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The Collinear Crack Problem in an 
Inhomogeneous Orthotropic Medium 

by 
Murat Ozturk and Fazil Erdogan 

Department of Mechanical engineering and Mechanics 
Lehigh University, Bethlehem, PA 18015 

Abstract 

The collinear crack problem in an inhomogeneous orthotropic medium is 
considered under Mode I plane strain or plane stress loading conditions. It is shown 
that by introducing certain averaged orthotropy parameters, aside from a scaling 
parameter the results become only weakly dependent on the orthotropy constants. The 
main results of the study consist of the stress intensity factors at various crack tips as 
influenced by the material inhomogeneity parameter and by the relative size and 
position of the secondary cracks with respect to the dominant crack. Also considered 
is the crack/contact problem for the graded medium subjected to remote tension and 
bending through fixed grips. It is shown that the crack surface contact on the 
compression side of the loading has a magnifying effect on the stress intensity factor 
on the tension side. 

1. Introduction 

In recent years there has been considerable interest in grading the thermomechanical 
properties of composites as a new tool in designing materials for specific applications ( see 
Yamanouchi et al. 1990, Holt et al. 1993 and Ilschner and Cherradi 1995 for review, 
applications and extensive references). Up to now most of the work in the field has been 
on metal/ceramic particulate composites. By proper selection of the constituent materials, 
compositional grading and the processing technique, the concept may be used to develop 
new materials having such highly desirable and seemingly irreconcilable properties as high 
heat, corrosion and wear resistance, high strength and high toughness in the same material 
system. The technique may also be used to process interfacial regions to improve bonding 
(Kurihara et al. 1990) and to reduce the magnitude of residual and thermal stresses in 
bonded dissimilar materials (Lee and Erdogan 1995, Lee and Erdogan 1997). 

In the past the fracture mechanics studies of graded materials were concerned 
primarily with the influence of material inhomogeneity constants, and certain 
dimensionless length parameters on the fracture behavior of components containing a 
single dominant crack. For example, the model and the mixed mode crack problems for 
an infinite isotropic inhomogeneous medium were studied by Delale and Erdogan (1983) 
and Konda and Erdogan (1994), respectively. The influence of the length parameters on 



the stress intensity factors and the strain energy release rates in isotropic graded layers 
undergoing spallation and surface cracking was investigated by Chen and Erdogan (1994) 
and Erdogan and Wu (1996), respectively. However, because of the nature of the 
techniques used in processing, the graded materials are seldom isotropic. Of the two most 
commonly used processing techniques, generally thermal spray would give a lamellar 
(Sampath et al. 1995) and the electron beam physical vapor deposition a columnar 
structure (Kaysser and Ilschner 1995). An appropriate model for such graded materials 
would be an orthotropic inhomogeneous continuum (Ozturk and Erdogan 1997). One 
additional factor that needs to be considered in studying the basic crack problem in graded 
materials is the so-called multiple-site cracking or the crack interaction. In homogeneous 
materials, as intuitively expected, the crack interaction would invariably increase the 
relative magnitude of stress intensity factors. In graded materials, however, such a 
categorical statement is, generally not possible and the result may depend on the relative 
positions of the multiple cracks with respect to the direction of the material property 
variation as well as on the relative dimensions. 

The main objective of this article is to study the influence of the relative size and 
location of a secondary crack on the stress intensity factors in an orthotropic 
inhomogeneous medium containing a dominant crack. It is assumed that the cracks arc 
collinear and are located in a plane parallel to the direction of material property variation. 
It is also assumed that the problem is one of plane strain or generalized plane stress and 
the solution of the elasticity problem in the absence of crack is known. Thus, the plane of 
the cracks is one of symmetry and the problem is a mode I crack problem in which the 
known crack surface tractions are the only external loads. The problem is formulated for 
arbitrary crack surface tractions and the results are given for some simple loading 
conditions. The stress intensity factors for more complex loadings may then be obtained by 
superposition. Clearly, the result would be valid only if the model stress intensity factors 
&i at all crack tips are positive. A negative kx implies crack closure in which case the 
problem becomes nonlinear with the size of the contact zone being an additional unknown. 
This problem is solved by assuming that the graded medium contains a single crack and is 
subjected to tension and bending away from the crack region through rigid grips ( see 
Appendix A for the solution in a homogeneous isotropic medium which is obtained in 
closed form). 

2. Formulation of the Elasticity Problem 

Let En, E22, Gx2 and v{i, (i,j = 1,2,3) be the engineering elastic parameters for an 
orthotropic inhomogeneous plane xux2. To replace them we introduce the following four 
parameters (Krenk 1979, Cinar and Erdogan 1983): 

E = y/EnE22,    v = ^/vl2v2U    <5Q = ~ET- = -7-, « = 77=, v C1) 

for plane stress and 
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^^(l^W K=-^-, (2) 
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for plane strain conditions. In graded materials generally E, v, K and <50 would be 
functions of x1,x2. However, previously it was shown that the results are only weakly 
dependent on v (Delale and Erdogan 1983, Ozturk and Erdogan 1997) and it may be 
assumed that En, E22 and Gu vary proportionately. Consequently, the parameters K and 
<50 may be assumed to be constant and the material inhomogeneity may be represented by 
the function E(xi,x2) only. Note that 60 = 1 and K = 1 correspond to the isotropic 
medium and for K < -1 the problem has no feasible solution (Erdogan and Wu 1993). By 
introducing <50 as a scaling parameter, in the usual notation we define 

x = xi/y/6Ö,        y = ^föö x2, 

u(x,y)= ux(xx,X2)yfio,        v(x,y) = U2(XI,X2)/T/6Ö, 

0**0,2/) = <Tu(xi,X2)/6o, Oyy{x,y) = 6Q (J22(xU X2), 

<rxy{z,y) = <ri2(xi,X2). (3) 

Furthermore, by assuming that the stiffness E varies in xi direction only and in the crack 
region may be approximated by (Fig. 1) 

E(xux2) = E(x1) = E0QaXl =E(x) = E0e
lx,     -y = ay/fa, (4) 

the equilibrium equations may be expressed as 

d2u 
dy 

+ „ d2u      .   d2v       .    f du       dv\ 

d2v      . d2v     .   d2u        [du     dv\ ... 

where 
2(/c + y) 
\-v 

Due to symmetry by considering y > 0 half plane only, from (5) it may be shown that 
ßi = ?r^T->   ih = i + vfh. (6) 

1       poo     1 

1   r°° 4 

v(x,y) = ±       TB^e^-^dk,       0<y<oo, (7) 
27rJ_0O^V -00 3 



1 -vl 27Tj_00
Z3^ 
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r-oo    4 

'*<*•»> - ä^£?(V> - «)*,«**«. (8) 

where 

A: = - A3 = { \ (C2 + 2/C77) + y(C2 + 2KV)
2
 - W } 

A2= - A4 = { \ (C2 + 2«i7) - \ ^(C2 + 2/.T7)2 - 4i? } 

1/2 

1/2 

and 

C2 = i^72,       7/ = A;2 + 17/1, 

(iß2k--yßiv) 
A,- = AJ-A»? 

Aj,        i = 3,4. 

(9) 

(10) 

(11) 

The unknown functions £3  and £4  are determined from the following boundary 
conditions 

o"i2(»i,0) = 0,        -00 < zi < 00. (12) 

n 

^22(^1, +0) = p(a;i),       35i e L,        L = Y^Lk,        Lk = {akbk), 
1 

«2(xi,+0) = V^öv(x,+0) = 0,        iiGl',        L + L' = (-00,00).      (13) 

Here, it is assumed that the crack surface traction p(x{) is a known function and the 
medium contains n collinear cracks along x2 = 0 (Fig. 1). 

By defining the following new unknown function 

d 
u2(x1,+0) = g(xi), — OO < X\ < 00, (14) 

it can be shown that the boundary conditions reduce to (Ozturk and Erdogan 1997) 

1 1 
*1 -X! 

+ R2(ti -xi] 9(h) dh = iSl+"2)6°e-^p(x1),     xx e L, 
tin 

(15) 



- /   g(xi)dxi = 0,        j = l,...,n 

where 
si = y/K + /ci,        s2 = -*/«; - Ki, 

Ra(ti - xi) = ^77=^1 ((*i - *i )/>/$>) 

«1 = V*2 -1, 

(16) 

(17) 

Äi (s — x) = $(h(k))cos(k(s - x)) - <Z(h(k))sm{k(s - x)) dk,    (18) 

—i -1 

h(k) = < 

(51 +s2)(fe + «7) 
Al+A2 

2(fe + fry) 

A/I/7
2
 + A(k2 + i'yk) 

-1 

K^l 

K = l. 

(19) 

In real materials -1 < /c < 00 and si + s2 is always real. Also, for 7 = 0, Ai = fcsi, 
A2 = ks2, h(k) = 0, R2 = 0 and (15) would reduce to the integral equation for a 
homogeneous orthotropic medium. 

It is interesting to note that in the special case of isotropic inhomogeneous materials 
the integral in (18) can be evaluated in closed form giving (Appendix B) 

R2(h -xi) = 
ae' 1*1 

2 ^^ffiMeD+ffofofci) 
*i - Xl ' 

o; 
£ = 2^ _a;i' 

(20) 

where ifo and K\ are modified Bessel functions. Also note that the kernel R2 depends on 
the inhomogeneity constant a and the elastic constants v and K but not on EQ and 6Q. 

