
NASA/CR-1999-209332
ICASE Report No. 99-18

Analyzing Mode Confusion via Model Checking

Gerald Lüttgen
ICASE, Hampton, Virginia

Victor Carreno
NASA Langley Research Center, Hampton, Virginia

DÄSSA 19990625 042 Distribution Unlimited "//¥V^ WTL

May 1999

The NASA STI Program Office ...in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this
important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA's scientific and technical information.
The NASA STI Program Office provides
access to the NASA STI Database, the
largest collection of aeronautical and space
science STI in the world. The Program Office
is also NASA's institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed
to be of continuing reference value. NASA
counter-part or peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATIONS.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA's mission.

Specialized services that help round out the
STI Program Office's diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing
research results ... even providing videos.

For more information about the NASA STI
Program Office, you can:

• Access the NASA STI Program Home
Page at http://www.sti.nasa.gov/STI-
homepage.html

• Email your question via the Internet to
help @ sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at (301) 621-0134

• Phone the NASA Access Help Desk at
(301) 621-0390

• Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/CR-1999-209332
ICASE Report No. 99-18

Analyzing Mode Confusion via Model Checking

Gerald Lüttgen
ICASE, Hampton, Virginia

Victor Carreno
NASA Langley Research Center, Hampton, Virginia

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681 -2199 under Contract NAS1-97046

May 1999

Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 487-4650

ANALYZING MODE CONFUSION VIA MODEL CHECKING

GERALD LÜTTGEN* AND VICTOR CARRENO+

Abstract. Mode confusion is one of the most serious problems in aviation safety. Today's complex

digital flight decks make it difficult for pilots to maintain awareness of the actual states, or modes, of the

flight deck automation. NASA Langley leads an initiative to explore how formal techniques can be used to

discover possible sources of mode confusion. As part of this initiative, a flight guidance system was previously

specified as a finite Mealy automaton, and the theorem prover PVS was used to reason about it.

The objective of the present paper is to investigate whether state-exploration techniques, especially model

checking, are better able to achieve this task than theorem proving and also to compare several verification

tools for the specific application. The flight guidance system is modeled and analyzed in Mur^>, SMV, and

Spin. The tools are compared regarding their system description language, their practicality for analyzing

mode confusion, and their capabilities for error tracing and for animating diagnostic information. It turns

out that their strengths are complementary.

Key words, mode confusion, model checking, modeling, state exploration, verification tools

Subject classification. Computer Science

1. Introduction. Although digital system automation in the flight deck of aircrafts has contributed to

aviation safety, we are starting to experience some undesirable side effects as a result of the high degree of

automation. Automation has significantly reduced the overall pilot workload; however, in some instances the

workload has just been re-distributed, causing short periods of very high workloads. This is usually the case

during transition periods when the aircraft moves from one phase of flight to another or when data re-entry

is necessary due to, e.g., route changes. It is during these transitional phases that pilots may get confused

about the states, or modes, of the flight deck automation. Mode confusion may cause pilots to interact

inappropriately with the on-board automation, with possibly catastrophic consequences. Indeed, incidents

and accidents in aviation are increasingly attributed to this aspect of pilot-automation interaction [2].

NASA Langley Research Center, in partnership with avionics manufacturers and other organizations,

is engaged in a program to explore ways to minimize the impact of mode confusion on aviation safety.

One approach being studied is to identify the sources of mode confusion by formally modeling and analyzing

avionics systems in order to determine if such sources exist in the systems. The mode logic of a flight guidance

system was selected as a target system to develop this approach and to determine its feasibility. The flight

guidance system offers a realistic avionics system and has been modeled and specified in many notations

and languages including CoRE [9, 21], SCR [14, 20], Z [10, 31], ObjecTime [22, 28], and PVS [5, 25]. In the

PVS effort, the behavior of the flight guidance system was encoded as a finite state machine. Properties,

identified as possible sources of mode confusion by engineers, pilots, and experts in human factors [18], were

•Institute for Computer Applications in Science and Engineering (ICASE), Mail Stop 132C, NASA Langley Research Cen-
ter, Hampton, VA 23681, e-mail: luettgen@icase.edu. This research was supported by the National Aeronautics and Space
Administration under NASA Contract No. NAS 1-97046 while the first author was in residence at ICASE.

-^Assessment Technology Branch, NASA Langley Research Center, Hampton, VA 23681, e-mail: v.a.carreno@larc.nasa.gov.

defined in the PVS language. Some of these properties include inconsistent behavior, ignored crew inputs,

and indirect mode changes. Proofs in the PVS model, which encodes a Mealy automaton, were undertaken to

either show that a property holds or to discover conditions that preclude the property from becoming true.

The employed style of theorem proving resembles a form of state exploration. Hence, the question arises

whether state exploration techniques, such as model checking [6, 8, 26], are better suited for this task. The

issues to be considered are whether model checking techniques are appropriate, whether the modeling and

verification consumes less resources than theorem proving, and whether unsuccessful verification attempts

return sufficient information which lead an engineer to potential design flaws. In order to get answers

to our questions, we model and analyze the mode logic by applying three popular and publicly available

ätate-exploration/model-checking tools, namely Mur</> [7, 23], SMV [19, 29], and Spin [15, 30].

The results of this paper show that all three model checking tools have the capability of modeling the

mode logic of the flight guidance system and analyzing properties related to mode confusion. However,

each verification tool has its own strengths and weaknesses. Therefore, we put our emphasis on comparing

the suitability of Mur</>, SMV, and Spin in the context of our application. We draw our comparison along

three aspects: (1) the suitability of the tools' languages for modeling the mode logic, (2) the suitability of

the tools for specifying and verifying the mode confusion properties of interest, and (3) the tools' ability to

generate and animate diagnostic information. The first aspect is of importance because it influences the way

in which we model the example system. The second aspect refers to the expressiveness of the language in

which system properties are encoded, and also to the degree of orthogonality between the specification of

the system and the specification of its properties. The third aspect is perhaps the most important one for

engineers since system designs are often incorrect in early design stages. Finally, it should be noted that our

comparative case study is not intended to determine which verification tool is 'the best.' All comparisons

made only refer to a certain class of applications; the main characteristics of the flight guidance system are

its synchronous, reactive, and deterministic behavior.

The remainder of this paper is organized as follows. Section 2 gives an overview of the flight guidance

system, of its mode logic, and of potential sources for mode confusion. Sections 3, 4, and 5 show the modeling

and analysis of the mode logic in Mur^, SMV, and Spin, respectively. Section 6 discusses the strengths of

each verification tool for our application and refers to related work, while Section 7 contains our conclusions

and directions for future work. Finally, the appendices include the full models of the mode logic.

2. Flight Guidance Systems and Mode Logics. The flight guidance system is a central component

of the flight control system (see Fig. 2.1). It continuously determines the difference between the actual state

of an aircraft - its position, speed, and attitude as measured by its sensors - and its desired state as given by

the crew and/or the flight management system. In response, the flight guidance system generates commands

to minimize this difference, which the autopilot may translate into movements of the aircraft's actuators.

These commands are calculated by control law algorithms that are selected by the mode logic.

flight guidance system

mode logic flight management
system

FIG. 2.1. Flight control system.

In the following we focus on the mode-logic part of flight guidance systems. Especially, we leave out

the modeling of the control laws and, if no confusion arises, use interchangeably the terms flight guidance

system and mode logic. For the purposes of this paper, it suffices to understand the functionality of the

mode logic and how it is decomposed into sub-components. The flight guidance system essentially acts as

a deterministic machine which is composed of several synchronous sub-machines. It receives events from

its environment - i.e., the crew interface, the aircraft's sensors, and the flight management system - in a

nondeterministic fashion and reacts to them by changing its state appropriately. The functionality of a flight

guidance system varies with application, vendor, customer preferences, and other factors.

Fig. 2.2 shows a typical mode logic for a business jet/commuter jet flight guidance system. The mode

logic can be represented and modeled by three interacting components: the lateral guidance, the vertical

guidance, and the flight director. The mode of the flight director - which can be either cues, no-cues, or off

- determines whether or not the flight guidance system is being used as a navigational aid either manually

by the crew or automatically through the autopilot. The lateral guidance subsumes the roll mode (Roll),

the heading mode (HDG), the navigation mode (NAV), and the lateral go-around mode (LGA), whereas

the vertical guidance subsumes the pitch mode (Pitch), the vertical speed mode (VS), and the vertical go-

around mode (VGA). Each mode can be either cleared or active, with the navigation mode having additional

sub-states in the active state. The behavior of each component places constraints on the other components.

For example, when the flight director is on, there must be exactly one mode active in the lateral guidance

and one mode active in the vertical guidance. In some situations, an external event may require several

simultaneous mode changes. Indeed, the behavior of the flight guidance system reflects a kind of two-level

semantics similar to Statecharts [13], where both semantic levels are not independent but connected via the

synchrony hypothesis [1]. This hypothesis guarantees that a system completes its reaction to an external

event before the next external event arrives.

Mode Logic

Lateral Guidance Vertical Guidance
Flight Director

Roll HDG NAV LGA Pitch VS VGA
V .

FIG. 2.2. Architecture of the model logic of the flight guidance system.

Before we discuss the modeling of the flight guidance system within the verification tools Mur</>, SMV,

and Spin, we briefly mention some properties of our system, which can be classified as mandatory properties

and mode confusion properties. Some of the former properties are: (i) if the flight director is off, all lateral

and vertical guidance modes must be cleared, (ii) if the flight director is on, then exactly one lateral and one

vertical mode is active, and (iii) the lateral and vertical default modes are activated when the flight director

is on and when all other modes are cleared. These and other mandatory properties must be true if we have

accurately modeled the system. Regarding mode confusion, several categories are identified in [18]. We have

selected three categories to use in the analysis of our system: (1) inconsistent behaviors, i.e., a crew interface

input (switch, dial, etc.) has different functionality for different system states, (2) ignored operator inputs,

i.e., a crew input does not result in a change of state, and (3) indirect mode changes, i.e., the system changes

its state although no crew input is present. To discover if there are possible sources of mode confusion, we

formulate the negation of each property - there are no inconsistent behaviors, no ignored inputs, and no

indirect mode changes - and try to prove it. Conditions that prevent us from successfully completing the

proof, manifested by improvable subgoals in a theorem prover and error traces in model-checking tools, are

the ones we intend to uncover. As expected, this process is labor intensive when using theorem proving [22].

The work described here investigates if model checking is a more efficient way of performing the analysis.

3. Modeling the Mode Logic in Mur<j). The Murcf) Verification System [7, 23], a state-exploration

tool developed by David Dill's group at Stanford University, consists of a compiler and a description language.

The compiler takes a Murcj) description and generates a C+-1- special-purpose verifier for it. This verifier can

then be used for checking assertions and deadlock behavior of the system under consideration.

The Murcf) description language is a high-level language which borrows from many constructs found

in programming languages, such as Pascal. It may be used to model synchronous as well as asynchronous

hardware and software systems which can be compiled into finite Kripke structures, i.e., finite automata whose

states are attached with the semantic information of interest. Mur</> descriptions may include declarations of

constants, finite data-types (such as Booleans, enumeration types, finite subranges of integers, record types,

and array types), global and local variables, and unhested procedures and functions. Moreover, they contain

transition rules for describing system behavior, a description of the initial states, and a set of state invariants

and assertions. Each transition rule may consist of a guard - which is never needed in our application scenario

- and an action, i.e., a statement which modifies the values of global variables. A state in Murk's execution

model is an assignment to all global variables in the description under investigation. A transition is then

determined by a rule, taken nondeterministically from the set of transition rules whose condition is true in

the current state. The rule's execution updates all or some global variables according to its action.

TABLE 3.1
Specification of module simple guidance in Mur<j>

TYPE sg_modes : ENUM { cleared, active };

TYPE sg_events : ENUM { activate, deactivate, switch, clear };

TYPE sg_signals : ENUM { null, activated, deactivated };

PROCEDURE simple_guidance(VAR mode:sg_modes; event:sg_events; VAR signal:sg_signals);

BEGIN

IF mode=cleared THEN SWITCH event CASE activate : signal := activated;

CASE deactivate : signal := null;

CASE switch : signal := activated;

CASE clear : signal := null;

END;

ELSE SWITCH event CASE activate : signal := null;

CASE deactivate : signal := null;

CASE switch : signal := deactivated; mode := cleared;

CASE clear : signal := deactivated;• mode := cleared;

END;

END; END;

mode := active;

mode := active;

mode := cleared;

In the center of the Mur</> model of the flight guidance system is the deterministic procedure f gs. This

procedure encodes the system's reaction to some environment event env_ev entering the mode logic. For

the purposes of this paper it is not important to name the fourteen different environment events interacting

with the mode logic. However, by declaring a transition rule for each environment event env_ev as RULE

"ruleJor_env_event" BEGIN fgs(env_ev); END, we model the nondeterministic behavior of the environ-

ment which arbitrarily chooses the event entering the system at each synchronous step. Please observe that

our encoding of the environment does not require us to store event names explicitly in a global variable, but

rather to inject them to f gs via a call-by-value parameter. Due to space constraints we do not completely

specify procedure f gs here. Instead, we concentrate on modeling the vertical-guidance component of the

flight guidance system. Let us define the modes of the vertical-guidance component as instantiations of an

abstract data-type module simple.guidance, specified in Mur<f> as procedure, which encodes each mode's

behavior as a Mealy automaton behaving like a Boolean switch (cf. Table 3.1). The module is parameterized

by the mode mode under consideration (as call-by-reference parameter), the input event event (as call-by-

value parameter), and the output event signal (as call-by-reference or return parameter). The parameters

are of enumeration types sg_mode, sg.events, and sg_signals, respectively, where type sgjnode ranges over

the values cleared and active, type sg_event ranges over activate, deactivate, switch, and clear, and

type sg_signal ranges over null, activated, and deactivated. The body of simple_guidance specifies

the reaction of a mode to input event event, with respect to its current state mode. This reaction is described

by an if-statement, two case-selections, and assignments to variable mode and return parameter signal.

TABLE 3.2
Specification of module vertical guidance in Mur<j>

VAR pitch, vs, vga : sg_modes;

PROCEDURE vertical_guidance(env_ev:env_events);

VAR sig : sg_signals;

BEGIN CLEAR sig;

IF pitch.event(env.ev) THEN simple.guidance(pitch, pitch.conv(env.ev), sig);

IF sig=activated THEN simple.guidance(vs, deactivate, sig);

simple.guidance(vga, deactivate, sig);

END;

ELSIF vs.event(env.ev) THEN simple.guidance(vs, vs.conv(env.ev), sig);

IF sig=activated THEN simple.guidance(pitch, deactivate, sig);

simple.guidance(vga, deactivate, sig);

ELSIF sig=deactivated THEN simple.guidance(pitch, activate, sig);

END;

ELSIF vga.event(env.ev) THEN simple.guidance(vga, vga.conv(env.ev), sig);

IF sig=activated THEN simple.guidance(pitch, deactivate, sig);

simple.guidance(vs, deactivate, sig);

ELSIF sig=deactivated THEN simple.guidance(pitch, activate, sig);

END;

END; END;

We can now specify the vertical-guidance module as a procedure, called vertical_guidance (cf. Ta-

ble 3.2), by employing procedure simple-guidance for describing the behavior of the modes pitch, vs, and

vga, which are defined as global variables. The task of procedure vertical-guidance is firstly to recognize

whether the environment event env.ev passed to the system refers to mode Pitch, to mode VS, or to mode

VGA. This is achieved with help of the three auxiliary functions pitch_event, vs.event, and vga_event, re-

spectively. Then env.ev is translated to an event of type sg_events via the auxiliary functions pitch_conv,

vs_conv, and vga_conv, respectively, and passed to the mode to which it belongs. If this mode is activated

by the event, i.e., simple-guidance returns value activated via local variable sig, then the other two

modes must instantly be deactivated by invoking simple-guidance with respect to the appropriate modes

and event deactivate. It should be mentioned that the above modeling of components simple_guidance

and vertical-guidance is carried over one-to-one from the PVS model of the flight guidance system, which

was developed by NASA Langley and Rockwell Collins [5, 22]. In fact, every PVS construct used in [22]

corresponds to a construct in Murk's description language. However, we sometimes find it useful to translate

functions in PVS to procedures in Mur4> that have an additional call-by-reference parameter for returning

the computed value. In PVS, only functions can be specified, although procedures would sometimes be more

preferable from a software-engineering point of view.

