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Abstract 

We explore the possibility of recognizing speech signals using a large col- 
lection of coarse acoustic events, which describe temporal relations between a 
small number of local features of the spectrogram. The major issue of invari- 
ance to changes in duration of speech signal events is addressed by defining 
temporal relations in a rather coarse manner, allowing for a large degree of 
slack. The approach is greedy in that it does not offer an "explanation" of 
the entire signal as the Hidden Markov Models (HMMs) approach does; rather 
it accesses small amounts of relational information to determine a speech unit 
or class. This implies that we recognize words as units, without recognizing 
their subcomponents. Multiple randomized decision trees are used to access 
the large pool of acoustic events in a systematic manner and are aggregated to 
produce the classifier. 

1    Introduction 

Expert human "observers" of bio-acoustic signals, such as speech and bird songs, vi- 

sualize the information carried in the acoustic waveform in two-dimensional images 

containing the time-frequency dynamics of the utterances. These images correspond 

to spectrograms or Log-spectrograms of the signals. The expert human observer (e.g. 

a phonetician) is somehow able to learn from a collection of spectrograms, acoustic 

invariants associated to specific units of vocalization (e.g. phonemes in speech, sylla- 

bles in songs). These acoustic invariants allow the expert to identify the vocalizations 

present in the signals. Moreover, when learning to identify different vocalizations, 

human experts seem to focus on the global shape of the spectrograms, i.e. in the 

temporal relations among several local features in both time and frequency. In fact, 

properties of the gross shape of the spectrum such as the relation among energies at 

frequency peaks, and the change in energy distribution over time, are postulated to 

contain acoustic invariants for certain phonetic features of speech [8, p. 188]. 

In this paper we attempt to address speech recognition from this point of view. 

In other words, we explore the possibility of recognizing speech signals using a large 



collection of coarse acoustic events, which describe temporal relations between a small 

number of local features of the spectrogram. The major issue of invariance to changes 

in duration of speech signal events is addressed by defining temporal relations in a 

rather coarse manner, allowing for a large degree of slack. The approach is greedy 

in that it does not offer an "explanation" of the entire signal as the Hidden Markov 

Models (HMMs) approach does; rather it accesses small amounts of relational infor- 

mation to determine a speech unit or class. This, of course, implies that we recognize 

words as units, without recognizing their subcomponents. 

This approach connects directly to ideas investigated in previous works on object 

and shape recognition; see [2, 3]. There, discrimination is obtained through coarse 

global arrangements of local image tags in the plane. The tags are very stable in the 

sense that they occur with high probability in certain parts of the shape, even under 

rather severe deformations. The spatial relations among the image tags are defined 

in a very coarse manner in order to accommodate the required invariance to shape 

deformations which preserve shape class. These global arrangements provide a very 

rich family of representations of the gross shape of the different objects, and provide 

the tools for recursive relational quantization of the space of objects using multiple 

decision trees. 

The basic ingredients are the following. A collection of local tags is defined to- 

gether with a family of simple pairwise relations between them. For images the local 

tags are defined in terms of the data in a small neighborhood. An example could 

be oriented edge information. In acoustic data the local tags are defined in terms of 

the data in a small time/frequency interval. They are binary variables which detect 

the presence of a certain frequency in a certain range of energies. The ranges are de- 

termined after normalization so some degree of invariance to amplitude is obtained; 



they are moderate in size to accommodate for invariance to audio quality. Relations 

are specified by coarse constraints on locations between the tags. For example in 

image data the second tag could be constrained to lie in a wedge of some angle with 

respect to the first. In acoustic data the second tag could be constrained to lie within 

a certain interval of time relative to the first (e.g. between 100 to 300 milliseconds 

after the occurrence of the first). Each arrangement is either present in the data or 

not, and hence defines a binary variable on the data. 

An arrangement of tags is a labeled graph: each vertex of the graph corresponds 

to some tag type, and each edge, to some relation between the two vertices it con- 

nects. As labeled graphs, the tag arrangements have a natural partial ordering: each 

graph precedes any of its direct extensions, involving an additional tag and a rela- 

tion. Proceeding along one of the paths of this ordering leads to a recursive relational 

partitioning of the sample space. 