Similarly sj. and s2 depend on the shear parameter K only. It may then be concluded that in 
(15) E0 and <50 are simply scaling constants and would have no influence on the stress 
intensity factors which may be defined by and, after solving (15), evaluated from 

h(h lim    1/2(^1 - bk)<T22(x!,+0) 
x\ —> 6* +0 

= -lim ;ai      y/2(h ~ xi) g{xi), 
xi->bk-0{Si + S2)00 

h(ak)=     lim    y/2(ak - Xi)a22(xi, +0) 
x\ —> a^ —0 

EjXy) 

ii-»aj:+0(s1 + S2)<5() 
lim y/2{xi - ak) g{xi), k = l,---,n.        (21) 



Also, from (13) and (14) the crack surface displacements may be obtained as 

u2(xu+0)=        g(ti)dtu        aj<xi<bjt        j = l,...,n. (22) 

3. On The Solution Of The Integral Equation 

Since the closed form solution is not available the integral equation (15) must be 
solved numerically. A simple and very effective way to do this would be to reduce (15) to 
a system of n integral equations each having the support (-1, 1) by defining 

q=2ti;-(bk + ak)t        ak<tl<ht        _i<g<i, 
(bk - ak) 

2x\ - (bk + ak) ak < xi < bk,        -1 < r < 1, 
(bk - a>k) 

<t>k(q) = g(t\),        ak<tx<bk, -1 < q < 1, 

fk(r) = p(x1)/P0, ak < xi < bh,        -1 < r < 1, 

Rik(ck(q~ Zik)) = R2(ti-xi)/ck,    ai<xi<bi,    ak<ti<bk, 

-Kq<l, 

Ck = ^(bk - a-k),    dk = -(bk + ak), 

c- 1 
zik = — r+— (di-dk),    (i,k) = l,---,n,    -1 < r < 1, 

Ck        cfc 

(23) 

where P0 which has the dimension of stress is a normalization constant. The equations 
(15) and (16) may then be expressed as 

-f 1 

q — r 
i   CiiLii 

n     -f     pi    - 

kj"Kj-i lq- zik 

(j)i(q)dq 

1 
+ CkRik (f>k(q)dq = 

(si + s2)60Po 
■Mr), 

E0exp(a(cir + di))' 

-Kr<l,    t = l,---,n, (24) 

I   (j>k(q)dq = 0, k = l,--,n. (25) 

The system of integral equations may be solved in a standard manner by expressing 
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<t>M)={S'+Sff?   h
l     2Y.AkmTm(q),     -Kg<l,     k = l,-,n>       (26) 

where Tm(q) is the Chebyshev polynomial of the first kind and Akm are unknown 
dimensionless constants. From (25) and othogonality conditions of Tm's it follows that 
Ak0 — 0. The coefficients Akm are determined by substituting from (26) into (24) and by 
using the method of reduction (Kantorovich and Krylov 1958, Erdogan 1978). The stress 
intensity factors may then be obtained from (21) and (26) as follows: 

00 

h(bk) = -Po^k~eaCkJ2 Akm, 
m=l 

oo 

hM= PoV^e-QC^(-l)m^m,    k = l,---,n. (27a,b) 
m=l 

4. Results and Discussion 

The main interest in this study is in evaluating the influence of relative position, size 
and distance of a "small" crack lying in the plane of a dominant crack on the stress 
intensity factors in an inhomogeneous orthotropic medium. With the additional knowledge 
of subcritical crack growth characteristics of the material, one may then be able to 
determine, for example, fatigue or corrosion crack growth rate at each crack tip. The 
problem is solved under two sets of loading conditions. In the first, it is assumed that the 
crack surface tractions are given by (see 13) 

pM=-n-P^)-^-n{^)\   «.ei, (2«) 

where po,Pi,P2 and p$ are the measure of the magnitude of external loads and are known 
constants and a is a normalizing length parameter (usually the half length of the dominant 
crack ). Since the problem is linear, these results may be helpful to find an approximate 
solution to the crack problem for a given specific loading. The second external load 
considered is a remote displacement loading of the form 

622 (a?i, x2) = e0 + ei (xi/o) (29) 

giving 

Summary of the results for an isotropic inhomogeneous medium containing a single 
crack along x2 = 0, -a < x\ < a is shown in Tables 1-3. These results are both accurate 
and comprehensive. Tables 4-6 show the comparison of the stress intensity factors 
obtained in this study with that found by Delale and Erdogan (1983). From the solution 
given in the previous section the crack surface displacement may easily be expressed as 



u2(x1,+0) -iRfJ^tM?). <3]) 

where u2(xi,+0) = v(x,0), 

v0 = 2aPo(l-u2)/Eo (32) 

for isotropic and 

vo = (si + s2)80P0a/Eo (33) 

for orthotropic inhomogeneous materials (E0 = E0 for plane stress and 
Eo = Eo/(l - is2) for plane strain ). Some sample results for the crack surface 
displacement are shown in Figure 2. 

The calculated plane strain results for the normalized stress intensity factors at various 
crack tips in an isotropic inhomogeneous medium containing two unequal cracks under 
fixed grip (e22 = £o) or fixed load (ayy(xi,0) = -p0) conditions are given in Figures 3- 
16. Some of the limiting cases of these results for (cx + c2)/d —> 0 (the uncoupled case) 
and (ci + c2)/d —> 1 (the case of a single crack of length 2{cx + c2)) may be found in 
Table 7. One may note that as {c\ + c2)/d ->loro2->ii, h{bi) —► oo, h(a2) —> oo 
and fci(ai) and ki(b2) approach the single crack values. As shown by Boduroglu and 
Erdogan (1983) and as may be observed in Figure 7, for a2 —> b\ k\(a{) and h(b2) are 
highly ill-defined (that is, their slopes are unbounded as (ci + c2)/d —> 1). 

Some sample results for stress intensity factors in an orthotropic inhomogeneous 
medium containing two unequal collinear cracks under plane strain conditions are given in 
Figures 17-21 and Tables 8 and 9. Aside from the geometric parameters c2/ci and 
(ci + c2)/d, as pointed out previously, the main variables in this case are the material 
inhomogeneity constant a and the shear parameter K. Both the figures and the tables show 
that the dependence of the stress intensity factors on a is strong and on K is rather weak. 

The results for the crack/contact problem under remote loading e22 = £o + £\ (x/a) 
are shown in Tables 10, 11 and Figures 22-25. Figure 22 shows the crack surface 
displacement for £oM = ß = 0 (remote bending) obtained by ignoring the crack surface 
interpenetration. Thus, on the compressive side of the external load the solution gives 
negative displacement which is physically unacceptable. Figures 23 and 24 show the crack 
surface displacement for ß = 0 obtained by taking into account the smooth contact of the 
surfaces. Note the slight dependence of the crack surface displacement on the sign of e\. 
Table 10 shows the stress intensity factors and the size of the contact zone again for 
remote loading e22 = e\ (x\ /a) and for various values of the material inhomogeneity 
constant a, (JE(xi) = E0exp(axi), see (4)). The contact occurs along x2 = 0, 
-a < xi < -b, (-a < -b) for ex > 0 and along x2 = 0, b < xx < a, (b < a) for 
£i < 0. The table also shows the (theoretical) stress intensity factors calculated by 
disregarding the crack surface penetration (no contact case). Note that the presence of 
contact tends to magnify the stress intensity factor at the crack tip on the tension side ( 



ki(a) for ei > 0 and fa (-a) for ex < 0). Note also the highly significant influence of the 
material inhomogeneity constant on the stress intensity factors. 

Some sample results for the combined loading "tension" and "bending", 
e22 = e0 + £i (xi /a), (eo/ei = ß) are shown in Figure 25 and Table 11. Figure 25 shows 
the crack surface displacement for various values of ß. For ß > ßc and the contact zone 
size becomes zero, that is b = a, ß = ßc corresponding to k\ (-a) = 0. Also, b < a for 
ß < ßc- Table 11 shows the crack contact zone sizes and the corresponding stress 
intensity factors. If the material is homogeneous and isotropic the crack/contact problem 
can be solved in closed form which is given in Appendix A. 

Finally, a sample result giving the distribution of ayy(x,0) along the net ligament 
bi < x < a2 is shown in Fig. 26. Note that the solution given in this study is that of the 
perturbation problem which must be added to the results obtained from the uncracked 
medium in order to find the total solution. 

5. Conclusions 

In the case of two collinear cracks with crack tips at (ai.fei) and (02,62) and 
ai < 61 < a2 < b2, h - ai > b2 - a2 (that is, (ai, 61) being the dominant crack ), if the 
medium is homogeneous (isotropic or orthotropic) then under mode I loading generally 
fci(fci) > fci(ai) > fa(a2) > h(b2), meaning that fastest crack growth would take place 
at the inner tip of the dominant crack. As the ligament a2 - bx decreases and tends to zero 
fci (a2) as well as kx {bx) becomes unbounded. However, if the medium is inhomogeneous, 
the values of the stress intensity factors may be influenced quite significantly by the 
relative positions of the dominant and the secondary cracks with respect to the direction of 
material property variation. 

After introducing the "averaged" orthotropy parameters E, v, n, and 6Q, in mode I 
crack problems for an inhomogeneous orthotropic medium E(0) and <50 act as scaling 
constants and v and K do not seem to have a significant influence on the stress intensity 
factors. In crack problems involving graded materials the dominant factor remains to be 
the material inhomogeneity constant. 

