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1. Title 

Conditional Estimation of Vector Patterns in Remote Sensing and GIS: 
Interim Report 5 

2. Abstract 

We examine minimum sufficient data requirements and digital compression 
methods for processing vector polygonal data using X11R6 libraries. Algorithms 
are developed for the fast import, export, and compaction of binary data using 
standard graphical primitives. Algorithms are shown to be adaptable to both 
raster and vector image processing depending on grafport conditions and the 
level of vector modeling required for pattern identification. The concepts of 
minimum sufficient data, data classification, and feature extraction are reviewed 
to understand how vector architectures compare with other data translation and 
image integration methods. The discussion focuses on the efficient conversion of 
raster images to vector equivalent models for use within Computer Aided 
Design (CAD) and Geographic Information Systems (GIS). All algorithms build 
upon prior research efforts outlined within the cumulative ERO research 
program. For example, data import and data export algorithms build upon 
previous functions and procedures developed for the fast import and export of 
raster data using traditional image processing techniques. Algorithms include 
raster and vector fields conducive to point, line, arc, and polygon geometric 
models. The effort is directed toward device independent computer 
architectures as a means to support common UNIX platforms. All data 
structures employ Open Systems Foundation (OSF) C/C++ language techniques 
for direct application across heterogeneous networks. 
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3. Introduction 

Compressed data structures are employed as a method to store and retrieve 

raster and vector patterns acquired from Image Processing (IP), Geographic 

Information Systems (GIS), and Computer Aided Design (CAD) applications. 

Algorithms use Segmentation and Run-Length Encoding (RLE) techniques to 

compress individual data fields contained within an acquired raster image. 

Segmentation is also used to display and retrieve information using pointer 

arithmetic that is efficiently implemented within the C/C++ language (Clark et. 

al., 1991). 

Segmentation algorithms employ a piecewise functional approximation 

(Anderson [1994] and Baase [1992]) to represent all portrayed data. Image data 

are fit according to an error criterion with line (or polynomial) segments. The 

output from the algorithm is a string of triples {(x.,y.), A., B.}; i = l,.., ©s, where e is the 

number of segments, y = A.x + B. is the linear approximation to the ith data 

segment, and (x.,y.) is the right endpoint of the line segment.   This string is 

translated into the terminal symbols (tokens) of a grammar under the control of 

parameters appropriate to the application. 

The structural analysis is accomplished by a left-to-right parser for a grammar 

that defines more complex relationships among the terminal symbols. In this 

context, line segments form a radiometric peak or geometric pattern within the 

raster image and a string of triples is used to represent all geometric patterns 
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with distinct inflection points.    Using piecewise interpolation, polygons are 

decomposed into distinct triples {(x.,y.), A., B.}, and the entire pattern is compressed 

for storage within a common file. 

The advantages of this approach include: processing speed, generality, and the 

mathematical tractability that approximation theory provides. However, the 

approach is more one of numerical analysis rather than pattern analysis. This 

comment also applies to proposals to use truncated K-L series expansions in 

pattern analysis (Baum [1989], Chandrasekaran and Harley [1993]). Such 

preprocessing usually results in arbitrary segmentations and requires excessive 

time for scanning and matching of all the data. Furthermore, the segments 

extracted may not be meaningful in the context of a specific application. In 

separating the analysis of structure from the extraction of morphs, each process 

is excluded from information available to the other. That is, the extraction of 

individual morphs must proceed in ignorance of the a priori combinatorial 

restrictions known by the structural component, and the structural component 

cannot profit from the intermediate work of extraction. Integrated segmentation 

is exemplified by the work of Clark [1990, 1991] for hyperspectral waveforms 

and Karp [1986] for vector pattern recognition. The salient points of the 

integrated approach include: (1) Knowledge Based Segmentation and (2) Parsed 

Segmentation. 
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4. Knowledge Based Segmentation 

Within knowledge based segmentation, there is an a priori (Bayesian) knowledge 

of the possible segments and/or geometric patterns contained within the raster 

image. For example, in a signature library, it is known that the majority of 

spectral patterns include an upslope, a trailing edge, and a series of convex 

and /or concave patterns. Morphs can be defined that functionally represent the 

general shape and distribution of the signature data (e.g. the functional 

representation may include measures of complexity from local extrema to 

exponential segments). The morphs represent a reduced set of instructions that 

can be quickly applied to the original image to summarize and reconstruct all 

information. 