TABLE 3.3
Specification of some mode confusion properties in Murcfi

VAR old_pitch, old_vs, old.vga : sg_modes;

PROCEDURE mode_confusion_properties(env_ev:env_events);

BEGIN

ALIAS mode.change : pitch != old_pitch I vs != old_vs | vga != old_vga; DO

IF env_ev=vs_switch_hit THEN

— check for response to pressing VS button

assert (old_vs=cleared -> vs=active) "vs_toggle_l";

assert (old_vs=active -> vs=cleared) "vs_toggle_2";

END;

— search for ignored crew inputs (property violated)

assert (crew_input(env_ev) -> mode.change) "search_for_ignored_crew_inputs";

— no unknown ignored crew inputs

assert ((crew_input(env_ev) & !ignored.crew_input(ev)) -> aode_change) "no_unknown_ignored";

— search for indirect mode changes (property violated)

assert (!crew.input(env_ev) -> !mode_change) "search_for_indirect_mode_changes";

-- no unknown indirect mode changes

assert ((!crew_input(env_ev) & !indirect_mode_change(env_ev)) -> !mode_change) "no_unknown...";

END;

— update state variables

old_pitch := pitch; old_vs := vs; old_vga := vga;

END;

We now turn our focus to specifying mode confusion properties. As states are generated by the Mur</>

verifier, assert statements, that were explicitly included in the action of a rule, are checked. If some

assertion is violated - i.e., the assert statement is evaluated to false in some reachable system state -

the Mur</> verifier halts and outputs the string which the user associated with the assert statement under

consideration. Moreover, the verifier outputs diagnostic information which Consists of a sequence of states

leading from the initial state to the error state. The verifier also halts if the current state possesses no

successor states, i.e., if it is deadlocked. Let us return to the three categories of mode confusion mentioned

in Section 2 by showing how an exemplary property of each category can be stated as an assertion.

In the system description of our mode logic, we encapsulate all assertions in the single procedure

mode_confusion_properties, which is invoked as the last statement in procedure fgs and which takes

the current environment event env_ev as parameter (cf. Table 3.3; the notation "- -" introduces a comment

line in Mur</>, != denotes inequality, and I, ft, !, and -> stand for logical disjunction, conjunction, negation,

and implication, respectively). Since all mode confusion properties of interest concern the transition from

one system state to the next, we need to store the global variables' values of the previously visited state.

For this purpose, we introduce new global variables old_pitch, olcLvs, and old.vga. The need for this

overhead arises because Murk's verification capabilities are restricted to reason about simple state invariants

only and not about more general "state transition invariants." Therefore, such state transition invariants

need to be encoded as state invariants, which doubles the size of the state vector for our system description.

The first two assertions in Table 3.3, belonging to the first category of mode confusion properties, state that

environment event vs_switchJhit acts like a toggle with respect to mode VS, i.e., (i) if mode VS was in

state cleared and event vs_switch_hit arrived, then it is now in state active, and (ii) analogously with

exchanged roles of cleared and active.

As example of the second category of mode confusion properties, we check whether no crew inputs

are ignored, i.e., whenever an event that originated from the crew enters the mode logic, then at least

one global variable changes its value. We can specify this property as implication crew_input(env_ev)

-> mode_change, where crew_input is a Boolean function determining whether environment event env_ev

originates from the crew and where mode_change is a shortcut, introduced as an ALIAS statement in Mur4>. As

expected (cf. Section 2), this mode confusion property does not always hold. Using the error trace returned

by Mur<f> helps us in identifying the causes, as is our objective. We do not go into the details here but mention

that we filter out the identified cause by including an additional predicate ignored_crew_input, stating the

negation of the cause, in the premise of the assertion (cf. Table 3.3). We then re-run the Mur<j) verifier and

iterate the described process until the assertion becomes true, thereby gradually capturing all crew-input

scenarios responsible for mode confusion. When comparing our approach to the one taken in PVS [22] -

i.e., trying theorem proving until either obtaining proof goal true or until reaching an unsatisfiable proof

goal - we feel that ours is more effective. We discovered that the variant of ignored_crew_input used in

the PVS model is stronger than necessary, thereby wrongfully identifying some situations as sources of mode

confusion. The difficulty with the analysis in PVS is the following. Mur^ returns error traces that pinpoint

the condition violating the assertion, whereas in a PVS failed proof the condition must be extracted from

a proof sequent consisting of assertions and subgoals. Extracting conditions from a proof sequent is often

more time-consuming and usually requires a better understanding of the system's behavior.

Similar to the assertion "checking for ignored crew inputs" we approach the third category of mode

confusion properties. The property we consider is "no indirect mode changes," which prohibits a system's

state to change if the current environment event is not originated by the crew. Using Mur^>, we discover

the conditions that invalidate this property. As before, we weaken the property by introducing a predicate

indirect jnode_change, until all sources of indirect mode changes are detected. The mandatory properties

mentioned in Section 2 are formalized as Mur$> invariant statements and proved. The difference between an

assert statement and an invariant statement in Mur<£ is that the former appears in the system description

part of the model, while the latter is orthogonal to the system description. The reason for specifying mode

confusion properties in the system description is their reference to the auxiliary variables old_pitch, old_vs,

and old_vga. In order to keep the state space small, the auxiliary variables must be re-assigned to the actual

values of pitch, vs, and vga, respectively, before a step of the synchronous system is completed.

Summarizing, Murk's description language turned out to be very useful for our task, especially since the

already developed PVS model of the flight guidance system [22] could be simply carried over. Unfortunately,

Murk's capability for expressing system properties is quite restrictive, forcing us to encode state transition

invariants as state invariants, thereby doubling the number of global variables and, as a consequence, Murk's

memory requirements. The full Mur^ model subsumes about 30 assertions and leads to a Kripke structure

having 242 states. In each state of the Kripke structure any of the 14 environment events may potentially

enter the system; this gives 3 388 = 242 x 14 transitions in total. The state-space exploration undertaken

by the Mur</> verifier took under 2 seconds on a SUN SPARCstation 20. This is an impressive result when

compared to the semi-automatic proofs in PVS [22].

4. Modeling the Mode Logic in SMV. The SMV system [19, 29], originally developed by Ken

McMillan at Carnegie-Mellon University, is a model-checking tool for verifying finite-state systems, described

in a simple description language, against specifications in the temporal logic CTL [6, 8]. The SMV verifier

implements a symbolic model-checking algorithm [4] based on Binary Decision Diagrams (BDDs) [3].

SMV's description language is a very simple, yet elegant language for specifying finite Kripke structures,

which has the feel of a hardware description language. The language's data types are Booleans (where false

and true are encoded as 0 and 1, respectively), enumeration types, and arrays. Its syntax resembles a style

of parallel assignments, and its semantics is similar to single assignment data flow languages. For structuring

specifications, SMV allows modular hierarchical descriptions. In contrast to Mur</>, SMV descriptions are not

compiled into a special-purpose verifier, but are interpreted instead. The interpreter makes sure that the

specified system is indeed implementable by checking for multiple assignments to the same variable, circular

assignments, and type errors. The SMV language also includes constructs for stating system specifications

in the temporal logic (fair) CTL [8], which allows one to express a rich class of temporal properties, including

safety, liveness, and fairness properties. In the present application of the synchronous flight guidance system,

we focus on safety properties, to which invariants belong.

TABLE 4.1
Specification of module simple guidance in SMV

MODULE simple_guidance(activate, deactivate, switch, clear)

: {cleared, active};

:= cleared;

:= case deactivated | deactivate : cleared;

activated : active;

1 : mode;

esac;

DEFINE activated := (mode=cleared) & (activate | switch);

deactivated := (mode=active) & (clear | switch);

A module description in SMV consists of four parts: (1) the MODULE clause, stating the module's name

and a list of formal (call-by-reference) parameters, (2) the VAR clause, declaring (global) variables needed for

describing the module's behavior, (3) the ASSIGN clause, which specifies the initial value of all variables (cf.

init) and how each variable is updated from state to state (cf. next), and (4) the DEFINE clause, which allows

one to introduce abbreviations for more complex terms. Similar to the Mur^> model, the main module MAIN

of our SMV specification encodes the environment of the flight guidance system, which nondeterministically

VAR mode

ASSIGN init(mode)

next(mode)

sends events to the mode logic. This is done by defining variable env_ev of enumeration type env_events,

which contains all environment events, and by adding "init(env_ev) := env_events; next(env_ev) : =

env_events" to the ASSIGN clause. Analogous to the Mur</> model, we specify a module simple_guidance

(see Table 4.1) and, thereby, show how Mealy machines may be encoded in SMV. Module simple-guidance

takes the four input events activate,' deactivate, switch, and clear - which can be either absent or

present - as parameters. The state associated with simple-guidance is variable mode which may adopt

values cleared and active. Note that the values of enumeration types are encoded by the SMV interpreter

using a collection of Boolean variables, such that transition relations can be represented by BDDs. The

initial value init(mode) of mode is cleared. The behavioral part of simple-guidance is described in the

next (mode) statement, which consists of a case expression. The value of this expression is determined by

the first expression on the right hand side of the colon such that the condition on the left hand side is

true. The symbols, =, &, and I stand for equality, logical conjunction, and logical disjunction, respectively.

The terms activated and deactivated are defined as abbreviations of more complex terms in the DEFINE

clause. The values of mode, activated and deactivated are accessible from outside the module. Therefore,

a DEFINE clause may be used for encoding output events of Mealy automata.

TABLE 4.2
Specification of module vertical guidance in SMV

MODULE vertical_guidance(vs_pitch_wheel_changed, vs_switch_hit, ga_switch_h.it,

sync_switch_pressed, ap_engaged_event)

VAR pitch : simple_guidance(pitch_activate, pitch_deactivate, 0, 0)

vs : simple_guidance(0, vs_deactivate, vs_switch_hit, 0)

vga : simple_guidance(0, vga_deactivate, ga_switch_hit, vga.clear)

DEFINE pitch_activate

pitch_deactivate

vs_deactivate

vga_deactivate

vga_clear

pitch_event

vs_event

vga.event

= (vs_event ft vs.deactivated) | (vga_event ft ga.deactivated) I

vs_pitch_wheel_changed;

= (vs_event ft vs.activated) | (vga_event ft ga.activated);

= (pitch_event ft pitch.activated) I (vga.event ft ga.activated);

= (pitch_event ft pitch.activated) I (vs_event ft vs.activated);

= ap_engaged_event I sync_switch_pressed;

= vs_pitch_wheel_changed;

= vs_switch_hit;

= ap_engaged_event I sync_switch_pressed I

ga_switch_hit;

Before we model the vertical guidance component, we comment on why we have encoded the input

event of the simple-guidance Mealy machine using four different signal lines - i.e., adopting a hardware-

description language point of view - instead of a single event of some enumeration type subsuming all four

values. If activate, deactivate, switch, and clear were combined in an enumeration type, a syntactic

- though not semantic - circularity would be introduced which could not be resolved by SMV, i.e., our

description of the mode logic would be rejected. Another difference between simple-guidance as a module

in SMV and as an abstract data-type in Mur</> is that the mode variable is encapsulated within the SMV

module, whereas it is a call-by-reference parameter in Murk's abstract data type. We feel that SMV reflects

the architecture of the flight guidance system better, since mode belongs to component simple-guidance

and should not be declared outside.

The behavior of each mode of the vertical guidance model (cf. Table 4.2), Pitch, VS, and VGA, can

now be described by instantiating the module simple_guidance, as is done in the VAR clause of module

vertical-guidance. Thereby, global variables pitch.mode, vs.mode, and vga.mode are created as part

of the state vector of our SMV model. All actual parameters of each simple_guidance module can be

specified as Boolean terms on the input parameters of module vertical-guidance, which are essentially

environment events triggering an action regarding the vertical aircraft axis. Note that the Boolean functions

pitch_event, vs_event, and vga_event used in the Mur</> description are encoded here in the DEFINE clause of

vertical-guidance. Our modeling of vertical-guidance is self-explanatory and visualizes the differences

between the SMV and the Mur0 languages. While in Mur0 each synchronous step of the flight guidance

system can be modeled by a sequential algorithm, it must be described in SMV by parallel assignments.

TABLE 4.3
Specification of some mode confusion properties in SMV

DEFINE mode_change := !(vertical.pitch.mode = cleared <-> AX vertical.pitch.mode = cleared) I

!(vertical.pitch.mode = active <-> AX vertical.pitch.mode = active) I ...

— check for response to pressing VS button

SPEC AG (vertical.vs.mode=cleared & env_ev=vs_switch_hit -> AX vertical.vs\mode=active)

SPEC AG (vertical.vs.mode=active & env_ev=vs_suitch_hit -> AX vertical.vs.mode=cleared)

— search for ignored crew inputs (property violated)

SPEC AG (crew_input -> mode_change)

— no unknown ignored crew inputs

SPEC AG (crew_input & !ignored_crew_input -> mode_change)

— search for indirect mode changes (property violated)

SPEC AG (!crew_input -> !mode_change)

— no unknown indirect mode changes

SPEC AG ((!crew_input & !indirect_mode_change) -> !mode_change)

In SMV, properties are specified in the temporal logic Computational Tree Logic (CTL) [6, 8]. Fairness

constraints may also be imposed on SMV models but are not needed for our purposes since we are strictly

interested in invariants related to aspects of mode confusion. In SMV, temporal properties are introduced

within the same file as the system description by the keyword SPEC. We do not need to introduce CTL

formally here, as we use only a very limited sublanguage of it. All of our properties are of the form

AG(/>, where AG stands for "always generally," i.e., every state on every path through the system satisfies

property <fr. The formula AX4> expresses that all successor states of the current state satisfy formula </>.

In this light, the first formula in Table 4.3, related to checking the response to pressing the VS button,

states: "every reachable state in the underlying Kripke structure of the model satisfies that, if mode VS

in vertical-guidance is currently cleared and event vs_switch_hit enters the system, then mode VS

in vertical-guidance is active in every successor state of the current state." Note that the symbols

-> and <-> used in Table 4.3 stand for logical implication and equivalence, respectively. The identifiers

mode_change, crew_input, indirect_mode_change, and ignored_crew_input are abbreviations of Boolean

expressions defined in a DEFINE clause, as exemplarily shown for mode_conf usion. The presence of operator

AX in CTL remedies the need to keep track of old values of mode variables. Thereby, the size of the associated

state vector of the SMV model is cut in half when compared to the Mur^ model. Moreover, a fully orthogonal

treatment of model and property specifications is achieved. The SMV system verified about thirty assertions

10

in slightly more than half a second using 438 BDD nodes and allocated less than 1 MByte memory on a

SUN SPARCstation 20. The two properties "search for ignored crew inputs" and "search for indirect mode

changes" were invalidated as in the Mur^ model. The returned error traces - reporting the assignments of

each variable and each identifier declared in a DEFINE clause in every state of the traces - are of help in

identifying potential problems with the model. SMV also includes an interactive mode which provides a very

simple assistant for interactive debugging. The state space of the SMV model consists of 3388 states, which

corresponds to the 242 states of the Mur^> model since the actual environment event - out of 14 possible

events - must be stored in a variable in SMV ("242 x 14 = 3388").

Summarizing, SMV performed very well on our example and showed the suitability of symbolic model

checking to the flight guidance system. In fact, the mode logic's behavior can be described by Boolean terms

and, thus, represented efficiently using BDDs. CTL turned out to be an excellent language for specifying

mode confusion properties due to the presence of next-state operator AX. SMV's modeling language has

the feel of a hardware description language and is not as high level as Murk's language. However, SMV's

module concept allowed us to model the architecture, but not the functionality, of the flight guidance system

one-to-one to the original PVS specification [22].

5. Modeling the Mode Logic in Spin. Last, but not least, we explore the utility of the verification

tool Spin [15, 16, 30], which was developed by Gerard Holzmann at Bell Labs, for our case study. Spin

is designed for analyzing the logical consistency of concurrent systems. It is especially targeted towards

modeling and reasoning about distributed systems, such as communication protocols, where several concur-

rent processes exchange messages by communicating synchronously via handshaking or asynchronously via

buffered channels. The description language of Spin, called Promela, allows one to specify nondeterministic

processes, message channels, and variables in a C-like syntax. Given a system description in Promela, whose

semantics is again defined as a Kripke structure, Spin can - in contrast to Mur<^> and SMV - perform random

or interactive simulations of the system's execution. Similar to Mur</>, it can generate a special-purpose

verifier, i.e., a C-program, which performs an exhaustive exploration of the system's state space. Such a

state exploration may - among other things - check for deadlocks and unreachable code, validate invariants,

and verify properties specified in a linear-time logic [8, 11]. Linear-time logic is not as expressive as the

branching-time logic fairCTL employed in SMV. However, it is rich enough to specify all properties of inter-

est in this paper. Spin's verifier was implemented having memory efficiency in mind, e.g., it includes optional

partial-order techniques [12] and bitstate hashing [17].