In mode I and mode III crack problems for isotropic graded materials described by 
fx{x) = /i0exp(a::r) the kernels of the integral equations can be evaluated in closed form. 
Consequently, for these materials highly accurate benchmark solutions can be obtained. In 
this article the mode I stress intensity factors in such materials are provided for tension and 
bending through fixed grips as well as third degree polynomial tractions acting on the 
crack surfaces. 
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APPENDIX A 

Crack Closure for a Homogeneous Isotropie Medium 

Let the medium contain a single crack of length 2a along the x axis and be subjected 
to crack surface tractions axy(x,0) = 0, ayy(x,0) = p(x), -a < x < a. By defining 
dv(x, +0)/dx = g(x), the integral equation of the problem may be expressed as 

1   T g(s) ds       2    . , . , 1 = -=-p{x),    -a< x <a, Al 
s — X        EQ 

subject to 

-fag(s)ds^0, A2 
KJ-a 

where EQ — E for plane stress and E0 = E/(l - u2) for plane strain conditions. By 
substituting 

x = ax',     s = as',     g(s) = G(s'),     p{x) = P{x'). A3 

Al and A2 become 

lfm**.  2       rG(sVs,=0. 
7ry_i s' - x'      E0 y_i 

We now assume that the solution of (A4) is of the form 

G(3) = ?7n7 A5 

Considering the orthogonality condition 

]-dq = { 1/2,    m = n > 1 
TTJ-I 

1,        m = n = 0 
rn(g)rm(g)dfl=j1/2-      m = n>1. A6 

0,        m j^n, 

from (A4b) it may be seen that A0 = 0. Also, by substituting from (A5) into (A4a) and by 
using the properties 

if — 
0, n = 0,     |r| < 1 

Tn(9) d9 = \ Un-!(r),    n > 1,     \r\ < 1, A7 

Gn(r),       n = 0,l,...,     |r|>l, 
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J-n\q) = 

Gn(r) = 

- i;u 

i i(V- 

~>nVi) — sin0 

- (|r|/r)\/r2 

-1)" 

r i/r2-l 
> 

we obtain 

oo 

m=l 
-iOO = 

Sin(n + 1)ö       cos0 = g, A8 

A9 

AlO 

As an example consider now the remote "bending" of the medium for which we have 

P(x') = -Eoexx1 = -EQelU1{xf)/2. All 

From (AlO) it then follows that 

Ai=0,     A2 = -su     Am = 0,    m>3. A12 

and the solution becomes 

giving the stress intensity factors 

fci(o) = -Eoeiy/ä,   ki(-a) = --E0£iy/ä. A14 

Since the negative stress intensity factor (Al 4b) implies interpenetration of the crack 
surfaces, the solution given by (Al3) is not valid. The correct solution may be obtained by 
taking into account the crack surface contact near the end x = -a. Let the contact region 
be — a < x < — b with b being an unknown constant to be determined from the 
smoothness condition fci(-fe) = 0. The integral equation (Al) and the single-valuedness 
condition (A2) may then be modified as 

1  fa g(s)ds       2    . . A1, 
- /   H±J— = —p(x),    -b<x<a, A15 
-Kj_h   S- X EQ 

-fag(s)ds = 0, A16 

By defining the following normalizations 

s = cS + d,x = cX + d, c = ^~, d = ^,9(s) = G(S), p(x) = P(X), A17 

(Al 5) becomes 

13 



-f 1  /-1 G(S)dS       2 1<X<1 

.!   S-X   - EoP{X)>    -1<X<1- 
A18 

Applying again remote "bending" we have 

p(x) = -Eoei (-J = -Eo£i 

The integral equation (Al 8) then becomes 

c-x+* 
a        a 

= P(X) A19 

1 f1 G(S)dS _ 
Try.x   S-X 

-2ei 
a a 

,    -1<X<1, A20 

Again assuming the solution as given by (A5) it can be shown that 

oo 

Y, AmUm^{X) =-2ex 
rrc=l 

c-x+d- 
a        a 

A21 

By observing that UQ{X) = 1 and JJX (X) = 2X, from (A21) it follows that 

d c 
Ai=-2ei-,     A2 = -e1-,    Am = 0,     m > 2. 

a a 

Thus, the solution becomes 

£i        1 

A22 

G(5) = 
a A/1-5

2 
[2d5 + c(l-2S,2)]) A23 

giving 

7   / \      7-,        /- f3a — b 
ki (a) = £/0ei V c I —— 

kii-b) =-Eoe^^^y 

A24 

A25 

From the smooth contact condition h\ (-b) = 0, the unknown constant b is found to be 

,      1 b= -a. 

From A24 and A26 it then follows that 

A26 

       .  yjL          

E0eiy/c      3      EoEiy/a      3 
A27 

Figure Al shows the crack surface displacements obtained from (Al3) by ignoring the 
interpenetration of crack surfaces and from (A23) by taking into account crack closure 

14 



along -a < x < -b. From Figure Al and equation (A27) it is seen that the crack closure 
near the end x = -a leads to magnification of stress state near the crack tip x = a and 
there is approximately a 9% increase in the stress intensity factor k\ (a) over the nominal 
value obtained by ignoring crack surface contact. 

0.3 

0.2   - 

0.1 

v(x,0)   o.o 

-0.1 

■0.2   - 

-0.3 
■1.0 1.0 

Figure Al Crack surface displacements in a homogeneous isotropic 
medium subjected to remote bending eyy = Si{x/a) and obtained by 
ignoring crack closure and by taking it into account; VQ = 2e\a. 

After solving the perturbation problem (Al 5) the stress ayy(x, 0) on the plane of the 
crack may be obtained by using (A7), (A9), (All) and (Al 8) and by adding the 
homogeneous stress ayy = EQE\ (x/a) as follows: 

<Tyy(X,0)   = 

0,     — b < x < a, 

I ^[A1G1(X) + A2G2(X)]+E0e1(^X+^ 

X = 
x — d a + b 

d = 
c 2    '     ~ 2    ' 

or by observing that b = a/3 it may be shown that 

- oo < x < -b,    a < x < oo,    A28 
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EQEI 
= < 

0,     \X\ < 1, 

\X\       1 

2X + 1 
+ —^— 

x-^-Vx2-i + (x x Vx2-i 

,     \X\ > 1. A29 

Figure A2 shows the stress distribution expressed by (A29). Note that, as expected, 
cryy(x, 0) < 0 for x < —b. 

EQEI 

0 

-2 
-1 0 

X 

Figure A2 The stress ayy in the plane of the crack in a homogeneous 
isotropic medium under remote "bending" eyy = £\{x/a). 

Let us now assume that a homogeneous isotropic medium containing a crack along 
-a < x < a, y = 0 is subjected to remote "tension" eyy = e0 as well as "bending" 
£yy = £\ (x/a). The input function in the integral equation (Al) would then be 

p(x) = -EQ £o+£l^). V< 
-EQEI 

Va/J £i 
A30 

giving the solution as follows 

1 
G(s') = 

V 1 — s /2 
[AiTiCs'HAaTaCs')],    s'= s/a, 

Ai = -2ei/3,     A2 -eii 

A31 

A32 
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*l(a)    -1 (2/3 + 1), A33 
EQ£I yja      2 

M-a)   =h2ß_1): A34 
E0ei y/ä     2 

^^ = (/3+^)^l-(x/a)2, -a<x<a. A35 

The solution given by (31)-(35) is valid provided ki{-a) > 0. From (A34) the critical 
value of the strain ratio ß = £Q/£\ for which b = a or fa (-a) = 0 is found to be 

(e0/ei)c=& = l/2. A36 

Thus, crack closure would take place if ß < ßc (or if fa (-a) < 0 ). In this case the 
solution is obtained from (Al 5) and (A30) by assuming that b < a and by following the 
procedure outlined by (A17)-(A27). It may then be shown that 

G(S)=    , *       \A1T1(S) + A2T2(S)},    S = (s-d)/c, A37 
yl — S2 

^=-2e'(^+!)-^=-"(!)• 
A3 8 

».W    =(?(l+/3)f
2, A40 

h(-b) 

E0£iyfa 
= 0, A41 

v(x,0) 
= -(l+ß)2(l+X)Vl-X2,     v0 = 2e1a,    x = cX + d,     \X\ < 1.    A42 

v0 9 

Figure A3 shows the crack surface displacement v(x, 0), -b < x < a, the size of the 
contact zone b and the normalized stress intensity factors for various values of the strain 
ratio ß = £Q/£\. 
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b/a 
fci(-a) 

EoEiy/a 
fci(a) 

EoEi^Ja 

1.0 1 0.5 1.5 
0.75 1 0.25 1.25 
0.5 1 0.0 1.0 
0.25 2/3 0.0 0.7607 
0.0 1/3 0.0 0.5443 

v(ar,0) 

vo 

■1.0 

'          '          ' 1 1       1 

1.00 /?= =1.0 

/?= =0T5___^\      _ 

0.75 /?CF=0.5        \\ " 

0.50 ^=0.25       \\\- 

0.25 

r\ r\r\ _--^   i      —-^T          —i- 1 

^""^  /?=0.0\j| 

1       .       1 

-0.5 0.0 
x/a 

0.5 1.0 

Figure A3 The crack surface displacement, the contact zone size and the 
normalized stress intensity factors in a cracked isotropic homogeneous 
medium subjected to the remote loading eyy = e0 + e\ (x/a), v0 = 2eia. 
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APPENDIX B 

