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FOREWORD 

The 21st Conference on the Design of Experiments in Army Research, 
Development and Testing was held 22-24 October 1975 in Washington, DC. 
The Conference, which took place at the Walter Reed Medical Complex, had 
two hosts: the Walter Reed Army Medical Center and the Armed Forces 
Institute of Pathology. Both hosts furnished excellent conference rooms 
and meeting rooms for this symposium. Planning for these meetings re- 
quires painstaking attention to detail and we are indebted to Dr. Walter 
D. Foster and Dr. James N. Young, both of the Armed Forces Institute of 
Pathology, for serving well as Chairmen for Local Arrangments. We are 
pleased that Major General Robert Bernstein, Commander of the Walter Reed 
Army Medical Center, opened the Conference and welcomed us. This is not 
the first meeting to be held at the Walter Reed installation. On each 
occasion, the reception given us has been excellent, and we look forward 
to meetings there again in the future. 

There were four addresses by invited speakers. Traditionally an 
attempt is made by the Program Committee to have expository talks on 
themes somewhat pertinent to the mission of the Army installation at 
which the annual conference is held. Success along these lines was 
achieved again. The first address was given by Frederick Mosteller of 
Harvard University, who spoke on "Success in Social and Medical Experi- 
mentation." Dr. Mosteller was given, at his request, two hours to de- 
liver his address. Normally, there would have been five invited addresses, 
but the length of Professor Mosteller's talk led to four at this meeting. 
Dr. Mosteller's talk was given at the first morning of the Conference 
and was followed in the late afternoon by two papers on clinical trials. 
There has been much in the medical and statistical literature on this 
topic. Professor Edmund A. Gehan of the University of Texas System 
Cancer Center spoke on "Non-randomized Clinical Trials" and Professor 
Paul Meier of the University of Chicago addressed the audience on 
"Randomized Clinical Trials." On the second day of the Conference, 
Professor Seymour Geisser of the University of Minnesota gave an in- 
vited address on "Predictive Sample Reuse." This was followed on the 
morning of the last day of the Conference by a talk on "Normality and 
Disease" given by Professor Edmond A. Murphy of the Johns Hopkins 
Medical School. 

One major purpose of the Conference is to bring together those 
engaged in scientific work in Army installations with investigators 
from other government agencies and those from university life. This 
interaction has been going on successfully since the inception of the 
program. Statisticians and others in Army installations discuss their 
work at technical sessions and clinical sessions at each annual con- 
ference. For this Conference there were seven technical sessions com- 
prising 24 papers and four clinical sessions. At the clinical sessions 
a panel of experts responds to problems raised by those in Army instal- 
lations who have usually given advance manuscript copies to the panelists. 

m 



Besides the technical aspects, these sessions provide a source for 
initiating future collaboration between scientists in Army installa- 
tions and those in university life. 

At the start of this year's opening session, Dr. Walter D. Foster 
was honored with a Certificate for Achievement for the valuable con- 
tributions he made during his twelve years as Chairman of the Probability 
and Statistics Subcommittee of the Army Mathematics Steering Committee. 
He was specifically cited for "continuously and vigorously crusading 
for application of sound statistical principles and methodology to 
problems in Army research and development." 

On the evening of the first day of the Conference, a banquet is 
held at which the Samuel S. Wilks Memorial Award of the American 
Statistical Association and the Department of the Army is presented. 
At this meeting the 11th award was presented by Lester Frankel, Presi- 
dent of the ASA, to Dr. Herbert Solomon, Professor of Statistics, Stan- 
ford University. The award was made to Dr. Solomon for his significant 
contributions to statistical methodology and for his outstanding contri- 
butions in the application of statistics in the service of the nation. 

The Army Mathematics Steering Committee sponsors these meetings on 
behalf of the Office of the Chief of Research and Development and Ac- 
quisition to bring new developments in statistics to Army scientists 
and engineers and to expose them to thinking that could be profitable 
to them in the execution of their missions. The Committee has asked 
that the proceedings of the Conference be published and issued Army- 
wide and to other scientific communities. 

At the beginning of each calendar year the program committee for 
these conferences is selected and meets in Washington, DC, to suggest 
areas of interest, to outline a program, and to suggest speakers for 
the meeting to be held later that year. I would like to express my 
appreciation to Dr. Frank Grubbs, Program Chairman for this year's 
committee, and to Dr. Douglas Tang, Chairman of the Subcommittee on 
Probability and Statistics, Army Mathematics Steering Committee, for 
their efforts and great help. My thanks also go to other committee 
members involved in developing this year's program: Drs. David W. 
Ailing, Gary A. Chase, Walter D. Foster, Bernard Harris, J. Stuart 
Hunter, Clifford J. Maloney, Badrig Kurkjian, Marvin Schneiderman. 
Francis Dressel, as always, was helpful in many ways in making sure 
the program was a success. Thus many hands helped in guiding this 
Conference to a successful conclusion, and this is very much appre- 
ciated. 

Herbert Solomon 
Conference Chairman 
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INVESTIGATIONS OF INTERFACE BETWEEN 5.56MM BULLETS 
AND RIFLING CONFIGURATIONS 

DENNIS J. CONWAY 
MUNITIONS DEVELOPMENT & ENGINEERING DIRECTORATE 

U . S.". ARMY FRANKFORD ARSENAL 
PHILADELPHIA, PA 

Abstract.  The interface between 5.56mm ball and tracer bullet 
designs and various rifling configurations are examined to 
determine the effects on ballistic performance and mechanical 
integrity as would be experienced under general purpose 
machine gun operational modes. 

Two modes of projectile failure are examined against 
light machine-gun system design criteria.  Based on these 
results, optimum rifling configurations are identified for 
use in a machine-gun system. 

Verification of these optimized rifling designs through 
experimentation are discussed. 

1.  Introduction.  Initial interest in the study of those 
parameters effecting barrel/bullet interface was generated 
at Frankford Arsenal under the 6mm tracer program. At that 
time, the 6mm ball and tracer cartridges were the prime 
ammunition candidates for the Squad Automatic Weapon (SAW), 
and consequently great concern was expressed at a high 
incidence of tracer projectile failures (break-up) then 
being observed during both test barrel and weapon barrel 
performance tests. 

Table 1 categorizes various tracer projectile malfunctions 
from four and six-groove, plated and unplated weapon and test 
barrels.  This chart shows the frequency of projectile failures 
from four-groove plated weapon barrels and to a lesser degree 
in four-groove plated test barrels. 

As a result of this high incidence of projectile failure, 
an analytic stress study was undertaken to examine certain 
modes of failure which could explain the type of projectile 
break-up being exhibited. 
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2.  Stress Evaluation.  The typical 6mm tracer failure as 
observed in recovered projectiles was evidenced by a radial 
flaring of the projectile base and longitudinal  separation 
of the projectile jacket, as if the pyrotechnic column 
exploded after muzzle exit. 

The modes of projectile failure examined in the initial 
stress study were: 

a. The shear deformation or out-of-roundness occurring 
in the projectile jacket. 

b. The stress field encountered by the projectile 
jacket after engraving and during acceleration of the projectile. 

Shortly after the initiation of the stress study, DA 
guidance was received eliminating the 6mm concept from 
inclusion as a SAW contender.  Developmental efforts were 
redirected towards the consideration of a 5.56mm Sffl 
ammunition contender, which was easily included in the analytic 
study.  Shown in Table 2 are the pertinent projectile 
characteristics for the 5.56mm concepts under development. 
In selecting an ammunition design as a SAW contender, several 
design criteria were applied to the analysis in order to 
define the use of the projectile and weapon barrel in a light 
machine-gun role.  These design criteria are outlined in 
Table 3.  In addition to these design parameters addressing 
projectile integrity, any interior bore configuration must 
satisfy other basic performance requirements such as projectile 
accuracy, barrel life under machine-gun firing schedules, 
interior ballistics, terminal effectiveness and high rate 
manufacture by current methods. 

The effect of shear deformation on the projectile integrity 
was considered by applying thin-ring theory to the projectile 
jacket with "n" distributed forces being applied corresponding 
to the number of lands.  The results of the analysis indicated 
that during the engraving process it is desirous that the 
pressure under the land be as large as possible for any given 
deflection.  The reason for this is that the engraving is 
caused by the jacket material becoming plastic, and the smaller 
the deflection that is encountered when the material goes 
plastic, then the less out-of-roundness that will be incurred 
by the jacket.  When considering this result relative to the 
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pressures and deflections induced by four and six-groove 
barrels, the results clearly indicate that the six-groove 
configuration is clearly superior to the four-groove even 
when comparing a six-groove barrel with minimum land height 
to a four-groove with a maximum land height. 

The stress field developed on the jacket after engraving 
and during acceleration was addressed by considering a 
pressure gradient acting from the bottom to the top of the 
engraved surface.  By relating this pressure distribution 
to the depth of engraving, minimum values of engraving depth 
were calculated such that the probability of jacket shearing 
is reduced.  This minimum depth of engraving was shown to 
be .0017 in. for the four-groove barrel and .0011 in.for the 
six-groove.  These minimum engraving depths were applied to 
the analysis in determing optimum bore configurations. 

Optimum Bore Dimensions and Projectile Compatibility.  When 
considering the minimum engraving depths required together 
with the pertinent design criteria and projectile dimensions, 
it is possible to compute optimum rifling dimensions such that 
the types of system failures considered will be minimized._ 
This was done for the projectiles being developed by relating 
the minimum engraving depths required such that jacket shear 
does not take place as a function of projectile diameter, 
bore diameter, barrel temperature, jacket deformation_due to 
engraving and land wear.  This relationship is shown in 
equation 1-1. 

(1-1)     le  =  Rp - Rbo (1 + aAT ) - Wb - uLy 

where,   le = minimum engraving depth required 
Rbo = bore radius or land radius 
Rp = projectile radius 
a = coefficient of thermal expansion 

AT = barrel temperature gradient under hot condition 
Wi-, = barrel wear 

u = jacket displacement before yielding 

By solving equation 1-1 for Rbo, the land diameter suited 
to each projectile design can be found.  The optimum groove 
size was derived such that the smallest projectile diameter 
used in the bore will have the same diameter as the groove 
at its highest temperature as shown in equation 1-2.  This 
would correspond to the barrel temperature reached under 
sustained firing schedules. 



(1-2)    DG =   
DP min  ,  where D-, = groove diameter 

1 + aAT _      . .       -,.••, Dp = minimum projectile 
diameter 

a = coefficient of 
thermal expansion 

AT  = barrel temperature 
gradient 

The optimum barrel dimensions calculated using equations 
1-1 and 1-2 are shown in Table 4.  Note that configurations 
1 and 2 are optimum based on tracer projectiles of differing 
diameters while configuration 3 considers an increased land 
height for larger barrel wear over configurations 1 and 2. 
Standard 5.56mm barrel dimensions are shown as reference. 

A numerical exercise was performed utilizing the optimum 
rifling dimensions and projectile dimensions to demonstrate 
the range of in-bore interferences and clearances possible 
under "best" and "worst" design conditions.  Table 5 summarizes 
the results of this exercise giving a range of interference/ 
clearance values for both standard 5.56mm bore configuration and 
optimized configurations.  To properly compute these interference/ 
clearance values, the following parameters were considered: 

a. minimum and maximum bullet diameters (ball and tracer) 
b. minimum and maximum land and groove diameters 
c. .0005 in. diametrical land wear 
d. diametrical bore expansion at 1250 F 

Table 6 lists the equations used to compute the ranges 
of interference/clearance and minimum land height values. 
In comparing the standard barrel designs with the optimized 
cases, it is important to view these results in a strictly 
statistical sense in that projectile deformation into the 
barrel grooves was not considered.  However, despite the 
rather static condition under which these numbers were 
generated, a major difference among designs can be noted. 
In all cases, the optimized designs exhibit a greater 
projectile/barrel interference, or lesser projectile/barrel 
clearance than the standard barrel dimensions.  This important 
difference is the direct result of attempting to accommodate 
differing ball and tracer projectile diameters while insuring 
satisfactory system performance over a temperature range from 
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ambient to 1250 F.  These design parameters are further 
aggravated by considering land wear. 

Comparing the interferences and clearances shown in 
Table 5 with the minimum required land engagement of .0011 
in. for six-groove configurations shows possible problem 
areas.  Despite the fact that the minimum land heights under 
worst conditions exceed this .0011 in. requirement, it is 
not necessarily true that proper engraving will occur. This 
situation occurs in the 5.56mm standard six-groove design, 
for both ball and tracer comparisons.  Although the minimum 
land height at 1250 F is adequate for the required .0011 in. 
engraving, this engraving cannot occur if the projectile/ 
land interferences run as low as .0005 in., as it does for 
the tracer.  This minimal interference could lead to a 
serious skidding problem. 

Experimental Evaluation.  The accuracy of the analysis, 
as well as the suitability of any barrel design to field use, 
can only be verified through extensive testing.  Toward 
this end, a quantity of barrels of various configurations 
has been procured for evaluation of system performance 
levels.  Table 7 is a matrix showing the quantity and types 
of barrels which will be the core of an exhaustive barrel 
performance program.  These barrels will be tested along 
with approximately 45,000 rounds of 5.56mm ball and tracer 
ammunition against current SAW performance requirements 
so that sufficient statistical significance is obtained, 
pointing to a singular rifling configuration. 

Plans for testing currently envision adhering to current 
acceptance standards for 5.56mm and 7.62mm ammunition and 
will mirror sample sizes of barrels and ammunition contained 
therein. 
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TABLE 7 

5.56MM (SAW) AMMUNITION/WEAPON INTERFACE 

BARREL MATRIX 

>v    BARREL 
N.   TYPE 

BORE     N. 
CONFIGURATION^^ 

ACCURACY PRESSURE WEAPON* 
(CHROMED) 

WEAPOl 
(UNCHROl 

QUANTITY 

STANDARD 5.56MM 
RIFLING 

2 2 3 2 

6-GROOVE BORE 
1 IN 12 TWIST 
UNDERSIZED TRACER 
(CONFIG. 1) 

2 2 3 2 

6-GROOVE BORE 
1 IN 11 TWIST 
UNDERSIZED TRACER 
(CONFIG. 1) 

2 2 3 2 

6-GROOVE BORE 
1 IN 12 TWIST 
BALL SIZE TRACER 
(CONFIG. 2) 

2 2 3 2 

6-GROOVE BORE 
1 IN 11 TWIST 
BALL SIZE TRACER 
(CONFIG. 2) 

2 2 3 2 

6-GROOVE BORE 
1 IN 11 TWIST 
INCREASED LAND HEIGHT 
FOR ECCENTRICITY 
(CONEIG. 3) 

2 2 3 2 
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DESIGN OF EXPERIMENTS DEALING WITH MAN-MACHINE INTERFACE 

IN CURRENT COMMUNICATIONS SYSTEMS 

R. J. D'Accardi and H. S. Bennett, U.S. Electronics Command, 
Fort Monmouth, New Jersey 

J. R. Hennessy, U.S. Army MERDC, Fore Belvoir, Virginia 

ABSTRACT. Recently, the US Army Electronics Command has supported experiments 
dealing with man-machine interface problems occurring in Tactical Communications 
Systems. The aim was to characterize communications system operators' per- 
formance under various environmental conditions related to tactical operations. 
The study was directed towards system equipment such as the standard teletype 
and optical-read-only terminal equipments. Using these devices, the signifi- 
cance of acoustic noise and ambient light on operator performance was studied 
under sixteen combinations of environmental conditions. 

The object of this presentation is threefold. First, we discuss the methods 
of evaluating message transfer over man-machine interfaces to include audio 
and visual. Second, we discuss the design of the experiment and modeling to 
determine the operator characteristics under different environmental conditions, 
and third, we present statistical estimates of: (a) the effects of the 
controlled variables (ambient light and acoustic noise) upon the transcription 
accuracy of several operators, (b) measures of experimental error to define 
a range of values, for a prescribed level of confidence, within which the 
true value of the estimates may be found, and (c) the most significant 
combinations of environmental effects on operator performance. Several multi- 
variate regression models which characterize operator performance are 
presented and the criteria for choosing the best model are discussed. 

INTRODUCTION. Information gained in evaluating and solving man-machine 
interface problems that occur in complex communications systems is extremely 
important to systems engineers committed to the mission of the design and 
fabrication of future generations of equipment. Sophisticated systems of 
Command and Control, computer-aided man-in-the-loop systems (e.g., manned 
space craft), human response to audio and visual displays, management functions, 
pattern recognition, man-computer languages, cutaneous communication and many 
other facets are of concern where an operator must perform a control task, or 
decision task. At present there is a large volume of on-going work oriented 
towards man-machine interfaces which span the projected needs of the Armed 
Forces. For example, work in progress by the Naval Electronics Systems 
Command, 6570th Aerospace Medical Research Laboratory, DA ARI for the 
Behavioral Sciences, ECOM and HEL (to name a few) generally deal with evalu- 
ation of complex system interfaces, assessment of operator performance 
capabilities for a wide variety of tasks, analysis of manual functions into 
tasks, analysis of human control functions, and the physical and psychological 
characteristics which affect the assessment of operator performance capa- 
bilities. Much of the on-going work concerns the psychological and 
physiological aspects of command and control in tactical operations, weapons 
systems, vehicles management, logistics, and communications. Some of the more 
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specific areas of investigation are: 

1. Work/rest schedules and effects on man-machine performance. 

2. Utilization of Bio-electric phenomena to automatically control 
complex systems. 

3. Measures of operator performance under different mixes of equipment, 
personnel and procedures. 

4. Physiological aspects (fatigue, alertness, metabolism, endocrine 
gland functions, and central nervous system) of operator efficiency 
and man-machine interface. 

5. System simulation to study the impact of operator performance on 
complex systems as a function of environmental threat, mission, and 
work load stress. 

6. Army Tactical Flight operations under adverse visibility conditions. 

7. Influence of USAF operational environments on air crew utilization. 

Examination of ongoing research in these areas indicate that there is 
no clear cut procedure to evaluate the human subsystem in a sophisticated 
communications system or the effects of environmental stress on operator 
performance. Army communications requirements in a tactical situation often 
require 24 hour operations and personnel are required to work either on 
standard or unpatterned and frequently extended duty schedules, in a variety 
of environments, each characterized by multiple stresses occurring in a _ 
random manner. For example, the accuracy in reading an optical display is 
dependent on many variables such as number of lines, characters, ambient 
lighting, environmental noise, speed of display, correction time, back-log, 
operator physiology (e.g., mood, fatigue, attention, and training), display 
brightness and size, and effective signal-to-noise ratio (legibility) to 
Name a few. Since future Army requirements include optical display terminals, 
it is essential to provide insight into those variables that affect accuracy 
through the man-machine interface and the effects caused by physiological 
factors. To answer the Army's need for measures of man-machine interfaces 
which occur in communications systems and to enhance the design of future 
families of equipment, this report will address teletype operator^per-_ 
formance as the environmental factors of ambient light and acoustic noise 
are varied. The design of the experiment performed at Ft. Monmouth, New 
Jersey during April and May 1975 and results are discussed. Experimental 
results and several models are presented which show the significance of 
these variables on experienced teletype operators. 
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DESIGN OF THE EXPERIMENT. The significance of acoustic noise and ambient 
light on operator performance was investigated using a visual display 
transmission device, see figure 1. This is a visual terminal designed to 
interface with computers or store-and-forward devices. Primarily, it is 
a developmental equipment intended to visually present messages on a CRT 
display where an operator can see and correct his message prior to transmission. 
The advantages of this equipment over the standard military teletypewriter 
were not addressed in this experiment. 

The experiment consisted of testing the transcription accuracy of six 
experienced communications-center operators under 16 combinations of 
environmental conditions. Ambient light was varied at four levels, ranging 
from 24 ft-candles to 3 ft-candles, and acoustic noise was concurrently 
varied at four levels ranging from 55 dBa to 95 dBa. Sound pressure level 
(SPL) measured in dBa is in reference to .0002 dynes/cm2. This is con- 
sidered the threshhold of hearing and is roughly equivalent to a leaf 
"falling" on a quiet day. The 55dBa level was considered the quiet 
condition where only the inherent noise from the terminal equipment, sound 
room noise, and thermal noise were recorded. The 95dBa level represented 
an extremely annoying and distracting "pink" noise. The noise-power per 
unit frequency for this type of noise is inversely proportioned to frequency 
over a specified range and slopes down at 3dB per octave from 20Hz to 20KHz. 
These characteristics are more common to conference type noise where the 
higher and lower frequency components characterize motor and equipment 
noises. Pink noise was also used because it has relatively constant energy 
per octave-bandwidth. The 24 ft-candle light level compared favorably to the 
Army Corps of Engineers standard for office lighting. The other chosen levels 
of 12, 6 and 3 ft-candles, respectively, represented successively deteriorating 
ambient light conditions. Throughout the testing, the brightness of the visual 
display was constant. 

For each test the operator was required to type his name, treatment 
combination, and date as part of the message, see figure 2. The messages for 
the experiment consisted of forty random-letter word groups of five 
characters each. They were derived through a random number generator and an 
alphanumeric conversion. No message was a duplicate nor were they duplicated 
by any of the operators on either terminal equipment. The random letter 
format was used so that the operator could not identify or recognize message 
words and therefore would have to concentrate on the given formats to avoid 
making transcription errors. The aim of the experiment was to vary the 
environmental variables and to observe the accuracy and speed of transcribing 
the random letter formats as a function of these variables. The response 
variable, accuracy, was the measure of transcription errors that each operator 
committed per message format. The errors considered were the following: 

1. transposition 

2. missing letter 

3. extra letter 
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4. incorrect space 

5. extra line feed 

6. missing word groups 

7. wrong letter 

8. line out of sequence (skipped line inserted after detection) 

9. word group out of sequence 

The results were compared to an acceptable operator norm, i.e., typing a 
message format on a standard teletype terminal (see figure 3) under 
the same conditions. Each operator was tested in four sessions, each session 
programmed for eight random environmental combinations, four for each 
terminal equipment, where tests were alternated between the optical display 
and the standard teletypewriter. This was done to reduce the effects of learning, 
A thirty minute familiarization period was given each operator prior to the 
tests, and a standard instruction sheet was distributed during this period 
to insure uniform orientation with the equipment and with the purpose and 
procedure of the experiment. 

The effect of any environmental combination is considered to be the sum 
of three effects, namely, those of sound, light, and the interaction of 
light and sound. To adequately analyze these effects, a two-level factorial 
experiment was formulated with six replications. The four levels of acoustic 
noise are combined with the four levels of ambient light giving 4 x 4 or sixteen 
treatment combinations. For a two-factor factorial experiment with n 
observations per cell, run as a completely randomized design, [1] , [2J » a 

general model is: 

Yijk = u + A1 + Bj + A^j + ek(1j) 

where Y is the response variable, i.e., the number of transcribed errors, and 
A and B are the main effects of light and sound, AB is their interaction, e is 
the experimental error, (i.e., the extent to which the observed data and the 
general model disagree) and their respective levels are i = 1,2,3,4; j = 1.2.3,4, 
with k = 1,2 6 observations per cell. The interaction term adjusts for the 
failure of either one of the main effects to remain constant for each level 
of the other. The test runs were randomized as shown in table I. This was 
done to minimize the effects of training. 
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Figure 3 - Teletypewriter Terminal 
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TABLE 1 

TREATMENT SCHEDULE PER OPERATOR 

Environmental Treatment 
Combinations 

Opt ical Teletype 
Session Run Dis play Terminal Terminal 

I 1 1,4 3,1 
2 4,3 4,4 
3 3,2 2,2 
4 2,1 1,3 

II 5 3,1 4,1 
6 4,4 1,2 
7 2,2 3,4 
8 1,3 2,3 

III 9 4,1 2,4 
10 1,2 3,3 
11 3,4 1,1 
12 2,3 4,2 

IV 13 2,4 1,4 
14 3,3 4,3 
15 1,1 3,2 
16 4,2 2,1 

(Treatment = (Ambient Light Level, Acoustic Noise Level) 

Ambient Light 
Level Value 

1 24 ft-candles 
2 12 ft-candles 
3 6 ft-candles 
4 3 ft-candles 

Acoustic Noise 
Level  Value 

1 55 dBa 
2 70 dBa 
3 80 dBa 
4 95 dBa 
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ANALYSIS: The following ANOVA tables and statistical estimates were formu- 
lated to analyze the transcribed errors for the standard teletype terminal and 
for the optical display terminal (tables II, III, IV and V): 

TABLE II 

ANOVA FOR STANDARD TELETYPE TERMINAL 

Source Sum or Squares 
Degrees of 
Freedom Mean Square Error "F" ratio 

Ambient Light, A.,- 55.94 3 18.65 0.33 

Acoustic Noise, B. 
J 

99.70 3 33.23 0.59 

Interaction, A.B. 
i J 

109.93 9 12.21 0.22 

Error, E. ,... 
k(ij) 

4494.67 80 56.18 

TOTAL 4760.24 95 

TABLE III 

ANOVA FOR THE OPTICAL DISPLAY TERMINAL 

Source Sum of Squares 
Degrees of 

Freedom Mean Square Error "F" ratio 

Ambient Light 65.28 3 21.76 0.32 

Acoustic Noise 276.03 3 92.01 1.35 

Interaction 55.18 9 6.13 .10 

Error 5437.50 80 67.97 

TOTAL 5840.12 95 

21 



TABLE IV 

STATISTICAL ESTIMATES OF TRANSCRIBED ERRORS 
FOR THE TELETYPE TERMINAL 

Ambient 
Light Level Statistic 

Acoustic 
55dBa    70 dBa 

Noise Level 
80 dBa 95 dBa 

For All 
Sound Levels 

24 ft-candles T 

Y 

3.0 
1.87 
0.84 

5.8 
3.96 
1.77 

5.8 
3.7 
1.66 

6.2 
6.42 
2.87 

5.7 
4.23 
0.95 

12 ft-candles T 
SY 

S- 
Y 

2.2 
2.17 
0.97 

6.8 
2.59 
1.16 

6.8 
5.54 
2.48 

9.8 
8.47 
3.79 

6.4 
5.63 
^  26 

6 ft-candles Y 

by 

5.0 
3.94 
1.76 

3.8 
2.59 
1.16 

5.0 
6.2 
2.77 

7.2 
4.6 
2.06 

5.25 
4.34 
0.97 

3 ft-candles 1 
SY 4 

4.4 
3.36 
1.50 

4.0 
4.95 
2.21 

3.8 
3.03 
1.36 

4.2 
1.79 
0.80 

4.10 
3.19 
0.71 

Overall 

For All Light 
Levels 

7 

by- 

4.15 
3.30 
0.74 

5.10 
3.60 
0.80 

5.35 
4.55 
1.02 

6.85 
5.76 
1.29 

5.36 
4.43 
0.50 
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TABLE V 

STATISTICAL ESTIMATES OF TRANSCRIBED ERRORS FOR THE 
VISUAL DISPLAY TERMINAL 

Ambient 
Liqht Level 

24 ft-candles 

Statistic 

T 
sY 

Acous 
55 dBa 

3.4 
2.7 
1.21 

tic Noise 
70 dBa 

Level 
80 dBa 95 dBa 

for All 
Sound Levels 

5.80 
4.76 
2.13 

6.20 
5.17 
2.31 

9.2 
4.82 
2.15 

6.15 
4.61 
1.03 

12 ft-candles Y 
S 
S* 

Y 

6.8 
3.77 
1.69 

5.0 
2.77 
1.24 

7.0 
2.45 
1.10 

8.60 
6.35 
2.84 

6.9 
3.99 
0.89 

6 ft-candles T 
S 

4 
5.0 
3.16 
1.41 

5.2 
2.39 
1.07 

6.2 
3.96 
1.77 

5.6 
4.16 ; 
1.86 

5.46 
3.28 
0.73 

3 ft-candles T 

sv 

6.0 
3.67 
1.64 

5.2 
3.42 
1.53 

5.4 
5.5 
2.46 

8.2 
4.71 , 
2.11 

6.2 
4.23 
0.94 

Overall 
For All Light 
Levels 

Y 

sY 

5.3 
3.34 
0.75 

5.35 
3.18 
0.71 

6.20 
4.11 
0.92 

7.90 
4.87 
1/09 

6.19 
4.00 
0.45 

Although one might expect that acoustic noise and ambient light would 
strongly affect the production of transcription errors, no conclusive 
statistical significance as to environmental effects can be adjudged 
from the data. Examination of the MSE, however, shows that acoustic noise 
has a stronger effect on error production than either the Ambient Light or 
the interaction of the two (see tables II and III). Tables IV and V show, 
for all light levels, the average transcription error production 
increased by about 60%. For all sound levels, the transcription 
error did not vary significantly. 

The operators chosen were all of the same minimum proficiency, each 
able to transcribe messages at 60 w.p.m., with the exception of one 
trainee. Thus, examining the variation of transcription errors for the 
visual display terminal at 70 dBa (see table V) for light levels below 
24-ft candles, the mean Y and standard deviation, Sy, decrease from the 
55 dBa values, then increase as noise is increased to 95 dBa. 
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Interviews with the subjects seem to indicate that 70 dBa is the approxi- 
mate level of noise to which they are accustomed, and therefore they were 
less distracted by environmental changes in ambient light at this sound 
level. The findings indicate that for the visual display terminal under 
quiet conditions (i.e., at 55 dBa, the noise below standard comcenter 
Operational levels) at lower levels of Ambient Light, more errors were 
made than at normal operating (70dBa) level. The effect of noise at the 
higher levels (80 and 95 dBa) indicates the variability and adaptability 
of the operators to acoustic and photic noise. It was also noted (as was 
expected with the visual display terminal) that changing light levels had 
the least effect on operator performance. 

Six multiple linear and non-linear regression models were fitted to 
the data, by the least squares method, to characterize operator performance. 
The models were of the form: 

(1) Y = ßo + ßjXi + ß2X2 + e12 

(2) Y = ßo + ßiXi + 62X2 + ßa X1X2 + e12 

\3)    Y = ßo + ßjXi + ß2X2 + ßjXf + ß^X* + ß5XjX2 + e12 

(4) Y = ßo + ß1X1 + ß2X2 + ßjX^ + ß,X| + ß5X\ + ßgX^ + ßyX^ 

+ ß8X*X2 + ßgX^i t e12 

(5) Y = Z ß X^xJ + e. o<j+k^3 
l  2   1  -  — 

(6) Y = ßo + ßilnXx t ß2X2 + ß3 In X + ß^ + ßgXzlnXj t e1; 
2. 

1 

Where Y is the observed operator response, X1  and X2 are independent 
variables corresponding to ambient light and acoustic noise respectively. 
The estimated values of the coefficients, standard errors of the estimates, 
and coefficients of determination are summarized in the following table: 
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Least Squares Estimates Using Coded and Uncoded Data for the 
Optical Display Terminal 

ßo 

ß 
1 

ß 

§ßo 

Sßi 

S02 

Sß3 

Sß\ 

Sßs 

Sß6 

Sh 

SßB 

Sß9 
2 

T2  
S(Y-Y) 

1 

7.078 

0.100 

0.680 

.307 

.224 

.210 

1.227 

0.450 

7.078 

.100 

.680 

.321 

.260 

.190 

.179 

.130 

1.041 

0.634 

Model 
3 5 

Uncoded 
6 

Uncoded 

6.785 6.684 21.049 13.715 

0.190 1.752 -3.495 -8.045 

0.680 0.655 -0.362 -0.260 

-0.099 0.449 0.084 24.986 

0.225 0.110 0.002 0.002 

0.320 0.225 

-0.543 

0.232 

-0.076 

-0.108 

0.004 -0.636 

0.537  0.509 9.353 9.024 

0.260 1.279 3.246 14.836 

0.171 0.743 0.229 0.245 

0.204 0.521 0.627 24.845 

0.133 0.166 0.001 0.001 

0.125 0.124 

0.481 

0.131 

0.091 

0.181 

0.023 1.000 

0.996 

0.721 

0.930 

0.854 

1.114 

0.651 

1.221 

0.481 
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Of minimum residual variance, S2 A , and maximum coefficient of determination. 
*\f (Y-Y) 

This provides the model: 

Y = 6.785 + 1.752X, + 0.655X2 + 0.449X2 

1 

+ 0.110X2 + 0.225X3,  - 0.543X3
2 2 * 

+ 0.232XiX2 - 0.076X2X2 - 0.108X:X
2 

Testing for fit, the sum squared error due to regression and the respective 
degrees of freedom for the variation of Y-- from the curve are 3.378 and 
{9,6} respectively. If the model is correct, the residual mean square has 
the expected value of a2. Using S2  =a2 = 0.5187 = MS , the "F" ratio is: 

F = MSc  = 3.378  = 3.907 
MS    0.518 

and 1s not significant since 3.907 < 5.520. Thus, on the basis of minimum 
S2   , maximum R2 ^ and this test, we have no reason to doubt the adequacy 
(y-y)      yy 

of this particular model. This technique is presented to show the feasibility 
of using multiple least squares regression for this type of man-machine 
Interface problem. A more sophisticated approach is planned at a later time 
when more data is obtained. 

Conclusions: Several adverse aspects of the terminal equipment were 
discovered which may affect error production. The angle of the keyboard 
(see figures 4 and 5) of the visual display terminal was apparently not 
conducive to optimum performance. The teletypewriter keyboard was 
unanimously considered more comfortable. Also, the detent pressure of 
the Individual keys and the absence of feedback "thump" seemed to increase 
the probability of transcription error with the visual display terminal. 

While the results do not show statistical significance of the environmental 
effects, the trends in the statistics (particularly the MSE and overall means, 

;see tables II, III, IV and V) indicate the possibility that with a larger 
population of more homogeneous (as to expertise) subjects, statistical 
significance will emerge. That is, the variations in human performance will 
be greater under abnormal environmental conditions. If such abnormal 
conditions are to be expected under battlefield conditions, then significant 
training information could be extracted from such a follow-on experiment. 
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Another measure that could attain statistical significance is the mean 
transcription error production for the group. Such statistics would 
indicate the outer bounds of expectation under battlefield conditions. 
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PLANNING FOR THE MEASUREMENT OF FLIGHT TRAJECTORY 

J. B. GOSE 
J. V. CARRILLO 

Quality Assurance Office 
US Array White Sands Missile Range 

New Mexico 

ABSTRACT. This paper describes a procedure used at White Sands 
Missile Range, New Mexico for selecting instruments to measure a test 
object's location and body angles. Criteria for selection include 
number and location of instruments, types and quality of measurements, 
probability of operation, and data reduction procedures. Optimizations 
are made in terms of cost-to-support, probability of success, expected 
error in data and instrumentation system used. Constraints include 
expected trajectory and object dimensions, optical image size and aspect 
angle, tracking rate, atmospheric distortion, and for some applications, 
locations of existing facilities. 

The procedure employs both theoretically and pragmatically derived 
models and utilizes observed error distribution and reliability data. 
It has been automated for computation on a UNIVAC 1108 computer. 

1. INTRODUCTION. The purpose of this report is to outline the 
mathematical and statistical scheme used for the Resource Conservation 
Planning (RCP) Model. The RCP is used as a tool for evaluating and 
formulating test support plans.* The model developed is formulated 
from the multi-station solution now in use at WSMR, better known as the 
Davis Solution.2 This is a least-squares solution which is identical 
to the maximum likelihood estimates of missile position in the particular 
case in which the instrumentation measurements are normally distributed. 
In 1965, 1LT Charles A. Hall, PhD, expanded the least-squares formulation 
to provide an improved estimate and to minimize the number of observations 
required. This concept became known as Minimal Station Participation 
(MSPAR).3 The RCP is an extension of this concept. The scheme has been 

1J.  V. Carrillo and R. L. Garcia, A Technique for Computing The 
Probability of Meeting a User's Trajectory Requirement, QA Technical 
Report No. 121, (WSMR, NM, 1975). 

Data 

3 

2R. C. Davis, Techniques for the Statistical Analysis of Cinetheodolite 
, (China Lake, California, ia51), page 1. 

'C. A. Hall, Deleting Observations From a Least-Squares Solution, 
Proceeding of the Eleventh Conference on the Design Experiments m Army 
Research Development and Testing, ARD-D Rpt 66-2, (Durham, NC, 1966). 
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adapted to cinetheodolites, Telescopes, Radar, and DOVAP for position 
and attitude applications. The RCP model uses for input empirically 
developed measurement error probability tables from each measurement 
system, a proposed flight test trajectory of a specified test object, 
and the uncertainty (flight test requirements) in the flight test data 
that a Range User can tolerate in his experiment. The probability tables 
are used to compute the probability of a particular data error for a 
selected or given geometry configuration. The final output is in terms 
of the probability of meeting a particular Range User requirement. 
Hence, cost-to-support trade-offs can be developed based on the risk 
a user may want to take in completing his experiment. The less risk 
the user can accept, the higher the support cost. 

Restating the problem as: "Determine the probability of satisfying 
a Range User's requirement for a test object's position and/or attitude 
over a given interval, such that the results will allow cost trade-off 
analyses." 

The problem statement gives rise to the specific questions of how to 
identify the minimum set? How to find the probability of success? and 
How to solve the problem with a computer? The approach taken obviates 
the need to answer the first question (as we shall see). The latter two 
are the substance of this paper. 

2. ESTIMATION OF_THE PROBABILITY OF SUCCESS. Error estimates can 
be described probabilistically and, of course, reliabilities are 
probabilities. Thus, they can be combined in a probabilistic formulation. 
The probabilities involved in the estimation of meeting a requirement for 
one point of a trajectory can be expressed in equation form as: 

M 
P(Rqmt)i = I [P(ae

2 <Sx)x p(Sta Opr)^ (Eq 1) 

where, 

P(Rqmt).j> = Probability of meeting the requirement at the ith point 

a0 2 = Error in observed data 

S 2 = Maximum allowable error from the requirement 
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P(Sta Opr) = The probability of successful station operation 

M = Z(X) 
c 

where c = 2, 3, H, ..., x 
x = total number of sites available 

The probability for the entire trajectory is the distribution of the 
chances for success at all points from the population of occurrences 
and is found by simply averaging the risk over all points: 

R 
I   P(Rqmt)i 

P(Rqmt) = —  (Eq 2) 

where 

R = the number of trajectory points. 

The only unknown parameter in Equation 1 is aQ
2. aQ

2 is found in the 
following manner. 

The basic regression relationship is 

$ = B9 

where, 

<f> = Jfetrix of Observations 

B = Jacobian Ifatrix 

9 = Matrix of Derived Trajectory Data 
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Solving for 0 

6 = (B^)-1 B^Wcf. (W = Weight Matrix) 

or 

a 2 = o.HB^B)'1 

8    <p 

a 2 = (.BHB)'
1 for       W = Ca.2]-1 

* 

a 2 = a.2(BtB)"1 (Eq 3) 6    <p 

This last equation (Eq 3) defines the data error in terms of Geometric 
Dilution of Precision (GDOP) and measurement error; both of which are 

known or knowable. For a given geometry, (B B)"1 is deterministic 
while a.2 is probabilistic. Thus, the probabilistic nature of aQ

2 

is dependent on the probabilistic nature of a,2. 

In actual practice, a requirement, S 2, is defined as the trace of 

a variance-covariance matrix. We may, therefore, attack the heuristic 
nature of a 2 simply by introducing a scalar "s2". 

c2 = fq 2/rr 2) s   *■ x /06 ;TR 
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into Eq 3, which becomes 

s2a0
2 = S^.HBH)'1 

6      <J> 

The probability of measurement error (S.) £ sa. is the probability that 

example Figure 1). Thes 

of performance. 

aQ
2 < S 2 (see example Figure 1). These data are available from histories 

0 = x 

P 
R 
0 
B 
A 
B 
I 
L 
I 
T 
Y 

a, (SEC OF ARC) 
<P 

FIGURE 1 
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Equation 1 becomes 

M 
P(Rqmt)i = I  [P(S, < sc^) x p(Sta Opr)]i (Eq 4) 

The formula for computing the probability that exactly M of N scheduled 
instruments operate successfully is: 

P(StaOpr) = (R1-R2--RM)(WQM+2--V+,,+(Q1
,Q

2*
,,QN-M) 

^-M+l^-M^-V (E<1 5) 

where: R , R , ..., R, are the reliability values for instrument 1, 2, 

3, ..., M. Q , Q , ..., QN are the (1-R ), (1-R ), ..., Cl-R^j) values 

for each of the instruments, respectively. Note that there are 

N! 
MI.CN-JÜ! 

terms to be added in Eq 5. 

An example of the computational procedure for a point is shown in 
Appendix 1. 

3. FITTING THE M3DEL ON 1HE COMPUTER. A little thought on the 
computational times for Equation 5. will lead one to the realization that 
the time will approximately double for each additional site added. This 
was verified for the program prepared for the UNIVAC 1108 computer: A 5 
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Station solution taking 2 seconds, 11 stations taking 1 minute, 15 
stations taking 14 minutes, etc. Alternatives to minimize this problem 
were (1) to improve the speed of each computation or (2) to reduce the 
number of candidate sites. The latter course was pursued. 

An initial screening was derived based on instruments operating 
limitations. 

OPTICS - Elevation Angle - Between 3° and 80° 

Image Size - >35 Microns (u) for Position 

>100 Microns (u) for Attitude 

RADAR S DOVAP - Elevation Angle - Between 10° and 80° 

Next, each surviving site is ordered in accordance with its 
contribution to the error. For each point, an error constant* D. is 
calculated from: -! 

D-i = I Hlv7      for the 3th site J  KL ] 

K is an index of observation (cf>) 

L is an index of computed values (6) 
Li-l, 2, 3, ..., 6 

and 

H. = (B'W'^B.V^ 

W. is a weight matrix from a 2W = I 

from aQ
2 = a.2(BtB)"1 

ae
2 = (Bt\m)~] 

+
c.f., Ref 1 
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D.'s then relate to a 2 from 
3 e 

A 
I D. 
=1 3 

a 2  =i u6 TR 

where, 

A = The set of sites used 

L = 3 for Position data 
2 for Attitude data 

The D.'s vary with GDOP, therefore, the largest value at one point nay be 

smaller than the smallest value at another point. Since all points are 
assumedly of equal importance to a customer, the GDOP effect (D.'s) must 

be normalized. This is accomplished by the following scheme. First, an 
average D. is computed. This average value is divided into each D. value 

for all points. Then, each site's normalized point value is summed over 
all points. The sites are then ordered (largest to smallest) based on the 
magnitude of the sum. The first three sites (with the largest values) 
are then selected for the first estimate of meeting a user's trajectory 
requirement. If the probability of meeting the requirement is sufficient, 
the computation is terminated. If the probability is insufficient, the 
site with the next largest value is added to the computation. This 
procedure is continued until the desired probability is obtained or all 
the sites in the group are used. This procedure has resulted in minimizing 
the number of sites required. 

In evaluating the procedure, it was found that the sites selected 
/s. 

produce the maximum P(Rqmt) 95% of the time; and for the remaining 5%, 

the P(Rqmt) was within 3% of the maximum. 
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6. CONCLUSIONS. The models discussed in this paper can be used for 
analyzing cost-to-support trade-offs. Cost-to-support is related directly 
to the type and amount of instrumentation necessary to meet a particular 
user requirement. Thus, the output of the RCP Model provides the information 
necessary for risk analysis from a measurement aspect. It is readily apparent 
that the more stringent the error requirement or the less risk of data loss 
a user can accept, the higher the cost-to-support. 

There are limiations to the model. First, since the error and 
reliability values used are based on history, changing performance will 
result in erroneous answers; further, since the present reduction process 
is modeled in the equations, a change in the procedure will necessitate 
revision of the model. 
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NON-RANDOMIZED CLINICAL TRIALS 

E. A. Gehan and E. J. Freireich 

The University of Texas System Cancer Center 

Houston, Texas 

ABSTRACT 

This paper gives a general discussion of some principles involved in 

planning comparative studies, namely, the objectives, comparability of 

patients, feasibility, and ethics. For each principle, circumstances are 

given for which a non-randomized study is to be preferred to a randomized 

one. Examples of non-randomized, controlled studies are presented utilizing 

literature controls, an acute leukemia late intensification study involving 

matched controls, and an acute leukemia sequence of three studies. In ^the 

latter example, adjustment for prognostic factors was carried out to enable 

the studies to be compared with respect to response rate and survival. 
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•  M-RANDOMIZED CLINICAL TRIALS 

E.A. Gehan 

and 

E.J Freireich 

The University of Texas System Cancer Center 

1. Introduction 

Consider the design of the following Army experiment (hypothetical). 

Because of the need for saving money, an officer in the Quartermaster Corps 

does a study of shoe sizes for Army recruits. He finds that the distribution 

of shoe sizes has several peaks and that it would be possible to save money in 

buying shoes by ordering only a small number of sizes. He decides that the 

best way to determine which sizes to buy is from a randomized comparative study. 

His idea is to issue three sizes of shoes: 8%, 9% and 10*2 randomly to incoming 

recruits and their "response" to a particular shoe will be measured following 

a ten mile hike by interviewing and a physician's examination. The ultimate 

objective is to choose a single size of shoe for all recruits. What is wrong 

with this experiment? The objective is stated clearly, the designed experiment 

could be carried out, treatments would be assigned at random and there wouldn't 

be much difficulty in measuring reaction of the recruits to the assigned shoes. 

It is obvious that the whole experiment is ridiculous because each individual 

has his own shoe size and a choice of shoes should be made accordingly. Random- 

ization, in this case, added only a pseudo-scientific aspect to the experiment. 
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nit uuLLuiiiu Luiiiu ui, piLUiLLtu Hiuii UHU ä  great deal öt suttenng would be 

caused among the Army recruits selected for the study - either by randomization 

or otherwise. In clinical research, treatment must often be tailored to the 

individual patient either in terms of dosage or schedule and a randomized com- 

parative study is difficult to accomplish when treatment is individualized. 

Too often, randomized comparative clinical trials are analogous to the hypo- 

thetical Quartermaster who proposed a randomized comparison of shoes of different 

sizes. 

In cancer clinical trials and in other disease entities, the patient is 

in a life or death struggle against his disease. His objective is to win the 

battle and he clearly would like to be in the hands of a physician who would give 

him the best chance of winning. Would the best chance be as a patient in a ran- 

domized comparative study or as an individual receiving bare from an outstanding 

physician who used his best knowledge of patient, disease and treatment to choose 

a treatment plan? An analogy might be the selection of a designer for a car to 

win the Indianapolis 500 mile race. Would a designer be chosen who did a random- 

ized comparative study of every design feature to be added to the car or would 

one choose an experienced designer with a good record and ask him to use his best 

judgment to design a car to win the race. Not many individuals would do random- 

ized comparative studies in an attempt to win the Indianapolis 500; why then the 

emphasis on randomized comparative studies to win the battle against cancer or 

heart disease? 

In this paper, a discussion will be given to the general considerations 

involved in planning a randomized vs. non-randomized comparative study and some 

specific examples of successful non-randomized studies will be given. These 

studies involve selection of control patients from the literature, from matched 

patients and from the previous study in a sequence of clinical studies. Recent 

papers stressing the value of non-randomized studies are by Gehan and Freireich 

(1974) and Freireich and Gehan (1974). 
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2. General Considerations 

Four aspects of the comparative clinical trial will be considered. These 

are:  (a) objectives;  (b) comparability of patients;  (c) feasibility; and (d) 

ethics. 

(a) Objectives 

Chalmers, Block and Lee (1972) have published a paper on controlled clin- 

ical trials in which the main theme is illustrated by a humorous conversation 

between two biostatisticians. First biostatistician, "How's your wife?". Second 

biostatistician, "Compared to whom?". The humor of this parable emphasizes two 

important and distinctive facts about the man's wife: the first being how does 

his wife differ from other wives, a comparative fact; the second, how is his 

wife in his own judgment, that is, what is his estimation of his wife's capabil- 

ities. This fundamental difference is frequently overlooked in the design and 

conduct of a clinical study. It should be emphasized that an important result of 

a therapeutic investigation is the measurement in a quantitative sense of the 

effectiveness of a given treatment. There are situations in which the important 

question is not how effective is this treatment, but is this treatment more or 

less effective than a standard or some other form of treatment. In general, the 

latter question is not as significant as the former - for both treatments and 

wives. 

An essential ingredient of clinical research is a significant objective. 

Too often the concept of randomization is equated with the concept of research 

while non-randomization is equated with "non-scientific" or "uncontrolled". One 

cannot replace the intelligent, imaginative, creative work of a clinical scientist 

with the routine application of a clinical trial technique. In cancer research, 

there are many examples of non-randomized studies that have led to important altei 

ations in methods of treating patients. Examples are the discovery of mechlore- 

thamine in the treatment of Hodgkin's disease, the first antimetabolite methotrexe 

44 



n the treatment of patients with acute leukemia, vincristine in acute leukemia, 

nd combination chemotherapy in lymphoma and Hodgkin's disease. These were all 

ramatic advances in the treatment of patients with malignant disease and this 

nowledge was derived from non-randomized clinical studies. What new and effec- 

ive treatments have been discovered utilizing randomized clinical studies? 

(b) Comparability of patients 

As A.B. Hill (1962) has put it, a sine qua non in the proper conduct of 

controlled clinical trial is having comparable groups of patients. A clinical 

rial designed to evaluate the relative effectiveness of two or more treatments 

hould be planned so that the only differences among treatment groups are in the 

ctual treatment received. This requires comparability of patients as they are 

ntered into study, managed when on study, and analyzed when the study is completed. 

The entry of patients will be discussed here and one technique for achiev- 

ing comparability of patients is randomization, possibly stratified so that there 

re separate randomizations of patients in prognostic categories. Even the pro- 

snents of randomization agree that randomization guarantees comparability of 

itients on the average and this needs to be checked in every clinical trial. It 

ly even be argued that randomization is a guarantee of non-comparability of treat- 

!nt groups with respect to some patient characteristics, if enough patient char- 

:teristics are examined. For example, if there were a 5% chance that the random 

ssignment of patients would lead to a significant difference between treatment 

roups with respect to a given patient characteristic and the distribution of 20 

laracteristics were considered, it would be expected that there would be a sig- 

.ficant imbalance between groups with respect to at least one characteristic. 

; Daniel (1970) has pointed out, "Randomization is a confession of ignorance, 

ill randomization is a confession of full ignorance." In other words, a full 

indomization should be accomplished only when a clinical investigator is not 

>gnizant of any patient characteristics that influence prognosis. 
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Another technique for achieving comparability of patients at time of 

entry into study is to select patients for a control group according to certain 

characteristics, namely those which are known to influence prognosis.  If treat- 

ment A is the treatment under study and treatment B is a standard or "control" 

treatment which is to be compared with A, the control group of B patients could 

be selected from the literature, chosen on a matched basis from previously or 

concurrently conducted clinical studies, or selected from the previous study in 

a sequence. The primary assumption needed for selecting a control group is that 

the important patient characteristics related to prognosis are known, so that 

there is a firm basis for selecting a comparable group of patients. Further, it 

must be assumed that differences which do exist between the groups selected (such 

as time, institution, physician, or the availability of supportive care) have little 

or no relation to the outcome of the treatment. In a disease which has been 

studied extensively, techniques of regression analysis can be used to determine 

patient characteristics related to prognosis. See Armitage and Gehan (1974) for 

a review of available methods. Some examples will be c/-cussed in section 3. 

(c)  Feasibility 

In general, the feasibility of a particular study relates to the number 

of patients required ir.d its duration.  For a particular investigator or group 

of clinical investigators, one can compare the strategy of proceeding from one 

fairly large study to the next, each based on a single treatment vs. the strategy 

of randomizing between two treatments in each study. Suppose the investigators 

in both circumstances has exactly the same requirements concerning the number of 

patients to be studied on each treatment. Suppose the number required for each 

treatment is N and the group of investigators accrues this number of patients in 

one year. Assuming that no follow-up period is required for observing the effect 
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of treatment, the strategy of proceeding sequentially from one study to the 

next means that one year will be required for each study. The investigator who 

always randomizes between two treatments requires two years to complete each 

study. It is true that at the end of two years, an investigator following either 

strategy will have evaluated two treatments, however the investigator who does 

sequential studies will have an opportunity to choose a second treatment based 

upon the results of the first. Further, some investigators adopt the practice 

of always carrying along the best treatment from a previous study in the current 

study; this results in evaluating three treatments every four years compared 

with four treatments for the investigator who proceeds sequentially. The latter 

investigator will have had the opportunity to build upon knowledge gained from 

previous studies to choose three treatments, while the investigator preferring 

simultaneous comparisons will have chosen only one new treatment based upon the 

results of a previous study. 

Suppose an investigator is doing a simultaneous comparison of treatments 

A and B in which a fixed number of patients is to receive each treatment so that 

the difference in response rates can be detected at a given significance level and 

power of test. These specifications lead to n patients being required on each 

treatment and tables of n are readily available in textbooks (Cochran and Cox, 

1957) (Holland and Frei, 1973). An experimenter who does studies in sequence of 

one treatment might be prepared to assume that the response rate to the control 

treatment (B) is so well known that it may be taken as a fixed quantity, say p, 

and no patients need receive B in the trial. To carry out a statistical test of 

the difference between the proportion of patients responding to A and B at the 

same significance level and power assumed above, only n/2 patients are needed on 

treatment A, which is only 1/4 the total number of patients required for the ran- 

domized comparative trial. When the cost of supporting clinical studies is often 
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in excess of $1,000,000 per year, a savings of patients and duration of study- 

has a substantial dollar equivalent. Even when the response rate to the con- 

trol treatment is not known precisely, it may still be reasonable to proceed 

as if it is known. For example, in the treatment of patients with advanced lung 

cancer, the expected percentage of patients responding to standard treatment is 

very low (less than 20%) and survival is poor. In this circumstance, it would 

be sensible to test a proposed therapy against a specified percentage, say 20%. 

The objective would be to find a new treatment that has a response percentage 

significantly higher than 20%. 

(d) Ethics 

All clinical investigators seek results which demonstrate that the overall 

prognosis for patients is getting better.  Clinical trials in which patients do 

less well than they have in the past are to be avoided at all costs and to be con- 

cluded as early as possible. A comparative clinical trial should not be started 

unless there is some preliminary evidence suggesting that the new therapy is at 

least as good and possibly better than the standard. If this is accepted, the 

question can be raised whether it is ethical to enter patients on the standard 

therapy when there is little or no chance that the standard could be better than 

the new therapy. That is, the objective should be to study the new therapy until 

it can be concluded whether the new therapy is significantly more effective than 

the standard or not. Study of the new therapy could be stopped when the probability 

of its being more effective than the standard becomes very low. 

The clinical investigator conducting studies in sequence of treatments is 

always giving what he considers to be the best treatment to his patients. Re- 

cruitment of patients to a clinic to receive this treatment is much easier than 

for the investigator who proceeds by simultaneous comparisons. The former inves- 

tigator can promise all patients, even those who come from long distances, that 

they will receive what the investigator thinks is the current best treatment. The 
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latter type of investigator can promise only that the choice of treatment will be 

determined essentially by flipping a com and that the treatments in the clinical 

trial are reasonably good ones. 

Meier (1975) has stated the ethical problem as follows: "The view is 

often expressed that each patient must be afforded the presumed benefit of any 

estimated advantage of one treatment over another, regardless of how slight or 

uncertain that advantage may be. I insist that this view does not reflect my 

attitude about myself as a patient, nor does it reflect the attitude of most of 

us. Make no mistake about it, this position is incompatible with any experimenting 

whatever, controlled or casual. It does not favor judicious experimenting with a 

new technique or drug on carefully selected patients. That, after all, can be done 

in a controlled study. Rather, it forbids any experimenting at all." The ethical 

dilemma disappears if one proceeds sequentially in evaluating treatments - the 

presumed best treatment is always being given. However, what Meier and many other 

statisticians do not accept is that conducting studies in sequence can resolve 

the scientific problem of properly evaluating the relative effectiveness of treat- 

ments. This will be demonstrated by some examples from cancer clinical trials.. 

3. Examples of Non-Randomized Clinical Trials 

In this section, some examples of non-randomized clinical trials are given 

in which patients in the control group were selected to be comparable to those 

receiving a study treatment. Patients in the control group were selected based 

upon their prognostic characteristics and the assumption was made in all studies 

that the patient characteristics chosen accounted for the major proportion of the 

patient-to-patient variability in response. Literature controls, matched controls, 

and patients from a sequence of studies will be cohsidered in relation to the eval- 

uation of study treatments. 
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(a) Literature Controls 

In all circumstances in which the same or similar treatments have been 

used by others in a clinical investigation, it is desirable to use these patients 

as controls, even when there is also an internal group of control patients in the 

trial. Unfortunately, it is usually true that authors do not provide sufficient 

data in their papers so that it can be checked whether the patients reported in 

the literature are comparable to those in a given clinical trial. It certainly 

would be helpful if authors and those engaged in large cooperative group studies 

could make available basic data on punch cards or computer tape so that others 

might use the data for literature controls. 

An example of a literature control group is given in the study reported 

by Luce et al (1971) in which combined cyclophosphamide, vincristine (Oncovin), 

and prednisone therapy (COP) for malignant lymphoma was compared to single agent 

treatment with cyclophosphamide or a vinca alkaloid (vinblastine for Hodgkin's 

disease and vincristine for lymphosarcoma) as reported by Carbone, Spurr, et al 

(1968). All patients in both studies had stage III or IV disease. However, patients 

who had received major prior chemotherapy or those with moderately impaired bone 

marrow reserve were excluded from the Carbone study. Thus, in terms of prior 

treatment and bone marrow reserve - two important prognostic factors - patients who 

had received little or no prior treatment in the Luce study were comparable to those 

in the Carbone study. The age and sex distributions were similar in the studies. 

Hence, when adjustment was made for prior therapy, it could be concluded that 

patients in the Carbone study were comparable to those in the Luce study. The 

complete remission rate following COP treatment was 36-50% in malignant lymphoma 

compared with 6-20% for the single agent treatment reported by Carbone. In addition, 

other series of patients receiving either single agents or COP treatment by a 
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slightly different schedule had similar results. Because both single agents and 

COP had response rates that were consistent from one study to the next and the 

evidence that COP was significantly superior, it seemed safe to conclude that COP 

was superior to single agent treatment in the induction of complete remissions.  ^ 

Another example is that given by Sutow et al (1970) in which the survival 

experience of patients with Wilm's tumor or neuroblastoma, first treated in 1962, 

was compared to that of patients first treated in 1956. A total of 35 institutions 

participated in the study and, for patients with Wilm's tumor, it was demonstrated 

that the age distribution, percentage of children with metastases, and intensity 

of surgical and radiation therapy were comparable between the two time periods. 

However, 94% of patients received drug therapy (mainly actinomycin-D, vincristine, 

and cyclophosphamide) in 1962 compared with 28% in 1956. A significant improval 

in survival was demonstrated for patients of all ages without meatstases and for 

patients two years or older with metastases. The authors concluded that the in- 

creased clinical use of chemotherapeutic agents resulted in the significant improve- 

ment in the survival curves. For patients with neuroblastoma, though there was 

a slight difference in the survival experience for both non-metastatic and meta- 

static patients favoring those first treated in 1962, the difference was not near 

statistical significance and it was concluded that the increased use of chemo- 

therapeutic agents did not result in a significant improvement in survival time. 

A literature control group is useful when patients can be checked for 

comparability and, in some circumstances, when it can be demonstrated that patients 

in the literature have more favorable prognostic indicators. Authors should be 

encouraged to have details of their data available to others for comparison purposes. 

(b) Matched Controls 

In a matched control study in which patients are to be selected from a 

group of patients treated in the past, all new patients would receive the treatment 
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to be evaluated, say treatment A. A pairmate for each patient receiving A would 

be chosen at random from among the possible pairmates in the group of historical 

control patients who received treatment B. The applicability of this approach 

depends upon having a sufficiently large group of patients for potential pairmates. 

Patients obtained by this process who receive treatment A would be as comparable 

as possible to those on treatment B with respect to the patient characteristics 

used as a basis for the pairing. If sufficient patients are available, it may be 

desirable to select two control patients for each treated patient, making a com- 

parison between control patients to test the selection process. 

An example of this type of study is given by Bodey et al (1976) who com- 

pared the length of complete remission for patients with acute leukemia between 

two groups: a study group receiving late intensification chemotherapy and immuno- 

therapy a median of 89 weeks (range of 58 to 194 weeks) after achievement of com- 

plete remission vs. a matched control group of patients who received maintenance 

therapy at monthly intervals, generally the same therapy that induced the remis- 

sion. The objective of the late intensification study was to cure the patient by 

administering an intense program of therapy with new agents when the leukemia cell 

population was at a minimum. Patients were matched by age group, cell type, and 

length of remission prior to the start of late intensification therapy. There 

were 17 patients in the matched control group and 19 in the group receiving late 

intensification therapy (matched controls could not be found for two patients). 

The median duration of complete remission subsequent to late intensification ther- 

apy has not yet been reached but will be in excess of 98 weeks, only 5 patients 

relapsing of 19. The median length of subsequent remission in the matched control 

group was 24 weeks and there is a highly significant statistical difference be- 

tween the two remission curves (P<.01). Comparing survival times between groups, 
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16 of the 19 patients receiving late intensification treatment are still alive 

and their median follow-up time is 97 weeks. The median survival time for patients 

in the matched control group is 56 weeks and the difference between curves was 

highly statistically significant (P<.01). Thus, this study has demonstrated the 

importance of a new concept in the treatment of'patients with acute leukemia that 

may have resulted in a cure of some patients. 

Another study by Bodey et al (1971) in patients with acute leukemia demon- 

strated that patients in a protected environment (PE) receiving prophylactic anti- 

biotics and chemotherapy had significantly better length of complete remission 

(median of 55 weeks for PE, 26 weeks for controls), length of suryival (median of 

34 weeks for PE, 23 weeks for controls), and percentage of days spent with infec- 

tion as related to neutrophil count than a matched control group of patients 

treated outside a protected environment. 

(c) Controls Selected from a Sequence of Studies 

There are many cooperative groups engaged in cancer research in the USA 

who proceed from one study to the next. Generally, there is little change over 

short intervals of time in institution, type of patient, criteria for diagnosis 

and response, and availability of supportive therapy. In this circumstance, it 

is sensible to compare results from a previous study with those of a current one. 

Using patients from a previous study as controls might be misleading if a rela- 

tively long time interval had elapsed between studies (say greater than 3 years) 

or if it could be demonstrated that important changes had taken place with respect 

to clinical investigators, type of patient, criteria for evaluation, etc. There 

are about 25 cooperative groups in the United States supported by the National 

Cancer Institute that proceed directly from one study to the next, have a stable 

group of clinical investigators, see the same types of patients from year to year, 

have the same access to supportive therapy measures and generally use the same 
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criteria of response in successive studies. Using patients from a previous study 

as controls would often be feasible for such cooperative groups. 

Examples from studies conducted by the Southwest Oncology Group demonstrate 

that the same treatment administered in successive studies may be expected to lead 

to the same general result.  In consecutive studies of previously untreated pedia- 

tric patients with acute leukemia, the complete bone marrow remission rates for 

patients treated with vincristine plus prednisone were 83% (72/87) in the ALinC #6 

study and 86% (237/276) in the ALinC #7 study (Lonsdale et al, 1975).  In consecu- 

tive studies of patients with Hodgkin's disease, the complete remission rate fol- 

lowing MOPP treatment has remained very close to 80% for previously untreated 

patients with stage III or IV disease. 

When consecutive studies of different treatments have been conducted, re- 

gression models can be utilized to test whether there are significant treatment 

differences, adjusting for values of the prognostic characteristics in the succes- 

sive studies.  If response is the end point for analysis, stepwise logistic re- 

gression procedures can be carried out to interpret the data (Cox(1970), Lee (1974)) 

If survival or length of response is the end point, Cox's regression model (Cox (197 

may be used. An example will be given from successive studies conducted in the 

Southwest Oncology Group. 

Over the past several years, the Southwest Oncology Group (SWOG) has con- 

ducted the following clinical studies in patients with adult acute leukemia: COAP 

vs. OAP vs. DOAP (from 2/71 to 10/72); a 10-day OAP study (from 6/73 to 1/75); 

and a CIAL study (from 1/75 to present). The designations of the drugs are as 

follows: C=Cyclophosphamide, 0=Vincristine (Oncovin), A=Cytosine Arabinoside, and 

P=Prednisone. The CIAL study in the remission induction phase consisted of givir 

vincristine plus prednisone to all patients with less than 30,000 blasts in the 
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jeripheral blood. For patients with 30,000 or more blasts, patients were random- 

ized between sequential vs. simultaneous adriamycin-OAP treatment.  In the first 

study, OAP was given by continuous infusion over a period of five days. 

The complete remission rate for 5-day OAP was 43% (39/90), that for 10- 

lay OAP was 53% (92/173), and the current complete response rate for patients in 

the combined groups on CIAL is 60% (70/117). The question arises, do these data 

Indicate significantly improved complete remission rates by study, or is there 

evidence that the types of patients on the three studies might explain the dif- 

ferences in complete remission rates? 

From previous studies in adult acute leukemia, the following patient char- 

acteristics have been identified as being predictive of response: age (years), 

Infection status at start of study (0=no, l=yes), acute myelocytic leukemia (0=no, 

L=yes), hemoglobin value (gms %), and logarithm (white blood count). These five 

jatient characteristics and two variables representing the linear and quadratic 

ffect of treatments were included in a logistic regression equation. The regres- 

sion equation obtained is as follows: 

log{y^-| = + .1276- .0417(Age-44.73) + .5027(Treat.linear-. 101) 

- .7000(Infection status-.388) - .3806(AML-.830) - 

+ .0501(Hemoglobin-9.21) - .0597(log(WBC)-4.144) 

+ .0207(Treat.quadratic*.407) 

«fhere p. is the predicted complete remission rate based on the 7 patient characteristics. 

The coefficients in the equation were determined by stepwise logistic 

regression (Lee(1974)) so the significance level of each entering characteristic 

can be calculated. The statistical significance level of each entering variable 

^as: age (P<.01), treatment linear (P<.01), infection status (P<.01), AML (P=.18), 

hemoglobin (P=.33), log WBC (P=.76) and treatment quadratic (P=.80). This analysis 
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demonstrates that there is statistically significant evidence of a linear increas- 

ing trend in response rate by study and that age and infection status are signi- 

ficantly related to response rate. 

Evidence that the five patient characteristics do predict complete remis- 

sion rate is given in Table 1. A logistic regression equation was fit to the five 

patient characteristics in the 5 and 10-day OAP studies (excluding treatment as a 

possible characteristic). This equation is as follows: 

log x_— \    = .02888 - .04238(Age-.44031) 
* i 

- .59297(Infection status-.37) - .35854(AML-.872) 

- .01431(Hemoglobin-9.155) - .0208(log(WBC)-4.127). 

Table 1 gives the observed and predicted numbers of patients responding 

on the 10-day OAP and CIAL studies. As would be expected, the relationship 

between observed and predicted probability of response was excellent for the 10- 

day OAP, since the equation is being re-applied to the same data from which it 

was derived. Note that there is also a good relationship between observed and 

predicted probability of response for patients on the CIAL study. The observed 

percentages responding were higher than predicted in patients with predicted pro- 

babilities under .60 and were in accord with predictions for patients with pre- 

dicted probabilities over .60. Hence, there is some evidence that patients on 

the CIAL study produced higher observed responses in patients with relatively 

low predicted probabilities of response. When the equation was applied to the 

patients from 5-day OAP, the predicted complete remission rate was 52.1%;  it 

was 50.0% for patients on 10-day OAP, and 50.8% for CIAL. Hence, there was 

strong evidence that patients on all three studies were comparable with respect 

to the five patient characteristips. 
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Cox's regression model was fit to the survival data from the three 

studies using the same five patient characteristics and treatment variables as 

in the analysis of response. Cox's model may be written as follows: 

X(t) = exp jß1(x1-x1)+ ß2
(x2~*2)+ •" + VVV } X°^ 

where A(t) is the hazard function at time t, the ß's are regression coefficients, 

the x's are patient characteristics potentially related to survival, the x's are 

average values, and A (t) is an arbitrary hazard function when all the x's are 

at their mean values. The model fit to the survival data from the three studies 

is as follows: 

loge 1 Y$T  I = + .0319(Age-44.74) - .4269(Treat.linear-. 10) 

+ .4978(Infection status-.39) + .1435(log(WBC)-4.14) 

- .0429(Treat.quadratic*.41) - .0097(Hemoglobin-9.21) 

+ .0006(AML-.83). 