Within the context of spectral decomposition, Boardman [1990, 1992], discusses 

the desirability of knowledge-based search for distinguishing features in 

preference to scanning the entire scene with low-level operators. The term 

"knowledge-based," popular in the artificial intelligence (AI) literature, generally 

refers to "non-statistical" a priori information, although statistical information 

and Bayes' theorem are also acceptable in AI (Boardman [1993], Baum [1989], 

Kirkpatrick [1983]). Using AI methods, prior knowledge is represented by 

means of decision trees (Kruskal [1993]), graph models and decision graphs 

(Gibbons [1990]), grammars (Hornik et. al. [1989]), and neural decision trees 

(Weigend et. al. [1990]). 
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5. Parsed Segmentation 

Within parsed segmentation, scanning is "bottom-up" and "top-down" and not 

restricted to "left-to-right". In other words, the more prominent morphs are 

sought first regardless of their location, and then the grammar is used to predict 

where other morphs are to be found. In the case of spectral decomposition, 

morphs are defined in order of significance corresponding to magnitude and 

duration of a given waveform. Having extracted the signature, a grammar 

(function or procedure) is used to predict the next morph to be scanned (e.g. the 

trailing edge of a given peak). Having extracted the trailing edge, the next 

morphs to be scanned might be peaks and a diacritic notch between the upslope 

and the trailing edge. In this fashion, the extracted morphs clue the system to the 

rest of the structures to be searched and also allow future searches to be 

performed over restricted intervals (e.g. Mazer et. al. [1988]). 

Parsed segmentation methods are commonly used to construct formal parse 

trees. In Gibbons [1990], parse trees are "seeded" by first scanning the entire 

input for prominent features (usually pixels with similar radiometric levels). 

Features are sought and Partial Parse Trees (PPT) are assembled anywhere within 

the raster image. The PPT represents the grammatical structure, while the 

terminals of the tree are words in the data believed to exist within the vector 

image. PPT's are enlarged by using the grammar to guide the search for features 

within the neighborhood of "known" vector patterns and to connect several PPT's 

into one.    Analysis can terminate any time the complete neighborhood is 
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"covered" by some PPT. The bottom-up non-left-right approach is attractive 

because of the ability to search first for reliable morphs regardless of within 

image location and to guide future analysis. 

There is an analogous technique employed when decision trees rather than 

grammars are used to represent the possible structures. For example, in the 

analysis of Synthetic Aperture Radar (SAR) data, one searches for each inflection 

with respect to those features already extracted from the total image. If 

processing leads to an impossible structural outcome, the analysis is backed up 

and the extraction of morphs begins within a new neighborhood inside the SAR 

image. 

In Clark [1991], isolation of a given morph narrows the structural possibilities, 

while the present state of structural possibilities dictates the next morph 

extraction to be attempted. The parsing approach can also be top-down and left- 

to-right (Yuhas et. al [1992]). By going top-down only syntactically and 

semantically acceptable configurations are considered, and very expensive 

preprocessing can be minimized. By going left-to-right, classical parsing 

methods can be used and the state of analysis is easily recorded. One can define 

a probability or error fit that a given morph matches a given segment of raw 

data. This probability can also be backed up a PPT to yield a figure of merit 

(ranked likelihood measure) for a partial parse. The probability of a PPT can be 

changed by "semantic conditioning" (Hornik [1989], Kruskal [1993]). By 

maintaining this figure of merit for all partial analyses only the most promising 
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routes are extended, or in the case of complete analyses only the most likely 

cases need to be accepted. 

Plex grammars (Beakley and Tuteur [1992]) can be employed within VECTOR 

imagery if proper data structures are defined prior to image import and export. 

Plex grammars involve primitive entities called napes. Each nape has a finite 

number of attaching points, each of which has an associated identifier. Napes 

are combined by bringing attaching points into coincidence. A picture 

description language (Akl [1985]) can be used to describe pictorial patterns, the 

primitive elements of which have arbitrary shapes and distinguished heads and 

tails. The hierarchic structure of a picture is defined by using a "picture 

description grammar" to combine expressions in the picture description 

language. Baase [1992] presents an algorithm for representing pictures in terms 

of trees. A tree grammar that generates decision nodes is thus a formal 

description of the corresponding set of patterns. 

There are some problems in using trees and tree grammars in the manner of 

Baase. First, since trees are acyclic graphs, a single tree cannot completely 

describe the connectivity of a closed figure. Second, trees introduce ambiguity 

into a pattern that may not itself be ambiguous. This ambiguity arises because 

the description of a figure by means of a tree requires a segmentation of the 

figure described, and an ordering of the segments. A different choice of 

segments and ordering would result in a different description of the pattern. 

Graphs and graph grammars are probably more appropriate structures for 

describing line drawings because cyclic graphs can completely describe the 

connectivity of closed figures, and a graph description need not order the parts 
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of a figure. As a result, it has often been suggested that transformation rules 

might be just as useful in pattern analysis as they have been in providing insights 

into the structure of natural languages. 

Parsed segmentation can be enhanced using transformation grammars to 

parsimoniously describe the salient features within the image. A transformation 

grammar is defined as G^ = (G,<|>), where G is a reasonably simple "base" grammar 

such as a context-free grammar, and <j> is a mapping that maps a structure in G, 

i.e., a tree, into a related tree. Both Karp [1986] and Boardman [1989] present 

detailed examples of a transformation grammar derivation for a class of 

polygonal patterns. The examples illustrate how a context-free base grammar 

and transformation rules for deletion of the interior lines of the generated 

patterns lead to much simpler derivation than a more direct approach involving 

a context-sensitive grammar. Chandrasekaran and Harley [1993] also discuss the 

application of transformation rules to trees generated by tree grammars. Their 

paper considers transformations to: i) duplicate patterns, i.e., to represent 

complex patterns as a periodic repetition of some simple pattern, and ii) relate 

two occurrences of the same pattern, including one that has undergone a shape- 

preserving transformation such as rotation, translation, or reflection. In 

Boardman [1992], it is suggested that the syntactic structure of transform 

grammars be described by context-free web grammars or array grammars. 