Evaluation of the Kernel 

For an isotropic inhomogeneous medium containing a series of collinear cracks along the 
x axis the kernel of the integral equation (15) may be expressed as 

R(u) = - [°° k + 'a eik"dk = 2(-+R2(u)],    u = s-x. Bl 
y J      ij-vo ^Jva2 + 4{k2 + iak) \u V 7 

Defining A = a/2 and observing that k2 + iak = {k + iA)2 + A2, from (Bl) it follows 
that 

R(u) = -[°°     , {k + i2A) e*"d*. B2 
%J-°° <J(v + l)A2 + (k + iA)2 

Changing the variables k = AV and assuming A > 0, (B2) becomes 

A   f°° 
R(u) = - / 

* J—oo 

(V + 2i) ;AVu 

yJ(u+l) + (V + if 
elAVu)dV, B: 

or, by letting U = V + i, v + 1 = C2 and B = Au we find 

R{u) = ^ r+i  u+i eBudU_ B4 

By substituting U = —U' and observing that 

L-i^c2 + u<2 Li   Vc2 + u/2 

(B4) may be written as 

Ji \i)y/& 
!       -i}   (u + i)   QiBUdU 

°°+i     (U + i) 
= 2Aeß^ Vt;     JBUdU\. B6 

i^/C2 + U2 
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We now consider 

h = 
°°+i      (U + i)     JBU 

iy/C2 + U2 
emudU,    B>0. B7 

V' L 

i(R+l) 

i(C+ e) 
^\ 

V 

iC < ,            j     7 

/(C - e) y 
i 

i?+ / 

0 X 

Figure B1 Contour used in evaluating I\ 

Referring to Figure B1 we have 

(z + i) rR+i 

J     W 22 + C2 Ji Jr       Ji(R+l) Jy       Ji(C-e) 

(C+e) 

+   I , 
(Ä+1) J-y       Ji(C-e) 

B8 

For Ä->oo and e->0 it can be shown that the integrals over the arcs 7 and T in (B8) are 
zero and from (B8) it follows that 

h = 
°°+i     (U +1) r°° 

iy/C2 + u2 emdu = -I V + 1    e'^dy c Vf-c2 

r>C 

+ if     ,y + 1     e-^dy. B9 
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By substituting y = CY in the first integral, (B9) becomes 

h = 
oo+i (u + i)   eiBUdU:   - CY+1   e-BCYdY 

From (B6), (B7) and (BIO) it then follows that 

By using the following expressions of the modified Bessel functions 

r°°      1 P°°      x 
K0(j>)= I      , n     ^~pxdx,    K1(p) = j      , „       e-?xdx, 

i    y x1 — 1 VV-1 

(Bll) becomes 

Ä(w) = 2Aeß{Cif1(ßC) + Ko(BC)} = 2 (- + R2(tu) 

BIO 

dY       Bll 

B12 

B13 

-i(R-l) 

X 

Figure B2 Contour used in evaluating I2 

21 



Let us now assume that B < 0, B = -B' and define the function 

=   /■«+»      (JJ + j)      .Jeu ßl B14 

Ji iy/C2 + U2 

Referring to Figure B2 we have 

\\/C2^Z2 Ji JT       J-i(R-l) J-/       J-i(C-£ 

Again, for R -*■ oo and e -+ 0 it can be shown that the integrals over the arcs 7 and T in 
B15 are zero and I2 becomes 

(U + i) -„_   _   P00       (£ + j). 
Ji       iJC2 + U2 J- 

-iB'z, J2 =  / -   ■ v     e-*vvdu  = / '   y n e-iazdz 
isJC2 + U2 J-ic   i^/C2 + 

(z + i) 
z2 

-</ 

iffz 

iC WC2 + Z2 
dz 

= ri=y±V^dy   -if -fe^T.-"*,     B16 
./c v</2 - c2 j-c vc - y 

or 

Ji       i^/C2 + U2 J     Jc   y/y2 - C2 

(-CY+1) Q-B'CYdy 

h      y/Y2-l 

= -CK^B'C) + K0(B'C). B17 

Thus, for any real constant B, positive or negative, we find 

R(w) = 2AzBlc^Kx{\B\C) + K0(\B\C)\ = 2^ + i^")), B18 

A = a/2,    C=y/l + u,     B = Au = |(s - x). B19 
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APPENDIX C 

The Antiplane Shear Problem for a Graded Medium Containing a 
Crack 

It can be shown that the integral equation corresponding to an infinite inhomogeneous 
isotropic medium containing a crack and subjected to anti-plane shear loading is given by 

g{x) = 

s — X 

dw(x,0) 
dx 

+ MA(x,s) g(s)ds = —e axayz(x,0), 
Ho 

-a < x < a, 

MA(x,s) = ^Bi[
l-fK1(\B\) + Ko(\B\) x 

a 
B=-(s-x) 

Cl 

C2 

C3 

C4 

where KQ(Z) and K\{z) are the modified Bessel functions of order zero and one 
respectively. It is again assumed that the shear modulus of the medium is approximated by 
ß(x) = (iQQxp(ax). Note that the kernel of the integral equation (C3) is nearly identical to 
that given by (20) for the in-plane problem. Table Cl shows some sample results obtained 
from (Cl) and their comparison with that obtained by delale (1985) numerically. Since the 
kernel is in closed form, (Cl) can be solved within any desired degree of accuracy. 

Table Cl The normalized mode III stress intensity factor for an 
inhomogeneous isotropic medium subjected to uniform crack surface 
traction, ayz(x, 0) = —po, — o, < x < a. 

Delale [1985] Present 

aa 
ki(a) 

po^/a 

kj(a) 

0.0 1.0 1.0 1.0 1.0 
0.1 1.024 0.973 1.0228 0.9731 
0.2 1.045 0.944 1.0427 0.9443 
0.3 1.063 0.914 1.0605 0.9149 
0.4 1.080 0.884 1.0763 0.8857 
0.5 1.095 0.855 1.0906 0.8570 
0.75 1.127 0.787 1.1205 0.7894 
1.00 1.153 0.726 1.1438 0.7291 
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A x2(y) 

L, 

*\j -|  I  *XJ J 

Figure 1 Geometry and notation of the collinear crack problem 

2.0 

1.5 

0.5 

0.0 
1.0 -0.5 0.0 

x/a 
0.5 1.0 

Figure 2 Crack surface displacements v(x, 0) in an inhomogeneous isotropic medium 
under uniform pressure po applied to the crack surfaces. ( vo = 2ap0(l — V

2
)/EQ, 

v = 0.3, plane strain conditions.) 
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kl 

k0 

4 

3 

2  - 

0 
0.0 0.5 1.0 

OLCi 

1.5 2.0 

Figure 3 Stress intensity factors at the tips ax and &iof two unequal cracks in an isotropic 
FGM under fixed-grip condition, ayy(x,0) — -Eoe0exp(ax), k0 = EQeoy/ci, 

E0 = E0/(l - v2\ c2/Cl = 0.25, v = 0.3. 

6 

4   — 

0.0 0.5 1.0 
aci 

1.5 2.0 

Figure 4 Stress intensity factors at the tips a\ and bx of two unequal cracks in an isotropic 
FGM under fixed-grip condition, ayy(x,0) = — i?o£oexp(a;:r), ko = EoSo^Ci, 

E0 = E0/(l - v2\ (c2 + ci)/d = 0.75, v = 0.3. 
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kl 
k0 

0 

1    ' 2c; 
i 1 r 

2cr 

a 0 a. 
d 

7 
— k1{b1)/k0 

 k1(a1)/k0 

a c1= 1.0^ 

0.5 

0.0 

0.0 

0.5 

1.0 
J I I I I I L 

0.0 0.2 0.4 0.6 
(ci + c2)/d 

0.8 1.0 

Figure 5 Stress intensity factors at the tips ax and bx of two unequal cracks in an isotropic 
FGM     under     fixed-grip     condition,     ayy(x,0) = -E0e0exp(ax), k0 = EQeoy/c\~, 

E0 = Eb/(1 - v2), C2/ex = 0.25, v = 0.3. 

3    — 

h2 

k0 

a 

k1(bl)/k0 

fc^aj/fc, 

0.0 0.2 0.4 0.6 
(ci + c2)/d 

0.8 1.0 

Figure 6 Stress intensity factors at the tips ax and bx of two unequal cracks in an isotropic 
FGM     under     fixed-grip     condition,     ayy(x,0) = -Eo£oQxp(ax), k0 = EQEQ^JC[, 

E0 = Eo/(l ~ v2\ OLOX = 0.5, v = 0.3. 
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1.0 

0.9 

0.8 

0.7 

0.6 

2c, 
i      r 

2c, 
a a. 

c2/c1=1.0 

J I I L I 

0.0 0.2 0.4 0.6 
(ci + c2)/d 

0.8 1.0 

Figure 7 Stress intensity factors at the tip a\ of two unequal cracks in an isotropic FGM 
under       fixed-grip       condition,       ayy(x,0) = -Eoe0exp(ax),        kQ = EQEQ^/C^, 

E0 = Eo/(l - v2\ aa = 0.5, v = 0.3. 

