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BACKGROUND 

In August 1997, testing was conducted of a piston utilized in the seal of a closed- 
ended pressure vessel. Testing included 100 loading cycles, at pressures ranging from 69 
MPa to 414 MPa. Upon completion of the test, the component was disassembled, cleaned, 
and inspected. Although no pressure losses were observed during the test, it was noticed that 
cracking of the Maraging 200 steel piston had occurred (Figure 1). Cracking was not 
observed during testing because cleaning of the system was strictly forbidden. The cracking 
pattern emanated in a radial fashion around the piston, yet none of the cracks broke through 
the thickness of the piston.   Cracks ranged in length from barely noticeable, to approximately 
20-mm in length.  Cracking was also observed at many locations approximately half the 
distance between the center of the piston and the outside diameter. In some cases, cracks that 
started in the center of the piston appeared to "link up" with the cracks that started at the 
midpoint between the center and the outside diameter. There was also a characteristic ripple 
where the cracked surfaces protruded upward, producing an uneven texture on the top surface 
of the piston. The crack pattern appeared relatively evenly spaced, with a crack spacing of 
approximately 5-mm to 9-mm. 

Figure 1. Radial cracking pattern on piston face. 

Later in August 1997, testing resumed with the same piston. However, this time 
cleaning of the surface was allowed for inspection purposes. The sequence of testing 
consisted of 112 loading cycles ranging from 69 MPa to 414 MPa. Three cracks were chosen 
and monitored for overall crack length. One of the cracks did not grow in length during the 
entire 112-round sequence, the second crack extended in length by slightly over 1-mm, and 
the third crack extended over 3-mm in length. The crack extension observed at the surface 
did not show a constant crack growth rate, and the cracks grew essentially their entire length 
increment in only a few loading cycles. 
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A closer look at the finite element model indicated that the piston did deform into a 
"dish-like" shape during the loading process. The resultant stresses were compressive on the 
top surface, exceeding the compressive yield strength of the material, and were predicted to 
be approximately 1600 MPa. 

PISTON EVALUATION 

Vendor Certification/Chemistry 

The material chemistries as supplied by the vendor, along with the required allowable 
ranges, are shown in Table 1. All elements are within the required specified limits. 

Table 1. Chemical Analysis 

Element Vendor 
Chemistry 

(wt. %) 

Required 
Minimum 

(wt. %) 

Required 
Maximum 

(wt. %) 
Al 0.090 0.05 0.15 

C 0.003 0.03 

Co 8.400 8.00 9.00 

Mn 0.020 0.12 

Mo 3.250 3.00 3.50 

Ni 18.700 . 17.00 19.00 

P 0.004 0.01 

Si 0.010 0.12 

S 0.002 0.01 

Ti 0.200 0.15 0.25 

Fe Balance 

Metallography 

Metallographic inspection of the cracks revealed an irregular, jagged crack path 
indicative of intergranular cracking. This cracking is the same type of cracking observed in 
Maraging 200 bolt-loaded compact specimens that were subjected to a hydrogen-rich 
environment under a sustained tensile load (ref 1). The material also exhibited a martensitic 
microstructure, which is typical of a properly heat-treated Maraging 200 steel. Post-test 
hardness measurements were Rc 43/44. 



Material Properties 

Tensile specimens were machined from the cracked piston in the C-R orientation, per 
ASTM Standard E8, and bend specimens were utilized for measuring fracture toughness 
according to ASTM Standard E813. Testing results are shown in Table 2. Material 
properties were repeatable and indicative of a good quality Maraging 200 steel. The strength 
properties, previously reported hardness measurements, and microstructral investigation were 
all in agreement, and indicate that the heat treatment performed was correct. 

Table 2. Mechanical and Toughness Properties 

0.2% Yield 
Strength 
(MPa) 

Ultimate 
Tensile Strength 

(MPa) 

Elongation 
(%) 

Reduction 
in Area 

(%) 
(MPaVm) 

1379 1441 19.8 71.8 102.1 

1379 1427 17.0 68.0 113.2 

1393 1448 18.0 67.5 119.9 

NDI/Inspection 

Ultrasonic inspection of the piston indicated that most of the cracks ranged in depth 
from approximately 1.0-mm to 1.5-mm, with the maximum depth of each crack occurring at 
the center of the piston. Magnetic particle inspection of the piston revealed that none of the 
cracks extended to the outside diameter of the piston. Inspection of the top surface revealed a 
"dishing" effect. The top surface of the piston was 0.05-mm higher on the outside diameter 
than in the center. The backside of the piston was also plastically deformed and dished. The 
center of the piston was 0.025-mm higher than the outside edge of the back of the piston. 