TABLE 5.1

Specification of the main process init in Spin

init{ env_ev=null;

do

:: atomic{if /* loop body encodes 1 synchronous step */

:: env_ev=vs_switch_hit /* nondeterministic choice of env. event */

:: ... /* 13 more cases, one for each env. event */

fi;

fgs(env_ev); /* perform synchronous step */

env_ev=null } /* env. event is no longer needed */

od }

11

Since our flight guidance system is a synchronous system, it falls out of the intended scope of Spin.

Nevertheless, we show that Spin allows us to successfully carry out our case study. The Promela fragment

depicted in Table 5.1 encodes our synchronous model using a single process, namely Spin's main process

init. Here, the global variable env_ev is of type mtype, which contains an enumeration of all event and

signal names that may occur in the mode logic. Promela's type system supports basic data types (such

as bit, bool, and byte), as well as arrays, structures (i.e., records), and channels. Unfortunately, it only

allows a single declaration of an enumeration type, which must be named mtype. The statement atomic

in init attempts to execute all statements in its body in one indivisible step. Especially, it does not store

intermediate states which might arise during the execution of the body. Thus, we may use this construct for

encoding our complex algorithm - see procedure f gs of the Mur^> model in Section 3 - performing a single

synchronous step. The repetition statement do together with the nested nondeterministic-choice statement

if nondeterministically chooses which environment event to assign to variable env_ev. Since env_ev is

no longer needed outside of fgs it is reset to dummy value null and, thus, does not contribute to the

observable state space. The reason that we have not simply spelled out fgs(vs_switch_hit), and so on

for each environment variable, is that - as we argue below - fgs needs to be implemented as an inline.

Expanding this long inline fourteen times turns out to be inefficient.

TABLE 5.2

Specification of module simple guidance in Spin

inline

{ if :

simple_guidance(mode, event, signal)

mode==cleared -> if event==activate -> signal=activated;

event==deactivate -> signal=null

event==switch -> signal=activated;

event==clear -> signal=null

mode=active

mode=active

mode==active

fi

-> if

fi

event==activate -> signal=null

event==deactivate -> signal=null; mode=cleared

event==switch -> signal=deactivated; mode=cleared

event==clear -> signal=deactivated; mode=cleared

fi }

Promela does not possess any kind of procedure construct other than the process declaration proctype.

However, we may not introduce additional processes to the main process init, since then our model would

not reflect a synchronous system any more. The only construct of Promela, which we can use for resembling

the architecture of the flight guidance system, is the inline construct which may take (call-by-reference) pa-

rameters, such as the parameters mode, event, and signal for component simple-guidance (cf. Table 5.2).

When compiling a Promela description, each occurrence of simple-guidance in vertical_guidance is re-

placed with its body. The modes instantiating the parameter mode are global variables of type, bit, where

cleared and active are defined to represent the constants 0 and 1, respectively, using the preprocessor

command #def ine. The events and signals clear, activate, deactivate, switch, null, activated, and

deactivated are of type mtype. The body of simple-guidance contains the Promela statement if. Its

behavior is defined by a nondeterministic selection of one of its executable options, which are separated

by double colons, and by executing it. In our case, each option consists of a guarded expression, which is

12

executable if the expression on the left of -> evaluates to true in the current system state under consider-

ation, and returns the result of evaluating the expression on the right hand side. As in the programming

language C, the symbols == and = stand for the equality operator and the assignment operator, respectively.

Using the Promela description of simple_guidance, we can specify component vertical-guidance as an-

other inline parameterized by environment event env_ev (cf. Table 5.3). The body of vertical-guidance

is self-explanatory and similar to the one of Mur^. It should only be noted that guard else is always

executable and that expression skip leaves the current system state unchanged. Moreover, the Boolean

functions pitch_event, vs_event, and vga_event are spelled out as inlines here.

TABLE 5.3

Specification of module vertical guidance in Spin

bit pitch_mode=cleared; bit vs_mode=cleared; bit vga_mode=cleared;

inline pitch_event(env_ev) { env_ev==vs_pitch_wheel_changed }

inline vs_event(env_ev) { env_ev==vs_switch_hit }

inline vga_event(env_ev) { env_ev==ga_switch_hit I| env_ev==ap_engaged_event II ... }

inline vertical_guidance(env_ev)

{ if :: pitch_event(env_ev) -> .

simple_guidance(activate, pitch_mode, pitch_signal);

if :: pitch_signal==activated -> simple_guidance(deactivate, vs_mode, vs_signal);

simple_guidance(deactivate, vga.mode, vga_signal)

:: else -> skip

fi

:: vs.event(env_ev) ->

simple_guidance(switch, vs_mode, vs_signal);

if :: vs_signal==activated -> simple_guidance(deactivate, pitch_mode, pitch_signal);

simple_guidance(deactivate, vga_mode, vga_signal)

:: vs_signal==deactivated -> simple_guidance(activate, pitch_mode, pitch_signal)

:: else -> skip

fi

:: vga_event(env_ev) ->

if :: env_ev==ga_switch_hit -> simple_guidance(switch, vga.mode, vga_signal)

:: else -> simple_guidance(clear, vga_mode, vga_signal)

fi;

if :: vga_signal==activated -> simple.guidance(deactivate, pitch_mode, pitch_signal);

simple_guidance(deactivate, vs_mode, vs_signal)

:: vga_signal==deactivated -> simple_guidance(activate, pitch_mode, pitch.signal)

:: else -> skip

fi

:: else -> skip

fi }

The verification technique we employed in Spin for reasoning about the flight guidance system, namely

assertions, is similar to the one we used in Mur^. More precisely, Promela's assertion statement assert aborts

the state exploration conducted by Spin's verifier whenever its argument expression evaluates to false in some

system state associated with the assertion statement. Our specification of the mode confusion properties are

13

TABLE 5.4
Specification of some mode confusion properties in Spin

bit old_pitch_mode=cleared; bit old_vs_mode=cleared; bit old_vga_mode=cleared;

/* check for response to pressing VS button */

assert(!(old_vs_mode==cleared) II (vs_mode==active));

assert(!(old_vs_mode==active) II (vs_mode==cleared));

/* search for ignored crew inputs (property violated) */

assert(!(crew.input) II mode_change);

/* no unknown ignored crew inputs */

assert(!(crew_input && !(ignored_crew_input)) I I mode_change);

/* search for indirect mode changes (property violated) */

assert(!(!(crew_input)) 11 !(mode.change));

/* no unknown indirect mode changes */

assert(!(!(crew_input) && !(indirect_mode_change)) I I !(mode.change));

/* save the current mode values */

old_pitch_mode=pitch_mode; old_vs_mode=vs_mode; old_vga_mode=vga_mode;

depicted in Table 5.4, where '!', '&&', and ' II' stand for the logical connectives not, and, and or, respectively.

Moreover, the symbols /* and */ denote the begin and end of comments. In our specification, crew_input,

mode_change, ignored_crew_input, and indirect_mode_change, which are defined as Boolean functions in

Mur</>, are simply introduced via #def ines. In order to encode expression mode_change, we have to keep - as

in the Mur^ model - a copy of the 'old' values of all global variables of interest. Stating the mode confusion

properties in Spin's linear-time logic would not have any advantages over using assertions. The reason is

that Spin's version of linear-time logic does not include the next-state operator, as we used for specifying

these properties in SMV. This is because many verification methods employed in Spin, such as partial order

techniques, have essentially no beneficial effects when the next-state operator is present. The verification

results returned by the Spin verifier are similar to the ones for Mur^. The Spin model of the flight guidance

system also possesses 242 states and 3388 transitions (+ 1 "dummy" transition). Unfortunately, Spin crashes

and core dumps when analyzing the invalid assertions search for ignored crew inputs and search for indirect

mode changes. However, it still writes an error trace which can be fed into Spin's simulator. No other violated

assertions were detected during the exhaustive state-space search which took under 2 seconds and required

about 2.6 MBytes memory on a SUN SPARCstation 20. It should be pointed out that a previous effort by a

NASA contractor to analyze a variant of the flight guidance system using Spin was unsuccessful because of

an intractably large state space [24]. Unfortunately, from the report it is not clear what the exact causes are.

We suspect that the manner in which the model was constructed is one of the main causes of the intractable

state space, which was then checked for invariant properties using Spin's bitstate hashing algorithm [17].

Summarizing, the modeling and verification of our flight guidance system was feasible in Spin but less

elegant than in Mur^. This is mainly because of the lack of procedure and function constructs in Promela,

which had to be encoded using inlines and #def ines. However, our criticism is qualified by the fact that

Spin is actually not intended for modeling and reasoning about synchronous systems. If one is interested in

asynchronous, concurrent systems, Spin provides the process declaration proctype as a means for encapsu-

lating system components. We would like to see a richer type system in Spin, which can handle more than

14

one mtype definition. Type checking is a powerful tool for detecting inconsistencies and saves us a lot of

time compared to checking specifications by hand. Also, we wish for the next-state operator to be included

in Spin's linear-time logic. Similar to our comments for Mur</> we remark that this would cut the size of

the state vector and Spin's memory requirements approximately in half. Especially useful to us were Spin's

capabilities to simulate Promela models and to feed back error traces - illustrating the cause of an assertion's

invalidity - into the simulator. Simulations helped us to identify the causes of ignored crew inputs and

indirect mode changes in a very time-efficient manner. Beside the feature of monitoring variables, we found

it useful that Spin highlights the part of the Promela description corresponding to the system state under

investigation. The absence of rich simulation capabilities in Mur(j> and SMV makes Spin the tool of choice

for discovering design flaws interactively. Finally, Spin's nice graphical user interface, referred to as Xspin,

distinguishes Spin from other verification tools.

6. Discussion and Related Work. In this section we discuss the most important strengths and

weaknesses of each of the verification tools Mur^, SMV, and Spin regarding our case study. We structure

our discussion by separating the issues related to the tools' (i) system description languages, (ii) property

description languages, and (iii) capabilities for system simulation and for animating diagnostic information.

The system description languages of all three verification tools allow us to model the deterministic,

synchronous behavior of the flight guidance system, as well as the nondeterministic behavior of the system's

environment. Especially, Murk's system description language proved to be very useful for the following

reasons. First, Mur</> implements numerous language constructs and a rich type system, as found in. many

standard high-level imperative programming languages, such as Pascal. Second, it supports a modular

programming style via parameterized procedures and functions. Third, it allows us to adapt the existing PVS

specification of the mode logic in a straightforward manner [22]. One major difference between the languages

is that Mur^ and Spin allow model encoding using a sequential algorithm, whereas SMV requires an algorithm

description by parallel assignments. As a consequence, SMV has the feel of a low-level or hardware description

language. However, SMV's module concept is slightly more elegant than Murk's procedure concept for our

application, since mode variables can be declared within the module to which they belong and need not

be declared outside. Regarding Spin's system description language Promela, one notices that it is actually

designed to specify asynchronous systems, especially communication protocols. This is evident by the fact

that it only offers the process declaration construct proctype for encapsulating code fragments. By using

inline declarations we were able to circumvent this problem for our purposes. Finally, we want to mention

one desired feature that the system description languages of all three tools are missing, namely the ability to

organize the events of the flight guidance system in a taxonomy, e.g., by including subtyping in the description

languages. The presence of such a concept would help us to naturally divide all events into lateral-mode and

vertical-mode events, and further into Pitch events, HDG events, etc. This taxonomy was encoded in Mur<^>
and SMV using functions and in Spin using inlines.

Regarding the second issue concerning the property description languages of the three verification tools,

we also identified several important differences. We first note that all of the mandatory and mode confusion

properties of interest to us are invariants. Therefore, they can be stated as assertions and verified in

reachability analysis tools, such as Mur<j>, as well as more general model-checking tools, such as SMV and

Spin. When specifying mode confusion properties, SMV's adaptation of the temporal logic CTL is most

convenient, not because of its expressiveness which we hardly use, but since it allows one to implicitly refer

to adjacent states in program paths using the 'next-state' operator AX. This is important for describing

15

property mode_change which requires one to access the mode variables of adjacent states. In contrast to

Mur</> and Spin, the encoding of mode confusion properties in SMV does not require the storage of old

values of mode variables. Thereby, the size of the associated state vector is cut in half. Unfortunately,

the 'next-state' operator is left out in Spin's version of linear-time logic. Therefore, we could employ Spin

only as an assertion checker, similar to Mur<f>. In addition to its suitable property description language,

SMV's BDD-based model checker performed very well in our case study. Its high efficiency is due to the

fact that mode logics have the characteristics of Boolean terms which can be represented in a very compact

way using BDDs. However, the small state space of our example system precludes us from fairly comparing

the run times of the Mur<£, SMV, and Spin verifiers. Finally, we remark again that Mur</> and Spin compile

system and property descriptions into C++ and C-code, respectively, which may be considered as building

special-purpose verifiers. This compilation process, however, is considerably slower than SMV's interpreter.

Regarding the third issue, only Spin provides rich features related to system simulation and to animation

of diagnostic information. System simulation is especially useful when being combined with diagnostic

information. Each tool returns an error trace whenever a desired system property is invalidated in the

model under consideration. More precisely, Mur</> and SMV output a textual description of an error trace,

which displays the global variables' assignments at all states of this trace, and allow for textual, interactive

simulations. Spin, however, is able to animate error traces using message sequence charts, time sequence

panels, and data value panels which are integrated in its nice graphical user interface, known as Xspin.

In our case study dealing with a synchronous, single-process system, only the data value panel was of

use. However, this feature, together with the ability to highlight the source code line corresponding to the

current state in the simulation, enabled us to detect sources of mode confusion in a very time-efficient manner

compared to SMV and Murcj), and especially when compared to the studies of failed proof subgoals in PVS.

Finally, related work other than the PVS case study regarding the flight guidance system [5] should be

mentioned. The CoRE [9] and SCR [14] specifications of the flight guidance system [20, 21] were intended for

illustrating the utility of the methods for specifying new generations of systems in a more rigorous, consistent,

and structured way. Especially, they should replace the traditional custom of specifying such systems in plain

English. In contrast to this paper, the SCR and CoRE specifications were not subject to any automated

analysis tools, although some tool support for them exists [14]. The well-known Z specification standard [31]

was applied to the flight guidance system in order to formally express concepts that appear rather informally

in CoRE [10], such as the semantics of continuous variables. Recently, tools supporting the analysis of Z

specifications emerged, e.g., Z/EVES [27] which interfaces Z to the theorem prover EVES. This tool was

applied to the Z specification of the flight guidance system for validating some of the mandatory properties

mentioned also in this paper, as well as for proving disjointness and completeness of table entries and for

determinism checks. The gained experiences with Z/EVES are very similar to the ones made with PVS [25].

ObjecTime [28] is an environment for testing and simulation and was used as the driving engine of a partial

flight deck visualization of the flight guidance system's behavior [22].

7. Conclusions and Future Work. This paper advocates the use of state-exploration and model-

checking techniques for analyzing flight guidance systems with respect to causes of mode confusion. Com-

pared to theorem provers, model-checking tools are able to verify invariants automatically. When weighting

the strengths of the verification tools Mur^, SMV, and Spin with respect to our application, it turned out

that these are complementary. Mur</> has the most pleasant system description language, including a rich

type system and allows for high-level specifications. SMV's adaptation of the temporal logic CTL as property

16

description language supports the convenient specification of mode confusion properties. Spin's capability of

animating diagnostic information, which is returned from unsuccessful verification attempts, is very useful.

We hope that our experiences might give tool developers some useful ideas for combining the strengths of

Mur<^>, SMV, and Spin in a single tool.

Regarding future work, our case study should be extended to include more components of today's digital

flight decks and to explore other interesting properties related to mode confusion. Also, the integration of

verification tools with state-of-the-art specification languages, such as UML [28], must be a primary goal in

order to make formal verification techniques accessible to engineers in industry or at applied research labs.