30 

20 

h io: 

2c, 2Cr / 

■k^b^/kQ 

0.0 0.2 0.4 0.6 

Figure 8 Stress intensity factors at the tips a2 and fe2 of two unequal cracks in an isotropic 
FGM     under     fixed-grip     condition,     ayy(x,0) = — Eoeoexp(ax), ko = EQEQ^/CI, 

Eo = Eo/(l - v2), c2/ci = 0.1, v = 0.3. 
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1.5 

1.0 

0.5 

0.0 

k^aj/k 

J i L j_ 

0.0 0.2 0.4 0.6 0.8 1.0 
OLC\ 

Figure 9 Stress intensity factors at the tips ax and feiof two unequal cracks in an isotropic 
FGM    under    fixed-grip    condition,    ayy(x,0) = -Eo£oexp(ax),     kQ = EQEO^/CI, 

E0 = Eo/(l ~ v2\ C2/C1 = 0.25, v = 0.3. 
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k0 

1.0 

0.5 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 10 Stress intensity factors at the tips a\ and 61 of   two unequal cracks in an 
isotropic FGM under fixed-grip condition, ayy(x,0) = — Eo£oexp(a;a;), ko — EQEQ^JCI, 

E0 = E0/(l - v2\ (c2 + ci)/d2 = 0.75, v = 0.3. 
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■fc 1 (&1 )/fc0 0.5 t 
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0.0 0.2 0.4 0.6 0.8 
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1 .0 

Figure 11 Stress intensity factors at the tips a\ and b\ of two unequal cracks in an 
isotropic FGM under fixed-grip condition, ayy(x,0) = -E0e0Qxp(ax), k0 — EQ£O^/C^, 

E0 = Eo/{l - v2\ c2/c! = 0.25, v = 0.3. 

Figure 12 Stress intensity factors at the tips a\ and b\ of   two unequal cracks in an 
isotropic FGM under fixed-grip condition, ayy(x,0) = —So£oexp(ctx), ko = EQSQ^JC[, 

EQ = Eo/(l - v2), aci = 0.5, v = 0.3. 
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Figure 13 Stress intensity factors at the tips a2 and b2oi two unequal cracks in an 
isotropic FGM under fixed-grip condition, ayy(x,0) = -E0e0exp(ax), k0 = EQeQ^/c[, 

E0 = EQ/(1 - v2), c2/Cl = 0.1, v = 0.3. 
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2.0    - 

^11.5 
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1 .0 
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-i 1 1 1 r 
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a 0 

klibi)/ k0 
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Figure 14 Stress intensity factors at the tips a\ and b\ of two unequal cracks in an 
isotropic FGM under fixed-load condition, cryy(x, 0) = —po, kr, = Po-^/ci, cilc\ = 0.25, 
z^ = 0.3. 
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Figure 15 Stress intensity factors at the tips a\ and fciof two unequal cracks in an isotropic 
FGMunder fixed-load condition, ayy(x,0) = -po, &o = Poy/ci, cijc-x = 0.25, v = 0.3. 
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Figure 16 Stress intensity factors at the tips a2 and b2 of two unequal cracks in an 
isotropic FGM under fixed-load condition, <jyy(x,Q) = —po, fco = Po^/cT, co/ci =0.1, 
v = 0.3. 
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Figure 17 Stress intensity factors at the tips a\ and fciof two unequal cracks in an 
orthotropic FGM under fixed-grip condition, ayy(x, 0) = -eoE0/6%exp(axi), 
k0 = (eoEo/tf)^, c2/ci = 0.25, K = 0.5, v = 0.3. 
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Figure 18 Stress intensity factors at the tips a\ and &iof two unequal cracks in an 
orthotropic FGM under fixed-grip condition, ayy(x,0) = -e0Eo/6Qexp(axi), 
k0 = (e0E0/6i)^, (c2 + cx)/d = 0.75, K = 0.5, v = 0.3. 
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Figure 19 Stress intensity factors at the tips a\ and &iof two unequal cracks in an 
orthotropic FGM under fixed-grip condition, ayy(x,0) = -Eo£o/6Qexp(axi), 
k0 = (E0e0/6^)J^, (c2 + ci)/d = 0.5, c2/ci = 0.25, */ = 0.3. 
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Figure 20 Stress intensity factors at the tips a\ and b\ of two unequal cracks in an 
orthotropic FGM under fixed-grip condition, <ryy(x, 0) = — ü7o£o/6oexP(a:ci)> 
fco = {EQe0/8l)^/c[, aci = 0.5, c2/ci = 0.25, i/ = 0.3. 
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Figure 21 Stress intensity factors at the tips a\ and fei of two unequal cracks in an 
orthotropic FGM under fixed-grip condition, ayy(x,0) — -E0e0/62exp(axi), 
kQ = EQSQ/S

2
,^, aci = 0.5, v = 0.3, K = 0.5. 
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Figure 22 Crack surface displacement for an isotropic inhomogeneous medium under 
fixed-grip condition, disregarding interpenetration of crack surfaces, 
ayy(x,0) = — Eoe\(xi/a)exp(axi), vo = 2e\a, EQ = EQ/{1 — v2), v = 0.3. 
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Figure 23 Crack surface displacement for an isotropic inhomogeneous medium under 
fixed-grip condition in the presence of smooth contact, cryy(x, 0) = -Eo£\ (x/a)exp(ax), 
v0 = 2exa, EQ = E0/(l - u2), v = 0.3, ei > 0. 
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Figure 24 Crack surface displacement for an isotropic inhomogeneous medium under 
fixed-grip condition in the presence of smooth contact, cryy(x, 0) = -EQEI (x/a)exp(ax), 
v0 = 2eia, E0 = E0/(l - u2),u = 0.3,ei < 0. 
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Figure25 Crack surface displacements for an infinite isotropic inhomogeneous medium 
under fixed-grip  condition  :  eyy = sQ +£i(x/a), EQ/EI = ß, ßc = 0.4485, aa = 0.5, 
u = 0.3. 

i 1      i     i      i      r 

E0eQ      2 

-1 0 2 
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Figure 26 The stress distribution in the plane of the crack in an inhomogeneous isotropic 
medium with two unequal colinear cracks under the remote loading cr^ix, 0) = EQEQQ^, 
ac\ = 0.25, c2/ci =0.1, (ci + c2)/d = 0.25, oT

m{x, 0): the total stress, a%y(x, 0) : the 
perturbation, cr™(x, 0): stress at infinity (the applied stress), ay  = a? + a, j-OO 

yy 
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Table 1 The normalized stress intensity factors for an inhomogeneous isotropic 
medium under crack surface tractions given by Eq. 27 ( v = 0.3 ). 

Plane Strain 

aa 
ki{a) 

Po\A 
ki(-a) 

Poy/a 

ki(a) 

P\\ß 
ki (-a) 

Pi\ß 
ki (a) 

P2\fä 
h(-a) 
P2^/ä 

h(a) 
Pz\fä 

h (~a) 
P-i \fä 

0.00 1.0 1.0 0.5 -0.5 0.5 0.5 0.375 -0.375 

0.01 1.0025 0.9975 0.5000 -0.5000 0.5006 0.4994 0.3750 -0.3750 

0.10 1.0238 0.9740 0.4998 -0.4998 0.5060 0.4935 0.3749 -0.3749 

0.25 1.0567 0.9334 0.4989 -0.4986 0.5142 0.4833 0.3745 -0.3743 

0.50 1.1062 0.8667 0.4962 -0.4944 0.5267 0.4665 0.3731 -0.3722 

0.75 1.1504 0.8044 0.4923 -0.4878 0.5379 0.4505 0.3711 -0.3689 

1.00 1.1902 0.7480 0.4876 -0.4793 0.5483 0.4357 0.3688 -0.3646 

1.50 1.2598 0.6536 0.4771 -0.4590 0.5668 0.4098 0.3634 -0.3542 

2.00 1.3195 0.5810 0.4660 -0.4371 0.5833 0.3881 0.3580 -0.3429 
Plane Stress 

aa 
ki{a) 

Po\/a 

h(-a) 
PKs\/a 

ki (a) 

Piy/ä 

ki (-a) 

piy/a 

ki (a) 

P2\/ä 

ki (-o) 

P2y/ä 

ki(a) 

P3^/a 

ki(-a) 

P3\fa 

0.00 1.0 1.0 0.5 -0.5 0.5 0.5 0.375 -0.375 

0.01 1.0025 0.9975 0.5000 -0.5000 0.5006 0.4994 0.3750 -0.3750 

0.10 1.0235 0.9737 0.4998 -0.4998 0.5059 0.4934 0.3749 -0.3749 

0.25 1.0553 0.9324 0.4989 -0.4985 0.5139 0.4831 0.3745 -0.3720 

0.50 1.1019 0.8640 0.4962 -0.4941 0.5256 0.4658 0.3731 -0.3720 

0.75 1.1421 0.8002 0.4923 -0.4870 0.5359 0.4494 0.3712 -0.3685 

1.00 1.1774 0.7427 0.4879 -0.4781 0.5451 0.4343 0.3689 -0.3640 

1.50 1.2369 0.6473 0.4780 -0.4570 0.5611 0.4079 0.3639 -0.3532 

2.00 1.2862 0.5746 0.4680 -0.4345 0.5749 0.3859 0.3590 -0.3415 

Table 2 The normalized stress intensity factors for an inhomogeneous 
isotropic medium under fixed - grip condition ( EQ = EQ for plane stress, 
E0 = EQ/(1 — v2) for plane strain , v = 0.3, see Eq. 30). 