The model was fit in forward stepwise fashion and the statistical sig- 

nificance of adding variables at each step was as follows: age (P<.01), treatment 

linear (P=.001), infection status (P=.001), log (WBC) (P=.30), treatment quadra- 

tic (P=.39), hemoglobin value (P=.77) and AML (P=.99). Hence, as in the analysis 

of response, age and infection status are the two characteristics most signifi- 

cantly related to survival time and there is evidence of a linear trend which 

indicates increasing survival time by study.  Figure 1 gives the survival curves 

for patients on the three studies. The median survival time for patients receiv- 

ing 5-day OAP was 7 weeks, that for patients receiving 10-day OAP was 38 weeks, 

and the median has not yet been reached for patients on the CIAL study. There is 

evidence of a significant advantage in survival for 10-day vs. 5-day OAP patients 

(P<.015) and nearly significant evidence that CIAL has superior survival to 10- 

day OAP (P=.059). 
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These regression analyses have permitted comparison to be made among 

treatment programs, adjusting for patient characteristics related to prognosis. 

Based upon these analyses, one could more confidently assert that there were 

real differences in response rate and survival among the three studies because 

patient characteristics were adjusted for in both analyses, patients were com- 

parable in the three studies with respect to predicted probability of complete 

remission, and the same patient characteristics (namely, age and infection 

status) were significantly related to response and survival. 

4. Discussion 

The point of view has been presented that rational, scientific, and 

controlled clinical studies can be accomplished without randomization. In some 

circumstances, patients that are comparable in prognosis can be identified in 

successive studies which allow comparison between a group of patients under inves- 

tigation and other groups treated in the past. Recording data which differs 

significantly from that observed in the past forms the basis for new knowledge. 

Confirmation of data by the same investigator and by other investigators in other 

institutions provides a convincing mechanism for generating knowledge which pre- 

dicts for the future. 

The major reasons for preferring the non-randomized to the randomized 

study are: a clinical investigator in a non-randomized study is always adminis- 

tering what he believes to be the best treatment for the disease under investi- 

gation so there is no ethical dilemma, and non-randomized studies require fewer 

patients and proceed more quickly so that new knowledge is gained faster. 

Randomized studies are useful if there is no basis for choosing comparable 

patients treated in the past since patient characteristics related to prognosis 
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are unknown. Also, such studies could be considered when there is no prelimi- 

nary evidence that one treatment is substantially better than another so that 

the ethical dilemma does not really arise. Thirdly, previous data will sometimes 

suggest that the same treatment program be studied according to different dosages 

or schedules, etc., and it is convenient to have these treatments in the same 

study.  Fourthly, when studies are to be conducted over a very long term (say, 

3-5 years or more) then patients could be randomized because there was genuine 

doubt that the ancillary aspects of the successive studies would be comparable. 

In planning any clinical trial, there is no substitute for imaginative, 

original, and creative thought. The best clinical trials are those that have 

the best treatments in them, whether randomized or not. Clinical knowledge will 

advance when there has been careful analysis of past results as a basis for the 

formulation of significant hypotheses to be tested in objective and scientifically 

valid studies. 
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Table 1 

Observed and Predicted Responses from Logistic Regression Equation 

on 10-Day OAP and CIAL Studies 

CIAL 

Predicted Total Observed 
Probability No. No.(PC) 
of Response  Obs. Responding 

0 - .19 
.20 - .39 
.40 - .59 
.60 - .79 
.80 -1.00 

Total 

5 
35 
27 
26 
13 

106 

0( 0) 
16(46) 
17(63) 
20(77) 
12(92) 

65(61) 

Expected 
No. 

Responding 

10-Day OAP 

Total  Observed   Expected 
No.    No.(PC)    No. 
Obs. Responding Responding 

.805 
10.075 
13.489 
18.051 
10.857 

53.277 
(50.761) 

8 
44 
50 
50 
3 

155 

0( 0) 
13(30) 
30(60) 
37(74) 
3(100) 

83(54) 

1.385 
13.749 
24.878 
34.946 
2.530 

77.488 
(49.994) 
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Survival From Treatment Start 

c 
o 

o 
ex. 
o 

Total Fail 
90 67   o     5-Day OAP 

173 88   A     10-Day OAP 
117 38   •     CIAL 

i     Still Alive 

P = .059 

P=.0/5 

30 60 90 

Weeks 

Figure 1 
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CRITERION REFERENCED MEASUREMENT MODELS 

Kenneth I. Epstein 
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Arlington, Virginia 

ABSTRACT■ The Army needs information about how well an individual 
can perform the tasks necessary for him to do his job. This information 
is often gathered by means of a "criterion-referenced test," a test made 
up of .items directly related to the job of interest. The test results 
can be used in two ways. The first way is to sort individuals into two 
groups, one made up of those who can perform their job satisfactorily 
and the other made up of those who do not meet minimal job requirements. 
A second use of the test results is to estimate the "true" capability 
of the examinees to do the task being tested. These two uses are clearly 
related. If one can precisely estimate an individual's capability, then 
forming the two groups is not a problem. On the other hand, it may be 
possible to effectively form the two groups without getting good esti- 
mates of "true" capability. 

Several psychometric models are available for grouping the indi- 
viduals and/or for estimating "true" scores. For example, one may 
simply calculate the proportion of items correctly answered and use that 
proportion as an estimate of "true" capability. Alternatively, a binomial 
error model for deriving the expression for the regression of "true" score 
on observed score can be used and a "true" score calculated for each 
individual.  Other possible models include a Bayesian Model II approach 
and a latent trait model such as the Rasch one parameter logistic model. 
Each of these models yields a somewhat different estimate of "true" 
capability for any given individual. It follows that the makeup of the 
job ability groups will vary from model to model. The purpose of this 
research is to empirically study the models referred to above. What 
is needed is an appropriate statistic (or statistics) and research 
design for comparing each model against all others given the same test 
data. 

I.  INTRODUCTION. The purpose of this paper is to elaborate on 
some technical details and to highlight specific statistical and 
research problems introduced in a previous paper by one of the authors 
(Epstein, 1975). 

Epstein described four procedures for estimating true scores from 
observed scores. The first uses the observed proportion correct as an 
estimate of the true proportion correct. This procedure is'straight- 
forward and familiar. Hence, discussion of it will be reserved until 

The views expressed in this paper are 
those of the authors and do not imply 
endorsement by the U. S. Army 
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the problem of comparing the models is developed.  The other three pro- 
cedures are 1) a binomial error model, 2) a Bayesian model, and 3) the 
Rasch logistic model.  Each will be discussed in detail. 

2.  BINOMIAL ERROR MODEL.  The binomial error model (Lord and 
Novick, 1968, pp. 508-529) is based on the assumption that the condi- 
tional distribution of observed score for given proportion correct true 
score (T) is the binomial distribution. 

Mx|T) - (x) T
x (1-T)n"x 

x=0,l...n is the number of correct responses observed and n. is the total 
number of items on the test. 

It is assumed that items are scored dichotomously, that total score 
for an examinee is the number of items answered correctly, that items 
are locally independent, and that items are equally difficult for a 
given examinee. 

The relationship between the observed score distribution and the 
underlying true score distribution can be written as follows: 

<(>(x) = (5) I1  g(T) Tx (l-T)n-x dT, x=0,l,...n, where <}>(x) is 
o 

the distribution of observed scores and g(T) is the unknown distribution 
of true scores. 

It can be shown that if the regression of true score on observed 
score is linear then the distribution of observed score, symbolized h(x) 
to distinguish this special case from the general case <J> (x), is 
negative hypergeometric. 

h(x) =  bt"!    (-n)x (a)x     x=0,l...n, 

(a+b)tn]   <-b>x  x! 

where 

a and b are parameters to be determined and 

nM =  n(n-l)...(n-x+l), 

(a)x = a(a + 1)...(a +x -1), nt°]■= (a)Q = 1. 

The parameters, a and b, can be expressed in terms of moments of the 
observed score distribution 

a = (-l+l/a2i) yx 

b = -a-l+n/oi2i 

»21= IL 
n-1 

1- Hx(n-Mx) 

n o2 
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The discussion thus far has outlined an internal check of the 
appropriateness of this model for any given data set. That is, if 
one can show adequate fit to the negative hypergeometric distribution 
by the observed scores then it is reasonable to continue with this 
model assuming linear regression. If adequate fit is not obtained 
then either the more general nonlinear regression approach must be used 
or alternative models must be identified. 

It can be shown that if the observed score distribution is negative 
hypergeometric, the true score distribution is either the two parameter 
beta distribution, or some other distribution having identical moments 
up through order n.  In either case, the regression of true score on 
observed score is given by the linear equation 

E (T|x) = a2ix + (l-a21)yx ,  x = 0,1,.\ .n. 

n 

3. BAYESIAN MODEL. The Bayesian model used to evaluate these data 
is described by Lewis, Wang, and Novick (1973). The procedure transforms 
the binomial test score data via an arc sine transformation. The re- 
sulting score is assumed to be a sample from a normal population with its 
mean value at the individual's transformed true ability.  Distributions 
for the prior mean and variance of the examinee group's transformed 
scores are specified and posterior values calculated.  Finally, the 
posterior marginal distributions for the transformed scores are obtained 
and estimates of individual true abilities on the original (proportion 
correct) scale are calculated. The mathematical details are outlined 
below. 

The Freeman-Tukey transformation for binomial data is used in 
this procedure: 

■j-i'*^*.*-.-1« .,   » X.: = l,2,...n = the n+1      J   ' ' 

number of correct responses.  The g^ are assumed to be normally dis- 
tributed with mean yi = sin

-1 ST.'   and variance v = (4n+2)-1, where y-i 
J J 

is the transformed value of the true proportion of correct responses, IIJ 

The validity of the assumption of normality and the suitability of the 
transformation for the procedures to follow can be shown to be adequate 
for examinee groups of at least 15 persons and for tests at least 8 items 
long. 

The set of transformed variables, yj, is assumed to be a random 
sample from a normal distribution with mean yp and variance §     . ur and 

<i>r are further assumed to be independent and to have a uniform and inverse 
chi-square distribution respectively.  Explicit expressions for the prior 
and posterior density functions are given in the Lewis, et al. paper. 
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The desired result of an analysis of this kind is the marginal 
posterior density function for Y j - .  Unfortunately, an explicit ex- 
pression for it is not obtainable from the joint posterior probability 
density function of the Yj vector given the %±  vector-  Lewis et al. 
show methods for obtaining the marginal means and variances for the 
Yj using numerical integration.  However, they indicate that for 
large sample sizes, the conditional posterior distribution of Yj given 
<i>r and the g. vector provides an acceptable approximation.  The con- 
ditional approximation was used for the analysis of the data reported 
in the Epstein paper. 

The conditional distribution of Yj given <f> and the g. vector can 
be shown to be normal with mean . 

E'(Yj|*r , g) = *r g, + vg. 

<J>r + v 

and variance 

var CYji+r , g) - v(^r + m
_1v) , 

where 

<!>r + v 

j = 1,2...m = the number of examinees, 

g = the vector of transformed scores, and 

L = the mode of $„  given g 

<J>r can be obtained by solving the following equation: 

(m + v + 1) L3 .+ t(m + 2 v + 3) v - E (g. - g.)2 - X] tf> 
l x  J 1 

+ [(v + 2) v2 - 2 X v] 4 - X v2 = 0 . 

In the above equation, v is the degrees of freedom for the prior 
inverse chi-square distribution of <j>„ .  Lewis, et al. recommend that 
a value of eight be used for most practical applications.  X is the 
scale factor for the inverse chi-square distribution.  It can be 
calculated by using the formula 

X - v - 2 
4(t+l) 
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where t is interpreted as the number of test items that the prior 
information is considered to be equivalent to. 

Once the Y^ have been calculated, the last step in the procedure 
is to calculate the estimates for the true proportion correct. This 
is accomplished by applying the following equation: 

ni = d +JL_) sin2Y, - 1_ 
2n      J  4n 

A. RASCH MODEL.  The Rasch one parameter logistic model (Wright and 
Panchapakesan, 1969) assumes that the observed response an^ of person 
n to item i is governed by a binomial probability function of person 
ability Zn and item easiness Ej. The probability of a correct response is: 

P (ani = i) = znE± 

l+ZnEi 

The probability of a wrong response is: 

P (a^ = 0) - 1 - P (ani - 1) = _JL 
l+ZnE. 

These equations may be combined to yield 

P (an.) = (ZnE±)
ani m 

1+ZnEi 

If we let b = log Z and d1 = log E.  , 
n    °    n     ■*■ i 

then 

P (ani) = exp (ani(bn + d±)) 

1 + exp (bn + d±) 

The number of correct responses to a given set of items is the only 
information needed to estimate person ability. All persons who get the 
same score will be estimated to have the same ability. Hence, in terms 
of score groups, 

p <ani)= exp (a^O^ + d±)) 

1 + exp (bj + d±) 

where j = score of person n, and all persons with a score j are esti- 
mated to have the same probability governing their responses to item i. 
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The equations obtained when the condition of a maximum likelihood 
is satisfied for the model described in the preceding equation are: 

k-1 
a+i = E  (rjexp(bj* + d±*)/(1+exp(b-j*+d±*))), i=l,2,...k 

3 

j = E (exp(b-j* + di*)/(1+exp(b/ + d±*))), j = 1,2,...k-1 

where a+i    = number of persons who get item i correct 

j      = the total test score, an ability estimate is 
obtained for each score 

T4 = number of persons in score group j 

b-? ,d-    = estimates of b. and d^ 

The method consists of computing d± and bj  from the implicit equations 
above.  The equations are handled as two independent sets and solved 
accordingly. 

An approximation of a standard error for item estimates can be 
obtained by assuming that the variance of the item estimate is due 
primarily to the uncertainty in the item score a+i»  To a first 
approximation this gives: 

V(d±*) * Odi/aa-H.)2 V(a+i) 

which leads to: 

k-1 ;*\\2, V(d±*) = 1/E (r j exp (bj *+d±*)/(1+exp (bjÄ + d^))^) 

j 

The major contribution to the error variance of the ability 
estimate comes from the variance in scores produced by a given indi- 
vidual.  This part of the error variance depends upon the number of 
items and their easiness range. 

An approximation of the variance of the ability estimate b* is 
given by 

V*(b*) = U/C(b*)exp(b*)} + U/C2(b*)} 

• E (V(d^f exp(di)/(1+exp(di+b*))2}2) 
i 

where C(b*) = E (exp(d±)/(1+exp(b*+di))
2), 

i 

V(di) is the variance of the item calibration d-j_. 
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The first term in the denominator of the V*(b*) equation is due to the 
variance in the score, and the second term is due to the imprecision 
of item calibration. The first term is always larger than the second. 

5.  DISCUSSION OF THE PROBLEM.  One characteristic of a useful model is 
that it has a small error of measurement.  That is, the distribution of 
estimated scores for a given true score is closely clustered around the 
true score.  The extent of the measurement error that can be expected 
with a given model is dependent on the variance of the estimated true 
score.  For example, in the proportion correct model, the variance of 
the estimated true proportion correct is equal to p(l-p)/n.  In this 
case the variance of the estimate will decrease as the number of obser- 
vations increases.  Thus it would seem that any level of precision could 
be obtained by simply adding observations.  Unfortunately, for the number 
of items that are usually practical on a test, the level of precision 
possible is not completely satisfactory.  It would be useful to compare 
the variance of the true score estimates obtained with the other models 
to the proportion correct model. 

Therefore the question of how to derive an expression for the 
variance of the estimated true scores for the other models must be 
addressed. An expression for the binomial error model has been derived. 
Since the binomial error model results in a regression equation it seems 
reasonable to base the derivation on the general form of the error of 
estimation,  2    2 7T~ ~ ^e rati° of the variance of true 

CTE = ÜT    ~ PxT ' 

scores to the variance of observed scores equals the reliability co- 
efficient, o"2 where a      is the variance of the true number 

_£_ = «21 ,       c 
o2 
x 

correct.  Since the true number correct equals the true proportion 
correct times the number of items, C = nT, one may write o"2 _  2 Q2   , 

c      T 
Substituting,     a2, = a2. a21/n

2  .  The reliability of a test equals 

the square of the correlation between true and observed scores, aoi = 02 
^   xT 

Hence, the variance of the estimated true score can be written 

a2        °x a21  (1 - a2l) E 5  
For the Bayesian and Rasch models expressions for the variances 

of the estimated true scores were not derived.  In the case of the 
Bayesian model the output is in terms of the arc sine of the true pro- 
portion correct. While the sampling distribution of the transformed 
variable is known, the variance of the estimated true proportion correct 
itself was not determined.  A similar problem exists for the Rasch model. 
The sampling distributions of the ability and item difficulty indices 
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are known as well as the explicit equation for calculating the proportion 
correct from those values. But an expression for the estimated true pro- 
portion correct has not been derived.  In short, the problems are: 
(1) For the Bayesian model, given the variance of otj and the equation 

IIj = (1 + l/2n) sin2 T- _ l/4n, what is the variance of IIj ; and 

(2) For the Rasch model given the variances of b* and d* and the equation 
p (correct) = exp(b* + d*)     what is the variance of p? 

1 + exp (b* + d*)  , 

As a result of the discussion during the session a solution to the 
above mathematical problems seems to be available.  It was pointed out 
that methods exist for deriving standard errors of functions of random 
variables.  One promising approach outlined in Kendall and Stuart (1969, 
p. 231) involves evaluating terms of a Taylor expansion.  Using the 
Kendall and Stuart procedure it should be possible.to derive expressions 
for the standard error of measurement for each of the models.  This will 
allow for formal comparison of the models without real or simulated data. 

The discussion then considered whether it was possible to compare 
the models by obtaining an estimate of "true score" and comparing it to 
the "real" true score.  The problem lies in obtaining an acceptable 
true score.  Three approaches were considered and are expected to pro- 
vide a basis for future research.  The first is to base model compari- 
sons on Monte Carlo simulation studies.  Monte Carlo studies provide 
an unambiguous true score but suffer from their lack of generalizability 
to practical applications. A second approach is to define true score 
as the score obtained on an instrument consisting of a large number of 
items.  The models would then be used to estimate the true score using 
a smaller and more realistic number of items.  This approach is em- 
pirical and more directly oriented to practical applications where 
testing time and the number of items that may be included in an instru- 
ment are limited.  Although this approach suffers from the fact that 
the defined true score is not error free, the amount of error is not 
likely to be significant for practical purposes.  The third approach 
would investigate the possibility of applying Geisser's predictive 
sample reuse method (Geisser, 1975) to the comparison of the models. 
Geisser's method may provide a more formal empirical approach to 
model comparison.than,the second approach discussed above, however, 
it has not been determined whether or not it is applicable to this 
research. 

Four models' for estimating true scores were presented and 
methods for comparing their outputs were discussed.  Procedures for 
comparing the statistical properties of the models are available and 
relatively straightforward.  Future research will be concerned with 
establishing the empirical validity of the models and their applica- 
bility to solving practical measurement problems. 
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NON-RANDOMIZED FACTORIAL DESIGNS CHARACTERIZED BY TREND 
ELIMINATION AND A MINIMUM NUMBER OP FACTOR LEVEL CHANGES 

Les Lancaster and Steve Reynolds 
U.S. Army Operational Test and Evaluation Agency 

Falls Church, Virginia 

ABSTRACT. An admissible set. of run orders is developed for 2P 

factorial designs restricted to trend elimination. The best design is then 
selected from this admissible set having the minimum number of factor level 
changes. The procedure is developed for p=5 where admissible sets are gen- 
erated between various mixtures of linear, quadratic, and cubic trend 
elimination and main effects, first order interactions, and second order 
interactions. The number of factor level changes is used to generate the 
admissible set. 

1. INTRODUCTION. The design of two-level factorial experiments robust 
against time trends will be illustrated in this paper. In fact designs with 
zero time trends will be displayed that also keep the number of factor level 
changes form run to run small. Both of these features are essential in 
operational testing due to resource problems. Operational cost effectiveness 
is achieved by minimizing the number of factor level changes.  Soldier learn- 
ing and selection is controlled by an elimination of time trends in the 
experimental designs. Thus, these designs are characterized by specifying 
the run orders prior to running the tests. A combinatorial technique is 
developed for generating these desirable designs. 

In the planning of an experiment costs can be reduced by a multi-phase 
design. The first phase would be the design of all controllable factors at 
their low and high levels. Additional phases would be adaptive. That is, 
the results of the first phase would be decisive for determining the design 
for the additional phases. Thus, forcing the complex overall design to be 
developed in the real time mode. However, the possible options at each 
phase are planned and designed a priori and the results of the previous 
phase trigger the design decisions for the next phase. This report will be 
concerned with the first phase where p factors are varied, each at two levels. 

A method for the selection of run orders spaced at equal time intervals 
is developed vrtiereby a subset of possible or admissible run order choices 
is restricted to trend elimination. The designer then has the option to 
randomize on this admissible set or else he can select the run order with a 
minimum number of factor level changes. With respect to trend elimination 
Figure 1 summarizes seven admissible subsets which will be studied in Chapter ( 
However, cases two and three admit empty sets and are included for academic 
purposes. 
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FIGURE 1. Cases to be Considered 

Case 
Number 

Highest Restriction On 

Main 
Effects 

1st Order 
Interactions 2nd Order Inter 

1 "'•'■"".I'" L L 

2 Q Q - 

3 C L - 

4 C - ■ 

- 

5 Q L - ' 

6 L L - 

7 Q . - ■- 
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In Figure 1 the following notation is used: 

L = Linear 
Q - Quadratic and linear 
C «■ Cubic, quadratic, and linear 

The different cases can be expressed in vector notation by writing each 
case as (i, j, k). For example, case 5 can be expressed as (Q, L. - ). 
Utilizing this notation, the coordinate denotes where the restriction is to 
be placed and the coordinate value deontes the type of restriction. This will 
become clearer in Chapter 6. 

The options left to the test designer for each of the cases are very 
flexible. In certain situations the choice for a run order may be dictated 
by other criteria such as engineering judgement with respect to some 
of the factor interactions. For example, some of the factor interactions 
or treatment combinations may be null or of no importance to the experimenter. 
For these situations the chosen run order can have a smaller number of factor 
level changes as a tradeoff for a higher time trend for the null treatment 
combinations. 

The developed method is an alternative to full randomization. Some 
experimenters often use blocks to gain sensitivity at the expense of full 
randomization by reducing time trends to an average variation within blocks. 
However, if the blocks contain many runs, then the average trend within a 
block may still cause a disturbing effect. In the developed method random- 
ization is restricted to the admissible set of runs whereby a price tag can 
even be attached to each ordered sequence of runs in the admissible set. 
Selection is then based on the set with the total number of factor level 
changes minimized. Procedures for partial randomization with respect to 
equivalence classes is left as an option to the designer. 

2. REVIEW OF PERTINENT LITERATURE. In this paper admissible sets are 
restricted to zero time trends where the optimal run order is chosen which 
has a minimum number of factor level changes. Other work has restricted to 
admissible sets having the minimum number of factor level changes where the 
optimal run order is chosen which ha3 a minimum (non-zero) simple or multiple 
correlation with time. In this paper the admissible sets have zero simple 
and multiple correlations with time. Thus far in the literature and 
including this paper only two-level factors have been studied. 

Addelraan (1) briefly summarizes the state-of-the-art up to March 1972. 

Daniel and Wilcoxon (2) analyze full fractional factorial designs with 
respect to linear and quadratic time trends. Their approach is extended 
in this paper. They do not consider factor level changes in their run 
orders. 

Draper and Stoneraan (4) were the first to consider the tradeoff between 
factor level changes and linear time trends. However, they look mostly 
at the combinatorials and it appears that they use search techniques to 
display their run orders. 
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Tiahrt and Weeks (6) consider the selection of run orders with respect 
to factor level changes plus randomization on equivalence classes. 

Dickinson (3) restricts to the minimum number of factor level changes 
and then selects his run orders having minimum simple and multiple 
correlations with linear time trends. He uses a computer search technique 
to find a few of the many possible run orders. 

Thomas (5) considers run orders with the minimum number of factor level 
changes and applies the procedure to sensitivity analysis of parameters xn 
large scale deterministic computer models. 

3  METHOD OF DESIGN SELECTION. The method will be illustrated by 
application to a 2^> factorial design with N - 32 runs. That-ia.^a full 
factorial design. The extension to designs with p > 5 will be obvious 
from the illustration. 

A 2P factorial design is characterized by N = 2P runs of p factors; ^ith 
each factor at two levels. For p - 5, Figure 2 displays the design matrix 
of + l's (1*.B are omitted for ease of typing) in standard Yates notation 
for~the 32 runs and the 32 treatment combinations where "T" denotes thf 
total treatment combination which is omitted in the selection criterion. 

The Yates algorithm will be used for computing polynomial trend of 
factors at two levels. Daniel and Wilcoxon (reference 1) have applied the 
Yates algorithm to the integer linear and quadratic Tchebycheff 
.orthogonal polynomials given in Figure 3. The Yates solution is equivalent 
to performing the matrix product between the design matrix (plus and minus 
ones as given by Figure 2) and the polynomial vector. The Yates solution 
iVmuch-faster than the matrix product. The Daniel-Wilcoxon procedure is 
applied here where we extend up to the (p-2)th order of the polynomial. 
Further, the method developed in this paper will take into account the 
number of factor level changes. In fact, it turns out that the number 
.of factor level changes for each factor characterizes and complements the 
standard Yates design. 

In Figure 3 only the first 16 numbers are arrayed. The second set 
of 16 numbers is found by reflecting each column downward and reversing 
the sign for the linear and cubic column. For example, the 32nd number 
for each column will be -31, 155, and 899. 

For p = 5 Figure 4 gives the Yates solution performed on the Tchebycheff 
orthogonal polynomials (Figure 3) up to the third order. In Figure 4 
the ordering of the treatment combinations has been changed from the 
standard Yates ordering to a more convenient ordering for the method to be 
developed in this paper. It turns out that this new ordering groups the 
various types of treatments with either sets of zeros or sets of non-zeros. 
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FIGURE 2. Standard Yates Notation for The Design Matrix for 32 Runs 

TABA CABA DABA CABA EABA CABA DABA CABA 
B  CCB  DDB DCCB EEB ECCB EDDB DCCB 

C    D DDC E EEC EED EDDC 
D E E  EED 

1 ■* b    -++- -++- +—b -++- +—b    H b -++- 
2 -H— —b+    —H- ++— —H- ++-- ++— ■—H- 
3 +-+- -+-+ -+-+ +-+- -f~+ +-+- +-+- -+-+ 
4 ++++     ++++   -H-H- +H+   

5 +—b    +—b    -++- -++- -++- -++- +—b H b 
6 
7 
8 ++++ ++4+  ■  —     ++4+ ++++ 

9 -. ...H h -++- +—b -f+- -H~ +~+ -++- + b 
XU       . T—f— •—   *W~T+   TT™" 
11 +-+--+-++-+- 
12 +44+    '-   ++f+ .'■--—: ++++ —— ++++ 

13          H b H—+ A—b +—b 
l*f ■|"'l -'-"** "I   I -■--'— I   I — ~" "I  ]■—•— 

15 +-+- +-+- +-+- +-+- -+-+ -+-+ -+-+    -+-+ 
16 ++++ +H+ ++++ ++++                     

17 +—b -++- -++- +—b   A h -++- -++-    +—b 
JLo '1 I — ™* ——■■(' i' — . i i 1 I -— "1 "r—— — — l I "■•",T*r     'i"f"~— 

19 +-+- M--+ -+-+ +-+- +-+- -+-+ -+-+   +-+•- 
20 ++++   —- ++H- ++++          ++H- 

21 +—b H b -++- -++- +—b +—+ -++-    -++- 
£./» -f-|—— -|-|—— —-- (   I ""TT TT"~ ■T"!"—"" .    ■"■■■■   I   I 

23 +-+- +-+- -+-+ -+-+ +-+- +-+- -+-+ 
24 +H+ +H+        ++f+ ++++    :  

25 +—f- -++- +--+ -++- +—b -++- +—b 
ZÖ T"l'~" —J- I   | TT-" *~"""tT "I   I —"" •"— I   I 

27 +-+- -+-+ +-+- -+-+ +-+- -+-+ 
28 ++++   ++++   ++++   ++++ 

29 H b H b H b +—b +—+ +—b   +--+   H b 
30 I   I ~"~ I   1 — ~ 'I   I  LJ-— "It *~~ I   1 "*"" T"T~ ™" "TT"-*"*        TT" *~ 

31 +-+- +-+- +-+- +-+- +-+- +-+- ■+-+-    +-+- 
32 ++++ +H+ ++++ ++++ ++++ ++H- ++H-    ++H- 
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FIGURE 3. Orthogonal Polynomials 

Linear Quadratic Cubic 

31 155 -899 

29 125 . -551 

27 97 -261 

25 71 -25 

23 . 47 161 

21 25 301 

19 5 399 

17 -13 459 

15 -29 485 

13 -43 481 

11 -55 451 

9 -65 399 

7 -73 329 

5 -79 245 

3 -83 151 

1 -85 51 
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FIGURE 4. The Yates Solution 

Treatment 
Level 
Changes Linear Quadratic Cubic 

A 
B 
C 
D 
E 

31 
15 
7 
3 
1 

32 
64 

128 
256 
512 

0 
0 
0 
0 
o 

1088 
2144 
4032 
6016 
4352 

AB 
AC 
AD 
AE 
BC 
BD 
BE 
CD 

:■-■ CE ■'■■ 
DE 

16 
24 
28 
30 
8 

12 
14 
4 
6 ■ ■■■:■ 
2 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

32 
64 

128 
256 
128 
256 
512 
512 

1024 
2048 

0 
0 
0 
0 
0 
0. 
0 
0 
0 
0 

ABC 
ABD 
ABE 
ACD 
ACE 
ADE 
BCD 
BCE 
BDE 
CDE 

23 
19 
17 
27 
25 
29 
11 
9 

13 
5 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

128 
256 
512 
512 

1024 
2048 
1024 
2048 
4096 
8192 

ABCD 
ABCE 
ABDE 
ACDE 
BCDE 

20 
22 
18 
26 
10 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

ABCDE 21 0 0 0 
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The factor level changes are also given in Figure 4.  Note that the 
number of factor level changes vary from 1 to 31. The main effect for A 
has the maximum number of factor level changes.  For determining the number 
of factor level changes for any design only the level changes for the main 
effects are summed.  Therefore, the standard Yates design is characterized 
by 57 factor level changes. Thus, as the references show, the standard Yates 
design is undesirable with respect to factor level changes. Also, the 
standard Yates design has large correlations with time, again an undesirable 
characteristic. Thus, optimal designs will be found in this paper having 
admissible properties. 

The time counts for each treatment are the same as the Yates solution 
given in Figure 4. Note that for the standard Yates design the main effects 
have zero quadratic time trend. The first order treatment interactions 
have zero linear and zero cubic time trend. The second order treatment 
interactions have non-zero cubic time trend. The third order treatment 
interactions have all zero time trend. These observations are utilized to 
construct admissible run orders for the cases given in Figure 1. 

The method consists of developing a new algebra whereby each of the 
31 treatments is denoted by the number of factor level changes.  In effect 
the new algebra permutes the 31 columns of Figure 2 into an optimal design. 
In the next section the development will be presented via illustration. 

In Chapter 6 admissible sets of run orders for various cases will 
ba constructed. In these cases whenever the designer has the option to 
randomize, it is to be understood that he can also randomize with respect 
to two equivalence classes. 

One equivalence class is defined on the factor names. That is, the names 
(for example, A, B, C, D, or E) can be chosen at random for the admissible 
set. There are p! elements in this equivalence class. 

A second equivalence class is defined on the choice of the high and 
low levels for One or more factors. That is, the designer can choose the. 
plus and minus signs for each main effect at random. There are N elements 
in this equivalence class. 
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4. ALGEBRA. Multiplication of any two of the 31 treatments defined 
by Figure 2 entails pariwise multiplication of the 32 elements making 
up each of the columns of Figure 2. The classical method of multi- 
plication will be utilized, whereby numbers, rather than letters, will 
be used to denote the treatment names. These numbers are the number 
of factor level changes for that particular treatment. That is, in 
Figure 4 instead of denoting the treatments by column one, column two 
will be used to denote the treatments as assigned by the standard 
Yates notation. As an example, the classical multiplication given as 
follows: 

AC ABD = BCD 

is represented in the new algebra as follows: 

24    *    19 = 11 

Note that this triplet can be represented in three different ways 
as follows: 

(i) 24 19 = 11 

(Ü) 19 * 11 = 24 

(iii) 24 * 11 = 19 

Figure 5 displays the 155 possible unique triplets as representation 
(iii) in a two-way table. To read off any product from Figure 5, 
note that the maximum value is the row, the minimum value is the column, 
and the value in between is the element of the matrix or body of the 
table. In Figure 5 all (j)1) or 465 different triplets could have been 
displayed by filling in the blanks. However, by filling in only re- 
presentation (iii) as defined above a pattern emerges. On extension 
to higher level designs, this pattern can be taken into account in 
developing a recursive method. 
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M 
A 
X 
I 
M 
U 
M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Figure 5. The 155 Possible Multiplications 

2 

4 
4 5 

6 5 4 

8 
8 9 

10 9 8 
8 9 10 11 

12 
12 13 

9 
10 

8 
11 

11 
8 

10 
9 

14 13 12 11 10 9 8 

16 
16 17 

18 17 16 
16 17 18 19 

20 
20 21 

17 
18 

16 
19 

19 
16 

18 
17 

22 21 20 19 18 17 16 
16 17 18 19 20 21 22 23 

24 17 16 19 18 21 20 23 22 
24 25 18 19 16 17 22 23 20 21 

26 25 24' 19 18 17 16 23 22 21 20 
24 25 26 27 20 21 22 23 16 17 18 19 

28 25 24 27 26 21 20 23 22 17 16 19 18 
28 29 26 27 24 25 22 23 20 21 18 19 16 17 

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

1 yl      3  4  5  6  7  8  9 10 11 12 13 14 15 

MINIMUM 
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5. SIEVE. In order to generate optimal or admissible designs 
the procedure entails development and utilization of a technique which 
shall be called a sieve. The first step of the sieve is formed by 
displaying the information from Figure 5 in Figure 6 for all 465 pos- 
sible triplets. In Figure 6 each one of the 31 treatments is determined 
by any one of the corresponding 15 pairs. That is, the pairs are 
choices for the two main effects A* and B* and the product is the 
choice for the treatment AB*. The superscript * denotes the treat- 
ments belonging to a possible candidate for an optimal or admissible 
design. Further, in Figure 6, the symbols "-", "L", "Q", or "C" are 
taken from Figures 1 and 4 and displayed as an aid for sifting out 
the desired restrictions for the various cases of Figure 1. The 
idea is to sequentially search down each of the 31 blocks of Figure 6 
and sift out the desired candidates for an admissible design. After 
this first step of the sieve, the designer will have possible candidates 
for A*, B*, and AB*. 
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Figure ( i. Choices For A* , B*, and AB* 

1 2 

_ L 
L 2 3 - - 1 3 - 

L 4 5 Q L 4 6 L 
L 6 7 - Q 5 7 ■ - 

L 8 9 Q L 8 10 C 
C 10 11 Q Q 9 11 Q 
L 12 13 Q L 12 14 L 
L 14 15 - Q 13 15 - ■ 

L 16 17 Q L 16 18 C 
C 18 19 Q Q 17 19 Q 
C 20 21 c c 20 22 c 
C 22 23 Q C 21 23 Q 
L 24 25 Q L 24 26 c 
C 26 27 Q Q 25 27 Q 
L 28 29 Q L 28 30, L 
L 30 31 - q 29 31 - ■ •■ 

3 

1 2  , L 
L 4 7 - 

Q 5 6 L 
L 8 11 Q 
Q 9 10 C 
L 12 15 - 

Q 13 14 L 
L 16 19 Q 
Q 17 18 c 
c 20 23 Q 
c 21 22 c 
L 24 27 Q 
Q 25 26 c 
L 28 31 - 

Q 29 30 L 

  
4 

L 
- 1  1 5 Q 
L 2 6 L 
- 3 ' 7 - 

L 8 ' 12 L 
Q 9 f 13 Q 
c 10 14 L 
Q 11 15 
L 16 20 C 
Q 17 21 C 
c 18 22 C 
Q 19 23 Q 
L 24 28 L 
Q 25 29 Q 
c 26 30 L 
Q 27 31... - 
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Figure 6. 

5 

i.   ■ 

Q 
- 1 4 L 
L 2 7 - 
- 3 6 L 
L 8 13 Q 
Q 9 12 L 
c 10 15 - 

Q 11 14 L 
L 16 21 C 
Q 17 20 C 
C 18 23 Q 
Q 19 22 C 
L 24 29 Q 
Q 25 28 L 
C 26 31 - 

Q 27 30 L 

*, B*, and AB* (continued) 

6 

L 
_ 1 7 - 

L 2 4 1 
- 3 5 Q 
L 8 14 L 
Q 9 15 - 

C 10 12 L 
Q 11 13 Q 
L 16 22 C 
Q 17 23 Q 
C 18 20 c 
Q 19 21 c 
L 24 30 L 
Q 25 31 - 

c 26 28 L 

Q 27 —-—  29 q 

7 
v^ 

- 1 6 L 
L 2 5 Q 
- 3 4 L 
L 8 15 - 

Q 9 14 L 
C 10 13 Q 
Q 11 12 L 
L 16 23 Q 
Q 17 22 c 
c 18 21 c 
Q 19 20 c 
L 24 31 - 

Q 25 30 L 
c 26 29 Q 
Q 27 28 L 

8 

L 
- 1 9 Q 
L 2 10 C 
- 3 11 Q 
L 4 12 L 
Q 5 13 Q 
L 6 14 L 
- 7 15 - 

L 16 24 ' L 
Q 17 25 Q 
c 18 26 c 
Q 19 27 Q 
c 20 28 L 
c 21 29 Q 
c 22 30 L 

q 23 31 - 
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Figure 6. Choices For A*, B*. and AB* (continued) 

9 

Q 
— 1 8 L 
L 2 11 Q 
.— 3 10 C 
L 4 13 Q 
Q 5 12 L 
L 6 15 - 
— ■ 7 14 L 
L 16 25 Q 
Q 17 24 L 
c 18 27 Q 
Q 19 26 C 
c 20 29 Q 
c 21 28 L 
c 22 31 - ■ 

„ <r 23 30 L 

10 

C 
- 1 11 Q 
L 2 8 L 
- 3 9 Q 
L 4 14 L 
Q 5 15 - 

L 6 12 L 
■ - 7 13 Q 
L 16 26 C 
Q 17 27 Q 
c 18 24 L 

Q 19 25 Q 
c 20 30 L 
c 21 31 - 

c 22 28 L 
Q 23 29 ,"Q 

li 

Q 
— l 10 C 
L 2 9 Q 
— 3 8 L 
L 4 15 - 

Q 5 14 L 
L 6 13 Q 
— 7 12 L 
L 16 27 Q 
Q 17 26 c 
c 18 25 Q 
Q 19 24 L 
c 20 31 - 

c 21 30 L 
c 22 29 Q 
Q 23 28 L 

12 

L 
- • r i 13 Q 
L 2 14 L 
- 3 15 - 

L 4 , 8 L 
Q 5 9 Q 
L 6 1 10 c 
— 7 11 Q 
L 16 28 L 
Q 17 29 Q 
c 18 30 L 
Q 19 31 - 

c 20 24 L 
c 21 25 Q 
c 22 26 c 
Q 23 27 Q 
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Figure 6. Choices For A*, B*, and AB* (continued) 

' 
13 14 

Q L 
- f   1 12 L - 1 15 — 
L 2 15 - L 2 12 L 
- 3 14 L - 3 13 Q 
L 4 9 Q L 4 10 c 
Q 5 8 L Q 5 11 Q 
L 6 11 Q L 6 8 L 
- ■ 7 10 c - ■ 7 9 Q 
L 16 29 Q L 16 30 L 
Q 17 28 L Q 17 31 - : 
c 18 31 - C 18 28 L 
Q 19 30 L Q 19 29 Q 
c 20 25 Q c 20 26 c 
c 21 24 L c . 21 27 Q* 
c 22 27 Q c 22 24 L 
o 23 26 C Q 23 25 Q 

15 

- .1 14 L 
L 2 13 Q 
- 3 12 L 
L 4 11 Q 
Q 5 10 C 
L 6 9 Q 
- 7 8 L 
L 16 - 31 - 

Q 17 30 L 
C 18 29 Q 
Q 19 28 L 
c 20 27 Q 
c 21 26 c 
c 22 25 Q 
q 23 24 L 

' * ;  
16 

L 
- 1 17 Q 
L 2 18 C 
- 3 19 Q 
L 4 20 C 
Q 5 21 C 
L 6 22 C 
- 7 23 Q 
L 8 24 L 
Q 9 25 Q 
c 10 26 c 
Q 11 27 Q 
L 12 28 l 
Q 13 29 Q 
L 14 30 L 
- 15 31 - 
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Figure 6. Choices For A*, B*, and AB* (continued) 

17 

Q 
- 1 16 L 
L 2 19 Q 

■ - 3 18 C 
L 4 21 C 
Q 5 20 C 
L 6 23 Q 
- 7 22 c 
L 8 25 Q 

,    Q 9 24 L 
c 10 27 Q 
Q 11 26 c 
L 12 29 Q 
Q ■ 13 28 L 
L-, 14 31 - 

- 1  15 30 L 

18 

C 
- 1 19 Q 
L 2 16 L 
— 3 17 Q 
L 4 22 C 
Q 5 23 Q 
L 6 20 c 
- 7 21 c 
L 8 26 c 
Q 9 27 Q 
c 10 24 L 
Q 11 25 Q 
L 12 30 L 
Q 13 31 - 

L 14 28 L 
15 29 q 

19 

Q 

20 

C 
. _ 1 18 C - 1 21 C 
L 2 17 Q L 2 22 C 
— 3 16 L - 3 23 Q 
L . 4 23 Q L 4 ,16 L 
Q 5 22 C Q 5 17 Q 
L 6 21 c L 6 1 18 c 
— 7 20 c - 7 19 Q 
L 8 27 Q L 8 28 L 

Q 9 26 c Q 9 29 Q 
C 10 25 Q c 10 30 L 

Q 11 24 L Q 11 31 - 

L 12 31 - L 12 24 L 
Q 13 30 L Q 13 25 Q 
L 14 29  . Q L 14 26 c 
- 15 28 L - 15 27 Q 
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Figure 6. Choices For A*, B*, AB* (continued) 

21 22 

C C 
— 1 20 C - 1 23 Q 
L 2 23 Q L 2 20 c 
— 3 22 C 3 21 c 
L 4 17 Q L 4 18 c 
Q 5 16 L Q 5 19 Q 
L 6 19 Q L 6 16 !L 

. — 7 18 c - 7 17 Q 
L 8 29 Q L 8 30 L 

Q 9 28 L Q c 31 - 

C 10 31 - c 10 28 L 
Q 11 30 L Q 11 29 Q 
L 12 25 Q L 12 26 c 
Q 13 24 L Q 13 27 Q 
L 14 27 Q L 14 24 L 
- 15 26 c - 15 25  , ,  q 

< 
23 

Q 
. - 1 22 C 
L 2 21 C 
- 3 20 C 
L 4 19 Q 
Q 5 18 c 
L 6 17 Q 
- 7 16 L 
L 8 31 - 

Q 9 30 L 
c 10 29 Q 
Q 11 28 L 
L 12 27 Q 
Q 13 26 C 
L 14 25 Q 
- 15 24 L 

24 

L 
- 1 25 Q 
L 2 26 C 
- 3 27 iQ 
L 4 28 L 
Q 5 29 Q 
L 6 30 L 
- 7 31 , - 
L 8 16 'L 
Q 9 17 Q 
C 10 18 c 
Q 11 19 Q 
L 12 20 c 
Q 13 21 c 
L 14 ' 23 c 
- 15 23 Q 
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Figure 6. Choices For A*, B*, and AB* (continued) 

25 

Q 
- 1 24 L 
L 2 27 Q 
- 3 26 C 
L 4 29 Q 
Q 5 28 L 
L 6 31 -. • 
- ' 7 30 L 
L 8 17 Q 
Q 9 16 L 
c 10 19 Q 
Q 11 18 c 
L 12 21 c 
Q 13 20 c 
L 14 23 Q 

15 22 c 

26 

C 
- 1 27 Q 
L 2 24 L 
- 3 25 Q 
L 4 30 L 
Q 5 31 ' - 
L 6 28 L 
- 7 29 Q 
L 8 18 c 
Q 9 19 Q 
c 10 16 L 
Q 11 17 Q 
L 12 22 c 
Q 13 23 Q 
L 14 20 c 
- 15 21 c 

27 

Q 
- 1 26 C 
L 2 25 Q 
- 3 24 L 
L 4 31 - 

Q 5 30 L 
L 6 29 Q 
- 7 28 L 
L 8 19 Q 
Q 9 18 c 
c 10 17 Q 
Q 11 16 L 
L 12 23 Q 
Q 13 22 c 
L 14 21 c 
- 15 1 20  | c 

28 

L 
-. 1 29 Q 
L 2 30 L 
- • 3 31 — 
L 4 24 L 
Q 5 25 Q 
L 6 26 c 
- 7 27 Q 
L 8 20 c 
Q 9 21 c 
c 10 22 c 
Q 11 23 -Q 
L 12 16 L 
Q 13 17 Q 
L 14 18 c 
- 15 19 o 
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Figure 6. Choices For A*, B*, and AB* (continued) 

29 

Q 
- 1 28 L 
L 2 31 - 
- 3 30 L 
L 4 25 Q 
Q 5 24 L 
L 6 27 Q 
- 7 26 C 
L 8 21 C 
Q 9 20 C 
C 10 23 Q 
Q 11 22 c 
L 12 17 Q 
Q 13 16 L 
L 14 19 Q 

15 18 c 

30 

L 
- 1 31 - 

L 2 28 L 
- 3 29 Q 
L 4 26 C 
Q 5 27 Q 
L 6 24 L 
- . 7 25 Q 
L 8 22 c 
Q 9 23 Q 
c 10 20 c 
Q 11 21 c 
L 12 18 c 
Q 13 19 Q 
L 14 16 L 
- 15 -.17; I s^ 

31 

- 1 30 L 
L 2 29 Q 
- 3 28 L 
L 4 27 Q 
Q 5 26 C 
L 6 25 Q 
- 7 24 L 
L 8 23 Q 
Q 9 22 C 
c 10 21 C 
Q 11 20 C 
L 12 19 Q 
Q r 13 18 c 
L 14 17 Q 

■ - 15 16 L 
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The second step of the sieve is concerned with finding the main 
effect C* given candidates A*, B*, and AB*. Since the main effects 
can be relabeled with respect to equivalence classes, the choice for 
C* can be subjected to the following constraint: 

A* < B* < C*• 

Now to choose C*, suppose that A* and B* are fixed at "5" and 
"9" respectively, then, for this example, Figure 7 displays 28 possible 
choices for C*. In Figure 7, for any choice of C*, the remaining 
three treatments in that same row are automatically determined and 
assigned as shown in Figure 8, for example, for the second row of 
Figure 7. That is, the treatments in each row of Figure 7 for C* 
can be permuted, but only these seven rows can be defined. 

94 



Figure 7.    Choices For C* 

A* B* AB* c* 

5 9 12 10 15 3 6 

5 9 12 11 14 2 7 

5 9 12 13 8 4 1 

5 9 12 16 21 25 28 

5 9 12 17 20 24 29 

5 9 12 18 • 23 27 30 

5 9 
12 19 22 26 31 
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Figure 8. Choices for AC*, BC*, And ABC* 

A* B* AB* c* AC* BC* ABC* 

5 9 12 11 14 ■\.v2-r. 
■■■ '7'- 

5 9 12 14 11 7 2 

5 9 12 2 7 11 14 

5 9 12 7 2 14 11 
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In applying the sieve, the last two rows of Figure 8 can be crossed 
out, for the example, due to the ordering constraint on these three 
candidates for the main effects. This ordering constraint will also 
reduce the set of choices given in Figure 7. Case restrictions will 
further reduce the set of choices. Therefore, as the sequential search 
for candidates progresses, or as A* and"B* increase in value, the set 
of possible choices for each new C* decreases. Usually, the possiblilities 
need not be exhaustive as shown by the cases studied in Chapter 6. 

At this stage of the sieve, for each possible candidate for an 
admissible design, it turns out that seven out of the 31 possible 
treatments are now fixed. The third step of the sieve is concerned 
with finding admissible choices for D* and E*. To continue the sequen- 
tial search, the ordering constraint is extended as follows: 

A* < B* < C* < D* < E* 

Suppose that the candidate under consideration at this step is given 
by the first row of Figure 8. The nex* candidates will be found from 
the blocks of Figure 6. For this example, the best candidate for D* 
is "13". Further, on checking the 13th block of Figure 6 and crossing 
out the seven pairs corresponding to the seven fixed treatments, the 
best candidate for E* is "16". These two candidate blocks are repeated 
from Figure 6 as Figure 9 but without any case restrictions. Also in 
Figure 9 the seven treatments for this example are circled. As a check 
on the validity of the chosen design, note that in Figure 9, each 
block has seven pairs that are eliminated. Case restrictions would 
eliminate more pairs. Due to the ordering constraint and since the sum 
of the factor level changes for the main effects is to be minimized, 
only one pair of D* and E* treatments need be found for each candidate 
up to this step of the sieve. However, the three main effects from 
step 2 will not have a sum that strictly increases or decreases as 
the sequential search progresses. 

After all admissible designs are sufficiently searched and dis- 
played the designer selects the optimal design with respect to the 
particular case under consideration. However, due to the ordering 
criterion and the fixed choice of the plus and minus signs in Figure 2, 
the above selection is up to an equivalence class. Therefore, at this 
point, the designer has the option to randomize. 
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Figure 9. Choices For D* And E* 

13. 

1 (12) 

© 15 

3 @ 

4 ® 
..© 8 

6 © 
© 10 

16 29 

17 28 

18 31 

19 30 

20 25 

21 24 

22 27 

23 26 

16 

1 17 

© 18 

3 14 

4 20 

© 21 

6 22 

© 23 

8 24 

® 25 

10 26 

® 27 

© 28 

13 29 

© 30 

15 31 
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In order to be absolutely sure that the selected design is a 
valid design, the plus and minus signs of the main effects can be placed 
back through the standard Yates notation via the factor level changes 
as shown in Figure 10.  In Figure 10 the design to be validated is given 
by the last row while the next to last row is the corresponding Yates 
notation from Figure 2. Here, a plus sign denotes a value of one and 
a minus sign denotes a value of zero. Thus, the Yates count is deter- 
mined by writing the biliary count of the five digit number of each 
row plus one. The Yates count for a valid design should include all 
numbers from 1 to 32. 
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Figure 10.     To Validate The  Selected Design 

 -, 
Yates 

Ä* B* c* D* E* Count 

+ + + mtn + 30 
+ — - + - 19 
_ _ — + - 3 
_ + + - + 14 
_ + — + - 11 
_ — + - + 6 
+ — ' + + 22 
+ + - + - 27 
— _ - + + 4 
— + + - - 13 
+ + + - - 29 
+ — ' - + + 20 
+ — + - - 21 

.'; + ;; + , - ■ + ':'+:■ ■ 28 
—' + ■ - +■'■'■' + 12 
_ — + - - 5 
_ — . + + - 7 
_ + — - + 10 
+ + - - + 26 
+ — + + - 23 
+ — - - + 18 
+ + + + - 31 
— + + + - 15 

- _ _ • — — + 2 
+ + - - - 25 
+ — + + + 24 
— - + + + 8 
— + - - - 9 
- + + + + 16 
_ _ - - - 1 
+ _ - - 17 
+ + + + + 32 

BCDE ABDE ABCD ABCDE ABCE 

10 18 20 21 22 
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6» CASE STUDY. Figure 1 summarizes seven cases with various time trend 
restrictions. Figure 11 shows how these cases or sets are included in 
each other. The case represented by (L, -, -) has a large number of 
elements or admissible designs as well as the case with no restrictions. 
Therefore, these two cases will not be analyzed but are shown in Figure 11 
to complete the picture. As more restrictions are placed on the design, 
or as more arrows in Figure 11 are traced, the total number of factor 
level changes increases and the trade-off becomes a managerial decision. 
Note that Figure 11 is not drawn to any scale. 

FIGURE 11. Inclusion of Cases 
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The logic for generating the admissible sets for the various cases 
has been programmed in FORTRAN. Table look-ups, "IF" statements, and "DO" 
loops simulate the sieve, the order constraints, and the restrictions 
and drive the sequential search. 

CASE 1.  (L, L, L). For this case the 5 treatments denoted "-" in 
Figure 6 must be designated as third or fourth order treatments. There- 
fore, up to an equivalence class, this set could have, at the most, 6 
admissible designs. If 4 of the 5 possible third order interactions 
(treatments) are fixed then the fifth one is determined. Therefore, there 
are only 5 admissible designs and these five designs are displayed in Figure 12. 
In Figure 12 the 5 admissible designs are generated as follows. The first 
A treatments are fixed, thus determining the next 11 treatments. The 
treatments in line number 16 are fixed next, thus determining the rest of 
the treatments. The sum given in the last row characterizes each design 
and is found by adding the factor level changes or the values denoting 
the 5 main effects. 
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FIGURE 12. All Admissible Designs for Case 1 

Line 
Number Treatment 

Design 
1 2 3 4 5 

1 ABCDE* 7 3 15 1 31 
2 ABCD* 3 1 3 3 3 
3 ABCE* 1 7 7 7 7 
4 ABDE* 31 31 31 31 1 
5 ABC* 5 5 11 5 27 
6 ABD* 27 29 19 29 29 
7 ABE* 25 27 23 25 25 
8 CDE* 26 26 20 26 26 
9 AB* 29 25 27 27 5 

10 CD* 30 24 24 24 6 
11 CE* 28 30 28 28 28 
12 DE* 2 .6 4 4 4 
13 C* 24 28 16 30 30 
14 D* 6 4 8 6 24 
15 E* 4 2 12 2 28 
16 ACDE* 15 15 1 15 15 
17 B* 8 12 14 14 16 
18 BE* 12 14 2 12 12 
19 BD* 14 8 6 8 8 
20 BC* 16 16 30 16 14 
21 BDE* 10 10 10 10 20 
22 BCE* 20 18 18 18 18 
23 BCD* 22 20 22 22 22 
24 A* 21 21 21 21 21 
25 BCDE* 18 22 26 20 10 
26 AE* 17 23 25 23 9 
27 AD* 19 17 29 19 19 
28 AC* 13 9 5 11 11 
29 ADE* 23 19 17 17 17 
30 ACE* 9 11 9 9 23 
31 ACD* 11 13 13 13 19 

Sum 63 67 71 73 119 
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CASE 2  (Q Q,-). This case admits an empty set as shown as follows. 
Utilising the first step of the seive, Figure 13 arrays the possible candidates 
as given by Figure 6 where each treatment of the triplet has an assigned 
Oor C. Using°the ordering constraint, these triplets have been orders, 
in Ficure 13. However, this ordering can be reversed if necessary. But 
the second step of the seive cannot be filled, since 6 of the 7 required 
treatments for each candidate at this step must be taken from Figure 13. 

Thus admitting an empty set. 

FIGURE 13. Candidates for Case 2 from Step 1 of the Sieve 

Triplets for A*, B*, 
and AB* 

5 
5 
5 
9 
9 
9 

10 
10 
10 
11 
11 
11 
13 
13 
13 

17 
18 
19 
18 
19 
20 
17 
19 
23 
17 
18 
22 
20 
22 
23 

20 
23 
22 
27 
26 
29 
27 
25 
29 
26 
25 
29 
25 
27 
27 

HASE 3.  (C. L, -)■ This case also admits an empty set. This can 
be shown in a similar fashion as shown in case 2 or by looking at the 
5 treatments making up case 4 and putting on the further restriction on 
the first order interactions. To repeat the proof from case 2, 
Figure 14 arrays the possible candidates from the first step of the 
sieve  Note that in Figure 14 there are only 5 possible candidates for 
the main effects and the following product violates any possible, designs: 

10 * 18 * 20 * 22 = 26 

That is, ABCD* and E* must be different, 
case 3 is also empty. 

Thus showing that the set for 
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FIGURE 14.  Candidates for Case 3 from Step 1 of The Sieve 

■ 
 —-t 

A* B* AB* 

20 22 2 
18 22 4 
18 20 6 
18 26 8 
22 26 12 
20 26 14 
10 26 16 
10 18 24 
10 22 28 
10 20 30 

CASE 4.  (C, -»-). For this case Figure 15 arrays the possible 
candidates from the first step of the sieve. Here there are only 6 
possible candidates for the main effects, but one of these is inadmissible 
due to the following product violation: 

10 * 18 * 26 = 2 

20 * 22 - 2 

This product violation is found an execution of steps 2 and 3 of the sieve. 
Figure 16 arrays the main effects and the first order interactions for 
the 5 admissible designs for this case along with the sum of the factor 
level changes. Figure 16 also shows that the set for case 3 is empty, since 
each design has at least one first order interaction that violates the 
further restriction imposed by going from case 4 to case 3. 
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FIGURE 15. Candidates for Case 4 from Step 1 of The Sieve 

A* B* AB* 

20 21 1 
20 22 2 
21 22 2 
18 22 4 
18 20 6 
18 21 7 
18 26 8 
22 26 12 
20 26 14 
21 26 15 
10 26 16 
10 18 24 
10 22 28 
10 20 30 
10 21 31 

Figure 16. All Possible Designs for Case 4 

Design 1 2 3 4 5 
A* 10 10 10 10 18 
B* 18 18 18 20 20 
C* 20 20 21 21 21 
D* 21 21 22 22 • 22 

E* 22 26 26 26 26 
AB* 24 24 24 30 6 
AC* 30 30 31 31 7 
AD* 31 31 28 28 4 
AE* 28 16 16 16 8 
BC* 6 6 7 1 1 
BD* 7 7 4 2 2 
BE* 4 8 8 14 14 
CD* 1 1 3 3 3 
CE* 2 14 15 15 15 
DE* 3 15 12 12 12 
SUM 91 95 97 99 107 
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Case 5.  (Q, L, -). This case admits a very large set of admissible 
designs. Figure 17 displays some of these designs which were generated 
in a fraction of a second on the Univac 1108 computer along with the 

total sum of factor level changes. The desisns with sums IPSS f**n 
70 were chosen to illustrate the possibilities. 

Figure 17.  Some Possible Designs for Case 5 

A* I B* C* D* E* SUM 
5 9 11 13 17 55 
5 9 11 13 19 57 
5 9 11 13 21 59 
5 9 11 13 23 61 
5 9 11 13 25 63 
5 9 11 13 27 65 
5 9 11 13 29 67 
5 9 11 17 21 63 
5 9 11 17 23 65 
5 9 11 17 25 67 
5 9 11 17 27 69 
5 9 11 19 21 65 
5 9 11 19 23 67 
5 9 11 19 25 69 
5 9 13 17 19 63 
5 9 13 17 23 67 
5 9 13 19 21 67 
5 11 13 17 19 65 
5 11 13 17 21 67 

Case 6.  (L, L, -). This case also admits a very large set of 
admissible designs, a set much larger than the set for case 5. Figure 18 
displays some of these designs which were again generated in a fraction 
of a second on the Univar 1108 computer. The designs with sums less 
than 56 were chosen to illustrate the possibilities! The design with 
a sum of 43 is optimal. For comparitive purposes the standard Yates 
design has a sum of 57 plus non-zero time counts in the main effects. 
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Figure 18.  Some Possible Designs for Case 6 

A* B* c* D* E* SUM 
2 4 8 16 21 51 
2 4 8 16 25 55 
2 4 8 17 20 51 
2 4 8 17 24 55 
2 4 8 19 22 55 
2 4 9 12 16 43 
2 4 9 12 17 44 
2 4 9 12 18 45 
2 4 9 12 20 47 
2 4 9 12 21 48 
2 4 9 12 23 50 
2 4 9 12 24 51 
2 4 9 12 25 52 
2 4 9 12 26 53 
2 4 9 12 28 55 
2 4 9 16 21 52 
2 4 9 16 24 55 
2 4 9 17 20 52 
5 9 11 13 16 54 

-".'•:-5 • ■■■:■''■ a. 11 - 13 17 55 
5 8| 1'2 14 16 55 1 

Case 7.  (Q, ~t -)• Thi 3 case is included for comj 
Although it *s much larger than cases 4 and 5, it turns out that it 
has the same optimal design as case 5 as given by the first design 
of Figure 17. 

To compare these cases further, the optimal design for the case 
expressed by (L, -, -) is given as (2, 4, 5, 8, 16) with a sum of 35. 
Further, the case or set of designs having no restrictions is given as 
(1, 2, 4, 8, 16) with a sum of 31 or N-l as shown by the references. 
However, on restricting to the standard Yates notation, as this paper 
has done, this is the only possible design up to an equivalence class, 
with a sum of 31. On relaxing the standard Yates restriction, as the 
references do, many designs can be found with a sum of 31, but with 
non-zero time counts. 
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7. APPLICATIONS. The application of the techniques presented in 
this paper to operational testing can best be shown by giving an example. 
For that purpose, an experimental design for an operational test of the 
hypothetical ZAP anti-tank weapon will be constructed. 

After analysis of the system to be tested, five factors are chosen 
to be included in the design, each factor being taken at two levels, 
thus giving a 25 factorial experiment. The factors chosen and their 
associated levels are shown in Figure 19. 

The importance of eliminating time trends in such a test can easily 
be seen. With so few factors being controlled, there exist the possi- 
bility that some uncontrolled and unmeasured factor is influencing test 
results. Such factors as weather, crew learning, and crew morale can, 
and usually do, change with time through the test. 

Another consideration in designing this test is the ease of execu- 
tion of the design. , Quite often a penalty must be paid in time, money, 
and perhaps test validity for each factor level change which is made. 
For instance, changing the visability factor between day and night too 
often would greatly slow the test execution and destroy any attempt 
to portray a realistic combat scenario, as it would permit only a small 
number of firings during daylight and then delay further testing until 
night in order to achieve the desired factor level change. Similarly 
it may be difficult and time consuming to frequently move the test part- 
icipants and test team from one location to another in order to achieve 
changes in the terrain factor. As a third example, frequent changes 
in the weapon factor may confuse the test participant and prevent him 
from performing as well as he might if he were allowed to stay with 
one weapon. For example, one weapon may require the soldier to lead 
a moving target while the other weapon does not.  If the test participant 
is frequently switching back and forth, he may forget and lead when 
he should not or not lead when he should. Even if he does remember 
and does the right thing, he may not do it as proficiently as if he 
had been able to concentrate on developing a single skill instead of 
two. 

With the foregoing constraints in mind, we can use the techniques 
presented in this paper to design a good test of our hypothetical anti- 
tank system. 

If it is felt desirable to strongly protect the main effects, we 
could choose case five which eliminates linear, and quadratic time trends 
for the main effects and linear time trends for the first order interactions. 
To construct our design we select one of the admissible run orders found 
for case five, as given in Figure 17. This selection can either be made 
randomly or the one with the minimum total number of factor level changes 
can be chosen.  For our example, let us choose the design which minimizes 
the factor level changes.  We can then •-•instruct our experimental design 
by going back to the standard Yates vocation and writing out the level changes 
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Figure 19. Operational Test of the ZAP Anti-tank Weapon 

FACTORS 

. Weapon 

. Range 

. Visibility 

..Target Mode 

. Terrain 

LEVELS 

- Baseline (present 
anti-tank weapon) 

- Candidate (ZAP) 

- Short 

- Long 

- Night 

- Day 

- Stationary 

- Moving 

- Open 

- Forrest 
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for the five factors as defined by the level change numbers given in 
Figure 17. This design is given in Figure 20. As with the selection 
of a design from the set of admissible run orders, the assignment of 
the five factors to the five columns dan be done either randomly or by 
ordering the factors based on which factor should have the fewest level 
changes and which could have more level changes. 

Suppose after examining Figure 20 we feel this design is not desirable 
because the number of factor level changes for visiblility, weapon, and 
terrain are excessive for the reasons discussed in paragraph 4 of this 
chapter. One alternative would be to relax the constraints on the elimina- 
tion of higher order time trends. We could decide to select a design 
which eliminates only linear time trends for the main effects, and first 
order interactions. For this we can choose case six. Figure 18 gives 
admissible run orders for case six. Going through the same procedure 
as for case five, we come up with the design given in Figure 21. 

Given that this design is determined to be staisfactory, it only 
remains to randomly assign a plus or minus to the actual level names 
for each factor. For ease of planning the conduct of the test, it may 
prove convenient to display the design information of Figure 21 in a 
more conventional format as shown in Figure 22 where the number in each 
cell gives the order of execution of each test event in filling out 
the full factorial design. 
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Figure 20. Case 5 Candidate Design for the ZAP Test 

A  5 B 9 C 11 D 13 E 17 
TERRAIN VISIBILITY WEAPON TGT MODE RANGE 

1 _ — - - - 

2 _ - - + 
3 — + + + ■'■■.+ 

4 — + + + 

5 + + + _ — 

6 + + + - , + 
7 + . - ■ ' 

- + + 
8 + "" — + •■ ' 

, . 

9 + mm + + ■  — 

10 + ~ + + + 
11 + ■■■+.' - — :+ - 
12 + ..;. + •-  ;. :.':.W-- '.'...'. :-". 

13 
'••-. '  ' :: 

:;L:\  + ■:'■■'■'•' m^  " ' "■' '.':+ '■;.,•. : ' . — 

14 _ ■■".+ ' ■■-■■•' + + 
15 - - + — + 
16 ™" + 

17 + + H + + 
18 + + - + — ■ 

19 + - + — — 

20 + "■ + + . 

21 _' + + ..'■■ + 

22 - - + + — 

23 - + — ' — ■ — 

24 — + + 

25 _ + + — + 

26 - + + — — 

27 - - - + — 

28 — — ~ + + 

29 + _ — - +  . 
30 + - - — ~ 

31 + + + + — 

32 + + + + + 
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Figure 21. Case 6 Candidate Design for the ZAP Test 

A  2 B  4     C  9      D 12 E 16 
TERRAIN VISIBILITY  WEAPON    TGT MODE RANGE 

1 + +       -          + + 
2 + •  +       -          + 
3 + +        +     :         ■       - _ 
4 + •'■.+ ■■     +            - + 

5 + .'■'-:'      +              •+'...■.■ + 
6 + +                + 
7 ".■-+■■ —           _                _ _ 
8 ■•'■•.■. '+■•■-■ 

-     •.•■-'              -.-■.■ ■ + ■■ 

9 _ MB ■ + 
10 .'.-- 
11 ''-■•' ,     -       ■       +                      +..■■.-.■.. 

12 ■" ■ ■.-':■."■• ■+'.:..'■.'"+ • . + . 

13 _ 
.'+.''   ' ■.+•'' + 

14 ,. ., ■ - +     + 
15 •- • +     ■■-■        + 
16 ■M '+     -        + + 

17 _ +     +        + + 
18 ~ + ■    +     ■.+ ■■-,.- 

19 ~ +  ■--.''.. 

20 *~ ''.''.■ + •',■•;■  -       . ■ - + 

21 — ■   ' ."-.-'   -        + + 
22 ~ ■-.-.■ -        + 
23 ~ '.■.-.■•.■'+           :.-'.• 
24 "— 

■'..-:                + + 

25 '   .  +.- - .   '+■■■■        -   . + 
26 + +          - 
27 ■■ + •■■-.-.     -          + 
28 -'.■'■+■■ + + 

29 + •+    -. ■ - •     ■.'■«.-.'■'.':■'■ + 
30 + +    ■ -         _ 

31 + +      +        + 
32 + +      + ..       + + 
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8. FUTURE WORK. The computer lo?J     for recursively generating 
factorial designs having more than five factors would be desirable. 
Admissible designs with a mix of two and three level factors xrould be 
more realistic. Of further coney-" woul^ be optimal fractional factorial 
designs. 
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A METHOD OF ESTIMATING ERROR VARIANCE IN A NON-REPLICATED 
EXPERIMENT BY PARTITIONING AN INTERACTION TERM INTO 

NON-ADDITIVITY AND ERROR 

1st Lieutenant L. Douglas Peirce 
Instructor, School of Logistics Science 

Army Logistics Management Center 
Fort Lee, Virginia 

H. Gill Hilton 
Chairman, Department of Statistics 

Brigham Young University 
Provo, Utah 

ABSTRACT. A method of estimating error variance in a 
non-replicated experiment by separating an interaction term 
into sums of squares of non-additivity and sums of squares 
pertaining to error was examined. A sequential procedure 
to test individual degrees of freedom of the interaction term 
for non-additivity was introduced.  Five test statistics that 
could be applied to the sequential procedure are given. The 
critical values needed for each of the test statistics for 
a = 0.05 and 0.15, for 10, 20, and 30 degrees of freedom re- 
spectively in the term being tested, and for three stages of 
the sequential procedure were estimated by Monte Carlo methods. 