Even using a small number of tag types and relations the total number of arrange- 

ments (graphs) of say ten tags is huge. Although this rich family of binary variables 

may contain an enormous amount of information about the class of the data, it can 

never be computed in its entirety even for a single data point, let alone for a large 

training set. These variables can only be accessed incrementally in some order. De- 

cision trees offer a very natural way to systematically explore the partial ordering of 

the arrangements: more complex arrangements are used as splitting rules as the tree 

grows deeper. The informative features are found at the same time the sample space 

is being recursively partitioned or quantized. The vast number of arrangements also 

allows us to use randomization to produce multiple decision trees which are condition- 

ally weakly dependent, and which can be aggregated to produce powerful classifiers 

[2, 10]. 



In the context of bird song data [6], we were able to use these ideas to process 

both segmented and continuous data, and have achieved recognition rates similar to 

those of HMMs at a massive gain in computational cost, both in training and testing 

(see Section 6). For spoken digit data we have achieved a recognition rate of 98% on 

the segmented TI/NIST Digits data. 

We have produced comparable classification rates at a gain in computational cost, 

and perhaps a more transparent classifier in the sense that it is easier to "see what it 

does". See for example Figures 4 through 7. We do not however directly address the 

issue of segmentation and continuous speech as HMMs do, and we are still investigat- 

ing ways to incorporate this classifier to analyze continuous speech. One encouraging 

point is the fact that the trees based on these loose relational arrangements are very 

robust to significant error in segmentation (see Section 5). Also it should be em- 

phasized that the specific tags we have chosen may not be the optimal ones for the 

definition of the acoustic events. Ideas such as those presented in [11], [12] may lead 

to tags with more information content, and a higher degree of invariance. 

This paper is organized as follows. In Section 2, we give a precise definition 

of the local tags we use; the relations between them are introduced in Section 3. 

In Section 4, we describe the randomized tree growing procedure. In Section 5, 

we present a boosting method, and some of our experimental results. Finally, in 

Section 6, we argue why Decision trees convey a huge gain in computational cost, 

when compared to HMMs. 

2    Local Tags 

The acoustic signal can be represented in several forms.   A common goal of these 

representations is to make the time signal more amenable to further processing, thus 



entailing some kind of data-reduction and smoothing of the original signal. 

Probably the simplest representation of speech is the spectrogram. This three- 

dimensional representation of the acoustic signal describes the frequency dynamics 

of an utterance over time. It offers a good visualization of the energy content of 

the frequencies. This is the representation we used in our experiments, but it is not 

the only possible choice (e.g. a wavelet transformation of the signal, such as the 

waveletogram in [5] could be used as well). 

2.1    The spectrogram 

The spectrogram can be thought of as a gray-scale image, whose pixel intensities 

represent the energy content of the frequencies over time. 

Our spectrograms are the output of a smoothing procedure over the time-frequency 

domain. The time axis is divided in consecutive overlapping frames. Within each 

frame the signal is weighted with a Hamming window; the resulting signal is then 

Fourier-transformed, giving rise to a vector of frequency energies (the frequency axis). 

This vector represents an estimate of the spectrum associated to the signal at this 

particular time frame. The estimated spectrum is further smoothed according to 

the Bark scale filter-bank of frequencies [15]. The resulting spectrogram can also be 

thought of as a matrix (Xtf), t = 1,..., T, / = 1,..., F, where t is the time in frames, 

and /, the frequency bin. T measures the duration or length of the utterances; it 

varies from utterance to utterance. A simple statistical analysis shows that T approx- 

imately follows a Poisson distribution within a specific speech unit; see Figure 1; this 

observation will be used later in our experiments in Section 5. F is the total number 

of frequency bins considered; it is kept fixed for all utterances (in our experiments, we 

set F = 18 or 14, according to the sampling rate at which the data were recorded). 

The variables Xt/s show typical characteristics of log-normality (see Figure 1), and 



hence we model them as such. We use overlapping frames of length 25.6 or 32 mil- 

liseconds (depending on the sampling rate at which the data were recorded), taken 

each 5 milliseconds. 

Density Histogram for Durations. Digit» 7 
Density Histogram. Digit= 7 

I 
ü 

200000 

Energy 

Figure 1: Density histograms for durations and energies of realizations of the digit 
seven in the TI-digits corpus. 

