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ANALYZING MODE CONFUSION VIA MODEL CHECKING 

GERALD LÜTTGEN* AND VICTOR CARRENO+ 

Abstract. Mode confusion is one of the most serious problems in aviation safety. Today's complex 

digital flight decks make it difficult for pilots to maintain awareness of the actual states, or modes, of the 

flight deck automation. NASA Langley leads an initiative to explore how formal techniques can be used to 

discover possible sources of mode confusion. As part of this initiative, a flight guidance system was previously 

specified as a finite Mealy automaton, and the theorem prover PVS was used to reason about it. 

The objective of the present paper is to investigate whether state-exploration techniques, especially model 

checking, are better able to achieve this task than theorem proving and also to compare several verification 

tools for the specific application. The flight guidance system is modeled and analyzed in Mur^>, SMV, and 

Spin. The tools are compared regarding their system description language, their practicality for analyzing 

mode confusion, and their capabilities for error tracing and for animating diagnostic information. It turns 

out that their strengths are complementary. 

Key words, mode confusion, model checking, modeling, state exploration, verification tools 

Subject classification. Computer Science 

1. Introduction. Although digital system automation in the flight deck of aircrafts has contributed to 

aviation safety, we are starting to experience some undesirable side effects as a result of the high degree of 

automation. Automation has significantly reduced the overall pilot workload; however, in some instances the 

workload has just been re-distributed, causing short periods of very high workloads. This is usually the case 

during transition periods when the aircraft moves from one phase of flight to another or when data re-entry 

is necessary due to, e.g., route changes. It is during these transitional phases that pilots may get confused 

about the states, or modes, of the flight deck automation. Mode confusion may cause pilots to interact 

inappropriately with the on-board automation, with possibly catastrophic consequences. Indeed, incidents 

and accidents in aviation are increasingly attributed to this aspect of pilot-automation interaction [2]. 

NASA Langley Research Center, in partnership with avionics manufacturers and other organizations, 

is engaged in a program to explore ways to minimize the impact of mode confusion on aviation safety. 

One approach being studied is to identify the sources of mode confusion by formally modeling and analyzing 

avionics systems in order to determine if such sources exist in the systems. The mode logic of a flight guidance 

system was selected as a target system to develop this approach and to determine its feasibility. The flight 

guidance system offers a realistic avionics system and has been modeled and specified in many notations 

and languages including CoRE [9, 21], SCR [14, 20], Z [10, 31], ObjecTime [22, 28], and PVS [5, 25]. In the 

PVS effort, the behavior of the flight guidance system was encoded as a finite state machine. Properties, 

identified as possible sources of mode confusion by engineers, pilots, and experts in human factors [18], were 
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defined in the PVS language. Some of these properties include inconsistent behavior, ignored crew inputs, 

and indirect mode changes. Proofs in the PVS model, which encodes a Mealy automaton, were undertaken to 

either show that a property holds or to discover conditions that preclude the property from becoming true. 

The employed style of theorem proving resembles a form of state exploration. Hence, the question arises 

whether state exploration techniques, such as model checking [6, 8, 26], are better suited for this task. The 

issues to be considered are whether model checking techniques are appropriate, whether the modeling and 

verification consumes less resources than theorem proving, and whether unsuccessful verification attempts 

return sufficient information which lead an engineer to potential design flaws. In order to get answers 

to our questions, we model and analyze the mode logic by applying three popular and publicly available 

ätate-exploration/model-checking tools, namely Mur</> [7, 23], SMV [19, 29], and Spin [15, 30]. 

The results of this paper show that all three model checking tools have the capability of modeling the 

mode logic of the flight guidance system and analyzing properties related to mode confusion. However, 

each verification tool has its own strengths and weaknesses. Therefore, we put our emphasis on comparing 

the suitability of Mur</>, SMV, and Spin in the context of our application. We draw our comparison along 

three aspects: (1) the suitability of the tools' languages for modeling the mode logic, (2) the suitability of 

the tools for specifying and verifying the mode confusion properties of interest, and (3) the tools' ability to 

generate and animate diagnostic information. The first aspect is of importance because it influences the way 

in which we model the example system. The second aspect refers to the expressiveness of the language in 

which system properties are encoded, and also to the degree of orthogonality between the specification of 

the system and the specification of its properties. The third aspect is perhaps the most important one for 

engineers since system designs are often incorrect in early design stages. Finally, it should be noted that our 

comparative case study is not intended to determine which verification tool is 'the best.' All comparisons 

made only refer to a certain class of applications; the main characteristics of the flight guidance system are 

its synchronous, reactive, and deterministic behavior. 

The remainder of this paper is organized as follows. Section 2 gives an overview of the flight guidance 

system, of its mode logic, and of potential sources for mode confusion. Sections 3, 4, and 5 show the modeling 

and analysis of the mode logic in Mur^, SMV, and Spin, respectively. Section 6 discusses the strengths of 

each verification tool for our application and refers to related work, while Section 7 contains our conclusions 

and directions for future work. Finally, the appendices include the full models of the mode logic. 

2. Flight Guidance Systems and Mode Logics. The flight guidance system is a central component 

of the flight control system (see Fig. 2.1). It continuously determines the difference between the actual state 

of an aircraft - its position, speed, and attitude as measured by its sensors - and its desired state as given by 

the crew and/or the flight management system. In response, the flight guidance system generates commands 

to minimize this difference, which the autopilot may translate into movements of the aircraft's actuators. 

These commands are calculated by control law algorithms that are selected by the mode logic. 

flight guidance system 

mode logic flight management 
system 

FIG. 2.1. Flight control system. 



In the following we focus on the mode-logic part of flight guidance systems. Especially, we leave out 

the modeling of the control laws and, if no confusion arises, use interchangeably the terms flight guidance 

system and mode logic. For the purposes of this paper, it suffices to understand the functionality of the 

mode logic and how it is decomposed into sub-components. The flight guidance system essentially acts as 

a deterministic machine which is composed of several synchronous sub-machines. It receives events from 

its environment - i.e., the crew interface, the aircraft's sensors, and the flight management system - in a 

nondeterministic fashion and reacts to them by changing its state appropriately. The functionality of a flight 

guidance system varies with application, vendor, customer preferences, and other factors. 

Fig. 2.2 shows a typical mode logic for a business jet/commuter jet flight guidance system. The mode 

logic can be represented and modeled by three interacting components: the lateral guidance, the vertical 

guidance, and the flight director. The mode of the flight director - which can be either cues, no-cues, or off 

- determines whether or not the flight guidance system is being used as a navigational aid either manually 

by the crew or automatically through the autopilot. The lateral guidance subsumes the roll mode (Roll), 

the heading mode (HDG), the navigation mode (NAV), and the lateral go-around mode (LGA), whereas 

the vertical guidance subsumes the pitch mode (Pitch), the vertical speed mode (VS), and the vertical go- 

around mode (VGA). Each mode can be either cleared or active, with the navigation mode having additional 

sub-states in the active state. The behavior of each component places constraints on the other components. 

For example, when the flight director is on, there must be exactly one mode active in the lateral guidance 

and one mode active in the vertical guidance. In some situations, an external event may require several 

simultaneous mode changes. Indeed, the behavior of the flight guidance system reflects a kind of two-level 

semantics similar to Statecharts [13], where both semantic levels are not independent but connected via the 

synchrony hypothesis [1]. This hypothesis guarantees that a system completes its reaction to an external 

event before the next external event arrives. 

Mode Logic 

Lateral Guidance Vertical Guidance 
Flight Director 

Roll HDG NAV LGA Pitch VS VGA 
V . 

FIG. 2.2. Architecture of the model logic of the flight guidance system. 

Before we discuss the modeling of the flight guidance system within the verification tools Mur</>, SMV, 

and Spin, we briefly mention some properties of our system, which can be classified as mandatory properties 

and mode confusion properties. Some of the former properties are: (i) if the flight director is off, all lateral 

and vertical guidance modes must be cleared, (ii) if the flight director is on, then exactly one lateral and one 

vertical mode is active, and (iii) the lateral and vertical default modes are activated when the flight director 

is on and when all other modes are cleared. These and other mandatory properties must be true if we have 

accurately modeled the system. Regarding mode confusion, several categories are identified in [18]. We have 

selected three categories to use in the analysis of our system: (1) inconsistent behaviors, i.e., a crew interface 

input (switch, dial, etc.) has different functionality for different system states, (2) ignored operator inputs, 

i.e., a crew input does not result in a change of state, and (3) indirect mode changes, i.e., the system changes 

its state although no crew input is present. To discover if there are possible sources of mode confusion, we 

formulate the negation of each property - there are no inconsistent behaviors, no ignored inputs, and no 



indirect mode changes - and try to prove it. Conditions that prevent us from successfully completing the 

proof, manifested by improvable subgoals in a theorem prover and error traces in model-checking tools, are 

the ones we intend to uncover. As expected, this process is labor intensive when using theorem proving [22]. 

The work described here investigates if model checking is a more efficient way of performing the analysis. 

3. Modeling the Mode Logic in Mur<j). The Murcf) Verification System [7, 23], a state-exploration 

tool developed by David Dill's group at Stanford University, consists of a compiler and a description language. 

The compiler takes a Murcj) description and generates a C+-1- special-purpose verifier for it. This verifier can 

then be used for checking assertions and deadlock behavior of the system under consideration. 

The Murcf) description language is a high-level language which borrows from many constructs found 

in programming languages, such as Pascal. It may be used to model synchronous as well as asynchronous 

hardware and software systems which can be compiled into finite Kripke structures, i.e., finite automata whose 

states are attached with the semantic information of interest. Mur</> descriptions may include declarations of 

constants, finite data-types (such as Booleans, enumeration types, finite subranges of integers, record types, 

and array types), global and local variables, and unhested procedures and functions. Moreover, they contain 

transition rules for describing system behavior, a description of the initial states, and a set of state invariants 

and assertions. Each transition rule may consist of a guard - which is never needed in our application scenario 

- and an action, i.e., a statement which modifies the values of global variables. A state in Murk's execution 

model is an assignment to all global variables in the description under investigation. A transition is then 

determined by a rule, taken nondeterministically from the set of transition rules whose condition is true in 

the current state. The rule's execution updates all or some global variables according to its action. 

TABLE 3.1 
Specification of module simple guidance in Mur<j> 

TYPE sg_modes       :  ENUM { cleared,   active }; 

TYPE sg_events     :  ENUM { activate,  deactivate,   switch,   clear }; 

TYPE sg_signals   :  ENUM { null,  activated,  deactivated }; 

PROCEDURE simple_guidance(VAR mode:sg_modes;   event:sg_events;   VAR signal:sg_signals); 

BEGIN 

IF mode=cleared THEN SWITCH event CASE activate :   signal := activated; 

CASE deactivate :   signal := null; 

CASE switch :   signal := activated; 

CASE clear :   signal := null; 

END; 

ELSE                                    SWITCH event CASE activate :   signal := null; 

CASE deactivate :   signal := null; 

CASE switch :   signal := deactivated;     mode  := cleared; 

CASE clear :   signal := deactivated;• mode   := cleared; 

END; 

END;  END; 

mode   := active; 

mode   := active; 

mode   := cleared; 

In the center of the Mur</> model of the flight guidance system is the deterministic procedure f gs. This 

procedure encodes the system's reaction to some environment event env_ev entering the mode logic. For 

the purposes of this paper it is not important to name the fourteen different environment events interacting 



with the mode logic. However, by declaring a transition rule for each environment event env_ev as RULE 

"ruleJor_env_event" BEGIN fgs(env_ev); END, we model the nondeterministic behavior of the environ- 

ment which arbitrarily chooses the event entering the system at each synchronous step. Please observe that 

our encoding of the environment does not require us to store event names explicitly in a global variable, but 

rather to inject them to f gs via a call-by-value parameter. Due to space constraints we do not completely 

specify procedure f gs here. Instead, we concentrate on modeling the vertical-guidance component of the 

flight guidance system. Let us define the modes of the vertical-guidance component as instantiations of an 

abstract data-type module simple.guidance, specified in Mur<f> as procedure, which encodes each mode's 

behavior as a Mealy automaton behaving like a Boolean switch (cf. Table 3.1). The module is parameterized 

by the mode mode under consideration (as call-by-reference parameter), the input event event (as call-by- 

value parameter), and the output event signal (as call-by-reference or return parameter). The parameters 

are of enumeration types sg_mode, sg.events, and sg_signals, respectively, where type sgjnode ranges over 

the values cleared and active, type sg_event ranges over activate, deactivate, switch, and clear, and 

type sg_signal ranges over null, activated, and deactivated. The body of simple_guidance specifies 

the reaction of a mode to input event event, with respect to its current state mode. This reaction is described 

by an if-statement, two case-selections, and assignments to variable mode and return parameter signal. 

TABLE 3.2 
Specification of module vertical guidance in Mur<j> 

VAR pitch,   vs,  vga  :   sg_modes; 

PROCEDURE vertical_guidance(env_ev:env_events); 

VAR sig  :   sg_signals; 

BEGIN CLEAR sig; 

IF    pitch.event(env.ev)   THEN simple.guidance(pitch,   pitch.conv(env.ev),   sig); 

IF        sig=activated      THEN simple.guidance(vs, deactivate,   sig); 

simple.guidance(vga,       deactivate,   sig); 

END; 

ELSIF    vs.event(env.ev)  THEN simple.guidance(vs,   vs.conv(env.ev),   sig); 

IF        sig=activated      THEN simple.guidance(pitch,   deactivate,   sig); 

simple.guidance(vga,       deactivate,   sig); 

ELSIF sig=deactivated THEN simple.guidance(pitch,   activate,       sig); 

END; 

ELSIF vga.event(env.ev)   THEN simple.guidance(vga,   vga.conv(env.ev),   sig); 

IF        sig=activated      THEN simple.guidance(pitch,   deactivate,   sig); 

simple.guidance(vs, deactivate,   sig); 

ELSIF sig=deactivated THEN simple.guidance(pitch,   activate,       sig); 

END; 

END;  END; 

We can now specify the vertical-guidance module as a procedure, called vertical_guidance (cf. Ta- 

ble 3.2), by employing procedure simple-guidance for describing the behavior of the modes pitch, vs, and 

vga, which are defined as global variables. The task of procedure vertical-guidance is firstly to recognize 

whether the environment event env.ev passed to the system refers to mode Pitch, to mode VS, or to mode 

VGA. This is achieved with help of the three auxiliary functions pitch_event, vs.event, and vga_event, re- 



spectively. Then env.ev is translated to an event of type sg_events via the auxiliary functions pitch_conv, 

vs_conv, and vga_conv, respectively, and passed to the mode to which it belongs. If this mode is activated 

by the event, i.e., simple-guidance returns value activated via local variable sig, then the other two 

modes must instantly be deactivated by invoking simple-guidance with respect to the appropriate modes 

and event deactivate. It should be mentioned that the above modeling of components simple_guidance 

and vertical-guidance is carried over one-to-one from the PVS model of the flight guidance system, which 

was developed by NASA Langley and Rockwell Collins [5, 22]. In fact, every PVS construct used in [22] 

corresponds to a construct in Murk's description language. However, we sometimes find it useful to translate 

functions in PVS to procedures in Mur4> that have an additional call-by-reference parameter for returning 

the computed value. In PVS, only functions can be specified, although procedures would sometimes be more 

preferable from a software-engineering point of view. 