2/= 0.3 Plane Strain Plane Stress 

aa 
e0Eoy/ä 

fci(-a) 

e0E0\fa 

fei(a) 

eiEoy/a 
fci(-a) 

etEoy/ä 

fei(a) 

e0E0^/a 
fci(-o) 

e0£0\/ä 
fci(o) 

£i£o\/ä 

fci(-o) 

eiEoy/a 

0.00 1.0 1.0 0.5 -0.5 1.0 1.0 0.5 -0.5 

0.01 1.0075 0.9925 0.5050 -0.4950 1.0075 0.9925 0.5050 -0.4950 

0.10 1.0764 0.9264 0.5523 -0.4523 1.0761 0.9261 0.5523 -0.4522 

0.25 1.1986 0.8230 0.6402 -0.3886 1.1972 0.8219 0.6401 -0.3885 

0.50 1.4290 0.6710 0.8151 -0.3010 1.4245 0.6683 0.8146 -0.3009 

0.75 1.7029 0.5434 1.0326 -0.2325 1.6940 0.5395 1.0311 -0.2326 

1.00 2.0332 0.4379 1.3029 -0.1794 2.0189 0.4331 1.2997 -0.1795 

1.50 2.9294 0.2811 2.0570 -0.1064 2.9012 0.2760 2.0482 -0.1067 

2.00 4.2933 0.1786 3.2297 -0.0631 4.2454 0.1741 3.2107 -0.0633 
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Table 3 The effect of Poison's ratio on the normalized stress intensity factors 
for an inhomogeneous isotropic medium (E0 = E0 for plane stress, 
E0 = EQ/(1 - v2) for plane strain, see Eqs. 28 and 30 ). 

Plane Strain 

aa = 0.5 Fixed-Grip Fixed-Load 

V 
fei(a) 

e0£o\A 

fei(-a) 

eoEo^/a 

fei (a) 

eiE0v/a 

fei(-a) 

ei-Eo-v/ä" 

fei(a) 

Po\fä 

fei(-a) fei(a) 

Pi\/a 

fei (-a) 

Pi\A 

0.0 1.4129 0.6615 0.8131 -0.3009 1.0906 0.8570 0.4961 -0.4932 

0.1 1.4174 0.6641 0.8137 -0.3009 1.0950 0.8597 0.4961 -0.4935 

0.2 1.4227 0.6672 0.8143 -0.3009 1.1001 0.8629 0.4962 -0.4939 

0.3 1.4290 0.6710 0.8151 -0.3010 1.1062 0.8667 0.4962 -0.4944 

0.4 1.4368 0.6755 0.8162 -0.3010 1.1137 0.8715 0.4963 -0.4950 

0.5 1.4468 0.6814 0.8176 -0.3011 1.1234 0.8775 0.4964 -0.4959 

Plane Stress 

aa = 0.5 Fixed -Grip Fixed-Load 

V 
fei(a) 

e0i?o\/ä" 

fci(-a) 

e0£0\/ä 

fei(a) 

eiEo-v/ä 

fei(-a) 

eiEo-v/a 

fei(a) 

Po\/a 

fei(-a) 

Pay/a 

fei(a) fei(-a) 

0.0 1.4129 0.6615 0.8131 -0.3009 1.0906 0.8570 0.4961 -0.4932 

0.1 1.4170 0.6639 0.8136 -0.3009 1.0946 0.8594 0.4961 -0.4935 

0.2 1.4208 0.6661 0.8141 -0.3009 1.0983 0.8618 0.4961 -0.4938 

0.3 1.4245 0.6683 0.8146 -0.3009 1.1019 0.8640 0.4962 -0.4941 

0.4 1.4280 0.6704 0.8150 -0.3009 1.1053 0.8661 0.4962 -0.4943 

0.5 1.4314 0.6724 0.8155 -0.3010 1.1085 0.8682 0.4962 -0.4946 

Plane Strain 

aa = 1.0 Fixed-Grip Fixed-Load 

V 
fci(a) 

e0 Eoy/a 

fei(-a) 

eoEoi/ä 

fei(a) 

exEoyfa 

fei(-a) 

ei^ov^ 

fei(a) 

Poy/a 

fei(-a) 

Po\/a 

fei(a) fei(-a) 

Piy/ä 

0.0 1.9819 0.4208 1.2917 -0.1798 1.1438 0.7291 0.4888 -0.4752 

0.1 1.9963 0.4256 1.2948 -0.1797 1.1569 0.7344 0.4884 -0.4763 

0.2 2.0132 0.4312 1.2984 -0.1795 1.1722 0.7406 0.4880 -0.4777 

0.3 2.0332 0.4379 1.3029 -0.1794 1.1902 0.7480 0.4876 -0.4793 

0.4 2.0576 0.4459 1.3084 -0.1793 1.2121 0.7569 0.4874 -0.4813 

0.5 2.0885 0.4560 1.3157 -0.1793 1.2396 0.7683 0.4873 -0.4840 

Plane Stress 

aa = 1.0 Fixed -Grip Fixed-Load 

V 
fei(a) 

e0-Bo\/ä 

fei(-a) 

€0So-\A 

fei(a) 

eiEo^fa 

fei(-a) 

eiEo^/a 

fei(a) 

Po\/ä" 

fei(-a) 

Poy/a 

fci(a) 

Pi\/ä 

fci(-a) 

0.0 1.9819 0.4208 1.2917 -0.1798 1.1438 0.7291 0.4888 -0.4752 

0.1 1.9949 0.4251 1.2945 -0.1797 1.1556 0.7339 0.4884 -0.4762 

0.2 2.0072 0.4292 1.2971 -0.1796 1.1668 0.7384 0.4881 -0.4772 

0.3 2.0189 0.4331 1.2997 -0.1795 1.1774 0.7427 0.4879 -0.4781 

0.4 2.0301 0.4368 1.3022 -0.1794 1.1874 0.7468 0.4877 -0.4790 

0.5 2.0407 0.4404 1.3046 -0.1793 1.1970 0.7507 0.4875 -0.4799 
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Table 4 The normalized stress intensity factors for an inhomogeneous isotropic 
medium under fixed - load condition for the case of plane strain {v = 0.3 ). 

Present Delale and Erdogan [1983] 

aa 
ki(a) 

POAA 

fa(-a) 

Poy/a 

fa (a) fa(-a) 

Piyß 

fa (a) 

Po\Ja 
fa (-a) 

Po^/a 

fa (a) fa {-a) 

pi^/a 

0.00 1.0 1.0 0.5 -0.5 1.0 1.0 0.5 -0.5 

0.01 1.0025 0.9975 0.5000 -0.5000 1.003 0.997 0.500 -0.500 

0.10 1.0238 0.9740 0.4998 -0.4998 1.026 0.973 0.500 -0.500 

0.25 1.0567 0.9334 0.4989 -0.4986 1.061 0.931 0.498 -0.499 

0.50 1.1062 0.8667 0.4962 -0.4944 1.117 0.863 0.494 -0.495 

0.75 1.1504 0.8044 0.4923 -0.4878 1.170 0.801 0.489 -0.489 

1.00 1.1902 0.7480 0.4876 -0.4793 1.222 0.745 0.483 -0.481 

Table 5 The normalized stress intensity factors for an inhomogeneous isotropic 
medium under fixed - load condition for the case of plane stress (v = 0.3 ). 

Present Delale and Erdogan [1983] 

aa 
fa(a) 

Poy/ä 

fa(-a) 

Poyja, 

fa (a) 

Piy/ä 

fa (-a) fa (a) 

poy/a 

fa (-a) 

PQyJa 

fa (a) 

P\\ß 
fa (-a) 

Pi\fä 
0.00 1.0 1.0 0.5 -0.5 1.0 1.0 0.5 -0.5 

0.01 1.0025 0.9975 0.5000 -0.5000 1.003 0.997 0.500 -0.500 

0.10 1.0235 0.9737 0.4998 -0.4998 1.025 0.973 0.500 -0.500 

0.25 1.0553 0.9324 0.4989 -0.4985 1.060 0.930 0.498 -0.499 

0.50 1.1019 0.8640 0.4962 -0.4941 1.113 0.861 0.495 -0.495 

0.75 1.1421 0.8002 0.4923 -0.4870 1.162 0.797 0.489 -0.489 

1.00 1.1774 0.7427 0.4879 -0.4781 1.209 0.740 0.483 -0.480 

Table 6 The normalized stress intensity factors for an inhomogeneous isotropic 
medium under fixed - grip condition ( E0 = E0 for plane stress, 
E0 = EQ/(1 — v2) for plane strain ). 

Plane Strain Plane Stress 

u = 03 Present Delale and Erdogan [1983] Present Delale and Erdogan [1983] 

aa 
fei(o) 

e0E0%/a 

fci(-o) 

e0E0yJa e0E0y/a 

fci(-a) 

e0Ecn/ä 

fci(a) 

e0Eo\/ä 

fci(-a) 

e0E0y/ä 

ki(a) 

e0E0^/a 

fci(-a) 

e0E0^/a 

0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

0.01 1.0075 0.9925 1.008 0.992 1.0075 0.9925 1.008 0.992 

0.10 1.0764 0.9264 1.078 0.925 1.0761 0.9261 1.078 0.925 

0.25 1.1986 0.8230 1.203 0.821 1.1972 0.8219 1.202 0.820 

0.50 1.4290 0.6710 1.439 0.667 1.4245 0.6683 1.435 0.665 

0.75 1.7029 0.5434 1.721 0.539 1.6940 0.5395 1.713 0.535 

1.00 2.0332 0.4379 2.063 0.433 2.0189 0.4331 2.048 0.429 
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Table 7 Stress intensity factors at the tips x = a\ and x = b\ of two unequal 
cracks in an isotropic FGM for the case of plane strain, v = 0.3, 
E0 = Eo/(l - v2). 

