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Abstract. We start from a basic and fruitful idea in current work on 
the formal analysis and verification of hybrid and real-time systems: the 
uniform representation of both sorts of state dynamics - both contin- 
uous evolution within a control mode, and the effect of discrete jumps 
between control modes - as abstract transition relations over a hybrid 
space X CQ x Rn, where Q is a finite set of control modes. The result- 
ing "machine" or transition system model is currently analyzed using the 
resources of concurrent and reactive systems theory and temporal logic 
verification, abstracted from their original setting of finite state spaces 
and purely discrete transitions. One such resource is the propositional 
fi-calculus: a richly expressive formal logic of transition system mod- 
els (of arbitrary cardinality), which subsumes virtually all temporal and 
modal logics. The key move here is to view the transition system models 
of hybrid automata not merely as some form of "discrete abstraction", 
but rather as a skeleton which can be fleshed out by imbuing the state 
space with topological, metric tolerance or other structure. Drawing on 
the resources of modal logics, we give explicit symbolic representation 
to such structure in polymodal logics extending the modal ji-calculus. 
The result is a logical formalism in which we can directly and simply 
express continuity properties of transition relations and metric tolerance 
properties such as "being within distance e" of a set. Moreover, the log- 
ics have sound and complete deductive proof systems, so assumptions 
of continuity or tolerance can be used as hypotheses in deductive veri- 
fication. By also viewing transition relations in their equivalent form as 
set-valued functions, and drawing on the resources of set-valued analysis 
and dynamical systems theory, we open the way to a richer formal anal- 
ysis of robustness and stability for hybrid automata and related classes 
of systems. 

1    Introduction 

It is hardly controversial to claim that the fi-calculus is a formal logic of central 
import for the analysis and verification of hybrid automata and related classes of 
systems. The fundamental concepts of reachability and invariance are expressible 

* Research supported by the ARO under the MURI program "Integrated Approach to 
Intelligent Systems", grant no. DAA H04-96-1-0341. 



in terms of fixed-points of operators mapping sets of states to sets of states, and 
are thus definable in the language of the ^-calculus. The iterative computation 
of the denotation of such fixed point formulas lies at the heart of symbolic model 
checking tools for hybrid and real-time systems such as HYTECH [4], [19] and 
KRONOS [13]. More generally, the propositional ^-calculus is well-recognized as a 
richly expressive logic over transition system models: the power of its fixed-point 
quantifiers are such that it subsumes virtually all temporal, modal and dynamic 
logics [15], [25]. 

However, the current practice, within the allied field of automated verification 
of (discrete) reactive systems as well as within the hybrid systems community, is 
to consider the ^i-calculus not as a working or usable logic but rather as a logic 
of the substratum. It provides a common "machine" language and semantics 
for verification by model checking, with user-input specifications written in the 
more "natural" languages of temporal logics, and then translated into that of 
the //-calculus. 

This paper challenges that practice, and demonstrates that the propositional 
/t-calculus and various of its modal logic extensions can provide both an expres- 
sively rich and "human readable" formalism for reasoning about properties of 
hybrid dynamical systems. 

We begin with the "machine" or transition system models of hybrid systems, 
in which both sorts of state transformation - continuous evolution within a 
control mode, and the effects of discrete jumps between control modes - are 
uniformly represented as abstract transition relations r C X x X over a hybrid 
state space X C Q x R", where Q is a finite set of control modes or discrete 
states. 

Formally, define a labeled transition system (UTS) (or generalized Kripke 
model) to be a structure 

m=(x,{amUzA\\p\\mU*) (i) 

where X ^ 0 is the state space (of arbitrary cardinality); for each transition 
label a 6 E, a2" CXxIisa binary relation on X\ and for each propositional 
constant (observation or event label) pG$, ||p||"   C X is a fixed subset of X. 

An LTS model is a clean and simple abstraction of a finite automaton. Such 
an 9K is an abstract machine over state space X, with input or action alphabet 

E and transition map S : X x E -> V(X) given by: x' G S(x,a) iff x —t x'. 
It is additionally equipped with an observation alphabet $, and an output map 
o: X -» V(<P) given by: o(x) = {p G # | x £ ||p||" }; sets of initial or final states 
can be identified by specific labels in #. 

A (basic) hybrid automata % is typically represented by a graph of the form 
depicted in Figure 1. Hybrid automata and their associated LTS models are 
examined in more detail in Section 2; for now, we give a high-level description, 
based on Henzinger's "time-abstract" transition system in [19] §1.2. 



Fig. 1. Basic hybrid automaton 

An LTS model ÜJt« of a hybrid automaton % has a state space X CQ x ]Rn, 
with Q finite. So states are pairs (q,x), where q G Q and x = (xi,...,xn) G Mn. 
For each q G Q, let Xq C Mn be the projection of X under q. The transition 
alphabet 27 will include symbols such as eg for the relation of evolution (a 
"time-step" or "continuous transition") within each discrete mode q G Q. In the 

basic case, such a relation is defined by: (q, x) —2-» (q, x') iff there is an integral 
curve along the flow <j>q connecting x G Xq to x' G Xq, and all points on the 
curve between x and x' lie inside the invariant set Invq C Xq. The transition 
alphabet will also include, for each edge (q, q') in the discrete transition graph 
G C Q x Q of W, a, symbol c9iq/ for the controlled jump relation (a "step" or 
"discrete transition") modeling the effect of making a controlled switch from 

mode q to mode q'. Such relations are standardly defined by:   (q, x) -^ (q1, x') 
iff x € Grdqig>, x' G Invq<, and x' G rq>q. (*), 
relation for the real-valued coordinates, and the domain Grdt 

where rq>q> C Xq x Xq< is a reset 
q,g' Q ^q is known 



as the guard set of the discrete transition (q,q'). The alphabet # of atomic 
propositions will include Initg and Invg for q G Q, and Grd,^/ for (q, q') G G. 

A trajectory of % is a finite or infinite sequence (<£,-, g.-,7«)x€l such that for 
each i G I:   the duration <£,- > 0;   the curve 7,- : [0,<S,] ->■ Xgi is such that 

(g.,7.(0)) -^ (ft,7.-W) *» all t G [0,*,-]; (ft.ft+i) € G\ and (g,-,7.(*,)) ''^ 
(g,+i,7,+i(0)). When I is finite, with largest element N, it is allowed that 
Sff = 00. When a hybrid automaton is thought of as a discrete controller in- 
teracting with a physical plant, the class of trajectories, so defined, are founded 
on implicit operational assumptions of continuous and perfect precision sensing, 
and instantaneous control switches ([19]). 

In the modal - as distinct from temporal - variant of the /i-calculus1, the 
prepositional language (over an alphabet (£,$)) includes a dual pair of modal 
operators [a] and (a), for each transition label a £ 2. The (standard) relational 
Kripke semantics of the labeled modalities are given by the universal and exis- 
tential pre-image operators of the corresponding relations r = am. For relations 
r C X x Y, and sets ACY, 

r(r)(A) ± { x G X I (Vy G Y)[x -^ y => y G A] } () 

<x(r)(A) = {xeX\(3yeY)[x^y A yeA]} (' 

In the notation of [20], <r(r) = pre[r] and r(r) = pre[r]. The semantic readings 
of the modalities are /orward-looking, and in temporal logics, they are known as 
relativized next operators: 

[a] ip ^  uAll a-successors satisfy y>" 
(a) <p ^  "Some a-successor satisfies <p" 

The temporal variant of the /i-calculus usually works with the global transition 
relation Rm = \Ja€S a

m (standardly assumed to be total) and the modal oper- 
ators are replaced by global temporal "next" operators: VX or VO, and 3X or 

Sentences cp of the /j-calculus denote sets of states \\<p\\~ C X, and a sentence 
is true in 97t, written 2JI £ <p , iff \\(p\\' = X, or equivalently, \\-«p\\~ = 
0. The propositional connectives -1, A and V are interpreted by set theoretic 
complement, intersection and union, and other connectives and constants defined 
in the usual way. In particular, ||tt||" = X, and an implication y> -> tp is true 
in 971 exactly when ||y>||" C ||^||" . As a point of contrast, in the language 
of linear temporal logic LTL, sentences denote sets of (finite or infinite) paths 
or trajectories of the LTS model, rather than sets of states. In the language 
of the branching temporal logic CTL*, there are two sorts of sentences: state 
sentences, true or false at states of the LTS model, and path sentences, true or 

1 The formal syntax and semantics of the ^-calculus are reviewed in detail in Section 
3 below. For an account of the modal and temporal flavors of the /»-calculus, see 
[38] §4.2. [15] is a good source for translations of various linear and branching time 
temporal logics into the /i-calculus. For background on modal logics, see [9], [35]. 



false of infinite paths through the model. An 3 or V path quantifier applied to 
a path sentence produces a state sentence, and such quantification is definable 
using the least and greatest fixed-point quantifiers of the /i-calculus. 