2.2    Energy quantization 

We believe that the information contained in the spectrogram is very redundant 

due, in part, to high local correlations, and that the energy content Xtf can be 

quantized in such a way so as to keep the relevant information for recognition intact. 

Frequency bins with high energy content are important for recognition, since they 

indicate the presence of frequency peaks (e.g. formants), whose frequency locations 

and timing within an utterance are believed to be important acoustic features for 

identification of phonetic features [8, Chapter 8]. It could be argued that high energy 

content frequency bins do not occur very often in acoustic signals to avoid sending 

misleading clues to potential decoders (listeners). On the other hand, frequency bins 



that are not so crucial for decoding, might experience a fair amount of variation in 

their energy content, without altering the message. These observations call for a 

quantization of the energy content that is not uniform, but rather partial towards 

high energy content, and that at the same time allows for certain degree of slack on 

moderate values of the energy content. Assuming that Xtf ~ log Normal (ß, a2), one 

can achieve such a quantization scheme by quantizing the values of Xtf in 2Q+1 levels 

given by distances, in standard deviation units, from the mean ß. Let TQ denote this 

quantizing transformation; then we set TQ(Xt/) = q if and only if 

\{q ~ Q)a < logXt/ - // < -(q - Q + l)a 

for q = 0,1,2,..., 2Q - 1, and TQ(Xtf) = 2Q if and only if 

logXtf- n> -Qa. 

Notice that the probability between consecutive quantiles associated to this quanti- 

zation is not constant; in fact 

pq = V(TQ(Xtf) =q) = *(|fo - Q + 1)) - *(ifo - Q)), 

where $(•) denotes the standard Normal cumulative distribution. For Q = 4, the 

vector of probabilities {pg}g_0 is 

{0.044,0.092,0.150,0.191,0.191,0.150,0.092,0.044,0.023}. 

Also notice that small values of frequency energy are discarded from further process- 

ing. 

To account for the possible changes in loudness and intensity, we let /x vary with 

each utterance. However, we assume that a2 is the same for all utterances of a par- 

ticular database.   \i could be estimated by the sample average of the logarithm of 
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the energies of each particular utterance; however, in order to perform the quan- 

tization, a normalization of the frequency energies by their sample mean (average) 

Xtf is, computationally speaking, more efficient. In fact, since the mean of Xtj is 

E(Xtf) = exp{^ + cr2/2}, the normalized variable Xtf/Xtf « Xtf/E(Xtf) can be 

approximated again by a logNormal distribution, but this time the corresponding 

parameters are ju(normalized) = —cr2/2, and a2(normalized) = a2; hence there is no 

need to compute the mean of the log energies. The variance a2 can be estimated by 

the pooled (average) sample variance over the whole collection of utterances of the 

training set. 

This quantization scheme is very different from the usual vector quantization 

technique used with HMMs. In this latter framework, the whole F-dimensional vector 

space is quantized in about 103 regions. In our approach quantization is local in the 

frequency domain: each component Xtf is quantized separately. The number of 

resulting vector quantization regions is approximately (2Q + 1)F, which for moderate 

Q (e.g. Q = 4, F = 18), is huge. We never explicitly use multi-frequency quantiles 

so this never creates a problem. Each of the 2Q + 1 levels at each of the F frequency 

bins is a "tag", labeled by the quantile and the frequency (/, q). It is a binary feature 

which is either present or not. Important information regarding co-occurrences of 

certain frequencies at the same time are represented through the relations between 

the tags, see 3 below. 

In cases where the same tag occurs in consecutive time frames we cluster to one 

tag at the first time of occurrence. The maximal duration of clustering is typically 5 

time frames. In the middle panels of Figures 4 through 7 we show the locations of 

some of the tags, precisely those used in determining certain acoustic events used in 

a particular tree. 



3    Acoustic events 

Our procedure is based on the assumption that there are acoustic events that either 

occur fairly often or rarely on most utterances representing a determined speech 

unit (class). The presence or absence of several of these acoustic events in a given 

utterance, gives strong hints for the identification of the speech unit represented by 

the utterance. 

Statistically speaking, the probability of observing the presence or absence of 

several of these acoustic events is high, given that an utterance is a realization of 

certain determined speech unit; at the same time, this same probability is fairly small 

over all utterances (regardless of the speech unit they represent). 

