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Preface 
This document constitutes the Final Report for the project "Model-Based Human-Computer 

Interaction," carried out by Northwestern University's Institute for the Learning Sciences, and 

supported by the Defense Advanced Research Projects Agency, monitored by Rome Laboratory 

under contract F30602-94-C-0219. 

The purpose of this project was to investigate the application of explicit task modeling 

techniques to human-computer interaction. In the first phase of this project, reported in Part 

I of this document (which essentially reproduces the mid-way progress report previously 

delivered to Rome Laboratory), the focus of the investigation was on techniques for using task 

models to direct interface design and automatically compile user interfaces. This resulted in 

the development of a prototype model-based interface design tool, MODEST. 

After consultation with the DARPA Program Manager in charge of DARPA's HCI Initiative, Dr. 

Allen Sears, the project was re-directed after the mid-point to concentrate on techniques for 

directly employing task models in the architecture of intelligent performance support systems. 

This resulted in the design and implementation of a fully-functioning prototype integrated 

performance support system in the area of Air Campaign Planning. The system links to and 

supports the Air Force's JFACC Planning Tool (JPT). It has been deployed at Rome Laboratory, 

NY, and at the Air-Ground Operations School, Hurlburt AFB, Florida. 



Part I: Model-Based Interface Design 

Part I-a: Interface design based on standardized task models 

1. Introduction  
Current computer software is often complex or arcane to the point where users have a great 

deal of difficulty understanding it. Indeed, it has been argued that they shouldn't need to 

understand it: It should understand them instead. The approach that follows from this 

premise is often termed user modeling, because it entails formulating and maintaining a 

model of the individual user's goals, knowledge, and dispositions throughout his or her 

interaction with the system. Unfortunately, while appealing in principle, in practice attempts 

to model the idiosyncrasies of individual users often result in systems that are difficult to 

construct and brittle in operation. 

We believe that there is a far more cogent and practical approach to achieving fluent man- 

machine interaction. In fact, it is necessary neither for users to fully understand systems, nor 

for the systems to understand them: It would be closer to the mark to say system and user 

must both understand the task at hand. In other words, what needs to be modeled in an 

interface is not the user, but the task. Acting on the basis of roughly commensurate models 

of their shared task, human and system can operate "in sync," so that, for example, the 

system is able to provide timely and relevant options and information, address likely questions 

and confusions, and quickly and accurately ascertain and perform required actions. By 

understanding the user's task, the system can make the right decisions in carrying out these 

and other essential functions of an interface. Shared task models thus provide the context 

that is necessary to support fluent interaction between human and computer. 

To the extent that any software system is capable of carrying out essential interface functions 

at appropriate times, its design must reflect some model of the user's task. In current 

interface design practice, however, this model is generally not explicit in the operation of the 

interface itself, and indeed may not even be explicit in the design process. Typically, a good 

interface design is the result of a skilled human designer relying on his or her intuitive 

knowledge of the task in order to make the interface do the right thing at the right time. In 

the best case, the design process may be iterative, with user testing employed to refine and 

improve the initial design empirically. Either way, the current state of the art in interface 

design is such that every interface is custom designed and built, and its quality is totally 

dependent on the skill of the interface designers. 



As with any other engineering design process, improvement in the design methodology for 

interfaces depends, in large part, upon making explicit what has previously been implicit. 

Insofar as interface designs depend upon implicit models of the user's task, it is impossible to 

standardize the creation of such designs. This in turn makes it difficult to communicate and 

teach the design principles involved, or to automate aspects of the design process. 

Our approach aims to overcome these limitations through the use of explicit, standardized 

task models. We are developing a library of such models formulated in terms of a well-defined 

modeling language. The models that we are building attempt to capture common knowledge 

about basic cognitive tasks such as testing, threat detection, planning, communication, process 

monitoring, and so on. Models of particular user tasks are developed by combining and 

parameterizing entries selected from this library of standardized task models. In addition, 

components of these models are tied to interface constructs that support the user's 

performance of the task. By tying model components to appropriate interface objects in this 

way, and combining and parameterizing those objects as the designer combines and 

parameterizes the corresponding models, it is possible to automatically compile a significant 

portion of the user interface. Similar approaches have been proposed previously (Puerta et 

al, 1994; Szekely, Luo and Neches, 1993; Johnson, Johnson & Wilson, 1995). 

Using a design tool based on this approach, interface designers conceptualize and design 

interfaces in terms of the tasks that their systems are meant to support, rather than in terms 

of interface implementation constructs such as windows, menus, or dialog boxes. Thus, for 

example, if the user were to specify that the task to be supported by the system under 

development involved the monitoring of a set of ongoing processes, the system would select 

an interface framework appropriate for such process monitoring tasks. The tool would then 

follow up by asking the designer to specify the parameters to be monitored by the user of the 

system, the safe operating ranges for these parameters, and so on. For each parameter being 

monitored, the designer would then be asked to select an indicator to be used in displaying 

the value of that parameter, and an appropriate alarm for signaling the user should the 

parameter approach the boundary of its safe operating range. Because such concepts as 

parameter, safe operating range, indicator, and alarm are explicitly represented in the task 

model for process monitoring, the designer can conceive of the interface in terms of these 

functionally meaningful constructs, while leaving the details of implementation to the 

interface design tool. 

An interface design tool incorporating standardized task models can thus capture and exploit 

commonalities among systems designed to support broad classes of tasks. Using the 

knowledge associated with these models as background, the system can engage in a focused 

interaction with the interface designer, allowing him or her to specify features of the interface 



in functional terms that relate to the task, rather than in terms of low-level, platform- 

dependent primitive operations. We have developed a prototype tool, MODEST (Model-based 

Design Employing Standardized Tasks), based on this. 

2. The Model-Based Design Process __ 

Our model-based approach to generating an interface involves three stages: (1) Modeling the 

current application task by selecting and parameterizing task models from a standardized 

library. This involves instantiating appropriate sub-tasks and associated conceptual entities 

for the current application. (2) Identifying specific interface actions (gestures) and multimedia 

resources to represent those sub-tasks and conceptual entities. (3) Graphically arranging and 

sizing the interface objects on the screen. MODEST supports all three stages of this process, 

although it leaves decisions about graphical arrangement to the designer. The designer 

interacts with the tool through a question-and-answer dialog in the first two stages, and via 

direct-manipulation in the last. 

As an initial design experiment, we have used MODEST to rationally reconstruct the interface 

for Sickle Cell Counselor, an educational program that involves a simulation in which the 

student takes a blood sample from a patient, runs it through a gel-electrophoresis machine, 

and interprets the results to determine the patient's hemoglobin (Bell, Bareiss and Beckwith, 

1994). 

We have developed and standardized an abstraction of this task called Sample-Test- 

Interpret, which comprises taking a sample of something, testing it for some property, and 

interpreting the results. Driving down a level, the Sample sub-task involves extracting 

samples (e.g., blood) from one or more sample sites (e.g., a person), perhaps by using some 

sample extraction device (e.g., a syringe), and placing the samples in a storage container (e.g., 

a test tube). Similarly, the Test sub-task may involve loading a test instrument (e.g., a gel- 

electrophoresis device) by transporting the sample to the instrument from the storage 

container using a transport implement (e.g., a dropper) and then turning the instrument on. 

Finally, the Interpret sub-task may involve comparing the output of the test instrument with 

a visual key of some type, and choosing the best match. The terms listed in italics above 

correspond to the conceptual entities of the task. 

In the first phase of the dialog, the designer chooses appropriate tasks and sub-tasks, and 

then associates the entities to be manipulated in a particular application (e.g., a syringe) with 

their corresponding roles in the abstract task model he has chosen (e.g., the sample 

extraction device). The key point is that the behavior of these entities, in functional terms, is 

largely determined either by the nature of the entities themselves, or by the nature of the 



task at this rather abstract level: A sample extraction device can either be empty or full. It 

can be filled with a sample, if empty, only when positioned over an appropriate sample site. It 

can be emptied, if full, only over an empty container. Because these behaviors are 

determined by the task context and its associated conceptual entities at a high level, it is 

possible to associate objects and methods to generate these behaviors with the abstract task 

model. Generating the interface code then becomes a matter of appropriately parameterizing 

these objects and methods as the designer parameterizes the corresponding model. 

In the second phase of the dialog, the designer must associate the entities from the model 

with media elements that represent them in their different states. For example, what does a 

syringe look like when it is empty? What does it look like when it is full? Next, he must 

choose interface idioms to implement actions in the model, e.g., dragging and dropping to 

represent the movement of an object, or clicking a button to represent starting a process. 

When all the necessary media resources and interface idioms have been identified, the 

designer can previews, edit, and run the graphical interface. 

3. An Extended Example  
To illustrate this model-based design process, we present an extended excerpt of a design 

session in which MODEST is used to re-create a portion of the interface for Sickle Cell 

Counselor. The design session begins by choosing an initial abstract task model from a library 

of tasks: 

Choose a  task to  implement 

> SampleTestlnterpret 

The main purpose of the Sample-Test-Interpret task is to classify an attribute of a sample of 

something. In this scenario, the attribute is the hemoglobin genotype of a blood sample, 

which can take on the values AA, AS, or SS. In many cases, the user cannot specify a task 

parameter (in this instance, the attribute) simply by selecting an existing object. Instead, the 

user specifies a name, and MODEST creates a new object to fill the role: 

What attribute are you trying to determine? 

> HemoglobinGenotype 

The system doesn't know anything about genotypes, blood, or people, but creates an attribute 

object called "HemoglobinGenotype."  It then asks the designer to specify its type: 

What kind of attribute  is HemoglobinGenotype? 

> DiscreteAttribute 
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The genotype object is specialized to a "DiscreteAttribute" object. 

How many values of HemoglobinGenotype are there? 

> 3 

The system proceeds to ask for the names of the three attribute values and creates objects 

corresponding to each. 

What will the user be sampling? 

> Blood 

MODEST instantiates the sample variable of the task and gives it the name "Blood." Blood 

doesn't mean anything to the system yet;  it's simply a placeholder. 

At this point, the task is decomposed into its three main sub-tasks; the designer can choose 

to instantiate and refine these sub-tasks in any order. In this example, we will refine the 

model in the temporal order of the user's task: 

Pick a subtask to refine. 

> Sample 

In order to refine a task model, it is necessary to know in general terms how the user and 

system will interact in the performance of the task. One possibility is to construct a direct- 

manipulation interface to enable the user to carry out the task. Other available alternatives 

include providing buttons that allow the user to step through the task (like paging through a 

book), showing the user a movie of the task being performed, or simply omitting the task 

altogether. 

How do you want the user to sample the blood? 

> DirectManipulation 

Given that the user will perform the task directly, the system must know more about 

properties of blood that are relevant to the task. In this case, the distinction that matters in 

the interface is that blood is a liquid rather than a solid object: It can be poured into 

containers, but not dragged around. 

What kind of composition does blood have? 

> FluidLike 

In addition to the sample itself, the sample-extraction task involves three variables: a sample 

source from which the sample will be extracted, a sample extraction device, and a destination 

container to hold the extracted sample. Here, the designer creates a new source by typing in 

the name of a patient, Laron. In the context of a larger program, the entity "Laron" might 

already exist and the designer would be able to choose it from a menu: 



Where does the blood come from? 

> Laron 

The designer must now indicate an extraction device. MODEST knows about two devices 

that can be used to extract liquids: syringes and droppers. The designer may choose one of 

these or create a new device at this time: 

What device will be used to extract  the blood from Laron? 

> Syringe 

As with the extraction device, MODEST knows about a couple of types of objects that can be 

used to contain liquids: test tubes and beakers. (In fact, it also suggests a third possibility, 

Laron himself.) 

Where will  the user put  the blood after it has been sampled? 

> TestTube 

At this point, the designer has finished identifying the conceptual entities in the Sample sub- 

task and proceeds to refine the Test and Interpret sub-tasks in much the same way. Once 

these have been instantiated and refined, the designer has completed the conceptual phase 

of the design. MODEST then proceeds to guide the designer in refining the interface itself. 

Part of this entails requesting graphical depictions of the visible entities in the interface in 

each of their different states: 

What  does Laron  look  like before  taking the  sample? 

> The designer selects a  file containing a picture of Laron. 

In this particular case, Laron does not change appearance when the blood is drawn, so the 

user specifies the same image in answer to both questions: 

What  does Laron  look like after taking  the  sample? 

> The designer selects  the same picture again. 

The more critical aspect of refining the interface entails determining the primitive interface 

actions or gestures with which the user will achieve the sub-tasks. These actions are 

represented as objects called scene managers that encapsulate the control structure for the 

interface. The library of scene managers includes such user-interface cliches as transporting 

an object by dragging it, starting a process by clicking on a control and letting it finish 

automatically, starting and stopping a process, and several others. In this particular case, 

since blood is a fluid, the appropriate cliche to realize the sample extraction task is the 

interface action transport an object using a container (in this case, the syringe): 

What  screen action do you want  the user to perform to  sample  the blood? 

10 



> Transport a substance by clicking over a source and clicking over a 

destination. 

The transport by clicking action causes the syringe to be displayed as the mouse pointer. The 

syringe changes its appearance when it changes state from "empty" to "full" and vice versa. 

The user must now specify its appearance in these two states: 

What  does  the  syringe  look like before  taking the  sample? 

> The designer selects a picture representing an empty syringe cursor. 

Rather than ask what blood looks like, the system simply asks what the sample device looks 

like when it is full of blood. This is much simpler for fluid samples, but limits the ability to 

depict different quantities of a sample. It also represents something of a limitation on the 

generativity of our system, insofar as the same container with differently-colored fluids in it 

would have to be represented in terms of entirely distinct states of the container. 

What  does  the  syringe  look like after taking the  sample? 

> The designer selects a resource representing a  syringe full  of blood. 

The dialog proceeds to request empty and full pictures of the test tube, the electrophoresis 

machine, the test result and genotype key. The designer determines that the machine will be 

loaded using the same sort of transport action as in the sample task, that the machine will be 

turned on using a click to start process action, and that the visual comparison will be a simple 

display. When all the resources and actions are specified, the "Preview" button is enabled, 

and the designer can construct, lay out, and interact with the resulting interface. 

The interface previewer constructs and displays each scene as a window with all of the 

graphical objects arranged horizontally across the top of the screen. The designer then lays 

out the interface by sizing and dragging the objects to their desired locations. When he 

enters "user mode," he can then run the interface to verify its behavior (see Figure 1). 

In this case, the interface for the sample task consists of a picture of Laron, an empty test 

tube, the mouse pointer represented as an empty syringe, and an "exit scene" button. When 

the user clicks on the picture of Laron with the syringe, the pointer changes to an image of a 

syringe filled with blood. When the user now clicks on the test tube, the tube fills with blood, 

and the syringe image is replaced by the standard arrow mouse pointer. The "exit scene" 

button then becomes enabled, permitting the user to leave the sample extraction scene. If 

the user were to perform the wrong action, such as clicking on the empty test tube first, 

nothing will happen, or an error message will be generated, depending upon the designer's 

preference. 

11 



Script» Display Surface 

n 

Exit 

Figure 1. Extracting a blood sample 

4. In-context Help & Advice 
In addition to guiding the design of an interface, the explicit task model that is embedded in 

the interface serves an important function in its operation. The model allows the interface to 

provide contextually relevant help and advice in the vocabulary of the user's task. Rather 

than simply describing the structural elements of an interface and saying what all the buttons 

do, a task-driven interface can explain what to do next, why and how to do it. MODEST 

constructs a palette of three buttons which can be incorporated into the interface: "What 

next?", "Why?" and "How?" (ref Button Theory). It constructs simple verbal answers to these 

questions by tracking the user with respect to the task model. 

4.1 What Next 
One of the major obstacles to interface usability is to knowing what actions are possible. This 

is especially true of command-line interfaces, but is also a problem with graphical-user 

interfaces. Sometimes affordances are not obvious, or the user just gets lost. The What 

next? button determines what tasks can be performed next and describes them to the user in 

12 



the context of the current interface. For example, the Sickle Cell Counselor might advise: 

"Take blood from Laron and store it in the test tube." 

4.2 Why 
The "Why" button explains the purpose of a task in terms of its role in achieving a higher- 

level task. For example, the Sickle Cell Counselor might explain: "Take blood from Laron in 

order to achieve the Sample task." 

4.3 How 
The "How" button explains the intended method for achieving a task in terms of the subtasks 

or the individual actions or gestures. For example, the Sickle Cell Counselor might instruct: 

"Take a blood sample by clicking the syringe over Laron and then clicking over the test tube." 

4.4 Error Catching help 
Another type of help that was implemented in an earlier version of the system was more 

proactive in that it responded whenever the user performed some action that was not 

recognized by the system. For example, if the user clicked on an inactive object, the system 

would respond with "what next" and "how" information. This tended to annoy users, 

consequently it was not re-implemented in the second version of MODEST. 

5. Representations  
There are five main kinds of objects in a task-driven interface: 

(1) A task model is a functional description of what the user will do and what these 
actions are trying to achieve. 

(2) A scene manager is a procedural description of how the user will achieve a task step 
in the interface in terms of mouse gestures, etc. 

(3) A conceptual entity is a functional description of an object in the world, such as a 
container. 

(4) A presenter is an object that graphically depicts an entity in its different states. 

(5) A widget (such as a listbox) combines conceptual and presentation aspects into a 
single object. 

The interface itself is constructed as a hierarchy of scene managers which bind conceptual 

entities as parameters and point back to the task models they implement. 

The task modeling language represents the control flow and data flow of the user's task and 

the interface constructs that implement it. More specifically, the control flow encompasses 

both the temporal description of the task (i.e., the ordering of its sub-tasks) and the purpose 

13 



of the task (i.e., sub- and super-task relationships). The order of sub-tasks is described in 

terms of task combiners: a sequential combiner that denotes a linear ordering, a parallel 

combiner that specifies an unordered set of tasks to be achieved, an exclusive-disjunction 

combiner that specifies a set of tasks of which one must be achieved, a loop combiner, and a 

conditional combiner. The data flow of a task represents the variables relevant to the task 

(i.e., its inputs and outputs), and any exogenous computational procedures that map inputs 

to outputs. 

name: SampleTask-1 
isa: SampleTask 
Description: "The user will extract a sample of something and 
store it in a container." 
subtasks: () 
subTaskOrder: () 
supertask: SampleTestlnterpret-l 
role: hasSampleTask 
SampleContainer: TestTube-1 
Attribute: genotype 
Sample: blood 
interfaceMethod: ClickTransport-1 
SampleSource: Laron 
SampleDevice: Syringe-1  

Figure 2. The sample task 

Figure 2 shows the frame representation of the sample task. This task involves extracting a 

sample of something and storing it in a container. It has no sub-tasks, and four parameters: 

the source of the sample, the sample itself, the storage container, and a sample extraction 

device. Constraints on the bindings of these variables are stored with the slots of the frame. 