The principal advantage of working in the modal rather than temporal frame- 
work is that it gives a modular specification language for expressing properties 
of transition systems: we can describe and reason about each of the component 
transition relations of an LTS model, and how they are combined to form more 
complex transition relations. In particular, we can give a clean and modular 
formal description of classes of trajectories of the system. 

The modal sentences: 

1> -> [cq,g']<p     and      V -»• K]y> 

with the semantic readings "If i> holds, then all c^y-successors satisfy (p", and 
likewise for eq, correspond precisely to Manna and Pnueli's two types of (tem- 
poral logic) safety verification conditions for hybrid systems in [29] §4.1. Their 
notation is: {tp}r{(p} and {ip}cont{<p}, respectively, where r ranges over jump 
transitions and "cont" denotes the union of all the evolution relations. 

The modal sentence 

(e9o)<c?o,gi)(egi)<c9i,92)<e92> • • •<e?*-i><c«*-i,9*><e9*> V (3) 

denotes the set of states (qo,x) from which some trajectory with discrete trace 
(9o,9i, • • • , 9*) reaches the set \\<p\\~   C X. Dually, the modal sentence 

[eqo][cqo,qi][eqi][cqug2][eg2] ■ ■ •[egk_1][cgfc_ligJ[e<jJ p (4) 

denotes the set of states from which all (90,91, ••• , 9fc)-trajectories reach the 
set llvll8", upon the last jump cqk_ltqk and remain in ||y>||" throughout the last 
evolution eqk. 

Defining e and c to denote the relational sum (union) of, respectively, the 
relations for the eg's for q € Q, and the relations for the cgig/'s for (9,g') € G, 
the dynamics of the class of all hybrid trajectories with finite discrete traces are 
captured by the dual fixed-point definable modalities: 

(h)(p = fiZ.{e)cp\/(e)(c)Z     and        [h]<p = vZ. [e]<p A [e][c]Z      (5) 

The sentence (h) <p "unwinds" to the infinite union of all sentences of the form 
(3), and dually, [h] tp corresponds to the intersection of all sentences of the form 
(4). As a regular expression, we have h = (ec)*e = e(ce)* (so we are in fact 
working in the weaker propositional dynamic logic PDL, rather than the full /z- 
calculus.) Semantically, (h) and [h] correspond to the dual pre-image operators 
of the reachability relation h of the system under the control of %; that is, 

(q,x) —► {q',x') iff some trajectory (<^,9i,7,-)iej with 90 = 9 and 70(0) = x 
passes through the point (q',x'). 

We now have the formal linguistic machinery to succinctly express various 
system specifications. The safety sentence 

Init -> [h] <p (6) 



is true in the model SDt = 9JI« exactly when every trajectory that starts in the 
set ||Init||s't always remains within \\<p\\m. More generally, we say a set \\<p\\~ is 
future-invariant under % exactly when the sentence <p -> [h] <p is true in 9Jt. We 
also have at our disposal (previously unutilized) deductive proof systems for the 
//-calculus, such as Kozen's axiomatization L^ [23], [5], [40], which is sound and 
complete over arbitrary ITS models. From the fixed-point rules of L^ (given in 
Section 5), one readily derives an obvious invariance rule for hybrid trajectories: 

j> ->■ <p    <p-> [eg]<p    <p -)■ [cg,,«]y>      for q G Q, {q, q') € G . . 

V>->[h]p l'J 

This is a simpler /«-calculus analog of the LTL invariance rule used in the veri- 
fication of safety properties for hybrid automata in [29], [30]. 

To express liveness properties, we use modal analogs of the "box-diamond" 
construct in temporal logic. For example, the sentence 

p->[h](e>(c>(e>tt (8) 

is true in SDt exactly when every maximal % trajectory from a state in ||^||" 
has an infinite discrete trace. This is so because [h](e)(c)(e)tt denotes the set 
of states from which every trajectory with a finite discrete trace can be prop- 
erly extended. Similarly, the sentence <p -)• \h](e)(c){e)<p is true in Sot exactly 
when every trajectory from \\cp\\~ returns to \\ip\\" via a controlled jump in- 
finitely often. And [h](h)y> denotes the set of states from which every hybrid 
trajectory eventually reaches \\<p\\" . Note that at this level of description, we 
cannot expressly rule out Zeno trajectories (<fr.,g.,7t)«ej such that / is infinite 
but 5Z»€j^«' < °°i but by considering variant evolution relations iq defined using 
a minimal time duration S, we could. 

A clean //-calculus definition of the higher-order modalities (h) and [h] also 
opens up new possibilities for aggregation in complex systems. We could model 
a complex system as a hybrid "meta-automaton", where the dynamics at each 
discrete meta-mode p £ P are given by the reachability relation hP of a (basic) 
hybrid automaton over state space Xp C Qp x Mn, with switching relations 
from Xp to Xpi between automata, as illustrated in Figure 2. We now have the 
machinery with which to formally reason about the dynamics of such a creature. 

We also gain a clearer view of the enterprise of symbolic model checking for 
hybrid and real-time systems, as implemented in tools such as HYTECH and 
KRONOS. The basic task of such systems is to compute the reachable region of a 
hybrid dynamical system under the control of a given hybrid automaton %. As 
noted in the recent paper of Henzinger, Kupferman and Qadeer [20], to capture 
the notion "reachable from tp", as distinct from "reaches ip", one needs in the 
semantics the post-image, rather than the pre-image, operator of a relation. The 

cleanest way to do it is to use the basic identity: post[r] = pre[r], where r is the 
relational converse or inverse of r, and to extend the /i-calculus with a converse 
operation governed by the rule: 

(a}xf> -tip    iff      if) -* [a]ip (9) 



Fig. 2. Aggregation in complex systems 

Then the sentence 

(h) Init (10) 

denotes the reachable region, where the post modalities (h) and [h] are defined 
as in (5), but substituting the converse relations. Symbolic model checking tools 

attempt to compute the value of || (h) Init ||an as_a first-order formula in n-f 1 
free variables (z,xi, ...,xn), in the language C(M) of, say, the structure M = 
(M;<,+,—, -,0,l,{q}q£Q) as the real closed field2 plus discrete constants. The 
procedure computes a sequence of first-order formulas xo, Xi> •••> Xk, — which are 
translations of the /i-calculus formulas forming the approximation sequence for 

(h) Init, with the translation starting from the explicit first-order definitions of 
the set Init and the relations eq and cq>q>. The procedure terminates at stage 
Jfc + 1 if the formula: Xfc+i +* Xk is provable in the first-order theory Th(M) 
of the relevant structure over M, in which case the reachable region is defined 
by Xk- The procedure is guaranteed to terminate when the model 971 = VJI-H 

has a finite bisimulation quotient 3ft", where « is an equivalence relation on 
X C Q x I" which respects each of the transition relations eq and c9i9/ and the 

2 The real closed field R admits elimination of quantifiers, so all first-order formulas 
in the language are provably equivalent in the theory 77J(R) to a quantifier-free 
formula. The definable subsets of Rn in R are the semi-algebraic sets: finite unions 
of sets defined by equalities and inequalities over polynomials / g R[Xi, ...,Xn] [14]. 



observation sets Initq, Invq, Grdqiq<. The recent work by Laflferriere, Pappas, 
Sastry and Yovine [27], [28], identifies a class of systems whose LTS models 
tSSlfl are first-order definable in an o-minimal structure M expanding the real- 
closed field. The finite cell decomposition property of such structures (together 
with a restriction on the form of the controlled jumps relations cqiq<) is used 
to construct the finite bisimulation equivalence. (The theory of definable sets in 
o-minimal structures is developed in van den Dries' monograph Tame Topology 
and O-minimal Structures [14].) 

The basic propositional modal //-calculus can provide both a usable and a 
richly expressive formalism for reasoning about the abstract dynamics of hybrid 
systems. We want and need more. We want to be able to express in our logical 
formalisms what we mean by continuous and discrete dynamics, and hybrids 
of the two. We want to be able to formally express notions of imprecision or 
metric tolerance, such as the property of "being within distance e" of a set, for a 
particular e > 0. More generally, we want a logical formalism that supports not 
only the specification and verification of single properties, but the larger task of 
representing and building up a knowledge base of properties of a system, starting 
with structural properties assumed in the modeling, and then adding new facts 
as they are verified by either model-checking or deductive means. 