However, there are some relationships between structure diagrams that cannot 

be described by context-free web grammars, for example, the relationship 

between equivalent structural formulas of the same pattern or attribute. 

Transformation rules can be used to transform equivalent diagrams into a 
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canonical form, as well as to combine diagrams and to decompose diagrams into 

"kernel" diagrams. These are the ideas motivating the work of Clark et. al [1991], 

who introduced the concept of a transformation web grammar. Because of the 

potential of graphs for describing patterns of practical interest, graph and 

transformation graph grammars are likely to receive increasing attention in 

syntactic pattern recognition. 

6. Algorithms for Efficient Data Vector Conversion 

Using standard C/C++ data structures, parsed segmentation methods may be 

employed to manage the import and export of vector image data. Parsed 

segmentation requires detailed management of information using indexes. The 

indexes correspond to either pointer or handle data structures within the C/C++ 

language. An example parsed segmentation algorithm is shown in Figure (1). In 

this example, a simple function (Add_VECTOR) has been constructed to add all 

vector patterns contained within two separate parsed objects: VECTOR_l and 

VECTOR_2. The function returns a concatenated data handle within the 

VECTOR_Handle data structure. Note that this function uses "double-inflection" 

to manage information by dynamically linking data across handles. As data is 

spooled into a particular data handle, it is referenced, and then concatenated 

with a second data handle to produce a single composite result. In Figure (1) and 

throughout this discussion, the ValidHandle function is applied to determine the 

fidelity of the information. In positions (i-iii) of Figure (1), data is rejected when 

10 
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the validity of the data handle cannot be determined.    In this manner, all 

VECTOR_Handle Add_VECTOR (VECT0R_1,VECT0R_2) 
VECTOR_Handle     VECT0R_1, VECT0R_2; 

{ 
VECTOR_Handle     the_VECTOR; 
Rect       newFrame; 

/* If one of the _VECTOR_s is no good, return only the good one, 
if any...    */ 

if (!ValidHandle((Handle)VECT0R_1) || 
!ValidHandle((Handle)VECT0R_2)) { 

Alert("\PAt Least One Image Handle ","\PIs Bad or Mangled ", 
"\PTry Operation Again! ","\P"); 

if (ValidHandle((Handle)_VECTOR_l)) 
(i) 

return(VECT0R_1); 
else if (ValidHandle((Handle)VECT0R_2)) 

(ii) 
return(VECT0R_2); 

else 
return(NULL); 

(iii) 
/* NULL if neither _VECTOR_Handle is valid     */ 

/* Find frame for new VECTOR: must be large to hold both V_s..*/ 
UnionRect(&((**VECT0R_1)VECTOR_Frame), 

&((**VECT0R_2)VECT0R_Frame),&newFrame); 
(iv) 

(v) 
the_VECT0R_ = 0pen_VECT0R (&newFrame); 

Draw_VECTOR(_VECT0R_1,& ((* *_VECT0R_1) .VECTOR_Frame)); 
(vi) 
Draw_VECTOR(_VECT0R_2,& ((* *_VECT0R_2) .VECTOR_Frame)) ; 
(vii) 
Close_VECTOR(); 

(viii) 

return(the_VECTOR); 

Figure (1): Function Add_VECTOR. The function adds two VECTOR 
handles and returns a parsed VECTOR_Handle. Error checking is 
managed using the ValidHandle function which tests for valid address 
space on the host platform. 

V^***************************************************** **************** / 

11 
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erroneous information is rejected prior to concatenation within the 

Add_VECTOR function. In position (iv), the procedure UnionRect is used to 

combine the geometry of the two data handles. Using this technique the 

concatenated data handle contains a single minimum sufficient rectangle that is 

the union of the two rectangles concatenated within VECTOR_l and VECTOR_2. 

The procedure Open_VECTOR is used to define a new data handle. The 

Open_VECTOR procedure receives information between position (v) and 

position (viii). The Draw_VECTOR procedure places the graphical description of 

the vector patterns within the open data handle. Note that a separate 

Draw_VECTOR procedure is required for each data handle. As a result, two 

separate Draw_VECTOR commands are shown in Figure (1) at position (vi) and 

position (vii) respectively. The Add_VECTOR function illustrates the general 

pointer and handle arithmetic that is required to support parsed segmentation of 

VECTOR data. As shown, both geometry and data must be managed within 

each function and procedure to ensure that all information is accurately placed 

within the composite result. 