For example, the sample container must be some kind of "container object." MODEST 

provides a small ontology of types of entities that have distinct states and participate in simple 

protocols.  A container, for example, can be empty or full of some specified content. 

name: ClickTransport 
isa: Transport 
Description: "Transport a substance by clicking over a source, 
then clicking over a destination" 
parameters: (FromContainer, ToContainer, TransportContainer) 
states: (before, during, after) 
currentState: before 
transitions: ( 

transfer(FromContainer)  : before-> during 
actions = (extractContent), 

transfer(ToContainer) : during -> after 
actions = (storeContent))  

Figure 3. The Click Transport scene manager 

14 



Figure 3 shows the representation of click-transport, a scene manager for transporting a liquid 

substance by replacing the mouse pointer with a sample extraction device, clicking over the 

source to transfer the contents to the extraction device, then clicking over the destination. 

All scene managers are, essentially, finite state machines. This particular manager defines 

three states: before, during, and after. When it receives transfer triggers from the object in 

the appropriate parameter slot (e.g., the "FromContainer"), it transitions to the next state 

(e.g., "during"), and executes the action associated with the transition (in this case, 

" extractContent"). 

name: ContainerObj 
isa: DiscreteThing 
parameters: (content, initialContent) 
states: (empty, full) 
currentState: empty- 
content : empty- 
transitions: ( 
mouseDown : empty -> empty, output: transfer, 
mouseDown : full -> full, output: transfer, 
load : empty -> full actions = (loadContainer), 
unload : full -> empty actions = (unloadContainer)) 

Figure 4. The Container Object 

Figure 4 shows the representation of ContainerObj, the common abstraction of all containers 

such as test tubes, syringes, and in the Sickle Cell example, the sample source Laron himself. 

A container can be empty or full of its specified contents. When the user clicks on a 

container, it sends a transfer message to its current scene manager. The scene manager is 

responsible for sending load or unload messages back to the container object. 

6. The Design Tool  

In this section, we describe the structure and rationale behind MODEST, the tool for 

parameterizing task models and developing interfaces. Figure 5 shows a screen capture of 

the tool in operation. On the left half of the screen is the Graphical Model Editor. This 

displays the current task under refinement and permits the designer to refine a task by 

clicking on its button. On the right side of the screen is the Dialog Manager. This guides the 

design process by asking questions in the text box at the top, and allows the designer to 

select responses from the list box or type in answers in the text field below it. The designer 

can request examples of unfamiliar concepts by clicking on the Example button. When an 

interface is fully defined (except for graphical layout), the Preview button is enabled, which 

takes constructs the actual interface and permits the design to arrange the graphical objects 

(in author mode) and to dynamically interact with it (in run mode). 
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Figure 5. The MODEST Interface 

6.1 The Dialog Manager 
MODEST is capable of, though not necessarily required to, distinguish between conceptual 

level design and interface level design. The design process is guided by a question and 

answer dialog that prompts for design decisions. The dialog is data-driven, and plans for the 

dialog are hung off of the tasks they refine. The dialog may be structured to proceed in two 

phases, which correspond for the most part to the conceptual phase and the interface phase. 

In practice this distinction is not always so clear cut. 

6.1.1  Design Plans 

Guiding the design of an interface from an abstract root task requires a plan that is distinct 

from the task model itself. The design plan is essentially a tree of possible questions and 

branch points. There are a small number of types of design questions that are implemented 

as distinct classes with different behaviors: 

Binding Questions request values for slots. 

Specialization Questions permit the designer to specialize a concept. 
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Decomposition Questions ask the designer to choose a subtask to be refined. 

Yes/No Questions provide control over branching in the dialog. 

Loop Plans allow the dialog to iterate over a list, subtasks, instances of a concept, or 
count down. 

Primitive Actions automatically create an instance of a concept without asking a 
question. 

Constructing design plans for a given task model can be as complex as constructing the task 

model to begin with. Depending on the nature of the task, the dialog can be extremely 

awkward and tedious. Moreover, the dialogs are unforgiving. In the current implementation, 

there is no easy way to back up and change an answer if you make a mistake. 

Because of this, we have come to believe that it would be better to replace some dialogs with 

specialized data-entry tools that allow form filling when appropriate. Rather than mere frame- 

editing tools, we suspect that tools for rapidly constructing mappings, assigning graphical 

representations, etc, would be more appropriate. 

6.2 The Graphical Model Editor 
The Graphical Model Editor is, in its current form, simply a graphical depiction of the current 

state of a portion of the plan.  It presents a hierarchical task in a flowchart format. 

6.3 The Compiler 
The compiler takes an instantiated and parameterized task model and constructs an 

executable interface by instantiating finite state machines to implement the control and data 

flows and instantiating the presenters to represent the conceptual entities on-screen. The 

compiler walks through the task model and creates a number of data structures and linkages: 

• It constructs the hierarchy of state machine combiners from the declarative task 
ordering constraints on the model. This entails building the state transitions, 
because there can be any number of subtasks. 

• It performs a numer of simple optimizations based on the task structure. For 
example, if a task has only one subtask, it drops the subtask combiner and 
promotes the subtask (i.e., no parallel or serial combinations of singleton tasks). If 
a task's subtasks were all omitted, it eliminates the combiner and subtasks. 

• It creates scenes populated with actors. 

• It sets up the presentation hierarchy to mirror the semantic partonomy (e.g., the 
presenter for a machine contains the presenters for its indicators and controls). 

• It creates "begin task" and "exit scene" button and control mechanisms when 
indicated by boolean flags on the task model. 

• It creates the help palette containing the What's Next, Why and How buttons. 

• It performs the initial screen layout to ensure that graphical actors won't be buried 
underneath each other. 
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•     It adds event handler to allow the designer to enter author mode or run mode (by 
holding down the option key). 

6.4 The Graphical Interface Editor 
The Graphical Interface Editor is a direct-manipulation WYSIWYG tool for laying out interface 

elements on the screen. It supports an authoring mode, in which the designer clicks on 

elements to select them and then can drag them to position or drag their halo to resize them. 

If the designer holds the mouse button down, a popup menu appears to support other 

actions, such as adding a text label or change the color. 

6.4.1 Layout 
The compiler initially lays out the actors in a scene in straight rows so that they are not 

overlapping or buried. It ensures that sub-presenters are graphically contained within their 

parent presenters and are in front of them. Actors can be moved by selecting them and 

dragging them to their desired location. 

6.4.2 Resizing 
Dragging a corner of the halo resizes the graphical presentation of an actor by scaling its 

transformation matrix. The aspect ratio is maintained. 

6.4.3 Coloring 

The "Set color" menu item in the popup menu allows the designer to select a color from a 

palette to serve as the background of the stage, or as the color of an actor if one is selected. 

7. Issues 
The viability of our approach depends on addressing two key challenges: generativity and 

appropriate abstraction. 

Flexibility in supporting the design of interfaces for a wide range of tasks entails the ability to 

compose more complex, aggregate tasks from simpler ones. Achieving this sort of generativity 

is one of the chief design goals for our task modeling language. The temptation here is to try 

to provide a fine-grained, fully compositional programming language for task modeling. Even if 

achievable, however, this would not necessarily give designers the leverage we seek; in the 

worst case, task model-based design would simply reduce to programming once again. 

The alternative we are pursuing is to develop hierarchical libraries of reusable, standardized 

sub-tasks that can be connected together like circuit boards on the back-plane of a computer, 
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with the back-plane corresponding to an overarching task such as Sample-Test-Interpret. 

This simplifies the job of the application designer, while maintaining some degree of flexibility. 

The design of the sub-task models themselves, like the design of circuit boards, is a more 

specialized job in our approach. 

An approach based on libraries of standardized task models in this way can only succeed if 

the task models are broadly applicable enough to make their reuse feasible. In other words, 

they must embody high-level characterizations of user tasks, rather than idiosyncratic details 

of particular instances of tasks in particular domains. On the other hand, the models must 

be specific enough to supply operational constraints on interface design. The appropriate 

level of abstraction for task models is thus determined by a tradeoff between the breadth of 

their applicability and the specificity of the constraints they provide about the functional 

behavior of the entities associated with them. The long-term feasibility of our approach 

depends upon being able to find a rich set of models that strike the appropriate balance. 

It is an empirical question whether it is possible to characterize real-world tasks in a way that 

strikes this balance. In essence, we are banking on the existence of a basic level for tasks, 

similar to Rosch's basic level for object categories (Rosch et al, 1976). In brief, Rosch and her 

colleagues have demonstrated that there exist privileged concepts in object hierarchies-e.g., 

"chair," as opposed to "kitchen chair" or "furniture"-that appear to optimize the trade-off 

between, roughly, the size of the category and the number of "useful" things you can say 

about members of the category. 

There are three reasons to be optimistic about the existence of basic level tasks as required 

by our approach. The first is simply the existence of basic level objects, which gives some 

grounds for extrapolation to other category types. The second is the growing body of evidence 

that people possess and use a great deal of abstract knowledge about tasks in understanding, 

planning, and learning, and that such knowledge can be usefully represented and employed 

by computer programs as well. A great deal of research in AI and cognitive science has 

established the existence and utility of abstract knowledge of intellectual tasks, such as 

planning and diagnosis. This work has resulted in the codification of a wide range of models, 

including Sussman's and Sacerdoti's planning critics (Sussman, 1975; Sacerdoti, 1977), 

Wilensky's meta-plans (Wilensky, 1982), Schank's thematic organization points (Schänk, 

1982; Hammond, 1989; Birnbaum 8B Collins, 1993), Chandrasekaran's generic tasks 

(Chandrasekaran, 1983), and the KADS models of the Esprit project (Wielinga, Schreiber and 

Breuker, 1992). 

Finally, there is the anecdotal evidence we have collected in the course of analyzing tasks. 

The Sample-Test-Interpret model described briefly above appears to have wide utility, and we 
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have in fact instantiated a number of variants leading to different interfaces that support 

superficially distinct tasks. 

To take a more complicated example, consider the task of detecting a threat. To make this 

concrete, imagine that you are a night watchman making rounds in a building. Suppose that 

it takes you one hour to make your rounds. Suppose further that, one day, when you return 

to a location in the building, you discover that in the time intervening since your last visit, 

something has been stolen from that location. What might you do to prevent this from 

happening in the future? 

In answer to this question, many people respond, "Make your rounds faster." Whether or not 

this is the solution they propose, everyone will agree that it is reasonable. The question is, 

what basis do people have for proposing or assessing this solution? No one we have queried 

has ever actually worked as a night watchman. We must assume, therefore, that it is some 

knowledge about the task of threat detection in general that permits people to reason 

sensibly about this situation. 

What people need to understand to answer the night watchman question is something like 

the following model of the situation: Threats must be detected early enough to do something 

about them. However, it is often too expensive to focus threat detectors in all areas where 

threats might arise at all times that they might arise. One solution is to schedule threat 

detection in different locales at different times. However, in order to guarantee that threats 

will be detected in time, the time course of this schedule must be shorter than the time it 

takes for threats to come to fruition. Thus tweaking this parameter is one way to address 

failures to detect threats in time. The point we wish to make here is that we all possess a 

model of threat detection which is both highly abstract and tremendously detailed. It is 

exactly models of this sort that we are attempting to represent in our system. In the next 

section, we describe the refinement and implementation of our model of threat detection. 
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Part I-b: Threat Detection 

8. Introduction _  
Detecting threats is a common and important task that can greatly benefit from computer 

support through careful interface design. Intuitively, threat detection seems like a simple 

task: monitor the world for signs of a threat, confirm the threat and respond to it. In practice, 

however, it turns out to be a complex task with a rich body of literature devoted to it (e.g., 

Green, 1986; Williams, 1987). We chose to model and implement interfaces for threat 

detection for several reasons: it is very different from the sample-test-interpret task, it pushes 

the limits of what we believe can be done in the task-driven paradigm, and it is a task of vital 

practical interest. 

Figure 6. Role of the Threat Detection Interface. 

A computer interface for threat detection typically presents sensor data (visually and/or 

audibly) and permits the operator to raise alarms or operate controls (Figure 6). By embedding 

an explicit model of the threat detection task in the interface, it can assist in the process of 

identifying, disambiguating, and responding to threats. The nature of this assistance can be 

tailored to the types of threats to be detected, the types of sensors available, and the types 

and numbers of indicators for those sensors. 

For example, if a threat has a high cost of false negatives, such as detecting incoming missies, 

a task-driven interface might require the operator to acknowledge or disconfirm any detected 

anomalies and might provide escalating levels of alarms if action is not taken promptly. 
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A night watchman, on the other hand monitors a much less frantic situation. In this case, 

any activity is abnormal. Some of these anomalies can be detected automatically, through 

smoke detectors and door sensors. Other activity can be observed through the ubiquitous 

security cameras. Because this is a relatively simple domain for threat detection, we chose to 

develop an interface for a night watchman or security guard who must monitor a facility for 

intruders and fire. 

9. The Threat Detection Model  

Typically, a night watchman makes his rounds throughout a building checking for suspicious 

activity. To ensure that he thoroughly and consistently checks the property, there are often 

time clocks placed along his route where he must register using a special key. If he discovers 

anything suspicious, such as smoke or a door propped open, he must investigate further until 

he either confirms a threat or convinces himself otherwise. When a threat is discovered, he 

will take action, either directly (e.g., by putting out a small fire) or indirectly {e.g., by calling the 

fire department or police). 

Today, technology is available support this process. Smoke detectors, door alarms, and video 

cameras all aid the watchman by allowing him to montor for threats remotely from a central 

station. Nevertheless, the basic strategies of detecting threats remain the same. It is still 

necessary to make rounds (albeit wrtual rounds), by scanning through closed-circuit video 

channels. When suspicious situations arise, it is still necessary to confirm or disconfirm 

threats. The night watchman must still respond to threats when they are confirmed. 

Because of the ubiquitous and consistent nature of this task, we model threat detection as a 

basic-level task. 

We can summarize this task as an event-driven activity with three main states: monitoring 

for abnormal situations, classifying the anomalies as threats or non-threats, and 

responding to threats.  This general model is shown in Figure 7. 
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Figure 7. Generalized Threat Detection 

While this figure illustrates the common structure of any threat detection task, it over- 

simplifies the nature of what a night watchman actually does. First, these subasks are not 

mutually exclusive. The watchman (or security system operator) may need to continue 

montoring for additional threats, even as he is classifying or responding to a known threat. 

Second, in a man-machine system such as a high-tech security system, some of the 

monitoring and classification may be performed automatically for some threats. Third, the 

generalized model doesn't reflect the wide variation in how these subtasks can be carried out. 

Further refinement of this model depends on domain-specific aspects of the task {e.g., night 

watchman v.s. ship-board radar operator) and on the situation-specific resources that are 

available (e.g., smoke detectors, door sensors, video monitors, etc.) 

9.1 Monitoring 
As mentioned previously, one way a night watchman monitors for threats is to make rounds, 

that is, to systematically scan a property for suspicious activity. This is appropriate whenever 

threats are physically manifested against a spatially distributed facility and when there are 

limited resources available for monitoring. For some types of threat detection, this makes no 

sense except in a metaphorical way: e.g., an IRS audit monitors for fraud; an EKG machine 

monitors for cardiological irregularities in a human patient. However, because security 

threats are spatially localized, there can be specialized strategies for detecting them. For 

example, if the primary threat is from intruders, then it may make sense to concentrate 

security resources at the perimeter of the facility to detect intrusion early. If the primay 

threat is from fire, then it may make sense to locate smoke detectors where a fire is most 

likely to break out (e.g., a kitchen) or where it is likely to do the most harm (e.g., a bedroom). 

In addition to determining the allocation and placement of sensors, threat characteristics can 

influence the dynamic strategies for monitoring.    For example, if evidence of a break-in is 
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discovered (such as a broken window or open door), one way to help locate intruders might be 

to increase the sensitivity of sensors in the facility (i.e., go to "yellow alert"). Because sensors 

are not always fully reliable, this means accepting a higher rate of false alarms. This is 

usually a reasonable tradeoff because the conditional probability of the alarm being accurate 

is greater given the prior evidence. 

With current technology, monitoring is facilitated by sensors that operate continuously and 

autonomously, such as smoke detectors or door sensors. Because they interrupt the operator 

when they detect an anomaly, these sensors shift the division of labor and change the task 

from a continuous process to a more intermittent activity. One might be tempted to relegate 

all monitoring to the automatic sensors and just respond whenever they go off. Sometimes 

this is appropriate, such as in a hospital, where fire alarms automatically call the fire 

department. More often, however, it better to keep a human in the loop. Sensors can fail, 

and moreover these sensors generally don't detect threats directly, but rather they detect 

syptoms of threats, such as smoke levels, temperature, movement, or open doors. Whenever 

there is a cost associated with false positives, the threat detection task usually includes a 

classification step to verify or disconfirm a threat. 

9.2 Threat Classification 
Threat classification is the process of taking possibly ambiguous and spurious sensor data 

(i.e., the observable symptoms) and determining whether or not there is a threat, identifying 

what kind of threat it is, and ascertaining its severity. This is a lot like diagnosis, and we've 

modeled it as a kind of hypothetico-dedictive reasoning. 

In its fullest generality, this means predicting possible threats from the symptoms and then 

verifying or disconfirming the threats based on more central or confirmatory features. 

Predicting possible threats is a subtask we call hypothesis generation. Sometimes this is 

trivial: for example, smoke detectors are designed to detect fire. Other times, this can be 

arbitrarily hard: for example, it can be quite difficult to determine if an aircraft is a friend or 

foe based solely on its radar cross section. An interface might support this task by allowing 

the operator to visually compare his sensor data to a library of images of known threat types. 

The model we have implemented doesn't include this. Instead, threat types are assumed to 

be determined either directly by the sensor types or manually entered by the operator. In 

other words, if the operator sees a fire or intruder on the video monitor, he must tell the 

computer. 

