for the mass balance equation are: 

|£ = 0 on rx on l 

P = 0 on Ti 
P = P0 (prescribed pressure) 
q = q0 (prescribed flow rate) 
9(t > 0) = 1.0 

At mold surface: 
At resin front: 
At mold inlet: P = Fn (prescribed pressure), or 

At injection ports: 

Space discretization , 

To determine the pressure field and the resin saturation fill factors, the mold cavity is discretized and modeled 
using finite elements. For thin shell molds, two-dimensional elements with two-dimensional velocity fields 
and two-dimensional permeabilities are employed. For thick composite sections, a three-dimensional velocity 
field as given by Darcy's law and involving a three-dimensional permeability tensor is used. Thus, the present 
formulations are applicable for both thin and thick composites. Invoking the traditional Galerkin weighted 
residual formulation, Eq.(1.29) is written as 

$■ f W<2 dQ = [ W (V 
K 

VP)<KI (1.30) 

If the weight W is taken to be the same as the spatial shape function N, and both the pressure and fill 
factors be approximated by the standard finite-element approximations as given by: 

P^NiPi 
(1.31) 

\L NiNj du *i - / VNi—VNi dtt f 
JQ ß 

Pi + 
Jr      VM 

VF • n }dT (1.32) 

Eq.(1.30) reduces to 

8_ 
8t 

where Nt are the spatial shape functions at each node of the finite element and Pi and *j are the nodal 
values of the pressure and the fill factor, respectively. The terms on the right hand side of Eq.(1.32) were 
obtained invoking the Green-Gauss theorem and the approach leads to a pure finite element based technique 
without the notion of having control volume regions to be associated in a given finite element mesh. 
The discretized system of equations can also be written as 

where 

C* + KSP = q 

NTN du 

(1.33) 

B du 

(1.34) 

(1.35) 
JQ       H 

q= f NT(-VP-n\dT (1.36) 

where B are the spatial derivatives of the shape functions employed in the finite element discretization. 



Introducing the finite difference approximation for the time derivative term in Eq.(1.33), where 

= gn+i - ^ 

At 

the discretized finite-element system is written as 

C [*"+! - *"] + AtKsP = Atq (1-38) 

For a lumped C, Eq.(1.38) reduces to 

C«*?+1 - Ci^l + AtKijPj = At qi (1.39) 

Solution strategy 

Since Eq.(1.39) is the discretized model equation in the present methodology, the fill factors associated with 
the nodes and the pressure field are solved for in an iterative manner. At the beginning of the simulation, 
the fill factors are known and are taken to be unity at the injection nodes. Then at each time step, values 
of the pressure field and the fill factors are iterated until mass conservation is reached. Below is a summary 
of the iterative procedure used in the implicit Pure FE methodology: 

1. Compute the local coordinates of elements. 

2. Compute the local material properties of elements. 

3. Compute the matrix C using Eq.(1.34) and sum the off-diagonal entries of each row with the diagonal 
entry of C to form the lumped matrix of C. 

4. Form K8 and q using Eqs.(1.35) and (1.36), respectively. 

5. At the beginning of the each time step, 

(*^+1 = (%)n (1-40) 

where m is the iteration number and n + 1 and n are the current and previous time steps, respectively. 

6. Apply boundary conditions on Ka 

• Boundary conditions based on injection, vent pressures, and injection flow rate. 
• Boundary conditions based on the fill factor F. These are applied at nodes where *f < 1.0. 

7. Form 
(9i)m = Cu^iT - C«(*0S,+1 + A«9i (1-41) 

8. Solve kij(Pj)m = (9i)m where Ktj is the modified Ka after the application of boundary conditions. 

9. Update the nodal resin fraction field #?+1 using the modified form of the discrete mass balance equation 

C«tf?+1 = dW - AtKijPj + Atqi (1.42) 

Note that only a matrix vector product and vector additions are involved here. 

10. Correct for under filling or over filling. Since * can be either greater than 1 or less than 0, a correction 
needs to be made. 

(*i)m++i = max [0. mm (1, (*i)nm
+1)} (1-43) 

Note that the bounds imposed on the fill factor are (0 < * < 1) and mass conservation check is 
imposed at every iteration in a time step. The fill factor * and pressure P are related through: 

if    tfi < 1,   Pi = 0 
if    *i = l,   Pi = P1alculated (1.44) 

11. Continue until convergence is reached, 

\\r--$i-n+1 - f7--#-n+1ll < e (1-45) 

12. Proceed to next time step. 
14 



1.3    Parallel algorithm and data structures 

In the following sections the parallel implementation of the above two approaches on a shared memory model 
and message-passing model are discussed. Linear iterative solvers based on conjugate gradient approaches 
are employed in this study. 

1.3.1    A frame work for the parallel finite element implementation 

Most of the computations are computed at the element level. These include the formation of element stiffness 
matrix, computation of sub-control volumes and control volume flowrates (in the case of explicit CV-FE). 
These operations can be, in principle, carried out in parallel with all the processors in a single node without 
any synchronization. However once this task is accomplished, these data should be accumulated to the nodal 
level. Depending upon the programming model used and the parallel architecture, different possibilities exist 
for the above mentioned task. This is also the interface module to be used in the 'old' serial code for the 
portable general parallel finite element analysis programs. Three different algorithms are discussed in the 
following sections. 

Shared memory model with element based partition 

Elements are distributed across the processors as shown in Fig. 1.6. Each processor computes the nodal 
contribution of all the nodes assigned to it with all the elements shared by a finite element node in that 
processor. For the interface nodes the processor is required to collect information of the nodal contribution 
from the neighboring processor. For this an efficient shared memory algorithm is described next with 
reference to the mesh in Fig. 1.6. 

Figure 1.6: Finite element mesh partitioned into three sub-domains 

The variable myid has the id of the processor. The variable numadd stores the number of processors that 
this processor needs to get the information. The actual ids of the neighboring processors are stored in 
addlist. The subroutine writeReadIBV; IBV, Interface Boundary Variable, does the communication be- 
tween the processors for the variable shared between the sub-domains. The arrays is of the size numadd. 
The array writeReadPtr and writeReadlnd store the information of IBValues. IBValues is the array 
which holds the values of the interface variable such as control volume, residual vector, control volume 
flowrates, lumped matrix C and the like. The array IntVariable is the shared buffer used to write 
and read the IBValues by all the processors. It is a 2D array with number of columns equal to the 
number of processor nproc and number of rows equal to the maximum number of the interface nodes, 
max (writeReadPtr (i+1) -writeReadPtr (i), i=l,2,. .nproc. Fig. 1.7 shows the values of the data struc- 
ture for the finite element mesh shown in Fig. 1.6. The following subroutine writeReadIBV does the com- 
munication with the neighboring processors. 

1 Subroutine writeReadIBV(myid,numadd,writeReadPtr.writeReadlnd,addlist, 
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>   MAX(writeReadPtr(i+l)-writeReadPtr(i)) i = 1,2,... nproc 

Figure 1.7: Values of the data structure for the partitioned finite element mesh Fig 1.6 

2 . IBValues,nproc) 

3 Real   IBValues(1), IntVariable(1000,12) 
4 Integer writeReadPtr(l), writeReadlnd(l) 

5 Integer addlist(1) 
6 Common /IBV/IntVariable 

At this point all processors write the shared variable values to the shared buffer IntVariable. 