Fixed-Grip ayy{x,0) = -E0eQexp(ax),    kc — Eo£oy/ %. 

ac\ = 0.5 C2/C1 = = 0.25 C2/C1 -- = 0.75 C2/C1 = 1.0 

(ci +c2)/d 
fci(oti) 

fco 

fci(fci) 

fco 

fci(ai) 

fco 

fei(6i) 
fco 

fci(ai) 

fco 

fcl(fcl) 

fco 
0.0 0.6710 1.4290 0.6710 1.4290 0.6710 1.4290 

0.1 0.6713 1.4299 0.6728 1.4334 0.6735 1.4350 

0.2 0.6720 1.4319 0.6766 1.4435 0.6791 1.4495 

0.4 0.6740 1.4405 0.6873 1.4805 0.6947 1.5000 

0.6 0.6773 1.4634 0.7030 1.5601 0.7171 1.6032 

0.8 0.6835 1.5440 0.7284 1.7721 0.7526 1.8624 

0.975 0.7034 2.3181 0.7883 3.1421 0.8314 3.4198 

1.0 0.7656 00 0.9395 00 1.0210 00 

Fixed-Load Vyyv v, 0) = -po,   h=p oy/ci 

ac\ = 0.5 C2/C1 -- = 0.25 C2/C1 = = 0.75 C2/C1 = 1.0 

(ci + c2)/d 
fci(ai) 

fco 

fci(fci) 

fco 

fci(ai) 

fco 

fci(fci) 

fco 

fci(oi) 

fco 

fcl(fcl) 

fco 
0.0 0.8667 1.1062 0.8667 1.1062 0.8667 1.1062 

0.1 0.8667 1.1062 0.8667 1.1062 0.8667 1.1062 

0.2 0.8668 1.1063 0.8668 1.1064 0.8668 1.1064 

0.4 0.8674 1.1088 0.8687 1.1124 0.8688 1.1125 

0.6 0.8692 1.1198 0.8750 1.1405 0.8765 1.1436 

0.8 0.8735 1.1686 0.8893 1.2445 0.8945 1.2584 

0.975 0.8881 1.7064 0.9280 2.0652 0.9422 2.1280 

1.0 0.9334 00 1.0258 00 1.0503 00 

Table 8 The normalized stress intensity factors for two unequal cracks in an 
infinite inhomogeneous orthotropic medium under uniform crack surface 
pressure,^(x,0) = -po,E(xi) = E0exp(axi),v = 0.3, (ci + c2)/d = 0.5. 

K = -0.25,     02/0^ = 0.25 K = 0.0,     oilcY = 0.25 

ac\ 
fci(ai) 

Poi/cT 

fci(M 

Po^/cl 

k1{a2) 

Po-v/cT P0y/ci 
aci 

Poi/cT Po\/ci 

ki{a2) 

Pa^/ci 

kiih) 
Po^/c\ 

0.0 1.00429 1.01010 0.55216 0.54146 0.0 l. 00429 1.01010 0.55216 0.54146 

0.01 1.00171 1.01253 0.55240 0.54232 0.01 1.00171 1.01252 0.55240 0.54231 

0.10 0.97825 1.03400 0.55437 0.54991 0.10 0.97786 1.03357 0.55421 0.54976 

0.25 0.93900 1.06872 0.55710 0.56227 0.25 0.93743 1.06671 0.55646 0.56166 

0.50 0.87545 1.12420 0.56016 0.58189 0.50 0.87163 1.11809 0.55856 0.58038 

0.75 0.81612 1.17694 0.56131 0.60011 0.75 0.81038 1.16556 0.55884 0.59774 

1.00 0.76203 1.22710 0.56061 0.61679 1.00 0.75489 1.20973 0.55749 0.61377 

1.25 0.71342 1.27482 0.55823 0.63194 1.25 0.70538 1.25104 0.55471 0.62849 

1.50 0.67015 1.32028 0.55437 0.64562 1.50 0.66160 1.28987 0.55069 0.64197 

1.75 0.63181 1.36367 0.54923 0.65794 1.75 0.62305 1.32655 0.54562 0.65430 

2.00 0.59792 1.40519 0.54304 0.66901 2.00 0.58915 1.36137 0.53969 0.66557 
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Table 8 (Continued) 

K = 0.5,  c2/ci = 0.25 K = 1.0, c2/Cl = 0.25 

ac\ 
fei(ai) 

Po-y/cT 

MM 
Po-^/cT 

fei(a2) 

Poi/c7 

h(b2) 

Poi/cT 
ac\ 

fei(ai) 

Poi/cT PO-y/cT 

ki(a2) 

Poi/c7 

ki(b2) 

Po-v/cT 

0.0 1.00429 1.01010 0.55216 0.54146 0.0 1.00429 1.01010 0.55216 0.54146 

0.01 1.00170 1.01251 0.55239 0.54231 0.01 1.00170 1.01251 0.55239 0.54231 

0.10 0.97746 1.03312 0.55404 0.54960 0.10 0.97725 1.03289 0.55395 0 .54952 

0.25 0.93578 1.06459 0.55575 0.56099 0.25 0.93491 1.06348 0.55536 0.56061 

0.50 0.86754 1.11153 0.55669 0.57857 0.50 0.86538 1.10805 0.55563 0.57753 

0.75 0.80420 1.15325 0.55579 0.59474 0.75 0.80091 1.14668 0.55399 0.59294 

1.00 0.74718 1.19085 0.55341 0.60968 1.00 0.74307 1.18072 0.55090 0.60712 

1.25 0.69669 1.22509 0.54981 0.62349 1.25 0.69204 1.21113 0.54669 0.62021 

1.50 0.65236 1.25657 0.54521 0.63626 1.50 0.64742 1.23862 0.54157 0.63234 

1.75 0.61357 1.28579 0.53981 0.64809 1.75 0.60850 1.26377 0.53577 0.64362 

2.00 0.57964 1.31314 0.53375 0.65906 2.00 0.57457 1.28702 0.52942 0.65412 

K = 5.0, c2jcx = 0.25 K = -0.25,  c2/ci = 1.0 

ac\ 
ki(ai) 

Po^Jci Po\fc~i 

k\{a2) 

Po^/ci 

h(b2) 

Po\fc\ 
OLC\ 

fei(ai) 

Po</ci 

*i(M 
PO\fc~l 

fc1(a2) 

Po\fc\ 

h(b2) 

Pov/cT 

0.0 1.00429 1.01010 0.55216 0.54146 0.0 1.02796 1.04795 1.04795 1.02796 

0.01 1.00169 1.01250 0.55239 0.54231 0.01 1.02477 1.04978 1.0461 1.0311 

0.10 0.97681 1.03240 0.55376 0.54933 0.10 .99602 1.06556 1.0288 1.0591 

0.25 0.93307 1.06111 0.55451 0.55979 0.25 .94961 1.09128 0.99839 1.1045 

0.50 0.86075 1.10060 0.55317 0.57510 0.50 .87927 1.13545 0.94573 1.1764 

0.75 0.79385 1.13250 0.54967 0.58855 0.75 .81729 1.18161 0.89313 1.2432 

1.00 0.73421 1.15878 0.54467 0.60059 1.00 .76231 1.22847 0.84244 1.3046 

1.25 0.68203 1.18078 0.53860 0.61150 1.25 .71346 1.27474 0.79476 1.3608 

1.50 0.63676 1.19948 0.53179 0.62148 1.50 .67013 1.31969 0.75064 1.4121 

1.75 0.59757 1.21562 0.52447 0.63068 1.75 .63179 1.36299 0.71025 1.4592 

2.00 0.56361 1.22978 0.51680 0.63921 2.00 .59791 1.40459 0.67350 1.5024 

K = 0.0,   c2/ci = 1.0 K = 0.5,   c2/ci = 1.0 

ac\ 
fci(ai) 

Po-v/cT 

fei(6i) 

Po-^/cT 

fci(a2) 

Po,/ci 

ki{b2) 

Po^fci 
ac\ 

fci(ai) 

POT/CT 

MM 
Po-v/cT 

ki(a2) 

Po-v/cT 

h(b2) 

Po-^/ci" 

0.0 1.02796 1.04795 1.04795 1.02796 0.0 1.02796 1.04795 1.04795 1.02796 

0.01 1.02476 1.04977 1.0461 1.0311 0.01 1.02475 1.04975 1.0461 1.0311 

0.10 0.99552 1.06498 1.0282 1.0585 0.10 0.99499 1.06435 1.0276 1.0579 

0.25 0.94786 1.08894 0.99606 1.0190? 0.25 0.94598 1.08641 0.99350 1.0990 

0.50 0.87537 1.12905 0.94040 1.1691 0.50 0.87115 1.12210 0.93434 1.1608 

0.75 0.81153 1.17010 0.88560 1.2306 0.75 0.80530 1.15758 0.87674 1.2159 

1.00 0.75517 1.21108 0.83370 1.2865 1.00 0.74746 1.19212 0.82307 1.2651 

1.25 0.70543 1.25099 0.78567 1.3373 1.25 0.69673 1.22504 0.77421 1.3092 

1.50 0.66159 1.28932 0.74185 1.3835 1.50 0.65235 1.25606 0.73029 1.3489 

1.75 0.62304 1.32590 0.70217 1.4255 1.75 0.61356 1.28518 0.69109 1.3848 

2.00 0.58914 1.36080 0.66641 1.4640 2.00 0.57964 1.31259 0.65616 1.4175 
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Table 8 (Continued) 
K = 1.0,          c2/Cl = 1.0 K = 5.0,         c2/Cl = 1.0 