When a potential threat is identified, it must then be verified. The verification task can be 

specialized in a number of ways:  One method is to increase certainty by observing the threat 
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through a redundant sensor of the same type (e.g., see if another smoke detector goes off). 

Another method might be to integrate sensor data over time (e.g., determine if a high 

temperature reading is just a spike or if the temperature is really rising). In the night 

watchman scenario, we specialize the verification task to different-type-sensor- 

verification, in which threats detected by automated sensors are confirmed or disconfirmed 

through manual sensors, in this case video cameras. 

One consequence of this verification method is that manually detected threats are implicitly 

verified. E.g., if a watchman sees fire on the video monitor, he is justified in calling the fire 

department. In other situations with a higher cost of false positives (such as launching 

missiles), a formal verification method might be required, even if that merely consists of 

getting a second opinion. 

9.3 Responding 
In general, there are many ways to respond to a threat. A fighter pilot may take evasive 

action; operators in a nuclear power plant may open or close valves or shut down a reactor; a 

military superpower might launch missiles. In any case, the interface for detecting threats 

should also, when feasible, support responding to those threats. Often, this means simply 

communicating the threat to someone else, either a higher ranking decision maker or 

someone with direct responsibility for taking action, such as the fire department or police. 

For a night watchman's security station, responding means confirming or cancelling a threat. 

At first glance this may seem confusing, because the process of deciding whether to confirm or 

disconfirm a threat is what verification is for. Confirm and cancel are the tasks of telling 

the computer (and by proxy, the fire department or police) what the operator has decided. 

One additional complication arises because there may be more than one threat at a time. 

Consequently, in order to confirm or cancel a threat, the operator must first designate the 

threat to which he is referring. 

This raises interesting possibilities that we have not yet addressed: If two smoke detectors go 

off, is it the same fire? When one fire threat is cancelled, should it cancel the other? A more 

advanced threat detection mechanism might look for relationships between proposed theats 

and try to help the operator to see emerging patterns. 
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Figure 8. Elaborated Threat Detection Model. 

Figure 8 shows our refined and elaborated model of threat detection for the night watchman 

domain. It depicts the subtask breakdown and some of the dataflow across subtasks, but it 

does not indicate the control structures that constrain the operators actions. This is largely 

because there are very few such constraints. Whereas previous tasks we have modeled have 

been highly procedural (e.g., Sample-Test-Interpret), Threat Detection is driven by external 

events. Many of the subtasks are optional, or more accurately, the subtasks are not always 

shared between the the operator and the system. For example, the system may automatically 

monitor and propose threat, leaving the operator to verify and confirm them. Alternatively, 

the operator may detect and verify threats on his own. The only real constraints on what 

must be done are that potential threats that are generated must be cancelled or confirmed, 

and monitoring must resume before too much time has elapsed. In the interface we have 

developed,  the video monitor reverts to automatic scanning if it is left in manual too long. 

9.4 Auxiliary Models 
In addition to the task model itself, there are three types of auxiliary models that are required 

to fully define the threat detection task: 

1) Sensor & Indicator Models represent the properties and behaviors of different classes 
of detectors in the world and their associated indicators and alarms. 
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2) Threat Models represent the types of threats to which the human operator will be 
monitoring and responding. 

3) Situation Models are abbreviated representations of the current state of the world 
with respect to sensors and potential & known threats. 

Parameterizing a model of threat detection therefore entails identifying the types of threats to 

be detected, the sensors and indicators available, and the types of actions the user can take 

to respond to threats. In the rest of this section, we will describe the different kinds of models 

and what they represent. 

9.4.1  Sensor Models 

Sensors can be broadly divided into two types: manual and automatic . Manual sensors relay 

information to the operator in a form that is representationally opaque to the computer 

program, such as a video stream from a camera. Automatic sensors represent their data in 

computer manipulable form. These are further divided into linear sensors, binary sensors, 

and threshold sensors. Linear sensors, such as thermometers, have a numerical value but 

must be polled to read that value. Binary sensors, such as door sensors, send messages when 

their state changes. Threshold sensors, such as smoke detectors, are hybrids that have an 

underlying linear sensor with a settable threshold. When the reading exceeds the threshold, 

they send messages like binary sensors. 

In our model, when binary and threshold sensors send messages, the situation manager that 

recieves the messages constructs objects representing potential threats. These potential 

threats may vary in their degree of certainty and the specificity of the type of threat they 

represent, depending on the type of sensor. For example, smoke detectors create fire threats, 

while temperature sensors or current sensors might construct generic threats. 

turn on fire detected 

turn off reset 

Figure 9. Smoke Detector states. 
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Figure 9 shows the state transitions for a smoke detector. The protocol for a sensor is the set 

of triggers in its state transition table (shown in italics) and the actions it can take 

(underlined). As with all devices, a smoke detector can be disabled, in which case the only 

message it responds to is the turn on' message. The trigger to its threat state is just '<X> 

detected', where X is the name of the threat type. The action is to send the trigger <X> to the 

situation manager. 

The smoke detector has a linear component that records the carbon-dioxide level. The 

interface between the linear component and the discrete state machine is a generic 

mechanism that translates continuous parameters into discrete ranges or thresholds. When 

the level exceeds the specified threshold, it sends the fire detected trigger to the state 

machine. 

9.4.2 Indicator Models 
An indicator presents sensor data to the operator. When there is more data than can be 

presented at one time, given constraints on screen real estate, a single indicator may be 

multiplexed so that it can display data from several sensors at different times. For example, a 

security guard will often have a single video monitor that switches between cameras, rather 

than a bank of dedicated monitors. A map-based presentation may show only part of the 

territory under surveillance at one time, such as one floor of a building. When indicators are 

multiplexed like this, the criteria for verifying a threat becomes slightly more complex. 

Specifically, for a user to cancel or confirm a potental threat, he must have, at minimum, 

observed the relevant data in order to have acquired the features necessary for confirmation. 

When confirmatory features are observed through a multiplexed indicator such as a video 

monitor, that indicator must be turned to the right channel to display the appropriate 

information. In fact, the precondition for verifying such a threat is not observing the monitor, 

nor is it the act of changing the channel to the right camera, since the monitor may already 

be pointing to the correct camera. The actual precondition is that the monitor must have 

been pointing to the appropriate camera sometime after the threat arose and before the 

threat is confirmed or cancelled. To do this, it is necessary to timestamp threats as they are 

logged in the audit trail and compare them to the monitor channel changes. 

9.4.3 Threat Models 

At the center of our model of threat detection is the explicit representation of the concept of 

a threat. The formulation and manipulation of potential and confirmed threat instances is 

one of the sources of power of a task-model centered system. 
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A threat model consists of (at least)  the following information: 

Type: (e.g., fire, intruder, etc) 

Symptoms: (e.g. smoke, heat, door) 

Verification method: (e.g., visual observation) 

Criticality: (e.g., cost of false positives, cost of false negatives) 

Time criticality: how much time to allocate for verifying a detected threat 

Corrective Actions: things to do when a threat is confirmed. 

Each symptom corresponds to a sensor type that can be used to detect it. 

An instance of a threat indicates the type of threat, the time it was detected, the sensor that 

detected it, the certainty of the threat, and any action taken to resolve it. As threats are 

created and resolved, they are added to and removed from the situation model. 

9.4.4  Situation Models 

The situation is a model of the world at a given time.  It maintains the following information: 

Sensors: a list of all the sensor instances in the system 

Threats: a list of current threats or potential threats being tracked 

State: the current state of the system, (e.g., no threat, multiple threats, fire detected, 
etc.) 

Task Agenda: a list of all the tasks currently being pursued 

Because the situation model supports multiple tasks being pursued simultaneously, we model 

it as a subclass of the concurrent task combiner. 

10. Developing a Threat Detection interface 

In this section, we present an example of the design process using MODEST to construct a 

threat detection interface for a night watchman. This process proceeds from the abstract 

properties of the anticipated threats and progressively constrains the program. As with 

Sample-Test-Interpret, the design process entails three main phases: conceptual design, 

interface-level design and graphical layout. The first two phases are guided by the design 

dialog, while graphical layout is performed through a direct manipulation editor. 

10.1 Conceptual Design Phase 
The dialog begins with some general questions about the number and nature of threats that 

are to be detected: 
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Choose a  subtask to  implement: 

->        Threat    Detection 

How many types  of  threats  are you detecting? 

2 

What  is  the name of one type of  threat you are detecting? 

fire 

What  is  the name of  another type of  threat you are detecting? 

intruder 

The system does not initially have representations of fire or intruders, so it asks questions 

about what types of resources are available for detecting these types of threats in this 

particular situation: 

How many types  of  sensors  are used to detect  fire? 

2 

What  is  a  type of  sensor used to detect  fire? 

->       video    Camera 

What  is another  type of  sensor used to detect  fire? 

->        smoke    Detector 

The concept of smoke detector does exist, but it is represented simply as a specialization of a 

threshold detector. The dialog now proceeds to ask how a fire threat should be indicated to 

the operator: 

How many alarms  are used when  fire  is detected? 

1 

What  is  the name of an alarm used when fire  is detected? 

fireAlarm 

What  type of alarm is  fire? 

visual     Alarm 
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The design tool now proceeds to ask about sensors and alarms for detecting intruders: 

How many types of sensors are used to detect intruder? 

2 

What is a type of sensor used to detect intruder? 

->  video Camera 

What is another type of sensor used to detect intruder? 

->   door sensor 

How many alarms are used when intruder is detected? 

1 

What  is  the name of  an alarm used when  intruder  is detected? 

intruderAlarm 

What  type  of  alarm is  intruder? 

audio    Alarm 

A common way to present the state of the world to an operator monitoring for threats is to 

display the state of the sensors on a map. Instead of reasoning about whether this is 

appropriate, the current system simply asks: 

Do you want to present the sensors on a map? 

->  Yes 

Now that the system has represented the types of resources available for detecting threats, it 

proceeds to guide the user in refining the monitoring subtask of threat detection: 

Choose a subtask of  Threat-Detection to refine: 

->        Threat    Monitoring 

At this point, it is necessary to instantiate the specific sensors that will be used in the 

monitoring task: 
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How many videoCameras  are  there? 

2 

What  is  the name  of  a videoCamera? 

cl 

What  is  the name  of  another videoCamera? 

c2 

The two video cameras could display their outputs either on two separate monitors or on one 

multiplexed monitor.   Due to limited screen real estate, we choose a single monitor: 

How many indicators  does a videoCamera have? 

1 

What  is  the name of  an  indicator of  a videoCamera? 

videoHonitor 

Is videoMonitor an  indicator shared by all videoCameras? 

->      yes 

What  type of  shared indicator  is videoMonitor? 

->        Multi    Input    Video    Monitor 

The design tool now proceeds to instantiate the  second type of sensor for detecting fire 

threats: 

How many smokeDetectors are  there? 

2 

What  is  the name of  a  smokeDetector? 

si 

What  is  the name of  another smokeDetector? 

s2 
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Because smoke detectors are threshold sensors, they have a linear reading as well as a binary 

state.  We choose to display this reading next to the icon for the smoke detector: 

How many indicators does a smokeDetector have? 

1 

What  is  the name of  an  indicator of  a  smokeDetector? 

C021evel 

Is C021evel  an indicator  shared by all  smokeDetectors? 

->       No 

What  type  of  single  indicator  is  C021evel? 

->        Digital    Readout 

The design tool now needs to instantiate sensors for detecting intruders. Since we have 

already described the video cameras, it only needs to ask about door sensors: 

How many doorSensors are  there? 

2 

What  is  the name of  a doorSensor? 

dl 

What  is  the name of  another doorSensor? 

d2 

A door sensor is a binary device, so there is no need for an indicator beyond its icon on the 

active map. At this point, the monitoring sub-task has been defined at the conceptual level 

and the dialog moves on to refine the threat classification sub-task. 

Choose a  subtask of Threat-Detection to refine: 

->       Classify 

A threat is classified using the hypothetico-deductive method: predict or hypothesize a type of 

threat given anomalous sensor data, and confirm or reject that hypothesis.    In this system, 
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hypothesis generation is performed automatically by some types of sensors, but it is necessary 

whenever the operator observes a threat through the video monitor or directly. 

Choose a  subtask of  Threat  Classification  to refine: 

->        Hypothesis    Generation 

Hypothesis generation can be arbitrarily complex (as it often is, for example, in medical 

domains). Here, the operator will simply pick a threat type from a listbox and create an 

instance of that type, if necessary. 

Choose a subtask of Hypothesis Generation to refine: 

->       Select   a   Type   of   Threat 

Choose a subtask of  Hypothesis Generation to refine: 

->       Detect    a   New   Threat 

How should the user detect  a new threat? 

->       Press   a   button 

Once there is a potential threat posted, the next step is to confirm or cancel the threat: 

Choose a  subtask of  Threat  Classification to refine: 

->       Verify 

Given a symptom of a threat (i.e., anomalous sensor data), it could conceivably be verified in a 

variety of ways. Does it persist over time? Can it be confirmed through redundant sensors of 

the same type? In this interface, we choose to use the video cameras to verify threats 

detected by the automatic sensors. This keeps the human in the loop, which is probably a 

good design decision. 

What  type of verification will  the user perform? 

->        Different    Type    Sensor    Verification 

What  type of  sensor is going to verify a fire detected by a smokeDetector? 

->       video   Camera 

When using one sensor to verify another, it is critical to ensure that both sensors cover the 

same region.   This is the main reason why the sensors were instantiated so early in the 
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design process.  If a graphical tool were available to connect primary and verification sensors, 

this would not be necessary and sensors would not need to have names. 

What sensor is going to verify s2? 

->  c2 

What sensor is going to verify si? 

->  cl 

What type of sensor is going to verify a intruder detected by a doorSensor? 

->  video Camera 

What sensor is going to verify d2? 

->  c2 

What sensor is going to verify dl? 

->  cl 

The last major subtask of threat detection is responding to a threat. 

Choose a  subtask of  Threat-Detection to refine: 

->        Respond    to    Threat 

Since there may be multiple threats simultaneously,  the first step in responding to a threat is 

to select the threat to which the operator will respond: 

Choose a  subtask of  Threat Confirmation/Cancellation to refine: 

->       Select    a    Threat 

The tool instantiates the select-a-threat subtask and will later ask for the specific method for 

acheiving it (e.g., from a popup menu or from a listbox). 

Choose a  subtask of  Threat Confirmation/Cancellation to refine: 

->       Cancel   a   Threat 

How should the user cancel  an existing threat? 

->       Press   a   button 
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Choose a subtask of Threat Confirmation/Cancellation to refine: 

->   Confirm a Threat 

How should the user confirm an existing threat? 

->  Press a button 

10.2 Interface Design Phase 
Now the conceptual phase of the design is complete and the design tool requests specific 

graphic and sound resources to define the look and feel of the interface. 

What does  the map look like? 

-> smallFloorPlan.PICT 

Earlier, we elected to indicate a fire threat by means of a visible alarm. Now we have to 

provide the graphics to show what the alarm looks like in its different states: 

What  does  fireAlarm look like when  it  is  off? 

-> AlarmNoFire.PICT 

What  does  fireAlarm look like when  it  is  on? 

-> AlarmFire.PICT 

What  is  the  sound for intruderAlarm? 

-> CHIMES.WAV 

Each leaf task in the model is achieved via a specific user-interface action. Monitoring is 

implemented by the scanning method which updates the display based on user-initiated 

events, such as selecting a camera on the video monitor, and external events, such as smoke 

detectors going off. It is unclear in retrospect whether scanning should be an interface action 

or a specialization of monitoring. 

What  type of  screen action should the user perform to monitor the sensors? 

->        scanning 

Sensors are depicted as icons on the map.  A sensor has a different icon for each of its states: 
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What does  cl  look like when  it   is  off? 

-> videoCameraOFF.PICT 

What does  cl   look like when it   is  on? 

-> videoCameraON.PICT 

Although camera2 looks identical to camera 1, this need not be the case (and isn't for the door 

sensors), so the design tool asks for icons for each instance of each sensor. 

What does  c2   look like when  it  is  off? 

-> videoCameraOFF.PICT 

What does  c2   look  like when  it  is  on? 

-> videoCameraON.PICT 

What does  si   look like when it  is  off? 

-> SmokeDetectorOFF.PICT 

What does  si  look like when  it  is  on? 

-> SmokeDetectorON.PICT 

What does  si  look  like when it  is Alarm? 

-> SmokeDetectorFIRE.PICT 

The operating range of threshold sensors is between 0 and 100.   When their values exceed 

that threshold, they trigger their alarm. 

What  is  the current value of  the data measured by si? 

45 

What does  s2   look like when it  is off? 

-> SmokeDetectorOFF.PICT 

What does  s2   look  like when it  is  on? 

-> SmokeDetectorON.PICT 
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What  does  s2   look  like when  it   is Alarm? 

-> SmokeDetectorFXRE.PXCT 

What  is  the current value  of  the data measured by s2? 

78 

What  does dl  look like when  it  is  off? 

-> northDoorOFF.PICT 

What does dl  look like when it  is on? 

-> northDoorCLOSE.PICT 

What does dl  look like when it  is alarm? 

-> northDoorOPEN.PICT 

What  does d2   look like when  it  is  off? 

-> southDoorOFF.PICT 

What  does d2   look like when  it  is  on? 

-> southDoorCLOSE.PICT 

What  does  d2   look  like when  it  is  alarm? 

-> southDoorOPEN.PICT 

We now select the interface actions to implement the remaining leaf tasks: 

What  screen action  should the user perform to  select  a Type of  threat? 

->       Select   an   item   from   a   listbox 

What  type of  screen action should the user perform to verify a threat? 

->        Select    an    Information    Channel 

SelectlnformationChannel displays the appropriate camera view when the operator changes 

channels on the video monitor. This is actually a complex process, because it also keeps track 

of the last time a channel was viewed. This allows the system to ascertain whether or not 

the monitor has displayed the appropriate channel since the time a threat was posted. 
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What type of screen action should the user perform to select a threat? 

->   Select an item from a listbox 

Press Preview to display the interface. 

At this point, the graphical objects are laid out on the screen, roughly in a grid. The designer 

arranges the objects by selecting and dragging them to their desired locations and resizing 

them if necessary. 