The five test statistics were compared as to their power 
and ability to estimate error variance when non-additive in- 
dividual sums of squares were combined with individual sums 
of squares that estimated error variance.  The results and 
recommendations as to which is the best test statistic are 
given.  The data indicated that using a higher level of sig- 
nificance than 0.15 would better estimate error variance. 

h INTRODUCTION.  Frequently, due to the nature of an 
experiment or through poor planning, a design is formed with- 
out replication. When this happens the experimenter has no 
estimate of experimental error in his data. This situation 
is illustrated in Table 1 taken from Fisher (1951).  Since 
each entry in this table represents a single observation, 
there is no way to estimate experimental error.  The usual 
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solution to this problem is to assume an additive model (no 
interaction) and to use the residual sum of squares as an 
estimate of error.  In a model with two main effects this 
means renaming the two-way interaction as error.  For the 
data in Table 1 the three-way interaction alone may be pooled 
into error or possibly the three-way and one or both of the 
two-way interactions may be pooled depending upon the experi- 
ment and the analyst.  Having an estimate of the error the 
experimenter may now be able to test other terms in the model 
that weren't testable before pooling. 

The problem with this procedure is that some of the 
pooled sums of squares may have estimated interaction and 
not error.  If this happens, the estimate of the error will 
be too large giving the experimenter a less sensitive test 
of other terms in the model. 

How, then, can it be determined if the mean square of 
an interaction term estimates error, interaction, or both? 
This paper examines five test statistics that are designed 
to answer this question. It will be restricted to fixed 
models with one observation per cell. The techniques devel- 
oped can be applied to any or all interaction terms in any 
n-way model. 

Using the Modified Abbreviated Doolittle (MAD) computer 
routine developed by Bryce (1970), the terms of a fixed 
model can be broken into single degree of freedom sums of 
squares.  These single degree of freedom sums of squares 
form the building blocks of the five test statistics.  The 
individual sums of squares of an interaction term are ranked 
and sequentially tested one at a time starting with the 
largest until non-significance is declared. At this point, 
the significant single degree of freedom sums of squares 
are pooled together as the part estimating interaction and 
the rest of the sums of squares and their corresponding 
degrees of freedom are pooled into error which is hopefully 
free of interaction. 

This paper will compare the ability to find interaction 
when present, or power, of the five test statistics and the 
ability of each to estimate a2. 
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2.  TEST PROCEDURE.  The expected mean square of any 
interaction term can be broken into two parts.  The first 
part contains the error variance, a2, and the second part 
contains the sum of the remaining different possible vari- 
ance components.  The number of terms in the second part 
would depend on the ANOVA model.  If interaction exists, 
then the mean square of an interaction term estimates 
the sum of the two parts of the expected mean square; i.e., 
a2 plus the rest of the terms.  However, if interaction 
does not exist, the mean square estimates only the error 
variance.  If for a given model interaction is not present, 
it would be appropriate to pool the sums of squares and 
degrees of freedom associated with the interaction terms 
into the error term. 

The sum of squares and n degrees of freedom of a term 
in the model can be partitioned into n sums of squares, 
each associated with one degree of freedom.  If an inter- 
action term is so partitioned, the resulting single degree 
of freedom sums of squares estimate either error variance 
or interaction.  It would be desirable to extract the por- 
tion that estimates error only, thus giving an estimate of 
a2 and making it possible to test other terms in the model. 
This procedure assumes that some of the partitioned single 
degree of freedom sums of squares estimate a2 only and that 
not all estimate interaction. 

The steps for the proposed sequential procedure for 
testing any interaction term and estimation of a2  are: 

1. Separate the term with n degrees of freedom into 
n sums of squares containing one degree of freedom each. 

2. Rank the n sums of squares. 

3. Apply one of the test statistics to the largest 
sum of squares. 

4. Check for significance using the appropriate values 
in the table for a and stage.  (Stage is the number of the 
sequential test that is being performed on the individual 
sums of squares of an interaction term.  For example, stage 
one is the test of the largest individual sum of squares, 
stage two the second largest and so on.) 
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5. If significance is declared, return to step three 
using the same test statistic and significance level to 
test the next largest sum of squares.  If no significance 
is found, proceed to step six. 

6. Pool the significant sums of squares and degrees 
of freedom into one interaction term. 

7. Pool the remaining sums of squares with their 
appropriate degrees of freedom into error. 

3.  TEST STATISTICS.  The proposed test statistics will 
be labeled Fl, F2, F3, F4, and F5 for convenience and the sum 
of squares of a single degree of freedom interaction term will 
be written as Si where (Si < S£ < ... < Sn).  The stage in 
the sequential test procedure will be denoted by r and n will 
denote the degrees of freedom in the interaction term before 
testing. 

The test statistics are: 

n 
Z    Si 

Fl = l =n-r+l r 
n-r   c 
Z    bj 

j=l  n-r 

F2 = 
sn-r+l 

Si 

F3 = 
sn-r+l 

F4  = 

n 
Z  Si 

i=l 

n 
Z Si 

i=n-r+l       r 
n 

F5  = 

Z  Sj 
j-l J 

>n-r+l 
n-r 

Z  Si 
i=l 
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Fl could be described as the sums of squares having 

elt sSm'of squares.  F3 is the test sum o£ squares divided 
hv the total sums of squares of the interaction term  F4 is 
a^ositeYf Tl and h.     F5 is the numerator of F3 divided 
by the sum of the sums of squares less than the test sum ot 
squares. 

4.  GENERATION OF CRITICAL VALUES.  The sequential test 
procedure was developed to LesL liie Wpothesis of no inter 
action  present in the single degree of freedom sum of squares 
of ^v infraction term. This would mean that each of the 
single degree of freedom interaction sum of squares estimate 
Ser?or andSfollow a central chi-square distribution^ith one 
degree of freedom.  The null hypothesis for the test proce 
fure at the first stage could be written 

H  :  Xi = X2=. • • = Xn - 0 

;r of the chi- where X- represents the non-centrality parameter of the chi- 
saul?e associated with each of the ordered single degrees of 
IJeedom? If tie  test proceeds to the second stage the null 
hypothesis would be 

HQ : X\  = X2 = • • • = xn-l = ° 

and so on at other stages of the test. 

Under the null hypothesis it is possible to generate 
the criticarval~uis f£r each test statistic using one degree 
of freedom central chi:squares.  Two P"™*;"!^ s£!e 
shape of the distribution of each test statistic, the stage 
of the test and the number of degrees of freedom in the 
interact!^ term under consideration  Using an e ec ronic 
r-nmmitpr the distributions of each of the test statisxii-b 
were simulated for three stages and interaction terms^of ten, 
twenty! and thirty degrees of freedom.  The upper portion 
of the distributions were ordered and the five and fifteen 
percent points were found thereby giving an estimate of the 
0.05 and 0.15 critical values under the null hypothesis. 

The single degree of freedom chi-squares were formed 
by generating a standard normal value and squaring it.  Each 
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Standard normal was generated by the Box-Muller (1958) 
transformation using uniform values generated by the McGill 
Random Number Generator Package, supplied by McGill Univer- 
sity.  This method of generating standard normals was 
found satisfactory by Thomas (1975). 

A more detailed explanation of how the critical values 
were found for stage one and ten degrees of freedom of 
interaction will now be given.  Ten one-degree of freedom 
central chi-aquares were generated and ordered.  A value for 
each of the five test statistics was calculated and saved. 
This process was repeated ten thousand times.  The upper 
portion of the ten thousand values for Fl was ordered and the 
five percent and fifteen percent points were found.  This 
gave the estimated critical values for a stage one test of 
an interaction term containing ten degrees of freedom using 
Fl as a test statistic.  The critical values were found in 
the same manner for F2, F3, F4, and F5.  This process was 
repeated for twenty and thirty degrees of freedom in inter- 
action. 

Stage two critical values for ten degrees of freedom 
interaction terms and a = 0.05 were estimated by again 
generating values for the test statistics in the same manner 
as above.  If generated numbers of the test statistics exceeded 
the 0.05 critical values with ten degrees of freedom for inter- 
action at stage one, the test statistic for stage two was 
formed and saved.  This was repeated until two thousand values 
at stage two were accumulated.  The upper portion was ranked 
and the estimate of the 0.05 critical value for stage two was 
found.  The same procedure was followed to find the table 
values for a = 0.15 and so on for twenty and thirty degrees 
of freedom of interaction. 

The calculation of stage three critical values is an 
extension of the stage two procedure.  Critical values under 
the null hypothesis were calculated and if they exceeded the 
appropriate critical values of both stage one and stage two 
the test statistic for stage three was formed and saved until 
two thousand were accumulated.  They were then ordered as be- 
fore and the estimates of the five percent and fifteen percent 
critical values were found.  The complete table of critical 
values generated is found in Table 2.  The critical values 
do not extend past stage three because of the length of com- 
puter time that would be necessary to generate stage four 
critical values. 
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TABLE 2 

CRITICAL VALUES FOR Fl, F2, 
F3, F4, and F5 

n is the total degrees of freedom associated with the 
interaction term being tested. 

a is the level of significance. 

1- 

EH V 
W H 
W EH 
EH < 

EH 
w 

i 

n a 

Stage 

1 2 3 

Fl 

10 .05 
.15 

13.7882 
9.0107 

35.6391 
19.6191 

• 108.8423 
46.5067 

20 .05 
.15 

12.0037 
8.9826 

20.3695 
13.8655 

32.4610 
19.9743 

30 .05 
.15 

11.9484 
9.1645 

17.4037 
12.7221 

23.5462 
15.9907 

F2 

10 
.05 
.15 

84376.4338 
8119.5734 

14924046.1125 
190156.7131 

4099285578.0629 
4723313.6463 

20 
.05 
.15 

421750.6897 
4273.3229 

157984650.5641 
1462966.2431 

42188251909.4520 
51961752.0038 

30 .05 
.15 

1060700.3502 
108524.4512 

330771314.1788 
5007498.1783 

97140244926.5100 
183702308.8679 

F3 

10 
.05 
.15 

.6051 

.5003 
.2182 
.2283 

.0911 

.1112 

20 
.05 
.15 

.3872 

.3210 
.2258 
.2093 

.1369 

.1357 

30 .05 
.15 

.2918 

.2401 
.1986 
.1788 

.1389 

.1279 

F4 . 

10 .05 
.15 

.6051 

.5003 
.4495 
.4153 

.3263 

.3174 

20 .05 
.15 

.3872 

.3210 
.3474 
.3032. 

.2838 

.2597 

30 .05 
.15 

.2918 

.2401 
.2771 
.2380 

.2412 

.2133 

10 .05 
.15 

1.5231 
.9985 

1.7930 
1.1222 

2.1168 
1.3075 

F5 20' .05 
.15 

.6365 

.4741 
.6677 
.4849 

.7151 

.5207 

,. 

30 
.05 
.15 
  

.4129 

.3177 
.4315 
.3190 

.4443 

.3302 
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5. CHOICE OF a.  It may be desirable to make the test 
for interaction at a relatively small alpha rather than a 
large one.  A small a under H0: X^ = X2 = . . . = Xn = 0, 
may lead to an inflated estimate of a2  by way of the se- 
quential test because when no significance is found the 
test procedure is halted and the error sum of squares is 
calculated.  A test using a small alpha may not find inter- 
action when it is present thus leading to an inflated esti- 
mate of a2.  Therefore, any tests of other factors in the 
model using the inflated error would be conservative.  With 
this in mind, critical values for alpha equal to 0.05 and 
0.15 were estimated. 

It should be noted that the level of significance must 
remain the same at all stages of the test when using the 
critical values developed here.  For example, it is not 
appropriate to test at stage one using a = 0.15 and after 
finding significance to test at stage two using a = 0.05. 

6. GENERATION OF POWER DATA.  Power in a sequential 
test is an elusive concept.  For this reason, power at stage 
one is defined to be the probability of rejecting the null 
hypothesis, H0: X^ = X2 = • . . = Xn = 0, given the null 
hypothesis is false. Power at stage two is the probability 
of rejecting the null hypothesis, HQ: X^ = X2 = . . . = ^n-l= ^» 
given the null hypothesis is false. 

Data generated to compare the power of the five test 
statistics were divided into two cases.  Case one consisted 
of generating ten, twenty, or thirty standard normal de- 
viates, adding a single non-centrality parameter, Xi, to 
one of these at random, and squaring each.  The result was 
one non-central and (n-1) central chi-squares.  The sequen- 
tial test procedure was thenperformed using one of the test 
statistics at a level of significance a.  This was repeated 
one thousand times adding the same non-centrality parameter, 
X-, to a new set of standard normal deviates and keeping a 
record of the number of times significance was declared. An 
estimate of power for the test statistic, at a, n degrees of 
freedom for interaction, and X^ at stage one was calculated 
by dividing the number of times significance was declared 
by one thousand. The above process was repeated for every 
possible combination of test statistics, levels of signi- 
ficance, number of degrees of freedom for interaction, and 
non-centrality parameters.  The non-centrality parameters are 
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Al = 1.5, Xo = 2.5, A3 = 3.5, and A4 = 4.5.  The sequential 
test for power in case one was not carried past the first 
stage.  The experiment was repeated once to form an estimate 
of experimental error. 

A test for power at both stage one and stage two was 
performed in case two data,  n random standard normal devi- 
ates were again generated and non-centrality parameters 
were added to two randomly selected standard normals before 
squaring.  The sequential test was applied and the process 
repeated one thousand times keeping count of the total num- 
ber of times significance was declared.  Each time signi- 
ficance was found the test would proceed to stage two to 
test for significance and a tally was kept of the number of 
times the null hypothesis was rejected. 

For a certain a, test statistic, n degrees of freedom 
of interaction, and set of non-centrality parameters, power 
at stage one was the number of times significance was found 
divided by one thousand while power at stage two equaled 
the number of times the null hypothesis was rejected at 
stage two divided by the total number of tests made.  (The 
total number of tests made at stage two was the number of 
times significance was declared at stage one.) 

The above power for case two was calculated indepen- 
dently for each combination of degrees of freedom of inter- 
action, test statistics, levels of significance, and pairs 
of non-centrality parameters.  As in case one, the experiment 
was replicated once.  There were ten different pairings of 
Ai, Aj added to form non-central chi-squares.  These are 
listed in Table 3. 

Table 3 

Pairings of Non-centrality Parameters 
Added for Case Two Power 

*2 

1.5 1.5 
2.5 2.5 
3.5 3.5 
4.5 4.5 
1.5 2.5 
1.5 3.5 
1.5 4.5 
2.5 3.5 
2.5 4.5 
3.5 4.5 
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7.  GENERATION OF MEAN SQUARE ERROR DATA.  As the above 
procedure for power was being performed data for an analysis 
of the ability of the test statistics to estimate cr2 was 
also being compiled. 

As each set of ten, twenty, or thirty chi-squares was 
generated for case one data, the test procedure would check 
for significance at different stages until none was found. 
It would then tally the sum of squares and degrees of freedom 
to be pooled into error.  This would proceed until all one 
thousand sets were tested.  The estimate of a2 was then cal- 
culated by dividing the total sums of squares pooled into 
error by the pooled degrees of freedom.  If significance was 
found at each of the first three stages in any of the one 
thousand sets, (n-3) degrees of freedom and the sums of 
squares not declared significant were added to error.  Since 
these data were calculated simultaneously with the power 
there are two independent observations for all combinations 
of test statistics, degrees of freedom in interaction, non- 
centralities, and levels of significance.  The case one mean 
square error data were calculated for five \i,   four being 
the same as in the power analysis and the fifth being equal 
to zero. 

Mean square error data for case two were generated simul- 
taneously with case two power data.  As both a stage one 
power test and stage two power test were performed for case 
two data, mean square error data were also collected at both 
the stage one power test and stage two power test.  Case 
two mean square error data will be labeled and discussed in 
terms of stage of power test.  This avoids the problem of 
thinking of the MSE data as "stage one MSE" and "stage two 
MSE" which carries the wrong connotation since both errors 
are estimated using the three-stage sequential procedure. 

Mean square error data at stage one power test were 
collected as follows.  The sequential (up to three stages) 
procedure was applied to each set of n single degree of free- 
dom interaction sum of squares.  If non-significance occurred 
at stage one all n sums of squares were pooled into the error 
estimate.  When significance was declared at stage one but 
not at stage two (n - 1) sums of squares were pooled into 
the error estimate and with significance at stages one and 
two but not at stage three (n - 2) sums of squares were pooled 
into the error estimate.  It was decided if significance was 
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found at all three stages that the remaining (n - 3) sums 
of squares would be pooled into error.  Thus, each of the 
one thousand sets of n sums of squares contributed some- 
thing to the estimate of error. 

Mean square data at stage two power test were collected 
in a different manner than at stage one power test. The 
same three stage sequential procedure was applied, but only 
to those sets of n sums of squares which were declared sig- 
nificant at the stage one power test.  If non-significance 
was observed at the stage one power test, then the set of 
n sums of squares did not become a part of the error estimate 
at the stage two power test.  Thus fewer than one thousand 
sets of n sums of squares were used in the stage two power 
test estimate. One might say that the mean square error 
calculated at stage two power test is "adjusted" for those 
cases where non-significance was found at stage one power test. 

This procedure was repeated for each combination of 
n, F, a, and pairings of Xi, Xj.  The entire process was 
replicated so that two independent estimates of error were 
obtained at each design point. 

The mean square error data at stage one power test are 
the values of interest in this paper.  They will be larger 
than the mean square error values calculated at stage two 
power test because the sums of squares and degrees of freedom 
are pooled into the mean square error at stage two power test 
only if significance was found at stage one power test. This 
means that the largest, individual sum of squares that is not 
declared significant at stage one is never pooled into the 
mean square error at stage two power test.  If one decided 
to estimate a2  only when significance was found at the first 
stage of the sequential procedure then the values of mean 
square error at stage two power test would give a picture of 
the results one might expect from the test statistics.  How- 
ever, if one wanted an estimate of a2 independent of signi- 
ficance being declared at stage one of the sequential pro- 
cedure the mean square error data generated at stage one power 
test one will indicate which is the best test statistic. 

8.  METHOD OF ANALYSIS OF DATA.  Analysis of variance 
was used to analyze the data generated for case one power. 
A four-way factorial model complete with all interactions 
was formed using degrees of freedom of interaction (n), test 
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statistic (F), non-centrality parameter (A), and signifi- 
cance level, (a),for the four main effects.  Degrees of free- 
dom of interaction had three levels (ten, twenty, and thirty), 
test statistics had four levels (Fl, F2, F3, and F5), non- 
centrality parameters had four levels (1.5, 2.5, 3.5, and 
4.5), and alpha had two levels (0.05 and 0.15).  F4 was left 
out of the analysis in case one because power wasn't extended 
past stage one and at stage one F3 and F4 are the same test 
statistic. The main effects for this model and for all models 
in this paper were considered fixed. 

The dependent variable in the power analysis is a pro- 
portion.  In case one data one thousand independent tests 
for power were made for each combination of n, F, a, and A. 
The proportion was formed by dividing the number of times 
the null hypothesis wrs rejected by the total number of tests 
made. 

Because of the range of non-centralities used to ge ?rate 
the data, it is possible that the assumption of homogene:as 
variance in each cell is violated.  For this reason, the arc- 
sine transformation, as described by Snedecor and Cochran 
(1967), was used on the data but ver; little difference was 
found between the analysis of the ra1 data and that of the 
transformed data so the analysis of ehe raw data was used. 

Case two power data were analyzed using a five-way fac- 
torial model.  The five main effects were degrees of free- 
dom for interaction (ten, twenty, and thirty), alpha (0.05 
and 0.15), test statistic (Fl, F2, F3, F4, and F5), non- 
centralities (the ten pairs in Table 3), and stage (stage 
one and stage two).  The number of binomial results going 
into each observation of case two power data varied with 
stage.  At stage one, one thousand binomial results went 
into each observation while at stage two the number of bino- 
mial results that went into each observation were the number 
of times significance was declared out of the one thousand 
trials at stage one.  This is because the sequential test 
procedure doesn't proceed to stage two unless significance 
occurs at stage one.  Analysis was performed on the raw 
data and also a weighted arc-sine transformation of the data, 
weighted by the number of binomial results making up each 
observation.  Very little difference was found in the results 
between the two analyses and so only the analysis of the raw 
data will be considered here. 
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Before describing the method of analyzing the mean 
square error data, consideration of what would be the best 
estimate of mean square error by a test statistic in this 
paper will be made.  Ideally, the test statistic would 
identify any single degree of freedom sums of squares that 
have interaction in them and pool into error only the sums 
of squares that truly estimate error.  Each single degree 
of freedom that estimates error is a central chi-square 
with one degree of freedom and with expected value equal 
to one.  Since the expectation of a sum of central chi- 
squares is equal to the sum of their degrees of freedom, 
the expected value of the pooled sum of squares of error 
when all interactions have been extracted by the test sta- 
tistic is equal to the pooled degrees of freedom.  The 
expected mean square error would then be equal to one.  If 
the test statistic fails to remove all of the interaction 
the expected mean square would be greater than one.  If the 
test statistic using the sequential procedure pools only 
part of the single degree of freedom sums of squares that 
estimate a2 into error the resulting mean square error 
would be less than one on the average.  This is because the 
sums of squares of error left in interaction would be the 
largest sums of squares, not just any sums of squares se- 
lected at random, leaving the smaller for error thus de- 
creasing the expected value of mean square error.  Hence, 
for the data generated here, the ideal test statistic would 
yield an estimate of error having an expected value equal 
to one. 

Analysis of variance was also used to analyze the mean 
square error data of case one and case two.  Although 
heterogeneity of variance exists, since the observations 
are central or non-central chi-squares, Scheffe" (1959) 
notes that if an analysis is balanced the heterogeneity of 
variance has little consequence.  This was seen in the 
analysis of the raw and transformed power data.  The analysis 
of case one and case two mean square error data was performed 
on the untransformed dependent variable using the error es- 
timate produced by replication to test terms in the model. 

The ANOVA model for case one and case two mean square 
error were the same as for power with three exceptions.  F4 
was added to the levels of the main effect for test statis- 
tics in case one since it will estimate mean square error 
differently than F3.  Zero was added to the levels of the 
main effect for non-centralities to investigate the ability 
of the test statistic to estimate o2  when no interaction is 
present. 
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The authors of this paper subscribe to the philosophy 
that when it is not desirable or possible to control main 
effects in an experiment it is proper to test for signi- 
ficance among the levels of main effects in the presence 
of interaction.  This also applies to the testing of low 
ordered interactions in the presence of significant higher 
ordered interactions. The analyst must realize, however, 
that the main effects and low ordered interactions have been 
averaged over all other factors in the model and any inter- 
pretation of significance must be viewed in this light. 

The analysis of the power and mean square error data 
will be discussed a case at a time instead of discussing 
power completely and then mean square error. 

9.  RESULTS AND DISCUSSION OF CASE ONE DATA.  Table 4 
is the analysis of variance table for case one power data 
and Table 5 is the table for case one mean square error 
data.  Significance was found for almost every term. 

The first thing to be considered is alpha.  Figure 1 
contains graphs of power and mean square error for the F 
by a interaction. 

The graph of power in Figure 1 indicates that the power 
is better using a larger alpha which is not surprising, 
but the graph of mean square error shows that a better es- 
timate of mean square error is obtained using a = 0.15 
since the line for a = 0.15 is closer to one than that for 
a =  0.05.  Table 5 shows significance for main effect a 
which indicates that using a = 0.15 for case one data gives 
a better estimate of mean square error. 

Now consider Figure 2 which contains graphs for the 
power and mean square error of the F by X by a =0.15 
interaction term. 

There is no significant difference between the power 
curves of Fl, F3, F4, and F5 so power offers no help as to 
which test statistic is the best other than that the power 
of F2 is lacking.  The graph of mean square error in Figure 
2 shows that F2 also lacks in ability to estimate mean 
square error.  There is no practical difference between the 
points of Fl, F3, F4, and F5 for mean square error at X  -  0, 
1.5, 2.5.  At A = 3.5,F3 is significantly higher than the 
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TABLE 4 

ANOVA Table for Case One Power Data 

Source DF MS 

n 

F 

nF 

a 

na 

Fa 

nFa 

X 

nX 

FA 

nFX 

aX 

naX 

FaX 

nFaX 

ERROR 

2 

3 

6 

1 

2 

3 

6 

3 

6 

9 

18 

3 

6 

9 

18 

96 

0.0030 23.5678 

1.3084 9997.0462 

0.0009 7.3491 

1.0141 7748.2736 

0.0026 20.5578 

0.0001 0.8867* 

0.0002 1.7236* 

3.0563 23351.5011 

0.0010 8.1844 

0.2475 1891.2634 

0.0004 3.5115 

0.0097 74.6679 

0.0002 2.1278* 

0.0019 15.0068 

0.0001 1.1544* 

0.0001 

* Indicates that the term was not significant at the 
05 level.  No * by the F value indicates significance was 

declared at the .05 level. 
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TABLE 5 

ANOVA Table for Case One Mean Square Error Data 

Source DF MS F* 

4570.3185 

4831.2999 

341.0213 

2999.7058 

299.0747 

4.2709 

2.1856 

3334.1864 

571.9092 

1471.8028 

116.1555 

203.4774 

30.3502 

10.4372 

2.0556 

n 2 1.1613 

F 4 1.2276 

nF 8 0.0866 

a 1 0.7622 

na 2 0.0759 

Fa 4 0.0010 

nFa 8 0.0005 

X 4 0,8472 

nA 8 0.1453 

FA 16 0.3739 

nFA 32 0.0295 

aA 4 0.0517 

naA 8 0.0077 

FaA 16 0.0026 

nFaA 32 0.0005 

ERROR 150 0.0002 

* All tests are significant at the .05 level. 
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other three and at X = 4.5, F5 separates from Fl and F4. 
At x = 45 pi and F4 underestimate error while F3 over- 
estimates error and F5 estimates error exactly. 

The problem with F2 is that it will find significance 
if the smallest sum of squares is sufficiently small with- 
out regard to the size of the largest sum of squares.  Even 
if the largest sum of squares is large it will not be de- 
clared significant unless the smallest sum of squares is 
sufficiently small.  Thus, F2 has poor power and greatly 
overestimates mean square error. 

At X - 4.5, F3 estimates o2  to be 1.023. This is sig- 
nificantly different, using Scheffels test at a = 0.05, 
compared to the F5 estimate of 1.000. As X gets large, F3 
tends to overestimate a2. This is due to the presence of 
the non-central chi-square in the denominator of F3. 

Fl and F4 have the same numerator 

n 

i=n-r+l 
I si 

which leads to their underestimation of a  at X - 4.5.  The 
test for mean square error in case one only goes as far as 
stage three.  Any single degree of freedom sum of squares 
declared significant at stage one will remain in the numera- 
tor for the stage two test.  One large single degree of 
freedom if interaction sum of squares could easily cause a 
type one error at stage two because of the inflated numera- 
tor of the test statistic.  This would lead to an underes- 
timation of a2. 

To further investigate Fl and F4 consider the graph of 
n by F by a = 0.15 interaction on mean square error which 
is shown in Figure 3. 

The points of Fl and F4 for n = 30 are lower than one. 
As the number of individual sums of squares gets larger the 
probability of a large central chi-square being present 
increases.  The numerators of Fl and F4 will be inflated 
at stage two with one significant individual sum of squares 
and a large central chi-square present.  Thus a type one 
error at stage two and possibly at stage three could occur. 
This would keep large central chi-squares from being pooled 
into error and would cause an underestimate of o2. 
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10  RESULTS AND DISCUSSION OF CASE TWO DATA. Tables 
6 and 7 contain the analysis ot variance tables tor case 
two power and mean square error data respectively. Signi- 
ficance was found for every term in both tables. 

To find the better a for case two consider Figure 4 
which is the F by a interaction on power and F by a by 
stage one power test of interaction on mean square error. 

As in case one a = 0.15 estimates mean square error 
better than a = 0.05 but Figure 4 shows that the a - 0.15 
curve isn't as close to one as it was in case one data. 
This suggests that when two individual sum of squares 
associated with interaction are present, using a higher a 
will better estimate a2.  Figure 4 also shows that F2 has 
poor power and greatly overestimates mean square error. 
For these reasons F2 will be dropped from any further dis- 
cussion. 

Figure 4 also shows that Fl and F4 have the best power 
of the five test statistics.  This is further illustrated 
by Figure 5, a graph of F by X  at a = 0.15 interaction on 
power. 

The power of Fl, F3, F4, and F5 are very close when 
pairs of X  are equal, but when the pairs of X  become un- 
equal the pattern changes.  As the difference between the 
non-centralities gets larger the difference in power between 
Fl and F4 compared to F5 and F3 also spreads.  The reason 
for this becomes obvious after seeing Figures 6 and 7. 
Figure 6, which is F by X  by a = 0.15 by stage one on 
power, shows no practical difference in power between Fl, 
F3 F4, and F5,  but Figure 7, which is F by X by a - 0.lb 
by stage two on power, shows wide differences in power. 

The differences in Figure 5 originate in Figure 7 since 
Figures 6 and 7 make up Figure 5.  Figure 7 is power at 
stage two or rejecting H : X±  = A2 = . . • " xn-l = ° ^nen 
it is false.  The real difference in power between F5 com- 
pared with Fl and F4 begins as the pairs of non-centralities 
start to spread.  Fl and F4 have better power because the 
significant sum of squares at stage one is still in the 
numerator and when it combines with the smaller non-centra- 
lity significance is still found.  At the same time F5 and 
F3 are testing the smaller non-centrality alone and not 
finding it significant as often as Fl and F4.  As the smaller 
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TABLE 6 

ANOVA Table for Case Two Power Data 

Source DF                 MS p* 

n 2               2.0076 6662.1818 
F 4               4.7802 15862.9815 
nF 8               0.1806 599.5040 
a 1               9.3725 31102.2565 
na 2               0.0699 231.9816 
Fa 4                0.0824 273.6274 
nFa 8                0.0035 11.7148 
X 9                2.8400 9424.7329 
nX 18               0.1017 337.8058 
FX 36               0.1657 550.1733 
nFX 72               0.0078 25.8975 
aX 9               0.0291 96.6522 
naX 18               0.0093 31.1496 
FaX 36               0.0026 8.6435 
nFaX 72               0.0007 2.5451 

t r 1               0.6061 21922.1602 
nr 2               0.2618 868.7970 
Fr 4               0.3465 1149.9805 
nFar 8               0.0427 141.7871 
ar 1               0.0652 216.6943 
nor 2                0.0072 23.9867 
Far 4                0.0349 116.1258 
nFar 8                0.0027 8.9653 
Xr 9                0.6665 2211.8393 
nXr 18                0.0260 86.2968 
FXr 36               0.0540 179.3832 
nFXr 72               0.0026 8.8321 
aXr 9               0.0042 14.1705 
naXr 18               0.0021 7.1075 
FaXr 36               0.0024 8.2095 
nFaXr 72               0.0004 1.5963 
ERROR 600               0.0003 

t r rep resents stage of power test 
* Each term is significant at the .05 level. 
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TABLE 7 

ANOVA Table for Case Two Mean 
Square Error Data 

Source DF MS F* 

n 2 37.5888 62218.3820 
F 4 8.5351 14127.7110 
nF 8 0.2126 351.9482 
a 1 6.5986 10922.3722 
na 2 0.8028 1328.8303 
Fa 4 0.0343 56.9299 
nFa 8 0.0106 17.6582 
X 9 6.7756 11215.3054 
nX 18 2.3379 3869.8933 
FX 36 0.3266 540.7006 
nFX 72 0.0078 13.0703 
aX 9 0.3890 643.9728 
naX 18 0.0964 159.6656 
FaX 36 0.0086 14.3329 
nFaX 72 0.0036 5.9810 
r 1 126.5534 209475.7356 
nr 2 30.6301 50700.0991 
Fr 4 0.5413 896.1425 
nFr 8 0.0734 121.5168 
ar 1 5.2837 8745.8149 
Far 4 0.0951 157.5172 
nFar 8 0.0332 55.0646 
X£ 9 1.3656 2260.4472 
nXr 18 1.0383 1718.7646 
FXr 36 0.1123 186.0435 
nFXr 72 0.0308 51.0854 
aXr 9 0.1382 228.7546 
naXr 18 0.0425 70.5036 
FaXr 36 0.0046 7.7365 
nFaXr 72 0.0027 4.6175 
ERROR 600 0.0006 

t r represents stage 

* Each term is significant at the .05 stage. 

140 



1.00-, 

.75. 

Pi 
w 
3= o 

.50. 

.25 

a = 0.05 

F2 

 1  

a = 0.15 

2 .4. 

2 2. 

a 
o ,>. 0 
P6 
Pi 
W 

1. 8 w 
OS 

~J 1.6 
<y 
in 

z 1.4 
< w 
S 1.2 

1.0 

-fc:  1—— 

a  = 0.05 a = 0.15 

Figure 4.  Power vs. a = 0.05 and a = 0.15 and MSE 
vs. a - 0.05 and a = 0.15 at Stage One Power Test and 
Case Two for Fl, F2, F3, F4, and F5. 

141 



ES t- 
o o 

f" o 
LO CO 

o o m 
 1- 

o 
ID 

m 

in m 

m in 

<N ^ 

m m 

co co 

L: in 

in in 

in 
pH 

Ö 

P=4 

co 

OJ 

in in . O 
t-: CM X 

o 

r< LO 
■ri H 

r< • 
o 

in m 
.   . II 

<^ ^ a 
-O 

rt 
m in 

• r< 

en co 

W 
> 

m in 
. ^ 

CM CO 

o 
A 

m LO 

.-( H . 
LO 

0) 
J-i 
3 
to 

142 



u 
o 
•5 
o 
ft o 

u 
<x> 

o 
ft 

PH 

"Sr 
m 

in 

r< 
-H 

un m 

CO ■<* 

in m 

in m 
•       ■ 

LO LO 
• • 

H ■^ 

LO LO 
> • 

rH CO 

O LO 
■ • 

r-i CN1 

•o 

•H 

in m 
<3< sti 

m m 
CO CO 

m m 
CN) <N 

- m m 
rH   H 

o 
o 

1— 

o 
O 
in 

LO 
03 

LO 
OH 

•o 
G 

PH 

CO 

PH 

O 
«H 

o 

o 
Co 
o 
"Ö 

Gj 

0) 
C 
o 

fcD 
ri 
-P 

m 
rH 

o 
II 

Ö 

-p 

> 

o 
ft 

CD 

0> 
U 

bD 
•H 
PH 

143 



u 
<p 

o 
ft o 

o 

o 
ft 

—J- 

10 m 
r   *        • 
CO <# 

LO m 
" • • 
^ co 

LO LO 

H ̂  

LO LO 
- • • 
H CO 

LO LO 
• • 
H CN] 

•r-i 
-< 

■H 

r< 

LO tO 
- • • 
^ <# 

LO LO 
• • 

CO CO 

LO LO 
• • 

CM <N 

LO LO 
• • 

r-i rH 

73 

CO 

CN) 
F-4 

PM 

f-i 
O 

o 
E-< 

QJ 
M 
d 
Ü 

O 
O 

LO o 
LO 

LO 
CM 

o5 

CO 

LO 

O 

II 

a 
-p 

> 

0 

O 
ft 

•H 
£4 

144 



non-centrality gets larger the power of F3 and F5 also 
increases.  This property of Fl and F4 builds their power 
but may not help their ability to estimate mean square error. 
Figure 8 is a graph of the F by A by a = 0.15 by stage one 
power test interaction on mean square error. 

The only three places that mean square error of Fl and 
F4 are significantly closer to one than the mean square 
error of F5 are where the non-centralities are (1.5, 4.5), 
(2.5, 4.5), and (4.5, 4.5).  This is due to the numerators 
of Fl and F4 being inflated with 4.5 while F5 is testing 
1.5, 2.5, and 4.5 alone. This may be fine for a test using 
a = 0.15, but if a = 0.25 were being used, the structure of 
Fl and F4 could cause them to seriously underestimate a2, 
whereas F5 would not have an inflated numerator nor inflated 
denominator as F3.  This is what happened when testing data 
with one non-centrality of 4.5 present in case one as illus- 
trated in Figure 2.  Figure 4 contains the points in Figure 
8 averaged over non-Centrality.  From Figure 4 at a = 0.15 
the average mean square error values are 1.401 for F5, 1.391 
for F4, and 1.396 for Fl.  These differences can be attri- 
buted to the differences observed in Figure 8 at points 
where the added non-centralities were (1.5, 4.5), (2.5, 4.5), 
and (4.5, 4.5).  The differences in the ability of Fl, F4, 
and F5 to estimate error variance averaged over everything 
except a and stage one power test are of no practical impor- 
tance. 

Figure 9 is analogous to Figure 3 in case one. It is 
the n by F by a = 0.15 by stage one power test interaction 
for mean square error. 

At n = 10 the value of F5 is significantly closer to one 
than Fl and F4.  But as the sample size increases to n = 20 
and n = 30, Fl and F4 are significantly closer to one than 
F5.  This is because a large central chi-square is more likely 
to be present as the sample size increases.  And the inflated 
numerators of Fl and F4 tend to declare a portion of the large 
central chi-squares significant whereas F5 does not.  If a 
large a were being used, Fl and F4 may underestimate error 
whereas F5 may avoid this problem because of its structure. 

11.  ANALYSIS OF DATA IN TABLE 1 USING SEQUENTIAL 
PROCEDURE.Table 8 is an analysis of variance table of the 
data contained in Table 1. 
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TABLE 8 

ANOVA Table for Data in Table 1 

Source 

A 

B 

AB 

C 

AC 

BC 

ABC 

ERROR 

TOTAL 

DF SS MS 

5 

1 

5 

4 

20 

4 

20 

0 

59 

21221.0 4244.2 

3798.5 3798.5 

6893.9 1378.8 

5310.0 1327.5 

4433.0 221.7 

291.8 73.0 

2784.2 139.2 

0.0 0.0 

44732.4 

The AC and ABC interaction terms were partitioned into 
single degrees of freedom sums of squares and the sequen- 
tial procedure using Fl, F3, F4, and F5 was applied to the 
data.  No indication of interaction was found using a = 0.15 
in either the AC or ABC term.  Thus, both could be pooled 
into error giving an estimate of a2 equal to 180.43, however 
interaction could be present in most or all of the single 
degree of freedom sums of squares of AC and ABC, which may 
lead to a type two error using the sequential procedure. 

12.  CONCULSIONS.  Based on the results of this paper, 
Fl and F4 may be as good a test statistic as F5 if the re- 
maining sums of squares are pooled into error when signifi- 
cance is declared at stage three.  F5 estimates a better 
in case one data then Fl and F4 but in case two data there 
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is no practical difference.  If, however, more complete 
tables were available (higher significance levels and 
critical values for more than three stages) the authors 
would recommend F5 as the best of the five test statistics. 
F5 avoids the pitfalls of Fl and F4 which would probably- 
manifest themselves in much greater detail if critical 
values for more stages and larger a were available. 

As far as level of significance is concerned 0.15 is 
recommended over 0.05 because of the better estimate of 
a2  given. As the number of individual sums of squares 
associated with interaction increases a larger value of a 
will better estimate a2.  This can be seen by comparing 
Figure 1 with Figure 4.  The results indicate that with a 
higher a, perhaps 0.25, a2 would be estimated with less 
bias than at a = 0.15. 

These conclusions can only be strictly applied to the 
data analyzed in this paper. Any extension to three or 
more individual sums of squares containing interaction 
without further research is speculation. 
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PLANNING QUANTAL RESPONSE TESTS FOR ORDNANCE 
DEVICES:  THE TWO-POINT STRATEGY 

R. E. Little 
School of Engineering 

The University of Michigan 
Dearborn, Michigan 

ABSTRACT.  This paper presents a small sample strategy 
that should prove to be useful in predicting high reliability 
(or high safety) for ordnance devices.  The recommended 
"two-point" strategy was developed by the author for analogous 
use in estimating fatigue reliability. 

Briefly, the "two-point" strategy incorporates the well- 
known up-and-down (Bruceton) strategy in its first stage 
to generate two (nonzero, nonunity probability) points along 
the assumed response distribution curve.  Then, in its second 
stage, the strategy allocates the remaining specimens to the 
two corresponding stimulus levels such that the variance of 
the point estimate pertaining to the reliability (safety) 
of interest is minimized. 

In essence, the issue is to find the specimen allocations 
which minimize the variance associated with extrapolation 
along the fitted response distribution to a point remote 
to the median.  Optimally, this minimization requires testing 
certain specific proportions of the available specimens at 
carefully selected specific stimulus levels. 

1.  INTRODUCTION.  The sensitivity of explosive devices 
to shock loading cannot be measured directly.  Rather, the 
explosive device must be subjected to some arbitrary shock 
loading and if the given device explodes we know that the 
imposed shock loading exceeded its tolerance to shock loading. 
On the other hand, if the given device does not explode, then 
we know that the imposed shock loading did not exceed its 
tolerance to shock loading.  Conducting similar shock loading 
tests at various (stimulus) levels generates the following 
quantal response test program: 
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Stimulus Level 
(e.g., drop height) 

S2 

s. 
l 

sk 

Number of Specimens Responding 
Tested (e.g., exploding) 

nl 

?2 R1 R2 
• 

n. 
X 

• 

• 
R. 
l 

nk *k 

The problem of interest herein is how to select s. and 

n. such that we obtain the most precise estimate of the critical 

stimulus level s corresponding to a very low (high) probability 

of responding p, e.g., 0.001 or even 0.00001 (0.999 or even 
0.99999).  Specifically we shall describe our two-point test 
program and estimation method [1,2].  The two-point strategy 
requires considerably fewer specimens than current techniques 
such as the run down method [3]. 

2.  OPTIMAL REGRESSION BACKGROUND.  The following discussion 
is intended to serve as background material for the subsequent 
summary of the two-point stictegy. 

2.1.  Simple Linear Regression Example.  Consider the 
problem of most precise estimation of the slope ß for the 
simple linear model 

a + ßx + e (1) 

given by the expression 

2 Assuming a homoscedastic variance o   , the variance of ß is 

o 2 

(ß)   sni(xi - x)
2 

2 
Elementary analysis (or intuition) shows the cr,^ takes on 

its minimum value when:  (a) only two levels of x. are used 

in testing, (b) these levels are spaced as widely apart as 
practical, and (c) "total/2 sPecimens are tested at each of 

the two x. levels, where n. . , is the fixed number of l total 
specimens available for testing. 
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This elementary example illustrates the minimum variance 
strategy in planning test programs.  Namely, select the 
stimulus levels and allocate the test specimens such that we 
minimize the variance of some estimate of direct interest. 
This minimum variance strategy may be applied to models with 
heteroscedastic variances and with time and/or cost constraints 
[2]. 

2.2.  Optimal Regression Derivations for Linear Response 
Curves.  We shall now discuss minimum variance estimation of 
a point on the linear response curve 

y = F  (p) = a + ßs (3) 

in which s refers to the stimulus level and p = F(y) is 
the distribution of interest (e.g., normal, logistic, extreme 
value-smallest).  The heteroscedastic binomial variance 
associated with sampling at a given stimulus level is 

<^p, = Pq/n (4) 

in which p is the true probability of responding, q = (1 - p), 
and n is the number of specimens tested at the given stimulus 
level. 

We may now use the variance expression for p to obtain 
a variance expression for the variate y, using the simple 

o        2 2 
relation a (aX) = a a   (X) and the assumed distribution p = F(y) 
to obtain dp/dy, viz., 

°2
{y)   =   (dy/dp) 2 tpq/n] (5) 

Now by analogy with the simple linear regression example 
above, we conduct response tests at just two stimulus levels. 
Specifically, we test n, specimens at stimulus level s^  and 

n2 specimens at stimulus level s2, where n-^  + n2 = ntQtal is 

specified prior to testing.  We assume that r1 specimens 

respond during the tests at s. and r2 respond at s2.  Hence, 

the respective proportions responding are p-j^ = r^/n^  and 

p„ = r.,/n~.  These p- values are then used to compute the r2    2  2    A     i A    _^  A 
corresponding y. values using the relationship y^ = F  (p^), 

in which p = F(y) is the distribution function assumed for 
the response curve. 
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The response curve of interest appears in Figure 1. 
Two parameter distributions plot as a straight line on 
appropriate probability paper, passing through the two 
points [(y^, s1), (y2, s2)].  Hence, 

a = (y-,^ - Y2
si)/(s2 " si) <6) 

and 

i =   (y2 " Y!)/(
s
2 " 

sl} (?) 

Then, for any point along the line, say (y„, s~), we 
write u 

/V /\ A. /*. 

and,   since y,   and y_  are  independent,   we  see  that 

«•2/\              r           0      i^ _. 2/\         .     r           0,2   _2/\ , _. cr.     »   =   [    ]   o.     v   +   [    ]      o,     s (9) 
(V       3{yi)      <yi>       3(y2)       iy2\ 

in which 

9(y0) 3(y0) 
—— = (s - s )/(s2 - s ) and —— = - (sx - s )/(s  - s )   (10) 
^{y±) 9(y2} 

2. A. 2 Next, we substitute a*   .   and a." . into (9) and introduce 
the notation        (yl' (y2} 

niWi = 1/cr(y\) (11) 

to obtain 

a*-   =  i   [ __J ?_  _1 0_ }      (  } 
(y0}   (s2 - Sl)

2     nlwl        n2W2 

Our problem now is to minimize (12) by appropriate selection 
of n,, n~, s,, and s«. 

154 



Pi     y k                  PROBABILITY PAPER [p=F(y)] 

A A                                                  M 
P2 y2                                          y 

A
  

A
  *,      X y = a + ß s —v / 

A A                                      M 

Pi 
yi              y^ 
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Figure 1.  Response curve plotted on probability paper 
passing through the points [(y1,.s1)f (y2, s2)]. 
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First, consider optimum allocation of n, and n2 for 

given values of s, and s2-  Substitute n, = n. . , - n2 
into (12), and set the derivative of (12) with respect to 
n2 equal to zero.  We thus obtain the expression 

3[a<y0
)3 i (s2 - so)2      (si - so)2 , 

°   = 0 = ö [ % o      1     (13) 
2        (s2 - Sl)    (»total- 

n2> wl     n2 W2 

Equation (13) is satisfied when 

nl      W2 2  S2 " S0      W2 2  y2 ~ Y0 
^ = * <sr)  U - * >  = ±  ^     (v - v >   (14) 
n2     wx   s± -  s0     W;L   yx - y0 

where the plus sign pertains to extrapolation and the 
minus sign pertains to interpolation. 

Substituting (14) back into (12) gives (after some 
algebra) 

02*       =   1  j (s2 " s0) ± 
(sl " S0} j2 

(Y()) _ »total<S2 " sl>2     ^   "   ^ (15) 

{  
(y2 -  V ± 

(yl " V ]2 

ntotal(y2 " yl)2     ^T        "S" 

where again the plus sign pertains to extrapolation and 
the minus sign pertains to interpolation.  This variance 
expression may now be minimized by appropriate selection 
of y. and y2- 

Taking the derivatives of (15) with respect to y, 

and y_ and equating these derivatives simultaneously to 

zero shows that the optimum values of y, and y2 are indepen- 

dent of the value of yQ of specific interest.  However, 

because of the complex nature of the w, p (w, y) relationship, 
the optimum values must be determined numerically, refer to 
Table 1. 
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Distribution Optimum y Opt: Lmum p 

*1 y2 Pl P2 

Normal -1.575 +1.575 0.058 0.942 

Logistic -2.399 +2.399 0.083 0.917 

Extreme Value -2.073 +1.269 0.118 0.971+ 

- Smallest 

Table 1.  Optimum y and g values for minimum variance 
estimation of y.. 

NOTE:  Remarkably the optimum values also pertain 
to minimum variance estimation of £, but the 
corresponding optimal allocations differ.  The 
optimum allocations for minimum variance estimation 
of 0 satisfy n,/n2 = (w2/w,) 1/2. 

Variance Ratio 
Value of yfl     (Normal Distribution) 

- 1.575 1.000 

- 2.0 1.16 

- 3.0 4.6 

- 4.0 63.5 

2 Table 2.  Ratio of transformed binomial variance a.*   .   for 
(y0) 

all n. . , tests conducted at stimulus level sA, total _        0 
to the optimal regression variance a .*   ,.  These 

lYo; 
example results pertain to the normal distribution. 
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2.2.1. Discussion of Results.  It is helpful in under- 
standing-tlie—re^üTts_^mränärr2ed_Tn Equation (15) and Table 1 
to plot w versus p.  Refer to Figure 2.  Here we see that the 
weight w approaches zero as p approaches zero or one (viz., 
as y approaches minus infinity or plus infinity).  This w, 
p (w, y) relationship indicates that if we attempt to separate 
s, and s„ too widely, the variance of yQ increases because 

w in the denominator of Equation (15) approaches zero.  On the 
other hand, if we do not separate s, and s2 enough, then the 

term (s? - s,)  in the denominator is too small.  Thus, there 

are unique values of s, and s2 (independent of sQ) which 

minimize (15) — not too far apart and not too close together. 

It is also helpful in understanding the optimal (weighted) 
regression results herein to compare the variances of yQ 
associated with optimal regression and with direct testing 
at the single stimulus level s« corresponding to yQ, refer 

to Table 2.  Here we see that optimal regression is much more 
efficient than direct testing.  The reason for the increased 
efficiency is essentially that, as evident in Figure 2, direct 
testing at very low or very high p values is extremely 
inefficient because the weights w are almost zero (i.e., the 
transformed binomial variability is so large).  The optimal 
regression strategy, on the other hand, allocates specimens 
to stimulus levels where the weights are not only much higher 
than the weights associated with direct testing at extreme 
values of p, but it also minimizes the increase in the variance 
of y_ associated with extrapolation.  It is clear from the 

results summarized in Table 2 that optimal regression is 
remarkably suited to the problem of estimating stimulus levels 
corresponding to very high and to very low probability of 
response. 

2.2.2. Application to Ordnance Problems.  The optimum 
values of p in Table 1 are too close to zero and one to have 
direct application in ordnance problems.  The difficulty lies 
in selecting s, and s2 such that we do not obtain all response 

or all non-responses at either s, or^s-.  If either situation 

occurs, we cannot establish the two y values required to 
specify the fitted distribution.  Thus, to use the optimal 
regression results directly, we require very accurate initial 
estimates of a and £.  This requirement is of course quite 
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Figure 2 Plot of w, p relationships for the normal, 
logistic, and extreme value-smallest distributions. 
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impractical.  Thus, we must modify the optimal regression 
strategy to make sure that we can always establish the two 
required y values.  The modified procedure is termed the 
two-point strategy. 

3.  THE TWO-POINT STRATEGY.  There are two versions of 
the two-point strategy, one for small samples, say fifty 
specimens or less, and one for large samples, say one 
hundred or more specimens. 

3.1.  Small Sample Procedure.  The small sample procedure 
is as follows:  (1) conduct the beginning portion of the test 
program using the up-and-down strategy illustrated in Figure 3, 
(2) change over to testing at only two stimulus levels s, and 

s2 as soon as two finite values of y are established by the 

up-and-down portion of the test program, and (3a) allocate the 
test specimens to s, and s„ as the test progresses using 

Equation (14) to decide between testing at s, or s~, or (3b) 

proceed as in (3a) except test at the two stimulus levels 
corresponding to the optimum values of p in Table 1.  (These 
two levels may be updated as the test progresses.  The iterative 
procedure may be quite worthwhile when s, and s„ are closely 

(a) spaced   .) 

The up-and-down portion of the two-point test program 
should generally be undertaken with the uniform spacing 
between successive stimulus levels chosen to be approximately 
equal to the standard deviation of the underlying response 
distribution.  If the spacing is too narrow, the resulting 
values of s^ and s~ in the two-point testing portion of the 

program will generally be too close together to permit precise 
estimation of y_.  On the other hand, if the spacing is too 

wide, the up-and-down portion of the test program tends to 
be quite long, with the successive test outcomes alternating 
back and forth between response and nonresponse.  Thus, a 
reasonably accurate estimate of the standard deviation of 
the assumed underlying distribution is mandatory, viz., there 

(a)  Ideally the investigator has a computer program which 
records the given test outcome and provides the stimulus 
level for the next test.  Otherwise, the computations may 
take place at convenient intervals as the test program 
progresses. 
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Code: X denotes Response, 0 denotes Nonresponse 

Stimulus       Test Number 
Level     123456 789 10 

2.0 
1.7 
1.4 
1.1 
0.8 

X 
XXX 

0   X   0   X     XXXXO 
0      X   0000000000000000X0 

Up-and-down Testing Two-point Testing 
(a) (b) 

Data Summary: 

si n. 
l 

r. 
l Pi 

2.0 
1.7 
1.4 
1.1 

1 
3 
9 

20 

1 
3 
6 
2 

1.000 
1.000 
0.667 
0.100 

Figure 3. The two-point test program consists of:  (a) a 
beginning up-and-down^series of tests to establish 
two finite y values (p values not equal to zero or 
one), followed by (b) tests conducted at two 
stimulus levels, s-,^ and s2, which specimens allocated 

to s, or s2 as the overall test progresses such 

that text Equation (14) is satisfied. 

NOTE:  The up-and-down test strategy is as follows: 
The outcome of any given test determines the 
stimulus level used in the next test.  For example, 
the second specimen responded (denoted X), thus 
the third specimen was tested at a lower stimulus 
level.  On the other hand, the third specimen did 
not respond (denoted 0) and therefore the fourth 
specimen was tested at the next higher stimulus 
level.  Uniform spacing between adjacent stimulus 
levels is used for convenience, but is not mandatory. 
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must be some preliminary testing or some prior experience to 
form a basis for selecting the spacing of the stimulus levels 
used in testing.  Generally an estimate of the standard 
deviation a that is accurate within plus or minus fifty 
percent is adequate, but it is preferable that the spacing 
d fall in the range a  <  d < (3a/2).  The advantage of the 
iterative procedure (3b) increases as d is decreased below a. 

Many readers will probably opt for the simplified test 
method and analysis.  In this case we merely ignore the 
tests conducted at stimulus levels other than s, and s2 

(refer to Figure 3) and estimate the fitted distribution by 
drawing a straight line through the two points [(y,, s,), 

(y0, s0)].  The variance of yn is then estimated using 

Equation (12) and reading w from Figure 2. 

If it does not seem advisable to ignore tests at stimulus 
levels other than s-, and s2, the variance of yQ may be 

estimated using the general expression 

,    - \2 

(yrt)     2n. w.   v  ■■-.■/•■    — . 2 Y0        ii   Eniwi(si -■■■sw) 

The w. values in (16) may be approximated either by empirical 
i ■'.■'■ ^ 

weights (i.e., based on the observed y. values), or fitted 

weights (e.g., based on maximum likelihood analyses [2]). 

3.1.1.  Numerical Example (Simplified Analysis).  Given 
the quantal response data in Figure 3 (ignoring the tests 
at stimulus levels other than 1.4 and 1.1), viz., 

s. 
1 

n. 
l 

r. 
l Pi 

1.4 9 6 0.667 
1.1 20 2 0.100 

estimate s» corresponding to p = 0.001 and sketch the lower 

95% (asymptotic) confidence band.  Assume an underlying 
normal distribution. 
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Solution.  First, we shall check the allocation of n, 

and n~, relative to the final values of p.  For px = 0.100, 

y from normal tables equals - 1.28; and for p2 = 0.667, 

y equals + 0.43.  Moreover,^for pQ = 0.001, yQ = - 3.09. 

The corresponding values of w are 0.34 and 0.60 respectively. 
Thus, using (14) 

1 
nl   , 0.60 ,2 r + 0.43 - ( - 3.09) , _ - fi 
n^ M  ( ÖT34 )      l   -  1.28 - ( - 3.09) J " Z'b 

whereas the actual value is 20/9 = 2.2. This discrepancy 
means that if further tests were conducted, the first few 
additional tests should be conducted at s, = 1.1 — unless 

of course the p values change markedly as the data accumulate 

The fitted response distribution passes through the 
points [(1.1, - 1.28), (1.4, + 0.43)], giving the response 
expression 

y = - 7.55 + 5.07s 

Hence, yQ = - 3.09 (pQ = 0.001) corresponds to sQ equal 

0.78.  In turn, using (12) 

2- 1 r    (1.4   -   0.78)2 (1.1   -   0.78)2   , 
a(y0)   ~   (1#4  _   1>1}2   l        20x0.34 9x0.60 

Thus 

a2"   , M   0.84 
(y0) 

The corresponding lower 95% asymptotic confidence band 
appears in Figure 4.  Note that we can be approximately 
95% confident that 99.9% of all specimens will survive a 
stimulus level of 0.22. 

3.2.  Large Sample Procedure.  The large sample proce- 
dure is based on information obtained by response tests 
conducted using the previous small sample procedure.  Namely, 
approximately fifty specimens are tested using the small 
sample procedure to estimate s* and s* corresponding to the 

optimum p values in Table 1.  Then, given this information, 
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Figure 4.  Plot of fitted response curve and the associated 
lower 95% confidence band for the test example. 
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the remaining specimens are tests at s? or at s*~ using (14) 

for appropriate allocation; or else each successive specimen 
may be tested at that stimulus level which minimizes (16) 
as the data accumulate.  The latter iterative procedure is 
enhanced by a digital computer program compiled and placed 
in a file ready for execution by remote terminal. 

4.  SUMMARY.  The procedure is straightforward:  (a) 
select the appropriate values of the stimulus level, and 
(b) allocate the tests at these stimulus levels such that 
the variance of the desired point estimate is minimized, 
usually the variance of the desired point estimate may be 
reduced markedly merely by considering a few alternative 
stimulus levels before testing (using Figure 2 and Equation 
16).  But the variance of the point estimate may be reduced 
even further by adopting certain minimum variance strategies. 
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TECHNIQUES FOR STATISTICALLY DETERMINING FLIGHT 
SUITABILITY OF AN ARTILLERY PROJECTILE 

Ronald Corn 
Gertrude Weintraub 

Ammunition Development and 
Engineering Directorate 

Picatinny Arsenal 
Dover, New Jersey 

ABSTRACT.  The M483 155mm Projectile being tested at 
Nicolet, Canada, to evaluate aeroballistic performance at 
high air density exhibited flight instability.  The authors 
were responsible for determining cause of problem, correcting 
the problem and developing the statistical technique necessary 
for predicting success.  The projectile design modifications 
evolved successfully passed retesting at Nicolet and the pro- 
jectile has been released for production.  The induced yaw 
technique for disturbing projectiles as they exit the gun tube, 
developed during this program, is currently being used on other 
developmental projectiles and will be used to evaluate aero- 
dynamic stability of all future Howitzer type projectiles. 

The statistical techniques used to predict success which 
also permitted a minimal expenditure of projectiles were: 

a. A Weibull mathematical model was selected and imple- 
mented to predict point estimates and confidence level estimates 
of reliability and percentage points based upon the maximum 
likelihood estimates of the parameters of a Weibull population. 
This model afforded excellent theoretical descriptive character- 
istics of the density and probability distributions of the 
empirical test data which were symmetrical and asymmetrical 
in form. 

b. Automated computer programs especially adapted to 
the Weibull model were employed to derive density and proba- 
bility distribution curves. 

c. Probability plotting methods were implemented to 
describe the adequacy of the theoretical distributions to the 
empirical test data. 

1.  INTRODUCTION.  The M483 projectile development which 
was completed in 1971 provided an important new 155mm capa- 
bility to the US Army.  Figure 1 depicts an M483 projectile 
alongside of the standard 155mm M107 projectile.  Because of 
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the obvious increase in size and cargo volume, over 50% of 
the standard, the M48 3 configuration is being utilized for a 
variety of projectiles whose mission is to deliver cargo on 
to a target area (e.g. chemical, smoke, illuminating and sub- 
munition). 

To accommodate the increased cargo, the M4 8 3 projectile is 
over 6 calibers in length and utilizes an aluminum ogive and 
base and fiberglass wrapped body to minimize weight and distri- 
bute it properly for aerodynamic considerations.  Because of 
its unique shape, comparatively little knowledge of its aero- 
dynamic characteristics was available prior to 19 74 when sur- 
prisingly poor performance was exhibited in cold weather tests. 

In 19 74 a cold weather test program was conducted at 
Nicolet, Canada, located between Montreal and Quebec along 
the Saint Lawrence River (Figure 2).  Nicolet provides an 
existing Canadian test facility which permits projectile 
firings at near Arctic conditions to evaluate aeroballistic 
performance at high air density (in excess of>110% of standard), 
which tends to amplify aerodynamic instabilities. 

On 14 Feb 74, 20 each M483 projectiles were fired with 
a standard US Propellant charge whose weight was adjusted to 
obtain a velocity of Mach 0.93.  At these Arctic conditions 
this Mach number was predicted to be the most severe aero- 
dynamically.  The impact point of 13 of those projectiles 
which exhibited normal flight performance is shown in Figure 
3.  These projectiles impacted on expected ranges of approx- 
imately 6300 meters.  Seven of the twenty projectiles impacted 
between 2 0 00 and 3 300 meters short of the impact area as shown 
in Figure 4. 

Production of the M4 8 3 was suspended as a result of the 
incident at Nicolet and an intensive program initiated to 
determine the cause of the erratic performance at Nicolet. 
Initially a fault tree was configured (Figure 5) and an in- 
vestigative program was developed based upon fault tree 
elements. 

To determine whether the cause of the problem was routed 
in interior or exterior ballistics, it was necessary to con- 
duct a highly instrumented series of firings which for the 
first time, would obtain initial yaw characteristics of a 
statistical sample of in-flight projectiles, as well as pro- 
jectile range information for those same projectiles.  Figure 
6 shows the test site at Yuma Proving Ground.  Cameras and 

168 



yaw cards were used to independently measure launch angles 
of the projectile while radar and standard triangulation 
techniques were used to determine flight characteristics and 
dowm range impact points.  Launch velocities were adjusted 
from standard US velocities to duplicate the critical mach 
number of the Nicolet tests by modification of propelling 
charges. 

The results of the initial tests showed that the M483 
problem was primarily an exterior ballistic problem and that' 
in fact, the aeroballistic characteristics of the projectile 
were unsatisfactory.  Ms. Weintraub's application of statis- 
tical techniques proved invaluable for predicting performance 
and follows in detail. 

2.  STATISTICAL TECHNIQUES USED IN A FLIGHT SUITABILITY 
INVESTIGATION.  At the outset, I want to take this opportunity 
to express my gratitude to Mr. Corn and his associates in this 
stability investigation.  They were open-minded and willing to 
draw upon statistical disciplines to assist them in resolving 
an engineering problem.  The result of the cohesive union of 
engineering and statistics proved successful. 

A complex problem was solved when a probabilistic ap- 
proach was applied to analyze real world test data.  Professor 
John Tukey of Princeton would probably refer to the statistician's 
efforts in our data analysis as exploratory and probabilistic 
and the end result as confirmatory.  Our greatest gains in 
analyzing empirical data came from surprises, which I will ex- 
plain a little later. 

In this case, the engineering community succeeded in 
ferreting out the causes for short rounds (defined as those 
which fail to fly to full range) and redesigned the projectile 
to eliminate the occurance of short rounds. 

As statistician, I entered the picture after the following 
events had occurred: 

1. On 10 Feb 71, seven out of twenty standard M483 pro- 
jectiles fired at critical Mach number (0.93) from the 109A1 
Howitzer flew approximately half range. 

2. The engineering community undertook an investigation 
by designing a test program to determine the cause of these 
short rounds.  The program wasacomplex and ambitious one and 
sought to determine whether the problem was either interior or 
exterior ballistic related. 

169 



3.  Aerodynamic knowledge at the start of the investigation 
supported the belief that the M4 83 was stable up to a first 
maximum yaw angle of 8° . 

The first test conducted at Yuma Proving Grounds was with 
the standard M48 3 fired at critical mach number in order to 
correlate first maximum yaw angle with range.  The yaw angles 
were obtained with yaw cards and cameras as back up, the test 
set up is shown in Figure 6.  The yaw cards were set approxim- 
ately 10 0 feet forward of the gun. 

Figure 7 is a plot of the first maximum yaw angle vs. 
range and the first surprise of this test program was that the 
critical yaw angle was 5-6° and not 8° as previously predicted. 
Critical yaw angle is defined as the angle above which the 
projectile becomes aerodynamically unstable and does not fly 
full range. 

The yaw angles generated from 2 0 tests conducted with the 
standard M483 projectile (varying its internal cargo, tubes and 
muzzle brakes) were presented for analysis.  As had been done 
on other problems, a probabilistic design approach was used. 
Yaw angle was considered the continuous random variable and the 
problem was to examine the distribution of yaw angle.  I chose 
to fit a Weibull distribution model since it afforded me a use- 
ful mathematical tool for describing the probability distribution 
function and the density function of symmetrical and asymetrical 
forms.  Figure 8 shows a spectrum of distributional forms which 
can be described by a Weibull model (see Figure 9 for the pdf 
and density mathematical forms of the Weibull distribution). 

In terms of a statistical probability distribution, the 
distribution of yaw angles for the standard M483 Projectile 
fired from a 50% worn tube at Yuma is seen on Figure 10.  It 
was determined that this condition tube produced the highest 
first maximum yaw distribution and this tube was used for most 
of the testing. 

Maximum likelihood estimates of the parameters of a 
Weibull population were determined based upon the iteration 
procedures for joint maximum likelihood estimation of the 3 
parameters of the Weibull population described by Harter and 
Moore in their notes contained in Technometrics, Volume 7, 
No. 4, November 1965.  The asymptotic variances and covariances 
of maximum-likelihood estimators were then employed in deriving 
confidence interval estimates for probabilities based upon the 
MLE estimates.  The latter confidence interval estimates were 
derived with the assistance of Dr. Einbinder and members of the 
Computer Programming Facility at Picatinny Arsenal. 
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Based upon the maximum likelihood estimates of the 3 
Weibull parameters, one could expect 33% of the standard M483 
Projectiles fired from the 50% worn tube to exceed 5°.  And, in 
fact, at Nicolet, Canada, 7 out of 2 0 (35%) fell short.  This 
gave further credence to the low critical maximum yaw angle 
premise. 

The fitted yaw distribution function also indicated that 
for the standard MU8 3 to fly full range, its critical first 
maximum yaw angle must be greater than 13°.  At this critical 
yaw angle one can expect no more than one short range projectile 
in a million rounds. 

Thereafter, the investigative test program was directed 
to assessing the effects of system parameter changes on the 
yaw angle distribution and the design of modifications that 
would have high critical yaw angles.  The system parameters 
investigated included:  new tubes and worn tubes, with and 
without muzzle brakes, and cargo variation.  It appeared that 
the greatest effect on yaw angle level was the presence or 
absense of a muzzle brake on the end of the gun tube. 

Figure 11 shows how absence of a muzzle brake improves 
the yaw angle probability distribution of the standard M483. 
Now only 7 in 10,000 rounds are expected to exceed the 5° 
critical yaw angle in lieu of 3 3% with a muzzle brake.  This 
frequency was also too high to be acceptable. 

The real problem facing the engineering task team was to 
design a projectile modification whose critical angle exceeded 
13°, since as previously shown no more than one short range 
round in a million would be expected at this critical yaw angle. 

After many design modifications, and statistical analyses 
of these changes, two modifications of the standard M483 were 
built and tested:  Figure 12 describes the modifications made 
to the standard M483; Figure 13 compares the yaw angle probabil- 
ity distribution functions obtained for Mods 1 and 2 when tested 
with the 50% worn tube with muzzle brake.  For each Mod, it was 
found that one in a million rounds would exceed 8° first maximum 
yaw angle. 

Since the modifications were designed to be more stable 
than the standard M483, a technique had to be devised for deter- 
mining how much more stable they were and also their critical 
yaw angle. 

Since it had been determined that muzzle brakes signifi- 
cantly effected yaw angles, modified muzzle brakes, Figure 13A, 
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were designed and tested as a means of inducing_even greater 
yaw angles to evaluate design modifications.  First maximum 
yaw angles of as high as 20° were obtained. 

Figure 1H illustrates, visually, by means of a yaw card 
comparison, the large angle from which the modified rounds 
will still damp and fly normal ranges as compared to the 
original M483 projectile, Figure 15. 

An interim Picatinny Report dated March 1975 has been 
published covering this work.  Figures 16 and 17 show'^the 
adequacy of the Weibull model in describing the empirical 
distribution characteristics of test data for the standard 
M4 83 round and for design modification 2. 

This probability plotting method was used to assess the 
goodness of fit of the theoretical Weibull model to the em- 
pirical test data. 