3.1    Relations and labeled graphs 

We consider particular acoustic events defined by a collection of binary relations 

between tags in a spectrogram. We note that tags only carry information on energy 

content at particular frequency bins; hence, tags alone are too primitive features to 

be relevant for recognition. A tag l\ is related to another tag 1% by the time interval 

/, if the relative time between their occurrences in the spectrogram, t(£2) — *(^i)> is 

contained in the time interval /, i.e. t(^) — t(^i) € /. 

An acoustic event is a connected graph. The vertices of the graph are labeled by 

tag types. The edges between pairs of these vertices are labeled by time intervals 

defining their relationship. To be precise, let V = {^i,^25 • • • Ak}, be a list of tags, 

and 

E = {(4,i,ii,2,Ii),i = l...,n,    itj € V, j = 1,2}, 

be a list of ordered pairs of tags with a time interval. The associated acoustic event 
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is 

*(4,2)-*(4,i)€Ü, i = l,...,n. (1) 

The value of n denote the depth of the event. The condition that the graph is con- 

nected implies that there is a path of edges between any two vertices. In other words, 

for any £a,h in V there are an integer m and a sequence of edges (^.,1,^,2)» J = 

1,.... m, in E such that £iui = £a, £imj2 = b and £iji2 = 4,+1,i for j = 1,..., m - 1 

Temporal relations such as the ones given by (1), allow for certain slack in the tim- 

ing of events on individual utterances; in this way, the sensitivity to the time-warping 

problem is controlled. We observed in our experiments, that a few non-overlapping in- 

tervals suffice in order to obtain good classification rates. We have used the following 

five intervals (in time frames): (0,20), (20,40), (40,70), (70,100), (100, +00). 

Note that on top of the time warping allowed for by the definition of the relations, 

the acoustic event corresponding to the graph is entirely translation invariant. One 

can think of particular realizations of these acoustic events as being aligned (warped) 

to ideal "templates" of the events; these templates correspond to our labeled graphs. 

The top panels of Figures 4 through 7 show one instance of such a graph on 

four different spectrograms of four different digit utterances. The variability in the 

possible instantiations of this graph is clearly manifest in the four images. 

3.2    Information content 

One might ask how informative these acoustic events are. For example the distribution 

on class for those digits containing the acoustic event shown in the top panels of 

Figures 4 through 7 is given in Table 1 for both the training set (4460) points and the 

test set (2486) points. One immediately sees that even an event involving 3 tags and 

2 relations may be very informative, and an additional 2 tags narrows the distribution 
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Prob Ent 0 1 2 3 4 5 6 7 8 9 10 
Ev. 1 (tr) 
Ev. 1 (te) 

.08 

.09 
1.33 
1.27 

.04 

.05 
.05 
.04 

0 
0 

.04 

.02 
.14 
.16 

0 
.01 

.61 

.59 
.07 
.13 

.01 
0 

0 
0 

0.02 
0 

Ev. 2 (tr) 
Ev. 2 (te) 

.007 

.007 
.77 
.55 

0 
.11 

0 
0 

0 
0 

.06 

.05 
.75 
.83 

0 
0 

.15 
0 

.03 
0 

0 
0 

0 
0 

0 
0 

Table 1: First column: Total probability of event. Second column: Conditional entropy on 
class given the event (base e). Columns 3-13: Probabilities on class given the presence of 
the acoustic event. For each event we show the numbers on the training and on test test set. 
The events correspond to the top and bottom panels of Figure 4, and to nodes 'no,yes,yes' 
and 'no,yes,yes,yes,yes' in the tree of Figure 2. 

effectively to only two classes. The entropy of the prior distribution on class is 2.4 

(base e). Note also the strong similarity in the shape of the distributions between test 

and training even though the conditioning events are rather low probability events. 

This is an indirect indication that a large degree of invariance is accommodated 

through the relations and the tag definitions. 

3.3    A partial ordering 

The number of distinct tags is (2Q+1) xF, and the number of possible binary relations 

is AT/ x ((2Q + 1)F((2Q + 1)F - l))/2, where A7/ is the number of temporal intervals 

considered. Consequently the total number of acoustic events of depth n with exactly 

k distinct tags is immense (e.g. if n = k = 5, and A7/ = 5, Q = 4, and F = 18, on the 

order of 1019). We therefore need an efficient procedure to explore the pool of acoustic 

events, with the goal of detecting those relevant for classification. Our approach is 

constructive, in the sense that events are elucidated vertex by vertex in a suboptimal 

fashion: an event of depth n is deepened to n + 1 if the addition of a new vertex and 

edge, significantly improve the discrimination of the speech units in consideration. 