In Figure (2), separate VECTOR patterns are merged to form a single co- 

registered overlay. The function Over_VECTOR merges the digital information, 

calculates the geometric Union of the digital data, and then overlays the final 

product. As applied within Figure (1), the ValidHandle function is used to check 

all digital information prior to physical overlay of the data. The validity check is 

accomplished in position (i-iii). In position (iv), the Union (minimum sufficient 

rectangle) is calculated for the overlay.    Note that the Union rectangle will 

12 
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always be sufficiently large to contain the new product overlay but will never 

exceed the bounds of the original data. In position (v), the procedure 

VECTOR_ToBits is applied to move the digital information onto an off-screen 

grafport. This procedure allows the user to store information in a single location 

that is not directly visible to the user. As in Figure (1), the Open_VECTOR and 

the Close_VECTOR functions are applied to the separate data handles to merge 

all digital information. The actual VECTOR data (contained in VECTOR_l and 

VECTOR_2) is combined using the Draw_VECTOR procedure in conjunction 

with the standard CopyBits utility. In position (vi), the overlay data handle is 

opened and set to receive the new digital information (resulting from the overlay 

process). The overlay begins with the initial Draw_VECTOR procedure in 

position (vii). The CopyBits utility (position viii) moves the base image (i.e. the 

background 

VECTOR Handle Over_VECTOR (VECTOR_l,_VECTOR_2,thePen) 
VECTOR_Handle     VECTOR_l, VECT0R_2; 
int thePen; 

VECTOR_Handle     the_VECTOR; 
Re c t       newFrame; 
BitMap theBits; 
GrafPtr drawPort; 

/* If one of the VECTOR'S is no good, return only the good one, if 
any...       */ 

if (!ValidHandle((Handle) VECT0R_1) II IValidHandle((Handle) 
VECT0R_2)) { 

Alert("\PAt Least One Image Handle ","\PIs Bad or Mangled ", 
"\PTry Operation Again! ","\P"); 

if (ValidHandle((Handle)VECT0R_1)) 
(i) 

return(VECT0R_1); 
else if (ValidHandle((Handle)VECT0R_2)) 

(ii) 
return(VECT0R_2); 

13 
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else 
return(NULL); 

(iii) 
/* Return NULL if neither _VECTOR_Handle is valid     */ 

} 

/* Find frame for new _VECTOR_ture: must be large enough to hold 
both _VECTOR_s... */ 

UnionRect(&((**VECT0R_1).VECTOR_Frame), 
&((* *VECT0R_2) VECTOR_Frame),inewFrame); 

(iv) 

drawPort = FrontWindow(); 
if (VECTOR_ToBits(VECTOR_l,&theBits) == noErr) { 

(v) 

theVECTOR = Open_VECTOR (&newFrame); 
(vi) 

Draw_VECTOR (VECTOR_2,&((**VECT0R_2).VECTOR_Frame)); 
(vii) 

CopyBits(fctheBits, &(drawPort->portBits), 
(viii) 

&((**VECT0R_1).VECTOR_Frame), 
&((* *VECT0R_1) .VECTOR_Frame),thePen,NULL); 

Draw_VECTOR (VECT0R_1,&((**VECT0R_1).VECTOR_Frame)); 
(ix) 

Draw_VECTOR (VECT0R_2,&((* *VECT0R_2) .VECTOR_Frame)); 
(x) 

Close_VECTOR(); 
(xi) 

} 

return (the_VECTOR); 
(xii). 

} 

Figure (2) : Function Over_VECTOR. The function overlays two VECTOR 
data handles and returns a parsed VECTOR_Handle. The standard X- 
Windows procedure CopyBits is used to merge the two data handles to 
form a single contiguous overlay. 

context) offscreen. Next, data handle VECTOR.l and data handle VECTOR.2 

are positioned on-screen. The onscreen position of the individual images is 

determined using the VECTOR_Frame rectangle in position (ix) and position (x). 

The Close_VECTOR procedure terminates the overlay process and the composite 

14 
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image is returned at position (xii). The function Over_VECTOR illustrates a 

number of important processes required to support parsed segmentation of 

VECTOR images: first, all data fields must be checked for validity prior to any 

overlay process. A single non-valid data structure prematurely terminates all 

operations.   Second, all data procedures must have valid management of both 

\*********************************************************************/ 

void Global2_VECTOR (wPtr, thePt) 
WindowPtr  wPtr; 
Point *thePt; 

/*  Convert global coordinates to 'VECTOR' coordinates. */ 
{ 

GrafPtr savePort; 

if (!ValidPointer((Ptr)wPtr) || !ValidPointer((Ptr)thePt)) 
(i) 
RETURN; 

GetPort(&savePort) ; 
/* Save current port    */ 

SetPort(wPtr); 
GlobalToLocal(thePt); 
(ii) 
Local2_VECT0R (wPtr,thePt); 
(iii) 
SetPort(savePort); 

/* Restore original port   */ 
} 

Figure (3) : Function Global2_VECT0R. The function projects globally 
defined coordinates into a local coordinate system defined within a 
given image window. 

radiometric data and associated geometry. Finally, each overlay can be 

transmitted to a parsed segmentation algorithm within a single data handle. 