The remainder of this paper is an exploration of how the propositional modal 
/i-calculus can form a basis for a cohesive and expressively rich logical frame- 
work for the formal analysis of hybrid systems. In developing the logics, our key 
resources include: 

1. modal logics, considered as a general formalism for reasoning about binary 
relations and operators on sets ([9], [35], [38], [5]); and 

2. set-valued analysis and dynamical systems theory, brought into play by con- 
sidering transition relations rCXxXin their equivalent form as set-valued 
maps riX^X, i.e. functions r : X -* V{X) ([1], [6], [7]). 

In the course of this paper, it will be important to keep an eye on both the 
distinction and the interplay between: 

— the //-calculus and various extensions as propositional modal logics (and thus 
ultimately monadic second-order logics [25]), in which formulas of the same 
formal language can be meaningfully interpreted in a variety of LTS models 
of any cardinality; in particular, in both continuum-sized models 9Jt and in 
finite quotients 9JI*; and 

— the first-order languages £(K) and theories Th(M) of specific structures M = 
(M; <,+,—,-,0,1,...) over the reals, used in defining the components - the 
state space X, the transition relations am and observation sets ||p||' - of 
particular, albeit intended, LTS models 9Jt. 

With regard to the latter, note that in the theory of o-minimal structures, rela- 
tions r : Rm --* M" go by the name of definable families (rx)x^m ([14] §3.3). 



To restate the point, the system description language is that of first-order 
logic, while the system specification language is that of propositional polymodal 
logic with fixed-point quantifiers. 

This paper is one installment of a larger project. An analysis of the concept 
of bisimulation, and its relation to the algebraic semantics for the /i-calculus, is 
given in [11], and [12] gives the completeness of deductive proof systems for nor- 
mal polymodal extensions of the /i-calculus. Related logics and earlier versions 
of some of the ideas are found in [10]. 

The paper is organized as follows. Section 2 is a review and analysis of basic 
hybrid systems and their associated LTS models. Section 3 is a review of the 
syntax and LTS semantics of the modal /i-calculus. In Section 4, we flesh out the 
skeleton of an LTS model by imbuing the state space with topological and metric 
tolerance structure; we explore continuity and tolerance properties of relations r : 
X ~» Y and applications to components of hybrid automata. Section 5 presents 
deductive proof systems for the new logics, extending Kozen's axiomatization of 
LM. Section 6 is a brief discussion of ongoing research. 

2    Basic hybrid automata and associated LTS models 

First, a note on notation. For a set X, V(X) denotes the family of all subsets of 
X (a complete Boolean algebra). Following [6], the notation r : X ~> Y means 
rCIxYisa relation, or equivalently, r : X -» V(Y) is a set-valued map, with 
values r(x) C V for x € X. The expressions: 

x -^> y,    (x,y) £r,   y E r(x)  and  xry 

are synonymous. The domain of r : X ~» Y is defined by dom(r) = <r(r)(Y), 

and the range ran(r) =: <r(r)(X) = dom(r). Relational compositions r ■ s of 
r : X ~* Y and s : Y ~» Z are read from left to right in sequential order, defined 
by: 

r* 
X  1 z     =     (3y e Y)   x -^ y and    y 

(cf. [1] where composition is written in the reverse order, as for functional com- 
position.) 

We base our discussion on a generalization of the systems considered in 
[27],[28], depicted in Figure 1. Figure 3 is an illustration. 

Definition 1.   A (basic, evolution time-deterministic) hybrid system is a struc- 
ture 

U = (Q, G, {Xq}q€Q, {(f>q}qeQ, {Initq}q€Q,{InVg}qeQ, 
{rq,q'}(q,q')eG,{Grdq,q'}(q,q')eG) 

where 



— Q is a finite set of discrete states or control modes; 
- G C Q x Q is the control graph of discrete transitions; 
— for each q &Q, 

• Xq C 1" is the state space for mode q; 
• <f>q:Xqx K+ ->■ Xq is the continuous semi-flow of a vector field on Xq; 
• Invq C Xq is the set of invariant states for mode q, or the domain of 

permitted evolution within mode q; 
• Initq C Invq is the set of initial states for mode q (possibly empty); 

— for each discrete transition (q, q') £ G, 

• Grdq>qi C Xq is the guard set for the jump from q to q'; 
• rgiqi : Xq ~> Xq' is the reset relation; 

for x G Xq, rqtqi(x) C Xqi is the set of possible reassignment states after 
the jump from q to q'. 

The hybrid state space of the system % is the set 

X = l)q€Q {?}  X Xq 

To keep things simple, assume a fixed number n of real-valued coordinates, 
so Xg C 1" for each q € Q. In [27],[28], the systems under consideration are 
simpler again in that they have constant reset relations rq>qi = Grdqiqi x Rstqtqi, 
with the constant set of reassignment states Rstqigi C Invqi. 

The intention is that a hybrid system, so defined, is the semantic content 
of a hybrid automaton in the sense of Henzinger [19], Def. 1.1. For definiteness, 
we take a (basic, evolution time-deterministic) hybrid automaton to be a hybrid 
system H with a concrete syntactic description, namely: 

- the discrete structure is given by a finite graph {Q,G), where G CQ xQ; 
- each of the component sets Xq, Initq, Invq, Grdq>qi C1", semi-flows 

<f>q : Xq x M+ -)• Xq, and reset relations rq<qi C Xq x Xq> have explicit 
first-order definitions in the language £(<, +, —, •, 0,1,...) of some specified 
structure M over the reals. 

From [27], [28], we have reason to want such a structure M to be o-minimal. 
Operationally, a hybrid automaton % can be thought of as defining a non- 

deterministic hybrid control policy, partially defined on states (z, x) £ X: 

if    z = q  and   x € Invq 

then      stay  in discrete mode q  and continue evolution according to <j>q; 
if    z = q   and x € Grdqiqi for some (g, q') € G, 
then     switch to discrete mode q',   re-initialize to some x' 6 rqigi(x), 
and      then evolve according to the flow <f>qi. 

The domain of definition of % is given by: 

dom(?{) = (UgeQ {<?} x Invq) U (U(q>g<)eG {?) * GV<V) 



Fig. 3. Operation of basic hybrid automaton 

If z = q and x 6 GrdqA< for some (g, q') 6 G, then that discrete control switch 
is said to be enabled; if (q,x) G dom("H) but x £ Invq, then some discrete 
control switch is said to be forced. It is generally assumed that rg>g/ (x) C Invqi 
for all x £ Grdqiq>; in words, Invq> is (forward) rq>qi-invariant from Grdq>qi. In 
some expositions (e.g. [27]), it is required that % be total or non-blocking, which 
amounts to the assumption that dom('W) = X. 

In descriptions of the operation of a hybrid automaton and the ensuing class 
of trajectories of the system, it is generally assumed (e.g. [19]) that the state 
x = (xi,...,x„) € 1" of the physical plant is being continuously sensed, with 
perfect precision, and that the action and effect of a discrete control switch is 
instantaneous. 

The accepted ([19], [27]) definition of the ("time-abstract") transition system 
of a hybrid automaton, with modified notation, is as follows. 

Definition 2. Given a hybrid system %, the LTS model Sfll-u determined by % 
has the following components: 

- the state space X = UggQ {q} x Xq; 



— for each discrete state q €Q, the constrained evolution relation 
eq : Xq ~> Xq defined by: 

iAr'     =     (3t G R+)[ x' = *,(*, t) A (Vs € [0, *]) 4q(x, s) G Jnt>, ] 

— for each discrete transition (q, q') G G, the controlled jump relation 
cq:q> : Xq ~» Xq> defined by: 

I'4I'      =        x£Grdq>q>    A   x'elnvql   A   x ^> x' 

— the observation sets Xq, Initq, Invq, Grdq<qi. 

We adopt the notational convention of identifying, when convenient, sets 
Aq C Xq and {q} x Aq C X; moreover, the relations eq : Xq ~» Xq and cqiqi : 
Xq -<-»• Xqi can be "lifted" to relations X ~> X in the obvious way. 

From the definition of the evolution relation eq, a desired property of the 
domain of evolution Invq is that it be convex with respect to the semi-flow <f>q, 
in the sense that: 

if x G Invq and  4>q(x,t) £ Invq for some < > 0, 
then  <f>q{x, s) G Invq for all s G [0, <] 

So no curve segment of the semi-flow with both endpoints in Invq ever leaves 
Invq at an intermediate point. 