We thank Ricky Butler and Steve Miller for many enlightening discussions about mode confusion, as

well as Ben Di Vito, Michael Mendler, and Cesar Munoz for carefully proofreading a draft of this paper.

REFERENCES

[1} G. BERRY AND G. GONTHIER, The ESTEREL synchronous programming language: Design, semantics,

implementation, Science of Computer Programming, 19 (1992), pp. 87-152.

[2] C. BILLINGS, Aviation Automation: The Search for a Human Centered Approach, Lawrence Erlbaum

Associates, Mahwah, NJ, USA, 1996.

[3] R. BRYANT, Graph-based algorithms for boolean function manipulation, IEEE Transactions on Com-

puters, C-35 (1986).

[4] J. BURCH, E. CLARKE, K. MCMILLAN, D. DILL, AND L. HWANG, Symbolic model checking: 1020

states and beyond, Information and Computation, 98 (1992), pp. 142-170.

[5] R. BUTLER, S. MILLER, J. POTTS, AND V. CARRENO, A formal methods approach to the analysis of

mode confusion, in Seventh Digital Avionics Systems Conference (DASC '98), Bellevue, WA, USA,

November 1998, IEEE. Proceedings available on CD-ROM.

[6] E. CLARKE, E. EMERSON, AND A. SISTLA, Automatic verification of finite-state concurrent systems

using temporal logic specifications, ACM Transactions on Programming Languages and Systems, 8

(1986), pp. 244-263.

[7] D. DILL, The Murphi verification system, in Computer Aided Verification (CAV '96), R. Alur and

T. Henzinger, eds., vol. 1102 of Lecture Notes in Computer Science, New Brunswick, NJ, USA, July

1996, Springer-Verlag, pp. 390-393.

[8] E. EMERSON, Temporal and modal logic, in Handbook of Theoretical Computer Science, J. van Leeuwen,

ed., vol. B, North-Holland, 1990, pp. 995-1072.

[9] S. FAULK, L. FINNERAN, J. KIRBY, AND A. MOINI, Consortium requirements engineering guidebook,

Tech. Report SPC-92060-CMC, Software Productivity Consortium, Herndon, VA, USA, December

1993.

[10] F. FUNG AND D. JAMSEK, Formal specification of a flight guidance system, NASA Contractor Report

NASA/CR-1998-206915, Odyssey Research Associates, Ithaca, NY, USA,' January 1998.

[11] R. GERTH, D. PELED, M. VARDI, AND P. WOLPER, Simple on-the-fly automatic verification of linear

temporal logic, in Protocol Specification Testing and Verification (PSTV '95), Warsaw, Poland, 1995,

Chapman & Hall, pp. 3-18.

[12] P. GODEFROID, Partial-Order Methods for the Verification of Concurrent Systems - An Approach to

the State-Explosion Problem, vol. 1032 of Lecture Notes in Computer Science, Springer-Verlag, 1996.

17

[13] D. HAREL, Statecharts: A visual formalism for complex systems, Science of Computer Programming, 8

(1987), pp. 231-274.

[14] C. HEITMEYER, A. BULL, C. GASARCH, AND B. LABAW, SCR*: A toolset for specifying and analyzing

requirements, in COMPASS '95: Tenth Annual Conference on Computer Assurance, Gaithersburg,

MD, USA, 1995, National Institute of Standards and Technology, pp. 109-122.

[15] G. HOLZMANN, Design and Validation of Computer Protocols, Prentice-Hall, 1991.

[16] , The model checker Spin, IEEE Transactions on Software Engineering, 23 (1997), pp. 279-295.

Special issue on Formal Methods in Software Practice.

[17] , An analysis of bitstate hashing, Formal Methods in System Design, 13 (1998), pp. 287-305.

[18] N. LEVESON, L. PINNEL, S. SANDYS, S. KOGA, AND J. REESE, Analyzing software specifications for

mode confusion potential, in Workshop on Human Error and System Development, Glasgow, UK,

March 1997.

[19] K. MCMILLAN, Symbolic Model Checking: An Approach to the State-Explosion Problem, PhD thesis,

Carnegie-Mellon University, 1992.

[20] S. MILLER, Specifying the mode logic of a flight guidance system in CoRE and SCR, in Second Workshop

on Formal Methods in Software Practice (FMSP '98), M. Ardis, ed., Clearwater Beach, FL, USA,

March 1998, ACM Press, pp. 44-53.

[21] S. MILLER AND K. HOECH, Specifying the mode logic of a flight guidance system in CoRE, Tech. Report

WP-97-2011, Rockwell Collins, Inc., November 1997.

[22] S. MILLER AND J.N.POTTS, Detecting mode confusion through formal modeling and analysis, NASA

Contractor Report NASA/CR-1999-208971, Advanced Technology Center, Rockwell Collins, Inc.,

January 1999.

[23] Murphi. Project Page at http://sprout.stanford.edu/dill/murphi.html.

[24] D. NAYDICH AND J. NOWAKOWSKI, Flight guidance system validation using Spin, NASA Contractor

Report NASA/CR-1998-208434, Odyssey Research Associates, Ithaca, NY, USA, June 1998.

[25] S. OWRE, J. RUSHBY, N. SHANKAR, AND F. VON HENKE, Formal verification for fault-tolerant sys-

tems: Prolegomena to the design of PVS, IEEE Transactions on Software Engineering, 21 (1995),

pp. 107-125.

[26] A. PNUELI, Applications of temporal logic to the specification and verification of reactive systems: A

survey of current trends, in Current Trends in Concurrency, vol. 224 of Lecture Notes in Computer

Science, Springer-Verlag, 1986, pp. 510-584.

[27] M. SAALTINK, The Z/EVES system, in ZUM '97, the Z Formal Specification Notation: 10th Interna-

tional Conference of Z Users, J. Bowen, M. Hinchey, and D. Till, eds., vol. 1212 of Lecture Notes in

Computer Science, Reading, UK, April 1997, Springer-Verlag, pp. 72-85.

[28] B. SELIC AND J. RUMBAUGH, Using UML for modeling complex real-time systems, tech. report, Ob-

jecTime Limited, 1998.

[29] SMV. Project Page at http://www.cs.cmu.edu/~modelcheck/smv.html.

[30] Spin. Project Page at http://netlib.bell-labs.com/netlib/spin/whatispin.html.

[31] J. SPIVEY, Understanding Z: A Specification Language and its Formal Semantics, Cambridge Tracts in

Theoretical Computer Science 3, Cambridge University Press, Cambridge, UK, 1988.

18

Appendix A. Specification and Verification Using Mur^.

A.l. Full Model of the Mode Logic.

TYPE env.events : ENUM { hdg_switch_hit, nav_switch_hit,

nav_armed_long_enough_event, nav_track_cond_met_event,

ga_switch_hit, vs_pitch_wheel_changed,

vs_switch_hit, fd_switch_hit,

overspeed_start, overspeed_stop,

ap_engaged_event, ap_disengaged_event,

sync_switch_pressed, sync_switch_released
};

TYPE sg_mode : ENUM { sg_cleared, sg.active };

TYPE sg_signals : ENUM { sg_null, sg.activated, sg_deactivated };

TYPE sg_events : ENUM { sg_nil, sg_activate, sg.deactivate, sg.switch, sg_elear >;

TYPE ag_mode : ENUM { ag_cleared, ag_track, ag_armed_initial, ag_armed_long_enough };

TYPE ag_signals : ENUM { ag_null, ag_activated, ag.deactivated };

TYPE ag_events : ENUM { ag_nil, ag_activate, ag.deactivate, ag.switch, ag_clear,

ag_armed_long_enough_ev, ag_track_cond_met };

TYPE fd_mode : ENUM ■[fd_off, fd_cues, fd_no_cues };

TYPE fd.signals : ENUM { fd_null, fd_turned_on, fd_turned_off };

TYPE fd_events : ENUM { fd_nil, fd_force_cues, fd_turn_on, fd.switch, fd_turn_off };

TYPE ag_state : RECORD mode : ag_mode; track_cond_met : boolean; END;

— variables controled by the environment

VAR overspeed : boolean; ap_engaged : boolean;

— mode variables

VAR pitch, old_pitch : sg_mode; vs, old_vs : sg_mode; vga, old_vga : sg_mode;

roll, old_roll : sg_mode; hdg, old.hdg : sg_mode; lga, old.lga : sg_mode;

nav, old_nav : ag_state; fd, old_fd : fd_mode;

— auxiliary functions, building a taxonomy on events

FUNCTION hdg_event(env_ev:env_events) : boolean;

BEGIN

IF env_ev=hdg_switch_hit

THEN RETURN true;

ELSE RETURN false;

END;

END;

19

FUNCTION nav_event(env_ev:env_events) : boolean;

BEGIN

IF (env_ev=nav_switch_hit) I (env_ev=nav_armed_long_enough_event) I

(env_ev=nav_track_cond_met_event)

THEN RETURN true;

ELSE RETURN false;

END;

END;

FUNCTION lga_event(env_ev:env_events) :-boolean;

BEGIN

IF (env_ev=ga_switch_hit) I (env_ev=ap_engaged_event) I (env_ev=sync_switch_pressed)

THEN RETURN true;

ELSE RETURN false;

END;

END;

FUNCTION pitch_event(env_ev:env_events) : boolean;

BEGIN

IF env_ev=vs_pitch_wheel_changed

THEN RETURN true;

ELSE RETURN false;

END;

END;

FUNCTION vs_event(env_ev:env_events) : boolean;

BEGIN

IF env_ev=vs_switch_hit

THEN RETURN true;

ELSE RETURN false;

END;

END;

FUNCTION vga_event(env_ev:env_events) : boolean;

BEGIN

IF (env_ev=ga_switch_hit) I (env_ev=ap_engaged_event) | (env_ev=sync_switch_pressed)

THEN RETURN true;

ELSE RETURN false;

END;

END;

20

FUNCTION lateral_mode_requested(env_ev:env_events) : boolean;

BEGIN

IF (env_ev=hdg_switch_hit) | (env_ev=nav_switch_hit) | (env_ev=ga_switch_hit)

THEN RETURN true;

ELSE RETURN false;

END;

END;

FUNCTION vertical_mode_requested(env_ev:env_events) : boolean;

BEGIN

IF (env_ev=vs_switch_hit) I (env_ev=ga_switch_hit)

THEN RETURN true;

ELSE RETURN false;

END;

END;

FUNCTION flight_director_event(env_ev:env_events) : boolean;

BEGIN

IF (env_ev=ap_engaged_event) I (env_ev=fd_switch_hit) I (env_ev=overspeed_start) I

lateral_mode_requested(env_ev) I vertical_mode_requested(env_ev)

THEN RETURN true;

ELSE RETURN false;

END;

END;

— abstract data type module simple guidance

signal := sg.null;

sg.active; signal := sg.activated;

signal

sg_active; signal

signal

sg_null;

sg.activated;

sg_null;

PROCEDURE simple_guidance(VAR mode:sg_mode; event:sg_events; VAR signal:sg_signals);

BEGIN

IF mode=sg_cleared THEN

SWITCH event

CASE sg_nil :

CASE sg_activate : mode

CASE sg.deactivate :

CASE sg_switch : mode

CASE sg_clear :

END;

ELSE

SWITCH event

CASE sg_nil :

CASE sg_activate :

CASE sg_deactivate : mode

CASE sg_switch : mode

CASE sg.clear : mode

END;

END;

END;

signal := sg_null;

signal := sg_null;

:= sg.cleared; signal := sg_null;

:= sg_cleared; signal := sg.deactivated;

:= sg_cleared; signal := sg_deactivated;

21

— abstract data object module arming guidance

PROCEDURE arming_guidance(event:ag.

BEGIN

IF nav.mode=ag_cleared THEN

SWITCH event

CASE ag_nil

CASE ag_activate

CASE ag_deactivate

CASE ag_switch

CASE ag_clear

CASE ag_armed_long_enough_ev

CASE ag_track_cond_met

END;

ELSE

SWITCH event

CASE ag_nil

CASE ag_activate

CASE ag_deactivate

CASE ag_switch

CASE ag_clear

CASE ag_armed_long_enough_ev

„events; VAR signal:ag_signals);

CASE ag_track_cond_met

signal

nav.mode := ag_armed_initial; signal

signal

nav.mode := ag_armed_initial; signal

signal

signal

nav.track_cond_met := true; signal

:= ag_null;

:= ag_activated;

:= ag.null;

:= ag_activated;

:= ag_null;

:= ag_null;

:= ag_null;

signal := ag_null;

signal := ag_null;

nav.mode := ag_cleared; signal := ag_null;

nav.mode := ag.cleared; signal := ag_deactivated;

nav.mode := ag_cleared; signal := ag_deactivated;

IF (nav.mode=ag_armed_initial) & nav.track_cond_met

THEN

nav.mode := ag_track; signal := ag_null;

ELSIF (nav.mode=ag_armed_initial) & !nav.track_cond_met

THEN

nav.mode := ag_armed_long_enough; signal := ag.null;

ELSE

signal := ag_null;

END;

IF nav.mode=ag_armed_long_enough THEN

nav.mode := ag_track; signal := ag.null;

nav.track_cond_met := true;

ELSE

nav.track_cond_met := true; signal := ag_null;

END;

END; END; END;

— function module lateral guidance & auxiliary functions

FUNCTION hdg_conv(env_ev:env_events) : sg_events;

BEGIN

SWITCH env_ev

CASE hdg_switch_b.it : RETURN sg.switch;

ELSE RETURN sg.nil;

END;

END;

22

FUNCTION nav_conv(env_ev:env_events)

BEGIN

SWITCH env.ev

CASE nav_switch_hit

CASE nav_track_cond_met_event

CASE nav_armed_long_enough_event

ELSE

END;

END;

ag_events;

RETURN ag_switch;

RETURN ag_track_cond_met;

RETURN ag_armed_long_enough_ev;

RETURN ag_nil;

FUNCTION lga_conv(env_ev:env_events) : sg_events;

BEGIN

SWITCH env_ev

CASE ga_switch_hit

CASE ap_engaged_event

CASE sync_switch_pressed

ELSE

END;

END;

RETURN sg_activate;

RETURN sg.clear;

RETURN sg.clear;

RETURN sg_nil;

PROCEDURE lateral_guidance(env_ev:env_events);

VAR roll_sig, hdg_sig, lga.sig : sg_signals; nav_sig : ag_signals;

BEGIN CLEAR roll.sig; CLEAR hdg.sig; CLEAR lga.sig; CLEAR nav.sig;

IF hdg_event(env.ev) THEN

simple_guidance(hdg, hdg_conv(env_ev), hdg_sig);

IF hdg_sig=sg_activated THEN simple_guidance(roll, sg_deactivate, roll.sig)

simple_guidance(lga, sg_deactivate, lga.sig)

arming_guidance(ag_deactivate, nav_sig)

ELSIF hdg_sig=sg_deactivated THEN simple_guidance(roll, sg_activate, roll.sig)

END;

ELSIF nav_event(env.ev) THEN

arming_guidance(nav_conv(env_ev), nav_sig);

IF nav_sig=ag_activated THEN simple_guidance(roll, sg.deactivate, roll_sig)

simple_guidance(hdg, sg_deactivate, hdg.sig)

simple_guidance(lga, sg_deactivate, lga.sig)

ELSIF nav_sig=ag_deactivated THEN simple_guidance(roll, sg.activate, roll_sig)

END;

ELSIF lga_event(env_ev) THEN

simple_guidance(lga, lga_conv(env_ev), lga_sig);

IF lga_sig=sg_activated THEN simple_guidance(roll, sg_deactivate, roll_sig)

simple_guidance(hdg, sg_deactivate, hdg_sig)

arming.guidance(ag_deactivate, nav_sig)

ELSIF lga_sig=sg_deactivated THEN simple_guidance(roll, sg_activate, roll_sig)

END;

END;

END;

23

— function module vertical guidance & auxiliary functions

FUNCTION pitch_conv(env_ev:env_events) : sg_events;

BEGIN

SWITCH env_ev

CASE vs_pitch_wheel_changed : RETURN sg_activate;

ELSE RETURN sg_nil;

END; END;

FUNCTION vs_conv(env_ev:env_events) : sg_events;

BEGIN

SWITCH env_ev

CASE vs_switch_hit : RETURN sg.switch;

ELSE RETURN sg_nil;

END; END;

FUNCTION vga_conv(env_ev:env_events) : sg_events;