Fractography/Scanning Electron Microphotography 

Two cracks were sectioned from the piston and investigated with scanning electron 
microphotography (SEM) (ref 2). The first crack initiated at the center of the top surface, and 
the second crack initiated at the mid-wall location of the top surface. There was some 
indication of rubbing of the mating surfaces of the cracks, and debris from the products of the 
pressure vessel were forced into the cracks. 

After a thorough cleaning of the surfaces (with plastic replicas), some portions were 
exposed near the tip of the cracks. Figure 2 is at the tip of the first crack and clearly shows 
intergranular cracking and the post-fracture ductile tearing that occurred when the crack was 
sectioned. The second crack seemed similar to the first in fracture appearance, and again 
intergranular cracking was the predominate fracture morphology. The logical conclusion is 
that the cracks were not driven by mechanical fatigue loading, but rather the result of 
hydrogen-induced cracking. 
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Figure 2. Crack tip morphology showing intergranular cracking. 

X-Ray Residual Stress Measurement 

X-ray residual stress measurements (ref 3) were taken at six locations on the top 
surface of the piston. Both hoop and radial residual stress measurements were taken at each 
of the six locations; the results are shown in Table 3. Note that some of the residual hoop 
stresses on the top surface approach the yield strength of the material, and that all residual 
stresses measured indicate tension on the top surface of the piston. Some of the stresses are 
significantly less than the yield stress of the material, because these measurements bridged 
across an existing crack, which relieved a significant amount of residual stress. In order for 
tensile residual stresses of this magnitude to be present, applied compressive stresses must be 
on the order of two times the yield strength of the material. 

Table 3. Residual Stress Measurements 

Location Hoop Stress 
(MPa) 

Radial Stress 
(MPa) 

1 +1348 +875 

2 +1375 +920 

3 +588 +678 

4 +1189 +881 

5 +878 +297 

6 +839 +254 



Investigation Conclusions 

The three necessary conditions for hydrogen cracking are: 

• A source of hydrogen 
• A susceptible material 
• A sustained tensile loading 

In this case, the hydrogen is contained in the pressure vessel contents and cannot be 
avoided. The sustained tensile stress is a result of compressive yielding, and is inherent in 
the design, which at this point could not be changed. The Maraging 200 material is a highly 
susceptible material that is prone to hydrogen embrittlement. All of these conclusions are 
self-consistent, and suggest the most likely mechanism of failure is hydrogen-induced 
cracking. 

These conclusions also suggest that a suitable method to prevent hydrogen cracking was 
to create a barrier to prevent the hydrogen from contacting the highly susceptible, highly 
stressed base material. 

MODIFIED BOLT-LOADED COMPACT SPECIMEN 

Classic work in the field of preventing hydrogen-induced cracking suggests that one of 
the best barriers to prevent cracking is the use of a nickel coating. Song and Pyun (ref 4) 
have stated that, "Hydrogen transport across electrodeposited metals such as Ni has assumed 
significance in association with the delay of hydrogen induced cracking." As far back as the 
1960s, Matsushima and Uhlig (ref 5) noticed that, "Ni coatings alone are protective... 
resulting in less occlusion of H by steel." 

Our approach included modification of the bolt-loaded compact specimen currently being 
considered for addition to ASTM Standard 1681, "Determining a Threshold Stress Intensity 
Factor for Environment-Assisted Cracking of Metallic Materials Under Constant Load." 
Since the piston does not have any sharp stress risers, we felt that the inclusion of a sharp 
precrack into the specimen would not adequately model this geometry. Therefore, we opted 
for the inclusion of a 3/8-inch diameter through hole (Figure 3). The base materials chosen 
for the testing were Maraging 200 and an A723 Grade 2 pressure vessel quality steel, both 
heat treated to yield strength of 1300 MPa. These materials were chosen because of their 
unique combination of strength and toughness that was required for the component. Nickel- 
based alloys would have been the first choice for resistance to hydrogen, however none 
possessed the required strength. The hydrogen barrier coatings investigated and their 
thicknesses are included in Table 4. 



Hardened Loading Ball 
Hardened Loading Piny instrumented 

Figure 3. Setup and configuration for the modified bolt-loaded compact testing. 