Figures 18 and 19 show the density function for the 
standard M483 and design modification 2.  Each of the distri- 
butions is right-skewed, but we can see that modification 2 
shows a significantly smaller dispersion around the mean. 

Summing up, therefore, what modification 2 accomplished 
is two-fold: 

1. It yielded a significantly smaller dispersion_of 
first maximum yaw angle around the mean, one in a million 
exceeds 8° vs. 33% exceeding 5° for the standard M483. 

2. It produced a more stable projectile, critical angle 
greater than 18° vs. 5-6° for the standard M483. 

3. CONCLUSION.  A real world engineering problem was^ 
resolved with the assistance of probability methods.  Statis- 
tical analyses were helped immeasurebly by computer software 
programs which were available.  These programs afforded rapid 
assessment of design modifications and comparisons.  The 
efforts could not possibly have been accomplished in as short 
a time without the computer.  The computer program of Drs. 
Harter and Moore of Wright-Patterson Air Force Base was used 
extensively to derive the maximum likelihood estimates#of the 
Weibull parameters.1 Software programs available at Picatinny 

As an aside, gratitude is extended to Dr. Badrig 
Kurkjian for introducing Picatinny Arsenal to the 
Harter Moore program which has proved to be invaluable 
in helping to solve many engineering problems. 
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Arsenal, specifically in the Concepts and Effectiveness 
Division, contributed greatly toward the successful evaluation 
of test data. 

4.  STATISTICAL CONTRIBUTION. 

1. Statistical probability techniques fixed the 
critical yaw angle for the standard MH83 Projectile. 

2. Statistical analysis predicted the yaw angle 
probability distribution for many modifications and for dif- 
ferent tubes.  These distributions provided the engineering 
task team with essential information for directing their 
efforts toward projectile modification. 

3. a.  For the first time, probability design was 
used to predict projectile performance using a minimal number 
of rounds.  Cost reduction and risk associated with future 
artillery development programs should follow. 

b.  The application of probability design served 
a twofold purpose: 

(1) It predicted the probability of exceeding 
a given yaw for a specific design M483 Projectile. 

(2) It afforded the engineering task team 
a goal, in this case, a 13° critical yaw angle; so that their 
efforts were directed toward achieving this goal in order to 
eliminate short rounds. 

4. A Blue Ribbon Panel especially assigned to over- 
view the stability investigation approved the efforts and 
findings of the investigative team and commended all members 
of the team for their analysis of and correction to the pro- 
jectile flight problem.  The panel further stated that "in 
the course of this program much has been learned that is of 
basic value in the ballistic design and development of project- 
iles."  Further, the panel recommended that the "team can well 
undertake future new and interesting designs of special shells" 
and recommended that this project be well documented for future 
guidance. 

CONCLUDING REMARKS: 

As a result of the program and techniques just described, modifications 
1 and 2 were extensively tested at Nicolet during the winter of 1975. Both 
modifications performed satisfactorily as predicted. Modification 2 was 
selected since it did not result in internal cargo volume loss and it was 
recently released for production as the M483A1. 
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FIGURE 14 

18.1° First Maximum Yaw Angle M483 MOD 2 Flies Full 
Range when Disturbed up to This Angle 
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FIGURE 15 

5.5C First Maximum Yaw Angle - Standard M483 
Projectile Falls Short at This Angle 
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APPLICATION OF LIFE TESTING TECHNIQUES TO DETECTION DATA 

Carl B. Bates and Jerry Thomas 
Applications Group 

Methodology and Resources Directorate 
US Army Concepts Analysis Agency 

Bethesda, Maryland 

ABSTRACT. Life testing techniques for censored sample data are 

discussed. Singly and progressive censoring of type I and type II are 

defined. The detection phenomenon involving observers not always detecting 

targets is placed in the framework of progressively censored sampling. 

Maximum likelihood estimates for the parameters of the two-parameter 

Wei bull distribution are given, and a test statistic is presented for 

comparing two Wei bull distributions fitted to censored sample data. 

Wei bull distributions of sample sizes 500, 250, and 100 having 0, 10, and 

20 percent censored are simulated. The shape parameter is varied over the 

range 1.0 to 3.5 and equality of pairs of the distributions is tested. 

The relationships between Beta and the Beta difference that is distinguishable 

are given for each of the three sample sizes. For the largest sample 

size, at the 0.5-level of significance, the Beta difference that is 

distinguishable varied from 0.15 for small shape parameter values to 

0.38 for large shape parameter values. For the 100 sample size distribu- 

tions, the Beta difference distinguishable varied from 0.30 to 0.73. 
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I. INTRODUCTION 

The detection, identification, and localization of enemy targets 

is an integral part of many US Army studies. These studies may be 

classified into either computer simulated experimentation or field 

conducted experimentation. Field experimentation involving the detec- 

tion process is usually performed to estimate or compare the effective- 

ness of materiel or methods of employment. Often empirical data from 

the field experimentation is then used as input to computer simulation 

models, or the analysis results of the empirical data are used to 

provide the basis of simulating detection in computer simulation models. 

Because of the "no detections" (observers not detecting exposed 

targets) which occur in field experimentation involving detection 

processes, the analysis of empirical detection data presents unique 

problems. In the sections which follow, the analysis problems are 

discussed and a proposed analysis methodology is presented and illustrated. 

II. PROBLEM DESCRIPTION AND BACKGROUND 

A. Problem Description 

A field experiment involving candidate land combat systems is 

designed and conducted. One of the many measures of effectiveness of 

the systems is detection time. During the conduct of the experiment, 

however, the systems do not always detect exposed enemy targets. There- 

fore, detection time data is not collected for all of the planned trials 

of the field experiment. Consequently, the original orthogonal design 

for the experiment is nonorthogonal with respect to the response variable, 
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detection time. The objective of this report is to present a method of 

analysis which uses both the detection times of detected targets and the 

exposure times of undetected targets. 

B. Background 

Land combat experimentation involving the detection of targets 

invariably results in targets not being detected for some of the experi- 

mental trials, e.g., Caviness et al. (1972) and McKinney et al. (1971) 

and (1972). Treating the "no detect" trials as missing values and apply- 

ing one of the statistical techniques for estimating missing values does 

not have appeal because it does not utilize all the available information 

from the experimental data, namely, the duration of the time that line-of- 

sight existed between the observer and the target. Ignoring the no detect 

trials and analyzing only the data from trials for which a detection did 

occur does not have appeal for the same reason. Moreover, analyses based 

on all available experimental data addresses the unconditional detection 

probability of interest, whereas analyses based on only trials for which 

a detection did occur addresses the conditional probability of detection, 

given a detection has occurred. 

A search for a proper method of analysis of the detection times 

which would utilize the target exposure times of the no detect trials led 

to the area of life testing. It was concluded that the detection 

phenomenon when all targets are not detected is similar to the censored 

sample situation in life testing. 
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III. LIFE TESTING 

In life testing a number (N) of components are tested and the time 

to a component's failure is recorded. If components are withdrawn from 

the test before failure (in our case a target passes from an exposed 

state to a concealed state without being detected) the sample is termed 

censored. Censoring may be of two types: 

1. Type I  - in which at some predetermined fixed time, say t-, 
testing is terminated, or 

2. Type II - in which after some predetermined fixed number, 
say n, of sample items fail, testing is terminated. 

With each type of censoring, the collected data consists of the n failure 

times t , t   t ., plus the information that the remaining (N-n) items 

survived beyond the time of termination, tQ for Type I and t for Type II. 

The above described censoring is termed singly censored samples. If, 

however, the initial censoring results in withdrawal of only a portion 

of the surviving items, with some remaining under test until ultimate 

failure or until a subsequent stage of censoring is performed, we have 

progressively (multiple) censored samples. In general then censoring 

occurring progressively in k stages at times T^; i=l,2,...,k, and at 

each ith stage of censoring r^ sample items are selected randomly from 

the survivals at time T. and removed (that is, censored) from further 

observation. This is analogous to our detection phenomenon. We have a 

target coming from a concealed state to an exposed state just as a test 

item starting under observation during test. If, however, a target 

passes from an exposed state back to a concealed state without being 
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detected, it is removed from further observation at a time T. (equal to 

the target's total exposure time). Further, in our case each of the k r.. 

equal one because in general the exposure times of any two or more unde- 

tected targets are not identical. 

Past experience has shown a positive skewness in the empirical data 

distributions of time variables associated with the target detection 

process, Bates (1971) and McKinney et al. (1971) and (1972). Moreover, 

in McKinney et al. (1972) it was shown that the two-parameter Weibull 

distribution gave adequate approximations to detection time sample dis- 

tributions. In the probability density function (pdf) of the two-param- 

eter Weibull distribution, 

f(x) = (ß/aß)xß_1 exp[-(x/a)ß]; x > 6, a > 0, ß > 0,    (1) 

a is the scale parameter and ß is the shape parameter. 

The Weibull distribution provides considerable flexibility for 

approximating a variety of distributions. When ß = 1 we have the exponen- 

tial distribution and when ß = 3.5 we have a distribution ^/ery  close to 

the normal distribution. In FIGURE 1 on the next page, the Weibull pdf 

is shown for three different shape parameters. The middle curve is a 

positively skewed distribution similar to that of our target detection 

times. 

199 



f(x) 

FIGURE 1, Weibull Probability Density Function 

The flexibility of the Weibull distribution can be further 

illustrated in terms of the cumulative distribution function (cdf). 

In the context of our detection problem, the cdf F(x.) is the probability 

of detection by time x-. FIGURE 2a is an S shaped cdf similar to that of 

a normal distribution. FIGURE 2b illustrates the cdf of a Weibull 

distribution having the same shape parameter as the distribution in 

FIGURE 2a, but a larger scale parameter. FIGURE 2c has the same scale 

parameter as FIGURE 2a, but a smaller shape parameter. 
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F(x) 

F(x) 

F(x) 

FIGURE Z,  Weibull Cumulative Distribution Function 
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IV. ESTIMATION 

The first step in the analysis process is the approximation of the 

distribution of target detection times. This involves estimating the 

two parameters, a and ß, of equation (1). Substituting a and ß for 
A 

a and ß in f(x) gives the approximation distribution, f(x), of target 

detection times. The estimation technique which is employed evolved 

from life testing. 

Cohen (1963) shows that although intermediate steps in the deriva- 

tions differ, the maximum likelihood estimation equations for Type I 

and Type II progressively censored samples yield the same end result. 

The maximum likelihood estimation equations for the two-parameter Wei bull 

distribution are given in Cohen (1965). The equations are nonlinear in 

the parameters and must, therefore, be solved by iterative procedures. 

He solves the expression, 

A ^ A 

[(Z*x-ln Xi/Z x?)-(l/3)] = (l/n)S In ^ (2) 

for 3. The asterisk denotes that the summation is over the entire sample 

with the r.j observations censored at time T^ assigned the value Xj = Tj. 

Then, substituting ß obtained from equation (2) into the other maximum 

likelihood estimation equation, aln L/3a, and solving for a he gets 

S.(:*x?/n)<1'8>. <3> 

where In L is the logarithm bf the likelihood function. Substitution 

of the two obtained parameter estimates, a and ß, into equation (1) 

yields the desired approximation distribution f(x). 
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The mean of f(x) is 

E(x) = a  r(l + 1/g), (4) 

and the approximate variance is 

V(x) = (9f/3a)2V(a) + (3f/3ß)2V(ß) + 2(3f/3a)(3f/3S)Cov(a,ß).  (5) 

V. HYPOTHESIS TESTING 

Suppose that in a field experiment two candidate detection devices are 

under study. One of the primary objectives of the experiment is to com- 

pare the detection distributions of the two devices and make inferences 

concerning the equality of the two populations. After applying the 

estimation techniques in the previous section to the' empirical detection 

data collected on the performance of the two devices to approximate the 

distribution for each device, we are now interested in comparing these two 

distributions. Specifically the null hypothesis, 

t:l H°: '•' = U • <6> 2J 

is tested against the two sided alternative hypothesis, 

H, [::]' [:;] (7) 
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The test statistic for testing the null hypothesis against the 

alternative hypothesis is Q, where 

t-A     A     A     A 
Q = [a -a, ß  -3 

2   1   2   1 

r 2/A»   /A A. -|-1 
a (a) o(a,3) 

■A A.  2,A ,/\A.   2,A>      A      A   > 
a(a,ß) a (ß)J |fi - ß J 

A      A 
a2 - «j 

(8) 

and where the variance-covariance matrix is 

a (a) 

fA    A 

a(&.S) 
2/A, 

a  (a,3)    a  (ß) . 

V(S1) + v(S2) cov(S ,e ) + cov(ä ,ß j 
1    1 2      2 

C0V(a   ,§   )   + C0V(S   ,8   )     V(ß   )   + V(S   ) 
11 2     2 1 2 

(9) 

Equation (8) is a quadratic form and is approximately distributed 

as a Chi-square variate with two degrees of freedom, see for example, 

Mood (1950), Rao (1952), or Wilks (1962). That is, 

Q ~x2(2). 

An inspection of equation (8) shows that close agreement between the 

two distributions yields a small statistic, while a large difference 

between the two yields a large statistic. Therefore, the critical region 

of the test is the upper tail of the x2-distribution. Consequently, to 

test the null hypothesis of equation (6), compare Q with x20-ai2). If 

Q >_ x20-a,2), reject the null hypothesis at the a-level of significance; 

otherwise do not reject the null hypothesis. By rejecting the null 

hypothesis, we are saying that the two detection distributions are not 

equal. 

(10) 
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VI. TEST DISCRIMINATION 

A. General 

In the previous section it was seen that the determination of a 

difference between distributions is dependent upon the scale parameter, 

a,  and the shape parameter, ß. For this study it was decided to set a 

equal to 25 and concentrate our efforts on the shape parameter, ß. When 

ß = 1, the Weibull distribution is equivalent to the exponential distri- 

bution and when ß = 3.5, the distribution is approximately normal. Since 

the shape of the detection distribution is expected to be within this 

range, shape parameter values between 1.0 and 3.5 are studied. 

B. Sample size of 500 

Test performance in application can be no better than the 

asymptotic power of the test. Because no information is available on the 

power of the test, an initial sensitivity analysis is performed. Conse- 

quently, large samples having a moderate amount of censoring are first 

studied. 

Weibull distributions of sample size 500 having three different 

percentages of censoring (0, 10, and 20) were generated by Monte Carlo 

simulation. The scale parameter was arbitrarily fixed at a = 25. The 

range of the shape parameter values (1.0 to 3.5) was divided into five 

sub-ranges of length 0.5 each. Within each sub-range ß was incremented 

in steps of 0.1 to give six ß-values, e.a., (1.0, 1.1, 1.2, 1.3, 1.4, 1.5), 

(1.5, 1.6, 1.7, 1.8, 1.9, 2.0), ..., (3.0, 3.1, 3.2, 3.3, 3.4, 3.5).  For 

each of the six ß-values, a Weibull distribution was generated for each 

of the three percentages censored. This gave eighteen distributions 
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for each of the five e-value sub-ranges or a total of 153 pair-wise 

comparisons. For completeness and anticipated follow-on analyses, 

summary statistics are tabulated in APPENDIX A. TABLES A-l through A-5 

contain the five sets of summary statistics of the eighteen distributions. 

Within each set of eighteen distributions, all possible (153) compari- 

sons were made between pairs of distributions. That is, the null 

hypothesis of equality of the two distributions, equation (6), was tested. 

This gave 153 Q-statistics. The corresponding ß differences (gj-ßi'.i/j; 

i=l,2,...,17;j=2,3,...,18) were calculated and paired with the Q-statistics, 

Within each set of ß differences and Q-statistics, six different combina- 

tions existed between the percentages* censored in the two distributions 

being compared-(O.O), (0,10), (0,20), (10,10), (10,20), and (20,20). The 

distribution of the 153 cases over the six combinations is shown in 

TABLE 1 below. 

Combination 
Number 

1 

2 

3 

4 

5 

6 

TABLE 1 

CENSORING DISTRIBUTION 

Percentage Censored 
(Sample j, Sample i) 

(0,0) 

(0,10) or (10,0) 

(0,20) or (20,0) 

(10,10) 

(10,20) or (20,10) 

(20,20) 

Number of 
Samples 

15 

36 

36 

15 

36 

15 
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The theoretical relationship between the ß differences and Q is 

parabolic. Therefore, a quadratic in 3 differences was fitted for each 

of the six combinations in TABLE 1, using ß differences as the independent 

variable and the Q-statistic as the dependent variable. Within each of 

the five ß-value sub-ranges, the quadratic fit for each of the six censor- 

ing combinations was evaluated for Q = 5.991, the x*(?) critical value for 

the 0.05-level of significance. This gives the difference between the 

shape parameters of two distributions which would be declared significant 

at the 0.05-level of significance. The largest variation among each set 

of the six.I differences was 0.04. This is well within the variability 

of the generated data. The six combinations of each ß-value sub-range 

were then "pooled" and a quadratic fit was made to each of the five sub- 

ranges of the 153 ß differences. All fits were "good"; the coefficients 

of determination ranged from 0.90 to 0.97. Each of the five sub-range 

quadratic regression equations was then evaluated for two levels of signi- 

ficance (0.05 and 0.01) or Q = 5.991 and Q = 9.210. The resulting relation- 

ship between ß and the ß differences detectable for the two significance 

levels is graphically illustrated in FIGURE 3 on the following page. 

FIGURE 3 suggests a strong linear relationship between ß and the ß 

difference that is detectable. In fact, the ratio of the plotted ß 

differences over their respective sub-range mid-points is nearly constant 

for each level of significance. At the 0.05-level of significance, the 

ratio is approximately 0.12: at the 0.01-level of significance, it is 

approximately 0.15. 
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FIGURES A-l through A-5 of APPENDIX A pictorially illustrate typical 

distributions, within each of the five sub-ranges, which are statistic- 

ally different when equality is tested at the 0.05-level of significance. 

Each of the five figures contains a plot of two distributions, taken 

from the samples shown in TABLES A-l through A-5, respectively. The 

distribution having the smaller shape parameter is drawn with a solid 

line and its shape parameter estimate is denoted by ex; the distribu- 

tion having the larger shape parameter is shown with a dashed line and 

its shape parameter is denoted by § . For example in FIGURE A-l, 
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samples were selected from a distribution with 0=1.1 (with no censoring) 

and with 6=1.2 (with 10% censoring); and the two sample estimates of 

the shape parameter are ß\ = 1.062 and §2 = 1.227. The Q-statistic for 

testing the null hypothesis of equation (6) is also given on each figure. 
2 

In each case, the Q-statistic is between x (0.95,2) = 5.991 and 
2 

x (0.99,2) = 9.210. That is, the level of significance at which the null 

hypothesis would be rejected is between 0.05 and 0.01. The five figures 

illustrate the test discrimination between distributions of different 

shapes over a range of shape parameter values from 1.0 to 3.5. 

C. Sample Size of 250 

In practice large samples are often not available. Therefore, 

test performance for two smaller samples (N = 250 and N = 100) are studied. 

The results for N = 250 are presented first. 

Weibull distributions of sample size 250 were generated. The 

same scale and shape parameters and the same percentages of censoring 

were used as for N = 500. The procedure described in Section A above was 

repeated using N = 250. The summary statistics are given in TABLES B-l 

through B-5 of APPENDIX B. This time the largest variation among each 

set of the six ß differences was 0.07. Again, this variation is within 

the variability of the generated data. The Beta differences obtained 

from the evaluations of the five quadratic regression equations are 

given in TABLE 2 below. As before, there appears to be a linear relation- 

ship between ß and the ß difference that is detectable. 
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TABLE 2 

BETA DIFFERENCES FOR N = 250 

Significance Beta 

Level 1.0-1.5 

0.20 

1.5-2.0 

0.29 

2.0-2.5 

0.37 

2.5-3.0 

0.45 

3.0-3.5 

0.05 0.54 

0.01 0.24 0.36 0.47 0.55 0.67 

The test discrimination for each of the five sub-ranges is illustrated 

in FIGURES B-l through B-5 in APPENDIX B. The notation in the figures 

is the same as that described in the previous section. The distribution 

having the smaller shape parameter estimate is denoted by e1 and the larger 

is denoted by e . The significance level of each pair of illustrated 

distributions is between 0.05 and 0.01. The Q-statistic is again given 

on each of the five figures. 

D. Sample Size of 100 

In the examination of the test performance for N = 100, the sub- 

ranges of the shape parameter values had to be reconstructed. This was 

because the Beta difference which is distinguishable is larger than 0.5 

for shape parameters greater than 1.5. Therefore, the shape parameter 

range was divided into three sub-ranges rather than the five previously 

used. The three sub-ranges were 1.0-1.5, 1.5-2.5, and 2.5-3.5. Within 

the first sub-range, ß was incremented in steps of 0.1 as before. But 

within the two larger sub-ranges, ß was incremented in steps of 0.2. 

This gave six ß-values for each of the three sub-ranges. The summary 

statistics of the three sets of eighteen distributions are given in 

TABLES C-l, C-2, and C-3. 
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The largest variation among each set of the six ß differences was 0.08, 

again within the variability of the data. The Beta differences from the 

three quadratic regressions are given in TABLE 3. Test discrimination is 

pictorially illustrated in the three figures of Appendix C. 

TABLE 3 

BETA DIFFERENCES FOR N = 100 

Beta 
1.0-1.5 

0.30 

0.37 

1.5-2.5 

0.48 

0.57 

2.5-3.5 

0.73 

0.89 

Significance 
Level 

0.05 

0.01 

The test discrimination for all three sample sizes is shown in 

FIGURE 4. All three sample sizes exhibit a linear relationship between ß 

and the $ difference that is detectable. As expected, the ß difference 

that is detectable is smaller for large sample sizes than the ß difference 

that is detectable for small sample sizes. The dependence of<the ß 

difference that is detectable upon ß is greater for small sample sizes 

than it is for large sample sizes. The trend of the lines for N = 100 

has the steepest slope. 

VII. CONCLUSIONS 

The test statistic performed satisfactorily over the range of shape 

parameters and the percentages of censoring investigated. For the three 

sample sizes and the parameter values studied, test discrimination is not 

degraded when censoring does not exceed twenty percent of the sample size. 
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Therefore, under moderate degrees of censoring, the Q-statistic 

provides a useful test statistic for testing the equality of two fitted 

Weibull distributions. The relationships shown in FIGURE 4 between ß 

and the ß differences that are distinguishable can serve as indicators 

of test discrimination. These indicators should be of value when design- 

ing target detection experimentation and when analyzing target detection 

data in which all exposed targets are not detected. 
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TABLE A-l, N = 500 and Shape Parameter Equal 1.0 - 1.5 

Sample 
Number 

Percent 
Censored o 

A 
a £ 

A m. V(x) 

1 
2 
3 

0 
10 
20 

25 
25 
25 

24.750 
27.050 
30.912 

1.0 
1.0 
1.0 

1.053 
1.028 
1.023 

24.251 
26.747 
30.625 

530.968 
677.018 
896.403 

4 
5 
6 

0 
10 
20 

25 
25 
25 

25.219 
26.285 
27.943 

1.1 
1.1 
1.1 

1.062 
1.098 
1.219 

24.629 
25.379 
26.181 

538.161 
535.669 
465.978 

7 
8 
9 

0 
10 
20 

25 
25 
25 

25.637 
26.702 
27.661 

1.2 
1.2 
1.2 

1.188 
1.227 
1.123 

24.179 
24.979 
26.515 

417.413 
418.800 
559.533 

10 
11 
12 

0 
10 
20 

25 
25 
25 

25.975 
25.717 
27.895 

1.3 
1.3 
1.3 

1.279 
1.312 
1.346 

24.071 
23.708 
25.592 

359.644 
332.413 
369.171 

13 
14 
15 

0 
10 
20 

25 
25 
25 

24.131 
25.234 
25.710 

1.4 
1.4 
1.4 

1.461 
1.518 
1.388 

21.857 
22.747 
23.466 

231.181 
233.317 
293.222 

16 
17 
18 

0 
10 
20 

25 
25 
25 

25.669 
25.341 
28.123 

1.5 
1.5 
1.5 

1.502 
1.427 
1.473 

23.169 
23.029 
25.445 

246.870 
268.047 
308.610 
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TABLE A-2, N = 500 and Shane Parameter Equal 1.5 - 2.0 

Sample 
Number 

Percent 
Censored a 

A 
a £ 

A 
£ E(x) V(x) 

1 
2 
3 

0 
10 
20 

25 
25 
25 

24.023 
26.163 
27.159 

1.5 
1.5 
1.5 

1.599 
1.546 
1.560 

21.540 
23.537 
24.410 

190.289 
241.584 
255.493 

4 
5 
6 

0 
10 
20 

25 
25 
25 

25.947 
26.201 
24.382 

1.6 
1.6 
1.6 

1.585 
1.763 
1.590 

23.284 
23.326 
21.874 

225.728 
186.667 
198.292 

7 
8 
9 

0 
10 
20 

25 
25 

, 25 

24.338 
24.927 
25.551 

1.7 
1.7 
1.7 

1.700 
1.775 
1.836 

21.716 
22.183 
22.701 

172.883 
166.842 
164.275 

10 
11 
12 

0 
10 
20 

25 
25 
25 

24.856 
26.119 
28.095 

1.8 
1.8 
1.8 

1.839 
1.795 
1.934 

22.083 
23.231 
24.917 

154.996 
179.268 
180.238 

13 
14 
15 

0 
10 
20 

25 
25 
25 

24.585 
25.649 
26.921 

1.9 
1.9 
1.9 

1.899 
1.769 
1.842 

21.816 
22.830 
23.916 

142.759 
177.822 
181.228 

16 
17 
18 

0 
10 
20 

25 
25 
25 

24.507 
25.258 
26.617 

2.0 
2.0 
2.0 

1.945 
1.954 
2.019 

21.732 
22.396 
23.585 

135.675 
142.935 
149.435 
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TABLE A-3, N = 500 and Shape Parameter Equal 2.0 - 2.5 

Sample 
Number 

Percent 
Censored a 

A 
a £ 

A 

1 E(x) V(x) 

1 
2 
3 

0 
10 
20 

25 
25 
25 

25.833 
25.150 
25.268 

2.0 
2.0 
2.0 

2.050 
2.039 
1.995 

22.885 
22.282 
23.280 

136.899 
131.058 
148.812 

4 
5 
6 

0 
10 
20 

25 
25 
25 

25.608 
25.918 
25.970 

2.1 
2.1 
2.1 

2.069 
2.003 
2.096 

22.683 
22.968 
23.002 

132.273 
143.820 
132.933 

7 
8 
9 

0 
10 
20 

25 
25 
25 

25.965 
25.956 
25.952 

2.2 
2.2 
2.2 

2.372 
2.253 
2.317 

23.012 
22.990 
22.993 

106.574 
116.586 
110.950 

10 
11 
12 

0 
10 
20 

25 
25 
25 

25.530 
25.119 
26.443 

2.3 
2.3 
2.3 

2.281 
2.270 
2.387 

22.615 
22.251 
23.439 

110.349 
107.766 
109.267 

13 
14 
15 

0 
10 
20 

25 
25 
25 

24.427 
25.088 
26.236 

2.4 
2.4 
2.4 

2.329 
2.399 
2.577 

21.643 
22.240 
23.298 

97.346 
97.532 
94.108 

16 
17 
18 

0 
10 
20 

25 
25 
25 

24.550 
24.814 
26.159 

2.5 
2.5 
2.5 

2.614 
2.478 
2.585 

21.809 
22.012 
23.231 

80.384 
90.150 
93.100 
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jARLF A-4, N = 500 and Shape Parameter Equal 2.5 - 3.0 

Sample     Percent A 

Number     Censored a a     ß     £     E(x)     V(x) 

1 0 25 24.657 2.5 2.573 21.894 83.374 
2 10 25 25.261 2.5 2.688 22.461 81.143 
3 20 25 26.613 2.5 2.690 23.664 89.922 

4 0 25 24.947 2.6 2.637 22.168 81.790 
5 10 25 25.938 2.6 2.607 23.040 90.202 
6 20 25 25.906 2.6 2.786 23.064 80.241 

7 0 25 23.718 2.7 2.571 121.060 77.219 
8 10 25 25.821 2.7 2.669 22.953 85.816 
9 20 25 25.625 2.7 2.705 22.789 82.562 

10 0 25 25.040 2.8 2.750 22.282 76.633 
11 10 25 25.372 2.8 3.100 22.690 64.130 
12 20 25 25.394 2.8 2.975 22.668 68.911 

13 0 25 25.166 2.9 2.856 22.426 72.552 
14 10 25 26.543 2.9 2.988 23.698 74.736 
15 20 25 25.832 2.9 3.054 23.085 68.194 

16 0 25 25.034 3.0 2.804 22.292 74.090 
17 10 25 25.906 3.0 2.958 23.120 72.396 
18 20 25 26.220 3.0 2.836 23.359 79.728 
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TARLF A-5, N = 500 and Shape Parameter Equal 3.0 - 3.5 

Sample 
Number 

Percent 
Censored a 

A 
a £ 

A 
£ E(x) V(x) 

1 
2 
3 

0 
10 
20 

25 
25 
25 

24.828 
25.701 
26.197 

3.0 
3.0 
3.0 

3.100 
3.144 
3.067 

22.204 
23.000 
23.417 

61.431 
64.230 
69.606 

4 
5 
6 

0 
10 
20 

25 
25 
25 

23.978 
24.927 
25.758 

3.1 
3.1 
3.1 

3.007 
3.175 
3.136 

21.414 
22.317 
23.048 

60.328 
59.436 
64.801 

7 
8 
9 

0 
10 
20 

25 
25 
25 

25.062 
25.815 
24.788 

3.2 
3.2 
3.2 

3.288 
3.176 
3.197 

22.477 
23.113 
22.200 

56.625 
63.718 
58.088 

10 
11 
12 

0 
10 
20 

25 
25 
25 

25.489 
25.632 
25.384 

3.3 
3.3 
3.3 

3.251 
3.181 
3.410 

22.847 
22.950 
22.808 

59.696 
62.642 
54.600 

13 
14 
15 

0 
10 
20 

25 
25 
25 

25.141 
25.163 
25.401 

3.4 
3.4 
3.4 

3.369 
3.673 
3.457 

22.575 
22.699 
22.840 

54.652 
47.311 
53.421 

16 
17 
18 

0 
10 
20 

25 
25 
25 

24.879 
24.816 
25.355 

3.5 
3.5 
3.5 

3.437 
3.525 
3.674 

22.363 
22.337 
22.873 

51.742 
49.316 
48.005 
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SAMPLE SIZE OF 250 
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TABLE B-l, N = 250 and Shape Parameter Equal 1.0 - 1.5 

Sample Percent 
Number Censored a. 

A 
§_ 

A 
3. E(x) V(x) 

1 0 25 23.762 1.0 1.020 23.573 534.632 
2 10 25 26.378 1.0 1.127 25.258 504.394 
3 20 25 29.632 1.0 1.086 28.718 700.942 

4 0 25 25.476 1.1 1.134 24.347 462.878 
5 10 25 29.179 1.1 1.170 27.631 560.984 
6 20 25 26.487 1.1 1.158 25.158 474.698 

7 0 25 24.300 1.2 1.286 22.494 310.885 
8 10 25 27.358 1.2 1.339 25.124 359.439 
9 20 25 28.148 1.2 1.256 26.186 440.023 

10 0 25 25.737 1.3 1.393 23.476 291.445 
11 10 25 26.655 1.3 1.390 24.322 314.016 
12 20 25 23.056 1.3 1.258 21.443 294.347 

13 0 25 27.990 1.4 1.413 25.474 334.136 
14 10 25 24.890 1.4 1.392 22.706 272.956 
15 20 25 27.801 1.4 1.384 25.384 344.597 

16 0 25 22.362 1.5 1.482 20.218 192.794 
17 10 25 26.176 1.5 1.490 23.651 261.168 
18 20 25 25.832 1.5 1.522 23.279 243.071 
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TABLE B-2, N = 250 and Shape Parameter Equal 1.5 - 2.0 

Sample 
Number 

Percent 
Censored a. A £ A 

E(x) V(x) 

1 
2 
3 

0 
10 
20 

25 
25 
25 

24.720 
26.497 
26.613 

1.5 
1.5 
1.5 

1.693 
1.527 
1.514 

22.062 
23.870 
23.998 

179.775 
254.103 
260.989 

4 
5 
6 

0 
10 
20 

25 
25 
25 

26.040 
26.950 
23.984 

1.6 
1.6 
1.6 

1.774 
1.776 
1.603 

23.174 
23.982 
21.500 

182.153 
194.670 
188.652 

7 
8 
9 

0 
10 
20 

25 
25 
25 

23.940 
26.037 
27.766 

1.7 
1.7 
1.7 

1.634 
1.752 
1.658 

21.424 
23.187 
24.819 

180.782 
186.544 
236.237 

10 
11 
12 

0 
10 
20 

25 
25 
25 

25.325 
25.188 
26.896 

1.8 
1.8 
1.8 

1.818 
1.742 
1.789 

22.511 
22.440 
23.926 

164.492 
176.679 
191.213 

13 
14 
15 

0 
10 
20 

25 
25 
25 

26.207 
26.284 
26.581 

1.9 
1.9 
1.9 

2.020 
1.881 
1.836 

23.222 
23.331 
23.617 

144.716 
166.163 
177.900 

16 
17 
18 

0 
10 
20 

25 
25 
25 

26.000 
25.068 
26.476 

2.0 
2.0 
2.0 

2.015 
1.876 
2.021 

23.039 
22.254 
23.460 

143.155 
151.880 
147.584 
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TABLE B-3, N = 250 and Shape Parameter Equal 2.0 - 2.5 

Sample 
Number 

Percent 
Censored a A 

a £ 
A 
3 E(x) V(x) 

1 
2 
3 

0 
10 
20 

25 
25 
25 

24.476 
26.505 
27.163 

2.0 
2.0 
2.0 

2.104 
2.147 
2.020 

21.678 
23.473 
24.068 

117.223 
132.560 
155.524 

4 
5 
6 

0 
10 
20 

25 
25 
25 

25.263 
26.646 
26.016 

2.1 
2.1 
2.1 

2.184 
2.071 
2.276 

22.373 
23.602 
23.045 

116.729 
142.957 
115.090 

7 
8 
9 

0 
10 
20 

25 
25 
25 

22.595 
25.165 
27.227 

2.2 
2.2 
2.2 

2.079 
2.082 
2.252 

20.014 
22.290 
24.116 

102.081 
126.272 
128.451 

10 
11 
12 

0 
10 
20 

25 
25 
25 

25.664 
25.207 
26.006 

2.3 
2.3 
2.3 

2.216 
2.556 
2.419 

22.730 
22.378 
23.058 

117.367 
88.159 
103.245 

13 
14 
15 

0 
10 
20 

25 
25 
25 

24.950 
26.426 
25.957 

2.4 
2.4 
2.4 

2.292 
2.447 
2.374 

22.103 
23.435 
23.006 

104.538 
104.468 
106.331 

16 
17 
18 

0 
10 
20 

25 
25 
25 

25.662 
26.282 
26.208 

2.5 
2.5 
2.5 

2.490 
2.416 
2.417 

22.767 
23.302 
23.236 

95.563 
105.697 
105.035 
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TABLE B-4, N = 250 and Shape Parameter Equal 2.5 - 3.0 

Sample 
Number 

Percent 
Censored a. A 

01^ i 
A 

E(x) V(x) 

1 
2 
3 

0 
10 
20 

25 
25 
25 

24.262 
25.532 
26.152 

2.b 
2.5 
2.5 

2.535 
2.565 
2.437 

21.534 
22.668 
23.190 

82.838 
89.858 
103.054 

4 
5 
6 

0 
10 
20 

25 
25 
25 

25.741 
24.870 
26.853 

2.6 
2.6 
2.6 

2.465 
2.569 
2.774 

22.831 
22.082 
23.903 

97.911 
85.021 
86.829 

7 
8 
9 

0 
10 
20 

25 
25 
25 

25.724 
25.816 
26.075 

2.7 
2.7 
2.7 

2.653 
2.736 
2.904 

22.862 
22.968 
23.252 

86.062 
82.166 
75.714 

10 
11 
12 

0 
10 
20 

25 
25 
25 

25.143 
26.269 
26.334 

2.8 
2.8 
2.8 

2.687 
2.748 
2.914 

22.356 
23.375 
23.486 

80.425 
84.475 
76.778 

13 
14 
15 

0 
10 
20 

25 
25 
25 

24.546 
26.268 
27.227 

2.9 
2.9 
2.9 

2.704 
3.026 
2.913 

21.830 
23,466 
24.283 

75.828 
71.612 
82.091 

16 
17 
18 

0 
10 
20 

25 
25 
25 

25.083 
25.996 
26.109 

3.0 
3.0 
3.0 

2.901 
3.100 
3.176 

22.367 
23.248 
23.376 

70.178 
67.300 
65.154 
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TABLE B*5, N = 250 and Shape Parameter Equal 3.0 - 3.5 

Sample 
Number 

Percent 
Censored a_ 

A 
a £ 

A 
E(x) V(x) 

1 
2 
3 

0 
10 
20 

25 
25 
25 

24.158 
25.033 
25.607 

3.0 
3.0 
3.0 

3.049 
3.258 
3.189 

21.588 
22.441 
22.931 

59.806 
57.350 
62.237 

4 
5 
6 

0 
10 
20 

25 
25 
25 

25.825 
24.663 
25.610 

3.1 
3.1 
3.1 

3.228 
3.143 
3.389 

23.140 
22.070 
23.004 

62.027 
59.200 
56.148 

7 
8 
9 

0 
10 
20 

25 
25 
25 

25.665 
26.050 
25.577 

3.2 
3.2 
3.2 

3.032 
3.543 
3.443 

22.929 
23.454 
22.993 

68.138 
53.880 
54.520 

10 
11 
12 

0 
10 
20 

25 
25 
25 

23.590 
25.560 
25.075 

3.3 
3.3 
3.3 

3.026 
3.237 
3.614 

21.074 
22.906 
22.600 

57.762 
60.457 
48.293 

13 
14 
15 

0 
10 
20 

25 
25 
25 

24.413 
25.768 
24.639 

3.4 
3.4 
3.4 

3.395 
3.462 
3.685 

21.931 
23.171 
22.231 

50.869 
54.834 
45.098 

16 
17 
13 

0 
10 
20 

25 
25 
25 

25.200 
25.484 
25.830 

3.5 
3.5 
3.5 

3.552 
3.589 
3.481 

22.692 
22.960 
23.234 

50.221 
50.455 
54.600 
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0.044 

0.040 

20% CENSORED 

29% CENSORED 

1.158 

1.384 

0.226 

6.014 

f(X) 

0.036 

0.032 

0.028 

0.024     ■ 

0.020 

0.016 

0.012 

0.008 

0.004 

(X) 
FIGURE B-l, N = 250 and Beta Between .1.0 and 1.5 
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0.048 

0.044 

0.040 

10%  CENSORED 

20%  CENSORED 

A 

A 

2   ~ 

1.527 

1.836 

0.309 

7.050 

f(X) 

0.036 

0.032 

0.028 

0.024 

0.020    • 

0.016 

0012 

0.008     ■ 

0.004 

(X) 
FIGURE B-2, N = 250 and Beta Between 1.5 and 2.0 
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0.048 

0.044 

0.040     ' 

0.036 

0.032 

f(X) 

0.028 

0.024 

0.020 

0.016 

0.012 

0.008 

0.004 

0 %  CENSORED 

0 %  CENSORED 
1 

= 2 079 

2 = 2 490 

1 
= 0 411 

Q = 7 069 

(X) 
FIGURE B-3, N = 250 and Beta Between 2.0 and 2.5 
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f(X) 

0.048 

0.044      ■ 

0.040     ■ 

0.036 

0.032 

0.028 

0.024     ■ 

0.020 

0.016 

0.012 

0.008 

0.004 

10%  CENSORED 

10%  CENSORED  

2.565 

3.026 

0.461 

6.025 

(X) 
FIGURE B-4, N = 250 and Beta Between 2.5 and 3.0 
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•"-N 

f(X) 

0.048      ' 

0.044 

0.040 

0.036 

0.032 

0.028     ' 

0.024 

0.020    ■ 

0.016 

0.012 

0.008 

0.004 

0%  CENSORED  - 
A 

*1 = 3.026 

10% CENSORED -   A 

"32 
= 3.589 

A A 

"    *1 
= 0.563 

Q = 6.794 

56 

(X) 
FIGURE B-5, N = 250 and Beta Between 3.0 and 3.5 
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APPENDIX C 

SAMPLE SIZE OF TOO 
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TABLE C-l, 1 \| = 100 and Shape Parameter Equal 1.0-1.5 

Sample 
Number 

Percent 
Censored a 

A 
a 3. 

A 
£ E(x) V(x) 

1 
2 
3 

0 
10 
20 

25 
25 
25 

23.178 
28.484 
30.436 

1.0 
1.0 
1.0 

1.099 
0.997 
1.082 

22.373 
28.516 
29.537 

415.600 
817.443 
747.180 

4 
5 
6 

0 
10 
20 

25 
25 
25 

23.569 
27.753 
26.699 

1.1 
1.1 
1.1 

1.030 
1.171 
1.137 

23.286 
26.276 
25.498 

511.188 
506.755 
505.449 

7 
8 
9 

0 
10 
20 

25 
25 
25 

29.079 
24.477 
23.936 

1.2 
1.2 
1.2 

1.164 
1.348 
1.265 

27.580 
22.451 
22.235 

565.090 
283.365 
313.330 

10 
11 
12 

0 
10 
20 

25 
25 
25 

21.880 
25.352 
30.068 

1.3 
1.3 
1.3 

1.306 
1.295 
1.391 

20.189 
23.432 
27.433 

243.187 
332.685 
399.079 

13 
14 
15 

0 
10 
20 

25 
25 
25 

25.828 
25.178 
25.076 

1.4 
1.4 
1.4 

1.352 
1.468 
1.356 

23.679 
22.791 
22.978 

313.640 
249.206 
293.746 

16 
17 
18 

0 
10 
20 

25 
25 
25 

24.874 
25.526 
27.881 

1.5 
1.5 
1.5 

1.642 
1.381 
1.481 

22.251 
23.315 
25.209 

193.331 
291.978 
299.958 
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TABLE C-2, N = 100 and Shape Parameter Equal 1.5 - 2.5 

Sample 
Number 

Percent 
Censored (X 

A 
<X £ 

A 
E(x) V(x) 

1 
2 
3 

0 
10 
20 

25 
25 
25 

25.677 
25.802 
28.284 

1.5 
1.5 
1.5 

1.970 
1.470 
1.739 

22.763 
23.353 
25.199 

145.523 
261.083 
223.403 

4 
5 
6 

0 
10 
20 

25 
25 
25 

24.982 
26.609 
30.676 

1.7 
1.7 
1.7 

1.761 
2.069 
1.856 

22.242 
23.570 
27.243 

170.148 
142.841 
231.938 

7 
8 
9 

0 
10 
20 

25 
25 
25 

25.189 
26.307 
22.409 

1.9 
1.9 
1.9 

1.884 
2.115 
1.763 

22.358 
23.299 
19.949 

152.180 
134.187 
136.580 

10 
11 
12 

0 
10 
20 

25 
25 
25 

23.490 
26.654 
23.775 

2.1 
2.1 
2.1 

1.890 
2.090 
2.130 

20.848 
23.608 
21.056 

131.500 
140.722 
108.133 

13 
14 
15 

0 
10 
20 

25 
25 
25 

25.297 
24.436 
24.798 

2.3 
2.3 
2.3 

2.182 
2.307 
2.561 

22.403 
21.649 
22.017 

117.322 
99.114 
85.016 

16 
17 
18 

0 
10 
20 

25 
25 
25 

24.991 
25.673 
27.186 

2.5 
2.5 
2.5 

2.298 
2.596 
2.636 

22.140 
22.802 
24.157 

104.409 
88.972 
97.178 
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TABLE C-3, N = 100 an d Shape V aramexe r tquai c .0 - 0.0 

Sample 
Number 

Percent 
Censored a 

A 
a £ 

A 
ß E(x) V(x) 

1 
2 
3 

0 
10 
20 

25 
25 
25 

25.572 
27.798 
25.351 

2.5 
2.5 
2.5 

2.806 
2.673 
2.774 

22.773 
24.712 
22.566 

77.236 
99.212 
77.412 

4 
5 
6 

0 
10 
20 

25 
25 
25 

25.412 
23.864 
25.472 

2.7 
2.7 
2.7 

3.021 
2.823 
2.836 

22.699 
21.256 
22.693 

67.207 
66.566 
75.244 

7 
8 
9 

0 
10 
20 

25 
25 
25 

22.876 
24.891 
25.791 

2.9 
2.9 
2.9 

2.716 
3.496 
2.498 

20.347 
22.394 
22.883 

65.350 
50.329 
96.030 

10 
11 
12 

0 
10 
20 

25 
25 
25 

24.755 
25.776 
26.556 

3.1 
3.1 
3.1 

2.938 
3.119 
3.371 

22.086 
23.059 
23.847 

66.896 
65.494 
60.940 

13 
14 
15 

0 
10 
20 

25 
25 
25 

27.079 
26.633 
25.906 

3.3 
3.3 
3.3 

3.637 
3.356 
3.346 

24.414 
23.910 
23.254 

55.696 
61.756 
58.731 

16 
17 
18 

0 
10 
20 

25 
25 
25 

25.802 
25.686 
25.569 

3.5 
3.5 
3.5 

3.421 
3.830 
3.434 

23.188 
23.225 
22.983 

56.100 
45.922 
54.747 
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0.048 

0.044 

0%  CENSORED 

10% CENSORED 

f(X) 

0.040 

0.036 

0.032 

0.028 

0.024 

0.020 

0.016 

0.012 

0.008     ■ 

0.004 

1.030 
1.381 

0.351 

8.592 

(X) 
FIGURE C-1, N = 100 and Beta Between 1.0 and 1.5 
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0048 

0044 

20%  CENSORED 

0%  CENSORED 

f(X) 

0.040     ' 

0.036     • 

0.032 

0.028 

0.024 

0.020    ■ 

1.763 

2.298 

0.535 

6.270 

0.016 

0.012 

0.008 

0.004 

(X) 
FIGURE C-2, N = 100 and Beta Between 1.5 and 2.5 
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too 

0.048 

0.044 

0.040 

0.036 

0.032 

0.028 

0.024     ■ 

0.020    • 

0.016     ■ 

0012 

0.008 

0.004     . 

20% CENSORED A 
= 2.498 

20 % CENSORED -   A 
= 3.346 

K- A 

*1 
= 0.748 

Q = 8.502 

64 

(X) 
FIGURE C-3, N = 100 and Beta Between 2.5 and 3.5 
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ON THE ROBUSTNESS OF THE EXPONENTIAL DISTRIBUTION 

George C. Canavos 
Virginia Commonwealth University 

Richmond, Virginia 

ABSTRACT. This paper examines the robustness of the expon- 
ential time-to-failure distribution when this probability law is 
compared against some logical alternatives such as the Weibull 
and gamma distributions relative to estimation procedures involving 
the scale parameter. 

1-  INTRODUCTION.  Since the pioneering work on life test- 
ing and reliability estimation during the early 1950's - see, for 
example, [1] and [2] - the exponential distribution has been'the 
most widely assumed probability law in describing times to failure 
of many types of components and systems.  There  is little doubt 
that this distribution has played a key role in both theory and 
application over the past twenty or so years.  Surely, therefore, 
it is of continued interest to query, "What if the assumption 
of the exponential probability law does not hold? To what extent 
then will such an occurrence affect subsequent inferences and 
estimation procedures derived as a result of and depending on 
this assumption?" 

A substantive study on the robustness of the exponential 
distribution is hereby attempted.  Where possible, the treatment 
is analytic.  Particular attention is given to the estimation of 
the scale parameter and the ramifications regarding the mean- 
squared error (MSE) of its estimate if the exponential assumption 
does not hold.  The effect on the MSE is determined as a function 
of a situation in which the true sampling distribution of life- 
times is not the assumed exponential but rather is either a 
Weibull or a gamma.  By following such a procedure, the degree of 
robustness of the exponential distribution is measured and quan- 
tified. 

2.  THEORETICAL DEVELOPMENT OF ROBUSTNESS.  Let Xl x2     xn 
denote the times-to-failure of n like items.  Assume that these 
lifetimes follow the exponential distribution with probabilitv 
density function (pdf) 

f(x;9) = - exp(-9x) , x > 0 (1) 

where interest is on the estimation of the parameter 6  By 
appealing to the likelihood function 
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n 

£(x1,x2) .. . ,xn;9) = ~  exp (—^ ) 

one can easily determine the minimum variance unbiased estimate 
(MVUE) of 0 to be 

n  x- 
e = I   -i . (2) 

i=ln 

Suppose, however, that in reality the lifetimes x1,x2)...,xn are 
realizations of a Weibull random variable with pdf 

h(x;e,a) = f x01"1 exp (-f x«) , x > 0 (3) 

where a is a shape parameter.  Again it is a rather straightfor- 
ward procedure to determine that the MVUE of 9 in this case is 

n x:a 

§ =  £ -i- . (4) 
. , n i=l 

Thus  if in reality the lifetimes follow the Weibull, the optimal 
efficiency (in the classical sense) for estimating 9 is provided 
by the MSE of the MVUE estimator (4) which reduces to 

MSE(9)W = £. (5) 

Since the exponential distribution was assumed to accurately 
represent the lifetimes x,,x2,...,xn, however, the estimate of 9 
is determined by (2).  Thus, what effect would the fact that the 
lifetimes follow the Weibull as opposed to the exponential have 
on the MSE of the estimator given by (2)? That is, if in reality 
Xl,x2,...,xn follow the Weibull with pdf given by (3), then for 
equation (2) 

MSE(9) = var(9) + E{9 - E(9)}2 

where 

E(§) = E( I   -|i) 
i=l 

= 0i/a r(i + i) 

and 
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n x- 
yar(6) = var ( £ --L) 

i=l 
n 

= ^ I    var (Xi) 
n  i = l 

= e2/a {r(i + h -  r2(i + h} 

Hence after some algebraic manipulation, the MSE with respect to 
the indicated perturbation is expressed by 

MSE(9)cU, = Elw 1+1 (6) 

62/a{r(l + h  + (n - l)r2(l + \)}  - 2n9  ar(i + \)  + n62 

n 

where the notation "E|W" indicates assumed exponential but in 
reality Weibull sampling.  A comparison between equations (5) and 
(6) provides a measure of robustness relative to MSE in the assump- 
tion of the exponential distribution when estimating the scale 
parameter 9.  Numerical results are given in the next section. 

Analogous to the previous discussion, consider now the gamma 
distribution.  As before, assume the lifetimes Xi,x2l...,xn follow 
the exponential with pdf given by (1).  What are the consequences 
relative to the MSE of   (2) if in fact the more appropriate proba- 
bility law is the gamma with pdf 

g(x;e,a) = \   a  x
01"1 exp (-f) , x > 0 .      (7) 

r(a)6a ° 

First, with respect to (7), it is easy to show that the MVUE of 
9 is 

n  x- 
e = I   — (8) . L -   an 

i = l 

while 

MSE(9)ri = I- (9) 

Then to determine the MSE of (2), consider 

n  X: 

i = l 

= a9 
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while 
n x- 

var(9) = var ( £ —■) 
i=l 

n 
y    I     var (XjL) 
n  i = l 

a92 

n 

Thus, the perturbed MSE of (2) reduces to 

«8E(8)B|8-
9'{nt "^ -a?2> <10) 

As before, the comparison between equations (9) and (10) should 
reveal the degree of robustness of the exponential distribution 
as measured by the MSE of the scale parameter 9. 

3.  NUMERICAL RESULTS.  To evaluate the robustness of the 
exponential with regard to the estimation of the scale parameter 
when the true sampling distribution is the Weibull, the ratio of 
equation (6) to equation (5) is formed.  The notion here is that 
since in reality the lifetimes follow the Weibull time-to-failure 
probability law, then the best efficiency of the MVUE of 9 is 
provided by (5).  Thus the "perturbed" MSE given by (6) should be 
compared to (5).  Table 1 contains this ratio computed for several 
values of 9, a and the sample size n. 

By a similar argument, the ratio of equation (10) to equation 
(9) is formed to quantify the robustness of the exponential 
relative to the gamma distribution.  However in this case, the 
ratio is the simple expression given by 

R 
92{a + n(l - a)2}/n 

92/na 

= a{a + n(l - a)2} 

which is seen to be independent of the value of 9.  For various 
values of a and n, this ratio is given in Table 2. 

4.  CONCLUDING REMARKS.  Based on the results contained 
herein, it  is apparent that relative to the estimation of the 
scale parameter, the exponential distribution is extremely sensi- 
tive if in reality the Weibull is the sampling distribution and 
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Table 1 

Ratio of MSE(9)E|W to MSE(6) W 

n = 20 

5 14.20 3.29 1. 
10 27.05 4.86 1. 
15 38.14 6.06 1. 
20 48.10 7.04 1. 
25 57.23 7.90 2. 
30 65.73 8.65 2. 
35 73.72 9.34 2. 
40 81.30 9.96 2. 
45 88.53 10.54 2. 
50 95.45 11.09 2. 

n = 5 

Ny^  a 

e   N. 
0.8 0.9 1.10 1.20 1.50 2.00 2.50 

5 6.97 2.29 0.71 0.75 1.24 1.86 2.21 
10 11.60 2.93 0.74 0.93 1.77 2.61 3.03 
15 15.46 3.39 0.77 1.05 2.07 2.99 3.41 
20 18.87 3.76 0.80 1.15 2.27 3.23 3.64 
25 21.96 4.08 0.82 1.22 2.43 3.39 3.80 
30 24.81 4.35 0.84 1.29 2.56 3.52 3.92 
35 27.48 4.60 0.86 1.34 2.66 3.62 4.01 
40 30.00 4.83 0.87 1.39 2.74 3.70 4.08 
45 32.39 5.03 0.89 1.43 2.81 3.77 4.14 
50 34.68 5.22 0.90 1.47 2.88 3.83 4.19 

n = 10 

5 9.38 2.62 0.85 1.15 2.36 3.69 4.40 
10 16.75 3.58 0.98 1.58 3.46 5.20 6.05 
15 23.02 4.28 1.07 1.86 4.08 5.96 6.82 
20 28.61 4.86 1.15 2.07 4.51 6.44 7.28 
25 33.71 5.35 1.21 2.24 4.82 6.78 7.60 
30 38.45 5.79 1.27 2.37 5.07 7.03 7.83 
35 42.89 6.18 1.31 2.49 5.28 7.23 8.01 
40 47.10 6.54 1.36 2.60 5.45 7.40 8.16 
45 51.11 6.87 1.39 2.69 5.60 7.54 8.28 
50 54.94 7.18 1.43 2.77 5.73 7.65 8.38 

8.79 
12.09 
13.63 
14.55 
15.19 
15.66 
16.02 
16.31 
16.55 
16.75 

249 



the shape parameter is less than one.  However, there is a modest 
range of the shape parameter - say (1.0,1.3) - for which there 
is substantial robustness on the part of the exponential distri- 
bution.  Moreover, the robustness is more apparent for smaller 
smaple sizes and smaller values of 9. 

For the case involving the gamma distribution, to some 
extent the opposite appears to hold.  That is, for values of the 
shape parameter that are less than unity, considerable robustness 
is apparent especially for small sample sizes with only a modest 
amount present in the neighborhood but on the positive side of 
one. 

Table 2 

Ratio of MSE(6)E|G to MSE(9)G 

n 
5 10 20 

a 

0.50 0.875 1.50 2.75 
0.60 0.840 1.32 2.28 
0.70 0.805 1.12 1.75 
0.80 0.800 0.96 1.28 
0.90 0.855 0.90 0.99 
0.95 0.914 0.93 0.95 
1.00 1.000 1.00 1.00 
1.10 1.265 1.32 1.43 
1.20 1.680 1.92 2.40 
1.40 3.080 4.20 6.44 
1.60 5.440 8.32 14.08 
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RANDOM INTERVAL RELIABILITY 

Gerald R. Andersen 
Headquarters, U.S. Army Materiel 
Development and Readiness Cmd. 
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Abstract.  Simple expressions are derived for interval 
reliability when, in addition to random life and repair times, 
the time of request for system availability and the duration 
of the mission occasioned by that request are random variables, 
rather than numerical constants.  The results constitute a 
simple generalization of the interval reliability results noted 
in Barlow and Proschan [1 ]. 

The investigation was motivated by the desire to discourage 
the extensive misapplication of the result of [1 ] p. 82 in 
setting reliability values for large scale Army systems xn pre- 
development requirements documents. 

1. Introduction.  Let T be a stochastic process whose value, 
r(t), at a particular time t>0, describes the operating state of 
some system at time, t.  We will only consider systems with two 
states, up (operable/operating) or down (in repaxr).  Specifically, 
we will say that the system is up at time  t if T(t)=l and down 
at time t if r(t)=0.  We assume that T(0)=1 with probability one. 

Starting at time t=0, let X-^Y-^X^Y^ . . . denote the successive 

lengths of time that the process, T, spends in the up or down 
state, respectively. 

Let 

T = X +Y      ,    v>l, (1.1) 
V   v  v — 

S =0 and define Sn by setting 

S  = Z  T (1.2) 
n  v=0 V 

Throughout most of this note each of the sequences {Xi>, and 

{Y.} will consist of independent and identically distributed (IID) 

r.v.'s.  In this case, {Sn> is the usual type of renewal process 
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used to study systems where the Xi's are the times to failure and 

the Y.'s are the times to replacement or to repair to-original- 

condition. 

Associated with this renewal process, {Sn>, is the counting 
process N(t), where 

N(t) = k  and  SN(t) = Sk (1.3) 

if, and only if, 

Sk 1 * < Sk+1 
(**4) 

The'residual life"process, £ (t) , defined by setting 

C(t) = SN(t) +XN(t)+1 - t (1.5) 

(t>0) is useful in investigating the probability that T(t)=l 
during various intervals of time. 

Since N(t) represents the number of times the process T(t) 
returns to the up state during the interval (0,t), the event that 
£(t)>X coincides with the event that the system is in the up 
state at time t and remains in that state for at least 3£ units of 
time 

CJt) 
t     t+* ^ 

-# 0- 

0 SN(t) SN(t)+XN(t)+l   SN(t)+l 

In section 2 we will obtain exact and asymptotic expressions 
for the probability that £(x) exceeds the quantity M when both 
T and M are random variables.  This probability, that the system 
is up throughout the interval [T, T+M], is called interval 
reliability by Barlow and Proschan [1 ] p. 82, in the case where 
T and M are non-random.  It is interesting to note that many Army 
documents, including a guide on reliability techniques [10], 
apply the result in [ 1 ] but with the .claims that either x  or M 
are random. 

The mathematics required to make this extension from the 
well-known results in Barlow and Proschan, or Gnedenko [ *f ] , or 
Feller [If] is very simple, but in some ways the results are 
reasonably interesting.  In spite of this, it is doubtful that 
one would announce the results of such a simple task if it were 
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not for the insane realism that some practitioners of reliability 
inject into reliability "requirements" as deduced from 
mathematical facts about residual life.  This topic is 
expanded on in Example A of section 2. 

In section 3, we note the well-known fact that an 
aysmptotic result of section 2 is the limit of a statistic 
which gives the percentage of time, during n renewals, that the 
system is up and remains up for a sufficient amount of time to 
support a mission of duration Jfc .  A result is then stated 
concerning the asymptotic normality of a similar statistic 
(one representing the percentage of up-time that the system 
is available for a mission of duration 3£ ) . 

Section 4 is an attempt to consider the interval reliability 
problem when successive system life and repair times are not 
identically distributed. 

253 



2.0 Residual life; independent and identically distributed 
case.   Let the sequences {x/}  and {Y.}  of section 1 be sequences 

of independent and identically distributed positive random variables 
(r.v.'s) and assume also that {X.} and {Y.} are independent of 

each other.  Thus, in this section, the X.'s have the usual 

interpretation of time to system failure and the Y.'s the time to 

replace or repair the system to a state which is as good as new. 

We will denote the common distribution function (d.f.) of the 
Xi's by G, of the Y.'s by H and, where appropriate, use X to refer 

to one of the X.'s and Y to one of the Y.'s.  Set F equal to the 

d.f. of T = X+Y.  Let the positive r.v.'s x and M of section 1 be 
independent of each other and of the sequences {X.} and {Y.}. 

Denote the d.f.'s of x and M by K and L, respectively. Although 
termed a positive r.v., M will be allowed to take the value zero 
with positive probability; especially, the case M=0 with probability 
one (a.s.).  This allows "availability" as well as interval 
reliability statements to be included in the same expression. 
When M=0 (a.s.), the L=e, where e will denote the unit d.f: : 

J 0, i 
\l, i 

e(y) M "' -f y < ° (2.1) 
f y > 0 

To avoid needless complications, we suppose that K(0)=0 
and G(0)=0 (the latter guarantees that passage of the system from 
one down state to the next is never instantaneous).  It follows 
that F(0)=0.  Let 

U(t) =  X F*k(t), (2.2) 
k=l 

where F*k denotes the k- fold convolution of F with itself.  It 
is well-known that the renewal function U(t) < +°° for each t 
(0 <  t < +») and U(t) = EN(t) (cf. section 1).  Consult Feller [j| ] 
for facts about U, but note that his U counts S =0 as the first o 
renewal of the process {S } and so equals 1+U, U being given as 

in (2.2).  The definition (2.2) follows most "applied" probability 
and reliability texts (e.g. [1 ], [11],  [^l). 

The physical meaning of these four sets of r.v.'s is as stated 
in section 1.  Mathematically, since we have assumed that all r.v.'s 
are independent, we can, without loss of generality, take them to be 
defined on the same probability space, ft . 
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Set Q equal to the d.f. of the r.v. Z = X-Mso that 

Q(z) = /°°G(z+y)dL(y) (2.3) 
o- 

for all z in (-<*>,m) . 

Results;  We shall now state and discuss the results of this 
section; if a proof is cumbersome it is placed at the end of the 
section. 

Theorem 1.  If EX, EY and Ex are finite, then 

P(£ > M) = 7{K(z)+7(K(z+s)-K(s))dU(s)}dQ(z)     (2.4) 

Thus, (2.4) gives the probability that the system is up at 
some randomly selected moment in time, x, and remains up for a 
random duration, M, of the mission occassioned by the request at 
time x.  By specifying only the d.f. of x in Theorem 1, we have 
the following 

Corollary 1.  If the request time x is exponentially distributed 
with mean 1/A, (A>0) , then 

P(£ > M) = (l-F(A))"1 /Tl-e"Xz)dQ(z) (2.5) T o 
where F is the Laplace-Stieltjes transform of the d.f. F. 

To verify the corollary from (2.4) just note that 

K(s+z) - K(s) = e"Xs(l-e"Xz), 

so that PU     > M)   = /°°{ (l-e~Xz)   +   (l-e"Xz)   / e"XsdU (s) }dQ (z) 
X O o 

=   (1+U(A))   /°°(l-e"Xz)dQ(z), 
o 

where U is the Laplace-Stieltjes transform of U.  Equations(2.5) 
follows since 0(A) = F(A)/(1-F(X)) for all A>0 (recall that F(0)=o) 

Remark 1;  It is both intuitively and analytically obvious that 
(2.5) may be written in the form 

PU > M) = P(x < X-M|x < X+Y) . (2.6) 

Intuitively, because the exponential distribution has no memory 
and analytically, because 

/°°(l-e"Xz)dQ(z) = P(x < X-M) = P(x <_  X-M, x < X+Y) 
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and 

1 - F(X) = P(T <  X+Y) . 

Remark 2. The artificiality of the exponential assumption on T 
can be attenuated somewhat by noting that if K is taken to be a 
mixture of exponentials: 

K(z) = Zav(l-e~*v
z), (2.7) 

a _> 0. for all v, Ea = 1, X  >: 0  (that is, the tail of K can be 

expressed as a Dirichlet series).  Then (2.5) preserves in the form 

P(E > M) = E a Q-F(X ))_1 /°°(l-e"Xvz)dQ(2). T        v  V       V      0 

Remark 3.  Set Q equal to the d.f. of (X-M)  where S denotes 
the function which equals S if S>0 and 0 if S •<_ 0.  Then since 

-Xz 1-e   vanishes at 0, the only point on [0,°°) where Q+ and Q differ, 
we can replace Q by Q and write (2.5) as 

P(£T(X)> M) = (1-Q+(X))/(1-F(X)) (2.8) 

This form not only suggests easy computation (simulation is easily 
carried out from (2.6)), but it motivates the following observation: 
if X-*0+ (so that Ex++°°) , then, writing -T=T (X) , 

P(£T(X)> M) ■*• E(X-M)+/ (V1+V2
) (2*9) 

where y1 = EX, u2 = EY<+» and E(X-M)+ <_  EX < +». 

Just recognize the RHS of (2.8) as the ratio of the difference 
quotients of Q and F; passing to the limit as X-K)+ gives the 

ratio of the means of (X-M)  and X+Y (which both exist since 
EX < +0° and EY < +oo). 

As one would expect, the limit in (2.9) is preserved if the 
exponentiality of request time is dropped and x(X) is replaced 
by any sequence {x } which converges in probability to +°°. 

Theorem 2.  Let u,=EX and u2=EY be finite and T non-lattice.  If 

T  (n>l) is a sequence of positive r.v.'s and x -*-+°° in probability, 

then 

P(?T > M) + E(X-m+/{Mi+Mj) (2.10) 
Tn L     * 

as n -*■ +». 
(The proof is at the end of this section.) 
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Remark 4. A simple calculation shows that 

E(X-M)+ = E(X-M|X>M) P(X>M) (2.11) 

Also, if we let the minimum of two real numbers a and b be denoted 
by a^b and observe the identity 

(a-b)  = a-aAb, 

then we can express (2.10) in the following two equivalent forms 

p(g  > M) - E((*-M) |X>M) . p(x>M) m  yi-E (XAM)    ^^ 
>Tn       yl+y2 ^2 

as n -*• +<». 

When M=0 a.s., the RHS of both (2.10) and (2.12) reduce to 
the so-called "availability" of the system;y./(y, +y J) .  The last 

relation in (2.12) is therefore especially intuitive since it 
shows directly the amount by which the availability should be 
decreased if one wants to account for the system being up through- 
out a mission of (random) duration, M. 

In view of the above, it would seem to be appropriate to call 

AfNn - E(X-M) + 

" ~V^2~ (2'13) 

system availability for missions of length M. 

Remark 5. When t>0,X>0 are (nonrandom) real numbers and x=t, 
M=£  (a.s.) then the classical limit-of P(£.>*), as t-*-°°, (e.g. 

[ 1 ]/ m- ]i   [If]) agree with all the above-mentioned forms; just 

note that /S(y)dy = / (y-X)dG(y) = £ (y-X)+dG(y), 5 = l - G . 

Examples: 

A.  Let T be exponential as in Corollary 1 and, in this first 

example, let X also be exponential with parameter 9, (EX = y. = öT ) 

Whenever X has this distribution it follows from (2.3) that 

Q(y) = e"01Y £(91)f 

where L is the Laplace-Stieltjes transform of L.  Direct calculation 
then gives 

/"(l-e-^dCMy) = XLO.J/U+e,) 
o 
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Since 

we find (using Corollary 1) that 

P(£>M) =  ±-^ ^ (A.l) 
y1+(l-H(X))X 

where the distribution of M and Y remain to be specified.  To note 
the resemblance to (2.12) just observe that L (0.. )=P (X>M) , in this 

example.  Of course, if we let A+0+ in (A.l), we would obtain a 
special case of (2.12). 

Now, if we further specify the distribution of Y to be 

exponential with parameter 02, EY=82 =y2' 
we obtain (from (A.l)) 

P(CT> M) =   i-^—    Lte^ (A.2) 

Finally, taking M to be exponential also, (A.2) becomes 

Pl yl P(5 > M) =  ±-^-  • -j— (A.3) 
T      y1+(82+X) 

X    yl+yM 

where y =EM.  So, in this case, P(£ >M) has the appearance of the 

product of two "availability" terms. 

If, instead of being exponential, M is taken to be degenerate 
at X., i.e., L(s)=e (s-*), where e is defined in (2.1), it follows 
from (A.l) that 

PU > M) = T    e~*/yl (A.4) T yj + a-Hum"-1- 

with the distribution of Y unspecified. 