Composite data fields are not required since pointer and handle arithmetic may 

be used to route both digital data and related attribute information. As shown in 

Figure (2), the VECTOR_Frame controls the position of a given overlay. As a 

result, the composite image (overlay or addition) varies with both the local and 

15 
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the global coordinates that are contained within the original VECTOR data. This 

void Local2_VECTOR (wPtr, thePt) 
WindowPtr  wPtr; 
Point *thePt; 

/* Convert local coordinates to 'VECTOR' coordinates. */ 
/* Assumes that wPtr is the current port. */ 
{ 

WData WD; 

if (!ValidPointer((Ptr)thePt)) 
RETURN; 

GetWData(wPtr,&WD); 
if (!ValidWData(&WD)) 
(i) 
/* Window has no WData record... */ 

SetPt(thePt,-32767,-32767); 
/* Default error values */ 

else { 
if (ValidHandle((Handle)(WD.vScrollBar))) 

(ii) 
thePt->v += GetCtlValue(WD.vScrollBar); 

if (ValidHandle((Handle)(WD.hScrollBar))) 
(iii) 

thePt->h += GetCtlValue(WD.hScrollBar); 
} 

} 

Figure (4): Function Local2_VECT0R.  The function projects locally 
(within window) defined coordinates into VECTOR coordinate system. 

problem is compounded when two or more images must be rectified to one 

another based upon dissimilar coordinates and/or projections. In Figure (3) a 

simple coordinate transform algorithm is provided to illustrate the general 

methods required for geometric projection of VECTOR data. In Figure (3), the 

Global2_VECTOR Procedure applies the ValidPointer function to check for data 

integrity prior to performing the geometric translation. Note that the 

ValidPointer function is applied at position (i) as opposed to the ValidHandle 

16 
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function since X-window data is stored within a pointer (whereas VECTOR raw 

image data is stored within a Handle). The Global2_VECTOR procedure 

performs the coordinate system translation using the standard GlobalToLocal 

data utility (position ii). The Local2_VECTOR procedure (shown in Figure 4) is 

used to re-project the digital information into VECTOR coordinates (i.e. 

formatted for import/export of VECTOR digital data). In Figure (4), the 

Local2_VECTOR function performs a number of necessary functions. First, the 

procedure checks the display window for data validity (position i). Next, the 

function applies the ValidHandle utility to check all associated controls within 

the window. The vertical controls are tested at position (ii), and the horizontal 

controls are tested at position (iii). If all tests are satisfactory, the 

Local2_VECTOR function returns a positive result. Note that the data structure 

is indexed if the result is satisfactory. 

In Figure (5), the VECTOR_2Local procedure performs the converse operation to 

that described in Figure (4). In this new procedure, the original coordinates from 

the base VECTOR file are tested for validity and projected into the window 

coordinates of the newly registered image. As in Figure (4), the ValidPointer is 

used to test data validity prior to the baseline operation. Note that Figure (4) and 

Figure (5) are nearly identical in their operations. In the prior case (Figure 4), the 

transform is applied to the window data (noted &WD) shown at position (i). In 

the later case (Figure 5), the transform is applied to the VECTOR pointer data 

(noted &thePt) at position (i). 

x^***************************************************** 
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void VECTOR_2Local (wPtr,thePt) 
WindowPtr  wPtr; 
Point       *thePt; 
/* Converts '_VECTOR_ture' to local coordinates. */ 
/* Assumes that _VECTOR_ture is associated with window W via its 

WData record */ 

{ ' 
WData       WD; 

if (!ValidPointer((Ptr)thePt)) 
(i) 

RETURN; 

GetWData(wPtr,&thePt); 
if (!ValidWData(&thePt)) 
/* Window has no WData record */ 

SetPt(thePt,-32767,-32767); 
/* Default error values */ 
else { 

if (ValidHandle((Handle)(thePt.vScrollBar))) 
thePt->v -= GetCtlValue(thePt.vScrollBar); 

if (ValidHandle((Handle)(thePt.hScrollBar))) 
thePt->h -= GetCtlValue(thePt.hScrollBar); 

} 
} 

Figure (5): Function VECT0R_2Local.   The function projects VECTOR 
coordinates to locally defined window system. 

7. VECTOR Import and Export 

Image data is organized into a repeated scan-line sequence that requires 

parsed segmentation across geometric patterns. The function ReadJVECTOR 

shown in Figure (6) performs this function using separate source buffers and 

separate destination buffers. As shown in Figure (6), the Read_VECTOR 

function relies upon many indexes to organize the parsed segmentation process. 

Initially, a source buffer of size 2*Blocksize is defined at position (i). The source 
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buffer (of type XByte) is used to buffer all information between the source 

pointer (srcPtr at position ii) and the destination pointer (dstPtr at position ii). 

Note that the actual data is stored in an ancillary bitmap shown in position (iii). 