7 Do 10 i = 1, numlBV 
8 IntVariable(i,myid) = IBValues(node) 

9 10 Continue 

Wait for all the processor to write the information to the shared buffer. 

10 Call barrier(nproc) 

Now update the interface variable with the information in the shared buffer. 

Do 20 procld = 1,  numadd 
start = writeReadPtr(procld)-1 
Do 30 i = 1,  nIBV 

node = writeReadInd(start+i) 
IBValues(node)  = IBValues(node) + IntVariable(i,procld) 

Cont inue 

11 
12 
13 
14 
15 
16 30 
17 20      Continue 

Message-passing model with element based partition 

A similar algorithm discussed previously for the message-passing model is discussed next with reference to 

the mesh in Fig. 1.6 

The variable   myid   has the id of this node. The variables   numadd   store the number of nodes that this 

node needs to send and receive data. These are the neighboring nodes. The actual ids of the neighboring 
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Figure 1.8: Values of the data structure for the partitioned finite element mesh Fig 1.6 

nodes are stored in the arrays addList . The array is of the size numadd . Note that if the data is 

sent to a neighboring node, then this node needs to receive data from that neighboring node. The arrays 

sendRecvPtr and sendRecvInd store the information of the lBValues. The indices of the elements that are 

sent to the ith neighboring node are stored in sendRecvInd starting at location sendRecvInd(i) and ending 

at location sendRecvInd(i)-l. The array sendRecvPtr is of the size (numadd+1) and size of the array 

sendRecvInd is sendRecvPtr (numaddl)-l+. The arrays sendBuf and recvBuf are used as buffers to store 

the values of lBValues that are sent and received. The size of the array sendBuf is same as sendRecvInd. 

The array recvBuf is a 2D array where the number of columns equal to numadd and the size of the column 

is equal to maximum of sendRecvPtr (i) - sendRecvPtr (i) for i = 1,2.. nproc. Figure 1.8 shows the 

values of the data structures for the finite element mesh shown in Fig 1.6. For illustration the values of the 

variable sendRecvIndO shown in Fig. 1.8 are the actual node numbers of the mesh in Fig. 1.6. In the actual 

program, the renumbered node numbers are used. 

The following message passing subroutine, SendRecvIBVO; IBV, Interface Boundary Variable, does the 

communication between the neighboring nodes. The arrays request, status and indx are temporary arrays 

required for the MPI libraries. 

1 Subroutine SendRecvIBV(myid, numadd, sendRecvPtr, sendRecvInd, 
2 . addlist, invadd, lBValues, mien ) 

3 Include 'mpif.h' 
5 Real IBValues(l), sendBuf(1000), recvBuf(1000,64) 

6 Integer sendRecvPtr(l), sendRecvInd(1) 
7 Integer addlist(l), invadd(l) 
8 Integer request(64),  status(MPI_STATUS_SIZE), recvSrc(64) 

At this point pack the send buffer sendBuf with the interface boundary variable values lBValues for the all 

the neighboring nodes. 

9 Do j  = sendRecvPtr(l),  sendRecvPtr(numadd+1)-1 



10 node = sendRecvInd(j) 
11 sendBuf(j) = IBValues(node) 

12 Enddo 

Send all the sendBuf information to the neighboring nodes using MPI_ISEND(). MPI_ISEND() is a non-block 

send routine. The sending node is not blocked until the corresponding receive is started. With the use of 

this routine all the data transfer to the neighboring nodes can be initiated. 

13 tag = myid + 1 
14 Do i = l.numadd 
15 call MPI.ISEND(sendBuf(sendRecvPtr(i)),len(i),MPI_REAL, 

16 . addlist(i)-l,tag,MPI_COMM_WORLD,request(i),IERR) 

17 Enddo 

Receive the information from the neighboring nodes. Since the network load and neighboring computational 

load is not known, this node does not know from whom it will receive the information first. To achieve this 

MLEN, MPI_ANY_S0URCE and MPI_ANY_TAG variables are used in the MPI_RECV() command. Also there is no 

need to use non-block receive which will increase the uncertainty. The id of the node from whom the data 

is received is stored in recvSrc array. 

18 Do i = 1, numadd 
19 Call MPI_RECV(recvBuf(l,i),MLEN,MPI_REAL,MPI_ANY_SOURCE, 

20 . MPI_ANY_TAG,MPI_COMM_WORLD,request(i),IERR) 

21 recvSrc(i) = status(MPI.SOURCE) + 1 

22 Enddo 

At this point wait for all the non-block communication to complete. This will ensure that the communication 

is safely complete. 

23 Call MPI.WAITALL(request,indx,status,IERR) 

Once the communication is over, then update the interface boundary variable which has been received from 

the neighboring nodes. 

23 Do 101 i = l.numadd 
24 isource = recvSrc(i) 
25 invsrc = invadd(isource) 

26 istart = sendRecvPtr(invsrc) - 1 

27 Do 110 j = 1, len(invsrc) 
28 node = sendRecvInd(istart+j) 
29 IBValues(node) = IBValues(node) + recvBuf(j.i) 

30 110      Continue 

31 101 Continue 

32 Return 

33 End 

Shared memory model without any type of partition 

If the elements are not partitioned then all the processors can process all the elements. Since nodal level 

data is also shared, there exists a race condition andghence the expensive critical regions.  Critical region 



Figure 1.9: A single node shared by five elements 

computations are serialized at this level and hence significantly degrade performance. In Fig. 1.3.1 a mesh 

node N is attached to five distinct .'elements Ei...Ek.T£NV is the nodal quantity and is the accumulation 

of independent elemental contributions, UE* a segment of FORTRAN code that performs this operation 

would be: 

1 NV = 0.0 
2 Do 10 Eleld =1,5 
3 EV = function(Eleld,...) 
4 NV = NV + EV 
5 10 Continue 

In this case, if all the elements are assigned to different processors by index Eleld, then each processor will 

have the private copy of UE , and will be evaluated in parallel. But all the processors cannot update the 

value NV simultaneously. This section of the code is called a critical region and an explicit synchronization 

is required. This is done as follows. 

1 NV = 0.0 
2 Do 10 Eleld =1,5 
3 EV = function(Eleld,...) 
4 Call lockO 
5 NV = NV + EV 
6 Call unlock() 
7 10  Continue 

lock and unlock constructs guarantee that only one process at a time will execute the block of code between 

these two constructs. Thus the computation is serialized at this level and each processor sequentially updates 

the value of NV. 

However this can be avoided by processing the elements in a specific order. These specific orders are created 

by coloring the elements and processing each list concurrently with synchronization points at the end of each 

color list. The segment of the code for above computation can be written as follows. 