Otherwise put, we exploit the partial ordering on the acoustic events inherited from 

the graphical descriptions. This is done using decision trees as described in the next 
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section. 

4    Decision Trees 

The collection of possible arrangements is vast and cannot be precomputed as a binary 

feature vector. Moreover many arrangements may be useless in terms of the classifica- 

tion problem at hand. Decision trees are used to systematically explore the collection 

of arrangements and find the most informative ones in terms of classification. 

The trees are constructed as follows. At the root of the tree, a search through the 

collection Q0 of graphs of two vertices is done. Each such graph produces a split in 

the training data. The graph Go yielding the smallest mean conditional entropy on 

the class variable is chosen. This is the standard splitting criterion for tree growing in 

the statistics and machine learning literature. Associated to the chosen graph, there 

is a query, denoted by Qo, that asks whether a specific acoustic event is present in the 

spectrogram. Data points for which Q0 = 0 are in the "no" child node. In that node 

a new search through Q0 is performed in order to find the best split. Data points for 

which Qo = 1 are in the "yes" child node, and have one or more instances of the graph 

Go, which is now called the pending graph. A search among minimal extensions of 

this graph is performed to choose the one which leads to the greatest reduction in 

mean conditional entropy on class. Minimal extensions involve an additional tag in 

relation to one of the tags in the existing graph. 

As the tree is growing, there is a pending graph at each node, determined by all the 

"yes" answers on the path leading from the root to that node. The only possible splits 

entertained at the node are minimal extensions of this pending graph. For example 

the graph of panel 1 in Figure 4 is the pending graph at node Oil (No,Yes,Yes) and 

also at node 0110 (No,Yes,Yes,No).   At node 01101 it is extended to the graph of 
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panel 5. Tree growing is stopped when not enough data is present at the node to 

determine a split, or when none of the possible splits yields a significant decrease in 

entropy. In Figure 2 we show part of a decision tree traversed by the four data points 

of Figures 4 through 7. 

The size of the training set imposes a limit on the depth of a tree and only a very 

small number of tag arrangements is actually used. More information is accessed 

by growing randomized multiple trees, where instead of choosing the optimal split 

among all admissible splits (namely minimal extensions), one takes a small random 

sample of admissible splits and chooses the best among those. This yields somewhat 

less powerful trees, but the trees are substantially different, and offer complementary 

"points of view" on the data. Assume N trees are grown 7\,..., Tjv- 

A test data point is dropped down each tree by evaluating the top query Q0; if 

the answer is 1 (Yes), the point proceeds to the "yes" node, and the query there is 

evaluated, and so on until the data point reaches a terminal node. With a slight 

abuse of notation, we will denote the terminal node reached by a point u in tree 

n as Tn(u}). Consider K classes (speech units). Associated to each terminal node 

i of a tree, there is a (conditional) probability distribution over the classes, /zt = 

(/xt(l), • • • ,Ht{K)), which has been estimated from the training data. This is called 

the terminal distribution. When a test point is dropped down N trees, it encounters 

N such terminal distributions /JTI(W)> •••■> MT^M- 

The simplest way of aggregating the information in a collection of N trees is to 

calculate the average distribution 

1   N 

M<") = T7 £ /*Tn(«) = (Mw> !)> • ■ •. M<*>, K)) ■ 
iy n=l 

The argmax of this average distribution is taken to be the classification assigned to 
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0 <= t(F9,Q7) - t(F8,Q5) <= 20 

no 

0 <= t(F12,Q5) - t(F14,Ql) <= 20 

yes 
0 <= t(F14,Ql) - t(F7,Q6) <= 20 

yes 6,3,1,4 

0 <= t(F7,Q6) - t(F13,Ql) <= 20 

yes     1,4 no 6,3 

20 <= t(F7,Q6) - t(Fl 1,Q2) <= 40 0 <= t(F12,Q5) - t(F2,Q3) <= 20 

yes no 

1 

yes 

6 

no 

3 
Figure 2: Part of the decision tree traversed by the four data points of figures 4 
through 7. The split used at each node is provided explicitly in terms of the tag types 
and the time interval. 
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the point u: 

C(u) = argmaxk=l^K{n(üj, k)}. 