In the terminology of [1] Ch. 6, Definition 6.3, the (positive) orbit relation 
f : X ~»- X of a semi-flow <f>: X xR+ -> X is defined by: 

x-Ux' (3*€M+)   x'= <£(*,*) (11) 

With respect to the orbit relation /, : Xq ~> Xq of <^g, the desired convexity 
property for Invq has the form: 

if x0, xx G Invq and  x0 —^ x —^ xi   then  x G /nvg 

So when 7nüg if /^-convex, we have the decompositions 

eq — fqn {Invq x Invq)    and     cqtq> = rq>qi n {GrdqAi x Invqi) 

in which case we may as well assume the LTS model SDT« includes the (uncon- 
strained) orbit relations fq and the uncontrolled reset relation rqiqi. If we want 
to express properties which require both the orbit relation fq and its converse 

(convexity is one such), then we should include fq as a component of 9Jt« as 
well (see also [20]). 

The modularity of the modal /i-calculus allows us to succinctly express not 
only desired properties - i.e. those to be verified, but also various of the structural 
properties of the LTS model ÜJl-u that it will typically possess by assumption. In 



a deductive framework, such sentences and sentence schemes (formulas with free 
propositional variables Z) provide an initial stock of facts known to be true in 
the model, and serve as hypotheses in application of inference rules when seeking 
to expand one's stock of knowledge. 

[1] (fg)Invg A (fg)Invg -» Inv, 

[2] Initg -> Invg 

[3] Init «■ VggQ   'n**9 
Invf*Vg6Q 

Inv9 

[5] (rqiq')Grdgiqi -)• Invg/ 

[6] Grd^,' -> (rg,g/)tt 

[7] (eq)Z «• Invg A {fq)(Z A Invg) 

[8] (eq)Z «• Invg A (fq){Z A Invg) 

[9] (cqig>)Z <-> Grdgg/ A <rg,g-)(Z A Invg<) 

[10] (cqigi)Z o Invg- A (rg~g/)(Z A Grd^/) 

[11] (^«V,Eg(f,)2 
[12] Z -> (t)Z 

[13] (fq)(fq)Z ^ (fq)Z 

[14] (e)Z «• VgeQ (eq)Z 

[15] (c)Z f+ V(,,^)€G K«')^ 

[16] (h)tt «■ VgeQ InVg   V  V(,,,')6G Grd9.? 

[1] says that 7ni/g is /g-convex. [2] is merely that Initq C Invq. [3] and [4] define 
the global initial and invariant sets. [5] is the assumption that Invq> is (future) 
rgig'-invariant from Grdqtq>. [6] says that every point in Grdq>qi has an rg>g<- 
successor; i.e. Grdq>qi C dom(rgg/). [7] - [10] follow from the decompositions 
eg = fq n (Invq x Invq) and cg,g/ = rg,g' ("1 (Grdq>qi x Invqi). In particular, using 
the rule for converse (9) in Section 1 above, we have: 

p-»[eg]v?      iff      InvqA{fq){<pMnvq)^np (12) 

and 

f -¥ [cqiq'](f      iff      Invg/ A (rq>q>)(ip A Grd,,,') -* <p (13) 



[11] defines / as the union of the orbit relations fq. From the zero semi-flow 
property, each fq is reflexive on its domain Xq, so / is reflexive (and total) 
on the whole space X, which is [12]. From the sum semi-flow property, each 
fq is transitive; this is [13]. [14] and [15] are the definitions e = Ug6Q eq and 
c = U(gig/)€G Cq.q'- From [7], [14] and [12], it follows that: 

(Z A Inv) -► {e){Z A Inv) (14) 

that is, the relational sum e is reflexive on its domain. And from [7] and [13], we 
get: 

(eq)(eq)Z-+(eq)Z (15) 

which says each eq is transitive. 
[16] defines the domain dom('H). The definitions of (h) and [h] in (5) above 

should also be added to the list. 
Using convexity assumption [1] and (12), the invariance assumption [5] and 

(13), and the invariance rule (7), it follows that Inv —> [h]Inv will be true 
in SDt«; i.e. the set Inv is future-invariant under %. More generally, whenever 
Inv -»■ <p is true in 9Jt«, then Init -> [h] ip will be true, and thus on the 
current interpretation, ||y>||" is safe under the action of %, since no (perfect 
precision) hybrid trajectory starting in Init ever leaves Inv. So in this scenario, 
the situation of a controlled jump being forced - that is, (q, x) € dom(?£) but 
x £ Invg - can in fact never arise. Perfect precision trajectories start or land 
inside Invq, evolve continuously according to <j>q, and then while the state is still 
inside Invq, or at worst on the (topological) boundary of Invq, a jump is made 
according to cqiqi. 

In some accounts of the LTS model of a hybrid automata (including that in 
[19]), the definition of the constrained evolution relation eq is slightly weaker, 
with the requirement: Vs € [0,t), <f>q(x,s) e Invq, so the end-point <f>q(x,t) 
need not lie in Invq. If Invq is closed (in the standard topology on Xq C M"), 
then the continuity of <f>q : Xq x M+ —> Xq entails that all such end-points will lie 
in Invq regardless, so the weakening makes no difference. In virtually all concrete 
examples of hybrid automata in the literature, the invariant sets Invq are closed. 

In Section 4, when we adjoin modalities corresponding to the interior and 
closure operators of a topology, we will be able to formally express properties 
such as being open, closed, or the topological boundary of a set. We will also be 
able to give formal expression to the assumption that the orbit relations fq are 
those of continuous semi-flows, and to consider consequences of continuity. 

We also clearly need to entertain the possibility that a physical realization of 
a hybrid automaton as a control policy might be less than perfect: sensors will 
be accurate only up to some level of precision; we should allow for delay between 
sensing the state and acting on that sensor reading in accordance with the control 
policy; and then there are margins of error in real-valued constants used in first- 
order definitions of the components of the model. In Section 4, we will consider 
alternative classes of hybrid trajectories by playing with the definitions of the 
fixed-point modalities (h) and [h] in an enriched modal language containing 



modalities (e) and [e] interpreted by metric e-tolerance relations, for concrete 
values of e > 0. 

3    Syntax and LTS semantics of the modal /i-calculus 

The /i-calculus originated in the late 1960's (Scott and de Bakker) as a formal 
logic of digital programs, the input-output behavior of an atomic program being 
represented as a binary transition relation on (discrete) states. Contemporary 
introductions to the /i-calculus can be found in [38], [15]. In this section, we 
review the syntax and semantics over LTS models of the propositional modal 
/i-calculus. 

Definition 3. A modal signature is a pair (#, E), where 0 is a set of proposi- 
tional constants and E is a set of transition labels. Let PVar denote a fixed set 
of propositional (second-order or set-valued) variables. The collection T^^jE) 
of formulas of the propositional modal [i-calculus is generated by the grammar: 

<p ::= ff [ p | Z | -xp | (pi V v?2 I {a)<P I pZ.tp 

for propositional constants p G <P, propositional variables Z G PVar, and tran- 
sition labels a G E, and with the proviso that in \iZ.(p, the variable Z occur 
positively, i.e. each occurrence of Z in (p is within the scope of an even number 
of negations. 

The other (classical) propositional connectives, modalities and greatest fixed 
point quantifier are defined in the usual way: 

tt   =   -iff (Plh<p2   —   -1(~,¥>1 V -«P2) 

<Pl-*¥>2  — ~"Pl v <P2       <Pl «-»■ 92  —  {<Pl -» 92} A ((pi -¥ <pi) 

[a](p = -i(a)-xp vZ.tp = -ifiZ.->(p[Z := ->Z] 

An occurrence of a variable Z € PVar in a formula that is within the scope of 
a fiZ is called bound, otherwise it is free (as in first-order logic). Let S(,($,E) 
denote the set of all sentences, or closed formulas of TjAp, E), i.e. those without 
any free variables, and let ?{$, E) and S($, E) denote, respectively, the set of 
all purely modal formulas and sentences, i.e. those containing no fixed point 
quantifiers, and in case of sentences, no variables Z. 

For formulas (p, ip G ^j(#, E), let (p[Z := ip] denote the result substituting ip 
for all free occurrences of Z. By renaming bound variables in <p if necessary, we 
can assume such substitutions do not result in the unintended capture of free 
variables. 