1 NV = 0.0 
2 Do 10 colorld = 1, numColor 
3 Do 20 indx = colorPtr(colorld), colorPtr(colorId+l)-l 
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4 Eleld = eleList(indx) 
5 EV = function(Eleld,...) 
6 NV = NV + EV 
7 20     Continue 
8 Call Barrier(nproc) 
9 10 Continue 

where the inner loop is parallelized. numColor is the number of colors resulted due to coloring of the finite 

element mesh. It is also the number of synchronization points in the outer loop. Therefore the coloring 

algorithm should result in few colors as possible, numele is the number of elements and eleList are arrays 

having number of elements and element id list for colorld. Barrier construct provides the synchronization, 

where all the processors wait until every processor arrives at that point. 

numColor 6 

eolorPtr 1 4 6 9 12 14 15 

- 
eleList 1 6 9 2 8 3 7 10 4 11 13 5 12 14 

Figure 1.10: Values of data structure for the coloring of finite element mesh Fig. 1.6 

Figure 1.3.1 shows the values stored in the data structure for the finite element mesh Fig. 1.6. 

1.3.2    Shared memory model implementation of mold filling 

The section of the serial code of the main program where application subroutine is called would resemble as 
follows. 

1 Program MAIN 
2 Call getModelData( ) 
3 Call applicationSubroutine(....) 
4 Return 
5 End 

where applicationSubroutine could be the explicit control volume-finite element algorithm subroutine or 

the implicit pure finite element algorithm subroutine. In the parallel implementation, the entire domain 

is decomposed into sub-domains to equal the number of processors. Each of the sub-domains will have 

approximately an equal number of elements. Once the sub-domains are formed, data structures for inter 

processor communication as explained in previous section are created. The sub-domains are then mapped 

on to the processors. This is done by creating the number of process (sub-domains) equal to the number 

of processors with the help of createThread routine. The section of the code of main program is given 

below. If the SGI constructs are used, then creatThread routine is called sprocO and if POSIX (pthreads) 

standard is used then the routine is called pthread_create(). One of the arguments passed to this routine 

is the name of the application subroutine (explicit CV-FE or implicit Pure FE) applicationSubroutine. 



1 Program MAIN 
2 Call getModelData(nproc, ) 
3 Call createSubDomains(nproc, ) 

4 Call initializeThreadsO 
5 Do 10 procld = 2, nproc 
6 createThread(applicationSubroutine,procld) 

7 10 Continue 
8 Call applicationSubroutine(l) 

9 Return 
10 End 

Explicit control-volume finite element method 

Steps 1-5, of the explicit control-volume finite element mold filling algorithm listed in section 4.2.2 is per- 

formed asynchronously by each processor. In step 3, once the control volumes of all the nodes in the 

sub-domain is computed by each processor, the subroutine writeReadlBVO is called to gather control vol- 

ume information of the interface nodes from the neighboring sub-domains. Step 6 is accomplished by the 

conjugate gradient solver explained in chapter 3. Interior control volume flow rates are computed by each 

processor, as in step 7, 8. Once again the routine writeReadlBVO is called to gather the interface nodes 

flow rates. In steps 9 and 10, each processor computes the At; and the minimum of all of its nodes. Then the 

global minimum of At is computed using the data structure shown in Fig 1.11. Once At is computed, the 

fill factors F are updated without any communication between the processors and steps 5-11 are repeated 

until all the control volumes have the fill factor equal to 1. 

•   •   • 

<a,b) '      <a,b)2      (a,b) 3 (a,b)4 (a,b) ' (a,b) n 

Shared Buffer(0:n) 

Barrier D 
1     }    }     1      f       F 
Do i := l,...,n; dotproduct = dotproduct + Buffer(i) 

Figure 1.11: Data structure and process synchronization for dot product 

Implicit pure finite element method 

Steps 1-7, of the implicit pure finite element mold filling algorithm listed earlier are performed asynchronously 

by each processor. In step 3, once the lumped C of all the nodes in the sub-domain is computed by each 

processor, the subroutine writeReadlBVO is called to gather the lumped C information of the interface 

nodes from the neighboring sub-domains. Step 8 is accomplished by the conjugate gradient solver explained 

in chapter 3.  Step 9 involves calculating the residual qt - KijPj. This is accomplished by computing the 



residual for all the nodes at the sub-domain level and using the routine writeReadlBV to gather neighboring 

sub-domain residuals. Now steps 9, 10 and 11 can be completed without any communication. Steps 6-12 

are repeated till Eq. 1.45 is satisfied. 

1.3.3    Message-passing model implementation for process modeling 

The entire domain is decomposed into sub-domains equal to the number of processors. Each of the sub- 

domains will have approximately an equal number of elements. Once the sub-domains are created with the 

appropriate data structures for inter processor communication, the sub-domains are then mapped on to the 

processors. This is accomplished by MPI.INITO construct provided by MPI. A typical message-passing 

program consist of a single executable that runs on each processor of the parallel computer. The section of 

the code of the main program is given below. 

1 Program MAIN 
2 CALL MPI_INIT(ierr) 
3 CALL MPI_C0MM_RANK(MPI_C0MM_W0RLD, myid,  ierr) 

4 CALL MPI_C0MM_SIZE(MPI_C0MM_W0RLD, nproc, ierr) 

5 Call getModelData(nproc, ) 

6 Call createSubDomains(nproc ) 
7 Call applicationSubroutine(myid,....) 

8 CALL MPI_FINALIZE(ierr) 

9 Return 

10 End 

Explicit control volume-finite element and implicit pure finite element methods 

The implementation is similar to that of the shared memory model except that in place of subroutine 

writeReadlBv (), subroutine sendRecvIBVO is used, and instead of the data structure explained in Fig. 1.11, 

the MPI routine MPI_ALLREDUCE() is used with appropriate operation of MPI.SUM or MPI.MIN. 

The important point to note here is that the 'old' serial subroutine code of the simulation is executed for 

each sub-domain. The usual do loop in the finite element simulation code consists of the following structure. 

Do eleld = 1,  nelments 
computation    

Enddo 

For the same 'old' serial subroutine to be used in parallel implementation, all the elements and nodes in the 

sub-domains are renumbered such that the numbers start from 1 to nelemnts where nelemnts is equal to 

number of elements in each sub-domain. This is done before calling the applicationSubroutineO. The nec- 

essary communication required between the sub-domains are written in the separate module, writeReadlBV () 

for the shared memory model and sendRecvIBVO for the message-passing model, which is used throughout 

the the finite element simulation code. This interface module is a very small portion of the code which can 

optimized for a given parallel computer. Thus this approach enforces data locality and therefore suitable for 
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a wide range of parallel architectures resulting in portability and also good performance on a wide range of 

parallel architectures. 

1.4    Closure 

Flow modeling computational approaches for the process modeling by RTM were discussed. These include the 

traditional explicit control-volume finite element methodology and the implicit pure finite element scheme. 

Data structures and interprocess communication models were also discussed. An efficient scheme is provided 

in a separate module (subroutine) for sub-domain interface solution for general parallel finite element analysis 

for a wide range of parallel architectures. This approach preserves data locality and hence high performance 

is achievable. Both the thread based model and the message-passing model with MPI were given. Also, a 

parallel programming model for effectively reusing the existing program of one processor which requires only 

minimum modification is given. 
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Performance Results 

2.1 Introduction 

On a sequential computer, the fastest algorithm for solving a given problem is the best algorithm (besides 

being the most accurate). However, the performance of a parallel algorithm for a specific problem on a 

given number of processors provides only limited information. The time taken by a parallel algorithm 

to solve the problem for instance, depends on the problem size, number of processors used to solve the 

problem and the machine characteristics such as: processor speed, speed of communication channels and the 

type of interconnection network. An algorithm that yields good performance for a selected problem on a 

fixed number of processors on a given machine may perform poorly if any of these parameters are changed. 