TABLE 3.3 
Specification of some mode confusion properties in Murcfi 

VAR old_pitch,   old_vs,   old.vga  :   sg_modes; 

PROCEDURE mode_confusion_properties(env_ev:env_events); 

BEGIN 

ALIAS mode.change   :  pitch  != old_pitch   I  vs   != old_vs   |  vga   != old_vga;  DO 

IF env_ev=vs_switch_hit THEN 

— check for response to pressing VS button 

assert   (old_vs=cleared -> vs=active  )   "vs_toggle_l"; 

assert   (old_vs=active    -> vs=cleared)   "vs_toggle_2"; 

END; 

— search for ignored crew inputs   (property violated) 

assert   (crew_input(env_ev)   -> mode.change)   "search_for_ignored_crew_inputs"; 

— no unknown ignored crew inputs 

assert   ((crew_input(env_ev)   &  !ignored.crew_input(ev))   -> aode_change)   "no_unknown_ignored"; 

— search for indirect mode changes   (property violated) 

assert   (!crew.input(env_ev)   ->   !mode_change)   "search_for_indirect_mode_changes"; 

-- no unknown indirect mode changes 

assert   ((!crew_input(env_ev)   &   !indirect_mode_change(env_ev))   ->   !mode_change)   "no_unknown..."; 

END; 

— update state variables 

old_pitch   := pitch;     old_vs   := vs;     old_vga  := vga; 

END; 

We now turn our focus to specifying mode confusion properties. As states are generated by the Mur</> 

verifier, assert statements, that were explicitly included in the action of a rule, are checked. If some 

assertion is violated - i.e., the assert statement is evaluated to false in some reachable system state - 

the Mur</> verifier halts and outputs the string which the user associated with the assert statement under 

consideration. Moreover, the verifier outputs diagnostic information which Consists of a sequence of states 

leading from the initial state to the error state. The verifier also halts if the current state possesses no 

successor states, i.e., if it is deadlocked. Let us return to the three categories of mode confusion mentioned 

in Section 2 by showing how an exemplary property of each category can be stated as an assertion. 



In the system description of our mode logic, we encapsulate all assertions in the single procedure 

mode_confusion_properties, which is invoked as the last statement in procedure fgs and which takes 

the current environment event env_ev as parameter (cf. Table 3.3; the notation "- -" introduces a comment 

line in Mur</>, != denotes inequality, and I, ft, !, and -> stand for logical disjunction, conjunction, negation, 

and implication, respectively). Since all mode confusion properties of interest concern the transition from 

one system state to the next, we need to store the global variables' values of the previously visited state. 

For this purpose, we introduce new global variables old_pitch, olcLvs, and old.vga. The need for this 

overhead arises because Murk's verification capabilities are restricted to reason about simple state invariants 

only and not about more general "state transition invariants." Therefore, such state transition invariants 

need to be encoded as state invariants, which doubles the size of the state vector for our system description. 

The first two assertions in Table 3.3, belonging to the first category of mode confusion properties, state that 

environment event vs_switchJhit acts like a toggle with respect to mode VS, i.e., (i) if mode VS was in 

state cleared and event vs_switch_hit arrived, then it is now in state active, and (ii) analogously with 

exchanged roles of cleared and active. 

As example of the second category of mode confusion properties, we check whether no crew inputs 

are ignored, i.e., whenever an event that originated from the crew enters the mode logic, then at least 

one global variable changes its value. We can specify this property as implication crew_input(env_ev) 

-> mode_change, where crew_input is a Boolean function determining whether environment event env_ev 

originates from the crew and where mode_change is a shortcut, introduced as an ALIAS statement in Mur4>. As 

expected (cf. Section 2), this mode confusion property does not always hold. Using the error trace returned 

by Mur<f> helps us in identifying the causes, as is our objective. We do not go into the details here but mention 

that we filter out the identified cause by including an additional predicate ignored_crew_input, stating the 

negation of the cause, in the premise of the assertion (cf. Table 3.3). We then re-run the Mur<j) verifier and 

iterate the described process until the assertion becomes true, thereby gradually capturing all crew-input 

scenarios responsible for mode confusion. When comparing our approach to the one taken in PVS [22] - 

i.e., trying theorem proving until either obtaining proof goal true or until reaching an unsatisfiable proof 

goal - we feel that ours is more effective. We discovered that the variant of ignored_crew_input used in 

the PVS model is stronger than necessary, thereby wrongfully identifying some situations as sources of mode 

confusion. The difficulty with the analysis in PVS is the following. Mur^ returns error traces that pinpoint 

the condition violating the assertion, whereas in a PVS failed proof the condition must be extracted from 

a proof sequent consisting of assertions and subgoals. Extracting conditions from a proof sequent is often 

more time-consuming and usually requires a better understanding of the system's behavior. 

Similar to the assertion "checking for ignored crew inputs" we approach the third category of mode 

confusion properties. The property we consider is "no indirect mode changes," which prohibits a system's 

state to change if the current environment event is not originated by the crew. Using Mur^>, we discover 

the conditions that invalidate this property. As before, we weaken the property by introducing a predicate 

indirect jnode_change, until all sources of indirect mode changes are detected. The mandatory properties 

mentioned in Section 2 are formalized as Mur$> invariant statements and proved. The difference between an 

assert statement and an invariant statement in Mur<£ is that the former appears in the system description 

part of the model, while the latter is orthogonal to the system description. The reason for specifying mode 

confusion properties in the system description is their reference to the auxiliary variables old_pitch, old_vs, 

and old_vga. In order to keep the state space small, the auxiliary variables must be re-assigned to the actual 

values of pitch, vs, and vga, respectively, before a step of the synchronous system is completed. 



Summarizing, Murk's description language turned out to be very useful for our task, especially since the 

already developed PVS model of the flight guidance system [22] could be simply carried over. Unfortunately, 

Murk's capability for expressing system properties is quite restrictive, forcing us to encode state transition 

invariants as state invariants, thereby doubling the number of global variables and, as a consequence, Murk's 

memory requirements. The full Mur^ model subsumes about 30 assertions and leads to a Kripke structure 

having 242 states. In each state of the Kripke structure any of the 14 environment events may potentially 

enter the system; this gives 3 388 = 242 x 14 transitions in total. The state-space exploration undertaken 

by the Mur</> verifier took under 2 seconds on a SUN SPARCstation 20. This is an impressive result when 

compared to the semi-automatic proofs in PVS [22]. 

4. Modeling the Mode Logic in SMV. The SMV system [19, 29], originally developed by Ken 

McMillan at Carnegie-Mellon University, is a model-checking tool for verifying finite-state systems, described 

in a simple description language, against specifications in the temporal logic CTL [6, 8]. The SMV verifier 

implements a symbolic model-checking algorithm [4] based on Binary Decision Diagrams (BDDs) [3]. 

SMV's description language is a very simple, yet elegant language for specifying finite Kripke structures, 

which has the feel of a hardware description language. The language's data types are Booleans (where false 

and true are encoded as 0 and 1, respectively), enumeration types, and arrays. Its syntax resembles a style 

of parallel assignments, and its semantics is similar to single assignment data flow languages. For structuring 

specifications, SMV allows modular hierarchical descriptions. In contrast to Mur</>, SMV descriptions are not 

compiled into a special-purpose verifier, but are interpreted instead. The interpreter makes sure that the 

specified system is indeed implementable by checking for multiple assignments to the same variable, circular 

assignments, and type errors. The SMV language also includes constructs for stating system specifications 

in the temporal logic (fair) CTL [8], which allows one to express a rich class of temporal properties, including 

safety, liveness, and fairness properties. In the present application of the synchronous flight guidance system, 

we focus on safety properties, to which invariants belong. 

TABLE 4.1 
Specification of module simple guidance in SMV 

MODULE simple_guidance(activate,   deactivate,  switch,   clear) 

:     {cleared,   active}; 

:= cleared; 

:= case deactivated   |  deactivate   :   cleared; 

activated :   active; 

1 :  mode; 

esac; 

DEFINE activated       :=  (mode=cleared)   &   (activate   |   switch); 

deactivated  :=  (mode=active  )  &  (clear |   switch); 

A module description in SMV consists of four parts: (1) the MODULE clause, stating the module's name 

and a list of formal (call-by-reference) parameters, (2) the VAR clause, declaring (global) variables needed for 

describing the module's behavior, (3) the ASSIGN clause, which specifies the initial value of all variables (cf. 

init) and how each variable is updated from state to state (cf. next), and (4) the DEFINE clause, which allows 

one to introduce abbreviations for more complex terms. Similar to the Mur^> model, the main module MAIN 

of our SMV specification encodes the environment of the flight guidance system, which nondeterministically 

VAR   mode 

ASSIGN init(mode) 

next(mode) 



sends events to the mode logic. This is done by defining variable env_ev of enumeration type env_events, 

which contains all environment events, and by adding "init(env_ev) := env_events; next(env_ev) : = 

env_events" to the ASSIGN clause. Analogous to the Mur</> model, we specify a module simple_guidance 

(see Table 4.1) and, thereby, show how Mealy machines may be encoded in SMV. Module simple-guidance 

takes the four input events activate,' deactivate, switch, and clear - which can be either absent or 

present - as parameters. The state associated with simple-guidance is variable mode which may adopt 

values cleared and active. Note that the values of enumeration types are encoded by the SMV interpreter 

using a collection of Boolean variables, such that transition relations can be represented by BDDs. The 

initial value init(mode) of mode is cleared. The behavioral part of simple-guidance is described in the 

next (mode) statement, which consists of a case expression. The value of this expression is determined by 

the first expression on the right hand side of the colon such that the condition on the left hand side is 

true. The symbols, =, &, and I stand for equality, logical conjunction, and logical disjunction, respectively. 

The terms activated and deactivated are defined as abbreviations of more complex terms in the DEFINE 

clause. The values of mode, activated and deactivated are accessible from outside the module. Therefore, 

a DEFINE clause may be used for encoding output events of Mealy automata. 

TABLE 4.2 
Specification of module vertical guidance in SMV 

MODULE vertical_guidance(vs_pitch_wheel_changed, vs_switch_hit, ga_switch_h.it, 

sync_switch_pressed,   ap_engaged_event) 

VAR pitch : simple_guidance(pitch_activate, pitch_deactivate, 0,       0) 

vs   : simple_guidance( 0,   vs_deactivate, vs_switch_hit,       0) 

vga  : simple_guidance( 0,  vga_deactivate, ga_switch_hit, vga.clear) 

DEFINE pitch_activate 

pitch_deactivate 

vs_deactivate 

vga_deactivate 

vga_clear 

pitch_event 

vs_event 

vga.event 

=   (vs_event        ft vs.deactivated)     |   (vga_event ft ga.deactivated)   I 

vs_pitch_wheel_changed; 

=  (vs_event        ft vs.activated) |   (vga_event ft ga.activated); 

=  (pitch_event ft pitch.activated)   I   (vga.event ft ga.activated); 

=   (pitch_event ft pitch.activated)   I   (vs_event    ft vs.activated); 

= ap_engaged_event   I   sync_switch_pressed; 

= vs_pitch_wheel_changed; 

= vs_switch_hit; 

= ap_engaged_event   I   sync_switch_pressed   I 

ga_switch_hit; 

Before we model the vertical guidance component, we comment on why we have encoded the input 

event of the simple-guidance Mealy machine using four different signal lines - i.e., adopting a hardware- 

description language point of view - instead of a single event of some enumeration type subsuming all four 

values. If activate, deactivate, switch, and clear were combined in an enumeration type, a syntactic 

- though not semantic - circularity would be introduced which could not be resolved by SMV, i.e., our 

description of the mode logic would be rejected. Another difference between simple-guidance as a module 

in SMV and as an abstract data-type in Mur</> is that the mode variable is encapsulated within the SMV 

module, whereas it is a call-by-reference parameter in Murk's abstract data type. We feel that SMV reflects 

the architecture of the flight guidance system better, since mode belongs to component simple-guidance 

and should not be declared outside. 



The behavior of each mode of the vertical guidance model (cf. Table 4.2), Pitch, VS, and VGA, can 

now be described by instantiating the module simple_guidance, as is done in the VAR clause of module 

vertical-guidance. Thereby, global variables pitch.mode, vs.mode, and vga.mode are created as part 

of the state vector of our SMV model. All actual parameters of each simple_guidance module can be 

specified as Boolean terms on the input parameters of module vertical-guidance, which are essentially 

environment events triggering an action regarding the vertical aircraft axis. Note that the Boolean functions 

pitch_event, vs_event, and vga_event used in the Mur</> description are encoded here in the DEFINE clause of 

vertical-guidance. Our modeling of vertical-guidance is self-explanatory and visualizes the differences 

between the SMV and the Mur0 languages. While in Mur0 each synchronous step of the flight guidance 

system can be modeled by a sequential algorithm, it must be described in SMV by parallel assignments. 

TABLE 4.3 
Specification of some mode confusion properties in SMV 

DEFINE mode_change  :=  !(vertical.pitch.mode = cleared <-> AX vertical.pitch.mode = cleared)   I 

!(vertical.pitch.mode = active    <-> AX vertical.pitch.mode = active )   I   ... 

— check for response to pressing VS button 

SPEC AG  (vertical.vs.mode=cleared & env_ev=vs_switch_hit  -> AX vertical.vs\mode=active) 

SPEC AG  (vertical.vs.mode=active    & env_ev=vs_suitch_hit  -> AX vertical.vs.mode=cleared) 

— search for ignored crew inputs   (property violated) 

SPEC AG  (crew_input  -> mode_change) 

— no unknown ignored crew inputs 

SPEC AG  (crew_input &  !ignored_crew_input  -> mode_change) 

— search for indirect mode changes   (property violated) 

SPEC AG  (!crew_input  ->  !mode_change) 

— no unknown indirect mode changes 

SPEC AG  ((!crew_input &  !indirect_mode_change)   ->   !mode_change) 

In SMV, properties are specified in the temporal logic Computational Tree Logic (CTL) [6, 8]. Fairness 

constraints may also be imposed on SMV models but are not needed for our purposes since we are strictly 

interested in invariants related to aspects of mode confusion. In SMV, temporal properties are introduced 

within the same file as the system description by the keyword SPEC. We do not need to introduce CTL 

formally here, as we use only a very limited sublanguage of it. All of our properties are of the form 

AG(/>, where AG stands for "always generally," i.e., every state on every path through the system satisfies 

property <fr. The formula AX4> expresses that all successor states of the current state satisfy formula </>. 

In this light, the first formula in Table 4.3, related to checking the response to pressing the VS button, 

states: "every reachable state in the underlying Kripke structure of the model satisfies that, if mode VS 

in vertical-guidance is currently cleared and event vs_switch_hit enters the system, then mode VS 

in vertical-guidance is active in every successor state of the current state." Note that the symbols 

-> and <-> used in Table 4.3 stand for logical implication and equivalence, respectively. The identifiers 

mode_change, crew_input, indirect_mode_change, and ignored_crew_input are abbreviations of Boolean 

expressions defined in a DEFINE clause, as exemplarily shown for mode_conf usion. The presence of operator 

AX in CTL remedies the need to keep track of old values of mode variables. Thereby, the size of the associated 

state vector of the SMV model is cut in half when compared to the Mur^ model. Moreover, a fully orthogonal 

treatment of model and property specifications is achieved. The SMV system verified about thirty assertions 
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in slightly more than half a second using 438 BDD nodes and allocated less than 1 MByte memory on a 

SUN SPARCstation 20. The two properties "search for ignored crew inputs" and "search for indirect mode 

changes" were invalidated as in the Mur^ model. The returned error traces - reporting the assignments of 

each variable and each identifier declared in a DEFINE clause in every state of the traces - are of help in 

identifying potential problems with the model. SMV also includes an interactive mode which provides a very 

simple assistant for interactive debugging. The state space of the SMV model consists of 3388 states, which 

corresponds to the 242 states of the Mur^> model since the actual environment event - out of 14 possible 

events - must be stored in a variable in SMV ("242 x 14 = 3388"). 

Summarizing, SMV performed very well on our example and showed the suitability of symbolic model 

checking to the flight guidance system. In fact, the mode logic's behavior can be described by Boolean terms 

and, thus, represented efficiently using BDDs. CTL turned out to be an excellent language for specifying 

mode confusion properties due to the presence of next-state operator AX. SMV's modeling language has 

the feel of a hardware description language and is not as high level as Murk's language. However, SMV's 

module concept allowed us to model the architecture, but not the functionality, of the flight guidance system 

one-to-one to the original PVS specification [22]. 