Definition 4. Given an LTS M = (X, {aan}<xeX!, {|bi|OT>pe*) of modal signa- 
ture (<&,E), a (propositional, or second-order) variable assignment in 97t is any 



map£ : PVar —> V(X). Each such assignment £ uniquely extends to a denotation 
map lH|f : T^, 27) -»■ T{X) as follows: 

11*11" " 0 

||p||f ^ ||p||OT /orp€* 

||Z||f = i{Z) forZE PVar 

Mf = *"IMlf 
iv^Hf = billfull^Hf 

IKaMlf £ *(<.*) (|M|f) /or a €27 

11/zZ.^lf = flM € P(X) | IMlJk/s, C A } 

H/fiere ffie pre-image operator o~{am) is defined as in (2) above, and for sets 
AeV(X), the variant assignment £(A/Z) : PVar -> V(X) is given by: 

Z{A/Z){W)=Z(W)if W±Z,    and   £(A/Z){W) = A   if W = Z. 

For formulas ip € ^>(^i 27) and assignments £ : PVar -» V(X) in 971, we say: 

— <p is true at state x in (971, £), written:   971,£,x 1= <p,   iff   x € ||v?||{ / 

— y? M true in (97l,£), written:   97t,£l=^,   iff   \\<p\\^lt = X;   i.e. tp is true at 
all states x in (97t,£); and 

— <p is true in ÜJI, written:   ÜJlt (p, iff   ip is true in (971, £) for all assignments 
k in SOt. 

For sentences y: G ^($,27), the denotation ||^>||j   is independent of the 

variable assignment f, and is written ||^>||" . So 9711= <p  iff 97t,£ 1= y>  for any 
assignment f. 

Given a model 971 and variable assignment £, each formula <p G ^> (#, 27) and 
each variable Z € PVar free in <p, together determine an operator on sets 

vfz :"PP0 -*• ?(x) siven by; 

^f!z)(A) = M\f(A/z) (16) 

The variant assignment construct corresponds to substitution: for all formulas 

When the variable Z occurs positively within (p, so fiZ.cp € J>(^, 27), the oper- 
ator ipf^z is C-monotone: 

ACB    =>    F(A) C i?(5) 



for F = f^z- The clause in Definition 4 for /z-formulas says that ||//Z.y||j is 
the C-least pre-fixed-point of the monotone operator <pffz in the complete lattice 

T{X). So by the Tarski-Knaster fixed-point theorem, ||//Z.9?||^ must also be the 

C-least fixed-point of <pffz'> that is: 

WvZ-vWT = n^ G VW I IMI«A/*) = A } 

In the standard set-theoretic semantics for the /i-calculus, as presented here 
and given in [23], [38], [40], [15], the propositional variables Z range over the 
full power-set (and complete Boolean algebra) V(X) - that is, all subsets of X. 
An alternative, developed by Kwiatkowska and colleagues [5], [8], is an algebraic 
semantics in which the range of propositional variables is restricted to a sub- 
family A C V(X). This work has roots in a number of classic studies from 
the 1950's, notably that of Henkin [18] on completeness of higher-order logic; of 
Jönsson and Tarski [26] on Boolean algebras with operators; and that of Rasiowa 
and Sikorski [36] on algebraic logic. 

Definition 5. ([5], [8]). Given an LTS model 971, a family of sets A C V{X) 
is said to be a modal algebra for 97t, and the pair (971, .4) is known as a modal 
frame, when each of the following holds: 

1. A contains each of the observation sets \\p\\~ , forp £ #; 
2. A is a Boolean algebra under the finitary set-theoretic operations; and 
3. A is closed under each of the pre-image operators cr{am) and r(arn), for 

a€H. 

For purely modal formulas ip € T{4>,£), the clauses in the inductive defi- 
nition of the denotation ||y>|L   C X with respect to a modal frame (071, ^4) are 

identical to those in Definition 4 for \\<p\t , with the proviso that variable as- 
signments £ are restricted to A, i.e. £ : PVar —> A. 

A formula ip is true in the frame (971, A), written (971, .4) t= <p, iff \\(p\\^ = X 
for all assignments £ in A. 

An LTS model 971 is identified with the modal frame (971, V{X)). 

Modal algebras A C V(X) need not be complete as lattices, so unlike V(X), 
we have no guarantee that the set being the C-least pre-fixed-point of <p£z in 
fact exists in A; when it does, it is the least fixed-point in A of <fftz, by a variant 
of the argument in the Tarski-Knaster fixed-point theorem. 

Definition 6. ([5], [8]). A modal algebra A C V(X) is called a modal /x-algebra, 
and the pair (971, .4) called a modal /x-frame, if for each formula fiZ.ip € .?>(#, £) 
the infinitary meet or infimum of the family in A   of pre-fixed-points of <p£tz 

MAeA\\\<p\\tlA/z)cA} 

exists in A, in which case \\fiZ.<p\\f   is that set. 



In general, the denotations \\<p\\} and \\<p\\f part company on //-formulas, 
since the smallest of all sets A £ V{X) such that a condition holds will be 
contained in the smallest of all sets A £ A for which the same condition holds. 
In [11], we identify conditions under which a modal //-frame (9Jt, .4) is in semantic 
agreement with 971, i.e. for all //-formulas ip G Tß($,E), \\<p\\f = Hvllf1 for all 
assignments f restricted to A- The smallest /«-algebra for an LTS 571 is the 
countable algebra 

Sf = {.|Mf I ¥>€$,(*,27)} 

of denotations of //-sentences in 971. It is readily verified that S^1 is in semantic 
agreement 971. 

From the purely modal clauses in Definition 4, together with the definitions 
of the pre-image operators in (2), it follows that if the state space, transition 
relations and observation sets of an LTS model Sot are all first-order definable 
in some structure, then for all modal sentences <p € S($, 27), the denotation 
Wvlf1 C X is first-order definable. Otherwise put, the countable algebra 

5OT = {|Mrke^,27)} 
of denotations in 97t of purely modal sentences, has a finitary syntactic repre- 
sentation as a family of first-order formulas; a family finitely generated by the 
explicit first-order definitions of the components of 371, under the straight-forward 
translation of modal sentences based on the definitions (2) and the (classical) 
meaning of the Boolean connectives. Of course, an optimal situation is when the 
first-order structure admits quantifier-elimination, as then the naive translation 
of a modal sentence can be reduced to a quantifier-free formula, and so the al- 
gebra Sm will have a simpler and more tractable representation. Such algebras 
are the semantic content of Henzinger's notion of a symbolic execution theory in 
[19] §3.1. 

Returning to the standard set-theoretic semantics, the completeness of V(X) 
as lattice ensures that the set ||//Z.^||j has an equivalent characterization (by 
the Park-Hitchcock fixed-point theorem) as the union of an C-increasing se- 
quence of approximations: 

11/iZ.dif =    U    IMIS. 
a<Ord(m) 

where 

IMS i0 

IMlZUi — iom 
— Pztz (llfll" 0 

IHR = U IMlfL 
a<i) 

for limit ordinals V 



and Ord(M) < K
+
, for K = Card(X), is the closure ordinal of 971. The sets |Mlj)Cr 

are ^-approximations of ||/zZ.^>||; . Likewise, the denotation of vZ.ip can be 
represented as the intersection of an C-decreasing sequence of ^-approximations. 

In the general case, over LTS models SJt of arbitrary cardinality, approxima- 
tion sequences for the denotation of fixed-point formulas proceed through trans- 
finite ordinals; when X has the cardinality of the continuum, Ord(9Jl) could be 
much longer than we care to deal with. 

When the operator (p^ corresponding to the body of a //-formula /iZ.tp is 

u)-chain-additive, that is, for F = <p^z 

F(An)    where An C A„+i for all n < w 

then the ordinal of convergence for ||^Z.y>||; is at worst w. In this case, we have 
a sequence of approximation formulas 

<p° i ff    and     <pn+1 = <p[Z := y?n]    for n< u (18) 

and 

ii^.^if=u ii^Hf 

since ||yn||j = \\<p\\} „• The terms "order-continuous" and "continuous from be- 
low" are also used instead of w-chain-additive, since such an F : V(X) -> V{X) 
is a continuous function with respect to the Scott topology on the complete par- 
tial order (V(X), C). We adapt the terminology of Jonsson and Tarski [26] on 
Boolean algebras with operators, since we are interested in other meanings of 
"continuous". Dually, when (pf^ is u-chain-multiplicative, the ordinal of conver- 

gence for ||i/Z.y>||; is at worst w, and the sequence of approximation formulas 
starts at tt and decreases. 

In particular, the semantic operator corresponding to the body of {h)ip (or 

(h)^?), as denned in (5), for sentences <p, is: 

A*-+tr(e)(\\<p\\m)U<r(ec){A) 

Since the 3-pre-image of any relation is completely additive, i.e. distributes over 
arbitrary unions, it follows that ||(h)y>||" is the union of the denotations of the 
approximation sequence 

ff,    (e)(p,    (e)(pV{e){c){e)tp,    {e)<p V <e)(c)(e)^ V <e>(c><e><c)(e>, ... 