Notice that if X-*0 in (A.4) (or just use (2.12)) the RHS of 
(A.4) is 

-^—     •  e-^yl (A. 5) yl+y2 

It is the almost exclusive use/misuse of this formula that 
causes one to produce the variations on a theme found in this note. 
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For example, one objectionable use of (A.5) is to specify X  and 
y-, and then to set the expression in (A.5) equal to some high number, 
such as .97, and solve for \x^.      (This, of course, is done with no 
knowledge that the life distribution is exponential.)  This y, , call 
it \x9,   is then claimed, in advance development documents, to be the 
"required" mean-time-to-failure of the system; usually this is a 
complex military system which has either never been produced before 
or one for which we lack a substantial base-line of experience under 
a realistic mission profile.  To make matters worse, this value of 
ylj1 and a similarly derived value, yj-, obtained by setting (A.5) equal 
to some slightly smaller number such as .94, are used as the null 
and alternate hypotheses, respectively, in a statistical acceptance 
plan.  Note that when this so-called acceptance plan is applied, it 
will be to a total population of perhaps one or two systems. More- 
over, the system will be constantly undergoing design changes and 
differing conditions of stress.  Needless to say, such practices often 
produce a reject signal from the testing community.  If, on the basis 
of experience and common sense, the systems under test are judged to 
do their job reliably, at reasonable cost and more effectively than 
any system in the arsenal, these reject signals are properly ignored, 
but often not without the significant costs of re-tests, check-tests, 
needless re-design and a near infinity of meetings, briefings and 
"analyses". 

The purpose then of the present note is to furnish Army statis- 
ticians with two more "degrees-of-freedom" (mission and request time 
distributions) in numerous formulas that will aid him in convincing 
the occasional naive practitioner of reliability that applications 
of (A.5) as described above are a totally unrealistic way of setting 
reliability requirements.  This can be done by producing a wide^ 
variety of answers with judicious choice of distributions for mission 
and request times.  The variability obtained through distribution 
which cannot be predicted might be enough to convince the R&D com- 
munity to state reliability figures-of-merit as goals-to-point-toward 
and not hard requirements to be "demonstrated" in some psuedo-statis- 
tical test.  The only possible danger is that the results stated in 
this paper will be misused in the same way as (A.5).  It should be 
emphasized that designing reliable military systems is of the utmost 
importance and it is not the purpose of these remarks to argue other- 
wise.  On the contrary, it is hoped that by discouraging an absurd 
approach to setting reliability requirements emphasis will be placed 
on engineering reliability into new systems. 

Before concluding example A, consider two additional distributions 
for M.  First, when M is uniformly distributed over (0,T): 

PUT> M) = ^§^-  ^  (A.6) 
T        6aT   y:+(X+e2) 

2 
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with T, X and Y exponential as above. 

The second is when M is normally distributed as N(y,o) 
conditioned to be positive.  Then 

B-,                (6,cr)2  «(J-ae.) 
P(E > M) ± -^ exp(-(9 Y i- )   gY      ,  ?) 

where $ is the d.f. of the standard, N(0,1), normal r.v. 

B.  Because of the ease of calculation we consider the case 
when X is Rayleigh (a), 

P(X>s) = e-s2/2a\ 

and M is Rayleigh (a).  Then 

EXAM = /* e"s2/2a2 • e-s2/2a2ds 
o 

o f *- 

where 3 = aa//a2+a2  and so 

E(X-M) + = EX-EXAM = if a (1    ) 
W2      /a2+a2 

Since EX= ./5- a. we therefore can write (2.13) in the form 
[=VF a' 

A(M) = =^ • (1 2_ ) (B.l) 
EX+EY      /a2+a2 

= A(0) (1 -  ) 
/a2+a2 

Another simple application of Theorem 2 is obtained when X 
is Gamma (2,3): 

P(X>s) = e"3s (l+3s) 

and M is the square of a N(0,a) r.v..  Then (after some tedious 
calculations) 

A(M)   . A(0)    (l+(l-5)aaß) (B.2) 

(l+2a23)3/2 
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C.  We now return to Theorem 1 and show its relationship to 
some known results on availability, without using the exponential 
assumption of Corollary 1, for the request time distribution. 

For this purpose, let the request time be a fixed constant, 
i.e., 

T (w) = T > 0 

for all ueß.  Then K(x) = e(x-T), where e is defined in (2.1). 

Then the function 

y(s,z) = k(s+z) - k(s) 

is equal to one in the unbounded region defined by 0 < s < T, and 
s + z > T and zero otherwise. 

It follows that the RHS of (2.4) is given by 

/roK(y)dQ(y)+/V°(K(s+y)-K(s))dQ(y)dU(s) =       (C.l) 
0 0 0 

= /°°dQ(y) + /  Q(T-s)dU(s)    > Q = 1 - Q. 
m O 

For ease of computation, let X, Y and M be exponential with 

u,=6, ,  ^2=®2  anc* EM=^M=a  ' resPectively«  Then it is easy to 
show that 

u(t) = I(t- | (l-e"
at)), 

where y=u,+y2 and a=6,+82. 

Since, Q(y) = a exp(-61y)/(61+a), for y>0, we obtain ((2.4) 

and (C.l)) 

P(V» ■5^' P  t"l+ V2e"
aT] (C.2) 

Notice  that if T-M-»,   (C.2)   becomes   (A.3)   with  X=0  as it 
Should.    Also,   if   PM=0   tn(C.2)then  (23)  of   [12]  is obtained. 
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Proof of Theorem 1,  Proceeding either with a standard Renewal 
theory argument or directly from the equation for the d.f. of ?t, 
t nonrandom, in [)]   p.<?öor [II] p. 35*f we obtain 

P(Ct> M) = ^Q(t) +"Q*U(t), (2.14) 

where Q is given in (2.3). Alternately, this is a special case 
of a more general (non-identically distributed) case derived in 
section  4.  Since K(0)=0  (K=d.f. of T) 

00_ 

/ Q(t)dK(t) = / K(t)dQ(t) 
o o 

Consider 

/Q*U(t)dK(t) = / /" Ü(t-y)dü(y)dK(t) 
0 o o 

= /V°Q(s)dK(s+y)dU(y) and observe that this last 

integral, call°it I, is finite.  This follows from ET<+«>, and 
the well-known fact that U(y)^y/y as y-x°, since then 

1 < /°(l-K(y))dU(y) = /°U(y)dK(y) = 0(ET) < +» 
= o o 

(we have made use of the fact that U(y) (l-K(y))^ - y(l-K(y))+0 
if ET < +°°) .  Now 

/°°Q(s)dK(s+y) = -Q(0)K(y) + /°°K(s+y)dQ(s) 
o o 

so that 

/°Q*U(t)dK(t) = -/"/ Q(s)dK(s+y)dU(y) 
o o ° 

= Q(0)/°°K(y)dU(y) - /"/ K(s+y)dQ(s)dU(y) 
o 0 0 

= /V°K(y)dU(y)dQ(s) - /"/ K(s+y)dQ(s)dU (s) 
0 o oo 

= /C°/00(K(s+y)-K(y))dU(y)dQ(s) 
o o 

Proof of Theorem 2.  The sequence ^n^+°°  in probability if given 

e>0, A>0 there exists an integer no=nQ(e,A) such that 

P(T > A) > 1-e  if n>n . n    — ° 
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Letting K be the d.f. of T , n>l, we can write 

Pn = P(5T > M) = /°Q(t)dK (t) + /°Q*U(t)dK (t) 
n      n      ° ° 

= I(n) + J(n) 

Now, let e>0 be arbitrary and choose A>0 such that Q(A)=P(X-M>A)<e, 
then, 

0 < ICn)-=/A Q(t)dK (t) + /°Q(t)dK (t) 
o       n     A      n 

< Kn(A) + e(l-Kn(A)) 

so that 

< Kn(A) + e 

0 < limsup I(n)< e 
n-»-°° 

Therefore, since eX) is arbitrary, 

lim I(n) = 0. 
n-*-°° 

For the term J(n), we of course follow the usual proof and 
use the Key-Renewal Theorem.  This places an integrability require- 
ment on Q which is equivalent (in our case) to showing that 

00 

/ Q(t)dt < +°°.  This follows from EX < +°°.  The assumption that T 
o 
is non-lattice is trivial in our application and can be guaranteed 
by requiring, for example, either X or Y to have absolutely 
continuous d.f.'s. 

The Key-Renewal Theorem then states that 

Q*U(t) ■* ^ /°°Q(v)dy 
y o 

as t •* +°° where ii=y,+vi .  In what follows, call this limit B. 

The argument for J is similar to the one applied to I .  That 

is, by the previous limit, there is some C such that Q*U(t) is 
within a preselected distance 6>0 of B for all t>C=C(6).  Given 
some e>0>the convergence to +°° of x  is then used to find an 

n =n (e,C) so that P(T >C) > 1-e  if n>n .  All this allows us o o n   = o 
to conclude that both 
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rQ*ü(t)dK Ct) > (B-5)P(Tn>C) > (B-6)(l-e) = B-e' 
c 

and 

if n>nQ. 

/ Q*U(t)dK (t) <, (B+6) 
c       " 

Since, also, 

0 < /Q+U(t)dK (t) = 0(P(T < C) = o(l) 

as n-*-00, we have 

lim J(n) = B = i / Q(t)dt . 
n~» y o 

It remains to evaluate the integral of Q:  (Recall EX<+») 

/°°Q(y)dy = /y°P(X>y+m)dL(iri)dy 
o oo 

co   oo 
= /  / P(X>y+m)dy dL(m) 

o  o 

=  /00/0°P(X>s)ds  dL(m) 
o m 

= /°°P(X>s) /SdL(m)ds 
o       o 

m   /°°P(X>S) P(M<S)dS 
0 

oo 
= EX -/ P(X>s, M>s)ds 

o 

= EX -/ P(XAM>s)ds 
o 

= EX - E (XAM) 

where XAM = minimum of X and M.  Clearly, 0 < EX-E(XAM) < EX < +< 

264 



3. Additional Comments on the IIP Case.  Using the stochastic 
model of section 2, the percentage of time, during n renewals of 
the system, that the system is up and remains up for a sufficient 
amount of time to support a mission of length >£ is given by 

(n>l).  (Throughout this section, 3t will be a strictly positive 
real number.)  Assuming that ET=EX+EY<+<=°, it follows from the law 
of large numbers and Slutsky's Theorem (cf. Cramlr [3] p. 255) that 

Pn(*) * £ E(X-*) + , (3.2) 

in probability as n-*», y=y,+y =EX+EY. 

Thus, the statistic Pn(*) is a consistent estimator of the 
quantity E(X-3t )+/\i,   the  ubiquitous limiting interval reliability 
of [X ] and a special case of Corollary 1.  The simple, practical 
nature of Pn(*) probably explains the interest in describing 

systems by means of interval reliability. 

A related statistic with similar intuitive appeal is 

lPn(*) = § (x±-x)+/ Sx± 

Clearly, this statistic gives the percentage of up-time that the 
system is available for a mission of length s£ and is a consistent 
estimator of the quantity ij> (*)=E.(x-*)+/v1-  

F^om Corollary 1 of 

section 2, this quantity is also easily seen to be the limit of 
the probability that £  > *• given that £  > 0 as n-*», when 

T -^+», in probability. n n 

Using the work of Skorohod [ <? ] Chapter 1, Sec. 6, Pyke [7], 
Pyke and Shorack [8 ], and arguments similar to those in recent 
work of Barlow and Proschan [ 2- ] , it can be shown (under additional 
assumptions) that /n   (^n(*) - ty (*)) converges in probability to a 

normally distributed r.v., N(0,aGtr)), where the variance can be 
calculated explicitly, in terms of ty (*-) , y^'Var X, Var (X-#-) + , 

and the d.f.G.  The proof is outside the scope of this note and 
will be reported elsewhere. 

The usefulness of such a result is that it places emphasis 
(3£) , a directly measurable quantity, r; 

which requires a distributional assumption. 

on i|) (3t), a directly measurable quantity, rather than on \p (X) , 
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(4.0). -Residual Life: non-identically distributing case. 

In this section we suppose only that the sequences {Xi> and {Y..} 

of positive random variables are each sequences of independent 
r.v.'s and, further, that the sequence {X±}   is independent of the 

sequence {Y.}. 

Let G. be the distribution function (d.f.) of X^ i^1/ Hj 

the d.f. of Y., j>l, and set F± equal to the d.f. of T^i+Yi' i^
1' 

As before, let M be a positive r.v. with d.f. L and assume that M 
and the {X.} and {Y.} sequences are independent. 

Set Q.= d.f. of the r.v. Z±= X±-M, so that 

Q. (z) = /+aG. (z+y)dL(y) (4.1) 
1       _oo    1 

for all z in R^ (-<»,<»), 

Finally, observe that since we have not assumed that the 
T., j>l, are identically distributed r.v.'s, it is possible for 

the partial sums S  of section 1 to converge to some proper r.v. 

in distribution (and hence with probability one (a.s.) on Q). 
For simplicity, we want to avoid this possibility and retain the 
property of IID r.v.'s which states that Sn-H-°° (a.s.).  Thus, 

when we consider an instance where EX. converges, the divergence 

of S  to +°°  will be guaranteed (even though the Y. 's are not 
n n    x . 

identically distributed) by assuming that XY^+^   (a.s.). 

Now, recall the definition of %t,   for non-random t>0, given 

in section 1 and partition the interval [0,~).by the sequence of 
partial sums Sn, n>0.  Then 

?(£+.> M) = Z P(£ > M, S,< t < Sk+1) (4.2) 
z k=0 

=  ?     /SU. >  M,   t<Sk+1 |S.=* )dP(S   <>) 
k=0  0 fc k+l    Jc K 

=   E      /  P(X,  ,,-M>t-*,   t-*<Tk+1)dP(Sk<*r) 
k=0 °        k+1 

k 
z   /   Ptz..^ t-* )dTT*F. (^) + P(Z.> t) 
=l  0 

K+1 j=l     J x 
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where, after conditioning on Sfc we have used a familiar property 

of conditional probabilities (cf. Krickeberg [6] p. 170 problems 
3 and 4),.the independence of \+1  and Sk and, for the last 

equality, the fact that the occurrence of the event [Z, , > t-Sf] 
K+l 

implies the occurrence of the event [?,,,>. t-3£].  Therefore, 

using the d.f.'s introduced above and the usual notation for a 
convolution product: 

k 
*71'*Fj(t) = (F1*F2*...*Fk) (t)=P(Sk< t), 

we can write (4.2) in the form 

P(Ct> M) = -Q (t)+ E ^  *»TC*F. (t) (4.3) 
r       X   k=l K+1 j=l 3 

where Q.= 1-Q. and t>0. 

It is easy to see that under the assumption of thö last 
section (that is, where the sequences are identically as well as 
independently distributed), the last equation reduces to equation 
(2.14) of section 2. 

Let the r.v. n(M) be the amount of time that the random 
function t-*-?  is greater than M.  If I is used to denote the 

indicator function of the set of positive real numbers; that is. 

_ {  1/ y > o 

1 °' Y < 0 
Ky) =1 (4.4) 

{ °>   Y < 0 

then n(M) can be written as 

n(M) = /°°I(?.- M)dt (4.5) 
o   T- 

Of course, n(M) may be a defective r.v. in the sense that it 
may take the value +°° with positive probability.  Taking expectations 
of both sides of (2.5) it is easy to see that 

En(M) = /"P(^>-M)dt (4.6) 
o   T- 

whether the RHS is finite or not. 
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We note in passing that the case when the underlying stochastic 
structure consists of sequences of IID r.v.'s, the RHS of (4.6) is 
infinite.  This fact might motivate one to ask whether or not this 
integral is Abel summable to a finite value.  That is, does 

A(X) = /°Xe~XtP(£.> M)dt 
o        J- 

converge as X-KI+? It is amusing to recognize this integral as 
P(£ ,,.> M), where T(X) is an exponentially distributed r.v. and 

apply Remark 4 or Theorem 2 of section 2 to obtain 

A(X)-»-y~1E(X-M)+<+<» as X-H)+, if u<+°°. 

Alternately, use only the classical case with M random; then 
an application of the Dominated Convergence Theorem gives 

A(X) = /°°e"YP(£ ,_i> M)dy^y"1E(X-M) + 
o      "A 

as X-K)+. 

Returning to the non-IID case we can state the following 

Theorem 3 :  If the series I E^-M)"*" <+» then 

00 , 

En(M) =  E E(X -M) + (4-7) 
v=l  v 

This follows easily.  Just let Vn(t) denote the general term 

in the series (4*3) and note that 

/°Vn(t)dt = E(Xn+1-M) + 

Then since the V are non-negative and integrable over [0,°°), 
n 

and the series of integrals of the Vn converge, equation (4.7) 

follows from a well-known result about interchanging summation 
and integration (e.g. page 114, (2) [5]). This proves (4.7). 
This equation then shows that n(M) is a proper r.v. and 

n(M) =  E (X - M) + 

V=l  V 

with probability one. 
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CONFIDENCE INTERVALS FOR A SUM OF RENEWAL 
PROCESSES WITH APPLICATION IN RELIABILITY 

Ronald L. Racicot 
Research Directorate 

Benet Weapons Laboratory 
Watervliet Arsenal 

Watervliet, New York 12189 

ABSTRACT.  In reliability theory, the time flow of failures of a 
non-constant failure rate component which is replaced or renewed upon 
failure forms a renewal process. The inter-arrival times of failures 
in this case are independent identically distributed positive random 
variables.  If a system which is composed of a number of such components 
is considered to have failed if one of its components fails, then the 
total ;number of system failures is a sum of the individual renewal 
processes. The problem considered in this paper is the computation of 
confidence intervals for the total number of system failures over a given 
period of time from total system tests and/or individual component tests. 
Although the application considered is one from reliability theory, the 
results are applicable to general sums of renewal processes. 

In solving this particular problem, the reliability engineer often 
assumes that the sum of renewal processes asymptotically approaches a 
non-homogeneous Poisson process or, after a long period of time, a homo- 
geneous Poisson process with exponentially distributed inter-arrival 
failure times.  For these processes, a chi-square distribution can be 
used to determine confidence intervals for total number of failures from 
which confidenced reliability or MTBF can be determined.  It can be shown, 
however, that the Poisson process is strictly a local property for sums 
of renewal processes and that confidence intervals derived from these 
assumptions are generally incorrect. This is shown by comparing the true 
variance of the number of system failures with the variance derived assum- 
ing the Poisson process. 

A scheme for computing confidence intervals is presented in which 
the first 3 moments of failure times of the component processes are used 
to compute the mean and variance of total system failures. For a large 
number of components, the normal distribution adequately describes the 
distribution of system failures from which confidence intervals can be 
estimated. 
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NOTATION. 

f(t) pdf of ihter-arrival times of failures; 

F(t) cdf corresponding to f(t); 

F(t) 1 - F(th 

h(t) renewal rate; the unconditional pdf of component failure 
and subsequent renewal; 

h-(t) renewal rate for component j; 

H(t) expected value of the number of system failures over the 
interval (0,t); 

H.(t) renewal, function for component j; the integral of hj(t) 
J over the interval (0,t); 

H(t) point estimate of H(t); 

Htrue(t) true value of H(t); 

N(t) number of system failures over the interval (0,t); 

N-(t) number of failures of component j over the interval (0,t); 

n number of components; 
c 

n- number of component failures; 

nm number of missions over system life; 

PNCO probability of N failures in time t; 

R(t,T)    reliability at time t for an interval T; 

R.(t,t)   reliability of the jth component; 

R (1,1%)  average interval-reliability over system life for interval 
T and number of intervals nm; 

R (t.T)   system reliability at time t for an interval T; 
s 

R (x,n ) average system reliability; 
sa   m 
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t system time; 

3 Weibull shape parameter; 

H Weibull scale parameter; 

y. mean inter-arrival failure time for component j; 

P3j      third central moment of inter-arrival failure times 
for component j; 

°32 variance of inter-arrival failure times for component j; 

and 

T        interval or mission length for which reliability is 
required. 

1.  INTRODUCTION. The general problem is to determine confidence 
intervals for reliability of a series system of components from test data. 
Previous solutions to this problem have been limited to constant failure 
rate components, binomial mission reliability which is constant in time 
and/or reliability for only the first system failure [1,2]. The case con- 
sidered in this paper which is often of more interest to the reliability 
test engineer involves a system comprised of mechanical components which 
follow non-constant failure rate distributions. The system is operated 
continuously until failure of any of its components occurs at which time 
the component is replaced or renewed and system operation continued. 

For the single component which is replaced or renewed upon failure, 
the renewal rate h(t) describes the unconditional failure rate of the 
component and is derived from the underlying distribution of inter- 
arrival failure times [3,4]: 

H(t) = f(t) + /tf(t-x)h(x)dx. (1) 

The renewal rate is distinguished here from the hazard or conditional 
failure rate which describes failure of a non-repairable item. 

Interval or mission reliability can be determined from the renewal 
rate [5-7]: 

t+T_ 
R(t,x) = 1 - /  F(t+T-x)h(x)dx (2a) 

t 

t+T 
- 1 - / h(x)dx   for small T. (2b) 

t 
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For practical applications, the transient interval-reliability can 
be average over system life to yield a single time independent relia- 
bility index that characterizes a given component: 

nm 
R-CT,!!*) - - I    R(ti,T) (3) 

*m i=1 

For a series system of components 

nc 
Ra(t,x) = TT R.Ct.x) 

3=1 

(4) 

and 

Rsa 

-  **     nc 
(T.H.) =-  I   7T  RjCti.T) (5) 

"m i=l J-1 

The time flow of failures of a non-constant failure rate component 
which is replaced or renewed upon failure forms a renewal process [3]. 
The inter-arrival times of failures in this case are independent iden- 
tically "distributed positive random variables.  If a system which is com- 
posed of a number of such components is considered to have failed if one 
of its components fails (series system assumption), then the total number 
of system failures is a sum of the individual renewal processes. The 
problem considered here is the computation of confidence intervals for 
the total number of system failures over a given period of time from 
total system tests and/or individual component tests. Although the ap- 
plication considered is one from reliability theory, the results are 
applicable to general sums of renewal processes. 

Many properties of renewal processes and sums of renewal processes 
are covered in the literature; so only the final results are summarized 
here [3-7].  If N-i 00 represents the total number of failures of com- 
ponent j over time interval (0,t) then for the system 

nc 
N(t) = I    N,(t). 

3-1 

For components which fail independently of one another, the mean and 
variance of N(t) is equal to the sum of the mean and variance of the 

(6) 
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component processes: 

nc 
H(t) = E{N(t)} = I H,(t)                           (7) 

dH(t)    nc 
h(t) = I h.Ct)                            (8) 

dt     J-l J 

nc 
Var{N(t)} = I     Var{N (t)}. 

j-l     J 
(9) 

For small mission time Interval T and a large number of components, 
the average reliability (5) can be shown to asymptotically approach the 
following value [5]: 

In reliability applications then, where the above assumptions hold, it 
suffices to deal with H(t} for the system with reliability being deter- 
mined from (10). 

2. NON-HOMOGENEOUS POISSON PROCESS AS AN APPROXIMATION TO N(t). 
In considering the problem of non-constant failure rate components, the 
reliability engineer often assumes that the sum of renewal processes 
asymptotically approaches a non-homogeneous Poisson process (NHPP) with 
increasing number of components or, after a long period of time, a homo- 
geneous Poisson process (HPP) with exponentially distributed inter- 
arrival failure times [5]. For these processes, the chi-square distribu- 
tion can be used to determine confidence intervals for total number of 
failures from which confidenced reliability or MTBF (mean-time-between- 
fallures) can be determined.  In what follows, however, it is readily 
shown that the Poisson process is strictly a local property for sums of 
renewal processes and that the global confidence intervals derived from 
these assumptions are generally incorrect. < 

The distribution of number of failures for the NHPP is given as 

vN 

N!~ 
%(t) - ^-e-H(t) (11) 

E{N(t)} = H(t) (12) 
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Var(N(t)} = H(t) (13) 

It suffices to show that the true variance of the sum of renewal 
processes does not generally equal H(t) as shown by (13).  Consider, 
for example, the asymptotic renewal process for large t in which the 
mean and variance for component j are given by [3] 

H,(t)   , t 

lim-2  - -; H,(t)= ± (14) 
t-M»  t     Pj VLj 

Var{N,(t)} * -*-  t (15) 

in which \1A  and <7j are the mean and variance of the inter-arrival 

failure times. Using (7) and (9) gives 

nc 
H(t) * I    — (16) 

2 

Var{N(t)} * I    -2- (17) 
nc a. 

J-i yj3. 

In general, H(t) ^  Var{N(t)} and the sum of renewal processes for this 
example does not approach a NHPP or HPP in a global sense no matter how 

large nc becomes. For equal components, for example, l/y ^ o^/v3  unless 

0^=]X^.    This is the case for the exponential distribution but is only a 
special case for other distributions. Although the asymptotic process 
for large t was considered, the same can be shown for the sum of 
ordinary renewal processes. 

3.  CONFIDENCE INTERVALS USING COMPONENT MOMENTS.  Since the sum 
of renewal processes (6) is a sum of discrete, lattice type random 
variables, it asymptotically approaches the normal distribution as an 
envelope with increasing number of components [8], Confidence intervals 
then can be estimated for H(t) using normal tables for large number of 
components with g(t) and its variance being determined from test data. 
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As will be shown later, an extra failure should be added to g(t) in 
determining upper confidence limits to remove bias. 

The renewal function for component j can be estimated from the 
moments of the inter-arrival times of events for large t.[3]. 

t O tW Hj0(t) =— +    0   + 0(l/t) (18) 
Uj     2yj2 

a 2t       . a,4   y3. 
Var{Njo(t)} * -i_- + ( A + | -J-:' - 2 _2 ) +• o(l/t)       (19) 

for the ordinary renewal process and 

H1e(t) * -S- (20) 

2 4 

Var{N,e(t)} «-i-+(- + -i_--£i-)+ 0(l/t) (21) 
yj        V 3yj 

for the equilibrium renewal process. In the ordinary renewal process 
all components are new at t=0. The equilibrium process, on the other 
hand, is one which has been running for a long time before it is first 
observed (see Cox [3], Chapter 2 for more detailed description of these 
processes). 

Case 1; Complete Samples with large t 

For this case the moments can be estimated without making any assump- 
tion about the underlying distribution: 

Uj=J1
xji/nfj <22a> 

nf i 

0j2"i-l ^/'kfi"1* (22b) 
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in which x 
stituting 

nfj 
^  = nfj  jx  (XJI-VJ)3/^-1^11«-^ (22C) 

■i 

Var{Hj(t)}    =    VaHNjCt)}^ <23> 

Sub- ..,, i=l,..., nf1 are nf1 failure times for component j.  Si 
'{h)  into (18), (19) ana (23) or (20), (21) and (23) yields 

component estimates for Hj(t) and Var{Hj(t)>.  System H(t) and its var- 

iance can then be determined from (7) and (9) from which confidence 
limits on the true value of H(t) can be estimated using normal tables. 

Case 2:- Censored Samples 

For this case, a theoretical distribution for inter-arrival failure 
times must be assumed, such as the Weibull or gamma, with the moments 
being estimated, for example, using maximum likelihood.  Confidence 
limits can then be determined assuming the normal distribution for total, 
number of pooled failures. 

4.  SOME NUMERICAL RESULTS FOR CASE 1 

A particular example has been considered to study the frequency 
exactness of the confidence limits described above. For this study 
Monte Carlo simulation is used to artificially generate sample outcomes 
for a system with given component parameters; The system is assumed to 
be composed of nc identical Weibull components with parameters n and ß. 

Using these parameters, failure times for a given number of failures are 
generated for each component using random numbers with the quantities 

yj, aj2 and y3j being computed from (22). From these H.. (t) and 

Var{N.(t)> are computed using (18) and (19) where large t is assumed. 

Estimates for the system H(t) and Var (H(t)) are then determined from (7), 

(9) and (23). 

Assuming the normal distribution for H(t), confidence limits on 
H(t) can be determined from the given set of sample outcomes.  This is 
repeated 1000 times for a fixed set of parameters.  The normal cdf, 
gauf (H(t)), is evaluated at the true and known value of H(t) for each 
of these sample outcomes.  For exact frequency confidence intervals, 
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the function gauf (Htrue(t)) should be uniform on (0,1.0). Results 

indicate that although the confidence limits are not exact, they are 
close enough for practical purposes. 

Table I lists some of the results of these trials for the upper 
90% confidence limit on H(t) (lower 90% confidence limit on average 
reliability). An extra failure had to be added to the total number of 
system failures to remove bias. For exactness, the percent of trials 
in which Htrue is greater than the upper 90% confidence limit, 

HQQ, should be 10%. As can be seen from the results in Table I, the 

confidence limits are close to this requirement. The confidence limit 

HQQ, therefore, is judged to be exact for this case as long as one extra 

failure is added to total number of test failures. 

The main limitations of the above approach are the requirement for 
long system times and large number of components and/or failures for 
exactness. Also, in computing reliability from H(t), small mission times 
(high reliability) are required for the approximation (10). The computa- 
tional methods involved, however, are relatively straightforward and the 
approach appears to be a sound one. 

TABLE I 

RESULTS OF MONTE CARLO TRIALS TO STUDY UPPER 90% 
CONFIDENCE LIMIT FOR SUM OF RENEWAL PROCESSES 

NUMBER OF 
COMPONENTS 

NUMBER OF 
FAILURES PER 
COMPONENT 

Htrue<t=5> 

% OF TRIALS 

Htrue^O* 

10 10 51.7 9.8 

10 5 51.7 10.6 

5 5 25.8 9.6 

2 5 10.3 7.1 

* 90 PERCENTILE OF DISTRIBUTION GAUF (H+l, O*-) 
H 

WEIBULL COMPONENT PARAMETERS:  n =1.0, 3 - 3.0 
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DETECTING AN UNKNOWN SIGNAL IN A MULTIPLE OBJECT, TELEMETRY SITUATION 

John Bart Wilburn, Jr. 
Instrumentation and Methodology Branch 

US Army Electronic Proving Ground 
Ft. Huachuca, AZ 85613 

ABSTRACT.  The problem is that of detecting anomalie patterns in 
environmental grid data approximately coincident with a point stimulus 
in the region including all data sources. 

The particular case involved is to replace the current, rather awk- 
ward, technique with a more concise and efficient alogorithm for detect- 
ing anomalous growth patterns of tree-ring chronologies approximately 
coincident with volcanic eruptions. 

STATEMENT OF THE PROBLEM:  The problem I am presenting here is a 
problem arising in my climatology research on estimating climatic anoma- 
lies following volcanic eruptions. People have long suspected that such 
anomalies would occur.  (Franklin, 1783 Diary) It seems as no surprise 
to most people that something as majestic as a volcano should perturb 
climate and yet compelling evidence has not been found, probably due to 
the short length of meteorological data records available and/or improper 
methods of analysis. 

I am estimating these climatic anomalies by computing a regression 
model for climatic variables such as seasonal temperature and precipi- 
tation averages based on tree-ring chronologies.  In this way I am hoping 
to attach to a much longer record of data.  The regression model is a 
principal component regression calculation which I discussed at this con- 
ference last year; and uses continuous tree-ring chronologies and a con- 
current meteorological record taken at, or near, the tree site for which 
the model is computed.  That is, for each tree site there is one model 
for each climatic variable for each season. 

With these models, or transfer functions, I estimate the climatic 
anomalies following volcanic eruptions by applying anomalous sequences 
of annual tree growth rings following those eruptions as input to the 
transfer function. 

The problem I am presenting here is how to improve the accuracy of 
the detection of anomalous tree growth due - probably - to volcanic 
activity and to perform the detection more economically. 

This may not seem related to telemetry in the usual sense; however, 
I contend that it is, or has within it, a problem in multiple object 
telemetry. In this case, telemetry is interpreted as the receipt of a 
signal transmitted by a sensor operating in an environment wherein the 
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Signal is supposed to contain information about it's environment. 

In my case, the sensor is the tree.  The signal is the chronology of 
it's annual growth rings.  These growth rings differ in width in response 
to climatic conditions present at the site.  Figure I illustrates a section 
of a chronology and a graph of the ring widths.  As one can see, this signal 
looks very much like many other kinds of signals one may encounter in a 
telemetry operation. 

The signal is supposed to contain information about the climatic con- 
ditions at the tree site during the time that the growth ring was influ- 
enced. A considerable amount of work done, and currently underway, at 
the Laboratory of Tree Ring Research at the University of Arizona supports 
this supposition. The problem is that not all tree ring chronologies are 
indicative of climate. Only sensitive trees have chronologies which re- 
flect their past climate and then only when properly interpreted. 

There are many factors which influence a tree's response to a partic- 
ular climatic variable.  Topography is the primary class of these factors 
which include: water runoff, exposure (north or shady side versus south 
or sunny side), altitude (growth season), subsurface conditions influenc- 
ing root structures, availability of ground water and density of tree 
growth. However, these factors are, for the most part, reasonably con- 
stant over the time period considered; that is, a few hundred years.  Thus, 
the sensitivity of a tree to climatic change can be considered to be reason- 
ably constant except when it is obviously not true as in cases such as fire, 
earthquake, etc.  Figure II illustrates these opposite conditions, compla- 
cent and sensitive trees, as a function of topography. 

A sample illustration of this sensitivity is shown when we consider 
a tree which is living in an abundant environment (as seen by the tree) 
with a surplus of water.  This tree would have a "complacent" ring series 
because such a tree will not suffer much, if at all, during a relatively 
dry growing season with less, but still adequate, precipitation.  However, 
a farmer in the same area With a crop tuned to the normal precipitation 
(abundant from the tree's point of view) might consider that dry spell a 
near disaster.  This complacency is compounded when one notes that most 
trees tend to integrate over several years with the emphasis placed on 
the climate of the year preceding the current growing season. 

The point is that one may see that a given species of tree may have 
many different responses to highly similar climates, depending on the 
specific locations of the trees and the conditions preceding the current 
growing season of up to three years. 

Now it is possible to see the nature of the problem I am addressing. 
As shown in Fig. Ill, I have selected, as sensors, ten tree sites; all 
Douglas Fir and all with fairly high variance in the chronology as an 
indication of sensitivity. These ten tree sites, indicated by the dots, 
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constitute a grid of climatic sensors, each of which has a response 
function defined only for it's own location, but, which has been assumed 
to be reasonably time invarient. 

Now the problem becomes somewhat more complicated. This is because 
I am looking for the result of an unknown, but probably different response 
function to the output from another response function, which is the atmos- 
phere, also unknown and responding to a point stimulus (the volcanic erup- 
tion) . It is the nature of this atmospheric response function that I would 
like to eventually learn something about from the regression-based esti- 
mates of the climatic anomalies mentioned earlier. 

The response of the atmosphere to this stimulus at some location on 
the earth is, most likely, some function of:  the type of stimulus; that 
is large, small, duration, etc; the location of the tree site (sensor); 
the time lag from the eruption; the time of the year and the initial con- 
ditions at the time of the year. 

The response function of the trees to the atmospheric (climatic) con-, 
ditions is some function of:  the season; it's own serial correlation; 
it's initial condition and it's location (topography). The response 
function of the trees omits the physiological variables as I am consider- 
ing them as explicit since I am not modeling the tree growth. 

The first part of the project, which is the subject of this paper, 
was to detect the anomalous, indirect response, if any exists, of the 
trees to volcanic eruptions. To date, the method of detecting these pos- 
sible anomalous sequences of growth rings, or anomalous signals, has been 
as follows: First, I Considered only one site at a time; thereby permit- 
ting me to ignore all parameters relating to location. Second, the tree 
integrates over all seasons; so, for the purposes of signal detection, I 
must ignore season. Now then, it must be remarked that the amount of 
change in the tree's variance due to volcanic activity may be only a 
very small portion of the total variance in the tree ring chronology. 

Assuming that the chronology is a weakly, stationery, random series, 
a kind of signal averaging was accomplished to detect a possible average, 
or typical, response signal of the tree to specific "types" of volcanic 
eruptions. 

The tree ring data were formed into a lagged array, as shown in Fig. 
IV, wherein the lag is fourteen years. The lag is more than sufficient 
to accommodate the serial correlation of about three years and is guessed 
to be sufficient time to cover any lag of the propagation of the atmos- 
pheric phenomena. This lag also side-steps two favorite cycles:  lunar 
and solar. i 

The data in an array such as shown in Fig. IV contains all of the 
data and as such is referred to as: D^m, the total ring array. A 
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similar array is formed from the columns of Dt such that the date of the 
growth ring index (percent of normal growth) in the first row of each 
column is the date of a volcanic eruption of a specified class of erup- 
tions parameterized by size of eruption and the region of the earth con- 
taining the volcano. This data array is referred to as the signal array 
and is denoted by: Ds nq 

A third array is the background array, D^; and is the direct subtrac- 

tion of Ds from Dfc:  Db = Dü 0 Ds. 

Now then, the row averages of each of these arrays were computed. 
These constitute average growth curves of the tree for a fourteen-year 
period under: normal conditions, conditions coincident with volcanic 
activity of the class specified, and under conditions excluding those 
concurrent with that specific class of volcanic activity. 

A CHI-square comparison was made with the following hypotheses: 

1. That the average growth curve of the signal array, Ds, was indis- 
tinguishable from the average growth curve of the total array, D*-. 

2. That the average growth curve of the signal array, Ds, was indis- 
tinguishable from that of the background array, Db. 

3. That the average growth curve of the background array, D , was 
distinguishable from that of the total array, Dfc. 

4. That the average' growth curve of the total array, Dt, was disting- 
uishable from the flat curve of the average of the total chronology. 

If all of these hypotheses are rejected, then the average growth curve 
of that signal array is considered a probable, valid response to a volcanic 
eruption of the class specified. From about 300 cases, 35 passed this test 
at the 99% confidence level. 

A second test was devised involving the comparison of the first eigen- 
vectors of the väriance/co-variance matrix of the ring signal array, Ds, 
computed two ways. The variance/co-variance matrices of the signal array 
were computed:  (1) using the row averages of the total ring array, d.fc as 
the mean; and (2) using the row averages of the ring signal array, 
Ds, in the usual fashion.  Thus we have: 

cSnn G*) - m " 1  I (dS±j - 
5V  Wy - d\) ' ] 

and 

csnn(5s)=m-i t (ds..-is
±) (dS.. -3%)».] 
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Then extract the eigenvectors; 

(d*) E (dt) »   (dc) A  (dfc) 
nn    nn      nn  -/ ^-nn 

and 

'«>  «J" ■  ■ J^-A^ 

W > .nd E...M*). Next, compare E  ^u ' and E* ^a /.  If they are significantly different, 
In ■* 

then the Array Ds is usable as an array of tree ring data comprised of sig- 
nificant responses.  This was a very stringent test and out of the 35 can- 
didates, only six passed. 

The computer time required to perform all of these tests, for all ten 
sites and thirty classes of volcanic eruptions, was about ten hours on a 
CDC 6500. This did not include the comparison of the eigenvectors, but 
only their computation. Thus, the need for a new method. 

Another, related, reason for initiating this work is to begin the 
development of a statistical description of tree growth which will contain 
information about both the spatial relationships of the tree sites; and, 
simultaneously, the temporal behavior of the individual tree sites and the 
interrelationship between the two descriptions of the tree growth. 

One of the approaches to this problem I have started is to devise an 
entropy function for each column of the total array. 

H1, =   5 
J       1 

Plii la* plij 

1 = tree site location 

i = row 

j = column 

where P.. is computed using the statistics of the chronology. 

The intent was to detect a departure from normal growth during the four- 
teen year period following any year. The data array, Dfc, would then be 
collapsed into a one dimensional sequence of entropy values for each tree 
site. These data streams could then be considered as variables indexed 
by location and analyzed by mültivariäte techniques for the time invarient 
relationship of the time lagged behavior between each site. Furthermore, 
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by computing a conditional entropy, the serial correlation of the trees 

could be accounted for. 

In this way, it is hoped that those tree sites with large and/or 
correlated vSnc. of abnormal behavior will be selected by exgenvector 

analysis. 

Another variation of this method would be to form a lagged array from 
one ox the principal components of a spatial array of tree ring chronol- 
ogies sailing an entire region. Then, to perform the entropy calculation 
of that !aggel array. This would highlight abnormal growth occurrxng 

simultaneously throughout the region. 

Now, I would like to hear any comments and suggestions the panel might 

wish to make. 
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Figure 1. A segment of the bristlecone pine master chronology, 
representing three trees from 900 to 840 B.C. 
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COMPLACENT 
RING SERIES 
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Fig. Ill 

Distribution of Ten Tree Sites 
(Sensors) in North America 
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OUTLIER DETECTION PROCEDURES IN 
TRAJECTORY DATA REDUCTION 

William S. Agee and Robert H. Turner 
Analysis and Computation Division 

National Range Operations Directorate 
US Army White Sands Missile Range 

White Sands Missile Range, New Mexico 

ABSTRACT. Outlier detection procedures are used extensively in tra- 
jectory data reduction at White Sands Missile Range (WSMR). There are 
three distinct circumstances in which outlier detection procedures are 
used in trajectory data reduction. These are recursive filtering, 
weighted least squares batch processing of trajectory measurements, and 
unweighted least squares processing. Each of these processes use a 
different outlier detection procedure. This paper describes the use of 
outlier detection procedures at WSMR, the specific procedures used in the 
various data reduction processes, and the limits within which each of the 
procedures performs satisfactorily. Of prime concern are the situations 
in which the outlier detection procedures fail to detect some obvious 
outliers. These undetected outliers destroy automated data reduction 
procedures causing a significant number of reruns with human detection 
of these outliers. The performance of various outlier detection proced- 
ures, those currently used at WSMR'and some others is shown on typical 
data sets for which the procedures fail. It is hoped that, in addition 
to obtaining some suggestions on improving outlier detection used in 
WSMR data reduction, this presentation will stimulate further investiga- 
tion into outlier detection methods by Army researchers. 

1. INTRODUCTION. Some outlier detection techniques for batch and 
recursive processors which produce trajectory estimates from instrumenta- 
tion measurements are described. 

Although there are some outlier detectors in the batch processor, a 
pre-processor is necessary to eliminate those outliers which could ruin 
the batch process beyond recovery. This pre-processor removes the trend 
using an unweighted least squares process and detects outliers using two 
tests. A better way of removing the trend is necessary when some types 
of outliers are present. Also, since some types of outliers produce a 
masking effect which makes sequential procedures insensitive, other tests 
are needed. The outlier detectors are good in the batch processor and' 
very good in the recursive processor. 

2. PRE-PROCESSOR 

a. Process. Small samples (one to four seconds) of 10 to 50 measure- 
ments of' each observation are fit to a second degree polynomial in time 
using unweighted least squares. 
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The observation model is 

z. = aQ + ajt. + a2tj + e.      i = 1, n 

or 

Z = TA + e 

, 2   . 
where e is random noise with zero mean and a variance. 

T 
Minimizing e e with respect to A we have 

*■ T  -1 T  ■ 
A = CTT) T Z 

and the set of residuals 

r = Z - TA 

. b. Outlier Detection. Sample skewness and kurtosis coefficients are 
computed from the residuals 

*7- Ä3F I   rf/(?rf)3/2- 
1      i=l x i=l x 

n
   A        n  9 9 

b2= (n-3) I rJ/( JrY 
z      i=l x i=l l 

If either ^7 or t>2 exceed their respective 5% significance level critical 

values, the observation corresponding to the largest residual is deleted 
and the entire process is repeated with the remaining observations. 

We hope that this initial process will detect most of the outliers 
automatically with as little human intervention as possible and a mini- 
mum of false alarms. When there are too many outliers or a few large 
ones it is almost impossible to detect them.  In these cases, if the 
presence of an outlier is detected, the good observations adjacent to the 
outliers are the ones rejected. 

c. Examples. These two ^samples show that the presence of outliers 
can sometimes distort a curve fit so much that outliers cannot be detect- 
ed. Furthermore, if the presence of outliers were detected, sometimes 
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the good observations are rejected while the outliers remain. Each sample 
.has three obvious outliers which were not detected from the first set of 
residuals. 

(1) Example 1. Assume some other test could detect the presence of 
outliers and that the observation with the largest residual was rejected. 
One of the outliers would be rejected. The two previously described tests 
and rejection criteria would now sequentially detect and reject the two 
remaining outliers. 

(2) Data for Example 1 

Obs Res(l) Res(2) Res(3) Res (4) 

.21709 -.33222 -.29484 -.20135 -.00001 

.21824 -.31419 -.26636 -.17482 .00001 

.95519 .44164 .49745 .58588 

.94511 .45245 .51376 

.93499 .46522 

.22288 -.22199 -.15714 -.08487 .00001 

.22405 -.19391 -.13101 -.06642 -.00002 

.22530 -.16375 -.10528 -.04951 .00002 

.22652 -.13161 -.08006 -.03424 .00002 

.22770 -.09751 -.05535 -.02063 -.00004 

.22900 -.06128 -.03100 -.00852 .00000 

.23028 -.02307 -.00715 .00195 .00001 

.23155 -.01714 .01622 .01079 -.00001 

.23286 .05940 .03915 .01805 .00000 

.23418 .10367 .06162 .02370 .00001 

Example 2. Again assume that some other test could d (3) 
presence of outliers and that the observation with the largest residual 
was rejected. The first point rejected would be the good observation in- 
between the outliers. Two outliers would be the next to go. Further 
application would reject good observations and never get the one re- 
maining outlier. The outlier detectors previously described don't indi- 
cate the presence of outliers*in any set of residuals. 
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(4) Data for Example 2. 

Res(2) Res(3) Obs Res(l) Res(4) 

-1.70987 -.15777 -.28786 -.36369 -.37731 

-1.70942 -.00020 -.03242 -.08045 -.10634 

-1.70893 .10548 .14636 -.12669 .09700 

-1.70845 .15923 .24843 .25767 .23267 

-1.70793 .16109 .27383 .31254 .30071 

-1.70741 .11102 .22252 .29127 .30108 

-1.70682 .00910 .09458 .19393 .23385 

-1.70626 -.14478 -.11009 .02041 .09892 

-1.70571 -.35060 -.39148 -.22927 -.10368 

-1.70510 -.60828 -.74951 -.55502 -.37389 

-1.70449 -.91788 -1.18425 -.95693 -.71177 

1.43777 1.86223 1.44596 

1.44602 1.45641 .86545 1.16012 

-1.70257 -2.15818 

1.44667 .47314 -.54153 . -.17727 .40876 

Conclusion. More work needs to be done in: 

(1) Removing trends in the presence of outliers. 

(2) Determining whether the testing arid rejection of small subsets 
of observations as a one time process.is more effective than the sequential 
application of testing and rejecting of one observation at a time. 

3.  BATCH PROCESSOR 

a  process. This is a weighted least squares process which uses 
observation variances as weights. It produces all position vector esti- 
mates simultaneously. It is.a nonlinear process which linearized about 
a guess trajectory and is iterated to convergence before editing. The 
measurement model for the <xth observation at. the ith time point is 

Z. = h fx.) + e. ia   or i/   i<x 
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, 2 
where e. is random noise with zero mean and a. variance. ia ia 

Solve for x by minimizing the weighted sum of squares 

m     /Z. -h (x.)\ 2 

1=1 ael. \   ia   / 

with respect to x.. 

b. Outlier Detection 

(1) At each time point i, for each observation a in the solution a 
normalized residual is computed 

* Z. -h (x.) 
* ia a i' 

r. = ia    afr. ) 

2 
where a (r. ) is the estimated residual variance approximated by 

2      2      T  -1 T 
az(r. ) s a.    + H (H WH) l  H v ia^   la   av   ' a 

3h (x.) a l H =  a 

a 
3x. 

l 

H WH = I 
T 

H H 

2 
ael. a. 

l ia 

If 3<|r. |<5, the respective observation is deleted temporarily. 

I*I If |r. |>5, the respective observation is deleted permanently. 

If either of these tests reject any observations the solution is 
iterated to convergence with the remaining observations and tested again. 
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This test indicates those observations whose residuals are not consistent 
with their variance and geometry. 

(2) When no more observations are rejected with the previous test, a 
sum of weighted residuals for each observation, over all the time points 
it was processed is computed. 

R =  . \L  x r. a   i|ael.  la 

If max IR l>3, all of the ath observations are deleted from all further 1 a1 

processing, all temporarily deleted observations are enabled and the whole 
process is reiterated. This test indicates a consistent bias in an 
instrument's set of observations. 

4. RECURSIVE PROCESSOR 

a. Process. This is an extended Kaiman filter which produces state 
vector (position, velocity, acceleration) estimates sequentially. 
Observation variance estimates are also produced sequentially. The pre- 
dicted state estimate is 

x(k+ljk) = F(k)x(k) 

the corrected state estimate is 

x(k+l) = x(k+l|k) + K(k)r(k+l|k) 

where K(k) is the Kaiman filter optimal gain matrix and 

r(k+l|k) = Z(k+1) - h(k+l)x(k+l|k)- 

is the vector of observation residuals. 

The variance estimate 

is a steady state function of the exponentially weighted sum of squared 
residuals 
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Q.Ck+1) = w[Q.(k)+r
2(k+l|k)] 

0<w<l 

b. Outlier Detection. For each observation i at time k+1, a fwo- 
level outlier detection scheme is used on the normalized residual 

r,(k+l|k) = 
:.(k+l|k) 

a(rt) 

o2(r.) = o?(k) + H.PHT 
*■ 1/   iv J        11 

9h (x) 
H. = 
i   ax 

P is the state covariance matrix.... 

*   i  - (1) If r.(k+l|k)>12 reject the i*h observation for time k+1. 

(2) If 4<r*(k+l.|k)<12 update Q.(k+1). 

(3) If 0<r?(k+l|k)<4 update Q.(k+1), a2(k+1) and x(k+l|k). 
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APPLYING SIMULATION OF PHYSIOLOGICAL SYSTEMS 
TO THE DESIGN OF EXPERIMENTS:  EXAMPLES OF 
ENDOCRINE AND RESPIRATORY FUNCTION 

Stanley M. Finkelstein 
Division of Bioengineering and 
Department of Operations Research and System Analysis 
Polytechnic Institute of New York 
Brooklyn, New York 

and 

Stanley S. Reisman 
Department of Electrical Engineering 
New Jersey Institute of Technology 
Newark, New Jersey 

ABSTRACT.  The development of simulations of physiological systems has been 
used as a guide in the design of animal experimentation used to study such en- 
docrine functions as glucose-insulin interaction and testosterone dynamics. 
Models of pulmonary respiratory function have been studied in an effort to 
redesign several pulmonary function tests so that particular system parameters 
could be evaluated directly from test results. 

Model development is thus a useful procedure in studying physiological 
systems, for it focuses attention on the cause-effect relationship at each 
stage of the homeostatic process, and thus integrates in a systematic way all 
that is known about a particular system.  In addition, the requirements and 
constraints of the model development clearly point out gaps in our knowledge 
of overall system function, and in an effort to obtain this missing data one 
can utilize the model structure in designing the necessary experimental proto- 
cols.  The results of these experiments will help complete the model in a 
physiological meaningful way, and once complete, the model can be used to study 
the effects of parameter variation on system response under both normal and 
pathological situations. 

The simulation can be used in conjunction with, and as a supplement to, 
animal experimentation.  For example, the large number of extraneous, and possibly 
even unknown, factors which often obscure or invalidate the results of live 
animal experiments are not present in the model.  The model user must be able 
to take advantage of the resulting simplified approach to the physiological 
system, but must, at the same time, be careful not to oversimplify the complex 
physical interrelationships to the point at which the results are physiologically 
meaningless. 

This presentation will utilize several case studies to demonstrate the use 
of model development in designing experiments to study overall system function, 
subsystem operation and compartment analysis, and parameter evaluation. 
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INTRODUCTION. Model development is a useful procedure in studying physiological 
control systems, for it focuses attention on the cause-effect relationship at each 
step of the control process, and integrates in. a systematic way all that is presently' 
known about the particular system.  Models can be presented in many different 
modes, some of which might be scaled versions of the actual system, physical analogs 
consisting of hardware elements or alternative living systems, and both analog or 
digital computer simulations.  The emphasis in this presentation, however, will be 
on the mathematical descriptions of system function and the computer simulations 
of these relationships.   In particular, the application of models in research, 
teaching, and the design of experiments will be discussed in terms of specific 
examples of endocrine and respiratory function. 

Early application of the control engineer's approach to physiological system 
studies appeared in the work of Grodinsa and Stark in their studies of respiratory 
function and pupillary motion, respectively (1,2).  Grodins' first model of respira- 
tory function divided the body into two compartments, the lungs and the remaining 
tissue.  In addition, he assumed that control of respiration was purely a function 
of carbon dioxide concentration at particular sites within the circulation.  Circu- 
lation time was also assumed to be negligible.  Validation studies were then 
performed on the model, at which time model results were compared with known 
experimental results from a living system.  Deviations between the model and the 
living system suggested several additions to the model, which Grodins incorporated 
in subsequent more complex representations.  A second model included circulation 
time  as a non-negligible parameter, and added the effect of alveolar dead space 
to the two-compartment study.  This more advanced model was able to be used to 
study both normal respiratory function and the abnormal behavior associated with 
Cheyne-Stokes breathing0.  A third model added the brain compartment to the original 
structure, and also included the effect of oxygen concentration on respiratory 
control.  The Grodins models illustrate one approach of model building, which 
begins with a simple, but non-trivial, model and adds additional complexity to make 
the model results agree with the results of physiological experimentation. 

Stark, on the other hand, used the modeling approach in designing his 
experimental protocol to study pupillary diameter as a function of light incident 
to the eye.  He used a qualitative description of the system to develop a block 
diagram representing the functional portions of the pupillary control mechanism. 
Available data could then be used to describe quantitatively the overall closed 
loop system, but it could not be used to develop the mathematical relationships 
between the subsystem variables within the closed loop.  Stark then designed an 
experiment which would produce the necessary information on open loop response in an 
in vivo, physiologically undisturbed human subject.  Incident light was focused at 
the plane of the iris so that the cross section of light entering the eye was less 
than the smallest pupil diameter.  Incident light intensity and pupil response were 

a. first published in 1954 
b. first published in 1959 
c. Cheyne-Stokes breathing;  periodic' increase and decrease in depth of breathing 

(tidal volume) 
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then recorded with an infrared electro-optical arrangement, from which frequency 
response curves could be developed. Transfer functions for the open loop system 
were then constructed and a mathematical description of the overall system was thus 
determined. Stark thus used a modeling approach to describe the information flow 
through the system, and to see how available data could be used to quantitatively 
describe system function. When such descriptions could not be developed, the 
structure and suggested cause-effect pathways within the model could be used to aid 
in the design of an experiment which would produce the specific information necessary 
for system quantification.  Although this procedure was satisfactory in the case 
of pupillary dynamics, it is not always possible to satisfy model requirements 
within physiological constraints. However, the modeling approach does, as a minimum, 
suggest guidelines for experimental design which would result in the necessary 
input-output analytical relationships between system variables. 

2,  APPLICATION OF MODELS. Models of physiological systems have been used in research, 
teaching, and the design of experiments.  There are two distinct steps involved in 
applying the modeling approach to experimental design.  In developing the model, 
areas where the available data are not adequate to explain the operation of the 
system will become clarified, and a study of the flow of information necessary to 
completely implement the model will suggest tests and experimental procedures for 
generation of additional data.  Such an example was discussed previously in the 
description of Stark's work.  Then, once the model has been developed, it may offer 
a desirable alternative to living system experiments, where preparation time may 
be many hours, months,. or days, and where surgical or chemical intervention may 
cause undesirable side effects.  Such experiments can be implemented on the model, 
generally with little difficulty and little loss of time.  The model can be used 
jto "zero in" on a best experimental protocol, saving the animal experimentation 
for the final stages of exploration.  Thus the model does not replace the need for 
animal experiments to finally validate methods and conclusions, but simply serves as 
a "short cut" to the final procedure, providing an easier, less expensive, and less 
time consuming alternative in the overall investigation. 

The model can also be used to predict the effect of system changes and system 
sensitivities to structural and component changes. Using the model, it is a rela- 
tively simple matter to propose parameter alterations, and to observe the relative 
significance of these changes 90 the operating characteristics of the total system, as 
well as the sensitivity of the system to these changes.  This is possible even for 
variables and parameters which cannot be observed directly in the physiological 
environment.  This capability has important research and clinical applications, since 
it can provide a means for evaluating the probability of existence of various 
pathological states and may possibly suggest the etiology of a particular disease. 

The physiological model can also serve as an effective adjunct in the training 
of bioengineers and medical scientists.  The model can present problems in physio- 
logical dynamics in terms of cause-and-effeet relationships between functioning 
parts of the system and total system operation.  For example, it can be used to 
study the response of pathological states to various treatments.  One important 
attribute of such a model is that a "patient" can be constructed with any desired 
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pathological condition, and the student can be exposed to this patient in much 
the same way as he would explore a clinical case.  Thus the student can investigate 
many varieties of disease states, propose and validate a host of possible treatment 
protocols and develop conceptual information about pathological dynamics, all in 
a single model of the physiological system of interest.  At present, however, such 
computerized models of physiological system dynamics are not generally available, 
but tutorial, inquiry-response and steady-state simulations are available and 

finding growing acceptance in the educational community. 

3  DEVELOPMENT OF MODELS.  The development of a model can be broken down into four 
phases' These are block diagram formulation, data collection, mathematical description 
of the data, and computer simulation.  The first step is the development of a block 
diagram based on the known physical principles of the system operation.  This 
diagram should display the important characteristics of the system.  This diagram 
may be too complex for initial simulation since it will probably include secondary 
functions which are not critical to overall performance.  In addition, the diagram 
may contain physiological variables whose quantitative relationships are either not 
available in the literature or are extremely difficult, if not impossible, to 
determine by physiological experimentation. Therefore a revised simplified block 
di'agram must be developed. This is generally a qualitative description of system 
behavior, and at this point quantitative relationships must be obtained. 

Physiological experiments must now be performed in order to derive dynamic 
input-output relationships for each block of the model, unless these data are 
already available from prior work.  Static characteristics may provide useful 
information for model development, but they cannot provide the information necessary 
for a complete description of system behavior.  The design of the experiments should 
consider the particular subject (e.g., human, dog, rat, etc.), observation times 
based on system response times, quality and availability of data analysis and 
processing techniques (e.g., chemical assays), effect of the procedures on altering 
system physiology (e.g., surgical and chemical intervention), and overall cost 
of the procedure.  Thus the block diagram model acts as a guide in designing the 

physiological experiments. 

In order to use the experimental data, a mathematical description of the 
data must be obtained.  These may be functions of time when considering system 
dynamics.  If, for example, the blocks of the model are assumed to represent linear 
subsystems or linearized approximations to non-linear operation, the final 
mathematical representation for each block will be a transfer function T(s)=     , 
where Y(s) and X(s) are the Laplace Transforms of the output and input, 
respectively, of the block.  The time-domain description of these functions may 

be obtained using curve-fitting techniques. 

This overall mathematical structure can be simulated on an analog or digital 
computer as an aid in exploiting the model.  Once a simulation is developed both 
normal and pathological cases can be investigated by changing either potentiometer 
settings (analog simulation) or data values (digital simulation).  Both analog and 
digital computers have advantages and disadvantages in their application.  The 
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analog computer is the most direct form of simulation since the basic operations 
such as integration and multiplication are carried out continuously in either real 
time or a directly scaled version of real time.  The disadvantages of this form of 
simulation are the necessity for amplitude and time scaling, and the complexity of 
the wiring or patching which occurs as the order of the system increases.  Digital 
computer implementation on either large scale machines (e.g., IBM 370) or small, 
scale minicomputers (e.g., DEC PDP-8) is another route for computer modeling. The 
simulation languages available for use on these machines (CSMP, MIDAS, ISL/8) provide 
a direct method for simulating an analog computer on the digital computer facility 
without the drawbacks of patching wires or time and amplitude scaling.  Disadvantages 
of large digital computer simulation are the general unavailability of on-line inter- 
active operation of the simulation languages and long turn-around times.  Using a 
minicomputer can avoid these difficulties, but limited computer availability may be 
a problem. However, as costs decrease and machine capability increases minicomputers 
are becoming more widely available in biomedical research and education facilities. 

CASE STUDIES. Three case studies will be presented to demonstrate the use of 
in designing experiments to study overall system function, sub- 
and parameter evaluation.  In particular, the glucose-insulin and 

model development 
system operation, 
testosterone endocrine systems, and the respiratory system will be discussed 

4A.GLUCOSE-INSULIN H0ME0STASIS. The development of the glucose-insulin model 
demonstrates the use of modeling in the design of experiments in a situation similar 
to that of Stark's approach to pupillary dynamics (3,4).. The glucose homeostatic 
system consists of a complex interaction between subsystems regulating hormonal 
release, glucose storage, and glucose utilization. Each such perfusion region can 
be viewed as a combination of controller and plant working together to control 
glucose and insulin levels.  The pancreas and liver may be considered primary 
controllers due to their function under both hypoglycemic and hyperglycemic 
conditions, while plant function is represented by peripheral tissue activity. 
A block diagram of the primary interacting mechanisms of glucose-insulin control 
is presented in Fig. 1. 

Although a quantitative description of total system function can be obtained 
from overall input-output measurements (e.g., system plasma responses), a clear 
understanding of individual subsystem function and interaction within the intact 
closed loop system can only be obtained if each block is itself described quanti- 
tively.  The modeling approach emphasizes this fundamental observation, and focuses 
one's attention on those experimental procedures which will yield the input-output 
data necessary for subsystem development in a dynamic sense.  Total system response 
data is widely available in the literature.  For example, fundamental glucose 
tolerance test results can be used to relate system glucose response to glucose 
input over the time base of the test.  However, the data needed to describe each 
physiological block in the figure is not generally available.  A study of the model 
led to the development of an experimental protocol which satisfied both modeling 
requirements and physiological constraints involved in monitoring system variables 
for glucose-insulin control.  Simultaneous input and output plasma concentrations 
for glucose and insulin were obtained for the liver, pancreas, and periphery over 
a fixed time sequence following glucose and insulin stimulus, respectively.  These 
data were used to derive mathematical functions describing input and output dynamics 
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for each block of the closed loop.  A set of normoglycemic glucose and insulin 
concentration curves in response to a glucose load are shown in Fig. 2.  The 
impulse-like glucose load drives the total system into a temporary hyperglycemic 
condition, which elicited a pancreatic insulin response.  These experimental 
results indicate an overreacting pancreatic insulin output, which is mediated by 
hepatic insulin clearance.  Glucose levels rose very rapidly throughout the system, 
but began to decrease as insulin levels increased.  Glucose concentrations returned 
to normal resting levels in a decaying oscillatory pattern, as would be expected of 
an underdamped higher-order system. 

The curves of Fig. 3 and 4 describe arterial and hepatic concentration of 
glucose and insulin following insulin loading.  The additional parameter of elapsed 
time after surgery is also included in these figures.  The early post-operative 
(2 hours after surgery) response is more sensitive and less stable than the la.te 
post-operative (between 2 and 14 days after surgery) response.  Arterial glucose 
levels decrease almost 70% from resting levels and return more slowly in the EPO 
than the LPO cases.  Similarly, hepatic settling time is much greater in the EPO 
case.  It is also initially highly oscillatory, perhaps indicating a very sensitive, 
lightly damped system.  Such differences between the EPO and LPO cases suggest a 
possible test for degree of recovery after surgery. 

Thus, the modeling procedures have been used as a guide in the design of an 
experimental protocol which was used to obtain the data necessary for determining 
true in-vivo relationships between subsystem variables.  In addition, these sub- 
system studies have indicated the possibility of developing additional diagnostic 
criteria based on dynamic glucose subsystem response. 

4B.TESTOSTERONE DYNAMICS.  As another example of modeling of physiologic systems, 
the testosterone system is considered (5,6).  Testosterone, the male sex hormone, 
gives the male his secondary sexual characteristics such as hair distribution, 
skin texture and voice quality.  Fig. 5 represents a complete block diagram for 
the testosterone control system.  Testosterone is secreted by the gonads and adrenal 
cortex and is produced peripherally through conversion of precursors.  Hypothalamus- 
pituitary activity provides the primary control of testosterone secretion through 
the action of releasing factors and the hormones FSH, LH and ACTH0.  In conjunction 
with this, testosterone removal mechanisms such as tissue storage and metabolism 
determine blood testosterone concentration. 

This block diagram contains several effects which can be considered "second 
order".  These include FSH control, testosterone secretion and the "short feedback" 
pathway in which the hypothalamus secretion of releasing factors is controlled by 
the blood FSH and LH concentrations.  As described earlier, this total qualitative 
model is considered too complex for use in the initial modeling effort.  A simplified 
block diagram, shown in Fig. 6 was developed in which second order effects were 
eliminated'. 

As in the glucose-insulin case, an experimental protocol was developed to 
obtain mathematical descriptions of each block of the figure.  As an example, to 
mathematically describe the testosterone disappearance block, an experiment was 

d.  FSH:  Follicle-stimulating Hormone 
LH:  Luteinizing Hormone 

ACTH:   Adrenocorticotrophic Hormone 
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designed in which radioactively labelled testosterone was rapidly injected 
intravenously into a rat and blood samples were obtained at specific times 
following injection.  These blood samples were analyzed for radioactivity and 
the resulting data is shown in Fig. 7.  Since the experimental procedure limits 
all input excitations to small perturbations about normal circulatory steady state 
levels, the model can be considered to be linear.  Thus, the curve of Fig. 7, which 
is the "step response" of the testosterone disappearance block, can be used to 
generate a transfer function for this subsystem.  The analog simulation of this 
transfer function is shown in Fig. 8.  Similar procedures lead to transfer 
functions and simulations for the other blocks of the model. 

Once a working simulation is developed, experiments are performed on the 
model to validate its performance characteristics and to improve knowledge of 
system behavior.  This additional information can be used to create a more refined 
model.  If little quantitative information is available, experiments on the model 
may suggest physiological experiments to be performed to obtain such information. 
The open loop response of each block of the testosterone model compared favorably 
with experimental results.  Closed loop tests were then performed on the model-. 
As an example, consider exciting the model with a step of voltage at the input 
of the testosterone disappearance block.  This corresponds physiologically to 
a rapid intravenous injection of testosterone at times t=0.  Responses are observed 
at the outputs of the LH disappearance and testosterone disappearance blocks, 
corresponding physiologically to the blood LH and testosterone concentrations, 
respectively.  The results are shorn in Fig. 9, which displays the deviations'from 
baseline of these curves.  As can be seen, the blood testosterone level begins at 
the injected level and returns to baseline with some oscillation within 24 hours 
after injection.  The blood LH concentration begins below baseline in order to 
compensate for the increased testosterone level.  The LH concentration then re- 
turns to baseline, again with a slight oscillation, within 24 hours after 
injection. 

These results are as expected using a qualitative knowledge of system behavior, 
but there are no quantitative physiological data available with which to check 
the results.  It is therefore necessary to perform physiological experiments 
to generate such quantitative data. 

4C-  RESPIRATORY FUNCTION.  A digital computer simulation of respiratory function 
has been developed, based on the block diagram representation of Fig. 10 (7,8,9). 
This diagram, unlike that of the original Grodin's model, includes all that is 
known about respiratory function and control, at least in a qualitative sense. 
Once the overall system is developed, each subsystem must be described individually, 
and the appropriate interaction must be included so that the combined subsystems 
response to a simulated physiological input such as intrapleural pressure would 
closely resemble those of the living system.  Just as in, the glucose-insulin study, 
the overall complex model was initially developed qualitatively, and then each sub- 
system was studied individually and described mathematically. Unlike the glucose 
case, an experimental protocol was not necessary, since each block was described 
from the basic physics of the system function, and the specific parameter values were 
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•i^i. -in the literature.  Of particular interest is the interconnection 
ajready available in the literature     t>       „^aninQ.     alveolar mixing of respiratory 

A simplified version of the mechanics section is shown in Fig. 11.  This model 
includes^ftrachea-hronchi resistive pathway and the storage c^^*^^. 

lung.  Also shown in the figure is the Pro?r™. i"S%e
U^uiatloS language on a 

system dynamics.  The program was written in he I V   imul -    g^g^    _ 

DEC PDP-8E minicomputer.  Typical results of thxs sim^a£°n developed.  It includes 
A more detailed model of respiratory mechanics has also been devel P  Q        ■ 

trachea resistance „on-linear b^nc^ d^3 Sbl^ai^a °(bronchial) tissue 
lung compliances  In addition iJ £«       overall-system function has been 
mertance.  The effect 01 airway      ertance parameter is not easily measured or 
questioned in previous studies. The «e^ance par computer 

changed in ^^^..^^^^^^^^l^^^  the results are shown 
simulation.  This *gj™^ air floW into the lung, with inertance values 
in Fig. 13.  This figure rep indicate that inertance variation has no 

a small effect on maximum and minimum levels of total respiratory llow.^ in 

IZ. H  been used as a subject of a» ~P~" ^""Tesufts ndelusions 

the model must be determined prior to such experimentation. 

i- ,,„~/i +« illustrate an application of modeling The diffusion model can also be used to illustrate an »ppn       „or,OMl 

capillary bed  unlike previous models of pulmonary gas diffusion, boweverthrs 
IZTZ^s  tbe o^e»-bemofoM„ interaction witbin tbe Pu monary  o d s 

^,^„0^0^^^^ 

aiffusir/::-itrp=r^ r^. r^lErHsw 

cl^ical LS.  This is yet another application of physiological modeling. 
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A DESIGN FOR THE DETECTION OF SYNERGY IN DRUG MIXTURES 

P. V. Piserchia 
B. V. Shah 

Research Triangle Institute 
Post Office Box 12194 

Research Triangle Park, North Carolina 

ABSTRACT.  In Biometrics [September, 1969], P. S. Hewlett gives 
a definition of synergy based on the curvature of isobars of drug 
mixtures. Specifically, if X(G) and Y(6) represent doses for two drugs 
A and B which correspond to an ED(6) response level (i.e., a proportion 
6 of all individuals tested will show the specified response) and if 
(XX(6), (1-X)Y(0)) represents a dose of a mixture consisting of a pro- 
portion X of X(6) and (1-X) of Y(6), then synergy is absent or present 
according to whether the proportion P(X) of individuals responding to 
the dose (XX(6), (1-X)Y(8)) equals or exceeds 6 for various values of 
X; that is, 

P(X) > 6 for some X implies synergism. 