5. Modeling the Mode Logic in Spin. Last, but not least, we explore the utility of the verification 

tool Spin [15, 16, 30], which was developed by Gerard Holzmann at Bell Labs, for our case study. Spin 

is designed for analyzing the logical consistency of concurrent systems. It is especially targeted towards 

modeling and reasoning about distributed systems, such as communication protocols, where several concur- 

rent processes exchange messages by communicating synchronously via handshaking or asynchronously via 

buffered channels. The description language of Spin, called Promela, allows one to specify nondeterministic 

processes, message channels, and variables in a C-like syntax. Given a system description in Promela, whose 

semantics is again defined as a Kripke structure, Spin can - in contrast to Mur<^> and SMV - perform random 

or interactive simulations of the system's execution. Similar to Mur</>, it can generate a special-purpose 

verifier, i.e., a C-program, which performs an exhaustive exploration of the system's state space. Such a 

state exploration may - among other things - check for deadlocks and unreachable code, validate invariants, 

and verify properties specified in a linear-time logic [8, 11]. Linear-time logic is not as expressive as the 

branching-time logic fairCTL employed in SMV. However, it is rich enough to specify all properties of inter- 

est in this paper. Spin's verifier was implemented having memory efficiency in mind, e.g., it includes optional 

partial-order techniques [12] and bitstate hashing [17]. 

TABLE 5.1 

Specification of the main process init in Spin 

init{ env_ev=null; 

do 

:: atomic{if /* loop body encodes 1 synchronous step  */ 

:: env_ev=vs_switch_hit     /* nondeterministic choice of env. event */ 

:: ... /* 13 more cases, one for each env. event */ 

fi; 

fgs(env_ev); /* perform synchronous step */ 

env_ev=null } /* env. event is no longer needed       */ 

od } 
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Since our flight guidance system is a synchronous system, it falls out of the intended scope of Spin. 

Nevertheless, we show that Spin allows us to successfully carry out our case study. The Promela fragment 

depicted in Table 5.1 encodes our synchronous model using a single process, namely Spin's main process 

init. Here, the global variable env_ev is of type mtype, which contains an enumeration of all event and 

signal names that may occur in the mode logic. Promela's type system supports basic data types (such 

as bit, bool, and byte), as well as arrays, structures (i.e., records), and channels. Unfortunately, it only 

allows a single declaration of an enumeration type, which must be named mtype. The statement atomic 

in init attempts to execute all statements in its body in one indivisible step. Especially, it does not store 

intermediate states which might arise during the execution of the body. Thus, we may use this construct for 

encoding our complex algorithm - see procedure f gs of the Mur^> model in Section 3 - performing a single 

synchronous step. The repetition statement do together with the nested nondeterministic-choice statement 

if nondeterministically chooses which environment event to assign to variable env_ev. Since env_ev is 

no longer needed outside of fgs it is reset to dummy value null and, thus, does not contribute to the 

observable state space. The reason that we have not simply spelled out fgs(vs_switch_hit), and so on 

for each environment variable, is that - as we argue below - fgs needs to be implemented as an inline. 

Expanding this long inline fourteen times turns out to be inefficient. 

TABLE 5.2 

Specification of module simple guidance in Spin 

inline 

{ if : 

simple_guidance(mode, event, signal) 

mode==cleared -> if event==activate  -> signal=activated; 

event==deactivate -> signal=null 

event==switch    -> signal=activated; 

event==clear     -> signal=null 

mode=active 

mode=active 

mode==active 

fi 

-> if 

fi 

event==activate  -> signal=null 

event==deactivate -> signal=null; mode=cleared 

event==switch    -> signal=deactivated; mode=cleared 

event==clear     -> signal=deactivated; mode=cleared 

fi } 

Promela does not possess any kind of procedure construct other than the process declaration proctype. 

However, we may not introduce additional processes to the main process init, since then our model would 

not reflect a synchronous system any more. The only construct of Promela, which we can use for resembling 

the architecture of the flight guidance system, is the inline construct which may take (call-by-reference) pa- 

rameters, such as the parameters mode, event, and signal for component simple-guidance (cf. Table 5.2). 

When compiling a Promela description, each occurrence of simple-guidance in vertical_guidance is re- 

placed with its body. The modes instantiating the parameter mode are global variables of type, bit, where 

cleared and active are defined to represent the constants 0 and 1, respectively, using the preprocessor 

command #def ine. The events and signals clear, activate, deactivate, switch, null, activated, and 

deactivated are of type mtype. The body of simple-guidance contains the Promela statement if. Its 

behavior is defined by a nondeterministic selection of one of its executable options, which are separated 

by double colons, and by executing it. In our case, each option consists of a guarded expression, which is 
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executable if the expression on the left of -> evaluates to true in the current system state under consider- 

ation, and returns the result of evaluating the expression on the right hand side. As in the programming 

language C, the symbols == and = stand for the equality operator and the assignment operator, respectively. 

Using the Promela description of simple_guidance, we can specify component vertical-guidance as an- 

other inline parameterized by environment event env_ev (cf. Table 5.3). The body of vertical-guidance 

is self-explanatory and similar to the one of Mur^. It should only be noted that guard else is always 

executable and that expression skip leaves the current system state unchanged. Moreover, the Boolean 

functions pitch_event, vs_event, and vga_event are spelled out as inlines here. 

TABLE 5.3 

Specification of module vertical guidance in Spin 

bit pitch_mode=cleared;     bit vs_mode=cleared;     bit vga_mode=cleared; 

inline pitch_event(env_ev) { env_ev==vs_pitch_wheel_changed  } 

inline vs_event(env_ev) { env_ev==vs_switch_hit  } 

inline vga_event(env_ev) { env_ev==ga_switch_hit   I|   env_ev==ap_engaged_event   II   ...  } 

inline vertical_guidance(env_ev) 

{ if  ::  pitch_event(env_ev)   ->     . 

simple_guidance(activate,   pitch_mode,  pitch_signal); 

if   ::  pitch_signal==activated -> simple_guidance(deactivate,     vs_mode,    vs_signal); 

simple_guidance(deactivate,   vga.mode,  vga_signal) 

::   else -> skip 

fi 

:: vs.event(env_ev)  -> 

simple_guidance(switch,   vs_mode,  vs_signal); 

if   ::  vs_signal==activated        -> simple_guidance(deactivate,   pitch_mode,  pitch_signal); 

simple_guidance(deactivate, vga_mode, vga_signal) 

:: vs_signal==deactivated -> simple_guidance( activate, pitch_mode, pitch_signal) 

::  else -> skip 

fi 

::  vga_event(env_ev)   -> 

if   ::  env_ev==ga_switch_hit       -> simple_guidance(switch,   vga.mode,  vga_signal) 

::  else -> simple_guidance(  clear,  vga_mode,  vga_signal) 

fi; 

if   ::  vga_signal==activated      -> simple.guidance(deactivate,   pitch_mode,  pitch_signal); 

simple_guidance(deactivate, vs_mode, vs_signal) 

::  vga_signal==deactivated -> simple_guidance(    activate,  pitch_mode,  pitch.signal) 

::  else -> skip 

fi 

::  else -> skip 

fi } 

The verification technique we employed in Spin for reasoning about the flight guidance system, namely 

assertions, is similar to the one we used in Mur^. More precisely, Promela's assertion statement assert aborts 

the state exploration conducted by Spin's verifier whenever its argument expression evaluates to false in some 

system state associated with the assertion statement. Our specification of the mode confusion properties are 
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TABLE 5.4 
Specification of some mode confusion properties in Spin 

bit old_pitch_mode=cleared;     bit old_vs_mode=cleared;     bit old_vga_mode=cleared; 

/* check for response to pressing VS button */ 

assert(!(old_vs_mode==cleared)    II   (vs_mode==active)); 

assert(!(old_vs_mode==active   )   II   (vs_mode==cleared)); 

/* search for ignored crew inputs   (property violated)       */ 

assert(!(crew.input)   II  mode_change); 

/* no unknown ignored crew inputs */ 

assert(!(crew_input  &&   !(ignored_crew_input))   I I   mode_change); 

/* search for indirect mode changes  (property violated)   */ 

assert(!(!(crew_input))   11   !(mode.change)); 

/* no unknown indirect mode changes */ 

assert(!(!(crew_input)  &&  !(indirect_mode_change))   I I   !(mode.change)); 

/* save the current mode values */ 

old_pitch_mode=pitch_mode;     old_vs_mode=vs_mode;     old_vga_mode=vga_mode; 

depicted in Table 5.4, where '!', '&&', and ' II' stand for the logical connectives not, and, and or, respectively. 

Moreover, the symbols /* and */ denote the begin and end of comments. In our specification, crew_input, 

mode_change, ignored_crew_input, and indirect_mode_change, which are defined as Boolean functions in 

Mur</>, are simply introduced via #def ines. In order to encode expression mode_change, we have to keep - as 

in the Mur^ model - a copy of the 'old' values of all global variables of interest. Stating the mode confusion 

properties in Spin's linear-time logic would not have any advantages over using assertions. The reason is 

that Spin's version of linear-time logic does not include the next-state operator, as we used for specifying 

these properties in SMV. This is because many verification methods employed in Spin, such as partial order 

techniques, have essentially no beneficial effects when the next-state operator is present. The verification 

results returned by the Spin verifier are similar to the ones for Mur^. The Spin model of the flight guidance 

system also possesses 242 states and 3388 transitions (+ 1 "dummy" transition). Unfortunately, Spin crashes 

and core dumps when analyzing the invalid assertions search for ignored crew inputs and search for indirect 

mode changes. However, it still writes an error trace which can be fed into Spin's simulator. No other violated 

assertions were detected during the exhaustive state-space search which took under 2 seconds and required 

about 2.6 MBytes memory on a SUN SPARCstation 20. It should be pointed out that a previous effort by a 

NASA contractor to analyze a variant of the flight guidance system using Spin was unsuccessful because of 

an intractably large state space [24]. Unfortunately, from the report it is not clear what the exact causes are. 

We suspect that the manner in which the model was constructed is one of the main causes of the intractable 

state space, which was then checked for invariant properties using Spin's bitstate hashing algorithm [17]. 

Summarizing, the modeling and verification of our flight guidance system was feasible in Spin but less 

elegant than in Mur^. This is mainly because of the lack of procedure and function constructs in Promela, 

which had to be encoded using inlines and #def ines. However, our criticism is qualified by the fact that 

Spin is actually not intended for modeling and reasoning about synchronous systems. If one is interested in 

asynchronous, concurrent systems, Spin provides the process declaration proctype as a means for encapsu- 

lating system components. We would like to see a richer type system in Spin, which can handle more than 
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one mtype definition. Type checking is a powerful tool for detecting inconsistencies and saves us a lot of 

time compared to checking specifications by hand. Also, we wish for the next-state operator to be included 

in Spin's linear-time logic. Similar to our comments for Mur</> we remark that this would cut the size of 

the state vector and Spin's memory requirements approximately in half. Especially useful to us were Spin's 

capabilities to simulate Promela models and to feed back error traces - illustrating the cause of an assertion's 

invalidity - into the simulator. Simulations helped us to identify the causes of ignored crew inputs and 

indirect mode changes in a very time-efficient manner. Beside the feature of monitoring variables, we found 

it useful that Spin highlights the part of the Promela description corresponding to the system state under 

investigation. The absence of rich simulation capabilities in Mur(j> and SMV makes Spin the tool of choice 

for discovering design flaws interactively. Finally, Spin's nice graphical user interface, referred to as Xspin, 

distinguishes Spin from other verification tools. 

6. Discussion and Related Work. In this section we discuss the most important strengths and 

weaknesses of each of the verification tools Mur^, SMV, and Spin regarding our case study. We structure 

our discussion by separating the issues related to the tools' (i) system description languages, (ii) property 

description languages, and (iii) capabilities for system simulation and for animating diagnostic information. 

The system description languages of all three verification tools allow us to model the deterministic, 

synchronous behavior of the flight guidance system, as well as the nondeterministic behavior of the system's 

environment. Especially, Murk's system description language proved to be very useful for the following 

reasons. First, Mur</> implements numerous language constructs and a rich type system, as found in. many 

standard high-level imperative programming languages, such as Pascal. Second, it supports a modular 

programming style via parameterized procedures and functions. Third, it allows us to adapt the existing PVS 

specification of the mode logic in a straightforward manner [22]. One major difference between the languages 

is that Mur^ and Spin allow model encoding using a sequential algorithm, whereas SMV requires an algorithm 

description by parallel assignments. As a consequence, SMV has the feel of a low-level or hardware description 

language. However, SMV's module concept is slightly more elegant than Murk's procedure concept for our 

application, since mode variables can be declared within the module to which they belong and need not 

be declared outside. Regarding Spin's system description language Promela, one notices that it is actually 

designed to specify asynchronous systems, especially communication protocols. This is evident by the fact 

that it only offers the process declaration construct proctype for encapsulating code fragments. By using 

inline declarations we were able to circumvent this problem for our purposes. Finally, we want to mention 

one desired feature that the system description languages of all three tools are missing, namely the ability to 

organize the events of the flight guidance system in a taxonomy, e.g., by including subtyping in the description 

languages. The presence of such a concept would help us to naturally divide all events into lateral-mode and 

vertical-mode events, and further into Pitch events, HDG events, etc. This taxonomy was encoded in Mur<^> 
and SMV using functions and in Spin using inlines. 

Regarding the second issue concerning the property description languages of the three verification tools, 

we also identified several important differences. We first note that all of the mandatory and mode confusion 

properties of interest to us are invariants. Therefore, they can be stated as assertions and verified in 

reachability analysis tools, such as Mur<j>, as well as more general model-checking tools, such as SMV and 

Spin. When specifying mode confusion properties, SMV's adaptation of the temporal logic CTL is most 

convenient, not because of its expressiveness which we hardly use, but since it allows one to implicitly refer 

to adjacent states in program paths using the 'next-state' operator AX. This is important for describing 
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property mode_change which requires one to access the mode variables of adjacent states. In contrast to 

Mur</> and Spin, the encoding of mode confusion properties in SMV does not require the storage of old 

values of mode variables. Thereby, the size of the associated state vector is cut in half. Unfortunately, 

the 'next-state' operator is left out in Spin's version of linear-time logic. Therefore, we could employ Spin 

only as an assertion checker, similar to Mur<f>. In addition to its suitable property description language, 

SMV's BDD-based model checker performed very well in our case study. Its high efficiency is due to the 

fact that mode logics have the characteristics of Boolean terms which can be represented in a very compact 

way using BDDs. However, the small state space of our example system precludes us from fairly comparing 

the run times of the Mur<£, SMV, and Spin verifiers. Finally, we remark again that Mur</> and Spin compile 

system and property descriptions into C++ and C-code, respectively, which may be considered as building 

special-purpose verifiers. This compilation process, however, is considerably slower than SMV's interpreter. 

Regarding the third issue, only Spin provides rich features related to system simulation and to animation 

of diagnostic information. System simulation is especially useful when being combined with diagnostic 

information. Each tool returns an error trace whenever a desired system property is invalidated in the 

model under consideration. More precisely, Mur</> and SMV output a textual description of an error trace, 

which displays the global variables' assignments at all states of this trace, and allow for textual, interactive 

simulations. Spin, however, is able to animate error traces using message sequence charts, time sequence 

panels, and data value panels which are integrated in its nice graphical user interface, known as Xspin. 

In our case study dealing with a synchronous, single-process system, only the data value panel was of 

use. However, this feature, together with the ability to highlight the source code line corresponding to the 

current state in the simulation, enabled us to detect sources of mode confusion in a very time-efficient manner 

compared to SMV and Murcj), and especially when compared to the studies of failed proof subgoals in PVS. 

Finally, related work other than the PVS case study regarding the flight guidance system [5] should be 

mentioned. The CoRE [9] and SCR [14] specifications of the flight guidance system [20, 21] were intended for 

illustrating the utility of the methods for specifying new generations of systems in a more rigorous, consistent, 

and structured way. Especially, they should replace the traditional custom of specifying such systems in plain 

English. In contrast to this paper, the SCR and CoRE specifications were not subject to any automated 

analysis tools, although some tool support for them exists [14]. The well-known Z specification standard [31] 

was applied to the flight guidance system in order to formally express concepts that appear rather informally 

in CoRE [10], such as the semantics of continuous variables. Recently, tools supporting the analysis of Z 

specifications emerged, e.g., Z/EVES [27] which interfaces Z to the theorem prover EVES. This tool was 

applied to the Z specification of the flight guidance system for validating some of the mandatory properties 

mentioned also in this paper, as well as for proving disjointness and completeness of table entries and for 

determinism checks. The gained experiences with Z/EVES are very similar to the ones made with PVS [25]. 

ObjecTime [28] is an environment for testing and simulation and was used as the driving engine of a partial 

flight deck visualization of the flight guidance system's behavior [22]. 