This classification rule will be referred to as the Aggregate Distribution Rule in the 

following section. 

Earlier we indicated that the randomized trees access the data from different points 

of view. Statistically this translates into the trees being pairwise weakly dependent 

conditional on class. This weak dependence leads to an increase in classification rates 

when more and more trees are aggregated. A detailed discussion of the properties of 

this classification rule and of the multiple randomized tree procedure can be found in 

[2], and [1]. 

5    Experiments 

We applied our procedure to the recognition of isolated or segmented digits (one, 

two, three,... ,nine, and oh ). Our purpose was to find out how well our procedure 

does over a range of audio quality conditions. Hence, the data consisted of two speech 

corpora: one containing speech spoken over the telephone, and another one containing 

studio quality speech. 

The telephone data were taken from the CSLU Number Corpus of the Center 

for Spoken Language Understanding of the Oregon Graduate Institute of Science 

and Technology. This corpus is a real world application containing "fluent numbers" 

spoken by thousands of people when saying numbers such as their street address 

numbers, zip-codes, and telephone numbers. False starts, repetition, and background 

noise are very common in these data, and make the task difficult (see [4] for details). 

The corpus is divided into two sets of 8,829, and 6,171 speech files; the first one is 

reserved for training, and the second one for testing. We located and worked with all 
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occurrences of the eleven digits in this corpus. 

The studio quality speech data were taken from the well-known TI/NIST Connected- 

Digits Recognition task (also known as Tl-digits). This corpus does not include the 

segmentation of the utterances; hence we hand-segmented a small portion of them; 

specifically, we hand-segmented those utterances corresponding to digit sequences of 

at most two digits. Due to this limitation, our training data constituted a very small 

subset of the data available - 4,460 points in all. Therefore, our results are not directly 

comparable to previous results reported in the literature. Moreover, our testing data 

only consisted of 2,486 isolated digits taken from the testing portion of the corpus. 

Table 2 shows classification error rates for both corpora, using 100 trees and the 

aggregate distribution rule (ADR). 

Corpus ADR ADR+NN 
Tl-digits 
Number 

1.89 
8.61 

1.85 
7.93 

Table 2: Classification error rates. 

In general, recognition improves with the number of trees, but there appears 

to be a limit to the achievable error rates, as the asymptotes in Figure 3 seem to 

indicate. Theoretical error rates can be obtained [2, 10] for these type of classifiers; 

these bounds depend on the average amount of dependency among the decision trees; 

it is conceivable that in practice due to the limited number of training data, it is 

impossible to create too many decision trees without building moderate correlation 

among them. 
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Error rates for Numbers Corpus Error rates for Tl-digits data 

Figure 3: Error rates for increasing number of trees. The solid line corresponds to the 
testing error rates, and the other line, to the training error rates. 

Boosting the classification rates. 

We implemented a K-nearest neighbors (K-NN) rule over the space of aggregate 

distributions resulting from dropping data over the decision trees. The goal was 

to boost the classification rates with the hope of capturing useful information for 

recognition from the aggregate average distributions. In fact, we observed that the 

true digit (class) is among the top two modes of the aggregate average distributions 

on 96.8% of the data from the Number corpus, and on 99.7% of the data from the 

Tl-digits corpus. This boosting procedure is based on the work in [13]; it consists 

of selecting a moderate size rejection set from the training data, so as to view the 

corresponding output aggregate distributions as centroids or prototypes of data that 

are likely to be rejected, namely data which the aggregate classifier is having trouble 

classifying. The rejection criterion is based on the ratio between the top two modes 

of the aggregate average distributions: if the ratio is smaller than certain a priori 

fixed threshold, then the data point is not recognized, but rejected, instead. About 

25% of the training data is rejected in this way. This procedure is also applied to 

test data, but with a lower threshold, so as to reject at most 10% of the data. Each 
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rejected data point in the test set is matched to its K-nearest neighbors in the training 

rejection set, according to the Kullback-Leibler distance between the two aggregate 

distributions. The data point is then recognized as a realization of the most frequent 

digit among its K-nearest neighbors. The column named ADR+NN of Table 2 shows 

the error rates for both corpora after applying the boosting procedure. We obtain an 

8% reduction in the error rate for the Number corpus, and about 2% reduction on 

the error rate for the TI-digits corpus. This indicates that this boosting procedure 

is more effective on data that are very difficult to discriminate, and hence it might 

work well on real world speech tasks. 