10.3 The Night Watchman's Interface 
Figure 10 shows the final threat detection interface for a night watchman. The interface 

supports fire and intruder detection using smoke detectors, door sensors, and closed circuit 

television. In Figure 10, the interface is being driven by an external simulation that sends 

events to the sensors and provides a video stream from pre-recorded movies. 

The situation is displayed on the active map, in the top left. This shows the floor plan of the 

building, the locations of all the sensors, and their current state. A single video monitor can 

be directed to display the video feed from either camera. Cameras can be selected by clicking 

on them in the map or by cycling through the previous or next buttons on the monitor. A 

single visual alarm shows the global state of the situation (in this case, indicating a fire). The 

scrolling window below displays the log that automatically records and timestamps threats as 

they happen. The selection box below the log permits the operator to select a type of threat 

and manually construct and record the threat if, for example, he observes it on the video 

monitor. Potential threats that are detected by smoke detectors or door sensors can be 

confirmed or cancelled through the buttons in the middle. The help palette at the far right 

provides instructions on performing the task. 
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Figure 10. Threat Detection Interface. 

The operator monitors sensors in the active map and selects cameras to view in the video 

monitor. When a smoke detector exceeds its threshold or a door sensor is activated, the 

system logs a potential threat and the user must then view the area with the appropriate 

camera and either confirm or cancel the threat. Alternatively, if the user detects a threat 

through the video monitor, he can manually log the threat by clicking on the "Detect a New 

Threat" button and selecting the type of threat detected. In a real security system, this would 

set off the appropriate alarms and call either the fire department or police as required. 

11. Implementing the model  
In order to implement the threat detection model, it was necessary to implement new 

mechanisms to extend the MODEST runtime. The capabilities that were added are not 

specific to threat detection, but fall under the general headings of 1) surmounting the 

limitations of finite state machines, 2) permitting multiple simultaneous tasks, 3) supporting 

runtime instantiation, task dispatching, and external events. 
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11.1 Surmounting Limitations of State Machines 
One of the issues in this research has been finding an appropriate tradeoff between simplicity 

of the design process and flexibility of the resulting software. In particular, the use of state 

machines as an underlying mechanism has benefits and drawbacks. In so far as they 

encapsulate behavior behind a simple protocol of messages, state machines are compositional 

and reusable, and the state machine model is valuable. Nevertheless, there are many 

occasions when a pure finite state machine implementation is inadequate. We employ three 

main mechanisms to surmount the limitations of state machines: 1) State transitions can 

execute complex functions rather than simply output other triggers, 2) Triggers carry 

parameters with them that can determine whether they are accepted or not and provide 

arguments to the action functions on transitions, and 3) The parent state machine managers 

to which graphical actors send their messages changes dynamically as the user proceeds 

through his task. This enables the actors to serve different tasks at different times, such as 

the test-tube object that is shared between the sample and test tasks in the Sickle Cell 

demo example. We believe these extensions to the finite state machine mechanism do not 

significantly compromise the compositionality and reusability of the objects. 

11.2 Permitting Multiple Tasks 
The threat detection model assumes that the user may be engaged in multiple tasks 

simultaneously. The means that the whole idea of using user-interface events to step 

through the task and enable or disable actions is no longer sufficient. Instead, we 

implemented a concurrent task combiner that doesn't disable alternative subtasks. 

This raises the problem of how to handle actors and widgets that are shared by different 

tasks, such as the video monitor, which may support both monitoring and verification. To 

whom should they send their messages if there isn't a unique current task at any moment? 

We addressed this problem by leaving the video monitor reporting to the monitoring task's 

manager and passing unrecognized messages up the hierarchy until they are recognized. 

This works only because the top level manager in this case is a situation manager, which is a 

special kind of concurrent combiner that recognizes particular triggers. A more general 

solution, we believe, is to relax the requirement that actors must have a single manager, and 

instead allow them to broadcast their messages to a set of managers. 

In addition to the concurrent combiner, we also implemented conditional and loop 

combiners. The conditional combiner is a disjunctive branch that allows one task or another 

to be taken based on data, rather than on an event. The loop combiner iterates over its 

subtasks, but this turned out to be unnecessary for threat detection since the concurrent 

combiner never terminates. 
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11.3 Instantiation, Task Dispatching & External Events 
One of the benefits of a model-driven interface is that it can make explict the conceptual 

entities with which the user interacts, and in so doing, can simplify the man-machine 

interaction. Rather than employing an ad-hoc collection of rules that directly relate input 

data to output presentation (e.g., if sensor value exceeds preset threshold, display it in red), 

we employ a model-view-controller mechanism. One implication of doing this is that we end up 

instantiating objects at runtime, such as threats. This raises the level of complexity, because 

tasks have to refer to specific objects that don't exist at design time. For example, the 

operator must verify the threat that was detected, not just some platonic ideal of a threat. 

On the whole, however, the benefits outweigh the drawbacks. By maintaining an explicit 

model of the threat, it is possible to enable, disable, or invoke tasks based on data, rather 

than solely on events and user actions. Moreover, in an environment in which multiple 

threats are can occur nearly simultaneously, it becomes possible to distinguish which threats 

were detected by which sensors, which have been confirmed, and which have been 

responded to. 

Time-stamping threats also permits the recording of an audit trail. In addition, instantiated 

(potential) threats are the mechanism by which we achieve sensor fusion. The threat records 

the sensor that was used to detect it and records the time it was first detected. Now to verify 

the threat, the verification task looks at the sensor that detected the threat (the 'predictive 

feature") and looks up the sensor that should be used to verify threats detected by that 

sensor. There is no need to reason about geometry and what's in the field of view of a 

particular camera, because we indicated at design time which camera could see the area 

monitored by each smoke detector or door sensor. 

11.3.1  Task Tracking in Procedural- and Event-Driven Tasks 

In order to provide context-specific help and advice, the system relies on tracking the user 

through the explicit model of the task. This can be relatively easy for a procedural task 

because there is what amounts to a 'program counter' which, if not literally expressed, can be 

inferred from the state of the scene manager finite state machines. For example, to find the 

next tasks that can be performed, the algorithm traverses the hierarchy of scene managers 

until it finds the managers that are in their initialized, unlocked, states and looks up the 

tasks they implement. 

This works well for procedural tasks in which the set of actions the user can take is entirely 

determined by what he has done so far. Here, the state of the interface is determined 

entirely by user-initiated events.  For tasks that are driven by external events, such as threat 
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detection, this doesn't work. For example, in threat detection, the next task to perform 

depends on whether there are any open threats on the agenda that must be verified or 

responded to. We can't infer what to do based on which managers are initialized or locked. 

In other words, for procedural tasks, tracking is event-driven; for event-driven tasks, tracking 

is data-driven. We have not implemented data-driven task tracking in MODEST, so the help 

palette does not work for the threat detection task. 

12. Discussion 
We have barely scratched the surface in the rich area of threat detection. Probably the 

biggest shortcoming of what we have done so far is the inability to construct a coherent 

picture of the overall threat situation. There is no facility for the user to combine multiple 

threat instances into one. EG, if two smoke detectors go off, there's probably only one fire. 

Alternatively, if an intruder is detected followed by a fire alarm, then the intruder probably 

started the fire, possibly as a diversion to cover some other activity. Putting together a 

coherent story from primitive sensor data is beyond the scope of our approach to task-driven 

interaction. 

Also, more threat-specific stategies for monitoring and responding to threats would be 

appropriate. For example, monitoring strategies might include scanning for intruders more 

closely at the perimeter than in the interior of a region. If a breakin is detected, verification 

typically involves searching for intruders. This search should progressively widen as time goes 

on, taking into account the speed with which intruders are likely to move. Moreover, it 

should be possible to adjust the sensitivities of the sensors when trying to verify a particular 

threat. Sensors that are normally prone to false alarms might have their gain turned up 

when an anomaly is detected. 

One capability that would be useful in an interface for threat-detection would be a parasitic 

or meta-level task to ensure that the operator is awake and at his station. For example, if 

cameras are not scanned or alarms are not reset after some period of time, a dialog box 

should appear and request attention. If no activity is detected, the system might call another 

operator to investigate. This is analogous to the time clocks located at points along a night 

watchman's rounds. 
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Part I-c: Functional Organization of Interface Libraries 

13. Introduction 
The human-computer interface community has devoted a great deal of effort in recent years 

to the creation of interface development environments, both academic and commercial. 

These environments are intended to simplify the process of designing an interface by 

providing such capabilities as the graphical manipulation of prototypes, and the reuse of 

standard interface objects stored in libraries. 

In this section, we will present an approach to improving these libraries by organizing them 

around the functionality of the stored interface constructs. This should enable interface 

designers-particularly novices-to more easily find the best collection of interface objects for 

performing a given task. 

14. Current Organization of Interface Libraries 
Currently available interface libraries and their documentation tend to organize their 

constituents in one of two ways: 

• Listed by name or icon (e.g., on a palette), often alphabetically (Cwikla; Scott et al. 
1995). 

• Categorized hierarchically by behavior and appearance (Kaleida, 1995). 

Using the first method of organization is essentially the same as using no organization. 

Interface designers must rely on prior knowledge of the names or appearances of interface 

objects to find them in the library. Browsing through a large library organized in this way can 

become frustrating and tedious. 

Button 

I 
DialogButton Checkbox RadioButton 

Figure 11. A typical object-oriented organization of interface objects. 

The second method of organization directly reflects the object-oriented programming 

techniques often involved in building an interface library. A typical categorization scheme is 

illustrated in Figure 11: Dialog buttons, checkboxes, and radio buttons are all stored under 

the Button class, which allows them to inherit the basic button behaviors and appearance. 

Organizing interface objects in this manner is efficient for the computer, but not necessarily 
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for interface designers who are searching for interface objects to incorporate into their design. 

For instance, a dialog button and a radio button may share the same basic button behaviors, 

but their functionality and context of use is quite different. A dialog button is used to issue a 

command during the course of running a program. A radio button, in contrast, is used to 

choose an item from a set without any presumption that the choice will immediately impact 

program behavior, and so has more of the flavor of a data entry device. 

The main problem with both the simple list and object-oriented organizations of interface 

libraries, then, is that they don't necessarily correspond to the ways that designers, 

particularly novices, think about their problems. Designers must first consider functionality- 

what tasks the users of the system will be performing-and then try to find interface objects 

that are most appropriate for those tasks. Unfortunately, using today's interface libraries, 

designers must perform the second step with search keys completely different from the 

functional specifications derived in the first step. Only after remembering or guessing possible 

names, behaviors, and/or appearances of interface objects can designers access these objects 

to determine whether they have the appropriate functionality. For instance, in the interface 

guidelines for the Macintosh (Apple Computer, 1995), readers must specifically choose to read 

about radio buttons before they can discover what they are used for. The upshot is that after 

determining what the user needs to be able to do, designers often end up checking whether 

interface objects x, y, z, etc., will support the user appropriately. 

Basically, then, today's interface libraries are similar to a university library that lacks subject 

categorizations or the Dewey decimal system. Anyone looking for a book on human-computer 

interaction would not have the luxury of finding all relevant books listed in one place; 

instead, they would have to search for titles that mentioned words associated human- 

computer interaction, authors associated with human-computer interaction, and so forth. 

Granted, current interface libraries are small enough that they can, if necessary, be browsed 

in this way. For novices, however, this can be an extremely difficult process. Moreover, even 

experienced designers may be led to make inappropriate design decisions in this way. Even 

though the number of widgets available in an individual design tool may be small, the number 

of widgets available to an individual designer grows much larger as specialized libraries are 

added. The problem only gets worse as interface designers accumulate a personal library of 

widgets and combinations of widgets from sources such as commercial libraries, previous 

personal designs, and coworkers. 
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15. Functional Organization of Interface Libraries  

In order to solve the inability of designers to search interface libraries in a more natural and 

intuitive way, we propose to organize interface objects according to their functionality. We 

want to forge a direct link from the task that designers are thinking about to the interface 

objects that they should use. Using this approach, designers should need to consider only 

two questions: 

• What do I want the user to be able to do here? 

• Which interface objects can support that? 

As a simple example, if a designer decides that a user should make an exclusive choice at 

some point in a task, the designer should be able to go straight to the category "widgets used 

for making exclusive choices" in a library and find a set of radio buttons, popup menus, and 

any other construct that enables users to make exclusive choices. 

16. Model-Based Interface Design  

Our approach to functionally organized interface libraries is part of a larger project on task 

model-based interface design (Hinrichs et al, 1996). A key focus of the project has been the 

construction of a design tool, MODEST (MOdel-based Design Employing Standardized Tasks), 

that uses explicit, standardized task models to drive the interface design process, resulting in 

the automatic compilation of large portions of the interface. In order to automatically 

generate interfaces from task models in this way, MODEST needs to know what interface 

constructs are appropriate for the task models with which it is working. The best way to 

provide this support is to index these constructs in terms of the tasks for which they are 

used-in other words, to build a functionally organized interface library. 

MODEST's design is based on the assumption that there exist a number of standardized tasks 

that are general enough to cover a wide variety of specific applications, and yet provide 

enough specific content to drive the development of useful interfaces. So far, we have 

studied several tasks that we believe possess these qualities, including the following: 

Parameter Setting 

Visual Comparison 

Sample-Test-Interpret, a general lab experiment task 

Threat Detection 

Strategic Planning 

Iterative Hypothesis Generation and Testing 

Simulation 
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For example, a task like Sample-Test-Interpret (in which the user takes a sample, runs a test 

on it, and interprets the results) is general enough to produce many diverse interfaces for jobs 

like blood testing or water sampling, but specific enough to guide the selection and 

appropriate parameterization of specific objects for use in these interfaces. 

As the list above makes clear, the tasks we are investigating span a range of levels of 

abstraction. For instance, Parameter Setting and Visual Comparison are both relatively small, 

low-level tasks that reside at the border between the user's real-world task and the interface 

constructs used to support that task. On the other hand, Iterative Hypothesis Generation 

and Testing is a much more complex and abstract task, which might, for example, employ 

Simulation or Sample-Test- Interpret as subtasks. Building interfaces for a wide range of 

complex tasks by combining simpler task models and their associated interface constructs in 

this way-a type of "plug and play" capability for interface design-is another goal of our project. 

The current incarnation of MODEST comprises three main phases: 

• A dialog in which the designer selects a task model and parameterizes it 
appropriately for the particular application at hand. 

• A dialog in which the designer specifies appropriate interface idioms and graphical 
objects to represent the actions and conceptual entities specified in the task 
model. 

• An editing session in which the designer previews the generated interface and 
arranges its components as desired on the screen. 

During the first dialog phase, designers select an abstract task model and then answer 

questions to specify parameters of the model with values that are appropriate to the target 

task. For instance, if the Sample-Test-Interpret task were being used to generate an 

interface for a blood test, a designer would answer questions about the sample (i.e., blood), 

the sample site (i.e., a person), the sample device (i.e., a syringe), and so forth. In the next 

stage, designers specify the media they want to represent these objects in the interface and 

the interface interaction paradigms used to represent actions involving these objects. For 

example, a designer would be asked to select pictures of what the syringe looks like before 

and after the blood is taken from the person, to select how the blood is transferred from the 

syringe to a storage container (e.g., by clicking on the container with the syringe), etc. 

After this dialog, MODEST generates a working interface from the parameterized task model, 

at which point the designer can test the interface and adjust the layout and size of the 

interface objects. Note that the chief focus of MODEST is not the layout of the generated 

interface, but its functionality. We are most concerned with the objects that should comprise 

the interface and how those objects interact. 
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Figure    12.    A    sample    screen    from    a    functionally    organized    interface    library 
for parameter setting. 

17. Parameter Setting  
As mentioned above, both parameter setting and visual comparison are relatively small, low- 

level tasks that, as a consequence, have very high possibilities for reuse. In addition to the 

modeling these tasks in the MODEST environment, therefore, we have also implemented 

semantically organized widget libraries for these two tasks in HTML. The resulting systems 

guide the designer through a task model, asking questions about the context of use, 

ultimately outputting a list of interface objects that could be used in an interface for the task. 
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In order to illustrate the structure and use of our functionally organized libraries, we will first 

summarize our task model of parameter setting, and then step through a typical interaction 

with our library of interface objects for parameter setting organized around that task model. 

17.1 A Task Model of Parameter Setting 
Figure 13 shows the top level of our task model for parameter setting. The task can be 

specialized as one of two types in our model: the basic parameter setting task, or the 

coarse/fine parameter setting task. The basic parameter setting task (shown in Figure 14) 

involves alternately checking and adjusting the parameter in a tightly closed loop until the 

parameter is set to some target value. The coarse/fine parameter setting task (shown in 

Figure 15) is often used when a parameter's value has a large number of options or must be 

very exact. The only difference between coarse/fine and basic parameter setting is the option 

of adjusting the parameter in larger or smaller increments. 

These figures describe the basic flow between the subtasks of parameter setting at a relatively 

course level. Our task model also contains a representation of the objects involved in 

parameter setting: parameters, displays, and controls. Our criteria for classifying a parameter, 

depending upon the nature of its range, is shown in Figure 16. 

The range of a parameter can be discrete or continuous. If the parameter range is discrete, it 

can be binary (e.g., an on/off parameter); an OR set, which can have several of its values 

selected simultaneously (e.g., a word-processing text style); an XOR set, which can have one 

and only one of its values selected at a time (e.g., the font of a text selection); or a range of 

ordered values (e.g., the letters of the alphabet). Sets can be further distinguished as 

containing items that are categorized into subsets. For example, a user may have to specify a 

selection from a set of geographical locations that are hierarchically categorized (e.g., country, 

state, county, city). 

Next, a parameter's composition can be one-, two-, or three-dimensional (higher dimensions 

are viewed as separate parameters in our system). For instance, color can be considered a 

three-dimensional parameter because it can be composed of three one-dimensional 

parameters: either red, green, and blue values, or hue, brightness, and saturation values. 
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Set Parameter -c 
Set Parameter 

Basic 

Set Parameter 
Coarse/Fine 

Figure  13. The  top level of the   parameter  setting  task model.     The   task can be 
specialized as either basic parameter setting or coarse /fine parameter setting. 

Check Parameter 

i 
Adjust Parameter 

Figure 14. The basic parameter setting task model. 

r    Check Parameter      ^       I 

i       I 
Coarsely Adjust 

Parameter V Finely Adjust 
Parameter 

Figure 15. The coarse/fine parameter setting task model. 