BEGIN

SWITCH env_ev

CASE ga_switch_hit : RETURN sg_switch;

CASE ap_engaged_event : RETURN sg_clear;

CASE sync_switch_pressed : RETURN sg_clear;

ELSE RETURN sg.nil;

END; END;

PROCEDURE vertical_guidance(env_ev:env_events);

VAR pitch_sig, vs_sig, vga_sig : sg.signals;

BEGIN CLEAR pitch.sig; CLEAR vs.sig; CLEAR vga_sig;

IF'pitch_event(env_ev) THEN

simple_guidance(pitch, pitch_conv(env_ev), pitch.sig);

IF pitch_sig=sg_activated THEN simple_guidance(vs, sg.deactivate, vs_sig);

simple_guidance(vga, sg.deactivate, vga_sig);

END;

ELSIF vs.event(env_ev) THEN

simple.guidance(vs, vs_conv(env_ev), vs_sig);

IF vs_sig=sg_activated THEN simple_guidance(pitch, sg_deactivate, pitch_sig)

simple_guidance(vga, sg_deactivate, vga_sig)

ELSIF vs_sig=sg_deactivated THEN simple_guidance(pitch, sg.activate, pitch_sig)

END;

ELSIF vga_event(env_ev) THEN

simple_guidance(vga, vga_conv(env_ev), vga_sig);

IF vga_sig=sg_activated THEN simple_guidance(pitch, sg_deactivate, pitch_sig)

simple_guidance(vs, sg_deactivate, vs_sig)

ELSIF vga_sig=sg_deactivated THEN simple_guidance(pitch, sg_activate, pitch_sig)

END;

END;

END;

24

abstract data object module flight director

PROCEDURE flight.director(event:fd_events; VAR signal:fd_signals);

BEGIN

IF event1 =fd. .nil THEN

signal : = fd.null;

ELSIF fd= =fd. .off THEN

SWITCH event

CASE fd. _force_cues

CASE fd. _turn_on

CASE fd. .switch

CASE fd. _tum_off

END;

ELSIF fd= =fd. .cues THEN

SWITCH event

CASE fd. _force_cues

CASE fd. _turn_on

CASE fd. .switch

CASE fdturnoff

END;

ELSE

SWITCH event

CASE fd_force_cues

CASE fd_turn_on

CASE fd_switch •

CASE fd_turn_off

END;

END;

END;

fd

fd

fd

fd_cues; signal

fd_cues; signal

fd_cues; signal

signal

:= fd_turned_on;

:= fd_turned_on;

:= fd_turned_on;

:= fd.null;

signal := fd_null;

signal := fd_null;

IF overspeed I ap_engaged THEN

fd := fd_no_cues; signal := fd_null;

ELSE

fd := fd_off; signal := fd_turned_off;

END;

IF overspeed i ap_engaged THEN

fd := fd_no_cues; signal := fd_null;

ELSE

fd := fd_off; signal := fd_turned_off;

END;

fd := fd_cues; signal := fd_null;

fd := fd_cues; signal := fd_null;

IF overspeed I ap_engaged THEN

fd := fd.cues; signal := fd.null;

ELSE

fd := fd_off; signal := fd_turned_off;

END;

IF overspeed I ap_engaged THEN

signal := fd_null;

ELSE

fd := fd.off; signal := fd_turned_off;

END;

25

— mode confusion properties as assertions & auxiliary functions

FUNCTION crew_input(env_ev:env.events)

BEGIN

IF (env_ev=ap_engaged_event)

(env_ev=sync_switch_released)

lateral.mode.requested(env_ev)

(env_ev=vs_pitch_wheel_changed)

THEN RETURN true;

ELSE RETURN false;

END;

END;

boolean;

I (env_ev=sync_switch_pressed) |

I (env_ev=fd_switch_hit) I

I vertical_mode_requested(env_ev) I

FUNCTION ignored_crew_input(env_ev:env_events) : boolean;

BEGIN

IF ((env_ev=ap_engaged_event) &

!((old_lga=sg_active) I (old_vga=sg_active))) I

((env_ev=ga_switch_hit) &

(old_lga=sg_active) & (old_vga=sg_active)) | —

((env_ev=sync_switch_pressed) &

!((old_lga=sg_active) I (old_vga=sg_active))) I

((env_ev=sync_svitch_pressed) &

(old_fd=fd_off)) I —

(env_ev=sync_switch_released) I

((env_ev=vs_pitch_wheel_changed) &

(old_fd=fd_off)) |

((env_ev=vs_pitch_wheel_changed) &

(old_pitch=sg_active))

THEN RETURN true;

ELSE RETURN false;

END;

END;

PVS model too strong

(may be left out)

PVS model too strong

(may be left out)

FUNCTION indirect_mode_change(env_ev:env_events) : boolean;

BEGIN '

IF ((env_ev=overspeed_start) & !(old_fd=fd_cues)) I

((env_ev=nav_armed_long_enough_event) & (old_nav.mode=ag_armed_initial)) |

((env_ev=nav_track_cond_met_event) & (old_nav.mode=ag_armed_long_enough))

THEN RETURN true;

ELSE RETURN false;

END;

END;

26

PROCEDURE mode_confusion_properties(env_ev:env_events);

BEGIN

ALIAS

mode.change : fd != old_fd I pitch != old_pitch I vs != old_vs I vga != old_vga I

roll != old_roll I hdg != old.hdg I lga != old.lga I

nav.mode != old_nav.mode;

DO

SWITCH env.ev

CASE hdg_switch_hit :

— check for response to pressing HDG button

assert (old_hdg=sg_cleared -> hdg =sg_active) "hdg_selected and hdg_toggle_l";

assert (old_hdg=sg_active -> roll=sg_active) "hdg_deselected";

assert (old_hdg=sg_active -> hdg=sg_cleared) "hdg_toggle_2";

CASE nav_switch_hit :

— check for response to pressing NAV button

assert (old_nav.mode=ag_cleared -> (nav.mode=ag_armed_initial) I

(nav.mode=ag_armed_long_enough) I (nav.mode=ag_track))

"nav.selected and nav_toggle_l";

assert (((old_nav.mode=ag_armed_initial) I (old_nav.mode=ag_armed_long_enough) I

(old_nav.mode=ag_track)) -> roll=sg_active) "nav_deselected";

assert (((old_nav.mode=ag_armed_initial) I (old_nav.mode=ag_armed_long_enough) I

(old_nav.mode=ag_track)) -> nav.mode=ag_cleared) "nav_toggle_2";

CASE vs_switch_hit :

— check for response to pressing VS button

assert (old_vs=sg_cleared -> vs =sg_active) "vs_selected and vs_toggle_l";

assert (old_vs=sg_active -> pitch=sg_active) "vs.deselected";

assert (old_vs=sg_active -> vs =sg_cleared) "vs_toggle_2";

CASE fd_switch_hit :

— check for response to pressing the FD button '

assert (old_fd=fd_off -> fd=fd_cues)

"fd_off";

assert ((!(old_fd=fd_off) & !(ap.engaged I overspeed)) -> fd=fd_off) "fd_on";

assert (((old_fd=fd_cues) & (ap.engaged I overspeed)) -> fd=fd_no_cues) "fd_cues";

assert (((old_fd=fd_no_cues) & (ap.engaged | overspeed)) -> fd=fd_cues) "fd_no_cues";

END;

— search for ignored crew inputs

— assert (crew_input(env_ev) -> mode_change) "search_for_ignored_crew_inputs";

— property violated

— no unknown ignored crew inputs

assert ((crew_input(env_ev) & !(ignored_crew_input(env_ev))) -> mode_change)

"no_unknown_ignored_crew_inputs";

27

— search for indirect mode changes

— assert (! (crew_input'(env_ev)) -> !mode_change) "search_for_indirect_mode_changes";

— property violated

— no unknown indirect mode changes

assert ((!(crew_input(env_ev)) & !(indirect_mode_change(env_ev))) -> !mode_change)

"no_unknown_indirect_mode_changes";

END;

— update old state variables

old_pitch := pitch; old_vs := vs; old_vga

old^hdg := hdg; old_lga := lga; old_fd

END;

:= vga; old_roll := roll;

:= fd; old_nav := nav;

PROCEDURE clear_all_modesO;

BEGIN

pitch := sg_cleared; vs

hdg := sg_cleared; lga :

END;

sg_cleared; vga := sg_cleared;

sg.cleared; nav.mode := ag_cleared;

roll := sg.cleared;

PROCEDURE select_default_mode();

BEGIN

pitch := sg_active; roll := sg.active;

END;

PROCEDURE process.external. .event(env_ev:env_events);

BEGIN

SWITCH env_ev

CASE ap_engaged_event : ap.engaged = true;

CASE ap_disengaged_event : ap_engaged = false;

CASE overspeed_start : overspeed = true;

CASE overspeed_stop : overspeed = false;

END;

END;

FUNCTION fd_event(env_ev:env_events) : fd_events;

BEGIN

IF env_ev=ap_engaged_event THEN RETURN fd_turn_on;

ELSIF lateral_mode_requested(env_ev) THEN RETURN fd_turn_on;

ELSIF vertical_mode.requested(env_ev) THEN RETURN fd_turn_on;

ELSIF env_ev=fd_switch_hit THEN RETURN fd_switch;

ELSIF env_ev=overspeed_start THEN RETURN fd_force.cues;

ELSE RETURN fd_nil;

END;

END;

28

PROCEDURE process_fd_event(env_ev:env_events);

VAR fd_sig : fd_signals;

BEGIN

IF flight_director_event(env_ev) THEN

flight_director(fd_event(env_ev),fd_sig);

IF fd_sig=fd_turaed_off THEN clear_all_modes();

ELSIF fd_sig=fd_turned.on THEN select_default_mode();

END;

END;

END;

PROCEDURE process_flight_mode.event(env_ev:env_events);

BEGIN

IF !(fd=fd_off) THEN lateral_guidance(env_ev); vertical_guidance(env_ev); END;

END;

PROCEDURE fgs(env_ev:env_events);

BEGIN

process_external_event(env_ev); process_fd_event(env_ev);

process_flight_mode_event(env_ev); mode_confusion.properties(env_ev);

END;

— model of the environment using rules

RULE 'hdg_switch_hit" BEGIN

RULE 'nav_switch_hit" BEGIN

RULE 'nav_armed_long_enough_event' BEGIN

RULE 'nav_track_cond_met_event" BEGIN

RULE 'ga_switch_hit" BEGIN

RULE 'vs_pitch_wheel_changed" BEGIN

RULE 'vs_switch_hit" BEGIN

RULE 'fd_switch_hit" BEGIN

RULE 'overspeed_start" BEGIN

RULE 'overspeed_stop" BEGIN

RULE 1 ap_engaged_event" BEGIN

RULE 'ap_disengaged_event" BEGIN

RULE 'sync_switch_pressed" BEGIN

RULE 'sync_switch_released" BEGIN

fgs(hdg_switch_hit); END

fgs(nav_switch_hit); END

fgs(nav_armed_long_enough_event); END

fgs(nav_track_cond_met_event); END

fgs(ga_switch_hit); END

f gs(vs_pitch_wheel_changed); END

fgs(vs_switch_hit); END

fgs(fd_switch_hit); END

fgs(overspeed_start); END

fgs(overspeed_stop); END

fgs(ap_engaged_event); END

fgs(ap_disengaged_event); END

fgs(sync_switch_pressed); END

fgs(sync_switch_released); END

— start state

STARTSTATE

BEGIN

overspeed := false; ap_engaged := false;

CLEAR pitch; CLEAR vs; CLEAR vga; CLEAR roll; CLEAR hdg; CLEAR lga;

29

CLEAR nav.mode; nav.track_cond_met := false; CLEAR fd;

CLEAR old.pitch; CLEAR old_vs; CLEAR old.vga; CLEAR old_roll; CLEAR old_hdg;

CLEAR old.lga; CLEAR old.nav.mode; old_nav.track_cond_met := false; CLEAR old_fd;

END;

— mandatory properties as invariants

ALIAS

nav_active : (nav.mode=ag_armed_initial) | (nav.mode=ag_armed_long_enough) I

(nav.mode=ag_track);

DO

— the flight director is on if the autopilot is engaged

INVARIANT "fd_on_if_ap_engaged"

ap_engaged -> ! (fd=fd_off);

— at least one lateral mode is active iff the flight director is on

INVARIANT "at_least_one_lateral_mode_active"

(!(fd=fd_off) -> (roll=sg_active I hdg=sg_active | lga=sg_active I nav_active)) &

((roll=sg_active | hdg=sg_active I lga=sg_active I nav.active) -> !(fd=fd_off));

— there is never more than one lateral mode active

INVARIANT "at_most_one_lateral_mode_active"

((lga=sg_active) -> (roll=sg_cleared & hdg=sg_cleared & nav.mode=ag_cleared)) &

((roll=sg_active) -> (lga =sg_cleared & hdg=sg_cleared & nav.mode=ag_cleared)) &

((hdg=sg_active) -> (roll=sg_cleared & lga=sg_cleared & nav.mode=ag_cleared)) &

(nav_active -> (roll=sg_cleared & hdg=sg_cleared & lga=sg_cleared));

— at least one vertical mode is active iff the flight director is on

INVARIANT "at_least_one_vertical_mode_active"

(!(fd=fd_off) -> (vga=sg_active I vs=sg_active I pitch=sg_active)) &

((vga=sg_active I vs=sg_active I pitch=sg_active) ■-> ! (f d=f d_of f)) ;

— at most one vertical mode is active

INVARIANT "at_most_one_vertical_mode_active"

(vga =sg_active -> (pitch=sg_cleared & vs =sg_cleared)) &

(vs =sg_active -> (pitch=sg_cleared & vga=sg_cleared)) &

(pitch=sg_active -> (vga =sg_cleared & vs =sg_cleared));

30

— if the flight director is off, all modes must be cleared

INVARIANT "fd_off_implies_all_modes_cleared"

(fd=fd_off -> (pitch=sg_cleared k vs=sg_cleared k vga=sg_cleared k

roll =sg_cleared k hdg=sg_cleared k lga=sg_cleared k nav.mode=ag_cleared)

);

— the default modes are active if the flight director is on and all other modes are cleared

INVARIANT "default.modes"

((!(fd=fd_off) k vs=sg_cleared k vga=sg_cleared & hdg=sg_cleared k

lga=sg_cleared k nav.mode=ag_cleared

) -> (pitch=sg_active k roll=sg_active));

END;

A.2. Output of the Mur</> verifier.

This program should be regarded as a DEBUGGING aid, not as a

certifier of correctness.

Call with the -1 flag or read the license file for terms

and conditions of use.

Run this program with "-h" for the list of options.

Bugs, questions, and comments should be directed to

"murphiQverify.Stanford.edu".

Murphi compiler last modified date: Jan 29 1999

Include files last modified date: Jan 29 1999

Murphi Release 3.1

Finite-state Concurrent System Verifier.

Copyright (C) 1992 - 1999 by the Board of Trustees of

Leland Stanford Junior University.

Protocol: fgs

Algorithm:

Verification by breadth first search.

with symmetry algorithm 3 — Heuristic Small Memory Normalization

with permutation trial limit 10.

31

Memory usage:

* The size of each state is 160 bits (rounded up to 20 bytes).

* The memory allocated for the hash table and state queue is

8 Mbytes.

With two words of overhead per state, the maximum size of

the state space is 327869 states.

* Use option "-k" or "-m" to increase this, if necessary.

* Capacity in queue for breadth-first search: 32786 states.

* Change the constant gPercentActiveStates in mu_pfolog.inc

to increase this, if necessary.

Warning: No trace will not be printed in the case of protocol errors!

Check the options if you want to have error traces.

Status:

No error found.

State Space Explored:

242 states, 3388 rules fired in 1.80s.

Rules Information:

Fired 242 times - Rule "sync_switch_released"

Fired 242 times - Rule "sync_switch_pressed"

Fired 242 times - Rule "ap_disengaged_event"

Fired 242 times - Rule "ap_engaged_event"

Fired 242 times - Rule "overspeed_stop"

Fired 242 times - Rule "overspeed_start"

Fired 242 times - Rule "fd_switch_hit"

Fired 242 times - Rule "vs_switch_hit"

Fired 242 times - Rule "vs_pitch_wheel_changed"

Fired 242 times - Rule "ga_switch_hit"

Fired 242 times - Rule "nav_track_cond_met_event"

Fired 242 times - Rule "nav_armed_long_enough_event"

Fired 242 times - Rule "nav_switch_hit"

Fired 242 times - Rule "hdg_switch_hit"

32

Appendix B. Specification and Verification Using SMV.