7. Conclusions and Future Work. This paper advocates the use of state-exploration and model- 

checking techniques for analyzing flight guidance systems with respect to causes of mode confusion. Com- 

pared to theorem provers, model-checking tools are able to verify invariants automatically. When weighting 

the strengths of the verification tools Mur^, SMV, and Spin with respect to our application, it turned out 

that these are complementary. Mur</> has the most pleasant system description language, including a rich 

type system and allows for high-level specifications. SMV's adaptation of the temporal logic CTL as property 
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description language supports the convenient specification of mode confusion properties. Spin's capability of 

animating diagnostic information, which is returned from unsuccessful verification attempts, is very useful. 

We hope that our experiences might give tool developers some useful ideas for combining the strengths of 

Mur<^>, SMV, and Spin in a single tool. 

Regarding future work, our case study should be extended to include more components of today's digital 

flight decks and to explore other interesting properties related to mode confusion. Also, the integration of 

verification tools with state-of-the-art specification languages, such as UML [28], must be a primary goal in 

order to make formal verification techniques accessible to engineers in industry or at applied research labs. 

We thank Ricky Butler and Steve Miller for many enlightening discussions about mode confusion, as 

well as Ben Di Vito, Michael Mendler, and Cesar Munoz for carefully proofreading a draft of this paper. 
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Appendix A. Specification and Verification Using Mur^. 

A.l. Full Model of the Mode Logic. 

TYPE env.events   : ENUM { hdg_switch_hit, nav_switch_hit, 

nav_armed_long_enough_event,  nav_track_cond_met_event, 

ga_switch_hit, vs_pitch_wheel_changed, 

vs_switch_hit, fd_switch_hit, 

overspeed_start, overspeed_stop, 

ap_engaged_event, ap_disengaged_event, 

sync_switch_pressed, sync_switch_released 
}; 

TYPE sg_mode   : ENUM { sg_cleared, sg.active }; 

TYPE sg_signals : ENUM { sg_null,   sg.activated, sg_deactivated }; 

TYPE sg_events  : ENUM { sg_nil,    sg_activate,  sg.deactivate, sg.switch,  sg_elear >; 

TYPE ag_mode   : ENUM { ag_cleared, ag_track, ag_armed_initial, ag_armed_long_enough }; 

TYPE ag_signals : ENUM { ag_null, ag_activated,  ag.deactivated }; 

TYPE ag_events  : ENUM { ag_nil,  ag_activate,   ag.deactivate, ag.switch, ag_clear, 

ag_armed_long_enough_ev, ag_track_cond_met }; 

TYPE fd_mode   : ENUM ■[ fd_off,   fd_cues,      fd_no_cues }; 

TYPE fd.signals : ENUM { fd_null,  fd_turned_on,  fd_turned_off }; 

TYPE fd_events  : ENUM { fd_nil,   fd_force_cues, fd_turn_on,  fd.switch, fd_turn_off }; 

TYPE ag_state  : RECORD mode : ag_mode; track_cond_met : boolean;  END; 

— variables controled by the environment   

VAR overspeed : boolean;  ap_engaged : boolean; 

— mode variables  

VAR pitch, old_pitch : sg_mode;  vs,  old_vs  : sg_mode;  vga, old_vga : sg_mode; 

roll,  old_roll  : sg_mode;  hdg, old.hdg : sg_mode;  lga, old.lga  : sg_mode; 

nav,  old_nav  : ag_state; fd, old_fd : fd_mode; 

— auxiliary functions, building a taxonomy on events 

FUNCTION hdg_event(env_ev:env_events) : boolean; 

BEGIN 

IF env_ev=hdg_switch_hit 

THEN RETURN true; 

ELSE RETURN false; 

END; 

END; 
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FUNCTION nav_event(env_ev:env_events) : boolean; 

BEGIN 

IF (env_ev=nav_switch_hit) I (env_ev=nav_armed_long_enough_event) I 

(env_ev=nav_track_cond_met_event) 

THEN RETURN true; 

ELSE RETURN false; 

END; 

END; 

FUNCTION lga_event(env_ev:env_events) :-boolean; 

BEGIN 

IF (env_ev=ga_switch_hit) I (env_ev=ap_engaged_event) I (env_ev=sync_switch_pressed) 

THEN RETURN true; 

ELSE RETURN false; 

END; 

END; 

FUNCTION pitch_event(env_ev:env_events) : boolean; 

BEGIN 

IF env_ev=vs_pitch_wheel_changed 

THEN RETURN true; 

ELSE RETURN false; 

END; 

END; 

FUNCTION vs_event(env_ev:env_events) : boolean; 

BEGIN 

IF env_ev=vs_switch_hit 

THEN RETURN true; 

ELSE RETURN false; 

END; 

END; 

FUNCTION vga_event(env_ev:env_events) : boolean; 

BEGIN 

IF (env_ev=ga_switch_hit) I (env_ev=ap_engaged_event) | (env_ev=sync_switch_pressed) 

THEN RETURN true; 

ELSE RETURN false; 

END; 

END; 
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FUNCTION lateral_mode_requested(env_ev:env_events) : boolean; 

BEGIN 

IF (env_ev=hdg_switch_hit) | (env_ev=nav_switch_hit) | (env_ev=ga_switch_hit) 

THEN RETURN true; 

ELSE RETURN false; 

END; 

END; 

FUNCTION vertical_mode_requested(env_ev:env_events) : boolean; 

BEGIN 

IF (env_ev=vs_switch_hit) I (env_ev=ga_switch_hit) 

THEN RETURN true; 

ELSE RETURN false; 

END; 

END; 

FUNCTION flight_director_event(env_ev:env_events) : boolean; 

BEGIN 

IF (env_ev=ap_engaged_event) I (env_ev=fd_switch_hit) I (env_ev=overspeed_start) I 

lateral_mode_requested(env_ev) I vertical_mode_requested(env_ev) 

THEN RETURN true; 

ELSE RETURN false; 

END; 

END; 

— abstract data type module simple guidance 

signal := sg.null; 

sg.active;  signal := sg.activated; 

signal 

sg_active;  signal 

signal 

sg_null; 

sg.activated; 

sg_null; 

PROCEDURE simple_guidance(VAR mode:sg_mode; event:sg_events; VAR signal:sg_signals); 

BEGIN 

IF mode=sg_cleared THEN 

SWITCH event 

CASE sg_nil      : 

CASE sg_activate  : mode 

CASE sg.deactivate : 

CASE sg_switch    : mode 

CASE sg_clear     : 

END; 

ELSE 

SWITCH event 

CASE sg_nil      : 

CASE sg_activate  : 

CASE sg_deactivate : mode 

CASE sg_switch    : mode 

CASE sg.clear     : mode 

END; 

END; 

END; 

signal := sg_null; 

signal := sg_null; 

:= sg.cleared; signal := sg_null; 

:= sg_cleared; signal := sg.deactivated; 

:= sg_cleared; signal := sg_deactivated; 
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— abstract data object module arming guidance 

PROCEDURE arming_guidance(event:ag. 

BEGIN 

IF nav.mode=ag_cleared THEN 

SWITCH event 

CASE ag_nil 

CASE ag_activate 

CASE ag_deactivate 

CASE ag_switch 

CASE ag_clear 

CASE ag_armed_long_enough_ev 

CASE ag_track_cond_met 

END; 

ELSE 

SWITCH event 

CASE ag_nil 

CASE ag_activate 

CASE ag_deactivate 

CASE ag_switch 

CASE ag_clear 

CASE ag_armed_long_enough_ev 

„events; VAR signal:ag_signals); 

CASE ag_track_cond_met 

signal 

nav.mode := ag_armed_initial;  signal 

signal 

nav.mode := ag_armed_initial;  signal 

signal 

signal 

nav.track_cond_met := true;   signal 

:= ag_null; 

:= ag_activated; 

:= ag.null; 

:= ag_activated; 

:= ag_null; 

:= ag_null; 

:= ag_null; 

signal := ag_null; 

signal := ag_null; 

nav.mode := ag_cleared; signal := ag_null; 

nav.mode := ag.cleared;  signal := ag_deactivated; 

nav.mode := ag_cleared;  signal := ag_deactivated; 

IF (nav.mode=ag_armed_initial) & nav.track_cond_met 

THEN 

nav.mode := ag_track;  signal := ag_null; 

ELSIF (nav.mode=ag_armed_initial) & !nav.track_cond_met 

THEN 

nav.mode := ag_armed_long_enough;  signal := ag.null; 

ELSE 

signal := ag_null; 

END; 

IF nav.mode=ag_armed_long_enough THEN 

nav.mode := ag_track;   signal := ag.null; 

nav.track_cond_met := true; 

ELSE 

nav.track_cond_met := true;       signal := ag_null; 

END; 

END; END; END; 

— function module lateral guidance & auxiliary functions 

FUNCTION hdg_conv(env_ev:env_events) : sg_events; 

BEGIN 

SWITCH env_ev 

CASE hdg_switch_b.it : RETURN sg.switch; 

ELSE RETURN sg.nil; 

END; 

END; 
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FUNCTION nav_conv(env_ev:env_events) 

BEGIN 

SWITCH env.ev 

CASE nav_switch_hit 

CASE nav_track_cond_met_event 

CASE nav_armed_long_enough_event 

ELSE 

END; 

END; 

ag_events; 

RETURN ag_switch; 

RETURN ag_track_cond_met; 

RETURN ag_armed_long_enough_ev; 

RETURN ag_nil; 

FUNCTION lga_conv(env_ev:env_events) : sg_events; 

BEGIN 

SWITCH env_ev 

CASE ga_switch_hit 

CASE ap_engaged_event 

CASE sync_switch_pressed 

ELSE 

END; 

END; 

RETURN sg_activate; 

RETURN sg.clear; 

RETURN sg.clear; 

RETURN sg_nil; 

PROCEDURE lateral_guidance(env_ev:env_events); 

VAR roll_sig, hdg_sig, lga.sig : sg_signals; nav_sig : ag_signals; 

BEGIN CLEAR roll.sig;  CLEAR hdg.sig;  CLEAR lga.sig;  CLEAR nav.sig; 

IF hdg_event(env.ev) THEN 

simple_guidance(hdg, hdg_conv(env_ev), hdg_sig); 

IF hdg_sig=sg_activated THEN     simple_guidance(roll, sg_deactivate, roll.sig) 

simple_guidance(lga,  sg_deactivate, lga.sig ) 

arming_guidance(     ag_deactivate, nav_sig ) 

ELSIF hdg_sig=sg_deactivated THEN simple_guidance(roll, sg_activate, roll.sig ) 

END; 

ELSIF nav_event(env.ev) THEN 

arming_guidance(    nav_conv(env_ev), nav_sig); 

IF nav_sig=ag_activated THEN     simple_guidance(roll, sg.deactivate, roll_sig) 

simple_guidance(hdg,  sg_deactivate, hdg.sig ) 

simple_guidance(lga,  sg_deactivate, lga.sig ) 

ELSIF nav_sig=ag_deactivated THEN simple_guidance(roll, sg.activate, roll_sig ) 

END; 

ELSIF lga_event(env_ev) THEN 

simple_guidance(lga, lga_conv(env_ev), lga_sig); 

IF lga_sig=sg_activated THEN     simple_guidance(roll, sg_deactivate, roll_sig) 

simple_guidance(hdg,  sg_deactivate, hdg_sig ) 

arming.guidance(     ag_deactivate, nav_sig ) 

ELSIF lga_sig=sg_deactivated THEN simple_guidance(roll, sg_activate, roll_sig ) 

END; 

END; 

END; 
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— function module vertical guidance & auxiliary functions  

FUNCTION pitch_conv(env_ev:env_events) : sg_events; 

BEGIN 

SWITCH env_ev 

CASE vs_pitch_wheel_changed : RETURN sg_activate; 

ELSE RETURN sg_nil; 

END; END; 

FUNCTION vs_conv(env_ev:env_events) : sg_events; 

BEGIN 

SWITCH env_ev 

CASE vs_switch_hit : RETURN sg.switch; 

ELSE RETURN sg_nil; 

END; END; 

FUNCTION vga_conv(env_ev:env_events) : sg_events; 

BEGIN 

SWITCH env_ev 

CASE ga_switch_hit      : RETURN sg_switch; 

CASE ap_engaged_event   : RETURN sg_clear; 

CASE sync_switch_pressed : RETURN sg_clear; 

ELSE RETURN sg.nil; 

END; END; 

PROCEDURE vertical_guidance(env_ev:env_events); 

VAR pitch_sig, vs_sig, vga_sig : sg.signals; 

BEGIN CLEAR pitch.sig;  CLEAR vs.sig;  CLEAR vga_sig; 

IF'pitch_event(env_ev) THEN 

simple_guidance(pitch, pitch_conv(env_ev), pitch.sig); 

IF pitch_sig=sg_activated THEN   simple_guidance(vs,  sg.deactivate, vs_sig   ); 

simple_guidance(vga, sg.deactivate, vga_sig  ); 

END; 

ELSIF vs.event(env_ev) THEN 

simple.guidance(vs, vs_conv(env_ev), vs_sig); 

IF vs_sig=sg_activated THEN     simple_guidance(pitch, sg_deactivate, pitch_sig) 

simple_guidance(vga,  sg_deactivate, vga_sig ) 

ELSIF vs_sig=sg_deactivated THEN simple_guidance(pitch, sg.activate, pitch_sig ) 

END; 

ELSIF vga_event(env_ev) THEN 

simple_guidance(vga, vga_conv(env_ev), vga_sig); 

IF vga_sig=sg_activated THEN     simple_guidance(pitch, sg_deactivate, pitch_sig) 

simple_guidance(vs,   sg_deactivate, vs_sig  ) 

ELSIF vga_sig=sg_deactivated THEN simple_guidance(pitch, sg_activate, pitch_sig ) 

END; 

END; 

END; 
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abstract data object module flight director 

PROCEDURE flight.director(event:fd_events; VAR signal:fd_signals); 

BEGIN 

IF event1 =fd. .nil THEN 

signal : = fd.null; 

ELSIF fd= =fd. .off THEN 

SWITCH event 

CASE fd. _force_cues 

CASE fd. _turn_on 

CASE fd. .switch 

CASE fd. _tum_off 

END; 

ELSIF fd= =fd. .cues THEN 

SWITCH event 

CASE fd. _force_cues 

CASE fd. _turn_on 

CASE fd. .switch 

CASE fdturnoff 

END; 

ELSE 

SWITCH event 

CASE fd_force_cues 

CASE fd_turn_on 

CASE fd_switch • 

CASE fd_turn_off 

END; 

END; 

END; 

fd 

fd 

fd 

fd_cues; signal 

fd_cues; signal 

fd_cues; signal 

signal 

:= fd_turned_on; 

:= fd_turned_on; 

:= fd_turned_on; 

:= fd.null; 

signal := fd_null; 

signal := fd_null; 

IF overspeed I ap_engaged THEN 

fd := fd_no_cues; signal := fd_null; 

ELSE 

fd := fd_off;    signal := fd_turned_off; 

END; 

IF overspeed i ap_engaged THEN 

fd := fd_no_cues; signal := fd_null; 

ELSE 

fd := fd_off;    signal := fd_turned_off; 

END; 

fd := fd_cues; signal := fd_null; 

fd := fd_cues; signal := fd_null; 

IF overspeed I ap_engaged THEN 

fd := fd.cues;   signal := fd.null; 

ELSE 

fd := fd_off;    signal := fd_turned_off; 

END; 

IF overspeed I ap_engaged THEN 

signal := fd_null; 

ELSE 

fd := fd.off;    signal := fd_turned_off; 

END; 
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— mode confusion properties as assertions & auxiliary functions 

FUNCTION crew_input(env_ev:env.events) 

BEGIN 

IF (env_ev=ap_engaged_event) 

(env_ev=sync_switch_released) 

lateral.mode.requested(env_ev) 

(env_ev=vs_pitch_wheel_changed) 

THEN RETURN true; 

ELSE RETURN false; 

END; 

END; 

boolean; 

I (env_ev=sync_switch_pressed) | 

I (env_ev=fd_switch_hit) I 

I vertical_mode_requested(env_ev) I 

FUNCTION ignored_crew_input(env_ev:env_events) : boolean; 