The ancillary bitmap (labeled theBits) contains a single row of VECTOR data, 

and is swapped into and out of memory as required to read/write the physical 

VECTOR data. In position (iv) and position (v) of Figure (6), the ValidPointer 

and the XTSTRLEN are respectively applied to test the VECTOR data for pointer 

(index) validity and string length validity. In position (vi), the XGetFile 

procedure is used to position a pointer to a given VECTOR file on the host 

platform. Note that the file type VECTOR' is defined between position (v) and 

position (vi) to include only VECTOR compatible images within the selection 

process. The process of unpacking the VECTOR image begins with declarations 

shown at position (vii). The number of lines in the file (nLines) is calculated 

based upon the ending line of the total VECTOR image. Note that since 

VECTOR data files are not of a fixed size, the number of lines to be unpacked 

must be calculated for each image in the data set. The unpacking process is 

managed by two separate pointers (srcPtr and dstPtr). Initially the variable 

srcPtr points to the initial data field within the source buffer (srcBuf). This 

process is shown in position (viii). In addition, the number of bytes required to 

reconstruct a new row of VECTOR data is defined within the variable 

dstBits.rowBytes. Note that the variable dstBits.rowBytes always begins with the 

number of bytes contained within a single row of VECTOR data. This 

declaration is shown in position (ix). As in the case of the source pointer, the 

destination pointer at position (x) always points to the initial data record within 

the buffer.   In position (xi), the minimum bounding rectangle for the buffer 
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dstBits is defined. As shown, the buffer is of size [VECTORDepthBytes x 1]. In 

this regard, only one line of data is unpacked within the buffer at any given 

period. The read procedure formally begins with the 

file position assignment shown in position (xii). In this assignment, the image 

data begins at position fStartReadPos within the base VECTOR file. The data is 

formally unpacked during the read process in paired blocks. Each block is of 

size BlockSize * 2 as shown in position (xiii). In position (xiv), the data is read 

from the VECTOR file and placed within the source buffer. If no error occurs 

during the read process (position xv), the index is set equal to the byte total of 

the data block (position xvi), and a single line of data is unpacked into the source 

buffer (position (xvii). 

OSErr Read_VECTOR (theMap,theReply,startLine,endLine) 

BitMap *theMap,• 
SFReply *theReply; 
int startLine,endLine; 

SFTypeList myFileTypes; 
BitMap dstBits; 
Rect showRect,lineRect; 
Point sfOrigin; 
XByte srcBuf[2*BlockSize]; 
Ptr srcPtr,dstPtr; 
OSErr errCode; 
long fStartReadPos,count; 
int fRefNum,nLines,i; 
char theBits[VECTORRowBytes]; 
(iii) 

(i) 
(ii) 

if (!ValidPointer((Ptr)theMap) || !ValidPointer((Ptr)theReply) 
(iv) 

(startLine >= endLine)) 
return(nilHandleErr); 

if ((XTSTRLEN(theReply->fName) < 1) || !(theReply->good)) { 
(v) 

/* If reply.fName is <1 char long, call SFGetFile */ 
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myFileTypes[0] = 'VECTOR'; 
SetPt(&sfOrigin,82,30); 
XGetFile(pass(sfOrigin),"Load which 

file?",NULL,1,myFileTypes,    (vi) 
NULL,theReply); 

if ((XTSTRLEN(theReply->fName) < 1) || !(theReply->good)) 
return(abortErr); 

} 
nLines = endLine - startLine; (vii) 
srcPtr = &(srcBuf[0]); (viii) 
dstBits.rowBytes = VECTORRowBytes; (ix) 

dstBits.baseAddr = (Ptr)(fctheBits[0]); 
(x) 
SetRect(&(dstBits.bounds),0,0, VECTORDepthBytes,1); 
(xi)       SetCursor(*(GetCursor(Xcursor))); 

errCode = FSOpen(theReply->fName,theReply->vRefNum,&fRefNum); 
if ((errCode == noErr) || (errCode == opWrErr)) { 

fStartReadPos = HeaderSize; 
errCode = SetFPos(fRefNum,fsFromStart,fStartReadPos); 

(xii) 
} 
if (errCode == noErr) { 

count = BlockSize * 2; (xiii) 
if (errCode == noErr) 

errCode = FSRead(fRefNum,fccount,srcBuf);       (xiv) 
} 
if (errCode == noErr) { (xv) 

count = BlockSize; (xvi) 
SetRect(&lineRect,0,0,576,1); 
/* init rect bits are unpacked into */ 
SetRect(&showRect,0,0,576,1); 
/* init rect bits copied from lineRect */ 
srcPtr = (Ptr)srcBuf; (xvii) 
dstPtr = dstBits.baseAddr; 
/* init pointer to unpacking bitfield*/ 

for (i=0; (i<endLine) && (errCode == noErr); i++) 
(xviii) 

{ 
/* For each line of bits,unpack  */ 

(xix) 

(xxi) 