Value Type 
• Discrete 

Binary 

- OR set 

- XOR set 

Range 

• Continuous 

Composition 
• One-Dimensional 

• Two-Dimensional 

• Three-Dimensional 

Setting Effect 
• Selection 

• Performance 

Figure 16. Classification criteria for a parameter object. 
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Finally, the effect of setting a parameter can be one of selection, in which a choice is made 

that has delayed effects, or one of performance, in which an immediate effect is achieved by 

the performance or control of a function. An example of this distinction and its influence on 

an interface is the case of turning on a light; turning on a light by clicking on a checkbox 

would feel strange and unintuitive because checkboxes are typically used for making choices 

on a form, not for performing actions. 

The second object involved in the task of parameter setting is a display for providing feedback 

about the value of the parameter. The display can be optional because feedback is often 

inherent in the control used to set a parameter (e.g., a slider switch indicates a relative 

setting by its position) or the observable effects of setting a parameter (e.g., volume or 

brightness). However, sometimes a separate display is needed. For instance, if the real effect 

of a choice is delayed or expensive to compute, a display can be used to preview the 

parameter's value before it is actually set. Alternatively, perhaps a parameter will be set 

remotely and a separate display like a video monitor is needed to see the effects. 

The third object involved in the task of parameter setting is a control for setting the 

parameter.  Our criteria for classifying controls is shown in Figure 17. 

First, the movement of a control can be smooth, mirroring the continuity of the parameter, or 

detent, mirroring the discreteness of the parameter. There are two special cases of detent 

controls: a binary detent control like a light switch, and other detent controls like an old- 

fashioned TV channel selector. 

Next, a control can be persistent or non-persistent. If a control is persistent, it holds the 

parameter at the value it was last given. If a control is non-persistent, as soon as the user 

"releases" it, the control returns the parameter to some default value. An example of a non- 

persistent control is the pitch slider wheel on many synthesizers. 

Finally, as mentioned above, a control might or might not provide feedback about the value of 

the parameter or its effect. If a control does provide feedback, the feedback can be 

quantitative (e.g., by reading a labeled knob, a user can see at exactly what value the knob is 

set) or qualitative (e.g., by looking at the relative position of a slider, a user can see if its 

associated parameter's value is high, low, near the middle, etc.). 

17.2 Using the Parameter Setting Interface Library 
A designer finds interface objects in our library by answering questions about alternatives 

provided by the task model described above. The system uses the designer's answers to 

traverse the decision tree that organizes the library.   A sample interaction follows.   Because 
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the parameter is common to the whole task, the system begins by asking the designer to 

specify the type of parameter to be manipulated. 

Movement Type 
• Continuous 

• Detent 

Binary 

Three positions or greater 

Persistence of Change 
• Persistent 

• Non-Persistent 

Feedback 
• Quantitative Feedback 

• Qualitative Feedback 

• No Feedback 

Figure 17. Classification criteria for a control object. 

XOR Pulldown Menu - marked 

Popup Menu 

XOR ListBox - marked 

Macintosh Radio Buttons 

Radio Buttons with two positions 

TextField 

Figure 18. Possible interface objects to use in a computer interface for making a 
selection from an XOR set of items with a persistent control that provides feedback 
about the parameter's value. 

Radio Buttons with two positions 

Lever - detent - labeled 

Keylock - labeled 

Rotary Selector Switch - labeled 

Slider - detent - labeled 

Knob - detent - labeled 

Figure 19. Possible interface objects to use in a physical interface for making a selection 
from an XOR set of items with a persistent control that provides feedback about the 
parameter's value. 
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Is the parameter discrete or continuous? 

Discrete. 

Is the discrete  parameter  binary,  an OR set,  an XOR  set,  or a 

range? 

An XOR set. 

is setting the parameter an act of performance or an act of 
selection? 

Selection. 

Because the range of the parameter is an XOR set, the system knows that the parameter is 

one-dimensional and doesn't ask the designer about its composition. 

The designer has now identified the parameter type, so the system asks which specialization 

of the parameter setting task is needed. 

Should the user perform the basic parameter setting task or the 
coarse/fine  parameter  setting  task? 

Basic. 

The system now moves to the first subtask in the basic parameter setting task, which is 

checking the parameter's value. The system basically needs to know where the user will get 

feedback about the value. 

Which interface object should provide feedback about the 
parameter's    value     (the    display,     the    control,     both,     none)? 

The control. 

Finally, the system moves to the other subtask, adjusting the parameter, with which the 

control is associated. The control's movement type is determined by the parameter's value 

type (i.e., a binary discrete parameter should have a binary detent control), and the designer 

has just indicated that the control should provide feedback, so the system only needs to ask 

about the control's persistence. 

is    the    control    persistent    or    non-persistent? 
Persistent. 

After the designer has answered all the necessary questions, the system provides a list of 

interface objects that can be used for the specific parameter setting task that the designer 

has specified. The objects that could be used in a computer interface based on the above 

answers are listed in Figure 18. If the interface is to be implemented in the physical world, 

the designer can use the objects shown in Figure 19. Our libraries currently provide textual 

suggestions; ultimately, they will provide downloadable, working widgets for a variety of 

platforms. 
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18. Visual Comparison 

Visual Comparison -c Sample To Sample 

Sample To Key 

Figure 20. The  top level of the visual comparison task model.     The   task can be 
specialized as a sample to sample comparison or a sample to key comparison. 

Sample To Sample 
or 

Sample To Key 

Basic Comparison 

Superimposition 
Comparison 

Blink Comparison 

Stereogram 
Comparison 

Figure 21. The second level of the visual comparison task. Both the sample to sample 
and sample to key comparison tasks can be specialized further into one of four types of 
comparison. 

We have implemented a similar model and interface library for the task of visual comparison. 

Knowledge about visual comparison represented in our task model includes the following: 

• Users can either compare two samples or compare a sample to visual key (see 
Figure 20). 

• Visual comparison can follow one of four methods (see Figure 21): basic comparison 
(i.e., simply looking at two visual objects side by side), superimposition comparison 
(i.e., aligning a translucent visual object over another visual object to find if the 
objects match), blink comparison (i.e., aligning at least two visual objects over each 
other and switching back and forth between them, looking for differences as 
revealed by apparent motion), and stereogram comparison (i.e., placing two visual 
objects side by side, defocusing the eyes, and looking for differences as revealed by 
a 3D effect). 

• Visual objects can be either static (e.g., a picture) or dynamic (e.g., video), and 
either two-dimensional or three-dimensional. 

• Visual keys can consist of a single visual object, a linear set of visual objects, a 
hierarchical set of visual objects, or a continuous range of visual objects (e.g., a 
color scale). 

Figures 22 through 25 show the basic flow between the subtasks for each specialization of 

visual comparison at a relatively coarse level. 

Interface designers can use our library based on the visual comparison task model to find 

suggestions about interfaces for jobs ranging from matching paint colors to interpreting CAT 

scans. For example, if the user needs to perform a basic visual comparison between a 

dynamic, two-dimensional sample and a static, three-dimensional sample, the designer would 
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find in the library a suggestion for an interface that included at least two viewing rectangles, a 

VCR-type control for manipulating the dynamic sample, and a rotation control for 

manipulating the three-dimensional sample. The library would also suggest additional tools 

for aligning, measuring, zooming, and marking the samples. As another example, Figure 26 

shows a possible interface for comparing a static, one-dimensional sample to a discrete linear 

key. 

Choose First Sample 

I 
Choose Second Sample 

Position Samples Compare Samples Analyze Samples 

Figure 22. The task model for comparing two samples using either the basic, 
superimposition, or stereogram comparison methods. First the user chooses the 
samples to be compared if they have not already been chosen. The user then 
interleaves the subtasks of positioning the samples, comparing the samples, and 
optionally analyzing the samples by zooming, measuring, etc. Finally, the user can 
repeat the process with a new batch of samples. 

19. Related Work 
Several other projects have also explored semantically-driven approaches to interface design. 

The previous effort that has taken perhaps the most similar approach to our own work on 

functionally organized widget libraries, particularly as it relates to the parameter setting task, 

is the development of Johnson's (no relation) selectors as part of Hewlett-Packard 

Laboratories' Application Construction Environment, or ACE (Johnson, 1992). Johnson 

defines selectors as "semantic-based controls." 

In the ACE system, interface designers choose widgets based on the type of selection that will 

be made, and the type of value that will be selected. The system represents several common 

data types (e.g., numbers, times, Booleans, colors, currency amounts, etc.) and distinguishes 

between the following selection types: 
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Choose First Sample 
/\ Choose Second Sample 

Position Samples 

1 
Toggle Between 

Samples 

Analyze Samples 

Figure 23. The  task model for comparing two samples using the   blink comparison 
method. 

Because the samples must be exactly aligned for the comparison to be effective, the order of 

the subtasks is more tightly constrained than they are in the model shown in Figure 22. 

Choose Sample 

Choose 
Key Value 

Position 
Visual 

Objects 

I 
Choose Key 

Compare 
Visual 

Objects 

Analyze 
Visual 
Objects 

Figure 24. The task model for comparing a sample to a key using either  the  basic, 
superimposition, or stereogram comparison methods. 

First the user chooses the sample and the key to be compared if they have not already been 

chosen. The user then interleaves the subtasks of choosing key values, positioning the 

sample and key, comparing the sample and key, and optionally analyzing the sample and key 

by zooming, measuring, etc. Finally, the user can repeat the process with a new sample or 

key. 

• Choice of a single value from a discrete set, or 1-from-N choice, which includes the 
special case of a l-from-2 choice. 

• Choice of multiple values from a discrete set, or N-from-N choice. 

• Choice of a single value from a range of values. 

• Choice of multiple values from a range of values. 

ACE also distinguishes between choosing a data value and choosing a command. 

Furthermore, each value and choice type has its own group of presenters that determine how 

the selection mechanism is displayed on the screen. For instance, a color could be displayed 

as either an actual color or a name, and a 1-from-N choice could be displayed as either a set 
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of radio buttons or a popup menu. Therefore, in order to put a widget on the screen, 

designers indicate the value to be set, the way the value is to be displayed, the type of choice 

to be made, and the way the choice is to be displayed. The ACE system then combines these 

choices to create a control. 

ACE selectors represent a significant advance over most current methods of interface 

development. Even when using selectors, however, designers are still constructing interfaces 

widget by widget; and they are still building each interface essentially from scratch. A 

functionally organized interface library is intended to index interface objects at all levels of 

complexity, from individual widgets to compositions of numerous widgets. The parameter 

setting task model we have used to index interface objects in our library is only a single task- 

model at the lowest levels of a tree of numerous, increasingly complex task models. With a 

large library of reusable interface objects, ideally many of the choices indicated by the 

parameter setting task model (e.g., the nature of the parameter's range) would already be 

constrained by decisions at higher levels. 

In addition, the task model that we have used to organize our library provides more extensive 

indices to parameter setting widgets than does the choice semantics of ACE selectors. Setting 

a single parameter can require much more than a single control. Consider the Macintosh 

Color Picker, which contains a two-dimensional color wheel for determining hue and 

saturation; a slider for determining lightness; three textfields for typing in exact values of 

hue, saturation, and lightness; and two separate displays for viewing the old color versus the 

new color. To properly span the space of such complex controls, our model makes explicit 

such distinctions as classifications for displays, persistence of the controls, etc. 
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Choose Sample /\ Choose Key 

Choose 
Key Value 

I 
Position 

Visual Objectsj 

I 
Toggle Between 
Visual Objects 

Analyze 
Visual 
Objects 

Figure 25. The task model for comparing a sample to a key using the blink comparison 
method. 

Because the sample and key must be exactly aligned for the comparison to be effective, the 

order of the subtasks is more tightly constrained than they are in the model shown in Figure 

24. 

In terms of the concept of interface design based on explicit task models, MODEST is related 

to similar projects such as ADEPT (Johnson, Johnson 8B Wilson, 1995), Mastermind (Szekely, 

Luo, and Neches, 1993), and Mecano (Puerta et al, 1994). In more general terms, MODEST, 

and more specifically the functional organization we propose for interface libraries, grow out of 

work in case-based reasoning, or CBR (Kolodner, 1993; Riesbeck and Schänk, 1989). CBR is 

an approach to constructing intelligent systems in which knowledge in the form of a specific 

prior case is stored in terms of the situation in which it is relevant. Using this approach, 

when a new situation arises, significant features of this situation are used to retrieve the 

most appropriate prior case. If necessary, the retrieved case is then adapted to the current 

situation. 

In functionally organized interface libraries, interfaces and interface constructs are the prior 

cases, and the task models represent the situations. Interfaces are stored in terms of the 

tasks for which they are used. When designers find themselves creating an interface for a 

new task, they retrieve an interface or construct that is stored under that task and adapt it to 

their current situation. 
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20. Conclusions 
Our initial goal in constructing functionally organized interface libraries was to facilitate 

automatic interface generation based on task models in the MODEST system. However, the 

notion of functional organization is beneficial at any level of technological sophistication. A 

useful implementation can be as simple as an index in the back of a software tool's 

documentation that lists available interface objects in terms of their functionality. 

In whatever manner a functional organization is used, the key benefit of such an approach is 

basically this: Interface designers can move intuitively and efficiently from the task they are 

contemplating to interfaces and interface constructs that are most appropriate for performing 

that task. Using a functional organization, it is not necessary to hunt through a set of 

interface objects that have been indexed according to different criteria, perhaps missing an 

even better interface or making a poor decision along the way. 

In addition, better organization techniques for libraries mean larger libraries can be built and 

utilized effectively. In terms of useful searches, the current organization techniques of 

alphabetic or object-oriented indexing won't scale up to libraries of any great size. The ability 

to create and use large repositories of reusable interfaces pushes the field of human- 

computer interaction closer to the efficiency of engineering methods rather than perpetuating 

methods based heavily on the skill of the individual designer. 

Phenol Red 

Figure 26. A possible interface for comparing a static, one-dimensional sample (a color) 
to a discrete linear key (of several colors). This particular interface includes a draggable 
viewer rectangle for the sample, a scrollable linear key, buttons for choosing a different 
key, a label to identify the current key, and a label to identify the key value of focus. 
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Appendix A: State diagrams for selected interface 
objects 

In this section we illustrate the behaviors of selected interface objects and idioms using 

annotated state diagrams. In these diagrams, state names are in boldface, state transition 

triggers are in italics and actions on transitions are underlined (when shown). As can be 

seen, these objects are not pure finite state machines because can they invoke arbitrarily 

complex functions on state transitions and the triggers may include parameters which are 

passed on to those functions. The parameters can also be used to filter triggers. We denote 

this in these figures by showing the parameters in parentheses when relevant, e.g., 

transfer(FromContainer) means accept the transfer trigger when the first parameter is the 

value of the FromContainer slot. 

load 

mouseDown 
send 'transfer' unload 

mouseDown 
send 'transfer' 

Figure 27. ContainerObject 

A container is modeled as a two state object: it is either empty of full of its contents. It 

responds to the load and unload triggers by executing actions that set or reset its contents 

and changing state. Because containers are displayed as graphical objects on the screen, 

they can receive mouse events. Note that instead of responding directly to mouse events, 

they translate these events into transfer' triggers which they pass on to their manager 

(typically an interface idiom such as ClickTransfer or ClickTransport, q.v.) It is the 

responsibility of the parent interface manager to send back the semantic triggers load' or 

'unload' when it is appropriate. 
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transfer 

©transferContent 

( after J 

Figure 28. ClickTransfer 

ClickTransfer is an interface idiom that transfers the contents of one container to another. It 

is invoked when the user clicks on one of the containers that is a parameter of the transfer 

FSM. In response, it sends the 'unload' and load' triggers to the containers in its 

FromContainer and ToContainer roles. 

start      transfer(FromContainer)    transfer(ToContainer) 

startTransport extractContent storeContent 

Figure 29. ClickTransport 

ClickTransport is a means of transporting a fluid from one location to another, in effect by 

transferring it from the FromContainer to an intermediate container (represented by the 

mouse pointer), and finally to the ToContainer. We present this idiom to illustrate the use of 

parameterized messages or triggers. For example, ClickTransport will only transition from the 

before state to the during state if it receives a transfer message from the container in its 

FromContainer role. 
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Start start drag drop 

enter leave 

Figure 30. DragOverTarget 

Another way to move an object is to drag it and drop it. The drag over target idiom is a slightly 

elaborated version of this that receives triggers when the dragged object enters or leaves a 

designated target object. This permits the dragged object to respond to those events as 

appropriate, as for example when litmus paper is "dipped" in a solution by dragging it over a 

beaker. 

initialize 
gainFocus 

initText 

return 
setText 

loseFocus 

Figure 31. Typeln 

Some user-interface idioms correspond more directly to standard widgets. The Typeln idiom 

permits a user to enter and edit text in a text-editing field and returns the text when he 

presses the carriage return. The initText routine sets up the event receivers to send the gain 

and lose focus triggers when appropriate. 
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setup select 
setChoices^   /^setSelection^ 

finished 

update 

Figure 32. UserSelect 

The UserSelect idiom supports the behavior of choosing a value from a list.   This works with 

either a listbox widget or a popup menu. 

detected 

Figure 33. ThreatObj 

This diagram shows the states and transitions of a threat object. This behind-the-scenes 

object coordinates the threat detection task around the states of possible threats on the 

agenda. 
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Start stop 

update 
sensor 
alarm 

Figure 34. Scanning 

Scanning is an interface idiom that implements the monitoring subtask. It is responsible for 

updating the display based on events such as sensors exceeding their threshold or the user 

selecting a video channel. 

data 
displayed 

update 

threat 
posted 

threat 
verified 

Figure 35. SelectlnfoChannel 

SelectlnfoChannel is an interface idiom that supports viewing information channels on a 

multiplexed display and determining whether a threat (or any event for that matter) has been 

displayed since it arose. Note that verification cannot be driven solely by the operator 

changing the channel, since the relevant channel may already have been selected when the 

threat arises. 
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Appendix B: Ontology 
In this section, we outline the hiererchy of concepts that are currently represented in the 

MODEST tool. These concepts are represented as frames with multiple inheritance. In the 

diagram below, names in parentheses denote additional parents in the frame hierarchy, while 

names in square brackets denote ScriptX class mixins that augment the frame 

implementation for certain types of objects. 