BEGIN 

IF ((env_ev=ap_engaged_event)     & 

!((old_lga=sg_active) I (old_vga=sg_active))) I 

((env_ev=ga_switch_hit)        & 

(old_lga=sg_active) & (old_vga=sg_active))  | — 

((env_ev=sync_switch_pressed)   & 

!((old_lga=sg_active) I (old_vga=sg_active))) I 

((env_ev=sync_svitch_pressed)   & 

(old_fd=fd_off)) I — 

(env_ev=sync_switch_released) I 

((env_ev=vs_pitch_wheel_changed) & 

(old_fd=fd_off)) | 

((env_ev=vs_pitch_wheel_changed) & 

(old_pitch=sg_active)) 

THEN RETURN true; 

ELSE RETURN false; 

END; 

END; 

PVS model too strong 

(may be left out) 

PVS model too strong 

(may be left out) 

FUNCTION indirect_mode_change(env_ev:env_events) : boolean; 

BEGIN ' 

IF ((env_ev=overspeed_start) & !(old_fd=fd_cues)) I 

((env_ev=nav_armed_long_enough_event) & (old_nav.mode=ag_armed_initial   )) | 

( (env_ev=nav_track_cond_met_event)   &  (old_nav.mode=ag_armed_long_enough)) 

THEN RETURN true; 

ELSE RETURN false; 

END; 

END; 
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PROCEDURE mode_confusion_properties(env_ev:env_events); 

BEGIN 

ALIAS 

mode.change : fd  != old_fd  I pitch != old_pitch I vs != old_vs  I vga != old_vga I 

roll != old_roll I hdg  != old.hdg  I lga != old.lga I 

nav.mode != old_nav.mode; 

DO 

SWITCH env.ev 

CASE hdg_switch_hit : 

— check for response to pressing HDG button 

assert (old_hdg=sg_cleared -> hdg =sg_active) "hdg_selected and hdg_toggle_l"; 

assert (old_hdg=sg_active -> roll=sg_active) "hdg_deselected"; 

assert (old_hdg=sg_active -> hdg=sg_cleared) "hdg_toggle_2"; 

CASE nav_switch_hit : 

— check for response to pressing NAV button 

assert (old_nav.mode=ag_cleared -> (nav.mode=ag_armed_initial) I 

(nav.mode=ag_armed_long_enough) I (nav.mode=ag_track)) 

"nav.selected and nav_toggle_l"; 

assert (((old_nav.mode=ag_armed_initial) I (old_nav.mode=ag_armed_long_enough) I 

(old_nav.mode=ag_track)) -> roll=sg_active)     "nav_deselected"; 

assert (((old_nav.mode=ag_armed_initial) I (old_nav.mode=ag_armed_long_enough) I 

(old_nav.mode=ag_track)) -> nav.mode=ag_cleared) "nav_toggle_2"; 

CASE vs_switch_hit : 

— check for response to pressing VS button 

assert (old_vs=sg_cleared -> vs  =sg_active) "vs_selected and vs_toggle_l"; 

assert (old_vs=sg_active -> pitch=sg_active) "vs.deselected"; 

assert (old_vs=sg_active -> vs =sg_cleared) "vs_toggle_2"; 

CASE fd_switch_hit : 

— check for response to pressing the FD button ' 

assert (old_fd=fd_off -> fd=fd_cues) 

"fd_off"; 

assert ((!(old_fd=fd_off)   & !(ap.engaged I overspeed)) -> fd=fd_off) "fd_on"; 

assert (((old_fd=fd_cues)   & (ap.engaged I overspeed)) -> fd=fd_no_cues) "fd_cues"; 

assert (((old_fd=fd_no_cues) & (ap.engaged | overspeed)) -> fd=fd_cues) "fd_no_cues"; 

END; 

— search for ignored crew inputs 

— assert (crew_input(env_ev) -> mode_change) "search_for_ignored_crew_inputs"; 

— property violated 

— no unknown ignored crew inputs 

assert ((crew_input(env_ev) & !(ignored_crew_input(env_ev))) -> mode_change) 

"no_unknown_ignored_crew_inputs"; 
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— search for indirect mode changes 

— assert (! (crew_input'(env_ev)) -> !mode_change) "search_for_indirect_mode_changes"; 

— property violated 

— no unknown indirect mode changes 

assert ((!(crew_input(env_ev)) & !(indirect_mode_change(env_ev))) -> !mode_change) 

"no_unknown_indirect_mode_changes"; 

END; 

— update old state variables 

old_pitch := pitch; old_vs  := vs;  old_vga 

old^hdg  := hdg;  old_lga := lga; old_fd 

END; 

:= vga;  old_roll := roll; 

:= fd;  old_nav  := nav; 

PROCEDURE clear_all_modesO; 

BEGIN 

pitch := sg_cleared; vs 

hdg  := sg_cleared;  lga : 

END; 

sg_cleared;  vga := sg_cleared; 

sg.cleared;  nav.mode := ag_cleared; 

roll := sg.cleared; 

PROCEDURE select_default_mode(); 

BEGIN 

pitch := sg_active;  roll  := sg.active; 

END; 

PROCEDURE process.external. .event(env_ev:env_events); 

BEGIN 

SWITCH env_ev 

CASE ap_engaged_event : ap.engaged = true; 

CASE ap_disengaged_event : ap_engaged = false; 

CASE overspeed_start : overspeed = true; 

CASE overspeed_stop : overspeed = false; 

END; 

END; 

FUNCTION fd_event(env_ev:env_events) : fd_events; 

BEGIN 

IF env_ev=ap_engaged_event THEN RETURN fd_turn_on; 

ELSIF lateral_mode_requested(env_ev) THEN RETURN fd_turn_on; 

ELSIF vertical_mode.requested(env_ev) THEN RETURN fd_turn_on; 

ELSIF env_ev=fd_switch_hit THEN RETURN fd_switch; 

ELSIF env_ev=overspeed_start THEN RETURN fd_force.cues; 

ELSE RETURN fd_nil; 

END; 

END; 
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PROCEDURE process_fd_event(env_ev:env_events); 

VAR fd_sig : fd_signals; 

BEGIN 

IF flight_director_event(env_ev)   THEN 

flight_director(fd_event(env_ev),fd_sig); 

IF fd_sig=fd_turaed_off      THEN clear_all_modes(); 

ELSIF fd_sig=fd_turned.on THEN select_default_mode(); 

END; 

END; 

END; 

PROCEDURE process_flight_mode.event(env_ev:env_events); 

BEGIN 

IF !(fd=fd_off) THEN lateral_guidance(env_ev); vertical_guidance(env_ev); END; 

END; 

PROCEDURE fgs(env_ev:env_events); 

BEGIN 

process_external_event(env_ev);   process_fd_event(env_ev); 

process_flight_mode_event(env_ev); mode_confusion.properties(env_ev); 

END; 

— model of the environment using rules 

RULE 'hdg_switch_hit" BEGIN 

RULE 'nav_switch_hit" BEGIN 

RULE 'nav_armed_long_enough_event' BEGIN 

RULE 'nav_track_cond_met_event" BEGIN 

RULE 'ga_switch_hit" BEGIN 

RULE 'vs_pitch_wheel_changed" BEGIN 

RULE 'vs_switch_hit" BEGIN 

RULE 'fd_switch_hit" BEGIN 

RULE 'overspeed_start" BEGIN 

RULE 'overspeed_stop" BEGIN 

RULE 1 ap_engaged_event" BEGIN 

RULE 'ap_disengaged_event" BEGIN 

RULE 'sync_switch_pressed" BEGIN 

RULE 'sync_switch_released" BEGIN 

fgs(hdg_switch_hit); END 

fgs(nav_switch_hit); END 

fgs(nav_armed_long_enough_event); END 

fgs(nav_track_cond_met_event); END 

fgs(ga_switch_hit); END 

f gs(vs_pitch_wheel_changed); END 

fgs(vs_switch_hit); END 

fgs(fd_switch_hit); END 

fgs(overspeed_start); END 

fgs(overspeed_stop); END 

fgs(ap_engaged_event); END 

fgs(ap_disengaged_event); END 

fgs(sync_switch_pressed); END 

fgs(sync_switch_released); END 

— start state 

STARTSTATE 

BEGIN 

overspeed := false;  ap_engaged := false; 

CLEAR pitch;  CLEAR vs;  CLEAR vga; CLEAR roll;  CLEAR hdg;  CLEAR lga; 
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CLEAR nav.mode; nav.track_cond_met := false;     CLEAR fd; 

CLEAR old.pitch;  CLEAR old_vs;  CLEAR old.vga;  CLEAR old_roll;       CLEAR old_hdg; 

CLEAR old.lga;   CLEAR old.nav.mode; old_nav.track_cond_met := false;  CLEAR old_fd; 

END; 

— mandatory properties as invariants 

ALIAS 

nav_active : (nav.mode=ag_armed_initial) | (nav.mode=ag_armed_long_enough) I 

(nav.mode=ag_track); 

DO 

— the flight director is on if the autopilot is engaged 

INVARIANT "fd_on_if_ap_engaged" 

ap_engaged -> ! (fd=fd_off); 

— at least one lateral mode is active iff the flight director is on 

INVARIANT "at_least_one_lateral_mode_active" 

(!(fd=fd_off) -> (roll=sg_active I hdg=sg_active | lga=sg_active I nav_active)) & 

((roll=sg_active | hdg=sg_active I lga=sg_active I nav.active ) -> !(fd=fd_off)); 

— there is never more than one lateral mode active 

INVARIANT "at_most_one_lateral_mode_active" 

((lga=sg_active) -> (roll=sg_cleared & hdg=sg_cleared & nav.mode=ag_cleared)) & 

((roll=sg_active) -> (lga =sg_cleared & hdg=sg_cleared & nav.mode=ag_cleared)) & 

((hdg=sg_active) -> (roll=sg_cleared & lga=sg_cleared & nav.mode=ag_cleared)) & 

(nav_active      -> (roll=sg_cleared & hdg=sg_cleared & lga=sg_cleared)); 

— at least one vertical mode is active iff the flight director is on 

INVARIANT "at_least_one_vertical_mode_active" 

(!(fd=fd_off) -> (vga=sg_active I vs=sg_active I pitch=sg_active)) & 

((vga=sg_active I vs=sg_active I pitch=sg_active) ■-> ! (f d=f d_of f) ) ; 

— at most one vertical mode is active 

INVARIANT "at_most_one_vertical_mode_active" 

(vga =sg_active -> (pitch=sg_cleared & vs =sg_cleared)) & 

(vs =sg_active -> (pitch=sg_cleared & vga=sg_cleared)) & 

(pitch=sg_active -> (vga =sg_cleared & vs =sg_cleared)); 
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— if the flight director is off, all modes must be cleared 

INVARIANT "fd_off_implies_all_modes_cleared" 

(fd=fd_off -> (pitch=sg_cleared k    vs=sg_cleared k  vga=sg_cleared k 

roll =sg_cleared k  hdg=sg_cleared k  lga=sg_cleared k  nav.mode=ag_cleared) 

); 

— the default modes are active if the flight director is on and all other modes are cleared 

INVARIANT "default.modes" 

((!(fd=fd_off) k    vs=sg_cleared k  vga=sg_cleared & hdg=sg_cleared k 

lga=sg_cleared k  nav.mode=ag_cleared 

) -> (pitch=sg_active k  roll=sg_active)); 

END; 

A.2. Output of the Mur</> verifier. 

This program should be regarded as a DEBUGGING aid, not as a 

certifier of correctness. 

Call with the -1 flag or read the license file for terms 

and conditions of use. 

Run this program with "-h" for the list of options. 

Bugs, questions, and comments should be directed to 

"murphiQverify.Stanford.edu". 

Murphi compiler last modified date: Jan 29 1999 

Include files  last modified date: Jan 29 1999 

Murphi Release 3.1 

Finite-state Concurrent System Verifier. 

Copyright (C) 1992 - 1999 by the Board of Trustees of 

Leland Stanford Junior University. 

Protocol: fgs 

Algorithm: 

Verification by breadth first search. 

with symmetry algorithm 3 — Heuristic Small Memory Normalization 

with permutation trial limit 10. 
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Memory usage: 

* The size of each state is 160 bits (rounded up to 20 bytes). 

* The memory allocated for the hash table and state queue is 

8 Mbytes. 

With two words of overhead per state, the maximum size of 

the state space is 327869 states. 

* Use option "-k" or "-m" to increase this, if necessary. 

* Capacity in queue for breadth-first search: 32786 states. 

* Change the constant gPercentActiveStates in mu_pfolog.inc 

to increase this, if necessary. 

Warning: No trace will not be printed in the case of protocol errors! 

Check the options if you want to have error traces. 

Status: 

No error found. 

State Space Explored: 

242 states, 3388 rules fired in 1.80s. 

Rules Information: 

Fired 242 times - Rule "sync_switch_released" 

Fired 242 times - Rule "sync_switch_pressed" 

Fired 242 times - Rule "ap_disengaged_event" 

Fired 242 times - Rule "ap_engaged_event" 

Fired 242 times - Rule "overspeed_stop" 

Fired 242 times - Rule "overspeed_start" 

Fired 242 times - Rule "fd_switch_hit" 

Fired 242 times - Rule "vs_switch_hit" 

Fired 242 times - Rule "vs_pitch_wheel_changed" 

Fired 242 times - Rule "ga_switch_hit" 

Fired 242 times - Rule "nav_track_cond_met_event" 

Fired 242 times - Rule "nav_armed_long_enough_event" 

Fired 242 times - Rule "nav_switch_hit" 

Fired 242 times - Rule "hdg_switch_hit" 
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Appendix B. Specification and Verification Using SMV. 

B.l. Pull Model of the Mode Logic. 

MODULE simple_guidance(activate,   deactivate,   switch,   clear,  fd_is_on) 

VAR 

mode : {cleared, active}; 

ASSIGN 

init(mode) : 

next(mode) : 

= cleared; 

= case 

!fd_is_on : mode; 

deactivated I deactivate : cleared; 

activated : active; 

1 : mode; 

esac; 

DEFINE 

activated  := (mode=cleared) &  (activate I switch); 

deactivated := (mode=active ) & (clear   I switch); 

MODULE arminglguidance(activate, deactivate, switch, clear, track_cond_met_event, 

armed_long_enough_event, fd_is_on) 

VAR 

mode : {cleared, track, armed_initial, armed_long_enough>; 

track_cond_met : boolean; 

ASSIGN 

init(track_cond_met) := 0; 

next(track_cond_met) := track_cond_met I track_cond_met_event; 

init(mode) := cleared; 

next(mode) := case 

!fd_is_on 

deactivated I deactivate 

(mode=armed_long_enough) & track.cond 

(mode=armed_initial)    & track_cond & 

armed_long_enough_event 

activated 

(mode=armed_initial)    & !track_cond & 

armed_long_enough_event 

1 

esac; ■ 

mode; 

cleared; 

track; 

track; 

armed_initial; 

armed_long_enough; 

mode; 
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DEFINE 

track_cond  := track_cond_met | track_cond_met_event; 

mode.armed := (mode=amied_initial) | (mode=armed_long_enough); 

mode_active := (mode_armed)        I (mode=track); 

activated  := (mode=cleared) & (activate I switch); 

deactivated := mode_active   k  (clear   | switch); 

MODULE lateral_guidance(_hdg_switch_hit,     _ga_switch_hit,  _ap_engaged_event, 

_sync_switch_pressed, _nav_switch_hit, _nav_armed_long_enough_event, 

_nav_track_cond_met_event,     clear, select_default,     fd_is_on) 

VAR 

roll : simple_guidance(roll_activate, 

roll_switch, 

hdg : simple_guidance(hdg_activate, 

hdg.switch, 

ga  : simple_guidance(ga_activate, 

ga.switch, 

nav  : arming_guidance(nav_activate, 

nav.switch, 

roll_deactivate, 

roll_clear 

hdg_deactivate, 

hdg_clear 

ga_deactivate, 

ga_clear 

nav_deactivate, 

nav_clear, 

, fd_is_on); 

, fd_is_on); 

,  fd_is_on); 

nav_track_cond_met,  nav_armed_long_enough,   fd_is_on); 