Hence, more than one performance metric, elapsed time is required to characterize the performance of parallel 

systems. There are many ways to measure the performance of parallel systems. The most commonly used 

measurements are the elapsed time, price/performance, speedup and efficiency. Additionally, researchers 

have used scalability and experimentally measured serial fraction as the performance metrics for parallel 

systems. These performance metrics are defined and the significances are discussed in the next section. 

2.2 Performance metrics 

2.2.1    Elapsed time Tp 

The elapsed time to run a particular program on a given machine is the most important metric. It is the time 

taken by the parallel program from the point of start of its execution till all the processors finish execution. 

The parallel computation has no value in the industrial setting if it is not applicable to industrial design 

problems in highly complex and completive product development cycles. With short product design cycles, 

the effect of parallel computation can only be realized if and only if the solutions can be found within the 

appropriate time window of the design cycle. Hence, to achieve this the elapsed time should be smaller than 
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the Reasonable Time. 

2.2.2 Speedup S 

When measuring a parallel system, we are often interested in knowing how much performance gain is achieved 

by parallelizing a given application over a sequential implementation. Speedup is a measure that computes 

the relative benefit of solving the problem in a parallel computer. Speedup is defined as the ratio of serial 

execution time of the fastest known serial algorithm, Ts, to the parallel execution time of the chosen algorithm 

Tp. Mathematically, it is given by 

S = ^ (2-D 
J-p 

However, if the interest lies in studying the parallel algorithms for parallel systems, Ts can be the serial 

execution time of the algorithm en the parallel computer on which the study is made. Ideally, speedup 

attained should be equal to the number of processors p used in the application. 

2.2.3 Efficiency E 

The efficiency, E is related to that of price/performance. It is defined as the ratio of speedup, S, to the 

number of processors P. The mathematical expression is given by 

E = - =  \ (2.2) 
P        pTp 

An efficiency close to unity means that the hardware has been used effectively; a low efficiency means that 

the resources are being wasted. 

2.2.4 Experimentally measured serial fraction / 

Experimentally measured serial fraction, /, is defined as [9], 

f = if P_1 (2.3) 

('-0 
This metric is mainly used as the diagnostic tool to find the reasons for loss of performance in speedup and 

efficiency. The value of / is exactly equal to the serial fraction s of the algorithm if the loss in speedup is only 

due to serial component (i.e if the parallel program has no overheads). Smaller values of / are considered 

better. Following are the conclusions that can be drawn from the the values of /. 

• If / increases with the number of processors, then it is considered as an indicator of rising communi- 

cation overhead. 

• If the value of / decreases with increasing p, then following Karp and Flatt [9] it is an anomaly which 

explains the phenomena such as super-linear speedup effects or cache effects. 



• If there is irregular change in the values of / as p increases then it indicates that load imbalance exists 

and hence the reason for loss of performance. 

• If the serial fraction is nearly constant for all values of p, then loss of efficiency is due to the limited 

parallelism of the program. 

2.2.5    Scalability 

It is a well known fact that given a parallel architecture and a problem of fixed size, the speedup of a parallel 

algorithm does not continue to increase with increasing number of processors. It usually tends to saturate 

or peak at a certain limit. Thus it may not be useful to employ more than an optimal number of processors 

for solving a problem on a parallel computer. This optimal number of processors depends on the problem 

size, the parallel algorithm and the parallel architecture. 

One way of expressing scalability of a parallel system is the increase in the problem size required in order 

to maintain the efficiency at a fixed value for increasing P. It can be expressed as a function called an 

isoemciency function mathematically expressed as [10] 

W = fE(P) (2-4) 

where W is the problem size. The important feature of isoemciency analysis is that in a single expression, it 

succinctly captures the effects of the characteristics of a parallel algorithm as well as the parallel architecture 

on which it is implemented. By performing the isoemciency analysis one can test the performance of a 

parallel program on a few processors and then predict its performance on a larger number of processors. 

Ideally isoefficiecy functions should be linear for a highly scalable parallel system. For details of isoemciency 

analysis one is referred to [10]. 

2.3    Results: Performance Study 

All the computations are performed on the following: (i) SGI Power Challenge which is a symmetric mul- 

tiprocessor and cc-NUMA machine of the type shown in Fig. 2.1.b. The similar machines in this category 

are (i) Encore Multimax, Flex/32, Sequent Balance and Alliant FX/8, and (ii) SGI Origin2000 which is 

also a symmetric multiprocessor and cc-NUMA machine of the type shown in Fig. 2.I.e. The similar ma- 

chines in this category are KSR-1, TC2000, and Stanford DASH. The message passing is carried out using 

Message Passing Interface (MPI) and thread programming was accomplished by SGI provided constructs. 

The Multilevel k-way partitioning [11] algorithm is used for partitioning the finite element meshes into sub- 

meshes. The performance study of the equation solver and the adapted approaches, namely, the explicit 

control volume-finite element and the implicit pure finite element mold filling studies on different meshes of 

different sizes are carried out. The details of four different highly unstructured meshes involving increasing 
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Figure 2.1: A typical shared-address-space architectures, (a) UMA shared-address-sp ace computer (b) 

NUMA shared-address-space computer with local and global memories (c) NUMA shared-address-space 

computer with local memory only. [1] 

number of elements, nodes and number of non-zero entries in the stiffness matrix are shown in Table. 2.1. 

For the implicit pure FE RTM mold filling approach the time step size chosen (so as to provide a comparable 

resolution of the flow fronts as the explicit CV-FE) are listed in Table. 2.2. 

Geometry Nodes Ratio Elements Ratio Non-zeros in K Ratio 

MESH1 4,380 1.0 8,670 1.0 30,482 1.0 

MESH2 45,547 10.4 89,945 10.4 316,593 10.4 

MESH3 135,492 30.9 269,835 31.1 946,208 31.0 

MESH4 297,576 67.9 594,756 68.6 2,082,302 68.3 

MESH5 405,327 92.5 809,505 93.4 2,835,053 93.0 

Table 2.1: Details of composite structure mesh geometries under study 

2.3.1    Evaluation of communication characteristics 

It is necessary to evaluate the interprocess communication characteristics which include finding parameters ts 

and tw, where ts is the start up time for transferring a message and tw is the per byte transfer time between 

the two processors and to confirm the the assumed interconnection network in the algorithm complexity 

Eq. 2.8. These parameters are used in predicting the performance of the proposed algorithm (PCG) given in 

Chapter 3. The ts and tw are evaluated as follows. Communication time for point-to-point communication 

between the two processors can be modeled by 

T(n) =ts + twn 
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Geometry fill time (sec) time step At 

MESH1 680.0 1.0 

MESH2 52.0 2.0 

MESH3 5.2 0.2 

MESH4 18.2 1.3 

MESH5 6.5 1.3 

Table 2.2: Fill time and time step for implicit pure FE approach 

where n is the number of bytes transferee!. In the first test series, an integer (4 bytes) array with increasing 

size ( size = 2l i = 0,1,..., 20) was transferee!. The test was carried out on the SGI Origin2000 machine. 