B.l. Pull Model of the Mode Logic.

MODULE simple_guidance(activate, deactivate, switch, clear, fd_is_on)

VAR

mode : {cleared, active};

ASSIGN

init(mode) :

next(mode) :

= cleared;

= case

!fd_is_on : mode;

deactivated I deactivate : cleared;

activated : active;

1 : mode;

esac;

DEFINE

activated := (mode=cleared) & (activate I switch);

deactivated := (mode=active) & (clear I switch);

MODULE arminglguidance(activate, deactivate, switch, clear, track_cond_met_event,

armed_long_enough_event, fd_is_on)

VAR

mode : {cleared, track, armed_initial, armed_long_enough>;

track_cond_met : boolean;

ASSIGN

init(track_cond_met) := 0;

next(track_cond_met) := track_cond_met I track_cond_met_event;

init(mode) := cleared;

next(mode) := case

!fd_is_on

deactivated I deactivate

(mode=armed_long_enough) & track.cond

(mode=armed_initial) & track_cond &

armed_long_enough_event

activated

(mode=armed_initial) & !track_cond &

armed_long_enough_event

1

esac; ■

mode;

cleared;

track;

track;

armed_initial;

armed_long_enough;

mode;

33

DEFINE

track_cond := track_cond_met | track_cond_met_event;

mode.armed := (mode=amied_initial) | (mode=armed_long_enough);

mode_active := (mode_armed) I (mode=track);

activated := (mode=cleared) & (activate I switch);

deactivated := mode_active k (clear | switch);

MODULE lateral_guidance(_hdg_switch_hit, _ga_switch_hit, _ap_engaged_event,

_sync_switch_pressed, _nav_switch_hit, _nav_armed_long_enough_event,

_nav_track_cond_met_event, clear, select_default, fd_is_on)

VAR

roll : simple_guidance(roll_activate,

roll_switch,

hdg : simple_guidance(hdg_activate,

hdg.switch,

ga : simple_guidance(ga_activate,

ga.switch,

nav : arming_guidance(nav_activate,

nav.switch,

roll_deactivate,

roll_clear

hdg_deactivate,

hdg_clear

ga_deactivate,

ga_clear

nav_deactivate,

nav_clear,

, fd_is_on);

, fd_is_on);

, fd_is_on);

nav_track_cond_met, nav_armed_long_enough, fd_is_on);

DEFINE

roll_activate

roll_deactivate

roll_switch

roll_clear

:= (hdg_event & hdg.deactivated) | (nav_event & nav.deactivated) I

(lga_event & ga.deactivated) I select_default;

:= (hdg_event & hdg.activated) I (nav_event & nav.activated) I

(lga_event & ga.activated);

:= 0;

:= (clear k !select_default);

hdg_activate

hdg_deactivate

hdg_switch

hdg_clear

0;

(nav_event k nav.activated) I (lga_event & ga.activated);

_hdg_switch_hit;

clear;

ga.activate

ga_deactivate

ga_switch

ga_clear

_ga_switch_hit;

(hdg_event & hdg.activated) | (nav_event & nav.activated);

0;

_ap_engaged_event I _sync_switch_pressed I clear;

nav_activate

nav_deactivate

nav_switch

= 0;

(hdg.event k hdg.activated) I (lga_event k ga.activated);

_nav_switch_hit;

34

nav_clear

nav_track_cond_met

nav_armed_long_enough

hdg.activated I ga.activated I clear;

_nav_track_cond_met_event;

_nav_armed_long_enough_event;

hdg.event

lga_event

nav_event

_hdg_switch_hit;

_ga_switch_hit | _ap_engaged_event I _sync_switch_pressed;

_nav_switch_hit I _nav_armed_long_enough_event I

_nav_track_cond_met_event;

MODULE vertical_guidance(_vs_pitch_wheel_changed, _vs_switch_hit, _ga_switch_hit,

_ap_engaged_event, _sync_switch_pressed,

clear, select_default, fd_is_on)

VAR

pitch : simple_guidance(pitch_activate, pitch_deactivate,

pitch_switch, pitch_clear, fd_is_on);

vs : simple_guidance(vs_activate, vs_deactivate,

vs_switch, vs_clear, fd_is_on);

ga : simple_guidance(ga_activate, ga_deactivate,

ga.switch, ga_clear, fd_is_on);

DEFINE

pitch_activate

pitch_deactivate

pitch_switch

pitch_clear

:= (vs.event & vs.deactivated) I (vga.event & ga.deactivated) I

_vs_pitch_wheel_changed |

select„default;

:= (vs.event & vs.activated) I (vga_event & ga.activated);

:= 0;

:= (clear & !select_default);

vs_activate

vs.deactivate

vs_switch

vs_clear

= 0;

= (pitch_event & pitch.activated) I (vga_event & ga.activated);

= _vs_switch_hit;

= clear;

ga_activate

ga_deactivate

ga_switch

ga_clear

= 0;

= (pitch_event & pitch.activated) I (vs_event & vs.activated);

= _ga_switch_hit;

= _ap_engaged_event I _sync_switch_pressed I clear;

pitch_event

vs_event

vga_event

_vs_pitch_wheel_changed;

_vs_switch_hit;

_ga_switch_hit I _ap_engaged_event I _sync_switch_pressed;

35

MODULE flight_director(force_cues, turn.on, switch, turn_off,

_ap_engaged, _overspeed)

VAR

mode : {off, cues, no_cues>;

ASSIGN

init(mode)

next(mode)

:= off;

:= case

turned_off : off;

turned.on : cues;

(mode=no_cues) &

(force_cues I turn_on | (switch & (_overspeed | _ap_engaged))) : cues;

(mode=cues) & switch & (_overspeed | _ap_engaged) : no_cues;

1 : mode;

esac;

DEFINE

mode.on

turned.on

turnedoff

= (mode=cues) I (mode=no_cues);

= (mode=off) & (turn_on I force_cues I switch);

= (mode_on) & (switch | turn_off) & !_overspeed & !_ap_engaged;

MODULE main

VAR

env_ev {hdg_switch_hit, nav_switch_hit,

nav_armed_long_enough_event, nav_track_cond_met_event,

ga_switch_hit, vs_pitch_wheel_changed,

vs_switch_hit, fd_switch_hit,

overspeed_start, overspeed_end,

ap_engaged_event, ap_disengaged_event,

sync_switch_pressed, sync_switch_released };

overspeed

ap_engaged

boolean;

boolean;

fd flight_director(fd_force_cues, fd_turn_on, fd_switch,

fd_turn_off, fd_ap_engaged, fd_overspeed);

lateral * : lateral_guidance(lg_hdg_switch_hit, lg_ga_switch_hit,

lg_ap_engaged, lg_sync_switch_pressed,

lg_nav_switch_hit, lg_nav_armed_long_enough,

lg_nav_track_cond_met,

lg_clear, lg_select_default,.

fd_is_on);

36

vertical : vertical_guidance(vg_vs_pitch_wheel_changed, vg_vs_switch_hit,

vg_ga_switch_hit, vg_ap_engaged,

vg_sync_switch_pressed,

vg_clear, vg_select_default,

fd_is_on);

ASSIGN

init(env.ev)

next(env.ev)

:= all.events;

:= all.events;

init (overspeed) := 0;

next(overspeed) := new_overspeed;

init(ap.engaged) := 0;

next(ap_engaged) := new_ap_engaged;

DEFINE

all_events {hdg_switch_hit, nav_switch_hit,

nav_armed_long_enough_event, nav_track_cond_met_event,

ga_switch_hit, vs_pitch_wheel_changed,

vs_switch_hit, fd_switch_hit,

overspeed_start, overspeed_end,

ap_engaged_event, ap_disengaged_event,

sync_switch_pressed, sync_switch_released };

new_overspeed

new_ap_engaged

case

(env_ev=overspeed_start) : 1;

(env_ev=overspeed_end) : 0;

1 : overspeed;

esac;

case

(env_ev=ap_engaged_event) : l;

(env_ev=ap_di sengaged.event) : 0;

1 : ap_engaged;

fd_is_on := !(fd.mode=off) I fd.turned.on;

lateral_mode_requested

vertical.mode„requested

(env_ev=hdg_switch_hit) I (env_ev=nav_switch_hit) I

(env_ev=ga_switch_hit);

(env_ev=vs_switch_hit) I (env_ev=ga_switch_hit);

flight_director_event (env_ev=ap_engaged_event) I (env_ev=fd_switch_hit) I

(env_ev=overspeed_start) I

lateral_mode_requested I vertical_mode_requested;

37

fd_force_cues

fd_turn_on

fd.switch

fd_turn_off

fd_ap_engaged

fd_overspeed

(env_ev=overspeed_start);

(env_ev=ap_engaged_event) |

lateral_mode.requested I vertical_mode_requested;

(env_ev=fd_switch_hit);

0;

new_ap_engaged;

new_overspeed;

lg_hdg_switch_hit

lg_ga_swit ch_hit

lg_ap_engaged

lg_sync_switch_pressed

lg_nav_switch_hit

lg_nav_armed_long_enough

lg_nav_track_c ond_met

lg_clear

lg_select_default

(env_ev=hdg_switch_hit);

(env_ev=ga_switch_hit);

(env_ev=ap_engaged_event);

(env_ev=sync_switch_pressed);

(env_ev=nav_switch_hit);

(env_ev=nav_armed_long_enough_event);

(env_ev=nav_track_cond_met_event);

flight_director_event & fd.turned_off;

flight_director_event & fd.turned_on;

vg_vs_pitch_wheel_changed

vg_vs_switch_hit

vg_ga_switch_hit

vg_ap_engaged

vg_sync_switch_pressed

vg_clear

vg.select„default

(env_ev=vs_pitch_wheel_changed);

(env_ev=vs_switch_hit);

(env_ev=ga_switch_hit);

(env_ev=ap_engaged_event);

(env_ev=sync_switch_pressed);

flight_director_event & fd.turned_off;

flight_director_event & fd.turned.on;

— mandatory properties

the flight director is on if the autopilot is engaged

DEFINE fd_on_if_ap_engaged := AG (ap_engaged -> !(fd.mode=off));

SPEC fd_on_if_ap_engaged

— at least one lateral mode is active iff the flight director is on

DEFINE at_least_one_lateral_mode_active :=

AG (!(fd.mode=off) <-> (lateral.roll.mode=active I lateral.hdg.mode=active'I

lateral.ga.mode=active I lateral.nav.mode_active)

);

SPEC at_least_one_lateral_mode_active

38

— there is never more than one lateral mode active

DEFINE at_most_one_lateral_mode_active :=

AG((lateral.ga.mode=active -> (lateral.roll.mode=cleared & lateral.hdg.mode=cleared ft

lateral.nav.mode=cleared)

) ft.

(lateral.roll.mode=active -> (lateral.ga.mode=cleared ft lateral.hdg.mode=cleared ft

lateral.nav.mode=cleared)

) ft

(lateral.hdg.mode=active -> (lateral.roll.mode=cleared ft lateral.nav.mode=cleared ft

lateral.ga.mode=cleared)

) ft

(lateral.nav.mode_active -> (lateral.roll.mode=cleared ft lateral.hdg.mode=cleared &

lateral.ga.mode=cleared)

)

');

SPEC at_most_one_lateral_mode_active

— at least one vertical mode is active iff the flight director is on

DEFINE at_least_one_vertical_mode_active :=

AG (!(fd.mode=off) <-> (vertical.ga.mode=active I vertical.vs.mode=active I

vertical.pitch.mode=active)

);

SPEC at_least_one_vertical_mode_active

— at most one vertical mode is active

DEFINE at_most_one_vertical_mode_active :=

AG ((vertical.ga.mode=active -> (vertical.pitch.mode=cleared ft vertical.vs.mode=cleared)) ft

(vertical.vs.mode=active -> (vertical.pitch.mode=cleared ft vertical.ga.mode=cleared)) ft

(vertical.pitch.mode=active -> (vertical.ga.mode=cleared ft vertical.vs.mode=cleared))

);

SPEC at_most_one_vertical_mode_active

— if the flight director is off, all modes must be cleared

DEFINE fd_off_implies_all_modes_cleared :=

AG (fd.mode=off -> (vertical.pitch.mode=cleared ft vertical.vs.mode =cleared ft

vertical.ga.mode =cleared ft lateral.roll.mode =cleared ft

lateral.hdg.mode =cleared ft lateral.ga.mode =cleared ft

lateral.nav.mode =cleared

)

);

39

SPEC fd_off_implies_all_modes_cleared

— the default modes are active if the flight director is on and all other modes are cleared

DEFINE default_modes :=

AG ((!(fd.mode=off) ft vertical.vs.mode =cleared ft vertical.ga.mode =cleared ft

lateral.hdg.mode =cleared ft lateral.ga.mode »cleared ft

lateral.nav.mode =cleared

) ->

(vertical.pitch.mode=active ft lateral.roll.mode=active)

);

SPEC default_modes

— mode confusion properties

— check for response to pressing HDG button

DEFINE

hdg_selected_and_hdg_toggle_l :=

AG (lateral.hdg.mode=cleared ft env_ev=hdg_switch_hit -> AX lateral.hdg.mode=active);

hdg_deselected :=

AG (lateral.hdg.tnode=active ft env_ev=hdg_switch_hit -> AX lateral.roll.mode=active);

hdg_toggle_2 :=

AG (lateral.hdg.mode=active ft env_ev=hdg_switch_hit -> AX lateral.hdg.mode=cleared);

SPEC hdg_selected_and_hdg_toggle_l

SPEC hdg_deselected

SPEC hdg_toggle_2

— check for response to pressing NAV button

DEFINE

nav_selected_and_nav_toggle_l :=

AG (lateral.nav.mode=cleared ft env_ev=nav_switch_hit -> AX lateral.nav.mode_active);

nav_deselected : =

AG (lateral.nav.mode_active ft env_ev=nav_switch_hit -> AX lateral.roll.mode=active);

nav_toggle_2 :=

AG (lateral.nav.mode=active ft env_ev=nav_switch_hit -> AX lateral.nav.mode=cleared);

SPEC nav_selected_and_nav_toggle_l

SPEC nav_deselected

SPEC nav_toggle_2

40

— check for response to pressing VS button

DEFINE

vs_selected_and_vs_toggle_i :=

AG (vertical.vs.mode=cleared & env_ev=vs_switch_hit -> AX vertical.vs.mode=active);

vs.deselected :=

AG (vertical.vs.mode=active & env_ev=vs_switch_hit -> AX vertical.pitch.mode=active);

vs_toggle_2 :=

AG (vertical.vs.mode=active & env_ev=vs_switch_hit -> AX vertical.vs.mode=cleared);

SPEC vs_selected_and_vs_toggle_l

SPEC vs_deselected

SPEC vs_toggle_2

— check for response to pressing the FD button

DEFINE

fd_off

fd_on

fd.cues

fd_no_cues

:= AG (fd.mode=off & env_ev=fd_switch_hit -> AX fd.mode=cues);

:= AG (!(fd.mode=off) & env_ev=fd_switch_hit &

!(ap_engaged I overspeed) ->

AX fd.mode=off

);

:= AG (fd.mode=cues & env_ev=fd_switch_hit &

(ap.engaged I overspeed) ->

AX fd.mode=no_cues

);

:= AG (fd.mode=no_cues & env_ev=fd_switch_hit &

(ap_engaged I overspeed) ->

AX fd.mode=cues

);

SPEC fd_off

SPEC fd_on

SPEC fd.cues

SPEC fd_no_cues

— search for ignored crew inputs

DEFINE

crew_input := env_ev=ap_engaged_event I env_ev=fd_switch_hit |

env_ev=sync_switch_pressed | env_ev=sync_switch_released |

lateral_mode_requested | vertical_mode_requested I

env_ev=vs_pitch_wheel_changed;