Dually, the semantic operator corresponding to [h] is completely multiplicative. 
When « is a bisimulation equivalence on 9Jt - that is, an equivalence relation 

on X which respects the transition relations aF1 and the observation sets ||p||" 



in a suitable sense3 - then the fundamental property of truth-preservation is as 
follows: for all sentences ip E Sß($, S) and all x,y £ X, 

xny     =»    [*€|Mf   «■   y€\\<p\\m] (19) 

It follows that if « is a bisimulation equivalence of finite index N, then the 
denotation \\<p\\~ of each sentence is a finite union of equivalence classes under 
«. Hence for sentences fiZ.ip and vZ.ip, the ordinal of convergence for ||//Z.y||' 
and ||i/Z.y>||" is bounded by N. In this case, the finite quotient LTS 971s* is a 
finite simulacrum, and finite automaton representation, of the original system 
271. If such is the case, the countable //-algebra S™ is in fact a finite algebra, 
and the atoms of the algebra are the equivalence classes under «. The familiar 
bisimulation algorithm ([19] §3.1; [27] §2) can be reinterpreted algebraically as 
the construction of a sequence of algebras S^1  for k < w, where 

s^MIMr I *>€$*(#,£)} 
is the finite Boolean algebra of denotations of modal sentences of modal degree < 
k. The modal degree measures depth of nesting of modal operators; for example, 
for hybrid trajectory formulas of the form (3), the degree is 2n + 1, where n 
is the length of the discrete trace. It follows that S^_1 is the smallest Boolean 
algebra generated by Sf1 U {<r(am){A) | A G Sf1}. The algorithm terminates at 
stage k + 1 if S^.1 = «Sj^1, in which case the equivalence relation: 

x «Ä«, y    ±    (VA € Sf)[ x € A   <3>   y€A] 

is a finite bisimulation equivalence whose equivalence classes are atoms of the 
algebra Sf", and S^=S^. 

4    Adding topological and metric tolerance structure 

Within modal logic, there is a well-known way of representing a topology T on 
the state space X of an LTS or Kripke model. Prom McKinsey and Tarski's 
work in the 1940's ([31], [32], [36]), the axioms for the box G modality of the 
modal logic S4 correspond exactly to those of the Kuratowski axioms for the 
topological interior operator intf, and dually, the S4 diamond O corresponds 
to topological closure elf- S4 is a well-studied modal logic, and is of particu- 
lar interest in virtue of the 1933 Gödel translation of Intuitionistic logic into 
(classical) S4. The relational Kripke semantics for S4 is in terms of pre-orders: 

3 The concept is not formally defined here. An analysis of the concept of bisimulation 
is given in [11]. See also the handbook article [38] §5.3, where it is noted that if one 
wants to preserve the truth of sentences containing the converse operation, then the 
notion of bisimulation must be strengthened so as to include respect for the converses 
of the am. 



reflexive and transitive relations =^C X x X, and can be shown to be a special 
case of the topological semantics via Alexandroff topologies, which are in one-one 
correspondence with pre-orders (see [11]). For background on general topology, 
see [33], [24]. 

Let ^Q^IT) denote the collection of formulas defined as in Definition 3 
with an additional clause for a plain D modality, with analogous notation for the 
collection of sentences, and the purely modal fragments. The diamond is defined 
by the usual negation (de Morgan) duality: Oip = -iD-iy. 

Definition 7. J/Stt = {X, T, {am}a^s, {M\m}ps*) « a topologized LTS model 
then the additional clauses to be added to Definition 4 for the semantics of for- 

mulas <p G J>,D (#> E) are: 

||D^||f = intr (|Mlf)     and     \\O9Wf = clT (|Mlf) 

In the enriched language, we can simply express topological properties of sets 
of states. For example, a set \\<p[\m C X is, respectively, open, closed, dense or 
nowhere dense (empty interior), with respect to T, exactly when the sentences 
<p -» Dip, Op -»■ ip, Otp, or 0~«p are true in 371. The topological boundary 
of \\<p\\ is denoted by the sentence 0<p A -Otp (and boundary sets are always 
nowhere dense). _ 

Note that if X C 1" is first-order definable in an o-minimal structure M, 
T is the subspace topology on X inherited from the standard metric topology 
on M." (derived from the order < onl), and A C X is definable, then intr {A) 
and clr(A) are also definable ([14], Lemma 3.4). Thus if the components of a 
topologized model SDt are definable in M, then the topological modal algebra 

SrfMIMr I ¥>€*:(*,£)} 
of denotations of modal sentences including D is also definable. From the perspec- 
tive of o-minimality, observe that the cells of a cell decomposition of a definable 
IC1" are either open in 3Rn, or else are boundary sets ([14], Proposition 2.5) 
- properties expressible in the enriched modal language. 

Note that if we want a bisimulation to be truth-preserving with respect to 
sentences ip € SM)Q (<?,£), then it must also respect the topology T. For equiv- 
alence relations «, this amounts to the requirement that for each equivalence 
class B under «, the closure CIT(B) must be a union of equivalence classes, thus 
either intr(B) = B or intr{B) = 0; in brief, the equivalence classes B are 
"cell-like". 

OK, so we've formally got topologies in the picture, so we should be able to 
express some notion of continuity. A sticking point is that the standard notion of 
continuity is for functions, not relations. In purely topological terms, a function 
f : (X, T) -* {Y, S) is continuous iff for every open set U in Y, the inverse-image 
f~x{U) is open in X. The relevant notions for relations r : (X, T) ~> {Y, S) 
were introduced by Kuratowski and Bouligand in the 1930's, and replace the 
functional inverse-image with the relational V- and 3-pre-image operators. 



Definition 8. ([6] §1.4; [l]4 Ch. 7; [24] §18.) A relation r : {X,T) ~» (Y,S)   is: 

— upper semi-continuous (u.s.c.) iff for every open set U in Y, the W-pre-image 
T(r)(U) is open in X; 

— lower semi-continuous (l.s.c.) iff for every open set U in Y, the 3-pre-image 
(r(r)(U) is open in X; 

— continuous iff it is both u.s.c. and l.s.c. 

When r : (X, T) ~* (Y, S) is in fact a (single-valued) function, each of the 
semi-continuity properties is equivalent to functional continuity, since in that 
case, the two relational pre-image operators collapse to the familiar inverse- 
image operator: <r{r) = r(r) = r-1. Logics of continuous functions are developed 
in [10]. 

The two semi-continuity properties are simply expressible in the language of 
the topological //-calculus by the formulas (sentence schemes): 

[a]nZ-*U[a]Z     and       (a)OZ -> U{a)Z (20) 

In dual form, upper semi-continuity can be read as preservation of closed sets 
by the familiar 3-pre-image <r(r) = Pre(r): 

0(a)Z -> (a)OZ 

From these simple characterizations of the semi-continuity properties, it follows 
purely formally that each of the properties is inherited under finite relational 
compositions and finite relational unions (sums). Inheritance of continuity prop- 
erties under infinitary fixed-point quantification is a topic of continuing investi- 
gation. 

So far, the discussion of continuity is still rather formal, and a tad insubstan- 
tial. But in the case of compact metric spaces, we get to see some meat on the 
bones. 

Proposition 1. ([1] Ch.7, Proposition 11) For relations r : X MY where X 
and Y are compact metric spaces and the direct image r(x) C Y for each x € X 
is closed, the following are equivalent: 

1. r is u.s.c; 
2. for all x £ X and all e > 0, there is a S > 0 such that for all x' G X and 

dx[x,x')<6  and x' -^ y1   =>   (3y e Y)[x -^ y  and dY{y,y') < e] 

S. as a subset of X xY, (the graph of) r is closed; 

4 Note that in [6], [7], Aubin uses the terms "core" and "inverse-image" instead of 
universal and existential pre-image, while in [1], Akin uses but has neither names 
nor notation for the pre-image operators. 



4- r:Y ~» X is u.s.c. 

The following are also equivalent: 

1. r is l.s.c; 
2. for all x £ X and all e > 0, there is a S > 0 such that for all x' € X and 

y€Y, 

dx(x,x')<6  and x-^ y   =*   {By1 E Y)[x' -^ y'   and dY{y,y')<e] 

r(x) 

radius 6 

Fig. 4. The u.s.c. property in the compact metric setting. 