An immediate consequence of this definition which we prove is: 

Suppose X_ and Y„ are two doses (not necessarily equivalent) 

of A and B.  Consider the straight line connecting X~ and YQ 

and written as X = XXQ, Y = (1-X) YQ, 0 < X < 1.  Then, if 

there exists a X„ such that 

P(XQ) = P(XQX0, (1-X0) YQ) > max{P(X0,0), P(0,YQ)} 

then there exists a nonlinear isobar and, hence, synergy is 
shown to occur. 

The import of the above derives from the fact that a test for 
synergy in drugs may be performed with as few as three test groups 
(those receiving Xn alone, those receiving Y. alone and those receiving 

(X_X , (1-XQ) YQ)) and, perhaps more important, the doses XQ and YQ 

need not be equivalent. 

1.  INTRODUCTION AND DEFINITION OF SYNERGY.  In this paper, we 
shall consider the effects of two drugs, combined in various mixtures, 
on the responses of some biological system or organism.  The principal 
question of interest is whether the phenomenon of synergism occurs. 
Following Bushby [1969], we say synergy between two drugs occurs when, 
acting together, they evoke the same response as when they act sing- 
ly, but at lower concentrations, or their effects interact in a fashion 
which is to the advantage of the organism by producing an otherwise un- 
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attainable rise in biological activity. 

Each of the above concepts is related to the nature of some me- 
chanism of joint drug action.  A substantial amount of effort has been 
devoted to the construction of mathematical and statistical models for 
joint drug action (see Plackett and Hewlett [1967] and Ashford and Smith 
[1965] for a suitable list of references).  However, certain aspects 
of this research appear to be controversial and no comprehensive and 
overall acceptable model exists.  One reason for this is due to the 
complex manner in which the effects of drug mixtures are manifested. 
To use the terminology of Hewlett and Plackett [1959] and Plackett and 
Hewlett [1967], the joint action of two drugs may be similar or dis- 
similar according to whether the primary sites of action for the two 
drugs are the same or different.  Alternatively, the joint action may 
be non-interactive or interactive if one drug has either no influence 
or some influence on the biological activity of the other. 

These distinctions have given rise to four situations as described 
in the following table: 

Similar Dissimilar 
Non-Interactive 

Interactive 

Simple Similar     Independent 

Complex Similar    Dependent 

Plackett and Hewlett [1967] further indicate that one criticism of 
the above classification is that the "action of two drugs, whether in- 
teractive or not, may in some sense be partially similar; similar and 
dissimilar actions should be regarded as at opposite ends of continuum 
of biological possibilities." Within this context, the concept of syn- 
ergism is primarily related to whether the effects of drug mixtures is 
non-interactive or interactive regardless of its position along the con- 
tinuum from similar to dissimilar.  However, part of the controversy 
associated with this topic pertains to the equating of no synergism to 
only the simple similar situation.  Hence, although there do exist a 
number of methods for fitting joint action models, an alternative 
approach to the concept of synergy which is widely acceptable to most 
research workers is required. 

As a result, Hewlett [1969] has discussed the measurement of the 
potencies of drug mixtures in terms of isobars, a procedure used in 
pharmacology.  To construct an isobar for two drugs, the doses of the 
drugs are measured respectively on actual physical scales (e.g., mg/cc) 
along the two axes and hypothetical points representing the dose pairs 
producing a fixed biological response are plotted (e.g., 50% of the in- 
dividuals receiving such a drug mixture dose evoke some specified quantal 
response).  Of course, in an actual situation these points would have 
to be determined experimentally; but, to elucidate the concept we shall 
presume that the desired set of points is already known. An example 
is shown in the figure below where the fixed points on the two axes 
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correspond to the doses for the two drugs separately which lead to a 
50% response rate among the tested individuals. 

ED(50) 

Drug B 

ED (50) 

Drug A 

Figure I.   Hypothesized isobar for two synergistic drugs. 

The curve in the Figure 1 is called an isobar.  If it is a straight 
line, then one says that the two drugs show "additive action." On the 
other hand, if it falls below the straight line connecting the two 
fixed points, then one says that synergism (or potentiation) occurs. 
This definition tends to bypass the question of similarity or dissimilarity 
of the joint drug action but yet is consistent with lower concentrations 
evoking the same response which Bushby [1969] uses in describing synergy. 

Hence, throughout the remainder of this paper, synergy will be viewed 
as curvative of isobars, giving rise to the following formal definition 
of synergy. 

Let P(X,Y) denote the proportion of individuals responding to a 
mixture of drugs A and B, where X = X units of A and Y = Y units of B. 

Assume that P(X,Y) obeys the following: 
(a) 0 < P(X,Y) < 1 for X > 0, Y > 0, 
(b) P(X,0) and P(0,Y) are continuous and monotonically 

nondecreasing functions of X and Y, respectively. 

If for a specific 0 there exists an X or Y such that P(X,0) = 9 
or P(0,Y) = 0, denote X as X(0) and Y as Y(0). 

Now, suppose there exists a combination of A and B denoted as 
(X*,Y*) with P(X*,Y*) = 0* (say), then the combination (X*,Y*) is 
said to be synergistic if one of the following conditions holds: 
Condition 1:  If neither X(0*) nor Y(0*) exist then (X*,Y*) is syn- 
ergistic if 0* > P(X,0) for all X and 0* > P(0,Y) for all Y. 
Condition 2:  If either X(0*) or Y(0*), but not both, exist then (X*,Y*) 
is synergistic if X* < X(0*) and 0* > P(0,Y) for all Y, or, Y* < Y(0*) and 
6* > P(X,0) for all X. 
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Condition 3: If X(e*) and Y(6*) both exist then (X*,Y*) is synergistic 

if 
X* + -Ä < 1. x(e*)  Y(e*) 

Briefly, condition (1) maintains that (X*,Y*) is synergistic if 
an otherwise unattainable rise in biological activity is achieved 
[Bushby, 1969]. Conditions (2), (3) are, formally, Hewlett s [1969] 
conditions for synergy. 

2.  IMPLICATIONS OF THE DEFINITION. An immediate consequence of 
the above definition is the following theorem and proof. 

Theorem:  Suppose XQ and YQ are two doses (not necessarily equiva- 

lent) of drugs A and B. Consider the straight line joining (XQ,0) and 

(0,Y0) and written as X = XXQ, Y - (1-X)Y0, 0 < X < 1. Then, if there 

exists a XQ such that: 

60 = P(A0X0, (1-A0)Y0) > max{P(X0,0), P(0,YQ)}, 

then (XX , (1-X0)YQ) is a synergistic combination of A and B. 

Proof * 
Case lT~Suppose neither X(eQ) nor Y(60) exist.  Then, by the continuity 

assumption, 6Q  > P(X,0) for all X, and, 6Q > P(0,Y) for all Y. 

Hence, (XQXQ, (1-X0)YQ) is synergistic by Condition 1. 

Case 2:  Without loss of generality assume X(6Q) exists and Y(6Q) does 

not.  Then again, by the continuity assumption, 

6  > P(0,Y) for all Y. 

Also, P(X(90), 0) = eQ > P(X0,0), by assumption, and, through mono- 

tinicity, X(eQ) > XQ. 

Therefore, X(eQ) > XQ > XQX0 and (Xfa,   d'VV ±S s^e^±stic h? 
Condition 2. .   N    ,  n% 
Case 3:  If X(eQ) and Y(0Q) both exist then, 6Q = P(X(eQ), 0) > P(XQ,0) 

and, eQ = P(0,Y(60)) > P(0,YQ). 

Hence, by the monotinicity assumption we have: 

X(0O) > X0 and Y(0O) > YQ. 

Therefore, 

XoX(0o) > X0X0 and (1-X0)Y(60) > (I-X^YQ, 
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and, 

X« > 

Aoxo (1-A0)Y0 

o > xce^) and 1_Ao " Y(e0) • 

Therefore, 

V^o , (1-VYo ; . 
x(e0) 

+ Y(e0)  
x> 

and (XQXQ, (1-X0)YQ) is synergistic by Condition 3. 

Graphically, the above theorem is represented in Figures 2 and 3, 

(X0,0) ED (0O) 

Figure 2. Isobar of a synergistic response. P (X,Y). 

*>X 

Figure 3. Synergistic response as a function of X, (X0,Y0) fixed. 
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Notice the above does not require X- and Yfl to be equivalent doses; 

however, it does require that max P(A) be greater than both end points. 
A 

It is not sufficient to show P(A) > AP(1) + (1-A) P(0). An example should 
suffice. 

Consider the response defined by 

P(X,Y) = log  (X+Y+l)  for X + Y < e - 1, 

= 1 for X + Y > e - 1, 

then, the isobars of P(X,Y) are the lines X + Y = const.  Clearly, 
straight line isobars and by definition an additive mixture. However, 
consider the response along any line of the form X = AXfi, Y = (1-A) Y„ 

where X_ > Y_. We have, 

P(A) = P(AX0, (1-A) YQ) = log(AX0 + (1-A) YQ + 1) 

= log(A(X0-Y0) + YQ + 1). 

Certainly, P(A) > AP(1) + (1-A) P(0) for every'0 < A < 1, but yet, 
by definition, the mixtures are additive. 

Figure 4 gives the geometry of the situation. 

3.  OPTIMAL MIXING. Associated with but not equivalent to synergy 
is the concept of the optimal mixing of two drugs. 

P(0) 

P(X) = loge(X(X0-Y0)+Y0+l) 

XP(l) + (l-X)P(0) 

>-X 

Figure 4. A non-linear , additive drug mixture. 
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We say two drugs have an optimal mixing rate if there is a ridge 
in the response, P(X,Y), in a straight ling direction. If the projection 
of the ridge onto the (X,Y) plane is a line Y = pX then we say X and Y 
have an optimal mixing rate, p = Y/X. 

The concept of optimal mixing is useful in establishing synergy 
Suppose an optimal mixing rate exists Then, if XQ and YQ are any two 

does of X and Y, we have max P(X) = max P(XX , (1-A) Y ) occurs at the 
X        A 

intersection of the two lines: 

(1) X = XXQ, Y - (1-X) YQ, 

(2) Y = pX. 

Solving for X, we obtain 

X^Y0/(pX0+Y0), 

or equivalently, 

X = X0Y0/(PX0 + Y0), 

Y=pX0Y0/(pX0+Y0). 

It is to be noticed that optimal mixing is defined in terms of the 
parameter p and not in terms of X. We mention this so as to avoid con- 
fusion in picking combinations of doses which are not on the line of 
optimal mixing.  For instance, suppose optimal mixing occurs in a 1:1 
ratio.  Then, p = 1 and the line of optimal mixing is Y = pX = X. 
Now, suppose we choose doses XQ, YQ where XQ > YQ.  Then in Figure 5, 
we have 

(0,Y0) 

(XOJ0) 

Figure 5.   Representation of a three point design. 
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The maximum of P(X,Y) along X = XXQ, Y = (1-X) YQ occurs at the 

intersection of X = XXQ, Y = (1-X) YQ and Y = X.  Itjtos_notoccur 

when X = 1/2.  Keeping this in mind, selection of combination doses 
becomes a more rational procedure. 

4.  DESIGN AND ANALYSIS.  Having defined synergy, we now proceed 
to give certain methods useful in showing synergism if it exists. 

The simplest design is the three point design.  For a three point 
design, one chooses doses XQ of A and YQ of B and a combination 

(XX , (1-X) YQ) of A and B.  Synergism is then said to exist if one can 

show 

P(X) = P(XX0, (1-X) Y0) > max{P(X0,0), (O.YQ)} 

We propose to do this by testing: 

HQ:  P(X) < max(P(X0,0), P(0,YQ)) 

against the alternative: 

H^  P(X) > max(P(X0,0), P(0,YQ)). 

The test statistics used will be the simple large sample normal 
test for differences between two binomial proportions. However, the 
critical region used will be of the form: 

P(X) - P(XQ,0) 
Pr {   = > Zl-a ' X 

^c» Q(X) 

NX 

P(X)  - 

p(x0 ,0)  Q(X0 ,0) 
+ 

- P(0,Y 

Nx 

0> 

^a: >  Q(X) P(0, 
+   

Y0)   Q(0, 

NY 

Yo> 
Pr (   , *  Zl-a J = a2' 

where P(X ,0), P(0,Y ) and P(X) are the observed proportions of indiv- 

iduals responding at doses XQ and YQ and combination (XXQ, (1-X) YQ), 

respectively, with Q(XQ,0), Q(0,YQ) and Q(X) being the respective pro- 

portions not responding.  Letting a = .05 we obtain Z±_a  = ZJQ  = .760. 

Letting a2 = .01, we have Z±_a  - Z QQ  = 1.285. 
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Notice that in the above, no assumption is made about the equivalence 
of XQ and Y_. This is not assumed because it is not necessary to choose 

equivalent doses to establish synergy. Also, no assumption is made about 
X. Again this is done because no assumption concerning X (other than 
0 ^ X < 1) is necessary. However, intuitively, the efficiency of the 
test procedure should be greatest when P(X) is maximum. Therefore X should 
be chosen such that the combination lies on the intersection of the line 
connecting XQ and Y. and the line of optimal mixing as given in section 

3 of this paper. 

The Tables I-IV present minimum sample sizes needed to detect sy- 
nergy for various values of P = P(X,0) = P(0,Y) = Pv and P(X) = P. > Pv. ■A.    . i AX 

The four tables give required sample sizes for significance levels .05 
and .01 and power .80 and .90. 

If we define Z,  and Z,  as the (l-a)-th and (1-3)-th percentage 

points of the normal (0,1) distribution respectively and if we let 

0X = /Px(l-Px) and ax  = /P (1-P ) then the formula for determining N, 

the total sample size, is given by: 

N- (^ax + aA)
2 (Z^ + Z^/^-P/, 

2 2 where a is the significance level of the test and (1-3) is the power 
of the test. 

by: 

and 

To determine Ny, N and N. for a given N allocation is carried out 

Nx = Nax/(/2 ax + aA), 

NY = Nx = | (N - NA). 

Integer values for N, Nx, Ny and N^ were determined by rounding off 

the values determined by the formulae so that Ny + 1L. + N. = N. 

5.  SUMMARY. Beginning with an intuitively appealing definition of 
synergy given by Hewlett [1969], we have attempted in this paper some 
exploration of the implications of this definition, tried to dispel cer- 
tain naive notions concerning the analytic characterization of synergy 
and concerning the optimal mixing of drugs. Too, we have suggested a 
testing procedure to determine the existence of synergy and have given 
sample sizes required to detect it. 

The techniques discussed in this paper are illustrated in the follow- 
ing example. 
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Suppose we wish to detect synergy in a mixture of drugs A and B. 
Further suppose we know 1 unit of A is approximately equivalent to 3 
units of B and that A and B have an optimal mixing rate of 1 part A to 
2 parts B. Now, denoting A as X and B as Y we have XQ = 1.0, YQ = 3.0 

and Y = pX = 2X. To derive the best combination of A and B we find 

X = XQY0/(pX0 + YQ) - .60 units of A, 

and 

Y = PX0Y0/(pX0 + YQ) » 1.20 units of B. 

Now, suppose X- = 1 and YQ = 3 are approximately ED(.50)'s of A 

and B and it is suspected that the combination (.60, 1.20) gives an 
2 

expected cure rate of .70. Then, for an a = .05 level test with power 
.80 we find N = 144 when Px = PY = .50 and Px = .70. We find Nx, Ny 

and N by the following: 
A 

NA = Nax/(/2ax + aA) 

= (144) (/(17)(.3))/(/2 x /(.5)(.5) + /(.7)(.3)) 

= 56.62. 

NY = Nx = |(N - Nx) - |(144 - 56.62) 

= 43.68. 

Hence, we take 56 experimental units for the combination (.60, 1.20) 
and 44 each for the individual applications of A (1 unit) and B (3 units). 
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Minimum Sample Size for Detecting Synergy 

Table I 

Significance Level .05    Power .80 

P =P   >v 
X Y X. 

.4 .5 .6 .7 .8 .9 

.3 544 139 62 34 20 12 

.4 0 596 147 63 32 17 

.5 0 0 600 144 59 28 

.6 0 0 0 555 126 46 

.7 0 0 0 0 462 96 

.8 0 0 0 0 0 315 

Table II 

Significance Level .05    Power .90 

X Y^\^ 
.4 .5 .6 .7 .8 .9 

.3 751 192 84 45 26 15 

.4 0 823 204 86 44 23 

.5 0 0 830 198 81 37 

.6 0 0 0 768 174 66 

.7 0 0 0 0 637 132 

.8 0 0 0 0 0 435 
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Minimum Sample Size for Detecting Synergy 

Table III 

Significance Level .01    Power .80 

px=V\ 
.4 .5 .6 .7 .8 .9 

.3 857 219 97 51 30 18 

.4 0 940 232 99 51 28 

.5 0 0 948 227 91 43 

.6 0 0 0 877 199 74 

.7 0 0 0 0 727 149 

.8 0 0 0 0 0 496 

Table IV 

Significance Level .01    Power .90 

px=V\ 
.4 

.3 1113 

.4 0 

.5 0 

.6 0 

.7 0 

.8 0 

.5 .6 .8 .9 

284 126 68 39 23 

1223 301 129 66 35 

0 1232 293 119 57 

0 0 1139 258 95 

0 0 0 944 194 

0 0 0 0 645 
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SOME SEQUENTIAL DESIGNS FOR BINOMIAL CLINICAL TRIALS 

L. Arkles 
and 

R. Srinivasan 
Temple university, Philadelphia 

ABSTRACT. The problem of selecting the best out of several treat- 
ments with dichotomous responses is considered in the framework of the 
Bechhofer sequential selection model with emphasis on minimizing the 
number of patients assigned to the inferior treatments. Adaptive sampling 
rules are proposed for the situations where the response to the treatments 
is delayed or where several patients have to be scheduled at each stage. 
Protocols which employ the new sampling rules with various termination 
rules considered in the literature are shown to be superior or comparable 
to those which employ the familiar Vector-at-a-Time or Play-the-Winner 
sampling rule in terms of the average sample number and the inferior 
treatment number. 

1. INTRODUCTION AND DEFINITION OF SAMPLING RULES. Let II,, 1L*. ... ,n, _______—» 1" 2  -  ' k 
be k (k > 2) binomial populations with respective unknown probabilities of 
success P1,p2,...,pk where p2 > pt for i « 2,3,...,k. The problem of 

identifying the population with the largest probability of success, the 
'best' population, has been extensively studied in the literature. In 
this paper we are mainly concerned with the sequential selection model 
for this problem as formulated by Bechhofer (1958) and Bechhofer, Kiefer 
and Sobel (1968), and adopted by Sobel and Weiss (1970) to the problem of 
clinical trials where several treatments with dichotomous responses are 
being compared. 

The Bechhofer model assumes sequential sampling, and consists of a 
sampling rule which specifies the population to be sampled at any given 
stage and a termination rule which directs when to stop sampling and how to 
make the final choice of the best population. The selection is to be made 
subject to the P*,A* -admissibility requirement on the probability of 
correct selection (CS) that 

P(CS) > P* for P1-max{p2,p3,...,pk} > A* (1) 

where P* ( £ < P* < l) and A* (0 < A*< 1) are prespecified constants. 
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In the context of clinical trials the Bechhofer model provides 
admissible protocols which assign patients to the treatments sequentially 
in time, one or more at each stage, until the best treatment is identi- 
fied with a specified probability. A* can be interpreted as the medi- 
cally significant or detectible difference. For specified P* and A*, 
choice among the various possible admissible protocols is usually made 
on the basis of the (random) number N. of patients assigned to treatment 

i (i = l,2,...,k) and the total number N of patients needed to reach a 
decision. More specifically, Sobel and Weiss (1970, 1972) base their 
comparisons on the loss functions 

k      k 
E(N) = I  E(N ), I  E(N ) (2) 

i=l  X  i=2  X 

and the risk 

k 
E(L) = I    (p -p.)E(N.) 

i=2  ■  X     • 

the last two measures being given more importance for obvious ethical 
reasons. 

It is convenient at this point to specialize our discussion to the 
case when k = 2; a major portion of this paper as well as most of the past 
work in this area is confined to the comparison of two treatments. The 
admissibility condition (1) now reads 

P(CS) > P* for A = p1-p2 > A*3 (3) 

and the loss functions of interest, given in (2), become E(N), known as the 
Average Sample Number (ASN), and E(N2), the Inferior Treatment Number (ITN). 

Most of the protocols considered so far in the literature fall into 
two broad classes depending on the sampling rule employed. The older and 
more familiar sampling rule is the so-called Vector-at-a-Time (VT) rule 
which assigns patients to both of the two treatments at each stage, one to 
each treatment randomly, until a selection is made based on the termination 
rule. An essentially equivalent way of implementing the VT rule is to 
assign the first patient to one of the two treatments at random and then to 
alternate the treatments given to the subsequent patients as they arrive. 
It is readily seen that in any protocol which employs the VT rule, regard- 
less of the termination rule used, we have ECNj) = E(N2) = E(N)/2. 

Since one of the basic aims of a clinical trial is to reduce the ITN 
it was suggested by Zelen (1969) that sampling be done according to the so- 
called Play-the-Winner (PW) rule instead of the VT rule. The PW rule was 
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originally studied by Robbins (1956) as a data-dependent policy for the 
two-armed bandit problem. According to this rule the first patient to 
arrive is given one of the two treatments chosen at random. The ith 
patient (i = 2,3, ) is given treatment 1 (treatment 2) if the (i-l)th 
patient received treatment 1 (treatment 2) and it succeeded or if the 
(i-l)th patient received treatment 2 (treatment 1) and it resulted in a 
failure. Zelen investigated the performance of the PW sampling rule in 
the Anscombe-Colton model (Anscombe, 1963; Colton, 1963) for clinical 
trials and showed that in general it leads to a significant reduction in 
the number of patients who receive the inferior treatment. 

Subsequently Sobel and Weiss (1970) and several others (See Hoel, 
Sobel and Weiss, 1975 for an excellent review) have shown that the PW rule 
is superior to the VT rule in the Bechhofer model in terms of reducing 
both the ASN and ITN for fixed P* and A*. Most of the emphasis here has 
been on devising different termination rules and comparing the resulting 
protocols with the already existing ones. 

Despite its poor performance in terms of the ASN and the ITN, the VT 
sampling rule has some advantages in its implementation which are not 
shared by the PW rule. For example, in the PW rule, the allocation of any 
given patient to a treatment depends on the outcome of the preceding trial, 
and hence it is required that the response to the treatments be instanta- 
neous or that the response be available by the time a new patient arrives; 
the VT rule, on the other hand, is applicable in situations of delayed 
response, and allows for the treatment of several patients at each stage. 

One of the purposes of the present paper is to propose and study 
some sampling rules which are applicable in situations of delayed response. 
The simplest case here is when patients arrive twice as fast as the 
response to any one of the two treatments is made available. This is 
considered in Section 2. The Play-the-Clear-Winner (PCW) sampling rule 
introduced to handle this case is defined as follows: At the first stage, 
the first two patients to arrive receive treatments 1 and 2 respectively. 
At any given stage assignment of treatments is made either for two 
patients or for one patient depending on the outcome of the preceding 
stage. At the ith stage (i = 2,3,...) treatments 1 and 2 are assigned 
randomly to two patients if, at the (i-l)th stage, either (a) treatments 1 
and 2 were assigned to two patients and they both resulted in a success 
or a failure or (b) treatment 1 or 2 was assigned to one patient and it 
resulted in a failure. At the ith stage (i = 2,3,...) treatment 1 (2) 
is assigned to one patient if, at the (i-1)th stage, either (a) treatments 
1 and 2 were assigned to two patients and treatment 1 (2) resulted in a 
success and treatment 2 (1) resulted in a failure, or (b) treatment 1 (2) 
was assigned to one patient and it resulted in a success. 

It can be easily verified that the PCW sampling rule is equivalent to 
the following rule: the first two patients to arrive receive treatments 1 
and 2 randomly. The ith patient (i = 3,4,...) to arrive is given treatment 
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1 (2) if the (i-2)th patient either (a)received treatment 1 (2) and it 
resulted in a success or (b) received treatment 2 (1) and it resulted in 
a failure. This formulation implies that the PCW rule is equivalent to 
implementing two PW rules in parallel, one starting with treatment 1 and 
the other with treatment 2, a possible solution to the delayed response 
case suggested by Zelen (1969). This formulation also shows that the 
PCW rule is applicable in situations where the response to the treatments 
is instantaneous but two patients are to be scheduled to receive treat- 
ments at each stage. 

The performance of protocols which employ the PCW sampling rule and 
various termination rules considered in the literature in connection with 
the PW rule is summarized in Section 2. Comparisons with the corres- 
ponding protocols which use the PW and the VT sampling rules are also 
presented. It is shown that the PCW rule is in general superior to the 
other two rules in the sense that it requires comparable or smaller ASN 
and ITN to reach a decision in addition to its greater generality over 
the PW rule. Numerical results on the comparisons are presented only for 
P* = 0.95 and A* = 0.2. 

The formulation of the PCW rule as two PW rules in parallel allows 
us to extend it to situations where m patients are to be scheduled at 
each stage or patients arrive m times as fast as the response to any one 
of the two treatments is made available. This is accomplished by simply 
implementing m PW rules in parallel,[m/2] starting with one of the two 
treatments chosen at random and the remaining starting with the other 
treatment. This method of dealing with the delayed-response situations 
was again essentially suggested by Zelen (1969). Section 3 deals with 
this rule (denoted PWP for Play-the-Winner-in-Parallel) for m =3. In 
contrast to Section 2 only a very limited number of termination rules are 
considered here. Comparisons in terms of ASN and ITN indicate that the 
behavior of the PWP rule is similar to that of the PCW rule discussed m 
Section 2. 

In Section 4 we return to the problem of selecting the best out of 
k (k > 3) binomial populations. The generalization of the VT sampling rule 
to three or more populations is straightforward. All of the k populations 
are sampled at each stage. Equivalently, the populations are randomly 
ordered at the outset and are sampled, one at each stage according to this 
order, sampling returning to the first population at the end of a cycle. 
A generalization of the PW rule, called the Play-the-Winner-Cyclical (PWC) 
sampling rule, appropriate for the present case was studied by Sobel and 
Weiss (1972). According to the PWC rule, the k populations are randomly 
ordered at the outset. Sampling starts with the first population. At the 
ith stage (i = 2,3,...) the tth population (t = l,2,...,k) is sampled if, 
at~the (i-l)th stage, either (a) the tth population was sampled and it 
resulted in a~success or (b) the (t-1)th population (0th population being 
identified with the kth) was sampled and it resulted in a failure. Admissi- 
ble protocols involving the VT and the PWC sampling rules and the so-called 
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inverse stopping rule were compared by Sobel and Weiss (1972) using the 
loss functions defined earlier in this section. They showed that the PWC 
rule was uniformly better than the VT rule for this stopping rule. Except 
for their work nothing is at present known about the behavior of the VT 
or the PWC sampling rule for other termination rules. 

A natural generalization of the PCW rule to k populations is as 
follows: Sample all k populations at the first stage. At the ith stage 
(i = 2,3,...) sample only those populations which were sampled at the 
(i-l)th stage and resulted in a success. If no such population exists at 
the ith stage, then sample all the k populations again and continue the 
process. We shall refer to this sampling rule also as the PCW rule, and 
note that it is also applicable in situations where patients arrive twice 
as fast as the response to the treatments becomes available. In Section 4 
we present some numerical results for the PCW rule for k = 3 with the 
inverse termination rule and some of its modifications applicable only to 
the VT and the PCW rules. It is shown that with inverse termination the 
PCW and the PWC rules behave more or less identically while the modified 
rules lead to improved protocols when employed with the VT or the PCW rules. 

Throughout this paper numerical comparisons of the protocols are given 
only for P* = 0.95, A* = 0.2 and a limited number of values of the para- 
meters P1,P2,...,pk« More extensive comparisons as well as the analytical 

results pertaining to the protocols will be presented elsewhere. 

2. THE PCW SAMPLING RULE FOR TWO BINOMIAL POPULATIONS.  In this 
section we consider several termination rules proposed in the literature in 
connection with the PW sampling rule. The values of ASN and ITN are pre- 
sented for admissible protocols (P* = 0.95, A* = 0.2) which employ these 
termination rules and the VT, PW and PCW sampling rules for A = (p,-p7)/2 
=0.2 and pQ = CP1+p2)/2 = 0(0.1)0.9. The sample sizes correspon- 

ding to other values of these parameters are available but are not given 
here since the comparisons presented here reflect the general performance 
of the protocols quite adequately. Protocols are identified throughout by 
the sampling rule and the termination rule employed. For example, PCW3 
refers to the protocol which uses the PCW sampling rule and Termination 
Rule 3. Symbols such as P(CS|PCW3), E(NJVT4) and E(N|PW1) have their 
obvious meanings. For i = 1,2, the cumulative number of successes and 
failures on IL, at any given stage will be denoted by S. and F. respectively. 

Termination Rule 1 (Sobel and Weiss, 1970). Sampling stops as soon as 
lS2~S2I = r» wftere r is chosen so as to make the resulting protocol admissi- 

ble. The population with the larger number of successes is chosen as the 
better; in case S1 = S2, the better population is chosen at random. 

For given P* and A*, the minimum values or r which make the protocols 
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VT1 and PW1 admissible have been determined by Sobel and Weiss (1970). 
This can be done for PCW1 using a similar method. For P* = 0.95 and 
A* = 0.2, these are given by r = 4 for VT1, r = 10 for PW1 and r = 8 for 
PCW1. Exact expressions for the ASN and ITN of VT1 and PW1 are also 
given by Sobel and Weiss (1970). Similar expressions can be obtained for 
PCW1. 

Termination Rule 2 (Sobel and Weiss, 1971). Sampling stops as soon 
as either S. or S2 (or both) equals r where r is preassigned to make the 

protocols admissible. The population which achieves r successes first is 
declared the better. If both achieve r successes simultaneously, then the 
better population is selected at random. 

It can be shown that, for all pr p2, P(CS|VT2) = P(CS|PW2) = 

P(CS|PCW2). Hence the same value of r would make all these three protocols 
admissible; r equals 20 for P* = 0.95 and A* = 0.2. Sobel and Weiss (1971) 
have shown that E(N|PW2) < E(N|VT2) and E(N2|PW2) < E(N2|VT2) uniformly in 

p. and p2. These inequalities can be shown to hold with PW2 replaced by 

PCW2. 

The following termination rule is a modification of Termination Rule 2, 
and is applicable to the PCW and the VT sampling rules but not to the PW 
rule. It is defined in terms of the cumulative number of »clear successes', 

S? on II. (i = 1,2), defined by S? = Si - (the number of times 1^ and n2 

were sampled together and they both succeeded). 

c   c 
Termination Rule 3. Sampling stops as soon as either S1 or S2 (or 

both) equal r. The population with the larger total number of successes is 
chosen as the better. If Sx = S2, then the better population is chosen at 
random. 

For P* = 0.95 and A* = 0.2, the r value which makes the protocol 
admissible equals 12 for PCW3 and 9 for VT3. 

The next termination rule, originally studied by Hoel (1972) for the 
PW sampling rule, is based on the statistics Rj = S1  + F2 and 

R
2 

= S2 + Fl" 

Termination Rule 4. Sampling stops as soon as either R1 or R2 reaches 

a preassigned value r, and the population IL is selected as the better if 

R. reaches r first for i = 1,2. With the PCW and the VT sampling rules, 

r +.1 may be reached before stopping. If both R±  and R2 reach simultaneous- 

ly, as is possible with the PCW and the VT rules, the better population is 
selected at random. 
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It can be shown that P(CS|PCW4) = P(CS|PW4). Hence, as in the case of 
Termination Rule 2, the same value of r would make both of these protocols 
admissible. For P* = 0.95 and A* = 0.2, the minimum value of r equals 
33 for PCW4 and PW4, and 29 for VT4. 

Termination Rule 5 (Fushimi, 1973). Sampling stops as soon as either 
|S,-SJ = r or F. + F2 = s. The population with the larger number of 
successes is chosen as the better, and in case S.. = S2, the better popula- 
tion is chosen at random. 

For any given P* and A* there are in general several values of the 
pair (r,s) which would make the protocols VT5, PW5 and PCW5 admissible. 
Fushimi (1973) shows how the 'best' pair can be obtained for PW5 using the 
property that, as s tends to <*>, the present termination rule reduces to 
Termination Rule 1 and, as r tends to », it reduces to Termination Rule 2. 
The 'best' choice of (r,s) corresponding to PCW5 can also be determined 
along the same lines. 

Termination Rule 6 (Nordbrock, 1975). Sampling stops as soon as either 
A    A. s A        S. 

Is, - sJ = r or |p1 - pj >   where p. =  ; the population 
" cVV (si+F.) 

with the larger number of successes is chosen as the better, and in case 
S. = S_, the better population is chosen at random. 

The remarks made in connection with Termination Rule 5 regarding the 
choice of (r,s) apply here as well.  (r,s) equals (8,4.2) for PCW6, (11,4.2) 
for PW6 and (4,3.8) for VT6 when P* = 0.95 and A* = 0.2. 

Table 1 summarizes our results on the ASN and the ITN of the protocols 
introduced above for P* = 0.95, A* = A = 0.2 and pQ = 0.1(0.1)0.9. As 

mentioned earlier, the overall behavior of the protocols is adequately 
reflected by the results of this table. It can be seen that, except for a 
few exceptions (for example, for values of pQ very close to 1), the PCW rule 

requires comparable or smaller sample sizes when compared to the VT or the 
PW rule. The increased generality of the VT sampling rule over the PCW rule, 
and that of the latter over the PW rule should also be kept in mind when 
comparing these protocols. 

3. THE PWP SAMPLING RULE FOR TWO BINOMIAL POPULATIONS.  The PWP 
sampling rule is considered here for Termination Rules 2 and 5 of the previ- 
ous section. For P* = 0.95 and A* = 0.2, r = 20 for PWP2, and (r,s) = (8,41) 
for PWP5. Table 2 gives the sample sizes for these two protocols corres- 
ponding to the same values of the parameters as in Table 1. It can be seen 
that the behavior of the PWP sampling rule is quite similar to that of the 
PCW rule. 
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4. THE PCW SAMPLING RULE FOR THREE BINOMIAL POPULATIONS.  The PCW 
sampling rule for three binomial populations is considered here with 
Termination Rule 2 defined in Section 2, and two of its modifications 
applicable only to the PCW and the VT sampling rules. The protocol 
PWC2 has been studied by Sobel and Weiss (1972). Closed form expressions 
for P(CS|PCW2) and E(Ni|PCW2), i = 1,2,3, can be obtained using the method 

of Sobel and Weiss (1972). Numerical results on the probabilities of 
correct selection for various values of the parameters indicate that, as 
in the case of two populations, P(CS|PCW2) = P(CS|PWC2) even though we 
have not been able to establish this. For P* = 0.95 and A* = 0.2, the 
common value of r which makes the protocols PCW2 and PWC2 admissible is 28. 

The modifications of Termination Rule 2 which we consider are quite 
similar to Termination Rule of Section 2 in that they are obtained by 
defining 'clear successes' appropriately. In the first modification, 
Termination Rule 3', we define T, = (number of times all three populations 

were sampled and either n and II or II and n_ succeeded and the other 

failed) + (number of times II, and n2 or 1^ and 11^ were sampled and 1^ 

succeeded and the other failed) + 2(number of times all three populations 
were sampled and II alone succeeded), and T and T symmetrically. Termi- 

nation Rule 3' is then obtained from Termination Rule 2 by simply replacing 
S. by T. for i = 1,2,3.. Similarly, Termination Rule 3" is obtained from 

Termination Rule 2 by replacing S^^ by U±  for i = 1,2,3, where Uj = (number 

of times all three populations were sampled and either II and II or II 

and H„ succeeded and the -other failed) + (number of times 1^ and n2 or U^ 

and n, were sampled and they both succeeded) + 2[(number of times all 

three populations were sampled and II alone succeeded) + (number of times 

II. and n2 or IL and H, were sampled and IL alone succeeded) + (number of 

times II alone was sampled and it succeeded)], and U and U are analagous- 

ly defined. The r values which make the Termination Rules 3' and 3" 
admissible for P* = 0.95 and A* = 0.2 are respectively 24 and 37. 

Table 3 summarizes the expected sample sizes for the protocols of this 
section for selected values of the parameters. As in the case of Tables 
1 and 2, more extensive comparisons are available but are not presented. 
It is clear from Table 3 that PCW3' is to be preferred over the others. 
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TABLE 1. EXPECTED SAMPLE SIZES FOR THE PROTOCOLS OF SECTION 2 

FOR P* = 0.95 AND A = A* = 0.2. 

*o E(N2) E(N) 

PCW1 PW1 VT1 -PCW1 PW1 VT1 

0.1 33.0 40.5 20.0 73.0 91.0 40.0 

0.2 29.5 35.7 19.8 66.0 81.5 39.6 

0.3 25.8 30.9 19.2 58.7 71.9 38.5 

0.4 22.0 26.0 18.7 50.8 61.9 . 37.4 

0.5 18.0 20.9 18.2 42.7 51.5 37.0 

0.6 14.3 15.8 18.7 35.0 41.2 37.4 

0.7 10.9 11.0 19.2 28.0 31.2 38.5 

0.8 7.8 6.5 19.8 21.9 22.0 39.6 

0.9 5.0 2.2 20.0 17.0 13.4 .40.0 

PCW2 PW2 VT2 PCW2 PW2 VT2 

0.1 81.0 80.5 100.0 181.0 180.5 200.0 

0.2 52.9 52.4 66.7 119.5 119.1 133.4 

0.3 38.6 38.1 50.0 88.5 88.0 100.0 

0.4 29.6 29.1 39.9 69.4 69.0 79.8 

0.5 23.3 22.8 33.2 56.4 55.9 66.4 

0.6 18.4 17.8 28.4 46.6 46.0 56.8 

0.7 14.1 13.4 24.9 38.8 38.1 49.8 

0.8 9.9 8.8 22.2 31.8 30.7 44.4 

0.9 5.0 2.5 20.0 24.9 22.4 40.0 

PCW3 VT3 PCW3 VT3 

0.1 49.0 45.0 109.0 90.0 

0.2 34.7 33.0 77.9 66.6 

0.3 27.2 28.0 61.8 56.0 

0.4 22.2 25.4 51.5 50.8 

0.5 18.5 24.7 44.1 49.4 

0.6 15.4 25.4 38.2 50.8 

0.7 12.5 28.0 32.9 56.0 

O.t j.3 33.0 27.6 66.6 

0.9 5.0 45.0 21.0 90.0 
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TABLE 1.   (Continued) 

po E(N2) E(N) 

PCW4 PW4 VT4 PCW4 PW4 VT4 

0.1 26.6 26.5 24.3 59.4 59.0 48.6 
0.2 25.9 25.8 24.3 58.6 58.3 48.6 
0.3 25.1 24.9 24.3 57.7 57.3 48.6 
0.4 24.0 23.8 24.2 56.5 56.2 48.4 
0.5 22.6 22.3 24.2 '55.0 54.7 48.4 
0.6 20.7 20.3 24.2 52.9 52.6 48.4 
0.7 17.9 17.3 .24.3 50.1 49.6 48.6 
0.8 13.3 12.4 24.3 45.5 44.8 48.6 
0.9 5.0 2.5 24.3 37.0 35.0 48t6 

PCW5 PW5 VT5 PCW5 PW5 VT5 
0.1 20.3 20.4 19.7 45.2 45.9 39.4 
0.2 20.5 22.0 19.9 46.2 50.1 39.8 
0.3 20.0 22.7 20.4 45.6 52.6 40.8 
0.4 18.8 22.2 21.2 ' 43.6 52.7 42.4 
0.5 16.8 20.3 22.2 39.9 49.8 44.4 
0.6 14.0 16.9 23.3 34.4 43.5 46.6 
0.7 10.8 12.2 24.4 28.0 34.1 48.8 
0.8 7.8 7.1 24.9 22.0 23.9 49.8 
0.9 5.0 2.3 25.0 17.0 14.2 50.0 

PCW6 PW6 VT6 PCW6 PW6 VT6 

0.1 13.4 13.5 14.1 29.1 29.8 28.2 
0.2 13.7 13.9 14.8 30.1 31.1 29.6 
0.3 14.2 14.6 14.4 31.9 33.3 28.9 
0.4 15.6 16.2 16.0 35.6 37.9 32.0 
0.5 15.7 17.8 17.5 37.1 43.2 35.0 
0.6 13.9 16.7 18.7 34.2 41.5 37.3 
0.7 10.8 12.0 19.3 27.9 33.7 38.6 
0.8 7.7 7.1 19.9 21.8 23.9 39.9 
0.9 4.9 2.4 19.9 16.9 14.5 39.8 
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TABLE 2. EXPECTED SAMPLE SIZES TOR THE PROTOCOLS OF SECTION 5 

FOR P* = 0.95 AND A = A* = 0.2 

T° E(N2|PWP2> E(N|PWP2) E(N2|PWP5) E(N|PWP5) 

p.i 81.1 166.4 20.2 45.3 
0.2 53.0 113.1 20.6 46.6 
0.3 38.7 85.7 20.2. 46.3 
0.4 29.8 68.5 19.1 44.5 
0.5 23.5 56.4 17.3 . 41.2 
0.6 18.7 47.2 14,7 36.2 
0.7 14.6 39.8 11.8. 30.3 
0.8 10.7 33.4 9.0 24.9 
0.9 6.9 27.6 6.7 20.5 

TABLE 3. EXPECTED SAMPLE SIZES FOR THE PROTOCOLS OF SECTION 4 

FOR P* = 0.95 AND A* = 0.2 

P1P2=P3 ECN^ E(N2)=E(N3) 

PWC2 PCW2 PCW31 PCW3" PWC2 PCW2 PCW3' PCW3' 

0.2 0 140.0 140.0 67.3 95.0 112.3 113.0 54.9 77.0 
0.3 0.1 93.3 93.3 51.6 67.4 • 73.0 73.6 41.2 53.5 
0.4 0.2 70.0 70.0 44.4 54.0 52.9 53.6 34.4 41.7 
0.5 0.3 55.9 55.9 40.7 45.6 40.4 41.1 30.3 33.8 
0.6 0.4 46.4 46.4 38.8 39.7 31.5 32.2 27.2 27.9 
0.7 0.5 39.6 39.7 37.9 35.1 24.4 25.2 24.4 . 22.8 
0.8 0.6 34.6 34.6 37.2 31.2 18.1 19.1 20.8 17.8 
0.9 0.7 30.8 30.8 35.4 27.4 11.3 12.9 14.9 12.2 
1.0 0.8 27.9 28.0 29.2 22.8 1.7 5.0 5.0 5.0 
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PREDICTIVISM AND SAMPLE REUSE 

Seymour Geisser 

School of Statistics 

University of Minnesota 

ABSTRACT. This paper emphasizes the paramount importance of prediction 
as opposed to estimation and reviews a variety of general structures for 
implementing the predictivistic outlook. It also stresses in particular the 
newly devised predictive sample reuse method as a highly flexible and versa- 
tile tool in low structure situations. An illustration is given to a simple 
survival situation. 

1. INTRODUCTION. The fundamental thesis of this paper is that the 
inferential emphasis of Statistics, theory and concomitant methodology, has 
been misplaced. By this is meant that the preponderance of statistical 
analyses deals with problems which involve inferential statements concerning 
parameters. The view proposed here is that this stress should be diverted 
to statements about observables. With regard to parameters we take the 
narrow view which relegates them at most to be components of a statistical 
model that are not capable of being observed or potentially observed. This 
is not necessarily to deny them their utility in many hypothetical frame- 
works but there has been a strong tendency to exaggerate their importance in 
statistical inference. Even such a compelling "parameter" as the speed of 
light is in some sense ostensibly capable of being measured (observed) though 
perhaps subject to error. In this sense it is at least a potentially 
observable entity. Other values which often are misdesignated as parameters 
are those defined as a function of a finite number of observables or poten- 
tial observables which typically occur in sample survey situations. For ex- 
ample we may be trying to "estimate" the total response of a specific finite 
population by observing some random portion of that population. The unobserved 
responses are presumably potentially observable (or the randomization is mean- 
ingless) and it is maintained that we are basically predicting them or some 
function of them. This is certainly within the realm of prediction though it 
is generally referred to as estimating a parameter of a finite population. 
Hence these two previously mentioned cases, measuring some physically mean- 
ingful constant and estimating functions of observables are within the realm 
of predictivism. It is our contention that in other cases the introduction 
of a convenient parametric statistical model seems to impel statisticians to 
reformulate an experimenter's often imprecisely framed question concerning 
the data into a parametric analysis even when the parameters are completely 
artificial constructs. We then proceed to foist upon the unwary client 
"precise" statements about these too often nonexistent entities. This ten- 
dency is reinforced because we have too long been subjected to solutions to 
hypothetical problems which invariably begin — "suppose we are interested 
in the estimation of a parametric function BIAH(0)." This stress on para- 
metric inference made fashionable by mathematical statisticians has been not 
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only a comfortable posture but also a secure buttress for the preservation 
of the high esteem enjoyed by applied statisticians because exposure by 
actual observation in parametric estimation is rendered virtually impossible. 
Of course those who opt for predictive inference i.e. predicting obser- 
vables or potential observables are at risk in that their predictions can be 
evaluated to a large extent by either further observation or by a sly client 
withholding a random portion of the data and privately assessing a statis- 
tician's prediction procedures and perhaps concurrently his reputation. 
Therefore much may be at stake for those who adopt the predictivistic or 
observabilistic or aparametric view. But its relevance is clear. 

It was the burden of a previous paper Geisser (l97l) to argue that 
most problems currently cast in terms of parametric estimation and testing 
could be more informatively reformulated in a predictivistic mode. A general 
catalogue of such problems was presented there and the Bayesian inferential 
approach stressed. In this paper we shall discuss the problem of prediction 
per se from a variety of structures ranging from high to low depending upon 
the amount of information infused into the model. In particular we will 
stress a new low structure approach termed predictive sample reuse. 

2. HIGH STRUCTURE. The high structure approach to statistical prediction 
involves the tight apparatus of a prior distribution for the parameters invol- 
ving known hyperparameters and a specified likelihood,  i.e. a joint sampling 
distribution of observables, past and future, as it were. Hence we need assume 

that (Xx V XN+I»"'»XN+M) or in a more compact notation (X  ; X^) 

has joint distribution F(x^; x^Je) where 0 is a set of unknown para- 

meters. Further, a prior distribution on 8, say G(9|T), is also assumed 
where the set of hyperparameters T is known. The posterior distribution of 

(N)   (N) 
0 is then based on the observed Xx  = xx  , 

G(9|xW,T)=^Wje)G(8|T) (2-1) 

F(xk ;
|T) 

where 

F(x(N)|T)=;F(x(N)|0)dG(0|T). (2*2) 

This then permits the calculation of the predictive distribution of X/^ 

given X^   and T, resulting in 

P(X(M)|X(
N)
,T) - J F(X(M)|X(

N
),9) d G(6|X(N),T)        (2.3) 

where 
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The denominator of the above being the marginal sampling distribution of 

the observed random variables X^  . In essence,  (2.3) represents the 
ultimate in statistical prediction and everything else is a summary of 
one kind or another of this distribution function. If point prediction 
is of interest then one might choose as a point predictor the predictive 
expectation of (2.3) . 

E(X(M>|X<
N

) = xw T) . :.."<2'.-5.) 

or the median or the mode of (2.3) or whatever ensues from a particular 
loss function. 

Often in this approach there is a necessary relaxation of the 
assumption that T is known. This is generally handled in one of two 
ways. First it is often the case that little loss in terms of inco- 
herence is engendered by assuming an improper prior for the hyperpara- 
meter T. Hence a new predictive distribution is obtained by 
calculating 

P(x(M)|x(
N>) -JP(x(M)|xW,f)'dG.(T),' ;   (2.6) 

A second approach, usually associated with empirical Baves procedures, is 

to "estimate"  T from the marginal distribution F(x  |T) given in 
(2.2) by maximum likelihood or the method of moments or any other conveni- 
ent procedure. This then results in an approximate predictive distribution 
P(x/M)lx  %!•) and a point predictor, say, E(x/My|x^ ',T). 

Historically there have also been two other high structure approaches. 
The first by Fisher (1956) was termed fiducial inference and the second 
Fräser  (I968) termed structural inference. These generally require for 
their implementation, a much more restrictive sampling distribution and an 
assumption of complete ignorance concerning 8 which in turn implies the 
absence of  T. Here one would calculate the fiducial or structural distri- 

bution cp(8|x  ) and then compute the predictive distribution of X/-,\ 

V»|x(N)) =/F(*(M)l*(N)>e) dcp (e|xW). , (2.7) 

This type approach is at most valid only under stringent assumptions. 
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Many statisticians have questioned its validity entirely. Recently Barnard 
(1975) nas developed a pivotal approach to parametric inference. His 
approach, as demonstrated by Hinkley (1975)» can easily be adapted to a 
predictivistic mode by finding predictive pivots. It appears also to be 
capable of incorporating certain types of prior information. 

3. INTERMEDIATE STRUCTURE. The classical (Neyman-Pearson) approach 

only assumes  (X*  ;X/„\) ~F(X*  ,X/ \|9),  i.e. a sampling distribution 

and enough structure on the distribution so that one can compute, independent 
of 6, 

[■ Pr [X(M)€A(X^)J -p. 

(N)   (N) 
This of course is not a probability statement for X   = x  , as in the 
Bayes approach. Here p represents the degree of confidence that 

X/M\ € A (x  ), p being a valid probability in the sense of the long-term 

frequency of repetitions from the joint set of random variables  (X  ;X/M\). 
In other words, p is the proportion of times in the long run that     * 

X/„\ € A (x  ) and is interpreted as the confidence one has in 

X/M\ 6 A (x  ) once X   = x    has been observed. This is usually 

referred to as a tolerance interval in the statistical literature. For 
example, if we are dealing with the problem of predicting the N + 1 obser- 
vation X„  n  from the first N observations, X.,...,X  and assume that 

{X.} i = 1,..., N + 1 are iid N(9,l) then one notes that for 

1 N 
X.T = N  .21 X. 

-1 
XN"XN+1 ~N(°' 1+N  )* (3#1) 

From    (3«l)    we obtain 

I"        XN+rXN        1 [_       r^l _        r—^ 
U^   1 zj— * bJ   = Pr LXN+aVl+N      <: XN+1 ^ XN+bvl+N XJ PrLa^   7 i— ^ bj   = Pr [_XM+avl+N      <: ^ ,  <: Xw+bvl+N   J       (3.2) 

n+N_i 

= « (b) - « (a) = p, 

where $ (y) is the standard normal distribution function. 

While  (3.2) is a probability statement, once we observe X„ = x,. and 

calculate the limits, this now becomes a confidence statement and has only 
the restricted interpretation discussed before. 

A point predictor is usually obtained by inserting in E(X/.A|X^ =X  , 0V) 
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an estimate 6 (x^) for 9 - the expectation being taken over the condi- 
tional sampling distribution. 

Another approach, having its roots in Fisher's work (195&), termed 
predictive likelihood, has recently been independently introduced by Hinkley 
(1975) and Lauritzen (197*0. Here as in the fiducial approach, sufficiency 
though in an extended sense, plays the key role. It is assumed that 

(X^;X/M0 have likelihood L(x'N';x,M)| 6) which admits a totally 

sufficient reduction of the data. In the case of independent and identically 
distributed random variables a minimal sufficient reduction need only be 
available. In this latter case as pointed out by Fisher (1956), a minimal 
sufficient statistic is a function of the individual sufficient statistics 
from any portion of the entire sample. The concept of a totally sufficient 
statistic introduced by Lauritzen (197^) permits extension of this result 
to the more general case of dependence. 

Let sN = s(X
(N)) and sN+M = S(X

(N)
,X(M)) be the set of totally 

sufficient statistics for 9 based on the random variables to be observed 
and those that are to be observed and predicted, respectively. Then one can 
obtain, independent of 9, the conditional probability function 

f(s(x(Nb|s(x(N),x(M))) (3-3) 

which is now defined as being proportional to the predictive likelihood i.e. 

This is then treated as is the usual L(x|9) where now X^ takes on the 

role of 6. For the fixed value x^\    the predictive likelihood orders the 
plausibility for various values X^ = x^. For a simple example, consider 

X.,i=l,...,N+M as Bernoulli iid random variables where 

p(X.=l) = 1-P(X.=0) = 9. If r out of the first N are l's, we can order 

possible predictive values for the number of l's, say t, in the next M 
N       M 

trials. Defining R=Ex.,T=Sx, which are sufficient, we can 
i»l *    i=l 

compute in a simple fashion 

r 1   (N) (M) 
p[_R=r|R+T = r+tj   =    g + *    « prlk (r|t) (3-5) 

'r + V 

which is used to order the plausible values for    t=0,...,M. 
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A point predictor can conceptually be obtained by maximizing the 
predictive likelihood. In the case where M> 1 and the random variables 
are iid,  it is clear that prlk (x/M\) will have multiple maxima due to 

the exchangeability of the likelihood. This must be so and should be no 
cause for concern. In the previous example though, there may be a unique 
maxima at some value of t and be adequate if t is to be predicted.  It 
is clear, however, that if the individual XN+1,..*»

X
N+M 

are to be Pre" 

dieted and the maximum was at t = t , say, then every partition of 

x   x    into t l's and M-t O's would also yield identical 
N+l     N+M       o o 

maxima of the prlk (*/M\)* 

For a variety of interesting applications of predictive likelihood to 
standard statistical situations, the reader is referred to Hinkley (1975)• 

k.    LOW STRUCTURE AND ASSESSMENT. Before actually discussing techniques 
available in low structure situations it will be useful to review a very old 
and informal method of considerable value in comparing point predictors. 
Suppose several predictors are suggested for a set of data, then a fruitful 
comparison of them may be accomplished by a validation technique. The sample 

x^ '  is randomly divided into two parts x^   -(x-p •••>xN_n) 
and 

x^n'= (xT  .,...,x„) called the construction sample and the validation 
N-n+1     N 

sample respectively. Assume also that associated with each sample point x.^ 

is a known value z.. The data analyst then computes the competing predictors 
1        ,  . .        *    i  (N-n) ,(N-n).  N 

from the construction sample obtaining, say, xiA* »Z    ,z.)  = x^ 

as the i   predictor for the value x. at known value z., 

j = N-n+1,..., N; i = 1,...,K where K represents the number of predictors 

to be compared, and z^N_n^ = U^ • • • >zN_n) • First the residuals 

x  - x = r   are computed and then the empirical distribution functions of 
ji   j   ji 

residuals are plotted for each predictor. A comparison of these empirical 
distribution functions will shed much light in determining which predictor is 
most appropriate. Sometimes when the validation sample is not very large a 
relevant summary measure of the predictive discrepancy is adequate for compari- 
son. For example we might compute the predictive mean squared error 

1  N 
s2 = (N-n)    D   r2.  i=l,...,K. This procedure is generally useful only 
1        j=N-n+l XJ 

when a reasonably large number of observations is at hand. This is often not 
the case. Also the procedure seems inefficient in that it does not extract all 
of the information in the data. To overcome this a technique which is referred 
to as simple cross-validation may be substituted. 
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Let x.  " ' = (x.,...,x. ., x. .,...,x ) with corresponding 

Zr  " ' = (z, ,...,z. , , z. .,...,z.) be the data set with the j   obser- 
J        1     J-l  J+l     J 

vation omitted. Now for each predictive function we compute the predictor 

x.. =x.. (x.  " , Z. " , z.) for the omitted observation x. and re- 

peat this for j=l,...,N for each predictor obtaining r.. = x.. - x.. 

Similarly as in the validation set up, we are in a position to compare for 
each predictor its empirical distribution function or a relevant summary 
measure of predictive discrepancy. However in the case of simple cross 
validation we have N residuals for each predictor instead of n as in the 
validation case. One caution is in order — in the validation case the 
residuals are dependent only by virture of the same predictive function 
while in the simple cross-validation some further' algebraic dependence 
creeps in as a result of using the data repetitively. On the other hand 
the simple cross-validation assessment uses all of the data while the vali- 
dation assessment only uses a sample of the data. Notwithstanding, the 
cross-validatory assessment procedure is certainly very useful for the 
comparison of predictors generated from various structural assumptions as 
the basic dependence is the same for all of them. 

However there are situations where specification of a particular 
sampling distribution and the resultant predictor based on such assumptions 
may be fraught with peril. When a particular sampling paradigm becomes diffi- 
cult or impossible to identify, and yet prediction is necessary, data analytic 
techniques based on minimal assumptions need come to the fore. One such 
technique, termed predictive sample reuse (PSR), Geisser (l97^a, 1975a) or 

cross-validatory choice, Stone (l97^a)> is currently a leading candidate for 
a satisfactory resolution of this low structure case. It may also be of 
service in what are basically higher structure situations as we will detail 
later. First of all the PSR method, when flexibly used, is very likely 
to be robust for a variety of sampling paradigms. A second feature is that 
it simulates the predictive process upon itself in some optimal fashion often 
using some structural hints. It is even capable in one of its manifestations 
of comparing a variety of approaches. Essentially the goal is to predict a 
future observation or set of such, or some function of them. For the purposes 
of this exposition we shall restrict ourselves to a single future observation 
with a form arbitrarily chosen for predicting it as 

x X(X,Z,Z;Q)  a € n (k.l) 

where a is some set of unknown values, X = (x..,...,x ) represents a sample 

of size N and with each x.  is associated a known z., and Z = (z.,...,z„). 

It must be stressed that in this approach a is not a platonic ideal nor in 
any sense a true value of paramount importance. It is to be regarded as merely 

a convenient way of forming a predictive function. Let P.    represent the 
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i   partition of the sample N-n retained and n omitted observations 
0 < n ^ M, where M is the largest integer such that the predictive function 
(4.1) can be formed with N-M observations. More precisely, the observa- 
tional set X and the set Z with which it is associated are partitioned 
such that 

(N-n) = (x(N-n) z(N-n) x(n) z(n)} (4 j 
i      v lr     lr     10   10 

is the i   partition belonging to a set T    of partitions relevant to a 

particular schema of observational omissions where (X.   , Z.   ') and 
f   \       (   \ lr    lr 

(X^n , Z:') represent the N-n retained and n omitted data sets, respec- x io   10 
tively. Let the total number of such partitions be P(N, n, r), or simply P. 
The specified predictive function is then applied to the retained observations 
for prediction of the omitted observations for each partition with the unknown 
set of values a estimated by means of optimizing an average discrepancy 
measure, say, 

V» " P"V1 |r 
d(Xl"'' 4öMr"n)- ^ '*&  «»  (t-3) 

*(n) where each element in the set X; '     is the form of the predictive function 
10 /n\ 

and d is a measure of the discrepancy of the set of values X.   from 
/ \ 10 

the set of predicted values X.   for given a. D„ (a)  is then optimized r 10 W,n 
with respect to a   in some sense. On the basis that this leads to a 
solution say,  a, we obtain the predictor x = x(X,Z,z;6) = f. 

When predictive functions are to be compared irrespective of their 
generation one can use a cross-validatory assessment. For a given discrepancy 

■f-"h 

measure we could consider for the i  partition the set of retained observa- 

tions and associated values  (X:   , Z) ~n') and partition this into two sets x lr    lr  7 

/ (N-2n) z(N-2n) x(n) ZW)# From this reduced set of N-n observations x irr     irr     iro  rro 
and associated values we would, as previously, obtain an a.  and compute 

the discrepancy (not necessarily based on the same d as was used to obtain 
the predictor) between the values predicted for the n omitted observations 
and the actual observations themselves. Repeating this for each i we would 
then compute an overall discrepancy measure 
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for each predictive function. This measure then would be relevant to 
assessing either different predictive functions or various estimators 
of u in terms of predictive discrepancy for the same predictive 
functions. We also note that comparisons other than the average 

DN   can be utilized,  e.g., empirical distributions of the discrepancy 

can be compared for several predictors. A variety of applications of 
PSR can be found in the following papers, Geisser  (1974a, 1974b, 1975a, 
1975b), Stone  (1974a, 1974b). Here we shall only present one such very 
simple application involving a data based predictor which is to be 
combined with limited prior information. Let the predictive function be 

f = a h (X) + (1-a) g     0<a<l (4.5) 

where g represents a prior guess at the value to be predicted and h (x) 
the data based predictor. We shall use the squared discrepancy measure, 
with a one-at-a-time omission schema so that 

-1 N 

D  (a) = N-1 £ (ah + (1-a) g-x f 
W,i        j=l   J J 

(4.6) 

where h.  is of the form h, but based on N-l observations,  i.e. x. 

has been omitted. Maximization of D., 1 (or) with respect to a yields 

f = h    if a >  1 

= g    if a <.  0 (4.7) 

= a h + (l-a)g    otherwise 

where 

A    i(h-g)(x-g) 

In particular if h = x then for s2 = (N-l)  .S, (x .-x)2 and t2= —*- "?■'  , 
J-  J s2 

t2 - 1        if t2 > 1 
a = T 

t2 + (N-l)"1 

(4.9) 
= 0 otherwise. 

357 



This procedure has the property that if the sample mean is within one 
sample standard deviation of the mean from the prior guess g one uses g 
otherwise one uses the linear combination. Further as the distance between 
the sample mean and g increases relative to the sample standard deviation, 
greater weight is attached to the sample mean. Moreover as N increases the 
predictor tends asymptotically to the sample mean. 

In many applications it would appear that observational omissions one- 
at-a-time are appropriate. However there are some applications where this 
may not be the case. This point and others involving various schemata of 
omissions and choice of relevant partitions are discussed in Geisser (l975a)> 

There have also been various attempts to extend PSR point prediction 
to sets, intervals, and regions. It is not yet clear as to how satisfactory 
any of these methods are. Pertinent references are Geisser  (l97ifb), Hinkley 
(1975), Butler and Rothman (1975). 

5. AN APPLICATION.  We now illustrate how some of the previous method- 
ology might be applied in practice to what may be termed a simple survival 
situation. Suppose we have a random sample X.. ,... ,X  on an exponential 

random variable X whose density is 

f(x|p.) = pe"^  p > 0, x > 0. (5.1) 

Further suppose our prior objective or subjective information is subsumed 
in a prior density for  p, 

p(u) « p6_:Le"YMj,  Y > 0, 6 > 0. (5.2) 

Here p takes the place of 0 in the high structure Bayesian approach and 
T = (6,y).  Our interest is in predicting a value xN,  for the random 

(N) 
future observation X 1  given the previous N observations .:x  , say. 

Then the predictive density for X„ ,  is easily calculated to be 

f(xN+1|x^)=/p(p|x^) f(xN+1|p)dp -3) 

/,   o\/„_   \N+6//„— \N+6+l    ^ „ 
= (N + 8)(Nx + Y)  /(NX + Y + XN+1)       z > 0, 

where x  is the sample mean and p(p|x   )  is the posterior density of  p, 
(N) 

given the previous  N observations  x   .  Hence our forecast about X  •. 

involves the hyperparameters  Y and  6 which enter the problem via the 
distribution of the parameter p.  Before any observations are taken one can 
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also find the predictive (marginal) density of the generic variable X, 
namely 

f(x) = J f(x|n)p(M,)dn, 

= 6Y
6
/(Y + x)6+1, x > 0. 

(5.M 

Hence it is convenient and more appropriate from the predictive view to 
think about these hyperparameters in terms of predicting X before any 
observations are taken rather than in how they modulate the assumed prior 
distribution of \x.    Therefore, prior to the sample, we have 

E(X) = Y/(6 - 1) = g 

Ivar(x) = 6Y
2/(6 - 2)(6 - l)2 = g2(l + o)/(l - a) 

(5-5) 

where a = (6 - l) 

Clearly Var(x) exists for 0 < a <  1,  and E(X) exists for a>0 
while the distribution exists for all af [-1,0]. Hence if one could 
frame his prior opinions about the potentially observable values of X 
in terms of its expectation and variance then one can easily execute 
the whole predictive process by solving for the appropriate values  5 . 
and Y from (5«5) an(i substituting them in (5«3)« 

It is to be noted that (5.3) and  (5-M were obtained from (5«l) 
and  (5.2). However, for the predictivist who would prefer to start from 
(5.1) and  (5 A)  in terms of convenience of framing his predictions this 
is somewhat awkward.  Interestingly enough in this case starting with 
f(xj|j,) and f(x)  is sufficient to obtain p(|i) and  f(x., -|x), which is 

a more logical and appealing approach for the predictivist. This is 

possible here because f(x) is the unique Laplace transform of p, . p(|j,). 

Now as we mentioned previously positing all of these assumptions 
yields the requisite information for making probability statements about 
a future value provided that one has specified values for g and a.    How- 
ever while one may often be willing to hazard a guess at g, one may be 
far less willing to specify a value for a.    So in further analysis of this 
problem we may be in a position such that some of the parameters of T are 
assumed known and others unknown. Assume then that g is known but not a. 

One approach for estimating a or  6 is from the marginal density 

f(x15...,xN|5,Y) = J* f(x1,...,xN||i)p(ii|6,Y) du 

_   T(N+5) Y5 
(5.6) 

r(6)  [Nx+Y]
N+5 
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Since we assume g = j^    is known we let Y±  = g~V  and obtain for 

N 
Ny = Ti   y. 

i=l 

f(Y     Y 16) =r(N+6)  (6-1)
6 (5<7) 

f(Yl N' ^  T(6) [Ny+6-l]
N+5 

N 
Clearly .ZL Y.=S is sufficient for  6 in the above likelihood. The 

density of S is then easily obtained to be 

f(s|6) = (6-i)° F(N+6) s- (5.8) 

r(N) r(6) (s+5-i)N+6 

which implies that t£ ~ ß2 («S; N, 6) a Beta distribution of the second 
kind. The method of moments essentially fails here to yield a sensible 
estimate e.g. E (s) = N, which is uninformative relative to  6 or a. 
Use of higher moments tends to restrict the range of S and renders it 
unreasonable as an estimator. The reason that moment estimators are 
basically inappropriate here is that they assume the existence of the 
moments-used and hence tend to presume a restriction on the range of 6, 
whose restriction on the outset is  6 > 1.  One can use however maximum 
likelihood estimation. Hence we calculate 

* Blogf  A 
and one would have to find by one means or another 6 satisfying ■ ^ -| ■ = 0. 

An explicit solution for 8 seems impossible to achieve. One can approximate 
(5.9) by using the Euler-Maclauren sum formula so that we obtain for large N 

ologf .6,6   ,  N+6    N+6  L 1    1 fc  in\ 

This is still quite formidable and when set equal to zero still does not yield 
an explicit solution for  6. 