41

mode_change :=

!(fd.mode=off <-> AX fd.mode=off) |

! (fd.mode=cues <-> AX fd.mode=cues) I

!(fd.mode=no_cues <-> AX fd.mode=no_cues) |

!(lateral.roll.mode = cleared <-> AX lateral.roll.mode = cleared) |

!(lateral.roll.mode = active <-> AX lateral.roll.mode = active) I

!(lateral.hdg.mode = cleared <-> AX lateral.hdg.mode = cleared) I

!(lateral.hdg.mode = active <-> AX lateral.hdg.mode = active) I

!(lateral.ga.mode = cleared <-> AX lateral.ga.mode = cleared) I

!(lateral.ga.mode = active <-> AX lateral.ga.mode = active) I

!(lateral.nav.mode = cleared <-> AX lateral.nav.mode = cleared) I

!(lateral.nav.mode = track <-> AX lateral.nav.mode = track) |

!(lateral.nav.mode = armed_initial <->

AX lateral.nav.mode = armed_initial) I

!(lateral.nav.mode = armed_long_enough <->

AX lateral.nav.mode = armed_long_enough) I

!(vertical.pitch.mode = cleared <-> AX vertical.pitch.mode = cleared)

!(vertical.pitch.mode = active <-> AX vertical.pitch.mode = active)

!(vertical.vs.mode = cleared <-> AX vertical.vs.mode = cleared)

!(vertical.vs.mode = active <-> AX vertical.vs.mode = active)

!(vertical.ga.mode = cleared <-> AX vertical.ga.mode = cleared)

!(vertical.ga.mode = active <-> AX vertical.ga.mode = active);

search_for_ignored_crew_inputs := AG (crew.input -> mode_change);

SPEC search_for_ignored_crew_inputs — property violated

— no unknown ignored crew inputs

DEFINE

ignored.crew_input :=

(env_ev=ap_engaged_event & !(lateral.ga.mode=active I vertical.ga.mode=active)) |

— (ev=ga_switch_hit & (lateral.ga.mode=active & vertical.ga.mode=active)) |

PVS model too strong (may be left out)

(env_ev=sync_switch_pressed ft ! (lateral.ga.mode=active I vertical.ga.mode=active)) |

(ev=sync_switch_pressed & fd.mode=off) I

PVS model too strong (may be left out)

(env_ev=sync_switch_released) |

(env_ev=vs_pitch_wheel_changed & fd.mode=off) I

(env_ev=vs_pitch_wheel_changed & vertical.pitch.mode=active) ;

no_known_ignored_crew_inputs :=

AG (crew_input & !ignored_crew_input -> mode.change);

SPEC no_known_ignored_crew_inputs

42

— search for indirect mode changes

DEFINE

search_for_indirect_mode_changes := AG (!crew_input -> !mode_change);

SPEC search_for_indirect_mode_changes — property violated

— no unknown indirect mode changes

DEFINE

indirect_mode_change :=

(env_ev=overspeed_start ft !(fd.mode=cues)) |

(env_ev=nav_armed_long_enough_event ft lateral.nav.mode=armed_initial) I

(env_ev=nav_track_cond_met_event ft lateral.nav.mode=armed_long_enough);

no_unknown_indirect_mode_change : =

AG ((!crew_input ft !indirect_mode_change) -> !mode_change);

SPEC no_unknown_indirect_mode_change

B.2. Output of the SMV verifier.

specification fd_on_if_ap_engaged is true

specification at_least_one_lateral_mode_active is true

specification at_most_one_lateral_mode_active is true

specification at_least_one_vertical_mode_active is true

specification at_most_one_vertical_mode_active is true

specification fd_off_implies_all_modes_cleared is true

specification default_modes is true

specification hdg_selected_and_hdg_toggle_l is true

specification hdg_deselected is true

specification hdg_toggle_2 is true

specification nav_selected_and_nav_toggle_l is true

specification nav_deselected is true

specification nav_toggle_2 is true

specification vs_selected_and_vs_toggle_l is true

specification vs_deselected is true

specification vs_toggle_2 is true

specification fd_off is true

specification fd_on is true

specification fd_cues is true

specification fd_no_cues is true

specification search_for_ignored_crew_inputs is false

as demonstrated by the following execution sequence

loop starts here —

43

State 1.1:

vg_select_default = 0

vg_clear = 0

vg_sync_switch_pressed = 0

vg_ap_engaged = 0

vg_ga_switch_hit = 0

vg_vs_switch_hit = 0

vg_vs_pitch_wheel_changed = 0

lg_select_default = 0

lg_clear = 0

lg_nav_track_cond_met = 0

lg_nav_armed_long_enough = 0

lg_nav_switch_hit = 0

lg_sync_switch_pressed = 0

lg_ap_engaged = 0

lg_ga_switch_hit = 0

lg_hdg_switch_hit = 0

fd_overspeed = 0

fd_ap_engaged = 0

fd_turn_off = 0

fd_switch = 0

fd_turn_on = 0

fd_force_cues = 0

flight_director_event = 0

vertical_mode_requested = 0

lateral_mode_requested = 0

fd_is_on = 0

new_ap_engaged = 0

new_overspeed = 0

all_events = hdg_switch_hit,nav_switch_hit,nav_armed_

fd_on_if_ap_engaged = 1

at_least_one_lateral_mode_active = 1

at_most_one_lateral_mode_active = 1

at_least_one_vertical_mode_active = 1

at_most_one_vertical_mode_active = 1

fd_off_implies_all_modes_cleared = 1

default_modes = 1

hdg_toggle_2 = 1

hdg_deselected = 1

hdg_selected_and_hdg_toggle_l = 1

nav_toggle_2 = 1

nav_deselected = 1

nav_selected_and_nav_toggle_l = 1

vs_toggle_2 = 1

vs_deselected = 1

vs_selected_and_vs_toggle_l = 1

fd_no_cues = 1

44

fd_cues = 1

fd_on = 1

fd.off = 1

seareh_for_ignored_crew_inputs = 0

mode_change = 0

crew.input = 1

no_known_ignored_crew_inputs = 1

ignored_crew_input = 1

search_for_indirect_mode_changes = 0

no_unknown_indirect_mode_change = 1

indirect_mode_change = 0

env_ev = sync_switch_released

overspeed =0

ap_engaged = 0

fd.tumed_off = 0

fd.turned_on = 0

fd.mode_on = 0

fd.mode = off

lateral.nav_event = 0

lateral.lga_event = 0

lateral.hdg_event = 0

lateral.nav_armed_long_enough = 0

lateral.nav_track_cond_met = 0

lateral.nav_clear = 0

lateral.nav.switch = 0

lateral.nav_deactivate = 0

lateral.nav_activate = 0

lateral.ga_clear = 0

lateral.ga_switch = 0

lateral.ga.deactivate = 0

lateral.ga_activate = 0

lateral.hdg_clear = 0

lateral.hdg_switch = 0

lateral.hdg_deactivate = 0

lateral.hdg_activate = 0

lateral.roll_clear = 0

lateral.roll_switch = 0

lateral.roll_deactivate = 0

lateral.roll_activate = 0

lateral.roll.deactivated = 0

lateral.roll.activated = 0

lateral.roll.mode = cleared

lateral.hdg.deactivated = 0

lateral.hdg.activated = 0

lateral.hdg.mode = cleared

lateral.ga.deactivated = 0

lateral.ga.activated = 0

45

lateral.ga.mode = cleared

lateral.nav.deactivated = 0

lateral.nav.activated = 0

lateral.nav.mode_active = 0

lateral.nav.mode_armed = 0

lateral.nav.track.cond = 0

lateral.nav.mode = cleared

lateral.nav.track_cond_met = 0

vertical.vga_event = 0

vertical.vs_event = 0

vertical.pitch_event = 0

vertical.ga_clear = 0

vertical.ga_switch = 0

vertical.ga_deactivate = 0

vertical.ga_activate = 0

vertical.vs_clear = 0

vertical.vs_switch = 0

vertical.vs„deactivate = 0

vertical.vs_activate = 0

vertical.pitch_clear = 0

vertical.pitch_switch = 0

vertical.pitch_deactivate = 0

vertical.pitch_activate = 0

vertical.pitch.deactivated = 0

vertical.pitch.activated = 0

vertical.pitch.mode = cleared

vertical.vs.deactivated = 0

vertical.vs.activated = 0

vertical.vs.mode = cleared

vertical.ga.deactivated = 0

vertical.ga.activated = 0

vertical.ga.mode = cleared

state 1.2:

— specification no_known_ignored_crew_inputs is true

— specification search_for_indirect_mode_changes is fals

— as demonstrated by the following execution sequence

state 2.1:

vg_select_default = 0

vg_clear = 0

vg_sync_switch_pressed = 0

vg_ap_engaged = 0

vg_ga_switch_hit = 0

vg_vs_switch_hit = 0

vg_vs_pitch_wheel_changed = 0

lg_select_default = 0

46

lg_clear = 0

lg_nav_track_cond_met = 0

lg_nav_armed_long_enough = 0

lg_nav_switch_hit = 0

lg_sync_switch_pressed = 0

lg_ap_engaged = 0

lg_ga_switch_hit = 0

lg_hdg_switch_hit = 0

fd_overspeed = 0

fd_ap_engaged =0

fd_turn_off = 0

fd_switch = 0

fd_turn_on = 0

fd_force_cues = 0

flight_director_event = 0

vertical_mode_requested = 0

lateral_mode_requested = 0

fd_is_on = 0

new_ap_engaged = 0

new_overspeed = 0

all_events = hdg_switch_hit,nav_switch_hit,nav_armed_

fd_on_if_ap_engaged = 1

at_least_one_lateral_mode_active = 1

at_most_one_lateral_mode_active = 1

at_least_one_vertical_mode_active = 1

at_most_one_vertical_mode_active = 1

fd_off_implies_all_modes_cleared = 1

default.modes = 1

hdg_toggle_2 = 1

hdg_deselected = 1

hdg_selected_and_hdg_toggle_l = 1

nav_toggle_2 = 1

nav_deselected = 1

nav_selected_and_nav_toggle_l = 1

vs_toggle_2 =1

vs_deselected = 1

vs_selected_and_vs_toggle_l = 1

fd_no_cues = 1

fd_cues = 1

fd_on = 1

fd_off = 1

search_for_ignored_crew_inputs = 0

mode_change = 0

crew_input = 1

no_known_ignored_crew_inputs = 1

ignored_crew_input = 1

search_for_indirect_mode_changes = 0

47

no_unknown_indirect_mode_change = 1

indirect_mode_change = 0

env_ev = sync_switch_released

overspeed = 0

ap_engaged = 0

fd.turned_off = 0

fd.turned_on = 0

fd.mode_on = 0

fd.mode = off

lateral.nav_event = 0

lateral.lga_event = 0

lateral.hdg.event = 0

lateral.nav_armed_long_enough = 0

lateral.nav_track_cond_met = 0

lateral.nav_clear = 0

lateral.nav.switch = 0

lateral.nav_deactivate = 0

lateral.nav_activate = 0

lateral.ga_clear = 0

lateral.ga_switch = 0

lateral.ga.deactivate = 0

lateral.ga_activate = 0

lateral.hdg_clear = 0

lateral.hdg_switch = 0

lateral.hdg_deactivate = 0

lateral.hdg_activate = 0

lateral.roll_clear = 0

lateral.roll.switch = 0

lateral.roll_deactivate = 0

lateral.roll_activate = 0

lateral.roll.deactivated = 0

lateral.roll.activated = 0

lateral.roll.mode = cleared

lateral.hdg.deactivated = 0

lateral.hdg.activated = 0

lateral.hdg. mode = cleared

lateral.ga.deactivated = 0

lateral.ga.activated = 0

lateral.ga.mode = cleared

lateral.nav.deactivated = 0

lateral.nav.activated = 0

lateral.nav.mode_active = 0

lateral.nav.mode_armed = 0

lateral.nav.track_cond = 0

lateral.nav.mode = cleared

lateral.nav.track_cond_met = 0

vertical.vga.event = 0

48

vertical.vs_event = 0

vertical.pitch_event = 0

vertical.ga_clear = 0

vertical.ga_switch = 0

vertical.ga_deactivate = 0

vertical.ga.activate = 0

vertical.vs_clear = 0

vertical.vs_switch = 0

vertical.vs_deactivate = 0

vertical.vs_activate = 0

vertical.pitch_clear = 0

vertical.pitch_switch = 0

vertical.pitch_deactivate = 0

vertical.pitch_activate = 0

vertical.pitch.deactivated = 0

vertical.pitch.activated = 0

vertical.pitch.mode = cleared

vertical.vs.deactivated = 0

vertical.vs.activated = 0

vertical.vs.mode = cleared

vertical.ga.deactivated = 0

vertical.ga.activated = 0

vertical.ga. mode = cleared

state 2.2:

vg_select_default = 1

lg_select_default = 1

fd_overspeed = 1

fd_force_cues = 1

flight_director_event = 1

fd_is_on = 1

new_overspeed = 1

mode.change = 1

crew_input = 0

ignored_crew_input = 0

indirect_mode_change = 1

env_ev = overspeed_start

fd.turned_on = 1

lateral.roll_activate = 1

lateral.roll.activated = 1

vertical.pitch_activate = 1

vertical.pitch.activated = 1

state 2.3:

vg_select_default = 0

lg_select_default = 0

fd_force_cues = 0

49

flight_director_eyent = 0

mode_change = 0

crew.input = 1

ignored_crew_input = 1

indirect_mode_change = 0

env.ev = sync_switch_released

overspeed = 1

fd.turned_on = 0

fd.mode_on = 1

fd.mode = cues

lateral.roll_activate = 0

lateral.roll.activated = 0

lateral.roll.mode = active

vertical.pitch_activate = 0

vertical.pitch.activated = 0

vertical.pitch.mode = active

— specification no_unknown_indirect_mode_change is true

resources used:

user time: 0.58 s, system time: 0.17 s

BDD nodes allocated: 5940

Bytes allocated: 983040

BDD nodes representing transition relation: 438 + 1

reachable states: 3388 (2*11.7262) out of 86016 (2*16.3923)

50

Appendix C. Specification and Verification Using Spin.

C.l. Full Model of the Mode Logic.

/** values of modes ***/

ttdefine cleared 0

#define active 1

#define track 2

#define armed_initial 3

#define armed_long_enough 4

#define off 5

#define cues 6

#define no_cues 7

/** events and signals **/

mtype - {. /* environment events */

hdg_switch_hit, nav_switch_hit,

nav_armed_long_enough_event, nav_track_cond_met_event,

ga_switch_hit, vs_pitch_wheel_changed,

vs_suitch_hit, fd_switch_hit,

overspeed.start, overspeed_stop,

ap_engaged_event, ap_disengaged_event,

sync_switch_pressed, sync_switch_released,

/* simple guidance, arming guidance and flight director events */

clear, activate,

deactivate, switch,

turn.on, turn_off,

force_cues, armed_long_enough_event,

track_cond_met_event,

/* signals */

activated, deactivated,

turned_on, turned.off,

null

}

typedef ag.state { byte mode = cleared;

bool track_cond_met = false

};

/** variables controled by the environment **/

bool overspeed = false;

bool ap_engaged = false;

51

/** mode and signal variables & variable for env. event *************************************/

bit pitch = cleared; bit old_pitch = cleared;

bit vs = cleared; bit old_vs = cleared;

bit vga = cleared; bit old_vga = cleared;

bit roll = cleared; bit old_roll = cleared;

bit hdg = cleared; bit old_hdg = cleared;

bit lga = cleared; bit old.lga = cleared;

byte fd = off; byte old.fd = off;

ag_state nav; ag.state old_nav;

mtype pitch_signal = null; mtype vs_signal = null;

mtype vga_signal = null; mtype roll_signal = null;

mtype hdg_signal = null; mtype lga.signal = null;

mtype nav_signal = null; mtype fd_signal = null;

mtype env_ev = null;

/** useful abbreviations **/

#define lateral_mode_requested

((env_ev==hdg_switch_hit) II (env_ev==nav_switch_hit) || (env_ev==ga_switch_hit))

#define vertical_mode_requested

((env_ev==vs_switch_hit) II (env_ev==ga_switch_hit))

inline flight_director_event(env_ev) { (env_ev==ap_engaged_event) II

(env_ev==fd_switch_hit) I I

(env_ev==overspeed_start) I I

lateral_mode_requested I I

vertical_mode_requested

}

/** auxiliary "functions" ***/

inline hdg_event(env_ev) { env_ev==hdg_switch_hit }

inline nav_event(env_ev) { (env_ev==nav_switch_hit) | I

(env_ev==nav_armed_long_enough_event) I I

(env_ev==nav_track_cond_met_event)

>

inline lga_event(env_ev) { (env_ev==ga_switch_hit) I I

(env_ev==ap_engaged_event) I I

(env_ev==sync_switch_pressed)