The metric u.s.c. property says that if an input x' is within S of x, then every 
point y1 in the output or image r(x') is contained within an e "ball" or "tube" 
around r(x). For the orbit relation / : X ~» X of a semi-flow <f> : X x M+ -> X 
(defined in (11)), where f(x) = {(f>(x,t) 11 € M+} is the positive trajectory from 
x, the picture really is that of an e-tube: if dx(x,x') < 6 then the trajectory 
f(x') lies inside an £-tube around the trajectory f(x), as illustrated in Figure 
4. The idea is certainly reminiscent of the "tube neighborhoods" in the work of 
Gupta, Henzinger and Jagadeesan [17] on robust timed automata; the interest 
in that paper is on metrics on trajectories r 6 (# x ]R>0)*, where ^ is a finite 
alphabet of event names. 

When X is a compact metric space, <j> : X x M+ -> X is a continuous semi- 
flow, and T C M+ is compact, the restricted orbit relation f7 : X ~> X given by 
/''(x) = {^(x,f) 11 G T} has a closed graph and hence is u.s.c. ([1], Ch. 6). This 
leads to the following result on continuity properties of both sort of transition 
relations in an LTS model of a hybrid automaton. 

Proposition 2. Let 9Jln be the LTS model of a hybrid automaton, as in Defini- 
tion 2. Assume that each Xq C Mn is compact in the standard topology on Mn. Let 
Tq be the subspace topology on Xq, and assume the semi-flow<f>q : XqxM.+ -» Xq 

is continuous. 

1. Iflnvg is closed in Tq, and time-bounded under <f>q, in the sense that there 
is a tq > 0 such that for all x £ Invq and all t > tq, <f>q(x, t) £ Invq, 
then the relation eq : Xq ~» Xq defined by eq = fqC\ (Invq x Invq)   is u.s.c. 



2. If Grdqrf C Xq and Invq> C Xgi are both closed, in Tq and Tq> respectively, 
and the graph ofrq>q> : Xq ~* Xq> is closed, 
then the relation c9i9/ : Xq ~> Xqi defined by cqiq> = rg>g/ D (Grdqiq> x Invqi) 
is u.s.c. 

The point is that the u.s.c. property is sufficiently attractive that we may 
wish it to be the case that all our transition relations possess it. From our 
observations above, all finite compositions and unions of the eq and cqiqi will be 
U.S.C. if the eq and c9i9< are u.s.c. Note also that for the constant jump relations 
Cq<qi = Grdqtq> x Rstq>q' of [27], cg>q' is u.s.c. when both Grdqiqi and Rstqiqi are 
closed. 

When the relations eq : Xq ~-+ Xg and cM» : Xq ~* Xq> are lifted to relations 
X~»I, the issue arises as to what is the appropriate topology on the hybrid 
state space X C QxW ? Taking the Xq equipped with their standard topology 
fromM", the question then becomes: what topology TQ on the finite discrete state 
space Q? One reasonable choice is that Q really is discrete and has no topological 
structure, which amounts to taking TQ to be the discrete topology. Then the 
lifted relations will be u.s.c. or l.s.c. whenever their unlifted counterparts are. 
An alternative reasonable choice is to consider Q as structured by the control 
graph G C Q x Q, so take TQ = TG to be the (Alexandroff) topology determined 
by the reflexive-transitive closure =$a of G. The open (closed) sets in TG are 
those P C Q that are up- (down-) invariant under ^G; the clopen sets in TG 

are cycles under G. The inherited topology on X CQ x Rn, and the continuity 
properties, are more complicated, and under current investigation. 

Metric structure on the state space of an ITS model can be used to define 
explicit metric tolerance relations that allow us to express such properties as 
being within € of a set, for a particular e > 0. Again, the resources of modal logic 
come into play. For X a metric space and e > 0, define a relation of e-tolerance 
or c-indiscernability (e) : X ~* X by: 

x(e)x'     iff    dx(x,x')<e (21) 

Such a relation is reflexive and symmetric, but not transitive. My source for the 
notion of a tolerance relation is Smyth's [37]. A motivating idea in that paper, 
which is traced back to Poincare's The Value of Sciencel905) and independently, 
to the topologist Zeeman in the early 1960's, is that perceptual or physical con- 
tinua, as opposed to the idealized continua of classical mathematics, are of finite 
or countable cardinality and are structured by a relation of indiscernability that 
is reflexive and symmetric, but not transitive. In [1] Ch.l, the relation (e) goes 
by the name Vt. 

Formally, we extend the alphabet S of transition labels with a new symbol e. 
Interpreting the new modalities (e) and [e] in the standard way by the pre-image 
operators <r(e) and r(e), the sentence (e)<p denotes the e-ball around \\ip\\' , or 
the e-closure of ||y>||" - that is, the set of states within e of some point in \\(p\\~ , 
while [e]ip denotes the e-interior of \\<p\\~   - that is, the set of states all of whose 



e-neighbors are in \\<p\\~   . The modalities for symmetric and reflexive relations 
are axiomatized by the modal logic KTB; see [9] §4.3. 

The combination of topological and tolerance structure opens up new possi- 
bilities. For example ([1] Ch.l, Corollary 2), if am : X ~» X is u.s.c. in a compact 
metric space X, then for each closed set \\ip\\~ C X, and each e > 0, there is a 
S > 0 such that the sentence 

(S)(a)<p^{a)(e)<p (22) 

is true in 9Jt. 
Metric tolerance structure can be used to define "imperfect precision" hybrid 

trajectories. In the LTS model 9Jt« of a hybrid automaton %, suppose that on 
each projection Xq C W1, we have a metric tolerance (Sq) : Xq ~» Xq for 
some given Sq > 0. Then instead of considering "perfect precision" trajectories 
formed from the simple alternation of constrained evolution and controlled jump 
relations, as in (3), we might want to consider transition sequences: 

e, 90 " ^go " c?o,gi " cgi " "gi ' cgi,g2 ' eqi eg/t-i ' "g*-i ' cgfc-i,gk ' egt \^) 

Operationally, this can be construed as allowing metric "gaps" of up to size 
Sq between the decision to make a controlled switch cq<qi, and the point at 
which such a switch actually occurs. Defining (S) : X ~» X to be the union of 
each of the lifted relations (<frg), the dynamics of the class of all "<J-imperfect" 
hybrid trajectories with finite discrete traces are captured by the dual fixed-point 
modalities 

<h,)p = nZ.{e)<pV(e)(6)(c)Z   and      [hs]<p = vZ. [e]<p A [e][8][c]Z   (24) 

Alternatively, one could "relax" the definition of the constrained evolution rela- 
tion, and take 

(eq)Z <* (6q)Invq A (f,)(Z A Inv,) 

that is, eq = fqf\ (Invq x a{Sq)Invq), where the revised convexity property is: 

<fjj)Invg A <f,)(*,)Inv, -> <*9)Inv, 

which says: curves along <j>q that start in Invq and end in <r(6q)Invq lie inside 
o-(8q)Invq. 

5    Deductive Proof Systems 

We present simple Hilbert-style axiomatic proof systems for the logics of interest. 
The axiomatizations are not intended to be minimal; rather, they are meant to 



serve as a useful reference list. In particular, we give the axioms and rules for 
both of the dual diamond and box modalities. Kozen's axiomatization L^ [23] 
forms the foundation, with extensions developed in a modular fashion. So far, we 
have identified S4 for topological and relational pre-order modalities, and KTB 
for tolerance relations. A further candidate is S5, the modal logic of equivalence 
relations: we can give modal representation to any partition of the state space 
of our choosing; bisimulation equivalences spring to mind. S5 is also the base of 
logics of knowledge [16]: the knowledge of an agent is modeled by the equivalence 
relation of indistinguishability relative to its knowledge base. 

Equivalent Gentzen sequent-style proof systems for the /i-calculus are pre- 
sented in [5], [8], and also in [40]. 