UnpackBits(fcsrcPtr,&dstPtr,_VECTORRowBytes); 

dstPtr = dstBits.baseAddr; 
/* reset pointer to unpacking bitMap */ 
if (i >= startLine) { 

/* If line is within range, move to target... */ 

CopyBits(&dstBits,theMap,&lineRect,       (xx) 
&showRect,srcCopy,NULL) ,- 

OffsetRect(&showRect,0,1); 
/* walk target rect down one line */ 

} 
if (((long)srcPtr - (long)srcBuf) > BlockSize) { 

/* Past first block of bytes, */ 
/* copy upper block onto lower block ...*/ 
BlockMove(&(srcBuf[BlockSize]), (xxii) 
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MsrcBuf [0] ) , (Size)BlockSize) ; 
/*  Read next block into buffer...   */ 
errCode = 

FSRead(fRefNum,&count,&(srcBuf[BlockSize])); 
srcPtr  -= BlockSize; 

} 
if ((errCode == eofErr) && (count >= 0)) 

errCode = noErr; 
} 

} 
if (errCode == noErr) 

XTCloseFile(theReply); 
(xxiii) 

InitCursor(); 
return(noErr); (xxiv) 

} 

Figure (6) : Function Read_VECTOR.   The function imports a single 
VECTOR compatible image file from a user defined source. 

\* ******* *************************************************************/ 

Data is unpacked a line at a time at position (xviii). Note that data is unpacked 

until the end of the file (endLine) is reached and provided no error has been 

encountered during the read process. The procedure UnpackBits at position 

(xix) is used to formally unpack the bits associated with each scanline and the 

expanded data is then positioned within the new vector file using the standard 

CopyBits utility (position xx). Note that the address of the source pointer and 

the address of the destination pointer must be indexed to correspond to the 

individual positions of each data record within the vector file. These calculations 

are performed in position (xxi). The standard BlockMove utility (position xxii) is 

then used to formally transfer the unpacked data into the window record. The 

function Read_VECTOR formally terminates when all lines of data are parsed 

and unpacked into the window record. When the data is completed, the file is 

closed (position xxiii) and a no error result is returned (position xxiv). The 

Read_VECTOR function illustrates a number of important features that are 

required to efficiently manage VECTOR data sets. First, all data records should 
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be dynamically allocated to correspond to the exact size of the image volume. 

Since data sets vary in both width and depth, these parameters should not be 

statistically determined prior to the read process. Next, each data record should 

be unpacked using blocksize parameters. In this manner, the ReadJVECTOR 

function uses only 2*BlockSize memory during the UnPack process and does not 

waste valuable resources. Finally, the Read_VECTOR function unpacks and 

sorts data using parsed segmentation methods. All indexes are determined in 

the course of the read/write process. 

The WriteJVECTOR function shown in Figure (7) is used to write Encapsulated 

Postscript (EPS) Binary compatible files. The function extracts information 

contained within a source buffer and systematically packages the data into 

VECTOR data structures. The function Write_VECTOR works with data that is 

stored within a contiguous XMap (shown in position i). The XMap is parsed into 

two separate buffers of size BlockSize (position ii). The source buffer srcBuf and 

the destination buffer dstBuf are required to respectively store a line of non- 

compressed and a line of compressed data. The non-compressed data is 

extracted from the XMap one line at a time, and is then compressed within the 

destination buffer dstBuf. The function Write_VECTOR opens a destination file 

at position (iii) and sets the initial file index at position (iv). In this example, the 

header record is primed with zeros at position (v) to indicate the actual location 

of the destination image. The formal packing procedure begins at position (vi). 

As shown, indexes are created at the current position of the data (position vii), 

the number of horizontal bytes in the image (hBytes at position viii), the number 

of vertical bytes in the image (vBytes at position ix), the vertical size of the 
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resultant VECTOR file (vSize at position x), and the number of actual bytes 

placed within the data file (the variable goodBytes at position xi). At position 

(xii) a nested loop is declared for all bytes of data in the VECTOR image. Data is 

packed within each of the VECTORFileLines based upon the number of bytes 

(VECTORRowBytes) in each line. The VECTOR bytes are packed in 16 bit words 

with error checking for each of the odd and even bits in the word. The error 

checking is shown for the horizontal and vertical bytes in position (xiii). If an 

error is encountered during the bit packing operation, a zero value is placed 

within the resultant image (position xiv). This operation generally produces a 

white marker for most image processing and CAD systems. The source pointer 

and the destination pointer are exchanged in position (xv) and position (xvi) to 

allow room for a new line of VECTOR data. The data that is contained within 

the source pointer srcPtr is then packed using the standard PackBits utility 

(position xvii). The indexes for both the source pointer and the destination 

pointer are then re-calculated so that each buffer holds a new packet of VECTOR 

data. After the data exchange (position xviii), the information is written to the 

destination file (position xix) and the file size is incremented by the new byte 

count (position xx). The Write_VECTOR function formally terminates with the 

closing of the image file at position (xxi). The preceding functions SetEOF and 

FlushVol respectively set the end of file marker and clear the memory positions 

for the write process. 