}

52

inline pitch_event(env_ev) { env_ev==vs_pitch_wheel_changed }

inline vs.event(env_ev) {. env_ev==vs_switch_hit }

inline vga_event (env_ev) {. (env_ev==ga_suitch_hit) I I (env_ev==ap_engaged_event) I I

(env_ev==sync_switch_pressed)

>

/** abstract data type module simple guidance ***/

inline simple_guidance(mode, event, signal)

{

if

:: mode==cleared ->

if

:: event==activate -> mode=active;

:: event==deactivate ->

event==switch -> mode=active;

event==clear ->

fi

mode==active ->

if

:: event==activate ->

event==deactivate -> mode=cleared;

event==switch -> mode=cleared;

:: event==clear -> mode=cleared;

fi

signal=activated

signal=null

signal=activated

signal=null

signal=null

signal=null

signal=deactivated

signal=deactivated

fi

/** abstract data object module arming guidance ***/

inline arming_guidance(event, signal)

{

if

:: nav.mode==cleared ->

if

:: event==activate

:: event==deactivate

:: event==switch

: event==clear

-> nav.mode

signal

-> signal

-> nav.mode

signal

-> signal

: event==armed_long_enough_event -> signal

: event==track_cond_met.event -> nav.track_cond_met=true;

signal =null

fi

=armed_initial;

=activated

=null

=armed_initial;

=activated

=null

=null

53

else ->

if

:: event==activate -> signal =null

:: event==deactivate -> nav.mode=cleared;

signal =null

:: event==switch -> nav.mode=cleared;

signal =deactivated

:: event==clear -> nav.mode=cleared;

signal =deactivated

:: event==armed_long_enough_event ->

if

:: (nav.mode==armed_initial) &&

nav.track_cond_met -> nav.mode=track;

signal =null

:: (nav.mode==armed_initial) &,&

!nav.track_cond_met -> nav.mode=armed_long_enough;

signal =null

:: else -> signal =null

fi

:: event==track_cond_met_event ->

if

:: nav.mode==armed_long_enough -> nav.mode =track;

nav.track_cond_met=true;

signal =null

:: else -> nav.track_cond_met=true;

signal =null

fi

fi

fi

>

/** function module lateral guidance **/

inline lateral_guidance(env_ev)

•C
if

:: hdg_event(env_ev) ->

simple_guidance(hdg, switch, hdg_signal);

if

:: hdg_signal==activated -> simple_guidance(roll, deactivate, roll_signal);

simple_guidance(lga, deactivate, lga_signal);

arming_guidance(deactivate, nav_signal)

:: hdg_signal==deactivated -> simple_guidance(roll, activate, roll_signal)

:: else -> skip

fi

54

:: nav_event(env.ev) ->

if

:: env_ev==nav_switch_hit ->

arming.guidance(switch, nav.signal)

:: env_ev==nav_track_cond_met_event ->

arming.guidance(track_cond_met_event, nav_signal)

:: env_ev==nav_armed_long_enough_event ->

arming.guidance(armed.long.enough.event, nav_signal)

fi;

if

:: nav_signal==activated -> simple_guidance(roll, deactivate, roll.signal);

simple_guidance(hdg, deactivate, hdg_signal);

simple.guidance(lga, deactivate, lga_signal)

:: nav_signal==deactivated -> simple.guidance(roll, activate, roll.signal)

:: else -> skip

fi

:: lga_event(env_ev) ->

if

:: env_ev==ga_switch_hit -> simple.guidance(lga, activate, lga.signal)

:: else -> simple.guidance(lga, clear, lga_signal)

fi;

if

:: lga_signal==activated -> simple.guidance(roll, deactivate, roll.signal);

simple.guidance(hdg, deactivate, hdg.signal);

arming.guidance(deactivate, nav.signal)

:: lga_signal==deactivated -> simple.guidance(roll, activate, roll.signal)

:: else -> skip

f i

:: else ->

skip

fi

}

/** function module vertical guidance ***/

inline vertical.guidance(env.ev)

{

if

:: pitch.event(env.ev) ->

simple.guidance(pitch, activate, pitch.signal) ;

if

:: pitch_signal==activated -> simple.guidance(vs, deactivate, vs.signal);

simple.guidance(vga, deactivate, vga.signal)

:: else -> skip

fi

55

:: vs_event(env_ev) ->

simple_guidance(vs, switch, vs_signal);

if

:: vs_signal==activated -> simple_guidance(pitch, deactivate, pitch_signal);

simple_guidance(vga, deactivate, vga_signal)

:: vs_signal==deactivated -> simple_guidance(pitch, activate, pitch_signal)

:: else -> skip

fi

:: vga_event(env_ev) ->

if

:: env_ev==ga_switch_hit -> simple_guldance(vga, switch,vga.signal)

:: else -> simple_guidance(vga, clear, vga_signal)

fi;

if

:: vga_signal==activated -> simple_guidance(pitch, deactivate, pitch_signal);

simple_guidance(vs, deactivate, vs_signal)

:: vga_signal==deactivated -> simple.guidance(pitch, activate, pitch.signal)

:: else -> skip

fi

:: else ->

skip

fi

}

/** abstract data object module flight director **/

inline flight_director(event, signal)

{.
if

:: fd==off ->

if

:: event==force_cues -> fd=cues; signal=turned_on;

:: event==turn_on -> fd=cues; signal=turned_on

event==switch -> fd=cues; signal=turned_on

event==turn_off -> signal=null

fi

fd==cues ->

if

event==force_cues -> signal=null

event==turn_on -> signal=null

event==switch ->

if

:: overspeed I I ap_engaged -> fd=no_cues; signal=null

:: else -> fd=off; signal=turned_off

fi

56

event==turn_off ->

if

:: overspeed II ap.engaged -> fd=no_cues; signal=imll

:: else -> fd=off; signal=turned_off

fi

fi

else

if

: event==force_cues -> fd=cues; signal=null

: event==turn_on -> fd=cues; signal=null

: event==switch ->

if

:: overspeed I I ap_engaged -> fd=cues; signal=null

:: else -> fd=off; signal=turned_off

fi

:: event==turn_off ->

if

:: overspeed I I ap.engaged -> signal=null

:: else -> fd=off; signal=turned_off

fi

fi

fi

/** mandatory and mode confusion properties as assertions ***********************************/

#define nav_active

((nav.mode==armed_initial) II (nav.mode==armed_long_enough) II (nav.mode==track))

#define crew_input

((env_ev==ap_engaged_event)

(env_ev==sync_switch_released)

lateral_mode„requested

(env_ev==vs_pitch_wheel_changed))

I I (env_ev==sync_switch_pressed) I I

I I (env_ev==fd_switch_hit) I I

I I vertical_mode_requested I I

#define ignored_crew_input

(((env_ev==ap_engaged_event) && !((old_lga==active)I I(old_vga==active))) II

((env_ev==sync_switch_pressed) && !((old_lga==active)I I(old_vga==active))) II

(env_ev==sync_switch_released) ||

((env_ev==vs_pitch_wheel_changed) && (old.fd==off)) I |

((env_ev==vs_pitch_wheel_changed) && (old_pitch==active)))

#define indirect_mode_change

(((env_ev==overspeed_start) && !(old_fd==cues)) II

((env_ev==nav_armed_long_enough_event) && (old_nav.mode==armed_initial)) II

((env_ev==nav_track_cond_met_event) &fe (old_nav.mode==armed_long_enough)))

57

#define mode_change

((fd != old.fd) II (pitch != old.pitch) I I (vs != old_vs) II (vga != old_vga) II

(roll != old.roll) || (hdg != old.hdg) II (lga != old.lga) ||

(nav.mode != old_nav.mode))

inline mandatory_and_mode_confusion_properties(env_ev)

{.
/** the flight director is on if the autopilot is engaged **/

assert(!ap.engaged I I !(fd==off));

/** at least one lateral mode is active iff the flight director is on **/

assert (((fd==off) II (roll==active II hdg==active II lga==active II nav_active)) kk

(!(roll==active II hdg==active II lga==active II nav_active) II !(fd==off))

);

/** there is never more than one late'ral mode active **/

assert((!(lga ==active) II (roll==cleared kk hdg==cleared kk nav.mode==cleared)) kk

(!(roll==active) II (lga==cleared kk hdg==cleared kk nav.mode==cleared)) kk

(!(hdg ==active) II (roll==cleared kk lga==cleared kk nav.mode==cleared)) kk

(!(nav_active) II (roll==cleared kk hdg==cleared kk lga ==cleared))

);

/** at least one vertical mode is active iff the flight director is on **/

assert(((fd==off) II (vga==active II vs==active II pitch==active)) kk

(!(vga==active II vs==active II pitch==active) II !(fd==off))

);

/** at most one vertical mode is active **/

assert((!(vga ==active) II (pitch==cleared kk vs==cleared)) kk

(!(vs ==active) II (pitch==cleared kk vga==cleared)) kk

(!(pitch==active) II (vga==cleared kk vs==cleared))

);

/** if the flight director is off, all modes must be cleared **/

assert(!(fd==off) II (pitch==cleared kk vs==cleared kk vga==cleared kk roll==cleared kk

hdg==cleared kk lga==cleared kk nav.mode==cleared)

);

/** the default modes are active if the flight director is on and **/

/** all other modes are cleared **/

assert (!(!(fd==off) kk vs==cleared kk vga==cleared kk

hdg==cleared kk lga==cleared kk nav.mode==cleared

) I I (pitch==active kk roll==active)

);

58

/** mandatory properties **/

if

:: env_ev==hdg_switch_hit ->

/** check for response to pressing HDG button **/

assert(!(old_hdg==cleared) || (hdg==active));

assert(!(old_hdg==active) || (roll==active));

assert(!(old_hdg==active) II (hdg==cleared))

:: env_ev==nav_svitch_hit ->

/** check for response to pressing NAV button **/

assert(!(old_nav.mode==cleared) II ((nav.mode==armed_initial) II

(nav.mode==armed_long_enough) |I (nav.mode==track)

)

);

assert(!((old_nav.mode==armed_initial) || (old_nav.mode==armed_long_enough) II

(old_nav.mode==track)

) I I (roll==active)

);

assert(!((old_nav.mode==armed_initial) I I (old_nav.mode==armed_long_enough) II

(old_nav.mode==track)

) I I (nav.mode==cleared)

)

:: env_ev==vs_switch_hit ->

/** check for response to pressing VS button **/

assert(!(old_vs==cleared) II (vs==active));

assert(!(old_vs==active) II (pitch==active));

assert(!(old_vs==active) II (vs==cleared))

:: env_ev==fd_switch_hit ->

/** check for response to pressing the FD button **/

assert(!(old_fd==off) || (fd==cues));

assert((!(!(old_fd==off) && !(ap_engaged II overspeed))) II (fd==off));

assert(!((old_fd==cues) && (ap_engaged II overspeed)) II (fd==no_cues));

assert(!((old_fd==no_cues) && (ap.engaged II overspeed)) II (fd==cues));

:: else ->

skip

fi;

/** search for ignored crew inputs **/

/** assert(!(crew_input) II mode_change); **/

/** property violated **/

/** no unknown ignored crew inputs **/

assert(!(crew_input && !(ignored_crew_input)) II mode_change);

59

/** search for indirect mode changes **/

/** assert(!(!(crew.input)) II !(mode_change)); **/

/** property violated **/

/** no unknown indirect mode changes **/

assert(!(!(crew_input) && !(indirect_mode_change)) II ! (mode_change));

/** save the current mode values **/

old_pitch = pitch; old_vs = vs; old_vga = vga; old_roll = roll;

old_hdg = hdg; old_lga = lga; old_fd = fd;

old_nav.mode = nav.mode; old_nav.track_cond_met = nav.track_cond_met

}

inline clear.all_modes()

{

pitch=cleared; vs=cleared; vga=cleared; roll=cleared;

hdg=cleared; lga=cleared; nav.mode=cleared

}

inline select„default_mode()

{

pitch=active; roll=active

}

inline process_external_event(env_ev)

{

if

:: env_ev==ap_engaged_event -> ap_engaged=true

env_ev==ap_disengaged_event -> ap_engaged=false

:: env_ev==overspeed_start -> overspeed =true

env_ev==overspeed_stop -> overspeed =false

:: else -> skip

fi

}

60

inline process_fd_event(env_ev)

{

if

:: flight_director_event(env_ev) ->

if

:: env_ev==fd_switch_hit -> flight_director(switch, fd.signal)

:: env_ev==overspeed_start -> flight_director(force_cues, fd.signal)

:: else -> flight_director(turn_on, fd_signal)

fi;

if

fd_signal==turned_off -> clear_all_modes()

-> select_default_mode()

-> skip

fd_signal==turned_on

else

fi

else

skip

->

fi

inline process_flight_mode_event(env_ev)

{

if

:: !(fd==off) -> lateral_guidance(env_ev); vertical_guidance(env.ev)

:: else -> skip

fi

}

inline clear_signals0

{

pitch_signal = null; vs_signal = null; vga.signal = null; roll_signal = null;

hdg_signal = null; lga.signal = null; nav.signal = null; fd.signal = null

}

/** main module performing modeling one synchronous step of the system **********************/

inline fgs(env_ev)

{

process_external_event(env_ev);

process_fd_event(env_ev);

process_flight_mode.event(env_ev);

clear_signals();

mandatory_and_mode_confusion_properties(env_ev)

}

/** signals are no longer needed **/

61

/** init process, including model of the environment **/

init{ end_main: do :: atomic{ if /* nondeterministically choose env. event */

env_ev=hdg_switch_hit

env_ev=nav_switch_hit

env_ev=nav_armed_long_enough_event

: env_ev=nav_track_cond_met_event

env_ev=ga_suitch_hit

: env_ev=vs_pitch_wheel_changed

env_ev=vs_switch_hit

env_ev=fd_switch_hit

:: env_ev=overspeed_start

:: env_ev=overspeed_stop

env_ev=ap_engaged_event

: env_ev=ap_disengaged_event

:: env_ev=sync_switch_pressed

env_ev=sync_switch_released

fi;

fgs(env_ev); /* perform synchronous step */

env_ev=null /* env. event is no longer needed */

}

od }

C.2. Output of the Spin verifier.

(Spin Version 3.2.4 — 10 January 1999)

Full Statespace search for:

never-claim - (none specified)

assertion violations +

cycle checks - (disabled by -DSAFETY)

invalid endstates +

State-vector 32 byte, depth reached 4151, errors: 0

242 states, stored

3147 states, matched

3389 transitions (= stored+matched)

165976 atomic steps

hash conflicts: 0 (resolved)

(max size 2*19 states)

2.604 memory usage (Mbyte)

real 1.9

user 1.7

sys 0.2

62

REPORT DOCUMENTATION PAGE
Form Approved

OMB Wo. 0704-0188

Publicreporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLYfieai/e blank) 2. REPORT DATE

May 1999
3. REPORT TYPE AND DATES COVERED

Contractor Report
4. TITLE AND SUBTITLE

Analyzing mode confusion via model checking

6. AUTHOR(S)

Gerald Lüttgen
Victor Carreno

5. FUNDING NUMBERS

C NAS1-97046
WU 505-90-52-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 99-18

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-2199

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-1999-209332
ICASE Report No. 99-18

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report
Submitted to the Sixth Spin99 Workshop

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 60, 61
Distribution: Nonstandard
Availability: NASA-CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Mode confusion is one of the most serious problems in aviation safety. Today's complex digital flight decks make it
difficult for pilots to maintain awareness of the actual states, or modes, of the flight deck automation. NASA Langley
leads an initiative to explore how formal techniques can be used to discover possible sources of mode confusion. As
part of this initiative, a flight guidance system was previously specified as a finite Mealy automaton, and the theorem
prover PVS was used to reason about it.

The objective of the present paper is to investigate whether state-exploration techniques, especially model checking,
are better able to achieve this task than theorem proving and also to compare several verification tools for the specific
application. The flight guidance system is modeled and analyzed in Murphi, SMV, and Spin. The tools are compared
regarding their system description language, their practicality for analyzing mode confusion, and their capabilities
for error tracing and for animating diagnostic information. It turns out that their strengths are complementary.

14. SUBJECT TERMS
mode confusion, model checking, modeling, state exploration, verification tools

IS. NUMBER OF PAGES

67
16. PRICE CODE

 A04
17. SECURITY CLASSIFICATION

OF REPORT
Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION
OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