Definition 9. The Hilbert-style proof system for the logic Lß has the following 
axioms: for transition labels a £ S, propositional variables Z,W € PVar, and 
formulas <p € J>(^, ■£), 

CP : axioms of classical propositional logic 

V-(a) : (a){Z VW)<* {{a)Z V (a)W) ff-(a) : <a)ff O ff 

A-[a] : [a](Z A W) «• ([a]Z A [a] W) tt-[a] : [a]tt «• tt 

li-f.p.: <p[Z := fiZ.<p] -»■ fiZ.ip v-f.p.: uZ.ip -»■ <p[Z :— l/Z.ip] 

and the inference rules, for formulas <p, V" £ •?> ($, £) '■ 

tp, (p-±%j> 
modus ponens:  -.  

substitution: r_   —T, 
<p[Z := ip] 

(a)-monotonicity:      (a)^ ^ 

[a]-monotonicity:       [a]^ ^ 

fi-least-f.p.: 

v-greatest-f.p.: 

Hoare composition: 

Hoare composition: 

liZ.<p -¥ 4> 

V> -> <p[Z := ip] 
rp —> vZ.tp 

ij> -+ (a)(b)<p 

$ ->Mx  X -» [b]<P 
i> -> [a][b]tp 



We write:  Lp I- <p for formulas ip € J>(#i E) if there is a proof of <p in L^. 
The axioms and monotonicity rules for (a) and [a] together assert they are 

normal diamond (possibility) and box (necessity) modalities ([9] Ch. 4); they 
are equivalent to system K (for Kripke), the logic of generic binary relations. 
In the language of [26], (a) denotes a normal and finitely additive operator on a 
Boolean algebra. The Hoare composition rules follow readily from monotonicity. 
As always, we assume substitutions ip[Z := ip] are legitimate ones; i.e. no capture 
of free variables. 

The axioms and rules for the fixed-point quantifiers assert what they ought: 
that fiZ.ip (yZ.<p) is the least (greatest) fixed point of the operator defined by 

<P- 
Each of the rules is readily verified to be truth-preserving, in the sense that 

for any LTS model 9Jt, if the hypotheses of a rule is true in 97t then the conclusion 
is true in 371. From the verification that the each of the axioms is true in every 
LTS model, we then get soundness: if Xp r- (p then 971 f= <p for all LTS models 
971 of signature (#, E). 

Definition 10. The Hilbert-style proof system for the logic "Lß + S4 in the lan- 
guage P^P (^> £) is obtained from that of L^ by adding the normality axioms 
and rules for O and O, together with: for propositional variables Z € PVar, 

TO:   Z^fOZ TD:   DZ-> Z 

40 :    OOZ -+OZ        4D :    DZ -> UUZ 

The proof system for the logic LM + S4 +Ca is that of lip + S4 together with 
Ca, where Ca is one or more of the semi-continuity axiom schemes: 

usc(o) :   0{a)Z -)• (a)OZ        usc[a]:   [a]DZ -> D[a]Z 

lsc(a) :    (a)UZ ->■ D(a)Z        lsc[a] :    0[a]Z -> [a]OZ 

In the relational (preorder) semantics for S4, the T axioms correspond to 
reflexivity, while the 4 axioms correspond to transitivity. Extensions of the Hoare 
composition rules: 

ip ->■ [a]Ux   x -»ßpy   and    4> -»(qpx   x -> (fytfy 
i> -> [<#Py> rp -» (a){b)n<p 

can be derived in the systems Lß + S4 + usc[a] + «sc[6] and Xp + S4 + lsc{a) + 
lsc(b) respectively. 

Definition 11. The Hilbert-style proof system for the logic L^ + KTB in the 
language Tp{$,E\J {e}) is obtained from that of L^ by adding the normality 
axioms and rules for {e) and [e];  the axioms T(e) and T[e]; and also: 

B(e):   {e)[e]Z-*Z        B[e]:   Z -» [e](e)Z 

The B axioms express that tolerance relations (e) are symmetric. 



Definition 12. The Hilbert-style proof system for the logic Lj, + S5 in the lan- 
guage .?>(#, I7U{«}) is obtained from that of Lß by adding the normality axioms 
and rules for («) and [«];  the axioms T(«), T[«], 4(«) and4[«];   and also: 

5<«> :   («>[«]Z -»■ [«]Z        5[w] :   («>Z ->• [«]<«)Z 

The 5 axioms express that « is a Euclidean relation: if x « y and x « 2: 
then y m z. And reflexive, transitive and Euclidean binary relations are exactly 
equivalence relations. Under the knowledge interpretation of S5, the axiom 5[äS] 

is usually referred to as the axiom of negative introspection: ->[«]¥> -» [«H^ly, 
which reads: "if it is not the case that agent A knows <p, then agent A knows 
that it is not the case that she knows <pn. 

Walukiewicz has recently established the completeness of the Kozen axioma- 
tization with respect to the standard set-theoretic semantics for the //-calculus. 

Theorem 1. ([39],[40]) Soundness and Completeness of L^ (set-theoretic se- 
mantics) 

For all formulas <p £ ??($, E), 
L/i I" <P    iff   Wit <p   for all LTS models 971 of signature (#, 17). 

The completeness part of the cited theorem is stated in the form: if <p is 
unsatisfiable in every LTS model 271, i.e. \\fWf1 = 0 for all assignments £ in V[X), 
then -up is provable in L^ .Walukiewicz's proof is very intricate, proceeding by 
first contracting to a subclass of "nice" formulas, and then producing a "tableaux 
refutation" of unsatisfiable formulas of nice form, where such a refutation in 
turn implies that the negation of the given formula is provable in L^. Topics 
of continuing enquiry include whether the Walukiewicz proof can be extended 
to cover specific modal enrichments of L^, and the relationship between his 
tableaux refutation system and a tableaux proof system for the /j-calculus and 
polymodal extensions, in the style of [35] and [10]. 

The algebraic semantics of Kwiatkowska et al. [5], [8], provide a framework 
for extending Stone duality theory to the algebra of fixed-points. Their proof 
of completeness for modal /^-frames starts with the Lindenbaum algebra T^ 
of formulas in ^(#,17) modulo provable equivalence in Lp, then realizes the 
abstract ^-algebra as a canonical LTS model Ü3lh„ with state space the Stone 
space X = UlUf^) of (Boolean) ultrafilters in J^, together with the canonical 
^»-algebra AL„ = C'/op(t/'/<(^x)1)) = ^L,, of subsets of X clopen in the Stone 
topology. For each a € S, and 271 = 971L„ , the relations am on X are defined by: 

an   
x —> y iff (V£? € -^LjJt [a] f € x => Tp € y ]■ The formal statement of the result 
is as follows. 

Theorem 2. ([5]) Soundness and Completeness of L^ (algebraic semantics) 
For all formulas ip €E -7>(#i S), 
L^hjj   iff  (971, ^4) f= ip  for all modal /i-frames (271, .4) of signature (#, 17). 



In [8] §6, it is established if (9JI, A) is a descriptive modal //-frame, then 
{M,A) is in semantic agreement with 971. In particular, the canonical frame 
(ML , AL„ ) is descriptive, and thus in semantic agreement with the underlying 
LTS model JJJIL . Thus the "easy" algebraic proof of completeness can be used 
to give an alternative proof of completeness of L^ with respect to the standard 
set-theoretic semantics, as stated in Theorem 1. 

The Kwiatkowska algebraic completeness proof extends quite smoothly to 
normal polymodal extensions of the //-calculus, including topological S4 exten- 
sions with semi-continuity axioms. For example, if L = L^ + S4 + {usc[a] + 
lsc(a)}a6i7, the topology on the canonical model SUIL comes from a relation =$ 
on X — Ult{Ti.) denned in the same way as the relations am*- as above. The 
S4 axioms ensure that the relation ^ is a preorder, so the topology is Alexan- 
drofF, and from the semi-continuity axiom schemes, one proves that each of the 
relations am*- have the corresponding semi-continuity property. A more detailed 
treatment is given in [12]. 

6    Discussion 

We have developed a family of expressively rich and usable logical systems and 
broadened horizons for the formal analysis of hybrid dynamical systems. In addi- 
tion to those mentioned in the text, further lines of enquiry include the following. 

— Investigation of non-deterministic continuous dynamics, in the form of set- 
valued or parametrized semi-flows, and their topological properties. Our 
relation-based view of dynamics is of course conducive to such generaliza- 
tions. 

— A deeper investigation of relations (definable families) in o-minimal struc- 
tures, and of the use of finite cell-decomposition in the construction of topo- 
logical bisimulations. 

— Further investigation of finite sub-topologies of the standard topology on 
X C R", and semi-continuity properties of relations in such topologies, pur- 
suing themes developed in [11]. 

— Application to hybrid systems of the theory of knowledge in multi-agent 
settings and its formalization in S5 based logics of knowledge. 

— LTS models and //-calculus specifications of hybrid petri nets. One approach 
is to take the state space X to be a set of finite partial functions i:P^l 
(equivalently, variable-length vectors over M), where P is the finite set of 
places of the net. 

— Application of game-theoretic methods for the //-calculus, and related work 
on automata over transition systems; e.g. [25], [22]. 

— Investigation of tableaux proof systems for polymodal logics and the //- 
calculus, in the style of [35] and [10]. 

— Investigation of Intuitionistic (constructive) logics for hybrid systems, using 
topological semantics and S4 as a bridge between the classical and construc- 
tive worlds. 
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