Communication time T{n) and message size pair is plotted as shown in Curve A of Fig 2.2.a. The Curve 

A confirms the hypothesis made in Eq. 2.5. The parameters ta and tw found using the best linear fit to 

the Curve A and the best linear fit curve is plotted as Curve B in Fig 2.2.a. The parameter tw is the slope 

of Curve B and the parameter ts is computed by computing T(0). The computed values are found to be 

tw =1.125xl0~8 sec and ts =4.6xl0~5 sec. Thus Eq. 2.5 can be written as 

r(n) = 10-8(4600 + 1.125n) (2.6) 

Since message-passing is carried out on shared-address space architecture, the figures of ts and tw can 

be compared with the reported peak memory latencies of SGI Origin2000 [12]. The message passing latency 

(tg) equal to 46 milli seconds is comparable with the reported local memory latency of .3ms and .86 ms for 

the 64 processor remote memory latency. The difference arises from the addition layer introduced by MPI 

libraries. In spite of the difference with peak performance, the value of ts is good compared to any other 

message passing architecture and hence the message-passing performance results should be comparable with 

the threads performance. 

Since the MPI_ALLREDUCE() collective communication routine is used in all the message-passing algorithms 

presented, it is necessary to determine the communication characteristics of this routine. The interconnection 

topology for the SGI Origin2000 is fat bristled hypercube. The communication characteristic should be 

Q{logp) which is also the assumption in Eq. 2.8. Numerical experiments were carried out on the SGI 

Origin2000. The communication time and number of processor pairs are plotted as shown in curve A in 

Fig 2.2.b. Curve B shows the communication time using the best curve fit of T = klog(p). The Fig 2.2.b 

confirms that the assumed complexity 2{ts + tw)logp for MPI_ALLREDUCE() routine in Eq. 2.8. Thus it is 

clear that Eq. 2.8 can be used to predict the performance (Tp/iteration, S and E) of the proposed parallel 

algorithms. 
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Figure 2.2: MPI communication characteristics for SGI Origin2000 

2.3.2    Preconditioned conjugate gradient solver 

Diagonal preconditioned conjugate gradient (PCG) performance results and scalability analysis on the SGI 

Origin2000 are presented in this section. The PCG algorithm is implemented using both threads and MPI. 

We conducted the performance study and scalability analysis with respect to one PCG iteration. Performance 

such as speedup (5), parallel efficiency (£) and experimentally measured serial fraction (/) are predicted 

using 

and 

Ts=     2tcnnz     +      6(2icn) 

matrix — vector      vector operations 

V vector addition 

(2.7) 

matrix —vector i=za 

Tp=    2J~Z^?    +    ats+twY,ibvi    + a2tc^ibVi +     6(2tcn
p)     +2(ts+ tw)\ogp (2.8) 

1 j vector operations globalsum 

V,vector communication 

and Eq. 2.1, 2.2 and 2.3. Where nnz and nnzp is the number of nonzero entries in the stiffness matrix K and 

ÜT(p) respectively, n and np is the number of degrees of freedom, a is the maximum number of neighboring 

processors or the maximum number of adjacent sub-domains, and ibvt is the number of interface entries 

of vector p information required from the neighboring processor i. The machine parameters such as ts, tw 

and tc which are computed in previous section are used. The values of variables such as nnzp, np, a and 

ibvt are used from the domain decomposition analysis. With these values, Eq. 2.8 plotted along with the 

experimental results is as shown in Figures 2.3 - 2.6. 

Figures 2.3 - 2.6 show the performance results for MESH1 to MESH5 respectively.   The corresponding 
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Figure 2.3:  One iteration of preconditioned conjugate gradient algorithm with diagonal preconditioner for 

MESH1 on SGI Origin2000 

tabulated values are given in Appendix C. The execution time for one iteration of the PCG is in milliseconds. 

The following are the inferences drawn from the performance results figures. 

• Figures 2.3.a - 2.6.a of total execution time versus number of processor (p) for all the mesh sizes show 

that both thread and MPI implementation have almost the same performance. However for large num- 

ber of processors (p > 12) Tp/iteration for thread implementation greater than Tp/iteration for MPI 

implementation. This can be attributed to the use of Barrier () construct for thread implementation 

algorithm versus no use BarrierQ construct for message-passing algorithm. 

• Theoretically the message-passing implementation has higher communication overhead than the threads 

implementation. However, for larger meshes (MESH3 and higher) S and E curves (see Fig. 2.5) shows 
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Figure 2.4:  One iteration of preconditioned conjugate gradient algorithm with diagonal preconditioner for 

MESH2 on SGI Origin2000 

that MPI implementation has better performance (3% (p =5) to 13% (p =16) for both 5 and E for 

MESH3) than thread implementation. 

• Thus from above two inferences it can be concluded that thread and MPI implementation perform 

equally well for small number of processors (p < 12) and small to medium mesh sizes (MESH2 and 

lower). However, for large number of processors (p > 12) and larger mesh sizes (MESH3 and higher) 

MPI implementation is preferred. 

• As expected, Figures 2.3.b - 2.6.b of speedup versus the number of processors (p) show that speedup 

increases with increasing problem size. Also, for a given problem size, the speedup increases, almost 

linearly, with increase in the number of processors up to a certain point and then it tends to saturate. 
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• An almost perfect speedup till 2, 7, 14, 24 and 40 processors are achieved for MEHS1, MESH2, 

MESH3, MESH4 and MESH5 respectively (and then deviates and tends to saturate for a large number 

of processors since communication overhead dominates). The values show that a good performance 

is achieved when compared with analogous published findings [13, 14, 15, 16] of other researchers in 

related fields. Also the predicted performance results agree with the measured performance results. 

• With increase in problem size, the value of / decreases and it is slightly higher compared to the 

predicted values of / (see Fig. 2.3.d - 2.5.d). This can be attributed to the overhead incurred in the 

program such as load imbalance, machine loads and the additional layer introduced by the MPI/thread 

software. 

• Figures 2.3.d - 2.6.d of / versus number of processor (p) shows that values of / are highly irregular 

and also monotonically increase with increasing p. As discussed in section 5.1.4, this is due to severe 

load imbalance (irregular values of /) and a monotonically increase in / is due to the communication 

overhead and synchronization overhead with increase in p (increase in / with increase in p). 

Parallel scalability analysis 

Since we performed the scalability analysis with respect to one PCG iteration, the problem size W is 

considered to be 0(n) where n is the number of degrees of freedom. The details of increase of problem size 

is given Table 2.1. We studied the rate at which n needs to grow with p for a fixed efficiency as a measure of 

scalability. In Figure 2.7.a, the predicted isoefnciency curves are plotted by determining the efficiencies for 

different values of n and p and then selecting and plotting the (n,p) pairs with nearly the same efficiencies. In 

Figure 2.7.b, the experimental isoefnciency curves are plotted by experimentally determining the efficiencies 

for different values of n and p and then selecting and plotting the (n,p) pairs with nearly the same efficiencies. 

Figures 2.7.a and 2.7.b show that the actual values (from the numerical experiments) agree very well with 

the predicted values (given by Eq. 2.8). 

The Figure 2.7 graphically illustrates the impact of the desired efficiency on the scalability of a PCG iteration. 