Table 4. Test Matrix of Hydrogen Barrier Coatings and Base Materials 

Base Material Hydrogen Barrier 
Coating 

Coating Thickness 
(mm) 

Maraging 200 None 
Electroplated Ni 0.05 
Electroless Ni 0.05 
Chromium 0.05 
Electroplated Ni 
+ Chromium 

0.05 
0.05 

Electroless Ni 
+ Chromium 

0.05 
0.05 

A723 None 
Electroplated Ni 0.05 
Electroless Ni 0.05 
Chromium 0.05 
Electroplated Ni 
+ Chromium 

0.05 
0.05 

Electroless Ni 
+ Chromium 

0.05 
0.05 



Loading the specimen with the instrumented bolt to a predetermined stress level runs the 
test. In this case, a bolt load of 31 kN resulted in an applied stress at the process zone of 
1200 MPa, or approximately 92% of the yield stress of the base material. This sustained 
stress acts in the same fashion as the residual stress field in the actual piston. In order to 
supply the hydrogen to the specimen, an electrolyte of 50% H2S04 and 50% H3P04 by 
volume, is immediately applied to the process zone and the bolt load is monitored. It is 
imperative that the electrolyte be applied before loading in order to prevent any oxide from 
forming and artificially "protecting" the specimen from cracking. Since this type of test is a 
constant displacement test, as the crack grows, the load will shed. The resistance provided by 
the coatings will be reflected in the incubation period necessary for the cracking to start. The 
test duration is arbitrarily set at a maximum exposure time of 300 hours. If cracking has not 
begun within this time, the test will be halted and the coating assumed to be highly resistant 
to hydrogen attack. However, if cracking has started, the remainder of the test can be utilized 
to measure crack growth rates and threshold stress intensity of the base material. These 
topics will be covered in a separate publication. 

TEST RESULTS 

Maraging 200 

Figure 4 clearly highlights the resistance that each of the coatings provides to the 
Maraging 200 base material. We can see that the Maraging 200 material with no coating 
provided approximately one hour incubation time, followed by a decreasing load as 
monitored by the instrumented bolt. After approximately 250 hours of exposure, the cracking 
had reached an apparent threshold value, and no further decrease in load was observed. The 
specimen with the electroless nickel (E-Ni) protective coating provided approximately 30 
hours of protection, and rapid cracking of the underlying base material resulted. In this test, 
after approximately 150 hours of exposure, the cracking appeared to arrest. Cracking 
immediately resumed after the electrolyte was changed. We believe that the electrolyte had 
become depleted, or because the electrolyte is hydroscopic, it may have absorbed enough 
moisture to severely compromise the pH of the acid. The specimen that was protected with 
the chromium coating (Cr) provided approximately 150 hours of protection, and was 
followed by rapid cracking of the base material. The specimens protected with the 
electroplated nickel (Ni), electroplated nickel and chromium (Ni/Cr), and electroless nickel 
and chromium (E-Ni/Cr) all withstood the 300 hours of exposure with no degradation of the 
base material. 
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Figure 4. Environmental cracking resistance of Maraging 200. 

A723 

Figure 5 shows results of the tests on the 1300 MPa A723 steel. The first thing to note is 
that the A723 steel with no protective coating provided less than one hour of incubation time, 
and cracking had proceeded to the threshold in less than two hours. The chromium coated 
specimen provided approximately 0.1 hour of incubation time and had proceeded to the 
threshold in less than one hour. We believe this is a direct result of microcracking, which is 
often observed in chromium plating. This microcracking acts as crack initiation sites and 
rapidly accelerates the incubation time. The specimen coated with electroless nickel 
provided approximately 280 hours of incubation time, at which time the specimen began 
shedding load. At approximately 290 hours of exposure, the cracking arrested and an 
electrolyte change was performed. Cracking immediately resumed and at 300 hours, the 
specimen had attained the threshold. The specimens with electroplated nickel, electroplated 
nickel and chromium, and electroless nickel and chromium attained the 300 hours of 
exposure with no cracking and no shedding of load. # 
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Figure 5. Environmental cracking resistance of A723 steel. 

CLOSING REMARKS 

1. Both Maraging 200 and A723 are highly susceptible to hydrogen-induced cracking. The 
three necessary conditions for hydrogen cracking are: 

• A source of hydrogen 
• A susceptible material 
• A sustained tensile loading 

2. Because the sustained tensile stresses are difficult to prevent, the only logical solution to 
prevention of hydrogen cracking is to prevent the environment from reaching the high- 
stressed areas. 

3. An electroplated nickel coating will prevent hydrogen from cracking susceptible materials 
such as high strength A723 steel and Maraging 200. The electroless nickel coating did 
increase the base material's resistance to hydrogen cracking. However, it was not as effective 
as the electroplated nickel. 

4. Nickel may have problems adhering to some base materials, such as high alloy steels 
(e.g., Maraging 200); however, if the plating operations are properly performed, most low 
alloy steels (A723) can be easily plated. 

5. Nickel is a relatively soft material and will need to be protected from abrasion with a hard 
material such as chromium plate. Nevertheless, plating chromium over nickel is a common 
practice and should pose no problem to a quality plater. 



6. Chromium plating can provide protection to the underlying base materials if the plate is 
properly applied, and it is free from microcracks. Since this is difficult to obtain (as seen in 
the study here), we would not recommend it for environmental protection. 
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