We now show how PSR may be of service even in this high structure 
situation.  Suppose we were to predict a single value xN+1 from (5.3) 

using the predictive mean 

E(x.T1|x = x) = (oNx + g)/(a N+l). (5.11) 

Apply the PSR method for the estimation of a using  (5.H) as a 
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predictive function and squared discrepancy with one-at-a-time omission 
schema so that 

,N a(N-l)x.+g 

Vw ■'rQ-am±r - */ <5-12) 

where x.  is the mean of the observation with x.  omitted.  Minimization 
J J 

(5.13) 

)f DM ,(0) with respect to a yields 

, Ü = ~^ for t2 > 1 
N 

[0 = 0 for t2 <.  1 

-1 N 

where t2 = N(g-x)2/s2 and s2 = N   TJ   (X.-X)
2
. Hence PSR may be used 

i=l  X 

to generate estimates even in the high structure case.  On the other hand 
using  (5.II) and  (5.12) as a predictive function and discrepancy measure 
respectively yields a PSR predictor 

5N+1 = (£NX + g)/(oN+l) (5.1*0 

that does not strictly depend on high structure assumptions.  In fact it 
may be robust for a variety of high structure assumptions which result in 
a predictive expectation approximately equal to (5.H). Actually if one 
did not use any high structure hint for a predictive function for this 
problem but merely used a convex combination of sample mean and prior guess 

xN+1 = a* x + (1-a*)        0 £ a* £ 1, (5-15) 

A . 

then the result for #* was already obtained in section 4 as 

XXT,1      =     1~~ lf t >    1 N+1 t2 -:   (N-l)-1 (5.16) 

= g if    t2 ^ 1 

This may be contrasted with (5.14) when the value for a is inserted 
which turns out to be 

1XN+1 ~     t2" 
= (t

2-l)vx -y j fc2 > x 

(5.17) 

=g t2 ^ 1. 
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The predictor in (5.17)  is weighted slightly more towards x than 
i 

(5.I6),  but in fact they are asymptotically equivalent to order N 
In any practical example there would probably not be much to choose 
between them. 

It is also to be noted that the intermediate structures are difficult 
or impossible to apply in situations such as this one where there may be 
some prior information that should be taken into account. 

6. REMARKS. A somewhat abbreviated exposition of the predictivistic 
view has been presented. This view is not a mode of inference as such but 
can be implemented from a variety of inferential modes.  It stems from the 
attitude that inferences should be restricted to potentially observable 
entities unless compelling reasons to contrary exist. In conformance with 
this view we have presented various ways, arising from different stand- 
points, of implementing the predictive approach.  In particular a recently 
developed low structure approach PSR has also been delineated in some- 
what greater detail, which should be of great value in many situations and 
need be added, we believe, to the toolkit of every statistician. 
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VARIOUS METHODOLOGICAL APPROACHES TO PEER EVALUATIONS 

Ronald G. Downey and Paul J. Duffy 

U.S.Army Research Institute.for the Behavioral And 
Social Sciences 

Arlington, Virginia 

When confronted with the prospect of drawing order out of complex 

human behavior in the equally complex world of work, two primary charac- 

teristics have marked traditional behavioral science research. First, 

heavy reliance has been placed upon human evaluations or ratings of 

other humans.  Secondly, these performance or trait ratings have been 

predominantly gathered from a limited observational viewpoint, namely 

the supervisor.  The technique outlined in the present paper does not 

deviate from the first of these characteristics; it does rely on human 

evaluation of other humans. However, it goes beyond the second charac- 

eristic by gathering such evaluative information from the additional 

perspective of an individual's peers. For purposes of the present 

paper, peers are operationally defined by their sharing of some common 

purpose (e.g., members of the same work group), and generally by the 

lack of a■formally recognized authority relationship between them. The 

term associate will be used interchangeably with peer. 

The history of peer evaluations can be traced back to post World 

War II work by Williams and Leavitt (1947).1 The history of the techni- 

que can be traced back even further to the original work of Moreno (1934) 

and his development of the sociogram technique.  Since that time, peer 

evaluations have been used for two primary purposes.  The first of 

Some research efforts were reported before this, during and just after 
World War II.  See, for example, Clarke (1946), U.S. Army Research 
Institute (Note 1), ahd U.S. Army Research Institute (Note 2) where peer 
evaluations were used as criteria for leadership studies. 
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these purposes is evaluative in the criterion sense (i.e., leadership 

effectiveness, job performance, etc.).  The second purpose is evaluative 

in the sense of predicting future behavior or success (i.e., motivation 

to work, goal orientation, potential, etc.).  Lindzey and Byrne (1968) 

have presented an excellent review of the use of social choice method- 

ology of which peer evaluations are one type.  More specialized reviews 

of the work are: Gibb (1961), Gibb (1969), Hollander (1954), Boulger 

and Colmen (Note 3), and Nadal (Note 4). 

Aside from considerations about the use of peer evaluations, 

another major issue centers on what the dimension is which peers are 

evaluating.  For instance, previous research has been directed at peer 

evaluations of leadership (Hollander, 1965), personality traits (Tupes 

and Christal, Note 5), and supervisor skills (Weitz, 1958) to name but a 

few of the dimensions which have been investigated.  While we will not 

directly address the issue of which dimension is measured, it is 

probably the single most important decision the researcher makes in 

the design of the experiment. 

Given this short background we will address two major areas which 

relate to the development of a peer evaluation system; first, method- 

ological considerations and second, situational factors which could 

impact upon the evaluative process. 

To facilitate understanding of the methodological issues, they will 

be described in terms of effects upon the major scaling techniques 

available, of which there are four:  ratings, rankings, full nominations 
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and high nominations. A summary of the following discussion is provided 

in Figure 1. 

Methodological Issues 

The general paradigm of the rating technique calls for a group 

member to provide a rating of the relative amount or degree of the 

dimension under consideration possessed by every other group member. 

The ranking procedure simply requires each group member to rank order 

every other group member from high to low (or some other relevant 

continuum) on the dimension under consideration.  The full nomination 

technique requires that each group member choose a specified number or 

proportion of the group as being either high, medium, or low on 

the dimension.  In the present.paper, the minor variation of this 

technique whenever middle or medium nominations are not required 

will also be referred to as full nominations.  However, the case where 

only high nominations are elicited is reserved as a discriminably different 

technique for reasons to be elaborated in later portions of the paper. 

Several variations based on combinations of these basic techniques are 

forced distribution rankings or combinations of rankings and ratings or 

nominations. General scoring algorithms for the four primary techniques 

are presented below: 

Ratings 

Score = ^rRt 
N 

Rankings 

Score =f   ErRk) xA00] 
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Full Nominations 

Score = 
t(l  x rL) + £(2 x rM)  + z(3 x rH) 

High Nominations 

Score =  ErH 
N 

where    rRfc = Rating 

rR, = Ranking 

rT = Low nomination 

r = Mid (or no) nomination 

r„   = High nomination 
n 

N    = Number giving an evaluation 

NT   = Total number in the group 

. By inspection, several characteristics of these formulae should 

be noted.  All of these techniques produce scores which are, in 

general, independent of group size with the exception of the rank- 

ing formula in which case adjustment must be made for group sizes 

greater than 100.  It can also be seen that the average score for a 

group using either a ranking or nomination technique is determined; 

the average score for the rating technique is free to vary. 

Metric and Distribution 

The metric and distributional properties of associate evalua- 

tions are directly related to the particular technique employed. 

With respect to the scaling properties of the various techniques, the 

rankings and both nominations from an evaluator are ordinal data 

(Stevens, 1951).  The ratings from an evaluator are the most nearly 
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interval data although here also It can be argued that these are 

merely ordinal data. The scaling properties of the summated scores 

from the various techniques approximate interval data as the number 

in the evaluation group increases. 

In addition, the 4 most common procedures will commonly produce 

different distributions, examples of which are displayed in Figure 2. 

Given the free response mode for ratings, they will often produce 

negatively skewed distributions due largely to group norms to inflate 

any evaluative procedure.  The ranking procedure, if it were perfect- 

ly reliable, would produce a rectangular distribution with one person 

at each rank.  Generally, less reliable rank scores will tend to be 

normally distributed with even less reliable scores producing a more 

leptokurtic curve, and a perfectly unreliable test producing a point 

distribution with everyone receiving an average rank equal to the 

middle rank.  Full nomination scores produce a distribution which, 

if perfectly reliable, is tri-modal with one group receiving all 

high nominations, a group with all low nominations and the remainder 

having middle nominations or none at all.  High nominations only pro- 

duce a bi-modal distribution (not shown in Figure 2). 

Basis of Comparison 

Scores which result from the four primary techniques vary along 

another important dimension; that is, the internal process evoked 

in the evaluator upon which he makes his judgement. .In one case, the 

evaluator compares the particular individual against some external 
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(to the group) frame of reference and assigns him to some category. 

In the second case, the evaluator compares the particular indivi- 

dual against some internal (to the group) frame of reference and 

makes a judgement df more or less and assigns him to the appropriate 

category. The external process can only be used with the rating 

procedure.  The internal process can be used with the ratings, but 

it must be used with rankings and nominations.  It should be noted 

that the internal process, in general, requires a moderate number of 

individuals in the group (more than 5). The direct implication of 

this distinction is that the external frame of reference allows both 

comparison between individuals across peer groups and the comparison 

of peer groups.  The internal process does not allow comparison 

between individuals across peer groups unless the assumption is 

accepted that the groups are equal on the particular ability, trait 

or behavior. 

The corollary of this implication is that population norms 

can be developed only through the use of a rating procedure and an 

external frame of reference. 

Reliability 

The reliability of associate evaluations has generally been 

determined by one of two methods, internal consistency or test-retest 

Both methods are analogous to the same procedures in classical test 

theory (Lord and Novick, 1968). 

The internal consistency of peer evaluations is the degree to 
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which members of a peer group agree with one another when observing 

an individual in a similar situation and at the same time. Using the 

multiple choice test paradigm, the evaluators are comparable to the 

test items and those who are being evaluated are comparable to the 

people taking the test. While Gordon (1969) has recommended the use 

of the alpha coefficient for estimating the internal consistency or 

reliability of peer evaluations, the most common procedure has been 

a split-half (or group) estimate. The split-half estimate is made 

by computing scores for all group members, randomly assigning peer 

group members to one of two groups, and then correlating the scores for 

each ratee from each group (See Hollander, 1957; and Downey, Note 6). 

The correlation is then adjusted for the total group size using the 

Spearman-Brown formula (Gulliksen, 1950).  If small groups are used, 

a random split may not be possible and some technique for averaging 

the intercorrelations between evaluators could be used (Gulliksen, 

1950). 

The test-retest method of estimating reliability requires that 

group members evaluate each other at two different times.  Scores 

from the two different evaluations are then correlated.  Examples of 

this type of estimate are given in Hollander (1957), Downey (Note 6), 

and Downey (Note 7).  Perhaps the most rigorous examination of relia- 

bility was done by Gordon and Medland (1965) where they varied both 

time and group doing the evaluations and found reliabilities in the 

80*s. 
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Research has generally found the reliability of peer evaluations 

to be in the .70 to .90 range, regardless of the reliability estimate 

employed.  Research which has compared the various evaluative method- 

ologies is rare, but, in general, has supported the view that all four 

methods are quite similar with maybe a slight advantage to ratings 

(See Suci, Vallance, and Glickman, Note 8; Downey, Note 6; and Hammer, 

Note 9).  Even the use of a paired comparison procedure does not 

significantly improve reliability (Bolton, Note 10).  The selection of 

a particular technique will rarely be decided by differences in 

reliability between the techniques. 

Acceptability 

A major factor in the success or failure of a particular research 

progräm is the degree of involvement and commitment to the program 

on the part of the participants, in other words, acceptability. 

Acceptability is generally studied as a specific issue of the particu- 

lar program under investigation rather than comparative analyses of 

acceptability across techniques or situations.  There is, therefore, 

little formal evidence of differences between techniques but many 

inferences can be drawn based upon the particular qualities of the 

technique.  A major factor in the acceptability of a technique is the 

degree of perceived difficulty.  From this point of view, both the 

rating and ranking of large numbers of people (greater than 20) can 

be time consuming and makes for difficult discriminations among the 

average members of the group.  On the other hand, the nomination 
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procedure allows the individual to place a large number of people 

in a desired category and does not force him to make difficult discrimi- 

nations. 

The rating procedure is quite acceptable where the group is small 

and cohesive. The full nomination technique is acceptable for moder- 

ate to large size groups where not all individuals are well known to 

one another. The high nomination technique is even more acceptable 

because it does not require an individual to make negative evaluations. 

A major determinant of the degree of acceptability is the degree 

to which group members are knowledgeable about the evaluation procedure, 

process, background and use. Downey (Note 11) found that accept- 

ability improved as a function of an educational program. Two differ- 

ent types of attitudes were found; first, the degree to which peer 

evaluations were felt to be valuable and accurate estimates and, 

second, the degree to which they were acceptable for particular uses. 

Downey also found that the peer evaluations and acceptance were 

positively related, with larger relationships being found in the group 

with less information on the peer evaluation process. 

Feasibility 

Closely linked with the previous concept of acceptability is 

feasibility, or costs associated with the implementation and execution 

of a particular peer evaluation system.  The major costs associated 

with a peer evaluation system are:  (1) preparation of evaluation 

materials, (2) administration time, and (3) scoring cost.  Prior to 
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the advent of automatic data processing procedures, the costs associ- 

ated with any peer evaluation system with large groups or on a large 

scale were prohibitive. Merely in terms of bits of information 

collected, it can be seen that the number of evaluations is equal to 

N^ where N is the number in the group.  Figure 3 presents the compara- 

tive costs associated with each of the four techniques. 

As can be seen from Figure 3, each of the 4 techniques incur 

equally high costs associated with the preparation of a list of the 

peers.  It is important that all evaluators be provided with a full 

list of all other members of the peer group. The administration time 

for the full nomination technique is low due to the small number of 

decisions associated with making the low and/or high choices.  An 

excessive amount of time is devoted to making fine discriminations 

in the ranking procedure, whereas a moderate amount of time is taken 

up by the rating of every individual. 

The scoring of the peer evaluations normally requires access to 

some sort of automatic data processing facility in all but the small- 

est scale operations.  The actual computer cost is virtually equal 

for all techniques, but they can differ substantially in terms of the 

costs associated with getting the evaluations into a data processable 

form.  Costs vary by technique as a function of using either keypunch- 

ing or optical scanning.  Both the full and high nomination techniques 

involve low cost and ratings also have low costs associated with 

optical scanning.  Rankings produce high costs in both keypunching 
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and optical scanning and ratings have high costs associated with 

keypunching. Generally, nominations produce the lowest costs overall 

followed by ratings with rankings having the highest costs overall. 

It should be noted that peer evaluation systems are relatively costly 

efforts which typically require more than minimal sophistication 

with data processing procedures. 

Situational Factors 

In addition to the methodological concerns of the various techni- 

ques presented in the previous section, there are also a variety of 

situational or contextual factors which can impact upon a peer evalua- 

tion system, often regardless of the specific technique under discus- 

sion. Among these factors are group size, informal group structures, 

demographic characteristics, group boundaries, hierarchical character- 

istics, friendships, length of association and type of interaction. 

Each of these factors will be discussed in turn and, where appropriate, 

specific mention will be made of their effect upon the various 

techniques. 

Size 

Very few attempts have been made to study the independent effects 

of group size. More often than not, what evidence there is for the 

effects of group size has been reported as a byproduct in studies 

directed at some other purpose.  For example, Downey, Medland, and 

Yates (Note 12), used a peer nomination technique with groups of 

Army Colonels in 14 career groups which varied in size from 22 to 321. 
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Reliabilities varied from .63 to ,94 and the rank order correlation 

between group size and reliability was .03. Downey (Note 7), in 

a sample of Army Rangers, compared peer ratings collected within 

squads (n = 10) with peer nominations collected on the same men 

within platoons (n =  40).  Correlations between the two scores were 

in the ,60's.  However, there were indications that the platoon 

scores were both more reliable and more predictive of job performance. 

As mentioned previously, from the standpoint of feasibility, 

both ratings and rankings would seem to be most appropriate for 

relatively small group sizes (i.e., approximately a dozen), while 

the nomination technique is virtually mandatory for large group 

sizes (i.e., greater than 50).  From the standpoint of empirical 

results, it appears that small groups nay produce unreliable scores 

with reduced validity. Alternatively, while it is rational to believe 

that there is an optimal upper size peer group, there is scant 

evidence to support this view. 

Informal Group Structures 

Given the well documented fact that within any formally defined 

group there may exist one or more informal subgroups defined by some 

sort of mutual self interest, the issue arises as to what effect these 

informal subgroups may have on a peer evaluation procedure conducted 

in the total group for a purpose other than finding what subgroup 

structure exists. 

For example, the worst case would be one in which two equal- 
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sized informal subgroups existed within a total group and included 

each group member exclusively in one or the other.  In such a situa- 

tion, it can be assumed that one or both subgroups might make their 

evaluations solely on the basis of subgroup membership, i.e., on a; 

basis other than the one intended. The net effect of such behavior 

is to attenuate the validity of the peer evaluation procedure, and 

it is most pronounced when both subgroups engage in stich behavior. 

The effect diminishes if one of the groups does, in fact, provide 

evaluations on the dimension intended.  The effect also diminishes 

as informal subgroup size decreases or as the number of subgroups 

increases. 

In terms of technique, the effect of subgroup behavior will be 

pronounced if ratings or rankings are used with resultant scores   ' 

most likely to be negatively skewed.  The use of full nominations 

will tend to produce scores with decreased variance, and high nomina- s' 

tions will produce the worst case with a drastic reduction in variance. 

It( is clear that subgroups of sufficient size can have an effect 

upon the final scores, and therefore the question is the incidence 

of such effects and whether there exists ä mechanism for detecting 

its occurrence.  The simplest procedure for checking for these problems 

is the repetitive production of reliability indices as part of the 

procedure for producing peer scores.  If the reliability coefficients 

were to drop below .60, it would seem to indicate a problem and Cafe 

should be taken in use of the evaluations.  If the evaluation process 
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is part of an ongoing process, then the use of a two-way analysis 

of variance design with one factor being the types of raters and 

the other factor being the same types of ratees should be used. 

If a significant interaction were found, then a strong case could 

be made for peer scores being at least partially the result of group 

membership. 

Demographic Characteristics 

The use of peer evaluations with their reliance upon fallible 

human observers immediately raises the possibility of racial and sexual 

bias on the part of evaluators.  This concern is especially crucial 

in view of recent problems associated with demonstrating the absence 

of bias in employment selection and classification measures as well 

as criterion measures. 

The evidence concerning racial bias in peer evaluations is mixed 

and inconclusive.  In a study dealing with Air Force recruits, Cox 

and Krumboltz (1958) found that subjects were rated higher by members 

of their own race, but the effect varied across groups and there 

was substantial agreement on rank order across races (r •= .76). 

They conclude that the bias which might exist is far from complete 

and suggest that prior acquaintanceship of group members may account 

for the differences.  In a similar study in the Army, deJung and 

Kaplan (1962) found similar results with ratings differing as a 

function of the rater's race.  However, an analysis of covariance 

adjusting for a combined interest and math score showed that whites 
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did not give higher adjusted scores to whites or blacks, but blacks 

did give higher adjusted scores to blacks. Results were interpreted 

in terms of assignment of higher scores to close acquaintances which 

had more of an impact upon blacks rating blacks due to the smaller 

group size. 

In a more recent study in an industrial training context, Schmidt 

and Johnson (1971) used a forced choice rating distribution in groups 

with approximately equal numbers of blacks and whites.  No differences 

due to race were found. 

The evidence suggests that peer evaluations can be subject to 

racial bias, but the effect is perhaps more strongly related to the 

interaction between friendship or acquaintanceship and the particular 

evaluation method used.  The presence of substantial correlations 

between the rank orderings from each race indicates that a similar 

view prevailed.  But, the use of ratings allows evaluators to assign 

unrelated scores to individuals whom they consider special in some 

way. 

In terms of sexual bias, Mohr and Downey (Note 13) recently 

reported results from a small sample of Army officers which indicated 

that females scored lower than males on scores received from both 

males and females.  If bias occurred, it was on the part of both 

groups. An interesting finding was that females' self-ratings were 

not related to either male or female evaluations but males' self-  . 

ratings were related to these evaluations. 

377 



This admittedly small number of studies appears to indicate that 

differences based upon race and sex can occur, but it is unclear whether 

these differences are attributable to race or sex group differences, 

to interaction patterns (i.e., friendships, etc.), to the specific 

methodology, or some combination of all of these factors.  It would 

certainly be safe to say that researchers should be sensitive to the 

potential for such bias. 

Group Boundaries 

The discussion of peer evaluations has proceeded to this point 

as if it were clear just what is meant by a peer or associate group. 

Most researchers report their procedures in sufficient detail to show 

the general characteristics of the groups which were, in fact, used. 

However, given that there are a variety of overlapping and higher 

order groups in most real-life settings, the issue becomes that of 

defining some basic guidelines for selecting the appropriate rating 

group.  It is clear that the selection of the evaluative group can be 

effected by such factors as the length and type of interaction, 

formal organizational structure, informal group structure, friendship 

patterns and, of course, the particular dimension being evaluated. 

As has been the case for several of the preceding issues, there 

is little empirical data to guide the selection of the group.  Rather, 

guidelines must be best guesses based on partial information from 

related data. 

In the previously mentioned study by Downey (Note 7), it was 
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found that platoon evaluations produced more reliable and slightly 

more valid scores than squad evaluations, but the differences were 

potentially confounded by differences between both method and size. 

A study by Gordon and Medland (1965), in which individuals were 

evaluated at two different times by totally different groups of 

different structure, indicated a high degree of stability across the 

two evaluations. Even the method which was used to compute reliability 

indices, random splits of the primary group, supports the notion that 

group composition can be drastically altered without major problems 

arising in producing reliable and valid scores. 

A concept related to that of group boundaries is that of hierarch- 

ies. For example, an Army platoon is made up of 4 squads, each headed 

by a squad leader.  If the platoon is chosen as the peer group, tlje 

issue is whether the squad leaders should be included in the process. 

Folklore holds that the inclusion of such individuals will often work 

to their disadvantage, and therefore they should be excluded from the 

platoon peer group and included in a peer group of squad leaders. 

Research by Levi, Torrance, and Pletts (1958) indicated no effects 

from including the formal leader in the peer evaluation process. 

Research by Downey (Note 14), in which the leaders of small combat 

units were included in the peer nomination process, indicated that 

the leaders spanned the full range of leadership potential scores. 

And, rather than being penalized, there was a positive relationship 

between formal position and peer evaluation scores (as there should 
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be if the selection procedure for leaders had any validity originally). 

It should be pointed out that these data were experimental and 

the introduction of an operational system may change the situation 

depending upon the use to which the resulting evaluations will be put. 

A rational solution to the problem should be guided by the 

following suggestions: 

(1) Select the group to have sufficient size to overcome problems 

associated with primary groups. 

(2) Group size should not be so large as to produce subgroups 

which may be relatively unknown to each other or be competing for 

similar resources and rewards. 

(3) Groups selected should be somehow reasonably related to the 

dimension to be evaluated, e.g., if evaluation of leadership in a work 

setting is desired, select a work group and not a social group. 

Friendship 

Friendship has been a major research issue in the history of 

peer evaluations. This is another case where folklore has stated 

that peer evaluations are the product of friendship or popularity and 

are therefore not valid indications of the dimension under considera- 

tion. The impact of this bit of folklore has been that, with the 

exception of simple validity studies, this is probably the single 

most researched question associated with peer evaluations. 

Wherry and Fryer (1949) were the first to address the issue. 

They reported that although there was a moderate degree of relation- 
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ship between friendship and a leadership criterion, the major portion 

of the predicted criterion variance was independent of friendship. 

They concluded that peer evaluations of leadership are not popularity 

contests.  Studies by Gibb (1950) and Horrocks and Wear (1953) in 

college samples support Wherry and Fryer's findings.  Borgatta (1954) 

also reported that leadership and popularity evaluations were related, 

but he failed to draw any conclusions.  Several other studies have 

documented a moderate degree of relationship between friendship and 

peer evaluations of leadership Hollander, 1956; Hollander and Webb, 

1955; Theodorson, 1957). 

Downey (Note 6) recently presented evidence that the use of full 

nominations (with small numbers of high and low nominations required) 

reduced the correlation between friendship and leadership evaluations 

compared with forced distribution ratings. 

It would seem that when an evaluator is faced with a choice of 

how to evaluate a friend, he will tend to select a friend rather than 

another person he considers of equal, or at least indistinguishable, 

merit.  Therefore, the variance associated with friendship may be a 

source of systematic error primarily in the middle of the distribution. 

This systematic error variance will increase in large groups where 

some members are relatively unknown to each other or the interaction 

patterns are not fully established for all members. 

Even in the face of the impressive research findings demonstrating 

the invalidity of the "popularity contest" issue, this remains as the 
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most consistent argument against the use of peer evaluations in an 

operational setting. A corrollary of this objection is the feeling 

that peer evaluators do not make the right choice, the best counter- 

argument to which is the impressive list of validity studies on peer 

evaluations. 

Length of Association 

When peer evaluations are considered for use in any situation, 

an important question concerns how long group members must have been 

in contact with each other before reliable and valid evaluations can 

be provided. For example, this issue is often raised in the context 

of transient training groups.  Research is fairly consistent in find- 

ing that peers can make reliable and valid evaluations after a relatively 

short period of time (typically 3 to 6 weeks). 

Subsidary to the overall issue is the question of the effect of 

including a new group member in an intact group. Mayfield (Note 14) 

has suggested that in such a situation there may be reason to suspect 

that a longer period of acquaintanceship is necessary for sufficient 

integration into the group to occur.  A more generalized way of 

approaching the question is the extent to which a person is known or 

not known to other members of the group.  Evidence has shown that 

an individual not well known to other members of the group will 

typically be evaluated as lying near the middle of the distribution 

within the group (Downey, Note 6). 

In terms of technique, a nomination procedure is most likely to 
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decrease the error variance associated with acquaintanceship while 

ratings or rankings would tend to capitalize on the error variance 

and show a greater degree of relationship with such measures. 

Type of Interaction 

While the use of peer evaluations has been extensive over a span 

of more than twenty-five years, they have nevertheless been applied in 

rather limited situations.  In fact, the majority of the research has 

been conducted with junior personnel in a military training context. 

Recent work outside the military by Weitz (1958) and subsequent follow- 

ups by'Mayfield (1970; Note 15) has been conducted in industry with 

insurance salesmen.  There has also been a recent effort to use a 

peer nomination process in a senior Army officer promotion system 

which produced supportive results (Downey, Me'dland, and Yates, Note 12), 

But, until more extensive research is conducted in broader organiza- 

tional contexts with a wider selection of subject populations, the 

generality of the peer evaluation process is largely a matter of 

conjecture. 

A related issue is the type of interaction required to produce 

valid evaluation.  Freeberg (1969) reported a study in which peer 

evaluations were more highly related to a performance criterion when 

the interaction between peers was relevant to the dimension being 

evaluated.  Bayroff and Machlin (Note 16) found that leadership 

evaluations could be made in an academic environment and were highly 

related to evaluations done after exposure to a situation where 
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leadership was displayed. Lewin, Dubno, and Akula (1971) indicated 

that video tapes supplied sufficient information for reliable evalua- 

tions and were highly related to evaluations from group members. 

It would be safe to assume that peer evaluations of a variety 

of complex human behaviors can be rendered reliably after exposure of 

the peers to each other in situations which require the individual to 

interact either with the environment or with other people in work 

oriented or socially oriented situations. Further, it can be surmised 

that the validity of the evaluations will be a function of the degree 

to which the particular behaviors are relevant to the dimension under 

study.  Hollander (1956) found that reliable evaluations were given 

after one hour of discussion between peers in a Naval OCS class, but 

that they had only a moderate degree of relationship with evaluations 

after 3 weeks, and were not as predictive of eventual job performance. 

This convergence of views by peers after a short period of exposure 

is probably a function of similar psychological maps of behavior on 

the part of peers, and the preliminary evaluations on limited informa- 

tion are subject to revision based upon further information.  There 

would seem to be little advantage of one evaluative technique over 

another as long as the technique does not require the evaluator to 

make finer discriminations than are possible based on the type of 

interaction. 
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Summary 

The peer evaluation technique has been used by researchers both 

as a criterion of complex human behavior and as an index of future 

potential. In either case, the particular dimension measured has 

varied considerably. The present paper reviewed the psychometric 

properties and related research findings of the four major techniques 

(ratings, rankings, full nominations and high nominations).  Several 

important similarities and differences were indicated. For example, 

only ratings can produce comparable scores across different groups 

without extensive assumptions.  In addition, results of research indicate 

little differences in measurement reliability between techniques. The 

limited findings also indicate that, in general, ratings and rankings 

are less acceptable and less feasible than either of the nomination 

techniques. 

Furthermore, a review of both the documented and likely effects 

of various situational factors on the evaluation process indicated 

the potential for major problems unless the researcher is aware of the 

issues. While no direct relationship was found between group size and 

reliability or validity of the evaluations, it can be assumed that very 

small or large groups will produce less reliable and less valid scores. 

Group structure and individual differences were found to be sources of 

potential problems which must be monitored and dealt with by the 

researcher.  The popular issues of friendship, acquaintanceship and 

type of interaction were reviewed, and there is little evidence that 
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they have a major impact on the validity of the scores.  Indications 

are that all techniques are relatively impervious to a variety of 

situational factors with the nomination technique being perhaps the 

most versatile. 

In brief, it has been shown that peer evaluations have been a 

fruitful tool in both research and application.  Several issues regard- 

ing their use remain to be resolved, but there is sufficient evidence 

to suggest that these issues are soluble and do not detract from the 

conclusion that peer evaluations are a very powerful tool for 

discriminating complex human behavior. 
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OBJECTIVE ANALYSIS OF CAMOUFLAGE VIA 

IMAGE INTERPRETERS 

RONALD L. JOHNSON 

US Army Mobility Equipment Research and Development Center 

Fort Belvoir, Virginia   22060 

ABSTRACT.   In the past the assessment of camouflage effectiveness by its 

subjective nature has been difficult to objectively quantify.   To accomplish 

this, 63 image interpreters analyzed imagery of a missile site.   Subjects 

reported which visual cues enabled site detection and identification.   There 

were 63 detections and 59 identifications with 13 visual cue categories for 

detection and 12 for identification.   The frequency of response per category 

ranged from 41 to 1 for detection and 42 to 1 for identification.   These 

frequencies were analyzed by the statistical technique "Minimum Contrasts" 

at a level of significance .05 and .01.   This procedure objectively determined 

which target items were well camouflaged and which needed improvement. 

I.   INTRODUCTION . 

The camouflage of military installations is becoming increasingly critical 

as both ground and aerial surveillance techniques improve.   The goal of the 

camouflage is to increase the survivability of the installations, and, 
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simultaneously, to be cost effective.   There is always the need for a reliable 

measure of the military worth of camouflage.   This cannot be estimated, 

however, without quantifying the effects of the applied camouflage.   In the 

past, this has been extremely difficult due to its inherent subjectivity. 

The purpose of this paper is to demonstrate a method for that quantification 

using the statistical technique "minimum contrast" to obtain an item analysis 

of the subjective cues identified by operational image interpreters. 

II.   DESIGN OF EXPERIMENT. 

The SAM site selected for experimentation was situated in a German 

agricultural area.   Three levels of camouflage were applied.   The first was 

uncamouflaged.   The second consisted of tone down painting all roads and 

buildings, plus construction of an adjacent decoy site.   The third level was 

camouflaged by simulating the surrounding agricultural fields and trees. 

This was accomplished by using camouflage nets, directional plowing, 

grass herbicide, and supplementary planting of shrubs and trees.   The decoy 

site in the second level was removed.   Each of the three levels were photo- 

graphed with 60% forward overlap using the following 5" format Kodak film: 

Black and White Plus X Kodak #2402 

Norma 1 Color Koda k #2 44 8 

\ 
Color Infrared Kodak #2443 

The resulting imagery was cut into strips approximately 15 frames long, the 

SAM site occupying at least two of the 15 frames.   Sixty-three US Marine 

Corps image interpreters were given thirty minutes to analyze these film 
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Strips.   Each level of camouflage and each type of film were viewed by 

7 randomly selected image interpreters.   Each interpreter was used only 

once.   The visual cues that enabled the image interpreters to make a 

detection and or an identification were recorded on the data sheet at the 

end of each test session. 

III.   EXPERIMENTAL RESULTS. 

All 63 of the image interpreters detected the SAM within the alloted 

30 minutes.   Fifty-nine identified the site.   The interpreters cited 13 visual 

cues which contributed to the site's detection and 12 other visual cues 

aiding site identification.   The visual cues for both detection and identifi- 

cation are extrapolations of specific military aspects of typical cues of 

psychophysical stimuli materials such as size, shape, contrast, texture, and 

color.   The cues cannot be identified in this report due to security classifi- 

cation, but are included in a confidential report by the author V.   Tables 1 

through 7 contain these detection cues averaged across different combinations 

of camouflage level and film type.   In addition each table shows the frequency 

the cue was reported by the image interpreters and which cues are significantly 

different from each other at the .05 and .01 level.   This test of significance 

was calculated using the technique of "minimum contrast" 2/.   "Minimum 

contrasts" is a method to compare two proportions to determine whether the 

observed contrast is significant at the chosen level.   The proportions for this 

study are the visual cue and the frequency the visual cue was cited by the 

interpreters as aiding them in site detection identification. 
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A 
B ** 

C ** 

D ** 

E ** * * * 

F ** ** ** * 

G ** ** ** * 

H ** ** ** ** 

I ** ** ** ** 

T ** ** ** ** 

K ** ** ** ** 

L ** ** ** ** *       * 

M ** ** ** ** **     ** 

TABLE I 

Significant Differences in Detection Between Visual Cues Averaged Across 
All Levels of Camouflage and Film Types. 

AB       C        DEF       GHI       J       KLM       Frequency 
41 
22 
21 
19 
11 
10 

8 
8 
8 
6 
5 
3 

ir       *       * 1 

Cell Size = 63 
* = Significant Difference at a = .05 

** = Significant Difference at a = .01 

TABLE 2 

Significant Differences in Detection Between Visual Cues Averaged Across 
Film Types,   Uncamouflaged Level. 

ABC        DEFGHI        JKLM        Frequency 
13 
10 

7 
4 
2 
3 
1 
3 
4 
4 
3 
3 

**     _ 1 

A 
B 
C 
D ** 

E ** 

F ** 

G ** 

H ** 

I ** 

J ** 

K ** 

L ** 

M ** 

** 

Cell Size = 21 
- = Border Line Significance at a = .05 
*= Significant Difference at <*= .05 
** = Significant Difference at   a = .01 

398 



A 
B - 

C - 

D 
E ** ** 

F * - 

G ** * 

H ** ** 

I ** ** 

J ** * * ** 

K ** ** 

L ** * * ** 

M **• * * ** 

 iiiBJLL j — 

Significant Differences in Detection Between Visual Cues Averaged Across 
Film Types, Tone-Down Plus Decoy Level. 

B      c        D     E      F      G     H     I       J      K      L      M       Frequency 
14 

6 
6 

10 
2 
5 
3 
2 
1 

~ 0 
1 
0 
0 

Cell Size = 21 
- = Border Line Significance at    a  =.05 
■* = Significant Difference at     a = .05 
** »Siginificant Difference at   a = .01 

TABLE 4 

Significant Differences in Detection Between Visual Cues Averaged Across 
Film Types, Full Camouflage Level. " ' ;* 

A      B      c D      E      F      G      H      I       J       K      L      M        Frequency 
14' 

G 
8 
5 
6 
2 
4 
3 
3 
2 
2 
0 
0 

Cell Size = 21 
- = Border Line Significance at     a = .05 
* = Significant Difference at    a = .05 

** = Significant Difference at    oi = .01 
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A 
B - ' 

C 
D * 

,E * 

F ** 

G ** 

H ** 

I ** 

J ** 

K ** 

L ** * * * 

M: ** * * * 



A 
B * 

C * 

D ** 

E ** 

F ** 

G ** 

II ** 

I ** 

J 
** 

K ** 

L ** 

U ** 

TABLE 5 

Significant Differences in Detection Between Visual Cues Averaged Across* 
Camouflage Levels, Film Type - B&W Plus X. 

A      B      C        D     £      F      G     H     I       J      K      L      k       Frequency 
16 

7 
6 
4 
2 
2 
3 
5 
1 
1 
2 
1 

**    ** 0 

Cell Size = 21 N     ' 
'- = Border Line Significance at a - .05 
* = Significant Difference at    «=.05 

**= Significant Difference at  «=.01 

TABLE 6 

Significant Differences in Detection Between Visual Cues Averaged Across 
Camouflage Levels, Film Type - Color. 

ABC DEFGHI       JKLM        Frequency 

9 
7 
7 
4 
3 
4 

**        ** 0 
5 
2 
1 

**       ** 0 
_ _ 1 

Cell Size = 21 
- = Border Line Significance at   a = .05 
* = Significant Difference at <* = .05 

** = Signicant Difference at   a =.01 
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A 
B 
C 
D 
E ** 

F ** 

G ** 

H ** ** 

I * 

J 
K 

** * 
** ** 

T, ** ** 

M ** ** 



TABLE 7 

Significant Difference in Detection Between Visual Cues Averaged Across 
Camouflage Levels, Film Type - Color IR. 

D        E      F      G      H     I       J       K      L      M    Frequency 
12 

6 
8 
8 
5 
5 

* 1 
3 
2 
3 
2 
2 

**      -       - 0 

Cell Size = 21 
-- = Border Line Significance at a = .05 
* = Significant Difference at a = .05 

**» Significant Difference at a = .01 

Tables 8 through 14 contain the 12 visual cues which contributed to site 

identification averaged across different combinations of camouflage and 

film type.   Cue frequency and significance at  a = .05 are again included 

as in the preceding   tables.   As before, the cues cannot be identified 

because of security classification. 

A B C 
A 
B 
C 
D 
E 
F 
G ** * 

H ** 

I ** 

J ** 

K ** 

L ** 

M ** * ** 
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Significant Differences in Identification Between Visual Cues Averaged 
Across All Levels of Camouflage and Film Types. 

ABC        D     E      F      G      H      I       J       K      L      Frequency 
42 
25 
15 
13 

8 
8 
8 
4 
2 
2 « 
1 
1 

Cell Size = 59 
* = Significant Difference at   a   = .05 

**= Significant Difference at    a = .01 

TABLE  9 

Significant Differences in Identification Between Visual Cues Averaged 
Across Film Types, Uricamouflaged Level. 

A 
B ** 

C ** 

D ** * 

E ** ** 

F ** ** 

G ** ** 

H ** ** * * 

I ** ** ** ** 

T ** ** ** ** 

K ** ** ** ** * * * 

L ** ** ** ** * * * 

B 
A 
B ** 

C ** 

D ** 

E ** 

F ** 

G ** 

H ** 

I ** * 

T ** * 

K ** ** 

L ** ** 

D      E      F      G      H      I       J       K      L      Frequency 
17 
8 
2 
7 
5 
6    ■ 
4 
2 

* 1 
* 1 
** * * 0 
**    *       *                                                                          0 

Cell Size = 17 
* = Significant Difference at    a  = .05 

**= Significant Difference at    a = .01 
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B 
C 
D * 

E ** 

F ** 

G ** 

H ** 

I ** 

J ** 

K ** 

L ** 

Significant Differences in Identification Between Visual Cues Averaged 
Across Film Types, Tone-Down Plus Decoy .Level. 

ABC        DEFGHIJKL      Frequency 
12 
6 
7 
4 
2 

* 1 
2 

* 1 
**                                                                                                   0 
* 1 
* 1 
** o 

Cell Size = 17 
* = Significant Difference at    a   = .05 

**= Significant Difference at    a  = .01 

TABLE 11 

Significant Differences in Identification Between Visual Cues Averaged 
Across Film Types, Full Camouflage Level. 

A       B      C D      E      F      G      H      I       J       K      L      Frequency 
13 
11 
6 
2 
1 
1 
2 
1 
1 
0 
0 
1 

Cell Size = 17 
* = Significant Difference at   a    = .05 

** = Significant Difference at   a   = .01 

A 
B 
C * 

D ** ** 

F, ** ** 

F ** ** 

G ** ** 

II ** ** 

T ** ** 

J 
K 

** **     * 
** **     * 

L ** ** 
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TABLE !2 

Significant Differences in Identification Between Visual Cues Averaged 
Across Camouflage Levels, Film Type - B&W Plus X. 

ABC DEFGHIJKL      Frequency 
•■ 15 

8 
2 
4 
3 
3 
1 
2 
0 
0 
0 
o   ■'. 

Cell Size =17 
* = Significant Difference at    a  = .05 

**= Significant Difference at    a — . 01 

TABLE 13 

Significant Differences in Identification Between Visual Cues Averaged 
Across Camouflage Levels, Film Type - Color. 

A 
B * 

C ** 

D ** 

E ** 

F ** 

G ** * 

H ** 

I ** ** 

T ** ** 

K ** ** 

L ** ** 

A 
B 
C 
D 
E 
F 
C 
II 
I 
J 
K 
L 

ABC DEFGHIJKL      Frequency 
10 
10 
4 
5 

* * 2 
* * 3 
* * 2 
** ** 1 
** ** 1 
** ** 1 
** ** 1 
**     **                                                                                                                  1 

Cell Size = 17' 
* = Significant Difference at   <*   = .05 

**= Significant Difference at   a   = .01 
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TABLE 14 

Significant Differences in Identification Between Visual Cues Averaged 
Across Camouflage Levels, Film Type - Color IR. 

B D H     I       J K 
A 
B ** 

C ** 

D ** 

E ** 

F ** * 

G ** 

H ** * ** 

I ** * ** 

J ** * ** 

K ** ** ** 

T, ** ** ** 

Frequency 
17 

7 
9 
4 
3 
2 
5 
I 
I 
1 
0 
0 

Cell Size = 17 
* = Significant Difference at   a = .05 

**= Significant Difference at   a = .01 
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IV:   DISCUSSION. 

A review of tables 1-7 demonstrates that the isolation of the critical 

visual cues for site detection was accomplished by the use of "minimum 

contrasts."   Detection cue A was a significant factor in all tables for the . 

detection of the SAM site.   There was virtually no change in the importance 

of this cue in site detection when analyzed across levels of camouflage 

and film type.   Therefore,more effort must be expended to prevent this cue 

from becoming a major factor in target detection.   The addition of the decoy 

site adjacent to the SAM site had a pronounced effect in increasing the 

number of significant cues that allowed the image interpreter to detect the 

site (table 3).   Visual cues E and F, and H through M did not have much 

effect on site1 detection either for level of camouflage or type of film analyzed. 

The number of cues leading to site detection was greater for the color and 

color infrared film than- for the black and white film (tables 5-7).   As is well 

known, more information is presented to the image interpreter on color and 

color infrared film than on black and white imagery. 

Tables 8-14 indicate that the use of "minimum contrasts" to isolate 

the critical visual cues in the identification of the SAM site was successful. 

•Visual cues important for site identification were different from those for   site 

detection.   Identification cues A and B were the most important except for 

camouflage level two containing tone-down and site decoy.    For this 
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case, cues A and C were the most prominent in site identification (table 10). 

The effects of visual cue C were essentially nil for levels one and three 

(Tables 9 and 11).   Visual cues D through L had little effect on site identi- 

fication when analyzed by level of camouflage or type of film.   Color infrared 

film generated more visual cues to target identification (Table 14) than both 

color and black and white films (Tables 12-13).   We consider this to be 

due to the greater amount of information presented to the image interpreter 

with color infrared film than for the other two film types.. The results 

indicated that this approach was a valid method to objectively analyze 

subjective cues. 

V.   SUMMARY AND CONCLUSIONS . 

The problem faced in this study was to objectively analyze the effects 

of levels of camouflage on detection and identification.   A SAM site was 

selected and photographed.   Subjective visual cues were elicited from 

operational image interpreters in response to specially prepared classified 

packets of site photography.   These cues for both detection and identifi- 

cation were grouped into categories and analyzed'for:significance using the 

technique of "minimum contrasts".   This technique facilitated the . 

quantification of the subjective cues used by image interpreters in site 

detection/identification for levels of camouflage and types of photographic 

film. 
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A SIMPLE METHOD FOR DETERMINING THE 
UNRESTRICTED AVERAGE OUTGOING QUALITY 

LIMIT (UAOQL) OF A CONTINUOUS SAMPLING PLAN 

Richard M. Brugger 
RAM Assessment Division 

Product Assurance Directorate 
US Army Armament Command 
Rock Island, Illinois 

ABSTRACT.  This paper provides a simple algorithm for 
determining the Unrestricted Average Outgoing Quality 
Limit (UAOQL) of a continuous sampling plan.  The deriva- 
tion of the algorithm is shown. 

1.1  INTRODUCTION.  As a prerequisite to a discussion 
of the UAOQL, some review of the fundamentals of continu- 
ous sampling is in order. 

Most statisticians are familiar with the concept of 
sampling from a lot.  For example, we might have a lot of 
one hundred items, from which a sample of size seven has 
been drawn.  The acceptance decision for the lot will be 
based on the results found in the sample.  For example, 
the rules of the sampling plan we are using might say that 
if two or fewer units out of the sample of size seven are 
defective, we shall accept the lot.  If three or more units 
are defective, we shall reject the lot. 

Under continuous sampling, we do not use the concept 
of sampling a certain number of units from a lot of material, 
Instead, we carry out inspection as the units are produced 
and flowing along the production line. 

The prerequisites for using a continuous sampling plan 
are: 

a. Moving product. 

b. Ample physical facilities for 100% inspection when 
necessary. 

c. Relative ease of inspection    , 

d. A process capable of producing homogeneous material, 
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An example of a continuous sampling plan is Harold 
Dodge's CSP-1 [2].  Dodge was the original developer of 
continuous sampling plans, and published his first work ., ., 
on the subject in 1943.  Under CSP-1, at the start of _ 
inspection, the screening crew inspects 100% of the units. 
When some prespecified number, i, of consecutive units are 
free of the defects concerned, that is, the defects for 
which we are inspecting, the screening crew is released 
from 100% inspection and the sampling inspector inspects 
a prespecified fraction, f, of the units, where the sample 
units are selected in a random manner as they pass the 
point of inspection.  If a defective unit is found, 100% 
inspection is resumed, and the cycle repeats itself as 
necessary during the remainder of production. 

We made mention of the values of i and f, which are 
specified for each individual CSP-1 plan.  For example, _ 
we might have a clearance number, i, of twenty units, and 
a sampling frequency, f, of one in ten. 

Some of the functional properties of a CSP-1 plan 
(or any CSP plan for that matter) that are usually of 
interest to the statistician are the following: 

a. The Average Fraction Inspected, of AFI, which is 
the expected value of the fraction of material that will 
be inspected over an indefinitely long period of time when 
each unit has probability p of being defective. 

b. The Average Outgoing Quality, or AOQ, which is 
the expected fraction of material that is defective in 
accepted material over an indefinitely long period of time 
when each unit has probability p of being defective. 

c. The Average Outgoing Quality Limit, or AOQL, 
which is the maximum value of AOQ. 

Thus far, we are talking about properties based on 
the assumption that each unit has probability p of being 
defective.  This is of course a very restrictive assump- 
tion, since one might intuitively feel that in the real 
life situation, p would undergo some sort of variation 
over time.  For this reason, statisticians concerned them- 
selves with the problem of how to describe the mathematical 
properties of continuous sampling plans when p varied over 
time.  In 1953, Lieberman [4] presented an analysis of 
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CSP-1 under the assumption that p was not constant for each 
unit.  He determined that the worst situation would be the 
one where only good units reached the inspector during 
phases of 100% inspection, and only bad units reached the 
inspector during phases of sampling inspection. 

The outgoing quality reflected by this worst possible 
situation eventually came to be called the Unrestricted 
Average Outgoing Quality Limit, or UAOQL.  There is a very 
interesting paper on the UAOQL by Sackrowitz [5] in the 
April 1975 Journal of Quality Technology; however, 
Sackrowitz *s definitions are somewhat different from what 
we will discuss here. 

There are two general cases that we will consider: 
that situation where defective units found are removed from 
the flow of product and replaced with good units, and the 
situation where defective units found are removed from the 
flow of product but are not replaced with good units. 

For the replacement case, White [6] carried out a 
quite complex derivation involving linear programming to 
show that for a broad class of plans, the UAOQL would re- 
sult from that situation where for any phase of inspection 
of a plan, either all good units are submitted during every 
occurrence of the phase or all bad units are submitted 
during every occurrence of the phase. White [7] computed 
numerical solutions for plans from DOD Handbook H106. 
Endres [3], an employee of mine at the time, showed that 
this rule would apply also in the case where defective units 
were removed from the flow of product, but were not replaced 
with good units. 

2.  DISCUSSION.  With the difficult mathematical proofs 
thus out of the way, the possibility of developing a simple 
algorithm presented itself [1].  The phases of inspection 
could be treated ss  states in a Markov chain.  Remember that 
the UAOQL will result from a situation where for every occur- 
rence of each phase, either only all nöndefectives are sub- 
mitted for inspection, or only all defectives are submitted 
for inspection. 
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Let us define configurations to be the values of 

y - (<(>(1) , ..., ^>(k)) , 

where 

k = number of states 

4>(j) = 0 if during occurrences of the phase represented 
by state j only nondefectives are submitted for 
inspection. 

<j>(j) = 1 if during occurrences of the phase represented 
by state j only defectives are submitted for 
inspection. 

It is clear that for any plan of the type we are considering, 
then, there will be 2k configurations.  For even moderate 
sized values of k, the problem could be difficult if we had 
to consider every configuration. Fortunately, we can make 
the problem smaller. 

Let us first go through the case where defective units are 
removed and replaced with good units. 

Theorem 1;  If a configuration exists such that for any 
state j 

(i)   $(j) = 0, and 

(ii)  State j is an absorbing barrier, 

then this configuration need not be considered in deter- 
mining the UAOQL. 

Proof;  Under the conditions stated in the theorem, the 
long run outgoing quality would be zero. 

Theorem 2;  If a configuration exists such that for any 
state j 

(i)  <|>(j) = 1, and 

(ii)  State j is an absorbing barrier, 

then this configuration need not be considered in deter- 
mining the UAOQL. 
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Proof : Under the conditions stated in the theorem, the 
long run outgoing quality would be zero. 

We thus see that all configurations involving absorbing 
barriers can be disregarded. 

Consider CSP-1. Let state 1 be the 100% inspection state 
and state 2 be the sampling state. We have the following 
configurations: 

Y    = (0V 0) 

y = (0', 1) 
2 

y3 = (1, 0) 

y4 = (i, i) 

Configurations with cj>(l) = 1 or §(2)   = 0 can be disregarded, 
since these would represent absorbing barrier situations. 
Therefore yx, y3, and y^ can be disregarded.  The remaining 
configuration, y2, represents the situation under which the 
UAOQL occurs; no defective units are submitted during periods 
of 100% inspection, only defective units are submitted during 
periods of sampling inspection. 

Let us now define another term. 

A sequence of states which repeats itself indefinitely under 
the conditions imposed shall be called a cycle.  For example, 
if a Markov chain consists of four states, and if a configura- 
tion results in a sequence of states (1, 2, 3,4, 3, 4, 3, 
4 ...), then (3, 4) is a cycle. 

Theorem 3;  The long run outgoing quality for a configura- 
tion involving cycles is equal to the average number of 
defectives passed in a cycle divided by the average number 
of units passed in a cycle. 

Proof;  The long run outgoing quality is , 

m 
E 

lim i=l defectives passed in cycle i 
m-»-»  m 

X 
i=l units passed in cycle i 
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lim  m(AVERAGE NUMBER OF DEFECTIVES PASSED IN A CYCLE) 
m-»-»     m(AVERAGE NUMBER OF UNITS PASSED IN A CYCLE) 

AVERAGE NUMBER OF DEFECTIVES PASSED IN A CYCLE 
AVERAGE NUMBER OF UNITS PASSED IN A CYCLE 

Considering CSP-1 again, it has been shown that only configura- 
tion Y2 ~   (°r 1) need be considered.  Since the sequence of 
states (1, 2. 1, 2, ...) occurs, we may refer to (1, 2) as 
a cycle.  Using Theorem 3, we may then say that 

AVERAGE NUMBER OF DEFEC-     AVERAGE NUMBER OF DEFEC- 
TIVES PASSED DURING 100%     TIVES PASSED DURING SAMPLING 

UAOQL - AVERAGE NUMBER OF UNITS 7  AVERAGE NUMBER OF UNITS 
PASSED DURING 100% PASSED DURING SAMPLING 

0 + (-T- - 1}    1 - f 

where i is the length of 100% inspection and f is the 
sampling frequency.  Let us now consider the case where 
defective units found are removed but not replaced with 
good units. 

Theorem 1';  If a configuration exists such that for any 
state j 

(i)   $(j) = °» and 

(ii)  State j is an absorbing barrier, 

then this configuration need not be considered in determining 
the UAOQL. 

Proof:  Under the conditions stated in the theorem, the 
long run outgoing quality would be zero. 

We see that this is the same as Theorem 1 for the replace- 
ment case. 

Theorem 2':  If a configuration exists such that for state 
1 (corresponding to the first phase encountered 
in using the sampling plan) 

(i)   <f>(l) = 1, and 

(ii)  State 1 is an absorbing barrier, 

Then this configuration need not be considered in deter- 
mining the UAOQL. 
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Proof:  Under the conditions stated in the theorem, no 
product would be passed at all, hence, outgoing quality would 
not be defineable. 

Theorem 3': If the number of units passed in a cycle is 
greater than zero, then the long run outgoing 
quality for a configuration is equal to the 
average number of defectives passed in a cycle 
divided by the average number of units passed 
in a cycle. 

Proof:  Same as Theorem 3 for the replacement case. 

Theorem 4':  If a cycle passes zero units, it is only neces- 
sary, in determining the long run outgoing 
quality, to consider those states, if any, 
which occur before cycling begins. 

Proof:  The fraction defective of material passed by the 
inspection system would remain unchanged once cycling begins, 
since no more units would be passed.  This theorem is useful 
when a 100% inspection state other than state 1 is an 
absorbing barrier. 

As an example, let us consider the simple case of CPS-1 
again under the nonreplacement assumption. We have the 
configurations 

*1= (0, 0) 

*2  = (0, 1) 

^3  " (1/ °) 
y4 = a, i) 

Configurations with <l(l) =1 or c|>(2) = 0 can again be dis- 
regarded, since these would represent absorbing barrier 
situations with no defective units passing.  Again y2 = 
(0, 1) is the only configuration that need be considered. 
In the replacement case, then, 

UAOQL = 

AVERAGE NUMBER OF DEFEC- 
TIVES PASSED DURING 100% 
AVERAGE NUMBER OF UNITS 
PASSED DURING 100% 

AVERAGE NUMBER OF DEFEC- 
TIVES PASSED DURING SAMPLING 
AVERAGE NUMBER OF UNITS 
PASSED DURING SAMPLING 

0 + (- 

i + (- 

- 1) 

- 1) 

1 - f 
f(i - 1) + 1 
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In our examples,  we have used the simplest case,   CSP-1. 
However,   in practice,  we have found that we can use this 
method  for plans of  some  complexity in order to determine 
the UAOQL for either the  replacement or the nonreplacement 
case. 
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SEMI MARKOV CHAINS APPLIED TO MARKOV CHAIN 
FUNCTIONALS PARTIALLY DEPENDENT ON 

RANDOM BACKWARD TIME SHIFTS 

David L. Arp 
Naval Weapons Center 
China Lake, California 

ABSTRACT.  Given a Markov Chain (MC) model for a particular Continuous 
Sampling Plan (CSP) , a method of restructuring its states into a simpler 
Semi Markov Chain (SMC) pattern is used to analyze MC functionals which 
are partially defined by random backward shifts in operational time.       > 

Specifically, the usual MC model, for the Job Shop case of CSP-1, 
initially starts with an inspection phase of I states and thereafter cycli- 
cally alternates between it and a sampling phase. However, whenever sampling 
is terminated, this plan is modified by the additional requirement of a 
(limited) Downstream Inspection (DSI) of the previous I units followed by a 
phase transition determined by the outcome of such an inspection. For a pro- 
duction run of length N, this modification induces a corresponding one in the 
expected value of the associated basic functional: Fraction Inspected [FI(N;1)], 
Both modifications are handled here by 1.) slightly changing the usual SMC 
reduction and 2.) coupling this change with a new functional: Incremented 
Fraction Inspected [IFI(N;2)]. The expected value of the functional Total 
Fraction Inspected [TFI(N;2)] is then expressed as the expected value of the 
sum of two terms:  the new functional and the (unmodified) functional, FI(N;2), 
defined on the altered SMC.  In addition to comparing the long run expressions 
for TFI and AFI, a comparison is also made between TFI and the expression which 
results from the more familiar requirement of (limited) Upstream Inspection 
(USI)• 

In analyzing the above situation for finite N, two interpretations of 
DSI are subsequently studied. The first, based on possible inspection or 
manufacturing irregularities in both phases, is the scheme already referred 
to above.  The second, based only on the putative assumption of sampling phase 
irregularities, is a less strict version.  For N infinite, a comparison is made 
between the expected values of the two TFI's. 

Since, in either of the two plans, TFI does not explicitly take account 
of multiple inspections of the same unit, other measures of plan performance 
are considered which do. To this end, the paper concludes with a study of the 
functional Fraction of Repetitions (FR), its first moment, and a variant func- 
tional.  In order to deal with this functional, further modifications in the SMC 
model for CSP-1 are necessary. 
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1.0 BACKGROUND. 

1.1 Introduction.  The principal subject of this paper is the study of 
variations in one member of a class of sampling plans and functionals de- 
fined on these variations.  The class referred to is that of certain 
Continuous Sampling Plans (CSP) which are treated as finite state, irre- 
ducible, time homogeneous, and aperiodic Markov Chains (MC).  The element 
referred to, classically denoted by CSP-1, is the simplest element of this 
class.  In dealing with these MC models, four different kinds of standard 
groupings, called phases, of their states can be distinguished:  screening 
(sc), unlimited sampling (uls), limited sampling (Is), and checking (ck). 
Using the terminology of phases, a given CSP can then be defined as a 
collection of two or more different phases (normally, one of which is sc) 
which are linked together in accordance with sampling frequency criteria. 
Throughout the bulk of the paper, only the two canonical phases making up 
CSP-1 will be considered; interest will be especially focused on structural 
changes in uls which are brought about by Downstream Inspection (DSI) . At 
the end of Chapter 3, the checking phase will also be briefly considered 
since it can be regarded as Upstream Inspection (USI). 

CSP-1 and the major variation in it, brought about by DSI, are portrayed 
in Figure 1. 

Figure 1 

CSP-1 and DSI 

if defect is 

found 

one or more 

defects found 

inspect I 
previous units 

100% 

if defect 

is found 
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In Figure 1, CSP-1 consists of the top two boxes connected together 
with the solid lines. The DSI plan, denoted by CSP-12, is obtained from 
CSP-1 by replacing the top solid line by the dotted ones and adding the 
lower box. Two approaches will be used to handle this change. 

The first approach, given in Chapters 2 and 3, consists in counting 
only the extra units inspected without regard to any inspection repetitions 
due to DSI. In the second approach, given in Chapter 4, all units inspected 
are also counted, but now including repetitions. Both approaches use, as 
the main tool, Semi Markov Chain (SMC) reduction of MC models which is now 
briefly described. 

In describing SMC reduction, the term macrostate will be used to refer 
to an ensemble of MC states which is structured as a (discrete) SMC state 
(e.g., a canonical phase of a CSP). To be a macrostate, an ensemble must 
satisfy two conditions.  1.) The MC probability of entrance vector (pev) 
into the ensemble, given that such an entrance occurs, must be stationary 
and independent of the state from which the entrance is made. In other 
words, letting the ensemble S be composed of the k MC states, j, 1 < j < k, 
we impose the condition that, for an arbitrary time n, 

v(n) = v 

where 

v(n) = (vx(n), v2(n),  , vk(n)) 

Vj(n) = P[M(n) = j|M(n) in S, M(n-l) not in S] 

and 

M(0 is the MC process. 

2.) Subject to the restrictions of 1.) for a given target macrostate, an 
exit can occur from a MC state of the ensemble into a MC state of the 
macrostate only if the first state communicates with the second in the 
underlying MC.  To avoid a circular construction, we finally note that 
any MC state is, itself, a (trivial) macrostate. 

Two different, but equivalent, methods can be used to construct such 
macrostates from MC states:  the MC method, which is pedestrian, but straight- 
forward, and the SMC method, which is more subtle but nearer to the general 
idea of SMC reduction. Under either method, MC functionals induce well defined 
SMC ones and the MC properties of time homogeneity, irreducibility, and 
aperiodicity are preserved [cf., 6.2 and 6.8]. 
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In the MC method, the component states of a given macrostate and 
the possible exit macrostates are the transient states and the absorbing 
states, respectively, of an absorbing MC which is derived from a parti- 
tioning of the original MC.  The possibly defective probability density 
function (pdf) of a transition of the macrostate to any one of the target 
macrostates is then just the weighted sum of the first entry probability 
functions, each weighed by the component in the stationary pev.  In the 
more constructive SMC method, a given parent macrostate is considered to 
be made up of two or more smaller macrostates (including a MC state with 
or without self transitions).  To such a division, the "MC method" is 
applied, only now to an absorbing SMC.  The derived system of Backward 
Equations (see A.21), or, in simpler situations, direct combinatorial 
analysis is then applied to obtain the resulting first entry SMC probabil- 
ity functions.  Their weighted sum, again weighed by components of the 
(induced) stationary pev, yields the pdf of the parent macrostate (to some 
one target macrostate). This latter method is easier to use and intuitively 
more appealing; it will be used almost exclusively throughout this paper 
except for a simple example of the MC method given at the end of Chapter 1. 
Furthermore, the SMC method, at any stage in its use, emphasizes the concepts 
1.) of constructing from a given MC a class of SMC's which is partially 
ordered by filtration [6.2 and 6.7] and 2.) of using different elements of 
this class to attack either different problems or different stages of one 
problem which arise from the original MC. 

Neither of these two methods should be confused with the process of 
lumping as it is defined in [6.13].  In fact, for CSP's, it is not possible 
to lump the states in each phase, in the above sense, into a new MC state. 
A more thorough presentation of SMC reduction, with many applications, can 
be found in [6.2]. What notation, definitions, and theorems concerning SMC's 
that are needed in this paper are taken from this reference and can be found 
in the Appendix. A more heuristic approach to SMC reduction (for the 
stationary case) together with further applications can be found in [6.4, 
6.5, and 6.6] where it is called The Simplified Markov Chain Method. 

In summary, the MC method can be stated as follows.  Given the compo- 
nents, vj, of the pev and the MC first entrance probability function 

from j to a target macrostate (absorbing state) A, the equation for the pdf 
from S to A is (see Appendix for notation) 

k 

QsA<n>  - E VJfJ>A  ' (M) 
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Similarly, the SMC method leads to the same form for the RHS of Eq. Al 
in which the f's are replaced by SMC first entrance probability functions. 

Another ubiquitous tool, used in concert with SMC reduction, is the 
z-transform. The transform is applied here to probability sequences 
rather than to the transitional matrices themselves. This approach is 
taken because, in practical applications, the ranks of the matrices are 
quite large (about 3 x 102 and greater). Thus the ranks of the complex 
functional matrices, obtained via the transform, would be so large that 
1.) important relationships would be obscured and 2.) an analysis of them 
would be almost as difficult as that done without the transform.  The 
salient features of the transform can be found in [6.3 and 6.12]. We re- 
cord here only some basic notation that will be used with sequences treated 
as functions from the natural numbers to the reals. Given a sequence a(n), 
ä(z) is its z-transform. Given sequences a(n) and b(n), a*b(n) is their 
convolution.  5n(k) denotes the (Dirac) sequence which is one for the 
argument equal to n and zero otherwise; §n(z) = l/z

n.  H^k) denotes the 
(Heaviside) sequence which is one for the argument greater than or equal 
to n and zero otherwise; Hn(z) = (L/zn)(z/(z-l)), 

1.2 SMC(l) and FI(N;1).  The basic premise used in modelling a CSP is 
that the underlying production process is a Bernoulli process with a con- 
stant probability of defective p (and probability of non-defective q = 1-p). 
In particular, the MC structure of CSP-1, which is fully described in [6.1, 
6.2, and 6.4], arises from the sequential sampling scheme imposed on the 
above process with an operational time defined by the flow of non-repeating 
production units. The SMC model of CSP-1, derived from the MC model, is 
given in Figure 2 and is denoted by SMC(l). 

Figure 2 

SMC Model of CSP-1 (SMC(l)) 
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For the model in Figure 2,1= clearance number for sc, f = sampling 
frequency for uls, p = probability of defective, q = 1-p, and we have the 
following statements expressed in 

Theorem 1.  Let sc = 1 and uls = 2.  Then, SMC(l) is an irreducible 
SMC. 

Proof.  The SMC states are 

(1; Ql2(z)) and (2; Q2i(z)), 

where 

Ql2(z) =£^fyLl and02l(z) = z-3 
(1.1) 

In Eqs. 1.1, <f>(z) = zI(z-l) + y,Y = pq1, 6 = fp, and ß = 1-« ■ 

The transitional matrix of the embedded MC is 

1   2 

1 0   1 

2 10 

Even though it clearly has period 2, the SMC is none-the-less aperiodic 
[6.2 and 6.8].  It easily follows from the matrix that e_ = (1/2, 1/2) is 
the stationary (but not long run) vector. 

Using the notation in the Appendix (see A.25), 

Vi  = . I=SL! and U2 = 
pqj fp 

The last two statements and A.25 imply 

M, ^2 
Pl («,;!)=  i    and P2(»;l) = 

V1 + V2 ^l+lJ2 
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Further details are found in [6,2] which finishes the proof. 

The expressions (l-qI)/pqI and 1/fp, in Theorem 1, appear throughout 
the paper and will hereafter be abbreviated by the symbols y\ and u'2 , 
respectively. These special primed symbols are used to avoid confusion 
with standard notation (see A.25) and, at the same time, to serve as a 

reminder of their origin (ie, CSP-1). 

The principal measure of plan performance for CSP-1 is the Fraction 
Inspected (FI) functional which is given in 

Definition 1.  For a production run of length N and sampling plan CSP-1, 

N 

FI(N;1) = 1-|J] C2(j) 

where C2(«) is the characteristic function for state 2 = uls and v = 1-f. 

Taking the expected value of the above functional, conditioned by an 
initial start in sc (Job Shop case), letting N approach infinity, and using 

the Ergodic Theorem, we have [6.1 and 6.2] 

AFI(°°;1) = l-vP2 («>;!) (A2) 

where the LHS of Eq. A2 is defined by 

Lim   E„r[FI(N;l)] 
N -»- » 

1.3 MC Method (An Example).  The MC method will be briefly illustrated by 
applying it to the MC model of uls.  This model consists of two MC states: 
SN, the non-inspection state and SI, the inspection state. The transitional 
matrix of the absorbing MC, derived from the MC model of any CSP having a uls 

phase, is 

SN SI A 

SN V f 0 

SI qv qf P 

A 0 0 1 
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where A is the only possible target phase to be entered,  The pev for the 
ordered ensemble S = (SN, SI) is v = (v,f) which induces an initial pro- 
bability vector (v,f,0) for the states (SN, SI, A), where A is the absorbing 
state, the other two being transient,  Thus, from Eq. Al, we need to derive 
the expression 

<v>fSN,A + (f>fSI,A  • 

From the Chapman-Kolmogorov equation, a difference equation for the first 
entry probability functions can be derived.  z-Transforming this difference 
equation, we obtain 

Quls,A(z) = «/(z-3) 

where     6 = fp and ß = 1-6. 

In a similar manner, Qsc A(z) can be derived using an (1+1) x (1+1) 
transitional matrix consisting of I transient and one absorbing states 
[6.2].  Also, for this latter function, see [6.10, Chp. 13] for a differ- 
ent derivation which is based on renewal theory and Bernoulli trials. 

1.4 Notation and Terminology. Three essentially different plans will be 
studied in future chapters.  They are denoted by CSP-12, CSP-13, and 
CSP-14.  For ease in indexing functionals, CSP-1 will henceforth be denoted 
by CSP-11.  SMC models associated with the above plans will be denoted by 
SMC(k), k a positive integer; in one case, a Markov Renewal Process (MRP) 
model is constructed for CSP-12 and is denoted by MRP(2). A MC state with- 
out self transitions will be called a trivial SMC state; one with self 
transitions will sometimes be considered as a (non-trivial) SMC state with 
a geometrically distributed holding time. A [functional] will usually mean 
Esc [functional] for the models considered.  In particular, with respect 
to some other set of models, A [•] could have an entirely different defini- 
tion.  Theorems, propositions, and definitions are numbered consecutively 
throughout the paper.  Statement y of section x in the Appendix will be 
denoted by A.xy. 
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editorial assistance on a fairly difficult subject. 
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1.6 Principal Results. For the quantities referenced below, 6 = fp, 
ß = 1-6, and v = 1-f. 

Eq. A2 gives AFI(»;1); P2(°°;l), v'i, and u^ are given in Theorem 1. 