The Figure 2.7 suggests that this a highly scalable system (combination of algorithm and parallel architecture) 

and requires only a linear growth of problem size with respect to p to maintain a certain efficiency. The 

Figures 2.7.a and 2.7.b shows that if higher and higher efficiencies are desired for a large number of processors, 

it becomes increasingly difficult to obtain them. The E = 100% line illustrates this fact. That is, in order 

to achieve an efficiency of 100% for large p (p > 10), the problem size W needs to be sufficiently large. An 

improvement in the efficiency from 70% to 80% takes little effort, but it takes substantially larger problem 

sizes for similar increase in efficiency from 80% to approximately 100%. As indicated in section 5.1.5, the 

isoefficiency curves can be used to predict the performance for a larger number of processors. If the available 

number of processors is equal to 64 (which is the case in this study), then the problem size W required to 
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Figure 2.5: One iteration of preconditioned conjugate gradient algorithm with diagonal preconditioner for 

MESH3 on SGI Origin2000 

attain E = 100% will be nearly equal to 901,243.   Problem sizes of W = 659,412 and W = 413,549 are 

required for E =90% and E = 80% respectively. 

The following conclusions can be made from the scalability analysis figures and tables. 

• Figure. 2.3.a and 2.3.b shows that the predicted scalability analysis agree with actual scalability anal- 

ysis. 

• Isoefnciency function is linear (excellent) for element based domain decomposition conjugate gradient 

algorithm and the SGI Origin 2000 computing platform combination. 

• For MESH4 (297,576 nodes) an efficiency of 72.97% is attained with p = 64.  This is also confirmed 

from the scalability analysis (ref.   Table 2.3).   Hence isoefnciency scalability analysis can used to 
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Figure 2.6: One iteration of preconditioned conjugate gradient algorithm with diagonal preconditioner for 

MESH4 and MESH5 on SGI Origin2000 

predict accurately the problem size or the number of processors required given the number of available 

processors or the problem size to attained the desired efficiency for a given computing platform. 

2.3.3    Risk reduction box 

A complex three-dimensional structure commonly referred to as the risk reduction box geometry and man- 

ufactured by the RTM process is considered here. Since production and tooling cost are expensive for the 

RTM process, manufacturing simulations are necessary to avoid costly trial and error runs. From a computa- 

tional perspective, the considered mold geometry with geometric complexities and multiple material regions 

provides a basis to study the computational validity of the parallel implementation of the explicit control 

volume-finite element and the implicit pure finite element mold filling methods. 
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Figure 2.7: Isoefficiency curves for diagonal preconditioned conjugate gradient algorithm 

Predicted Actual 

E Slope W =nodes Slope W =nodes 

100% 16430.20 1,051,533 14081.93 901,243 

90% 10418.00 666,752 10303.32 659,412 

80% 6701.18 428,875 6461.716 413,549 

70% 4329.54 277,090 4308.81 275,763 

60% 2537.0 162,368 2517.21 161,101 

Table 2.3: Problem size prediction for PCG for p = 64 

A small finite element mesh consisting of 4,380 nodes and 8,670 three-noded triangular elements is considered. 

The mold is injected along the top edges of the risk reduction box geometry. Figures 2.8 and 2.9 shows the 

geometry and mesh used in the simulation. The fill contours obtained using the explicit control volume- 

finite element and the implicit pure finite element formulations are shown in Fig. 2.10.a and Fig. 2.10.b 

respectively. Isotropie permeability values of 1.0076E-6cm2 were used in the flat regions. In the corners of 

the geometry, permeabilities which are 100 times higher in magnitude were used to permit race tracking. 

Figure 2.12 shows the performance results for RTM mold filling using the explicit control volume-finite 

element algorithm with/without preconditioned conjugate gradient solver on the SGI Power Challenge. 

Figure 2.11 shows that there is a reduction in total execution time with a diagonal preconditioner which 

is greater than 60% for any number of processors.   The Figures. 2.11.b and Fig. 2.11.C shows that both 

S and E curves are almost identical for with/without diagonal preconditioner.   This fact is due to the 
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Figure 2.8: Risk reduction box geometry 

only operation count difference of the preconditioner solve M~lr which is 0(n/p) times more for a diagonal 

preconditioner. Henceforth, for the subsequent analysis, only the preconditioned conjugate gradient equation 

solver is considered. 

Figure 2.12 shows the difference in performance between the explicit CV-FE and the implicit pure FE 

mold filling approaches on the SGI Power Challenge and the SGI Origin2000. Earlier studies [6] concluded 

that computational cost-wise isothermal RTM mold filling simulation with the implicit pure finite element 

algorithm performs better than the explicit control volume-finite element algorithm as the former does not 

have restrictions on the time step size chosen. For one processor runs, the total execution time figures 

confirms this fact. A time step of Ai=1.0 sec was employed for the implicit pure finite element scheme which 

is sufficient to achieve good resolution of the total fill time. Total execution time curves shows that the SGI 

Origin2000 is a better parallel architecture than the SGI Power Challenge. The pure FE algorithm has lower 

execution time than the explicit CV-FE algorithm for any number of processors. However, in terms of S, 

E and /, the explicit CV-FE performs better than the pure FE approach on the SGI Power Challenge and 

the pure FE algorithm performs better than explicit CV-FE approach on the SGI Origin2000 (architectural 

issues). Figure 2.12.d shows that there is a monotonic increase in the value of /. As discussed in section 

5.1.4, this indicates that the loss of efficiency is only due to the communication overhead. Therefore, loss in 

performance due load imbalances are negligible. 

This section validates the parallel implementation of explicit CV-FE and implicit Pure FE approaches 

on both the SGI Power Challenge and the SGI Origin 2000 computing platforms. Also, it can be concluded 
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Figure 2.9: Finite element mesh of risk reduction box, 4,380 nodes and 8,670 elemen ts, MESH1 

that diagonally preconditioned conjugate gradient solver can be effectively used for RTM molding filling 

simulations. 

2.3.4    Commanche keel beam 

The previous example shows that an accurate parallel analysis can be performed using the methods under 

study. However, due to the very small number of elements involved, it is not a good test of the efficiency of 

the program. Hence, larger problem sizes were investigated. 

A geometrically complex large scale composite structure of the 24 feet keel beam is considered for the 

performance and scalability studies. The mesh geometries'for thin section process simulations involved 

two-dimensional triangular elements built in a three-dimensional space. The 24 feet keel beam geometry is 

shown in Fig. 1.2. The details of four different mesh configurations (MESH2, MESH3, MESH4 and MESH5) 

employed are shown in Table 2.1. 