OLC\ 
fci(ai) 

PoV^i 

ki(h) 

POA/CJ" 

h(a2) 

Poy/ci 

MM 
POA/CT 

ac\ Mai) 
Po-y/ci" 

MM 
POA/CI" 

ki{a2) 

POA/CT 

MM 

0.0 1.02796 1.04795 1.04795 1.02796 0.0 1.02796 1 04795 1.04795 1.02796 

0.01 1.02474 1.04975 1.0461 1.0311 0.01 1.02473 1 04973 1.0461 1.0311 

0.10 0.99471 1.06402 1.0272 1.0575 0.10 0.99412 1 06333 1.0265 1.0568 

0.25 0.94499 1.08506 0.99213 1.0974 0.25 0.94284 1 08218 0.98913 1.0940 

0.50 0.86890 1.11838 0.93097 1.1562 0.50 0.86404 1 11032 0.92338 1.1457 

0.75 0.80198 1.15086 0.87168 1.2075 0.75 0.79481 1 13628 0.85991 1.1881 

1.00 0.74334 1.18194 0.81682 1.2527 1.00 0.73445 1 15979 0.80183 1.2234 

1.25 0.69209 1.21107 0.76727 1.2927 1.25 0.68207 1 18065 0.75005 1.2530 

1.50 0 .64741 1.23812 0.72308 1.3285 1.50 0.63675 1 19898 0.70449 1.2784 

1.75 0.60849 1.26318 0.68390 1.3606 1.75 0.59756 1 21507 0.66462 1.3002 

2.00 0.57456 1.28649 0.64923 1.3897 2.00 0.56360 1 22929 0.62976 1.3194 

Table 9 The normalized stress intensity factors for two unequal cracks in an 
infinite inhomogeneous orthotropic medium under uniform crack surface 
pressure, ayy(x,0) = -p0, E{x{) = E0Qxp(axi), v = 0.3, K = 0.5. 

c2/ci = 0.25,     (ci + c2)/d = 0.75 

ac\ Mai) 
POA/CI" 

fei(fri) 

POA/CI" 

k1(a2) 

Po-v/cT Poi/c7 

0.0 1.01146 1.04850 0.66867 0.60894 

0.01 1.00880 1.05090 0.66935 0.61018 

0.10 0.98396 1.07123 0.67479 0.62088 

0.25 0.94123 1.10193 0.68212 0.63757 

0.50 0.87140 1.14689 0.69093 0.66332 

0.75 0.80678 1.18608 0.69652 0.68704 

1.00 0.74884 1.22084 0.69956 0.70907 

1.25 0.69772 1.25217 0.70055 0.72964 

1.50 0.65298 1.28079 0.69990 0.74892 

1.75 0.61394 1.30729 0.69792 0.76707 

2.00 0.57986 1.33211 0.69487 0.78420 

c2/Cl = 0.75,     (ci + c2)/d = 0.75 

ac\ 
ki{ai) 

Po-v/cT 
MM 
Po-v/cT 

h(a2) 

POA/CI" 

M&a) 

0.0 1.04964 1.14076 1.04573 0.94551 

0.01 1.04636 1.14252 1.0452 0.94823 

0.10 1.01574 1.15652 1.0389 0.97155 

0.25 0.96426 1.17566 1.0244 1.0077 

0.50 0.88389 1.20191 0.99440 1.0632 

0.75 0.81314 1.22513 0.96126 1.1138 

1.00 0.75192 1.24726 0.92738 1.1604 

1.25 0.69914 1.26906 0.89413 1.2034 

1.50 0.65361 1.29073 0.86230 1.2432 

1.75 0.61421 1.31230 0.83227 1.2802 

2.00 0.57996 1.33373 0.80422 1.3146 

<*/* = 1.0, d + c2)/d = 0.75 

CtC\ 
Mai) 
POA/CT 

fci(M ki{a2) 

POA/CI" 

MM 
POA/Ö" 

0.0 1.06844 1.17318 1.17318 1.06844 

0.01 1.06475 1.17451 1.1717 1.0720 

0.10 1.03045 1.18417 1.1565 1.1028 

0.25 0.97370 1.19589 1.1262 1.1500 

0.50 0.88781 1.21176 1.0707 1.2213 

0.75 0.81450 1.22790 1.0150 1.2853 

1.00 0.75226 1.24581 0.96240 1.3434 

1.25 0.69915 1.26541 0.91427 1.3963 

1.50 0.65354 1.28619 0.87088 1.4448 

1.75 0.61414 1.30762 0.83206 1.4894 

2.00 0.57991 1.32931 0.79742 1.5307 
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Table 9 (Continued ) 
C2/C1 = 0.25,    ac = 0.5 C2/C1 = 0.75,     acx = 0.5 

Cl +c2 

d 

ki(ai) 

Pov/ci" 

h(a2) h(b2) 

PoV^i" 

Cl +c2 

d 

ki(ai) 

Po^/ci" 

k1(a2) 

Po^/ci 
0.0 0.8661 1.1053 0.4331 0.5527 0.0 0.8661 1.1053 0.7501 0.9572 
0.1 0.86614 1.10527 0.48805 0.51930 0.1 0.86614 1.10526 0.78301 0.94138 
0.2 0.86619 1.10539 0.49731 0.52839 0.2 0.86622 1.10545 0.79236 0.95090 
0.3 0.86640 1.10607 0.51092 0.54096 0.3 0.86674 1.10694 0.80597 0.96313 
0.4 0.86683 1.10783 0.53004 0.55743 0.4 0.86809 1.11143 0.82517 0.97818 
0.5 0.86754 1.11153 0.55669 0.57857 0.5 0.87055 1.12107 0.85224 0.99643 
0.6 0.86863 1.11885 0.59451 0.60569 0.6 0.87439 1.13943 0.89137 1.0187 
0.7 0.87026 1.13374 0.65093 0.64115 0.7 0.88008 1.17380 0.95114 1.0464 
0.8 0.87287 1.16752 0.74431 0.68972 0.8 0.88862 1.24313 1.0531 1.0828 
0.9 0.87776 1.26963 0.94244 0.76440 0.9 0.90295 1.42220 1.2792 1.1376 
0.95 0.88273 1.44262 1.1969 0.82657 0.95 0.91588 1.68871 1.5825 1.1836 
1.0 0.9326 00 00 1.2606 1.0 1.0244 00 00 1.5458 

C2/C1 = 1.0,     aci = 0.5 

Mai) 

Poy/ci 

MM 
POA/CT 

kj(a2) 

Pcy^ 

ki(&2) 
Po-v/cT 

0.8661 1.1053 0.8661 1.1053 
0.86614 1.10526 0.86986 1.1096 
0.86620 1.10541 0.87854 1.1187 
0.86671 1.10682 0.89116 1.1302 
0.86823 1.11153 0.90900 1.1441 
0.87115 1.12210 0.93434 1.1608 
0.87588 1.14252 0.97136 1.1810 
0.88301 1.18072 1.0287 1.2061 
0.89377 1.25695 1.1282 1.2392 
0.91169 1.45009 1.3533 1.2894 
0.92762 1.73266 1.6602 1.3323 
1.0561 00 00 1.6792 

Table 10 Stress intensity factors and the contact zone sizes for an isotropic 
inhomogeneous medium under fixed grip remote bending, v = 0.3, 
kQ = E0ely/ä, ayy(x,0) = -E0£1(x/a)exp(ax),E0 = E0/(l - v2). 

£1 > 0 £1 <0 No contact 

aa b/a 
fci(a) 

E0ely/ä 
b/a 

ki(-a) 

-I?o£i\/ä 

fci(a) 

Eo£i^/ä 

fci(-a) 

Eosi^/a 

0.0 0.3333 0.5443 0.3333 0.5443 0.5 -0.5 
0.1 0.3405 0.5964 0.3258 0.4965 0.5523 -0.4523 
0.25 0.3508 0.6832 0.3140 0.4320 0.6402 -0.3886 
0.5 0.3669 0.8554 0.2947 0.3419 0.8151 -0.3010 
1.0 0.3968 1.3359 0.2585 0.2130 1.3029 -0.1794 
1.5 0.4234 2.0827 0.2269 0.1320 2.0570 -0.1064 
2.0 0.4476 3.2488 0.2000 0.0815 3.2297 -0.0631 
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Table 11 Stress intensity factors and contact zone sizes for an isotropic inhomogeneous 
medium under remote strain eyy = e0 + £i{x/a) = £\{ß + x/a),(Fig. 25), a = 0.5, 
v = 0.3, EQ/EI = ß, £i > 0. 

b/a 
Eoei-y/a E0eiy/a 

0.0 0.3669 0.8554 0.0 
0.25 0.7184 1.1798 0.0 
0.4485 1 1.4561 0.0 
0.45 1 1.4582 0.0010 
0.50 1 1.5297 0.0345 
0.625 1 1.7083 0.1184 
0.75 1 1.8869 0.2023 
1.00 1 2.2442 0.3700 
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