DEFINE 

roll_activate 

roll_deactivate 

roll_switch 

roll_clear 

:= (hdg_event & hdg.deactivated) | (nav_event & nav.deactivated) I 

(lga_event & ga.deactivated ) I select_default; 

:= (hdg_event & hdg.activated) I (nav_event & nav.activated) I 

(lga_event & ga.activated ); 

:= 0; 

:= (clear k  !select_default); 

hdg_activate 

hdg_deactivate 

hdg_switch 

hdg_clear 

0; 

(nav_event k  nav.activated) I (lga_event &  ga.activated ); 

_hdg_switch_hit; 

clear; 

ga.activate 

ga_deactivate 

ga_switch 

ga_clear 

_ga_switch_hit; 

(hdg_event & hdg.activated) | (nav_event & nav.activated); 

0; 

_ap_engaged_event I _sync_switch_pressed I clear; 

nav_activate 

nav_deactivate 

nav_switch 

= 0; 

(hdg.event k  hdg.activated) I (lga_event k  ga.activated ); 

_nav_switch_hit; 
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nav_clear 

nav_track_cond_met 

nav_armed_long_enough 

hdg.activated I ga.activated I clear; 

_nav_track_cond_met_event; 

_nav_armed_long_enough_event; 

hdg.event 

lga_event 

nav_event 

_hdg_switch_hit; 

_ga_switch_hit | _ap_engaged_event I _sync_switch_pressed; 

_nav_switch_hit I _nav_armed_long_enough_event I 

_nav_track_cond_met_event; 

MODULE vertical_guidance(_vs_pitch_wheel_changed, _vs_switch_hit, _ga_switch_hit, 

_ap_engaged_event,      _sync_switch_pressed, 

clear, select_default,       fd_is_on) 

VAR 

pitch : simple_guidance(pitch_activate, pitch_deactivate, 

pitch_switch, pitch_clear, fd_is_on); 

vs   : simple_guidance(vs_activate, vs_deactivate, 

vs_switch, vs_clear, fd_is_on); 

ga   : simple_guidance(ga_activate, ga_deactivate, 

ga.switch, ga_clear, fd_is_on); 

DEFINE 

pitch_activate 

pitch_deactivate 

pitch_switch 

pitch_clear 

:= (vs.event & vs.deactivated) I (vga.event & ga.deactivated) I 

_vs_pitch_wheel_changed       | 

select„default; 

:= (vs.event & vs.activated) I (vga_event & ga.activated); 

:= 0; 

:= (clear & !select_default); 

vs_activate 

vs.deactivate 

vs_switch 

vs_clear 

= 0; 

= (pitch_event & pitch.activated) I (vga_event & ga.activated  ); 

= _vs_switch_hit; 

= clear; 

ga_activate 

ga_deactivate 

ga_switch 

ga_clear 

= 0; 

= (pitch_event & pitch.activated) I (vs_event & vs.activated  ); 

= _ga_switch_hit; 

= _ap_engaged_event I _sync_switch_pressed I clear; 

pitch_event 

vs_event 

vga_event 

_vs_pitch_wheel_changed; 

_vs_switch_hit; 

_ga_switch_hit I _ap_engaged_event I _sync_switch_pressed; 
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MODULE flight_director(force_cues, turn.on, switch, turn_off, 

_ap_engaged, _overspeed) 

VAR 

mode : {off, cues, no_cues>; 

ASSIGN 

init(mode) 

next(mode) 

:= off; 

:= case 

turned_off : off; 

turned.on : cues; 

(mode=no_cues) & 

(force_cues I turn_on | (switch & (_overspeed | _ap_engaged))) : cues; 

(mode=cues) & switch & (_overspeed | _ap_engaged) : no_cues; 

1 : mode; 

esac; 

DEFINE 

mode.on 

turned.on 

turnedoff 

= (mode=cues) I (mode=no_cues); 

= (mode=off) & (turn_on I force_cues I switch); 

= (mode_on)  & (switch  | turn_off) & !_overspeed & !_ap_engaged; 

MODULE main 

VAR 

env_ev {hdg_switch_hit, nav_switch_hit, 

nav_armed_long_enough_event, nav_track_cond_met_event, 

ga_switch_hit, vs_pitch_wheel_changed, 

vs_switch_hit, fd_switch_hit, 

overspeed_start, overspeed_end, 

ap_engaged_event, ap_disengaged_event, 

sync_switch_pressed, sync_switch_released    }; 

overspeed 

ap_engaged 

boolean; 

boolean; 

fd flight_director(fd_force_cues, fd_turn_on,   fd_switch, 

fd_turn_off,  fd_ap_engaged, fd_overspeed); 

lateral  * : lateral_guidance(lg_hdg_switch_hit, lg_ga_switch_hit, 

lg_ap_engaged,    lg_sync_switch_pressed, 

lg_nav_switch_hit, lg_nav_armed_long_enough, 

lg_nav_track_cond_met, 

lg_clear,        lg_select_default,. 

fd_is_on); 
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vertical  : vertical_guidance(vg_vs_pitch_wheel_changed, vg_vs_switch_hit, 

vg_ga_switch_hit, vg_ap_engaged, 

vg_sync_switch_pressed, 

vg_clear, vg_select_default, 

fd_is_on); 

ASSIGN 

init(env.ev) 

next(env.ev) 

:= all.events; 

:= all.events; 

init (overspeed) := 0; 

next(overspeed) := new_overspeed; 

init(ap.engaged) := 0; 

next(ap_engaged) := new_ap_engaged; 

DEFINE 

all_events {hdg_switch_hit, nav_switch_hit, 

nav_armed_long_enough_event, nav_track_cond_met_event, 

ga_switch_hit, vs_pitch_wheel_changed, 

vs_switch_hit, fd_switch_hit, 

overspeed_start, overspeed_end, 

ap_engaged_event, ap_disengaged_event, 

sync_switch_pressed,       sync_switch_released    }; 

new_overspeed 

new_ap_engaged 

case 

(env_ev=overspeed_start) : 1; 

(env_ev=overspeed_end) : 0; 

1 : overspeed; 

esac; 

case 

(env_ev=ap_engaged_event) : l; 

(env_ev=ap_di sengaged.event) : 0; 

1 : ap_engaged; 

fd_is_on := !(fd.mode=off) I fd.turned.on; 

lateral_mode_requested 

vertical.mode„requested 

(env_ev=hdg_switch_hit) I (env_ev=nav_switch_hit) I 

(env_ev=ga_switch_hit); 

(env_ev=vs_switch_hit)  I (env_ev=ga_switch_hit); 

flight_director_event (env_ev=ap_engaged_event) I (env_ev=fd_switch_hit) I 

(env_ev=overspeed_start)  I 

lateral_mode_requested   I vertical_mode_requested; 
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fd_force_cues 

fd_turn_on 

fd.switch 

fd_turn_off 

fd_ap_engaged 

fd_overspeed 

(env_ev=overspeed_start); 

(env_ev=ap_engaged_event) | 

lateral_mode.requested   I vertical_mode_requested; 

(env_ev=fd_switch_hit); 

0; 

new_ap_engaged; 

new_overspeed; 

lg_hdg_switch_hit 

lg_ga_swit ch_hit 

lg_ap_engaged 

lg_sync_switch_pressed 

lg_nav_switch_hit 

lg_nav_armed_long_enough 

lg_nav_track_c ond_met 

lg_clear 

lg_select_default 

(env_ev=hdg_switch_hit); 

(env_ev=ga_switch_hit); 

(env_ev=ap_engaged_event); 

(env_ev=sync_switch_pressed); 

(env_ev=nav_switch_hit); 

(env_ev=nav_armed_long_enough_event); 

(env_ev=nav_track_cond_met_event); 

flight_director_event & fd.turned_off; 

flight_director_event & fd.turned_on; 

vg_vs_pitch_wheel_changed 

vg_vs_switch_hit 

vg_ga_switch_hit 

vg_ap_engaged 

vg_sync_switch_pressed 

vg_clear 

vg.select„default 

(env_ev=vs_pitch_wheel_changed); 

(env_ev=vs_switch_hit); 

(env_ev=ga_switch_hit); 

(env_ev=ap_engaged_event); 

(env_ev=sync_switch_pressed); 

flight_director_event &  fd.turned_off; 

flight_director_event & fd.turned.on; 

— mandatory properties 

the flight director is on if the autopilot is engaged 

DEFINE fd_on_if_ap_engaged := AG (ap_engaged -> !(fd.mode=off)); 

SPEC fd_on_if_ap_engaged 

— at least one lateral mode is active iff the flight director is on 

DEFINE at_least_one_lateral_mode_active := 

AG (!(fd.mode=off) <-> (lateral.roll.mode=active I lateral.hdg.mode=active'I 

lateral.ga.mode=active  I lateral.nav.mode_active ) 

); 

SPEC at_least_one_lateral_mode_active 
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— there is never more than one lateral mode active 

DEFINE at_most_one_lateral_mode_active := 

AG((lateral.ga.mode=active -> (lateral.roll.mode=cleared & lateral.hdg.mode=cleared ft 

lateral.nav.mode=cleared ) 

) ft. 

(lateral.roll.mode=active -> (lateral.ga.mode=cleared ft lateral.hdg.mode=cleared ft 

lateral.nav.mode=cleared ) 

) ft 

(lateral.hdg.mode=active -> (lateral.roll.mode=cleared ft lateral.nav.mode=cleared ft 

lateral.ga.mode=cleared  ) 

) ft 

(lateral.nav.mode_active -> (lateral.roll.mode=cleared ft lateral.hdg.mode=cleared & 

lateral.ga.mode=cleared  ) 

) 

'); 

SPEC at_most_one_lateral_mode_active 

— at least one vertical mode is active iff the flight director is on 

DEFINE at_least_one_vertical_mode_active := 

AG (!(fd.mode=off) <-> (vertical.ga.mode=active   I vertical.vs.mode=active I 

vertical.pitch.mode=active ) 

); 

SPEC at_least_one_vertical_mode_active 

— at most one vertical mode is active 

DEFINE at_most_one_vertical_mode_active := 

AG ((vertical.ga.mode=active -> (vertical.pitch.mode=cleared ft vertical.vs.mode=cleared)) ft 

(vertical.vs.mode=active -> (vertical.pitch.mode=cleared ft vertical.ga.mode=cleared)) ft 

(vertical.pitch.mode=active -> (vertical.ga.mode=cleared ft vertical.vs.mode=cleared)) 

); 

SPEC at_most_one_vertical_mode_active 

— if the flight director is off, all modes must be cleared 

DEFINE fd_off_implies_all_modes_cleared := 

AG (fd.mode=off -> (vertical.pitch.mode=cleared ft vertical.vs.mode  =cleared ft 

vertical.ga.mode  =cleared ft lateral.roll.mode =cleared ft 

lateral.hdg.mode  =cleared ft lateral.ga.mode   =cleared ft 

lateral.nav.mode  =cleared 

) 

); 
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SPEC fd_off_implies_all_modes_cleared 

— the default modes are active if the flight director is on and all other modes are cleared 

DEFINE default_modes := 

AG ((!(fd.mode=off) ft vertical.vs.mode =cleared ft vertical.ga.mode =cleared ft 

lateral.hdg.mode =cleared ft lateral.ga.mode »cleared ft 

lateral.nav.mode =cleared 

) -> 

(vertical.pitch.mode=active ft lateral.roll.mode=active) 

); 

SPEC default_modes 

— mode confusion properties   

— check for response to pressing HDG button 

DEFINE 

hdg_selected_and_hdg_toggle_l := 

AG (lateral.hdg.mode=cleared ft env_ev=hdg_switch_hit -> AX lateral.hdg.mode=active); 

hdg_deselected := 

AG  (lateral.hdg.tnode=active    ft env_ev=hdg_switch_hit  -> AX lateral.roll.mode=active); 

hdg_toggle_2 := 

AG (lateral.hdg.mode=active ft env_ev=hdg_switch_hit -> AX lateral.hdg.mode=cleared); 

SPEC hdg_selected_and_hdg_toggle_l 

SPEC hdg_deselected 

SPEC hdg_toggle_2 

— check for response to pressing NAV button 

DEFINE 

nav_selected_and_nav_toggle_l := 

AG (lateral.nav.mode=cleared ft env_ev=nav_switch_hit -> AX lateral.nav.mode_active); 

nav_deselected : = 

AG (lateral.nav.mode_active ft env_ev=nav_switch_hit -> AX lateral.roll.mode=active); 

nav_toggle_2 := 

AG (lateral.nav.mode=active ft env_ev=nav_switch_hit -> AX lateral.nav.mode=cleared); 

SPEC nav_selected_and_nav_toggle_l 

SPEC nav_deselected 

SPEC nav_toggle_2 
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— check for response to pressing VS button 

DEFINE 

vs_selected_and_vs_toggle_i := 

AG (vertical.vs.mode=cleared & env_ev=vs_switch_hit -> AX vertical.vs.mode=active); 

vs.deselected := 

AG (vertical.vs.mode=active & env_ev=vs_switch_hit -> AX vertical.pitch.mode=active); 

vs_toggle_2 := 

AG (vertical.vs.mode=active & env_ev=vs_switch_hit -> AX vertical.vs.mode=cleared); 

SPEC vs_selected_and_vs_toggle_l 

SPEC vs_deselected 

SPEC vs_toggle_2 

— check for response to pressing the FD button 

DEFINE 

fd_off 

fd_on 

fd.cues 

fd_no_cues 

:= AG (fd.mode=off    & env_ev=fd_switch_hit -> AX fd.mode=cues); 

:= AG (!(fd.mode=off)  & env_ev=fd_switch_hit & 

!(ap_engaged I overspeed) -> 

AX fd.mode=off 

); 

:= AG (fd.mode=cues   & env_ev=fd_switch_hit & 

(ap.engaged I overspeed) -> 

AX fd.mode=no_cues 

); 

:= AG (fd.mode=no_cues & env_ev=fd_switch_hit & 

(ap_engaged I overspeed) -> 

AX fd.mode=cues 

); 

SPEC fd_off 

SPEC fd_on 

SPEC fd.cues 

SPEC fd_no_cues 

— search for ignored crew inputs 

DEFINE 

crew_input := env_ev=ap_engaged_event      I env_ev=fd_switch_hit       | 

env_ev=sync_switch_pressed   | env_ev=sync_switch_released | 

lateral_mode_requested       | vertical_mode_requested I 

env_ev=vs_pitch_wheel_changed; 
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mode_change := 

!(fd.mode=off    <-> AX fd.mode=off) | 

! (fd.mode=cues   <-> AX fd.mode=cues) I 

!(fd.mode=no_cues <-> AX fd.mode=no_cues) | 

!(lateral.roll.mode = cleared <-> AX lateral.roll.mode = cleared) | 

!(lateral.roll.mode = active <-> AX lateral.roll.mode = active ) I 

!(lateral.hdg.mode = cleared <-> AX lateral.hdg.mode = cleared) I 

!(lateral.hdg.mode = active <-> AX lateral.hdg.mode = active ) I 

!(lateral.ga.mode  = cleared <-> AX lateral.ga.mode  = cleared) I 

!(lateral.ga.mode  = active <-> AX lateral.ga.mode  = active ) I 

!(lateral.nav.mode = cleared <-> AX lateral.nav.mode = cleared) I 

!(lateral.nav.mode = track <-> AX lateral.nav.mode = track ) | 

!(lateral.nav.mode = armed_initial <-> 

AX lateral.nav.mode = armed_initial) I 

!(lateral.nav.mode = armed_long_enough  <-> 

AX lateral.nav.mode = armed_long_enough) I 

!(vertical.pitch.mode = cleared <-> AX vertical.pitch.mode = cleared) 

!(vertical.pitch.mode = active <-> AX vertical.pitch.mode = active ) 

!(vertical.vs.mode   = cleared <-> AX vertical.vs.mode = cleared) 

!(vertical.vs.mode   = active <-> AX vertical.vs.mode = active ) 

!(vertical.ga.mode   = cleared <-> AX vertical.ga.mode = cleared) 

!(vertical.ga.mode   = active <-> AX vertical.ga.mode = active ); 

search_for_ignored_crew_inputs := AG (crew.input -> mode_change); 