MESH2 

Figure 2.13 shows the performance results with the explicit CV-FE approach on the SGI power challenge and 

the SGI Origin2000. In terms of 5, E and /, Fig. 2.13 shows the good performance and an approximately 

close to perfect speedup till 10 processors. However, the CV-FE algorithm with one processor run took 

126.2 hours on the SGI Power Challenge and 80.6 hours on the SGI Origin2000. The execution time was 

lowered to 4.2 hours using 32 processors on the SGI Origin2000. The mesh size ratio between MESH2 and 

MESH1 is «30. The total execution time wise ratio between MESH2 and MESH1 is «137 for the SGI 

power challenge and «190 for the SGI Origin2000. This clearly suggests that total execution time for the 

CV-FE algorithm for moderate size and higher size meshes are not within the Reasonable Time. In contrast 

the pure FE approach took 44.2 minutes with 1 processor and 4.2 minutes with 64 processors on the SGI 
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Figure 2.10: RTM mold fill contours 

Origin2000 which clearly shows the computational speedup of using the pure FE approach over the CV-FE 

approach. Henceforth, from practical considerations only the implicit pure FE approach was considered for 

subsequent large scale problem analysis. Figure 2.13 shows the performance results with the implicit pure 

FE algorithm on the SGI Origin2000. A time step size of 5.0 seconds was employed here. Figures 2.13.d 

and 2.14.d show that the values of / are highly irregular. As discussed in section 5.1.4, this indicates that 

there exists severe load imbalance and hence the loss in parallel performance. Also, it indicates that the loss 

of parallel performance due to communication overhead is small. The choice of good domain decomposition 

methods which preserve the flow front physics will reduce the load imbalance. 

MESH3 

Figures 2.18 and 2.19 show the performance results for MESH3 with the implicit pure finite element mold 

filling scheme. Here, a time step size of At =5.0 sec for the SGI Power Challenge and At =0.2, 1.3, 2.6, 5.0 

and 5.2 sec on the SGI Origin2000 were used. A maximum of 64 processors were employed for the study. As 

expected, it is clear from the previous examples (MESH1 and MESH2) and the present example (MESH3) 

that as the mesh size is increased, there is an increase in performance in terms of both speedup and parallel 

efficiency. 

Figure 2.18.e shows the PCG iteration count versus the percentage of mold cavity filled. The iteration count 

increases as the percentage of mold cavity is filled. This also justifies the use of the conjugate gradient 

iterative linear equation solver for the mold filling applications as opposed to the use of a direct solver. 

Figures 2.18.e and 2.18.f show that the conjugate gradient method takes very few iterations in the initial 

stages and it increases gradually. Thus the iterative solver takes less time in the beginning and gradually- 

increasing as opposed to the direct solver which takes a constant time for all mold filling iterations, thereby, 
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Figure 2.11: Explicit RTM mold filling algorithm and with/without preconditioned conjugate gradient solver 

for MESH1 and SGI Power Challenge 

increasing the overall execution time. 

Figure 2.18.a shows that the total execution time (Tp) decreases with increase in time step size. The 

reduction of the total execution time is due to the decrease in the total number of mold filling iterations with 

increase in time step size, Figure 2.18.b. The horizontal portion of the curves of Fig 2.18.b suggests that the 

implicit Pure FE mold filling algorithm tries to balance or conserve the resin mass and hence the increase 

in percentage of mold cavity being filled is very small. Therefore it can be said that the fluid flow front 

tracking algorithm is effectively inactive during horizontal portion of the curve. Hence, as the time step size 

is increased, the total number of mold filling iterations with the active front tracking algorithm increases 

and hence the increase in load imbalance between the processors consequently the decrease in performance 

5 and E. Figure 2.18.b shows that for At = 0.2, the total number of mold filling iterations with the front 
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Figure 2.12: RTM mold filling with CV-FE and pure FE algorithm MESH1 on SGI Power Challenge 

tracking inactive is more compared to the other time step sizes. This fact is also illustrated in Fig 2.19.d, 

where the value of / is highly irregular for At =5.0 sec and the value of / is fairly constant for At =0.2 

sec. Hence optimal performance (Tp, S and E) with sufficient flow front resolution is dependent on optimal 

selection of time step size At. 

Figures 2.18.C and 2.18.d show the number of sub-domains being filled with the percentage of mold filling. 

The pattern varies with the number of sub-domains (number of processor) and the time step size. Once a 

sub-domain is filled there is no need of front tracking in that sub-domain. Therefore, this is another cause 

of load imbalance. Ideally, there should be a steady increase in the number of sub-domains being filled from 

the start of the the mold filling run. Figure 2.18.C shows that after 70% of the mold fill, the sub-domains 

start being filled for p =7,9,10 and Fig 2.18.d shows that after 30% of mold fill, the sub-domains starts 

being filled for p =44.   This is also reflected in Fig. 2.19.d where for small p (p < 10), the values of / 
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Figure 2.13: RTM mold filling using explicit mold filling algorithm and preconditioned conjugate gradient 

solver for MESH2 on SGI Power Challenge and SGI Origin2000 

are highly irregular and for larger p (p > 10), the values of f is fairly constant. Thus parallel performance 

depends on sub-domain filling pattern which greatly depends on how the sub-domains are created (domain 

decomposition) and the flow front pattern in the mold (position of injection ports and time step size) with 

respect to the sub-domains. 

MESH4, MESH5 

Larger finite element meshes with 297,576 nodes and 594,756 triangular elements (MESH4) and 405,327 nodes 

and 809,505 elements (MESH5) are considered next. The performance results along with the performance 

results of the other meshes are shown in Fig 2.20. The figure clearly shows that as the mesh size is increased, 

the performance is also increased. A one processor run took about 108 hours and 187.68 hours on MESH4 
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Figure 2.14: RTM mold filling using implicit mold filling algorithm and preconditioned conjugate gradient 

solver for MESH2 on SGI Power Challenge and SGI Origin2000 

and MESH5 respectively. A 64 processor (Maximum available) run took 2.28 hours for MESH4 and a 40 

processor run took 4.72 hours for MESH5. An almost linear speedup of 24 and 40 is achieved for MESH4 

and MESH5 respectively. 

2.3.5    Parallel scalability analysis of pure finite element mold filling scheme 

When the parallel scalability of the whole scheme (which also includes linear solver) is considered, more 

consideration has to be given to the selection of problem size W. The choice can be either the number of 

elements or the number of nodes.  However, in the present study, the ratio of the number of elements to 

the number of nodes for the mesh sizes (MESH1 to MESH5) is nearly constant («2). Therefore, either the 

number of elements or the number of nodes can be chosen as the problem size W. It is also important to note 
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Figure 2.15: Finite element mesh of keel beam, 45,547 nodes and 89,945 elements 

that the present results of scalability analysis are only valid for number of elements to the number of nodes 

ratio being approximately equal to two. For any other ratios the scalability analyses have to be repeated. 

E Number of elements Number of nodes Slope 

100% 1,774,462 887,231 27725.97 

90% 1,345,570 672,785 21024.53 

80% 945,064 472,532 14766.63 

70% 569,493 284,747 8898.33 

Table 2.4: Mesh size prediction for p = 64 

In Figure 2.21 the experimental isoefficiency curves are plotted by experimentally determining the efficiency 

for different values of n (number of elements) and p and then selecting and plotting the (n.p) pairs with 

nearly the same efficiencies. There exists small inconsistencies in the plot which can be attributed to different 

time step sizes used and variation of boundary conditions from mesh to mesh. The effect of time step size 

on the parallel performance is discussed in section 5.2.4.2. 