Previous studies [9, 14, 7] with HMM, neural networks, or two-dimensional exten- 

sions of HMM, report error classification rates of about 5% to 12% on similar tasks 

with the Number corpus. Reported error rates for the TI-digits are much smaller 

than ours (less than 1%); as we mentioned earlier, our results for this corpus are not 

comparable to those reported in the literature, due to the limitation of our training 

set. 

Cross-Testing. 

In order to assess how well our procedure generalizes to data recorded under different 

quality conditions, we cross-tested the testing portion of the corpora, i.e. the TI-digits 

were tested with trees trained with the Number corpus, and vice-versa. We observed 

that correct recognition rates decreased by slightly more than 10% when testing on 

different audio quality data. But they are still high enough to suggest that somehow 

our procedure is capturing acoustic events that are invariant across data sets. 
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Cross-Tested Corpus ADR 
Tl-digits 
Number 

13.50 
21.50 

Table 3: Cross-Classification error rates. 

Sensitivity to segmentation. 

To investigate how sensitive our procedure is to erroneous segmentations of word 

boundaries, we tested our procedure on data whose word (digit) boundaries were 

randomly marked. In order to randomize the boundaries, we modeled the duration 

(length) of each digit as a Poisson distribution with certain intensity A (see Figure 1), 

depending on the particular digit being considered. The intensities were estimated by 

the average duration of the digits in the training set. Table 4 shows these estimates 

for both corpora. 

Corpus       0 8 oh 
Tl-digits 
Number 

2.41    1.83    1.62    1.75    1.76    1.92    2.56    2.31    1.52    2.20    1.57 
2.58    1.75    1.87    1.92    2.13    2.60    2.68    2.64    1.73    2.25    1.18 

Table 4: Poisson Intensities [seconds]. 

Each utterance u from the Tl-digits testing data set was assigned a duration d(to) 

chosen at random according to the Poisson distribution associated to the correspond- 

ing digit. If the random duration d(u) was shorter than the actual duration T{oS) of 

the utterance, then the utterance was modified by shortening it to d(ui) time frames. 

The random segmentation was done by selecting at random from the collection of 

time frames {1,2,... ,T(u) — d(u)}, a starting time (left boundary) for the modified 

utterance; the ending time (right boundary), was set so that the total duration of the 

modified utterance was d(uj). About half the utterances were modified in this manner. 
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Only modified utterances were tested. This procedure was applied ten times to the 

available testing data set, yielding the error rates shown in Table 5. 

Data 1 2 3 4 5 6 7 8 9 10 Mean Std. Dev. 
Error 1.9 2.1 1.9 2.2 2.5 2.0 2.0 1.9 2.2 2.0 2.0 0.2 

Table 5: Error rates for modified boundaries of the TI-digits 

The average error rate for the modified boundaries data is almost the same as 

the error rate of the correctly segmented data; this gives strong evidence that our 

procedure is not sensitive to small to moderate errors in word segmentation. 

6    Computation considerations 

It is important to note that our procedure not only produces good classification rates 

that are comparable to those yielded by HMMs, but also that it requires orders of 

magnitude fewer calculations (computer operations) both during training and testing. 

The following figures were measured on a PC with a Pentium II processor running 

Cygnus software over Windows NT. We emphasize that the implementation of the 

algorithm has not been optimized. It took 282 minutes to grow 100 trees of average 

depth 9.6 with the 4,460 data points comprising the TI-digits corpus (i.e. 2.82 minutes 

per tree). Testing 2,486 data points from the testing portion of the TI-digits corpus 

took 14 minutes, i.e. 0.34 seconds per data item. Similarly, it took 752 minutes 

to grow 100 trees of average depth 12.2 with the 13,264 data points comprising the 

Number corpus (i.e. 7.52 minutes per tree). Testing 8,642 data points from the testing 

portion of the Number corpus took 42 minutes, i.e. 0.29 seconds per data point. 

Although we do not have the corresponding time measurements for HMMs applied 

to the same tasks with the same data sets, a comparison between the order of calcu- 
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lations needed by our procedure and by HMMs to solve these tasks, offer compelling 

evidence on the computational gain conveyed by our approach. 