SPEC search_for_ignored_crew_inputs — property violated 

— no unknown ignored crew inputs 

DEFINE 

ignored.crew_input := 

(env_ev=ap_engaged_event      & !(lateral.ga.mode=active I vertical.ga.mode=active)) | 

— (ev=ga_switch_hit & (lateral.ga.mode=active & vertical.ga.mode=active)) | 

PVS model too strong (may be left out) 

(env_ev=sync_switch_pressed   ft ! (lateral.ga.mode=active I vertical.ga.mode=active)) | 

(ev=sync_switch_pressed & fd.mode=off) I 

PVS model too strong (may be left out) 

(env_ev=sync_switch_released) | 

(env_ev=vs_pitch_wheel_changed & fd.mode=off) I 

(env_ev=vs_pitch_wheel_changed & vertical.pitch.mode=active) ; 

no_known_ignored_crew_inputs := 

AG (crew_input & !ignored_crew_input -> mode.change); 

SPEC no_known_ignored_crew_inputs 
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— search for indirect mode changes 

DEFINE 

search_for_indirect_mode_changes := AG (!crew_input -> !mode_change); 

SPEC search_for_indirect_mode_changes — property violated 

— no unknown indirect mode changes 

DEFINE 

indirect_mode_change := 

(env_ev=overspeed_start ft !(fd.mode=cues)) | 

(env_ev=nav_armed_long_enough_event ft lateral.nav.mode=armed_initial)  I 

(env_ev=nav_track_cond_met_event ft lateral.nav.mode=armed_long_enough); 

no_unknown_indirect_mode_change : = 

AG ((!crew_input ft !indirect_mode_change) -> !mode_change); 

SPEC no_unknown_indirect_mode_change 

B.2. Output of the SMV verifier. 

specification fd_on_if_ap_engaged is true 

specification at_least_one_lateral_mode_active is true 

specification at_most_one_lateral_mode_active is true 

specification at_least_one_vertical_mode_active is true 

specification at_most_one_vertical_mode_active is true 

specification fd_off_implies_all_modes_cleared is true 

specification default_modes is true 

specification hdg_selected_and_hdg_toggle_l is true 

specification hdg_deselected is true 

specification hdg_toggle_2 is true 

specification nav_selected_and_nav_toggle_l is true 

specification nav_deselected is true 

specification nav_toggle_2 is true 

specification vs_selected_and_vs_toggle_l is true 

specification vs_deselected is true 

specification vs_toggle_2 is true 

specification fd_off is true 

specification fd_on is true 

specification fd_cues is true 

specification fd_no_cues is true 

specification search_for_ignored_crew_inputs is false 

as demonstrated by the following execution sequence 

loop starts here — 

43 



State 1.1: 

vg_select_default = 0 

vg_clear = 0 

vg_sync_switch_pressed = 0 

vg_ap_engaged = 0 

vg_ga_switch_hit = 0 

vg_vs_switch_hit = 0 

vg_vs_pitch_wheel_changed = 0 

lg_select_default = 0 

lg_clear = 0 

lg_nav_track_cond_met = 0 

lg_nav_armed_long_enough = 0 

lg_nav_switch_hit = 0 

lg_sync_switch_pressed = 0 

lg_ap_engaged = 0 

lg_ga_switch_hit = 0 

lg_hdg_switch_hit = 0 

fd_overspeed = 0 

fd_ap_engaged = 0 

fd_turn_off = 0 

fd_switch = 0 

fd_turn_on = 0 

fd_force_cues = 0 

flight_director_event = 0 

vertical_mode_requested = 0 

lateral_mode_requested = 0 

fd_is_on = 0 

new_ap_engaged = 0 

new_overspeed = 0 

all_events = hdg_switch_hit,nav_switch_hit,nav_armed_ 

fd_on_if_ap_engaged = 1 

at_least_one_lateral_mode_active = 1 

at_most_one_lateral_mode_active = 1 

at_least_one_vertical_mode_active = 1 

at_most_one_vertical_mode_active = 1 

fd_off_implies_all_modes_cleared = 1 

default_modes = 1 

hdg_toggle_2 = 1 

hdg_deselected = 1 

hdg_selected_and_hdg_toggle_l = 1 

nav_toggle_2 = 1 

nav_deselected = 1 

nav_selected_and_nav_toggle_l = 1 

vs_toggle_2 = 1 

vs_deselected = 1 

vs_selected_and_vs_toggle_l = 1 

fd_no_cues = 1 
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fd_cues = 1 

fd_on = 1 

fd.off = 1 

seareh_for_ignored_crew_inputs = 0 

mode_change = 0 

crew.input = 1 

no_known_ignored_crew_inputs = 1 

ignored_crew_input = 1 

search_for_indirect_mode_changes = 0 

no_unknown_indirect_mode_change = 1 

indirect_mode_change = 0 

env_ev = sync_switch_released 

overspeed =0 

ap_engaged = 0 

fd.tumed_off = 0 

fd.turned_on = 0 

fd.mode_on = 0 

fd.mode = off 

lateral.nav_event = 0 

lateral.lga_event = 0 

lateral.hdg_event = 0 

lateral.nav_armed_long_enough = 0 

lateral.nav_track_cond_met = 0 

lateral.nav_clear = 0 

lateral.nav.switch = 0 

lateral.nav_deactivate = 0 

lateral.nav_activate = 0 

lateral.ga_clear = 0 

lateral.ga_switch = 0 

lateral.ga.deactivate = 0 

lateral.ga_activate = 0 

lateral.hdg_clear = 0 

lateral.hdg_switch = 0 

lateral.hdg_deactivate = 0 

lateral.hdg_activate = 0 

lateral.roll_clear = 0 

lateral.roll_switch = 0 

lateral.roll_deactivate = 0 

lateral.roll_activate = 0 

lateral.roll.deactivated = 0 

lateral.roll.activated = 0 

lateral.roll.mode = cleared 

lateral.hdg.deactivated = 0 

lateral.hdg.activated = 0 

lateral.hdg.mode = cleared 

lateral.ga.deactivated = 0 

lateral.ga.activated = 0 
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lateral.ga.mode = cleared 

lateral.nav.deactivated = 0 

lateral.nav.activated = 0 

lateral.nav.mode_active = 0 

lateral.nav.mode_armed = 0 

lateral.nav.track.cond = 0 

lateral.nav.mode = cleared 

lateral.nav.track_cond_met = 0 

vertical.vga_event = 0 

vertical.vs_event = 0 

vertical.pitch_event = 0 

vertical.ga_clear = 0 

vertical.ga_switch = 0 

vertical.ga_deactivate = 0 

vertical.ga_activate = 0 

vertical.vs_clear = 0 

vertical.vs_switch = 0 

vertical.vs„deactivate = 0 

vertical.vs_activate = 0 

vertical.pitch_clear = 0 

vertical.pitch_switch = 0 

vertical.pitch_deactivate = 0 

vertical.pitch_activate = 0 

vertical.pitch.deactivated = 0 

vertical.pitch.activated = 0 

vertical.pitch.mode = cleared 

vertical.vs.deactivated = 0 

vertical.vs.activated = 0 

vertical.vs.mode = cleared 

vertical.ga.deactivated = 0 

vertical.ga.activated = 0 

vertical.ga.mode = cleared 

state 1.2: 

— specification no_known_ignored_crew_inputs is true 

— specification search_for_indirect_mode_changes is fals 

— as demonstrated by the following execution sequence 

state 2.1: 

vg_select_default = 0 

vg_clear = 0 

vg_sync_switch_pressed = 0 

vg_ap_engaged = 0 

vg_ga_switch_hit = 0 

vg_vs_switch_hit = 0 

vg_vs_pitch_wheel_changed = 0 

lg_select_default = 0 
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lg_clear = 0 

lg_nav_track_cond_met = 0 

lg_nav_armed_long_enough = 0 

lg_nav_switch_hit = 0 

lg_sync_switch_pressed = 0 

lg_ap_engaged = 0 

lg_ga_switch_hit = 0 

lg_hdg_switch_hit = 0 

fd_overspeed = 0 

fd_ap_engaged =0 

fd_turn_off = 0 

fd_switch = 0 

fd_turn_on = 0 

fd_force_cues = 0 

flight_director_event = 0 

vertical_mode_requested = 0 

lateral_mode_requested = 0 

fd_is_on = 0 

new_ap_engaged = 0 

new_overspeed = 0 

all_events = hdg_switch_hit,nav_switch_hit,nav_armed_ 

fd_on_if_ap_engaged = 1 

at_least_one_lateral_mode_active = 1 

at_most_one_lateral_mode_active = 1 

at_least_one_vertical_mode_active = 1 

at_most_one_vertical_mode_active = 1 

fd_off_implies_all_modes_cleared = 1 

default.modes = 1 

hdg_toggle_2 = 1 

hdg_deselected = 1 

hdg_selected_and_hdg_toggle_l = 1 

nav_toggle_2 = 1 

nav_deselected = 1 

nav_selected_and_nav_toggle_l = 1 

vs_toggle_2 =1 

vs_deselected = 1 

vs_selected_and_vs_toggle_l = 1 

fd_no_cues = 1 

fd_cues = 1 

fd_on = 1 

fd_off = 1 

search_for_ignored_crew_inputs = 0 

mode_change = 0 

crew_input = 1 

no_known_ignored_crew_inputs = 1 

ignored_crew_input = 1 

search_for_indirect_mode_changes = 0 
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no_unknown_indirect_mode_change = 1 

indirect_mode_change = 0 

env_ev = sync_switch_released 

overspeed = 0 

ap_engaged = 0 

fd.turned_off = 0 

fd.turned_on = 0 

fd.mode_on = 0 

fd.mode = off 

lateral.nav_event = 0 

lateral.lga_event = 0 

lateral.hdg.event = 0 

lateral.nav_armed_long_enough = 0 

lateral.nav_track_cond_met = 0 

lateral.nav_clear = 0 

lateral.nav.switch = 0 

lateral.nav_deactivate = 0 

lateral.nav_activate = 0 

lateral.ga_clear = 0 

lateral.ga_switch = 0 

lateral.ga.deactivate = 0 

lateral.ga_activate = 0 

lateral.hdg_clear = 0 

lateral.hdg_switch = 0 

lateral.hdg_deactivate = 0 

lateral.hdg_activate = 0 

lateral.roll_clear = 0 

lateral.roll.switch = 0 

lateral.roll_deactivate = 0 

lateral.roll_activate = 0 

lateral.roll.deactivated = 0 

lateral.roll.activated = 0 

lateral.roll.mode = cleared 

lateral.hdg.deactivated = 0 

lateral.hdg.activated = 0 

lateral.hdg. mode = cleared 

lateral.ga.deactivated = 0 

lateral.ga.activated = 0 

lateral.ga.mode = cleared 

lateral.nav.deactivated = 0 

lateral.nav.activated = 0 

lateral.nav.mode_active = 0 

lateral.nav.mode_armed = 0 

lateral.nav.track_cond = 0 

lateral.nav.mode = cleared 

lateral.nav.track_cond_met = 0 

vertical.vga.event = 0 
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vertical.vs_event = 0 

vertical.pitch_event = 0 

vertical.ga_clear = 0 

vertical.ga_switch = 0 

vertical.ga_deactivate = 0 

vertical.ga.activate = 0 

vertical.vs_clear = 0 

vertical.vs_switch = 0 

vertical.vs_deactivate = 0 

vertical.vs_activate = 0 

vertical.pitch_clear = 0 

vertical.pitch_switch = 0 

vertical.pitch_deactivate = 0 

vertical.pitch_activate = 0 

vertical.pitch.deactivated = 0 

vertical.pitch.activated = 0 

vertical.pitch.mode = cleared 

vertical.vs.deactivated = 0 

vertical.vs.activated = 0 

vertical.vs.mode = cleared 

vertical.ga.deactivated = 0 

vertical.ga.activated = 0 

vertical.ga. mode = cleared 

state 2.2: 

vg_select_default = 1 

lg_select_default = 1 

fd_overspeed = 1 

fd_force_cues = 1 

flight_director_event = 1 

fd_is_on = 1 

new_overspeed = 1 

mode.change = 1 

crew_input = 0 

ignored_crew_input = 0 

indirect_mode_change = 1 

env_ev = overspeed_start 

fd.turned_on = 1 

lateral.roll_activate = 1 

lateral.roll.activated = 1 

vertical.pitch_activate = 1 

vertical.pitch.activated = 1 

state 2.3: 

vg_select_default = 0 

lg_select_default = 0 

fd_force_cues = 0 
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flight_director_eyent = 0 

mode_change = 0 

crew.input = 1 

ignored_crew_input = 1 

indirect_mode_change = 0 

env.ev = sync_switch_released 

overspeed = 1 

fd.turned_on = 0 

fd.mode_on = 1 

fd.mode = cues 

lateral.roll_activate = 0 

lateral.roll.activated = 0 

lateral.roll.mode = active 

vertical.pitch_activate = 0 

vertical.pitch.activated = 0 

vertical.pitch.mode = active 

— specification no_unknown_indirect_mode_change is true 

resources used: 

user time: 0.58 s, system time: 0.17 s 

BDD nodes allocated: 5940 

Bytes allocated: 983040 

BDD nodes representing transition relation: 438 + 1 

reachable states: 3388 (2*11.7262) out of 86016 (2*16.3923) 
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Appendix C. Specification and Verification Using Spin. 

C.l. Full Model of the Mode Logic. 

/** values of modes *************************************************************************/ 

ttdefine cleared 0 

#define active 1 

#define track 2 

#define armed_initial 3 

#define armed_long_enough 4 

#define off 5 

#define cues 6 

#define no_cues 7 

/** events and signals **********************************************************************/ 

mtype - {. /*  environment events */ 

hdg_switch_hit, nav_switch_hit, 

nav_armed_long_enough_event, nav_track_cond_met_event, 

ga_switch_hit, vs_pitch_wheel_changed, 

vs_suitch_hit, fd_switch_hit, 

overspeed.start, overspeed_stop, 

ap_engaged_event, ap_disengaged_event, 

sync_switch_pressed, sync_switch_released, 

/* simple guidance, arming guidance and flight director events */ 

clear, activate, 

deactivate, switch, 

turn.on, turn_off, 

force_cues, armed_long_enough_event, 

track_cond_met_event, 

/* signals */ 

activated, deactivated, 

turned_on, turned.off, 

null 

} 

typedef ag.state { byte mode = cleared; 

bool track_cond_met = false 

}; 

/** variables controled by the environment **************************************************/ 

bool overspeed     = false; 

bool ap_engaged    = false; 
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/** mode and signal variables &  variable for env. event *************************************/ 

bit pitch = cleared; bit old_pitch = cleared; 

bit vs = cleared; bit old_vs = cleared; 

bit vga = cleared; bit old_vga = cleared; 

bit roll = cleared; bit old_roll = cleared; 

bit hdg = cleared; bit old_hdg = cleared; 

bit lga = cleared; bit old.lga = cleared; 

byte fd = off; byte old.fd = off; 

ag_state nav; ag.state old_nav; 

mtype pitch_signal = null; mtype vs_signal = null; 

mtype vga_signal = null; mtype roll_signal = null; 

mtype hdg_signal = null; mtype lga.signal = null; 

mtype nav_signal = null; mtype fd_signal = null; 

mtype env_ev = null; 

/** useful abbreviations ********************************************************************/ 

#define lateral_mode_requested 

((env_ev==hdg_switch_hit) II (env_ev==nav_switch_hit) || (env_ev==ga_switch_hit)) 

#define vertical_mode_requested 

((env_ev==vs_switch_hit) II (env_ev==ga_switch_hit)) 

inline flight_director_event(env_ev) { (env_ev==ap_engaged_event) II 

(env_ev==fd_switch_hit) I I 

(env_ev==overspeed_start) I I 

lateral_mode_requested I I 

vertical_mode_requested 

} 

/** auxiliary "functions" *******************************************************************/ 

inline hdg_event(env_ev)  { env_ev==hdg_switch_hit } 

inline nav_event(env_ev)  { (env_ev==nav_switch_hit) | I 

(env_ev==nav_armed_long_enough_event) I I 

(env_ev==nav_track_cond_met_event) 

> 

inline lga_event(env_ev)  { (env_ev==ga_switch_hit)      I I 

(env_ev==ap_engaged_event)    I I 

(env_ev==sync_switch_pressed) 