WorldObject 
AttributeType 

ContinuousAttribute 
DiscreteAttribute 

CompositionType 
ContinuousStuff 

Water 
DiscreteThing [FSMActor] 

ContainerObj 
Beaker 
TestTube 

Machine 
ControlObj 
IndicatorObj 

VisualDisplay 
Gauge 

SemiCircularGauge 
DigitalReadout 
SemiCircularGauge 

Chemicallndicator 
Multiplexedlndicator 

MultilnputVideoMonitor [FSMvideoMonitor] 
Tool [FSMCursor] 

LiquidExtractionTool (ContainerObj) 
Dropper 
Syringe 

InterpretationKey 
Continuou sKey 
DiscreteKey 

MoviePresenter 
InterfaceControl [FSMResettableActor] 

ControlButton 
SelectionObj 

Palette [FSMPalette] 
ButtonPalette 

Device 
Alarm 

VisualAlarm 
audioAlarm [FSMaudioPlayer] 

Sensor 
AutomaticSensor 

BinarySensor 
doorSensor 

LinearSensor 
ThresholdSensor 

smokeDetector 
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2DSensor 
videoCamera 

AbstractMethod 
TaskCombiner 

Sequential [SequentialCombiner] 
Parallel [ParallelCombiner] 
Disjunctive [DisjunctiveCombiner] 
Loop [LoopCombiner] 
Concurrent [ConcurrentCombiner] 

SituationManager 
Conditional [ConditionalCombiner] 

TaskMethod 
OmitTask 
PressBttnMethod 
WatchMovieMethod 
DirectManipulation 

Transport 
InitiateProcess 
MakeContact 
Presentlnfo 
Selectlnfo 
Enterlnfo 

Gesture [SceneManager] 
DragTransport (Transport) 
ClickTransport (Transport) 
ClickTransfer (Transport) 
ClickTurnOnOff (InitiateProcess) 
ClickTurnOn (InitiateProcess) 
ClickButton 

ClickButtonDoTask 
DragOverTarget (MakeContact) 
ClickCompareSelect (selectlnfo) 
UserSelect (selectlnfo) 
Typeln (Enterlnfo) 
WatchMovie (WatchMovieMethod) 
Scanning 
SelectionlnformationChannel 

ThreatObj 
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Appendix C: Sickle Cell Demo Screens 

Script» Display Surface 

/ 

Figure 36. The Sample Scene. 
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Figure 37: The Electrophoresis Machine (before loading) 

70 



Hi   File   Edit   Window   Tools 1:02 PM (&   SB 
Script» Display Surface 

mm 

3=E£Z^ S 

Figure 38:  The Electrophoresis Machine (after loading) 
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Figure 39: The Interpret Scene 

72 



References 
Apple Computer. 1995. Macintosh Human Interface Guidelines. Reading, MA: Addison- 

Wesley. 

Bell, B., Bareiss, R, and Beckwith, R. 1993/1994. Sickle Cell Counselor: A prototype 
Goal-Based Scenario for instruction in a museum environment. Journal of the 
Learning Sciences 3(4):347-386. 

Birnbaum, L., and Collins, G. 1993. Towards a general theory of planning and design. 
Technical Report 44, The Institute for the Learning Sciences, Northwestern 
University. 

Chandrasekaran, B. 1983. Towards a Taxonomy of Problem-Solving Types. AI 
Magazine, 4:9-17. 

Cwikla, J.L. The X Widget FAQ. <http://www.wri.com/~cwikla/widget/>. 

Green, P.E. 1986. Issues in the Application of Artificial Intelligence Techniques to 
Security Systems. In 1986 Carnahan Conference on Security Technology, 127- 
132.  Lexington, Ky. 

Hammond, K. 1989. Case-Based Planning: Viewing planning as a memory task. New 
York: Academic Press. 

Hinrichs,T., Bareiss, R, Birnbaum, L., and Collins, G. 1996. An interface design tool 
based on explicit task models. In CHI 96 conference companion, 269-270. 
NY:ACM. 

Jona, M., Bell B., and Birnbaum, L. 1991 Button Theory: A Taxonomic Framework for 
Student-Teacher Interaction in Computer-Based Learning Environments. 
Technical Report 12, The Institute for the Learning Sciences, Northwestern 
University. 

Johnson, J. 1992. Selectors: Going Beyond User-Interface Widgets. In Proceedings of 
CHI '92, 273-279.  Monterey, CA: ACM. 

Johnson, P., Johnson, H. and Wilson, S. 1995. Rapid Prototyping of User Interfaces 
Driven by Task Models. In Scenario-Based Design: Envisioning Work and 
Technology in System Development, J. M. Carroll, ed. New York: John Wiley 8B 
Sons, 209-246. 

Kaleida Labs. 1995.  ScriptX Components Guide. Mountain View, CA: Kaleida. 

Kolodner, J.L. 1993.  Case-based Reasoning. San Mateo, CA:Morgan Kaufmann. 

Puerta, A., Eriksson, H., Gennari, J., and Musen, M. 1994. Model-based automated 
generation of user interfaces. In Proceedings of AAAI '94, 471-477. Menlo Park, 
Calif.: American Association for Artificial Intelligence. 

Riesbeck, C. and Schänk, R. 1989. Inside Case-based Reasoning. Hillsdale, 
NJ:Lawrence Erlbaum. 

Rosch, E., Mervis, C, Gray, W., Johnson, D. & Boyes-Braem, P. 1976. Basic objects in 
natural categories.  Cognitive Psychology 18:382-439. 

Sacerdoti, E. 1977. A Structure for Plans and Behavior. New York: American Elsevier. 

73 



Schänk, R. 1982. Dynamic Memory: A Theory of Reminding and Learning in 
Computers and People. Cambridge, England: Cambridge University Press. 

Schänk, R. and Birnbaum, L. 1995. ILS Interface Design: Principles and Design 
Guidelines. Technical Report #62, The Institute for the Learning Sciences, 
Northwestern University. 

Scott, C, Shannon, B., Font, F. and Hatfield, B. 1995. Visual Basic 4 Unleashed. 
Indianapolis: Sams Publishing. 

Sussman, G. 1975. A Computer Model of Skill Acquisition. New York: American 
Elsevier. 

Szekely, P., Luo, P., and Neches, R. 1993. Beyond Interface Builders: Model-Based 
Interface Tools. In Interchi'93, 383-390. NY:ACM. 

Wielinga, B., Schreiber, A. and Breuker, J. 1992. KADS: A Modeling Approach to 
Knowledge Engineering. Knowledge Acquisition, 4:5-53. 

Wilensky, R. 1982. Planning and Understanding. Reading, MA: Addison-Wesley. 

Williams, S.J. 1987. Alarm Communication and Display Systems for High Security 
Department of Energy Facilities. In 1987 Carnahan Conference on Security 
Technology,   121-126. Atlanta, GA. 

74 



Part II: Model-Based Performance Support 

21. Introduction 
The function of a mixed-initiative planning (MIP) system should be to serve as an 

intelligent assistant to a knowledgeable human planner. Such an assistant might be 

expected to provide a variety of services, ranging from gathering information and 

providing warnings to generating options and carrying out routinized tasks. While 

there are number of things that an intelligent assistant might need to understand in 

order to provide such services effectively, the most important of these is the nature of 

the task it is helping the human planner to carry out. In other words, effective MIP 

systems should incorporate explicit models of the planning processes they are 

intended to support. 

Such a model-based approach to MIP offers two key advantages. First, MIP entails a 

significant degree of interaction between human planners and automated planning 

systems. As in any collaborative activity, successful interaction in such cases will 

require a shared context in terms of which the acts and needs of the participants can 

be understood and accommodated. While there are many possible sources of 

constraint that might contribute to the development of such a shared context, 

arguably the most central is an understanding of the task being pursued. 

The second advantage of a model-based approach to MIP is that it is consistent with 

the way that successful performance support systems actually operate and are 

currently built. The ACPT air campaign plan authoring system developed by ISX 

Corporation provides a good illustration. This system's usefulness in supporting the 

air campaign planning task stems directly from the fact that its design is based on a 

detailed analysis of that task. 

We are developing an explicit, computer-manipulable model of the ACP task, as well as 

related planning tasks, along with methods for employing such models to carry out a 

number of important MIP functions. These include task management mechanisms for 

utilizing such models to track the performance of the task, including in particular 

mechanisms for understanding the human user's current planning activities within 

the context of the task as a whole. The model-based task management system we are 

developing provides an infrastructure for mixed initiative planning that can serve as a 

basis for integrating a variety of technical applications into a MIP system.   The specific 
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application that we are developing for such integration is a case-based Air Campaign 

Planning Advisor providing in-context help and advice to users of ACPT. 

22. Problems with Current Technology  

22.1 Performance Support Systems 
In the current state of the art, the design of successful performance support systems 

requires painstaking, one-of-a-kind empirical investigations of the tasks being 

supported. The systems themselves must then be carefully hand-crafted to reflect the 

results of these task analyses, and they do not, in general, employ explicit models of 

the tasks they are intended to support. Consequently, the flexibility, extensibility, 

and generality of such systems are extremely limited, as is their ability to provide 

timely and relevant in-context help and advice. 

Despite these difficulties, the design and implementation of performance support 

systems based on empirical task analysis constitutes a successful engineering practice. 

Our work aims to support this practice by providing explicit languages for task 

modeling, and, eventually, libraries of standardized, broadly applicable models that can 

be extended by specialization, composition, and other editing operations. The primary 

goal of such an effort is a significant increase in the functionality of the resulting 

systems. Explicit task models would permit better tracking of the current state of the 

task, thus increasing the system's ability to make intelligent choices about what it 

should be doing, provide in-context help and advice, and so on. At the same time, the 

use of such models would significantly increase the flexibility of MIP systems by 

permitting the decoupling of the overall task structure from the specific methods used 

to carry out different aspects of the task. In other words, explicit task models could 

serve as an interface between different components of a large-scale performance 

support system. 

There are at least two additional benefits of structuring performance support systems 

around specific task models as described above. First, such an approach will make it 

possible to carry out the design and implementation of performance support systems in 

terms of high level components, thus significantly reducing the difficulty of 

constructing such systems. Second, the use of explicit models will make it significantly 

easier to use the resulting performance support systems as a basis for developing 

effective and realistic training systems, through the addition of scenario-specific data 

and advice. 
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22.2 Mixed Initiative Systems 
Mixed initiative systems have been developed in a number of application areas, 

primarily educational and informational. Many of these systems rely upon some type 

of explicit context modeling to support interaction with the user or student. Perhaps 

the most widespread approach to supplying the necessary context is user (or student) 

modeling. However, despite many years of research, it has proven notoriously difficult 

to construct explicit models of user knowledge and intentions—largely because of the 

natural idiosyncrasies of different users—and it has proven even harder to apply such 

models in practice. Thus the approach advocated here is to model the task, not the 

user. 

Another popular approach, dialog modeling, appeals to constraints arising solely from 

communicative goals, rather than those relating to the successful performance of the 

task itself. In our view, however, such communicative constraints are secondary, and 

indeed their successful application in the context of a given task depends upon an 

understanding of that task. This again argues that we can make the most progress by 

focusing our attention on the constraints arising from the task itself. 

22.3 In-Context Information Systems 
We have developed a family of hypermedia systems—ASK systems—which are aimed at 

providing conversational access to large case libraries for training and performance 

support. A number of ASK systems have been constructed, in domains ranging from 

economic history, to the public water supply, to military transportation planning. The 

largest of these systems, Trans-ASK, contains twenty-one hours of video, in the form 

of 30-second to two-minute clips, detailing the "war stories" of United States 

Transportation Command staff personnel concerning their experiences in planning for 

Operations Desert Shield and Desert Storm, as well as the Somalia and Hurricane 

Andrew relief operations. These stories provide guidance relating to expert practice 

and rules of thumb not covered by formal doctrine. 

Once a user has located a potentially relevant story in the case library, the 

organization provided by the ASK model supports efficient and natural access to 

information that might answer his or her follow-up questions. However, in order to 

formulate the initial query into the case base, the user must traverse a hierarchical 

menu system to specify his or her role, task, and problem—a time-consuming and 

distracting chore for someone in the midst of trying to resolve a problem. The 

effectiveness of such systems would be significantly enhanced if they were able to 
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track the user's performance of the task, providing instantaneous access to cases 

directly relevant to his or her current concerns. The use of a shared, explicit task 

model both to index information and to track the state of the task would constitute a 

key step towards the development of such a capability. 

22.4 Planning Systems 
In order to successfully interact with human users, planning systems must be both 

comprehensible and advisable. In other words, the human planner must be able to 

understand what the planning system is doing and why it is doing it, while the system 

must at the same time be able to accept advice in terms that are natural to the user. 

Unfortunately, current AI planning systems can neither represent nor utilize general 

planning concepts such as "bottleneck," "milestone," "crisis," or even "priority," 

commonly employed by human planners in reasoning about and discussing planning 

problems. As a result, these systems can neither explain themselves to, nor take 

advice from, human planners in the language that those planners find most natural. 

People naturally talk about plans and planning processes in terms that refer explicitly 

to models of such processes. A term such as "milestone," for example, gains its 

meaning from a rather general model of planning tasks: A milestone is an 

intermediate, observable objective used to monitor progress towards an ultimate 

objective. Such terms refer not to any particular planning domain, but rather, to the 

task of planning itself. In order to interact effectively with human planners, MIP 

systems must be capable of manipulating such concepts, at least in a limited form. 

This requires an explicit model of the planning task in which the system is engaged. 

23. Task   Representations   for   Model-Based   Performance 
Support  

23.1 A General Framework for Integrated Performance Support 
Our approach to providing performance support is based on a fine-grained task model 

that allows the software to track its user and provide in-context help and advice. The 

first step in designing such a performance support system is to define a task model 

that identifies the process steps and associated information flows. Given the overall 

task model, the following items must be defined for each subtask: 
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A "tool" that supports or carries out the information processing associated 
with the subtask. In many instances, this will be a "smart form" that 
reflects the internal data flow of the subtask. 

Recognition conditions that indicate when the user is engaged in the 
subtask. While these conditions may in principle be quite complex, in 
many cases, they will simply involve noting that the user has invoked a tool 
that is relevant to the performance of that subtask. 

Easily detectable errors. These would include, for example, the invocation 
of a subtask before its necessary inputs have been generated, the exiting of 
a subtask before it has been completed, and various sorts of input errors. 

Help and advice. This would include background knowledge relevant to the 
subtask, step-by-step instructions, justifications, lessons learned, 
alternatives, examples of subtask performance, common problems and 
solutions, and so on. This information might be made available to the user 
in a variety of ways, including, for example, through entry into an ASK 
system, or by invoking an intelligent information agent.1 

23.2 Task Representation: Content 
The core of our approach is the development of explicit representations for the ACP 

and similar planning tasks. Ultimately, we believe that there are four critical aspects of 

a planning task must be explicitly represented: 

1. A hierarchical decomposition of the overall task in terms of its subtasks. 

2. The methods employed by the system or the human planner to carry out 
these subtasks. 

3. A description of the causal mechanisms through which these methods carry 
out their intended tasks. 

4. Problems that are likely to arise in each subtask, and possible solutions to 
these problems. 

To see how this approach might apply in practice, let us consider a common subtask of 

many planning processes, the comparison of a relatively small set of different options. 

Carrying out this subtask involves several steps. First, the states of affairs that will 

result from carrying out the various options must be projected. Next, these possible 

states of affairs must be evaluated with respect to their costs and benefits along 

various dimensions. Then, these evaluations must be compared, and, finally, the 

results of this comparison must be summarized for use in a subsequent decision- 

making step (which might result, for example, in accepting one of the options, 

combining them in some way, or rejecting them all).   Thus, the subtask of comparing 

1 Note that the work required to turn a performance support system based on the 
above framework into an exploratory leam-by-doing environment for training novices 
is reasonably clear-cut.  Doing so requires the addition of: 

• A well-defined problem (or set of problems) for the student to solve. 
• Additional problem-specific help and advice. 
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options must itself be explicitly represented in terms of four lower-level subtasks, 

namely, project, evaluate, compare, and summarize. 

In addition to representing the subtasks themselves, it is also necessary to represent 

the methods by which each subtask might be carried out. For example, the subtask of 

projecting the outcome of pursuing a given option might be accomplished by 

simulation, by a search for similar situations in an historical database, or by use of an 

empirically derived probabilistic model. Evaluation of the resulting outcomes might be 

achieved through the computation of a simple weighted sum, or it might involve more 

qualitative assessments. Comparison of the resulting evaluations might be numerical 

(i.e., ">"), or it might be achieved through a more complex operation involving the 

explicit matching up of comparable good and bad aspects of each situation. 

Summarization might simply be a rank ordering of options, or it might involve a 

complex process resulting in an explicit representation of the most salient trade-offs 

between different options. Each of these methods must be represented in enough 

detail to distinguish when each would be most appropriate. 

Next, the causal mechanisms by which a set of methods is intended to carry out the 

overall planning task must be represented. At the very least, this must involve the 

representation of constraints on the kinds of inputs the individual methods expect, 

and the kinds of outputs they produce, sufficient to rule out sets of methods that are 

prima facie incompatible. For example, among the candidate methods listed above, 

probabilistic projection, evaluation by weighted sum, numerical comparison, and rank 

ordering, by virtue of their numerical basis, form a natural and compatible set of 

methods for carrying out the option comparison task. Other, more complex families of 

methods will manipulate more complex classes of data. In order to help the user 

determine appropriate and mutually compatible selections of methods, the system 

must explicitly represent constraints among these methods in terms of standard types 

of input and output data. 

Finally, the common problems that arise in each subtask, and ways of addressing 

these, must be represented as well. For example, it is not uncommon to discover, in 

the summarize subtask, that the two top-ranked options compare very closely with 

each other. To solve the problem raised by such a deadlock, it is necessary to find 

additional differentiating characteristics upon which to evaluate and compare the two. 

•    Critiquing and assessment mechanisms, as appropriate. 
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23.3 Task Representation: Structure and Function 
Our previous research in the explicit modeling of planning tasks for learning resulted 

in complex predicate calculus formulations (see, e.g., Birnbaum, Collins, Freed, and 

Krulwich, 1990). Such representations seem inappropriate to us in the context of the 

current project, both because they are difficult for users and designers to understand, 

and because they are likely to prove cumbersome as a basis for dynamic operations 

such as task tracking. 