Eq. B8 gives ATFI(°°;2); P2(°°;2) is given in Theorem 4 and TFI is 
defined in Definition 2. 

Eq. C8 gives ATFI(<»;3); P2(°°;3) is given by Eq. C7. 

Theorems 17 and 20 give AFR(°°;2); Theorem 18 gives AFR'(«>;2). 

Theorem 7 compares ATFI(°°;2) and AFI(°°;1); Theorem 14 compares 
ATFI(°°;2) and ATFI(°°;3). 

2.0 DSI - GENERAL. Having initially started in the screening phase 
(Job Shop case), if a defect is found in the sampling phase at time n, 
n > I, Downstream Inspection (DSI) requires 1.) a return to unit n-I with 
100% inspection of the succeeding I units and 2.) entrance to the sampling 
phase (screening phase) if no (one or more) defects are found upon com- 
pletion of 1.). DSI is portrayed in Figure 1, Chapter 1. 

2.1 Introduction. If the DSI stage is, for the moment, intuitively 
looked on as a "pseudophase", the Total Fraction Inspected (TFI) can be 
obtained by treating it as a modification of FI(N;1).  Conceptually, this 
modification can be broken down into two separate parts. The first is an 
additive fractional increase due to a sum each term of which, after 
multiplication by N, is equal to v min(k,I) where k+1 is the duration of 
the corresponding sampling phase segment.  The second is a nonlinear de- 
crease in FI(N;1) due to the transitional requiremtnts that come into force 
upon leaving the "pseudophase"* The decrease occurs because, upon finding 
a defect, there is a chance of immediate (at least in the sense of opera- 
tional time) return to the sampling phase rather than an automatic entrance 
to the screening phase which would otherwise take place in CSP-11. The 
finite probability of this immediate return results in a fractional increase 
in units not inspected and, therefore, a corresponding fractional decrease 
in units inspected. 

These remarks lead to the following proposed solution. The nonlinear 
decrease can be dealt with by weaving the transitional requirements of the 
"pseudophase" into the SMC structure of CSP-11 thereby yielding a new SMC 
and its Fraction Inspected function, FI(N;2). The additive increase can then 
be easily handled by coupling a new Incremented Fraction Inspected functional, 
IFI(N;2), to FI(N;2).  Adding these two functionals, we finally have 
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Definition 2, The Total Fraction Inspected is given by 

TFI(N;2) = FI(N;2) + IFI(N;2). 

In this chapter, ATFI(°°;2) is found and compared with AFI(°°;h), 
h = 1,4.  In Chapter 4, other functionals and SMC models are studied 
since'the one considered here and its transient version, treated in 
Chapter 3, are not complete measures of plan performance. 

2 2 MRP(2) and IFI(°°;2).  For ATFI(°°;2), the solution proposed in the 
introduction suggests a model for CSP-12 given in Figure 3 and denoted by 
MRP(2).  This model is a Markov Renewal Process whose definition is given 

in A.19 (also see A.28). 

Figure 3 

Model for CSP-12 (MRP(2)) 

Concerning the model in Figure 3, we have 

Theorem 2. MRP(2) is a MRP. Letting sc = 1 and uls = 2, the states 

are 

(l;Ql2(z)) and(2;021(z), §12(z)) 

where 

and 

Q22(z) --£f (2.3) 
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Proof. Eq, 2.1 follows from the model for CSP-11. Eqs. 2.2 and 
2,3 follow from the model for CSP^ll and the introductory remarks to 
Chapter 2 since, upon completion of a DSI segment, the sampling phase 
(screening phase) is entered with probability ql (probability l^q1) 
with operational time playing no role, MRP(2) is a MRP by definition. 

The definition of FI(N;2) is of the same form as that given for 
FI(N;1) in Definition 1. We now define the incremental functional in 

Definition 4. Let W(-) be the following functional: 

W(t) = £ Rs+ (l-C2(t))R£+i 

s=l 

where £ = N2(t)-1 and Rs = min(k,I) If the s
th exit from state 2 takes 

place (k+1) time units from the sth entrance.  Then the Incremented Fraction 
Inspected functional for MRP(2) is 

IFI(t;2) = v 5Ü1 

where 

v = 1-f. 

Filtering out state 1 from MRP(2), we obtain the pdf of the renewal 
time for an occurrence of state 2 which is given by 

Q22(t) = Q2l*Ql2(t) + Q22(t). 

Thus, averaging the time over one renewal cycle, we have 

00 

E[T] = Y^ kP[T21 + T12 = k or T22 = k] 

k=l 

= £ k Q22(k) 
k 
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= Ek Q21*Ql2(.k) + J]k Q22(k), 
k k 

From the mean value property of the z-transform, we must evaluate 

-zDz(Q2iQi2) and -zDz(Q22) 

at z = 1. Calling the results of the evaluation m^ and m2, respectively, 
we have 

T q1 ml = 6  ^1 + y,2 .) and m2 = 5 

where 

1 = «(1-q1). 

Proposition 1. 

E[T] = (l-q1)^! + y'2 (Bl) 

Proof.  See above. 

Averaging W(«) over one cycle yields 

I 

E[W] = ^  kP[W=k] 

k=l 

k        j=0 

(#) 
= 6ßDe(^r-) + IßI+l. 
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Since 

D3 (^qp
1) = -^.(1-3I+1 - öCl+Dß1), 

substituting the RHS of this equation for the RHS above and simplifying, 
we have 

Proposition 2. 

E[W] = | (1-31) (B2) 

Proof. From above. 

We are now ready to prove 

Theorem 3. For MRP(2), 

IFI(»;2) = vgCl-g1)! — 1, 

[a.e.]. 

Proof.  By the Strong Renewal Theorem [6.7, 6.9], we have 

Lim  WW _ E[Wi  r   1 

»*»   N  " E[T] ' la-e*J- 

The theorem follows from this result, Props. 1 and 2, Def. 3, and 
simplification. 

Corollary. 

AIFI («;2) = vß(l-gI)f — — ) 
Vd-q1)^!  + V2   I 

Proof. 

Lim  ESC[W(N)] 
AIFI(o=;2) = N^ N 
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2.3 SMC(2~) and IFI(°°;2),  By its very definition the functional W(«) 
depends on the sample paths of a MRP, including the self-transitions of 
a component state.  In particular, the fundamental probability functions 
(see A.12) of the induced SMC (see A.28) are not sufficient to describe 
W since they don't record the self transitions of "üTs,  However, just as 
MRP(2) induces a unique SMC(2), W also induces a correspondingly unique 
functional, W*(0, defined on the chain. We first prove 

Theorem 4. MRP(2) induces a unique SMC, denoted by SMC(2). 

Proof.  From A.28, SMC(2) can be defined via its pdf's as follows 

[cf., 6,14] 

*f^  = n.-f^ (4.1) Q*2(z) = Q12(z) 

and 

Q^ l(z> - JE §22 J $21 

Q2l/(1-Q22> 

Vz-^Az-(ß+6qI)/ 

z-ß 
(4.2) 

Recalling the definitions of vi  and y2 from Theorem 1, we have, from 
the derivatives of Eqs. 4.1 and 4.2, 

\il  = u'i  and M2 =    — 
6 

where 

6"= SU-q1). 
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From A.25, we thus obtain 

p (o);2) ■  H  *     andP_(°°;2) ^ —      (B3) 
1      (l-qI)y*1 + y2 (l-ql)y'1 + v'2 

where 1 and 2 on the LHS's are sc and uls*, respectively. 

The transitional matrix and stationary vector of SMC(2) are the 
same as in Theorem 1 which finishes the proof, 

Our goals now are to find E[W*] and E[T ]. To this end, we prove 

Theorem 5.  The functional W(') induces a well defined functional, 
W*(-), on SMC(2). 

Proof. W* is implicitly defined through the following equations. 
Conditioning on the number of self transitions, j, of uls, we have 

P[W*=k] = J2  p[W*=k|j]P[j] 

j-o 

-Sv« 

where 

a.: (k) = P[W*=k and j repetitions]. 

Noting that a^(k) can be defined in terms of as(k), s < j, we can derive 
a set of equations relating the above a's. For ease in notation, we first 
define 

1-1 

B(z) 

s=0 

1-1  , 

- 2 (I)8 • 
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Then, for 0 £ k < (j+i)I, k a fixed integer, we obtain the system given 

below, 

a-j(k) = (5qI)aj„1*B(k) + (ßq^aj (k-I) (5,1) 

where 

I < k < jl, 

= (8qI)aj_1*B(k) 
(5-2) 

where 
0 < k < I, 

= ^Mßk-J^äj-iOD (5'3) 

where 

jl < k < (j+l)I, and 

- (ßq^ajÜD (5'4) 

where 

k = (j+l)I. 

From Eq. 5.1, we have 

E *? ■ <*» £ ^ 
k=l k=I 

jl a, iCk-I) 
+  ^      (eq)1 E 

k=I 

= X + T 

zk 

(5.5) 
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Adding zero on the RHS of Eq, 5,5 and changing indices in the term Y, 
we have 

^^aJL.« 

where 

X + Y = X 
vz  / 

s=0 

R . (6qI) £ il=l£W  . 
k=0   z 

Grouping one R with X, using Eq. 5.2 to transform the second R, recalling 
that for j-1, 0 < k <jl, and using the definition and convolutional 
property of the z-transform [6.3, 6.12], we have 

RHS(5.5) - (X+R) + Y-R 

= (6qI)äj_1(z)B(z) + Y 

k=0 

Again, using the definition of the z-transform, noting that in Y the 
sum is from 0 to (j-1)I while on the LHS(5.5) the sum varies from I to 
jl, and adding the last term of Eq. 5.6 to the LHS of Eq. 5.5, we obtain 

j(z) ~X) ^~~ = (LHS(5'5) + R + Sj) - Sjs 

where s varies from jl+l to  (j+l)I, 

=  (X+R) +  (Y+S*.     )  - S' 
J-1 J-1 

=  (X+R) + faff aj-i(z)  - S)_i (5.7) 
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where ,  , 

sj-i-t^E zs s     ^ 

s varying from (j-l)I + 1 to jl« 

From Eqs. 5.3 and 5.4, we find that 

»1-1-(^Vi 

Thus, the Sj term cancels out in Eq. 5.7 leaving us with the final equation 

aj(z) = (öq^aj^OBCz) +(f
L)^j-l(z) <B4) 

Eq. B4 can now be solved iteratively, if desired, thereby proving 

Theorem 5. 

W* can also be explicitly defined in the same way as W (except that 
R* can vary from zero to infinity).  The importance of Theorem 5 is its 
use in Proposition 4. 

Proposition 3.  Let sc = 1 and uls* = 2.  Then, we have for the 
renewal time, T*, for state 2, 

E[T*] .  a-gWi +^2 (B5) 
(l-ql) 

Proof. 
00 

E[T*] = X) kPCT*=k] 
k=0 

= 2 kQ*l* Ql2(k> 
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■ -zDz(q*iQi2). at z = 1. 

Evaluating the last expression, we have the result. 

Proposition 4. Averaging W over one renewal of state uls , we have 

E[W*] = ß(1"ßT
) (B6) 

öd-q1) 

Je 
Proof.  The renewal time is given by T in Proposition 3 and has pdf 

Q*i*Qi2- 

Summing äj(z), in Theorem 5, from one to infinity, we have from 
Eq. B4 

Ä(z)-ä0(z) = (6q
I)Ä(z)ß(z) +/M1 Ä(z) (B7) 

where      „  „ 
V» ai(z) 

A(Z) = y» -^— ■ 

From the mean value property of the z-transform and the definition 
of äj(k), we thus have 

E[W*I = -zDzA(z) (at z=l). 

The proof is finished by evaluating the RHS of this last equation 
and simplifying. 

We are now ready to prove the analogue of Theorem 3 (where the IFI 
functional is considered to be a quantity dependent on the plan but 
evaluated on the model) in 

Theorem 6.  For SMC(2), 

IFI(»;2) = vß(l-ßI)P2('»;2), [a.e.] 

where 2 = "üTs* and P,(»;2) is given in Theorem 4. 
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Proof, Again by the Strong Renewal (or Ergodic) Theorem, 

Lim W*(N)  _ E[W*]    r   , 
N+~   N   " E[fT '   la,e,J 

= ßCi-ß1)     (i-q1) 

fi(l-ql)   (l-qI)p,
1  + vi 

from Eqs. B5 and B6, 

y2 
= PU-ß1) 

(1-q1)]/!  + ufe 

= ß(l-ßI)P2(»;2), 

from Eq. B3. 

Multiplying by v finishes the proof. 

In particular, the equations in Theorems 3 and 6 agree, as they 
should. 

Corollary. 

AIFI(»;2) = v3(l-ßI)P2(~;2) 

Proof.  The same as in the Corollary to Theorem 3. 

2.4 TFI(°°;2) and Comparisons.  Given the real number p varying over the 
open unit interval, the inequality "1-q1 < 1", Theorem 1, and Theorem 4 
imply 

p2(»;l) < P2(«;2) 

for SMC(l) and SMC(2). We shall show a similar result for AFI(»;'l)"and 
ATFI(°°;2).  Before doing this, we record the following result 

ATFI(~;2) = AFI(°°;2) + AIFI(°°;2) 

= (1-VP2(»;2)) + vß(l-3
I)P2(

00;2) 
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= l-vP2(~;2)(6 + ß
I+l) (B8) 

Theorem 7.  For p in the open interval 0 < p < 1, 

ATFI(°°;2) > AFI(»;1) iff ßU-ß1) > q1^ 

where a\  = y'i/(y'i + y'2). 

Proof.  From Eqs. A2 and B8, the Statement is equivalent to 

P2(»;D > P2(»;2)(6 + ßI+1). 

This inequality is, in turn, equivalent to 

(6 + 3I+1)(li'i + y'2)  < (l-q
1)^! + yfe 

= (y\ + y'2) - q
Iy'1 

Dividing through by (]i\  + y'2) , we have 

(6 + ßI+1) < l-qla'i 

or 

l-(6 + 3I+1) > q1^. 

However, 

i-(6 + 3I+1) = ea-e1). 

Thus, 

ßCl-ß1) > qM 

which finishes the proof. 

For p = 0 or 1, the formulas in Theorem 7 are equal. 

Another type of CSP, denoted here by CSP-14, is the plan obtained from 
replacement of DSI in CSP-11 by USI.  For CSP-14, the SMC model is straight- 
forward since the limited inspection scheme runs with the natural flow of 
operational time.  For this model, we have 

Proposition 5.  Letting sc = 1, uls = 2, and ck (or USI) = 3, 
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V? 

2      (l-ql)yi + u2 
+I 

' Proof.  If e_ is the stationary vector, using the SMC model for the 
ck phase found in [6.2], we have 

(l-q3)e= (l-ql, 1, 1). 

The rest of the proof easily follows from A.25 given that y3 = I. 

It clearly follows from Proposition 5 that 

AFI(°°;4) = l-vP20»;4) 

Thus, to compare AFI(»;4) and ATFI(»;2), it would suffice to compare the 
expressions which are analogous to those in Theorem 7.  However, to avoid 
a long proof, it also suffices to give the following probabilistic argument. 

Upon finding a defect in the sampling phase, I new units are inspected 
with CSP-14 while, on the other hand, at most vl new units are inspected 
under CSP-12.  Since the transitional probabilities are the same from the 
limited inspection (pseudo) phase in both plans, the proof is finished. 

3.0 DSI - TRANSIENT.  Two interpretations of DSI for the transient case 
are treated in this chapter.  The first version is the transient case of 
DSI, already dealt with in Chapter 2 for infinite N.  That is, DSI is 
applied to both phases of CSP-11 with constant "pseudophase" transitional 
probabilities.  In contrast to the first version, the second plans "pseudo- 
phase" transitional probabilities to sc (or uls) monotonically increase 
(or decrease) with increasing duration in the sampling phase, until 
truncated by 1-q1 (or q1).  One can infer from this monotonicity that DSI 
is applied only to the sampling phase in the following sense.  If a defect 
is found during a sampling segment, k + 1 time units from entrance to this 
particular segment, then only the previous T units are to be inspected, 
where x = min(k, I). Upon completion of this modified DSI, uls is entered 
if no defects are found (with probability qk); otherwise, sc is entered 
(with probability l-qk)• 

3.1 Introduction.  The analysis of each version involves three stages. 
However, for convenience in the final section, a fourth stage is added for 
the second version. 
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In the primary stage, the modified sampling phase is partitioned 
into 1+2 SMC states which are consecutively labelled 0 through I 
and b.  The purpose of this splitting is the derivation of an expression 
for the monotonically increasing portion of the functional W(-). 

In the secondary and tertiary stages, SMC states 1 through I are 
recombined into a preliminary macrostate, c'; it, in turn, is combined with 
SMC state 0 to form the final SMC state, c. The purpose of these latter 
two manipulations is to facilitate the derivation of an expression for 
the truncated portion of W(-) by avoiding complex sums of products of 
characteristic functions. 

The chapter concludes with a comparison between the TFI functional 
of each version for infinite N (or t). 

3.2 Strict DSI.  In order to analyze the transient case of DSI, the SMC 
model, shown in Figure 4, is used.  It is denoted by SMC(3). 

Figure 4 

Model for CSP-12 (SMC(3)) 

sc = a 

J=  öd-q1), r = 1-öq1, 6'= 6/r, and g' = 3/r 

Concerning this model, we have 

Theorem 8.  SMC(3) is an irreducible SMC. 
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Proof.  The z-transformed pdfs of the states making up SMC(3), 
together with their corresponding transitional probabilities in the 
embedded MC, are given below. 

Qk,k+l<z) - ß/z» <lk,k+l = 3, for 1 < k < 1-1 

Qka(z) = 6/z, qka = ?, for 1 < k < I 

Ök0(z) = 6ql/z, qk0 - «ql, for 1 S k i I 

Q0a(z) = «"/(z-öq
1), q0a = 6* 

Q01(z) = B/Cz-öq
1), q01 = 3' 

Qa0(z) = q
I(z-q)/<(.(z), qa0 = 1 

Qba(z) = 6"/(z-3)5 v-i-q1 

Qb0(z) = 6qV(z-3), qb0 = q
I 

The equations follow from SMC(2) by observing that uls*, since its holding 
time pdf is geometric, can_be regarded as a MC state which jumps to itself 
and sc with probabilities 3 and 6, respectively. 

Ordering the states of SMC(3) in the same manner, from left to right, 
as they are ordered in Figure 4, we obtain the linear system of equations 
from the matrix equation e = eT, T the embedded MC transitional matrix. 

6'e0 + 6 Sej + (l-q
I)eb = ea (8.1) 

ea + 6clI  2 ej  + qIeb = e0 (8'2) 

j 

3'e0       = ei 
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for 1 i k £ 1-1, 

ßek  = ek+1 

and 

ßej  = eb 

From this system, exclusive of Eqs. 8.1 and 8.2, we obtain 

ek = 3
k-1a,e0, 1 < k < I (8.3) 

and 

eb = ß
Iß'e0 (8.4) 

Eqs. 8.1, 8.3, and 8.4 imply 

6'e0 + ß'(l-q
I)(l-ßI)e0 + (l-q

I)e0 = e& 

or 

l-aI 1 S-_ e0 = ea (8.5) 
1-öq1 

Since e  is normalized, we have from the sum of its components, Eqs. 8.3, 
8.4, and 8.5 

e0 =AÜZ6£). (8.6) 

where 

G = (l+6)(l-6q1)- f3I+2. 

Thus, Eqs. 8.3, 8.4, 8.5, and 8.6 imply 

„ - ^l-q1)   „ =  Sq-Sq1) 
a "   G   '0     G 
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6ßI+1    .     6ßk eb G~ ' and ek " "G~ 

where 1 < k < I. 

Differentiating the Q's, multiplying through by minus one, and 
evaluating the results at z = 1, we have (adding terms where appropriate) 

ya    Y   ' y<>  !_6qI 

Vb = 5" > and % = 1 

for 1 < k < I. 

This finishes Theorem 8. 

Corollary. For SMC(3), 

I 
a0 + ]£ "J + ab = P2(";2) (8'7) 

j=l 

where the 'LHS refers to SMC(3) and the RHS refers to SMC(2). 

Proof. 
I 

v0e0 + £ %ek + ^b - («+ß)/G 
k=l 

= 1/G 

1 
GP2(»;2) 

Thus 
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LHS (8.7) = GP2(»;2)(1/G) 

= P2(°°;2) 

Relative to SMC(3), we have 

Definition 5. The monotonically increasing portion of W(t), divided 
by t, and considered as being defined on SMC(3) is 

t-1  I 

£ £kCk<n)(1-Ck+l(n+1)) 

WT (t) = n=0  k=l  
t t 

Thus we can also write 

IFl'(t;2) = v £^£i . 

Operating on this equation and the RHS of the equation in Definition 5 
with Esc[*], we obtain 

t-1  I 

£ £kPak(n) 
AIFI' (t;2) = 6 n=°   ,      (CD 

which can be evaluated by using the z-transformed Backward Equations for 
SMC(3); see [6.1] for an example of such an evaluation. Letting t approach 
infinity, we have 

AIFl'(-;2) = <5]£kak (C2) 

k=l 

Since, from the last part of Theorem 8 and from A.25 

ak= (^Ir) ^k)(GP2(oo'2)) 

= 6$kP2(~;2) 
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and        ,1+1 
«b = (^—) (yb)(GP2(-;2)) 

>I+1T - ß1'rj-P2(-;2) 

we have, from Eq. C2, 

5 E kak ■ ßs2V~;2) D3 (fclr^) 

= 3(i-ßI-6ißI)P2(
oo;2) 

From A.27, 

W" (b)ab = 6Iab 

where W" (t) is the constant part of W(t). Therefore, adding the last 
two expressions and performing the indicated operations, we have 

lim  Elwmi. ß(l-ßI)P (-;2), 
t-X»       t *■ 

a result which agrees with that obtained in Chapter 2. 

In order to deal with the constant part of the functional for 
finite t, we proceed to reduce SMC(3) to a more manageable model as 
described in Section 3.1. 

Stage two consists in filtering out the states 1 through I in SMC (3), 
an operation which leads to a new model: SMC(4). The details and results 
of collapsing SMC(3) into SMC(4) are given in 

Theorem 9. SMC(4) is an irreducible SMC obtained from SMC(3). 

Proof. Let c1 be the ordered ensemble composed of the states 1 
through I. Noting that the pev of c* is (1,0,0, ,0), 1-1 zeros, we 
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apply combinatorial analysis to get (dropping the argoment 2) 

Qc.0 " §10 + Q12Q20+ — + Q12Q23 QlO 

a'1"1 ¥ s (if Z 
3=0 

■ £ a-(^ ) (9.1) 

In the same way, we also obtain 

Va - W^ Ml)1' 

and 

«c'b-(f)1 <»•» 

The remaining results concerning SMC(4) can be easily derived 
from the above equations. In particular, see A.29. 

Corollary. 

SMC(4) < SMC(3) 

where "<" is the filtration ordering relation. 

Proof.  SMC(4) is a filtration of SMC(3) by the proof of Theorem 9 
and A.29. 

Stage three consists in filtering out state c' in SMC(4) yielding 
SMC(5). The details and results are given in 

Theorem 10. Filtering out c' in SMC(4) yields a new SMC, denoted by 
SMC(5). 
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Proof.     Let  the ordered ensemble   (0,c?)  be denoted by c.     Then, 
the pev for c is the vector  (1,0). 

First construction.    Applying combinatorial analysis to the trans- 
formed pdf's in Theorem 9  (Eqs.   9.1,  9.2,  and 9.3), we have 

ä A 

QcaMZ  (Qoc'Vo)3}   %a 
lj«0 

+ 

Z   <Qoc'WJ|   V'Va 
3=0 ' 

Qpa    + Qpc'   Qc' a 

~~l^Oc'Qc'O 

6-(zI+1-ßI+1) 
c(z) 

where 

c(z)  =  zI+l(z-(ß + Öq1))  + Sßtqß)1 

* A 

Similarly, 

Qcb   = ^(V'W^V^c'b 
j 

> 

= |E(V'Qc'o)j| 

*\ A. 

QQC' Qc'b 

i-Qoc' Qc' o 
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- <*-ß>eI+1               (C4) 
c(z) 

Second construction. Since SMC(5) is the model to be used in 
deriving an expression for the constant part of IFI(t;2), t finite, we 
will sketch the more elaborate SMC method. The relevant absorbing SMC 
has transient states 0 and c'; absorbing states a and b. Using A.21, 
setting a = A, b - B, and c< =1, we obtain the following transformed 
Backward Equations (four others, not needed, are omitted). 

A 

P0A ° QoiPlA'+ QOA^AA 

A 

P1A » OioPoA + WAA 

A 

PAA 

A 

r0B - %PlB 

A. 

P1B = QIO
P
OB
+
VBB 

*BB 
A 

= H0 

A 

Solving for PQA in the first set of three, 

H0(QOA 
+ QOIQIA> 

P0A i-Mio 

Since the pev of the ordered ensemble (0,1) is (1,0), the above equation, 
Eq. Al, A.13, and A.22 imply 

A A 

Qca = F0A 

= P /fi 
OA' 0 
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= Eq, C3 

Solving for PQB in the second set of three, 

A A 

Ä  _ H0(Q01Q1B) 
OB     A  «    ' 

1-QoiQio 

Again, since the pev = (1,0), the above equation together with Eq. Al, 
A. 13 and A.22 imply 

Qcb - FOB 

= POB/HO 

= Eq. C4. 

SMC(5) has three states: a, c, and b. The transformed pdfs for 
transitions of a to c, b to c, and b to a are the same as those for a to 0, 
b to 0, and b to a, respectively, in SMC(4). 

We finish the proof of Theorem 10 by remarking that states a and c 
cannot be combined since a pev (from state b) does not exist. 

Corollary. 

SMC (5) < SMC(4). 

Proof.  Construction of the state c in SMC(5) is equivalent to 
filtering out state c' in SMC(4).  SMC(5) is an irreducible SMC by A.29. 

We can now derive an expression for the constant part of IFI(t;2) in 

Theoremi_ll. Given the 3 state model, SMC(5), 

(C5) IFI" (t;2) ■ vi j*b(t)-Cb(t) 

Proof. Nfc(t) gives the number of entrances to state b by time t. 
The number of exits from state b is clearly Nt,(t)-Cb(t), the second term 
being the characteristic function of state b. 
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Corollary. 

AIFI„ (t;2). vl IbSgOL . Ü8ÄL, (C6) 

Proof. Apply Ea[..] to Eq. C5. 

In order to use Eq. C6, we must be able to develop a useable 
expression for the mean of the renewal function. Towards this end, 
we prove 

Proposition 6. Let N(t) be a renewal process. Then 

(CO 

j-o 

where F is the renewal pdf. 

Proof. 

P[N(t) = n] - P[U(n+l) > t] - P[U(n) > t] 

= H0*F<
n+1)(t) - H0*F(n)(t) 

- Pn(t) 

Thus, 

Pn(z) = H0(F)*(1-F) 

Therefore, 

^=^|H£(!)- 
n=0 n 
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m  sft0(l-F) 

(s~F) 

= P(z,s) 

From the last function, we have 

H0F .s m?±si (at s = 1} = 
3s    Vdl- a - A' - (1^)  • 

The LHS is the transform of the mean and we are done. 

Corollary 1. 

Ea[Nb(t)]   H0*Fab*(l-Fbb)-i(t) 

where the inverse expression is shorthand for the summation. 

Proof. Renewals of state b, starting in state a, form a delayed 
renewal process with initial probability function Fab.  Then Proposition 6 
finishes the proof. 

Corollary 2. 

Lim  Ea[Nb(t)] 
  = Say, 

t-x»      t " 

Proof. From Corollary 1 above, we have 

Lim   Ea[Nb(t)]  Llm Hp*S(t) 
t-*»       t      t->"    t 

_ Lim S(t) 
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-1, where S(t) - Hc^F^Cl-F^-Mt), 

Lim / z-1 \    ab 

(?) z+1 \ z J      (l-£bb) 

Fab<z>   , ,    n (at z = 1) 
-zDzFbb(z) 

= 8otb. 

The second equality follows from the simple argument that if S(-) 
is a sequence with limit A, then the Cesäro limit of S(«) also exists 
and is equal to A. 

From the second corollary to Proposition 6, we have in addition 

(Ea[Nb(t)]  Pab(t) \ _ 

as t approaches infinity, since the second term goes to zero. 

The main results about IFI(t;2) are summed up in 

Theorem 12. For the transient case of CSP-12, we have 

AIFI(t;2) = AIFI'(t;2) + AIFI" (t;2) 

_ v$HkPak(n)  + vi j Ea[Nb(t)]-Pab(t) j 

where the first and second terms on the RHS are evaluated using SMC(h), 
h = 3 and 5, respectively. 
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Proof. Combine Eqs. C2 and C5 (taking the limit, we get v times 
the result using W and W" ). 

When t is finite, in order to compute Ea[Nb(t)], we need to know 
Fab(t) and Fbb(t). Since SMC(5) has 3 states, we have 9 Backward 
Equations, only one of which is needed for the mean value of the above 
renewal function. The following statements sketch the results. 

From Theorem 10, A2.1, and Al.4, we have 

hb  - Qbc^cb + Qba^ab + h 

This equation is equivalent to 

or 

-«»(&)♦*•(&) 

1 - T~   = Qba*ab + Qbc^cb 
^bb 

But, LHS = Fbb.  Therefore, 

hb = Qba^ab + Qbc^cb- 

From Theorem 10, 

+ I 'bb 

Qbc = t^ and Qba = 2V 

Applying combinatorial analysis to the transformed pdf's of SMC(5), 
we have 

Fcb = {l   (QcaQac)J}Qcb 
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^      'V 

" Qcb/d-QacQca) 

and 

Fab = \l   (QacQca)J } QacQcb 

= QacQcb/ d-QacQca) • 

From these equations, E[Nt,(t)]/t can be computed [cf., 6.1]. 

The use of SMC(3) suggests the following alternative treatment of 
CSP-12,  Instead of splitting uls* into 1+2 states, we split it into 
an infinite number by splitting state b into the states b(j), 1< j £ °°. 
The resulting model, SMC(6), consists of two nontrivial SMC states 
(a and 0) and an infinite number of trivial SMC(ie, MC) states (1 through I 
and the b(j)'s).  For the long run case, we can obtain AIFI(°°;2) via the 
transient case as shown in 

Proposition 7.  SMC(6) is an infinite state, irreducible, and 
positive recurrent SMC. The result for IFI(t;2) for SMC(6) is the same 
as previous results. 

Proof. For b(j), 1 £ j £ °°, we have 

%(j) = ößI+j P2(°°;2) (7.1) 

and 

vb(j) = !• 

Thus lJb(i)b(i) = ■'"/ab(j) w^^c^ is finite, proving the chain positive 
recurrent. 

For the functional, it suffices to deal with the part defined on 
the b(j)'s, W'" . 

t-1  °° 

Z E cb(j)(n)<i-cb(j+i)(n+i)) 
W" (t) = n=0 ,j=0  

t t 
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Taking the mean value, conditioned by an initial entrance from 
state a, 

Ea[W" (t)]   nj 
I I 6Pab(j)(n) 

which, as t approaches infinity, approaches 

00 

a2ßI+lP2(-;2)£ßJ 
j=0 

" 6ab 

by Eq. 7.1 and the Lebesque Dominated Convergence Theorem (for 
sequences). 

Proposition 8.  The models used for CSP-12 are ordered, w.o. 
filtration, as follows. 

SMC(2) < SMC(5) < SMC(4) < SMC(3) 

and 

SMC (5) < SMC(6) 

Proof.  Corollaries to Theorems 9 and 10 imply the first ordering. 
By filtering out states b(j), j 2: 2,  we get the second ordering. 

If we split state a into its component MC states and state 0 into 
a MC state in SMC(6), we get (S)MC(7) > SMC(5), SMC(3).  If we instead 
split a and 0 as before but now split b by treating it as a MC state, we 
get (S)MC(8) > SMC(5), SMC(3),  Clearly, (S)MC(7)>(S)MC(8). MC(8) can be 
thought of as a finite state MC model which fills the role of the initial 
MC model described in the introduction to Chapter 1, though the construc- 
tion is backwards from that description. 
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3,3 Liberal DSI, To.', obtain a more liberal DSI, we alter the 
following transformed pdf's for states 0 through 1-1 in 

Theorem 13, The DSI sampling plan CSP-13 is obtained from the 
SMC(3) model of CSP-12.  The result, SMC(3), is an irreducible SMC. 

Proof.  The appropriate quantities and properties are given 
below, 

Qua = °. <*0a = ° 

Q01 = ß/(z-6), q01 = 1 

Qka " S/z> 4ka " ß" 

Qk0 = «q
k/Z, qk0 = 6q

k 

where 1 < k < 1-1 

The other transformed pdf's remain the same as those for SMC(3). 

Ordering the states a, 0, 1,  , I, and b, we obtain, from the 
stationary vector equation, the system of equations now given. 

J 
6 £ (l-qj)ej + (l-qI)eb = ea (13.1) 

j-l 

ea + « 2 qJe3    + qIeb   = 60 (13'2) 

3 

ß^e,, = ek (13.3) 

where H k M, and 

ßIeö- = eb (13,4) 
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From Eqs, 13.2, 13.3, and 13.4, we get 

e =   pa-(ßq)f) e (13 5) ea       l^(ßq)  e0 UJ<^ 

Since the components of e^ are normalized, we obtain, together with 
Eq. 13.5, 

e0 = ^1 (13.6) 

where 

G = öpU-tßq)1) + (1-ßq)(l+6-ßI+1) 

Eqs. 13.4, 13.5, and 13.6 imply 

= SpCl-Cßq)
1) 

G 

= ÄM, l<k<I ek G 

and 
= 6ßl(l-ßq) 

eb      G 

Similarly, from the derivatives of the transformed pdf's, we obtain 

1-a1       1       1   A 1 
Va  " ~r~ » y0 = R ♦ yb = J>  and ^k = 1 

where 1 £ k £ I. 

3.4 Comparison of CSP^-12 and CSP^13.  In the equations to be derived 
in this section, P2(°°;3) is the long run percentage of time spent in 
state b=2 in the three stage reduction of SMC(3) to SMC(2) which is the 
analogue of SMC(2) for CSP-13, P2(°°;3) can also be directly obtained 
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from SMC(3) by_ filtering out the states 0 through I and b, again 
yielding SMC(2), This latter filtration is equivalent to the SMC 
method applied to the ordered ensemble (0,1, ••«, I, b), with 
pev = (1, 0, «•«, 0), 1+1 zeros, to obtain the two state model 
for CSP-13, 

Given the stationary vector components and the state mean time 
values, from Theorem 13, we get the a's for CSPT-13. 

ak = 6ß
kP2(°°;3), 1 < k < I (13.6) 

and 

aT  = 3I+1P2(»;3) (13.7) 

where 

P («,;3) L.  (C7) 
2       pß(l-($q)I      , 
 y', + u' 
(l-3q) 

(1 = a and 2 = b). 

Applying the Ergodic Theorem and Eqs. 13.6 and 13.7 to the 
functional W(t), defined as SMC(2), yields 

Lim EJWM1 . 6 l  kak + 6Iab 

= ß«*P2<-;3)Dß (±=§—) 

+ 6IßI+1P„(»:3) 

= ß(l-3I)P2(-;3), 
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Upon taking the limit, the definition of IFI(t;3), analogous to 
Definition 4, gives 

AIFI(»;3) = vßCl^8I)P2C<»;3). 

Adding AFI(°°;3) to the above leads to the final equation 

ATFI(oo;3) = lr-vP2(oo;3)(6+ß
I+1) (C8) 

With regard to the last equation, we have 

Theorem 14, For p in the open unit interval, 

ATFI(»;3) < ATFI(-;2). 

Proof. The statement is equivalent to 

P2(~;3) > P2(~;2) 

which is implied by 

pgq-(gq)1)   < ,1 
1-ßq ' 

Dividing both sides by p and using the theorem on geometric sums, the 
above inequality is equivalent to 

1-1 1-1 

(l+S; (BO*)  < (l+Z^J) 
j=l     ' 3=1 

or 

ßll+Sj] < [l+s2] 

But ß < 1 and ßS} < s2, for P between zero and one.  The cases for p = 0 
and p = 1 lead trivially to the same formulas. 

To handle the transient case of CSP-13, SMC(3) is used for the in- 
creasing part of W.  The constant part of W is handled in the same way 
as the corresponding constant part of W is handled for CSP-12. That is, 
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SMC (3) is collapsed (s>x  filtered) to SMC(4) which in turn is collapsed 
to SMC(5). This analogous two stage process for CSP-^13 is briefly 
given in 

Theorem 15. For CSP-13, filtration gives the following ordered 
set of models: 

SMC(5) < SMC(4) < SMC(3). 

Proof. Combining states 1 through I, in SMC(3), into state c' 
as is done with SMC(3), we have 

§c<b - O12O23 Qib 

= (3/z)1 

Similarly, 

ä A      A    >* A    A A 

Qc'O = QlO+Ql2Q20+,,,4<Jl2Q23 Qio 

■ Ä (^ W) 

Qoc'  = 3/(z-6) 

Qc'a = ^    (I" (I)1)" Qc'O 
_6_ 
z-3 

Secondly, combining states 0 and c' into the new state c is 
similarly accomplished and yields 

i-Qoc'Qc'o 
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"ca 
§Oc»§c*a 

^Qe^c'O 

The corresponding q's are given by 

= (l-gq)ß
1 

qcb     A 

and 

«lea = 

where 

= (l-ßq)(l-3
I)-6q(l-(ßq)1) 
A 

A = p + öq(ßq)1. 

Once again, the constant part of the functional W(t) is given by 

Nb(t)  Pab(t) | 

4.0 DSI AND OTHER FUNCTIONALS. 

4.1 Introduction. The TFI functional makes a distinction between the 
two plans treated in Chapter 3 in terms of the "pseudophase" transi- 
tional probabilities. However, because of its very definition, TFI does 
not explicitly take account of multiple inspections of a given production 
unit.  That is, TFI is defined in terms of an operational time which is 
measured by a flow of successive and nonrepeating production units.  In 
this chapter, a new functional, along with a variation, is introduced to 
augment TFI as a measure of plan performance.  The functional is Fraction 
of Repetitions (FR).  It will be analyzed only for the first type of plan 
(CSP-12),  Furthermore, FR is chosen as the principal functional because 
1.) it is naturally normalized and 2.) its long run moments can be 
naturally derived from those of the transient case with a certain amount 
of ease.  Short run higher moments for its variant cannot be obtained so 
readily; indeed, appeal must be made to the Strong Ergodic Theorem (or 
Renewal Theorem) for even the long run (expected) value. 
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4,2 SMC(9) and FR(N;2).  The model which will be used, SMC(9), is a 
modification of SMC(2) and is portrayed in Figure 5, 

Figure 5 

CSP-12 and SMC(9) 

The transitional matrix of the embedded MC is 

a 0 0' b 

a 0 1 0 0 

0 I 0 Sq1 ß 

0' 6/r 0 0 ß/r 

b 1-q1 0 q1 0 

where 6 = 6(1-q1) and r = l-6q*. 

The matrix entries are obtained from the transformed pdf's given in 

Theorem 16.  SMC(9) is an irreducible SMC 

Proof.  The transformed pdf's are 

Qao - qI(z-q)/<(>(z) 

Q0a = 6/z, Q00» = 6q
I/z, and Q0b = ß/z 

Qo'a= S/Cz-öq1) and Q0'b = ß/Cz-Sq
1) 

Qba = 6/(z-ß) and Qb0» = 6qI/(z-0). 
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The mean holding times, obtained from the derivatives of the 

transformed pdf's, are 

Using the matrix given after Figure 5 to solve the usual eigen value 
equation!Sfor the stationary vector e, yields the system of equatxons 

given below. 

6e0 + £ e0« + (l-q
I)eb = ea 

e* = e0 

6qIe0 + q
Ieb eo' 

ße0 +f e0» eb 

(where r = 1-öq1). 

Solving the system gives 

ea = e0 

eb - (^T)   *O 

= q
I(l-'SqI) v =-^r- eo • 

Again we use the fact that the component..of the M^™™«^ 
to one. Using the equation which expresses tms ract,  s 

last three, gives 

ea = 
e0 

= (l-qI)/G 

e0, = q
I(l-6qI)/G 
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and 

eb = ß/G 

where 

G = (1-q1) + (1-Sq1) + ß. 

We finish the proof by translating, into English text, what the 
transitions mean in SMC(9); we will write "state x goes to state y" as 
"x to y". 0 to b if no defect, 0 to 0' if a defect is found but DSI 
finds none, 0 to a if a defect is found and DSI finds one or more, 0' to 
a if a defect is found and DSI finds one or more, 0' to b if unit is either 
not inspected or is, and found non-defective, and 0' to 0' (remaining in 0') 
if a defect is found but DSI finds no defects. The transition 0' to 0' is 
"internal" - that is, 0' has no self transitions and is consequently a non- 
trivial SMC state (see its pdf above and Chapter 1, section 5). 

We are now ready to define the principal functional in 

Definition 6.  Given the model SMC (9) for CSP-12, the functional 
Fraction of Repetitions is 

_/Na(t)-l\ FR(t) =["a^"   ') + ^~ 

S C0.(k) 

The definition of FR(t) is motivated by the comments made at the end of 
the proof to Theorem 16.  In addition, we remark that minus one appears 
since the inspection process begins in state a and the summation appears 
for 0' since self transitions are not allowed.  For infinite t, FR has the 
value given in 

Theorem 17. 

Lim FR(t) = —— \ , [a.e.] 
t-x»        (l-qlJy-L + y2 

where \i\  and y*2 are defined in Theorem 1. 

Proof.  From Definition 6, 
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u- «(o - £ (i^) + £  (^™) 

= 1- dni, [a.e. ] 
Via   ° 

by the Strong Ergodic Theorem. From Theorem 16 and A.25, we have 

a a (1-q1) 
Ma ]i\ (l-ql)+(l-ql)+ql+ 3/6 

d-q1) 
V\ (l-qI)+y,2 

and 

 a1 
0
    V\(l-qI)+ V\ 

Adding the two expressions finishes the proof. 

Since (I)'(tFR(t)) can be regarded as the degree of inspection 
overlap, we are led to define a variant of FR(t) in 

Definition 7. 

FR'(t) = I(tFR(t)) + t 

Concerning this functional, we have 

Theorem 18. 

Lim FRf(t) =— '—c  , [a.e.] 
t-Ko I ■+ (l-ql)yf

1'+'Vi'2- 

464 



Proof. From Definition 7, 

Lim      1 
Lim FR'(t) - t^  (I)(FR(t))+1 

I l-± + an,\  + 1 W^i 
by Theorem 17, 

= the result, 

4.3 Expansions and Extensions. Another possible treatment of DSI is 
the expansion of MRP (and SMC) models to "transition state" models. We 
will work here only with MRP's. 

Given a MRP (Y, U) as in A.19, we can easily prove that 

P[Tn = t|Yn_! = i and Yn = j ] = -f^- (Dl) 

where Tn = Un - Un_i_.  From A. 19 and Eq. Dl, we can also easily show that 

|((Yn, Yn+1), Un)/n varies over the nat'l nos.} (D2) 

is a (derived) MRP whose pdf's are given by 

p[<Yn> Yn+1> - &*>» Tn = t|(Yn_!, Yn) = (i,j)] 

We name the MRP given by expression D2 and simplify notation in 

Definition 8. The MRP given by D2 is called the Expanded MRP. Its 
pdf's are given by Eq. D3 and denoted by 
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Q(ij)(Äk)(t)' 

Such a derived process can automatically keep track of transitions, 
their number and type, in the parent process. Thus for example 
FR(~;2) could be defined (and evaluated) on "expanded' MRP(2) as given 

below. 

Theorem 19.  Expanded MRP(2) is a MRP. 

Proof. From Definition 8 and Theorem 2, the transformed pdf's 

are (dropping the argument) 

Q(i2)(22) = qxQi2 

Q(i2)(2i) - d-q1)^ 

Q(22)(22) " Q22 

(l-q*)Q2_2 
Q(22)(21) -   "i 

<21 
Q(2D(12) =7^17 

Letting z = 1 in the above equations, we get the transitonal matrix 

of the embedded MC 

(12)   (22)   (21)^ 

1-q1 

1-q1 
(12) 0 q 

(22) 0 q 

(21) 1 0 

Using the matrix to solve for the components of the stationary 

vector gives 
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e(12) = U-q^/G, e(22) = q
J/G, and e(21) = e(12) 

where 

G - 2-q1. 

Defining v±*  as the mean holding time till transition to state i 
from state i, using Definition 8, and using the mean value property 
of the transformed pdf's, we get 

y(ij) = <Hij I qjk)/qij 
K. 

=^ij/qij (19>1) 

Applying Eq.   19.1 to the transformed pdf's yields 

P(12)   = y'l/q12 M(22)   = li22/q22 V(2l)   = y2i/q2! 

= M1 - ^22/q1 = y2l/(l-qI) 

— ,it "  Vi'l =  pV, =  „t 
y'2 

where u'i, u'2, and the transitional probabilities are defined (or 
derived from) Theorem 1. 

Definition_9.  For Expanded (MRP(2)), 

I>(t;2) - (I) | "<»><'> +"W'>1 

Theorem 20.  For FR(t;2) in Definition 9, 

Lim  FR(t;2) 1  ,     [a<e#] 
*** (l-qI)u,i + y,2- 
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E[T] 

where E[T] is given in Proposition 1. 

Proof.  Theorem 19 and Definition 9. 

We close this chapter by showing that SMC(9) cannot be collapsed 
into any of the other models for CSP-12. Any collapsing would require 
that the ordered ensemble S = (0,0') be a macrostate as defined in 
Chapter 1. However, entrance from state a or b would require the pev 
to be (1,0) or (0,1), respectively.  If„we picked the former pev and 
formally defined QbS to  be the same as Qbo'» the Backward Equation system, 
for SMC(9)\ say, would not hold. For example, if S were a macrostate, 
then, letting S = d, the equations 

Pab<t) = Qad^db^ 

and 

Pbb^)  " Qbd*pdb<t^+ Qba^ab^)  + Jb<t) 
t 

would have to hold.  However, entrance to d from state a results in a 
greater probability for a given holding time in d than an entrance from 
state b.  Consequently, Pdb^) is not wel1 defined. 

Another way of stating this inconsistency is provided by 

Definition 10.  Let P  (t;w) be the Fundamental Probability Function, 
from x to y, given that entrance into x is from w. 

Then consistency requires that Pxy(t;w) be independent of state w. 
However, for SMC(9)\ 

Pdb(t;b) *Pdb(t;a) 

Similar results are obtained if we pick (0,1) as the pev and define 
Qa(j formally. 

Under certain conditions, we can still reduce a MC to a SMC in the 
case that the relevant probability functions are indexed by ensembles of 
MC states as occurs in SMC(9)'.  The dependence of the probability functions 
on the entrance ensemble is equivalent to the dependency of the pev's. We 
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therefore drop the restriction of pev independence by using v(x;y) 
to devote the pev of the ensemble x given an entrance from y. Further- 
more, since Vj(x;y) being zero, for a given MC state j, can imply that 
j cannot be reached from any other states in x, x itself becomes a 
function of y: x = x(y).  Further dependence is handled by dropping 
the inner parenthesis:  for example, x(y(w)) = x(yw). Letting a, b, c, 
d, ... be (disjoint) ensembles of MC states which we wish to transform 
into macrostates, we make a provisional definition for the holding time 
pdf's in 

Definition. Given a, b, c, and v(a;c) 

Qab(t;c) - I vj(a;c)fj,B 

where j varies over the set a and B is the absorbing "state" corresponding 
to b. 

Given the underlying MC, M(-)> the above Definition will yield a SMC 
iff (letting R^ = M(Un) , Un being the elapsed time) 

P[Rn+1 in b(ac---)|Rn in a(c--), Rn_i in c(d---), •••Ro in y] 

" PlKirfl in M^l^n in a<c)] 

= P[(Rn, Rn+i) = (a,b), Tn+1 = t|(Rn-i, Rn) = (c, a)] 

where Tn+i = Un+i-Un. Thus v(b, a(c«")) = v(b;a) and Tn+1 depends only 
on Qab( ;c). Therefore, it is necessary and sufficient to require that 
a(c) include all the states of a which communicate with the states of all 
other ensembles, (for all a, c) since v(b;a) depends only on the one step 
MC transitional probabilities. In particular, it is sufficient that a(c) = 
a, for all sets a and c. 

Under the above necessary and sufficient condition, we can now 
write 

pad(t;c) " I Qab( ;c)*Pbd( ;a)(t) 
b 

+6a,dJa(t;c)' 

469 



From another point of view, we can also let a(c) denote the state 
(a;Qax( ;c)), x varying over the exit states. Using this latter 
notation, we can set      , 

Qab(t;c) = Qa(c),b(t)- 

For a given MC, the resultant number of states may be small enough 
to warrant SMC reduction, in the above case of dependent pev's, if the 
reduction in complexity is substantial enough. This extended SMC re- 
duction can be applied to SMC(9); S(a) = the ordered set (0,0') and S(b) - 
(0'). However, nothing is gained here since we still have 4 states. 

In closing this chapter, we point out yet another deviation from the 
conditions of a state independent, stationary pev. The deviant condition 
can be found in [6.2, Chp.  5]. The type of pev found there is an initial 
pev used in the arbitrary entry case of CSP's. It is shown that the 
existence of these pev's is equivalent to that of initial (or delayed) 
holding time pdf's in the stationary (or random entry) case for ergodic 
SMC's. Thus, this special type of pev is handled in a manner analogous 
to that used for state dependent pev's - as an "index" (given, in the 
paper cited, by a prime over the Q's). 

5.0 CONCLUSION. 

5.1 Summary.  Two approaches to the DSI modification of CSP-11 are 
considered in Chapters 2 through 4.  The first approach, found in 
Chapters 2 and 3, ignores any overlap in the inspection process by using 
a functional, defined on a new DSI model, to count only the additional 
units which are inspected from sampling phase segments - units which 
would otherwise not be inspected under CSP-11.  Since the functional TFI 
is not sufficient to deal with all the important aspects of CSP-12, a 
second approach, found in Chapter 4, uses a new functional, defined on a 
slightly different DSI model, to take account of inspection overlaps.  In 
either treatment, there is no explicit backtracking in operational time 
itself; both approaches incorporate the time shift into the transitional 
changes, induced by DSI, which are, in turn, incorporated in the pdf's of 
the underlying models.  Throughout the paper, variations in functionals and 
sampling plans, together with comparisons of them with the primary objects 
of study are also considered. 

5.2 Methods Used.  Two principal tools are used in the analysis of DSI: 
SMC (and MRP) reduction and the z-transform.  Since the SMC's constructed 
for the analysis are modifications of the SMC model of CSP-11, the process 
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of constructing a SMC class from a MC model, described in Chapter 1, 
is turned around. In Chapter 4, the importance of the probability 
entrance vector (pev) is brought out by the incompatibility of SMC(9) 
with the other CSP-12 models. Also in Chapter 4, the use of an 
Expanded MRP in the analysis of DSI is illustrated; this kind of 
analysis could be elaborated on for further investigation of functionals 
dependent on a sequence of transitions. 

We conclude this paper with the observation that DSI can be used 
to modify the more complex CSP's described in Chapter 1. 
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APPENDIX 

A 0 SEMI MARKOV' CHAINS.  Given that X(-) is a time homogeneous, aperiodic, 
irreducible or absorbing, and finite state Semi Markov Chain (SMC) with 
state space S, the following notation and statements are used in the body 
of the text [cf., 6.7, 6.10, 6.14, and 6.15]. 

A.l Notation and Definitions.  For i, j, k, £ in S: 

1. Qik(t) = P[X(t)=k, X(t')=i, 0 < t' < t|x(0)=i].* 

This function is the (defective) pdf of the time of sojourn in state i 
until a transition is made to state k (for discrete t and l ^ k). 

2. Pik(t) = P[X(t)=k|x(0)=i]. 

This function is the fundamental probability function of the SMC 

for (i to k). 

3. Fik(t) = P[X(t)=k; X(t') #k, 0 < t' < t|x(0)=i]. 

This function is the first entrance probability function for (i to k). 

4. Jk(t) = H0*(<Vl Qj^Xt)- 
JG 

This function is the probability of not leaving state k by time t. 

5. Un(k) is the time of nth entry into k. 

6. Nk(t) = Max |n/Un(k) < t[ 

This random variable is the renewal function for state k. 

7. Un is the time of n
th entry. 

8. Y(n) = X(Un) is the embedded Markov Chain associated with the SMC. 

*This definition corrects statement 3, definition 5 in [6.2, p. 664]. 
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For the case where self transitions are allowed, we can use the 
symbols above to define a Markov Renewal Process (MRP). 

i . ' ... 

9. A MRP is the ordered pair (Y, U) such that, for states i, k in S, 

P[Yn=k, T^tlYn.^i, Yn_2, -.., Y0; T^, Tn_2, •••, T0] 

= P[Yn=k, T^tlYn.^i], Tn = Un-Un_! 

= Qik(t)- 

(Note that this pdf is, in general, different from that defined in A.11.)* 

10. The SMC X(t) associated with a MRP is defined by 

X(t) = Y(t) 

= YN(t) 

where N(t) = I  Nj(t), j in S. 

3 

A. 2 Statements. 

1. By time homogeneity and the method of first entrance, we have the 
Backward Equations: 

Pik(t) = I Qij^jk^) + (Sik)Jk(t). 
j - 

2-   Pik(t) =Fik*Pkk(t) + (ölk)Jk(t). 

3.   If qik = Ho*Qlk(+ »), 

T = [qiki 
is the transitional matrix of Y. 

*This definition corrects that given in [6.2, p. 695]. 
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4. If X is irreducible, the equation 

eT = e 

has a unique normalized solution called the stationary vector of 
the SMC. 

5. Lim Pik(t) = —  

= ctk (or PkC
00)) 

where uk is the mean time of sojourn in state k and the e^'s are the 
components of e_. 

». Lim /z-l\ 
z+1 I z j Pik(z) = 

ak 

7.  (Strong Ergodic Theorem.)  If W is a functional defined on the SMC, 
we have, as N approaches infinity, 

| j W(X(s)) approaches Ea[W],  [a.e.] N u _ 

= I  W(k)ak. 
k 

In the case of self transitions, we have 

8.  If (Y, U) is a MRP such that q±i < 1, the unique SMC induced by the MRP 
has its pdf's given via (i^j) 

-*    Qii 
Q*i - —¥- ,  if q±i > o 

1-Qii 

= Qij, otherwise 

where the Q's are given by A.19.  It is equivalent, almost everywhere, 
to the associated SMC. 

9. The properties of time homogeneity, irreducibility, and aperiodicity 
are preserved under filtration. 
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PROGRESSIVELY CENSORED SAMPLING IN THE 

THREE PARAMETER LOG-NORMAL DISTRIBUTION* 
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SUMMARY 

This paper is an extension of previous work by the writer con- 

cerning progressively censored sampling in the normal distribution [4] 

and in the Weibull distribution [6]. Here local maximum likelihood 

estimators and estimators which utilize the first order statistic are 

derived for the three-parameter log-normal distribution when samples 

are progressively censored. An illustrative example involving life 

test data is included. Various properties of the proposed estimators 

are investigated. 

KEY WORDS 
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Progressively Censored Samples 
Life Testing 

1.  INTRODUCTION 

Progressively censored samples frequently occur in life and fa- 

tigue tests, where individual observations are time ordered and where 

at various times during a test, some of the survivors are removed 

(i.e. censored) from further observation. Samples of this type from 
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the normal and from the exponential distribution have received previous 

attention from Herd [10], Roberts [18], and the writer [4]. Progressively 

censored samples from the two-parameter Weibull distribution were con- 

sidered by the writer [5] and by Ringer and Sprinkle [17]. More recent 

work by the writer [6] deals with progressive censoring in the three- 

parameter Weibull distribution. The present paper is concerned with 

progressive censoring in the three-parameter log-normal distribution. 

2. THE SAMPLE 

Let N designate the total sample size, and n the number which fail 

and therefore result in completely determined life spans. Suppose that 

censoring occurs in k stages at times T.>T. j, j=l, 2, ..., k, and that 

r. surviving items are removed (censored) from further observation at 

the jth stage. Thus 

N = n+Ejr.. (1) 

Two types of censoring are generally recognized. In Type I censoring, 

which is of primary interest here, the T. are fixed, and the number of 

survivors at these times are random variables. In Type II censoring, 

the number of survivors are fixed and the T. are random variables. In 

both types, the r. are either fixed or determined independently of the 

life span X. The observations x. are ordered according to magnitude. 

The likelihood function L(s)> where S signifies a k-stage Type I 

progressively censored sample of the type described, is 

n     k        r. 
L(S) = C n f(x.) n [1 - F(T )] 3, (2) 

i=l    j=l      J 

in which C is a constant while f(x) and F(x) are density and distribu- 

tion functions respectively. 
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3. THE LOG-NORMAL DISTRIBUTION 

We write the density function for the three-parameter log-normal 

distribution as 

f(x; v, 0, Y) ,    1    e-[ln(x-Y)-y]
2/2a2)Y < x < %    (3) 

o-JlH  (x-y) 

=0, elsewhere. 

This distribution derives its name from the fact that when the random 

2 2 
variable X is lognormal (y, a , y), then Y = ln(X-y) is normal (y, a  ). 

The mean, median, mode, variance, coefficient of variation, ß and 32 

(Pearson's Betas) for this distribution (c.f. Yuan [23]) are 

y = V + e t4), 
x 

Me = Y + ey> 

Mo = Y + e /w> 

V(x) = e2y oü(w-l), (4) 

where 

cv = /w^r, 

3X = a
2 = ((0+2)2 ((o-l), 

4  3    2 
39 = a. = to +2(o + 3(0 -3, 

2 
a 

a> = e , (5) 

and where a, and a.  denote the third and fourth standard moments. 

The coefficient of variation about the left terminus is defined as 

CV = ^(xT/(yx-Y). (6) 

Previous investigations by the writer [3], Aitchison and Brown [1], 

Hill [11], Wilson and Worcester [21], and others have dealt with maximum 

likelihood estimation in the three parameter log-normal distribution when 
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samples are complete. Harter and Moore [9] considered local maximum 

likelihood estimation in the three parameter log-normal distribution 

for singly and doubly censored as well as for complete samples. Hill 

examined some unusual features of the likelihood function of this dis- 

tribution which had apparently escaped the notice of earlier investi- 

gators. He demonstrated the existence of paths along which the like- 

lihood function of any ordered sample x , ..., x tends to °° as 
2 

(Y, y, 0 ) approach (x , -«, <*>). 

This global maximum of the likelihood function thereby leads to 

the inadmissible estimators, Y = xi> V = -00 and a = °° regardless of 

the sample. On the other hand, when we equate partial derivatives of 

the log-likelihood function to zero, solution of these equations leads 

to local maximum likelihood estimates which in most cases are reason- 

able and as noted by Harter and Moore (loc. cit.) appear to possess 

most of the desirable properties ordinarily associated with maximum 

likelihood estimators. Exceptions may occur in small samples for which 

the likelihood function fails to exhibit a clearly defined local 

maximum. 

4.  LOCAL MAXIMUM LIKELIHOOD ESTIMATION 

With the p.d.f. as given in equation (3), the logarithm of the 

likelihood function (2) becomes 

InL = -nlna - E..ln(x.-Y) =-E, [lnfx.-Y)-y] 1. v l "  0 2 1L ^ l " J 

+ l\r.  ln[l-F.] + In C. C7) 
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Local maximum likelihood estimators(LMLE) are obtained by simul- 

taneously solving the estimating equations 

r        9 F 3 In L      1    vnr,   ,        >     n      „k*.   i  .. i ' 
: = T ^[incx.-YD-v] - VriH mr= °* 

i|Lk . i + ^ zj^ W - ^ |A . 0. (S, 

9 lnL      _„, 1    w  1    vn/<x.-Y)-y r        ^ 

FT~ = *1 W  + T V      x.-Y      j  - Zl W TT = °- 
1 0 1 J 

♦ (5,) 
Let       V^V'I^CeT' C9) 

where fT _ , 

F.  = F(T.)  =J    :,£Cx)dx=J     :,g(y)dy =J     ^(z)dz = 
Y —oo -co 

Fa.), do) 
2 

in which £(x) is given by (3), g(y) is the normal density (y, a  ), <j>(z) 

is the standard normal density (0,1), and 

y. = ln(T.-Y), whereas £. = (y.-y)/a. (11) 

It then follows from (9),(10) and (11) that 

3 F. 3 F. 3 F. 

fpr' JT-- "V (!%> ST1- "Vr md ^ T? 

Z. 
i_ . (12) 

Tj-Y 

When the results of (12) are substituted into (8), the estimating 

equations become 
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z"[ln(x.-Y)-y] + ozK.Z. = 0, 
1    l 1 j  ] 

E^[ln(x.-Y)-y]
2 + o2[z\r.K.Z.-n] = 0, (13) 

ln(x.-Y)-V    o   i        r-z- 

1L  x.-Y        1
V
X.-Y     1

V
T.-Y l l J 

Various iterative techniques are available for simultaneously 

solving these three equations for the required estimates y, a, and Y- 

A procedure that has performed quite well for the writer involves 

selecting a trial value Y- for Y> solving the first two equations with 

Y=Y- for y. and a.  using the standard Newton technique (c.f. page 90 

of reference [20]), and then substituting these values into the third 

equation of (13). Once two values Y- and Y- have been found such that 

the absolute difference |Y- -Y.| is sufficiently small and such that 

H(Y.,y.,cr.) > 0 > H(Y.,y.,a.), where H(Y,y,cr) designates the left side 

of the third equation of (13), the required estimates follow by linear 

interpolation. The smallest sample observation, x,, is of course an 

upper bound on Y and may thus be employed as a first approximation y. 

in the iteration procedure. 

In the event that the third estimating equation of (13) is not 

satisfied for any value of Y in the permissible interval y <_  x., then 

the modified estimators of Section 5 are to be recommended. 

Harter and Moore encountered the related problem in connection 

with samples that are singly and doubly censored. With r observations 
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censored on the left so that x is an upper bound on y» their recom- 

mendation is that an additional observation be censored on the left so 

that x , then becomes a new upper bound on y. 
r+1 

5. MODIFIED MAXIMUM LIKELIHOOD ESTIMATION 

Alternate estimators (MMLE) which have proven most satisfactory 

in numerous applications, can be obtained by simultaneously solving the 

estimating equations 

fir^" °* flr-^ 0> md E[FCV
]
 

= F(xr}' 
where X is the rth order statistic in a sample of size N. Only those 

failures which occur prior to the time at which the first stage of 

censoring takes place, provide observed values for order statistics, 

and thus the maximum value of r is limited. In most applications, we 

might choose to set r=l, but a larger value might be preferred if there 

is reason to suspect contamination of the sample data in the vicinity 

of the terminus. Applicable estimating equations accordingly consist 

of the first two equations of (13) plus a third equation involving ^ 

as derived below. Since 

F(xr) =f   rf(x)dx, and since E[F(xr)] = ^ , (14) 

Y 

it follows that our third estimating equation becomes 

Y = xr - e^r, (15) 

where £    is the standard normal deviate for which 

/57 J 
Hfz2/2dz = — C16) 

/2ü 
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The modified estimators accordingly are found by simultaneously 

solving the set of equations consisting of the first two equations of 

(13) plus equation (15). The same procedure employed in Section 4 to 

calculate the LMLE is also applicable here. On determining y.   and y- 

such that |Y•_Y - I is sufficiently small and such that G(Y-,y.,o\) > 
1 J y+cr? 1 

r x > G(y. 9]x. 9o.) ,  where G(y>y,cr) = y  + e    , we interpolate for the 
J     J    J 

required estimates just as we did in Section 4. 

6.  SOME SPECIAL CASES 

Various special cases in which at least one of the parameters is 

known, are of interest in certain applications. The following are 

considered to be deserving of mention at this time. 

MLE with y known. 

With Y known, there is no longer any distinction to be made 

between a local maximum and a global maximum. The applicable estimating 

equations in this case are the first two equations of (13), and they may 

be solved iteratively for the required estimates y and o  as outlined 

in Section 4. As an alternate technique, we might make the transformation 

y. = ln(x.-Y) and then proceed as described in reference [4] for a 

progressively censored sample from a normal distribution. Gajjar and 

Khatri [7] previously considered this special case. 

LMLE with c known. 

It often happens that the shape parameter a and thus a3 are known, 

leaving only y and y  to be estimated from the sample data. In this case, 

the applicable estimating equations consist of the first and third 

equations of (13). • 
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MMLE with a  known. 

In this case, the applicable estimating equations consist of the 

first equation of (13) plus equation (15). 

7. ESTIMATE VARIANCES AND COVARIANCES 
A     A 

The asymptotic variance-covariance matrix of the estimators y, a} 

A 

and Y is obtained by inverting the information matrix in which elements 

are negatives of expected values of the second partial derivatives of 

the logarithm of the likelihood function. For sufficiently large 

samples, these expected values can be approximated by substituting the 

estimates obtained from a given sample directly into the partial deri- 

vatives which are given below. 

2 
8 In L  -n  1 „k  7 r„   . __.__. __Iir.z.(z.-V, 

»LULL . n_. J_ E»[ln(vW - ^Jw * VW1- 

32 In L  1_ 

3Y
2  "a2 

[Jtn(x -Y)-y-l+a2]   . r.Z [c-(Z -S )] 
vn     1  + £K _LJ ] 3  

1      :    2        1 2 
1     (x.-Y)2        *    (T.-Yr 

J       "   (17) 

32 In L  32 In L _  1 „n, 1 ,  1 Tk  rjZj(W 
TT-^ ="^7^        2~Vx.-YJ~ 2 Ll   (T.-Y) 

a x o j 

[ln(x -Y)-y]  ,  k r.Z [1+5 (Z -5.)] 

" a3 
El   (x.-Y)     a2 h (T.-Y) 

3VI9Y 3Y3y 

32  In L 32 In L 
3O9Y 3Y3O 

32 In L 32  In L 
3y3a 3a3y a_    - a ^[I»CVY)-V]-VJ'jV^VYV1 

A A 

Since the estimators y, a and Y are local rather than global 

maximum likelihood estimators, the applicability of the variance-covariance 
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matrix obtained here, might be open to question. However, a Monte 

Carlo study by Nicholas Norgaard [16] indicates that the approximate 

asymptotic variances and covariances obtained here should be considered 

satisfactory when n ^ 50 , although they might be misleading as measures 

of sampling error for small samples. Norgaard's results are consistent 

with results of an earlier Monte Carlo study by Harter and Moore (loc. 

cit.) in connection with singly and doubly censored samples. It is 

also to be noted that Norgaard's study indicates that variances and 

covariances of the MMLE are approximately equal to corresponding 

measures of the MLE. This is an area of investigation that is continuing 

to receive attention both from Norgaard and the writer. 

8.  AN ILLUSTRATIVE EXAMPLE 

A simulated life test was conducted on 100 randomly selected 

units of a certain electronic device having a log-normal life span 

with y = 5.0000, a  = 0.3000 and y  = 100. Sixty-five complete life 

spans were observed, while thirty-five observations were censored in 

three separate stages. Following are the life spans in hours to two 

places of decimal, for the 65 units which failed during the test. 

167.91 200.88 219.14 232.91 246.61 262.59 287.71 
175.83 201.76 220.59 235.66 247.17 263.94 288.81 
185.88 205.31 222.00 236.75 249.14 266.12 291.30 
188.14 206.98 222.82 237.40 249.73 266.62 295.18 
189.08 210.78 224.33 239.05 250.09 267.01 297.38 

191.96 212.49 225.60 240.22 252.89 270.64 
195.61 213.24 226.50 240.64 253.57 271.76 
197.01 215.25 227.24 242.17 255.57 275.48 
198.76 216.75 227.24 243.03 260.60 279.62 
199.05 218.78 231.42 244.56 261.99 285.19 
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When the tenth failure occured at time T = 199.05, twelve units 

selected at random from the survivors were censored (i.e. removed from 

the test). When the forty-fifth failure occured at time T,,- 250.09, 

ten additional randomly selected survivors were removed, and the test 

was terminated at time T» = 297.38 with 13 survivors. In summarizing 

3 
these data, we record: N = 100, n = 65, ^r = 35, jr = 167.91, 1^ = 

199.05, rx = 12, T2 = 250.09, r2 = 10, T3 = 297.38, r3 =13, I^c = 

15,327.43, 7  =235.8066. 

Estimates were calculated as described in Sections4, 5 and 6 

and are summarized in the following table. 

In general, the estimates obtained here compare favorably with 

corresponding population parameters. 
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