} 
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inline pitch_event(env_ev) { env_ev==vs_pitch_wheel_changed } 

inline vs.event(env_ev)   {.  env_ev==vs_switch_hit } 

inline vga_event (env_ev)  {.  (env_ev==ga_suitch_hit)      I I (env_ev==ap_engaged_event) I I 

(env_ev==sync_switch_pressed) 

> 

/** abstract data type module simple guidance ***********************************************/ 

inline simple_guidance(mode, event, signal) 

{ 

if 

:: mode==cleared -> 

if 

:: event==activate  -> mode=active; 

:: event==deactivate -> 

event==switch    -> mode=active; 

event==clear     -> 

fi 

mode==active -> 

if 

:: event==activate  -> 

event==deactivate -> mode=cleared; 

event==switch    -> mode=cleared; 

:: event==clear     -> mode=cleared; 

fi 

signal=activated 

signal=null 

signal=activated 

signal=null 

signal=null 

signal=null 

signal=deactivated 

signal=deactivated 

fi 

/** abstract data object module arming guidance *********************************************/ 

inline arming_guidance(event, signal) 

{ 

if 

:: nav.mode==cleared -> 

if 

:: event==activate 

:: event==deactivate 

:: event==switch 

: event==clear 

-> nav.mode 

signal 

-> signal 

-> nav.mode 

signal 

-> signal 

: event==armed_long_enough_event -> signal 

: event==track_cond_met.event   -> nav.track_cond_met=true; 

signal =null 

fi 

=armed_initial; 

=activated 

=null 

=armed_initial; 

=activated 

=null 

=null 
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else       -> 

if 

:: event==activate -> signal =null 

:: event==deactivate -> nav.mode=cleared; 

signal =null 

:: event==switch -> nav.mode=cleared; 

signal =deactivated 

:: event==clear -> nav.mode=cleared; 

signal =deactivated 

:: event==armed_long_enough_event -> 

if 

:: (nav.mode==armed_initial) && 

nav.track_cond_met      -> nav.mode=track; 

signal =null 

:: (nav.mode==armed_initial) &,& 

!nav.track_cond_met     -> nav.mode=armed_long_enough; 

signal =null 

:: else -> signal =null 

fi 

:: event==track_cond_met_event   -> 

if 

:: nav.mode==armed_long_enough -> nav.mode        =track; 

nav.track_cond_met=true; 

signal =null 

:: else -> nav.track_cond_met=true; 

signal =null 

fi 

fi 

fi 

> 

/** function module lateral guidance ********************************************************/ 

inline lateral_guidance(env_ev) 

•C 
if 

:: hdg_event(env_ev) -> 

simple_guidance(hdg, switch, hdg_signal); 

if 

:: hdg_signal==activated  -> simple_guidance(roll, deactivate, roll_signal); 

simple_guidance(lga,  deactivate, lga_signal ); 

arming_guidance(     deactivate, nav_signal ) 

:: hdg_signal==deactivated -> simple_guidance(roll, activate,  roll_signal) 

:: else -> skip 

fi 
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:: nav_event(env.ev) -> 

if 

:: env_ev==nav_switch_hit -> 

arming.guidance(switch, nav.signal) 

:: env_ev==nav_track_cond_met_event   -> 

arming.guidance(track_cond_met_event,   nav_signal) 

:: env_ev==nav_armed_long_enough_event -> 

arming.guidance(armed.long.enough.event, nav_signal) 

fi; 

if 

:: nav_signal==activated  -> simple_guidance(roll, deactivate, roll.signal); 

simple_guidance(hdg,  deactivate, hdg_signal ); 

simple.guidance(lga,  deactivate, lga_signal ) 

:: nav_signal==deactivated -> simple.guidance(roll, activate,  roll.signal) 

:: else -> skip 

fi 

:: lga_event(env_ev) -> 

if 

:: env_ev==ga_switch_hit -> simple.guidance(lga, activate, lga.signal) 

:: else -> simple.guidance(lga, clear,   lga_signal) 

fi; 

if 

:: lga_signal==activated  -> simple.guidance(roll, deactivate, roll.signal); 

simple.guidance(hdg,  deactivate, hdg.signal ); 

arming.guidance(     deactivate, nav.signal ) 

:: lga_signal==deactivated -> simple.guidance(roll,  activate,  roll.signal) 

:: else -> skip 

f i 

:: else -> 

skip 

fi 

} 

/** function module vertical guidance *******************************************************/ 

inline vertical.guidance(env.ev) 

{ 

if 

:: pitch.event(env.ev) -> 

simple.guidance(pitch, activate, pitch.signal) ; 

if 

:: pitch_signal==activated -> simple.guidance(vs,  deactivate, vs.signal ); 

simple.guidance(vga, deactivate, vga.signal) 

:: else -> skip 

fi 
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:: vs_event(env_ev)   -> 

simple_guidance(vs, switch, vs_signal); 

if 

:: vs_signal==activated   -> simple_guidance(pitch, deactivate, pitch_signal); 

simple_guidance(vga, deactivate, vga_signal ) 

:: vs_signal==deactivated -> simple_guidance(pitch, activate, pitch_signal) 

:: else -> skip 

fi 

:: vga_event(env_ev)  -> 

if 

:: env_ev==ga_switch_hit -> simple_guldance(vga, switch,vga.signal) 

:: else -> simple_guidance(vga, clear, vga_signal) 

fi; 

if 

:: vga_signal==activated  -> simple_guidance(pitch, deactivate, pitch_signal); 

simple_guidance(vs, deactivate, vs_signal ) 

:: vga_signal==deactivated -> simple.guidance(pitch, activate, pitch.signal) 

:: else -> skip 

fi 

:: else -> 

skip 

fi 

} 

/** abstract data object module flight director ********************************************/ 

inline flight_director(event, signal) 

{. 
if 

:: fd==off    -> 

if 

::  event==force_cues -> fd=cues;   signal=turned_on; 

::  event==turn_on        -> fd=cues;   signal=turned_on 

event==switch -> fd=cues;   signal=turned_on 

event==turn_off      -> signal=null 

fi 

fd==cues -> 

if 

event==force_cues -> signal=null 

event==turn_on -> signal=null 

event==switch -> 

if 

::   overspeed   I I   ap_engaged -> fd=no_cues;   signal=null 

::   else -> fd=off; signal=turned_off 

fi 
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event==turn_off  -> 

if 

:: overspeed II ap.engaged -> fd=no_cues; signal=imll 

:: else -> fd=off;    signal=turned_off 

fi 

fi 

else 

if 

: event==force_cues -> fd=cues; signal=null 

: event==turn_on -> fd=cues; signal=null 

: event==switch    -> 

if 

:: overspeed I I ap_engaged -> fd=cues; signal=null 

:: else -> fd=off; signal=turned_off 

fi 

:: event==turn_off  -> 

if 

:: overspeed I I ap.engaged ->        signal=null 

:: else -> fd=off;  signal=turned_off 

fi 

fi 

fi 

/** mandatory and mode confusion properties as assertions ***********************************/ 

#define nav_active 

((nav.mode==armed_initial) II (nav.mode==armed_long_enough) II (nav.mode==track)) 

#define crew_input 

((env_ev==ap_engaged_event) 

(env_ev==sync_switch_released) 

lateral_mode„requested 

(env_ev==vs_pitch_wheel_changed)) 

I I (env_ev==sync_switch_pressed) I I 

I I (env_ev==fd_switch_hit) I I 

I I vertical_mode_requested      I I 

#define ignored_crew_input 

(((env_ev==ap_engaged_event)      && !((old_lga==active)I I(old_vga==active))) II 

((env_ev==sync_switch_pressed)   && !((old_lga==active)I I(old_vga==active))) II 

(env_ev==sync_switch_released) || 

((env_ev==vs_pitch_wheel_changed) && (old.fd==off))                       I | 

((env_ev==vs_pitch_wheel_changed) && (old_pitch==active))) 

#define indirect_mode_change 

(((env_ev==overspeed_start) && !(old_fd==cues))                 II 

((env_ev==nav_armed_long_enough_event) && (old_nav.mode==armed_initial)) II 

((env_ev==nav_track_cond_met_event) &fe (old_nav.mode==armed_long_enough))) 
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#define mode_change 

((fd  != old.fd)   II (pitch != old.pitch) I I (vs  != old_vs)  II (vga != old_vga) II 

(roll != old.roll) || (hdg  != old.hdg)   II (lga != old.lga) || 

(nav.mode != old_nav.mode)) 

inline mandatory_and_mode_confusion_properties(env_ev) 

{. 
/** the flight director is on if the autopilot is engaged **/ 

assert(!ap.engaged I I !(fd==off)); 

/** at least one lateral mode is active iff the flight director is on **/ 

assert (((fd==off) II (roll==active II hdg==active II lga==active II nav_active)) kk 

(!(roll==active II hdg==active II lga==active II nav_active) II !(fd==off)) 

); 

/** there is never more than one late'ral mode active **/ 

assert((!(lga ==active) II (roll==cleared kk hdg==cleared kk nav.mode==cleared)) kk 

(!(roll==active) II (lga==cleared kk hdg==cleared kk nav.mode==cleared)) kk 

(!(hdg ==active) II (roll==cleared kk lga==cleared kk nav.mode==cleared)) kk 

(!(nav_active)   II (roll==cleared kk  hdg==cleared kk  lga    ==cleared)) 

); 

/** at least one vertical mode is active iff the flight director is on **/ 

assert(((fd==off) II (vga==active II vs==active II pitch==active))  kk 

(!(vga==active II vs==active II pitch==active) II !(fd==off)) 

); 

/** at most one vertical mode is active **/ 

assert((!(vga ==active) II (pitch==cleared kk    vs==cleared)) kk 

(!(vs  ==active) II (pitch==cleared kk  vga==cleared)) kk 

(!(pitch==active) II ( vga==cleared kk    vs==cleared)) 

); 

/** if the flight director is off, all modes must be cleared **/ 

assert(!(fd==off) II (pitch==cleared kk    vs==cleared kk  vga==cleared kk  roll==cleared kk 

hdg==cleared kk  lga==cleared kk  nav.mode==cleared) 

); 

/** the default modes are active if the flight director is on and **/ 

/** all other modes are cleared **/ 

assert (!(!(fd==off) kk    vs==cleared kk  vga==cleared kk 

hdg==cleared kk  lga==cleared kk  nav.mode==cleared 

) I I (pitch==active kk  roll==active) 

); 
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/** mandatory properties **/ 

if 

:: env_ev==hdg_switch_hit -> 

/** check for response to pressing HDG button **/ 

assert(!(old_hdg==cleared) || ( hdg==active )); 

assert(!(old_hdg==active ) || (roll==active )); 

assert(!(old_hdg==active ) II ( hdg==cleared)) 

:: env_ev==nav_svitch_hit -> 

/** check for response to pressing NAV button **/ 

assert(!(old_nav.mode==cleared) II ((nav.mode==armed_initial)    II 

(nav.mode==armed_long_enough) |I (nav.mode==track) 

) 

); 

assert(!((old_nav.mode==armed_initial) || (old_nav.mode==armed_long_enough) II 

(old_nav.mode==track) 

) I I (roll==active) 

); 

assert(!((old_nav.mode==armed_initial) I I (old_nav.mode==armed_long_enough) II 

(old_nav.mode==track) 

) I I (nav.mode==cleared) 

) 

:: env_ev==vs_switch_hit -> 

/** check for response to pressing VS button **/ 

assert(!(old_vs==cleared) II (vs==active)); 

assert(!(old_vs==active ) II (pitch==active)); 

assert(!(old_vs==active ) II (vs==cleared)) 

:: env_ev==fd_switch_hit -> 

/** check for response to pressing the FD button **/ 

assert(!(old_fd==off) || (fd==cues)); 

assert((!(!(old_fd==off) && !(ap_engaged II overspeed))) II (fd==off)); 

assert(!((old_fd==cues) && (ap_engaged II overspeed)) II (fd==no_cues)); 

assert(!((old_fd==no_cues) && (ap.engaged II overspeed)) II (fd==cues)); 

:: else -> 

skip 

fi; 

/** search for ignored crew inputs **/ 

/** assert(!(crew_input) II mode_change); **/ 

/** property violated **/ 

/** no unknown ignored crew inputs **/ 

assert(!(crew_input && !(ignored_crew_input)) II mode_change); 
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/** search for indirect mode changes **/ 

/** assert(!(!(crew.input)) II !(mode_change)); **/ 

/** property violated **/ 

/** no unknown indirect mode changes **/ 

assert(!(!(crew_input) && !(indirect_mode_change)) II ! (mode_change)); 

/** save the current mode values **/ 

old_pitch = pitch;  old_vs   = vs;  old_vga  = vga; old_roll = roll; 

old_hdg  = hdg;   old_lga  = lga; old_fd   = fd; 

old_nav.mode = nav.mode; old_nav.track_cond_met = nav.track_cond_met 

} 

inline clear.all_modes() 

{ 

pitch=cleared;  vs=cleared;      vga=cleared;  roll=cleared; 

hdg=cleared;  lga=cleared;  nav.mode=cleared 

} 

inline select„default_mode() 

{ 

pitch=active;  roll=active 

} 

inline process_external_event(env_ev) 

{ 

if 

:: env_ev==ap_engaged_event   -> ap_engaged=true 

env_ev==ap_disengaged_event -> ap_engaged=false 

:: env_ev==overspeed_start    -> overspeed =true 

env_ev==overspeed_stop     -> overspeed =false 

:: else -> skip 

fi 

} 
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inline process_fd_event(env_ev) 

{ 

if 

:: flight_director_event(env_ev) -> 

if 

:: env_ev==fd_switch_hit   -> flight_director(switch, fd.signal) 

:: env_ev==overspeed_start -> flight_director(force_cues, fd.signal) 

:: else -> flight_director(turn_on, fd_signal) 

fi; 

if 

fd_signal==turned_off   -> clear_all_modes() 

-> select_default_mode() 

-> skip 

fd_signal==turned_on 

else 

fi 

else 

skip 

-> 

fi 

inline process_flight_mode_event(env_ev) 

{ 

if 

:: !(fd==off) -> lateral_guidance(env_ev);  vertical_guidance(env.ev) 

:: else     -> skip 

fi 

} 

inline clear_signals0 

{ 

pitch_signal = null; vs_signal = null; vga.signal = null; roll_signal = null; 

hdg_signal  = null;  lga.signal = null;  nav.signal = null; fd.signal  = null 

} 

/** main module performing modeling one synchronous step of the system **********************/ 

inline fgs(env_ev) 

{ 

process_external_event(env_ev); 

process_fd_event(env_ev); 

process_flight_mode.event(env_ev); 

clear_signals(); 

mandatory_and_mode_confusion_properties(env_ev) 

} 

/** signals are no longer needed **/ 
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/** init process, including model of the environment ****************************************/ 

init{ end_main: do :: atomic{ if /* nondeterministically choose env. event  */ 

env_ev=hdg_switch_hit 

env_ev=nav_switch_hit 

env_ev=nav_armed_long_enough_event 

: env_ev=nav_track_cond_met_event 

env_ev=ga_suitch_hit 

: env_ev=vs_pitch_wheel_changed 

env_ev=vs_switch_hit 

env_ev=fd_switch_hit 

:: env_ev=overspeed_start 

:: env_ev=overspeed_stop 

env_ev=ap_engaged_event 

: env_ev=ap_disengaged_event 

:: env_ev=sync_switch_pressed 

env_ev=sync_switch_released 

fi; 

fgs(env_ev); /* perform synchronous step      */ 

env_ev=null /* env. event is no longer needed */ 

} 

od } 

C.2. Output of the Spin verifier. 

(Spin Version 3.2.4 — 10 January 1999) 

Full Statespace search for: 

never-claim        - (none specified) 

assertion violations + 

cycle checks      - (disabled by -DSAFETY) 

invalid endstates + 

State-vector 32 byte, depth reached 4151, errors: 0 

242 states, stored 

3147 states, matched 

3389 transitions (= stored+matched) 

165976 atomic steps 

hash conflicts: 0 (resolved) 

(max size 2*19 states) 

2.604 memory usage (Mbyte) 

real 1.9 

user 1.7 

sys       0.2 
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