Our current approach to task representations is based on a significantly simpler 

structure. Our initial efforts have simply involved representing tasks as finite state 

machines, capturing such global constraints as are necessary in terms of annotations 

on the states. Despite its obvious limitations, such an approach has a number of 

important things going for it. First, it lends itself to simple graphical representations of 

tasks in terms of flow diagrams, which are easily comprehended both by users and 

designers. Second, it supports a simple approach to task tracking, in which transitions 

between subtasks are signaled by specific interface operations, as described above. 

Finally, it is compatible with the mechanisms underlying a number of user interface 

management systems. For these reasons, although we fully expect that it will 

ultimately be necessary to extend and modify this approach, we believe that it is an 

extremely useful first step. 

23.4 Task Models and Indexing 
A key function of the explicit task representations that we are developing is to serve as 

an indexing framework for previous cases, information, and advice. In particular, by 

associating hooks into an ASK network with the subtasks to which they are relevant, 

it will be possible for the system to offer the user focused, relevant help and advice as 

it tracks him or her through the performance of the task. 

Our ultimate goal is to develop a MIP system that proactively offers advice, suggestions, 

and critiques during the performance of the task, by calling attention to specific items 

of information it deems particularly relevant to the user's immediate concerns, whether 

or not the user is aware of his or her need for that information. In order to be proactive 

in this way, the system must be able to plausibly infer when the user is in need of 

such a particular item of help or advice. This will require the formulation of a second, 

more detailed level of recognition conditions aimed at detecting specific opportunities 

for the delivery of specific help or advice. In contrast to the recognition conditions for 

subtask entry, these conditions are likely to depend heavily upon domain-specific 

features of the system's plan representations.    This makes the task of formulating 
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conditions of this sort considerably more complex. We believe that it will nevertheless 

be feasible to write useful recognition conditions in terms of such features precisely 

because the range of possibly relevant advice will already be considerably narrowed by 

tracking the user's current sub-task. 

24. The Air Campaign Planning Task Model  
We have constructed a model of the Air Campaign Planning (ACP) task that is an 

amalgam of existing practices, current Air Force doctrine, and procedures that have yet 

to be fully adopted by the Air Force at large. The central feature of this model, 

alternatively referred to as Effects-based or Objectives-based planning, is an emphasis 

on describing a plan in terms of the effects to be achieved, rather than solely in terms 

of activities to be performed. Effects-based air campaign planning was first put into 

practice in the Gulf War in 1991. 

Another aspect of the planning model is referred to as Strategy-to-Tasks, which 

denotes a hierarchical decomposition of objectives from the highest level National 

Security objectives down to the most specific targets and actions in a conflict. This 

hierarchical decomposition is intended to ensure accountability by providing an audit 

trail justifying each and every target to be bombed. Making this audit trail explicit is 

one of the chief design features of the Air Campaign Planning Tool (ACPT). The 

strategy-to-tasks concept is still evolving and is becoming progressively more accepted. 

The scope of our ACP model is limited by its purpose. Because the model is intended 

to guide and support planners as they work with ISX Corporation's Air Campaign 

Planning Tool (ACPT), we have chosen to focus on modeling the high-level planning 

processes, ending with the production of the Master Air Attack Plan (MAAP). Lower- 

level processes, such as the generation of the Air Tasking Order (ATO), are grouped 

together in the Execute task, and exogenous processes, such as team formation, are 

not modeled at all. 

Figure 40 through Figure 43 depict our current model of Air Campaign Planning. They 

show a task hierarchy at two levels of detail: Subtasks 3, 4, and 5 are broken out and 

illustrated in more detail in Figure 41 through Figure 43. Each of these subtasks 

corresponds to a level of objective decomposition, corresponding to strategic, 

operational, and tactical activities. The next section describes these subtasks 

individually. The problems associated with each subtask, for which advice currently 

exists in the Air Campaign Planning Advisor, can be found in the Appendix. 
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Figure 40: Top Level of Air Campaign Planning 
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24.1 ACP task model description 

Task 1.0: Obtain political and military objectives 
The political, or national security, objectives are revised annually. Typical examples of 

such objectives might be "Preserve world and regional stability," "Defend against 

threats to U.S. citizens and territory," etc. Military objectives are tailored to a specific 

regional conflict, for example, "Eliminate Iraq's nuclear production capability." These 

are typically formulated by the Commander In Chief (CINC) in the theater. 

The rules of engagement are derived from international law and from any additional 

constraints imposed by the President. Commander's Guidance comes from the Joint 

Forces Air Component Commander (JFACC) or the Commander of the Joint Task Force 

(CJTF) in the form of a briefing. The task of obtaining guidance and military objectives 

typically entails a significant amount of constructive interpretation. 

Task 2.0: Assess overall combat situation 
This is a relatively unstructured task that involves accessing and assimilating INTEL 

documents on the enemy forces, and assessing the Allied logistics and manpower 

resources. 

Task 3.0: Create prioritized air objectives 
Decompose military objectives into objectives that can be carried out through    air 

power. An objective consists of a center of gravity, a desired effect, and metric for 

measuring success. 
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Task 3.1: Identify COGs (Red, Blue, Gray) 
Using the 5-rings model (leadership, key production, infrastructure, population, and 

fielded military forces), drive down on the Center of Gravity (COG) corresponding to 

the military objective to find the key COG that will guide the formulation of air 

objectives. 

Task 3.2: Project Red & Gray Courses of Action 
Try to determine what options are open to the enemy and develop your   strategy to 

limit his options. The intent is not to predict exactly what the enemy will do, but to 

prevent the enemy from taking the initiative. 

Gray forces are neutral parties. It is important to understand how they are likely to 

behave during a conflict: Are they likely to take sides? How will they react if refugees 

start to flood their borders? 

Task 3.3: Produce candidate air objectives 
Identify the desired effects that will exert pressure on the enemy's Center of Gravity. 

This involves analyzing the vulnerabilities associated with the Center of Gravity and 

carefully phrasing the effect in terms of the appropriate level of destruction. For 

example, it may suffice to temporarily interfere with (jam) a communications facility, 

while fuel production must be halted for the duration of the conflict, and weapons of 

mass destruction must be permanently destroyed. 

Task 3.4: Assign a Measure of Merit to each objective 
Desired effects represent partially satisfiable goals.    A Measure of Merit (MOM) is a 

quantitative metric to measure the degree of goal satisfaction. Ideally, this will 

determine not only whether the objective is achieved, but also what kind of INTEL 

information should be requested in order to assess whether or not the desired effects 

have been achieved. For example, if a measure of merit simply says that a radar 

installation will be destroyed, then Bomb Damage Assessment will typically be a 

satellite photograph showing the bombed out installation. However, if the measure of 

merit says that there will be no radio emissions from the installation, then the INTEL 

feedback will more likely be electronic surveillance. The latter provides a more 

functional measure that can be effective when less severe levels of destruction are 

feasible or desired. 

Task 3.5: Prioritize air objective list 
Sort the list of air objectives with respect to their importance in achieving the parent 

military objectives.    The  most important objectives will typically be  pursued first, 
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though in the ideal situation, all objectives are pursued simultaneously in order to 

overwhelm the enemy's systems. This is known as parallel warfare. 

Task 3.6: Brief JFACC 
Describe the plan to the Joint Forces Air Component Commander and revise it based 

on his feedback. 

Task 4.0: Create prioritized task objectives 
Decompose air objectives into task objectives. Task objectives may correspond to 

particular classes of targets (target sets, such as all the bridges in some region) or some 

particular sector to patrol or enemy fielded force. 

Task 4.1: Produce task objectives for each air objective 
A task objective is more operational than an air objective. For example, if the air 

objective is something like: "Locate and track long range field artillery in the Changjon 

Sector," task objectives might be: "Reconnoiter the Changjon sector for artillery 

positions," and "Elicit electronic intelligence for artillery in Changjon sector." 

Task 4.2: Prioritize task objectives 
Sort the tasks with respect to their importance in achieving the parent air objectives. 

Task 4.3: Brief JFACC 
Present the operational level plan to the Joint Forces Air Component Commander. 

Task 4.4: Modify tasks and/or priorities based on JFACC feedback 
Revise the plan as required. 

Task 4.5: Sequence task objectives 
The temporal order of tasks may not directly reflect their overall importance to the 

strategy. Some tasks are preconditions to others, though they are not intrinsically 

more important. For example, it may be necessary to take out enemy air defenses 

before it is possible to reach Command and Control facilities. 

Task 5.0: Create target list 
Targets for each task objective are selected from a master database.   The database 

provides the target ID, name, target class, latitude & longitude. 

Task 5.1: Assign targets for each task objective 
Identify individual targets for each target set. 

Task 5.2: Simulate & Evaluate (CTEM) 
Use the Conventional Targeting and Effectiveness Model (CTEM) simulator to assess 

the feasibility of a plan.    This can be done in two ways:    Either input the force 
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packages available to you and CTEM will return the effectiveness of the missions and 

losses (attrition), or enter the desired level of effectiveness and CTEM will indicate how 

much force must be applied. 

Task 6.0: ISxecute 
The output of ACPT is a Master Air Attack Plan (MAAP), which is basically a prioritized 

and sequenced list of targets. This can be fed into the Contingency Theater 

Automated Planning System (CTAPS) to generate the Air Tasking Order (ATO). The 

ATO adds a significant amount of detail in the form of route planning, refueling, 

deconfliction, and schedules for non-force application missions such as INTEL and 

logistics missions. 

Task 7.0: Assess Mission Outcome 
Assessing mission outcome  is probably the  most problematic part of the   process. 

Getting timely and relevant feedback from INTEL depends on asking the right 

questions of the right people. The amount of raw and processed data is overwhelming, 

but it has historically taken too long to reach planners and has often been 

insufficiently focused. Part of the solution is believed to be better use of measures of 

merit to specify INTEL plans to collect more functionally relevant data. Another part of 

the solution being pursued is structurally reorganizing Intelligence groups so that they 

work more closely with strategic planning teams. The Intelligence, Surveillance, and 

Reconnaissance cell (ISARC) in Vicenza, Italy is one example of this. 

24.2 Discussion of ACP model 
In general terms, Air Campaign Planning can be thought of as an example of planning 

with partially satisfiable goals, adversarial planning, multi-agent planning, decision 

making under uncertainty, and interleaved planning and execution. Each of these 

categories contributes to the model described above. 

Because objectives are partially satisfiable, they require a measure of merit to describe 

the conditions under which they can be declared achieved. Because the plan involves 

an intelligent adversary, the planning task involves projecting the Red and Gray 

Courses of Action. Because the planning process involves multiple planners and a 

chief decision maker (the JFACC), the task includes a briefing and refinement cycle in 

which the plan and critiques or suggestions are communicated. Uncertainty is 

ubiquitous in this process: It shows up in projecting courses of action and in using 

CTEM to assess the feasibility of the plan. Interleaved execution requires mission 

assessment and replanning to restrike missed targets. 
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One critical aspect of planning that is conspicuously absent in the model presented 

above is reasoning about time. At the middle level of planning described in our model, 

time appears to play a relatively minor role. Tasks are, of course, sequenced, generally 

by priority, and occasionally based on preconditions. However, at the level of strategy 

captured in our model, the intent is to achieve as many objectives as possible in 

parallel. At higher levels of planning, the campaign may be phased in order to 

distinguish, for example, the air war from the ground war, or deployment from strategic 

attack. At lower levels of planning, reasoning about time is critical in determining 

exactly when aircraft have to take off and what routes they must take to rendezvous 

with tankers and to hit their targets at their designated Time On Target (TOT). 

The model we have presented serves its function of providing an organizing structure 

for planners to quickly access task-relevant help and advice. We chose to present the 

model as a simple flow chart rather than as a possibly more complex IDEFO document 

because we felt the simplicity was appropriate for its audience and purpose. IDEFO is 

the DOD standard modeling format that was developed to support requirements 

specification. In this case, the audience is not software engineers but planners, and 

the purpose is not specification, but recognition. 

25. The Air Campaign Planning Advisor  
Based on the model of ACP described above, and using video clips of experts describing 

real-world experiences in Air Campaign Planning, we have built a prototype Air 

Campaign Planning Advisor (ACPA). ACPA is an ASK system, a structured hypermedia 

system oriented around questions and answers of interest to a problem-solver in a 

given task domain. ASK networks consist of nodes, with textual, video or graphical 

content, linked to other nodes. To this extent, ASK networks are similar to standard 

hypermedia networks. 

In standard hypermedia networks, such as Web documents and HyperCard stacks, 

there is one kind of link. Each link goes from a word, phrase, or icon (the anchor) in 

the content of one node to another content node (the target). There is no semantics 

or structure to a link. All links are anonymous, and the same kind of link is used to 

connect, for example, a word to its definition, an object name to a picture of the 

object, a concept to an example, a person to their biography, and so on. Not only does 

this lack of semantics mean that the end user is never sure of exactly what a link will 

lead to, but, equally importantly, authors of hypermedia networks are not sure what 

links they should put into the system. As the networks grow in size, they become hard 

to navigate and difficult to author. 
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In ASK networks, links are labeled and categorized. Every link is labeled with a 

question. A link L with question Q from content A to content B means "A raises the 

question Q and B answers that question." The links from content A are follow-up 

questions to content A. An end-user does not click on highlighted words or icons: 

They click on questions they want to ask. 

In order to make such a network accessible and authorable, however, it is not enough 

to label links with the follow-up questions they answer. These follow-up questions 

themselves need to be coherently organized. Analysis of problem-solving 

conversations, and empirical refinement, have led us to the following eight 

Conversational-Associational Categories (CACs) for follow-up questions. These eight 

categories of links can be grouped into four pairs: 

• Links to Context versus links to Specifics. 

• Links to Causes versus links to Effects. 

• Links to Examples versus links to Contrary Alternatives. 

• Links to Opportunities versus links to Warnings. 

These categories are used to improve both ASK browsing and ASK authoring. They 

improve browsing because they enable users to narrow down where to look to find an 

answer to their current question (as opposed to, say, a simple alphabetical listing). 

They improve authoring because they help authors to (a) determine where information 

might be missing in an ASK network, and (b) help them to formulate sensible 

questions with which to label a given link. 

A user interacts with an ASK system using a graphical point and click interface to 

navigate through the ASK network. These browsers consist of two main parts, a few 

(one to three) entry "zoomer" interfaces, and the main ASK "lotus" interface. 

A zoomer is a graphical map of the content of the ASK network, designed to fit the 

task-driven needs of the users. By clicking on a particular region of the map, the end 

user jumps to a particular region in the network. In ACPA, the zoomer is built around 

the model of the ACP task presented earlier. The user locates information relevant to 

his or her current task by locating that task in the model. 

This takes the user to a video giving an overview of that task, with follow-up questions 

for that video presented in the "lotus" interface. The lotus interface is so called 

because it arranges the follow-up questions around the central story, like petals on a 

lotus blossom. There are eight petals, corresponding to the eight conversational 

categories.    Each petal is a stack of zero or more cards, each card containing one 
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question. Each stack can be easily browsed, and clicking on a question on a card 

takes the user to a video or text answer to that question. The questions in the lotus 

are then changed to reflect follow-up questions for this new information. At any point, 

the user can click a "Go Back" button to return to earlier answers and pursue other 

follow-up questions. 

This interface enables users to quickly engage in a dialogue with the underlying 

knowledge base. "Why is ...?", "What else could ...?", "What's an example of ...?"—the 

kinds of questions that people naturally have in problem-solving settings—are always 

available. Unlike standard hypermedia systems, the connection between two videos or 

texts is always clearly specified. 

The categorization into eight categories benefits both users and authors: 

• For end-users, the categories allow a large number of follow-ups to be 
spread out spatially into well-defined, consistent locations. 

• For authors, the categories quickly show gaps in the network, because 
missing connections lead to an empty stacks in the browser and sparse fan- 
out/fan-in in the underlying network. 

• For authors, the categories suggest obvious kinds of follow-up questions to 
develop answers for. 

26. Implementation 
The standalone version of the Air Campaign Planning Advisor runs on a Sparestation 

20 model 71 with 10 gigabytes of digital video on external hard drives. The fact that 

the system is eventually intended to be tightly integrated with ISX Corporation's ACPT 

placed a number of requirements on the hardware and software delivery platform. The 

primary constraint was that ACPA must run on a Unix workstation, specifically running 

the Sun operating system. This did not affect content development, because ILS's 

ASK Tool produces as output an Oracle relational database running on a Unix 

workstation. It did, however, mean that the ASK browser interface had to be 

completely designed from scratch; no code from previous browsers could be reused. 

In some ways, this has turned out to be a blessing in disguise because it allowed us to 

consider entirely new architectures for serving ASK system content. Whereas in the 

past we have constructed custom interfaces for each delivery platform, we found the 

Unix environment made this difficult to do in a timely fashion. Instead, we decided to 

use the World Wide Web as our front end, and use Netscape to provide the low-level 

interface software. 
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This raised the additional possibility of serving the ASK system remotely over the 

Internet. While this is not a requirement for the Air Campaign Planning Advisor, we 

expect it to be an increasingly useful capability in future systems. Currently, the only 

limitation to true Web-based distribution of ASK systems is the prohibitive bandwidth 

requirements for transmitting video. 

Instead of transmitting video over the Web, it is played at the workstation console 

through a shareware program called Xanim. Xanim plays compressed and flattened 

Quicktime movies. Because the player comes with source code, it was possible to 

customize it for our application in order, e.g., to display the name of the speaker in the 

window titlebar and to position the control panel underneath the player window. In 

the long run, we expect to replace Xanim with a Quicktime plug-in for Netscape, at 

which point ACPA will be capable, in principle, of playing video remotely. 

The rest of this section will describe the architecture of the ASK server as 

implemented in ACPA and in its more general form, and summarize some of the 

interface design decisions that were made. 

26.1 Functional Architecture 
Before describing the ACPA architecture itself, we will first briefly review the 

organization of standard Web-based applications. Figure 44 shows the basic Web 

client-server architecture. A client browser (either local or remote) communicates with 

a server via the hypertext transfer protocol (HTTP). The server accepts requests for 

pages through uniform resource locators (URLs) and transmits them back to the client. 

These Web pages are files encoded in the hypertext markup language (HTML). 

Because this architecture is limited to retrieving a fixed set of static pages, it is 

inappropriate for directly encoding the content of an ASK system, which may be 

combinatorially explosive. 