HMMs. HMMs are notorious for the quantity of CPU time that the training step 

requires. Let r denote the number of data points in the training set, and d, the average 

duration of the utterances in the training set. A HMM is characterized by its number 

of states s, and mixture components m. Each iteration of the Baum-Welch recursion 

formulas requires 0(s2md x r) operations (here O(-) stands for the order (magnitude) 

of the number of operations). On the other hand, ignoring the maximization step to 

find the best class, testing only requires 0(s2md x K) operations (recall that K is 

the number of classes). 

Decision Trees. As before, let N denote the total number of trees to be grown. 

The relevant quantities for a tree are the average depth n of the trees, and the 

number nq of randomized queries entertained as admissible splitting rules at each non- 

terminal node. The selection of an optimal query at each non-terminal node requires 

0((K+d) x nq) operations, since (a) evaluations of the form t{£\) —t(£2) € /, for fixed 

tags £i, £2, over all the locations of these two tags, require 0(dx length (/)) operations, 

and (b) the average entropy of the children nodes requires O(K) operations, since only 

a fixed number of data points are used in its computation. Since a tree of depth n has 

at most 2n — 1 non-terminal nodes, and at most 2n leaves, the number of operations 

needed to grow N trees is of 0(N x {2n(K + d)nq + 2nrK}). Again, testing only 

requires 0(ndN + KN) operations. 

Computational Gain during Testing. ^From the above calculations, the testing 

step in both procedures requires about the same number of operations when the 
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number of trees grown N is about 0(m x s2K/{n + K)). Since usually n and s are 

rather small numbers, the balancing variable is the number of mixture components 

m. For large m, decision trees are much faster. In fact, assuming s — 5, and K — 10, 

a hundred trees of average depth ten, require about as many operations as ten HMMs 

with eight mixture components in each state. 

Computational Gain during Training. There is no doubt of the enormous gain 

in computational cost, when using decision trees rather than HMMs. Indeed, from 

the above calculations, i iterations of the Baum-Welch algorithm for HMMs require 

0{K{s2mdr/K)z) operations, which is a extremely large number of operations, even 

for i = 2, when compared to 0(N2n(K + d)nq + N2nrK) operations required for N 

decision trees. In fact, if we set s = 5, m = n = 10, and nq = d = 100, two iterations 

of the Baum-Welch algorithm require about O(10r) times as many operations as 

growing 100 trees. 

7    Conclusion 

Acoustic events based on tags localized in time and frequency, and simple coarse 

temporal relations, provide informative features for classification of acoustic signals. 

These events are defined in terms of labeled graphs and inherit a partial ordering. 

We employ multiple randomized decision trees to access the rich pool of acoustic 

events, in a systematic way, exploiting the partial ordering to proceed from coarse to 

fine representations. Time invariance is directly incorporated through the relations, 

invariance to audio quality is incorporated through the coarse definition of the tags. 

The learning stage for this approach is much more efficient and transparent than 

for HMM's. Recognition times are also faster than the more complex HMM models. 
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On the other hand the issue of segmentation and continuous speech analysis is not 

addressed. 
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Figure 4: From top to bottom: 1. Graph on a digit '1' at node Oil in a tree. 2. Tags 103 
to 107 on the same data. 3. Tags 118 to 123. 4. Tags 58 to 62. 5. Graph on same digit at 
node 0111 in the same tree. 
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Figure 5: From top to bottom: 1. Graph on a digit '6' at node Oil in a tree. 2. Tags 103 
to 107 on the same data. 3. Tags 118 to 123. 4. Tags 58 to 62. 5. Graph on same digit at 
node 01101 in the same tree. 
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Figure 6: From top to bottom: 1. Graph on a digit '3' at node Oil in a tree. 2. Tags 103 
to 107 on the same data. 3. Tags 118 to 123. 4. Tags 58 to 62. 5. Graph on same digit at 
node 01100 (same graph) in the same tree. 
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Figure 7: From top to bottom: 1. Graph on a digit '4' at node Oil in a tree. 2. Tags 103 
to 107 on the same data. 3. Tags 118 to 123. 4. Tags 58 to 62. 5. Graph on same digit at 
node 01111 (same graph) in the same tree. 
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