\********************************************************** ***********/ 

OSErr Write_VECTOR (theMap,theReply,creator,fileType) 

XMap       * theMap; (i) 
SFReply    *theReply; 
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OSType     creator,fileType; 
{ 

QDByte srcBuf[BlockSize],dstBuf[BlockSize]; 
(ii) 
QDByte *curByte; 
Point sfOrigin; 
OSErr errCode; 
Ptr srcPtr,dstPtr; 
long dstBytes,fSize; 
int fRefNum,hSize,vSize,hBytes,goodBytes,bit,i, j ; 

if (!ValidPointer((Ptr)theMap) || !ValidPointer((Ptr)theReply)) 
return(nilHandleErr); 

SetCursor(*(GetCursor(watchCursor) ) ) ; 

errCode = FSOpen(theReply->fName,theReply->vRefNum,&fRefNum); 
(iii) 
if (errCode == fnfErr) { /* If non- 

existant, then create it */ 
errCode = Create(theReply->fName,theReply- 

>vRefNum,creator,fileType); 
if (errCode == noErr) 
errCode = FSOpen(theReply->fName,theReply- 

>vRefNum,&fRefNum); 
} 
if (errCode == opWrErr) 

errCode = SetFPos(fRefNum,fsFromStart, (long)0); 
(iv) 
if (errCode == noErr) { 

fSize = HeaderSize; 
for (i=0; i<HeaderSize; i++) 

dstBuf[i] = 0; 
(v) 

errCode = FSWrite(fRefNum,&fSize,dstBuf); 
} 
if (errCode == noErr) { 
(vi) 

curByte = theMap->baseAddr; 
(vii) 

hBytes = theMap->rowBytes; 
(viii) 

hSize = theMap->bounds.right - theMap->bounds.left; 
(ix) 

(x) 

(xi) 

vSize = theMap->bounds.bottom - theMap->bounds.top; 

goodBytes = hSize / 8; 

for (j=0; (j<VECTORFileLines) && (errCode == noErr); j++) { 
(xii) 

for (i=0; i<VECTORRowBytes; i++) { 
if ((i < hBytes) && (j < vSize)) { 

(xiii) 
srcBuffi] = *curByte++; 
if (i >= goodBytes) 

for (bit=15; bit>=0; bit--) 
if ((i*8) + (15-bit) > hSize) 

BitClr(&(srcBuf[i]),(long)bit); 
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} 
else 

srcBufti] = (QDByte)O; 

} 
srcPtr = srcBuf; 

dstPtr = dstBuf; 

PackBits(&srcPtr,&dstPtr,_vECTORRowBytes); 

dstBytes = (long)dstPtr - (long)dstBuf; 

errCode = FSWrite(fRefNum,&dstBytes,dstBuf); 

fSize += dstBytes; 

(xiv) 

(xv) 

(xvi) 

(xvii) 

(xviii) 

(xix) 

(xx) 
} 

} 
if (errCode == noErr) 

errCode = SetEOF(fRefNum,fSize); 
/* total bytes including header   */ 

if (errCode == noErr) 
errCode = FlushVol(NULL,theReply->vRefNum); 

XTCloseFile(theReply); 
(xxi) 
InitCursor() ; 
return(errCode); 

} 

Figure (7) : Function Write_VECTOR.   The function exports a single 
VECTOR compatible image file from a user defined source. 
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8. Conclusions 

VECTOR digital data is stored in a variable field format that is efficiently 

managed using parsed segmentation algorithms. Parsed segmentation methods 

provide efficient access to all variable field data structures contained within the 

base image file. As shown in Figure (1) and Figure (2), vector images may be 

managed using single data handles that correspond to all fields and records 

within the data set. Using linear arithmetic, images can be added and overlayed 

using standard X11R6 libraries. The application of VECTOR data within CAD 

and GIS is illustrated using the geometric conversion utilities shown in Figure 

(3), Figure (4), and Figure (5). The conversion utilities provide efficient data 

translation methods for absolute position of the polygon data according to both 

local and global coordinate systems. While these procedures do not define an 

absolute projection algorithm, they illustrate efficient management of vector 

attribute information and global to local mapping of all primitives contained 

within a single vector image. In Figure (6) and Figure (7), import and export 

utilities are defined for the fast exchange of data information across standard 

Unix platforms. The utilities build upon earlier spooling methods defined within 

the ERO research program and may be used to efficiently manage large volumes 

of variable width data using segmented buffers. The segmented buffers are of 

variable width, depth, and size. Image data acquired in 8 to 32 bits can be 

projected using these algorithms. The projected data is compatible with Adobe 

(EPS) and AutoCad (DXF) data structures, and may be used to convert digital 

information from standard raster formats. While the enclosed algorithms do not 
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form a comprehensive VECTOR library that is ultimately required to create 

complete data projections (from raster to vector), the procedures and functions 

illustrate how these data formats may be managed within a distributed operating 

environment. 
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