Figure 2.21 suggests that the parallel finite element system (combination of parallel finite element algorithm 

and SGI Origin200 parallel architecture) is a highly scalable system since it only requires a linear growth of 

problem size with respect to p to maintain a certain efficiency. If the available number of processors is equal 

to 64 (which is the case in this study) then the problem size W (number of elements) required to attain E = 

100% will be nearly equal to 1,774,462 elements (887,231 nodes). For other efficiencies the required problem 

size is tabulated in Table. 2.4. For MESH4 (594,756 elements and 297,576 nodes) an efficiency of 73.9% is 

attained with p = 64. This is also confirmed from the scalability analysis (ref. Table 2.4). 
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Figure 2.16: Finite element mesh of keel beam, 135,492 Nodes and 269,835 elements 

2.4    Closure 

Parallel performance results are reported for the traditional explicit CV-FE mold filling scheme and the 

implicit pure finite element mold filling scheme via an element based domain decomposition with a diagonal 

preconditioned conjugate gradient linear equation solver (PCG). For the PCG algorithm, 1.77 Giga-flops 

performance is achieved with 64 processors and mesh with 297,576 degrees of freedom. The performance 

results are excellent when compared to other relevant results published in the literature for parallel finite 

element analysis. The finite element meshes considered and the results obtained illustrates the practicable 

applicability of the parallel finite element formulations. Performance results of the thread model implemen- 

tation is almost the same as that of the MPI model implementation. Henceforth, for maximum portability 

of the program, MPI implementation is the better choice of the two. 

Scalability analysis showed that the implicit pure finite element method is highly scalable and requires only 

a linear growth of problem size with respect to the number of processors to maintain a certain efficiency. 

The scalability analysis suggests that to achieve 100% efficiency, the required mesh size needs to be nearly 

equal to 1,774,462 elements and 887,231 nodes and for 90% efficiency a mesh size of 1,345,570 elements 

672,785 nodes is required. Also, the scalability analysis showed (see Table. 2.3) that the parallel diagonally 

preconditioned conjugate gradient (PCG) parallel system (PCG algorithm with SGI Origin2000 parallel 

architecture) is highly scalable and requires only a linear growth of the problem size with respect to the 

number of processors to maintain a certain efficiency. The scalability analysis (see Table. 2.4) of the PCG 

suggests that to achieve 100% efficiency the required mesh size needs to be nearly equal to 901,243 nodes, 
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Figure 2.17: Fill contours for 24 feet keel 

and for 90% efficiency, a mesh size of 659,412 nodes is required. 

On an SMP running a full featured operating system, the operating system and its demons (demons include 

network demons, file system, accounting, message logging etc.) can consume enough CPU resources to cause 

performance problems for applications which use static load balancing schemes. It is observed that on an 

SMP with p processors (64 in the case SGI Orgin2000), the application user may want to use only p - 1 

processors, leaving the last for the operating system. 
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Figure 2.19: RTM mold filling with pure FE approach and a preconditioned conjugate gradient algorithm 

with diagonal preconditioner for MESH3 on SGI Origin2000. 
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Figure 2.20: RTM mold filling with pure FE approach and the preconditioned conjugate gradient algorithm 

with diagonal preconditioner for MESH1-MESH5 on SGI Origin2000. 
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Concluding Remarks and Future 

Directions 

3.1    Introduction 

The objectives of the present efforts were to implement and investigate the computational modeling and sim- 

ulation techniques and developments encompassing: (a) parallel computations on symmetric multiprocessors 

(SMP) and its performance and important issues related to these topics, (b) computational algorithms for 

providing general parallel finite element modeling analysis and important issues such as performance and 

portability, and (c) implementation of parallel computational algorithms for mold filling techniques through 

the use of finite element analysis. Specifically, free surface flow problems in resin transfer molding that occur 

during resin impregnation of fiber preforms inside complex mold cavities which are characterized by the 

pressure driven flow fields have been investigated. At this juncture, the following conclusions are drawn: 

3.1.1    Parallel computations on symmetric multiprocessors (SMP) 

• Current generation SMP's with medium to large number of processors can be effectively used as a 

supercomputer (Massively Parallel Platforms, MPP) for large scale complex geometries in scientific 

and engineering problems. 

• Message-passing programming models perform almost equal to that of thread based programming 

models. 

• As combined architecture model is rapidly becoming available and also future research appears to be 

heading in this direction, it is necessary to develop parallel programming models for the same. The 

following programming models can be immediately envisioned for the combined architecture model: 
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1 Hybrid thread and message-passing model: With n processes over s SMP's with threads 

communicating via shared-address space within SMP and message-passing between SMP through 

sockets. 

2 Message-passing MPI model: MPI model with n process over s SMP's with shared memory 

message-passing within a SMP and message-passing between SMP through sockets. In the FEM 

context, partition the mesh into several sub-meshes equal number of SMP's (s) and then partition 

each sub-meshes further to equal to the number of available processors (p) in each SMP. 

3 Hierarchical MPI communication model: In this case, tasks within a SMP may be divided 

into several groups, with shared-memory communication between tasks within a group, and sock- 

ets between groups within the same SMP. Tasks between SMP communicate via sockets. In the 

FEM context, partition the mesh into several sub-meshes equal to the total number of available 

processors (s xp). 

Via this study, option 1 is eliminated as thread model implementation results are almost same as of 

MPI implementation. This makes option 2 and 3 to be investigated further. 

3.1.2 Computational algorithms for providing general parallel finite element 

applications 

• Mesh partitioning with message-passing algorithms provide coarse grain parallelism with high degree 

of concurrency and data locality. It also provides portable programs for a wide range of parallel 

architectures without compromising performance. 

• With the above mentioned frame work and with the proper selection of algorithms for solving sub- 

problems (linear solver, stiffness assembly, etc.) inside the finite element analysis and with element 

based mesh partitioning schemes, minimum modification is required for the 'old' serial codes to be 

used in parallel architectures without compromising the performance. 

• Experimentally measured serial fraction characteristics can be an effective diagnostic tool to find out 

causes for performance loss in the parallel algorithm implementation. 

• Parallel scalability analysis in terms of isoefficiency function is an effective tool for parallel computation 

performance evaluation. It can be effectively used to predict the mesh size or number of processors 

required to obtain certain efficiency from parallel computing systems, given the number of available 

processors or mesh size apriori respectively. 

3.1.3 Parallel computational algorithms for Resin Transfer Molding 

• Implicit pure finite element mold filling algorithm is computationally superior compared to the explicit 

control-volume finite element algorithm (CV-FE) on different computational platforms (SGI Power 



Challenge and SGI Origin2000). For large scale problems CV-FE algorithms become impossible to 

analyze within Reasonable Time or realistically impossible even with parallel processing for large scale 

problems. 

• CV-FE algorithms have better load balance among the parallel processors than the implicit pure FE 

algorithm as in the former case only few control volumes gets filled in each mold filling iteration. 

• The overall effectiveness of both the computational methodologies for practical applicability to complex 

composite structure was demonstrated. 

3.1.4    Recommended areas for future Directions 

• Investigate the proposed parallel methodology on other SMP's with different interconnection network 

and also on message-passing parallel architecture such as cluster of workstations over Ethernet and 

cluster of SMP's. 

• Investigation of element based domain decomposition conjugate gradient algorithm with different ad- 

vanced preconditioners such as incomplete Cholesky factorization. 

• Investigation of other existing conjugate gradient like iterative linear solvers. 

• Investigation of direct linear equation solvers such as the Schur complement method with iterative 

solver for interface solution and Cholesky factorization method with nested dissection type reordering. 

• Investigation of multi-disciplinary (flow, thermal, and structural interactions) parallel finite element 

analysis on SMP's. 
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