Web 
browser 

1 
1 

html 
files 

Figure 44: HTML client-server architecture 
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Figure 45 depicts a Web-server architecture using the Common Gateway Interface 

(CGI). CGI programs greatly extend the capability of Web applications by allowing URLs 

to designate programs to be executed, rather than static pages to be retrieved. The 

CGI program generates an html page on the fly and returns it to the client browser. 

The most common use of CGI is as a front end for databases and other legacy systems. 

Such programs translate queries or form input into a database transaction language, 

such as SQL. The CGI program is usually written in C or Perl and is often quite small. 

One of the problems with using CGI to access an ASK system database is that http is 

fundamentally a stateless protocol. This means that every URL is an absolute query; 

the server doesn't know from one transaction to the next whether it is talking to the 

same client, much less what page the client is looking at. An ASK system is 

fundamentally based on navigating through questions and stories relative to the 

current story. Thus, the first challenge in designing and ASK server is determining 

how to encode the current state of the browser, as well as its previous history in order 

to support backtracking to previous stories. 

Web 
browser 

backend 
db 

Figure 45: CGI architecture 

Our solution to this problem is to encode the state of the browser in the URL itself. A 

URL that invokes a CGI program can contain variables that serve as arguments to the 

program. We extended the URL to encode the current story, the question and CAC 

link being traversed, the history of previous stories visited, and the name of the 

temporary file that will be returned by the CGI program as its output. 

The second challenge in designing an ASK server is efficiency. Whereas most CGI 

programs are lightweight processes that do simple text manipulations, the ASK system 

API entails significantly more complex computation. Each page that is generated may 

involve many database queries, rather than just one.   Consequently, the ASK system 
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API is implemented in Lisp. Unfortunately, Lisp is decidedly a heavyweight process. It 

takes a relatively long time to launch Lisp, compared to a small C or Perl program. 

Moreover, while database transactions are reasonably fast, there is significant 

overhead associated with establishing a database connection. 

Our solution is to maintain one Lisp process that is blocked or idle until a URL request 

is made, at which time it wakes up, processes the request, and blocks again. The 

database connection remains open for the lifetime of the process, so this cost is 

amortized. The CGI program that is invoked for each URL request is a small C program, 

called relay that wakes up the Lisp process, passes on the request, and blocks itself 

until the result is available. This process necessitates some intermediate 

synchronization mechanism between the CGI relay program and the Lisp process. The 

full ASK-server architecture is illustrated in Figure 46. 

One additional challenge in designing an ASK server is supporting multiple 

simultaneous users. Although not a strong requirement in ACPA, future ASK systems 

will need to support near-simultaneous requests if they are to support distributed 

access. The difficulty here is that if requests arrive while the Lisp process is 

generating a page, they could be ignored because the process is a unique resource. 

This is not a problem for a single-user system because they are unlikely to make 

requests that quickly, but multiple independent users very likely would. 

Web 
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Figure 46: ASK server architecture 
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Our solution is to use Unix fifo buffering in the synchronization mechanism. The full 

process works as follows: 

1. When a client sends a URL designating a CGI request, it invokes the relay 
program. 

2. The relay program generates a temporary file name to hold the HTML file 
that will be returned, and adds this file name to the URL. 

3. Relay then stores this extended URL in a Unix fifo queue and uses a 
semaphore to wake up the Lisp process. It then blocks itself by trying to 
read from the temporary HTML file. 

4. Lisp becomes unblocked, reads the extended URL from the fifo, accesses 
the database, generates the HTML output and writes it to the temporary 
file designated in the URL. The Lisp program then returns to the top of its 
main loop and blocks again, waiting for another request. 

5. Once the output is written to the temporary file, the relay program 
unblocks, relays the output back to the httpd server (and on to the client), 
and erases the temporary file. 

Notice the importance of the temporary file name in the URL. If there are multiple 

requests in the fifo, each request will correspond to a different CGI process and will 

have a different output. The temporary file guarantees that the right process will be 

woken up at the right time, and will get the right output. 

One other architectural detail that merits discussion is the ASK system database 

itself. In the development environment, this is an Oracle relational database which 

actually resides on a remote machine. In the delivery environment, this database is 

exported to a file format used by Neologic's NeoAccess. The purpose of this is that 

programs compiled with NeoAccess not only have a smaller footprint than an Oracle 

server, but also do not require a runtime license fee. The ASK system API was 

designed to make it relatively easy to change the back-end database in this manner. 

26.2 Interface Issues 
While the interface for the Air Campaign Planning Advisor looks similar to previous 

ASK browsers built at ILS, it is basically a Web page and consequently follows the 

principles for good Web design. Many of these principles are aimed at minimizing the 

amount of information that must be transmitted over the network, in order to 

maximize speed. 

The first of these is to minimize the size of the images that are transmitted. This is 

done by tiling the page with small graphics and using a background wallpaper rather 

than using a single large image.   Small graphics tend to be rendered faster, but more 
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importantly, they can be cached independently, thereby amortizing their transmission 

cost. 

Small graphics rules out the use of imagemaps as a means of dispatching requests. 

Instead, the ACPA ASK browser is implemented as a table containing independent 

buttons for each CAC link and for other controls, such as the glossary and the 'go back' 

button. 

In fact, even the task model zoomer is implemented as a table of buttons. The 

zooming interface is simply a graphical presentation of the task model shown in Figure 

40 - Figure 43. Those figures are sliced into horizontal (and sometimes vertical) strips, 

each of which is functionally a button. A leaf task takes the user to a menu of 

questions from which he can choose a story. 

Question menus are implemented in ACPA as full pages containing a list of questions 

as links. Ideally, it would be preferable not to entirely obscure the previous page, but 

this compromise was necessary because modal dialogs are not available in HTML. 

26.3 Discussion of the Architecture 
The use of the Web as a user interface has proven to be an appropriate design 

decision. It has not only simplified the programming effort required, but it has also 

provided a measure of platform independence and has the added benefit of supporting 

multiple remote clients. 

We expect future systems to increasingly use a version of this architecture for the 

reasons outlined above, and to simplify software maintenance, updates, and even to 

support closer interaction between the end users of a system and the program 

developers. For example, in the case of the Air Campaign Planning Advisor, there is a 

comment button that users can select when they want to provide feedback on the 

program. The comment button access a URL at a machine at the Institute for the 

Learning Sciences, which generates and returns a comment form. When the user fills 

out the form at his machine (which may be anywhere in the world), it is immediately 

returned and stored in a file at ILS. Such instant feedback may prove to be sufficient 

justification by itself for designing systems for Web-based delivery. 
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27. Conclusion: Implications of ACP for Theories of 
Planning ___ 

27.1 Discussion 
Interviews with expert air campaign planners for the purposes of task modeling, and to 

gather video for inclusion in ACPA, have yielded a wealth of empirical detail about a 

complex, real-world planning practice. From these details, two major themes have 

gradually become apparent, with broad implications for theories of planning. 

The first is that planning takes place within the context of a great deal of ongoing 

activity, processes, and procedures. Thus the planner is not responsible for generating 

all of the behavior that the system carries out—perhaps not even most of it. The 

generative nature of the behavior we observe stems not from the generativity of 

planners, but from loops in ongoing processes and procedures. The air operations 

planning process is a good example of this. The MAAPs produced by the Black Hole 

during the Gulf War served as input to the ATO generation process, and led to an 

intelligent deployment of air power. But if the Black Hole had been blown up early in 

the War, ATOs would still have been generated, and missions would still have been 

flown. It's just these processes would have been directed much less intelligently, and 

to much less useful effect. 

The upshot is this: Planners sit on top of, and direct, a large number of ongoing 

processes with control loops of their own. They work not by specifying particular 

actions to be taken by the system, but by manipulating the parameters of these 

ongoing processes to cause those actions to occur. Brooks (1991) has made this point 

with respect to planning of physical activity. In air operations planning, we see the 

same sort of thing in a social context, where the ongoing loops are administrative or 

bureaucratic processes such as ATO generation. Similar observations have been 

made by Agre and Chapman (1987) and others working on situated activity. Brooks, of 

course, has argued that this kind of model means that intelligent behavior does not 

need representation. We believe, on the contrary, that a planner must have a good 

model of the structure and function of the ongoing processes it is attempting to 

control. 

The second broad theme emerges as a corollary of the first. If planners must work by 

manipulating the parameters of ongoing bureaucratic systems, then much of their 

creativity and intelligence must be directed towards making these systems produce 
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good results in novel environments. In other words, a great deal of planning involves 

devising intelligent "work-arounds" for handling unforeseen situations. 

A striking example of this was provided by Col. Dave Deptula in his manipulation of 

the ATO generation process during the Gulf War. Col. Deptula and his staff would 

deliver a MAAP every day to the personnel involved in generating the ATO. After 

delivering the MAAP, they would continue to refine it based on additional information 

and, in part, simply because they had additional time to reflect on their task. They 

found that if they delivered these changes incrementally to the people building the 

ATO throughout the day, it slowed down the ATO generation process too much. 

In response to this problem, they devised the following protocol: They would hand the 

MAAP to the people building the ATO every day by noon. These personnel, in turn, 

pledged to deliver the ATO by 6 p.m. if they weren't asked to make any changes. Col. 

Deptula and his staff continued to work on the MAAP, and, when the ATO was 

delivered, they added a number of change orders to it, to reflect their additional 

planning. However, there was a practical limit to the number and scope of the 

changes they could make, and, in addition, they could make no further changes after 6 

p.m., since the air crews flying the missions needed the time to plan and prepare. 

In response to this constraint, Col. Deptula hit on the following strategy: He set aside 

a number of reserve aircraft. Each day, these reserves were put through the ATO 

process with default targets. In this way, they were deconflicted, assigned entry and 

exit points into and out of Iraqi airspace, and given squawks and tanker track 

assignments. If no better targets were determined, these aircraft would attack their 

defaults. But if Col. Deptula and his staff found particularly important targets on short 

notice, these reserves were prepared to go to new targets on as little as 3 hours notice. 

Deptula's manipulation of the ATO generation process reminded one of us (LB) of the 

steps he had to go through to buy a car. The dealer first tried to determine whether a 

suitable car was already on the lot, or at least in the possession of a neighboring 

dealer. When this turned out not to be the case, he used a computer system to gain 

access to the production schedule for the model in question. Most of the cars in the 

schedule were already assigned to individuals or dealers. But a few of them were in 

reserve. These were completely specified cars; the goal was to find the closest 

matching car to be built the soonest, and tweak its composition just a little, to match 

the buyer's requirements. Most parameters (engine, body style, etc.) were already set; 

only a few (color, interior package, etc.) could be changed. 
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What these two situations have in common is something like this: A computation to 

produce some assignment of resources to objectives in a reasonably optimal way, such 

as production scheduling or generating the ATO, requires that a large number of input 

constraints be provided in advance in order to be executed. However, there will be 

cases in which, because of new information arising during or after the computation is 

executed, some of these constraints change. One solution is to put a small 

percentage of reserve resource into the process; these will be assigned to default 

objectives, which can then be changed if necessary after the entire computation has 

been run. Although the assignment may be slightly less optimal than would otherwise 

be the case, this "work-around" adds the flexibility that is otherwise lacking in the 

process. 

This strategy is an example of a process transformation. We believe that there are 

scores, perhaps hundreds, of transformations of this sort, aimed at resolving problems 

and impasses that arise during the planning process, and that a great deal of planning 

knowledge exists in this form. Much of our work in the future will be aimed at 

uncovering and codifying these transformations, at least to the point where they can 

be provided as advice to human planners upon encountering new problems or 

deficiencies in existing practice. 

27.2 Current Status 
ACPA has currently been deployed at the Air Force Research Laboratory (Rome 

Research Site) and the USAF Air Ground Operations School (AGOS) at Hurlburt Air 

Force Base. At AGOS, the system was used as an adjunct part of the Hunter Warrior 

exercise at the C2 Battle Lab, which involved an air campaign planning staff 

performing command and control of air combat and combat support forces during a 

simulated conflict. After the exercise, the system was left behind for further use and 

evaluation by AGOS personnel. 
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Appendix A:  ACPA Screens 
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Figure 48: ACPA Ask Browser Interface 
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Appendix B:  Problems Addressed in Air 
Campaign Planning Advisor 

The ACP task model described in section 24 above provides an entry into the ACPA 

ASK system. The video content of the ASK system describes, among other things, 

problems encountered in each of the planning tasks. Although not explicitly 

represented in the current task model, these problems and methods for dealing with 

them are an important part of the planning task. This appendix lists the set of 

problems, associated with each task, for which ACPA provides advice. 

1. Obtain Political and Military Objectives 

Commander's guidance is vague. 
Commander's guidance may not contain clear desired end states. 
Commander's guidance expressed in political rather the military end states. 
Commander's guidance may be overly restrictive. 
Commander's guidance may not be provided to planners. 
Planners may not be able to find a military solution to political objectives. 
Military solution may involve unacceptable costs or risks. 
Plan may not meet the CINC's objective. 

2. Assess overall combat situation 

• Planners may not do situation assessment. 
• Planners may not understand importance or utility of situation assessment. 
• Planners may face serious time constraints which they feel prevents them from 

doing situation assessment. 
• Planners may not know how best to organize information in a situation 

assessment. 
• Planners may have too much intelligence data to digest in time. 
• Planners may not know how to ask intelligence for needed information. 
• Planners may not know or have access to the recent history of the enemy forces. 

3 Create Prioritized Air Objectives 

3.1. Identify COGs 

Planners may skip COG identification stage entirely. 
Planners may not understand what a COG is. 
Planners may not be able to identify critical nodes. 
Planners may confuse COG with vulnerability. 
Planners may not be able to find a COG. 
Planners may identify wrong COGs. 
Planner may fail to use situation assessment to form COGs. 
Planners may not have a procedure for creating COGs. 
Planners may not understand how to derive COGs from situation assessment and 
political objectives. 
Planners may encounter pressure to service a set of non COG targets. 
Planners may fail to identify Blue and Gray COGs. 
Planners may have made mistake or oversight in situation assessment. 
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• Planners may not know the enemy's back up capacity. 
• Planners may not be able to find a target for a COGs. 
• Planners may be prevented by guidance from striking COGs. 
• Planners may lack necessary intelligence to identify COGs. 

3.2. Project Red and Gray Courses of Action 

• 

• 

• 

• 

Planners may not understand what a COA is. 
• Planners may not know how to create a COA. 
• Planners may mot understand the importance of a COA analysis. 
• Planners may fail to anticipate enemy actions. 
• Planners may not understand the perspective or goals of the enemy. 
• Planners may not know how to present COA. 

Planners may fail to analyze neutral (Gray) Courses Of Action and their effect on 
friendly (Blue) and enemy (Red) forces. 

• Planners may fail to understand how Red COA effects Blue and Gray COA. 
• Planners may place too much importance on Red COA at the expense of creating 

the campaign plan. 
• Planners may be taken by surprise by enemy action. 

3.3. Produce candidate air objectives 

Air objectives may not be attached to a CINC objectives or political objectives. 
Air objectives may not be specified to enough detail. 
Air objectives may not contain enough information to be carried out. 
Higher level objectives may not have air objectives that fulfill them. 
Air objectives may be attached to CINC objectives they do not satisfy. 
Planners may not know how to use ACPT to create air objectives. 

3.4. Assign measure of merit to each objective 

• Air objectives may not have metrics. 
• Metrics might be damage rather then effects based. 
• Metrics may not be measurable. 
• Planners may not know how to attach metric to air objectives in the ACPT. 

3.5. Prioritize air objective list 

• Planners may not know of understand assets available on any given day, therefore 
fail to understand the length of a phase. 

• Planners may not have any sense of which objectives are more important then 
other objectives. 

• Planners may not know how to determine priorities. 
• Planners may not know how to express priorities of objectives. 
• Planners may not know use the ACPT to prioritize. 

3.6. Brief JFACC 

• Briefing may not contain all critical information that needs to be in plan. 
• Planners may not know how to present information to JFACC. 
• Planners may not understand what information should be and not be in briefing. 
• JFACC may make critical changes in plan. 
• Planners may not know how to use ACPT briefing tool. 
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4. Create prioritized task objective 

4.1. Produce task objectives for each air objective 

• Task objectives might not be attached to air objective. 
• Air objectives may exist that have not task objective. 
• Task objectives may be attached to air objectives they do not satisfy. 
• Planners may not know how to use ACPT to create task objectives. 

4.2. Prioritize task objectives 

• Task lists may not be prioritized. 
• Less important tasks may receive higher priority then more important ones. 
• Planners may not know why certain tasks should have higher priorities. 
• Planners may not know how to express prioritization. 
• Planners may not know how to use the ACPT to prioritize. 

4.3. Brief JFACC 

• Briefing may not contain all critical information that needs to be in brief. 
• Planners may not know how to present information to JFACC. 
• Planners may not understand what information should be and not be in briefing. 
• JFACC may make critical changes in plan. 
• Planners may not know how to use ACPT briefing tool. 

4.4. Modify tasks and/or priorities 

• Plan may not be in form that can be presented to others. 
• Planner may not be able to get feedback on plan. 
• Planner may not understand feedback. 

4.5. Sequence task objectives 

• Planners do not understand how to sequence task. 
• Planner may not know what tools are available for sequencing. 

5. Create target list 

5.1. Assign targets for each task 

• Planner may not have enough intelligence to find targets. 
• Targets may not support tasks. 
• Planners may not understand assigning targets in ACPT. 

5.2 Simulate & evaluate (CTEM) 

• There may be an data input error into CTEM. 
• Planner may doubt accuracy of CTEM output. 
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7. Assess mission outcome 

• No feedback on mission effectiveness provided. 
• Intelligence agencies use BDA rather the effects based assessment of mission 

success. 
• Intelligence agencies provide overly conservative estimates of mission effectiveness. 
• BDA is conducted with technologies which give an inaccurate picture. 
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Acronyms Used in This Report 

ACPA Air Campaign Planning Advisor 

ACPT Air Campaign Planning Tool 

API Application Program Interface 

ATO Air Tasking Order 

BDA Bomb Damage Assessment 

CGI Common Gateway Interface 

CINC Commander In Chief 

COA Course Of Action 

COG Center Of Gravity 

CTEM Conventional Targeting Effectiveness Model 

DOD Department Of Defense 

HTML HyperText Markup Language 

HTTP HyperText Transfer Protocol 

JFACC Joint Forces Air Component Commander 

MAAP Master Air Attack Plan 

MOM Measure Of Merit 

URL Uniform Resource Locator 
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